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Summary 

Diversity-oriented fluorescent libraries (DOFL) approach, through generating large 

numbers of fluorescent compounds in a combinatorial way, is a powerful method to 

discover novel fluorescent sensors. This thesis using diversity-oriented approach 

introduces the successful examples of sensor development based on BODIPY structure. 

We first synthesized a novel 160-member BODIPY library with an active ester 

motif attached (BDD) through Knoevenagel condensation reaction with aldehyde 

building blocks. BDD was then further reacted with N1,N1-dimethylethane-1,2-diamine 

and 2,2-dimethoxyethanamine to give 80-member BDL and 47-member BDA libraries, 

respectively. All these three libraries cover very broad spectral properties and form 

good chemical tool box for sensor development. 

 The three BODIPY libraries were then applied to high-throughput screening 

systems in two directions of in vitro screening and cell-based screening. 3 novel sensors, 

Fructose Orange, Glutathione Green and Green Date, were discovered from in vitro 

screening system. Fructose Orange showed up to 24-fold fluorescence increase upon 

recognition of fructose and an outstanding selectivity among 24 different saccharides. 

NMR studies confirmed the formation of five different binding interactions between the 

sensor and fructose. Furthermore, Fructose Orange was applied to the quantification of 

fructose in soft drinks, being the most selective fluorescent sensor for fructose reported 

to date. Glutathione Green showed ratiometric fluorescence response and outstanding 

selectivity over other analytes. Further experiment showed that GSH Green is capable 

of GSH quantification in cell extract, as well as responding to the GSH concentration 

change in cellular environment. Green Date showed high fluorescence response to 

GBL in various pH conditions and up to 10% EtOH. Furthermore, Green Date is able 

to detect the existence of GBL in different kinds of drink samples after a simple 
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extraction method. This discovery will help to secure the safety of drinks in public place 

and solve the DFSA problems. While in the cell-based screening one compound from 

BDD library (CDr3) was identified as a neural stem cell specific probe. This novel 

compound specifically detects living neural stem cells of both human and mouse origin. 

Furthermore, we identified its binding target by proteomic analysis as fatty acid binding 

protein 7 (FABP7) which is highly expressed in neural stem cells and localized in the 

cytoplasm. CDr3 will be a valuable chemical tool in the study and applications of neural 

stem cells. 

In addition to sensor development, we further proved that DOFL compounds could 

also be more informatics and aim at specific applications. We constructed a Taming 

BODIPY library with very diverse physical properties. After applying to cell-based 

screening system, cellular localization and retention of compounds were correlated to 

the structures of substitutions of BODIPY dyes. Using the information, cell-

permeability and background issues were overcome in developing a protein tag system 

based on BODIPY diacrylate structure. This novel peptide-based protein labelling 

system preferably changed the spectral property when it encounters a designed peptide 

containing two pairs of Arg-Cys. Dimeric peptide tag RC2 and its partner compound 

would benefit the current protein labelling methods, especially the optical imaging of 

specific target protein inside living cells as demonstrated. This system would provide a 

promising tool for optical imaging of specific protein due to the advantages of small 

size, independence from other enzymes or cofactors, applicability to intracellular 

proteins, optical confirmation of proper conjugation from the apparent spectral change, 

stable binding be analyzed in SDS-PAGE, and negligible toxicity to the users.  
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Chapter 1 

Introduction 

    The need for recognizing and sensing environmentally and biologically important 

species has led large efforts towards sensor development. Fluorescent small molecules 

comprise an important part among sensor families, due to their high sensitivity, fast 

response time, low cost and technical simplicity. During the sensing process, molecular 

recognition lies at the very essential part. The recognition not only refers to the binding 

event, but also requires selectivity between a sensor and an analyte.1 The conventional 

design of fluorescent sensors was first proposed by combining well-known recognition 

elements with fluorophores (designed approach),2 while the latter ones only serve as 

reporters. However, the limited knowledge of the recognition motif and complicated 

real situation restricted the successful rate. In recent years, combinatorial approach has 

found its way in generating and optimizing fluorescent sensors. It was first applied with 

designed approach to discover new sensors for defined analytes through derivatization 

of known recognition elements (Target-Oriented Fluorescent Libraries, TOFL).  

Combinatorial approach then broadened its scope to multi-purpose sensing by 

generating large numbers of diverse structures (Diversity-Oriented Fluorescent 

Libraries, DOFL). Combined with high-throughput screening, DOFL approach could 

discover sensors for targets which might not be accessible by rational design (e.g., cell 

phenotype, macrostructures). 

DOFL approach has become an alternative way to sophisticated design in sensor 

development based on various fluorescent scaffold, including coumarin, styryl, 

quinoline, dapoxyl, xanthone, cyanine, BODIPY, rodamine and so on. Among them, 

BODIPY dyes are special not only because of their superior photophysical properties 

(e.g., high quantum yield, tunable fluorescence characteristics, high photostability, and 
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narrow emission bandwidth),3 but also their relatively nonpolar property and electrically 

neutral fluorophore.4 These properties induce minimal perturbation to functional 

properties of their conjugates. BODIPY dyes are therefore often preferred as sensing 

scaffold and labeling reagents.  

The following sections will review research of the expansion of combinatorial 

approach on fluorescent small molecules in sensor development and recent application 

of BODIPY compounds. 

 

1.1 Overview of Small Molecule Fluorophores 

The process of fluorescence involves two stages: (1) a molecule at ground state 

absorbs a photo of suitable energy to promote to the excited state; and (2) the excited 

state emits another photon to return to the ground state.4 On the other hand, the 

relaxation of the excited state does not always happen as fluorescence due to that energy 

can be lost in other ways (e.g., bond rotation or vibration, and molecular collision5) or 

through other mechanisms (e.g., photoinduced electron transfer (PeT)6 and heavy atom 

effect7). The parameters normally used to characterize fluorophores are maximal 

absorption wavelength (λabs), maximal emission wavelength (λem), extinction coefficient 

(ε, defined by Beer-Lambert-Bouguer law), Stokes shift (difference between λabs and 

λem) and quantum yield (Φ, ration of photons emitted to absorbed).  

The first small molecule fluorophore discovered was the naturally-occurring 

compound quinine, reported by Herschel in 1845.8 However, over the years, well 

developed small molecule fluorophores are still restricted to a limited number of 

scaffolds. Although additional class of fluorophores (e.g., quantum dots and fluorescent 

proteins) have gained much attention recently, they are beyond the scope of this thesis 

and therefore not discussed here. Nevertheless, these limited fluorophores are still able 
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to cover full range of the spectra, from UV-visible to near-infrared. Major classes of 

small molecule fluorophores include pyrenes (1), naphthalene derivatives (e.g., dansyl 

chloride and naphtalimide (2)), coumarins (3), xanthone (4), fluorescein (5), NBD (6), 

rhodol (7), BODIPY(8), dapoxyl (99), styryl (1010), rhodamine (11), cyanines (12), 

quinolines, indoles and imidizoles (e.g., DAPI and Hoechst), stilbene, phenanthridines, 

squarine, phthalocyanines and oxazines (Figure 1.1).  

1

2
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10

11

12

 

Figure 1.1 Representative structures of fluorophores with emission ranging from blue to NIR 

1.2 Combinatorial Synthetic Strategies for Fluorescent Sensor Development 

1.2.1 Target-Oriented Fluorescent Libraries 

TOFL are created to maximize the signal response and optimize the selectivity of 

conventional rational design. The workflow for preparing these libraries can be 

summarized as: (1) searching of receptors or binding motifs based on target analytes, (2) 
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attaching receptors or binding motifs to reporters that can transform molecular 

recognition event into fluorescent signal (Figure 1.2). Due to the limited knowledge of 

recognition elements, the target analytes of TOFL are still restricted to several classes, 

such as metal ions and saccharides.  

 

Figure 1.2 Schematic representation of TOFL for sensor development 

Metal ions due to their environmental and biological importance, as well as well 

known binding motifs (e.g., crown ethers, polyamines, macrocyclic amines, pyridines 

and acetates) have become one of the most popular targets in sensor development.11 

Pioneer work by applying combinatorial approach to develop metal ion sensors was 

reported by Sames and co-workers, who constructed a 1470-member library of triamine 

ionophores for environmental copper sensing (Figure 1.3a).12 Later researchers utilized 

PeT mechanism to obtain enhancing fluorescent signals to metal ions. In this case, the 

electron-donor property of receptor diminishes once the sensor binds to metal.13 One 

example is the alkali and alkali earth metal ion sensors developed by Rivero et al. by 

derivatizing dansyl with lariat ethers and benzamides.14 Further development on metal 

sensors was demonstrated by Finney and co-workers by proposing a new signalling 

mechanism (binding-induced restriction of fluorophore biary torsion). The discovery of 

Hg2+ and Ag+ sensors from biarylpyridine library successfully proved their assumption 

(Figure 1.3b).15 
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Figure 1.3 TOFL for metal ion sensing (a) Preparation of dansyl libraries through derivatization 

of polyamines as recognition motifs to develop fluorescent sensors for Cu2+; (b) Binding-

induced restriction of fluorophore biaryl torsion as a novel signaling mechanism to develop 

fluorescent sensors for Hg2+ 

Saccharides are another class of analytes that have received enormous attentions for 

sensor development due to their biologically importance (e.g., cell signalling, immune 

response and cell adhesion).16 The design of saccharides sensor was challenging (due to 

their restricted functional groups and conformational changing) until the landmark 

discovery that boronic acids could reversibly form boronic esters with sugar diols.17 

Boronic acids were then widely incorporated with different fluorophores to develop 

saccharides sensors.1 However, the selectivity still remains a problem due to the 

structurally similarity between different saccharides.16a This could be improved by 

applying combinatorial approach. One example is the systematic work reported by 

Wang’s lab for saccharides sensor development. They derivatized boronic acid with 

indole18 and isoquinole19 motifs to develop fluorescent saccharides sensors with high 

affinity. Hall and co-workers also prepared a library by combining anthracene-capped 

polyamines with aryl boronic acids to discover novel saccharides sensors.20       
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1.2.2 Diversity-Oriented Fluorescent Libraries 

In order to accelerate fluorescent sensor development, DOFL were prepared with 

more diverse structure properties and screened for multi-purpose sensing. Compared 

with TOFL, while the fluorophores only serve as signal reporters, the fluorescent 

molecules in DOFL can also participate in the binding event (i.e., as both receptors and 

reporters). On the other hand, the analytes class of DOFL were widely expanded to 

those targets when even no prior knowledge of recognition is available (e.g., proteins, 

cells and macromolecules) (Figure 1.4). 

 

Figure 1.4 Schematic representation of DOFL for sensor development 

The strategies for preparing DOFL can by summarized as two types: (1) derivatizing 

known fluorophores with commercial available building blocks; (2) de novo 

construction of fluorophores through multi-component, one-pot, or tandem reactions. 

While the first strategy usually utilizes convenient chemistry and renders relatively 

large library size, which is defined by availability of building blocks, the latter one faces 

more synthetic challenging and has relatively smaller number but with broader 

structural diversity.    

The initial attempt on constructing DOFL was used to optimize the photophysical 

properties (e.g., high quantum yield and good photostability) of known fluorophores in 

order to develop potential candidates as sensors and imaging probes. One of the first 

examples explored on this purpose was coumarin dye. Bauerle and co-workers reported 

the first coumarin library by derivatizing eight different 3-bromocoumarins using 
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palladium-catalyzed coupling reactions (i.e., Suzuki, Sonogashira, and Heck cross-

coupling reactions). Several structures showing relatively high quantum yield were 

identified after screening from this library (Figure 1.5).21 Later, similar purpose has 

been shared by other researchers through derivatizing coumarin at different positions22 

and expanding to other fluorophores (e.g., rodol,23 xanthone24 and cyanine25) using 

different chemistries (e.g., click chemistry22c, 24 and nucleophilic substitution25). DOFL 

were also used to study the solvent effect on derivatives of fluorophores. Dapoxyl and 

naphthalimide libraries reported by Yao and Heagy respectively were prepared for this 

purpose.26 One successful example of DOFL constructed for sensor development was 

the styryl libraries reported by Chang and co-workers. These libraries, covering whole 

visible range of emission wavelength, were prepared from Knoevenagel condensation 

reactions of pyridinium salts and commercial aldehyde building blocks. New probes 

showing specific cellular localizations27, as well as novel DNA28 and RNA10 sensors 

were identified from this library. 

 

Figure 1.5 Synthesis of diversity-oriented coumarin library and identification of high quantum 

yield compounds after screening. This picture has been partly reproduced from ref 21 with 

permission. Copyright 2001 Wiley-VCH. 

Preparation for DOFL also utilizes solid-phase chemistry to increase chemical 

diversity and facilitate purification process. With the aim of increasing chemical 

diversity, Lam’s group designed a solid-phase approach on Rink amide resin which 
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enabled multi-derivatization on different points of coumarin. From this one synthetic 

route, different derivatives of coumarin, including imidazocoumarins, lactam coumarins, 

and thiomidazocoumarins, were rendered.29 Park and co-workers also developed solid-

phase synthesis of benzopyrans to prepare a 434-membered library. In their approach, 

five different types of reactions were allowed to happen on their fluorescent scaffold 

(i.e., Suzuki coupling, Stille coupling and subsequent Diels-Alder, asymmetric 

hydrogenation, aromatization, and click chemistry).30 With the aim to facilitate 

purification process, Chang and co-workers prepared second generation of styryl 

libraries on chlorotrityl resin by adding amine linker using similar Knoevenagel 

condensation reactions, from which several sensors for β-amyloid plaques were 

developed (Figure 1.6a).31 A similar approach has been applied by Chang’s group to 

other positively charged scaffolds, which also faced difficulty in purification. A 96-

membered benzimidazolium32 and 96-member quinaldinium33 libraries were 

synthesized, and GTP (Figure 1.6b) and chymotrypsin (Figure 1.6c) sensors were 

discovered from the two libraries, respectively. The strategy of adding amine linker to 

fluorophores and attaching them to chlorotrityl resin for further derivatizaiton was also 

expanded to other fluorophores by the same group. Libraries based on dapoxyl9, 

xanthone34 and rosamine35 were constructed, and showed successful application in 

developing sensors for human serum albumin (HSA)9, glutathione35 (Figure 1.6d), 

mitochondria proteins36 and stem cells34, 37. 
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Figure 1.6 DOFL prepared from solid-phase synthesis for sensor development. (a) styryl dye 

and labeling of amyloid deposits in mouse brain tissue; (b) benzimidazole dye and fluorescence 

spectra upon incubation with GTP and other nucleotides; (c) quinaldine dye and fluorescence 

spectra upon incubation with chymotrypsin; (d) rosamine dye and glutathione staining in 3T3 

cells. These pictures have been partly reproduced form ref 31 (a), 32 (b), 33 (c), and 35 (d) with 

permission. (a) Copyright 2004 Wiley-VCH. (b, c, d) Copyright 2006, 2007 and 2008 American 

Chemical Society. 

As complement to the limited fluorescent scaffold, de novo construction was used to 

expand the availability of fluorophores. Park and co-workers prepared libraries based on 

1,2-dihydropyrrolo[3,4-b]indolizin-3-one structure through condensation of α,β-

unsaturated aldehydes and pyridine derivatives followed by 1,3-dipolar cycloaddition 

and further oxidation. One novelty of this library is the feasibility in predicting the 

emission wavelength from theoretical calculations of Hammett constant and energy 

gaps (Figure 1.7).38 Multi-component one-pot reactions were also used for preparation 
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of novel fluorophores. Wang’s group reported the construction of a cyanoaniline library 

from three-component one-pot reactions, which constitute a unique acceptor-donor-

acceptor system.39 Balakirev and co-workers reported a library through combination of 

8 heterocyclic amidines, 40 aldehydes, and 5 isocyanides in droplet array platform, 

which facilitated the screening of this library.40 The synthesis of new fluorophores can 

also be based on known motifs. Lee et al. prepared a 41-member 

benzylideneimidazolinone library based on the chromophore of the green fluorescent 

protein (GFP), and identified novel sensors for pH, HSA and RNA.41 

a)

b) c)

 

Figure 1.7 De novo construction of DOFL. (a) synthetic scheme for the preparation of 1,2-

dihydropyrrolo[3,4-b]indolizin-3-ones; (b) representative chemical structures of the library and 

their pictures; (c) correlation of the emission wavelength and energy gap of the library 

compounds. These pictures have been partly reproduced form ref 38 with permission. Copyright 

2011 American Chemical Society. 

1.3 Screening System 

Combinatorial approach accelerates sensor development not only through 

generation of diverse chemical toolbox, but also validation of sensors in a high-

throughput manner. Various screening systems have been developed in the last decades 

to maximize the chance to discover “hit” compounds. According to the media used in 
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screening process, they can mainly be classified into in vitro screening and cell-based 

screening.  

1.3.1 In Vitro Screening 

In vitro screening is based on monitoring the fluorescence spectra change of 

potential sensors induced by binding with analytes. These screenings are usually 

technically simple, inexpensive and reproducible, and especially suitable to discover 

sensors for defined analytes (e.g., metal ions and sugars) or specific biomarkers (e.g., β-

amyloid plaques for Alzheimer’s disease31). When there is no prior defined target of 

interest, in vitro screening can also be performed in an unbiased manner especially for 

DOFL. In this case, the success rate of sensor development is enhanced as variety 

targets covering broad range of biological events can be included.  One example is the 

unbiased screening of 41 benzylideneimidazolinone compounds demonstrated by Lee et 

al., from which three turn-on sensors for pH, HSA, and RNA were successfully 

discovered.41  

1.3.2 Cell-Based Screening 

Recent technical development of optical imaging instruments enables high-

throughput screening to be performed based on cell image.42 Compared to in vitro 

screening, cell-based screening is dealing with more complicated situation and can be 

affected by many unknown factors. This is also one of the major obstacles in rational 

design of sensors when cell-based screening was used to evaluate them. On the other 

hand, DOFL can benefit from this situation, especially combined with high-throughput 

screening, as when they are screened directly to the cells, the unique characteristics of 

each cell type enable the discovery of specific probes. One example is the identification 

of a stem cell probe (i.e., CDy1) by Chang and co-workers. 280 rosamine dyes were 

screened against mouse embryonic stem cells (mESC) and mouse embryonic fibroblasts 
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(MEF, feeder cells for mESC), and CDy1 was identified as the best hit which showed 

significant selectivity to mESC. CDy1 was also further characterized as an excellent 

tool to stain and isolate embryonic and induced pluripotent stem cells (Figure 1.8).37 

a)

b)

c)

 

Figure 1.8 Identification of a fluorescent mESC probe (CDy1). (a) Structure of CDy1; (b) 

Upper panel: mESC stained with CDy1 were immunostained with anti-Oct4 antibody; lower 

panel: mESC treated with DMSO was used as a negative control; (c) Flow cytometry dot-plot 

image of mESC and MEF stained with CDy1. These pictures have been partly reproduced form 

ref 37 with permission. Copyright 2010 Wiley-VCH. 

1.4 BODIPY Dyes 

1.4.1 Overall Properties of BODIPY Dyes   

BODIPY (4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene) dyes were first discovered in 

1968 by Treibs and Kreuzer.43 Their unique properties among fluorophore family can be 

recognized from the following aspects. First is their outstanding photophysical 

properties, such as good photostability, high quantum yield (e.g., tetramethyl BODIPY 

has a quantum yield of almost 1), high extinction coefficient (ε, around 100,000 M-1cm-

1), narrow emission bandwidth and environmental insensitivity.3 Additionally, the 

emission wavelength of BODIPY dyes is tunable through appropriate substitution, 

which makes them become surrogates for some traditional dyes, such as fluorescein, 

tetramethylrhodamine, Texas red and many others.4 Another important property of 
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BODIPY dyes is the overall lipophilicity and electrically neutral character, which allow 

them to be incorporated into lipophilic probes and induce minimal perturbation of 

functional properties of conjugates.44 Moreover, the Stokes shift of BODIPY dyes is 

small (i.e., around 20 nm) making the fluorophore susceptible to self-quenching through 

energy transfer. This phenomenon can be used to build useful protease sensors, while 

the proteolysis of densely labelled proteins will lead to fluorescence increase.45  

1.4.2 Applications of BODIPY Dyes 

Over the years since first discovery of BODIPY dye, the derivatization has been 

made on all the possible 8 positions of its core (Figure 1.9) through different chemistries. 

The large chemical tool box of BODIPY dyes enables their wide applications on 

different purposes. In addition to the preferred fluorophores incorporated into lipophilic 

probes or protease sensors, which was discussed earlier, BODIPY dyes were widely 

used as labelling reagents for proteins and DNA, due to their superior photophysical 

properties.3 Substitution on BODIPY core, especially 3- and 5-positions enlarges their 

conjugation area and further extended the emission wavelength. Various BODIPY 

derivatives covering green to NIR emission colour (Figure 1.10) have been reported and 

even commercialized as labelling kit for different purposes. In the mean time, BODIPY 

dyes were also popular fluorophores to develop novel sensors. In recent years, sensors 

on the basis of BODIPY scaffold have been reported to detect various analytes, 

including metal ions, anions, reactive oxygen species (ROS), pH, thiols, proteins and 

different environmental factors. 

 

Figure 1.9 Derivatizing at different positions of BODIPY core.  
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Figure 1.10 Representative structures of BODIPY derivatives covering spectra from green to 

NIR 

Most of the BODIPY metal ions sensors were designed based on PeT mechanism, 

while the receptor acts as electron-donor part and quenches the fluorescence of 

BODIPY core. Once those sensors bind with metal ions, the electron-donning effect of 

receptors is diminished and the fluorescence of BODIPY will be recovered.6 One 

example is the Cu+ sensor reported by Chang group. A well known Cu+ binding motif, 

thioether macrocycle, which can also distinguish Cu+ against Cu2+, was conjugated with 

BODIPY core. This sensor (21, Figure 1.11) showed high fluorescence response to Cu+, 

as well as good selectivity, and can be used as imaging tool to study Cu+ concentration 

in live cells.46 Similar researches have also been conducted towards other metal analytes, 

including Ca2+ (1347), K+ (1448), Zn2+ (1549), Hg2+ (1650), Cd2+ (1751), Ni2+ (1852), 

Au3+/Au+ (1953), Pb2+ (2054), Cu2+ (2254), Fe3+ (2355), and many others. The design for 

anion (e.g., F-56 and CN-57) sensors, as well as thiol sensors58 (e.g., cyctein) mainly 

utilized specific reactions. Labile groups for anions (e.g., Si substitutes for F) or thiols 

(e.g. 2,4-dinitrobenzenesulfonyl and maleimide) were introduced to the sensor 

structures and the attacking of analytes resulted in fluorescent change of sensors (24-27). 

Similar reaction-based approach was also used to design ROS sensors. Pioneer work 

was reported by Nagano group to design a highly sensitive sensor for nitric oxide (NO) 

(28). 3,4-diaminophenyl group was selected as reactive group, and after the sensor was  
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Figure 1.11 Structures of selected BODIPY sensors for metal ions, anions, thiols, ROS, and 

environment factors    
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exposed to NO, it was then oxidized to triazole to diminish the PeT effect and turn on 

the fluorescence.59 Other redox labile groups were also conjugated to BODIPY to 

prepared sensors for different ROS (e.g., HOCl) (29, 30).60 In addition, BODIPY dyes 

were also be designed as enzyme sensors to study enzyme’s activities,61 as well as 

environmental sensors to monitor changes of various factors, such as pH (31-34),62 light 

(35),63 viscosity (36),64 and so on (Figure 1.11).  

     

1.5 Scope and Outline 

It has been discussed earlier that DOFL approach has been applied to different 

fluorophores and accelerated the development of fluorescent sensors by combining with 

high-throughput screening. It has also been highlighted that BODIPY structure is a 

unique fluorophore with superior spectral properties and has wide applications in 

fluorescent sensor and labelling reagent. Hence, we aim to design novel diversity-

oriented BODIPY libraries and apply them to both in vitro screening and cell-based 

screening system in order to develop novel BODIPY-based sensors.   

The aims of this thesis project are: 

1) To synthesize novel diversity-oriented BODIPY libraries. In this strategy, I first 

introduced an active ester motif to BODIPY core and synthesized a 160-member 

library (BDD). This active ester motif can later be easily replaced by other 

functional groups. Hence, BDD was further derivatized to two other functional 

libraries, Lyso Tracker library (BDL) and Aldefluor library (BDA).   

2) To discover novel BODIPY sensors from the three BODIPY libraries through 

unbiased in vitro screening. For this purpose, I conducted an unbiased in vitro 

screening to BDD, BDL and BDA against 54 different analytes. Two novel sensors 
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for fructose (Fructose Orange) and glutathione (Glutathione Green) was 

discovered and further evaluated. 

3) To develop fluorescent sensors for illicit date-rape drug, gamma-butyrolactone 

(GBL). For this purpose, we conducted a target-oriented screening to GBL using 

DOFL. 5 compounds from BDD library were identified as GBL sensors, and one 

further derivative showing even better response was selected as final hit (Green 

Date). Green Date was also applied to detect GBL in real drink samples.  

4) To develop novel fluorescent small molecule probe for neural stem cells. Cell-based 

screening was carried out with the three BODIPY libraries. One BDD compound 

(CDr3) showing selective staining to neural stem cell from both human and mouse 

origin was identified as stem cell probe. Further study showed CDr3 can bind to 

neural stem cell biomarker, fatty acid binding protein 7.   

5) To find out the structure-cellular behaviour relationship of BODIPY dyes using 

DOFL approach. One BODIPY library with very diverse physical properties and 

different colours were synthesized and applied to cell-based screening system. 

Cellular localization and retention of compounds were successfully correlated to the 

structures of substitutions of BODIPY dyes. Using the information, a protein tag 

system based on BODIPY diacrylate structure was successfully developed after 

solving the background issue. 
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2.1 Introduction 

As discussed earlier, BODIPY compounds have found wide applications towards 

different purposes.1 However, compared to other fluorophores, construction of 

diversity-oriented BODIPY libraries is still rarely developed, probably due to the 

synthetic challenge.2 The first BODIPY based library was reported by Nagano group in 

2007 to study the solvent polarity dependence of their fluorescence and the role of 

photoinduced electron transfer (PeT).3 In their strategy, 15 compounds with 

derivatization at 8-position of the BODIPY core were prepared. However, in this case, 

the BODIPY compounds in the library were still prepared one-by-one. Parallel synthesis 

of large numbers of BODIPY dyes was not available until the exploring work by our 

group. Lee et al. prepared a collection of 160 compounds through Knoevenagel 

condensation reaction on 1,3-dimethyl BODIPY scaffold (BD). After in vitro screening 

and cell-based screening, novel sensors for glucagon, dopamine, and bovine serum 

albumin (BSA) were successfully developed.4 Although it has been controversial for 

adapting BODIPY to solid-phase chemistry due to its known acidic and basic 

sensitivity,2 our group has successfully constructed a second generation BODIPY library 

on chlorotrityl resin to minimize the purification steps. Vendrell et al. prepared an 

aminoethyl BODIPY scaffold, attached it to solid-phase, and derivatized at 3-position 

using Knoevenagel condensation reaction to render 160 BODIPY compounds (BDM). A 

fluorescent probe for immunoglobulin was successfully discovered after in vitro 

screening.5 

Encouraged by the successful examples, I prepared our third generation of BODIPY 

library by introducing an active ester motif to the core structure, and derivatizing it with 

same Knoevenagel condensation reaction. 160 compounds with good purity and 

covering broad spectra properties were rendered (BDD). This active ester group can be 
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easily replaced through nucleophilic substitution, and therefore two other functional 

BODIPY libraries (BDL and BDA) were further prepared through one step reaction. 

 

2.2 Results and Discussion 

2.2.1 Design and Synthesis of an Active Ester BODIPY Library (BDD) 

Many commercially available BODIPY probes (e.g., LysoTracker Green DND-26, 

ALDEFLUOR®, BODIPY® FL C5-ceramide) are prepared from 4,4-difluoro-5,7-

dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionic acid (BODIPY® FL6), partially 

due to its straightforward derivatization. One key intermediate of these probes is the 

compound 1 (Scheme 2.1), an activated ester of BODIPY® FL.7 We envisioned that the 

combinatorial derivatization of 1 may render a suitable toolbox for the discovery of new 

fluorescent chemosensors, and prepared 160 BDD compounds in high purities by 

Knoevenagel condensation of 1 with structurally diverse aldehydes (Scheme 2.1 and 

Chart 2.1).  

Scheme 2.1 General synthetic scheme of the BDD library 

 

Reagents and conditions: a) pyrrolidine (6 eq.), acetic acid (6 eq.), ACN, 85 oC, 15 min. 
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Chart 2.1 A decoding table for BDD library 
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2.2.2 Spectroscopic Properties of BDD Library 

The condensation reaction led to a red shift in the fluorescence emission properties 

of 1, due to the extended π-conjugation system in BDD compounds.8 The broad 

chemical diversity of the aldehyde building blocks gave rise to very diverse spectral 

properties for BDD derivatives: absorption wavelengths ranged from 540 nm to 627 nm, 

emission wavelengths from 560 to 795 nm and quantum yields varied from 0.006 to 

almost 1 (Table 2.1). This wide range of spectroscopic properties asserted the potential 

of the BDD library as a multicolor (from yellow to near infrared) and multi-type (turn-

on or quenching) toolbox for the development of new fluorescent probes. 

Table 2.1 Spectroscopic properties and purity table for BDD library: calculated mass, 

experimental mass, absorbance maximum (λabs), fluorescent emission maximum (λem), 

extinction coefficient (ε), quantum yield (Φ), and purity. 

 
Code mass (calc) m/z (exp) λabs (nm) λem (nm) ε (M-1cm-1) Φ Purity (%)c 

BDD1 600.1 580.8 574 592 887259 0.56 97 

BDD2 553.1 554.1a 615 744 2113457 0 95 

BDD3 592.1 573.1 608 725 1138519 0.01 98 

BDD4 722.1 703.1 579 602 901654 0.69 92 

BDD5 586.1 567.1 576 591 722370 0.81 96 

BDD6 610.1 591.1 544 560 458025 0.2 99 

BDD7 646.1 626.7 579 601 463259 0.57 99 

BDD9 524.1 504.8 566 579 2562321 0.27 97 

BDD14 677.1 657.8 601 750 719753 0 98 

BDD16 644.1 625.1 572 587 719753 0.88 97 

BDD17 637.2 638.3 627 766 320617 0 99 

BDD18 556.1 536.7 584 599 442321 0.37 98 

BDD19 552.1 532.8 569 582 1129358 0.69 99 

BDD20 602.1 583.1 567 585 1150296 0.64 98 

BDD22 500 480.8 576 592 212000 0.31 98 

BDD25 560.1 540.6 577 596 537852 0.78 96 

BDD26 566.1 546.7 572 588 1324346 0.76 97 

BDD30 598 579 607 649 1046914 0.07 96 
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BDD32 590.1 570.7 588 629 1294247 0.13 93 

BDD33 540.1 520.8 576 593 651704 0.26 94 

BDD34 574.1 555.1 559 592 552247 0.76 96 

BDD36 574.1 555.1 580 602 341556 0.59 98 

BDD37 566 546.5 577 596 647778 0.72 94 

BDD38 590 571 577 598 701432 0.03 96 

BDD40 586.1 567.1 567 582 526074 0.94 95 

BDD42 632.1 612.7 567 579 92914 0.16 91 

BDD43 582.1 563.7 576 595 1094025 0.38 94 

BDD45 610.2 590.8 577 595 772099 0.79 93 

BDD46 582.1 563.1 576 595 477654 0.67 99 

BDD48 566.1 547 575 594 558790 0.8 99 

BDD52 694 675.1 575 594 1083556 0.94 99 

BDD53 598.1 579.1 579 605 862395 0.68 94 

BDD54 618 599.6 573 587 1287704 0.61 95 

BDD61 590.1 570.7 586 618 993259 0.42 98 

BDD62 570.1 551.1 579 604 1015506 0.77 95 

BDD63 584.1 565.2 579 604 1036444 0.53 94 

BDD65 592.1 573.1 601 626 560099 0.2 97 

BDD67 580.1 561.1 550 583 490741 >0.99 99 

BDD68 594 593.0b 565 577 493358 0.86 94 

BDD69 612.1 593.1 587 604 1440815 0.25 89 

BDD70 620.1 601.1 592 651 851926 0.07 92 

BDD73 604 584.6 574 588 473728 0.49 91 

BDD76 598.1 579.1 584 598 189753 0.31 91 

BDD77 552.1 533.2 570 583 719753 0.75 92 

BDD82 600.1 580.7 589 620 810049 0.51 92 

BDD83 570.1 551.1 568 581 357259 0.72 96 

BDD88 587.1 588.1a 576 589 2529605 0.25 97 

BDD89 586.1 567.1 588 616 1463062 0.19 96 

BDD90 616.1 597.1 576 593 485506 0.75 92 

BDD91 583.1 584.1a 619 752 527383 0 96 

BDD94 563.1 544.1 584 648 94222 0.02 98 

BDD95 586.1 567.1 584 618 477654 0.02 95 

BDD97 556.1 537.1 573 588 1961654 0.01 97 

BDD98 638.2 618.8 572 587 1427728 0.4 95 

BDD101 602.1 593.1 575 588 756395 0.61 99 

BDD103 634.1 615.1 605 638 1175160 0.2 89 

BDD105 526.1 507.1 568 580 757704 0.78 94 

BDD107 581.1 582.7a 624 759 582346 0 93 
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BDD108 552.1 533.1 559 593 959235 0.54 99 

BDD110 540.1 521.1 575 594 625531 0.91 98 

BDD121 560 541 573 587 243407 0.42 94 

BDD126 554.1 535.1 580 605 887259 0.09 94 

BDD132 556.1 537.1 573 586 444938 0.02 97 

BDD135 514.1 494.7 565 585 369037 0.47 94 

BDD136 513.1 514.1a 601 646 974938 0.12 95 

BDD137 560.1 540.6 576 587 1162074 0.53 95 

BDD139 554.1 534.8 576 598 927827 0.97 98 

BDD140 568.1 549.1 576 596 1226198 >0.99 96 

BDD144 600.1 581.1 590 651 991951 0.01 97 

BDD153 526.1 507.1 578 601 1211802 0.65 96 

BDD163 611.1 612.1a 579 597 81136 0.07 92 

BDD164 584.1 565.1 579 604 625531 0.69 98 

BDD177 566.1 547.1 569 583 790420 >0.99 97 

BDD178 632.1 613.1 573 590 1299481 0.85 99 

BDD186 540.1 520.8 567 579 378198 >0.99 92 

BDD187 554.1 535.1 570 583 590198 0.94 98 

BDD190 526.1 507.1 574 588 299679 0.53 96 

BDD195 640 621.1 610 645 243407 0.13 89 

BDD199 588.1 589.1a 574 587 353333 0.75 97 

BDD206 570.1 551.1 583 609 1108420 0.7 99 

BDD209 570.1 550.8 567 581 463259 >0.99 93 

BDD216 538.1 519.1 570 584 547012 >0.99 94 

BDD223 676.1 657.2 590 653 632074 0.02 97 

BDD228 648 629.1 568 582 535235 >0.99 99 

BDD236 530 511 586 606 1022049 0.61 94 

BDD238 530.1 511.1 582 600 231630 0.3 94 

BDD241 695.9 676.9 569 583 497284 0.91 88 

BDD242 696 677 572 586 481580 >0.99 97 

BDD243 538.1 519 554 579 378198 >0.99 99 

BDD245 558.1 539.1 570 582 582346 0.75 94 

BDD247 648 628.5 582 605 280049 0.62 90 

BDD251 538.1 519 566 584 832296 0.83 94 

BDD257 613.1 614.1a 620 754 375580 0 91 

BDD259 648 629 570 585 73284 0.08 96 

BDD260 618 598.6 574 589 223778 0.64 97 

BDD263 566.1 547.1 570 583 209383 0.66 94 

BDD264 632 613 577 597 702741 0.74 95 

BDD268 662 643 577 600 230321 0.44 98 
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BDD274 574 554.7 573 588 294444 >0.99 98 

BDD282 604 584.7 568 581 405679 >0.99 98 

BDD284 610 591 604 625 218543 0.21 93 

BDD290 636.1 617.1 571 586 154420 0.5 97 

BDD298 632.1 613.1 568 583 582346 >0.99 91 

BDD299 670 650.9 567 579 187136 0.72 90 

BDD300 616.1 597.2 573 590 297062 0.82 91 

BDD301 620.1 600.7 574 600 391284 0.97 97 

BDD305 588.1 568.8 577 597 278741 0.77 90 

BDD307 586.1 566.7 574 593 459333 0.26 95 

BDD308 670 651.1 567 580 649086 >0.99 92 

BDD310 568.1 549.2 577 605 338938 0.88 97 

BDD311 620.1 601.1 567 580 113852 0.38 92 

BDD313 540.1 521.1 580 606 181901 0.28 93 

BDD314 558.1 538.8 565 578 261728 0.91 97 

BDD316 598.1 579.2 584 610 409605 0.74 99 

BDD319 576.1 557.1a 564 581 140025 0.26 91 

BDD320 584.1 564.8 568 582 321926 0.89 98 

BDD322 620.1 601.1 572 587 227704 0.74 99 

BDD323 554.1 535 567 580 125630 0.45 95 

BDD325 652.2 633.1 569 585 1080938 0.33 96 

BDD329 558.1 538.7 567 580 293136 0.95 96 

BDD331 722.1 703.1 568 581 151802 0.58 99 

BDD332 590 571 565 580 68049 0.11 99 

BDD335 554.1 535.1 577 597 117778 0.32 98 

BDD340 624.1 605.2 540 561 654321 0.45 94 

BDD343 552.1 533.1 572 592 779951 0.99 99 

BDD347 584.1 565.2 578 599 1443432 0.24 93 

BDD349 538.1 519.1 566 583 1141136 0.45 96 

BDD351 554.1 535.1 577 601 489432 >0.99 94 

BDD357 624.1 625.2a 595 656 573185 0.01 94 

BDD359 558.1 539.1 573 589 463259 >0.99 98 

BDD361 538.1 519.1 568 588 830988 0.87 92 

BDD366 586.1 567.1 590 622 532617 0.66 95 

BDD369 516 497 569 581 557481 >0.99 98 

BDD370 538.1 519.1 571 588 634691 >0.99 98 

BDD371 610 591.1 606 628 1049531 0.2 93 

BDD377 603.1 584.1 583 795 91605 0 97 

BDD378 634.1 615.1 575 594 104691 0.34 94 

BDD383 544.1 525.1 590 613 588889 0.57 95 
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BDD393 610 591.1 564 583 129556 0.27 96 

BDD397 570.1 550.8 582 618 718444 0.19 91 

BDD403 550.1 531.1 575 594 117778 0.33 99 

BDD423 516 497.1 580 595 181901 0.43 97 

BDD428 654 635 564 585 74593 0.1 96 

BDD429 554.1 534.7 576 596 451481 >0.99 95 

BDD435 658.2 639.2 567 580 350716 >0.99 99 

BDD441 627.1 608 593 648 965778 0.29 99 

BDD473 556.1 537.1 587 619 126938 0.18 95 

BDD474 538.1 519.1 568 583 434469 >0.99 93 

BDD480 570.1 551.1 577 593 359877 0.92 94 

BDD483 646.1 627.2 579 602 244716 0.67 98 

BDD485 616.1 597.1 567 580 366420 >0.99 94 

BDD486 568.1 549.1 576 595 328469 0.94 99 

BDD487 647.1 628 577 598 541778 >0.99 95 

BDD489 538.1 519.1 569 591 892494 0.82 96 

BDD490 600.1 581.2 577 598 319309 >0.99 97 

BDD495 590.1 571.1 581 601 427926 >0.99 99 

BDD496 556.1 537.1 580 600 64123 0.02 88 

BDD498 595.1 596.1a 595 734 499901 0 95 

BDD499 593.1 594.1a 605 750 316691 0 96 

BDD501 579.1 580.1a 624 772 447556 0 98 

 
All absorbance and fluorescence excitation and emission data were recorded by a 

Synergy 4, Biotek Inc. fluorescent plate reader (10 μM compounds in DMSO (100 μL) 

for λabs, 2 μM compounds in DMSO (100 μL) for λem) in 96-well polypropylene plates. 

Mass was calculated as (M+), and found in ESI-MS (M-F), a: found mass (M+H), b: 

found mass (M-H) in the negative mode scan, c: Purity data was calculated on the basis 

of the integration in HPLC trace at 254 nm. 
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2.2.3 Derivatization of BDD Library-LysoTracker Library (BDL) 

Lysosomes are the major cellular digestive organelle. The acid hydrolases they 

contain help to digest and dispose the waste of cells, such as excess organelles, food 

particles, and bacterias.9  Lysosomes are also one of the organelles that help to repair 

damages to the plasma membranes.10 The disorder of lysosomal storage can cause 

serious diseases, including Niemann Pick Type C disease,11 Fabry disease,12 Parkinson 

disease,13 Pompe’s disease,14 and so on.15 Therefore, understanding biosynthesis and 

pathogenesis of lysosomes is of critical importance. On the other hand, the interior 

condition of lysosomes is known to be acidic (i.e., pH around 4.8) compared to cytosol 

(i.e., pH around 7.2), due to the required condition for the digestive enzymes to work. 

Therefore, weakly basic amines can selectively accumulate in lysosomes.16 To date, 

many fluorescent small molecules containing tertiary amine motifs have been developed 

for selective staining of lysosomes in cell image. They were covered under the name of 

“LysoTracker” or “LysoSensor” (Figure 2.1). However, all these sensors are still 

restricted to only several colours.  
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Figure 2.1 Selected representative structures of commercial LysoTracker® or LysoProbeTM. 
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BDD compounds were designed with active ester motifs which can be replaced by 

nucleophiles, providing the flexibility to further convert BDD to other functional 

libraries. Considering the important role of lysosomes and the limitation of current 

LysoTracker® or LysoProbeTM, we designed and synthesized a “LysoTracker” library 

(BDL). BDL was prepared through replacing the active ester part of BDD compounds 

with N1,N1-dimethylethane-1,2-diamine under neat condition (Scheme 2.2 and Chart 

2.2), to render 80 compounds with good purity after a simple workup. The diverse 

structural property of BDL library would provide more versatile probes for selective 

staining of lysosomes. 

Scheme 2.2 General synthesis scheme of the BDL library. 

 

Reaction conditions: a) neat, room temperature, 15 min. 
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Chart 2.2 A decoding table for BDL library 
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2.2.4 Spectroscopic Properties of BDL Library 

The spectroscopic properties of BDL compounds are summarized in Table 2.2. 

BDL compounds show similar spectroscopic properties to BDD compounds with 

maximum absorption wavelengths ranging from 551 nm to 628 nm, maximum emission 

wavelengths from 578 nm to 755 nm, quantum yields varied from 0.003 to almost 1. 

BDL compounds displayed an average quantum yield value of 0.69, which suggest that 

many of the BDL compounds can be used as either fluorescent turn-on or quenching 

probes. 

 

Table 2.2 Spectroscopic properties and purity table for BDL library: calculated mass, 

experimental mass, absorbance maximum (λabs), fluorescent emission maximum (λem), 

extinction coefficient (ε), quantum yield (Φ), and purity. 

 
Code mass (calc) m/z (exp) λabs (nm) λem (nm) ε (M-1cm-1) Φ Purity (%)a 

BDL2 493.3 494.3 614 745 41235 0.15 90 

BDL4 662.3 663.3 580 604 33839 >0.99 92 

BDL5 526.3 527.3 578 592 24427 0.62 93 

BDL7 586.3 587.3 581 603 17816 0.89 93 

BDL9 464.3 465.3 569 581 20057 0.85 92 

BDL14 617.3 618.4 602 738 27004 0.003 95 

BDL16 584.3 585.4 574 588 18936 0.98 93 

BDL17 577.4 578.4 628 750 39442 0.006 96 

BDL18 496.2 497.3 581 603 27788 0.85 96 

BDL19 492.3 493.3 571 591 38209 0.95 97 

BDL20 542.3 543.2 569 581 16471 0.75 93 

BDL25 500.3 501.3 579 599 9524 0.42 90 

BDL30 538.2 539.2 610 648 12886 0.05 93 

BDL34 514.3 515.3 561 595 20393 >0.99 95 

BDL36 514.3 515.3 581 603 11093 0.57 92 

BDL38 530.2 531.3 576 598 8291 0.06 89 

BDL40 526.3 527.3 569 583 20281 >0.99 92 

BDL45 550.3 551.4 578 597 17816 0.88 89 

BDL46 522.3 523.3 579 595 10084 0.48 90 

BDL48 506.3 507.3 577 596 33615 >0.99 97 

BDL52 634.2 635.2 577 594 12213 0.88 94 
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BDL53 538.3 539.3 581 606 20953 0.87 94 

BDL54 558.2 559.2 574 587 15687 0.77 92 

BDL61 530.3 531.3 587 617 27900 0.84 93 

BDL62 510.3 511.3 580 603 23306 >0.99 96 

BDL63 524.3 525.3 581 605 20729 0.96 97 

BDL67 520.3 521.3 551 582 13894 >0.99 97 

BDL68 534.2 535.2 566 578 10420 0.46 94 

BDL69 552.3 553.3 574 590 13334 0.79 96 

BDL77 492.3 493.3 571 584 12885 0.76 93 

BDL90 556.3 557.3 577 596 10757 0.51 92 

BDL91 523.3 524.3 621 750 48854 0.006 95 

BDL94 503.3 504.3 599 651 7059 0.1 92 

BDL101 542.3 543.3 574 589 28909 >0.99 95 

BDL105 466.2 467.2 569 582 22186 0.97 98 

BDL107 521.3 522.3 624 755 37537 0.05 94 

BDL108 492.3 493.3 561 585 23867 >0.99 99 

BDL110 480.3 481.2 576 594 14342 0.98 97 

BDL135 454.2 455.3 589 611 16359 0.45 90 

BDL136 453.3 454.2 604 647 22858 0.25 94 

BDL137 500.3 501.2 576 590 26331 >0.99 98 

BDL140 508.3 509.3 578 597 30030 >0.99 97 

BDL177 506.3 507.3 571 583 10757 0.5 90 

BDL178 572.3 573.3 575 590 12998 0.46 89 

BDL241 636.1 637.2 572 585 13334 0.39 89 

BDL242 636.2 637.2 574 587 10197 0.44 90 

BDL247 588.2 588.7 583 606 23979 0.81 88 

BDL282 544.2 545.1 570 583 12438 0.54 91 

BDL284 550.2 550.6 604 628 14230 0.21 95 

BDL290 576.2 577.3 572 587 12550 0.73 96 

BDL298 572.3 573.2 570 585 24763 0.99 93 

BDL299 610.2 610.6 569 581 23083 >0.99 98 

BDL300 556.3 557.3 578 597 25772 >0.99 90 

BDL301 560.3 561.3 575 600 28237 >0.99 99 

BDL305 528.3 529.2 578 599 35856 >0.99 92 

BDL307 526.3 527.3 576 595 25660 0.5 94 

BDL308 610.2 611.3 569 581 25660 0.86 93 

BDL310 508.3 509.3 579 614 25996 >0.99 99 

BDL311 560.3 561.3 568 581 16247 0.68 94 

BDL320 524.3 525.2 570 583 23643 >0.99 94 

BDL322 560.3 561.3 574 589 16920 0.89 97 
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BDL323 494.3 495.2 569 581 10869 0.6 93 

BDL325 592.4 593.4 570 591 41011 0.89 99 

BDL329 498.2 498.9 568 581 18040 0.88 97 

BDL331 662.3 663.4 569 582 8416 0.44 98 

BDL335 494.3 495.1 577 598 7619 0.3 94 

BDL343 492.3 493.2 574 590 22970 >0.99 96 

BDL347 524.3 525.2 580 600 12438 0.67 92 

BDL349 478.3 479.1 568 594 36977 0.89 97 

BDL351 494.3 495.2 579 602 38097 >0.99 98 

BDL357 564.3 565.4 596 601 18040 0.07 96 

BDL359 498.2 499.1 574 591 20729 >0.99 94 

BDL361 478.3 478.8 570 581 12438 0.67 91 

BDL369 456.2 457.2 569 583 16696 0.93 91 

BDL370 478.3 479.3 572 589 21738 >0.99 94 

BDL378 574.3 575.3 577 594 20057 >0.99 94 

BDL383 484.2 485.2 592 617 35072 0.68 99 

BDL429 494.3 495.1 588 605 14230 0.65 98 

BDL435 598.3 599.4 569 581 10757 0.57 96 

BDL441 567.3 568.4 594 646 41234 0.5 97 

 
All absorbance and fluorescence excitation and emission data were recorded by a 

Synergy 4, Biotek Inc. fluorescent plate reader with 40 μM compounds in DMSO (100 

μL) in 96-well polypropylene plates. Mass was calculated as (M), and found in ESI-MS 

m/e, a: Purity data was calculated on the basis of the integration in HPLC trace at 254 

nm. 
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2.2.5 Derivatization of BDD Library-ALDEFLUOR Library (BDA) 

In recent years, cancer stem cell (CSC) theory has changed the classic view of 

cancer therapy. CSCs are believed to be a small fraction of cells which initiate tumor.17 

They are capable of self-renewing and differentiating to form tumor bulk.18 In addition 

to remove differentiated cancer cells, it is also necessary to eliminate CSCs in order to 

cure cancer.19 Therefore, identifying CSC is of critical importance in cancer therapy. 

Aldehyde dehydragenase (ALDH) has been identified as high expressed in CSC, and 

related to many biological activities (e.g., cell differentiation, drug resistance and 

oxidative stress response).20 ALDH was therefore considered as CSC marker,21 and 

probes targeting ALDH were developed in order to identify and separate CSC.22 One 

example is the commercial probe ALDEFLUOR (Figure 2.2),22-23 which can be 

oxidized to carboxylic acid form by ALDH and accumulate in CSC.24 ALDEFLUOR 

was widely used in flow cytometry to isolate CSC. However, the expensive price and 

single emission colour (green) still restricted its application. On the other hand, the 

active form of ALDEFLUOR is aldehyde instead of ethyl acetal, which indicates 

activation procedure (i.e., by HCl solution) is necessary before use. The remaining 

acetal form of ALDEFLUOR may generate high background due to incompletion of 

activation.  
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Figure 2.2 Structure of commercial probe ALDEFLUOR 

Considering all these factors and utilizing the advantages of the active ester motif of 

BDD library, we designed a library derived from the active form of ALDEFLUOR 
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(BDA), intending to enrich the chemical source for CSC probes and wide their 

applications. The active ester part of BDD compounds were replaced with 2,2-

dimethoxyethanamine to give methyl acetal forms of compounds. Methyl acetal has 

relatively higher reactivity compare to ethyl acetal and can be converted to aldehyde 

form through a very mild condition by I2 and acetone.25 46 BDA compounds with 

structural diversity from aldehyde building blocks were obtained (Scheme 2.3 and Chart 

2.3). They extended the available colour range of CSC probes with lower background. 

Scheme 2.3 General synthesis scheme of the BDA library. 
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Chart 2.3 A decoding table for BDA library 
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2.2.6 Spectroscopic Properties of BDA Library 

The spectroscopic properties of BDA compounds are summarized in Table 2.3. 

BDA compounds show similar spectroscopic properties to BDD and BDL compounds 

with maximum absorption wavelengths ranging from 552 nm to 627 nm, maximum 

emission wavelengths from 579 nm to 749 nm, quantum yields varied from 0.002 to 

0.56.  

Table 2.3 Spectroscopic properties and purity table for BDA library: absorbance maximum 

(λabs), fluorescent emission maximum (λem), extinction coefficient (ε), and quantum yield (Φ). 

 
Code λabs (nm) λem (nm) ε (M-1cm-1) Φ 

BDA1 575 594 57818 0.34 

BDA2 616 579 50423 0.01 

BDA4 580 602 14791 0.05 

BDA7 580 604 17704 0.10 

BDA14 602 732 70144 0.002 

BDA17 627 748 121015 0.002 

BDA19 571 585 45717 0.33 

BDA20 568 582 30478 0.25 

BDA27 567 581 106672 0.50 

BDA34 561 593 28461 0.30 

BDA37 578 598 24651 0.19 

BDA48 577 597 67455 0.32 

BDA49 577 592 95691 0.44 

BDA61 587 620 102863 0.22 

BDA63 581 605 28013 0.05 

BDA67 552 585 99277 0.56 

BDA69 588 606 33167 0.19 

BDA75 574 594 23307 0.17 

BDA76 584 603 17032 0.08 

BDA82 590 623 43027 0.15 

BDA89 590 622 146114 0.35 

BDA90 578 596 17256 0.11 

BDA98 574 591 106224 0.43 

BDA101 574 589 19721 0.15 

BDA107 625 749 56025 0.006 
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BDA108 561 587 86727 0.46 

BDA110 577 597 89416 0.49 

BDA143 568 584 49078 0.36 

BDA202 574 587 17032 0.11 

BDA206 584 611 26444 0.13 

BDA208 512 584 22410 0.15 

BDA243 555 581 28013 0.28 

BDA247 584 610 118774 0.37 

BDA250 571 584 16359 0.07 

BDA262 573 586 29133 0.20 

BDA277 574 588 51543 0.34 

BDA281 569 583 24203 0.24 

BDA310 579 607 91658 0.39 

BDA336 574 589 34960 0.30 

BDA347 580 602 64989 0.26 

BDA357 596 589 84038 0.02 

BDA370 572 589 71264 0.45 

BDA372 576 593 21066 0.17 

BDA441 595 647 37425 0.10 

BDA498 596 590 25996 0.02 

BDA499 605 582 38770 0.03 

 
All absorbance and fluorescence excitation and emission data were recorded by a 

Synergy 4, Biotek Inc. fluorescent plate reader with 20 μM compounds in DMSO (100 

μL) in 96-well polypropylene plates.  



45 
 

2.3 Conclusion 

In summary, we have designed a novel BODIPY library, BDD, by introducing an 

active ester motif to the scaffold. BDD library was prepared through Knoevenagle 

condensation reaction with commercial aldehyde building blocks with good purity. The 

active ester motif it contains provided the feasibility to further convert BDD to other 

functional libraries, LysoTracker library (BDL) and ALDEFLUOR library (BDA). 

BDD, BDL and BDA cover a broad range of photophysical properties due to the 

structural diversity of aldehyde building blocks. BDL compounds, derived from 

lysosome probe, provided more colour options for selective staining of lysosomes in the 

cell, while BDA compounds, derived from CSC probes, enlarged the available chemical 

source for identifying and isolating CSCs with lower background. 

 

2.4 Experimental Section 

Materials and Methods 

All the chemicals (aldehyde building blocks and others) and solvents were 

purchased from Sigma-Aldrich, Alfa Aesar, Fluka, Merck or Acros, and used without 

further purification. Normal phase purifications were carried our using Merck Silica Gel 

60 (particle size: 0,040-0.063 mm, 230-400 mesh). Analytical characterization was 

performed on a HPLC-MS (Agilent-1200 series) with a DAD detector and a single 

quadrupole mass spectrometer (6130 series) with an ESI probe. Analytical method, 

unless indicated: eluents: A: H2O (0.1% HCOOH), B: ACN (0.1% HCOOH), gradient 

from 30 to 100% B in 5 min; C18 (2) Luna column (4.6 x 50 mm2, 5 µm particle size). 

Normal phase purification of BDD compounds were performed using column 

chromatography, and eluting with Hexane-Ethyl Acetate (ranging from 10:1 to 3:1). 

Spectroscopic and quantum yield data were measured on a fluorometer and UV/VIS 
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instrument, Synergy 4 of Bioteck Company. The slit width was 1 nm for both excitation 

and emission, and the data analysis was performed using Microsoft Excel 2007.  

2.4.1 General Procedure for Synthesis of BDD Library  

1 (20 mg, 47 μmol) and aldehyde (94 μmol, 2 equiv) were dissolved in acetonitrile 

(3 mL), with 6 equiv of pyrrolidine (23.5μL, 282 μmol) and 6 equiv of AcOH (16.1 μL, 

282 μmol). The condensation reaction was performed by heating to 85 oC. After every 

step, the reaction mixture was cooled down to room temperature and then monitored by 

TLC. The reactions were completed between 5 to 20 min. The resulting crude mixtures 

were concentrated under vacuum, and purified by short silica column. The 

characterization of the whole library was performed. 

2.4.2 General Procedure for Synthesis of BDL Library 

BDD compounds (1 μmol) and N1,N1-dimethylethane-1,2-diamine (10 μL, large 

excess) were stirred at room temperature for 15 mins. The reaction mixture were diluted 

with DCM and washed with 1 ml NaHCO3 aqueous solution for 3 times. The organic 

layer was then separated, dried over Na2SO4, filtered and concentrated. The 

characterization of the whole library was performed. 

2.4.3 General Procedure for Synthesis of BDA Library 

BDD compounds (2 μmol) and 2,2-dimethoxyethanamine (10 μL, large excess) 

were stirred at room temperature for 30 mins. The reaction mixture were diluted with 

DCM and washed with 1 ml 0.5N HCl aqueous solution for 3 times. The organic layer 

was then separated, dried over Na2SO4, filtered and concentrated.  

A mixture of the resulting compound (2 μmol) and iodine (0.2 μmol) in acetone (1 

mL) was stirred at room temperature for 60 min. The acetone was then removed under 

vacuum, and the residue was diluted with DCM (1 mL). The mixture was washed with 

5% aqueous Na2S2O3 (1 mL), H2O (1 mL), and brine (1 mL). The organic layer was 
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separated, dried over Na2SO4, filtered and concentrated. The characterization of the 

whole library was performed. 

2.4.4 Quantum Yield Measurements 

Quantum yields were calculated by measuring the integrated emission area of the 

fluorescent Spectrum and comparing that value to the area measured for Rhodamine B 

in DMSO when excited at 500 nm (Φrho-B = 0.49). Quantum yields for the BDD, BDL 

and BDA library were then calculated using equation (1), where F represents the area of 

fluorescent emission, n is reflective index of the solvent, and Abs is absorbance at 

excitation wavelength selected for standards and samples. Emission was integrated 

between 560 to 700 nm. 
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3.1 Introduction 

The conventional screening platform for sensor development is to assess the spectral 

properties of sensor candidates in the presence of different analytes. Recent technical 

advances in parallel library synthesis and high-throughput screening greatly improved 

the screening efficiency. Unbiased fluorescence screenings, which can cover diverse 

biological problems, are powerful approach now in sensor discovery, especially for 

proteins and metabolites, by profiling the response of diversity-oriented fluorescent 

libraries.1  

There are several criteria should be considered when designing such unbiased 

screening format. First, in order to enhance the successful rate, broad biological events 

or targets should be covered. In the meantime, the selectivity of sensor candidates could 

also be evaluated through parallel comparison against similar analytes. Second, the 

concentration of analytes set in the screening should match with the real situation. 

Because after sensors were discovered from primary screening, they are valuable only 

after they can be validated using real samples. In other words, the concentration of 

analytes should be within the detection range of sensors. Usually, series of 

concentration should be included in the screening platform. Third, screening should be 

carried out in similar environmental condition to real biological events. For example, if 

we intend to detect the analytes inside cells, buffer which can mimic intracellular 

condition (e.g., HEPES buffer) should be used as screening medium. Last, hit 

compounds indentified from the screening system should be further confirmed and 

evaluated with real samples. Because, in addition to the detection limit, other factors, 

such as viscosity and pH, may also affect the behaviour of sensors.   
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3.2 Results and Discussion 

3.2.1 Unbiased High-throughput Fluorescence Screenings 

In order to discover novel sensors from BDD, BDL and BDA libraries, we designed 

the unbiased high-throughput fluorescence screening system by examining the 

fluorescent properties of the three library compounds after incubation with 52 analytes. 

The analytes covered a broad range of biological activities and can be classified into 

seven different categories: (1) pH standard solutions, (2) viscous buffer solutions, (3) 

nucleotides and nucleosides, (4) nucleic acids, (5) proteins, (6) oxidation-reduction 

related molecules, and (7) miscellaneous analytes (Table 3.1). Four different 

concentrations of analytes were used to study the dose-dependence of the fluorescence 

emission. 

Table 3.1 List of biomolecule selected for unbiased screening 

 
Analyte class Individual analyte molecules  Concentrations 

Control HEPES 20 mM (pH=7.4) 

Viscosity  Glycerol volume : 40 %, 20 %, 10 %, 

5 % 

 DMSO volume : 50 %, 25 %, 12.5 %, 

6.25 % 

pH pH 2, 3, 4, 5, 6, 7, 8, 9, 10, 11  

Nucleotides and 

Nucleosides 

Adenosin, AMP, ADP, ATP, 

Guanosine, GTP, 

cyclic AMP, cyclic GMP 

2 mM, 1 mM, 0.5 mM, 0.25 

mM 

Genetic 

Macromolecules 

double strand DNA (dsDNA) 

total RNA 

1 mg/ml, 0.5 mg/ml, 0.25 

mg/ml, 0.125 mg/ml 

Proteins Human Immunoglobulin G (human 

IgG) 

Human serum albumin (HSA) 

Human serum albumin lipid free 

Bovine serum albumin (BSA) 

1 mg/ml, 0.5 mg/ml, 0.25 

mg/ml, 0.125 mg/ml 
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Insulin 

Hemoglobin 

Cytochrome C 

Lysozyme 

Oxido-reduction 

related molecules 

L-Glutathione reduced form (GSH) 

L-Glutathione oxidized form (GSSG) 

Nicotinamide adenine dinucleotide 

(NAD) 

Nicotinamide adenine dinucleotide, 

reduced disodium salt, trihydrate 

(NADH) 

Nicotinamide adenine dinucleotide 2'-

phosphate reduced tetrasodium salt 

(NADPH) 

Hydrogen peroxide (H2O2) 

NaClO 

5 mM, 2.5 mM, 1.25 mM, 

0.625 mM 

Miscellaneous 

molecules 

Histamine,  

Dopamine  

Serotonin 

Gamma-aminobutyric acid (GABA) 

γ-Butyrolactone (GHB) 

Monosodium glutamate (MSG) 

L-Glutamine 

Acetylcholine 

5 mM, 2.5 mM, 1.25 mM, 

0.625 mM 

 Heparin  

Chontroitin 

Glycogen 

Inositol  

1 mg/ml, 0.5 mg/ml, 0.25 

mg/ml, 0.125 mg/ml 

 Caffeine 2 mM, 1 mM, 0.5 mM, 0.25 

mM 

 Glucose,  

Fructose,  

Sucrose, 

10 mM, 5 mM, 2.5 mM, 1.25 

mM 

 Malachite green 1 ug/ml, 0.5 ug/ml, 0.25 ug/ml, 

0.125 ug/ml 
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3.2.2 Development of a Fructose Sensor-Fructose Orange 

3.2.2.1 Fructose 

Fructose is one of the most common sugars which can be found in our daily food. In 

nature, fructose exists in many trees, fruits, flowers, honey and most root vegetables. 

Due to its low cost and highest sweetness among natural carbohydrates, fructose is 

commercially used in foods and beverages. The major commercial forms of fructose 

include crystalline fructose (high purity) and high-fructose corn syrup (HFCS, mixture 

of fructose and glucose), while HFCS is an ingredient in almost all soft drinks.2 Similar 

to glucose and galactose, fructose can be absorbed directly into the bloodstream during 

digestion.3 However, after absorption, fructose is directed towards the liver compared to 

glucose, which can be used as an energy source or stored as glycogen under the 

influence of insulin.4 Studies showed that excess consumption of fructose can cause 

serious health problem, such as weight gaining,5 metabolic syndrome,6 type II diabetes,7 

and non-alcoholic fatty liver disease.8 Therefore, it is important to know the fructose 

level in our daily food. Since the discovery of the interaction between boronic acid and 

diol of saccharides,9 the design of fructose sensors has become easier, however, their 

selectivity to fructose against other saccharides (e.g., glucose, galactose and sucrose) 

remains challenging.10     

3.2.2.2 Discovery of Fructose Orange 

 This high-throughput screening and fluorescence response profiling system resulted in 

the identification of a turn-on sensor with high response and selectivity for fructose, and we 

named it Fructose Orange (Figure 3.1b). Fructose Orange contained a boronic acid motif, 

which is a well-known sugar binding group.11 Although several boronic acid-based sensors 

for saccharides have been reported,12 highly selective fluorescent fructose sensors are 

limited. The most selective sensor for fructose reported to date was a 
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tetrathiafulvaleneanthracene boronic acid, which showed a 5-fold fluorescence increase 

upon fructose recognition.13 Fructose Orange exhibited a remarkable 24-fold fluorescence 

enhancement (i.e., its quantum yield changed from 0.01 in the absence of fructose to 0.27 in 

the presence of 200 mM fructose) (Figure 3.1) with a dissociation constant (Kd) of 30 mM 

and an excellent selectivity among a large collection of 24 saccharides (Figure 3.2).  
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Figure 3.1 (a) Fluorescent spectra of Fructose Orange (10 μM) after incubation with fructose 

(0, 1, 2, 5, 10, 20, 50, 100 and 200 mM) in HEPES buffer (20 mM, pH=7.4) under excitation at 

530 nm. (b) Structure of Fructose Orange. (c) Pictures of Fructose Orange (10 μM) solutions 

containing fructose (from left to right: 0, 5, 10, 20, 50, 100 and 200 mM) under irradiation with 

a hand-held 365-nm lamp. 
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Figure 3.2 Selectivity of Fructose Orange (10 µM) against 24 different sugars, glycerol, glycol and 

fructose 6-phosphate at 3 different concentrations in HEPES buffer (20 mM, pH=7.4). Excitation 

wavelength: 530 nm. 



56 
 

3.2.2.3 Solubility and pH-Dependence of Fructose Orange 

To figure out the possible application condition for Fructose Orange, next we 

evaluated its solubility and pH-dependence. Spectral measurements confirmed that the dye 

is soluble in HEPES buffer (20 mM, pH=7.4) with 1% DMSO in a broad concentration 

range (i.e., 1 to 100 µM) (Figure 3.3), and that a consistent fluorescent response to fructose 

was observed within a pH range from 6 to 9 (Figure 3.4).  
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Figure 3.3 Absorbance of Fructose Orange dissolving at different concentrations (1, 2, 4, 6, 8, 

10, 20, 30, 40, 50, 75 and 100 uM) in HEPES buffer (20 mM, pH=7.4) with 1% DMSO. 
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Figure 3.4 Fold change of Fructose Orange (10 uM) mixing with different concentrations of 

fructose at different pH. 

 



57 
 

3.2.2.4 Structure-Fluorescence Relationship Study 

In order to determine structure-fluorescence relationships, we compared the 

fluorescence response of Fructose Orange to BD-187, a BODIPY derivative containing a 

phenylboronic acid but without the trichloroethyl ester moiety.1b As depicted in Figure 3.5, 

BD-187 only showed a 2.5-fold fluorescence increase to fructose, which proved that the 

selectivity of Fructose Orange toward the saccharide was due to both the boronic acid and 

the ester groups. We further prepared six new derivatives (FO1-6) in which we 

functionalized the alkyl moiety with different esters and amides. While all FO1-6 showed a 

dose-dependent fluorescent enhancement upon incubation with fructose, Fructose Orange 

displayed the highest fold change(Figure 3.6), indicating the importance of the 

trichloroethyl ester for the molecular recognition. FO2 exhibited a better selectivity profile 

than BD-187 (Figure 3.7), which corroborated the implication of the ethyl ester group in the 

binding process. 
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Figure 3.5 Chemical structures and fluorescence responses of Fructose Orange and BD-187 

(10 μM) after incubation with fructose (from 0 to 200 mM). 
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Figure 3.6 Structures of FO1-6 and fluorescent response of Fructose Orange and FO1-6 (10 

μM) towards fructose in HEPES buffer (20 mM, pH=7.4). 
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Figure 3.7 Selectivity of FO 2 (green) and BD-187 (purple) against 24 different sugars at 2 

different concentrations in HEPES (20 mM, pH=7.4). 
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3.2.2.5 Bing-Site Study 

Eggert and co-workers reported spectroscopic evidence of the complexes formed by 

fructose and p-tolylboronic acid using 13C NMR to determine the 1JCC coupling constants.14 

To investigate the binding mode of Fructose Orange, we performed a similar analysis 

using 13C-fructose. In DMSO-d6, fructose presents three major (i.e. β-fructofuranose, β-

fructopyranose and α-fructofuranose) and two minor isomeric forms (i.e. α-fructopyranose 

and fructoketose).15 The signals of these five isomers and the C-Ccoupling constant were 

detected by 13C-NMR and assigned according to the literature (Table 3.2 and 3.3).14-15 After 

mixing  fructose with Fructose Orange in a 1:1 ratio, five different complexes (1-5, Figure 

3.8) were formed. The most abundant complex was 1, as proven by the 2D-COSY spectra 

and the decrease on the signal corresponding to the C-2 hydroxyl group. 

Table 3.2 13C Chemical shifts (ppm) for the fructose part of complexes and free fructose 

isomers. 

 
Compound C-1 C-2 C-3 C-4 C-5 C-6 

β-fructofuranose 62.8 101.9 75.2a 75.6a 81.8 62.8 

α-fructofuranose 63.6 104.0 82.8 75.7 80.8 61.0 

β-fructopyranose 64.3 97.9 67.7 69.8a 69.0a 62.9 

α-fructopyranose 63.7 97.1 68.0 71.4 62.9 58.7 

Fructoketose 66.2 213.5 75.4 72.3a 70.5a 63.7 

2 63.0 115.2 87.7a 76.4 88.0a 61.5 

3 64.0 99.7 82.3 78.0 85.0 62.1 

4 64.1 105.0 72.1a 71.9a 71.4a 61.1 

5 73.0 107.8 69.6a 69.1a 68.8a 65.6 

6 b 92.6 b 67.3 b 59.7 
 

a Assignment can be interchanged. b Assignment cannot be done because of overlapping 

signals. 



60 
 

Table 3.3 1JCC coupling constant (in Hz) for the fructose part of complexes and free fructose 

isomersa 

 
Compound  J1,2 J2,3 J3,4 J4,5 J5.6 

β-fructofuranose 50.0 50.0  42.5 42.6 

α-fructofuranose 51.0 46.6 42.4 42.1 42.4 

β-fructopyranose 49.8 47.5 37.6 37.1 35.2 

α-fructopyranose 53.0 46.8 38.0 38.4 40.0 

Fructoketose 41.1 43.0 40.0 42.9 43.0 

2 54.0 36.5 40.9 38.9 46.4 

3 47.3 44.6 42.1 36.5 43.8 

4     37.4 

5 42.1    37.4 

6 47.1 44.0 40.8 36.9  
 

athe absence of an entry indicates that the value cannot be calculated either due to 

overlapping signals or too strong coupled nuclei. 
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Figure 3.8 Structures of the complexes detected in DMSO-d6 upon interaction of Fructose 

Orange and fructose. 
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3.2.2.6 Application of Fructose Orange 

In view of the sensitivity and selectivity of Fructose Orange, we examined its 

potential for the quantification of fructose in real samples. First, we observed that the 

fluorescent intensity of Fructose Orange showed a good linear correlation with the 

concentration of fructose up to 10 mM in both HEPES and 1% fructose-free Coca Cola 

solutions (Figure 3.9a). These results confirmed that the matrix of soft drinks did not 

interfere in the fluorescence response of Fructose Orange. Secondly, we applied our 

sensor to determine the concentration of fructose in regular Coca Cola and compared 

our results to a conventional method. The concentration of fructose in regular Coca 

Cola determined by Fructose Orange was 272 mM, which matched well with the 

results obtained by HPLC quantification (i.e. 245 mM) (Figure 3.9b). With this data, we 

validated the use of Fructose Orange to quantify the levels of fructose in real samples. 
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Figure 3.9 (a) Application of Fructose Orange in real samples. A series of fructose solutions 

were mixed without and with 1% fructose-free Coca Cola in HEPES buffer (20 mM, pH 7.4). 

Emission intensity values of Fructose Orange at 580 nm were plotted against the total 

concentration of fructose. Excitation wavelength: 530 nm. (b) Quantification of fructose in Coca 

Cola by HPLC. Values of the standard curve are represented as means of 3 different 

experiments. The area of a 5-fold diluted Coca Cola sample corresponded to 16.12 E+6, and the 

total concentration of fructose was determined as 44.0 mg/ml (245 mM). 
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3.2.3 Development of a Ratiometric Glutathione Sensor-Glutathione Green 

3.2.3.1 Glutathione 

Glutathione (GSH) is of crucial importance in cellular process, especially preventing 

the damage to cellular component caused by reactive oxygen species.16 This is 

controlled by the equilibrium between GSSG and GSH.17 The GSH level in cell and 

organism is closely related to many diseases, such as cancer, HIV, cystic fibrosis (CF), 

neurodegenerative diseases and aging.18 Hence, it is important to monitor the GSH level 

in biosystem. So far, a variety of fluorescent probes for biothiol based on different 

fluorophores, such as rodamine, fluoroscein, coumarin and so on, have been 

developed.19 Most of these probes were made by designed approach, utilizing either the 

1,4-addition of thiols to α,β-unsaturated ketones, or the attacking of thiols to double 

sulphur bond. These reactions not only enable the attack of thiols but also other 

nucleophiles in the biosystem. Therefore, discovering novel glutathione probes 

especially with new specific binding site is of great importance.  

3.2.3.2 Discovery of Glutathione Green 

One compound, BDD-135, was found to show red-to-green fluorescence change in 

response to GSH after the unbiased fluorescence screening of BDD library (Figure 3.10). 

BDD-135 has a furan ring conjugated to BODIPY core. Another 8 compounds from 

BDD library, which also contain furan ring in their structures, were explored for their 

response to GSH, too. All these 9 compounds showed similar red-to-green fluorescent 

response upon binding to GSH (Figure 3.11), which reveals that furan ring conjugated 

to BODIPY is a novel binging site towards thiol group. Among them, BDD-135 showed 

highest response, and was therefore selected for further study and named as 

Glutathione Green. 
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Figure 3.10 Time dependent absorbance (a) and fluorescence (b) spectra of Glutathione Green 

(10 µM) with GSH (5 mM) in DMSO/HEPES buffer (1:4, v/v, 20 mM, pH=7.4). (c)Structure of 

Glutathione Green. (d) A picture of Glutathione Green (10 µM) solution with (right) and 

without (left) 5 mM GSH under irradiation with a hand-held 365-nm lamp. 
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Figure 3.11 Structure of 9 GSH probes and fluorescent response of these 9 probes at 520 nm 

after incubation with GSH for 30 min in HEPES buffer (20 mM, pH=7.4) under excitation at 

470 nm. 

 



64 
 

3.2.3.3 Spectroscopic Property of Glutathione Green 

Glutathione Green exhibits absorption maxima (λabs) at 565 nm (ε=369 000 M-1cm-

1) and fluorescence maxima (λflu) at 585 nm with quantum yield of 0.47 in DMSO 

(Figure 3.12). When bind to GSH, the fluorescence spectra (as well as absorbance) of 

Glutathione Green exhibited a profound ratiometric change, undergoing a significant 

hypsochromic shift to 522 nm (512 nm for absorbance) with an apparent isosbestic 

point at 562 nm (522 nm for absorbance) in 20% DMSO/HEPES buffer solution (Figure 

3.10). 

 

Figure 3.12 Normalized spectrum of the absorbance (red line) and fluorescence (blue line) of 

Glutathone Green. 

3.2.3.4 Selectivity and Kinetic Study of Glutathione Green 

Glutathione Green showed very good selectivity over other class of analytes, with 

respect to the response at 522 nm. Even for other biothiol compound, such as cysteine, 

it also showed good selectivity considering their actual concentration in biosystems 

(Figure 3.13). The process between Glutathione Green and GSH followed pseudo-first 

order kinetics with large excess amount of GSH (2.5 mM), and the pseudo-first order 

reaction constant k’=0.0412  min-1 (Figure 3.14a). The plot of k’ versus concentration of 

GSH was a straight line through the origin, indicating the reaction is second-order 

overall, first-order with respect to Glutathione Green and first-order with respect to 
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GSH, with k=0.28 M-1s-1 (Figure 3.14b). This reaction is faster than other reported thiol 

attack reactions.19a, 19f 

0

5

10

15

20

F/
Fo

5 mM 1 mg/ml 100 µM

 

Figure 3.13 Fluorescence responses of Glutathione Green (10 µM) toward different 

analytes at 522 nm. 
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Figure 3.14 (a) Kinetic measurement by fluorescence of Glutathone Green (10 μM) incubated 

with GSH (2.5 mM). Pseudo-first order reaction constant to Glutathione Green is 0.0412 min-1. 

(b) Plot of k’ versus concentration of GSH. (c) Time dependent fluorescent response of 

Glutathione Green (10 µM) to GSH (2.5 mM) in HEPES buffer (20 mM, pH=7.4). 

3.2.3.5 Application of Glutathione Green 

The good sensitivity, selectivity, fast reaction speed and ratiometric response of 

Glutathione Green allow both quantitative measurement of GSH amount in cell 

extracts and direct visualization of GSH level in live cells. α-lipoic acid (LPA)20 and 

NMM (N-methylmaleimide)21 are known to be capable of inducing the synthesis of 
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GSH and block thiol group inside a variety of cells, respectively. Therefore, 3T3 cells 

were selected to be pre-treated with α-lipoic acid for 48 h and NMM for 30 min, and the 

cell extracts were analyzed by Glutathione Green, as well as a commercial GSH 

fluorimetric kit. The results from both the methods correlated very well with each other, 

indicating that Glutathione Green is able to be used for GSH quantification in vitro 

(Figure 3.15a and 3.15b). Glutathione Green was also tested to monitor the 

intracellular GSH concentration. The experiment was also conducted with 3T3 cells. 

The image intensity of the 3T3 cells labelled with Glutathione Green collected from 

two emission windows (green: FITC; red: texas red) gave an average ratio of 

Fgreen/Fred=1.52. More importantly, Glutathione Green also response to the change of 

GSH concentration in cellular environment: the Fgreen/Fred increased to 2.47 when the 

cells were pre-incubated with α-lipoic acid for 48 h, and decreased to 0.21 upon 

treatment to the cells with NMM for 30 min (Figure 3.15c and 3.15d). These 

observations demonstrate that Glutathione Green is capable of detecting GSH level in 

live cells. 

3.2.3.6 Solvent Effect and Binding Site Study 

Structures of the 9 GSH probes show obvious similarity, which directs the reaction 

position of GSH Green with GSH to be the furan ring. Furthermore, the reaction 

between GSH Green and GSH did not occur in pure organic solvent, including 

acetonitrile, methanol, dichloromethane, DMSO and DMF (data not shown). Water is 

necessary for the reaction to proceed. On the other hand, the reaction speed becomes 

slower with increasing percentage of DMSO (Figure 3.16a). These indicate that water 

molecule participated in the reaction between Glutahione Green and GSH. In low 

DMSO solution, the reaction was fast enough to enable us to observe the red-to-green 

colour change directly. However, when DMSO percentage increased to 50%, it was 
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obvious that the colour changed from red-to-orange-to-green with much longer time 

(Figure 3.16b). LCMS data also confirmed the formation of the orange colour 

intermediate (experimental section). On the other hand, it is known that furan ring is 

easy to open under certain conditions.22 Based on all these information, we speculated 

that the reaction occurred as shown in Figure 3.17. However, due to the poor stability in 

organic solvent, the intermediate could not be separated. 
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Figure 3.15 (a) GSH concentration in cell extract calculated by using commercial GSH 

fluorimetric kit. (b) GSH concentration in cell extract calculated by using Glutahione Green. 

(c) Average image intensity ratio (Fgreen/Fred) collected from two emission window, FITC (green) 

and Texas Red (red) channel. (d) Fluorescent microscopic image of live 3T3 cells stained with 2 

µM GSH Green upon pre-incubate of NMM (1 mM) for 30 min (top), LPA (250 µM) for 48 h 

(middle), and control (down). 
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Figure 3.16 (a) Time dependent fluorescent response of Glutathione Green (10 µM) to GSH 

(2 mM) in HEPES buffer (20 mM, pH=7.4) with different percentage of DMSO (1%, 5%, 10%, 

25% and 50%). (b) Fluorescence spectrum of Glutathione Green (10 µM) incubated with GSH 

(2 mM) after 30 min in HEPES buffer (20 mM, pH=7.4) with 50% DMSO. 

 

Figure 3.17 Proposed reaction scheme of Glutathione Green with thiol. 
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3.2.4 Development of Fluorescent Sensor for Illicit Date-Rape Drug-GBL 

3.2.4.1 Drug-Facilitated Sexual Assault and Gamma-Butyrolactone 

Drug-facilitated sexual assault (DFSA) is a crime act defined as the “voluntary or 

involuntary ingestion of a drug by a victim that results in an act of sexual activity 

without consent”.23 In addition to alcohol, the drugs most often used in the commission 

of DFSA include gamma-hydroxybutyric acid (GHB), gamma-butyrolactone (GBL), 

Rohypnol, ketamine, and Soma.24 These drugs, which are covered under the name of 

“date-rape drug”, can lead to a person losing the ability to make decisions and even 

unconscious within a short period.25 DFSA is a dangerous social problem, as date-rape 

drugs are typically distributed in parties, clubs and bars, and even increasingly sold in 

schools and on college campuses. Hence, it desperately needs a solution. 

GHB is a powerful depressant for central nervous system and used illicitly for its 

sedative and euphoric effects.26 It was classified as Schedule I drug under the 

Controlled Substances Act in 2000. As a result of the more stringent regulations to 

purchase GHB, consumers began to turn to its pro-drug, GBL, as a substitute to 

circumvent the law.27 GBL itself is pharmacologically inactive, however, it is easily 

metabolised to GHB in the presence of peripheral lactonases in vivo.28 Therefore, GHB 

and GBL have similar psychopharmacological effects after ingestion. GBL is a common 

industrial solvent widely used in paint stripper, nail polishers and stain removals. 

Although GBL was later classified as Schedule I drug, too, its usage in the legitimate 

chemical industry is still approved, which makes the availability of GBL even spread 

over the internet.29  Both GHB and GBL are notorious date-rape drugs due to their 

speedy elimination after ingestion, colourless property and high solubility in aqueous 

solutions.30 Compared with alcohol, the withdrawal effect of GHB and GBL are much 

more rapid, commonly felt within 1–6 hours of the last dose.31 In contrast to GHB, GBL 
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is more lipophilic and can be absorbed upon oral administration more rapidly, leading to 

its higher bioavailability.32 There is an increase shift of users from GHB to GBL, arising 

from its less harsh legal status, inexpensiveness, and easier availability.33 Overdose of 

GBL may lead to dangerously low respiratory rates, unconsciousness, seizures, 

bradycardia and even death.34 Therefore, development of real time detection method for 

GBL would have great contribution on solving the DFSA problem. 

Efforts have been made over years to develop detection kits for these date-rape 

drugs. Several test kits have been introduced to detect GHB in drinks, including 

“DrinkSafeTM” cards, “DrinkSafeTM” coasters, and “Drink DetectiveTM”.35 However, 

these kits fail to detect drugs in wine-based drinks, beverages containing dairy products, 

fat liquors, tonic water, or acidic beverages. Another latest development in such kits is 

“drug detection straw”, developed by Tel Aviv University in 2011.36 However, this kit 

is only practical on the detection of GHB and ketamine. No on-site detection method 

has been reported for GBL.  

3.2.4.2 Discovery of GBL Sensor-Green Date 

Based on the purpose to develop novel fluorescent GBL sensor, we designed a 

screening platform towards GBL using in-house diversity-oriented fluorescent libraries. 

The frequent recreational dosage of GHB is between 2.5 and 4 g,37 which is also around 

the detection limit of “DrinkSafeTM” cards (0.012 g/ml, assuming volume of drink is 

200 ml). 2.1 g of high purity (99%) GBL provides consumers similar effect to 

consumption of 2.5g of GHB. Therefore, the screening concentration of GBL was set as 

0.010 g/ml in water. 64 diversity-oriented fluorescent libraries (5,120 dyes) based on 

different fluorescent scaffolds were screened using 384-well black plate, and 83 

compounds (data not shown) were selected as primary hits due to their more than 2-fold 

fluorescence enhancement upon the addition of GBL. Secondary screening was then 
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carried out with a wide range of concentrations of GBL (i.e., 0.003, 0.005, 0.010, 0.020, 

0.040 g/ml) to eliminate the false positive results using 96-well black plate. Finally, 5 

best responsive and reproducible hit compounds (Figure 3.18) were rendered. 

 

Figure 3.18 Structures of the 5 hit compounds for GBL from BDD library 

These 5 hits are all from BDD library, and their structures showed similarity with a 

hydroxyl group at either para- or meta-position of the phenyl ring. Postulating that 

hydroxyl group may play a prominent role in the interaction with GBL, we further 

synthesized 2 derivatives (6 and 7) with di-hydroxyl group (Scheme 3.1). Interestingly, 

Compound 6 showed even better response to GBL than the 5 hit compounds, while 

compound 7 exhibited poor stability in aqueous solution. Hence, compound 6 was 

selected as the final GBL fluorescent sensor, and named as Green Date.  

Scheme 3.1 Synthetic scheme of derivative 6 and 7. 

 

Reagents and conditions: a) pyrrolidine, acetic acid, acetonitrile, 85 oC, 5 min. 
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3.2.4.3 Validation of Green Date 

Green Date has absorption and emission maximum at 569 and 582 nm, respectively, 

with quantum yield of 0.05 in water. It exhibited more than 2-fold fluorescent increase 

with 0.010 g/ml GBL in water, and has a detection limit of 0.003 g/ml (Figure 3.19a). 

The fluorescence intensity of Green Date showed linear increase to the concentration 

of GBL within 0 to 0.100 g/ml range, as well as obvious colour change excited by green 

light (Figure 3.19b). As GBL is usually dosed in drinks, especially alcohols, next we 

evaluated the pH-dependence and ethanol-effect of Green Date. A consistent 

fluorescent response to GBL was observed within a pH range from 2 to 11 (Figure 

3.20a), indicating that Green Date can be used in both acidic and basic conditions. Low 

percentage of ethanol (i.e., up to 10%) did not significantly affect the linear fluorescent 

enhancement of Green Date to GBL (Figure 3.20b), showing that it can also detect 

GBL in alcoholic drinks. 
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Figure 3.19 (a) Fluorescent spectra of Green Date (10 µM) after incubation with different 

concentration of GBL. (inner) Linear correlation of fold increase of fluorescence versus 

concentration of GBL. (b) Pictures of Green Date (10 µM) solution containing GBL (from left 

to right: 0.100, 0.075, 0.040, 0.020, 0.010 and 0 g/ml) under irradiation of green light (left) and 

white light (right). 
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Figure 3.20 (a) Fluorescent response of Green Date (10 µM) to GBL (blue bar: 0.100 g/ml; red 

bar: 0.050 g/ml) under different pH conditions. (b) Linear correlation of fluorescence 

enhancement of Green Date (10 µM) versus concentrations of GBL with different percentage 

of EtOH. 

3.2.4.4 Application of Green Date 

Next we examined the potential of Green Date to detect GBL dosed in real drink 

samples. Several beverages representing alcoholic, non-alcoholic, coloured and 

colourless drinks were selected. We aimed to develop a convenient way (e.g., direct 

visualization using a green laser pointer) to check whether a drink is safe or not. An 

extraction method was designed to eliminate the ethanol and coloured components 

effects, as well as to pre-concentrate GBL. 5 ml of drink samples were extracted with 1 

ml chloroform. The organic layer was then separated, air-dried, and re-suspended in 100 

µl water containing 10 µM Green Date (Figure 3.21).  GBL could be pre-concentrated 

to about 10 times of its original concentration using this method. It showed that other 

components in the drinks (e.g., ethanol, coloured materials) either was not extract by 

chloroform or have no response with Green Date. It was also clear that Green Date 

showed very different fluorescence intensity to the drinks with and without GBL. These 

results illustrated that Green Date is able to detect GBL in various drinks after a simple 

extraction method. 
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Figure 3.21 Fluorescent response of Green Date (10 µM) to different drink samples after 

extraction method. (Each experiment was repeated 3 to 5 times; GBL concentration: 0.050 g/ml).  

3.3 Conclusion 

After 3 novel diversity-oriented BODIPY libraries were constructed, they were 

applied to fluorescence emission response profiling system in order to discover useful 

sensors. After the high-throughput screening towards a collection of various analytes, 

two novel sensors, Fructose Orange and Glutathione Green, were discovered. 

Fructose Orange showed a 24-fold fluorescence increase upon recognition of fructose 

and an outstanding selectivity among 24 different saccharides. NMR studies confirmed 

that five different binding interactions were formed between the sensor and fructose. 

Furthermore, Fructose Orange was applied to the quantification of fructose in soft 

drinks, being the most selective fluorescent sensor for fructose reported to date. 

Glutahione Green showed high response and outstanding selectivity over other 

analytes. Further experiment showed that Glutahione Green is capable of GSH 

quantification in cell extract, as well as responding to the GSH concentration change in 

cellular environment.   
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In order to explore useful sensors for illicit date-rape drug-GBL, high-throughput 

screening was performed on 5,120 in-house fluorescent compounds, identifying Green 

Date as the final GBL sensor. Green Date showed high fluorescence response to GBL 

in various pH conditions and up to 10% EtOH. Furthermore, Green Date is able to 

detect the existence of GBL in different kinds of drinks samples after a simple 

extraction method. This discovery will help to secure the safety of our drinks in public 

place and solve the DFSA problems. 

 

3.4 Experimental Section 

Materials and Methods 

All the chemicals and solvents were purchased from commercial source and used 

without further purification. Analytical characterization was performed on a HPLC-MS 

(Agilent-1200 series) with a DAD detector and a single quadrupole mass spectrometer 

(6130 series) with an ESI probe. 1H-NMR and 13C-NMR spectra were recorded on 

Bruker Avance 300 NMR and 500 NMR spectrometers, and chemical shifts are 

expressed in parts per million (ppm) and coupling constants are reported as a J value in 

Hertz (Hz).   High resolution mass spectrometry (HRMS) data was recorded on a 

Micromass VG 7035 (Mass Spectrometry Laboratory at National University of 

Singapore (NUS)). Spectroscopic and quantum yield data were measured on 

spectroscopic measurements, performed on a fluorometer and UV/VIS instrument, 

Synergy 4 of Bioteck Company. The slit width was 1 nm for both excitation and 

emission, and the data analysis was performed using GraphPrism 5.0. The concentration 

measurement for fructose in cola was performed on HPLC (Waters 515) with a 

Refractive Index Detector (Waters 2414) and a plus Autosampler (Waters 717).  

Analytical method: eluents: H2O 0.5 ml/min; Waters Sugar-Pak column (6.5 x 300 mm).   
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3.4.1 Characterization of Fructose Orange 

1H NMR (300 MHz, DMSO-d6): 2.32 (s, 3H), 2.96 (t, J=7.5 Hz, 2H), 3.24 (t, J=7.5 Hz, 

2H), 4.94 (s, 2H), 6.48 (d, J=3.9 Hz, 1H), 7.10 (s, 1H), 7.13 (d, J=3.9 Hz, 1H), 7.47 (d, 

J=16.2 Hz, 1H), 7.58 (d, J=8.1 Hz, 2H), 7.70 (d, J=16.2 Hz, 1H), 7.71 (s, 1H), 7.87 (d, 

J=8.1 Hz, 2H), 8.16 (s, 2H). 

13C NMR (75.5 MHz, DMSO-d6): 11.3, 23.4, 31.8, 73.8, 95.3, 117.1, 124.2, 126.3, 

128.3, 128.7, 133.7, 134.5, 134.9, 136.1, 137.1, 137.2, 139.0, 143.6, 155.8, 156.1, 170.7. 

ESI-MS m/z (C23H21B2Cl3F2N2O4) calculated: 554.1 found: 555.1 (M+H), 535.1 (M-F). 

 

HPLC-MS characterization of Fructose Orange. (a) chromatograms (descending order) 

at 254 nm, 350 nm, 500 nm and 560 nm; (b) spectra profile (200-600 nm); (c) ESI-MS 

positive spectra. HPLC conditions: A: H2O-HCOOH: 99.9:0.1. B: CH3CN-HCOOH: 

99.9:0.1; gradient 30% B to 100% B (5 min), isocratic 100% B (2.5 min). Reversephase 

Phenomenex C18 Luna column (4.6 x 50 mm2) 3.5 μm, flow rate: 1.2 mL/min. 
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3.4.2 Characterization of FO1-6  

1H NMR (300 MHz, CDCl3+MeOD): 2.29 (s, 3H), 2.79 (t, 

J=7.5 Hz, 2H), 3.35 (t, J=7.5 Hz, 2H), 3.71 (s, 3H), 6.31 

(d, J=3.9 Hz, 1H), 6.73 (s, 1H), 6.90 (d, J=3.9 Hz, 1H), 

7.09 (s, 1H), 7.29 (d, J=8.1 Hz, 2H), 7.32 (d, J=16.2 Hz, 

1H), 7.59 (d, J=8.1 Hz, 2H), 7.65 (d, J=16.2 Hz, 1H).  

HRMS m/z (C22H22B2F2N2O4) calculated: 438.1734 found: 437.1667 (M-H). 

1H NMR (300 MHz, CDCl3+MeOD): 1.25 (t, J=7.2 Hz, 

3H), 2.28 (s, 3H), 2.77 (t, J=7.5 Hz, 2H), 3.32 (t, J=7.5 

Hz, 2H), 4.15 (q, J=7.2 Hz, 2H), 6.29 (d, J=3.9 Hz, 1H), 

6.71 (s, 1H), 6.89 (d, J=3.9 Hz, 1H), 7.07 (s, 1H), 7.27 (d, 

J=8.1 Hz, 2H), 7.30 (d, J=16.2 Hz, 1H), 7.57 (d, J=8.1 Hz, 2H), 7.63 (d, J=16.2 Hz, 1H).  

HRMS m/z (C23H24B2F2N2O4) calculated: 452.1890 found: 451.1822 (M-H). 

1H NMR (300 MHz, CDCl3+MeOD): 2.29 (s, 3H), 2.63 (t, 

J=7.5 Hz, 2H), 3.28 (t, J=7.5 Hz, 2H), 3.62 (s, 3H), 6.31 (d, 

J=3.9 Hz, 1H), 6.73 (s, 1H), 6.89 (d, J=3.9 Hz, 1H), 7.07 

(s, 1H), 7.26 (d, J=8.1 Hz, 2H), 7.32 (d, J=16.2 Hz, 1H), 

7.57 (d, J=8.1 Hz, 2H), 7.61 (d, J=16.2 Hz, 1H). 

HRMS m/z (C22H23B2F2N3O3) calculated: 437.1894 found: 436.1818 (M-H). 

1H NMR (300 MHz, CDCl3+MeOD): 1.03 (t, J=7.2 Hz, 

3H), 2.27 (s, 3H), 2.62 (t, J=7.5 Hz, 2H), 3.19 (q, J=7.2 

Hz, 2H), 3.26 (t, J=7.5 Hz, 2H), 6.30 (d, J=3.9 Hz, 1H), 

6.72 (s, 1H), 6.88 (d, J=3.9 Hz, 1H), 7.07 (s, 1H), 7.28 (d, 

J=8.1 Hz, 2H), 7.31 (d, J=16.2 Hz, 1H), 7.58 (d, J=8.1 Hz, 2H), 7.64 (d, J=16.2 Hz, 1H).  

HRMS m/z (C23H25B2F2N3O3) calculated: 451.2050 found: 450.1983 (M-H). 
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1H NMR (300 MHz, CDCl3+MeOD): 1.03 (d, J=6.6 Hz, 

6H), 2.27 (s, 3H), 2.61 (t, J=7.5 Hz, 2H), 3.25 (t, J=7.5 

Hz, 2H), 3.95 (m, 1H), 6.29 (d, J=3.9 Hz, 1H), 6.72 (s, 

1H), 6.88 (d, J=3.9 Hz, 1H), 7.07 (s, 1H), 7.28 (d, J=8.1 

Hz, 2H), 7.31 (d, J=16.2 Hz, 1H), 7.58 (d, J=8.1 Hz, 2H), 7.64 (d, J=16.2 Hz, 1H).  

HRMS m/z (C24H27B2F2N3O3) calculated: 465.2207 found: 464.2160 (M-H). 

1H NMR (300 MHz, CDCl3+MeOD): 2.28 (s, 3H), 2.78 (t, 

J=7.5 Hz, 2H), 3.34 (t, J=7.5 Hz, 2H), 6.29 (d, J=3.9 Hz, 

1H), 6.72 (s, 1H), 6.89 (d, J=3.9 Hz, 1H), 7.08 (s, 1H), 

7.27 (d, J=8.1 Hz, 2H), 7.30 (d, J=16.2 Hz, 1H), 7.35 (s, 

5H), 7.58 (d, J=8.1 Hz, 2H), 7.63 (d, J=16.2 Hz, 1H).  

HRMS m/z (C27H24B2F2N2O4) calculated: 500.1890 found: 499.1808 (M-H). 

3.4.3 Characterization of Glutathione Green 

1H NMR (300 MHz, CDCl3): 7.40 (d, J=16.2 Hz, 1H), , 7.04 (d, J=16.2 Hz, 1H), 7.01 (s, 

1H), 6.84 (d, J=3.9 Hz, 1H), 6.64 (s, 1H), 6.51 (d, J=3.3 Hz, 1H), 6.29 (d, J=3.9 Hz, 

1H), 6.10 (d, J=3.3 Hz, 1H), 4.78 (s, 2H), 3.40 (t, J=7.5 Hz, 2H), 2.96 (t, J=7.5 Hz, 2H), 

2.40 (s, 3H), 2.27 (s, 3H). 

13C NMR (75.5 MHz, CDCl3): 11.3, 22.7, 23.8, 31.9, 74.1, 93.9, 109.2, 110.4, 114.9, 

115.5, 116.2, 116.7, 121.2, 124.2, 125.6, 126.5, 129.5, 137.2, 144.6, 151.1, 155.9, 171.1. 

ESI-MS m/z (C22H20BCl3F2N2O3) calculated: 514.1 found: 515.0 (M+H), 495.0 (M-F). 
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HPLC-MS characterization of Glutahone Green. (left) chromatograms (descending 

order) at 254 nm, 350 nm, 500 nm and 560 nm; (right) ESI-MS positive spectra. HPLC 

conditions: A: H2O-HCOOH: 99.9:0.1. B: CH3CN-HCOOH: 99.9:0.1; gradient 30% B 

to 100% B (5 min), isocratic 100% B (2.5 min). Reversephase Phenomenex C18 Luna 

column (4.6 x 50 mm2) 3.5 μm, flow rate: 1.2 mL/min. 

3.4.4 LCMS Characterization of Glutathione Green Incubated with GSH 

 (a) HPLC-MS characterization of Glutathione Green 

min0 2 4 6 8

mAU

0

100

200

300

400

500

600

700

 DAD1 D, Sig=590,16 Ref=off (LSC2\BDD-GSH-TEST-3.D)

nm250 300 350 400 450 500 550 600 650

mAU

0

200

400

600

800

 DAD1, 8.057 (1019 mAU, - ) of BDD-GSH-TEST-3.D

      m/z450 500 550

0

20

40

60

80

100

*MSD1 SPC, time=8.162 of D:\DATA\LSC2\BDD-GSH-TEST-3.D    ES-API, Pos

Max: 135936

 561.2 541.0 516.0
 537.0

 498.0

 495.0

 494.2

 496.0

 

(b) HPLC-MS characterization of Glutathione Green with GSH in 50% DMSO 10 min. 

min0 2 4 6 8

mAU

0

5

10

15

20

25

30

35

40

 DAD1 E, Sig=560,16 Ref=off (LSC2\GSH-BDD3.D)

 



80 
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(c) HPLC-MS characterization of Glutathione Green with GSH in 50% DMSO for 2h. 
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Glutathione Green (10 μM) incubated with GSH (5 mM) in 20 mM HEPES (pH= 7.4) 

with 50% DMSO. The resulting new peaks have a mass of 838.0 [M+H] (mono-

substitution), 1145.0 [M+H] (di-substitution), 573.2 [(M+2H)/2] (di-substitution). 

3.4.5 Cell Culture and Imaging Experiments 

(1) Cell Culture: 

3T3 fibroblast cells were grown on cell culture Petri dished in Dulbecco’s Modified 

Eagle Medium (Sigma) with 10 % newborn calf serum and 5 mM L-glutamine and 5 

mg/mL gentamicin. Cell cultures were maintained in an incubator at 37 oC with 5% CO2. 
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Cells were cultured in glass bottom, 96-well black plates for imaging experiment, 24-36 

hour prior to conduction of experiments. 

(2) Imaging Experiments. 

Cells were subjected for imaging with ImageXpress automated acquisition (Molecular 

Devices). FITC Long Pass (ex 450-490nm, em 515 nm) and Texas Red filters were used 

for fluorescence imaging applications. GSH Green stock solution in DMSO was added 

directly to the cell culture wells to reach the desired concentration. Total DMSO was 

lower than 1%. After incubation time, cells were imaged at ambient temperature in the 

medium without washing steps. 

3.4.6 Characterization of Green Date 

1H NMR (300 MHz, CDCl3+MeOD): 2.15 (s, 3H), 2.80 (t, J=7.5 Hz, 2H), 3.19 (t, J=7.5 

Hz, 2H), 4.64 (s, 2H), 6.17 (d, J=3.9 Hz, 1H), 6.19 (t, J=2.1 Hz, 1H), 6.47 (d, J=2.1 Hz, 

2H), 6.60 (s, 1H), 6.76 (d, J=3.9 Hz, 1H), 6.99 (s, 1H), 7.09 (d, J=16.2 Hz, 1H), 7.35 (d, 

J=16.2 Hz, 1H). 

13C NMR (75.5 MHz, CDCl3+MeOD): 10.9, 23.4, 31.6, 73.6, 94.6, 104.2, 106.1, 107.9, 

108.9, 116.3, 116.6, 118.1, 122.2, 127.2, 130.8, 137.7, 139.1, 155.2, 158.0, 158.5, 171.0 

ESI-MS m/z (C23H20BCl3F2N2O4) calculated: 542.1 found: 523.1 (M-F). 
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HPLC-MS characterization of Green Date. (left) chromatograms (descending order) at 

254 nm, 350 nm, 500 nm and 560 nm; (right) ESI-MS positive spectra. HPLC 

conditions: A: H2O-HCOOH: 99.9:0.1. B: CH3CN-HCOOH: 99.9:0.1; gradient 30% B 

to 100% B (5 min), isocratic 100% B (2.5 min). Reversephase Phenomenex C18 Luna 

column (4.6 x 50 mm2) 3.5 μm, flow rate: 1.2 mL/min. 

3.4.7 Characterization of 5 Hit Compounds for GBL 

1H NMR (300 MHz, CDCl3): 2.29 (s, 3H), 2.96 (t, 

J=7.5 Hz, 2H), 3.40 (t, J=7.5 Hz, 2H), 3.97 (s, 6H), 

4.78 (s, 2H), 6.30 (d, J=3.9 Hz, 1H), 6.70 (s, 1H), 

6.83 (s, 2H), 6.86 (d, J=3.9 Hz, 1H), 7.04 (s, 1H), 

7.26 (d, J=16.2 Hz, 1H), 7.44 (d, J=16.2 Hz, 1H). 

ESI-MS m/z (C25H24BCl3F2N2O5) calculated: 586.1 found: 567.1 (M-F). 

1H NMR (300 MHz, CDCl3+MeOD): 2.23 (s, 3H), 2.89 

(t, J=7.5 Hz, 2H), 3.30 (t, J=7.5 Hz, 2H), 4.71 (s, 2H), 

6.25 (d, J=3.9 Hz, 1H), 6.67 (s, 1H), 6.77 (d, J=7.8 Hz, 

1H), 6.83 (d, J=3.9 Hz, 1H), 7.00 (d, J=7.8 Hz, 1H), 

7.03 (s, 2H), 7.16 (dd, J=7.8 Hz, 7.8 Hz, 1H), 7.23 (d, J=16.2 Hz, 1H), 7.48 (d, J=16.2 

Hz, 1H). 

ESI-MS m/z (C25H24BCl3F2N2O5) calculated: 526.1 found: 507.0 (M-F). 

1H NMR (300 MHz, CDCl3): 2.29 (s, 3H), 2.97 (t, 

J=7.5 Hz, 2H), 3.40 (t, J=7.5 Hz, 2H), 4.78 (s, 2H), 

6.30 (d, J=3.9 Hz, 1H), 6.70 (s, 1H), 6.84 (d, J=8.7 Hz, 

2H), 6.86 (d, J=3.9 Hz, 1H), 7.04 (s, 1H), 7.28 (d, 

J=16.2 Hz, 1H), 7.47 (d, J=16.2 Hz, 1H) 7.48 (d, J=8.7 Hz, 2H). 

ESI-MS m/z (C25H24BCl3F2N2O5) calculated: 526.1 found: 507.0 (M-F). 
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1H NMR (300 MHz, CDCl3): 2.28 (s, 3H), 2.97 (t, 

J=7.5 Hz, 2H), 3.40 (t, J=7.5 Hz, 2H), 3.93 (s, 3H), 

3.94 (s, 3H), 4.78 (s, 2H), 6.31 (d, J=3.9 Hz, 1H), 

6.70 (s, 1H), 6.72 (d, J=2.1 Hz, 1H), 6.86 (d, J=2.1 

Hz, 1H), 6.87 (d, J=3.9 Hz, 1H), 7.05 (s, 1H), 7.20 (d, J=16.2 Hz, 1H), 7.48 (d, J=16.2 

Hz, 1H). 

ESI-MS m/z (C25H24BCl3F2N2O5) calculated: 586.1 found: 567.0 (M-F). 

1H NMR (300 MHz, CDCl3+MeOD): 2.16 (s, 3H), 2.18 

(s, 3H), 2.87 (t, J=7.5 Hz, 2H), 3.28 (t, J=7.5 Hz, 2H), 

4.69 (s, 2H), 6.19 (d, J=3.9 Hz, 1H), 6.62 (s, 1H), 6.69 

(d, J=8.4 Hz, 1H), 6.74 (d, J=3.9 Hz, 1H), 6.94 (s, 1H), 

7.20 (d, J=16.2 Hz, 1H), 7.23 (d, J=8.4 Hz, 1H), 7.29 (s, 1H), 7.34 (d, J=16.2 Hz, 1H). 

ESI-MS m/z (C24H22BCl3F2N2O3) calculated: 540.1 found: 521.1 (M-F). 

3.4.8 Detailes of Real Beverages Used in Experiment for Green Date  

1.  Absolute Vodka Pear; Anus Sweeden  

• 20% Alcohol/vol (Diluted 1:1 with water) 

• Ingredients: Vodka, Pear Flavour 

2. Arbor Mist Strawberry White Zinfandel; New York 

• 6% Alcohol/ Vol 

• Ingredients: White Zinfandel, water, high fructose corn syrup, natural 

flavours, carbon dioxide, citric acid, potassium sorbate, potassium 

bonzoate, potassium metabisulfite 

3. Red wine First Cavicchioli 1928 Lambrusco; Umberto Cavicchioli & Figli 

• 7.5% Alcohol/ Vol 

• Ingredients: Grapes from Emilia area 
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4. Guinness Foreign Extra; St James’ gate Dublin 

• 6.8% Alcohol/ Vol 

• Ingredients: Water, malt, barley, hops.  

5. F&N Fruit Tree Fresh Apple Juice ; Singapore 

• Ingredients: Apple juice Concentrate, Pear  juice concentrate, Aloe Vera 

juice, flavouring, Malic acid, Vitamin C, Permitted colouring, 

Preservatives.  

6. Cocktail Singapore Sling; Singapore  

• 6.8% Alcohol/ Vol 

• Ingredients: Pomegaranate Fruit Juice, Pineapple Juice, Gin, Grenadine, 

Cherry Brandy, Cointreau, Benedictine, Angosutra Bitters.  

3.4.9 NMR Spectrum 
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13C NMR spectrum of (up) Fructose-13C6 (30 mM) in DMSO-d6, and (down) Fructose-

13C6 (30 mM) mixed with Fructose Orange (30 mM) in DMSO-d6. 

 

Expansion of the 1H NMR spectra of solutions of (a) a mixture of Fructose Orange and 

fructose with 1:1 ratio (DMSO-d6with 1% D2O) and (b) fructose (DMSO-d6with 1% 

D2O). The assignments are δ (ppm): 5.32 (C2-OH, α-fructofuranose), 5.17 (C2-OH, β-

fructopyranose), 5.11 (C3-OH, β-fructofuranose). 
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Fluorescence Response of Fructose Orange to Different Analytes 
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Chemical structures of 24 selected sugars 

 

Fluorescence response of GSH Green (10 μM) incubated with different thiol 

compounds (5 mM) after 30 min in HEPES buffer (20 mM, pH=7.4) under excitation at 

470 nm. 

 

 



88 
 

References 

1. (a) Lee, J. S.; Baldridge, A.; Feng, S.; SiQiang, Y.; Kim, Y. K.; Tolbert, L. M.; Chang, 

Y. T., Fluorescence response profiling for small molecule sensors utilizing the green fluorescent 

protein chromophore and its derivatives. ACS Comb. Sci. 2011, 13, 32-38; (b) Lee, J. S.; Kim, H. 

K.; Feng, S.; Vendrell, M.; Chang, Y. T., Accelerating fluorescent sensor discovery: unbiased 

screening of a diversity-oriented BODIPY library. Chem. Commun. 2011, 47, 2339-2341. 

2. Latulippe, M. E.; Skoog, S. M., Fructose malabsorption and intolerance: effects of 

fructose with and without simultaneous glucose ingestion. Crit. Rev. Food Sci. Nutr. 2011, 51, 

583-592. 

3. (a) Soleimani, M., Dietary fructose, salt absorption and hypertension in metabolic 

syndrome: towards a new paradigm. Acta Physiol (Oxf) 2011, 201 (1), 55-62; (b) Levin, R. J., 

Digestion and absorption of carbohydrates--from molecules and membranes to humans. Am. J. 

Clin. Nutr. 1994, 59, 690S-698S. 

4. Nuttall, F. Q.; Gannon, M. C., Plasma glucose and insulin response to macronutrients in 

nondiabetic and NIDDM subjects. Diabetes Care 1991, 14, 824-838. 

5. Sievenpiper, J. L.; de Souza, R. J.; Mirrahimi, A.; Yu, M. E.; Carleton, A. J.; Beyene, J.; 

Chiavaroli, L.; Di Buono, M.; Jenkins, A. L.; Leiter, L. A.; Wolever, T. M.; Kendall, C. W.; 

Jenkins, D. J., Effect of fructose on body weight in controlled feeding trials: a systematic review 

and meta-analysis. Ann Intern Med 2012, 156 (4), 291-304. 

6. Soleimani, M., Dietary fructose, salt absorption and hypertension in metabolic 

syndrome: towards a new paradigm. Acta Physiol. 2011, 201, 55-62. 

7. Samuel, V. T., Fructose induced lipogenesis: from sugar to fat to insulin resistance. 

Trends Endocrinol. Metab. 2011, 22, 60-65. 

8. Yilmaz, Y., Review article: fructose in non-alcoholic fatty liver disease. Aliment. 

Pharmacol. Ther. 2012, 35, 1135-1144. 

9. (a) Wulff, G., Selective Binding to Polymers Via Covalent Bonds. The Construction of 

Chiral Cavities as Specific Receptor Sites. Pure Appl. Chem. 1982, 54, 2093-2102; (b) James, T. 

D.; Samankumara Sandanayake, K. R. A.; Shinkai, S., Saccharide sensing with molecular 

receptors based on boronic acid. Angew. Chem., Int. Ed. 1996, 35, 1910-1922. 

10. James, T. D.; Philips, M. D.; Shinkai, S., Boronic Acids in Saccharide Recognition. 

RSC Publishing: Cambridge, UK, 2006. 

11. (a) Striegler, S., Selective carbohydrate recognition by synthetic receptors in aqueous 

solution. Curr. Org. Chem. 2003, 7, 81-102; (b) Wang, W.; Gao, X. M.; Wang, B. H., Boronic 

acid-based sensors. Curr. Org. Chem. 2002, 6, 1285-1317. 

12. (a) Liu, Y.; Deng, C. M.; Tang, L.; Qin, A. J.; Hu, R. R.; Sun, J. Z.; Tang, B. Z., 

Specific Detection of D-Glucose by a Tetraphenylethene-Based Fluorescent Sensor. J. Am. 



89 
 

Chem. Soc. 2011, 133, 660-663; (b) Gao, X. M.; Zhang, Y. L.; Wang, B. H., New boronic acid 

fluorescent reporter compounds. 2. A naphthalene-based on-off sensor functional at 

physiological pH. Org. Lett. 2003, 5, 4615-4618; (c) Jiang, S.; Escobedo, J. O.; Kim, K. K.; 

Alpturk, O.; Samoei, G. K.; Fakayode, S. O.; Warner, I. M.; Rusin, O.; Strongin, R. M., 

Stereochemical and regiochemical trends in the selective detection of saccharides. J. Am. Chem. 

Soc. 2006, 128, 12221-12228. 

13. Wang, Z.; Zhang, D. Q.; Zhu, D. B., A new saccharide sensor based on a 

tetrathiafulvalene-anthracene dyad with a boronic acid group. J. Org. Chem. 2005, 70, 5729-

5732. 

14. Norrild, J. C.; Eggert, H., Boronic acids as fructose sensors. Structure determination of 

the complexes involved using (1)J(CC) coupling constants. J. Chem. Soc., Perkin Trans. 1996, 

12, 2583-2588. 

15. Jaseja, M.; Perlin, A. S.; Dais, P., 2-Dimensional NMR spectral study of the tautomeric 

equilibria of D-fructose and related-compounds. Magn. Reson. Chem. 1990, 28, 283-289. 

16. Wood, Z. A.; Schroder, E.; Robin Harris, J.; Poole, L. B., Structure, mechanism and 

regulation of peroxiredoxins. Trends Biochem. Sci. 2003, 28, 32-40. 

17. Kizek, R.; Vacek, J.; Trnkova, L.; Jelen, F., Cyclic voltammetric study of the redox 

system of glutathione using the disulfide bond reductant tris(2-carboxyethyl)phosphine. 

Bioelectrochemistry 2004, 63, 19-24. 

18. Townsend, D. M.; Tew, K. D.; Tapiero, H., The importance of glutathione in human 

disease. Biomed. Pharmacother. 2003, 57, 145-155. 

19. (a) Kim, G.-J.; Lee, K.; Kwon, H.; Kim, H.-J., Ratiometric Fluorescence Imaging of 

Cellular Glutathione. Org. Lett. 2011, 13, 2799-2801; (b) Sreejith, S.; Divya, K. P.; Ajayaghosh, 

A., A Near-Infrared Squaraine Dye as a Latent Ratiometric Fluorophore for the Detection of 

Aminothiol Content in Blood Plasma. Angew. Chem., Int. Ed. 2008, 47, 7883-7887; (c) Long, L.; 

Lin, W.; Chen, B.; Gao, W.; Yuan, L., Construction of a FRET-based ratiometric fluorescent 

thiol probe. Chem. Commun. 2011, 47, 893; (d) Chen, X.; Ko, S.-K.; Kim, M. J.; Shin, I.; Yoon, 

J., A thiol-specific fluorescent probe and its application for bioimaging. Chem. Commun. 2010, 

46, 2751; (e) Lin, W.; Yuan, L.; Cao, Z.; Feng, Y.; Long, L., A Sensitive and Selective 

Fluorescent Thiol Probe in Water Based on the Conjugate 1,4-Addition of Thiols to α,β-

Unsaturated Ketones. Chem. -Eur. J. 2009, 15, 5096-5103; (f) Lim, C. S.; Masanta, G.; Kim, H. 

J.; Han, J. H.; Kim, H. M.; Cho, B. R., Ratiometric Detection of Mitochondrial Thiols with a 

Two-Photon Fluorescent Probe. J. Am. Chem. Soc 2011, 133, 11132-11135. 

20. Hultberg, B.; Andersson, A.; Isaksson, A., Lipoic acid increases glutathione production 

and enhances the effect of mercury in human cell lines. Toxicology 2002, 175, 103-110. 



90 
 

21. Yellaturu, C. R.; Bhanoori, M.; Neeli, I.; Rao, G. N., N-Ethylmaleimide inhibits 

platelet-derived growth factor BB-stimulated Akt phosphorylation via activation of protein 

phosphatase 2A. J. Biol. Chem. 2002, 277, 40148-40155. 

22. (a) Mel'chin, V. V.; Butin, A. V., Furan ring opening-furan ring closure: cascade 

rearrangement of novel 4-acetoxy-9-furylnaphtho[2,3-b]furans. Tetrahedron Lett. 2006, 47, 

4117-4120; (b) Butin, A. V.; Smirnov, S. K.; Stroganova, T. A., Furan ring opening-indole ring 

closure: Synthesis of furo[2 ',3 ': 3,4]cyclohepta[1,2-b]indolium chlorides. J. Heterocyclic Chem. 

2006, 43, 623-628; (c) Abaev, V. T.; Dmitriev, A. S.; Gutnov, A. V.; Podelyakin, S. A.; Butin, 

A. V., Furan ring opening - Isocoumarine ring closure: A recyclization reaction of 2-

carboxyaryldifurylmethanes. J. Heterocyclic Chem. 2006, 43, 1195-1204; (d) Butin, A. V.; 

Stroganova, T. A.; Lodina, I. V.; Krapivin, G. D., Furyl(aryl)methanes and their derivatives, 

part 22. Furan ring opening-indole ring closure: a new modification of the Reissert reaction for 

indole synthesis. Tetrahedron Lett. 2001, 42, 2031-2033; (e) Eftax, D. S. P.; Dunlop, A. P., 

Hydrolysis of Simple Furans . Products of Secondary Condensation. J. Org. Chem. 1965, 30, 

1317; (f) Butin, A. V.; Smirnov, S. K., Furan ring opening - indole ring closure: 

pseudooxidative furan ring opening in the synthesis of indoles. Tetrahedron Lett. 2005, 46, 

8443-8445; (g) Butin, A. V.; Abaev, V. T.; Mel'chin, V. V.; Dmitriev, A. S., Furan ring 

opening-isochromene ring closure: a new approach to isochromene ring synthesis. Tetrahedron 

Lett. 2005, 46, 8439-8441. 

23. Bishop, S. C.; Lerch, M.; McCord, B. R., Micellar electrokinetic chromatographic 

screening method for common sexual assault drugs administered in beverages. Forensic. Sci. Int. 

2004, 141, 7-15. 

24. Schwartz, R. H.; Milteer, R.; LeBeau, M. A., Drug-facilitated sexual assault ('date rape'). 

South Med. J. 2000, 93, 558-561. 

25. Jansen, K. L.; Theron, L., Ecstasy (MDMA), methamphetamine, and date rape (drug-

facilitated sexual assault): a consideration of the issues. J. Psychoactive Drugs 2006, 38, 1-12. 

26. Nicholson, K. L.; Balster, R. L., GHB: a new and novel drug of abuse. Drug Alcohol 

Depend. 2001, 63, 1-22. 

27. Mason, P. E.; Kerns, W. P., 2nd, Gamma hydroxybutyric acid (GHB) intoxication. 

Acad. Emerg. Med. 2002, 9, 730-739. 

28. Lettieri, J.; Fung, H. L., Improved pharmacological activity via pro-drug modification: 

comparative pharmacokinetics of sodium gamma-hydroxybutyrate and gamma-butyrolactone. 

Res. Commun. Chem. Pathol. Pharmacol. 1978, 22, 107-118. 

29. Shannon, M.; Quang, L. S., Gamma-hydroxybutyrate, gamma-butyrolactone, and 1,4-

butanediol: a case report and review of the literature. Pediatr. Emerg. Care 2000, 16, 435-440. 

30. Brailsford, A. D.; Cowan, D. A.; Kicman, A. T., Pharmacokinetic properties of gamma-

hydroxybutyrate (GHB) in whole blood, serum, and urine. J. Anal. Toxicol. 2012, 36, 88-95. 



91 
 

31. Miotto, K.; Darakjian, J.; Basch, J.; Murray, S.; Zogg, J.; Rawson, R., Gamma-

hydroxybutyric acid: patterns of use, effects and withdrawal. Am. J. Addict. 2001, 10, 232-241. 

32. Palatini, P.; Tedeschi, L.; Frison, G.; Padrini, R.; Zordan, R.; Orlando, R.; Gallimberti, 

L.; Gessa, G. L.; Ferrara, S. D., Dose-dependent absorption and elimination of gamma-

hydroxybutyric acid in healthy volunteers. Eur. J. Clin. Pharmacol. 1993, 45, 353-356. 

33. Palmer, R. B., Gamma-butyrolactone and 1,4-butanediol: abused analogues of gamma-

hydroxybutyrate. Toxicol. Rev. 2004, 23, 21-31. 

34. (a) Roberts, D. M.; Smith, M. W.; Gopalakrishnan, M.; Whittaker, G.; Day, R. O., 

Extreme gamma-butyrolactone overdose with severe metabolic acidosis requiring hemodialysis. 

Ann. Emerg. Med. 2011, 58, 83-85; (b) Liechti, M. E.; Kunz, I.; Greminger, P.; Speich, R.; 

Kupferschmidt, H., Clinical features of gamma-hydroxybutyrate and gamma-butyrolactone 

toxicity and concomitant drug and alcohol use. Drug Alcohol Depend. 2006, 81, 323-326. 

35. Meyers, J. E.; Almirall, J. R., A study of the effectiveness of commercially available 

drink test coasters for the detection of "date rape" drugs in beverages. J. Anal. Toxicol. 2004, 28, 

685-688. 

36. Bradley, M.; Lewis, A. Drug Detection Straw. Feb.17,2011, 2011. 

37. Lesar, C. T.; Decatur, J.; Lukasiewicz, E.; Champeil, E., Report on the analysis of 

common beverages spiked with gamma-hydroxybutyric acid (GHB) and gamma-butyrolactone 

(GBL) using NMR and the PURGE solvent-suppression technique. Forensic Sci. Int. 2011, 212, 

e40-5. 



92 
 

 

 

 

 

 

Chapter 4 Discovery of a Neural Stem Cell Probe from Cell-Based 

Screening 

FABP7

 

 

 



93 
 

4.1 Introduction 

The development of high-throughput imaging technique and analysis software in the 

past few years has significantly accelerated the discovery of fluorescent probes from 

cell-based screening.1 Cell-based screening, originally mainly used to validate sensors 

developed from in vitro screening,2 has now become a versatile tools to study signaling 

pathways, proteins’ functions and cellular phenotypes.3 Compared to in vitro screening, 

cell-based screening is more complicated and difficult to predict due to many unknown 

factors. This is one of the major obstacles to develop specific probes in rational design. 

On the other hand, the chance of probe discovery can be enhanced due to the unique 

characteristics of each specific cell type generated from combination of many in vivo 

factors. From this point of view, diversity-oriented fluorescent libraries contribute an 

excellent toolbox to discover cell-specific probe because screening is performed directly 

on the cells with diverse structural compounds.4 

Development of cell-specific probes is of critical importance because the 

identification and separation of some interesting cell lines (e.g., stem cells) is still 

restricted to antibody, which may render the cells unsuitable for further applications. 

The screening assays performed on this purpose usually involve two or more cell lines 

which are in close proximity within a tissue or functionally related to each other. One of 

the examples is the development of α-cell probe reported by our group. 160 BODIPY 

compounds were screened on three cell lines (αTC1 and βTC6 cells, which secrete 

glucagon and insulin, respectively, and HeLa as a control cell line), and one compound 

(BD-105) was identified to show high fluorescence intensity only to αTC1 cells. BD-

105 was further confirmed to selectively respond to glucagon.5 Stem cells have received 

much attention in the past decades due to their therapeutic importance. The lack of tool 

for their isolation drove our group to find specific stem cell probes. Screening was 
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performed on mouse embryonic stem cells (mESC) and mouse embryonic fibroblasts 

(MEF, generally used as feeder cells), and two compounds (CDy1 and CDb8) were 

identified as mESC-selective probes from a Rosamine library and a xanthone library, 

respectively.6 

 

4.2 Results and Discussion 

4.2.1 Neural Stem Cell 

Neural stem cells (NSCs) generate the nervous system, promote neuronal plasticity 

and repair damage throughout life by self-renewing and differentiating into neurons and 

glia.7 NSCs derived from pluripotent stem cells or isolated directly from brain tissue 

have great potential for therapeutic use in patients suffering from various neurological 

diseases8  and also as a research tool for drug development9. The conventional method 

for the detection and characterization of NSCs depends on their behaviour in a defined 

culture medium such as neurosphere formation and immunodetection of marker 

molecules. These methods, however, are time-consuming and involve the use of 

xenogenic antibodies, which is limited to the expression of cell surface molecules and 

may render the cells unsuitable for further experimental and therapeutic applications. 

Therefore, there is a significant unmet need for more convenient and safer methods that 

detect living NSCs. 

4.2.2 Discovery of a Neural Stem Cell Probe-CDr3 

In order to discover neural stem cell probes, BDD, BDL and BDA compounds were 

screened in a set of cells at different stages of development into neural cells, including 

E14 mESC, E14-derived NSC (NS5), differentiated NS5 into astrocyte (D-NS5)10 and 

MEF. Based on fluorescence intensity analyzed using image analysis software and 

visual confirmation, 3 BDD compounds (BDD-36, BDD-62, BDD-359) that stained 

NS5 more brightly than the other cell types were selected for further validation. These 
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primary hits were tested for different incubation times ranging from 1 hour to 48 hours 

and then validated by flow cytometry to identify BDD-62 as the final hit that stains NS5 

most selectively and brightly, and dubbed as CDr3 (compound of designation red 3; 

λex/λem = 579/604 nm; extinction coefficient = 1.02 × 106 M−1 cm−1; quantum yield = 

0.77, Chapter 2) (Figure 4.1). The half maximal staining intensity measured after 1 h 

incubation with NS5 was obtained at 0.39 μM (Figure 4.2). We further assessed the 

specificity of CDr3 in mixed brain cell cultures prepared from postnatal mouse brains. 

With the appearance of numerous morphologically distinct populations of cells after 2 

weeks in vitro culture, they were stained with CDr3 and Hoechst33342. While the NS5 

treated with the same procedure in parallel were brightly stained by CDr3, the various  

 

Figure 4.1 Selective Staining of NS5 by CDr3. (a) Chemical structure of CDr3. (b) Nuclei of 

E14, NS5, D-NS5 and MEF were visualized by Hoechst 33342; but only NS5 was selectively 

stained by CDr3. (left) phase contrast bright-field (BF) images; (right) fluorescent (FL) images 

obtained with DAPI and Texas Red filter set. Scale bar, 50 µm. (c) Flow cytometry dot plot 

images of E14, NS5, D-NS5 and MEF incubated with CDr3. DMSO was added for unstained 

control cells. The images of each type of cells were overlaid. 
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types of primary cells were not stained. The primary cells thereafter were 

immunostained to demonstrate the presence of neurons, astrocytes and other types of 

cells (Figure 4.3). 

 

Figure 4.2 Image-based CDr3 Titration for Neural Stem Cell Staining. NS5 cells were 

incubated with different concentrations of CDr3 for 1 hour and washed out with fresh medium 

for 1 hour. The cell images (12 images for each concentration) were acquired using 

ImageXpress Micro™and the fluorescence intensity of the stained cells was analyzed using 

MetaXpress® image processing software. Mean ± SD values of the average intensity were used 

to draw the graph with a trend line added. The half maximal staining intensity was obtained at 

0.39 μM. 

 

Figure 4.3 Differentiated primary neural cell staining: Mixed primary mouse brain cells 

(PC) cultured for 2 weeks in vitro were incubated with CDr3 and Hoechst33342. The 

images of live cells are shown in phase contrast bright-field (BF) and fluorescence (FL) 

panels. The images of the same cells were acquired after immunofluorescence staining 

(IF) with antibodies to neuron-specific class III β-tubulin (Tuj1, red) and astrocyte-

specific glial fibrillary acidic protein (GFAP, green). Scale bar, 100 μm. 
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Figure 4.4 Identification of CDr3 Binding Protein. (a) Protein lysate of CDr3-stained NS5 was 

separated by 2DE. The major fluorescent spot was marked with a red circle (Upper). Many 

silver-stained protein spots were detected in a duplicate gel (Lower). (b) MS/MS fragment ion 

analysis of tryptic peptide (MVVTLTFGDIVAVR) indicated FABP7 as a binding target of 

CDr3. Only the main y-series of ion fragmentation was labelled in the spectrum. M* indicates 

oxidation at methionine residue. (c) Quantitative real time RT-PCR analysis of FABP7 mRNA 

in E14, NS5, D-NS5 and MEF. Relative expression level of FABP7 to GAPDH is depicted. (d) 

The confocal fluorescence image acquired on a Nikon A1R microscope using a 100× objective 

lens shows cytoplasmic localization of CDr3. Nuclei were stained with Hoechst 33342. Scale 

bar, 10 µm. 

4.2.3 Target of CDr3-FABP7 

When we subjected CDr3-stained NS5 cell lysate to 2-dimensional SDS-PAGE for a 

fluorescence scan, a major spot of around15 kDa was detected (Figure 4.4). MALDI-

TOF/TOF MS and MS/MS analysis allowed us to identify the stained protein as fatty 

acid binding protein 7 (FABP7) (Figure 4.4b). NS5 used in the current study as a NSC 

is known to express FABP7.10 We examined the mRNA expression level of FABP7 by 

real time RT-PCR and observed that its level in NS5 is 282-fold and 7,220-fold higher 

than in MEF and E14, respectively, and decreases five-fold upon 3 days differentiation  
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Figure 4.5 CDr3 Binding to Recombinant FABP7. (a) Fluorescence signals from EGFP and 

CDr3 overlap only in the cells expressing either mouse FABP7 or human FABP7 fused to 

EGFP. The fluorescence images were acquired on a Nikon Ti microscope using DAPI, FITC 

and Texas Red filter sets. Scale bar, 50 µm. (b) Western Blot Detection of FABP7 in 

Transfected HEK293 Cell Lysates. The EGFP (27 kDa) + FABP7 (14 kDa) fusion protein of 41 

kDa was detected by an anti-mouse FABP7 antibody, which cross reacts to human protein. 

Lane1, pEGFP-N1 vector only; lane2, pEGFP-mouse FABP7; lane3, pEGFP-human FABP7. A 

duplicate gel was stained with Coomassie blue (Lower). 

into astrocyte (Figure 4.4c). High magnification confocal microscopy showed that CDr3 

stains the cytoplasm of NS5 where the majority of FABP7 localizes (Figure 4.4d). To 

confirm that FABP7 is the specific binding target of CDr3, we cloned both human and 

mouse FABP7 genes and fused them to EGFP constructs for expression in HEK293 

cells. It was observed that the signals of EGFP and CDr3 overlap in the cells that 

express either human or mouse FABP7 fused to EGFP (Figure 4.5a). Transient 

expression of the transfected FABP7 genes was verified by the detection of FABP7 by 

Western blotting (Figure 4.5b). Then we subcloned the human FABP7 gene into a 

bacterial expression vector with His-tag to facilitate purification of recombinant FABP7 
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for in vitro binding assays. The interaction between CDr3 and FABP7 in vitro was 

demonstrated by FABP7 concentration-dependent increase of CDr3 fluorescence with a 

dissociation constant of 9.6 μM (Figure 4.6a). Job plot analysis showed a symmetrical 

shape of fluorescence increase with a maximum at a CDr3 ratio of 0.5 implying that the 

binding stoichiometry between CDr3 and FABP7 is 1 1 (Figure 4.6b).  

 

Figure 4.6 Binding Kinetics. (a) The best fitting curve was obtained by plotting CDr3 

fluorescence fold increase (F⁄F0-1) against various concentrations of human FABP7. The data 

are presented as mean ± SD of 3 independent experiments. (B) Job plot for the complexation of 

CDr3 with human FABP7. ΔF [fluorescence fold increase × CDr3 ratio] was plotted against 

CDr3 ratio in a total concentration of 20 μM. 

4.2.4 Validation of CDr3 

4.2.4.1 CDr3 Does Not Affect Normal Proliferation of NSCs 

We determined whether CDr3 affects NSC proliferation by culturing NS5 and 

mouse neurospheres in the presence of CDr3. Total numbers of NS5 cells grown for 6 h 

and 48 h and the percentage of BrdU positive cells pulse-labeled in the CDr3-containing 

medium were not different from those of cells grown in DMSO-only containing 

medium which was used as a vehicle control (Figure 4.7a and b). In accordance with the 

result of experiment with NS5 cells, the number and size of neurospheres generated in 

the presence of CDr3 were not different from control (Figure 4.7c). 
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Figure 4.7 Cell Proliferation Assay. (a) NS5 cells were cultured in the presence of 1 μM CDr3 

or 0.1% DMSO for 6 h and 48 h. Nuclei were stained with Hoechst33342 for image acquisition 

and cell counting using MetaXpress® image processing software (n = 32). (b) NS5 cells pulse-

labeled with BrdU for 6 h were visualized using FITC-conjugated anti-BrdU antibody. The 

percentage of BrdU-positive cells was determined by counting both Hoechst33342 stained 

nuclei and BrdU positive nuclei in the same images (n = 8). (C) Same numbers of neurosphere 

cells were serially plated and cultured in six well plates with 1 μM CDr3 or 0.1% DMSO. The 

numbers (Upper) and sizes (Lower) of neurospheres were determined every 6 d (n = 3). 

4.2.4.2 CDr3 Identifies Both Mouse and Human NSCs 

Having found that CDr3 stains not only mouse FABP7 expressing HEK293 cells, 

but also human FABP7 expressing cells, we attempted to test CDr3 on ReNcell VM 

human NSC line (Millipore) derived from the ventral mesencephalon region of human 

fetal brain tissue. This cell line, immortalized by retroviral transduction with the v-myc 

gene, is karyotypically normal, expresses high level of NSC marker nestin and can 

differentiate into neuron, astrocyte and oligodendrocyte.11 However, it has not 

previously been known to express FABP7. We first examined the expression level of 

FABP7 by real time RT-PCR and found a 540-fold higher level of FABP7 mRNA in 
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ReNcell VM than in H1 human ESC. This expression was dramatically (20-fold) down-

regulated upon differentiation into neurons (Figure 4.8a).Western blot analysis 

demonstrated a similar observation in protein expression levels with a strong FABP7 

band at 14 kDa detected in ReNcell VM lysate while no FABP7 was detected in the 

lysates of H1 and ReNcell VM-derived neurons (Figure 4.8b). In accordance with the 

Western blot data, ReNcell VM were strongly stained by FABP7 antibody while H1 and 

ReNcell VM-derived neurons were not stained (Figure 4.8c). We then incubated the 3 

types of cells with CDr3 to determine whether live ReNcell VM could be distinguished 

by the compound among others. As expected from the FABP7 expression analysis data, 

CDr3 selectively stained ReNcell VM in live cell cultures (Figure 4.8d). 

 

Figure 4.8 Selective Staining of Human NSC ReNcell VM by CDr3. (a) Real-time PCR 

analysis of FABP7 expression in H1, ReNcell VM and ReNcell VM-differentiated neurons. 

Relative expression level of FABP7 to GAPDH is depicted. (b) Strong signal of FABP7 protein 

(14 kDa) was detected by Western blotting in ReNcell VM (lane 3) lysate, while it was not 

detectable in the lysates of H1 (lane 1) and ReNcell VM-differentiated neurons (lane 2). β-Actin 

(42 kDa) staining demonstrates consistent loading across sample lanes. Fluorescence scan 

showed CDr3-labelled FABP7 in the lysate of ReNcell VM (lane 3) incubated with CDr3. (c) 

Immunocytochemistry of FABP7 in H1, ReNcell VM and ReNcell VM-differentiated neurons 

(D-ReNcell VM). Only ReNcell VM was brightly stained by FABP7 antibody. Scale bar, 50 µm. 

(d) H1, ReNcell VM and ReNcell VM-differentiated neurons were incubated with CDr3. 

Fluorescence signal was detected only in ReNcell VM. Upper: phase contrast bright field image; 

Lower: fluorescence image. Scale bar, 50 µm. 
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Figure 4.9 Differentiated mESC FACS Using CDr3. (a) The CDr3-stained embryoid body cells 

were gated by forward and side scattering to remove cell debris. (b) The gated cells were 

separated into CDr3bright and CDr3dim populations. (c) The expression of FABP7 in CDr3bright and 

CDr3dim cells was determined by immunocytochemistry followed by flow cytometry. (d) 

CDr3bright cells were cultured and stained by CDr3. Subsequent fixation and 

immunofluorescence staining with anti-FABP7 antibody showed the expression of FABP7 in 

the CDr3bright cells. Scale bar, 50 µm. 

4.2.5 Application of CDr3 

Next, we were interested to test whether CDr3 can be used for the isolation of living 

NSCs from heterogeneous population of cells generated by a random differentiation of 

ESCs. We induced differentiation of mESC to embryoid bodies using retinoic acid.12 

CDr3bright and CDr3dim cells were separately collected by FACS from embryoid body 

cells stained with CDr3 (Figure 4.9a and b). Each cell population was stained with 

FABP7 antibody and analyzed by flow cytometry. The overlay plot showed two well-



103 
 

separated clusters, which can be interpreted as the cells isolated by CDr3 from the 

heterogeneous embryoid body cells were FABP7 expressing cells (Figure 4.9c). The 

expression of FABP7 in cultured CDr3bright cells was confirmed by 

immunocytochemistry (Figure 4.9d). 

 

4.3 Conclusion 

Identification of specific types of living cells mostly depends on cell surface marker 

detection using antibodies. However, certain types of cells can be distinguished more 

specifically by intracellular markers which can be detected by small molecules but not 

by antibodies. The binding target of CDr3, FABP7, is a well-known intracellular marker 

of NSC. Among the currently known nine mammalian FABPs that play pivotal roles in 

transporting and trafficking of lipids in various tissues, FABP7 is particularly expressed 

in the central nervous system.13 Its expression is pronounced during the fetal period 

contributing to the normal development of neuroepithelial cells and knocking down the 

gene’s expression causes premature differentiation of neuroepithelial cells to neurons.14 

The FABP7 knockout mouse exhibits enhanced anxiety, reduced prepulse inhibition and 

shorter startle latency. A dramatic decrease in the number of neural stem cells is also 

observed in the hippocampal dentate gyrus of the mouse.15 The neuroepithelial cells 

differentiate into radial glial cells which further differentiate to neurons and glias in the 

developing and also adult brains.16 During in vitro neural differentiation of ESC, 

FABP7 expressing radial glial cells are the common NSCs which intermediate between 

ESC and fully differentiated neurons and glias.17 In the presence of CDr3 in the medium, 

the ESC, differentiated NSC and primary brain cells are stained, but not as bright as 

NS5 or ReNcell VM. By rinsing, CDr3 is rapidly washed out from these cells, while 

NS5 and ReNcell remain brightly stained. These observations imply that CDr3 
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passively diffuses into the cell to be retained by binding to FABP7 rendering CDr3 

specific for FABP7-expressing NSCs. 

Even though the majority of the drugs on the market that promote or inhibit specific 

biological processes are small molecules, the application of fluorescent small molecules 

in biomedical science has been restricted to the production of fluorescently labelled 

biomolecules and cell type-independent organelle staining dyes. By generating DOFL 

and screening them in different types of cells including NSC, we developed a NSC-

specific fluorescent chemical compound CDr3. DOFL approach has many advantages 

for developing cell type specific imaging probes and identifying their binding targets. 

Our data presented here successfully exemplifies the practical use of DOFL in the 

development of cell type specific small molecular weight imaging probes and 

identification of their cellular binding targets. As the first NSC-specific fluorescent 

chemical compound that binds specifically to an intracellular NSC marker FABP7, 

CDr3 will be a valuable tool in the study and applications of NSCs. 

 

4.4 Experimental Section 

4.4.1 DOFL High Throughput/Content Screening 

DOFL compounds were diluted from 1mM DMSO stock solutions with the culture 

medium to make final concentration of 0.5 µM or 1.0 µM. The four different types of 

cells plated side by side on 384-well plates were incubated with the compounds 

overnight at 37 °C. The nuclei were stained with Hoechst33342 the next day before 

image acquisition. The fluorescence cell images of two regions per well were acquired 

using ImageXpress Micro™ cellular imaging system (Molecular Device) with 10× 

objective lens and the intensity was analyzed by MetaXpress® image processing 

software (Molecular Device). The hit compounds which stained NS5 more brightly than 
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other cells were selected based on the intensity data and manual screening of the raw 

images. 

4.4.2 Characterization of CDr3 

1H NMR (300 MHz, CDCl3): 2.28 (s, 3H), 2.96 (t, J=7.5 Hz, 2H), 3.40 (t, J=7.5 Hz, 

2H), 3.92 (s, 3H), 3.97 (s, 3H), 4.78 (s, 2H), 6.30 (d, J=3.9 Hz, 1H), 6.71 (s, 1H), 6.85 

(d, J=3.9 Hz, 1H), 6.86 (d, J=8.1 Hz, 1H), 7.03 (s, 1H), 7.12 (d, J=1.8 Hz, 1H), 7.16 (dd, 

J=1.8, 8.4 Hz, 1H), 7.29 (d, J=16.2 Hz, 1H), 7.48 (d, J=16.2 Hz, 1H). 

13C NMR (75.5 MHz, CDCl3): 11.3, 23.7, 29.6, 33.0, 55.9, 56.0, 56.1, 74.0, 94.9, 109.6, 

110.4, 111.1, 116.2, 116.6, 121.6, 122.1, 122.2, 126.7, 129.2, 133.6, 139.1, 143.0, 149.3, 

150.8, 171.0. 

ESI-MS m/z(C25H24BCl3F2N2O4) calculated: 571.1 (M+H)+, found: 551.1 (M-F). 
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HPLC-MS characterization of CDr3. (Upper) HPLC chromatogram: (descending order) 
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at 254, 350, 500 and 560 nm. HPLC conditions: A: H2O-HCOOH: 99.9 0.1. B: ACN-

HCOOH: 99.9 0.1; gradient 30% B to 100% B (5 min), isocratic 100% B (2.5 min). 

Reverse-phase Agilent C18 Zorbax column (2.1 × 30 mm2) 3.5 μm, flow rate: 1 ml⁄min; 

(Lower) ESI-MS spectra: (left) ESI-positive, (right) ESI-negative spectra. 

4.4.3 Living Cell Staining 

The cells were incubated with 0.5 µM CDr3 in Opti-MEM GlutaMAXTM for 1 h 

and, if necessary, subsequently with 2 µM of Hoechst 33342 for 15 min at 37 °C. Then 

the cells were rinsed in maintenance medium for 1 h and the medium was replaced 

again with fresh medium before image acquisition. The bright field and fluorescence 

images were acquired on ECLIPSE Ti microscope (Nikon Instruments Inc.) or A1R 

confocal microscope (Nikon Instruments Inc.) using NIS Elements 3.10 software or on 

Axio Observer D1 using AxioVision v 4.8 software (Carl Zeiss Inc.).  

4.4.4 MALDI-TOF/TOF MS and MS/MS Analyses 

Tryptic peptide of 0.6 μl was spotted onto Prespotted AnchorChip target plate 

(Bruker Daltonics Inc.) according to manufacturer’s protocol. The peptide mass 

fingerprint and selected peptide MS/MS fragment ion analysis were carried out on 

UltraFlex III TOF-TOF (Bruker Daltonics Inc.) with the compass 1.2 software package 

including FlexControl 3.0 and FlexAnalysis 3.0 with PAC peptide calibration standards. 

The peak lists of MS and MS/MS were submitted to in-house Mascot server 

(http://phenyx.bii.a-star.edu.sg/search_form_select.html) through BioTools 3.2 with the 

database of SwissProt 57.8 (509,019 sequences) allowing peptide mass tolerance of 100 

ppm and 0.5 Da with maximum one missed cleavage and considering variable 

modifications of carbamidomethyl at cysteine (C) and oxidation at methionine (M). 
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4.4.5 Cell Culture and Differentiation 

E14 was maintained on gelatin-coated dishes in high-glucose DMEM supplemented 

with 10% FBS, 2 mM L-glutamine, 100 U⁄ml penicillin, 100 μg⁄ml streptomycin, 0.1 

mM nonessential amino acids, 0.1% β-mercaptoethanol and 100 U⁄ml leukemia 

inhibitory factor (LIF, Chemicon). For differentiation, the cells were detached from 

their culture plates using 0.25% trypsin with 1 mM EDTA solution (Invitrogen) and 

subcultured in nonadherent bacteria culture dishes in the E14 media but without LIF. 

Subsequently, 90% of the media was changed on a daily basis for a total of 4 d and then 

retinoic acid (Sigma) was added to the final concentration of 1 μM. On day six, the 

embryoid bodies were harvested and dissociated in 0.05% trypsin with 0.2 mM EDTA 

solution for 3 min at 37 °C to obtain a single cell suspension. NS5 was maintained in 

Euromed-N medium supplemented with 100 μg⁄ml Apo-transferin (Sigma), 5.2 ng⁄ml 

Sodium Selenite (Sigma), 19.8 ng⁄ml progesterone (Sigma), 16 μg⁄ml Putrescine 

(Sigma), 25 μg⁄ml insulin (Sigma), 50.25 μg⁄ml BSA (Gibco), 10 ng⁄ml bFGF (Gibco), 

10 ng⁄ml EGF (Gibco), 100 U⁄ml penicillin (Gibco), 100 μg⁄ml streptomycin (Gibco) 

and 2 mM L-glutamine (Gibco). For differentiation of NS5 into astrocyte, the medium 

was changed to NS5 maintenance medium containing 5% FBS but without bFGF and 

EGF. MEF was maintained in the same media as used for E14 but without LIF. H1 was 

maintained in a feeder-free condition on matrigel-coated dishes in MEFconditioned 

medium containing Knockout DMEM/10% serum replacement (Gibco), 0.1 mM MEM 

nonessential amino acids (Gibco), 1 mM L-glutamine (Gibco), 0.1 mM β-

mercaptoethanol (Gibco), 8% plasmanate (NUH pharmacy), 12 ng⁄ml LIF, and 10 ng⁄ml 

(bFGF; Gibco). ReNcell VM (Millipore #SCC008) was maintained on laminin-coated 

dishes in ReNcell NSC Maintenance Medium (Millipore #SCM005) containing 20 

ng⁄ml bFGF and 20 ng⁄ml EGF. For neural differentiation, ReNcell VM were seeded on 
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PLO/Laminin-coated plates and cultured for up to 3 wks in media comprising a 1 1 mix 

of N2-DMEM/F12 and B27-Neurobasal media supplemented with 0.1mMMEM 

nonessential amino acids and 1 mM L-glutamine, all obtained from Gibco/Invitrogen. 

For mixed primary brain cell culture, the brains of neonatal mouse pups were cut into 

small pieces and digested in 0.25% trypsin with 1 mMEDTA solution (Invitrogen) for 

30 min at 37 °C before neutralization with FBS. After washing with PBS by 

centrifugation and resuspension, the tissues were triturated using a 10-ml pipette fitted 

with 1-ml tip and the suspension was filtered through a strainer with 40 μm nylon mesh. 

The obtained single cells were plated on 35 mm cell culture dishes in OptiMEM- Gluta-

MAX™containing 10% FBS. Unattached cells and cell debris were removed the next 

day by replacing the medium. One half of the medium was replaced twice a week 

thereafter. 

4.4.6 Flow Cytometry and FACS 

The cells incubated with CDr3 were harvested by trypsin treatment, washed and 

resuspended in PBS. The fluorescence intensity of the cells was measured on a flow 

cytometry (BD™ LSR II) or collected using FACS Aria™ (BD). The data were 

analyzed and processed using FlowJo 7 software.  

4.4.7 Neurosphere Preparation and Assay 

E14.5 fetal mouse brains were trypsinized in 0.25% trypsin with 1 mM EDTA 

solution (Invitrogen) for 30 mins at 37 °C before neutralization with FBS. The tissues 

were triturated sequentially with a 10-ml pipette followed by a 1-ml blue tip and a 0.2-

ml yellow tip attached to the 10-ml pipette until the cell suspension flows through 

smoothly. The tissue suspension was washed three times with PBS by repeated 

resuspension and centrifugation and filtered through a 40-μm strainer. The obtained 

single cells were plated in a DMEM/F12 medium containing 10 ng⁄ml bFGF, 20 ng⁄ml 
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EGF and B27 without vitamin A (Invitrogen) to grow forming spheres. For cytotoxicity 

assay, dissociated neurosphere cells were plated in triplicate in six well culture plates at 

a density of 3,000 cells per well and cultured in the presence of 1 μM CDr3 or 0.1% 

DMSO for 6 d. After 6 d, the number of neurospheres was counted manually and the 

images were taken using a microscope (Eclipse Ti, Nikon) for measuring the sizes 

neurospheres. For serial assay, the neurospheres were further passaged in the same 

condition as they were generated in. All animal experiment procedures were performed 

in accordance with a protocol approved by the Institutional Animal Care and Use 

Committee. 

4.4.8 Cell Proliferation Assay  

NS5 were seeded into 96 well plates (Greiner) at a density of 1000 cells⁄well. The 

next day, DMSO and 1 mM DMSO stock of CDr3 was added into 32 wells for each to 

be diluted to 0.1% and 1 uM, respectively. At 6 h and 48 h time points, 1 ug⁄ml of 

Hoechst 33342 was added and incubated for 15 min for image acquisition using an 

ImageXpress Micro™ and MetaXpress Imaging system (Molecular Devices). 

Hoeschst33342 and CDr3 signals were detected via DAPI and Texas red filters, 

respectively, and the images of a total of four areas were captured per well. Multi 

wavelength scoring analysis was then run to quantify the number of cells based on 

Hoechst33342-stained nuclei image. Due to the uneven distribution of the cells in wells, 

the highest and lowest values from the obtained four values from a well were excluded 

for statistical analysis using ANOVA. For the quantification of pulse-labeled cells with 

BrdU, the cells were stained using FITC conjugated anti-BrdU antibody (BD 

Pharmingen™) according to the manufacturer’s instruction. Total numbers of Hoechst 

33342-stained and BrdU-labeled nuclei were counted by image based analysis using 

ImageJ-ITCN software.  
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4.4.9 Two-Dimensional Gel Electrophoresis  

CDr3-stained NS5 pellet was lysed in a lysis buffer (40mMTrizma, 7MUrea, 

2Mthiourea and 4% CHAPS) premixed with 10 μl/ml Protease Inhibitor Cocktail 

(EDTA free, GE healthcare), 50 μg/ml DNase I and 50 μg/ml RNase A (Roche). The 

cell extract was homogenized by vortexing followed by ultrasonication on ice for 10 s, 

and incubated for 30 min at room temperature. The supernatant was collected after 

centrifugation at 20,000 × g for 45 min at 10 °C and protein concentration was 

determined by Bradford protein assay reagent (Bio-Rad). Isoelectric focusing (IEF) was 

performed using PROTEAN IEF Cell (Bio-Rad) with an 18 = −cm ReadyStrip pH 3–10 

NL (Bio-Rad). The sample of 1 mg protein was diluted into 340 μl of rehydration buffer 

(7 M urea, 2 M thiourea, 4% CHAPS, 20 mM DTT, 0.5% IPG buffer pH 3–10 NL (GE 

healthcare), and loaded to each IPG strip with passive rehydration and focused for 

60,000 Vhrs at 20 °C. The IEF strips were reduced in equilibration buffer I (50 mM 

Tris-HCl, pH 8.8, 6 M urea, 30% glycerol, 2% SDS, 2% DTT) at room temperature for 

10 min and alkylated with SDS-PAGE Equilibration Buffer II (50 mM Tris-HCl, pH 8.8, 

6 M urea, 30% glycerol, 2% SDS, 2.5% iodoacetamide, and a trace of bromophenol 

blue) at room temperature for an additional 10 min. The equilibrated IEF strips were 

embedded in 0.5% low melting temperature agarose in 1× Tris-glycine-SDS buffer on 

top of a second dimension SDS-PAGE (12%) gel. After electrophoresis for 5 h at 30 

mA, the 2D fluorescence image of gels was acquired using a Typhoon 9400 scanner 

(GE healthcares) at excitation/emission wavelengths of 532 nm⁄610 nm with PMT at 

500 v and a duplicate gel was stained using PlusOne™ Silver Staining Kit (GE 

healthcare) according to the manufacturer’s protocol. The fluorescent labelled protein 

spots were directly excised from the gel for in-gel trypsin digestion and peptide 

extraction as described previously.18  
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4.4.10 Immunostaining  

The primary and secondary antibodies used for Western blotting and 

immuocytochemistry in this study are as follows: anti- beta-Actin (1 2;000, Santa Cruz), 

beta-Tubulin III (1 500, Sigma), B-FABP (1 1;000, Santa Cruz), BLBP (1 1;000, 

abcam), GFAP (1 1;000 DAKO), mouse IgG-Alexa Fluor 488 (1 300, Invitrogen), 

mouse IgG-HRP (1 4;000, Santa Cruz), rabbit IgG-Cy3 (1 300, Zymed) and rabbit IgG-

HRP (1 4;000, Santa Cruz). 

4.4.11 Real Time RT-PCR 

Total RNA was extracted from the cells using RNeasy Mini Kit (QIAGEN Inc.) 

according to the manufacturer’s instruction. For the RNA samples isolated from E14, 

NS5, D-NS5 and MEF, the reverse transcription and amplification were carried out 

using Power SYBR® Green RNA-to-CT™ 1-Step Kit (Applied Biosystem) on a 

StepOne™ Real-Time PCR System (Applied Biosystem). For the RNA samples from 

H1, ReNcell VM and ReNcell-differentiated neurons, cDNA was synthesized from the 

total RNA using the High Capacity Cdna Archive kit (Applied Biosystems) according 

to the manufacturer’s instructions. PCR reaction was conducted using Power SYBR ® 

Green PCR Master Mix (Applied Biosystems) on an ABI Prism 7900 machine. The 

relative mRNA levels of the genes of interest were normalized and compared to that of 

GAPDH using Q-gene relative expression software tool. The primer sequences (5′ to 3′) 

used in this study are as follow: 

Mouse FABP7 Forward ccagctgggagaagagtttg 
Mouse FABP7 Reverse tttctttgccatcccacttc 
Mouse GAPDH Forward aagggctcatgaccacagtc 
Mouse GAPDH Reverse ggatgcagggatgatgttct 
Human FABP7 Forward acagaaatgggatggcaaag 
Human FABP7 Reverse ctcatagtggcgaacagcaa 
Human GAPDH Forward cagcctcaagatcatcagca 
Human GAPDH Reverse tgtggtcatgagtccttcca 
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4.4.12 Mouse and Human FABP7 Gene Cloning 

cDNAs of mouse and human FABP7 genes were synthesized by RT-PCR from the 

total RNAs extracted from NS5 and U251 human neuroblastoma cell line, respectively. 

The primer sequences (5′ to 3′) for FABP7 ORF cloning are as follows: 

Mouse FABP7 Forward cccagatctccaccatggtagatgctttctgcgcaacct 

Mouse FABP7 Reverse cccaagctttgccttttcataacagcgaacagca 

Human FABP7 Forward cccagatctccaccatggtggaggctttctgtgctacct 

Human FABP7 Reverse cccaagctttgccttctcatagtggcgaacagcaa 

 
BglII/HindIII restriction enzyme sites underlined were incorporated. Acquired PCR 

products were digested with BglII/HindIII and inserted into the pEGFP-N1 vector 

(Clontech). For bacterial expression of FABP7, ORF of human FABP7 was amplified 

by PCR, digested with SalI/HindIII and inserted into pQE31 vector (Qiagen). The 

primer sequences (5′ to 3′) for the subcloning are as follows: 

Human FABP7 Forward cccgtcgacatggtggaggctttctgtgctagc 

Human FABP7 Reverse cccaagctttgccttctcatagtggcgaacagcaa 

 
SalI/HindIII restriction enzyme sites underlined were incorporated.  

4.4.13 Transformation and Transfection 

The constructs were transformed into E. coli DH5α for amplification and verified by 

sequencing. The transfection of 293HEK cells with the plasmid constructs were carried 

out using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions.  

4.4.14 Recombinant Protein Expression and Purification 

pQE31-hFABP7 plasmid was transformed into an E. Coli strain SG13009(Qiagen), 

which allows stringent control of IPTG inducible promoter. Transformed SG13009 was 

cultured in SOB medium and the recombinant hFABP7 was induced by 0.5mMIPTG 

for 8 h at 30 °C. Bacterial pellet was harvested by centrifugation and the Histagged 

hFABP7 was purified using a Ni-NTA column of QiaExpress expression kit (Qiagen) 
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according to the manufacturer’s instruction. The protein was delipidated by incubation 

with an equal volume of Lipidex-1000 at 37 °C for 10 min and elution. The buffer was 

exchanged to 10 mM potassium phosphate buffer (pH = 7.4) by five times repeated 

concentration and dilution using Amicon-Ultra 3K (Millipore) and the protein was 

finally concentrated to the concentration of 1.05 mg⁄ml.  

4.4.15 In Vitro Binding Assay  

To determine dissociation constant CDr3 (10 μM) was incubated with different 

concentrations of FABP7 (0–1 mg⁄ml) in 10 mM potassium phosphate buffer (pH = 7.4) 

at 37 °C for 10 min and the fluorescence intensities were recorded on a SpectraMax M2 

plate reader (excitation: 530 nm; emission: 590 nm). The dissociation constant was 

obtained from a fitting curve using GraphPad Prism 5.0 software. For stoichiometry 

determination of CDr3-FABP7 complex, a total concentration of CDr3 (final 

concentrations: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 μM) and FABP7 (final concentrations: 

20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 0 μM) mixtures were incubated in 10 mM potassium 

phosphate buffer (pH = 7.4) containing 1% DMSO at 37 °C for 10 min, and the 

fluorescence intensities of each mixture were recorded on a SpectraMax M2 plate reader 

(excitation: 530 nm; emission: 590 nm) for Job plot analysis. 
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5.1 Introduction 

Diversity-oriented fluorescent libraries (DOFL), in combining with high-throughput 

screening, have successfully proved their ability in sensor development.1 However, their 

potential was not restricted to such an aspect. With the advances of screening technique 

and analysis software,2 the images acquired from DOFL compounds could be more 

informatics and aim at specific applications. From this respect, preliminary researches 

have been done to study the structure-localization3 or cell retention4 relationship of 

fluorescent dyes. To expand the knowledge of cellular localization-specific groups (e.g., 

tertiary amines selectively localize in lysosome5 and positive charged molecules prefer 

to go to mitochondria6), Shedden and Rosania performed high-throughput screening of 

a fluorescent styryl library. After analyzing the image, they successfully correlated the 

staining pattern with contribution of building blocks and concluded that charge 

migration and distribution played an important role in determining the localization of 

styryl compounds.3 To study the non-stickiness property of fluorescent dyes, which is 

important to imaging intracellular receptors, Nath et al. designed a screening platform 

with three genetic-different mammalian cell lines using Rosamine compounds. After 

quantifying the cellular temporal uptake and retention of each compound, they found 

the relationship between non-stickiness property and structural similarity of Rosamine 

compounds.4  

These researches provided generally useful information of fluorescent dyes’ 

behavior, however, limited to certain scope. Styryl and Rosamine compounds are both 

positive charged molecules, which may induce background effect of the behavior of 

compounds. On the other hand, localization-specificity and non-stickiness are important 

issues but not the only ones. With these concerns, we aim to perform a study to obtain 

more comprehensive information about fluorescent compounds’ behavior, in order to 
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further “tame” them in later sensor development. A fluorescent library was designed 

based on BODIPY scaffold, which is a special neutral structure and would induce 

minimal perturbation to its conjugated functional groups. After screening them to 

different cell lines, we found the general structure-cellular behavior relationship of 

BODIPY compounds, and successfully applied it to “tame” the probe and solve the 

background problem in later developing a protein tag system. 

 

5.2 Results and Discussion 

5.2.1 Construction of a BODIPY Library with Diverse Physical Properties 

BODIPY was selected as the fluorescent scaffold, due to its superior photophysical 

properties, flexibility in chemical modification, and electrically neutral property. 3 

different colors (Chart 5.1 and Scheme 5.1), from green to NIR were considered in 

order to obtain diverse spectral property of the library.  30 amines with very diverse 

physical properties, covering hydrophobic (e.g., 25, 26), hydrophilic (e.g., 1, 3), positive 

charged (e.g. 30), negative charged (e.g., 23, 24), neutral (e.g., 16, 22) and other 

functional groups, were incorporated as building blocks (Chart 5.1). Two different 

positions of BODIPY core (5- and 8-) were modified to study the position effect. 120 

compounds were rendered through acid-amine coupling reaction with good purity 

(Scheme 5.2) and named as “Taming” library, as the aim of constructing this library 

was to get general information for “taming” fluorescent dye in probe development. 
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Chart 5.1 A decoding table for Taming library.  

 

(upper) Structures of BODIPY cores; (lower) Structures of amine building blocks. 

 

 

 



120 
 

Scheme 5.1 Synthetic scheme of the starting materials of Taming1-4 

N
H

+ O

O
Cl

O

a, b

N
B

N

O O

c

N
B
F2

N

HO O

N
B
F2

N

O O

F F

N

d

N
B
F2

N

HO O

N

e

N
B
F2

N

OHO

N
H

O

ON
H

CHO N
B
F2

N

OO

O

+
f, g

N
B
F2

N

OHO

h

i

 

Reagents and conditions: a) DCM, reflux, 4h; b) DIEA (4 eq.), BF3OEt2 (4 eq.), DCM, r.t., 

overnight; c) KOH, MeOH/H2O, r.t., overnight; d) 4-dimethylaminobenzaldehyde, 

pyrrolidine (6 eq.), acetic acid (6 eq.), ACN, 85 oC, 15 min; e) KOH, MeOH/H2O, r.t., 

overnight; f) POCl3, DCM, r.t., 4h; g) DIEA (4 eq.), BF3OEt2 (4 eq.), DCM, r.t., overnight; 

h) HCl, THF/H2O, reflux, overnight; i) 4-methoxybenzaldehyde, pyrrolidine (6 eq.), acetic 

acid (6 eq.), ACN, 85 oC, 15 min. 
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Scheme 5.2 General synthetic scheme of Taming library 

 

Reagents and conditions: a) N-hydroxylsuccinimide, DCC, DMAP, THF, r.t., overnight; b) 

amine building blocks, THF, r.t., 6 h. 

 

5.2.2 Spectroscopic Properties of Taming Library 

The coupling reaction does not change the conjugation system of each BODIPY 

core. Therefore, Taming compounds from each set has similar absorbance and emission 

wavelengths. However, their quantum yields vary from 0.001 to almost 1 with different 

amine structures (Table 5.1). 

Table 5.1 Spectroscopic properties and purity table for Taming library: calculated mass, 

experimental mass, absorbance maximum (λabs), fluorescent emission maximum (λem), 

extinction coefficient (ε), quantum yield (Φ), and purity. 

 
Code mass (calc) m/z (exp) λabs (nm) λem (nm) ε (M-1cm-1) Φ Purity (%)d 

Taming1-1 377.2 376.1a 498 514 209383 0.98 91 

Taming1-2 377.2 376.1a 497 513 410914 0.97 99 

Taming1-3 393.2 392.2a 498 514 222469 0.97 98 

Taming1-4 417.3 416.2a 498 514 655630 0.98 99 

Taming1-5 389.2 388.1a 498 513 437086 0.34 99 

Taming1-6 403.3 402.2a 498 513 217235 0.94 98 

Taming1-7 390.3 389.2a 499 514 82444 0.13 98 

Taming1-8 416.3 415.2a 499 514 132173 0.56 97 

Taming1-9 418.3 417.1a 499 514 179284 0.44 96 

Taming1-10 488.5 487.2a 499 514 126938 0.66 98 

Taming1-11 430.3 429.1a 498 514 342864 0.82 98 

Taming1-12 432.3 431.3a 499 515 159654 0.91 99 

Taming1-13 470.4 469.2a 498 514 163580 >0.99 99 
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Taming1-14 432.3 431.1a 498 514 145259 0.97 98 

Taming1-15 416.3 415.2a 499 513 155728 0.95 95 

Taming1-16 444.3 443.1a 498 514 995877 0.75 98 

Taming1-17 432.4 431.3a 498 514 261728 0.61 95 

Taming1-18 459.4 440.4 499 514 104691 0.40 92 

Taming1-19 417.3 416.2a 499 515 307531 0.87 95 

Taming1-20 445.4 444.1a 498 514 134790 0.84 97 

Taming1-21 459.4 458.3a 497 514 75901 0.42 96 

Taming1-22 391.2 390.1a 499 513 176667 0.69 97 

Taming1-23 377.2 376.2a 401 515 68049 0.22 97 

Taming1-24 435.2 434.1a 499 514 225086 0.84 93 

Taming1-25 599.7 598.3a 498 515 311457 0.68 96 

Taming1-26 655.8 654.4a 498 515 248642 0.68 97 

Taming1-27 459.4 458.2a 498 514 666099 0.87 97 

Taming1-28 487.5 486.2a 498 514 694889 >0.99 97 

Taming1-29 543.6 542.3a 498 514 519531 0.97 90 

Taming1-30 608.5 608.2b 499 515 392593 0.90 89 

Taming2-1 349.2 330.1 507 521 136099 0.81 93 

Taming2-2 349.2 330.1 507 521 283975 0.95 95 

Taming2-3 365.2 346.1 506 519 1264148 0.94 95 

Taming2-4 389.2 370.1 506 519 757704 >0.99 95 

Taming2-5 361.2 341.1 506 521 198914 >0.99 98 

Taming2-6 375.2 356.0 507 520 384741 0.88 93 

Taming2-7 362.2 343.1 506 519 153111 0.86 99 

Taming2-8 388.3 369.2 507 522 1124123 0.38 97 

Taming2-9 390.3 371.2 506 520 244716 >0.99 91 

Taming2-10 460.5 441.3 506 519 338938 0.95 92 

Taming2-11 402.3 383.2 507 520 266963 0.71 98 

Taming2-12 404.3 385.2 507 520 261728 0.78 97 

Taming2-13 442.4 423.2 506 520 82444 0.44 90 

Taming2-14 404.3 385.2 507 521 366420 0.90 94 

Taming2-15 388.3 369.2 508 522 670025 0.66 98 

Taming2-16 416.3 397.2 506 519 300988 0.95 90 

Taming2-17 404.3 385.2 506 520 416148 0.96 92 

Taming2-18 431.3 412.2 508 520 345481 0.72 91 

Taming2-19 389.3 370.2 507 519 208074 0.63 95 

Taming2-20 417.3 398.1 508 520 787802 0.20 98 

Taming2-21 431.3 412.2 508 519 473728 0.24 90 

Taming2-22 363.2 344.1 506 519 575802 0.99 98 

Taming2-23 349.1 330.0 507 519 2691877 0.20 92 



123 
 

Taming2-24 407.2 388.1 506 519 1290321 0.82 99 

Taming2-25 571.6 552.3 506 519 120395 >0.99 92 

Taming2-26 627.7 608.4 506 520 163580 >0.99 94 

Taming2-27 431.4 412.2 506 520 140025 >0.99 94 

Taming2-28 459.4 440.2 506 520 198914 >0.99 98 

Taming2-29 515.5 496.2 506 519 176667 0.96 98 

Taming2-30 580.4 580.2b 506 519 217235 >0.99 98 

Taming3-1 467.3 448.1 577 595 527383 0.37 97 

Taming3-2 467.3 448.1 577 594 367728 0.30 93 

Taming3-3 483.3 464.1 577 594 200222 0.21 99 

Taming3-4 507.4 488.2 577 596 249951 0.27 92 

Taming3-5 479.3 460.1 577 596 177975 0.22 98 

Taming3-6 493.4 474.2 577 596 184519 0.21 95 

Taming3-7 480.4 461.2 577 594 281358 0.24 96 

Taming3-8 506.4 487.2 577 595 294444 0.23 95 

Taming3-9 508.4 489.2 576 595 954000 0.31 97 

Taming3-10 578.6 559.3 576 596 1358370 0.35 99 

Taming3-11 520.4 501.2 577 595 1198716 0.38 96 

Taming3-12 522.4 503.2 577 595 1065235 0.45 94 

Taming3-13 560.5 541.3 577 595 422691 0.29 94 

Taming3-14 522.4 503.2 577 596 961852 0.41 94 

Taming3-15 506.4 487.2 577 596 455407 0.58 94 

Taming3-16 534.4 515.2 577 595 1245827 0.47 94 

Taming3-17 522.4 503.2 577 595 312765 0.22 98 

Taming3-18 549.5 530.2 577 594 509062 0.27 98 

Taming3-19 507.4 488.2 577 594 231630 0.21 92 

Taming3-20 535.4 516.2 577 594 395210 0.29 92 

Taming3-21 549.5 530.2 577 595 744617 0.39 94 

Taming3-22 481.3 462.1 577 596 2104296 0.52 95 

Taming3-23 467.3 448.1 577 594 366420 0.32 99 

Taming3-24 525.3 506.1 577 594 141333 0.17 95 

Taming3-25 689.8 670.4 577 595 989333 0.45 94 

Taming3-26 745.9 726.5 577 596 957926 0.44 98 

Taming3-27 549.5 530.2 577 596 1537654 0.52 94 

Taming3-28 577.6 558.3 577 596 1125432 0.46 93 

Taming3-29 633.7 614.4 577 595 1211802 0.49 94 

Taming3-30 698.6 698.5b 577 595 787802 0.44 95 

Taming4-1 508.4 509.2b 602 740 634691 0.008 90 

Taming4-2 508.4 509.2b 602 733 408296 0.008 90 

Taming4-3 524.4 525.3b 603 741 654321 0.009 99 
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Taming4-4 548.5 549.3b 603 738 859778 0.008 99 

Taming4-5 520.4 521.3b 601 743 231630 0.007 98 

Taming4-6 534.4 535.3b 602 730 138716 0.005 98 

Taming4-7 521.5 522.3b 606 756 177975 0.004 90 

Taming4-8 547.5 548.4b 605 735 359877 0.005 92 

Taming4-9 549.5 550.4b 605 731 316691 0.005 93 

Taming4-10 619.6 620.4b 603 693 181901 0.004 94 

Taming4-11 561.5 562.4b 605 728 274815 0.004 95 

Taming4-12 563.5 564.4b 606 739 321926 0.005 98 

Taming4-13 601.6 602.4b 605 732 393901 0.005 97 

Taming4-14 563.5 564.3b 605 743 421383 0.007 98 

Taming4-15 547.5 546.1a 603 744 383432 0.009 89 

Taming4-16 575.5 598.3c 602 737 163580 0.006 97 

Taming4-17 563.5 564.3b 607 742 257802 0.005 93 

Taming4-18 590.6 591.4b 604 738 236864 0.007 98 

Taming4-19 548.5 529.3 605 733 889877 0.006 98 

Taming4-20 576.5 577.4b 606 755 352025 0.005 96 

Taming4-21 590.6 591.4b 607 746 1205259 0.004 92 

Taming4-22 522.4 523.3b 605 745 308840 0.007 96 

Taming4-23 508.4 509.3b 604 741 951383 0.006 98 

Taming4-24 566.4 565.1a 603 731 594123 0.007 95 

Taming4-25 730.9 731.5b 600 759 90296 0.001 90 

Taming4-26 787.0 767.5 599 732 98148 0.003 89 

Taming4-27 590.6 591.4b 604 748 290519 0.008 93 

Taming4-28 618.7 619.5b 603 742 506444 0.008 91 

Taming4-29 674.8 675.1b 605 750 188444 0.006 92 

Taming4-30 739.7 740.4b 604 686 327160 0.008 98 

 
All absorbance and fluorescence excitation and emission data were recorded by a 

Synergy 4, Biotek Inc. fluorescent plate reader with 20 μM compounds in DMSO (100 

μL) in 96-well polypropylene plates. Mass was calculated as (M+), and found in ESI-

MS (M-F), a: found mass (M-H) in the negative mode scan, b: found mass (M+H), c: 

found mass (M+Na), d: Purity data was calculated on the basis of the integration in 

HPLC trace at 254 nm. 
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5.2.3 Cell-Based Screening for Taming Compounds 

5.2.3.1 Localization Specificity Study 

Taming library compounds were incubated with live A549 cells growing on glass 

bottom of 384-well plates to check their cellular localizations. To facilitate data 

acquisition and analysis, Hoechst33342 was used to label the nucleus of cells. Images of 

two regions per well were acquired using ImageXpress Micro™ cellular imaging 

system (Molecular Device) with 40× objective lens, and DAPI (for Hoechst33342), 

FITC (for Taming1 and 2), Texas Red (for Taming3) and Cy5 (for Taming4) filter sets. 

It was found that Taming1 and 2 compounds localized to specific sub-cellular 

compartments (e.g., mitochondria, vesicles, cytoplasma). Furthermore, Taming1 and 2 

with same class of functional groups showed similar staining pattern inside the cells. 

Compounds with hydroxyl or alkoxy groups stained whole cytoplasm of cells with high 

background, while compounds with carboxylic acid group are not cell permeable. It is 

already known that tertiary amine and triphenylphophonium compounds specifically go 

to lysosome and mitochondria in the cell, respectively. Our experiment further 

confirmed that BODIPY cores of Taming1 and 2 did not affect their conjugates’ 

behaviour. Furthermore, substituted position difference on BODIPY core did not affect 

the cellular behaviour of compounds, either (Figure 5.1). Taming3 compounds showed 

similar staining pattern with same anime structures as Taming1 and 2. However, most 

Taming4 compounds selectively localized in mitochondrial due to the conjugated 4-

dimethylamino styryl motif, which easily gets positively charged under physiological 

conditions (Figure 5.2). It is known that positively charged molecules can accumulate in 

the mitochondrial of the cell due to the membrane potential. On the other hand, this also 

proved that neutral BODIPY structures can induce minimum perturbation to the 

function of their conjugates compared to other charged fluorophores.   
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Figure 5.1 Structures and images acquired from Hoechst33342, and Taming1 and 2 

compounds. Cells were stained with Hoechst33342 at 2 µM for 10 min (blue images from DAPI 

channel) and the compound at 2 µM for 30 min (green images from FITC channel).  
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Figure 5.2 Structures and images acquired from Hoechst33342, and Taming4 compounds. 

Cells were stained with Hoechst33342 at 2 µM for 10 min (blue images from DAPI channel) 

and the compounds at 2 µM for 30 min (red images from Cy5 channel).  

5.2.3.2 Cell Retention Study 

Next we studied the structure-cell retention relationship of Taming compounds. 

Taming4 compounds were excluded in this study due to the big effect of 4-

dimethylamino styryl motif on their cellular behaviour. Taming1, 2 and 3 compounds 

were incubated with live COS7, CHO, and HeLa cells growing on glass bottom of 96-

well plates, and the images were acquired from 0 to 60 min with 10 min interval. Then 

the compounds were washed out at 60 min time point, and images were taken every 10 

min to another 60 min. To facilitate data acquisition and analysis, Hoechst33342 was 

used to label the nucleus of cells. Images of two regions per well were acquired using 

ImageXpress Micro™ cellular imaging system (Molecular Device) with 10× objective 

lens, and DAPI (for Hoechst33342), FITC (for Taming1 and 2), Texas Red (for 

Taming3) filter sets. It was found that Taming compounds with hydroxyl or ether 

functional groups (i.e., Taming1-1 to 6, Taming2-1 to 6 and Taming 3-1 to 6) can be 
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taken up and washed out from the cells very fast, and after washing, the compounds 

leave no background in the cells. Taming compounds with amine groups (i.e., Taming1-

7 to 21, Taming2-7 to 21, and Taming3-7 to 21) can also be taken up and washed out 

from the cells quickly, however, after washing, small percentage of compounds 

remained in the cells. Taming compounds with long carbon chains (i.e., Taming1-25 to 

29, Taming2-25 to 29, and Taming3-25 to 29) were much stickier compared to the 

former two classes of compounds as they can be taken up by the cells slowly, and leave 

high background after washing (Figure 5.3). Besides, all these compounds showed 

similar cell retention pattern among 3 different cell lines. 

Taming1-5

Taming1-10

Taming2-27

Taming3-1

Taming3-21

Taming3-26

0 min                          30 min                          60 min 0 min                        30 min                          60 minWash

 

Figure 5.3 Representative images acquired from Taming1, 2 and 3 compounds in HeLa cells. 

Cells were stained with compound at 2 µM, and images were taken from 0 to 60 min.  Then the 

compounds were washed out at 60 min time point, after washing images were taken from 0 to 

another 60 min. (green images from FITC channel and orange images from Texas Red channel)  
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5.2.4 Application of Taming Compounds-Case Study: BODIPY-Diacrylate 

Imaging Probes for Targeted Proteins inside Live Cells 

Taming compounds have been screened in cells based on different platforms. Their 

cellular behaviour can be successfully correlated to the contribution from different 

classes of functional groups. These results are quite informative in developing specific 

probes based on BODIPY structure, which can help us to find the general guides (e.g., 

organelle-specific probes and low-background probes after washing). Here, we 

introduce one example of developing image probes for targeted proteins inside live cells, 

in which the information from cell-based screening of Taming compounds helped to 

solve the background issue of free molecules. 

5.2.4.1 Background   

Site-specific labelling of target proteins with fluorescent reporter probes allows 

numerous in vivo studies of protein functions.7 Although genetic fusion of the 

fluorescent proteins (FPs) provides critical advantages, its adverse properties, such as 

large size (27 kDa) or aggregation, often limit the application.8 Alternatively, a small 

peptide tag and its binding probe would provide a less invasive way of protein 

labelling.9 A pioneering example utilizing the high affinity between a tetracysteine tag 

and a fluorescent biarsenical probe (FlAsH)10 has been used in a number of applications 

inside live cells with step-wise improvements.11 Development of other peptide tags have 

been followed, mostly, in two perspectives: first, by exploiting the intrinsic affinity 

between a probe and a peptide tag, such as the D4 tag/Zn-probe12 or IQ-tag13; and 

second, by conjugating a probe to a peptide tag with an assistance of trans-acting 

enzymes as shown by the AviTag14, LAP-tag15, or ACP/PCP tag16. However, 

application of the above systems, except the FlAsH, is limited to the extracellular 

domain of membrane proteins because of the cell-impermeability of labelling reagents, 
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including the modifying enzymes. Although a recent report by Uttamapinant et al. 

suggests a clever strategy to label peptide tags inside cells,17 co-expression of the 

modifying enzyme might affect the simplicity of experimental protocol and deprive the 

transcription/translational machinery in cells. Therefore, notwithstanding the toxicity of 

arsenical probes, FlAsH is still the most representative peptide-based method applicable 

inside cells and thus, new peptide-based labelling systems with safer probes need to be 

developed. We designed a fluorescent probe based on BODIPY structure which exhibits 

a large spectral emission shift upon covalent coupling to a designed peptide and 

demonstrated the successful optical imaging of a target protein labelled by this affinity 

pair (probe and tag) inside cells. 

5.2.4.2 Design and Synthesis of BODIPY-Diacrylate Probes 

We designed a fluorescent probe based on BODIPY structure, due to the relatively 

facile modification on its structure with predictable alteration on the excitation/emission 

wavelengths.18 We envisioned that attachment of the Michael acceptor to the BODIPY 

core will shift the excitation and emission significantly to longer wavelengths, while 

1,4-addition of thiols to the Michael acceptor will break the conjugation, shifting the 

fluorescence back to the green colour of BODIPY.18-19 Therefore, we incorporated two 

acrylic acid groups to the BODIPY core and two reactive cysteines to the peptide tag, 

while the distance between two acrylic groups was similar to the two cysteines (Figure 

5.4). Previously, similar design has been reported by Girouard et al. through binding a 

fluorogenic dimaleimide-fluorophore to the dicysteine peptide.19-20 However, labelling 

on intracellular proteins is not yet demonstrated. 
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Figure 5.4 Design of a BODIPY fluorophore that exhibits a large spectral change upon covalent 

conjugation to a tag for potential application to the site-specific labelLing of proteins inside live 

cells. 

Scheme 5.3 Synthetic scheme of BODIPY diacrylates 

 

Reagents and conditions: a) POCl3, DMF, 0 oC, 1.5 h, then NH4OAc (aq.), r.t., overnight; b) 

PPh3=C(O)OR2, DCM, overnight; c) DDQ, DCM, r.t., 15 min, then DIEA, BF3OEt2 DCM, 

3h. 

 

The synthesis of BODIPY-diacrylate derivatives is outlined in Scheme 5.3. Dialdehydes 

were prepared by Vilsmeier formylation of 5-phenyldipyrromethanes. The Wittig reaction 

of dipyrromethanes with a triphenylphosphorane reagent afforded the diacrylate 

compounds, which were characterized as a symmetrical E isomer (J = 16.0 Hz) by 1H-

NMR. Phenyldipyrromethane acrylates were oxidized by DDQ and subsequently 

complexed with BF3OEt2, giving a deep purple solid of BODIPY diacrylates. 
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5.2.4.3 Validation of BODIPY-Diacrylate Probes  

Initially, 34a was evaluated for a spectral change with model peptides in vitro. The 

model peptide P1, based on previous literature, has two cysteines at the i and i+4 

positions (Figure 5.5a) and was proven to form an a-helix by CD spectroscopy (Figure 

5.5b). Additionally, an Arg was paired with each Cys, which would lower the pKa of 

thiols and increase the nucleophilicity in physiological pH. Two control peptides are P2, 

with one pair of Arg-Cys, and P3, having no Arg-cys pairs. Compound 34a in a 

buffered condition (50 mM HEPES, pH 7.4) has an absorption maximum at 582 nm and 

emission at 600 nm with an orange colour fluorescence. Addition of P1 (10 mM) 

induced an immediate spectral change (reaction rate constant, k=0.1484 s-1, Figure 5.6), 

resulting in a large blue shift of emission to green fluorescence (530 nm, Figure 5.7a), 

and the Arg residues appear to contribute to the rapid reaction since control peptide 

without them induced a slower reaction (k = 0.0882 s-1, Figure 5.6). By contrast, P2 

gave a slight spectral change with a new emission peak at 565 nm, possibly due to the 

single conjugation with Arg-Cys, and P3 showed none. Notably, 10-fold excess of N-

acetylcysteine (NAC) induced a small peak at 565 nm. Another control experiment with 

high concentration of glutathione (up to 5 mM), mimicking the intracellular 

environment of live cells, induced the orange peak (565 nm) as the major emission and 

a small green peak (530 nm) as the minor emission. These results might imply the 

potential background signal when the labelling is performed inside live cells (Figure 

5.8). In time-dependent monitoring of fluorescence emission at 530 nm with excitation 

at 480 nm, only P1 displayed an exclusive increase of emission (Figure 5.9), and 

therefore, P1 only would enable a selective imaging at this wavelength channel of 

fluorescence microscope. This selectivity was further validated by checking 

fluorescence colours under UV irradiation with a hand-held UV lamp (excitation at 365 
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nm) (Figure 5.7b), and these different colours lasted even after 24 h (data not shown). 

After we confirmed the conjugation product of P1 and 34a through the MALDI-

TOF/MS and LC/MS analysis, we designated amino acid sequences of the model 

peptide P1 as the ‘‘RC’’ tag. 

P 1     A c E A A A R E A R C R E R C A R A

P 2     A c E A A A R E A A A R E R C A R A

P 3     A c E A A A R E A A A R E A A A R A

Wavelength (nm)
m

de
g

a)
b)

 

Figure 5.5 (a) Peptide sequences of P1, P2, and P3. (b) Circular dichroism (CD) spectrum of P1; 

CD was determined with 1 mM of P1 in 10 mM PBS buffer solution. Buffer reading value was 

subtracted. Typical helix 209, 220 nm excitations were observed. 

 

Figure 5.6 Kinetic study to determine the reaction rate constant between dye and peptide. 10 

μM of 34a and 200 μM of peptide (P1 or P6*) of 20 mM HEPES buffer solution, containing 

1 % DMSO, was placed in a 96-well plate. Fluorescent intensity at 530 nm, with an excitation at 

480 nm, was recorded every 2 min until saturated. (Control peptide without Arg. P6*: 

AcGGGGGGGGCGGGCGGG-NH2) 
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Figure 5.7 Fluorescence responses of 34a incubated with P1, P2, P3 or NAC in 50 mM HEPES 

(pH 7.4) with excitation at 480 nm. (a) Emission spectra after incubation for 40 min at RT. (b) 

A picture of 34a solutions containing the model peptides under irradiation with a handheld UV 

lamp (ex = 365 nm). 
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Figure 5.8 Fluorescence responses of 34a incubated with various concnetration of glutathione. 

(a) Glutathione was reacted with 34a (10 μM) in 50 mM HEPES (pH 7.4) with an excitation at 

480 nm and the emission spectra are acquired after 40 min incubation at room temperature. (c) 

Calculation of rate constant; As GSH is large excess, the concentration of GSH was considered 

to be constant during the reaction with 34a. The reaction between dye and GSH was considered 

as pseudo-first order reaction. 
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Figure 5.9 Time-dependent fluorescence responses of 34a incubated with model peptides: 34a 

(10 μM) was mixed with P1, P2, P3 (10 μM) or NAC (100 μM) in 50mM HEPES (pH 7.4) and 

the fluorescence emissions were measured at 530 nm with an excitation at 480 nm. 

5.2.4.4 “Tame” 34a for Good Cell Permeability and Low Background 

To evaluate the labelling efficacy of the RC tag for intracellular proteins, we further 

modified the non-cell permeable compound 34a. By changing the acids into ethyl esters, 

compounds 34c were synthesized with good cell permeability. However, further study 

showed that 34c were very sticky when treated to the cells, left high background of free 

compounds even after washed out (data not shown). From our previous screening of 

Taming compounds, we have discovered that BODIPY compounds with hydroxyl or 

morpholine groups could be easily washed out from the cells leaving no background. 

Therefore, to solve the stickiness issue, 34a were further modified at the para-position 

of the phenyl ring by introducing morpholine group due to the synthetic simplicity. 

Furthermore, ethyl ester was changed to methyl ester to further reduce the cell retention 

property, yielding compound 34b as the optimum probe (Figure 5.10a).  
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Figure 5.10 (a) Structure of 34b. (b) RC tagged Cherry and three alanine mutants. Protein 

extract from the cells, transfected with the vectors and stained with 34b, were analyzed in the 

SDS-PAGE and a-myc western blotting confirmed the expression of tagged proteins. M: protein 

size marker. N: no transfection. (c) Conjugation of 34b to RC2 tagged Cherry by SDS-PAGE 

and western blotting. (Gel scan Ex/Em=488/SP 526 nm). 

5.2.4.5 Development of RC tag 

First, we fused the RC tag to a model protein (monomeric Cherry, a red fluorescent 

protein) and analyzed the conjugation of 34b to the RC-tagged Cherry in gel 

electrophoresis (SDS-PAGE). Protein extract of the transfected cells showed an 

apparent green fluorescence band resulted from the covalent binding of 34b to RC-

tagged Cherry at the expected molecular weight (34 kDa). Moreover, we confirmed this 

spectral change is achieved only when two cysteine residues are faithfully provided, 

since mutations on either one or two cysteines in the RC tag completely disable the 

spectral change (Figure 5.10b and Figure 5.11). However, when the RC-tagged Cherry 

was expressed in cells, the green fluorescent signal provided by the staining with 34b 

was marginally strong to be used for clear optical imaging (Figure 5.12). In order to  
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Figure 5.11 Specific-conjugation of 34b to RC2 tagged target proteins in the total proteome. 

HEK293 cells, transfected with the RC·myc·Cherry and RC2·myc·Cherry or the alanine 

mutation clones, were stained with 34b (1 μM, 30 min, 37 ºC) and the total lysates were 

analyzed on SDS-PAGE. After fluorescence gel scanning (a), the gel was subjected to silver 

staining (b) to reveal the total proteome resolved on gel. 

enhance the labelling efficiency, we dimerized the RC tag and doubled the binding 

motif (–RCXXRC–) in the tag (RC2) (see the experimental section for the amino acids 

sequences of RC2). As expected the RC2 tag produced a stronger fluorescent band in gel 

(Figure 5.10c) than RC and thus, we focused on this RC2 tag for further live cell 

imaging. Combining 34b with the RC2 tag, cell images showed much stronger green 

fluorescence than with the RC tag by the expected spectral change and the green 

fluorescence overlapped clearly with the red signal from Cherry inside cells (Figure 

5.13a and 5.14). Green fluorescence intensity reached saturation within 15min and 

washing/further incubation for 30min to 1 h in fresh medium significantly helped the 

removal of background signal of 34b. In addition, when we confined the expression of 
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RC2 tagged Cherry to the nucleus, by introducing a nuclear localization signal (NLS) to 

the expression cassette, the green signal from compound 34b also was strictly localized 

to the nucleus in transfected cells in accordance with the red fluorescence of Cherry 

(Figure 5.14). 

 

Figure 5.12 Dimerization of RC tag enables an effective labelling of target protein by 34b in 

live cells. HEK 293 cells were transfected with the expression vectors encoding Cherry that is 

tagged with RC, RC2 or the alanine mutants of RC (m1, m2, m3) and stained with 34b. 

Fluorescence microscopic images taken by FITC filter (F) show the green fluorescence resulting 

from the spectral change of compound and images taken by Cy5 filter (C) prove the expression 

of tagged protein (Cherry). The yellow and blue arrows in RC tagged Cherry (RC·myc·Cherry) 

indicate cells showing overlapping signals (green and red). Noticeably, the green signal from 

the dimeric RC tagged protein (RC2·myc·Cherry) is significantly stronger than the monomeric 

RC tagged protein (RC·myc·Cherry). BF-bright field, F-FITC, C-Cy5, M-merged (F and C). 

Scale bar 50 μm. 
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Figure 5.13 Fluorescence microscopic images of 34b labelling on the RC2 tagged recombinant 

proteins expressed in 293A cells. Cells transfected with the respective expression vectors (a–e) 

were stained with 34b (1 mM, 15 min, 37 oC) and images were taken in live cells. Filters used 

for fluorescence imaging were BF-bright field, D-DAPI, F-FITC, C-Cy5, M-Merged, scale bars 

50 mm, HA-hemmaglutinin tag. 

5.2.4.6 Evaluation of RC Tag 

Finally, we tested the performance of this labelling system with histone H2B, as a 

real cellular protein. We linked the ‘‘RC2_myc’’ casette to the N-terminus of human 

H2B and fused Cherry to the C-terminus of it as a marker to check the expression. 

Probe 34b successfully stained the tagged H2B in live cells demonstrating clear nuclear 

staining in the transfected cells (Figure 5.13b). In the following experiments of H2B 

without Cherry, 34b and the RC2 tag provided a reliable labelling to the tagged H2B, 
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which is specific enough to be recognized without the aid of the tracking marker 

(Cherry) (Figure 5.13c). Additionally, the RC2 tag was compatible with other peptide 

tags; combination with other small peptide tags such as the HA tag, myc tag, or hexa-

histidine tag, barely affected the labelling efficiency (Figure 5.13d) and the C-terminal 

tagging was also available (Figure 5.15 lane 4). 

 

Figure 5.14 Fluorescence microscopic images of RC2 tagged nuclear protein labeled by 34b in 

HEK293 cells. Cells transfected with the pc-RC2·myc·Cherry or pc-RC2·(NLS)·myc·Cherry 

and were stained with 34b (1 μM, 15 min, 37 ºC) and followed by the Hoechst staining (10 μM, 

30 min, 37 ºC). Images were taken in live cells. Filters used for fluorescence imaging were BF-

bright field, D-DAPI, F-FITC, C-Cy5, M-Merged., A-images of all filters are merged 

(BF+D+F+C). Scale bars 50 μm. 
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Figure 5.15 Labelling of target protein by RC tag in various locations. Plasmid vectors were 

prepared to express the monomeric Cherry with an RC tag placed in diverse position in 

combination with other small peptide tags. HEK293 cells transfected with the expression 

vectors were stained with 34b (1 μM, 30 min, 37 ºC) and the total lysates were analyzed on 

SDS-PAGE. After fluorescence scanning of the gel, protein was transferred to PVDF membrane 

and was subjected to western blotting (α-myc) for the confirmation exogenous protein 

expression. M-protein size marker, N-no transfection. 

5.3 Conclusion 

DOFL compounds not only can be used to develop novel fluorescent sensors, but 

also could be more informatics and aim at specific applications. We constructed a 

Taming fluorescent library with very diverse physical properties and different colours 

based on BODIPY structures. After applying to cell-based screening system, cellular 

localization and retention of compounds were successfully correlated to the structures of 

substitutions of BODIPY dyes. Using the information, cell-permeability and 

background issues were successfully overcome in developing a protein tag system based 

on BODIPY diacrylate structure. 

This novel peptide-based protein labelling system by utilizing a fluorescent 

BODIPY compound preferably changed the spectral property when it encounters a 

designed peptide containing two pairs of Arg-Cys. Dimeric peptide tag RC2 and its 
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partner compound 34b would benefit the current protein labelling methods, especially 

the optical imaging of specific target protein inside living cells as demonstrated. This 

system would provide a promising tool for optical imaging of specific protein due to the 

following advantageous properties: the small size of the tag (less than 5 kDa, composed 

of 34 amino acids encoded by RC2), independence from other enzymes or cofactors, 

applicability to intracellular proteins through the cell-permeability of probe, optical 

confirmation of proper conjugation from the apparent spectral change, stable binding be 

analyzed in SDS-PAGE, and negligible toxicity to the users when using the BODIPY-

based reagent.  

 

5.4 Experimental Section 

Materials and Methods 

All reactions were performed in oven-dried glassware under a positive pressure of 

nitrogen. Unless otherwise noted, starting materials and solvents were purchased from 

Aldrich, Alfa Aesar, Fluka, Merck or Acros organics and used without further 

purification. Amino acids, Rink amide MBHA resin, and coupling reagents for 

preparation of peptides were purchased from peptide international, Inc. Analytical TLC 

was carried out on Merck 60 F254 silica gel plate (0.25 mm layer thickness) and 

visualization was done with UV light. Column chromatography was performed on 

Merck 60 silica gel (230-400 mesh). NMR spectra were recorded on a Bruker Avance 

400 NMR spectrometer. Chemical shifts are reported as δ in units of parts per million 

(ppm) and coupling constants are reported as a J value in Hertz (Hz). Mass of all the 

compounds was determined by LC-MS of Agilent Technologies with an electrospray 

ionization source. High resolution mass was recorded on a Bruker MicroTOFQ-II. CD 

spectra of peptide were measured by Jasco J-810 spectropolarimeter. All fluorescence 
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assays were performed with a Gemini XS fluorescence plate reader. Spectroscopic 

measurements were performed on a fluorometer and UV/Vis instrument, Synergy 4 of 

bioteck company. The slit width was 1 nm for both excitation and emission.  

5.4.1 Synthesis of BODIPY Diacrylates 

 5-Phenyldipyrromethane (31a): 31a was synthesized according to 

the previous literature. The analytical properties are identical. 1H-

NMR (300 MHz. CDCl3): 7.87 (bs, 2H), 7.25 (m, 5H), 6.67 (dd, J =2.4, 

4.0, 2H), 6.15 (dd, J=2.8, 6.0, 2H), 5.90 (bs, 2H), 5.45 (s, 1H). 13C-NMR (CDCl3): 

142.1, 132.5, 128.7, 128.4, 127.0, 117.2, 108.5, 107.3, 44.0. ESI-MS m/z (C15H14N2): 

calculated 223.1 (M+H), found 223.1 (M+H). 

1,9-Diformyl-5-phenyldipyrromethane (32a): To DMF (10 

mL) was added POCl3 (1.5 mL, 16.4 mmol) slowly, and the 

mixture was stirred for 5 min at 0 oC. This Vilsmeir reagent (7.5 

mL, 10.7 mmol) was added slowly to a solution of 31a (1.0 g, 

4.5 mmol) in DMF (15 mL), and stirred for 1.5 h at 0 oC. The saturated sodium acetate 

solution (50 mL) was added and stirred at r.t. overnight. After the reaction completion 

monitored by TLC, the reaction mixture was diluted with EtOAc, and washed with 

water and brine. The organic layer was dried over sodium sulfate. The filtrate was 

concentrated and purified by silica gel column chromatography (DCM:EtOAc=9:1) to 

give the greenish yellow solid (1.07 g, 85%). 1H-NMR (300 MHz, CDCl3): 10.59 (bs, 

2H), 9.20 (s, 2H), 7.31 (m, 5H), 6.86 (dd, J=2.4, 4.0, 2H), 6.06 (dd, J=2.4, 3.2, 2H), 

5.59 (s, 1H). 13C-NMR (CDCl3): 179.0, 141.6, 139.2, 132.7, 129.0, 128.5, 127.7, 122.3, 

111.6, 44.5. ESI-MS m/z (C17H14N2O2): calculated 279.1 (M+H), found 279.1 (M+H). 
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1,9-bis(tert-butoxycarbonylethenyl)-5 

Phenyldipyrromethane (33a): To a solution of 32a (500 

mg, 1.80 mmol) in DCM (20 mL) was added (tert-

butoxycarbonylmethylene)triphenylphosphorane (2.03 g, 

5.40 mmol) at 0 oC, and the mixture was stirred at r.t. 

overnight. The reaction mixture was diluted with DCM and washed with brine. The 

organic layer was dried over sodium sulfate, filtered, concentrated, and purified by 

silica gel column chromatography (EtOAc:DCM=1:40) to give a greenish yellow solid 

33a (375 mg, 44 %). 1H-NMR (400 MHz, CDCl3): 8.37 (bs, 2H), 7.32 (d, J=16.0), 7.26 

(m, 5H), 6.42 (app t, J=2.8, 2H), 5.94 (app t, J=2.8, 2H), 5.77 (d, J=16.0, 2H), 5.45 (s, 

1H). 13C-NMR (CDCl3): 166.9, 140.2, 136.4, 133.0, 129.0, 128.5, 128.3, 127.6, 114.7, 

113.0, 110.4, 80.1, 44.3, 28.3. ESI-MS m/z (C29H32N2O4): calculated 475.2 (M+H), 

found 475.2 (M+H). 

Bodipy diacrylate (34a): To a solution of 33a (200 mg, 

0.421 mmol) in DCM (35 mL) was added DDQ (144 mg, 

0.636 mmol). After stirring for 15 min at r.t., the mixture was 

cooled to 0 oC. To this mixture, DIEA (2 mL, 11.6 mmol) 

and BF3OEt2 (1.4 mL, 11.1 mmol) were added and slowly warmed up to r.t. while 

stirring for 2 hrs. The reaction mixture was diluted with DCM, and washed with aq. 

NaHCO3 and brine. The organic layer was dried over sodium sulfate and the filtrate was 

concentrated and purified by silica gel chromatography. To hydrolyze the tert-butyl 

ester, BF3OEt2 (0.3 mL) was added at 0 oC to the solution of ester in DCM (70 mL). 

After stirring for 1h, the reaction mixture was diluted with DCM and acidified to pH 3 

with aq. HCl solution. The aqueous layer was extracted with 5% iPrOH/DCM five times. 

The organic layer was dried over sodium sulfate. The filtrate was concentrate and 
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purified by silica gel chromatography (MeOH:DCM:H2O=10:50:1) to give 34a (60 mg, 

80%). 1H NMR (400 MHz, CDCl3+ CD3OD): 8.11 (d, J=16.0, 2H), 7.58 (m, 5H), 7.04 

(d, J=4.0, 2H), 6.96 (d, J=4.0, 2H), 6.66 (d, J=16.0, 2H). 13C NMR (CDCl3+CD3OD): 

167.9, 132.0, 131.6, 131.4, 130.8, 130.2, 128.5, 128.3, 128.1, 127.4, 126.0, 125.4 ; ESI-

HRMS m/z (C21H15BF2N2O4): calculated 431.0985 (M+Na), found 431.0990 (M+Na). 

(4-(di(1H-pyrrol-2-yl)methyl)phenyl)(morpholino)methanone 

(31b): To a solution of 4-(morpholine-4-carbonyl)benzaldehyde (220 

mg, 1.0 mmol) in DCM (10 ml), pyrrole (2.2 mmol) was added. The 

mixture was blown under nitrogen for 10 min. TFA (0.1 mmol) was 

added. The reaction mixture was stirred at room temperature for 4 h. The reaction was 

quenched with 0.2 N NaOH aqueous solution (20 ml) and extracted with EtOAc. The 

organic layer was washed with brine and dried over sodium sulfate. The filtrate was 

concentrated and purified by silica gel chromatography (DCM:EtOAc=8:1) to give 31b 

(108 mg, 32%). 1H NMR (300 MHz, CDCl3): 8.06 (bs, 2H), 7.35 (d, J=8.4, 2H), 7.26 (d, 

J=8.4, 2H), 6.70 (dd, J=1.8, 4.2, 2H), 6.16 (dd, J=3.0, 6.0, 2H), 5.90 (bs, 2H), 5.49 (s, 

1H), 3.71 (bt, 8H). 13C NMR (CDCl3): 170.2, 144.20, 131.70, 128.53, 127.63, 127.41, 

117.42, 108.44, 107.32, 66.83, 43.78, 38.66. ESI-MS m/z (C20H21N3O2): calculated 

336.2 (M+H), found 336.1 (M+H). 

5,5'-((4-(morpholine-4-carbonyl)phenyl)methylene)bis(1H- 

pyrrole-2-carbaldehyde) (32b): To DMF (1 mL) was added 

POCl3 (150 μL, 1.60 mmol) slowly, and the mixture was stirred 

for 5 min at 0 oC. This Vilsmeier reagent (750 mL, 1.10 mmol) 

was added slowly to a solution of 31b (150 mg, 0.45 mmol) in 

DMF (1.50 mL), and stirred for 1.5 h at 0 oC. The saturated sodium acetate solution (5 

mL) was added and stirred at r.t. overnight. After the reaction completion monitored by 
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TLC, the reaction mixture was diluted with EtOAc, and washed with water and brine. 

The organic layer was dried over sodium sulfate. The filtrate was concentrated and 

purified by silica gel column chromatography (DCM:EtOAc=5:1) to give the greenish 

yellow solid (142 g, 81%). 1H NMR (500 MHz, CDCl3): 10.67 (bs, 2H), 9.32 (s, 2H), 

7.34 (d, J=8.4, 2H), 7.24 (d, J=8.4, 2H), 6.90 (dd, J=1.8, 4.2, 2H), 6.09 (dd, J=2.4, 3.2, 

2H), 5.60 (s, 1H), 3.72 (bt, 8H). 13C NMR (CDCl3): 176.1, 163.6, 146.4, 137.7, 131.5, 

130.6, 129.2, 128.4, 128.3, 123.1, 111.9, 67.5, 54.1, 39.2. ESI-MS m/z (C22H21N3O4): 

calculated 391.2 (M+H), found 391.1 (M+H). 

Bodipy diacrylate 34b: To a solution of 32b (40 mg, 0.10 

mmol) in DCM (1 mL) was added methoxycarbonylmethylene 

triphenylphosphorane (100 mg, 0.30 mmol) at 0 oC. After 

stirring at RT overnight, the reaction mixture was diluted with 

DCM and washed with brine. The organic layer was dried over 

sodium sulfate. The filtrate was concentrated and purified by 

silica gel column chromatography (DCM:EtOAc=8:1) to give a greenish yellow solid 

(36 mg, 71%); This yellow solid (36 mg, 0.07 mmol) was dissolved in DCM (7 mL). To 

this solution was added DDQ (24 mg, 0.11 mmol). After stirring for 15 min at r.t., the 

reaction mixture was cooled to 0 oC. To this solution, DIEA (295 uL, 1.75 mmol) and 

BF3OEt2 (225 µL, 1.75 mmol) were added and slowly warmed up to r.t. while stirring 

for 2 h. The reaction mixture was diluted with DCM, and washed with saturated 

NaHCO3 and brine. The organic layer was dried over sodium sulfate. The filtrate was 

concentrated and purified by silica gel chromatography (DCM:EtOAc=10:1) to give 

34b (24 mg, 62%). 1H NMR (500 MHz, CDCl3): 8.14 (d,  =15.9, 2H), 7.55 (m, 4H), 

6.91 (d, J=4.5, 2H), 6.87 (d, J=4.5, 2H), 6.60 (d, J=15.9, 2H), 3.87 (s, 6H), 3.84 (bt, 4H), 
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3.80 (bt, 4H). 13C NMR (CDCl3): 169.1, 166.1, 133.0, 132.2, 132.0, 132.0, 131.6, 130.7, 

128.6, 128.4, 127.4, 125.5, 66.9, 58.2, 29.7. ESI-HRMS m/z (C28H26BF2N3O6): 

calculated 572.1780 (M+Na), found 572.1786 (M+Na). 

5.4.2. Peptides (P1-P6) Preparation 

Peptides were synthesized on Rink Amide MBHA resin with standard Fmoc-

protected amino acids/HBTU coupling steps followed by piperidine deprotection 

[Coupling step conditions: Resin (100 mg, 0.48 mmol/g), 0.5 M HBTU in DMF (0.6 

mL), 0.5 M Fmoc-Amino acid in NMP (0.6 mL) and 2.0 M DIEA in NMP (0.42 mL) 

for 3.5 h; Deprotection condition: 20% piperidine in NMP (1.5 mL) for 1 h]. The final 

N-terminal was capped by acetylation (0.3 M of Ac2O and 0.27 M of HOBt in DCM for 

2h). Peptides were deprotected and cleaved from the resin with the reagent K solution 

(TFA: H2O: thioanisole: phenol: EDT=10 mL: 0.5 mL: 0.5 mL: 0.75 g: 0.25 mL). Each 

cleavage solution was drained to chilled ether (20 mL) to precipitate the peptide. 

Peptide solutions were kept at -20 oC overnight for the maximal precipitation. The 

precipitates were filtered and dried. Peptides were purified by reverse phase HPLC on 

C18 preparative column with a linear gradient from 0~50% acetonitrile in H2O 

containing 0.1% TFA. The collected peptide solutions were lyophilized and the peptide 

solids were kept at -20 oC. Purity was determined by LC-MS with condition of two 

different columns C18 4.6×50 mm and C18 4.6×150 mm with different eluents 

composition at the wavelength of 214 nm. 

5.4.3 Calculation Process to Determine the Reaction Rate Constant between Dye 

and Peptide or Glutathione. 

As peptide is large excess, the concentration of peptide was considered to be 

constant during the reaction with dye. The reaction between dye and peptide was 

considered as pseudo-first order reaction. 
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r = k[dye][peptide] = k’[dye] = -d[dye] / dt 

d[dye] / [dye] = -k’dt 

ln[dye] = -k’t + ln[dye]0 

ln([dye]0 / [dye]) = k’t 

As [dye]0 / [dye] = [product]∞ /([product]∞- [product]) = F∞ / (F∞-Ft), so if we plot 

ln(F∞ / (F∞-Ft)) versus time t, the slope value is k’, which is the pseudo-first order 

reaction rate constant. 

[dye]: dye concentration as time t 

[dye]0: dye initial concentration 

[product]: product concentration at time t 

[product]∞: product final concentration 

F∞: fluorescent intensity of product (530 nm) at saturation. 

Ft: fluorescent intensity of product (530 nm) at time t 

As GSH is large excess, the concentration of GSH was considered to be constant 

during the reaction with 34a. The reaction between dye and GSH was considered as 

pseudo-first order reaction.  

r = k[dye][GSH] = k’[dye] = -d[dye] / dt 

d[dye] / [dye] = -k’dt 

ln[dye] = -k’t + ln[dye]0  

ln([dye]0 / [dye]) = k’t 

As [dye]0 / [dye] = F0 / Ft, so if we plot ln(F0 / Ft) versus time t, the slope value is k’, 

which is the pseudo-first order reaction rate constant. 

[dye]: dye concentration as time t 

[dye]0: dye initial concentration 

F0: initial fluorescent intensity of dye (600 nm). 
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Ft: fluorescent intensity of dye (600 nm) at time t 

5.4.4 Construction of the Expression Vectors 

pc-RC·myc: An oligonucleotide (RC·myc) encoding the RC tag (P1 peptide, 

written in green) together with the Myc-tag (blue) was synthesized (GGGGCTAGCCC 

ACCATGGAAGCTGCCGCACGTGAAGCGAGATGTCGTGAGCGCTGCGCGAGA

GAAGCTTGAACAAAAACTCATCTCAGAAGAGGATCTGGGATCCCC, 

restriction enzyme sites inserted for cloning are underlined). Nucleotides marked in 

green encode the RC tag and in blue encode the Myc tag. Myc tag was inserted to be 

used as the epitope in the western blotting for the confirmation of recombinant protein 

expression. Using the “RC·myc” as the template, PCR was performed with two short 

primers (GGGGCTAGCCCACCATGGAA+GGGGGATCCCAGATCCTCTTC). The 

resulting PCR product was digested with NheI/BamHI and subcloned into the 

NheI/BamHI sites of pcDNA3.1(+) (Invitrogen). This clone was named as pc-RC·myc 

and was used for further subclonings. 

pc-RC·myc·Cherry: We amplified the open reading frame (ORF) of a red 

fluorescent protein (mCherry) using the primers (GCTGGATCCATGGTGAGCAAGG 

GCGAGGAGGACAACATG+GGGCTCGAGTCACTTGTACAGCTCGTCCATGCC

GCCGGTGGA) using the pc-mCherry (Clontech) as the template and inserted into the 

BamHI/XhoI sites of pc-RC·myc. The resulting plasmid (pc-RC·myc·Cherry) expresses 

the monomeric Cherry that is tagged with the P1 peptide and the Myc-tag. 

RC tag mutant clones (m1, m2, m3): Vectors express mCherry fused to three 

mutant tags were prepared by sitedirected mutagenesis PCR. Oligonucleotide sets 

encoding arginine in the place of cysteine are designed as below. 

m1_S : GCACGTGAAGCGAGAGCTCGTGAGCGCTGCGCG 

m1_AS: CGCGCAGCGCTCACGAGCTCTCGCTTCACGTGC 
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m2_S : AGATGTCGTGAGCGCGCCGCGAGAGCTAAG 

m2_AS: CTTAGCTCTCGCGGCGCGCTCACGACATCT 

m3_S : AGAGCTCGTGAGCGCGCCGCGAGAGCTAAG 

m3_AS: CTTAGCTCTCGCGGCGCGCTCACGAGCTCT 

25 ng of pc-RC·myc·Cherry was used as the template for mutations and the PCR-

reactions were performed with pfu DNA polymerase with a cycling profile of 95 ºC 30 

sec, (95 ºC 30 sec, 55 ºC 60 sec, 68 ºC 10 min)×16 cycles. Reaction product was 

digested with DpnI for 1 h and transformed to E. coli strain DH5. Acquired mutant 

clones were confirmed by nucleotide sequencing and designated as pc-

(m1)RC·myc·Cherry, pc-(m2)RC·myc·Cherry, pc-(m3)RC·myc·Cherry, respectively. 

pc-RC2·myc·Cherry: Oligonucleotides encoding the RC tag with the Myc tag but 

without Kozak or initiating methionine codon (ATG) was synthesized (RC2·myc:CAA 

GCTTGAAGCTGCCGCACGTGAAGCGAGATGTCGTGAGCGCTGCGCGAGAGC

TGAATTCGCCGATATCGAACAAAAACTCATCTCAGAAGAGGATCTGGGATC

CC). Using the “RC2·myc” as the PCR template, the “RC2·myc” was amplified with 

primers (CCCAAGCTTGAAGCTGCCGCA+GGGGGATCCCAGATCCTCTTC). The 

resulting PCR product was digested with HindIII/BamHI and inserted into the 

HindIII/BamHI sites of the pcpc-RC·myc·Cherry. The acquired clone has a dimerized 

RC tag and a myc epitope fused to the Cherry. The amino acid sequence encoded by the 

resulting RC2 is shown below. 

RC: MEAAAREARCRERCARA 

RC2: MEAAAREARCRERCARAKLEAAAREARCRERCARA 

pc-RC2·(NLS)·myc·Cherry: An oligonucleotide encoding triple copies of nuclear 

localization signal of the SV40 Large T antigen was synthesized as below. The 

oligonucleotides were hybridized in the Tris-buffer (100 mM NaCl, 50 mM Tris-HCl, 
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10 mM MgCl2, 1 mM DTT, pH 7.9) by boiling and slowly cooling-down to the room 

temperature and digested with EcoRI/EcoRV. The digested double stranded DNA 

fragment was inserted into the EcoRI/EcoRV sites of pc-RC2·myc·Cherry and the 

resulting clone was named as pc-RC2·(NLS)·myc·Cherry. 

3×NLS(S): CCCGAATTCGATCCCAAAAAGAAACGCAAGGTGGATGATCCC 

AAAAAGAAACGCAAGGTGGATGATCCCAAAAAGAAACGCAAGGTGGATAT

CGGG 

3×NLS(AS):CCCGATATCCACCTTGCGTTTCTTTTTGGGATCATCCACCTTG 

CGTTTCTTTTTGGGATCATCCACCTTGCGTTTCTTTTTGGGATCGAATTCGGG 

pc-RC2·myc·H2B: ORF of human histone H2B was PCR amplified using the cDNA 

of normal human fibroblasts. Primers used the amplification were (GGGGGATCCATG 

CCTGAACCGGCAAAATC+GGGCTCGAGTCACTTGGAGCTGGTGTACT) and 

the resulting PCR product was digested with BamHI/XhoI and subcloned into the 

BamHI/XhoI sites of pc-RC2·myc·Cherry to exchange the ORF of Cherry with that of 

H2B. 

pc-RC2·myc·H2B·Cherry: The ORF of human H2B was PCR-amplified with 

primers (GGGGAATTCATGCCTGAACCGGGCAAAATC+GGGGATATCCTTGGA 

GCTGGTGTACTTGG) and the PCR product was digested with EcoRI/EcoRV. 

Digested DNA was inserted into the EcoRI/EcoRV sites of the pc-RC2·(NLS)·myc· 

Cherry to exchange the NLS with the H2B ORF. 

pc-RC·Cherry: ORF of Cherry was amplified with primers (GGGAAGCTTATGGT 

GAGCAAGGGCGAGGAG+GGGCTCGAGCTTGTACAGCTCGTCCATGCCGCCG

GTGGA) and the resulting PCR product was digested with HindIII/XhoI and introduced 

into the HindIII/XhoI sites of pc-RC·myc·Cherry to generate the pc-RC·Cherry. 
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pc-6xHis·myc·RC·Cherry: Primers GGGCTAGCCACCATGCATCATCATCATC 

ACCACGAATTCGAACAAAAACTCACTCAGAA+CCCAAGCTTAGCTCTCGCG

CAGCGCTCACG)was used to amplify the expression cassette of “6xHis tag and RC 

tag”. The produced PCR product was digested with Nhe1/HindIII and inserted into the 

NheI/HindIII site of pc-RC·myc·Cherry. 

pc-Cherry·myc·RC: Primers (GGGAATTCGAACAAAAACTCATCTCAGAAGA 

GGATCTGGATATCGAAGCTGCCGCACGTGAA+CCCCTCGAGTCAAGCTCTCG

CGCAGCGCTC)were used to amplify the “myc tag-RC tag” cassette and resulting 

PCR product was digested with EcoR1/Xho1 and cloned into the pcDNA3.1(+), 

resulting the pc-myc·RC. ORF of Cherry was PCR amplified with (GGGGCTAGCCA 

CCATGGTGAGCAAGGGCGAGGAG+GGGGAATTCCTTGTACAGCTCTCCATG

CCGCCGGTGGA) and the acquired PCR product was cloned into the NheI/EcoRI sites 

of the pc-myc·RC resulting the pc-Cherry·myc·RC. 

5.4.5 Cell Culture and Transfection 

HEK293 cells, an immortalized line of primary human embryonic kidney cells, were 

purchased from Invitrogen and maintained in the DMEM (10% Fetal Bovine Serum 

(FBS), 1% antibiotics-antimycotics reagent). Materials used in the cell culture were 

purchased from Invitrogen. For transient transfection, cells were plated at the density of 

2×105 cells/well in 12 well plate and 500 ng of plasmid DNA purified by Midi-prep kit 

(Qiagen) were transfected with Lipofectamine 2000 (Invitrogen). After 2 days 

incubation, the transfected cells were subjected to the following experiment such as live 

cell staining or (SDSPAGE/western blotting). 

5.4.6 SDS-PAGE, Gel-Scanning, Western Blotting, and Silver Staining  

Total protein was extracted by using CelLyticMTM cell lysis solution (Sigma). 

Generally 10 μg of the protein/well was loaded in SDS-PAGE gel for gel-scanning. 
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NuPAGE Novex Bis-Tris Gels (Invitrogen) were used for PAGE and the gel was 

scanned using the Typhoon 9410 Gel Scanner (GE Healthcare). Gel was excited at 

stained 488nm and was scanned through 526SP emission filter. After gel scanning, 

proteins were transferred onto the PVDF membrane and subjected to the following 

western blotting. Western blotting data were generated by fluorescence scanning of the 

membranes stained with antibodies. A mouse monoclonal α-myc (Santa Cruz, sc-40) 

antibody and a goat α-mouse IgG tagged with Cy5 (Invitrogen, A10524) were used. 

Membranes were excited at 633nm and scanned through 670BP emission filter. When 

the gel was subjected to the silver staining, gel was fixed in fixing solution (50% EtOH, 

10% glacial acetic acid) for 10 min. Gel was rinsed with water for 1hr and then, 

sensitized in 0.02% Na2S2O3 for 2 min. After a brief rinsing with water, gel was stained 

in 0.1% AgNO3 for 30 min. After rinsing with water, gel was developed with 2% 

Na2CO3, 37% (v/v) formaldehyde and the reaction was stopped with 1% CH3COOH. 

5.4.7 Compound Staining and Imaging in the Live Cells 

Compounds were reconstituted in DMSO as the 1 mM solution, and stored in -20 ºC. 

Immediately before staining, medium in the wells were drained and the compound 

diluted in the pre-warmed growth medium was added directly onto the cells. After 

incubation (30 min, 37 ºC), cells were washed with growth medium and further 

incubated in the cell culture incubator for 1 hour. Medium was changed once again, and 

cells were subjected to the live cell imaging. Bright field images and fluorescence 

images were acquired by a fluorescent microscope ECLIPSE Ti-E (Nikon Instrument 

Inc.). Emission filters used are DAPI filter (Ex 340-380 nm, Em 435-485 nm) for 

Hoechst, FITC filter (Ex 465-495 nm, Em 515-555 nm) for 34b, and Cy5 filter (Ex 590-

650 nm, Em 663-738 nm) for Cherry. 
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5.4.8 Quantum Yield Measurements 

Quantum yields were calculated by measuring the integrated emission area of the 

fluorescent Spectrum and comparing that value to the area measured for 1, 3, 5, 7-

tetramethyl-8-phenyl BODIPY in DMSO. The following equation (1) was used to 

calculate quantum yield, where F represents the area of fluorescent emission, n is 

reflective index of the solvent, and Abs is absorbance at excitation wavelength selected 

for standards and samples.  

 

 

5.4.9 LC-MS chromatogram of P1, P2, P3, P6 peptides 

P1: AcEAAAREARCRERCARA-NH2 
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P2: AcEAAAREAAARERCARA-NH2 
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 DAD1 B, Sig=214,16 Ref=off (LSC\LSC 2011-01-10 14-28-40\1AA-0101.D)

 

*MSD1 SPC, time=3.398 of D:\DATA\SNAPSHOT.D    ES-API, Pos, Scan

Max: 4.73139e+006

 786.2 603.0

 871.8 597.8

 581.8

  

*MSD2 SPC, time=3.483 of D:\DATA\SNAPSHOT.D    ES-API, Neg, Scan

Max: 68008

 1741.4

 1740.4

 

ESI-MS: calculated 1741.9, found 871.8(M+2H)2+, 581.8(M+3H)3+, 1740.4(M-H)- 

P3: AcEAAAREAAAREAAARA-NH2 
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 DAD1 B, Sig=214,16 Ref=off (LSC\LSC 2011-01-10 14-28-40\1AB-0201.D)

 

*MSD1 SPC, time=3.681 of D:\DATA\SNAPSHOT.D    ES-API, Pos, Scan

Max: 8.3881e+006

 550.2  843.6  1626.2
 1084.4

 562.8

 542.8  813.4

  

*MSD2 SPC, time=3.653 of D:\DATA\SNAPSHOT.D    ES-API, Neg, Scan

Max: 195712

 965.8

 1624.4

 811.6

 

ESI-MS: calculated 1624.8, found 1626.2 (M+H)+, 813.4 (M+2H)2+, 542.8 (M+H)3+, 

1624.4 (M-H)- 
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P6: AcGGGGGGGGCGGGCGGG-NH2 
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 DAD1 B, Sig=214,16 Ref=off (LSC\LSC 2011-01-10 14-28-40\1AC-0301.D)

 

*MSD1 SPC, time=1.975 of D:\DATA\SNAPSHOT.D    ES-API, Pos, Scan

Max: 3.68538e+006

 622.0  950.2 504.2  1067.2

 1066.2

 1065.2

 1064.2

 532.8

  

*MSD2 SPC, time=1.982 of D:\DATA\SNAPSHOT.D    ES-API, Neg, Scan

Max: 229056

 948.2  1065.2 1177

 530.8

1176 1064.2

 1063.2

 1062.2

 

ESI-MS: calculated 1063.4, found 1064.2 (M+H)+, 532.8 (M+2H)2+, 1062.3 (M-H)- 

LC condition of left: (5% ACN to 100% ACN gradient condition with water, 

contained 0.1% TFA, run time: 10min, column: C18, 4.6×50 mm, 5 µm, monitored at 

214 nm channel); LC condition of right: (15% ACN in water isocratic, contained 0.1% 

TFA, run time: 20min, column: C18, 4.6×15 mm, 5 µm, monitored at 214 nm channel). 

5.4.10 Spectral properties of 34a and 34b 

34a

34b
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(upper) Absorbance and emission spectra of 34a in 50 mM HEPES buffer (pH 7.4). 

Fluorescence spectra were obtained with an excitation at 550 nm (extinction coefficient 

=66888, quantum yield=0.29). (lower) Absorbance and emission spectra of 34b in 50 

mM HEPES buffer (pH 7.4). Fluorescence spectra were obtained with an excitation at 

520 nm (extinction coefficient=55989, quantum yield=0.21). 

5.4.11 Conjugation of 34a to Peptide P1 

 

MALDI-TOF spectra of a model peptide P1 after incubation with 34a: 34a (10 μM) 

and P1 (20 μM) were mixed in 50 mM HEPES (pH 7.0), then mixture was analyzed 

after desalting by C18 ziptip. Mass indicates the presence of the conjugation product of 

P1-34a (2268.1, M+H), with another mass peak at 2228.9 (M-38). 
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P1 (Rt=3.3 min) LC spectra at 214 nm channel. 
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P1+34a (Rt=4.3 min) and 34a (Rt=6.4 min) LC spectra at 500 nm channel. 
*MSD1 SPC, time=4.456 of D:\DATA\SNAPSHOT.D    ES-API, Pos, Scan

Max: 194880

 1013.4  1085.7 1282.8 1166.3 1129.1  1239.4 1048.8
 1100.3  1148.6  1240.2 1012.8

 1032.2

 1134.9

  

*MSD1 SPC, time=4.467 of D:\DATA\SNAPSHOT.D    ES-API, Pos, Scan

Max: 4.36634e+006

 480.5
 391.2

 373.0

 620.5
 756.8

 465.9

 568.0

 454.6

 

ESI-MS found of P1+34a conjugation: 1134.9 [M+2H]2+, 756.8 [M+3H]3+, 568.0 

[M+4H]4+, 454.6 [M+5H]5+. 
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Chapter 6 

6.1 Conclusion 

Combinatorial approach makes up the shortage of conventional designed approach 

in sensor development in circumventing the limited knowledge of recognition motifs. 

Diversity-oriented fluorescent libraries approach, through generating large numbers of 

fluorescent compounds in a combinatorial way, has become a powerful method to 

discover novel fluorescent sensors. Among different fluorophores, BODIPY shows 

unique properties, such as the overall lipophilicity and electrically neutral character. We 

first designed a novel diversity-oriented BODIPY library by introducing an active ester 

motif to the core structure (BDD). BDD library was synthesized through Knoevenagel 

condensation reaction with aldehyde building blocks to render 160 compounds in high 

purity. Utilizing the relatively active property of ester motif of BDD compounds, they 

were further reacted with N1,N1-dimethylethane-1,2-diamine and 2,2-

dimethoxyethanamine to give 80-member BDL and 47-member BDA libraries, 

respectively. All these three libraries cover very broad spectral properties, due to the 

structural diversity of aldehyde building blocks. 

 The diversity-oriented BODIPY libraries form a good chemical tool box for sensor 

development, and hence was applied to in vitro high-throughput screening. A collection 

of 52 broad range of biomolecules first served as analytes. Two selective and highly 

responsive sensors for fructose and glutathione were discovered from the screening, and 

were named as Fructose Orange and Glutathione Green, respectively. Fructose 

Orange showed up tp 24-fold fluorescence increase upon recognition of fructose and an 

outstanding selectivity among 24 different saccharides. NMR studies confirmed the 

formation of five different binding interactions between the sensor and fructose. 

Furthermore, Fructose Orange was applied to the quantification of fructose in soft 
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drinks, being the most selective fluorescent sensor for fructose reported to date. 

Glutahione Green showed ratiometric fluorescence response and outstanding 

selectivity over other analytes. Further experiment showed that GSH Green is capable 

of GSH quantification in cell extract, as well as responding to the GSH concentration 

change in cellular environment.      

In order to explore useful sensors for illicit date-rape drug-GBL, the in vitro high-

throughput screening was also performed with GBL as analyte, identifying Green Date 

(derivatized from BDD library) as a GBL sensor. Green Date showed high 

fluorescence response to GBL in various pH conditions and up to 10% EtOH. 

Furthermore, Green Date is able to detect the existence of GBL in different kinds of 

drinks samples after a simple extraction method. This discovery will help to secure the 

safety of drinks in public place and solve the DFSA problems. 

Neural stem cells (NSCs) generate the nervous system, promote neuronal plasticity 

and repair damage throughout life by self-renewing and differentiating into neurons and 

glia, and hence have great potential for therapeutic use in patients suffering from 

various neurological diseases  and also as a research tool for drug development. In order 

to develop fluorescent small molecules probe for NSC rather than antibodies, we 

performed cell-based high throughput screening of in-house generated diversity oriented 

fluorescence library in stem cells at different developmental stages. One compound 

from BDD library (CDr3) was identified as a neural stem cell specific probe. This novel 

compound specifically detects living neural stem cells of both human and mouse origin. 

Furthermore, we identified its binding target by proteomic analysis as fatty acid binding 

protein 7 (FABP7) which is highly expressed in neural stem cells and localized in the 

cytoplasm. CDr3 will be a valuable chemical tool in the study and applications of neural 

stem cells. 
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DOFL compounds not only can be used to develop novel fluorescent sensors, but 

also could be more informatics and aim at specific applications. We constructed a 

Taming fluorescent library with very diverse physical properties and different colours 

based on BODIPY structures. After applying to cell-based screening system, cellular 

localization and retention of compounds were successfully correlated to the structures of 

substitutions of BODIPY dyes. Using the information, cell-permeability and 

background issues were successfully overcome in developing a protein tag system based 

on BODIPY diacrylate structure. This novel peptide-based protein labelling system by 

utilizing a fluorescent BODIPY compound preferably changed the spectral property 

when it encounters a designed peptide containing two pairs of Arg-Cys. Dimeric peptide 

tag RC2 and its partner compound would benefit the current protein labelling methods, 

especially the optical imaging of specific target protein inside living cells as 

demonstrated. This system would provide a promising tool for optical imaging of 

specific protein due to the following advantageous properties: the small size of tag (less 

than 5 kDa, composed of 34 amino acids encoded by RC2), independence from other 

enzymes or cofactors, applicability to intracellular proteins through the cell-

permeability of probe, optical confirmation of proper conjugation from the apparent 

spectral change, stable binding be analyzed in SDS-PAGE, and negligible toxicity to the 

users when using the BODIPY-based reagent.  

6.2 Future Prospective 

Development of Tag Systems for Protein Visualization 

The information derived from cell-based screening of Taming libraries would have 

wide application in “Taming” the BODIPY dyes in probe development to overcome the 

limitations and fulfill the prospects. In the next generation of tag system for protein 

based on BODIPY structures, we aim to utilize the “easy to wash out and left no 
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background” properties of some Taming compounds. First, a peptide library will be 

constructed from yeast express. Taming derivatives with relatively reactive motif and 

“easy to wash out” property will be optimized and synthesized. The selected fluorescent 

compounds will then be incubated and washed out from the yeast library to select out 

the peptide sequence with FACS sorting. After FACS, the bright yeast population 

would be the one expressing peptide sequence which can selectively bind to Taming 

derivatives, since the compound should be easy to wash out. The selected peptide 

sequence will then be fused with a protein of interest and expressed in cells following 

by the incubation of compounds and washed out to validate the selectively labeling of 

protein by this tag system.  
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