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Summary

In this thesis, we are interested in the three issues on facial images. There

are facial structure from motion, facial image inpainting and face hallu-

cination. Currently, commercial 3D modeling systems can only generate

realistic 3D structures by using highly calibrated and expensive camera sys-

tems. The cost and limitation of the system make it very hard for general

applications. Hence, reconstructing 3D structure using low-cost cameras

has become a popular research topic recently. Moreover, facial images are

commonly seen in our photo album. 3D facial structure is one of the most

important and interesting applications in practice. We are not only in-

terested at the recovery of the facial structure, but also the facial image

enhancement. Since the input is captured from low cost and low resolution

camera, the resolution and quality of the input usually are poor. Handling

problems arising from noise and low resolution is a challenging aspect of

this thesis. Besides that, missing data and occlusion problems are also

considered. Reconstructing 3D objects with good visual quality involves

two aspects, namely, �nding its geometric structure accurately, and its high

resolution texture map.

Manually retouching the corrupted images is time-consuming and te-

dious. Therefore, the objective of image inpainting is to automatically re-
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store the missing information in the corrupted images. Face hallucination

which aims to estimate a high resolution facial image from low resolution

facial image(s), is a well-known inverse problem of long standing interest

in face analysis and image processing. Even though today camera sensors

are able to acquire high resolution images, faces in the images may be

still in low resolution if the images are captured from a long distance. We

are interested in generating a visually-pleasing and aesthetically attractive

facial image from a corrupted low resolution image with a set of high reso-

lution training images. Moreover, the unique structure of faces makes the

problems challenging.

A non-rigid structure from motion algorithm is introduced. Our work

improves the existing non-rigid factorization method by using a batch algo-

rithm and applying a set of non-linear shape constraints. Our experiments

have shown that the performance of the proposed algorithm is better than

the prior work, qualitatively and quantitatively.

An image inpainting technique on facial images is introduced. In prior

work, image inpainting was mainly applied on generic images with small

corrupted regions. Generally, the missing region is �lled by propagating

the boundary information inward. Hence, the results are usually blur and

unstructured. Our work handles the unique structure of face and retouching

large portion of missing region. We propose a facial image inpainting with

a learned guidance vector �eld (GVF). Assuming that the facial images are

aligned, the GVF can be learned from the training data set based on a

principal component analysis model. The GVF is formulated by a Poisson

equation and solved by the Gauss-Seidel solver. Thus, our inpainting results

are seamless and the structure of face is preserved.
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High resolution images with high quality textural details are always de-

sirable as inputs for many computer vision and pattern recognition prob-

lems, e.g. in algorithms for structure from motion, object recognition,

motion analysis, image understanding etc. A low resolution image can be

interpreted as an image which has been obtained by blurring a high res-

olution image and then downsampling it, causing loss of high frequency

details. Thus, the objective of image superresolution aims to recover the

missing high frequency details of the low resolution image. In the thesis,

two image superresolution methods on facial images are proposed. One is

applied on generic face and the other one is on speci�c face.

In image superresolution on generic face, the superresolution image we

seek must satisfy a generic face model constraint - the high frequency infor-

mation added must be consistent with the model - and the data constraint

which ensures that the superresolution image is consistent with the given

image. An iterative projection onto convex sets (POCS) algorithm is pro-

posed to optimize these two constraints.

In image superresolution on speci�c face, we assume that the facial im-

ages belong to the same person but vary in pose and expression. An image

retrieval system for pose and expression is proposed. Given a low resolu-

tion image as query image, a set of high resolution images with similar pose

and expression are retrieved based on the pose, shape and texture. The

selected high resolution images are used as the candidates for the image

superresolution. Next, a Markov random �eld (MRF) model based on pro-

posed color and edge constraints are used to �nd the optimum solution of

the super-resolution image. High texture details of superresolution images

which are four to eight times larger than the original low resolution images

viii



are generated by the proposed approach.

In summary, we contribute an extended work on facial structure from

motion by using a batch algorithm. We also proposed a learning-based

image inpainting approach to restore the corrupted facial image based on a

PCA model. We also overcome the face hallucination problem on low reso-

lution facial images by a set of high resolution images. Our approaches can

be used to handle low resolution images captured under dim environment.

We also resolve the blurred, noise problem in our face hallucination ap-

proaches. In addition, our image retrieval system overcomes the pose and

expression issue in facial images and signi�cantly improves the performance

of our face hallucination approach.
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Chapter 1

Introduction

1.1 Background

In digital photography era, most people have a lot of personal photos which

recorded their memorable events in their personal computer. Since we are

not professional photographers, some of them are not desirable. These

low quality images usually are taken by low resolution cameras such as

webcams, inexpensive pocket cameras, mobile phones etc. In certain cir-

cumstance, the images are taken by cameras from a long distance. The

subjects in these images usually are unclear due to their low resolution and

poor quality of the lenses and camera sensors. Therefore, simple image in-

terpolation approaches which enlarge the size of the images are not able to

resolve the problem here. The textural details need to be enhanced but we

only have a single image with unique pose and expression. However, there

are a lot of other high quality images in our photo album or we can easily

capture high resolution personal photos later. Although the expressions

and poses in these images are not exactly same as the low quality image

to be enhanced, these high resolution image still can be used as examples
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to improve the low quality images. This problem is also known as face

hallucination, and it is discussed in Section 1.1.1.

In addition, the photos may be corrupted during data transmission and

lossy image compression. The face may be occluded by other subject.

Under these circumstances, the low resolution photos consist missing in-

formation which make the problem even more challenging. To overcome

the problem, the corrupted regions need to be inpainted �rst. The image

inpainting is investigated in Section 1.1.3.

Moreover, face is a non-rigid 3D object. Expression and pose variants

make the shape and appearance of the face in the 2D image very di�erent.

Therefore, facial image registration is required to align the input image and

traning images especially when the expression and pose are di�erent.

1.1.1 Image Superresolution

High resolution images with high quality textural details are always desir-

able as inputs for many computer vision and pattern recognition problems,

e.g. in algorithms for structure from motion, object recognition, motion

analysis, image understanding etc. However, due to physical limitations

and cost considerations in many applications, this type of high quality

input data is not available for downstream processing. Thus, image en-

hancement methods like superresolution play a useful role to improve the

performance of high-level computer vision problems such as recognizing

people in a wideangle scene by CCTV, as for example in Figure 1.1.

Image superresolution which aims to estimate a high resolution im-

age from low resolution image(s), is a well-known inverse problem of long

standing interest in image processing. It is similar to image restoration

2



Figure 1.1: Frames captured from CCTV. Faces in the low quality image
are not recognizable.

which aims to recover a good quality image from degraded images that

are blurred and noisy. However, the objective of image superresolution

technique is not only to recover good quality enhanced images, but also to

increase size of the images. Thus, image superresolution is very challenging

image processing problem.

During the image acquisition process, various blurring e�ects, noises

and a large sampling interval contribute to loss of image sharpness. Let h

denote as a m dimension of a desired high resolution image vector, l denote

as a n dimension of a low resolution image vector where n << m. The l

can be represented as

l = Ah + n (1.1)

where A is a n×m image acquisition process matrix involved optical blur-

ring, motion blurring, image warping, down-sampling process, etc and n is

a noise vector. Image superresolution techniques seek to solve this inverse

problem and recover the missing high frequency or detail information in

h. Merely interpolating the given image to a large size will only produce a

blurry image because A involved various blurring e�ects. The problem of
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simultaneously estimating the missing high frequencies details, denoising

and deblurring is very di�cult in image processing because many unknown

and highly correlated variables are to be resolved. In addition, we usually

only have a single image of the subject with the same pose and expression.

The information of an image is very limited. Some prior knowledge and ad-

ditional constraints are required to resolve the problem. Thus, single image

superresolution is more challenging than multiple image superresolution.

1.1.2 Facial Image Superresolution

As mentioned in Section 1.1, photos are sometimes captured by a camera

from the long distance or the wide �elds of view. Even though the camera

is a high resolution camera, the faces in the photos can be low resolution

and blurred if the person is located far away from the camera. Thus, super-

resolved at the face region is essential in practice.

Facial image superresolution is also known as face hallucination. It

was �rst appeared in [5] by Baker et. al. It is a special case of image

superresolution. The objective of face hallucination is synthesizing a high

resolution face image from the low resolution image with a large collection of

high resolution face images. The output image requires to preserve the basic

structure of the low resolution image and its low frequency components.

In addition, high frequency components are learned from the collection of

high resolution images in database.

However, face hallucination is still open to debate on its application of

face recognition because the synthesized high resolution face image relies

on the training images. Only its low frequency signals are from the input

source. The high frequency information synthesized from high resolution
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image may a�ect the recognition accuracy. Nevertheless, it still can be

applied on image visualization, image enhancement, image restoration, im-

age synthesis etc. which do not require the accuracy of the face image. In

image synthesis, generating visually pleasing image is more important than

its accuracy.

1.1.3 Image Inpainting

Image inpainting was initially used to restore deteriorated artworks. Man-

ually inpainting the artworks by retouchers is a time-consuming work. Re-

touchers need to fully understand the history background of the artworks

and then carefully �ll the missing or damaged parts of the artworks.

Today, these damaged artworks or corrupted old photos captured by

�lm cameras can be scanned into digital format. We can apply digital

image inpainting techniques on their digital version �rst. It not only saves

retouchers' time, but also avoid mistakes to further damaged the original

artworks. Thus, digital image inpainting is a non-trivial and challenging

problem in image restoration.

Besides inpainting damaged artworks and old photos, digital image

inpainting can also apply on corrupted images due to data transmission

errors, removing objects, watermarks, subtitles and logos in images etc.

Moveover, image superresolution can be considered as a special case of

image inpainting because image superresolution is recovering pixel values

between two sampling pixels in the low resolution image. Both of image

super-resolution and image inpainting are trying to restore back the lost

information in the input image.
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1.1.4 Facial Structure Recovery from Motion

The structure of targets such as the face and human body may change with

time. It is very di�cult to recognize these non-rigid targets easily from 2D

images because the targets' pose and structure are changing simultaneously.

Thus, recovery of non-rigid structure has become a new focus of research

in structure from motion over the past decade. In this case, we need to

extract the target's pose as well as its deformation information from the

image sequence. Moreover, the representation of the non-rigid structure is

also another challenging problem. The facial structure recovery can give

us a better understanding on the pose and expression of the face.

1.2 Motivation

The current state-of-the-art of structure recovery can only generate realis-

tic 3D structures by using highly calibrated and expensive camera systems.

These systems require not only high resolution cameras and special light-

ing condition, but also sophisticated calibration procedures. Moreover, the

computational cost of these systems is also very high. Sometimes the target

has to remain stationary for a few seconds during the acquisition process.

The target may even need to have special markers or special phosphores-

cent powder on its surface to obtain more accurate results. Thus, current

systems are still impractical for general purpose use, especially in outdoor

environments. Hence, generating realistic 3D appearance of targets from

low cost and low resolution video cameras could be of great practical im-

portance. There is a high demand for simple 3D modeling systems which

use low cost cameras in the billion-dollar gaming, entertainment and social
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networking market because such systems can give users a realistic visual

experience while they are playing games, watching movies or communi-

cating with other users. Since each video frame can only provide limited

information of the target's texture and 3D information, the challenge is to

fuse information from each frame to generate a high quality 3D structure of

the target. Both texture enhancement and recovery of the 3D geometry are

ill-posed problems, as there may exist multiple solutions that satisfy the

constraints from 2D images. Thus, additional prior knowledge is required

to overcome these problems.

Low resolution images, in practice, are always low quality images. Var-

ious blur e�ects such as motion blur, optical blur etc are involved in these

low resolution images because they are captured by low-cost cameras which

do not have good lens to handle the focusing issue and hand shaking prob-

lem. In addition, the low-end camera always gives poor color tone because

it uses single image sensor with demosaicing algorithm [31] to interpolate

the full true RGB color image. Sensor noise and other random noisy signals

appeared during image acquisition also make the images poor to visualize.

Hence, from corrupted, blurred, noisy and low resolution image to high

resolution image, it is an undeniably challenging topic in image processing.

In this thesis, we are interested in using learning based approach to achieve

image inpainting and image superresolution on low resolution facial images.

The facial images are very common and useful images but they consist of

unique structures eg. eye, mouth and nose.

For facial image inpainting, we believe that the missing information in

images with unique structure can be learned from the uncorrupted dataset.

Inpainting facial image is a very challenging work because we are very
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sensitive to the changes on the face. In addition, the learned information

also needs to be integrated with the boundary of the corrupted region, so

that the result is seamless.

For face hallucination, the high resolution image is the ultimate target

we are interested in. The blur kernels and noise are not important to re-

cover them exactly. Thus, learning based face hallucination approach which

directly estimates the high resolution image from the given low resolution

input is a more practical solution on handling the single image superresolu-

tion problem. In addition, using all the images in the database for training

not only increase the computational time, but also give poor results. If

the training images which are similar to the input image are retrieved from

a large collection of data �rst, then the learning process will be improved

signi�cantly.

1.3 Applications

Generating realistic high visual quality 3D appearance of objects from im-

age sequences has many possible applications in multimedia, gaming, enter-

tainment, object recognition and even archaeology. In the following, some

applications are brie�y described.

1.3.1 Gaming

Massive Multiplayer Online Role Playing Games (MMORPG) are now very

popular. In MMORPG, players will create avatars to represent them, and

personalize them. Our work can let players create an avatar which looks

very much like them. The players may just need to stand in front of

8



a webcam to let the system create avatars which have the attributes of

the players. This will de�nitely make the game more fun and interesting.

Similar ideas can also apply to other o�ine games such as The Sims, a

strategic life simulation computer game. Players can simulate the desired

lifestyle with an avatar which looks like them.

1.3.2 Multimedia, Entertainment, Computer Graph-

ics

The 3D reconstruction and animation of 3D structure can allow people in

the audience to play roles in movies. Here people just need to stand at

a particular location before entering the cinema theater. The system will

reconstruct the 3D structure of these people and make them available for

roles in the movie. Mitsui and Toshiba [1] showed a similar idea in Expo

2005, Aichi, Japan.

In movie production, there are many special e�ects which use 3D recon-

struction and computer vision. Reconstructing the 3D structure from some

portraits such as Leonardo da Vinci's Mona Lisa, showing a 3D newscaster

on newspaper, animating some desired behavior using animal models are

some applications.

1.3.3 Social Networking

Nowadays, social networking is an important communication channel with

friends in our daily life. It brings people all over the world closer together.

Teleconference, for example, can save our time and travel costs by meetings

or presentations over the internet. However, the video teleconference is still

very limited due to data transmission and quality of inexpensive webcam.
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Low quality videos make the facial pose and expression of the users unclear.

These body languages are important information to help users to give better

presentation during teleconference. Generating high visual video from low

cost webcam is always desired especially the facial videos.

1.3.4 Face Recognition

3D face reconstruction and 3D face morphing can improve the performance

of face recognition systems. Numerous papers have shown that 3D face

recognition algorithms perform much better than 2D. It is mainly because

the same face can look very di�erent from di�erent view points. Hence, it

is di�cult to properly represent a face by its 2D views. In [60], Matthews

et al. showed that a 2D face model can generate model instances that do

not exist in the real 3D world. Using the 2D model for face recognition

also requires more parameters than the 3D model, which can lead to longer

computational time to estimate them. Moreover, parameter estimation for

face �tting is a non-linear optimization problem and it is di�cult to obtain

the optimal solution for a large number of parameters. Thus, using more

parameters implies that the robustness and accuracy of the system would

be poorer.

3D face morphing is also greatly useful in face recognition, as it may be

required to deform the input image to a particular expression to �t the face

data in the database. This will increase the accuracy of face recognition

compared to direct �tting without deformation.

In short, the 3D face reconstruction and the 3D face morphing can

handle intra-class variations due to pose and face expression changes, re-

spectively.
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1.4 Thesis Contributions

The objective of this thesis is the development of robust methods for facial

structure from motion, face hallucination and facial image inpainting from

corrupted low resolution images. The key contributions of the thesis are

summarized in the following sections.

1.4.1 Facial Structure from Motion

Based on Jing Xiao et al.'s [97] closed-form solution for non-rigid SFM

with rotation and basis constraints , we proposed an extended work which

uses non-linear shape constraints to improve the existing closed-form solu-

tion under noisy conditions. The proposed batch algorithm partitions the

measurement matrix and recovers a 3D structure from each partition sepa-

rately. Then a non-linear optimization algorithm that seeks to preserve the

shape by maintaining the length and angle between pairs of feature points

is applied to estimate a re�ned 3D structure using all the solutions from

the partitions. Qualitative and quantitative evaluations showed that the

new algorithm gives robust and accurate results compared to the original

factorization method for both rigid and non-rigid structures.

1.4.2 Facial Image Inpainting

In this part of thesis, we seek to inpaint face images containing missing

regions using training images and the undamaged region of the given image.

For generating a realistic and visually pleasing face from a corrupted facial

image, we need to satisfy two criteria. The �rst is to retain the structure of

the face faithfully. Faces have unique structure with regions such as eyes,
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nose and mouth, and if these unique structures are missing, there is no way

to �nd a similar patch directly from the undamaged region of the image.

Thus, we need to rely on the help of training images to learn the structure,

and use the learned model to provide the structure of the missing region.

The second criterion is the smoothness between the recovered region and

its surroundings. To have a realistic and visually pleasing e�ect, smooth-

ness or continuity of the textural details is as important as the structure of

the image. Thus, we seek for the solution to satisfy a set of Poisson equa-

tions with Dirichlet boundary conditions. These two criteria can jointly

retain the structure of the image as well as maintain continuity between

the inpainted region and its surroundings.

Our approach is based on the iterative projection onto convex sets

(POCS) algorithm. POCS can iteratively reconstruct a signal by incor-

porating multiple convex constraints. It was initially proposed by Papoulis

[67] and Gerchberg [36] for signal extrapolation and is also known as the

Gerchberg-Papoulis algorithm. It has since been applied in various image

restoration and image enhancement problems. Stark and Oskoui [82] ap-

plied POCS with data constraints and prior knowledge for superresolution

of images. Tekalp et al. [66] also applied POCS to restore out-of-focus

blurry images. Bandwidth constraints, spatial support contraints, consis-

tency, positivity, etc. are typical examples of the convex constraints used

in POCS approaches.

1.4.3 Image Superresolution on Generic Face

The following two contributions of the thesis are the study of facial image

superresolution. Here, we use image superresolution on generic face of
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single facial modality. In the next section, the use of image superresolution

on the same person with multiple facial modality (pose and expression) is

brie�y discussed.

A set of high resolution face images with same pose and expression is

used for estimating the missing details in the given low resolution input

image with the same modality. The estimated high frequency details are

added back to the input image to increase its sharpness. However, if the

given low resolution image is not a member of the training set, as will be

the case in practice, it must be ensured that the superresolution image

produced after the details are added is consistent with the given image.

In other words, we seek to estimate a super-resolved image which is con-

strained to have missing details consistent with the training data set, and

is also consistent with the given input image.

Since the pose and expression of the persons are same here, the face im-

ages can be simply aligned by a�ne image alignment. Inspired by the work

in image inpainting, we proposed another POCS method for extrapolating

the missing high frequency components in the input low resolution image.

Since the input image may not be in the training set, an image consistency

constraint is imposed in the POCS method to preserve the low frequency

information in the input image.

1.4.4 Image Retrieval of Facial Expression and Pose

Estimation

Since face is a non-rigid structure, changes in facial expression and pose

will signi�cantly a�ect the �nal results if they are not handled appropri-

ately. Compared to the texture and the ellipse shape of open eyes and
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the texture and the shape of eyelids in closed eye images, the texture and

structure features between these two sets of images suppose to be di�erent.

However, the state-of-the-art features like Gabor features, Scale-invariant

feature transform (SIFT) [56] features etc., are not easy to be extracted

from low quality images. Here, we need to retrieve high resolution images

with same facial expression and pose as the low resolution input image.

Thus, we proposed a fast and robust image retrieval method with com-

bined the structural and textural information of the low resolution input

image. The shape ratios are used to represent the shape feature of the

facial expression. The Pyramid of Histograms of Orientation Gradients

(PHoG) features [12] are used to represent the texture of the expression

on low quality images. PHoG is a SIFT-inspired feature descriptor and

it has been widely used in human detection in surveillance system [37].

Experimentally, PHoG features extracted from low resolution images are

well-performed on similar expression retrieval in high resolution image set.

1.4.5 Image Superresolution on Speci�c Face

Since most people are not professional photographers, some photos are

blur, with poor lighting conditions or low resolution. To enhance these

photo especially the face region which we are most interested in, image

superresolution on speci�c face plays a role here. It is noted that facial

pose and facial expression of these poor quality images vary signi�cantly

but the subject is known. Since the work in the previous section is not able

to handle the large changes in pose and expression, we proposed another

local based data-driven image superresolution approach on this issue.

To enhance the quality of the face region on same person, we can learn
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it from high resolution training images with the same person's face. On this

problem, we assumed that the subject is known and high resolution images

of the same subject with di�erent expressions and poses are provided. A

Markov random �eld (MRF) model based on a proposed color and edge

constraints are used to �nd the optimum solution of the superresolution

image. High textural detail superresolution images which are four to eight

times larger than the original low resolution images are generated by the

proposed approach.

1.5 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 brie�y provides an

overview of the related work in structure recovery, image inpainting and

image superresolution. Some inspired works are discussed. In Chapter 3,

a batch algorithm for facial structure from motion with additional shape

constraints is introduced. In Chapter 4, facial image inpainting technique is

studied. A new approach which combines PDE-based and learning based

approach on image inpainting is proposed. The details of the approach

are discussed in this chapter. Our works on facial image superresolution

are investigated in Chapter 5 and Chapter 6. An approach of the facial

image superresolution on generic face is discussed in Chapter 5. The facial

image superresolution on speci�c face is investigated in Chapter 6. All

experiments and results are showed in Chapter 7. The thesis conclusion

and future work are discussed in Chapter 8.
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Chapter 2

Literature Review

In this chapter, some related work which have made signi�cant contribu-

tions to our research are brie�y discussed. In the �rst session, the prior

work on structure recovery is studied. In the second section, the study

of facial action image retrieval is investigated. We focused work on facial

expression analysis and recognition because there is limited work on facial

image retrieval. In the third session, several di�erent approaches of im-

age inpainting are discussed. In the last section, the prior work on image

super-resolution is discussed.

2.1 Structure Recovery

Obtaining 3D models from an image sequence is a very challenging task

in computer vision because both, the structure of the target and camera

motion are not known. It is an ill-posed problem, which requires additional

constraints and assumptions to overcome the di�culty. Rigid structures,

piecewise continuous surfaces and weak perspective camera model are some

assumptions usually used for structure recovery. Two current state-of-the-
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art structure recovery methods, including Shape From Silhouette (SFS)

[23],[48] and Structure From Motion (SFM) are discussed in the following

subsection. The SFM algorithm include self-calibration [62] and factoriza-

tion algorithm[90],[85].

2.1.1 Shape From Silhouette

Shape From Silhouette (SFS) is a 3D shape reconstruction method from

silhouettes or contour images of targets. It was �rst proposed by Baum-

gart [8] in 1974 to estimate the 3D shapes of a baby doll and a toy horse

from four silhouette images acquired from di�erent viewpoints. The SFS

is mainly used to reconstruct static objects under known camera geome-

try. Basically, the SFS �nds the tightest possible bound of the Visual Hull,

which is the intersection of the visual cones formed by the silhouettes and

camera centers. The more distinct the silhouette images are, the better the

reconstruction of the 3D target shape by the SFS method.

Recently, di�erent extensions of SFS have been proposed. In [23], Che-

ung et al. extend the traditional SFS methods to estimate the 3D shapes of

targets with unknown motion, such as articulated object, by combining all

of the silhouette images of the targets over time. Space Carving, proposed

by Kutulakos et al. [48], is one of the important works on SFS. Space

carving reconstructs the structure by iteratively removing portions of an

initial set of voxels based on N given images until it converges to the Visual

Hull. Although space carving allows the input cameras to be at arbitrary

positions, the cameras' geometry has to be known for reconstruction.

Although silhouette images can be easily obtained by low-level computer

vision methods, the performance of the SFS method would be limited by
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the quality of information from the silhouette images. The reconstruction

results depend on the number of images used and their resolution.

2.1.2 Structure from Motion

Given an image sequence captured by an uncalibrated camera undergoing

unknown motion, recovering the structure of the targets in the image se-

quence and the camera motion is known as Structure From Motion (SFM).

It was �rst introduced by Longuet-Higgins [54] to reconstruct a scene from

two views. SFM assumes that the target correspondences are known but

the camera motion is not known. On the other hand, the SFS assumes

that the correspondences are unknown but the camera motion is known.

In practice, �nding correspondences from the image sequence is much eas-

ier than knowing the camera motion over the frames. In the following,

two important SFM methods, self-calibration and factorization algorithm,

are discussed. The main di�erence between them is that self-calibration

�nds the camera parameters �rst and then reconstructs the structure while

the factorization algorithm solves for the camera motion and the structure

geometry simultaneously.

Self-Calibration

Self-calibration is the process of �nding camera parameters from multiple

uncalibrated images. The camera parameters consist of the intrinsic pa-

rameters and the extrinsic parameters. The intrinsic parameters include

the focal length, the location of the image center, the e�ective pixel size in

the horizontal and vertical direction and radial distortion coe�cient. The

extrinsic parameters are the translation vector and the rotation matrix
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which specify the transformation between the camera and the world ref-

erence coordinate. Mathematically, they provide a transformation to map

the 2D image coordinates to 3D world coordinates. Thus, once the camera

parameters are found, the structure of the target can be recovered from the

images.

Self-calibration was �rst introduced by Faugeras et al. in [62]. They

used absolute conic and Kruppa equations to calibrate the camera. In

projective geometry, the absolute conic is a conic on the plane at in�nity,

and also an invariant under the similarity transformation. Thus, it is an

important tool to recover the intrinsic parameters in many self-calibration

methods. Triggs [92] also introduced the absolute dual quadric, the dual

of the absolute conic to autocalibrate the camera. In [92], a nonlinear

optimization method was applied to recover the absolute quadric and conic

simultaneously.

The strati�ed approach is another well-known self-calibration method

which was proposed by Pollefeys [73]. The strati�ed approach made use of

a new constraint, called the modulus constraint, for self-calibration. The

approach started from projective calibration, followed by a�ne calibration,

next metric calibration and �nally Euclidean calibration. The concept of

strati�ed approach uses the di�erent transformations and their correspond-

ing invariant properties to recover structures. The hierarchy of transfor-

mations is shown in Table 2.1.

In most works, the focus is on calibrating constant, but unknown camera

parameters. Recently, variable camera parameters are receiving attention

from some research groups because the auto-focus and zoom functions in

commercial cameras violate the assumption of constant parameters [42],
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Transformation DOF Matrix Invariant Properties

Projective 15


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44

 cross ratio

A�ne 12


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

0 0 0 1


relative distance
along direction,
parallelism, plane
at in�nity

Metric 7


sr11 sr12 sr13 tx
sr21 sr22 sr23 ty
sr31 sr32 sr33 tz

0 0 0 1

 relative distances,
angles, absolute
conic

Euclidean 6


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

 absolute distance,
volume

Table 2.1: The hierarchy of transformations and their corresponding in-
variant properties

[55].

Factorization Algorithm

The factorization algorithm was �rst introduced by Tomasi and Kanade

[90] to reconstruct 3D rigid structure from a single-view image sequence

captured under arbitrary motion. It has been widely applied to the SFM

problem over the past two decades. Basically, the factorization algorithm

for the SFM decomposes the image feature tracks (measurement matrix )

into motion of the camera and the 3D shape matrix via Singular Value

Decomposition (SVD) and the rank theorem. However, the problem is ill-

posed, as linear transformations of the solutions also yield valid motions

and shape bases. Therefore, it is not possible to recover structure from

the image sequence without introducing some prior knowledge. Additional
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constraints such as orthogonality of the rotation matrix are required to

recover the structure.

Generally, the orthographic camera model is chosen in the factorization

algorithm because it is a good approximation to the perspective camera

model when the reconstructed target is far from the camera and the depth

variation within the target is relatively small. [85] and [72] also proposed

extended factorization algorithms for perspective and paraperspective mod-

els, respectively.

Recently, recovery of di�erent kinds of structures such as multiple lin-

early moving objects [39], articulated objects [98], model-based non-rigid

objects [16], [14], [91], [97] have been reported. Model-based non-rigid ob-

ject recovery is attractive because many interesting non-rigid objects in

nature such as human faces can be represented by models. Reconstructing

3D human faces is very useful in face recognition. Compared to 2D face

images, 3D faces are invariant to pose changes. The pose changes signi�-

cantly a�ect the performance of face recognition algorithms. Therefore, we

can use non-rigid factorization to decompose the pose and deformation of

the non-rigid structure from an image sequence.

To model the deformation of these non-rigid objects, the weighted com-

bination of basis shapes has been used in non-rigid SFM [16]. With this

model, Jing Xiao et al. [97] showed a closed-form solution for the non-rigid

SFM problem with rotation constraints and basis constraints. The solu-

tion is exact only when the data is noise free. The method does not work

satisfactorily with noisy data [15].

Missing data and occlusion are two common problems in structure re-

covery. If the data is corrupted or feature points are occluded in some
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frames, �nding SFM by factorization algorithms becomes problematic be-

cause the correspondences in particular frames are unknown, making the

measurement matrix incomplete [17], [80], [28]. In [90], Tomasi et al. use an

interpolation technique to �ll in the missing data based on the available ma-

trix elements. Filling in missing data using the available data is known as

Imputation in statistics. Later, Jacobs [28] proposed a closed-form solution

to overcome the missing data problem. The idea of Jacobs' algorithm is to

build up an orthogonal subspace from subsets of the matrix's columns. The

algorithm �lls in the missing elements by �nding the closest a�ne space

represented by the corresponding column in the matrix. However, these

two methods work poorly under noise or seriously incomplete data. Shum

et al. [80], Henrik et al. [2] and Buchanan et al [17] proposed alternation

algorithms to solve the factorization problem with missing data. Basically,

in these iterative algorithms, one of the decomposition matrices is taken as

known, and the other is solved for directly.

2.2 Facial Action Image Retrieval

Facial Action Coding System (FACS) was �rst proposed by Ekman and

Friesen [30]. It is mainly used for facial behaviour analysis. In [30], the

facial behaviour is decomposed into 46 action units(AUs) which anatomi-

cally related to facial muscles. It has been widely inspired work on facial

expression detection, tracking and recognition. In this thesis, we are in-

terested at facial expression retrieval. To the best of our knowledge, very

little work has been published on facial expression image retrieval. The ob-

jective of image retrieval is to �nd the similar facial action with the input

image from a large collection of images. However, most of the FACS are
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developed to recognize and analyze the given facial expressions like happy,

sad, surprised, fear, angry etc. In general, FACS involves facial feature

detection, feature tracking and pattern recognition. The related work is

discussed in the following subsection.

2.2.1 Feature-based Tracking Approach

Beside feature detector, feature tracking is another mean to detect and

match salient features over image frames. These salient features should

be independent to image scale, rotation, illumination changes and view-

point changes. Besides that, their neighborhood should provide su�cient

information for matching algorithms.

For matching, since the position, orientation and calibration of the cam-

eras may not be known, the correspondences are usually obtained based

on spatial and frequency domain information in the 2D images. Generally,

the feature matching algorithms compute some measurement error func-

tions or similarity functions. In [101], Zhang et. al. matched the detected

Harris corners using correlation windows. In Schmid et al. [76], a rota-

tionally invariant descriptor of the local image region was used for feature

matching.

To improve the matching algorithm, the motion of the feature points

over the video sequence can be assumed to be piecewise smooth. Thus,

instead of searching the entire image, the correspondence can be found

based on its location in the previous image frame. In the following a few

tracking algorithms are discussed:

• Kanade-Lucas-Tomasi Feature Tracker (KLT) [57], [89] was proposed

by Lucas et al. It assumes that all points in the feature neighborhood
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move with the same velocity. Thus, KLT can track distinct features

with small motion very well. However, if the distinct features are too

close, KLT will give incorrect feature matching.

• Kalman Filter is an e�cient recursive �lter that estimates the state

of a dynamic system from incomplete and noisy measurements. The

incomplete measurements can be due to occlusion or data corrup-

tion. In computer vision, it is used to predict the next position of

the detected feature based on its position in the current frame. In

[96], Greg et al. showed a number of tracking examples by Kalman

�ltering. Bar Shalom et al. [6] attempted a mixture representation

by Extended Kalman Filter (EKF) for tracking nonlinear dynamic

systems.

• Conditional Density Propagation (ConDensation) Algorithm was �rst

proposed by M. Isard et al. [11]. The algorithm uses particle �ltering

to model and predict the next state of the feature. Their work showed

that ConDensation algorithm performs better than the Kalman Filter

and the EKF for non-linear dynamic systems because the ConDen-

sation algorithm makes no assumptions about linearity or Gaussian

probability density function (pdf); it iteratively predicts and mea-

sures the pdf of the feature over the video sequence.

2.2.2 Model-based Tracking Approach

Model-based approach is another method to improve feature detection.

This approach assumes that the set of corresponding points changes under

certain constraints. Active Appearance Models (AAM) [24], [95] is one of
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the classical models which has been widely applied for face and medical

imaging registration [13]. AAMs construct a target model from training

images or 3D range scans. The model usually consists of a linear shape

model and a linear appearance model. Then, the model is �t to the input

images by varying the parameters. Model representation, �tting, compu-

tational cost and occlusion are four challenging problems in model-based

approaches. In [95], an AAM head model is used to track a driver's head

and the eye corners, eye region and head pose are robustly extracted for

gaze estimation. In [59], the AAM is used for lip-reading. Koterba et al.

[47] applied the improved AAM in [61] to �t the faces as well as to calibrate

cameras.

2.2.3 Facial Feature Detection and Representation

Feature detection is an important preprocess in many computer vision ap-

plications because salient features are very useful not only in feature match-

ing and tracking, but also in image registration, image understanding and

object recognition. Usually, corners, vertices, edges [40], [27] and some

salient patterns [56] are commonly chosen as the features because of their

uniqueness in the gradient domains.

Harris corners [40] are the most widely used feature detector. Harris

corner detector selects feature points that have large gradients in all di-

rections at a predetermined scale. However, it would be very sensitive to

changes in image scale. Lideberg [50] and Mikolajczyk et. al. [63] re-

�ned the Harris corner detector to a robust scale-invariant detector with

determinant of the Hessian matrix and the Laplacian. In the later work,

Lowe [56] proposed the Scale Invariant Feature Transform (SIFT) to fast
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and robustly detect the interest points in the image by a Di�erence of

Gaussian (DoG) �lter. In [9], Bay proposed a scale and rotation invariant

interest point detector, named Speeded Up Robust Features (SURF). The

robustness and computation speed are improved compared to the previous

work.

2.3 Image Inpainting

In image processing, image inpainting can be adopted to not only recover

the damaged region, but can also be extended to texture synthesis [29],

disocclusion [86], and super-resolution [70]. In [10], Bertalmio et al. also

applied their inpainting approach for super-resolution. Liu et. al. [53] used

an inpainting technique on an image to remove a fence which was occluding

a target object.

Digital image inpainting techniques can be generally categorized into

three approaches, PDE-based, exemplar-based and learning-based. PDE-

based image inpainting propagates the image Laplacian in isophote direc-

tions from the exterior to �ll in the missing region, and was introduced

by Bertalmio et al .[70]. Later, Bertalmio et al. [10] extended this by ap-

plying the Navier-Stokes equation from �uid dynamics. Chan et al. [20]

also applied a Euler-Lagrange method for image inpainting. Pérez et al.

[69] solved the Poisson partial di�erential equation with Dirichlet boundary

conditions and a given guidance vector �eld (GVF). All these smoothness

constraint based image inpainting approaches work well on small regions

for removing subtitles, watermarking, etc. because these approaches only

rely on the smoothness constraint functions and boundary information. No

other information about the missing region is used. Thus, undesirable blur
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usually occurs when inpainting larger missing regions, as for example in

Fig. 2.1 (c).

Exemplar-based image inpainting [41], [7], [29], [3], techniques are an-

other group of approaches which synthesize the missing region from patches

obtained from the uncorrupted regions of the image or a database. Basi-

cally, they search for optimum patches from the available ones to �ll in

the missing region such that the boundaries between neighboring patches

in the inpainted image are smooth. These techniques are usually used for

removing a bigger foreground object appearing over a background such as

grass, sky, water etc. and inpainting the object-removed region to merge

smoothly with existing background; this did not consider any structural

information. The technique was extended by Criminisi et al. [25] and Sun

et al. [83] to consider the structural information around the missing region

by imposing constraints. This information helps to inpaint the missing re-

gion on more general background scenes. However, a unique structure such

as a human face is di�cult to learn directly from the uncorrupted region

and manually imposing hard constraints is not trivial and perhaps imprac-

tical. An example of applying exemplar-based inpainting of [25], is shown

in Fig. 2.1 (d), from which it can be seen that it is not always easy to

seek similar patches from the available region to �ll in the missing portion.

Therefore, some kind of training process is required for inpainting speci�c

object classes.

Learning-based image inpainting can be considered as a more advanced

type of exemplar-based image inpainting. It does not directly �nd the best

patch from the dataset to �ll in the missing region. Rather, it learns the

structure from the uncorrupted region and a training data set to synthesize
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(a) (b)

(c) (d)

Figure 2.1: (a) Original image, (b) corrupted image, (c) inpainted image by
solving Navier-Stokes equation [20], (d) inpainted image by exemplar-based
inpainting algorithm [25].

a new patch for the missing region. The new patch may not be exactly the

same as in the training data set. In [49], Levin et. al. estimated the missing

region by using the image statistics of the training images. Roth and Black

[74] used Markov random �eld (MRF) to learn the missing region from

small image patches. Turaga and Chen [93] used a mixture of eigenspaces

to recover corrupted video frames.

Since information is lost, it is not possible in general to recover it ex-

actly. Thus, image inpainting is generally more concerned with recovering

a realistic, visually pleasing reconstruction instead of exactly �lling in the

missing region. This is the main di�erence from other image restoration

problems such as noise reduction which seek to recover the original infor-
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mation as faithfully as possible from the noisy data.

2.4 Image Superresolution

Generally, image superresolution (SR) techniques can be categorized into

two approaches, reconstruction-based SR and learning-based SR. Reconstruction-

based SR approaches seek to recover a high-resolution image from multiple

low resolution images, and reverse the e�ects of downsampling and blurring

due to motion and optical lenses. The techniques in [45], [58] which align

the low-resolution input images and then apply non-uniform interpolation

onto a high resolution grid are examples of the reconstruction-based SR

approaches. The di�culty of these approaches is registration using the low

resolution images. Regularization methods using prior knowledge such as

edge information [65] are also commonly used in reconstruction-based SR.

Tsai and Huang [75] �rst introduced SR image reconstruction. The idea

of SR image reconstruction is to estimate a high resolution image from a

set of low resolution images. In other words, SR seeks to recover and

compensate for motion blur, camera blur e�ect, under-sampling and other

distortions, by using multiple low resolution images. The block diagram

of the image formation model and SR image reconstruction is shown in

Figure 2.2. [68], [31] Obviously, the SR image reconstruction is also an

ill-posed problem. Some prior knowledge or assumptions are required for

overcoming the problem. Some approaches are brie�y discussed here.
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Figure 2.2: Block diagram of image formation model from the real scene to
low resolution images(Left) and block diagram of super-resolution image
reconstruction from the multiple low resolution images (Right)
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2.4.1 Nonlinear Interpolation Approach

For interpolation approach, motion e�ect and distortion e�ect that were

present during image formation are recovered or compensated indepen-

dently. See Figure 2.2. Hence, the interpolation is the most intuitive ap-

proach for SR image reconstruction. Generally, the interpolation approach

�ts given sampled data with a continuous function under some smoothness

assumptions to recover from the downsampling e�ect. Before applying the

interpolation approach, the other e�ects are compensated. First, the rel-

ative motion among the set of low resolution images is estimated. Then,

the low resolution images are registered based on their relative motion.

Finally, an interpolation algorithm is applied to obtain a high resolution

image. If the images are noisy, post-processing algorithms such as Wiener

�ltering are required to be applied on the interpolated HR image to re-

move the noise. The objective of the interpolation algorithm is to �ll up

missing samples in the high resolution image based on their neighborhood

pixels. Linear, bilinear and cubic spline interpolators are the standard lin-

ear algorithms available in commercial image processing software. These

algorithms are simple and fast but they cannot accurately estimate the

high-frequency details and produce artifacts in the high resolution image.

Thus, some researchers [94], [88] introduced non-linear interpolation algo-

rithms to interpolate the missing data in the high resolution image. In

[94], Stefan et al. �rst classify neighborhood pixels into three categories,

constant (smooth regions), oriented (edges or directional patterns) and ir-

regular (category between constant and oriented). Then, they performed

adaptive interpolation based on the quadratic Volterra �lter [87] and the

classi�ed neighborhood pixels. The advantages of this adaptive interpola-
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tion algorithm are that the important details such as edges are preserved

in the high resolution image and it can reduce artifacts due to aliasing or

ringing.

These nonlinear interpolation approaches are not able to handle the

distortions in the low resolution images. Its performance is limited on the

simple distortion characteristics over all the low resolution images because

the motion estimation, interpolation and noise reduction are applied inde-

pendently [68]. Thus, the errors are potentially accumulated from motion

estimation to noise reduction.

2.4.2 Frequency Domain Approach

This approach is based on the shifting property of the Fourier transform and

the aliasing relationship between the continuous Fourier transform (CFT)

and discrete Fourier transforms (DFT) of the undersampled frames to re-

construct the HR image from the low resolution images. In [75], it is

assumed that the low resolution images are noise-free. Then, reconstruc-

tion of the HR image from the low resolution images is to determine the

relationship between CFT and DFT which is an inverse (matrix) problem.

Later, Kim et al. [81] extended this approach to blurred and noisy images

by using a weighted recursive least squares formulation. The advantages

of the frequency domain approach is that its well developed and it is con-

venient for parallel hardware implementation. However, it can only handle

images with global translational motion and a simple noise model [68].
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2.4.3 Regularization Approach

The SR image reconstruction can be written in matrix form as:

Ah = l (2.1)

where h is the vectorized HR image values, l is the vectorized low res-

olution image values and A is a matrix that represents the relationship

between h and l. This is an underdetermined set of linear equations which

can be solved by regularization. Typically, there are deterministic as well

as stochastic approaches to solve this ill-posed problem. Constrained least

squares (CLR) and maximum a posteriori (MAP) approaches are the pop-

ular regularization methods used in the deterministic approach and the

stochastic approach, respectively. The MAP approach can use a more �ex-

ible prior model than the CLR approach. The CLR approach assumes that

the prior probability function is Gaussian, and can be considered as a spe-

cial case of the MAP approach. In [79], Shechtman et al. used weighted

smoothing regularization terms that avoided smoothing over spatial and

temporal edges to reconstruct HR video sequence from multiple low reso-

lution video sequences. A corresponding weight matrix for the smoothing

regularization terms is determined by the location, orientation and magni-

tude of space-time edges in the low resolution video sequences. For exam-

ple, the temporal regularization term will give larger weight if the regions

have high details but small motion (or no motion). The corresponding HR

pixel value is obtained by taking the mean of the input low resolution video

sequences with respect to t. Similarly, the spatial regularization term will

give larger weight if the region is textureless or smooth but large motion.
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In this case, the corresponding HR pixel is obtained by taking the mean of

the input low resolution video sequences with respect to x and y. Figure

2.3 illustrates the space-time regularization for SR image reconstruction.

In [31], Sina et al. combined the edge information in the luminance and

chrominance color channels and proposed an intercolor dependency penalty

term for SR image reconstruction.

Regularization approaches simultaneously solve the motion estimation,

interpolation and restoration problem for SR image reconstruction, and this

avoids error accumulation over the process. Besides that, they also provide

a more robust and �exible method to model the noise characteristics and

a priori knowledge for HR images.

2.4.4 Learning Approach

Reconstruction-based SR can be interpreted as an inverse mathematical

model of the image system as shown in Figure 2.2. In practice, a real-

world low resolution image consists of other image formation distortions

such as motion blur, sensor noise etc. These problems have been addressed

independently. Fergus et. al. [32] recovered blur kernels of the image

with a gradient prior. Liu et. al. [52] estimated the noise based on a

piecewise smooth image prior and the camera response functions. However,

the problems become extremely di�cult when all distortions appear in a

single image. It is also impractical to recover all the unknown distortion

e�ects. Instead of recovering all the unknown modules of image system

such as motion, alignment, noise etc., learning-based SR synthesize a high-

resolution image from low resolution image(s) with the help of an exemplar

training set to learn a suitable model.
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Figure 2.3: Shechtman's space-time regularization. The �gure shows four
3x3x3 LR input patches and a 3x3x3 HR output patch. It illustrates that
the pixel value in the HR output frame can be obtained by taking the mean
of the input patches in respect of t (�rst pixel), x (�fth and sixth pixels)
and y (fourth and seventh pixels). The weight matrix in the regularization
equation is used to avoid smoothing (averaging) over spatial and temporal
edges. When the temporal regularization term is given heavier weight, it
implies that the pixel values in respect of t are similar (no motion are taken
in that region or there are no temporal edges in that region). Thus, smooth-
ing in temporal domain will not lose the detail information. Similarly to
the spatial regularization term.
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In [34], [4], [51] and [43], a Markov random �eld (MRF) model is used

to learn the relationship between neighboring patches in low resolution and

high resolution images and the relationship between the training data and

input data. Freeman et. al. [34] proposed to perform a learning based

image superresolution with a reference database with high resolution (HR)

and low resolution (LR) image pairs. They used a MRF to model the

relationship between the HR patches and LR patches and the relationship

between adjacent HR patches. However, the results quality is often limited

by the quality of the training patches. The results usually consists of some

irregularities. Fattal [46] proposed an image superresolution approach to

impose the edge constraint and conserve local intensities with respect to the

LR input image. Sun et. al. [84] proposed a patch similarity measurement

to select data with similar textural details to the input image for their

image superresolution approach.

For learning-based approach, the input can even be just a single low

resolution image. In [38], [33], Glasner et. al. and Freeman et. al. ob-

served that recurrence of patches in a single image can be used for multiple

image superresolution. The learning-based superresolution can be applied

on those patches recurred across di�erent scales of the same image. The

method do not require any training dataset for learning the relationship

between the HR patches and LR patches. The method can use the input

image itself as exmaple patches for image superresolution. Even though it

is a practical advantage, the input images have to be high resolution and

consist of su�cient repeated patches inside the images.

Single facial image SR is also known as face hallucination. It was �rst

proposed by Baker et. al. [5]. It is a learning based facial image SR. Since
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input images are always facial images, facial feature or facial model can

be used as the prior knowledge in the SR. Therefore, the facial structure

can be preserved based on the prior knowledge learned from the training

dataset. In [19], a MAP estimator is used to estimate the high resolution

image that lies near to a PCA face sub-space. Mohammed et. al. [64]

also used a PCA model and a non-parametric model for texture synthesis

to generate a high resolution novel facial images. Jia and Kong [43] build

a tensor model with di�erent person, illumination, pose and expression to

super-resolve the input face and synthesize a new facial expression of the

face. Sun et. al. [84] proposed a patch similarity measurement to select

data with similar textural details to the input image for their image SR

approach.

In [44], Joshi et. al. presented a data-driven based personal photo en-

hancement system. However, it is only applied on frontal images with same

expression. They addressed that the image deblurring and color correction

issue are required in pre-processing stage because images are obtained from

di�erent sources even thought the subject is the same person. In addition,

these global correction methods are not able to enhance the image. A MRF

local model with the prior images is used to enhance the image. In general,

using an appropriate dataset as prior knowledge to model the input image

is the key factor of the MRF model. It signi�cantly improves the quality

of the superresolution image.

Generally, data selection plays an important role in learning-based im-

age superresolution especially face hallucination. Human being are more

sensitive to the changes in the structure and textural details of facial images

than other images such as building, trees, scenery images.
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Chapter 3

Batch Algorithm for Facial

Structure From Motion with

Additional Shape Constraints

3.1 Introduction

Recovering 3D structure from a sequence of images is one of typical in-

terest topics in the computer vision community. In the past two decades,

factorization algorithms have been widely applied to structure from mo-

tion (SFM) problems. It was �rst introduced to reconstruct rigid structure

under arbitrary motion by Tomasi and Kanade [90]. Basically, the fac-

torization algorithm for SFM decomposes the image feature tracks (mea-

surement matrix ) into motion of the camera and the 3D shape matrix via

Singular Value Decomposition (SVD) and rank theorem. However, it is an

ill-conditioned problem. Their linear transformations also yield valid mo-

tions and bases. Therefore, it is not possible to recover structure from the

image sequence without some prior knowledge. Additional constraints such
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as orthogonality of rotation matrix are required to recover the structure.

Generally, orthographic camera model is chosen as the camera model

for the factorization algorithm because it is a good approximation to the

perspective camera model when the reconstructed target is far from the

camera and the depth variation within the target is relatively small. [85]

and [72] also proposed extended factorization algorithms for perspective

and paraperspective models, respectively.

Recently, recovery of di�erent kinds of structures such as multiple lin-

early moving objects [39], articulated objects [98], model based non-rigid

objects [16], [14], [91], [97] are reported. Model based non-rigid object re-

covery is attractive because many interesting non-rigid objects in nature

such as human face can be represented by models. Reconstructing 3D hu-

man faces is very useful in face recognition. Compared to 2D face images,

3D face are invariant to pose changes. The pose changes signi�cantly a�ect

the performance of face recognition algorithms. Therefore, we can use non-

rigid factorization to decompose the pose and deformation of the non-rigid

structure from a image sequence.

To model the deformation of these non-rigid objects, the weighted com-

bination of basis shapes has been applied in non-rigid SFM [16]. Using this

model, Jing Xiao et al. [97] showed a closed-form solution for non-rigid

SFM with rotation constraints and basis constraints. The solution is exact

only when the data is noise free. The method does not work satisfactorily

with noisy data[15].

In this chapter, a batch algorithm and a non-linear shape constraint

optimization are proposed to improve the existing closed-form solution un-

der noisy environments. The batch algorithm partitions the matrix and
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recovers 3D structures from each partition separately. Then we apply the

optimization algorithm to re�ne the closed-form solution of each partition

based on shape constraints.

3.2 Overview of Factorization Algorithm for

Non-rigid SFM

Here the camera model is assumed to be the weak perspective projection

model. We also assumed that the motion is non-degenerate. Let the 2D

image coordinates of P feature points over F frames denoted as W =

{wfp = (ufp, vfp)|f = 1, . . . , F, p = 1, . . . , P}, the 2F × P measurement

matrix :

W =



u11 . . . u1P

v11 . . . v1P

... ufp
...

... vfp
...

uF1 . . . uFP

vF1 . . . vFP


(3.1)

The camera projection matrix is written as:

Rf =

rf1 rf2 rf3

rf4 rf5 rf6

 f ∈ {1, . . . , F} (3.2)

The non-rigid structure is represented by a linear combination of K 3D

shape bases. Let Sf = {sfp = (xp, yp, zp)|p = 1, . . . , P} denote the 3D

non-rigid structure of the f th frame. Let B = {bk = (xkp, ykp, zkp)|k =

1, . . . , K, p = 1, . . . , P} denote as the 3D shape bases. Then, the 3D non-
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rigid structure in each frame can be represented as:

Sf =
K∑
k=1

cfkbk f ∈ {1, . . . , F} (3.3)

where cfk are the weights. Then, W = MB + T where M is a 2F × 3K

motion matrix, B is a 3K × P 3D structure matrix and T is a 2F × 1

translation vector. When K=1, the structure is rigid. The motion matrix

is the product of the weighting coe�cients and the corresponding camera

projection matrices. We can write this as

M =


c11R1 . . . c1KR1

... cfkRf
...

cF1RF . . . cFKRF

 (3.4)

The translation vector can be obtained by computing the mean of the P

feature points. The registered measurement matrix, Ŵ is given by sub-

tracting T from W. The world origin now is placed at the centroid of the

feature points, i.e.

1

P

P∑
p=1

wfp ∀f ∈ {1, . . . , F} (3.5)

When the data is noiseless, the rank of Ŵ is 3K. Applying SVD, Ŵ

can be decomposed into a motion matrix, M̂ and a 3D basis matrix, B̂.

However, it is only up to an arbitrary 3K × 3K invertible transformation,

G. The exact motion matrix, M and 3D basis matrix, B can be written

as:

M = M̂ ·G

B = G−1 · B̂
(3.6)
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The corrective transformation matrix, G is compound of K 3K × 3 ma-

trix, Gk. Then, Qk = GkG
T
k . Computing the Qk requires additional

constraints. We have

M̂QkM̂
T =


c1kR1

...

c1kRF


[
c1kR1 . . . c1kRF

]
(3.7)

Since rotation matrices are orthonormal, we have RiR
T
i = I2×2. In [7],

it was showed that using only these rotation constraints is insu�cient to

uniquely determine Qk. Thus, they also assume the �rst K images to be

basis images. The corresponding weighting coe�cients are then

cij =

 1 when i = j

0 when i 6= j
(3.8)

We can now obtain a closed-form solution for each Qk by optimizing the

rotation and basis constraints. For the details of proof, the reader is referred

to [7].

3.3 Batch Algorithm Using Matrix Partition-

ing

In practice, a large number of frames from video sequence are available, and

using all the frames in SVD algorithm to minimize ‖W−MB‖F may bring

no advantage, �rstly, because there is a large amount of redundancy in the

video frames (this is just increasing the computational cost). and secondly,

minimizing ‖W −MB‖F does not guarantee that the recovered structure
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is optimal. The solutions of the motion matrix M and the bases B also

depend on the constraints we used on solving the corrective transformation

matrix, G.

Hence, we introduce a batch algorithm where a registered measurement

matrix is partitioned into N submatrices. Then, the closed-form solution

method is applied to each separately. This yields N estimates instead of

a single estimate for the structures from a large number of frames. We

hence expect that the proposed algorithm will improve the con�dence in

the result. We then propose to use these in a shape constrained non-linear

optimization technique to �nd the best shape estimate.

Let Ωi ⊂ {1, . . . , F}, i = 1, . . . , N be a subset of frame indexes. Then,

let WΩi
= {(ufp, vfp)|f ∈ Ωi, p = 1, . . . , P} denote a row subspace of

the matrix, where |Ωi| ≥ max(K
2+K
2

, 3K). The union of all subsets Ωi

contains all the elements of {1, . . . , F}. All subsets are disjoint. Hence, the

information in every frame is used for recovery of the structure.

Here, we assume that K is known. The set of K basis images which

give the smallest condition number is the set of the most independent basis

images. Thus, we can selected them as the K basis images.

Since the rank of ŴΩi
has to be at least 3K, the number of frames in

each partition can be determined in such a way that reasonable amount

of the energy of ŴΩi
remains in the �rst 3K eigen-subspaces. Then each

ŴΩi
can be decomposed by the non-rigid factorization algorithm discussed

in Section 2 as:

WΩi
= MΩi

Bi i = 1, . . . , N (3.9)

The recovered structures are exact for noiseless data.

When K = 1 (rigid case), the motion matrix M and B are simpli�ed

43



as rotation matrix R and the rigid structure matrix S. When K ≥ 2

(non-rigid case), we do not only need to recover the bases B, but also

the weighting coe�cients in the motion matrix M for recovering the 3D

structure. M can be obtained as

Mi = WB+
i i = 1, . . . , N (3.10)

where B+
i is the pseudo-inverse of Bi. Since the rotation matrix Rf is

orthonormal, ||Rf || = 1. The corresponding coe�cients for each frame can

be easily extracted out from motion matrix.

Let N sets of the estimated structures of the f th frame denote as {S̃f}i.

Given the 3D shape bases Bi and the corresponding coe�cients, each re-

covered structure can be computed by (5.5). Since each set of the recovered

structures, {S̃f}i is independently estimated from the corresponding WΩi
,

the reference coordinate systems of each two sets of the recovered structures

are di�erent up to a 3 × 3 orthonormal transformation. The orthonormal

transformation can be obtained by applying Procrustes method.

3.4 Non-linear Shape Constraint Optimization

Here, we introduce an objective function which is optimized to enforce non-

linear shape constraints and estimate the best recovered structure Sf from

the set of estimated structures {S̃f}i from each partition. It is given as:

min
N∑

n=1

P∑
i=1

P∑
j=1

‖sfisTfj − s̃fins̃Tfjn‖2 ∀f ∈ {1, . . . , F} (3.11)
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where N is the number of partitions. This optimization minimizes the inner

products of every two feature points. In other words, we are optimizing

the errors in the lengths and the mutual angles of the feature points, so

we named it metric optimization. The metric optimization plays a role in

structure re�nement of the factorization method. A general-purpose quasi-

Newton method [25], [83], [49], [74] is used to �nd the optimum solution of

(5.4).

The initialization is critical for non-linear optimization problems. To

avoid the solution of the metric optimization from being trapped at an

unsuitable local minimum, we choose the least mean square of {S̃f}i as the

initial value for the metric optimization.

3.5 Summary of The Proposed Approach

Our proposed algorithm is summarized as follows:

1. Partition the measurement matrix W into N submatrices.

2. Choose the K basis images from each subset based on their condition

numbers. The set of the K basis images with the smallest condition

number is the set of the most independent basis images.

3. Apply non-rigid factorization algorithm proposed by Jing Xiao et al.

[7]

4. Extract the weight cfk from the motion matrix M.

5. Compute the structures by Eq. (5.5).

6. Optimize the estimated structures obtained in Step 5 by the objective

function in Eq. (5.4).
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Chapter 4

Facial Image Inpainting with a

Learned Guidance Vector Field

In certain circumstance, a big portion of image may be corrupted during

data transmission. This problem needs to be solved �rst before applying

image superresolution. To overcome the issue, we need to retouch the

corrupted image. It is known as image inpainting. The objective of image

inpainting is to recover the missing region. The good news on our work

is that input images are the facial images. Since input is a facial image,

the structure of the face have to be preserved. Moreover, the boundary

at the missing region need to be unnoticeable after retouching. Therefore,

we propose a PCA based approach with a guidance vector �eld to retouch

the missing region of the input image. The details are discussed in the

following sections.
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4.1 PCA Based Image Inpainting

As we mentioned, the input is a facial image and we need to preserve the

structure of the input face. Thus, learning facial structure is required.

We can use Principal Component Analysis (PCA) based image inpainting

which learns the PCA model of the missing region from training images

and then recovers the missing region from the model. In this technique,

a region of interest (ROI), F , is de�ned as shown in Fig. 6.2 to enclose

the missing region, M, within a bounding band of known pixels, B. The

corresponding ROI vectors, F from the training images are used to extract

a PCA model, L, represented by a set of orthonormal bases, Ii and mean,

F̄. An ROI, F , can be reconstructed from L as

F̂ =
∑
i

αiIi + F̄ (4.1)

where αi are the projection weights of F onto the basis vectors. F̂ will

di�er from the original F in two ways: �rstly, M will be �lled in by the

model, which is desirable, and secondly the original uncorrupted pixels in

B will be altered. The latter e�ect is undesirable, and hence it is neccessary

to impose a consistency constraint and replace all the B pixels in F̂ by the

original pixels. This results in an updated F̂, but there is a noticeable

discontinuity between the �lled region, M, and the bounding pixels, B.

In order to obtain a better estimate for M, reconstruction of the ROI,

F̂, from L and imposition of the consistency constraint can be iterated in

a POCS algorithm until convergence. This will improve the estimate of

pixels in M; however, the discontinuity between M and B is ignored in

this process, and hence may be present even though the inpainted region
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looks acceptable. Hence, we propose to learn a GVF from the training

data and use it in a Poisson equation based solution to obtain a smooth

transition at the boundary of the missing region.

Figure 4.1: Illustration of missing region, M, and bounding band, B, in
ROI.

4.2 Guidance Vector Field Image Inpainting

Guidance Vector Field (GVF) image inpainting was originally used for

seamlessly editing image regions by Pérez et. al. [69]. The solution is

obtained by solving a set of Poisson equations with Dirichlet boundary

conditions with a prescribed GVF. Here, the problem can be formulated as

a minimization problem:

minf |M
∑
{i,j}

⋂
M6=0(fi − fj − vij)2

s.t. fi = f ∗i ∀i ∈ ∂M
(4.2)

where fi denotes the value of the pixel at location i,M (as before) denotes

a closed missing region, f |M denotes the values of the pixels in M, vij

denotes the gradient at the mid point of location i and j, ∂M denotes

the boundary subset and f ∗i denotes the given input value of pixel i. The

solution can be obtained through the Gauss-Seidel solver. This inpainted
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solution will have a gradient �eld that is close to the given GVF, with a

seamless transition betweenM and the boundary, ∂M.

However, the structure of the missing region depends highly on the

GVF chosen. In the case of faces which have a unique structure in di�erent

regions, it is not possible to obtain the GVF from an undamaged region.

The GVF can only learned from other sources, and here, we propose a new

approach to iteratively learn the GVF from training images.

4.3 Iterative Learning of Guidance Vector Field

for Image Inpainting

Our proposed method for learning the GVF for image inpainting is a POCS

based iterative image inpainting technique which seeks the solution which

satis�es two di�erent constraints. The �rst is a structure constraint which

extends the concept of the PCA based image inpainting in Section 4.1.

For this, we model the high frequency details of the ROI, F , by a set of

orthonormal bases obtained by PCA. It is de�ned as:

∇F̂ =
∑
i

βihi + H̄ (4.3)

where H̄ denotes the mean of the gradient of the training ROIs, ∇F̂ denotes

the reconstructed gradient of F, hi denote the orthonormal basis vectors

of the high frequency detail space and βi are the projection weights.

The second constraint imposes smoothness through GVF based inpaint-

ing as discussed above. The ∇F̂ obtained from the �rst (PCA model) con-

straint is used as the GVF for inpainting. Then, the solution obtained from
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this second constraint is input to the PCA model and reconstructed. This

process is iteratively repeated until convergence. The solution will satisfy

the facial structure constraints, and also have a seamless boundary between

M and B. The algorithm is summarized in Algorithm 1. The algorithm

complexity is O(m2) where m is |F|.

Input: ROI from n training images, Li, i ∈ {1, . . . , n}, ROI of a
corrupted image, F, withM = {0}.

Output: ROI of an inpainted Image, F̂.

1. Compute the gradients {∇Li} of {Li}.

2. Apply PCA on {∇Li} to obtain {h} and H̄.

3. Compute the gradient ∇F of F.

4. Compute βi =< ∇F,hi >.

5. ∇F̂ =
∑

i βihi + H̄.

6. Obtain the GVF, {vij}, from the corresponding
elements of ∇F̂.

7. Solve Equation 4.2 by Gauss-Seidel solver to obtain F̂.

8. error =
∑

i(F(i)− F̂(i))2.

9. F← F̂.

10. Repeat step 3-10 until error < δ or t > T (maximum iteration).

Algorithm 1: Algorithm for POCS based image inpainting.

4.4 Patch Selection for Learning PCA Model

The face is a non-rigid structure which changes signi�cantly with facial

expression. For example, there is a large di�erence between the happy face

(open mouth with teeth visible) and the neutral face (mouth closed). To

account for this variation, we manually mark points on all the training
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images (this can be easily automated, for example, by using active shape

model), and form a mesh by Delaunay triangulation. Following this, all

training images are warped onto the triangulated mean face mesh. Here,

we assume that only one triangular patch is corrupted and needs to be

inpainted (though it is easy to generalize this). Hence, a corrupted patch

will have three neighboring triangular. Here, instead of using the neigh-

boring patches from all the training images, we propose a patch selection

algorithm to select the appropriate training images from which the patches

will be used for learning.

LetM and {Bi|i = 1, . . . ,m} (here m = 3) denote the missing region of

the input image and its neighboring patches, respectively, and letMj and

Bj
i denote the corresponding patches in the training image j. The subscript

i of Bi denotes the index of the patch. The distance between each Bj
i and

Bi is measured by the L2-norm, d(Bj
i ,Bi). The k (we use k = 5) training

images with the smallest d are selected and the corresponding indexes of

these k training images form an index set, Ii. The indexes of the images

used to form the training set is given by ∩Ii. The algorithm is summarized

in Algorithm 2.
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Input: ROI from n training images, Lj, j ∈ {1, . . . , n}, ROI of a
corrupted image, F

Output: Selected training images, {Ls|{s} ⊂ {j}, |{s}| ≤ k}.
forall the i do

forall the j do

Compute d(Bj
i ,Bi).

end

1. Sort the training data based on d.

2. Ii ← { corresponding indexes of the k nearest training images}

end
Images with index in ∩Ii, {Ls}, are selected as training images for
Algorithm 1.

Algorithm 2: Algorithm for patch selection.
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Chapter 5

Image Superresolution on

Generic Face

5.1 Edge Model

A low resolution image can be interpreted as an image which has been

obtained by blurring a high resolution image and then downsampling it,

causing loss of high frequency details. Simple interpolation techniques can

only increase the size of the image, but the blurred quality of the image

essentially remains unchanged. Hence, it is necessary to estimate and add

back the high frequency details. These missing details in the image can be

de�ned as

E = IHR − ĨLR (5.1)

where IHR denotes the (unknown) original high resolution image, ILR is

the given low resolution, downsampled image and ĨLR is its interpolated

version.
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We propose to estimate E from a training data set and add it to ĨLR

to obtain the superresolved image. Let H be the space of high resolution

training images. We then blur and downsample the images in H, to obtain

low resolution training images in space, L. Ideally, the blurring used should

be the same as that present in ILR, though in practice, a reasonably good

guess will be viable.

Both spaces can be represented by an orthonormal basis obtained by

principal component analysis (PCA):

IHR =
∑
i

αihi + H̄ (5.2)

ILR =
∑
i

βili + L̄ (5.3)

where H̄, L̄ are the means of the images in H and L, respectively. hi and

li are the corresponding orthonormal basis vectors of the two spaces, and

αi, βi are the projection weights to represent images IHR, ILR in the two

spaces.

To represent the high frequency details lost in the H → L transforma-

tion, we construct an interpolated space, L̃, by interpolating {li} to {̃li},

where the latter have the same vector dimension as {hi}. The interpola-

tion causes the vector length to change from ‖li‖ = 1 to ‖̃li‖ = 2, though

{̃li} remain orthogonal. Hence, the {̃li} are re-normalised to unit length

to provide an orthonormal basis for L̃. Assuming negligible aliasing errors

in downsampling and reconstruction errors in interpolation, L̃ is simply a

blurred or lowpassed subset of H, L̃ ⊂ H.

We can now de�ne the space of missing high frequency details, E (or
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simply edge space) as H− L̃, and we can write

E = IHR − ĨLR =
∑
i

αihi −
∑
i

βĩli + H̄− ¯̃L (5.4)

In practice, the mean images of the high resolution and low resolution

spaces will be about the same, so that H̄ − ¯̃L ≈ 0. Also, given an im-

age, IHR, and its low resolution versions, ILR, ĨLR, we can expect that

< hi, l̃j >≈ 1 for i = j and ≈ 0 for i 6= j. Thus, βi ≈ β̃i ≈ αi, where

βi =< ILR, li >, β̃i =< ĨLR, l̃i > and αi =< IHR,hi >. This yields

E =
∑
i

βiei (5.5)

where ei , hi − l̃i is a basis de�ning the edge space (or Laplacian space).

Figure 5.1 illustrates the geometric relationship between hi, l̃i and li in 2D.

Using the above ideas, given an image ILR, it is �rst projected onto

the space L to obtain {βi}, and also interpolated to yield ĨLR. The high

frequency details for this image are estimated by Equation 5.5, and an SR

image is obtained as

ÎHR = E + ĨLR (5.6)

However, we must ensure that ÎHR produced by using high frequency

details from the training set is consistent with the given ILR. We consider

this next.

5.2 Backprojected Error Correction

Directly adding E to the interpolated image, ĨLR, can produce artifacts in

the SR image, especially if ILR is not a member of the training set, and
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Figure 5.1: A 2D geometric illustration of the relationships between the
vectors.

the blur present in ILR is di�erent from the blur used to generate the low

resolution space, L. Eliminating these artifacts needs another constraint

arising from the given image, ILR. Thus the SR image we seek must sat-

isfy the model constraint - the high frequency information added must be

consistent with the model - and the data constraint which ensures that the

SR image is consistent with the given image. These two constraints are

alternately used in the iterative POCS method to obtain the SR image.

In several POCS based methods for extrapolation, some original data is

available to serve as a hard constraint. This is not the case here; all that

is available are the blurred pixels in ILR. Hence, for the data constraint,

we use a correction using backprojected error similar to [22].

Let F denote the blurring and down sampling operation which produces

ILR and letG denote the interpolation operation to produce ĨLR. The error,

ε, is de�ned as:

ε = ILR − F(ÎHR) (5.7)

Obviously, ε = 0 only if F(ÎHR) = ILR. Thus, ε is backprojected by G

to correct ÎHR obtained from the �rst constraint. The new SR image, ÎnewHR

is de�ned as

ÎnewHR = ÎoldHR + G(ε) (5.8)
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In the above error correction rule, we use G(ε) instead of F−1(ε). This

is because the blur operator in F is unknown, and hence the corresponding

deblurring operator cannot be speci�ed in F−1. For simplicity, we ignore

the deblurring and simply approximate F−1 by an interpolation operation,

G.

Backprojecting the error, ε, serves to reduce the artifacts produced by

the �rst constraint while causing the estimate to deviate somewhat from the

learned model. Hence, E is reestimated with ÎnewHR. The POCS algorithm is

iteratively applied with these two constraints until the iterations converge.

5.3 POCS Algorithm

Our POCS based SR method using the learned edge model and backpro-

jected error basically consists of a pre-processing (training) part and an

iterative part. The training computes the principal components to repre-

sent the spaces and the main SR algorithm consists of the iterative part.

They are summarized below.
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Input: a set of n high resolution training images, IiHR,

i ∈ {1, . . . , n}, a low resolution image, ILR

Output: Super-resolved Image, ÎHR

Pre-Processing Part:

1. Simulate blurring and down sampling on high resolution training

images to gener- ate a set of n low resolution training

images, IiLR, i ∈ {1, . . . , n}.

2. Interpolate the IiLR to obtain ĨiLR, ĨiLR = G(IiLR), i ∈ {1, . . . , n}.

3. Apply PCA on {IiHR} and {IiLR} to obtain {hi} and {li},

respectively.

4. Interpolate and normalize li to obtain l̃i.

5. Compute ei = hi − l̃i.
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Iterative Part:

Compute βi =< ILR, li >

Interpolate: ĨLR = G(ILR)

repeat

1. E =
∑

i βiei

2. ÎHR = ĨLR + E

3. εt = ILR − F(ÎHR)

4. ÎHR ← ÎHR + G(εt)

5. βi =< ÎHR,hi >

6. errort ,
∑

i,j ε
2
t (i, j)

until |errort − errort−1| < δ or t > T (maximum iteration).
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Chapter 6

Image Superresolution on

Speci�c Face

In this chapter, we propose an image superresolution approach on speci�c

face. Here, we assume that the training images acquired by di�erent cam-

eras but consists of a same person's face with di�erent expressions and

poses. It is very common in practice. Some examples are shown in Figure

6.1. Nowadays, most people have a lot of personal photos which recorded

their memorable events in their personal computer. Since we are not pro-

fessional photographers, some of them are not desirable. Those low quality

images usually are taken by low resolution cameras such as webcams, in-

expensive pocket cameras, mobile phones etc. In certain circumstance, the

images have to be taken by cameras from a long distance. The subjects

in these images usually are unclear due to their low resolution and poor

quality of the lenses and camera sensors. Therefore, simple image interpo-

lation approaches which enlarge the size of the images are not able to fully

resolve the problem here. The textural details need to be enhanced but

we only have a single image with unique pose and expression. However,
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there are a lot of other high quality images in the album. Although the

expressions and poses in these images are not exactly same as the low qual-

ity image to be enhanced, these high resolution image still can be used as

examples to improve the low quality images. In our approach, we establish

a high resolution training data set of a same person's face with di�erent

expression and poses. An image retrieval based on facial action unit is in-

troduced to retrieval training data with similar pose and expression to the

input image. The details of the image retrieval are discussed in section 6.1.

A learning-based image super-resolution and image enhancement based on

MRF is proposed to reconstruct the superresolution image of the input.

The details are given in section 6.3.

Figure 6.1: Samples of input images captured under di�erent lighting con-
ditions and camera models
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6.1 Intelligent Image Selection

Retrieval appropriated training data plays an important role in image su-

perresolution. Training images which are similar to the input image can

narrow down the search space for estimating the superresolution image of

the input. It also can avoid inappropriate patches been selected to gener-

ate the irregularities in the output of the image superresolution. Moreover,

smaller search space improves the computational time of the optimization

problem in image superresolution. In our proposed approach, there are

three retrieval criteria based on pose, shape and texture. First the pose of

input face is estimated based on its shape ratios. The input is classi�ed into

the corresponding pose category to narrow down the search space. Then,

the shape and texture at each portion of face are estimated separately and

represented as an expression descriptor. The training images with similar

expression and pose are selected based on the descriptor. The �owchart of

the image retrieval system is showed in Figure 6.2.

6.1.1 Pose Discrimination

Pose discrimination is used to �nd the facial image with similar pose. Thus,

it is not required to recover the exact pose angle of the face. The method

primarily relies on a general assumption that faces are a planar object. Each

facial image is marked n facial feature points, pi. An example is showed in

Figure 6.3. These feature points are tracked by the Kanade-Lucas-Tomasi

(KLT) Feature Tracker[89]. The corresponding feature points in the low

resolution input query image are manually marked due to the poor image

quality. Some feature detectors can be applied on certain images if the

images have a good quality and lighting condition.
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Figure 6.2: The �owchart of the high resolution candidate image retrieval
system for image superresolution

As we can see in Figure 6.4, the structures of facial images are very

di�erent when the pose is changed. Even though each images has been

marked with the feature points, the images are very di�cult to be aligned

properly due to the sparsity of the feature points and the signi�cate pose

changes. Therefore, we need to select the high resolution images with

similar pose to the query image as the training image. Since the images

have been tracked by the facial feature points, small changes in pose can

be tolerate. Image aligned and warping can be applied to remove the small

change.

Facial pose changes can be interpreted as the head rotation about three

orthogonal axes. There are roll, pitch and yaw which refer to rotations

about the respective axes as shown in Figure 6.5(a). Since faces can be

aligned by the feature points, the translation can be resolved by aligned

the means of the feature points. p′i = pi − 1
n

∑
n pi. Changes in roll and
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Figure 6.3: A high resolution training image with 38 marked feature point.

Figure 6.4: Some high resolution training images with di�erent poses.

pitch are very limited. The structures of faces change in 2D images due to

roll and pitch are not signi�cate. Thus, we only need to measure the yaw

changes here. To measure the similarity of yaw, a pose ratio is de�ned as

R1 =
l

r
(6.1)

where l is the distance of the center of left eye to the nose tip and r is the

distance of the center of right eye to the nose tip.

6.1.2 Shape Analysis

Since faces are non-rigid objects, the shape structure of faces is varied with

the di�erent facial expressions especially the region at eyes and mouth.

Some facial images with di�erent expressions are showed in Figure 6.6.
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(a) (b) (c)

Figure 6.5: (a) Illustration of 3D body rotations about three orthogonal
axes. These rotations are referred to as yaw, pitch and roll. (b) and (c)
illustrate the ratio R1 are a�ected by pose change. When face turn to right,
the distance from the center of left eye to the nose tip (red line) is longer
than the center of right eye to the nose tip (blue line).

Even though the pose of a face remains unchanged, the structure and tex-

tural details of the face can be changed signi�cantly due to its expression.

To select appropriate candidate images as training data, we need to re-

trieve images with similar expression. In this session, a shape analysis to

retrieve images with similar expression is investigated. The texture analysis

is discussed in Section 6.1.4.

As discussed in Section 6.1.1, the training images have been tracked

n feature points by KLT method. These feature points can be used on

the shape analysis here. Since the changes in eyes and mouth a�ect the

structure of face signi�cantly, the similar expression here is de�ned based

on the shape of the eye and mouth regions.

First, feature points at eye and mouth regions are extracted. The fea-

ture points at left eye region, right eye region and mouth region are denoted

as Pl
i, Pr

i and Pm
i , respectively. Each set of the feature points is used to �t

an ellipse. Fitting the ellipse can be done by principal component analysis

(PCA). The maximum spread is along the major axis of the ellipse, a which
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Figure 6.6: High resolution training images with same pose but di�erent
expressions.

is also known as the �rst principal component direction. The minor axis of

the ellipse, b, is the second principal component direction. It is orthogonal

to the �rst principal component direction. The mean and covariance of the

k feature points at the region of interest, Pi, are de�ned as

P̄i =
1

k

k∑
i=1

Pi (6.2)

Σ =
1

k

k∑
i=1

(Pi − P̄i)(Pi − P̄i)
T (6.3)

The mean, P̄i is the center of the ellipse. The principal components can

be obtained as the eigenvectors of Σ.

The two eigenvalues obtained from PCA are denoted as a and b. The

ratio of them is de�ned as

Dshape =
b

a
(6.4)
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The ratio is scale invariant. Thus, the ratio is not a�ected by image reso-

lution. Some examples are showed in Figure 6.7.

Figure 6.7: Fitting ellipse on the regions of interest (eyes and mouth).

6.1.3 Color Constancy

Since input images and training images are acquired from di�erent cameras

and under di�erent lighting conditions, having a consistent color distribu-

tion of images is important in texture analysis. Figure 6.8 shows the images

obtained under di�erent conditions. The color distributions of these images

are very di�erent. The skin color of the same person varies signi�cantly

according to the lighting conditions and camera sensors.

(a) (b) (c) (d)

Figure 6.8: Images capture from di�erent camera and under di�erent light-
ing conditions. (a) Image captured by HD camera (b) Image captured by
mobile phone camera (c) Image captured by video camera (indoor environ-
ment) (d) Image captured by video camera (outdoor environment)

To overcome this issue, a histogram equalization is applied on the in-

put image �rst. A modi�ed input image with similar color distribution of
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the training images is generated for the texture analysis in the next step.

The idea of the histogram equalization is illustrated in Figure 6.9. In our

approach, the histogram equalization is applied on CIELAB color space.

After input and training images are transformed from RGB to CIELAB

color color space, their histograms in each color space are computed inde-

pendently and normalized. The three normalized histograms from CIELAB

color space can be interpreted as their color probability density functions

(pdf). Assuming these color pdf are independent, the equalization trans-

formation can be done independently.

Figure 6.9: Illustration of the color correction by histogram equalization

The input histogram and the reference histogram are denoted as H(m),

H(n), respectively. Assuming that the resolution of image is N and the

scale is [p0, pk], the equalization transformation T(p) can be derived as

T(p) =
pk − p0

N

∫ p

p0

H(u)du+ p0 (6.5)

It is noted that the equalization transformation is monotonic. Let f(m)

and g(n) denote the equalized input histogram and the equalized reference

histogram, respectively. g−1(n) denote the inverse function of g(n). Since
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f(m) and g(n) are equalized, g−1(f(m)) transforms the input image to an

image with similar histogram of the reference image. To resolve the inverse

transformation above, we build a lookup table to map the histograms to

minimize

|Cm(k)− Cn(T(k))| (6.6)

where Cm is the cumulative histogram of input image, Cn is the cumulative

sum of reference histogram for all intensities k. Moreover, Cn(T(k)) cannot

overshoot Cm(k) by more than half the distance between the histogram

counts at k. The algorithm is summarized in Algorithm 3.
1. Compute the CIELAB color histograms of input image and

normalize them

2. Equalize each histogram independently by Equation 6.5

3. Compute the CIELAB color histograms of reference image and

normalize them

4. Equalize each histogram independently by Equation 6.5

5. For each bin k, �nd Cm(k) and the corresponding bin j in Cn(j)

that minimize Equation .

6. Build the lookup table, lookup[k] = j and convert input image to an

image with the reference histogram

Algorithm 3: Algorithm for color correction.

6.1.4 Texture Analysis

The color distribution of the input image are corrected by the method

mentioned in Section 6.1.4. Hence, the modi�ed input image and training
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images can be assumed to have similar color distribution. In this section,

a facial texture analysis is investigated for our image retrieval system. Our

objective is to represent the input image and training images by its lo-

cal spatial information. The Pyramid Histogram of Orientation Gradients

(PHOG) proposed by Bosch et. al. [12] is used as the texture descriptor.

Histogram of Orientated Gradients (HOG) [26] descriptor consists of

a histogram of edge orientation gradients weighted by its corresponding

magnitude within an image subregion quantized into K bins. First, the

edge image is computed by Canny edge detector [18]. Next, the gradient

magnitude and gradient orientation are computed. The edge image, the

gradient magnitude image and the gradient orientation image are divided

into 2l cells for l level. At each cell, the histogram of orientation gradients

is computed.

PHOG descriptor is concatenated HOG descriptor at each pyramid res-

olution level. The pyramid at level l has 2l image subregions along each

dimension or 4l subregions in total. Each subregion is represented by a

K-vector corresponding to the K bin of the histogram. Thus, the dimen-

sionality of PHOG descriptor is K
∑L

l=0 4l where L is the total number of

the pyramid levels.

Since the texture information at the center is more important than

boundary region, we proposed an Extended PHOG (EPHOG) to emphasize

the representation of the center subregion. At the center of the given

images, another PHOG descriptor is applied on it. EPHOG is concatenated

the original PHOG and the new PHOG descriptor which represents the

center of the image. The idea of EPHOG is illustrated in Figure 6.10.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

(k) (l) (m) (n)

Figure 6.10: (a) A color image, (b) Canny edge of image (a), (c) Gra-
dient magnitude of image (a), (d) Gradient angle of image (a). (e)the
corresponding bin number of the gradient angle along the edges. (f) the
gradient magnitude along the edges. (g)-(i)are the grids for l = 0 to l = 2
pyramid levels in the conventional PHOG. (j) is the grid for level l = 1 in
the proposed EPHOG. Only the four cells at the center of the images are
computed. (k)-(n) are the corresponding HOG descriptors of (g)-(j).

6.1.5 Similarity Measurement for Image Retrieval Sys-

tem

The image retrieval system aims to �nd a set of high resolution training

images which are similar to input image in pose, shape and textural details.

Firstly, the pose ratio, R1 is used to classify the training images into �ve

classes. The R1 of input image is computed and the corresponding train-

ing images are selected for the shape and texture analysis. To integrate

the similarity of shape in 6.1.2 and texture descriptors in Section 6.1.4, a
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similarity score is de�ned as

P (DI
S, D

I
T |x) = P (DI

S|x)P (DI
T |x) (6.7)

where the shape score is de�ned as

P (DI
S|x) = 1− (Dx

S −DI
S)2

max{x}(Dx
S −DI

S)2
(6.8)

The Dx
S and D

I
S are the shape ratio de�ned in Equation 6.4. The maximum

of (Dx
S −DI

S)2 is used for normalization. The interval of the shape score is

[0, 1]. The texture score is de�ned as

P (DI
T |x) = 1− χ2(Dx

T , D
I
T )

max{x} χ2(Dx
T , D

I
T )

(6.9)

Dx
T and DI

T are the EPHOG descriptor vectors of the training image, x

and input image, I, respectively. The χ2 distance is used to measure the

distance between two EPHOG decriptor vectors. The smaller χ2 distance

implies the more similar between two images. High resolution training im-

ages with high score are selected as the candidates for image superresolution

in Section 6.3.

6.2 Image Alignment

Since the images are captured by di�erent cameras, the images are unlikely

aligned properly. Moreover, face is a non-rigid object. Expression changes

distorts the structure of face signi�cantly and make the alignment more

di�cult. To overcome this issue, we triangulate the feature points by De-

launay Triangulation and apply an a�ne warping on each corresponding
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triangle between high resolution training images and input image. The

image alignment would not only ensure the input image is aligned with the

training image, but also help to narrow down the search space in the image

superresolution approach in the next section.

6.3 MRF Model for Face Hallucination

After the high resolution training images are selected and aligned, we need

to match the patches in input image with the patches in these candidates

subject to the constraint that the overlap region between two adjacent

patches are smooth. Thus, a patch-based nonparametric Markov random

�eld (MRF) model is proposed to minimize the energy function.

E(x|θ) =
∑
s∈V

θ(xs, ps) +
∑

(s,t)∈E

ρst(xs, xt, ps, pt) (6.10)

where set V denote the image patches obtained from the selected training

data, ps at coordinate xs, θs denote the data penalty function and ρst

denote the smoothness function of patch ps and patch pt and s and t denote

the patch indices. To minimize the energy function, E(x|θ), we use the

sequential tree-reweighted message passing algorithm proposed in [46].

The input image is a poor quality low resolution image. It can be blur,

noisy, over- or underexposure image. In order to generating a visually-

pleasing and aesthetically attractive facial image, a data penalty function

based on the gradient and color information is proposed. In general, our

eyes are more sensitive to certain colors than others. Using typical L2-norm

to measure the di�erence between two color patches is not appropriate

because our color perception is non-uniform. In addition, our eyes is also
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more sensitive to the region with large gradient changes such as edges.

Moreover, edges are important components for preserving the structure of

the face. Thus, we imposed a color cost and an edge cost into the penalty

function, θ(xs, ps).

θ(xs, ps) = DI(xs, ps)DG(xs, ps) (6.11)

The smoothness function, ρst is a constraint to ensure that the over-

lapping region of the adjacent patches must be as similar as possible. It is

de�ned as

ρst(xs, xt, ps, pt) = DΩ
I (xs, xt, ps, pt)D

Ω
G(xs, xt, ps, pt) (6.12)

ρst is also imposed a color cost, DΩ
I and an edge cost DΩ

G on the overlapping

region, Ω.

6.3.1 Color Constraint

The color cost function,DI(xs, ps), is de�ned as

DI(xs, ps) = 1− exp (−λ∆ECIE00(I(xs, ps), Iy)) (6.13)

Iy is the patch extracted from the selected training images and I(xs, ps)

is the input patch to be optimized. ECIE00 is an extension of the L2-

norm color di�erence function with �ve additional corrections on lightness,

chroma, hue and chroma-hue interaction to resolve the perceptual unifor-

mity issue de�ned by CIE [78]. The scale of DI is [0, 1]. If two patches are

similar in color, the color penalty is small.

74



Similarly, the color smoothness function, DΩ
I is de�ned as

DΩ
I (xs, ps, xt, pt) = 1− exp (−λ∆ECIE00(I

Ω(xs, ps), I
Ω(xt, pt))) (6.14)

where IΩ(xs, ps) and IΩ(xt, pt) are the overlapping regions of two adjacent

patches.

6.3.2 Edge Constraint

Since we would like to preserve the edge information especially the strong

edge information, an edge cost function is de�ned as

DG =

 1− exp (−λ1‖Gx −Gy‖2), ‖Gx‖ > ε;

1− exp (−λ2‖Gx −Gy‖2), ‖Gx‖ ≤ ε;
(6.15)

where Gx and Gy are the gradient magnitude in input image Ix and training

image, Iy, respectively. It is noted that λ1 � λ2 to preserve the strong edge.

In addition, small ‖Gx‖ is likely noise.

Similarly, the edge smoothness function, DΩ
G is de�ned as

DΩ
G(xs, ps, xt, pt) =

 1− exp (−λ′1‖Gxs −Gxt‖2), ‖Gxs‖ > ε,‖Gxt‖ > ε;

1− exp (−λ′2‖Gxs −Gxt‖2), otherwise;

(6.16)
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Chapter 7

Experiments and Results

7.1 Experiments on Structure From Motion

The proposed factorization algorithm with metric optimization is evaluated

quantitatively and qualitatively on synthetic data and facial expression im-

ages, respectively. In the quantitative evaluation, the new approach was

applied on rigid and non-rigid synthetic data sets. In the qualitative evalua-

tion, a set of human facial expressions was used to examine the performance

of the approach. The results are presented below.

7.1.1 Quantitative Evaluation on Synthetic Data

In this section, three approaches were evaluated on synthetic data. The �rst

approach is Jing Xiao et al's [97] non-rigid factorization algorithm. The

second approach applies the batch algorithm to estimate the 3D structures

from each partition. The optimum structure is the mean of the estimated

3D structures which was the smallest mean square distance to the 3D esti-

mated structures. The third approach is the batch algorithm with metric
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optimization. Two experiments were carried out to examine the perfor-

mance of the algorithms.

In the �rst experiment, 5 rigid object datasets with Gaussian white noise

were generated. The strength level of noise is de�ned as ‖noise‖‖W‖ . 5%, 10%

and 20% strength level of noise were added to the datasets. Thus,15 exper-

iments used to evaluate the performance of the algorithm. Each dataset

had 50 3D feature points and 100 frames with random projection matrices.

A 200× 50 measurement matrix W represented the image feature tracks.

In the second experiment, 5 non-rigid object datasets formed by 3 shape

bases were generated. Each dataset had 25 3D feature points and 203 ran-

dom projection matrices. A 406× 25 measurement matrix W represented

the image feature tracks. For the non-rigid dataset, Gaussian white noise

was added at strength levels of 5%, 10% and 20% to evaluate the perfor-

mance of the algorithms.

To make the experiments comparable, all the synthetic datasets were

partitioned into 10 subsets and the batch algorithm of Section 3 was ap-

plied. For the rigid case, each subset contained 50 3D feature points and 10

random projection matrices. For the non-rigid case, each subset contained

25 3D feature points and 13 random projection matrices (3 basis images +

10 non-basis images). They formed 10 smaller measurement matrices Wi.

Then we applied non-rigid factorization algorithm on each Wi to recover

3D structures. Metric optimization was applied on these 3D estimated

structures by quasi-Newton optimization algorithm.

For the rigid case, the relative measurement error, 1
P

∑P
p=1

‖bp−btruth
p ‖

‖btruth
p ‖

was evaluated for examining the performance of our approach. The results

are shown in Figure 7.1. For the non-rigid case, the mean of the relative er-
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rors between the optimal structure and the ground truth, 1
PF

∑P
p=1

∑F
f=1

‖sp−struthp ‖
‖struthp ‖ ,

was used instead. The results are shown in Figure 7.2. From the �gure,

the relative error of the proposed algorithm is signi�cantly lower than fac-

torization algorithm [97]. The variance of the error is also small, showing

that the method is more stable and robust than the original factorization

algorithm.

(a) (b)

(c)

Figure 7.1: Relative errors of the three di�erent appoaches of the factoriza-
tion algorithms on rigid synthetic data under di�erent levels of Gaussian
white noise. (a, b and c).

7.1.2 Qualitative Evaluation on Facial Expressions

Recognizing facial expressions is one of the current challenging problems.

Thus, we are motivated to evaluate our approach with facial expressions. In
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(a) (b)

(c)

Figure 7.2: Relative errors of the three di�erent appoaches of the factoriza-
tion algorithms on non-rigid data under di�erent levels of Gaussian white
noise (a, b and c).

this experiment, a 3D face model with four di�erent expressions captured

from the 3D Facial Expression Database [100] at the State University of

New York was used to examine the qualitative performance of our proposed

approach. The four expressions are happy, neutral, sad and surprise. First,

we manually selected 68 feature points on the 3D models. Then, the 3D

models were rotated about x-axis from −10◦ to +10◦ in 2◦ steps, about

y-axis from −20◦ to +20◦ in 1◦ steps and about z-axis from −10◦ to +10◦

in 2◦ steps. In each step, we generated an image of the 3D model. There-

fore, we have 4961 images for each expression. Some images with di�erent

expressions are shown in Figure 7.3. The ground truth of the 3D feature
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points of each expression is shown in Figure 7.4.

In this experiment, three di�erent levels of Gaussian white noise were

added to W, with strength levels of 0%, 5% and 10%. Then, W was

partitioned into 41 subsets for the batch algorithm and factorization was

used for each subset with metric optimization. The results are shown in

Figure 7.5, Figure 7.6 and Figure 7.7, respectively. The results show that

the proposed algorithm successfully recovered the face expressions over the

video sequence with low level of noise. In the future work, we propose

to handle the structure recovery with texture information, and improve

performance under larger noise.

(a) (b) (c) (d)

Figure 7.3: (a) Happy expression image with rotation about x = −10◦,
y = 20◦ and z = 10◦ (b) Neutral expression image with rotation about
x = 0◦, y = 0◦ and z = 0◦ (c) Sad expression image with rotation about
x = −10◦, y = −20◦ and z = −10◦ (d) Surprise expression image with
rotation about x = −10◦, y = 20◦ and z = 10◦.

(a) (b) (c) (d)

Figure 7.4: (a) Ground truth of 3D happy expression (b) Ground truth of
3D neutral expression (c) Ground truth of 3D sad expression (d) Ground
truth of 3D surprise expression.

80



(a) (b) (c) (d)

Figure 7.5: (a) Reconstructed 3D happy expression (b) Reconstructed 3D
neutral expression (c) Reconstructed 3D sad expression (d) Reconstructed
3D surprise expression under 0% Gaussian white noise.

(a) (b) (c) (d)

Figure 7.6: (a) Reconstructed 3D happy expression (b) Reconstructed 3D
neutral expression (c) Reconstructed 3D sad expression (d) Reconstructed
3D surprise expression under 5% Gaussian white noise.

7.2 Experiments on Image Inpainting

In our image inpaiting experiments, 156 aligned images obtained from the

Yale Face database B [35] and FERET database [71] and 31 images from

an image sequence with di�erent expressions were used. Five experiments

were performed to evaluate our proposed image inpainting approach.

In the �rst experiment, the results when a test subject was included or

excluded from the training set were compared. In the former case, all 15

aligned faces were used for training and a test subject was selected from

one of them. For the latter case, 155 of the 156 aligned faces were used

for training and the remaining image was used for test. The experimental

results are shown in Fig. 7.8. It can be seen that regardless of whether the
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(a) (b) (c) (d)

Figure 7.7: (a) Reconstructed 3D happy expression (b) Reconstructed 3D
neutral expression (c) Reconstructed 3D sad expression (d) Reconstructed
3D surprise expression under 10% Gaussian white noise.

subject is in the training database or not, the inpainting is realistic, though

when the subject is in the training set, the inpainted region is closer to the

original.

In the second experiment, our approach in Algorithm 1 is compared

with image inpainting obtained based on PCA only and only on Poisson

image inpainting. Here, 155 of the 156 aligned images are used for training

and the remaining image is used for test. Since the GVF for Poisson image

inpainting is unknown, we simply assumed the GVF as zeros. The results

are shown in Fig. 7.9. For PCA-based image inpainting, the boundary of

the �lled missing region can be clearly seen although the structure of the

missing region is well synthesized from the face eigenspace. The results

are shown in Fig. 7.10. With the Poisson image inpainting, the inpainted

boundary is seamless compared to the PCA-based image inpainting but it

fails to recover the structure of the missing region because the GVF is not

known. The results produced by our approach not only retain the struc-

ture of the face, but also have a smoother and visually pleasing seamless

boundary.

In the third experiment, we quantitatively evaluate our approach in

Algorithm 1. Our approach is compared with Poisson image inpainting
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(a) (b) (c) (d)

Figure 7.8: Image inpainting when a subject is in the training database or
not: (a) the corrupted images, (b) inpainted images when the subject is
not in the training database, (c) inpainted images when the subject is in
the training database and (d) original images.
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(a) (b) (c) (d)

Figure 7.9: Comparison with other image inpainting approaches: (a) the
corrupted images, (b) Poisson image inpainting, (c) inpainted images by
iterative learning GVF (Algorithm 1) and (d) the original images.
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(a) (b) (c) (d)

Figure 7.10: Comparison with other image inpainting approaches: (a) the
corrupted images, (b) inpainted images by PCA-based approach, (c) in-
painted images by iterative learning GVF (Algorithm 1) and (d) the origi-
nal images.
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Corrupted Region size Ours PCA Poisson [69]
Smooth 21× 11 2.9385 41.7922 4.0238
Smooth 36× 31 2.4181 58.1195 8.3347

Non-smooth and structural 46× 46 6.0953 35.1778 9.9527

Table 7.1: Mean squared error results on our approach, PCA-based in-
painting and Poisson inpainting [69]

and PCA-based inpainting approach. Three sets of 10 corrupted images

are used in this experiment. The corrupted regions of each set of the

images are di�erent. The size and corrupted region are indicated in Table

7.1. The corresponding mean squared errors are also shown in Table 7.1.

From the experiments, the results showed that our approach outperformed

the other two approaches.

In the fourth experiment, 31 images from a video sequence with di�er-

ent expressions were used to evaluate our inpainting method with patches

selected for the PCA model as discussed in Section 4.4. 55 markers were

labeled on the 31 images, and the mean of the 55 markers over the training

images was used to form a face mesh by Delaunay triangulation. All 31

face images were warped onto the triangulated mean face mesh with 55

markers, and this was used to form the training set. Similar to the second

experiment, comparison between a test image included or excluded from

the training set was done. When the test image was included in the train-

ing database, all 31 warped image were available for training, and in the

other case, the test was excluded from the training set. One of the face

images and its corresponding warped face image are shown in Fig. 7.11.

One of the triangular patches was removed from a test image to simu-

late damage. The adjacent patches of the damaged patch, Bi and the cor-

responding patches in the training images, Bj
i were extracted and the patch
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(a) (b)

Figure 7.11: Samples of training images: (a) the original image obtained
from an image sequence, (b) the corresponding warped image.

selection method of Section IV was applied to choose the best patches for

learning. The selected training data obtained from Algorithm 2 was used

in our inpainting approach to recover the damaged region. The results are

shown in Fig. 7.12. It can be seen that with our approach, the quality

of inpainted images is realistic even if the subject is not in the training

database. The experiment also showed that the computational time is sig-

ni�cantly reduced because fewer images were used for training the PCA

model. Besides that, better representation of missing region improves the

inpainting result, even though facial expression di�er

7.3 Experiments on Face Hallucination

7.3.1 Generic Faces

The same set of 15 aligned images from the Yale Face Database B [35]

which was used in image inpainting experiments was used to evaluate our

image superresolution for generic face again. The top row of Figure 7.13

shows �ve 120 × 100 high resolution images, IiHR, from H. The middle
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(a) (b) (c) (d)

Figure 7.12: Image inpainting by patch-based learning model: (a) the origi-
nal images, (b) corrupted images, (c) inpainted images when the test image
is not in the training set and (d) inpainted images when the test image is
in the training set.

row shows corresponding 60 × 50 images, IiLR, from L = FH, obtained

by 2 × 2 averaging, and replacing those pixels by the average value. The

bottom row shows bilinearly interpolated images, ĨiLR = G(IiLR). Figure

7.14 shows the �rst four principal components from the H and L̃ spaces.

The last row of Figure 7.14 shows the di�erences between the corresponding

principal components, which form the elements ei of the high frequency

Laplacian edge space, E . The 4× 4 matrix in Figure 7.14 shows the values

of < hi, l̃j >, i, j = 1, . . . , 4. It is apparent that < hi, l̃j >≈ 1, if i = j and

≈ 0, otherwise.

We performed several experiments to evaluate the proposed SR tech-

nique. In the �rst experiment, we compared the di�erences between bilinear

interpolation and our SR method. For the latter, we used 14 of the 15 im-

ages in the database to form the training set and used the remaining image

for test. We considered super-resolving to 120× 100 from 60× 50 (×2) as

well as from 30× 25 (×4). In the �rst case, each HR image was 2× 2 pixel
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Figure 7.13: Five high resolution training images obtained from Yale Face
Database B are shown in the �rst row and corresponding simulated low
resolution images are shown in the second row. The third row images are
the bilinearly interpolated images.

Figure 7.14: The �rst four principal components of H (1st row), L̃(2nd row)
and E (3rd row) and the matrix of < hi, l̃j >, i, j = 1, . . . , 4.

89



averaged and downsampled to 60 × 50 to form a low resolution subspace

(LR1). For ×4 magni�cation, the 60 × 50 training images were further

2 × 2 averaged and downsampled to 30 × 25 to produce a space at this

resolution (LR2). Given a 60× 50 test image, the HR and LR1, subspaces

were used in our algorithm to produce the super-resolved image. Given a

30 × 25 test image, we implemented our algorithm in two steps: LR2 and

LR1 were �rst used to super-resolve to 60 × 50, after which LR1 and HR

were used to produce the �nal 120× 100 super-resolved image. The results

are shown in Figure 7.15. The super-resolved images show considerably

more details than the images interpolated by bilinear interpolation. Our

approach not only retains individual speci�c information from the low res-

olution images, but also enhances the details at the eyes, nose and mouth.

The performance di�erences are especially dramatic at ×4 magni�cation.

The above experiments can be considered to be somewhat idealized in

that the exact blur in the test image is assumed to be known, and is used

to generate low resolution space, L, used in the SR process. Hence it is of

interest to consider cases when the blur in the test image is di�erent from

that used to generate the space L, as in practice, the blur in the test image

may be unknown. In Figure 7.17 (b) and (c), our approach is applied on

a low resolution image which contains blur from a 5 × 5 averaging mask,

and horizontal motion blur, respectively. The SR images were produced

using the same space L derived as in the previous experiment. Again it is

apparent that the SR images produced are richer in detail compared to the

interpolated images. We also compare our SR method with neighborhood

embedding method [21], fast image upsampling method[77] and the sparse

representation method [99]. In practice, the better our guess is of the blur
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(a) (b) (c)

(d) (e) (f)

Figure 7.15: Superresolution on images with di�erent levels of magni�ca-
tion: (a) The original high resolution images, (b) SR images for ×4 mag-
ni�cation, (c) bilinearly interpolated images for ×4 magni�cation, (d) ×4
magni�cation by pixel replication (e) SR images for ×2 magni�cation and
(f) Bilinearly interpolated images for ×2 magni�cation.
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(a) (b) (c) (d) (e)

Figure 7.16: SR experiments when subject is in the training database or
not, with di�erent methods. (a) The original high resolution images, (b)
SR images by our approach (test image is included in the training dataset),
(c) SR images by our approach (test image is not included in the training
dataset), (d) SR images by conventional PCA reconstruction method when
the test image is in the training dataset and (e) not included in the training
dataset.
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Filters Bilinear NN[21] UP[77] Sparse [99] Ours
Average 63.67 67.91 76.54 68.46 77.37

Motion Blur 63.92 70.80 73.44 72.24 75.98
Noise 87.78 94.34 127.59 107.15 97.07
Combo 53.14 55.42 60.84 59.06 66.95

Table 7.2: Sharpness measurement results on bilinear interpolation, neigh-
borhood embedding method [21], fast image upsampling method [77],
sparse representation method [99] and the proposed superresolution method

in the test image to use for generating the space L, the better we expect

the SR image quality will be. We also applied SR to a low resolution image

with 20db additive noise. The result is shown in Figure 7.17 (d). Finally,

we also tested our approach on a low resolution image produced by two

blurring �lters, motion blur and average �lter, and with 20db Gaussian

white noise. The result is shown in Figure 7.17 (e). We also quantitatively

evaluate the experiment results by measuring the sharpness of the output

SR images. The sharpness is de�ned as 1
N

∑
G(x, y)2 where G(x, y) is the

image gradient at coordinate (x, y) and N is the number of pixels. Five

low resolution images are used in this experiment. The result is shown

in Table 7.2. It showed that our approach is able to reconstruct the edge

information and textural details on the heavily distorted low resolution

images by di�erent �lters. Ours is relatively more consistent compared to

other approaches.

In the last experiment, a portion of low resolution image was removed to

simulate damage. Thus, the missing region in the low resolution needs to be

recovered before the image is super-resolved. We have developed a related

technique for inpainting, and using this with the SR method considered

here, our approach can further enhance the missing region. The results are

shown in Figure 7.18.
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(a) (b) (c) (d)

Figure 7.17: Superresolution (1st row), bilinear (2nd row), neighborhood
embedding method [21](3rd row), fast image upsampling method [77] (4th

row), and sparse representation method [99] (5th row) on images with dif-
ferent blurs and noise: (a) Blurry image from a 5× 5 averaging mask, (b)
Blurry image from a motion blur �lter, (c) 20db noisy image (d) Image
with combined e�ects of (a), (b) and (c).
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(a) (b) (c) (d)

Figure 7.18: Image inpainting and superresolution: (a) The original high
resolution image, (b) The damaged low resolution image, (c) The interpo-
lated inpainted image and (d) The super-resolved inpainted image.
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Figure 7.19: High resolution training images with di�erent expressions and
poses extracted from each dataset

7.3.2 Speci�c Faces

Experiments for our face hallucination on speci�c person used �ve sets of

high resolution training images. Each dataset consists of a speci�c per-

son with di�erent poses and expressions. Each dataset has 2000-5000 high

resolution images. All these high resolution images have been labeled 38

feature points for alignment algorithm. Some sample images are shown in

Figure 7.19. The input images were captured from di�erent sources such as

mobile phone camera, web camera, low-end video camera etc. Due to the

quality image, the low resolution input faces are manually labeled the 38

feature points. The superresolution images were enlarged the input images

two times to eight times. In the �rst experiment, our proposed image selec-

tion method de�ned in section 6.1.4 was evaluated. Three measurement for

texture analysis were compared in the experiment. The �rst approach ap-

plied the L2-norm to measure the texture similarity, P (DI
T |x). The second
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L2-norm χ2 χ2+Shape Ratio
Open Eye 88.33% 70.25% 90.75%
Closed Eye 52.25% 61.67% 67.67%
Open Mouth 10.00% 77.67% 84.67%
Closed Mouth 28.33% 81.50% 91.50%

Table 7.3: Comparison results on the proposed similarity measurement,
Equation 6.7 with the conventional approaches, χ2 distance and L2 norm.

approach replace L2-norm in the �rst approach to the χ2 measurement.

In the third approach, the shape ratio is integrated with texture analysis

as mentioned in section 6.1.4. Three training datasets were used in this

experiment. 40 low resolution images with di�erent poses and expressions

were selected as query images for the performance evaluation. The top N

rank of high resolution training images were retrieved from the databases.

The retrieval rate (RR) is de�ned to evaluate the system. RR is de�ned as

RR(q) =
H(q)

N
(7.1)

where H(q) is the number of ground truth images for a query image, q,

found in the top N retrieved images. The results were shown in Table 7.3.

In the experiment, we found that the performance of L2-norm measurement

was inconsistent compared to χ2 measurement. The combination of shape

and texture analysis further boosted the accuracy of the retrieval system.

The closed eye did not work well in all approaches. It is mainly due to the

extracted region is too small that the PHOG descriptor and shape ratio did

not work properly. However, 67.67% of the retrieval rate was acceptable

for our image superresolution application. A query image and its retrieved

HR images are shown in Figure 7.20

In the second experiment, we compared the di�erence between bicubic
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Figure 7.20: (1st row)A low resolution query image (2nd row)The region of
interest (left to right: left eye, right eye, mouth) with bicubic interpolation
for image selection and the corresponding high resolution images retrieved
from the training dataset are shown in the next each column
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interpolation and our proposed image superresolution on speci�c person.

Low resolution images with di�erent poses and expressions were used as the

input images. Each input image was manually marked the 38 feature points

due to the limitation of the feature detector on low resolution images. 20

high resolution images were retrieved from the corresponding dataset by the

proposed retrieval system. The input image was aligned with the retrieved

images by the feature points. The MRF based superresolution approach

discussed in section 6.3 was applied. Some sample results with four time

magni�cation are shown in Figure 7.21 (d). Figure 7.21 (c) showed the

results by using bicubic interpolation with our proposed color correction

approach. The results of our method not only preserve the facial structure,

but also have richer textural details compared to the interpolated images.

In the third experiment, we evaluated the importance of our image se-

lection method and alignment algorithm here. Three training datasets were

used for the experiment. Low resolution images with di�erent poses and

expressions shown in Figure 7.22 (a) were used as the input images. Each

input image was manually marked the 38 feature points due to the limi-

tation of the feature detectors on low resolution images. The input image

also applied the proposed color constancy method. Next, the input face

was divided into three part, namely right eye region, left eye region and

mouth region. The eyes and mouth region were used for texture analysis.

20 high resolution images were retrieved for each region of interest from

the corresponding dataset by the proposed image selection algorithm. The

retrieved images were then aligned with the low resolution input images by

their corresponding 38 tracked feature points. The MRF based superreso-

lution approach presented in section 6.3 was applied. The sample results
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(a) (b) (c) (d)

Figure 7.21: Image superresolution on a speci�c person with di�erent ex-
pressions. (a)Input images (b) Bicubic interpolated results on input images
(c)Bicubic interpolated results with color correction (d) Superresolution
images for ×4 magni�cation
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with eight time magni�cation are shown in Figure 7.22 (e). Figure 7.22 (c)

applied the proposed superresolution approach but the reference images

are randomly selected and the alignment presented in section 6.2 is not ap-

plied. Figure 7.22 (d) applied the similar approach as Figure 7.22 (c) but

the proposed alignment is applied. The intelligent image selection plays

an important role in our approach. The proposed image selection method

gave the appropriate reference images for our face hallucination approach

to generate the high resolution image with the correct pose and expression.

The superresolution images not only preserve the facial structure, but also

have richer textural details compared to the bicubic interpolated images in

in Figure 7.22(b).
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(a) (b) (c) (d) (e)

Figure 7.22: (a)Input image (b)Bicubic interpolation (c)Superresolution image by randomly selected high resolution patches
(d) Superresolution image by randomly selected the patches from the aligned images (e)Superresolution image by selected
patches from the aligned images with similar pose and expression for ×8 magni�cation
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In the fourth experiments, we compared the outputs of our method

with the bicubic interpolation method, the VISTA approach [34], neigh-

borhood embedding method [21], fast image upsampling method[77] and

the sparse representation method [99]. Figure 7.23 shows the comparison

results for ×4 magni�cation. Figure 7.24 and Figure 7.25 show the com-

parison results for ×8 magni�cation. The input images were captured by

real-world low-end cameras which the blurring �lter, down-sampling op-

erator, other image distortions and noise are unknown. Those e�ects are

also very di�cult to predict from a single low resolution image with the

limited information about the cameras. Using the implementations pro-

vided by Chang et. al. [21], we generated the superresolution images with

4x magni�cation shown in Figure 7.23 (b) and 8x magni�cation shown in

Figure 7.24 (b) and Figure 7.25 (b) . Similarly, we also generated the cor-

responding superresolution images by work in Yang et. al. [99] with 4x

magni�cation shown in Figure 7.23 (c) and 8x magni�cation in Figure 7.24

(c) and Figure 7.25 (c). Compare to our results shown in Figure 7.23 (d),

7.24 (d) and Figure 7.25 (d), our method signi�cantly improved the quality

and the resolution of the output images. The performance of our method is

outstanding because other prior approaches enhanced interpolated images

by adding high frequency details but our method replaces the poor qual-

ity input patches with the high quality patches from the selected images.

Thus, ours not only increase the size of image resolution, but also improve

the quality of the images.
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(a) (b) (c) (d) (e) (f)

Figure 7.23: (a) Bicubic interpolation (b)The VISTA approach [34] (c)Neighborhood embedding method [21] (d)Fast image
upsampling method [77] (e) Sparse representation method [99] (f)Our method for ×4 magni�cation
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(a) (b) (c) (d) (e) (f)

Figure 7.24: (a) Bicubic interpolation (b)The VISTA approach [34] (c)Neighborhood embedding method [21] (d)Fast image
upsampling method[77] (e) Sparse representation method [99] (f)Our method for ×8 magni�cation
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(a) (b) (c) (d) (e) (f)

Figure 7.25: (a) Bicubic interpolation (b)The VISTA approach [34] (c)Neighborhood embedding method [21] (d)Fast image
upsampling method[77] (e) Sparse representation method [99] (f)Our method for ×8 magni�cation
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In the �fth experiment, an underexposure image with pepper noise was

used for face hallucination. It is very commonly captured by an inex-

pensively pocket camera under the poor lighting environment. Since our

method replaces the noisy image patches with the high quality patches

from the training data, a more visually pleasing image was generated by

our method compared to the other methods. The result is shown in Figure

7.26.
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(a) (b)

(c) (d) (e)

Figure 7.26: (a) Input image with pepper noise and underexposure (b)
Bicubic interpolation (c)Neighborhood embedding method [21] (d) Sparse
representation method [99] (e) Our method for ×2 magni�cation
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Chapter 8

Conclusion

In this thesis, we addressed the problems of facial structure from motion,

facial image inpainting and face hallucination. In practice, the quality of

personal photos depends a great deal on the faces in the photos being

clearly visible and recognizable. Hence, it would be very useful to generate

a high resolution facial image with high quality textural details from a low

resolution facial image. However, generating a high resolution image from a

low resolution image is an ill-posed problem. The missing information can

only be recovered in a sensible manner by leveraging on prior knowledge or

imposing prior constraints.

We proposed an extension of the closed-form non-rigid factorization

algorithm proposed by Xiao et al. [97]. A batch algorithm partitions the

measurement matrix to make several independent estimates of the 3D struc-

ture and then uses a metric optimization process to fuse the estimates and

recover an optimized 3D structure. The batch algorithm allows the system

to process the data in parallel because the factorization algorithm can be

applied on each partition separately. Thus, it is suitable for real-time appli-

cations such as surveillance and biometric authentication systems. More-

109



over, it is able to recover non-rigid structure from an arbitrary number of

images. The algorithm does not require repeated computation with the

factorization algorithm using the whole measurement matrix every time

new data is available. Hence, the computations are more e�ective by us-

ing the proposed approach. The metric optimization is another signi�cant

contribution of the current work. It fuses the multiple solutions obtained

from di�erent partitions to �nd an optimal 3D structure so that errors in

the lengths and the mutual angles of the feature points is minimized. The

experiments showed that the proposed approach is more accurate and ro-

bust than the existing factorization algorithm for both rigid and non-rigid

objects under di�erent levels of Gaussian white noise.

Next, we proposed a new POCS based facial image inpainting technique

which iteratively learns the guidance vector �eld for solving the Poisson

equation with Dirichlet boundary conditions. Experiments showed that

the performance of the new approach is much better than solely applying

PCA-based image inpainting or GVF image inpainting. The new approach

not only retains the structure of the missing region, but also smoothens the

boundary between the missing region and its neighbours. The robustness

of the new approach has been demonstrated by experiments. A patch

selection scheme for the learning model signi�cantly reduced the complexity

of modeling the missing region space and improved the e�ectiveness of the

new approach.

We also contributed two face hallucination techniques for two di�erent

applications. The �rst proposed approach is a POCS based face hallucina-

tion algorithm with a learned edge model. It is applied on generic faces.

The new approach not only enhances the missing high frequency details,
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but it is also faithful to the structural details in the low resolution input im-

age. The robustness and e�ectiveness of the approach are evident through

the experiments in a wide variety of situations of practical interest. The

idea is applicable to a given class of objects, so that a model can be learned

to estimate the missing high frequency details. The model is used in con-

junction with a data-based constraint in the POCS algorithm to produce

the superresolution image.

The second proposed approach is a MRF based face hallucination al-

gorithm for speci�c person. Here, we assumed that the subject is known.

In addition, a set of high resolution images with di�erent poses and ex-

pressions is available as training data. Nowadays, having a lot of personal

photos is common to most of people. Moreover, high resolution images

can be easily obtained from high de�nition videos. The challenge of the

problem is that the facial pose and expression in the input image is not

always same as the training images. Firstly, we proposed an image retrieval

system based on texture and shape analysis to select the high resolution

images with similar pose and expression from the training dataset. From

the experiments, we showed that the retrieval rate is more than 84% in

most of the cases. It is good enough for our face hallucination algorithm.

Next, we applied a color correction algorithm to overcome the color

distortion problem due to the lighting conditions and low-end camera sen-

sors. Then, the query image is aligned with the selected high resolution

images by the a�ne warping. Lastly, we proposed a color and gradient

based MRF model to enlarge and enhance the low resolution input image.

From the experiments, we showed that our new approach outperformed

the conventional interpolation techniques. In additional, our approach is
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able to handle the under-exposure image with noise. According to our best

knowledge, other image superresolution approaches do not work on this

issue.

8.1 Future Work

We would like to extend our current work onto 3D models and video se-

quence. Using the factorization algorithm to recover 3D structure has cer-

tain limitations due to the limited availability of corresponding points over

the low resolution image sequence. The factorization algorithm is only able

to recover the depth information of the salient feature points because it is

very di�cult to �nd correspondences on smooth and textureless surface.

Calibrating the camera for �nding corresponding points is very di�cult

for non-rigid objects because the deformation of the objects and camera

motion occur simultaneously. Thus, some interpolation techniques are re-

quired to improve the geometric quality of the recovered structure. The

textural details of the 3D facial models can be done by our current im-

age superresolution approach for image enhancement. For video sequence,

we can impose an additional temporal coherent constraint into our MRF

model to extend our work onto video superresolution.

Moreover, all our contributions in image inpainting and image superres-

olution can be integrated into a system for the facial image enhancement.

The computational cost and robustness of our current image retrieval sys-

tem can be further improved for a real-time application on eletronic devices

eg. digital cameras, mobile phones, tablet PC etc.
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