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SUMMARY 
 
Natural antibodies are defined as the pool of antibodies present in newborns 

and individuals without any prior infection. Natural antibodies consist of IgM, 

IgG and IgA isotypes. Although decades of research has focused on 

elucidating the function and detailed mechanism of action of natural IgM 

which is poly-reactive by virtue of its high avidity, there is a lack of 

knowledge as far as natural IgG and IgA antibodies are concerned. Natural 

IgG, which constitute the majority of natural antibodies in the serum, have 

been deemed non-reactive as they do not recognize any antigen. Here, we 

demonstrate that natural IgG is not non-reactive but in fact, it plays a crucial 

role in innate immunity, in collaboration with PRRs like ficolins. In particular, 

we have shown through in vitro FACS studies that natural IgG recognizes a 

wide variety of microbes through the help of ficolins in both humans and mice. 

By ex vivo analyses, we further showed the formation of IgG:ficolin 

complexes in the serum and spleen during infection in mice. To gain more 

credence on the importance of natural IgG in immune defense, we 

demonstrated, through in vivo IgG siRNA knockdown mice (partial IgG) and 

AID-/- mice (no IgG) studies, that natural IgG is crucial in protecting the mice 

from infection. The innate defensive role of natural IgG was further supported 

by IgG reconstitution studies in AID-/- mice which promoted survival, 

especially in the early phase of infection. We found that the IgG:ficolin 

mediated pathogen recognition occurs independently of complement C3. To 

understand the mechanism of action of IgG with the aid of ficolin, we 

characterized the binding using various techniques including flow cytometry, 

ELISA, surface plasmon resonance (SPR) and in situ proximity ligation assay 
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(PLA) studies under normal physiological condition and infection-

inflammation conditions. We found that the infection-inflammation condition 

where low pH and low calcium levels prevail, led to a 100-fold increase in 

affinity between the proteins and subsequently more number of complexes 

were formed on the monocytes. Consistently, significantly higher degree of 

phagocytosis of the opsonized pathogen was observed under the infection-

inflammation condition. We performed hydrogen-deuterium exchange mass 

spectrometry (HDMS) and site-directed mutant SPR binding studies, which 

gave us a comprehensive idea of the binding interface and the residues 

involved in interaction between IgG and ficolins. Arginine and Lysine 

residues of IgG and ficolins were found to be crucial for interaction under 

normal condition, while Histidine was the critical residue involved in 

enhancing the binding under infection-inflammation condition. Taken together, 

this thesis has illustrated that natural IgG is not non-reactive but interacts with 

microbe-associated lectins like ficolins. These findings will alter our 

perception of the fundamental role of natural antibodies in the recognition of 

pathogens and provocation of innate immune defense. Knowledge gained in 

this study would be essential in our continuing effort to develop new and 

efficient molecular therapies for infectious diseases (474 words). 
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CHAPTER 1: INTRODUCTION 

1.1 Infection and pathogen 

Infectious diseases are caused by pathogenic microorganisms, such as bacteria, 

viruses, parasites or fungi. These diseases have the ability to spread either 

directly or indirectly, from person to person or from animals to humans, hence 

they are termed as transmissible or communicable (Ryan and Ray, 2004). 

These diseases have plagued mankind throughout history and continue to pose 

a threat as they are fatal in many cases. According to WHO reports, the most 

prevalent diseases in humans include pneumonia, tuberculosis, diarrhoea, 

malaria, measles and HIV/AIDS, which account for half of all the premature 

deaths, inflicting mostly children and young adults worldwide every year, 

causing 300 million illnesses and more than 5 million deaths each year (The 

World Health Report 2004).  

Infection is defined as the invasion and multiplication of harmful 

foreign organisms in the host. There are various factors involved in the 

progression of an infectious disease: (i) an entry site for the organism to gain 

access to the interior of the host, (ii) size of the inoculum and virulence of the 

invading organism, (iii) access to favorable host sites where the organisms can 

usurp nutrients and multiply to give rise to higher numbers and (iv) 

susceptibility or ability of the host to fight and clear the organism by virtue of 

its immune defense system (Morse 1995).  

 As mentioned earlier, pathogens range from bacteria to viruses to fungi. 

Pathogenic bacteria comprise of various species like gram negative 

Pseudomonas, Escherichia, Salmonella or Shigella and gram positive 
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Strepcoccus, Staphylococcus or Clostridium species.  These bacteria cause a 

range of deadly diseases like pneumonia, typhoid, tetanus, diphtheria and 

tuberculosis. Pathogenic viruses fall into a big group including Polyomavirus, 

Adenoviridae, Herpesviridae, Retroviridae, amongst others. Some notable 

viral infections include polio, smallpox, measles and chickenpox. Fungi such 

as Candida, Aspergillus, Pneumocystis and Cryptococcus species are known 

to cause notorious opportunistic diseases and secondary infections (The World 

Health Report 1996).  

 These pathogens can be transmitted to the host through a variety of 

routes including airborne, direct or indirect contact, sexual contact and 

respiratory, oral or rectal route or through various body fluids like blood 

(Figure 1.1) (Benenson 1990; Isada et al., 2003). 

In this study, Pseudomonas aeruginosa (P. aeruginosa) was used as a 

model pathogenic microorganism for in vitro and in vivo studies.  P. 

aeruginosa is a versatile opportunistic pathogen that infects individuals with 

compromised natural defenses. The immunologically challenged individuals 

become more susceptible to P. aeruginosa infection due to several reasons, 

including disruption in the epithelial barrier (as found in a patient with a burn 

wound), a depletion in neutrophil count (for example, in cancer patients), the 

presence of a foreign body and abruption in mucociliary clearance (in an 

individual with cystic fibrosis) (Lyczak et al., 2000). P. aeruginosa infections 

also occur after patients have been hospitalized. In addition, numerous factors 

account for the success of P. aeruginosa (Bleves et al., 2010) as a nosocomial 

pathogen. It can utilize a broad spectrum of nutrients and can thus grow in 
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hospital drains, sinks and even disinfectant solutions. It is intrinsically 

resistant to a large number of antibiotics and can acquire resistance to many 

others, making treatment difficult. The propensity of P. aeruginosa to form 

biofilms further protects it from antibiotics and from the host immune system 

(Harmsen et al., 2010). In addition, it employs a large arsenal of pathogenicity 

factors to interfere with host defenses. Thus, P. aeruginosa has remained a 

biomedical healthcare challenge. Hence, we were interested to study how the 

host immune system factors counter this pathogen and help to clear it off the 

system. 

 
Figure 1.1: Entry routes for the infectious pathogens into the humans.  Pathogens 
enter the body through a variety of routes. They could enter via vector delivery (such 
as mosquitoes, sandflies, and fly bites), direct penetration through epidermis or be 
injected directly into the blood stream through use of contaminated medical supplies. 
Another mode of transmission can occur through mucosal surfaces, which could be 
either respiratory, oral (gastrointestinal), urogenital (reproductive) or ocular. Some 
pathogens, such as HIV and hepatitis B and C, can enter the body through multiple 
routes. Adapted from Look et al., (2010). 
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1.1.1. Pathogen-associated molecular patterns 

Once inside the host, the pathogens are recognized as “non-self”, as they 

express an assortment of conserved molecular motifs termed as “pathogen-

associated molecular patterns” (PAMPs), that is foreign to the host. The well-

known bacterial PAMPs comprise of lipopolysaccharide (LPS) on outer 

membrane of gram negative bacteria, lipoteichoic acid (LTA) on cell wall of 

gram positive bacteria, bacterial flagellin and peptidoglycan (PGN) (Beutler 

2004). Viral PAMPs include nucleic acid variants such as double-stranded 

ribonucleic acid (ds RNA), single stranded RNA (ss RNA) or 

unmethylated CpG motifs. Fungi exhibit conserved -1, 3-glucans on their 

surface that alerts the host to recognize them as intruders. By virtue of these 

conserved PAMPs on the microbes, they are effectively recognized by sensor 

proteins in the host, which then mount an immune response against the 

pathogen.  

 

LPS 

Lipopolysaccharide (LPS) is a complex molecule consisting of a lipid 

backbone and a polysaccharide tail that are joined together by a covalent bond. 

It is a major component of the outer membrane of Gram-negative bacteria 

(Figure 1.2A). It plays a crucial role in maintaining survival of the bacteria as 

LPS increases the negative charge of the cell membrane, thus stabilizing the 

overall membrane architecture and integrity. It is one of the most potent 

biological endotoxin that is able to bring about a strong immune response in 

the host (Raetz and Whitfield 2002). LPS is composed of three integral parts 
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(Figure 1.2B):  

(i) Lipid A is the inner most hydrophobic moiety that anchors LPS to 

the outer membrane of the bacteria. It consists of two phosphorylated 

glucosamine carbohydrate units with multiple fatty acid chains attached. It is 

considered a potent immune activator with 6 acyl chains, which give rise to 

optimal endotoxicity. It is released into the host upon bacterial lysis and 

causes pyrogenic action and severe inflammatory symptoms which may lead 

to fatal septic shock (Raetz et al., 2009). 

(ii) O-antigen comprises part of the polysaccharide component of LPS 

and is a repetitive polymer consisting of monosaccharides linked with O-

glycosidic linkages. It forms the outermost domain of LPS molecule and is 

connected to the core oligosaccharide. Its structure is variable across various 

species and strains of bacteria (Raetz and Whitfield, 2002). 

(iii) Core polysaccharide contains an oligosaccharide that attaches it 

to the lipid A moiety. It comprises of sugar residues like 3-deoxy-D-

mannooctulosonic acid (also known as KDO, keto-deoxyoctulosonate) and 

heptose (Hershberger and Binkley, 1968), along with other non-carbohydrate 

components that make it diverse among bacterial species and strains. 

Despite variations in the structure of LPS across bacterial species, in 

terms of the number of repeating units in O-antigen, the lipid A moiety is 

fairly conserved and plays an important role in acting as a potent endotoxin 

component of LPS. It can be recognized in picomolar levels by the host innate 

immune sensors like Toll-like receptors (TLR4), present on macrophages and 

endothelial cells (Poltorak et al., 1998).  
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Figure 1.2: Schematic diagram of the cell membrane of gram negative bacteria 
and the chemical structure of LPS.  (A) The cell membrane of gram-negative 
bacteria comprises of two lipid bilayer membranes separated by a periplasmic space. 
LPS is located on the outer membrane of the cell membrane. (B) LPS is composed of 
Lipid A embedded in the outer cell membrane and core polysaccharide and O-antigen 
exposed to the exterior of the cell. The N-acetyl glucosamine (GlcNAc/NGc) residues 
in LPS structure are boxed. Adapted from Raetz et al., 1991 and Ohno and Morrison, 
(1989), with modification. 

A 

B 
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Upon recognition, lipid A triggers the host immune system to produce 

an array of pro-inflammatory cytokines, such as IL6, IL8, TNF and IL1 and 

other co-stimulatory molecules that prime the adaptive immune system. It also 

stimulates the production of various mediators in endothelial cells that help in 

clearing the infection (Beutler and Poltorak, 2000). However, this immune 

response has to be carefully modulated. Systemic immune dysfunction and 

uncontrolled inflammation may lead to overproduction of inflammatory 

mediators leading to severe sepsis and eventually, death (Russell 2011).  

 

GlcNAc 

N-acetylglucosamine (GlcNAc) is a monosaccharide derivative that forms the 

basic structural unit of PAMPs such as LPS (Figure 1.2B, inset), PGN and 

chitin (Figure 1.3). GlcNAc is present on the surface of the invading 

pathogens and serves as a crucial recognition molecule that is identified as 

“non-self” by the host. It is also present in the host as a moiety of blood group 

glycoproteins, but is shielded off from the host scavengers by terminal sialic 

acid residues on these proteins. GlcNAc is primarily recognized by the host 

innate immune soluble lectin receptors like the ficolins and mannose-binding 

lectin (MBL). As it lacks a basic orientation, it is recognized by lectin 

receptors only at high concentrations (Garlatti et al., 2007; Zhang et al., 2009), 

which then activate the downstream complement cascade to bring about the 

lysis of the microbe along with evoking a pro-inflammatory immune response. 

Figure 1.3 shows a representation of the GlcNAc moiety within LPS molecule.  
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Figure 1.3: Structure of N-acetyl glucosamine (GlcNAc), a crucial component of 
LPS molecule on gram negative bacterial cell membrane. Adapted from 
http://en.wikipedia.org/wiki/File:N-Acetylglucosamine.svg and 
http://textbookofbacteriology.net/endotoxin.html, with modification.  
 
 

Apart from being present on microbial surfaces, GlcNAc is also found 

in the host, shielded from the immune system in normal healthy individuals. It 

is present within the membrane bilayer of the host cells facing inwards 

towards the cytoplasm under normal conditions, wherein it plays a part in 

several physiological events. However, tissue injury and apoptosis may expose 

GlcNAc on the infected or dying host cells to the immune cells, which leads to 

phagocytosis and clearance of these cells from the host by macrophages. 

Besides acting as a central recognition moiety in PAMPs and dysfunctional 

host cells, GlcNAc has also been proposed to be effective in the treatment of 

various autoimmune diseases such as multiple sclerosis and osteoarthritis 

(Reginster et al., 2001; Felson and McAlindon, 2000).  This is possibly due to 

its suppressive action on antibodies that limits their activity and on unprimed 

T cell response that interferes with functions of antigen presenting cells. 

Furthermore, recent studies have shown that children with treatment-resistant 

autoimmune inflammatory bowel disease display significant improvement 

upon GlcNAc administration (Salvatore et al., 2000). However, more research 

Lipid A Core oligosaccharide O-antigen 

LPS 
N-acetyl  

Glucosamine 
(GlcNAc) 
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needs to be done to explore the potential benefits and risks associated with this 

treatment regime. 

 

1.1.2. Antigens 

Recognition of PAMPs by innate immune sensors helps to defend the host by 

controlling bacterial proliferation and secreting nonspecific anti-microbial 

molecules during the first line of defense. However, this does not guarantee 

protection to the host against any subsequent infection as the immune 

receptors encoded in the host genome do not retain any memory of the PAMP 

recognition and the pathogen. To solve this problem and prepare the host for 

subsequent challenges, the adaptive immunity comes into action to provide 

long term memory and protection, by virtue of its ability to recognize specific 

patterns on the pathogen called antigens.  

 Antigens are generally peptides, proteins and polysaccharides forming 

components of cell wall, capsules, flagella, fimbrae and toxins of bacteria, 

viruses and other microorganisms (Janeway et al., 2005). They are normally 

categorized into following subtypes: 

 (i) Exogenous antigens enter the host from outside the body. Once they 

are in the system, they are normally phagocytosed by antigen-presenting cells 

(APCs). APCs process and present these antigens on class II major 

histocompatibility (MHC) to T helper cells (CD4+). Activated CD4+ T cells 

secrete cytokines to activate other immune cells, in order to control humoral 

and inflammatory responses (Watts 1997).  

(ii) Endogenous antigens are produced within a host cell as a result of 
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normal cell metabolism or due to a bacterial or viral infection. They are 

presented to cytotoxic T cells (CTLs; CD8+) through class I MHC molecules. 

Activated CTLs produce toxins to cause lysis or apoptosis of the infected host 

cell. Negative selection occurs to induce tolerance to self-antigens and 

recognize them from “non-self” antigens of the invading pathogen (Sant 1994).  

 (iii) Auto antigens are host antigens that are normally not recognized 

by the immune system but provoke an immune response in autoimmune 

diseases (Marshak-Rothstein and Rifkin, 2007).   

The structural part of an antigen recognized by the antibody is called 

an epitope. Epitopes could be subdivided into: (i) conformational or 

discontinuous epitopes comprising of amino acids or segments from various 

parts of polypeptide antigen that are brought together in three-dimensional 

structure to give rise to the epitope and (ii) linear or continuous epitopes that 

are specific peptides of a protein antigen (Goldsby et al., 2003).  

 

1.2. The host immune system 

In order to combat the pathogens, the host has an elaborate immune 

system that includes a wide range of biomolecules and processes that act in a 

synchronized fashion to provide protection against the deadly invaders. To 

achieve this endeavour, the immune system first employs a group of molecules 

called “pattern-recognition receptors” that have the ability to detect a wide 

variety of infectious microbes such as bacteria, viruses and fungi and more 

importantly differentiate them as “non-self” as opposed to host’s own “self” 

factors (Medzhitov et al., 1997). Upon specific recognition, the host employs 
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multiple defense mechanisms to neutralize and eventually clear the microbe 

from the system. These pathways mainly include phagocytosis, antimicrobial 

peptides, inflammatory cytokines and the complement system (Janeway et al., 

2005). In addition to these general non-specific first line defenses, higher 

organisms such as jawed vertebrates have developed even more sophisticated 

defense mechanisms, wherein they specifically recognize the pathogen with 

high affinity antibodies, tune the immune system to adapt to the pathogen over 

time in developing an immunological memory, and recognizing and mounting 

an even stronger response in the event of a later infection by the same 

pathogen (Pancer and Cooper, 2006).  

 The immune response is classified into different stages when the host 

encounters a pathogen for the first time. The first line of defense comes from 

innate mechanisms that act instantly and are broader in terms of pathogen 

recognition. This is followed by activation of effector cells that secrete 

inflammatory mediators which aids in pathogen removal, but does not 

generate any immunologic memory. In case the pathogen evades this early 

phase of defense, acquired or adaptive immune response ensues wherein 

antigen-specific effector cells target the pathogen and generate memory cells 

that can prevent any future attack by the pathogen. Figure 1.4 depicts the 

typical immune response as it seemingly occurs in two well-defined phases. 
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Figure 1.4: The response to an infection occurs in two phases. The innate 
immunity displays immediate response, broad spectrum specificity and depends on 
germline encoded receptors to recognize the pathogens. Adaptive or acquired 
immunity occurs at a later stage and uses antigen-specific receptors that are formed 
by gene segment rearrangements in B and T cells, which undergo  clonal expansion 
before differentiating into effector cells that clear the infection. Adapted from 
http://www.virtualmedicalcentre.com/anatomy/immune-system/20. 
 

1.2.1. Innate immunity 

The innate immune system is the first line of defense against a foreign attack. 

It is non-specific in nature and comprises of a variety of cells and mechanisms 

that defend the host in immediate response to an infection (Janeway and 

Medzhitov, 2002). Innate immunity is considered to be an evolutionarily older 

defense strategy (Hoffmann et al., 1999). It carries out various effector 
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functions such as acting as physical barrier to the pathogen, recruiting immune 

cells to sites of infection by producing chemical factors called cytokines, 

activating the complement cascade to promote lysis and clearance of the 

pathogen, identification and removal of foreign substances from tissues by 

specialized white blood cells like macrophages and neutrophils (Janeway and 

Medzhitov, 2002). However, the innate immune system lacks memory and 

hence is deemed unable to launch a more effective response in the event of 

subsequent similar attacks. In this context, the innate immune system is 

construed to help in activating and shaping the second level of more 

specialized defense system called the adaptive immune system. 

 

Pattern recognition receptors 

Pattern recognition receptors (PRRs) are germline-encoded proteins, which 

sense the presence of microorganisms during the innate immune response. 

They do this by recognizing structures conserved among microbial species, 

which are called pathogen-associated molecular patterns (PAMPs). PRRs are 

also responsible for recognizing endogenous molecules released from 

damaged host cells, termed danger-associated molecular patterns (DAMPs) 

(Medzhitov and Janeway, 1997). The PRRs are broadly classified into 

different groups based on their location: transmembrane proteins such as Toll-

like receptors (TLRs) (Medzhitov et al., 1997) and C-type lectin receptors 

(CLRs) (Epstein et al., 1996; Holmskov 2000), as well as cytoplasmic proteins 

such as Retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) and NOD-

like receptors (NLRs) (Inohara et al., 1999; Bertin et al., 1999). These PRRs 
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are expressed by not only by macrophages or dendritic cells as well as other 

non-professional immune cells. Upon sensing PAMPs or DAMPs by the 

PRRs, a cascade of pathways are activated leading to upregulation of 

transcription of pro-inflammatory cytokines such as tumor necrosis factor 

(TNF), interleukin (IL)-1, and IL6 (Adachi et al., 1998), chemokines and 

antimicrobial proteins and proteins involved in the modulation of PRR 

signaling (Kopp and Medzhitov, 1999). The expression patterns of the 

inducible genes differ based on PRR activation. The cytokines produced carry 

out a wide variety of effector functions like regulation of cell death of infected 

tissues, modification of vascular endothelial permeability, and recruitment of 

red blood cells to the infected tissue and induction of production of the acute-

phase proteins (Dinarello 2007). A list of common PRRs is given below in 

Table 1.1.  

Collectins and ficolins are well-known PRRs which belong to the 

family of soluble CLRs. They are present in serum and on the mucosal 

surfaces. The human collectins comprise of mannose-binding lectin (MBL) 

(Takahashi et al., 2006) and surfactant protein A and D (SP-A, SP-D) (Pikaar 

et al., 1995), which are composed of carbohydrate-recognition domains 

(CRDs) attached to collagenous regions. They are structurally similar to 

ficolins, which are composed of the fibrinogen-like domain (FBG) and 

collagen-like domain. The FBG domain, alternatively known as fibrinogen-

like domain, is similar to the C-terminal region of the beta and gamma chains 

of fibrinogen, hence it is also referred to as Fibrinogen Beta Gamma (Figure 

1.5).  
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Table 1.1: Examples of major pattern recognition receptors and their ligands. 

Receptor             Ligand                                              Reference 
 
Toll-Like: 
TLR1       triacylated lipoproteins      (Alexopoulou et al., 2002; Takeuchi et al., 2002) 
TLR2       peptidoglycan,  
                 lipoproteins, zymosan       (Takeuchi et al., 1999; Underhill et al., 1999) 
TLR3       double-stranded RNA,  
                 poly I:C                             (Alexopoulou et al., 2001) 
TLR4        LPS, RSV F protein          (Poltorak et al., 1998; Kurt-Jones et al., 2000) 
TLR5        flagellin                             (Hayashi et al., 2001) 
TLR6        diacylated lipoproteins      (Hajjar et al., 2001)  
TLR7        imidazoquinolines             (Hemmi et al., 2002) 
TLR8        imidazoquinolines             (Gorden et al., 2006)  
TLR9        bacterial DNA,  
                  unmethylated CpG motifs (Hemmi et al., 2000) 
Soluble: 
CD14        lipopolysaccharide             (Haziot et al., 1996) 
LBP          lipopolysaccharide             (Schumann et al., 1990)  
MBL        terminal mannose residues (Jack et al., 2001) 
CRP         phosphocholine                   (Yother et al., 1982) 
PTX3       fungal motifs                       (Garlanda et al., 2002) 
SP-A&D  fungi                                    (Holmskov et al., 2003)                               
Ficolins    GlcNAc                               (Holmskov et al., 2003) 
 
Scavenger: 
MSR1       lipid A, lipoteichoic acid    (Thomas et al., 2000) 
MARCO   Gram-positive, 
                  gram-negative bacteria      (Kraal et al., 2000) 
Mannose  
Receptor   -mannan                           (Ezekowitz et al., 1990) 
Dectin-1    -glucan                             (Brown and Gordon, 2001)  
 
Complement: 
FcR        IgG-opsinized particles       (Daeron 1997)  
CR1         C1q, C4b, C3b, MBL          (Wong et al., 1985) 
CR2         iC3b, C3d, C3dg                  (Dempsey et al., 1996) 
CR3         iC3b                                     (Ehlers 2000)  
CR4         iC3b                                     (Ross et al., 1992)  
 
Intracellular: 
Nod2      muranyl dipeptide,  
               lipoproteins                           (Girardin et al., 2003; Inohara et al., 2003) 
PKR       double-stranded RNA           (Meurs et al., 1990) 
OAS       double-stranded RNA           (Rebouillat et al., 2000) 
 
----------------------------------------------------------------------------------------------------------------- 
* Adapted and modified from Dempsey et al., 2003 (with modifications).  
 



                                                                                                          Introduction 
 
 

        

                                                                                                                          16
                                                                                                                               
                                                                                                                               
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.5: The schematic diagram of the structures of MBL and ficolins. Both of 
the PRRs contain the collagen-like domain, a neck region and the PAMP recognition 
domains: carbohydrate-recognition domain (CRD) for MBL and fibrinogen beta 
gamma/fibrinogen-like domain (FBG) for ficolins. Adapted from Fujita (2002).  
 

These PRRs exhibit specific and selective binding to PAMPS like 

mannose, glucose, L-fucose, N-acetyl-mannosamine (ManNAc), and N-acetyl-

glucosamine (GlcNAc) (Holmskov et al., 2003). These PAMPs must be 

present at a terminal non-reducing position and clustered on the microbe to 

form a “pattern”, for high-avidity recognition to take place.  

Ability to recognize these factors helps the PRRs to distinguish 

microbes from host cells (Garlatti et al., 2007). Carbohydrate structures on 

host cells terminate in sugars such as, galactose or sialic acid, which are not 

recognized by PRRs (Hansen et al., 2000). However, exception might occur in 
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host cancer cells and apoptotic cells which get aberrantly glycosylated, and 

hence are recognized and cleared by PRRs (Ma et al., 1999; Muto et al., 

1999).  

 

Ficolins 

Ficolins were first described as transforming growth factor β-binding proteins 

present in porcine uterus (Ichijo et al., 1991). Porcine ficolins consist of two 

homologous molecules, designated ficolin- and - (Ichijo et al., 1993). 

Ficolin- is found in the liver and blood. Ficolin-, which is about 80% 

identical to ficolin-, is expressed mainly in neutrophils. In mice, there are 

also two isoforms of ficolin present. Ficolin A is present in liver and blood, 

while ficolin B (60% identical to ficolin A) is expressed in the bone marrow 

and spleen and is present on macrophages (Liu et al., 2005). In humans, there 

are three isoforms of ficolins present, M-ficolin (ficolin-1); L-ficolin (ficolin-

2); and H-ficolin (ficolin-3). All three isoforms exist as homotrimers and 

polymers (Holmskov et al., 2003) (Figure 1.6).  

M-ficolin, predominantly found in monocytes and granulocytes (Teh et 

al., 2000; Rorvig et al., 2009), is the homologue of murine ficolin-B (Endo et 

al., 2004) and porcine ficolin-. It has been found to recognize common 

microbial PAMPs like GlcNAc. L-ficolin is the homologue of murine ficolin-

A (Endo et al., 2004) and porcine ficolin-. It is an oligomeric protein 

assembled from 35-kDa subunits (Matsushita et al., 1996) and exhibits lectin-

like activity after recognizing PAMPs such as 1, 3-β-D glucan on yeast and 

fungal cell walls (Ma et al., 2004) and GlcNAc on LPS of bacteria (Krarup et 
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al., 2004). In particular, L-ficolin binds to GlcNAc next to galactose at the 

non-reducing terminal of the oligosaccharide. H-ficolin, the third ficolin, was 

originally identified and defined by auto-antibodies present in a small minority 

of auto-immune lupus patients (Andersen et al., 2009). It is synthesized in the 

liver and secreted into the bile, blood, lung and bronchi (Akaiwa et al., 1999). 

H-ficolin is the most abundant plasma ficolin and it exhibits highest potency at 

activating complement in vitro. H-ficolin binds to GlcNAc and GalNAc but 

not mannose or lactose. M- and L-ficolin share 80% identity in amino acid 

sequence, whereas H-ficolin shares about 50% identity with the other two 

isoforms (Zhang et al., 2009). However, all three ficolins share around 80% 

similarity in their FBG domain which recognizes PAMPs, suggesting that their 

ability to recognize pathogens and carry out effector functions may be 

conserved.  

 

 

 

 

 

 

 

 

 
 
Figure 1.6: Domains and oligomeric structure of ficolins. (A) The ficolin 
monomer consists of a collagen-like domain, a neck region and a fibrinogen beta 
gamma/fibrinogen-like domain (FBG). (B) Trimers and oligomers (four to eight 
trimers) are formed by disulphide bond formation between the collagen-like domains 
of individual monomers. Multimers form a bouquet-like structure where FBG 
functions as the PAMP recognition domain. Adapted from Endo et al., (2011).  
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Overall, the characterization of the ficolins present in human, mouse 

and pig serum/plasma and in the body fluids of ascidians revealed that they all 

share a common specificity for GlcNAc (Matsushita et al., 1996; Matsushita et 

al., 2001). The ficolin genes in other species such as hedgehog, xenopus, 

worms and fruitfly are yet to be fully characterized. Upon recognizing the 

pathogens, the ficolins activate the lectin complement pathway (Teh et al., 

2000; Matsushita et al., 2001; Kuraya et al., 2005).  A comparison of the tissue 

distribution, ligand specificity and function of human and mouse ficolins is 

summarized in Table 1.2. 

Table 1.2: The tissue distribution, ligand spectrum and functions of ficolin 
isoforms in humans and mice.  

*Adapted from Matsushita (2012).  

Pathophysiological significance of ficolins 

Ficolins have been implicated to play an important role in preventing various 

infectious diseases. L-ficolin binds to the GlcNAc in the capsular 

polysaccharide of type III group B streptococci and leads to activation of the 

lectin pathway (Aoyagi et al., 2005). L-ficolin also binds to lipoteichoic acid 

(LTA) of gram-positive bacteria (Staphylococcus aureus, Streptococcus 
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agalactiae, Bifidobacterium animalis, Streptococcus pyogenes, and Bacillus 

subtilis) (Lynch et al., 2004; Aoyagi et al., 2005). In addition, L-ficolin has 

been found to bind exclusively to some strains of capsulated S. pneumoniae 

serotypes (11A, 11D, and 11F). Recently, the porcine counterpart of L-ficolin 

has been shown to curb the infection of porcine reproductive and respiratory 

syndrome virus in vitro (Keirstead et al., 2008). H-ficolin has shown to be a 

more powerful direct opsonin than L-ficolin (Jensen et al., 2007). It was firstly 

identified as a serum antigen target for an auto-antibody present in the sera of 

some patients with systemic lupus erythromatosus (SLE), suggesting that it 

may be an important player during the auto-immune response. Concentration 

of anti-H-ficolin antibodies was found to correlate positively with disease 

activity (Yoshizawa et al., 1997). Recent studies have highlighted the role of 

H-ficolin in preventing bacterial sepsis and necrotising enterocolitis in 

newborns, wherein it was shown to bind to pathogens and activate 

complement which clears them (Schlapbach et al., 2010; Schlapbach et al., 

2011).  

Ficolins have also been reported to bind to late apoptotic cells and 

mediate phagocytosis possibly through the calreticulin-CD91 receptor 

complex present on the surface of macrophages (Ogden et al., 2001). Ficolins 

possibly bind to DNA on permeable dying cells (Jensen et al., 2007). It has 

been found that H-ficolin results in uptake of late apoptotic cells by 

macrophages (Honoré et al., 2007). These studies show that ficolins may be 

involved in the maintenance of tissue homeostasis and dysfunction in the 

activity of ficolins might adversely affect the removal of dying host cells and 
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lead to the development of autoimmune diseases. 

 

1.2.2. Adaptive immunity 

The adaptive immune system is the second line of defense, which is highly 

specific in its ability to recognize and remember specific pathogens and to 

mount stronger, faster and long-lasting responses when the host re-encounters 

the same pathogen in future (Janeway et al., 2005). Adaptive immune 

responses are carried out by white blood cells called lymphocytes. There are 

two broad classes of such responses - humoral and cell-mediated. These 

effector functions are carried out by different classes of lymphocytes, called B 

cells and T cells, respectively (Janeway et al., 2005). In humoral immune 

responses, B cells are activated by professional APCs like macrophages and 

dendritic cells, and differentiate into plasma cells, with the help of T-helper 

cells. The plasma B cells are short lived cells (2–3 days) which secrete 

antigen-specific antibodies.  Some of the plasma B cells become long-lived 

memory B cells, which respond quickly to any future attack by the same 

pathogen.  Antibodies secreted by the B cells circulate in the bloodstream and 

permeate the other body fluids, where they bind specifically to the foreign 

antigen that stimulated their production. Upon binding to the antigen, 

antibodies inactivate the invading microbes and limit the spread of infection 

by directing the immune complexes to the spleen (Janeway et al., 2005). 

  In cell-mediated immune responses, naïve T cells encounter the 

antigen presented by dendritic cells or B cells and are activated to react 

directly against a foreign antigen. The activated T cells secrete cytokines 
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leading to the expansion of the T cell population. Some T cells may become 

helper cells and secrete cytokines that attract other immune cells like 

macrophages, neutrophils and other lymphocytes to the site of infection to 

phagocytose and kill the pathogen. Another subset of T cells may become 

cytotoxic in nature and track down and kill the infected host cells displaying 

virus antigens on their surface, so as to limit the infection and its spread to 

other normal cells and tissues (Delves and Roitt, 2000).  

 

Antibodies (antigen specific) 

Antibodies are glycoproteins belonging to the immunoglobulin superfamily 

that are secreted into the bloodstream by the plasma B cells. They are typically 

made of basic structural units consisting of four polypeptide chains: two 

identical heavy chains and two identical light chains, joined together by 

disulphide bonds (Burton and Woof, 1992). There are five isotypes of 

mammalian antibodies: IgM, IgG, IgA, IgD and IgE, depending on the specific 

heavy chain present (Janeway et al., 2005; Stavnezer and Amemiya, 2004). A 

typical structural representation of various antibody isotypes is shown below 

in Figure 1.7.  

IgM is a pentamer having the highest avidity amongst all isotypes. It is 

the first antibody isotype to be present before class-switching occurs and helps 

in eliminating pathogens in the early stages of humoral immunity. IgG is the 

major isotype present in the serum and consists of four subtypes (IgG1, IgG2, 

IgG3 and IgG4). IgG is the only isotype that can cross the placental barrier to 

provide immunity to the fetus and newborns. IgA is present at the mucosal 
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surfaces like the gut, respiratory tract and the urogenital tract, where it plays 

an essential role in mucosal immunity. It is also found in secretions like saliva, 

tears and milk. Besides these immunoglobulins, IgD helps in activating 

basophils and mast cells, whereas IgE is an important factor in allergy and 

parasitic infections. Besides these functions, antibodies also enhance other 

defense mechanisms like activation of the complement system, enhancement 

of phagocytosis and stimulation of other immune cells (Alberts et al., 2002; 

Harlow and Lane, 1988). Figure 1.8 shows a representation of the different 

biological activities carried out by antibodies. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.7: Structural representation of mammalian antibody isotypes.  
Antibodies are composed of two identical heavy chains and two identical light chains, 
linked by disulphide bridges. The isotype of antibody is determined by its heavy 
chain, with all isotypes sharing the same light chains. Light chains fold into a variable 
domain (VL) and a constant domain (CL), whereas heavy chains are composed of one 
variable domain (VH) and either three (in IgG, IgA and IgD) or four (in IgM and IgE) 
constant domains. The antigen-binding sites at the tip of the Fab regions are formed 
from the variable domains of both the heavy and light chains. The Fc region mediates 
interaction with effector molecules, such as complement and Fc receptors. Adapted 
from Rojas and Apodaca, (2002). 
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Figure 1.8: The biological activities of antibodies. Antibodies may directly bind 
and neutralize toxin and viruses, as well as collaborate with other serum factors to 
carry out opsonization, complement activation and generation of oxidants, upon 
antigen exposure. They also help to reduce the extent of damage to the host by 
reducing the inflammation once the infection has been cleared. Other functions 
include antibody-dependent cell cytotoxicity and immuno-modulation. Adapted from 
Casadevall et al., (2004).  
 

Mechanisms leading to production of different antibody isotypes  

Several genetic mechanisms have evolved that allow B cells to generate a 

diverse pool of antibodies upon antigenic stimulation. The primary event 

occurring in naïve B cells is the V(D)J recombination (Jung and Alt, 2004), 

which occurs in the bone marrow and is catalyzed by enzymes called VDJ 

recombinases (Oettinger et al., 1990). Naïve B cells produce only IgM, which 

is the first heavy chain segment in the immunoglobulin locus. When a naïve B 
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cell encounters a pathogen displaying the particular antigen, it enters the dark 

zone of the germinal center in the spleen where it undergoes affinity 

maturation, producing antibodies with increased affinity for the antigen 

(Kelsoe 1996; Tarlinton 1998; MacLennan 1994). Upon entering the germinal 

centers, the B cells undergo proliferation which is accompanied by a high rate 

of mutation in the immunoglobulin heavy and light chain genes (somatic 

hypermutation), carried out by an enzyme called Activation-induced cytidine 

deaminase (AID) that mutates cytosine to uracil. This process generates 

antibodies with several fold higher affinity for the same antigen. Next, the B 

cells that have undergone somatic hypermutation undergo clonal selection so 

that only the B cell progeny producing antibodies with the highest affinity for 

the antigen are able to survive. The remaining B cells undergo apoptosis 

(Tarlinton and Smith, 2000). Once the B cells have undergone SHM and 

clonal selection, class-switch recombination occurs in the light zone of the 

germinal center to generate the different isotypes (IgG, IgA, IgD or IgE) of the 

antibody with the same variable domains but distinct constant domains in 

their heavy chains (Stavnezer et al., 2008). This process is catalyzed by a 

variety of enzymes including AID (Muramatsu et al., 2000; Revy et al., 2000). 

The B cells finally differentiate into memory B cells and plasma B cells 

producing high affinity antigen-specific antibodies. Figure 1.9 gives an 

overview of all the B cell selection processes taking place in the germinal 

centers.  



                                                                                                          Introduction 
 
 

        

                                                                                                                          26
                                                                                                                               
                                                                                                                               
 
 

 

Figure 1.9: B cell selection process in the germinal center during an immune 
response. Antigen-activated naïve B cells differentiate and undergo proliferation in 
the dark zone of the germinal center. During proliferation, the process of somatic 
hypermutation (SHM) introduces base-pair changes into the V(D)J region of the 
rearranged genes encoding the immunoglobulin variable region (IgV) of the heavy 
chain and light chain. The differentiated B cells then move to the light zone, where 
the modified antigen receptor, with help from T helper cells and follicular dendritic 
cells (FDCs), is selected for improved binding to the immunizing antigen (clonal 
selection). Newly generated B cells that produce lower affinity antibodies undergo 
apoptosis and are removed. B cells then undergo immunoglobulin class-switch 
recombination (CSR). Antigen-selected mature B cells eventually differentiate into 
memory B cells or plasma B cells. Adapted from Klein and Dalla-Favera, (2008).  
 

Natural antibodies (non-antigen specific) 

Apart from the antigen-specific antibodies produced upon immune response, a 

pool of spontaneously occurring immunoglobulins is also present in human 

cord blood, in “antigen-free” mice, and in normal individuals in the absence of 

prior foreign antigen stimulation. These antibodies are referred to as “natural 

antibodies” (Avrameas 1991; Coutinho et al., 1995). They are produced by the 

B1 cell lineage. B1 cells differ from the conventional B2 cells (producing 
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antigen-specific antibodies in immune response) in that they are generated 

predominantly during fetal and neonatal development (Kantor and Herzenberg, 

1993; Hardy and Hayakawa, 1994). They are mainly found in the peritoneal 

and pleural cavities. Their precursors develop in the fetal liver and omentum. 

In adults, the B1 B cell population is maintained at a constant size owing to 

the self-renewing capacity of these cells, due to which the serum levels of 

natural antibodies are maintained (Boyden 1966; Michael 1969). These B1 B 

cells recognize altered-self components (DAMPs) such as asialylated 

glycoproteins with exposed terminal galactose residues, and secrete low 

affinity antibodies. The natural antibodies are usually of IgM, IgG3 and IgA 

subclass (Boyden 1966; Manz et al., 2005; Kantor and Herzenberg, 1993). 

Anti-α gal antibody is one of the most abundant bona fide natural antibodies in 

the human serum. The repertoire of natural antibodies is very restricted 

compared to the conventional antibodies, due to preferential usage of JH-

proximal VH gene segments and the lack of terminal deoxynucleotidyl 

transferase activity in precursor B cells during early ontogeny (Yancopoulos et 

al., 1984; Feeney 1990). 

  

Pathophysiological significance of natural IgM 

Amongst the natural antibody isotypes, natural IgM is a pentamer and 

possesses potentially 10 antigenic binding sites. The high valency enables IgM 

to have a polyreactive character and identify multiple phylogenetically 

conserved structures like nucleic acids, phospholipids and carbohydrates 

(Briles et al., 1981). The repertoire of natural IgM remains unaffected by 
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external antigens (Haury et al., 1997). Many studies have identified a 

protective role of natural IgM in numerous viral, bacterial, fungal and parasitic 

infections (Zhou et al., 2007). Viruses, including the vesicular stomatitis virus 

(VSV), lymphocytic choriomeningitis virus and influenza virus, are bound and 

neutralized by natural IgM (Ochsenbein et al., 1999; Baumgarth et al., 2005). 

Mice deficient in natural IgM are increasingly susceptible to infection owing 

to decreased neutrophil recruitment, increased bacterial load and elevated 

levels of LPS and pro-inflammatory cytokines in the serum due to lack of 

bacterial clearance. Reconstitution with IgM purified from uninfected mouse 

serum provided immediate defense against bacterial peritonitis to mice (Boes 

et al., 1998). Natural IgM has also been shown to play a role in clearing S. 

pneumoniae and Cryptococcus neoformans infections (Brown et al., 2002; 

Subramaniam et al., 2010). 

Natural antibodies have also been shown to link between innate and 

adaptive immune systems. During the innate immune response, natural IgM 

limits the spread of infection by employing various strategies like 

neutralization, forming immune complexes with the help of complement 

factors leading to complement activation and elimination of the pathogen by 

lysis. In addition, natural IgM is also involved in priming the subsequent 

adaptive immune response by contributing to antigen recruitment in secondary 

lymphoid organs (Figure 1.10).   
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Figure 1.10: Natural antibodies serve as a link between innate and adaptive 
immune systems. The natural antibodies restrict the pathogen invasion by direct 
neutralization, complement activation and elimination in the marginal/sinusoidal zone 
of secondary lymphoid organs. They also prime the adaptive immune system by 
contributing substantially to antigen recruitment in secondary lymphoid organs. 
Adapted from Hangartner et al., (2006). 
 
 

Natural IgM has been further shown to participate in several patho-

physiologic activities like apoptosis, B cell homeostasis, inflammation, 

artherosclerosis and auto-immunity. Due to its pentameric structure, natural 

IgM is known to bind to complement factor C1q with high affinity 

(Czajkowsky and Shao, 2009) and carry out effector functions like the 

activation of complement cascade and clearance of apoptotic cells (Quartier et 

al., 2005; Ogden et al., 2005). Natural IgM could also bind to MBL bound to 



                                                                                                          Introduction 
 
 

        

                                                                                                                          30
                                                                                                                               
                                                                                                                               
 
 

apoptotic cells and vice versa (Nauta et al., 2003) (Figure 1.11). It is also 

implicated that natural IgM influences other effector functions like antigen 

uptake by phagocytes and enhancement of B cell responses, by binding to its 

putative receptor, Fcα/R (Shibuya et al., 2000). 

 

Figure 1.11: Natural IgM directs apoptotic cells to macrophages through 
recruitment of C1q and MBL. Complement factor C1q binds to the Fc region of 
pentameric natural IgM and functions together with MBL to promote the 
phagocytosis of apoptotic cells. Ingestion of apoptotic cells by phagocytes promotes 
an immunoregulatory milieu including the secretion of anti-inflammatory cytokines 
IL-10 and TGFβ and clearance of potential auto-immune epitopes from the body 
tissues. Adapted from Ehrenstein and Notley (2010). 
 
 

Despite a vast amount of information available on natural IgM and its 

role in immunity, the physiologic existence and function of natural IgG and 

IgA antibodies, which comprise a majority of natural antibodies in serum and 

mucosa, has been an enigma and a subject of interest since their discovery 

((Boyden 1966; Michael 1969). Because of their low affinity, non-specific 

character and low valency when tested in isolation, they have been deemed 

incapable of launching an attack on invading pathogens.  

 

1.2.3.   Does the innate immune system shape the adaptive immune system? 

Although the immune system acts in apparently two separate phases, there are 
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several reports where the innate and adaptive immune systems are shown to 

cooperate to effectively fight the infection. Adaptive immunity is controlled 

by innate immune PRR induced signals at multiple checkpoints dictating the 

initiation of the adaptive response depending on the origin of the antigen, the 

type of response, the magnitude and duration of the response depending on the 

dose of the antigen, and the production of long-term memory (Figure 1.12). 

This instruction is largely dissipated through triggering the maturation of 

dendritic cells from highly phagocytic, weakly immunogenic, tissue-resident 

cells into weakly phagocytic, highly immunogenic, lymph node-homing cells 

that are competent to induce tailored T-cell responses to non-self antigens 

acquired in the periphery (Iwasaki and Medzhitov, 2004; Banchereau and 

Steinman, 1998). 

 
 
Figure 1.12: PRR-mediated control of checkpoints of adaptive immunity. PRRs 
detect the features of the antigen during an infection and induce signals that control 
adaptive immunity at various checkpoints. This ensures controlled activation of the 
adaptive immune response. A failure to properly regulate the immune response results 
in various immune pathologies like auto-immunity, allergy and failure to protect from 
infection. Adapted from Palm and Medzhitov, (2009).  
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 PRRs differ in their ability to trigger the adaptive immune response. 

For example, TLRs are sufficient to induce both T- and B-cell responses by 

themselves, whereas others like the mannose receptor and scavenger receptors 

require other components to induce adaptive immune responses. This depends 

on the ability of the PRR to detect the presence, extent, duration of infection, 

origin of microbial antigens, as well as its ability to relay this information to 

the adaptive immune system (Iwasaki and Medzhitov, 2004). Thus, it is 

evident that both the arms do not act individually but the innate system indeed 

influences its adaptive counterpart to optimize the immune response.  

 

1.3. Host-pathogen interaction and immune response 

In order to tackle a wide variety of pathogens, different components of the 

immune system have evolved to protect the host in an efficient manner. The 

innate immune defense which is the first line of protection against the 

invading microorganisms has evolved into two different arms: the cellular and 

humoral components (Basset et al., 2003). These defense components perform 

effector functions in their own specialized manner. The humoral components 

like the collectins, ficolins, LPS-binding protein, pentraxins and complement, 

help to recognize the PAMPs associated with the pathogen. Upon recognition, 

they function to directly or indirectly (PRR:PRR interactome formation) to 

eliminate the pathogen through various defense mechanisms, like activation of 

the complement. Alternatively, the PAMPs may be recognized by cellular 

PRRs present on immune cells with the help of soluble PRRs, and become 

phagocytosed, leading to the production of pro- and anti-inflammatory 
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cytokines that control the spread of infection to neighboring healthy cells. 

Subsequently, these mechanisms lead to activation of the adaptive immune 

response which launches a more specific attack in the event of any future 

infection (Figure 1.13).  

 
 
 
Figure 1.13: Receptors involved in detection and elimination of the pathogen in 
innate immune response. Pathogens are detected by soluble and cell-associated 
PRRs, which lead to direct or indirect killing of the pathogen, release of cytokines 
and chemokines which boost the innate immune response and alert the adaptive 
immune response. Figure adapted from Basset et al., (2003). 
 

1.3.1. Formation of PRR:PRR interactome – immune complexes 

To cater to the wide variety of microbes and damaged host cells, the PRRs of 

the innate immune system collaborate with each other to mount a stronger 

more effective immune response. This is an important defense strategy as 

PRRs are limited in number compared to the wide variety of antigen-specific 

antibodies that are later produced by the adaptive immune system. An 

important example of PRR:PRR interactome formation is the collaboration of 
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CRP and ficolin during infection. CRP is an activator of the classical 

complement pathway, whereas ficolins initiate the lectin complement pathway. 

Human L- and M-ficolins were found to interact with CRP via their FBG 

domain (Zhang et al., 2009). This leads to two autonomous complement 

amplification pathways (Figure 1.14), giving a boost to the bactericidal 

activity. Infection-inflammation condition induces local acidosis (pH 6.5) and 

hypocalcaemia (2.0 mM calcium), which plays an important role in 

strengthening the interaction and hence boosting the immune response (Zhang 

et al., 2009).  

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1.14: L-ficolin and CRP interact to form an interactome having enhanced 
anti-microbial activity. The infection-inflammation condition triggers the formation 
of CRP:ficolin interactome on the bacterial surface, resulting in amplified activation 
of the complement pathway. By this collaboration, two autonomous pathways 
function simultaneously to boost the classical and lectin complement pathways. 
Adapted from Zhang et al., (2009).  
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Furthermore, the importance of PRR:PRR interactome was also shown 

in other studies wherein M-ficolin present on the surface of monocytes 

collaborates with CRP in the serum and GPCR43 (receptor on monocytes) to 

form a triple complex, that carried out a range of functions which transduced 

the immune signals into the host cell and regulated the immune response to 

restore homeostasis (Zhang et al., 2010). Therefore, the formation of 

PRR:PRR interactomes during an immune response is an important defense 

strategy for effective microbial clearance. 

 

1.3.2. Infection induces local acidosis and hypocalcaemia 
 
The human immune system makes use of the ensuing inflammatory response 

during infection to combat the pathogen (Bistrian 2007). During the acute 

phase response, there is a spike in the concentrations of several proteins like 

CRP (Gewurz et al., 1982; Marnell et al., 2005) and inflammatory cytokines 

(Gallin 1999). During this process, local acidosis prevails which leads to 

infiltration of neutrophils and macrophages to the site of injury (Issekutz and 

Bhimji, 1982). This activates a respiratory burst (van Zwieten et al., 1981; 

Wright et al., 1986), which leads to local drop in pH levels. Local acidosis is 

associated with a number of inflammatory diseases such as trauma-induced 

infection (Baranov and Neligan, 2007), acute renal failure (Zar et al., 2007) 

and intra-abdominal infection (Simmen and Blaser, 1993). These pathological 

conditions are associated with a drop in pH resulting in lower serum pH, 

ranging from 5.5-7.0 (Martinez et al., 2006). Simultaneously, mild 

hypocalcaemia also occurs, which is a characteristic of bacterial infections 



                                                                                                          Introduction 
 
 

        

                                                                                                                          36
                                                                                                                               
                                                                                                                               
 
 

(Beers 2000). The possible explanation for this drop in calcium level in the 

serum is due to the intracellular NF-κB activation which requires calcium 

influx into the immune cells (Feske 2007), which is further strengthened under 

acidic condition (Cairns et al., 1993; Trevani et al., 1999). This event causes a 

transitory drop in the extracellular calcium levels at the site of infection where 

the immune cells are present. These transient changes, which cause a drop in 

local pH and calcium levels result from pathogenic metabolic disorder (Morris 

and Low, 2008).  

 Local acidosis and hypocalcaemia have been shown to play a crucial 

role in host defense. It induces stronger interaction between CRP and ficolin, 

which leads to the amplification of complement pathways (Zhang et al., 2009). 

TLRs 3, 7, 8 and 9 all require acidic environment for their activation of the 

endosomes (Iwasaki and Medzhitov, 2004). Extracellular acidosis also has 

implications in boosting the adaptive immune response where it activates 

dendritic cells (Vermeulen et al., 2004) and CD8+ T cells in the peripheral 

tissues to improve MHC class I-restricted antigen presentation by the 

neutrophils (Ackerman and Cresswell, 2004). These studies suggest that pH 

and calcium conditions resulting from inflammation during an infection may 

play a crucial role in favor of the host to eliminate the pathogen. In this thesis, 

we used the simulated infection-inflammation condition referring to pH 6.5 

and 2.0 mM calcium levels while the normal/uninfected physiological 

condition referring to pH 7.4 and 2.5 mM calcium levels, for our in vitro 

studies concerning interaction between the proteins involved during pathogen 

recognition and subsequent clearance. 
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1.3.3.   Complement activation 

The extracellular responses to an infection are triggered and carried out by 

soluble components of the immune system. One of the important components 

of the humoral immune system is the complement. The complement system 

consists of a tightly regulated network of proteins that play an important role 

in host defense and inflammation. Complement activation results in 

opsonization of pathogens, lysis and their removal by phagocytes through the 

process of phagocytosis. Complement also plays an important role in adaptive 

immunity involving T and B cells that help in the elimination of pathogens 

(Dunkelberger and Song 2010; Molina et al., 1996) and in maintaining 

immunologic memory, preventing pathogenic re-invasion.  

Complement activation is known to occur through three different 

pathways: classical, lectin and alternate involving proteins that mostly exist as 

inactive zymogens, which are sequentially cleaved and activated. Antigen-

specific antibodies and ficolins bind to the pathogen and initiate classical and 

lectin pathways, respectively. All the pathways converge at the canonical 

complement C3, which is the most abundant complement protein found in the 

blood. This results in the activation of C3a, C3b, C5a and the formation of the 

membrane attack complex (C5b-9) on the microbial surface leading to lysis 

(Figure 1.15). The complement C3 is known to bind covalently with heavy 

chain of immunoglobulins when in the presence of immune complexes (Sahu 

et al., 1994). Hence, during the course of our study, we will be interested to 

study whether C3 plays a role in helping natural IgG in recognizing the 

pathogen and is involved in subsequent immune response. 



                                                                                                          Introduction 
 
 

        

                                                                                                                          38
                                                                                                                               
                                                                                                                               
 
 

  

Figure 1.15: Activation of the classical, lectin and alternative complement 
pathways.  All the pathways are initiated by different mechanisms, but converge at 
the activation of complement C3. Adapted from Fujita (2002).  
 

 

1.3.4. Phagocytosis 

Phagocytosis is an important process in innate immune defense which results 

in the uptake and removal of the opsonized pathogens by phagocytes. This 

process is accompanied by intracellular signals that trigger diverse cellular 

processes (Figure 1.16), such as cytoskeletal rearrangement, alterations in 

membrane trafficking, activation of microbial killing mechanisms, production 

of pro- and anti-inflammatory cytokines and chemokines, activation of 

apoptosis, and production of molecules required for efficient antigen 

presentation to the adaptive immune system (Aderem and Underhill, 1999; 

Greenberg 1999).  

Phagocytes express a broad spectrum of receptors that participate in 
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particle recognition and internalization. Some of these receptors are capable of 

transmitting intracellular signals that trigger phagocytosis, while other 

receptors appear to participate in binding or to increase the efficiency of 

internalization. One of the prominent phagocytic receptors is the group of Fc 

receptors (FcRs). IgG-opsonized particles are recognized by several surface 

receptors that bind to the Fc region of IgG (FcγRs) (Ravetch and Bolland, 

2001; Daeron 1997). Phagocytes such as macrophages or neutrophils express 

different combinations of FcγRs. FcγRs fall into two classes: (a) receptors that 

contain immunoreceptor tyrosine-based activation motifs (ITAM) in their 

intracellular domains that recruit kinases and activate phosphorylation 

cascades, and (b) receptors that contain immunoreceptor tyrosine-based 

inhibition motifs (ITIM), which recruit phosphatases that inhibit signaling 

(Ravetch and Bolland, 2001; Daeron 1997). Activating receptor with high 

affinity (FcγR1) binds IgG opsonized particles and triggers internalization 

through actin polymerization beneath the particle, membrane recruitment to 

the site of particle contact, membrane extension outward to surround the 

particle, finally leading to particle engulfment (Aderem and Underhill, 1999). 

The efficiency of the process is regulated by co-ligation of the inhibitory FcγR 

(FcγRIIB) (Ravetch and Bolland, 2001). Microbe internalization by FcγR1 on 

phagocytes is usually accompanied by the production of pro-inflammatory 

cytokines like IL8 and activation of antimicrobial mechanisms (Daeron 1997; 

Ravetch and Clynes, 1998). 
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Figure 1.16: Receptor and signaling interactions during phagocytosis of 
microbes. Multiple receptors simultaneously recognize microbes both through direct 
binding and by binding to opsonins on the microbial surface. Receptor engagement 
induces many intracellular signals, resulting in many pathways. Signaling during 
phagocytosis may subsequently serve to activate or inhibit further phagocytosis and 
microbe-induced responses. Many pathogenic microbes actively regulate phagocyte 
responses. Adapted from Underhill and Ozinsky (2002). 
 

1.3.5. Inflammatory response – pro- and anti- inflammatory cytokines 

Inflammation is an ensuing process during infection that involves the 

coordinated delivery of soluble factors and cells in the blood to the site of 

infection or injury. In the case of microbial infection, inflammation could be 

triggered by phagocytes which recognize the pathogen through receptors such 

as TLRs and FcR1 receptors (Barton 2008). The initial recognition is 

mediated by the tissue resident macrophages and mast cells, leading to the 

production of a variety of inflammatory mediators like cytokines, such as IL8 

and TNF, chemokines, vasoactive amines, eicosanoids and products of 
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proteolytic cascades. These effectors elicit the exudate of plasma proteins and 

leukocytes (mainly neutrophils) to the site of infection (Pober and Sessa, 

2007). The activated neutrophils attempt to kill the invading agents by 

releasing the toxic contents of their granules, which include reactive oxygen 

species (ROS) and reactive nitrogen species, proteinase 3, cathepsin G and 

elastase (Nathan 2006). These highly potent effectors do not discriminate 

between microbial and host targets, so collateral damage to host tissues is 

unavoidable (Serhan and Savill, 2005). Therefore, upon arresting the infection, 

host immune cells release anti-inflammatory cytokines like IL10 in order to 

resolve and repair the inflamed host tissues post elimination of the pathogen. 

Failure to resolve the inflammation may result in severe consequences for the 

host, culminating in auto-immunity, inflammatory tissue damage and sepsis 

and eventually death.  
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1.4. Hypothesis, rationale and specific aims of this thesis 
  
Based on published reports and findings from our lab, the following 

observations have been made, which provoked the hypothesis for this thesis: 

1. PRR:PRR interactome formation is a crucial event in innate immune 

defense. For example, CRP and ficolin interact with each other during 

infection to boost anti-microbial response. This phenomenon is 

evolutionary conserved from horseshoe crab (Ng et al., 2007) to humans 

(Zhang et al., 2009).  

2. Infection-inflammation condition result in local acidosis (Issekutz and 

Bhimji, 1982) and hypocalcaemia (Beers 2000), which strengthen 

PRR:PRR interactome formation (Zhang et al., 2009; Zhang et al., 2010), 

leading to efficient elimination of the pathogen. 

3. Amongst the natural antibody isotypes, only natural IgM has been shown to 

be effective against the pathogens, by virtue of its polyreactivity (Boes et al., 

1998; Ochsenbein et al., 1999). Natural IgG and IgA have been deemed 

non-reactive, due to their low affinity. 

4. M- and H-ficolins were shown to interact with IgA (Zhang et al., 2010; 

Panda et al., unpublished data).  

 

Based on the above observations, we hypothesize that: 

Natural IgG and IgA antibodies interact with ficolins, forming a 

formidable PRR:PRR immune complex, to mount a strong immune 

response against pathogens, and this is regulated by the ensuing infection-

inflammation condition. 
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The following specific aims are structured to study and validate the 

potential collaboration of natural antibodies with ficolins and the anti-

microbial action resulting from this interaction. Experiments are designed to 

characterize the IgG:ficolin interaction, study the biological significance of 

this interactome formation at the outset of infection, and show the clearance of 

the pathogen from the host (Figure 1.17).   

1. To determine the potential role of natural IgG, with the aid of ficolins, in 

pathogen recognition and removal. 

2. To characterize the interaction and binding interface between natural IgG 

and ficolin under normal physiological and infection-inflammation 

conditions. 

3. To decipher the mechanism of natural IgG:ficolin-mediated innate 

immune defense. 

4. To examine the patho-physiological significance of natural IgG during in 

vivo primary infection in IgG deficient mice.  
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Figure 1.17: Overview flowchart of the three specific aims designed to test the 
hypothesis.  
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CHAPTER 2: MATERIALS AND METHODS 

All in vitro experiments in this thesis were performed according to national 

and institutional guidelines on ethics and biosafety (Institutional Review 

Board, Reference Codes: NUS-IRB 08-296). Mice breeding and in vivo 

experiments were carried out in compliance with institutional guidelines and 

approved by the Institutional Animal Care and Use Committee, NUS (Protocol 

no.: 108/08, 049/11 and BR14/11). 

 

2.1 Materials 

2.1.1. Bacterial strains  

Pseudomonas aeruginosa strain PAO1 has been previously used in multi-drug 

resistance trials (Kwon and Lu, 2006; Wu et al., 2008), experimental 

simulation of P. aeruginosa infection (Taylor et al., 2007) and biofilm 

formation studies (Richards et al., 2008). The lab-adapted PAO1 (Filiatrault et 

al., 2006; Prince et al., 2008) used in this study was kindly provided by 

Professor B. H. Iglewski (University of Rochester, Rochester, USA). The 

pDSK-GFP plasmid which was subsequently transformed into PAO1 to form 

the green fluorescent PAO1 strain, was kindly provided by Professor Zhang 

Lian-Hui (Institute of Molecular and Cell Biology, Singapore). This pDSK-

GFP plasmid contains GFP functional fragment cloned into the Hind III and 

Sma I sites in the pDSK 519 vector. The fluorescent P. aeruginosa containing 

pDSK-GFP plasmid is henceforth referred to as PAO1-GFP. The 

Staphylococcus aureus (ATCC 25923), Staphylococcus epidermidis (ATCC 

12228) and Escherichia coli Top 10 strains were from ATCC. 
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2.1.2. Mice 

6-8 week old Balb/c and C57BL/6 mice were inbred in “specific pathogen-

free” conditions at the NUS CARE facility. They were transferred to Center 

for Life Sciences, animal bio-safety level 2 (ABSL2) facility for the infection 

experiments carried out under approved protocol no. 108/08. The C3-/- mice 

(Jackson Laboratories) breeding pairs were kindly provided by Dr Sivasankar 

Baalasubramanian (Singapore Institute for Clinical Sciences). The AID-/- mice 

were a generous contribution from Dr Garnett Kelsoe (Duke University, USA), 

obtained with kind permission from Dr Tasuku Honjo (Kyoto University, 

Japan). These knockout mice (both B6 background) were also bred under 

specific pathogen-free conditions under approved breeding protocol no. 

BR14/11. Both males and females were used for the infection study without 

any bias (protocol no. 049/11).  

 

2.1.3. Serum 

Human serum samples were obtained from healthy uninfected adult donors 

with informed consent, under institutional guidelines (IRB Ref. Code: 08-296). 

The concentration of the pooled sera was measured using NanoDrop™ ND-

1000 Scientific, Wilmington spectrophotometer (Thermo Fisher Scientific) to 

ensure that equal amounts of proteins were used in each experiment. Depletion 

of ficolin, IgG or C3 was achieved by incubating the serum overnight at 4˚C 

with anti-ficolin, Protein G or anti-C3 coupled beads, respectively. 10% (v/v) 

simulated “normal” and “infection-inflammation” sera were prepared by 

diluting the normal healthy sera in TBS buffer (25 mM Tris, 145 mM NaCl, 
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pH 7.4, 2.5 mM CaCl2) and MBS buffer (25 mM MES, 145 mM NaCl, pH 6.5, 

2 mM CaCl2), respectively (Zhang et al., 2009). The selection of these buffers 

was based on the criteria of Good’s buffers, the components of which do not 

affect the studies in a biological system, and hence are deemed suitable for use 

in biochemical and biological research (Good et al., 1966). 

 For collection of mice serum, blood was obtained by cardiac puncture 

and allowed to clot at 37˚C for 1 h. The samples were then spun down at 1500 

g for 20 min at 4˚C. Serum was collected by gently aspirating into a clean tube 

and stored at -20˚C.  

 

2.1.4. Biochemicals, antibodies and proteins 

GlcNAc was purchased from Sigma-Aldrich (St. Louis, MO). 

Deoxynucleotide triphosphates (dNTPs) were from Promega. All restriction 

enzymes were from New England Biolabs or Fermentas, unless otherwise 

stated. The horseradish peroxidase substrate, ABTS (2,2’-azino-bis[3-

ethylbenzthiazoline-6-sulfonic acid]) was from Roche Diagnostics (Mannheim, 

Germany). GlcNAc-BSA was from Dextra Laboratories (Reading, UK). 

GlcNAc-Sepharose beads was from Pierce (Rockford). Protein G spin 

columns were from Sartorius and Protein G beads were from GE Healthcare. 

Other common chemicals of molecular biology grade were from Sigma-

Aldrich or Merck, unless otherwise stated. Plasmids containing full functional 

cDNA fragments of L-, H- and M- ficolins, kindly provided by Professor T. 

Fujita (Fukushima Medical College, Fukushima, Japan) were used in the 

subsequent cloning process and functional studies. The full length, FBG and 
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collagen-like domains of L-, H- and M-ficolins were recombinantly expressed 

and purified using Ni-NTA affinity chromatography. Recombinant human 

FcγRI (1257-FC), anti-human FcγRI (MAB1257), anti-H-ficolin (AF2367) 

and anti-goat secondary NL557-conjugated (NL001) antibodies were from 

R&D Systems (Minneapolis). Anti-L-ficolin (HM2091) and anti-M-ficolin 

(HP9039) antibodies were from Hycult. Anti-human IgG (I-1011), anti-mouse 

IgM (-chain specific, M8644), anti-mouse IgA (-chain specific, M8769), 

anti-mouse IgG (g-chain specific, M2650) and anti-actin (A2066) antibodies 

were from Sigma. Human IgG isotypes 1, 2 and 3 specific antibodies, 

detecting the corresponding heavy chain, were from Invitrogen (A10630, 05-

3500 and 05-3600). Anti-mouse ficolin (648102), anti-mouse GL7 (14-5902) 

& Alexa-488 anti-mouse B220 (clone: RA3-6B2, 53-0452) antibodies were 

from BioLegend and eBioscience, respectively. Secondary anti-goat, anti-

rabbit and anti-mouse with HRP-conjugation were from Dako A/S (Denmark). 

Monoclonal anti-Staphylococcus epidermidis (MA1-35789) and polyclonal 

anti-human/mouse C3 (PA1-29715) antibodies were from Thermo Scientific. 

Polyclonal antibodies against Pseudomonas aeruginosa (ab68538), 

Staphylococcus aureus (ab20920) and Escherichia coli (ab25823) were from 

Abcam. Secondary anti-rabbit, anti-mouse, anti-goat and anti-rat antibodies 

conjugated with Alexa-488, Alexa-594 or Alexa-647, were purchased from 

Invitrogen (Carlsbad).  

 

2.1.5. Medium and agar 

Luria Bertani (LB) broth was prepared by mixing 0.5 % (w/v) yeast extract 
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(Difco), 1 % (w/v) tryptone (Difco) and 0.5 % sodium chloride in deionised 

water, and adjusting the pH to 7.0. Synthetic Defined Medium (SD medium) 

was prepared by dissolving 0.67 % (w/v) yeast nitrogen base without amino 

acid (Difco), 2 % (w/v) glucose and appropriate amino acid supplements in 

deionised water, and adjusting the pH to 5.8. Depending on the nutrient 

selection required, one of the following supplements was added to the SD 

medium: 0.074 % (w/v) Trp Dropout (DO) supplement, 0.069 % (w/v) Leu 

DO supplement, 0.064 % (w/v) Trp/Leu DO supplement, or 0.06 % (w/v) 

Trp/Leu/His/Ade DO supplement. For the yeast-three hybrid assay, the ready-

to-use medium of SD-Leu-Trp-His-Met was purchased from Clontech (Palo 

Alto, CA). For preparing the medium where adenine was required, additional 

0.003 % (w/v) adenine hemisulfate was added. LB agar was prepared by 

adding 1.5 % (w/v) agar (Difco) to LB media. For preparing SD agar, 2 % 

(w/v) agar was added to the liquid media. For antibiotic containing media, 

ampicillin or kanamycin was added at final concentration of 100 g/ml or 50 

g/ml respectively, to the medium or agar unless otherwise stated. 

 

2.2. Purification of native H-ficolin from human serum 

Native H-ficolin was purified from uninfected human serum from healthy 

adult donors. The proteins in uninfected human serum were precipitated using 

4-8% PEG 6000 and dissolved in TBST (TBS containing 0.05% Tween-20). 

The proteins were chromatographed through an 8-ml human serum albumin 

(HSA)-conjugated Sepharose 4B column (Tachikawa et al., 1991). The eluate 

was then passed through an 8-ml column containing acetylated-HSA-
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Sepharose 4B beads (Tachikawa et al., 1991). The column was sequentially 

washed with TBST followed by TBST containing 200 mM GlcNAc. H-ficolin 

bound to the column was eluted in two steps: (1) using 1 M Na-acetate, 0.05% 

Tween 20, 10 mM CaCl2, pH 7.5, (2) 10 mM diethylamine, 0.05% Tween 20, 

10 mM CaCl2, pH 11.5. Eluate from the second step was neutralized with 10 

mM Tris-HCl, pH 7.4. The eluted proteins were then concentrated through a 1 

ml MonoQ column (GE healthcare). The bound proteins were further eluted 

with a second buffer containing 1 M NaCl. The eluate buffer was exchanged 

to TBS using centrifugal filter devices with a 3 kDa mol. wt. cut off pore size 

(Amicon Ultra, Millipore).  

 

2.3. Purification of native IgG from human and mice serum 

Native IgG was purified from uninfected human serum or pooled mice serum 

using Vivaspin pre-packed Protein G spin column (Sartorius), according to the 

manufacturer’s instructions. SDS-PAGE (12% resolving gel) under reducing 

conditions and mass spectrometry were used to check the purity and confirm 

the identity of IgG.  

 

2.4. Expression and purification of recombinant ficolins (full-length, FBG 
and collagen-like domain) 

 
The functional fragments of full length or domains (FBG and collagen-like 

domain) of L-, H- and M-ficolins were cloned into mammalian expression 

vector, pSecTag2B (Invitrogen) in frame with the vector sequence as a 

Histidine-fusion clone, recombinantly expressed and purified. 

For protein expression, HEK 293T cells were used as the mammalian 
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host system. HEK293T are derived from HEK 293 cells that stably express the 

simian virus 40 (SV40) large T antigens. Hence, vectors containing the SV40 

promoter and origin can replicate to produce high copy numbers, ranging from 

400-1000 plasmids per cell, within HEK 293T (Ho et al., 2009). Transfection 

into HEK293T was carried out using lipofectamine 2000 (Invitrogen) 

according to the product instructions. The culture supernatant was collected at 

48 h post-transfection. The supernatant was clarified to remove cell debris by 

centrifuging at 1500g for 10 min and passed through a 0.2 m filter. 300 μl 

Ni-NTA beads (Qiagen, Valencia, CA) was added to 30 ml clarified 

supernatant and incubated overnight at 4˚C. The beads were then packed into 

the 10 ml poly-prepTM chromatography column (Biorad, Hercules, CA). The 

beads were washed with 50 ml wash buffer containing 20 mM Tris, 500 mM 

NaCl, pH = 8.0 with 20 mM imidazole (Sigma-Aldrich) to remove non-

specifically bound proteins. The bound recombinant His-tagged proteins were 

eluted out using elution buffer (20 mM Tris, 500 mM NaCl and 250 mM 

imidazole, pH 8.0), into 6 fractions of 120 μl each. 

 

2.5. Analysis of purified proteins 

2.5.1. Bradford protein assay 

The concentration of the protein in solution was assayed using Bradford 

protocol (Bradford 1976). The reagent contains 0.01 % (w/v) Coomassie 

Brilliant Blue G-250, 8.5 % (v/v) orthophosphoric acid and 4.7 % ethanol. For 

protein estimation, 1 ml of the Bradford reagent was mixed with 50 μl of 

diluted protein sample by vortexing. Absorbance was read at OD595 nm after 2 
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min. The protein content in each sample was calculated from a standard curve 

plotted from the absorbance readings of known concentration range of BSA 

(Fraction V, Sigma-Aldrich), ranging from 1 μg to 20 μg. The protein samples 

were measured in duplicates.  

 

2.5.2. SDS-PAGE and Western blot immunodetection 

Equal amounts of serum proteins, purified proteins (IgG, ficolin or IgG:ficolin 

complex) or eluted samples from GlcNAc- or Protein G- bead pulldown 

assays were boiled at 95 oC for 5 min and electrophoresed on 12% SDS-PAGE 

under reducing conditions, and transferred to PVDF (BioRad) membrane for 1 

h at 70 V. The membrane was blocked for 2 h with 5% (w/v) skimmed milk in 

50 mM Tris, pH 7.4, 145 mM NaCl, 0.05% (v/v) Tween-20 (TBST). After 

blocking, the membrane was washed four times with TBST for 15 min each 

and then first probed with the primary antibody (overnight at 4˚C). After 

washing four times with TBST, the membrane was probed with the 

corresponding secondary antibody in the recommended titer for 1 h, and 

washed four times in TBST. The immunosignals were detected using 

Supersignal West Pico Chemiluminescent Substrate (Pierce) and exposed to 

X-ray film (Fujifilm, Japan).  

 

2.5.3. Mass spectrometry 

The proteins were separated on the 12% reducing SDS-PAGE and stained 

with Coomassie blue. The protein band of interest was excised and in-gel 

digested with trypsin (Promega) as previously described (Ng et al., 2007). The 
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trypsinized peptide samples were analysed by matrix-assisted laser desorption 

ionization time-of-flight (MALDI-TOF) using Voyager-DE STR 

Biospectrometry Workstation (Applied Systems) in the Proteins and 

Proteomics Centre, National University of Singapore. The peptide mass and 

sequences were analysed using Matrix Sciences Mascot search 

(http://www.matrixscience.com). 

 

2.6. Simulation of “normal” and “infection-inflammation” conditions in 
uninfected human serum 

 
Infection-inflammation condition is characterized by mild acidosis and 

hypocalcaemia. Local acidosis is a hallmark of infection that occurs due to 

infiltration of inflammatory cells to the site of injury; leading to a respiratory 

burst that result in a drop in local pH to values ranging from 5.5-7.0 (Martinez 

et al., 2006). Simultaneously, serum samples of infected patients have also 

been shown to have lower calcium levels i.e. <2.12 mM calcium (Aderka et al., 

1987), as compared to healthy serum (2.2 to 2.6 mM) (Beers 2000). Therefore, 

we have adopted pH levels of 7.4 and 6.5 and calcium concentrations of 2.5 

and 2 mM to represent “normal” and “infection-inflammation” conditions, 

respectively.  

Henceforth, the two conditions used in the study are defined as: (i) 

normal condition (pH 7.4, 2.5 mM calcium) and (ii) the infection-

inflammation condition (pH 6.5, 2 mM calcium).  The buffers used to dilute 

the serum to simulate these conditions for the in vitro studies are according to 

previous reports from Miyazawa and Inoue, 1990 and Aubert et al., 2006: 

(i) normal condition - TBS buffer containing 25 mM Tris, 145 mM 
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NaCl, pH 7.4 and 2.5 mM CaCl2  

(ii) infection-inflammation condition - MBS buffer containing 25 mM 

MES, 145 mM NaCl, pH 6.5 and 2 mM CaCl2 

 

2.7. Bacterial opsonization and phagocytosis assays 

2.7.1. IgG binding assay on bacteria by flow cytometry 

Cultures of P. aeruginosa PAO1, E. coli Top 10, S. aureus or S. epidermidis 

were prepared for flow cytometry. Briefly, a single colony was inoculated in 

10 ml LB broth overnight (37˚C, 220 rpm) and a secondary culture was 

prepared the following day by diluting the overnight culture with fresh LB 

broth (1:100) and incubating at 37˚C, 220 rpm for 3-5 h till O.D. reached 0.7-

1.0 (bacterial log phase). The bacteria were then fixed with 5% acetic acid for 

5 min at room temperature, and washed thrice with TBS. Next, the bacterial 

surface was blocked to avoid non-specific binding, with 3% (w/v) HSA in 

TBST (blocking buffer) at room temperature for 1 h with shaking. To assess 

the binding of the purified IgG to the bacteria, the bacteria were incubated 

with (i) purified human IgG with or without ficolin and (ii) purified mouse 

IgG with or without IgG-depleted or IgG- and ficolin-depleted serum, for 2 h 

at room temperature. Depleted serum was used to specifically study the role of 

ficolin in enabling IgG deposition on the bacteria. Bacteria were then washed 

to remove the unbound proteins and stained with primary anti-human IgG 

(1:500) or anti-mouse IgG (1:500) (Sigma), followed by staining with Alexa 

488-conjugated secondary anti-goat (1:500). Bacteria incubated with specific 

primary antibody and stained with corresponding Alexa 488-conjugated 
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secondary antibody (1:500) served as a positive control. The bacteria were 

washed thrice with TBST and fixed with 4% paraformaldehyde for 15 min. 

After three washes, the bacteria were diluted in PBS (140 mM NaCl, 10 mM 

phosphate, 2.7 mM KCl, pH of 7.4) which was also the running buffer for the 

flow cytometry. Flow cytometry was performed using the Dako Cyan 

Cytomation LX (Becton Dickinson). The counts were analyzed by WinMDI 

version 2.8.  

 

2.7.2.   Phagocytosis assay 

To assess the degree of bacterial phagocytosis by primary human monocytes, 

GFP tagged P. aeruginosa (PAO1-GFP) were cultured in LB broth containing 

25 µg/ml kanamycin selection medium for GFP plasmid containing bacteria, 

in a similar manner as previously described (Section 2.7.1). For the 

phagocytosis assay, the GFP-bacteria were incubated with IgG, ficolin or both 

the proteins at room temperature for 2 h in 500 l of “normal” or “infection-

inflammation” buffers to opsonized the GFP-bacteria (1:10 diluted uninfected 

serum served as a positive control and IgG with HSA served as a negative 

control). The opsonized GFP-bacteria (107 cfu) were incubated with 106 

human monocytes in a ratio of 10:1 at 37˚C for up to 60 min. Phagocytosis 

was stopped by adding 1 ml ice-cold PBS. Following incubation, the 

monocytes were collected, washed thrice with TBS or MBS buffers and fixed 

with 4% paraformaldehyde (PFA). The extent of phagocytosis was assayed by 

counting the percentage of monocytes with GFP fluorescence (a measure of 

the degree of phagocytosis), by flow cytometry using the Dako Cyan 
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Cytomation LX (Becton Dickinson). 

 

2.8. In vitro protein:protein interaction assays 

2.8.1. Yeast 2-hybrid assay 

In yeast 2-hybrid assay, full-length or specific domains of L-, H- or M-ficolins 

and IgG or IgA cDNAs (without their signal sequences) were cloned to 

generate fused products with the DNA-binding domain of Gal4 in the bait 

plasmid pGBKT7 (BD Biosciences), or the activation domain of Gal4 in the 

prey plasmid pGADT7-Rec (BD Biosciences) (Figure 2.1), and then co-

transformed into S. cerevisiae, strain AH109. The co-transformants were 

cultured on the SD-Trp-Leu- plates to check for the presence of both plasmids, 

and onto SD-Trp-Leu-His-Ade (QDO) plates for up to 5 days to check for 

protein:protein interaction. Selection was carried out according to the 

manufacturer’s instructions. Reciprocal cloning of the cDNA was also 

performed into prey and bait plasmids and the interaction were confirmed in a 

similar manner as described above.  

 

 
 
 
 
 
 
 
 
 
 
 
Figure 2.1: BD MatchmakerTM Two-hybrid system vector map of bait vector 
(pGBKT7) and prey vector (pGADT7). pGBKT7 is a bait vector that encodes the 
GAL4 DNA-binding domain (BD) and the Trp selection marker. pGADT7 is a prey 
vector that encodes GAL4 activation domain (AD) and the Leu selection marker. 
Picture adapted from http://catalog.takara-bio.co.jp/clontech/product/basic_info. 
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2.8.2. Yeast 3-hybrid assay 

Yeast 3-hybrid system was performed to test the potential protein:protein 

interactions amongst H-ficolin, IgG and FcR1. The cDNA cloned into MCS I 

site in the bait vector codes for a protein that can participate in the interaction 

as a bridge or a stabilizer or an inhibitor, in this system (Figure 2.2). H-ficolin 

in pGADT7 vector was used as prey. IgG and FcR1 were cloned into MCS I 

and MCS II sites, respectively, of the pBridge bait vector. FcR1 cDNA 

cloned into MCSII site was constitutively expressed. Expression of IgG (in 

MCS I site) was controlled by a conditional methionine promoter, which 

means that IgG was expressed only in the presence of methionine. This allows 

expression to be switched on or off by culturing in media with or without 

methionine. The bait and prey vectors were co-transformed into the yeast, 

which were then plated onto SD-Trp-Leu- and cultured for 3 days. The 

transformants were then re-streaked onto the SD-Trp-Leu-, QDO, and QDO-

Met plates for 5 days. The growth of the yeast in the QDO-Met plates would 

indicate a complex between H-ficolin, IgG and FcR1. All cloning vectors and 

culture media used in yeast 2- and 3-hybrid assays were from Clontech (Palo 

Alto, CA).  
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Figure 2.2: Schematic diagram of yeast three-hybrid system. pBridge expresses 
both the DNA-BD fusion and the third protein acting as a bridge between the proteins. 
The activation domain fusion is expressed from a separate two-hybrid system vector. 
The conditionally expressed third protein can play a structural bridging, modifying or 
inhibitory role in the interaction that restores reporter gene expression. Adapted from 
http://www.clontech.com/images/pt/PT3212-5.pdf. 
 
 
2.8.3. ELISA for measurement of protein:protein binding 

ELISA was performed to test the interaction between specific IgG isotypes 

(IgG1, IgG2, IgG3) to ficolin (pre-bound to GlcNAc) or the binding of IgG to 

full-length or specific domains (FBG or collagen-like domain) of ficolin. 

Briefly, 1 µg of GlcNAc-BSA was immobilized onto Maxisorp™ plate 

(NUNC, Denmark) by incubating overnight at 4˚C. The wells were washed 

three times with TBST, followed by blocking with 1% (w/v) HSA in TBST 

(blocking buffer) at 37˚C for 2 h. After three washes, 0.8 µg of either L-, H- or 

M-ficolin (full-length, FBG or collagen like domains) was added and 

incubated at 37˚C for 2 h. Then, increasing doses of purified IgG or uninfected 

human serum were added and incubated at 37°C for 2 h. After washing the 

wells thrice with TBST to remove unbound proteins, the bound IgG was 
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detected with primary anti-human IgG antibody (1:3000) followed by HRP-

conjugated secondary antibody (1:3000). After adding ABTS substrate (Roche 

Diagnostics, Germany) and incubating for 15 min, the absorbance was read at 

405 nm. Wells incubated with HSA on ficolin pre-bound to GlcNAc served as 

a negative control. Previously, it has been reported that MBS was used to 

adjust the serum condition to achieve acidosis (Miyazawa and Inoue, 1990). 

Thus MBS containing 25 mM MES, 145 mM NaCl and 2 mM calcium 

adjusted to pH 6.5 (infection-inflammation condition), and TBS containing 25 

mM Tris-HCl, 145 mM NaCl and 2.5 mM calcium, adjusted to pH 7.4 (normal 

condition) were used as the binding buffers to study the effect of ensuing 

change in pH and calcium levels on protein:protein interaction under 

infection-induced local acidosis and hypocalcaemia as compared to normal 

physiological condition. 

 

2.8.4.   Surface Plasmon Resonance (SPR) 

BIAcore 2000 instrument (BIAcore AB) was used to demonstrate real-time 

biointeraction between the proteins. For generating a bacterial surface mimic, 

GlcNAc-immobilized chip was prepared by diluting GlcNAc-BSA (Dextra 

Labs, UK) to 10 μg/ml with 10 mM sodium acetate, pH 4.0 and immobilizing 

on CM5 chip (BIAcore AB) using amine-coupling chemistry, according to the 

manufacturer’s specifications. Ficolin FBG at 200 nM was allowed to bind to 

the GlcNAc-immobilized chip. To characterize binding of IgG or its peptides 

to ficolin, separate injections of increasing concentrations of IgG or its 

peptides under normal or infection-inflammation condition were performed at 
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a flow rate of 30 µl/min. Dissociation was at the same flow rate. Regeneration 

was effected by injecting 15 µl of 0.1 M NaOH at 30 µl/min.  

To study the interaction between ficolin FBG or its peptides and IgG 

bound to FcR1, first CM5 chip was immobilized with FcR1 using amine-

coupling chemistry, to generate a monocyte surface mimic. Then 50 nM IgG 

in running buffer was injected over FcR1-immobilized chip followed by 

separate injections of increasing concentrations of ficolin FBG or its peptides 

under normal or infection-inflammation condition. Injection of HSA instead of 

ficolin FBG served as the negative control. BIAevaluation 3.2 software was 

used to calculate the binding affinity (KD) using 1:1 Langmuir binding model. 

KD = koff/kon ; where koff = dissociation rate constant (M-1s-1) and kon = 

association rate constant (s-1). All the surface plasmon resonance curves used 

in KD calculation were normalized against buffer alone controls. The 

resonance unit difference before and after injection represents the protein-

protein interaction. The binding curves (black) are overlaid with the fit of 1:1 

interaction model (red). The plots shown are representative of three 

independent experiments.  

 

2.9. Cell culture and transfection 

2.9.1.   Isolation of primary human monocytes from buffy coat 

Buffy coat was obtained from the NUHS Blood Bank (IRB Approval No: 08-

296). Peripheral Blood Mononuclear Cells (PBMCs) were purified from the 

buffy coat by ficoll-hypaque (Sigma-Aldrich) gradient centrifugation 

according to a standard protocol (Cao et al., 2005). Primary human monocytes 
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were further purified by magnetic cell sorting using the EasySep Monocyte 

Isolation Kit (Stem Cell Technologies) according to the manufacturer’s 

instruction. 

 

2.9.2. Cell culture 

The primary monocytes and U937 cells were cultured at 37°C in RPMI 1640 

(Invitrogen) supplemented with 10% (v/v) FBS (Invitrogen), 100 IU/ml 

penicillin and 100 g/ml streptomycin (Invitrogen). HEK293T cells were 

cultured in DMEM (Invitrogen) supplemented with 10% FBS, 100 IU/ml 

penicillin and 100 g/ml streptomycin. 

 

2.9.3. Transfection by Lipofectamine 2000 

HEK 293T cells were transfected with the cloned expression plasmids using 

LipofectamineTM 2000 (Invitrogen) according to the manufacturer’s 

instructions. Briefly, 24 h prior to transfection, the cells were plated in a 75 

cm2 culture flask (Iwaki, Japan) at a density of 1x 106 cells/ml with 20 ml of 

supplemented DMEM containing 1% penicillin-streptomycin and 10% FBS to 

achieve 90-95% confluency at the time of transfection. The medium was 

replaced with 18.75 ml of pre-warmed (37˚C) un-supplemented DMEM just 

before transfection. An aliquot of 30 μg DNA (pSecTag2B containing ficolin 

full-length, FBG or collagen-like domain genes) and 75 μl of LipofectamineTM 

2000 were individually diluted in 1.875 ml of un-supplemented DMEM and 

pre-incubated for 5 min at room temperature. The diluted DNA was added to 

the diluted LipofectamineTM 2000 followed by incubation for 20 min at room 
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temperature. The complexes constituting DNA to LipofectamineTM 2000 at a 

ratio of 1:25 (w/v) was then added to the cells and incubated at 37˚C, 5% CO2 

for 6 h before replacing the medium with supplemented DMEM.  

 

2.10. Characterization of binding sites between ficolin and IgG 

2.10.1. Hydrogen deuterium exchange mass spectrometry (HDMS) 

To determine the interaction interface between IgG and H-ficolin, hydrogen–

deuterium exchange mass spectrometry (HDMS) (Schuster et al., 2008) was 

performed under normal and infection-inflammation conditions. The 

experiment was performed by first combining 2 µl each of the protein 

solutions at concentrations of ~2.5 mg/ml with 18 µl of a deuterated buffer, 

which changed the composition of the aqueous buffer to 90% deuterium oxide. 

After incubating for 0, 1, 2, 5, or 10 min, the hydrogen–deuterium exchange 

reactions were quenched by the addition of 180 µl of ice-cold, 0.1% (v/v) 

trifluoroacetic acid (Sigma-Aldrich) to lower the pH of the reaction to 2.5. An 

aliquot of 100 µl of the quenched reaction was then mixed with 50 µl pepsin 

bead slurry (Pierce), previously activated by washing three times in 500 µl 

0.1% trifluoroacetic acid, pH 2.5, at 4˚C. After mixing with pepsin, the 

mixture was vortexed for 30 s followed by incubation on ice for 30 s. This 

alternating cycle was repeated for 5 min. The exchanged mixture was then 

centrifuged for 1 min at 7000g at 4°C, divided into three aliquots, flash-frozen 

in liquid N2, and stored at -80°C until analyzed. The pepsin-digested protein 

was analyzed by mass spectrometry with MALDI using the 4800 Plus MALDI 

TOF/TOF Analyzer (Applied Biosystems, Foster City, CA). Deuterium back-
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exchange that might have occurred during the analysis was determined by 

carrying out control experiments where the IgG and H-ficolin were 

individually deuterated for 24 h at 25°C. Figure 2.3 demonstrates an overview 

of the process involved in HDMS.  

 
 
Figure 2.3: The concept and experimental procedure of hydrogen-deuterium 
exchange mass spectrometry (HDMS).  The hydrogen-deuterium exchange is done 
by continuous labeling. Briefly, D2O buffer is added to a protein solution such that 
the final deuterium incorporation is >90%. After a set period of time, the labeled 
protein is mixed with ice cold 0.1% Trifluoroacetic acid (TFA) at pH 2.5 to quench 
the exchange reaction. Quenched samples are digested with pepsin to generate 
peptides that are subsequently analyzed by online MALDI-MS. The resulting data 
analysis provides information on deuterium-exchange in short fragments of the 
peptide backbone, and thus is termed the local exchange analysis. Adapted from 
Thomas et al., 2005, with modifications.  
 

The HDMS spectra obtained from mass spectrometry were analyzed 

using Data Explorer version 4.9 based on the theoretical mass of two 

prominent peptides (theoretical m/z = 932.42 and 1452.73). The average mass 

of a peptide was calculated by determining the centroid of its isotopic 

envelope using Decapp software (University of California San Diego, La Jolla, 

CA). Differences between the centroid value of the deuterated and non-
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deuterated peptides indicates the average number of deuterions incorporated. 

Exchange at side chains was determined to be 4.5% of fast-exchanging side-

chain hydrogen atoms based on dilution factors. Data analysis corrected for 

the side-chain deuteration was carried out prior to back-exchange correction. 

Finally, a correction factor was applied to account for the amount of back 

exchange. Kinetic plots of deuteration best fit were made to a single 

exponential model accounting for deuterions that were exchanging at a rapid 

rate (mainly solvent-accessible amides). The best fit was implemented in 

GraphPad Prism version 5 (GraphPad Software, San Diego, CA). Changes in 

deuterium incorporation of > ±10% were considered significant. 

 

2.10.2. Computational prediction of binding sites of IgG:ficolin 

In collaboration with Dr. Yang Lifeng (Postdoctoral fellow, SMA-CSB), we 

performed parallel in silico prediction of the binding sites between H-ficolin 

FBG and human IgG. 

 

Molecular Dynamics simulation 

The crystal structures of the monomers of H-ficolin FBG (ligand-free; PDB 

entry code: 2J64) and human IgG Fc (PDB entry code: 1H3Y) were used for 

molecular dynamics simulations at constant pH. The structure simulations 

were conducted with a 30 Å cut-off and a 2 fs time step based on the 

Generalized Born implicit solvation model (Mongan et al., 2004). A constant 

value for the dielectric constant was used during the simulations in water. A 2 

ns simulation was conducted at a constant temperature of 300 K. AMBER 
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simulations were conducted with the sander module in the AMBER 9.0 MD 

package with all simulation parameters. The simulated structure was used for 

Zdocking. 

 

Zdock and Rdock 

The models were subjected to energy minimization in Discovery Studio 2.5 

(Accelrys Inc.) and used as the template in the following simulations. Docking 

of H-ficolin FBG and IgG Fc is based on the ZDOCK and RDOCK programs 

developed at Boston University. ZDOCK is a rigid-body protein-protein 

docking algorithm, followed by RDOCK, an interface refinement 

minimization algorithm. It was used to explore the rotational and translational 

space of a protein-protein system. The averaged structure was extracted at 

equal intervals from the last 1 ns MD simulation and used as the starting 

structures for ZDOCK simulations. An angular step of 6 deg was used, which 

results in 54000 poses. In the refinement stage of RDOCK, the 2000 best 

poses of near native structures obtained in the initial stage were refined and re-

ranked using a more detailed energy function that took into account 

conformational changes as well as a solvation term. 

The top 100 poses were then categorized into different clusters, and the 

top poses which fitted with our experimental data were selected for further 

analysis. 

 
2.10.3. Site-directed mutant peptides 

Based on in silico predictions and HDMS studies, we designed wild type and 

mutant peptides (Arg to Ala, Lys to Ala or His to Ala mutations) of H-ficolin 
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or IgG to study their binding motifs to the cognate proteins. The peptides were 

synthesized by Genemed Synthesis Inc., California, USA, and purified 

to >95% under pyrogen-free condition. Peptides were dissolved in water to 

make a 2 mM stock solution, aliquoted and stored at -20˚C. The binding of 

these peptides to the proteins was tested by SPR under normal and infection-

inflammation conditions, as described in Section 2.6. 

 

2.11. In vitro functional study of the impact of IgG:ficolin recognition of 
PAMP/bacteria  

 

2.11.1. PAMP stimulation 

Primary monocytes were plated at a cell density of 0.5 x 106 cells/ml/well into 

24-well plates for 12 h prior to the experiment. GlcNAc-Sepharose beads 

(used as a bacterial mimic) were incubated with either IgG, ficolin or both for 

30 min. The opsonized bacterial mimic was added to the replicate wells to 

stimulate the monocytes. The medium and cells were collected after 24 h, 

separated by centrifugation and processed further. 

 

2.11.2. Measurement of cytokine production 

For IL8 measurement, the primary human monocytes were plated at a density 

of 0.5 X 106 cells/ml/well into 24-well plates. The cell culture medium, 

advanced RPMI, was renewed before addition of opsonized GlcNAc beads 

(Section 2.11.1). To test the functional significance of FcR1 in IgG:ficolin 

mediated PAMP recognition and signaling, the monocytes knocked down of 

FcR1 were treated under similar conditions. Cell supernatant was collected 
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24 h after stimulation, clarified by centrifugation at 1000g for 5 min at 4oC 

and diluted 100 times before ELISA. Secreted IL8 was quantified with 

OptEIA human IL8 ELISA (BD Biosciences) immunoassay kit according to 

the manufacturer’s instructions. The absorbance was read at 405 nm.  

 

2.12. Cellular protein:protein interaction assays 

2.12.1. In situ proximity ligation assay (PLA) 

 
To determine cellular protein:protein interaction, in situ proximity ligation 

assay (PLA) was performed using the Duolink detection 563 kit (Olink 

Biosciences, Uppsala, Sweden) following the manufacturer’s instructions. The 

technique of in situ proximity ligation assay was developed by Soderberg and 

colleagues to study protein:protein interactions in cells (Soderberg et al., 

2007). Target protein is recognized by binding a "probe" consisting of a pair 

of proteins attached to DNA onto the target protein. It can readily detect and 

localize protein interactions without the need for tedious genetic engineering 

to tag and over-express proteins, thus providing us a convenient way to study 

membrane protein interactions. Therefore, endogenous protein interactions in 

situ in cells and tissue can be visualized using regular immuno-staining 

antibodies combined with the generic Duolink™ kit. Each pair of 

protein:protein interaction is visualized as a red fluorescent dot. The principle 

of PLA is summarized in Figure 2.4.  



                                                                                         Materials and Methods 
 
 

        

                                                                                                                          68
                                                                                                                               
                                                                                                                               
 
 

 

Figure 2.4: An overview of proximity ligation assay. The cells were first incubated 
with the proteins, then incubated with the compatible primary antibodies, followed by 
Duolink plus and minus secondary antibodies, conjugated with oligonucleotides. 
Subsequently, two connector oligonucleotides were added to hybridize with the 
complementary oligonucleotides conjugated to antibodies, followed by ligation to a 
closed circle. Rolling-circle amplification (RCA) using the ligated circle as a template 
generated concatemeric (repeated sequence) products. Fluorescently labeled 
oligonucleotides that were hybridized to the RCA product generated a distinct 
fluorescent dot when visualized by fluorescence microscopy. Adapted from 
http://www.immunoportal.com/modules.php. 

 

Primary monocytes or U937 or HEK293T were plated at a density of 

0.5 X 106 cells/ml/well onto 12-well plates with cover slips (Sterilin, London, 

UK) for 24 h before the assay. The cells were incubated with GlcNAc-beads 

pre-opsonized with IgG, ficolin or both for 20 min at 37˚C. Cells were washed 

once with PBS (137 mM NaCl, 10 mM phosphate, 2.7 mM KCl; pH is 7.4) 

and fixed with 4% (w/v) paraformaldehyde (Sigma-Aldrich) in PBS. The 

interactions between IgG:ficolin, IgG:FcR1 and ficolin:FcR1 were detected 

using compatible primary goat anti-ficolin:rabbit anti-IgG, rabbit anti-

IgG:mouse anti-FcR1 and goat anti-ficolin:mouse anti-FcR1, respectively. 
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The secondary anti-rabbit PLUS, anti-mouse MINUS, anti-goat MINUS and 

anti-goat PLUS probes were from Olink Biosciences. Samples without 

primary antibodies served as experimental negative controls. Samples 

incubated with GlcNAc-beads pre-incubated with IgG and HSA were the 

biological negative control for protein:protein interaction. The two 

oligonucleotides present in the two PLA probes will hybridize if they are in 

close proximity (as in protein-protein interaction) during the hybridization step. 

Following that, the two hybridized oligonucleotides were ligated by Duolink 

ligase, amplified by Duolink Polymerase and detected by red fluorescently 

labeled oligonucleotides, which are visible under microscopy. The procedures 

for detection were according to the manufacturer’s instructions. PLA signals 

(each red dot signifying an interaction) were visualized using LSM 510 Meta 

Confocal Laser Scanning system (Carl Zeiss). All images were taken through 

a 100x oil immersion lens. 

 

2.12.2. Co-localization assays by immuno-florescence 

For co-localization analysis of IgG:ficolin, IgG:FcR1 or ficolin:FcR1 (with 

or without IgG), cells were plated onto 12-well plates with coverslips (Sterilin, 

UK) at a density of 0.5 X 106 cells/ml. The cells (human primary monocytes 

or U937 cell line) were then incubated with the GlcNAc-beads pre-opsonized 

with the proteins for 20 min at 37oC, after which they were washed thrice with 

PBS and fixed in 4% paraformaldehyde for 15 min. Non-specific staining 

between the primary antibodies and the cells was blocked by incubating in 

blocking buffer (3% BSA in PBS) for 30 min at room temperature. Then, the 



                                                                                         Materials and Methods 
 
 

        

                                                                                                                          70
                                                                                                                               
                                                                                                                               
 
 

cells were incubated with the respective primary and secondary antibodies 

diluted in incubation buffer (3% BSA in PBS containing 0.05% Tween 20) for 

60 min at room temperature and washed thrice with PBS containing 0.05% 

Tween 20. To stain the nucleus, a drop of Prolong Gold antifade reagent with 

DAPI (Invitrogen) was added. Imaging was performed using an LSM META 

510 confocal microscope (Carl Zeiss) under a 63x/100x oil objective. 

 

2.13. siRNA knockdown studies 

2.13.1. In vitro knockdown of FcR1 in human monocytes 

FcR1 was silenced by transfecting 106 primary monocytes with 0.8 g siRNA 

pool (Dharmacon ON-Targetplus siRNA pool) using Amaxa Human 

Monocyte Nucleofector kit, Nucleofector program Y-001 (Amaxa, MD) 

according to the manufacturer’s instructions. Transfections were performed 

within 2 h of cell plating. Control siRNA pool (Dharmacon ON-Targetplus 

non-targeting pool) was used for comparison. The knockdown effect of siRNA 

was checked by Western blotting at 72 h post-transfection. Whole cell lysates 

of control and target siRNA-treated cells were probed with FcR1 and actin 

antibodies to check the efficiency of FcR1 depletion. 

 

2.13.2. In vivo knockdown of IgG in mice 

We generated IgG-knockdown mice to study the loss of function of natural 

IgG in uninfected mice during infection. The ficolin level was maintained, as 

it is known that the general function of ficolin may be compensated by other 

plasma proteins.  
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Implantation of osmotic pump for continuous release of IgG-siRNA 

Alzet pumps are miniature infusion pumps that are routinely used for systemic 

administration of drugs or siRNA into mice, when implanted subcutaneously. 

Owing to the unique mechanism by which these pumps operate, compounds of 

any molecular conformation can be delivered predictably at controlled rates, 

independent of their physical and chemical properties (Alzet.com).  

IgG-expression knockdown in 8-week old Balb/c mice was generated 

using validated IgG siRNA, a method which is used for in vivo gene 

knockdown (http://www.alzet.com/research_applications/siRNA.html). The 

siRNAs were from Ambion (sense: 5’3’ GGAUGGUGAAACUAAAUAUtt; 

antisense: 5’3’ AUAUUUAGUUUCACCAUCCtc). HPLC-purified and 

endotoxin-tested non-targeting siRNA (Ambion) was used as a negative 

control. The siRNA were dissolved in pyrogen-free PBS before use. 15 or 30 

nmol/kg/day siRNA, viz, 0.2 or 0.4 mg/kg/day, respectively) or PBS was 

infused for 14 days into the mice through subcutaneously implanted osmotic 

minipumps (1002, Alzet) according to manufacturer’s instructions (Figure 

2.5).  

For the subcutaneous implantation of the pump, the site chosen was on 

the dorsum, slightly caudal to the scapulae such that the pump does not put 

pressure on vital organs or impede respiration.  Briefly, the mouse was 

anaesthetized with 1:1 mixture of ketamine (0.2 ml/kg) + xylazine (0.2 ml/kg). 

An incision was made 1.5 times the diameter of the pump perpendicular to the 

pump’s longitudinal axis. The subcutaneous tissue was spread to create a 

pocket for the pump. The pocket should be large enough to allow some free 
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movement of the pump but not so large that it will slip. The pump should not 

rest immediately beneath the incision. Then, the filled osmotic pump was 

inserted, delivery portal first. The wound was closed with suture. The mouse 

was injected subcutaneously with analgesic buprenorphine (2.5 mg/kg; 0.1 

ml/kg) and saline (0.2 ml/kg) and the wound was treated with topical 

antibiotic, banocin, for two consecutive days post-surgery to expedite recovery. 

This procedure was performed under the training of a professional veterinarian 

(Dr. Enoka Bandularatne, Comparative Medicine, NUS).  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 2.5: Cross-section of the osmotic pump used for sub-cutaneous 
administration of PBS, control or IgG siRNA into mice. The figure shows the 
design, components and mechanism of action of the action which pumps the siRNA 
solution at a constant rate or 14 days. Adapted from 
http://www.alzet.com/downloads/book_chpt.pdf.  
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Measurement of IgG levels in serum   

IgG concentration was determined in the pooled mice serum by using a 

commercial ELISA kit (Roche) according to manufacturer’s instructions. 

Briefly, wells were incubated with 50 l capture antibody overnight at 4˚C, 

followed by three washes with the wash buffer (0.9% w/v NaCl containing 

0.1% v/v Tween-20). Then, they were incubated with blocking buffer (TBS 

containing BSA, 1% w/v) for 2h at room temperature. Following three washes, 

50 l standard and serum samples (diluted in blocking buffer) were added and 

incubated for 2h at room temperature. The wells were then washed thrice 

followed by incubation with 50 l conjugate antibody for 1 h. Finally, the 

wells were washed to remove any unbound antibody and incubated with 50 l 

ABTS substrate solution for 1h prior to reading at OD405 nm.  

 

2.14. In vivo infection of mice with P. aeruginosa 

Culture of P. aeruginosa PAO1 was prepared as described previously (Section 

2.7.1) and 106 or 107 cfu were injected into mice intravenously through the tail 

vein. Briefly, the mice were weighed prior to the injection and the injection 

volume determined by the weight of the animal, i.e. 10% of the body weight. 

The mice in the cage were placed near a heat lamp to increase the blood  

flow to the tail. Then, they were transferred to restrainer to restrain their 

mobility while allowing access to the tail vein. The tail was next sanitized by 

wiping with alcohol swab. The needle was inserted just far enough to get the 

bevel inside the vein and kept as flat and parallel as possible to the tail. After 

removing the needle, the site was held with gauze to stop bleeding.  
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2.15. Ex vivo protein:protein interaction assays 

2.15.1. IgG:ficolin complex detection in mice serum by Co-IP 

IgG:ficolin complexes were pulled down by adding 20 l Protein G Sepharose 

to equal amounts of serum and incubating for 1 h at 4˚C with shaking. Serum 

incubated with only Sepharose beads acted as a negative control. The beads 

were washed thrice with PBS and boiled in reducing loading buffer 

(containing -mercaptoethanol) and electrophoresed on 12% SDS-PAGE 

under reducing conditions. Ficolin that was previously pulled down by the 

beads (through its interaction with IgG) was detected by Western blot using 

anti-ficolin antibody. 

  

2.15.2. Tissue co-localization assays by immuno-florescence 

Mice were euthanized, and spleen and liver tissues were removed, washed in 

PBS and immediately frozen in Jung tissue freezing medium (Leica 

Microsystems) using liquid nitrogen. Tissues were sectioned at a thickness of 

5 m using Leica Cryostat 1850 and mounted onto Superfrost* Plus slides 

(Fisher Scientific). For co-localization analysis of IgG:ficolin, the slides were 

first fixed in 4% paraformaldehyde for 15 min. After three washes with PBS, 

non-specific staining between the primary antibodies and the tissue was 

blocked by incubating in blocking buffer (3% BSA in PBS) for 30 min at 

room temperature. Then, the tissue section was incubated with the respective 

primary and secondary antibodies diluted in incubation buffer (3% BSA in 

PBS containing 0.05% Tween 20) for 60 min at room temperature and washed 

thrice with PBS. To stain the nucleus, a drop of Prolong Gold antifade reagent 
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with DAPI (Invitrogen) was added. Imaging was performed using an LSM 

META 510 confocal microscope (Carl Zeiss) under a 100x oil objective. 

 

2.16. Assessment of extent of infection and damage in tissues of mice 

2.16.1. Bacterial load determination 

Mice were infected intravenously through tail vein injection with 106 or 107 

cfu P. aeruginosa for the indicated time. For bacterial counts in the spleen, 

liver, lung and serum were collected and resuspended in PBS, excised into 

small pieces, mixed with 5 mg/ml saponin, and incubated for 10 min at 37˚C 

to release the internalized bacteria. The samples were centrifuged at 1200g for 

10 min, resuspended in PBS, serially diluted, and plated on LB agar plates, 

and viable bacterial counts were scored after overnight incubation at 37oC.  

 

2.16.2. Measurement of cytokine levels in pooled serum 

Blood was collected from infected or uninfected mice by cardiac puncture, 

allowed to clot, spun down at 1000g for 5 min and serum was collected. IL6, 

TNF and IL10 concentrations were determined in the pooled serum by using 

commercial ELISA kits (BD Biosciences) according to manufacturer’s 

instructions. Briefly, the capture antibody in recommended dilution was 

immobilized onto Maxisorp™ plate (NUNC, Denmark) by incubating 

overnight at 4˚C. The wells were washed three times with PBST, followed by 

blocking with PBS containing 10% FBS (assay diluent) at room temperature at 

1 h. After two washes, standards and serum diluted in assay diluent were 

added and incubated at room temperature for 2 h. After washing the wells 5 
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times with PBST, the bound mouse IL6, TNF and IL10 were detected with 

respective working detector solution (detection antibody + SAv-HRP reagent). 

Following 7 washes to remove any unbound antibody, substrate solution 

(TMB and hydrogen peroxide) (BD OptEIATM) was added and the OD450 

nm was read within 30 min. 

 

2.16.3. Hematoxylin and eosin staining of liver 

Tissues were isolated from mice, embedded in tissue freezing medium (Leica 

Microsystems) and flash frozen in liquid nitrogen. The frozen moulds were 

stored in -30˚C until further use. 5 m thick sections were cut using the Leica 

cryo-sectioning machine at -27˚C.  The sections were carefully mounted onto 

Superfrost* Plus slides to avoid air bubbles. After air drying for 15 min, the 

sections were fixed with 4% paraformaldehyde for 15 min and washed 3 times 

with PBS.  

 Hematoxylin and eosin staining is a widely used technique to observe 

tissue morphological changes. The method involves application of hemalum, 

which is a complex formed from aluminum ions and oxidized haematoxylin, 

that colors nuclei of cells blue. The nuclear staining is followed by 

counterstaining with an aqueous or alcoholic solution of eosin Y, which colors 

cytoplasmic structures in various shades of red, pink and orange based on 

constitution. 

 The method included staining the sections with hematoxylin for 5 min 

followed by a quick wash with 0.1% hydrochloric acid for 2 s. The slides were 

left under gentle and indirect running water until the solution was clear. Then, 
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the slides were counter-stained with eosin for 30 s, followed by a quick wash 

to remove any unbound dye. The slides were then dehydrated in a series of 

dehydration steps for 2 min each in: 75% ethanol, 90% ethanol, absolute 

ethanol and xylene. The slides were pat dried and a drop of mounting agent 

(DPX moutant, BDH Chemicals Ltd) was added on the tissue slide prior to 

adding the cover slip (0.13-0.16 mm thick, Menzel Glaser). Images were taken 

using Mirax Midi microscope (Carl Zeiss) using 2x and 20x lens 

magnification and offline analysis was done using Mirax viewer software 

(Carl Zeiss).  

 

2.16.4. Germinal center detection by immunostaining of spleen 

The germinal centers (GCs) are sites of B cell activation during an immune 

response (MacLennan 1994; Victora and Nussenzweig, 2012). Hence, the 

extent of infection was assessed by studying development of germinal centers. 

Spleen tissue was frozen, sectioned and fixed using a similar protocol as 

mentioned above for making liver sections. The slides were rehydrated in PBS 

for 10 min and blocked for 1 h at room temperature using blocking buffer (3% 

BSA in PBST). Next, the samples were incubated overnight with anti-B220 

(B-cell specific), anti-GL7 (germinal center specific) and anti-P. aeruginosa 

antibodies at 4˚C to detect GC B cells and P. aeruginosa in spleen sections. 

The slides were washed 3 times for 15 min each in PBS. Then, they were 

incubated with Alexa 594 anti-rat secondary antibody (1:500) for 1 h at room 

temperature. Following 3 washes with PBS, the slides were mounted with 

DAPI containing mounting media and visualized at 100X magnification, using 
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an LSM META 510 confocal microscope (Carl Zeiss, Germany). 

 

2.16.5. Calculation of germinal centers per mm2 of white pulp area of 
spleen 

 
The germinal centers (GCs) per mm2 of white pulp area were calculated as 

previously described (Weinstein et al., 2008). Briefly, the frozen sections were 

cut at 5 m thickness, mounted onto Superfrost* Plus slides, fixed with 4% 

PFA and stained with hematoxylin and eosin. The total white pulp area and 

spleen area (in mm2) was measured using Image J software for each spleen 

section. The total number of GCs was manually counted using bright field 

microscopy. The number of GCs per mm2 of white pulp area was calculated 

by dividing the counted number of GCs by the total white pulp area. The 

percentage of white pulp for each spleen section was calculated by dividing 

the total white pulp area by total area of each spleen-section. Three 

consecutive sections per spleen were studied to acquire an average value of 

GCs per white pulp area and the percentage of white pulp area per spleen. Six 

mice per group per time point were studied. 

 

2.17. Reconstitution of mice with natural IgG 

In order to prove the biological significance of natural IgG, the AID-/- mice 

(lacking IgG) were reconstituted with IgG (purified from uninfected WT mice) 

upto the levels found in WT mice, prior to the infection. Natural IgG 

reconstituted into the mice was purified as previously described (Section 2.3) 

and checked by flow cytometry to be non-binding and non-antigen specific to 

P. aeruginosa PAO1 strain.  
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 For reconstitution, 6h prior to infection, AID-/- mice were injected 

intravenously with 2 mg IgG (2 mg/ml IgG in PBS; 0.1ml/10g body weight) to 

restore the levels to normal serum levels of IgG found in wild type mice. 

Infection and further experiments were carried out in a similar manner as 

described above. 

 

2.18. Statistical analysis 

Data represent means ± SEM of three independent experiments with triplicates 

each. p values of less than 0.05 are considered significant by two-tailed 

Student’s t test. Differences in survival of mice post infection were calculated 

using the log-rank test. *: p<0.05, **: p<0.01 and n.s.: p>0.05.  
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CHAPTER 3: RESULTS 
 
3.1. Ficolins interact with both IgG and IgA 

IgA was recently identified to be an interaction partner of ficolin isoforms, M-

ficolin and H-ficolin.  Since the FBG domain of all the three ficolins share 

~80% homology, and this is the domain which interacts with other PRRs 

(Zhang et al., 2009), we tested the ability of the recombinant FBG domains of 

L-, H- and M-ficolins to recognize IgA and IgG. As a preliminary test for 

potential single chain domain-specific interactions between the 

immunoglobulins and the ficolins, we performed yeast 2-hybrid assays and 

showed that indeed all three ficolin FBG domains interact with IgA (Figure 

3.1A) and IgG (Figure 3.1B). The H-ficolin isoform showed the strongest 

interaction (red boxes). Yeast was used for this preliminary study as it is 

known to be a robust organism for studying protein-protein interaction, with 

ability to form disulphide bonds and maintain reduced state glutathione 

(Young 1998). 

 

3.2. Purification of native IgG and ficolin (from uninfected human serum) 
and recombinant ficolin FBG  

 
To understand the interaction between ficolins and IgG and their subsequent 

role in anti-microbial defense, we first purified native H-ficolin and IgG from 

uninfected human serum. We also purified recombinant FBG domains of 

ficolins from transfected cell culture supernatants, to be used for further 

experiments. 
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Figure 3.1: Identification of interaction between ficolins and immunoglobulins. 
Yeast two-hybrid screening shows that the FBG domain of L-, H- and M-ficolin 
interacts with the heavy chains of (A) IgA or (B) IgG, with H-ficolin FBG showing 
strongest interaction (red boxes).Colonies growing on the SD-Trp-Leu-  plates indicate 
the successful co-transformation of both bait and prey plasmids. Growth on the QDO 
plates indicates interaction between ficolin FBG and IgA or IgG. Transformation of 
the empty vector plasmid with the protein of interest excludes the possibility of 
autoactivation. pYIGal4 plasmid was used as a positive control. Data are 
representative of three independent experiments. 
 
 
3.2.1. Purity of native H-ficolin purified from uninfected human serum 

H-ficolin is a ficolin isoform that is secreted by lung and liver into the serum 

(Matsushita et al., 1996; Andersen et al., 2009). Thus, native H-ficolin was 

purified from the serum as described (Section 2.2).  

To determine the purity and the size of the purified native H-ficolin 

from uninfected human serum, the purified fraction of H-ficolin were 

electrophoresed on 12% SDS-PAGE under reducing conditions. Coomassie 

blue staining of the SDS-PAGE gel showed a clear single band at 37 kDa for 
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H-ficolin (Figure 3.2A). Other proteins that non-specifically co-purified in the 

purified H-ficolin pool were less than 5% of the total purified protein (Figure 

3.2A). 

The purity of H-ficolin fraction was also verified by mass spectrometry. 

The peak profile in mass spectrometry indicates that the purified H-ficolin is 

of high integrity and is qualified to be used in the subsequent experiments 

(Figure 3.2B). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2: Purity of human native H-ficolin. (A) One μg of purified native H-
ficolin was resolved on 12% reducing SDS PAGE and stained with Coomassie-blue. 
(B) Mass spectrometry of the purified H-ficolin. One μg of H-ficolin was trypsin-
digested and analyzed by MALDI-TOF-TOF to check for purity of the sample. H-
ficolin was found to be >95% pure. Peptides with molecular weight indicated show 
the fragments that are consistent with H-ficolin finger prints in the database. 
 

3.2.2. Purity of native IgG purified from uninfected human serum 

“Natural IgG” has been defined as the whole repertoire of IgG in the serum of 

uninfected animals and individuals previously not exposed to foreign antigens 

(Ochsenbein et al., 1999). Hence, we have studied uninfected serum that 

would presumably contain natural IgG. We purified the pool of native IgG 
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from uninfected human serum as described (Section 2.3).  

The purity of native IgG was verified by Coomassie blue staining 

(Figure 3.3A) and mass spectrometry (Figure 3.3B). The single band on the 

Coomassie blue stained SDS-PAGE gel and the profile of the peaks in mass 

spectrometry indicate that the purified IgG is of high integrity and hence 

qualified to be used in further experiments. 

 

 

 

 

 

 

 

 

 

 
Figure 3.3: Purity of human native IgG. (A) One μg of IgG was resolved on 12% 
reducing SDS PAGE and stained with Commassie blue. (B) Mass spectrometry of the 
purified IgG. One μg of IgG was trypsin-digested and analyzed by MALDI-TOF-
TOF to check for purity of the sample. IgG was found be >95% pure. Peptides with 
molecular weight indicated show the fragments that are consistent with IgG finger 
prints in the database. 
 
 
3.2.3. Purity of recombinant FBG domains of L-, H- and M-ficolins 

Functional fragments of FBG domains of all three ficolins were cloned 

individually into the pSecTag 2C plasmid (without signal sequence) in frame 

with the His tag. Mammalian expression vectors containing FBG domains of 

ficolins were transfected into the HEK 293T cells individually using 
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lipofectamine 2000. Cell culture supernatant was collected 48 h after 

transfection. The recombinant proteins, each with a His tag were purified 

using Ni-NTA affinity resin. Six elution fractions of 120 μl each for each 

protein were collected. Coomassie blue staining of SDS PAGE gel showed a 

single band indicating that the protein is of high purity (Figure 3.4). Hence, 

these purified proteins were qualified to be used in subsequent experiments.   

  

 

 

 

 
Figure 3.4: Purification of recombinant FBG domains of ficolins. Recombinant 
FBG domains of the three ficolins were expressed in HEK293T separately, purified 
from culture supernatant and eluted out from Ni-NTA beads using elution buffer. The 
eluted fractions were electrophoretically resolved on 12% SDS PAGE under reducing 
conditions. The purity and integrity of proteins were checked by Coomassie blue 
staining.  
 

3.3. Functional significance of natural IgG:ficolin interaction 

3.3.1.   Ficolins recruit natural IgG onto the bacteria 

To understand the mechanism of IgG:ficolin-dependent innate immune 

defense, we purified ficolins and IgG from uninfected healthy human serum 

and tested their interactions with representative Gram negative bacteria (P. 

aeruginosa and E. coli) and Gram positive bacteria (S. aureus and S. 

epidermidis). Since the mean steady-state concentrations of L- and H-ficolins 

in the serum are 7 and 15 g/ml, respectively, and the ficolin concentrations 

are not known to increase in an infection, we employed these concentrations in 

our experiments under both normal (pH 7.4, 2.5 mM Ca2+) and infection-
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inflammation (pH 6.5, 2.0 mM Ca2+) conditions. Flow cytometry showed that 

IgG was deposited on the bacteria, dose-dependently of all three forms of 

ficolin (Figure 3.5; cyan and dark blue), with H-ficolin recruiting the highest 

deposition of IgG. In the absence of ficolin, IgG did not bind bacteria (Figure 

3.5; red), suggesting that it requires ficolin to recognize the pathogens, except 

for S. aureus. This deviation may be due to Protein A, a known ligand of IgG, 

which is present on the surface of S. aureus (Graille et al., 2000), hence 

causing a small binding shift. These results suggest that a systemic infection 

could trigger the formation of IgG:ficolin complexes, which opsonize the 

bacteria. 

 

3.3.2.   Natural IgG, aided by ficolin drives phagocytosis of P. aeruginosa 

To investigate the fate of the bacteria opsonized with IgG:ficolin complex, we 

incubated GFP-labeled P. aeruginosa with human monocytes in the presence 

of the proteins, and examined the dynamics of phagocytosis. FACS analysis 

showed that IgG:ficolin-opsonized bacteria were phagocytosed more 

significantly than the bacteria incubated with either ficolin or IgG alone 

(Figure 3.6). Antigen-specific immunoglobulins are known to bind their 

corresponding antigens displayed on the invading microbe to enable 

phagocytosis (Anderson et al., 1990). However, our results showed that 

although natural IgG alone was unable to bind directly to the bacteria (Figure 

3.6, +IgG alone), it was able to induce phagocytosis of the bacteria when in 

the presence of ficolin. This suggests that the ‘dormant’ pool of natural IgG 

was recruited by ficolin pre-bound to the bacteria, which was subsequently 
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phagocytosed by the monocytes. A similar effect was seen with 1:10 diluted 

serum, which served as a positive control, although the function of natural 

antibodies in the serum was reduced because of dilution, as was earlier 

reported (Ochsenbein et al., 1999). Infection, which induces local acidosis and 

hypocalcaemia (Aderka et al., 1987) enhanced phagocytosis (Figure 3.6, red), 

most robustly with IgG:H-ficolin opsonized bacteria. Thus henceforth, we 

focused on IgG:H-ficolin mediated response unless otherwise stated. 

 
Figure 3.5: Ficolins recruit natural IgG onto the bacteria. FACS analysis 
quantifies binding of IgG (purified from uninfected human serum) to 106 cfu bacteria. 
The bacteria were opsonized either with IgG alone (red) or IgG in complex with 0.5 
g ficolin (cyan) or 1 g ficolin (dark blue), and incubated with primary anti-human 
IgG antibody followed by staining with Alexa 488-conjugated secondary antibody. 
Positive control (green) included bacteria opsonized with antigen-specific IgG prior 
to staining with Alexa 488-conjugated secondary antibody. Bacteria stained with 
secondary antibody alone (black) served as the negative control (see key below the 
figure). The right panel compares the mean fluorescence intensity (MFI) of IgG 
bound to the bacteria when incubated with IgG alone [IgG] or IgG in the presence of 
1.0 g ficolin (L-, H- or M- ficolin). Three replicates per sample were tested. 
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Figure 3.6: Natural IgG, aided by ficolin, drives phagocytosis of bacteria. 
Quantification of phagocytosis of 107 cfu of GFP-expressing P. aeruginosa 
(opsonized with the proteins, individually or in complex – see key below the figure) 
by 106 human primary monocytes. FACS analysis of phagocytosis (% GFP-positive 
monocytes) was performed under normal (pH 7.4, 2.5 mM Ca2+, green) and infection-
inflammation condition (pH 6.5, 2.0 mM Ca2+, red). Knockdown of human monocyte 
FcR1 significantly reduced phagocytosis (blue), indicating that IgG:ficolin-
opsonized bacteria is phagocytosed via FcR1 on the monocytes. Three replicates per 
condition per time point were tested. Data are representative of three independent 
experiments.  
 
 
3.3.3. Infection-inflammation condition increases recruitment of natural 

IgG to PAMP-associated ficolin  
 
To investigate the basis of increased IgG:ficolin complex, which increased 

phagocytic efficiency under infection-inflammation condition, we checked for 

natural IgG deposition on GlcNAc-beads (bacterial mimic) under both normal 
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and infection-inflammation conditions, in the absence or presence of ficolin. 

Notably, the amount of H-ficolin engaged on GlcNAc-Sepharose beads 

(+GlcNAc; henceforth referred to as GlcNAc-beads) remained the same under 

both conditions, but infection-inflammation condition induced a 3.5-fold more 

natural IgG recruited (Figure 3.7). With Sepharose beads alone (-GlcNAc), or 

in the absence of ficolin (Ficolin- serum), no IgG was pulled down, indicating 

the specificity of: (i) ficolin for GlcNAc and (ii) IgG for ficolin bound to the 

bacterial mimic (GlcNAc).  

 

 

 

 

 

 

 

Figure 3.7: Ficolin recruits more natural IgG on the bacterial mimic under 
infection-inflammation condition. Co-IP to determine the specific interaction 
between IgG and ficolin in human serum. GlcNAc-Sepharose beads (+GlcNAc) were 
used as bacterial mimic and incubated with serum under normal (white bar) and 
infection-inflammation (black bar) conditions, in the presence (Ficolin+ serum) and 
absence (Ficolin- serum) of ficolin. Sepharose beads alone (-GlcNAc) were used as a 
negative control. Under infection-inflammation condition, IgG (50 kDa heavy chain 
and 25 kDa light chain) was recruited more intensely (3.5x more than normal 
condition) onto the GlcNAc-beads in the presence of ficolin. Data are presented as 
ratio of density of IgG to ficolin deposited on beads, and representative Western blots 
are shown. Three replicates per condition were tested. Samples were derived from the 
same experiment, resolved under 12% reducing SDS-PAGE and the gels and blots 
were processed in parallel. 
 
3.3.4. FcR1 knockdown in human primary monocytes reduces 

IgG:ficolin mediated phagocytosis 
 
FcγR1 is a known high-affinity receptor for IgG-opsonized bacterial 
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complexes (Indik et al., 1995), which induces phagocytosis (Burton et al., 

1988). By knocking down FcR1 in human monocytes (Figure 3.8), 

phagocytosis of IgG:ficolin-opsonized bacteria was significantly reduced 

(Figure 3.6, blue line), indicating specific interaction between natural IgG and 

FcR1. 

 

 

 

 
Figure 3.8: Knockdown of FcR1 in human primary monocytes. Immunoblot 
analysis of FcR1 levels in control or FcR1 siRNA treated monocytes. For FcR1 
knockdown, 106 monocytes were nucleofected with either control or FcR1-specific 
siRNA. Whole-cell lysates of siRNA-nucleofected cells were prepared after 72 h and 
immunoblotted for FcR1 or -actin (loading control) to show the efficiency of FcR1 
knockdown. 
 

3.3.5. IL8 secretion by monocytes is upregulated accompanying 
phagocytosis 

 
We next considered host factors associated with phagocytosis of IgG:ficolin-

opsonized bacteria. IL8, a pro-inflammatory chemokine produced by 

monocytes, is prominently induced by FcR1-mediated phagocytosis (Marsh 

et al., 1996; Foreback et al., 1998; Laterveer et al., 1995) of P. aeruginosa 

(Kube et al., 2001). Here, GlcNAc-beads were used as the bacterial mimic 

instead of whole bacteria since ficolin specifically recognizes GlcNAc 

moieties of PAMPs, hence allowing us to directly query the recognition 

leading from interactions amongst ficolin, IgG and FcR1, rather than through 

TLRs (since TLRs respond to multiple PAMPs on the bacteria).  

We found that phagocytosis of GlcNAc-beads opsonized with IgG:H-
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ficolin markedly induced IL8, whereas in the absence of GlcNAc-beads, 

neither individual proteins nor IgG:H-ficolin complex induced IL8 production, 

indicating that no random immune activation occurred in the absence of a 

PAMP/pathogen (Figure 3.9). Moreover, IL8 production was significantly 

higher under infection-inflammation condition, suggesting that local acidosis 

and hypocalcaemia also trigger the monocytes to recognize the opsonized 

bacterial mimic in a specific manner and mount a stronger attack by producing 

more pro-inflammatory cytokines during an infection. Knockdown of FcR1 

led to a decrease in cytokine production showing that IgG:ficolin mediated 

bacterial recognition takes place likely through the FcR1 receptor. 

Collectively, we have shown the role of natural IgG in bridging the ficolin-

bound bacteria to FcR1 on the monocytes, leading to phagocytosis and pro-

inflammatory response. 

 

 

 

 

 

 

 

 
 
Figure 3.9: Natural IgG, aided by ficolin, drives phagocytosis of bacteria and 
upregulates IL8 secretion by human primary monocytes. ELISA quantifies IL8 
secreted by 106 monocytes under infection-inflammation condition (black) compared 
to normal condition (white). The monocytes were incubated for 24 h with GlcNAc-
beads opsonized with individual proteins or the complex. Monocytes incubated 
without GlcNAc-beads or proteins alone were used as negative controls. FcR1 
knockdown significantly reduced IL8 production. Three replicates were performed 
per condition. *p<0.05; **p<0.01; n.s., not significant. Data are representative of 
three independent experiments.  
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3.4. Characterization of IgG:ficolin interaction 

3.4.1.   IgG interacts with FBG domain of ficolin through its Fc region 

IgG:ficolin interaction was consistently stronger under infection-inflammation 

condition (Figure 3.7), prompting us to characterize their biophysical 

interactions under mild acidosis and hypocalcaemia. As a preliminary analysis 

of the potential interaction of single chain domains between ficolin and IgG, 

we used yeast 2-hybrid assay to characterize the domain specific interaction 

between ficolin and IgG. Full length, FBG or collagen-like domain of H-

ficolin and full-length or Fc region of heavy chain IgG were separately cloned 

into both bait and prey vectors. The co-transformants were plated onto the SD-

Trp-Leu- plates to check for the presence of both plasmids, and cultured on 

QDO plates to check for protein:protein interaction, which showed that ficolin 

FBG interacts with the Fc region of IgG (Figure 3.10, red boxes). 

 

3.4.2.   Infection-inflammation condition increases IgG:ficolin interaction 

We further studied the effect of pH and calcium on IgG:ficolin interaction by 

studying interaction under normal and infection-inflammation conditions. 

ELISA results showed that (i) Ficolin bound to immobilized GlcNAc-BSA, 

and dose-dependently recruited IgG (purified from uninfected serum) through 

its FBG domain, (ii) amount of IgG bound to ficolin increases under infection-

inflammation condition and (iii) H-ficolin bound to GlcNAc recruits 

maximum IgG amongst all three ficolins tested (Figure 3.11).  
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Figure 3.10: Ficolin FBG interacts with IgG Fc. Delineation of the single chain 
interaction domains of H-ficolin and IgG heavy chain by yeast two-hybrid. The FBG 
and collagen-like domain of H-ficolin and full-length and Fc region of IgG were 
individually subcloned. To compare the strength of interaction, yeast colonies were 
serially diluted and plated on QDO plates. Either in bait or prey vectors, the H-ficolin 
FBG showed strongest interaction with IgG Fc (red boxes). FL:full-length, Fc: 
constant region of IgG heavy chain, FBG: fibrinogen-like domain, CD: collagen-like 
domain. Data are representative of three independent experiments. 
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Figure 3.11: Infection-inflammation condition increases the recruitment of IgG 
to FBG domain of ficolin. ELISA shows binding of IgG (purified from uninfected 
human serum) to recombinant full-length ficolin and ficolin domains (FBG domain 
and collagen-like domain), which were pre-immobilized on GlcNAc-BSA in 96-well 
plates, under normal (white bar) and infection-inflammation (black bar) conditions. 1 
µg ficolin (full-length, FBG or collagen-like domain) was bound to 0.8 µg GlcNAc-
BSA, immobilized onto each well of the maxisorp plate and increasing doses of IgG 
were added to test the interaction. The full length ficolin, FBG and CD domains are 
represented diagrammatically above the graphical plots. Three replicates per 
condition were tested. Data are representative of three independent experiments. 
 
 
3.4.3. IgG3, the natural IgG isotype, specifically interacts with ficolin 

We tested the binding of three predominant serum IgG isotypes to ficolin, of 

which IgG3 is known to be the natural IgG isotype (Michael et al., 1969, 

Sidman et al., 1986). IgG1 and IgG3 isotypes are known to bind to FcR1 with 
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highest affinity whereas IgG2 binds with very low affinity (Burton et al., 

1988). First, we showed all three isotypes to be present in both the uninfected 

human serum and the whole purified IgG used in our study (Figure 3.12). 

Then, we showed that IgG3 exhibits the highest dose-dependent binding to 

ficolin, particularly under the infection-inflammation condition (Figure 3.13). 

In contrast, both IgG1 and IgG2 showed little to no binding to ficolin under 

either normal or infection-inflammation condition. This suggests that natural 

IgG3 binds specifically to ficolin, and the immune complex is recognized by 

FcR1, for subsequent phagocytosis. 

 

 

 

 

 
Figure 3.12: Immunoblot detection of IgG isotypes: IgG1, IgG2 and IgG3 in 
uninfected human serum and in purified whole IgG. The samples were resolved 
on 12% reducing SDS-PAGE and the gels and blots were processed in parallel. The 
immunoblots were probed with the respective antibodies against the IgG isotype-
specific heavy chain (50 kDa) of IgG1, IgG2 and IgG3. 
 

3.4.4. IgG:ficolin interaction affinity on bacterial mimic increases 100-fold 
under infection-inflammation condition 

 
To understand the mechanism underlying how infection-inflammation 

condition triggered stronger interaction between IgG and ficolin FBG, we used 

surface plasmon resonance (SPR) to characterize real-time molecular 

interactions between FBG & GlcNAc and between FBG & IgG under normal 

and infection-inflammation conditions. To achieve this, we immobilized 

GlcNAc-BSA on a CM5 chip to mimic the bacterial surface; henceforth 
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referred to as GlcNAc-immobilized chip. We found that all three ficolin FBGs 

bind GlcNAc within the same range of affinity under both conditions (Figure 

3.14). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.13: IgG3, the natural IgG isotype, specifically binds to ficolin. ELISA of 
IgG isotypes (present in uninfected human serum and in purified IgG) binding to H-
ficolin which was pre-immobilized on GlcNAc-BSA in 96-well plates. Binding 
studies were performed under normal (pH 7.4, 2 mM Ca2+; white bar) and infection-
inflammation (pH 6.5, 2.0 mM Ca2+; black bar) conditions. IgG3 exhibits the highest 
dose-dependent binding to ficolin, which significantly increased under the infection-
inflammation condition. Antibodies against the IgG isotype-specific heavy chain (50 
kDa) of IgG1, IgG2 and IgG3 were used to detect binding to H-ficolin. Three 
replicates per condition were tested. 
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Figure 3.14: All three ficolin FBG bind to GlcNAc with similar affinity under 
both normal and infection-inflammation conditions. Surface Plasmon Resonance 
(response unit) studies were performed to show interaction between ficolin FBGs and 
GlcNAc under normal and infection-inflammation conditions. GlcNAc-BSA was 
immobilized on the CM5 chip to expose GlcNAc as a ligand for ficolin FBG. 
Increasing concentrations of L-, H- or M- ficolin FBG were injected to study 
association followed by buffer flow (wash) to study dissociation. Data were analyzed 
using BIAevaluation 3.2 software. The binding curves (black) are overlaid with the fit 
of 1:1 interaction model (red). 
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As ficolins bind to GlcNAc with similar affinity under both normal and 

infection-inflammation conditions (Figure 3.14), this provided us with a 

uniform platform to study IgG:ficolin interaction. Next, we studied the 

binding affinity of IgG to ficolin bound to the immobilized GlcNAc (bacterial 

mimic), under both normal and infection-inflammation conditions. When IgG 

was injected over H-ficolin FBG (pre-bound to the GlcNAc-immobilized chip), 

we observed a 100-fold increase in the binding affinity (KD) between ficolin 

FBG and IgG, corresponding to a 10-fold increase in association rate constant 

(kon) and a 10-fold decrease in dissociation rate constant (koff), under infection-

inflammation condition compared to normal condition (Figure 3.15). Human 

serum albumin (HSA, blue line) used as a negative control, showed no binding 

to H-ficolin FBG, indicating the specificity of interaction between ficolin FBG 

and IgG. Such a significant increase in affinity might be attributable to 

conformational changes in the proteins under mild acidosis and hypocalcaemia 

induced by the infection-inflammation condition. Alternatively, local acidosis 

could have changed the protonation state of certain amino acid residues, and 

exposed new interaction sites, leading to increased affinity between ficolin and 

IgG. 

 
 
3.5. Ficolin FBG binds IgG Fc at distinct sites remote from the FcR1 

binding site 
 
Since we have delineated the infection-mediated IgG:ficolin interaction to the 

FBG domain of ficolin, it was imperative to locate their precise binding 

interfaces in view of rationalizing how this complex might spatially interact 

with FcR1 on the monocytes, leading to the IgG:ficolin mediated 
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phagocytosis (Figure 3.6).  

 

 
Figure 3.15: IgG binds to PAMP-associated ficolin with 100-fold higher affinity 
under infection-inflammation condition. SPR analysis of the binding affinity (KD) 
between purified human IgG and H-ficolin FBG on GlcNAc under normal and 
infection-inflammation condition. GlcNAc was immobilized on CM5 chip followed 
by injection of H-ficolin FBG for 750 s (association time) and buffer for 750 s 
(dissociation time). Increasing concentrations of IgG were injected over the bound 
FBG under similar run conditions. KD = koff/kon. Normal condition: koff ~ 10-4 s-1; kon ~ 
103 M-1s-1. Infection-inflammation condition: koff ~ 10-5 s-1; kon ~ 104 M-1s-1. Negative 
controls: HSA injected after ficolin FBG; IgG injected over GlcNAc-immobilized 
chip (blue), both showed no binding. Data were analyzed using BIAevaluation 3.2 
software. The binding curves (black) are overlaid with the fit of 1:1 interaction model 
(red). Data represent data from 3 independent experiments. 
 
 
3.5.1. HDMS identifies binding interfaces between IgG:H-ficolin 

We experimentally mapped the interaction sites using amide hydrogen-

deuterium exchange coupled with mass spectrometry (HDMS). A reduction in 

deuterium incorporation in the presence of a protein partner indicates 

corresponding specific peptide sequence(s) involved in the interaction surface 

(Hoofnagle et al., 2003, Mandell et al., 1998). The differential incorporation of 

deuterium for each peptide was calculated across all time points of interaction. 

Considering the effects of both pH and calcium on IgG:ficolin interaction, the 

same typical infection-inflammation condition of pH 6.5, 2.0 mM calcium was 

chosen as comparison to normal condition of pH 7.4 and 2.5 mM calcium. 
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 Comparing the extent of deuterium incorporation in H-ficolin alone 

and H-ficolin incubated with IgG at physiological condition (pH 7.4 and 2.5 

mM Ca2+), we found three peptides located in the FBG: 

YRAGFGNQESEFWLGNENLHQ (150-170), AHYATFRLLGEVDHYQL 

(193-209) and NGRYAVSEAAAHKYGID (264-280), which show marked 

differences in deuterium incorporation when in complex with IgG (Figure 

3.16). The presence of IgG decreased the deuterium incorporation in these 

ficolin FBG peptides, suggesting that they are the binding sites for IgG. These 

observations are consistent with the ELISA (Figure 3.11) and SPR (Figure 

3.15) results, which indicated that ficolin FBG harbors the binding sites for 

natural IgG (Figure 3.17). 

Under the infection-inflammation condition (pH 6.5 and 2.0 mM Ca2+), 

an additional peptide, YDADHDSSNSNC (234-245) (Figures 3.16 and 3.17), 

also in the P subdomain of FBG, showed decreased deuterium uptake. This 

supports our postulate of an infection-induced change in the ficolin that may 

expose additional sites for the IgG to bind, and also agrees with the 100-fold 

increase in affinity between ficolin FBG and IgG under the infection-

inflammation condition (Figure 3.15).  
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Figure 3.16: Hydrogen-deuterium exchange mass spectrometry (HDMS) 
identified IgG interaction sites on H-ficolin. Deuterium incorporation in proteins 
over time is annotated as follows: solid lines, presence of both IgG and H-ficolin; 
dashed lines (control), presence of only H-ficolin; black lines, normal condition (pH 
7.4, 2.5 mM Ca2+); and orange lines, infection-inflammation condition (pH 6.5, 2.0 
mM Ca2+). The amino acid sequence of the peptides is indicated in each panel. 16 
peptides of H-ficolin (85% coverage) were selected for plotting the graphs based on 
the mass spectrometric peak quality. Binding peptides of H-ficolin showing decreased 
deuterium incorporation in the presence of both the proteins as compared to 
individual protein under both conditions, in particular under infection-inflammation 
condition are indicated by downward orange arrow. Results are mean ± S.D. from 3 
independent experiments.  
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Figure 3.17: HDMS identified H-ficolin peptides interacting with IgG. H-ficolin 
FBG structure shows interactive peptides (orange), which exhibit decreased 
deuterium uptake when both H-ficolin and IgG were present. The additional H-ficolin 
FBG peptide (234YDADHDSSNSNC245) interacting with IgG only under infection-
inflammation condition is highlighted in pink. 
 
 

In addition, the IgG:H-ficolin complex exhibited four ficolin FBG 

peptides spanning residues 90-98 (PRNCRELLS), 107-115 (YHLCLPEGR), 

134-145 (QRRQDGSVDFFR) and 286-297 (GVGHPYRRVRMM), each 

showing increased deuterium uptake (Figure 3.18, blue box), indicating 

greater solvent accessibility. This also suggests infection-inflammation 

induced changes to the FBG domain, which may expose sites, which do not 

bind IgG, but are available to interact with other serum proteins as well. The 

H-ficolin peptides showing no difference in deuterium incorporation in the 

presence or absence of IgG are shown as non-binding control peptides (Figure 

3.18). 
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Figure 3.18: HDMS showed the non-interactive peptides of H-ficolin. Deuterium 
incorporation in proteins over time is annotated as follows: solid lines, presence of 
both IgG and H-ficolin; dashed lines (control), presence of only H-ficolin; black lines, 
normal condition (pH 7.4, 2.5 mM Ca2+); and orange lines, infection-inflammation 
condition (pH 6.5, 2.0 mM Ca2+). The amino acid sequence of the peptides is 
indicated in each panel. 16 peptides of H-ficolin (85% coverage) were selected for 
plotting the graphs based on the mass spectrometric peak quality. H-ficolin non-
binding peptides showing increased deuterium incorporation in the presence of both 
proteins as compared to H-ficolin alone (under infection-inflammation condition) are 
indicated by upward orange arrow. Representative non-binding peptides showing no 
difference in deuterium incorporation in the presence of individual proteins or both 
proteins serve as negative controls. Results are mean ± S.D. from 3 independent 
experiments. 
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We also used HDMS to experimentally determine the contact surfaces 

on the IgG molecule when complexed with H-ficolin. The IgG peptides: 

DTLMISRTPEVTCVV (278-292), 337-347 (VLHQDWLNGKE) and 394-

406 (LTCLVKGFYPSDI), corresponding to the CH2-CH3 interface in the Fc 

region showed decreased deuterium incorporation in presence of H-ficolin 

(Figure 3.19), suggesting that the CH2-CH3 interface contains interaction 

sites for the ficolin (Figure 3.20). The IgG peptides with no difference in 

deuterium incorporation in the presence or absence of H-ficolin are shown as 

non-binding control peptides (Figure 3.21). The peptides involved in binding 

to H-ficolin remained unchanged at both normal and infection-inflammation 

conditions, implying that the IgG structure is more constrained compared to 

the H-ficolin structure in terms of binding interface. This suggests that the 

flexibility in H-ficolin probably plays an important role in IgG:ficolin 

interaction, in terms of regulating their affinity under normal and infection-

inflammation conditions so as to avoid non-specific interaction and 

subsequent downstream immune activation.  

 

3.5.2. Sequence alignment of IgG and IgA heavy chains and ficolin FBG 
domains show conserved amino acids in binding peptides 

 
Sequence alignment of the ficolin FBG domains and the heavy chains of IgG 

and IgA further suggested that the HDMS-defined interacting peptides in both 

the ficolin and immunoglobulin harbor conserved amino acids (Figure 3.22; 

red boxes) where changes in the charge of some key residue side-chains might 

expose them for interaction with the cognate protein (IgG/ficolin). 
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Figure 3.19: HDMS identified H-ficolin interaction sites on IgG. Deuterium 
incorporation in proteins over time is annotated as follows: solid lines, presence of 
both IgG and H-ficolin; dashed lines (control), presence of only IgG; black lines, 
normal condition (pH 7.4, 2.5 mM Ca2+); and orange lines, infection-inflammation 
condition (pH 6.5, 2.0 mM Ca2+). The amino acid sequence of the peptides is 
indicated in each panel. 18 peptides of IgG (70% coverage) were selected for plotting 
the graphs based on the mass spectrometric peak quality. Binding peptides of IgG 
showing decreased deuterium incorporation in the presence of both the proteins as 
compared to individual protein under both conditions, in particular under infection-
inflammation condition are indicated by downward orange arrow. Results are mean ± 
S.D. from 3 independent experiments.  
 
 

 

 

 

 

 

 

 

 
Figure 3.20: HDMS identified IgG peptides interacting with H-ficolin. IgG Fc 
structure shows interactive peptides (orange), which exhibit decreased deuterium 
uptake when both H-ficolin and IgG were present.  
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Figure 3.21: HDMS showed the non-interactive peptides of IgG. Deuterium 
incorporation in proteins over time is annotated as follows: solid lines, presence of 
both IgG and H-ficolin; dashed lines (control), presence of only IgG; black lines, 
normal condition (pH 7.4, 2.5 mM Ca2+); and orange lines, infection-inflammation 
condition (pH 6.5, 2.0 mM Ca2+). The amino acid sequence of the peptides is 
indicated in each panel. 18 peptides of IgG (70% coverage) were selected for plotting 
the graphs based on the mass spectrometric peak quality. IgG non-binding peptides 
showing no difference in deuterium incorporation in the presence of individual 
proteins or both proteins serve as negative controls. Results are mean ± S.D. from 3 
independent experiments. 
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Figure 3.22: Sequence alignment of human ficolin FBGs & IgG with IgA heavy 
chains - highlighting interacting peptides. Sequence alignment of (A) the three 
ficolin FBGs and (B) IgG with IgA using ClustalW, with the interacting peptides 
(boxed) and residues (arrow head) highlighted. 
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3.5.3. SPR binding analysis of wild type (WT) and mutant peptides with 
cognate proteins reveals critical binding residues 

 
It is likely that under the infection-inflammation condition where mild acidosis 

prevails, the protonation of the amino acid side chains could have led to 

stronger electrostatic interactions between proteins. Based on the HDMS 

results, we synthesized peptides derived from IgG and ficolin, and performed 

surface plasmon resonance (SPR) analysis to characterize the real-time 

biointeraction between these peptides and the cognate proteins (ficolin or IgG, 

respectively). We also synthesized single- and double- mutant peptides where 

arginine, lysine and histidine (which contain positively charged side chains) 

were substituted with alanine (which contains non-polar side chain). We used 

ficolin bound to GlcNAc-immobilized chips or IgG bound to FcR1-

immobilized chips for the SPR analysis. 

 Figure 3.23 shows that the IgG peptides: DTLMISRTPEVTCVV278-

292 (peptide 1) and LTCLVKGFYPSDI394-406 (peptide 6) bound to ficolin on 

GlcNAc-chip with similar affinity (KD ~10-6 M) under normal and infection-

inflammation conditions. However, the binding was abolished by a point 

mutation of R (peptide 2) or K (peptide 7) to uncharged A residue. As the side 

chain of H residue undergoes a change from zero charge (at pH 7.4) to +1 

charge (at pH 6.5), it is likely that H contributed to the enhanced binding at 

lower pH. Indeed, an H-A mutation (peptide 4, VLAQDWLNGKE) abolished 

the interaction between this IgG peptide and ficolin at pH 6.5. Furthermore, 

peptide 3 (VLHQDWLNGKE337-347) and its K-A substitution mutant, peptide 

5 (VLHQDWLNGAE), still retained enhanced interaction with ficolin under 
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the infection-inflammation condition, indicating that K346 may not be the 

critical residue. Taken together, our results suggest that the enhanced 

interaction between ficolin and IgG is due to increased electrostatic 

interactions between charged side chains of amino acids (R & K under normal 

condition and R, K & H under the infection-inflammation condition). All 

mutant peptides (2,4,5,7) were tested for binding to ficolin, but for mutant 

peptides which do not bind, only representative non-binding sensograms for 

peptides 3 and 5 (normal condition) were shown on the SPR plots. 

Additionally, we tested the binding of HDMS-derived ficolin peptides 

to IgG. Wildtype (WT): peptide 8, AHYATFRLLGEVDHYQL193-209 and 

peptide 13, YDADHDSSNSNC234-245, the extra binding peptide under the 

infection-inflammation condition, were compared with their corresponding 

mutants. Figure 3.24 shows a 100-fold increase in the binding affinity of 

AHYATFRLLGEVDHYQL193-209 to IgG on FcR1-chip under the infection-

inflammation condition. The two H residues likely contribute to the 

interaction since H-A mutation, either singly (peptides 10 & 11) or doubly 

(peptide 12) completely abrogated the binding of the ficolin peptides to IgG. 

Consistently, ficolin peptide 13, YDADHDSSNSNC234-245 showed no binding 

to IgG under normal condition but high affinity under the infection-

inflammation condition. Conceivable, mild acidosis (pH 6.5) changed the 

charge of the H residue side-chain from 0 to +1, which increased the binding 

interaction between the ficolin and IgG. All mutant peptides (9, 10, 11, 12, 

and 14) were tested for binding to IgG, but for mutant peptides, which do not 

bind, only a representative, peptide 12, was shown on the SPR plots. 
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Figure 3.23: Surface plasmon resonance to characterize the binding affinities 
between IgG peptides and H-ficolin under normal and infection-inflammation 
conditions.  GlcNAc-BSA was immobilized on the CM5 chip to expose GlcNAc as a 
ligand for ficolin. H-ficolin was first injected over GlcNAc-imobilized chip for 100s 
(association time) followed by buffer flow (wash) for 200s (dissociation time). IgG 
peptides (WT or mutants) are tabulated below the graph. Peptides, injected directly 
over the GlcNAc-immobilized chip as controls, showed no direct binding to GlcNAc 
(blue). Increasing concentrations of IgG peptides (5, 10, 20 and 50 M) were injected 
over the H-ficolin (bound to the chip) for 100 s (association time) followed by buffer 
flow for 200 s (dissociation time). Mutant peptides (with Arg, Lys or His substituted 
to Ala) injected under similar conditions did not bind or bound with lesser affinity to 
H-ficolin. Human serum albumin (HSA) injected after H-Ficolin injection served as a 
negative control (blue, see top panel). Data were analyzed using BIAevaluation 
software 3.2. The binding curves (black) are overlaid with the fit of 1:1 interaction 
model (red). The plots are a typical representation of 3 independent experiments.  
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Figure 3.24: Surface plasmon resonance to characterize the binding affinities 
between H-ficolin peptides and IgG under normal and infection-inflammation 
conditions.  FcR1 was immobilized on the CM5 chip to expose FcR1 as a receptor 
for IgG. IgG was first injected over FcR1-imobilized chip for 100s (association time) 
followed by buffer flow (wash) for 200s (dissociation time). H-ficolin peptides (WT 
or mutants) are tabulated below the graph. Peptides, injected directly over the FcR1-
immobilized chip as controls, showed no direct binding to GlcNAc (blue). Increasing 
concentrations of H-ficolin peptides (5, 10, 20 and 50 M) were injected over the 
bound IgG (bound to the chip) for 100 s (association time) followed by buffer flow 
for 200 s (dissociation time). Mutant peptides (with Arg, Lys or His substituted to Ala) 
injected under similar conditions did not bind or bound with lesser affinity to IgG. 
Human serum albumin (HSA) injected after IgG injection served as a negative control 
(blue, see top panel). Data were analyzed using BIAevaluation software 3.2. The 
binding curves (black) are overlaid with the fit of 1:1 interaction model (red). The 
plots are a typical representation of 3 independent experiments.  
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Overall, we found that multiple positively charged side chains of 

arginine and lysine contributed to the binding affinity under normal condition 

while histidine contributes to higher affinity under the infection-inflammation 

condition.  

 
3.5.4. Random docking and HDMS guided docking of IgG Fc:H-ficolin 

FBG 
 
We used computational random docking to predict the binding interfaces 

based on known structures of H-ficolin FBG and IgG Fc regions. The two 

known crystal structures used in the study were H-ficolin FBG (ligand-free; 

PDB entry code: 2J64) and human IgG-Fc (PDB entry code: 1H3Y). Figure 

3.25 shows the predicted binding interface between H-ficolin and FBG. The 

enlarged view of H-ficolin FBG depicts the three sub-domains: A, B and P 

sub-domain. The P sub-domain harbors the pH-sensitive region, calcium and 

the ligand (GlcNAc) binding sites (Garlatti et al., 2007) as indicated.  

 
 

 
 
Figure 3.25: In silico random docking of H-ficolin FBG onto IgG Fc. 
Computational random docking of H-ficolin FBG:IgG Fc structures. The inset shows 
the H-ficolin FBG subdomains (A, B, P) and the calcium- and GlcNAc- binding sites. 
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Following from HDMS-directed mapping of the IgG:H-ficolin 

interaction interfaces, a guided in silico docking (Figure 3.26) showed a non-

symmetric heterodimer model with a higher score indicating higher stability 

than that generated by random docking (Figure 3.25; Table 3.1). The 

molecular docking analysis further confirmed that the flexible conformational 

change in the P subdomain of H-ficolin FBG under the infection-inflammation 

condition led to enhanced interaction with IgG, whereas IgG was 

comparatively more rigid and its binding site with H-ficolin FBG did not 

depend on pH and calcium conditions. These results further corroborate the 

presence of specific interacting peptides in the FBG and Fc CH2-CH3 

domains of the IgG:H-ficolin interface, respectively, thus lending credence to 

the model structure of the two interacting proteins and supporting a 1:1 

interaction between IgG:ficolin. 

 
Figure 3.26: In silico HDMS-guided docking of H-ficolin FBG onto IgG Fc. In 
silico docking of H-ficolin FBG and IgG Fc guided by HDMS-directed identification 
of IgG:H-ficolin interaction interfaces shows a non-symmetric heterodimer model 
with a higher score (higher stability; see Table 3.1) than that generated by random 
docking. 
 

3.5.5. Computational superimposition studies show ficolin and FcR1 bind 
IgG at distinct sites 

 
By computational superimposition of the HDMS-guided H-ficolin FBG:IgG 

Fc complex with the known crystal structure of IgG Fc:FcR1 (PDB ID: 
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1T83), we found that H-ficolin and FcR1 bind to distinct sites on IgG 

(Figure 3.27A). This indicates that ficolin does not compete with FcR1 for 

binding to IgG. This leads us to propose a three protein complex model 

wherein the bacteria opsonized by IgG:H-ficolin complex are plausibly 

presented to FcR1 on the monocytes leading to phagocytosis (Figure 3.27B). 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.27: Model of bacteria-ficolin:IgG:FcR1-monocytes. (A) Computational 
low energy superimposition of HDMS-guided H-ficolin FBG:IgG Fc complex to the 
known crystal structures of IgG Fc and FcR1 shows that H-ficolin FBG and FcR1 
bind at independent sites on IgG Fc, and hence indicates the possible interaction 
amongst ficolin, IgG and FcR1. (B) Proposed model to illustrate the novel 
mechanism of bacterial recognition and phagocytosis through the assembly of ficolin 
(red), natural IgG (blue) and FcR1 (green) on the monocytes, forming [bacteria-
ficolin:IgG:FcR1-monocytes]. Natural IgG acts as a crucial bridge between ficolin-
opsonized bacteria and FcR1 on monocytes, leading to direct and rapid phagocytosis 
of the pathogen and upregulation of pro-inflammatory IL8. 
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Table 3.1: Parameters for computational docking analysis. 

ZDOCK pose IgG H-

ficolin 

E_elec2 

kcal/mol 

E_sol 

kcal/m

ol 

E_RDOCK 

kcal/mol 

SA  

buried 

Å2 

Δ 

SAS 

 

Å2  

ZRank 

Score 

Blocking 

residues 

  86-145       

Random  4   -38.64 0.9 -33.88 5100.83 3623.

86 

-117.275 

Guided  44   -38.34 8.1 -26.41 1610.63 3496.

36 

-76.426 

 
E_RDOCK is the Dock Final RDOCK energy: E_RDock=E_sol+beta*E_elec2 
(beta=0.9) 
E_elec2 is Electrostatic energy after second minimization with ionic residues in the 
charged state 
E_sol is the Desolvation energy based on the Atomic Contact Energy (ACE) 
ZRank Score is the energy of the docked pose calculated by the ZRank re-scoring 
method (lower score energy indicates higher affinity). 
SA buried is the area of molecular surface buried during the complex formation. 
Δ SAS is the changed area of solvent accessible surface during the complex formation. 
 
* This result was obtained in collaboration with Dr. Yang Lifeng. 

 

3.6. Molecular interactions on monocytes link humoral to cellular 
immunity 
 

Having ascertained the interaction interfaces and contact points between the 

natural IgG and ficolin, and based on the premise that IgG interacts with the 

monocyte FcR1, we investigated the biological significance of the 

interactions amongst the three proteins - ficolin, IgG and FcR1. We tracked 

the humoral-to-cellular pathway of the IgG:ficolin opsonized bacterial mimic 

(GlcNAc bead) in the presence of monocytes. 
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3.6.1. IgG bridges ficolin opsonized bacterial mimic to FcR1 on the 
monocyte surface  

 
By immunofluorescence microscopy, we systematically demonstrated the 

uptake of the GlcNAc-beads (bacterial mimic) in presence of ficolin, IgG or 

IgG:ficolin complexes, by human primary monocytes or U937 cell line. The 

bacterial mimic opsonized with only ficolin or IgG alone, were not recognized 

by the monocytes. This recapitulates the importance of natural IgG in the 

recognition and phagocytosis of ficolin opsonized bacteria. When the 

GlcNAc-beads were opsonized with the complex, we observed co-localization 

of ficolin and IgG on the surface, showing that the bacterial mimic had been 

recognized by the monocytes. Moreover, only in the presence of IgG, the 

ficolin opsonized GlcNAc-beads co-localized with FcR1 on the monocyte 

surface (Figure 3.28), further showing that IgG:ficolin opsonized bacterial 

mimic is recognized by FcR1 receptor.  
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Figure 3.28: Co-localization analysis of Ficolin, IgG and FcR1 on human 
primary monocytes and cell lines. (A and B) Confocal microscopy shows co-
localization of ficolin (red) and IgG (green) or ficolin (red) and FcR1 (green) on (A) 
human monocytes and (B) U937 cells. The cell nuclei were stained with DAPI (blue). 
Magnification and scale bars: (100x objective; scale bar, 10 µm) for human 
monocytes; (63x objective; scale bar, 5 µm) for cell lines. Ficolin co-localizes with 
FcR1 only in the presence of IgG, indicating that IgG in the IgG:ficolin complex 
acts as a bridge between ficolin and FcR1. Data are representative of three 
independent experiments. 
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3.6.2. Infection-inflammation condition increases IgG:ficolin complex 
formation with FcR1 on monocytes 

 
The in vivo interplay of the three proteins was further examined by 

preliminary yeast three-hybrid analysis. Figure 3.29 shows a strong 

IgG:FcR1 interaction but a weak-to-no interaction between ficolin and FcR1 

in the absence of IgG. Co-transformation of IgG and ficolin in the yeast 

potentiated their respective interactions, indicating that ficolin, IgG and FcR1 

form a complex in which IgG acts as a bridge.  

 
Figure 3.29: Yeast 3-hybrid assay characterizes protein:protein interactions. 
Amongst the three proteins: H-ficolin (full length, FBG domain or collagen-like 
domain), IgG Fc and FcR1, the strength of the interaction was determined by growth 
on QDO plates, and is annotated by +/-. The box indicates the strongest interaction 
between H-ficolin and FcR1 in presence of IgG.  
 
 

To strengthen our observation, we used proximity ligation assay (PLA) 

to demonstrate protein-protein interactions in situ. Monocytes challenged with 

IgG:ficolin-opsonized GlcNAc-beads, displayed IgG:ficolin and 

ficolin:FcR1 interaction only in the presence of IgG on the cell surface 

(Figure 3.30A). Quantification of PLA signals (each red dot signifies a 
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complex) showed greater numbers of IgG:ficolin complexes under the 

infection-inflammation condition compared to the normal condition. Only in 

the presence of IgG, ficolin:FcR1 complexes were observed (Figure 3.30B). 

Moreover, only pre-formed GlcNAc-ficolin:IgG were engaged on the 

monocytes, recapitulating the significance of natural IgG in bridging ficolin 

and FcR1, and resulting in phagocytosis.  

 

 
Figure 3.30: Ficolin:IgG:FcR1 interactions - assembly on human primary 
monocytes. (A) In situ proximity ligation assay (PLA) shows interaction (each red 
dot signifying a signal) between IgG:H-ficolin and IgG:FcR1 on the monocytes 
under normal and infection-inflammation conditions. The third row shows apparent 
/indirect interaction between H-ficolin and FcR1 (due to the IgG in the IgG:H-
ficolin complex interacting with FcR1), i.e. H-ficolin is brought into proximity to 
FcR1 only in the presence of IgG. 100X objective. Scale bar, 5 µm. (B) 
Quantification of the number of PLA signals of interaction between IgG:H-ficolin 
and IgG:FcR1 and apparent /indirect interaction between H-ficolin:FcR1 (with or 
without IgG). The interaction complexes per cell were scored using Image J software. 
Duplicates of 50 cells each were enumerated for each condition tested. *p<0.05; 
**p<0.01; n.s., not significant. Three independent experiments were performed. 
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Similar observations were made with U937 monocytes (Figure 3.31A). 

The specificity of interaction between ficolin, IgG and FcR1 was verified by 

the lack of HSA-IgG interaction on the monocyte surface (Figure 3.31B) and 

further confirmed by the absence of such complexes on HEK293T cells 

(Figure 3.31C), which lack FcR1.  

 
Figure 3.31: Molecular interactions between ficolin, IgG and FcR1. (A) In situ 
proximity ligation assay (PLA) identifies interactions (under normal and infection-
inflammation conditions) between IgG:ficolin, IgG:FcR1 and ficolin:FcR1 for 
U937 cells. Each red dot represents an interaction. Negative controls (-1o Ab) 
involved similar reactions in the absence of primary antibodies. (B) Negative control 
protein (HSA) used in in situ proximity ligation assay (PLA) shows no interactions 
between HSA:IgG or HSA:FcR1 on human monocytes. (C) HEK 293T cells, 
verified to be negative for FcR1, were used as a negative control. In situ proximity 
ligation assay (PLA) shows no interaction between IgG:H-ficolin and H-
ficolin:FcR1. Magnification and scale bars: 63x objective; scale bar, 5 µm. Data are 
representative of three independent experiments. 
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Next, we characterized the molecular interactions between ficolin, IgG 

and FcR1. We first immobilized FcR1 on a CM5 chip (mimicking the 

receptor on the surface of monocytes). Then IgG was bound to FcR1. 

Injection of H-ficolin FBG over IgG bound to immobilized FcR1 showed 

100-fold higher affinity (KD) between IgG:H-ficolin FBG under the infection-

inflammation condition as compared to normal condition (Figure 3.32), 

similar to the interaction on the bacterial mimic surface (Figure 3.15). The 

interactions were specific since ficolin FBG itself did not bind to the 

immobilized FcR1, and the negative control, HSA, did not bind IgG (Figure 

3.32, blue). Conceivably the assembly of ficolin:IgG:FcR1 links the bacteria 

to the monocytes where IgG bridges ficolin-bound bacteria to the FcR1.  

 
Figure 3.32: Ficolin binds to IgG bound to FcR1 with higher affinity under 
infection-inflammation condition. SPR analysis of the binding affinity (KD) 
between H-ficolin FBG and IgG under normal and infection-inflammation condition 
conditions. IgG was first injected for 750 s (association time) over FcR1-
immobilized CM5 chip followed by buffer flow for 750 s (dissociation time). Then, 
increasing concentrations of H-ficolin FBG were injected over the bound IgG for 750 
s (association time) followed by buffer flow for 750 s (dissociation time). KD = 
koff/kon. Normal condition: koff ~ 10-4 s-1; kon ~ 103 M-1s-1. Infection-inflammation 
condition: koff ~ 10-5 s-1; kon ~ 104 M-1s-1. Negative controls: HSA injected after H-
ficolin FBG injection showed no binding to IgG or H-ficolin FBG, serving as a 
negative control (blue) for binding specificity between ficolin FBG:IgG. H-ficolin 
injected over the FcR1-immobilized chip showed no binding (blue), serving as 
specificity control for interaction between IgG:FcR1. Data were analyzed using 
BIAevaluation 3.2 software. The binding curves (black) are overlaid with the fit of 
1:1 interaction model (red). Data are representative from 3 independent experiments.  
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3.7. IgG:ficolin complex mediated recognition is independent of C3 

It is reported that C3 alpha chain covalently interacts with IgG heavy chain 

when in the presence of immune complexes (Sahu et al., 1994). Thus, we 

sought to determine whether C3 might be involved in IgG:ficolin interaction 

or in fine-tuning the mechanism. We performed various in vitro, ex-vivo and 

in vivo experiments (e.g. bacteria binding, pulldown and 

immunohistochemistry) under normal and infection-inflammation conditions, 

using (i) normal human serum containing C3 and human serum depleted of C3 

(C3- serum), and (ii) wildtype (WT) and C3-/- mice to verify the potential 

involvement of C3 in IgG:ficolin interaction in the immune complex. (iii) We 

further verified our results by infecting WT and C3-/- mice with P. aeruginosa, 

and compared their sera for potential involvement of C3 in the formation of 

IgG:ficolin immune complexes, which might occur in in vivo experimental 

infection. 

 

3.7.1. C3 is absent in purified native proteins and IgG:ficolin complex 
 
We first checked for the presence of C3 in the purified native proteins: (i) 

ficolin, (ii) IgG, both purified from uninfected human serum and (iii) 

IgG:ficolin complexes purified from uninfected human serum which had been 

pretreated under simulated infection-inflammation condition; this induces the 

formation of IgG:ficolin complexes. Recombinant ficolin (rFicolin) was used 

as an internal control for the anti-H-ficolin antibody probe, showing a single 

band corresponding to 37 kDa. Figure 3.33 shows that C3 was present in the 

undepleted “Uninfected serum” (lane 5), but was undetectable in the purified 
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native ficolin (lane 2), purified native IgG (lane 3) or purified IgG:ficolin 

complexes (lane 4) isolated from simulated infection-inflammation treated 

serum. Furthermore, we observed that IgG and ficolin were not co-purified 

but were isolated separately from uninfected human serum. Only when the 

serum was simulated to infection-inflammation condition, were IgG and 

ficolin co-purified as IgG:ficolin complex on GlcNAc-beads. 

 

  

 

 

 

 

Figure 3.33: Purified ficolin, purified IgG and purified IgG:ficolin complex from 
C3-containing uninfected human serum. Purified proteins were probed with anti-
H-ficolin, anti-IgG and anti- C3. A single band corresponding to 37 kDa of H-ficolin 
was detected. Two bands corresponding to 50 kDa (H-chain) and 25 kDa (L-chain) of 
IgG were detected. Uninfected serum (lane 5) showed two bands of C3 corresponding 
to 120 kDa (alpha chain) and 75 kDa (beta chain). No C3 was detected in the purified 
proteins and soluble immune complex (IgG:ficolin). The samples were resolved in 
SDS-PAGE (12%) under reducing conditions. 

 

3.7.2. IgG:ficolin complex on the bacterial mimic is formed independently 
of C3 

 
To study the potential contribution of C3 in enabling IgG interaction with 

ficolin bound on GlcNAc-beads, we compared normal human serum depleted 

of C3 alone (C3- serum) with serum depleted of both C3 and ficolin (C3- 

Ficolin- serum). We depleted C3 by incubating the serum overnight with anti-

C3 immobilized on Protein G-Sepharose beads at 4˚C. The resulting serum 

was analyzed by Western blot, which showed effective depletion of C3, albeit 



                                                                                                                  Results 
 
 

        

126
                                                                                                                               
                                                                                                                               
 
 

with some inevitable loss of serum IgG during the depletion process, due to its 

binding to available sites on the Protein G-Sepharose (Figure 3.34). The 

ficolin level remained unaffected by depletion.  

 

 

 
 
 
 
 
 
 
Figure 3.34: Detection of IgG, ficolin and C3 in human serum before (C3+) and 
after (C3-) depletion of C3. Effective depletion of C3 (120 kDa, alpha chain and 75 
kDa, beta chain) was observed in C3- serum. Some loss of IgG (50 kDa, heavy chain 
and 25 kDa, light chain) occurred in C3- serum due to the depletion process. Ficolin 
(37 kDa) level remained unchanged. The samples were resolved in SDS-PAGE (12%) 
under reducing conditions. 
 

This depletion allowed us to check for the potential influence of C3 on 

IgG deposition on GlcNAc-beads under normal (pH 7.2, 2.5 mM Ca2+) and 

simulated infection-inflammation condition (pH 6.5, 2.0 mM Ca2+). Using the 

C3-depleted human serum (C3- serum), we showed that IgG was still recruited 

onto GlcNAc beads only in the presence of ficolin (Figure 3.35). In C3-

containing serum (C3+ serum), C3 was recruited onto IgG bound to ficolin-

beads, causing a shift in the band size of IgG (see arrowheads). Under the 

infection-inflammation condition, the deposition of IgG increased by 3.5- fold. 

The apparent lesser deposition of IgG to GlcNAc beads (in C3- serum, right 

panel) is due to the depletion-related loss of IgG (Figure 3.35 and explanation 

above). This result suggests that natural IgG:ficolin interaction occurs 

regardless of C3, and the complex formation is enhanced under the infection-
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inflammation condition. 

 

Figure 3.35: Co-IP to determine the potential effect of C3 on the specific 
interaction between IgG and ficolin in human serum. GlcNAc beads used as 
bacterial mimic were incubated with human serum under “normal” (pH 7.2, 2.5 mM 
Ca2+; white bar) and “infection-inflammation” (pH 6.5, 2.0 mM Ca2+; black bar) 
conditions, in the presence and absence of ficolin or C3 or both. Under the infection-
inflammation condition, IgG was more intensely recruited onto the beads in the 
presence of ficolin. The presence or absence of C3 did not affect the binding. C3 was 
recruited to IgG on the ficolin-bound GlcNAc beads. Data are presented as ratio of 
density of IgG to ficolin deposited on beads, showing mean +/- s.e.m. from 3 
independent experiments. Representative Western blots are shown. The samples were 
resolved in SDS-PAGE (12%) under reducing conditions. **p<0.01. n.s., not 
significant. 
 

In case C3 is found only on immune complexes in vivo, but not co-

purified with free /uncomplexed IgG and ficolin, we further checked for the 

potential deposition of C3 onto GlcNAc-beads in ficolin-depleted human 

serum (Ficolin- serum) or IgG-depleted human serum (IgG- serum) under 

normal and infection-inflammation conditions, ex vivo (Figure 3.36). The 

results below show that: 

(a) After both ficolin and IgG (from the human serum) were bound to 
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the GlcNAc beads, there was a shift in the band sizes of IgG and C3 (>250 

and >150 kDa, see arrowheads). We also observed discrete bands of 65 and 43 

kDa, which are C3 alpha chain fragments (lanes 5 & 6, “Undepleted serum”; 

boxed) as was similarly reported in literature (Lutz et al., 1996). 

(b) Under the infection-inflammation condition, more of IgG and C3 

alpha chain are pulled down, with concomitant increase in intensity of the 

higher molecular weight bands (>250 and >150 kDa) and C3 alpha chain 

fragments of 65 & 43 kDa (lane 6). Under normal condition (lane 5), we 

observe some C3 recruited to the beads, which could be due to low level of 

IgG bound to the GlcNAc-ficolin (as shown in our earlier biochemical studies).  

(c) We did not observe a shift in the size of ficolin (37 kDa). This is 

likely due to the electrostatic interaction between IgG:ficolin as was found in 

our study (Figures 3.23 and 3.24). Hence, ficolin and IgG will dissociate from 

each other during sample processing and resolving under reducing SDS PAGE.  

Lane 13 (positive control) shows the presence of ficolin, IgG and C3 in 

uninfected human serum. Altogether, the results confirm that: (i) the presence 

of C3, IgG and ficolin in the GlcNAc-bead pulldown; (ii) that C3 is recruited 

only to immobilized IgG:ficolin complex (supported by the lack of C3 

deposition when the serum was depleted of either ficolin or IgG (lanes 1-4); 

and (iii) that in the absence of GlcNAc (lanes 7-12), no IgG:ficolin complex 

was observed, indicating specificity of the IgG:ficolin interaction with a 

bacterial mimic. 
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Figure 3.36: Detection of human H-ficolin, IgG and C3 pulled down on GlcNAc 
beads under normal and infection:inflammation conditions. C3 in the undepleted 
serum is recruited via its alpha chain onto the IgG heavy chain (IgG HC) bound to 
ficolin-GlcNAc beads, giving rise to a shift in band sizes of C3 and IgG (see 
arrowheads). Depletion of either ficolin (lanes 1,2) or IgG (lanes 3,4) from the serum 
showed no binding of C3 to the GlcNAc beads. Under the infection-inflammation 
condition (annotated as “Infection” on the top of the lane), more of the IgG and C3 
alpha chain are pulled down, with concomitant increase in intensity of the higher 
molecular weight bands (>250 and >150 kDa) and C3 alpha chain fragments of 65 & 
43 kDa (lane 6). The samples were resolved in SDS-PAGE (12%) under reducing 
conditions. Ficolin, IgG and C3 associated with the beads were detected using 
respective polyclonal antibodies. “-GlcNAc” (lanes 7-12) was the negative control. 
Lane 13 shows the presence of ficolin, IgG and C3 of the expected band sizes, present 
in the uninfected human serum. 
 
 

To further rule out the potential involvement of C3 in vivo, we infected 

WT mice with P. aeruginosa and monitored the levels of ficolin and C3 

associated with IgG in the serum during the early phase of infection for up to 

24 h.  Our samples included: (i) “WT serum” (containing C3) as a positive 

control; (ii) C3-deficient mouse serum, “C3-/- serum” and (iii) IgG purified 

from uninfected C3-/- serum as negative control. Figure 3.37 shows that C3 is 
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present in the WT serum (positive control) and absent in C3-/- serum (negative 

control). C3 is not detectable in any of the: (a) purified IgG from WT serum 

(from uninfected control mice, lane 1) or from C3-/- serum (from uninfected 

C3-/- control mice, lane 6) and (b) IgG:ficolin immune complex (IgGWT) 

purified from infected mice sera. Although C3 is known to interact non-

covalently with free IgG, we did not find C3 associated with either the 

purified free IgG (uninfected control) or free IgG:ficolin complexes (3-24 

hpi).  

We observed increasing amounts of serum ficolin complexed with IgG 

(pulled down by Protein G beads) in infected serum over time post-infection 

(from infected WT mice, lanes 2-5), independent of C3 association in the 

complexes. Our results strongly indicate that C3 is not involved in the binding 

of natural IgG to ficolin during an infection.  

 

 

 

 
 
 
 
 
 
 
 
Figure 3.37: IgG:ficolin complex purified from infected mice serum does not 
contain C3. Co-IP shows increasing amounts of ficolin (35 kDa) associated with IgG 
(pulled down by Protein G beads) in the serum over time course of infection of WT 
mice (n=3) (lanes 2-5). No C3 was detected in the IgG purified from the sera of both 
uninfected (n=3) and infected mice (n=3) (lanes 1-5). No C3 was present in the IgG 
purified from pooled sera of uninfected C3-/- mice (n=6) (lane 6). C3 was detected 
(120 kDa alpha chain and 69 kDa beta chain; bottom panel) in pooled serum of WT 
mice (n=6) (lane 8).  
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3.7.3.   Natural IgG recognizes ficolin bound bacteria in C3-/- mice 

To prove beyond doubt that IgG:ficolin complex formation triggered by an 

infection occurs independently of C3, we tested this novel phenomenon ex 

vivo and in vivo in C3-/- mice. We first checked the levels of ficolin, IgG and 

C3 in WT and C3-/- mice prior to further ex vivo and in vivo experiments. Sera 

from C3-/- mice, which lack C3, contain similar levels of ficolin and IgG as 

that of WT mice (Figure 3.38).  

 

 

 

 

 
 
 
Figure 3.38: Ficolin, IgG and C3 levels in WT and C3-/- mice. (A) Immunoblot 
analysis of the pooled sera shows that both WT and C3-/- mice (n=6 each) express 
IgG and ficolin. C3 is present in WT mice but absent in C3-/- mice. (B) ELISA of 
pooled sera shows that both WT and C3-/- mice (n=6) harbor similar levels of IgG. 
Three replicates per sample were tested.  
 
 

Since our study delineated the heavy chain of IgG to interact with 

ficolin, we focused specifically on detecting IgG heavy chain and its 

interactions in our mice studies. Using sera from C3-/- mice, we performed 

flow cytometry to check whether C3 enhances the formation of IgG:ficolin 

complexes on the P. aeruginosa. Figure 3.39 shows: (a) Compared to the 

secondary antibody (2˚ Ab) as control (black), natural IgG (red) purified from 

C3-/- mice sera showed no binding to the bacteria. (b) However, IgG binding to 

bacteria increased dose-dependently of IgG- serum (serum depleted of IgG) – 
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see thin blue (1:20 diluted IgG- serum) and thick blue (1:10 diluted IgG- 

serum), indicating that serum factors other than IgG might enable its binding 

onto the bacteria. (c) Serum depleted of both IgG and ficolin (IgG- Ficolin- 

serum), showed significant reduction in the binding of IgG to the bacteria 

(dashed blue). These results indicate that ficolin is the crucial serum factor that 

recruits IgG to the bacteria. Thus ficolin aids IgG in recognizing bacteria, 

independent of C3. 

 

 

 

 

 

 

 

 
 
 
 
Figure 3.39: Natural IgG binds to P. aeruginosa independently of C3 but with 
the aid of ficolin. FACS to detect binding of IgG purified from pooled sera of 
uninfected C3-/- mice (n=6) to 106 cfu P. aeruginosa. Bacteria opsonized with 
proteins (annotated below figure) were incubated with anti-mouse IgG and Alexa488-
conjugated secondary antibody. IgG alone does not bind to the bacteria (red). IgG- 
serum dose-dependently (1:10 and 1:20 diluted) deposited IgG on the bacteria. 
Further depletion of ficolin from IgG- serum (IgG- ficolin- serum; 1:10 diluted) 
significantly reduced IgG binding. Data are representative of three independent 
experiments. 
 
 

To further confirm the lack of a role for C3 in the recognition of 

bacteria by natural IgG, we endeavored to test the IgG:ficolin interaction in 

C3-/- mice in vivo during infection by P. aeruginosa. Figure 3.40 shows that 
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the level of free IgG:ficolin complex formed in the serum increased in a time-

dependent manner in both WT and C3-/- mice. Despite the absence of C3, 

IgG:ficolin complexes were formed at increasing levels over time of infection 

C3-/- mice, indicating no specific involvement of C3 in the formation of 

IgG:ficolin complexes during infection. Therefore, mouse natural IgG 

recognizes bacteria in vivo, in complex with ficolin, and this is independent of 

C3. 

 

 

 

 
Figure 3.40: In vivo infection induces IgG:ficolin complex formation which 
increases over time, independent of C3. Co-IP to detect ficolin (35 kDa) associated 
with IgG (pulled down by Protein G beads) in the pooled serum of WT or C3-/- mice 
(n=3 each) infected with 106 cfu P. aeruginosa over time course. Ficolin associated 
with IgG increased over time of infection. No C3 was found to be associated with 
IgG:ficolin complex in the serum. Data are representative of three independent 
experiments. 
 

Here, we detected free IgG:ficolin complexes in the infected mice 

serum using Protein G beads, which pulled down IgG and the ficolin 

associated with it. We did not detect any C3 associated with the free 

complexes. It is possible that C3 is present on the bacteria opsonized with 

IgG:ficolin complex (Figure 3.35) but not with free IgG:ficolin complexes, 

which we pulled down using Protein G beads. 

 
As natural antibodies are known to target the opsonized pathogen 

complexes to the spleen to prevent the spread of infection to other vital organs, 
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we explored IgG:ficolin co-localization in the spleen by 

immunohistochemical (IHC) staining in WT and C3-/- mice. Figure 3.41 

shows similar increases in the IgG:ficolin complexes over time, indicating 

that the absence of C3 does not affect the co-localization of the IgG:ficolin 

complexes in the spleen, and that IgG recognizes bacteria with the aid of 

ficolin, independently of C3.  

 

 

 

 

 

 
 
Figure 3.41: In vivo infection induces IgG:ficolin colocalization in mice spleen 
which increases over time, independent of C3. Immunofluorescence staining to 
detect IgG:ficolin co-localization in spleen sections of WT or C3-/- mice (n=3 each) 
after infection with 106 cfu P. aeruginosa over time course.  Frozen sections were cut 
at 5 m thickness, fixed and stained with anti-ficolin (red) and anti-mouse IgG 
(green). Imaging was performed using LSM meta 510 confocal microscope (100x 
objective. Scale bar, 10 m). Data are representative of three independent 
experiments. 

 

We also probed for C3 in the uninfected and infected spleen sections 

over time of infection, and observed that C3 was present in WT mice but 

absent in C3-/- mice (Figure 3.42). 
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Figure 3.42: C3 is absent in spleen sections of C3-/- mice but present in WT mice 
over time course of infection. Immunofluorescence staining to detect C3 in spleen 
sections of WT or C3-/- mice (n=3 each) after infection with 106 cfu P. aeruginosa 
over time course.  Frozen sections were cut at 5 m thickness, fixed and stained with 
anti-C3, followed by staining with corresponding Alexa-594 conjugated secondary 
antibody. Imaging was performed using LSM meta 510 confocal microscope (100x 
objective. Scale bar, 10 m). Data are representative of three independent 
experiments. 
 
 

Infection-inflammation conditioned serum may result in alternative 

pathway activation, which might attach C3 to the IgG Fc region (as a parallel 

event). However, based on our results, we conclude that C3 is not involved in 

bringing together ficolin and natural IgG. Our data showed that IgG:ficolin 

immune complex is formed independently of C3.   

 

3.7.4. IgG:ficolin mediated anti-microbial defense protects C3-/- mice from 
bacterial infection 

 
We next checked whether IgG:ficolin mediated bacterial recognition and 

clearance could protect the C3-/- mice from infection. We first checked the 

bacterial load in WT and C3-/- mice post-infection with 106 cfu P. aeruginosa. 

Similar bacterial load in all tissues at 6 hpi indicates equal administration of 

the inocula at the start of infection. The bacterial burden in the tissues of C3-/- 
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mice was higher than that in WT mice at 24 and 72 hpi, indicating that 

absence of C3 leading to failure of possible alternative pathway activation, 

could result in ineffective bacterial clearance and higher bacterial load in the 

tissues. Indeed we observed a delayed rate of clearance of P. aeruginosa in 

C3-/- mice as compared to the WT mice. However, by day 6, the pathogen 

clearance by the C3-/- mice became closely comparable to that of the WT mice 

(Figure 3.43). 

With the above observations on bacterial clearance by C3-/- mice, we 

proceeded to check the status of the cytokine expression, spleen size and 

survival of the C3-/- mice in infection to assess the extent of damage caused by 

the bacterial invasion. The serum cytokines (IL6, TNFα and IL10) were 

measured to assess the ensuing inflammatory response of C3-/- mice to P. 

aeruginosa infection. Over the time of infection, we observed a significant 

increase in the levels of IL6 and TNFα and a decrease in IL10 in C3-/- mice as 

compared to the WT mice (Figure 3.44), indicating that initial impairment in 

the ability to clear the bacteria in the C3-deficient mice led to higher 

inflammation.  

We next examined the extent of tissue damage resulting from infection 

and inflammation in the C3-/- mice. We stained the liver sections with 

hematoxylin and eosin, and observed that infection of both the WT and C3-/- 

mice was resolved over time, with no infiltration of inflammatory cells 

observed in either WT or C3-/- mice livers (Figure 3.45). This indicates that 

absence of C3 does not significantly affect the overall process of resolving 

infection and inflammation with time. 
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Figure 3.43: Bacterial load and clearance rate in tissues and serum of infected 
WT and C3-/- mice over time. (A) Colony forming unit (cfu) of P. aeruginosa per g 
of spleen, lung, liver and per l of serum assessed at 6, 24 and 72 hpi in WT or C3-/- 
mice (n=4 each) infected intravenously with 106 cfu P. aeruginosa. Each data point 
represents an individual mouse. Horizontal lines represent the mean log cfu/g of 
organ or cfu/l of serum. (B) Colony forming unit (cfu) of P. aeruginosa (indicating 
rate of bacterial clearance) per g of spleen, lung, liver and per l of serum assessed 
over 9 dpi in WT or C3-/- mice (n=4 each) infected intravenously with 106 cfu P. 
aeruginosa. *p<0.05, **p<0.01. 
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Figure 3.44: Pro- and anti-inflammatory cytokine levels in pooled mice serum 
from infected WT and C3-/- mice over time. ELISA to detect IL6, TNF and IL10 
levels in pooled sera of WT or C3-/- mice (n=4 each) infected with 106 cfu P. 
aeruginosa assessed at 3, 6 and 12 hpi. Three replicates per sample were tested. Data 
are representative of three independent experiments. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 3.45: Hematoxylin and eosin staining of livers of infected WT and C3-/- 
mice. Hematoxylin and eosin staining of livers of WT and C3-/- mice (n=4 each) 
infected with 106 cfu P. aeruginosa over time course (original magnification, 100x. 
Scale bar, 500 m).  
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Finally, we observed the survival of C3-/- mice over time post-infection. 

The extent of survival was slightly compromised in C3-/- mice (Figure 3.46). 

This is not surprising since the absence of C3 abrogates the alternative 

complement pathway. Despite the C3 deficiency, the high survival rate in the 

C3-/- mice also recapitulates the significance of the IgG and ficolin (present in 

C3-/- mice) in conferring protection against the bacterial infection. Thus, we 

have ruled out any potential involvement of C3 in the IgG:ficolin mediated 

immune recognition. 

 

 

 

 

 

 
 
Figure 3.46: Survival curve of infected WT and C3-/- mice over time. Survival of 
WT and C3-/- mice infected with 106 cfu P. aeruginosa over time course (n=8 per 
group). Differences in survival were analyzed by the log-rank test (p>0.05).  
 
 
 
 
3.8. IgG siRNA knockdown with partial IgG are susceptible to infection  
 
Turning our attention to the biological significance of the perceived ‘dormant’ 

natural IgG, we performed IgG siRNA knockdown in mice to study possible 

loss of function of natural IgG during infection. 
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3.8.1. Natural IgG recognizes bacteria with the help of ficolins and directs 
the opsonized pathogen to the spleen 

 
IgG purified from the sera of previously uninfected mice exhibited minimal 

binding to P. aeruginosa (Figure 3.47A), supporting that the IgG from 

uninfected mice are not specific to bacterial antigens, hence they are 

appropriately termed natural IgG. In vitro, IgG- serum facilitated the binding 

of purified IgG to the bacteria, and ficolin was found to be the crucial serum 

factor enabling this process of deposition (Figure 3.47A). Ex vivo, the level of 

IgG:ficolin complex formed in the infected mouse serum increased in a time 

(0-24 hours post-infection, hpi)- and dose (106-107 cfu)- dependent manner of 

P. aeruginosa infection (Figure 3.47B). Since mouse ficolin A and B isoforms 

are orthologs of human L- and M-ficolins, respectively, and share similarity 

with all human ficolins at amino acid positions that interact with IgG, it is 

likely that mouse ficolins also interact with IgG to carry out effector functions 

in a similar manner. Consistent with a report that natural antibodies target the 

opsonized pathogen complexes to the spleen to prevent the spread of infection 

to other vital organs (Ochsenbein et al., 1999), we observed increased 

colocalization of IgG:ficolin complex in the spleens of infected mice over 

time (Figure 3.47C).  
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Figure 3.47: Natural IgG recognizes bacteria with the help of ficolin in mice. (A) 
FACS analysis to detect binding of IgG purified from pooled sera of uninfected WT 
mice (n=8) to 106 cfu P. aeruginosa. Bacteria opsonized with proteins (annotated 
below figure) were incubated with anti-mouse IgG and Alexa488-conjugated 
secondary antibody. IgG alone does not bind bacteria (red). IgG- serum (1:10 and 
1:20 diluted) facilitated dose-dependent deposition of IgG on the bacteria. Further 
depletion of ficolin from IgG- serum (IgG- ficolin- serum; 1:10 diluted) significantly 
reduced IgG binding. (B) Immunoblot analysis of IgG (50 kDa heavy chain) and 
ficolin levels in the pooled sera of mice (n=8) and detection of IgG:ficolin complex 
(pulled down by Protein G beads) in serum (red box), post-infection with 106 or 107 

cfu P. aeruginosa over time course. The samples were derived from the same 
experiment, resolved under 12% reducing SDS-PAGE and the gels and blots were 
processed in parallel. (C) Immunofluorescence staining for co-localization of 
IgG:ficolin in spleen sections of WT mice (n=3), uninfected and infected with 106 or 
107 cfu P. aeruginosa over time course.  100x objective. Scale bars, 10 m. Data are 
representative of three independent experiments. 
 
 
 
 
3.8.2. In vivo siRNA treatment specifically knocked down IgG in mice 

Next, we sought to determine the action of the natural IgG in defense against 

bacterial infection using a siRNA knockdown mouse model by subcutaneously 
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implanting osmotic pumps to continuously infuse IgG-specific siRNA to 

deplete the natural IgG in the serum. Mice treated with 30 mg/kg/day of IgG-

specific siRNA showed significant reduction in serum IgG within 4 days as 

compared to controls (PBS or control siRNA treatments). The levels of serum 

IgM, IgA and ficolin remained unchanged in the IgG-knockdown mice, thus 

confirming the specificity of the IgG-knockdown (Figures 3.48 A and B).  

 

 
 
Figure 3.48: Specific knockdown of IgG by siRNA treatment in mice. (A) 
Immunoblot analysis of the heavy chains of IgG, IgA, IgM, and ficolin in pooled 
serum of mice (n=4) showed specific knockdown of IgG at days post-treatment with 
IgG siRNA. Mice treated with PBS or control siRNA do not show knockdown of IgG. 
(B) ELISA to detect IgG levels in pooled sera of mice (n=4) at day 4 post-treatment 
with PBS, control siRNA or IgG siRNA (30 nmol/kg/day). Three replicates per 
sample were tested. Data are representative of three independent experiments.  

 

3.8.3. IgG-knockdown mice are more susceptible to infection 

Upon intravenous infection with 106 cfu P. aeruginosa, IgG knockdown mice 

showed reduced IgG:ficolin complex formation in the sera (Figure 3.49A) 

and spleen (Figure 3.49B). These data suggest that natural IgG, through its 

collaboration with ficolin, plays an essential role in controlling infection.  
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Figure 3.49: IgG:ficolin complex formation in serum and spleen of PBS, control 
and IgG siRNA knockdown mice. Mice were continuously infused with control 
siRNA or IgG siRNA (30 nmol/kg/day) via osmotic pump delivery for 14 days. After 
4 days of infusion, mice were infected with 106 cfu P. aeruginosa. (A) Mice (n=3) 
treated with control siRNA and IgG siRNA were infected with 106 cfu P. aeruginosa. 
Immunoblot analysis of serum IgG levels showed reduced IgG in IgG siRNA 
knockdown mice as compared to control siRNA treated mice over the course of 
infection (top). More and increasing levels of “ficolin associated with IgG” are 
observed in control siRNA than in IgG siRNA knockdown mice over the course of 
infection (bottom). The samples were derived from the same experiment, resolved 
under 12% reducing SDS-PAGE and the gels and blots were processed in parallel. (B) 
Immunofluorescence staining for co-localization of IgG:ficolin in spleen sections of 
PBS, control siRNA or IgG siRNA knockdown mice (n=3) at indicated time points 
post-infection. 100x objective. Scale bar, 10 m. Data are representative of three 
independent experiments. 
 
 

The IgG-knockdown mice showed higher bacterial burdens in the 

spleen, lung, liver and serum, and the cfu progressively increased post-

infection (Figure 3.50). Similar bacterial load in all tissues at 6 hpi indicated 

equal administration of the inoculum.  
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Figure 3.50: Tissue bacterial load in PBS, control and IgG siRNA knockdown 
mice. Mice were continuously infused with control siRNA or IgG siRNA (30 
nmol/kg/day) via osmotic pump delivery for 14 days. After 4 days of infusion, mice 
were infected with 106 cfu P. aeruginosa. Log cfu P. aeruginosa per g of spleen, lung, 
liver and per l of serum, assessed at 6, 24 and 72 hours post-infection (hpi) in PBS, 
control siRNA or IgG siRNA knockdown mice (n=4). Freshly dead and alive mice 
were examined. Each point represents an individual mouse. Horizontal lines represent 
the mean log cfu/g of organ or cfu/l of serum. *p<0.05; **p<0.01; n.s., not 
significant. 
 

 

Delayed bacterial clearance (Figure 3.51) correlates with the lack of 

IgG, which increased the susceptibility to infection. Thus, lack of IgG impairs 

the efficient removal of bacteria, leading to uncontrolled proliferation of the 

pathogen in the tissues. 
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Figure 3.51: Bacterial clearance rate in PBS, control and IgG siRNA knockdown 
mice. Mice were continuously infused with control siRNA or IgG siRNA (30 
nmol/kg/day) via osmotic pump delivery for 14 days. After 4 days of infusion, mice 
were infected with 106 cfu P. aeruginosa. Log cfu P. aeruginosa per g of spleen, liver 
and lung and per l of serum of PBS, control siRNA or IgG siRNA knockdown mice 
(n=4), over 9 days post-infection (dpi). Freshly dead and alive mice were examined. 
*p<0.05; **p<0.01; n.s., not significant. 
 
 
  To assess the ensuing inflammatory response, we measured IL6 and 

TNFα, which are functional pro-inflammatory cytokine homologs of human 

IL8. The IgG knockdown mice showed significantly higher IL6 and TNFα and 

lower anti-inflammatory IL10 levels (Figure 3.52), indicating uncontrolled 

inflammation, consistent with the inability to clear the bacteria. 
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Figure 3.52: Pro- and anti-inflammatory cytokine levels in infected sera from 
PBS, control and IgG siRNA knockdown mice. ELISA to detect IL6, TNF and 
IL10 levels in pooled sera from IgG siRNA knockdown mice (n=4 each) infected 
with 106 cfu P. aeruginosa, assessed at 3, 6 and 12 hpi. Infected PBS or control 
siRNA treated mice served as controls. *p<0.05, **p<0.01. Data are representative of 
three independent experiments. 
 
 

To study the tissue morphological damage, we did hematoxylin and 

eosin staining of liver sections from infected mice. We showed that the 

infection in control siRNA controls resolved over time with no infiltration of 

inflammatory cells. However, we observed inflammatory cell infiltration in 

the liver of IgG knockdown mice, characteristic of unresolved inflammation 

(Figure 3.53).  

We also immunostained the spleen sections of the IgG siRNA 

knockdown mice and compared with the control mice. We did not observe 

germinal centers (GCs) in both control and IgG siRNA knockdown mice at 3 

and 6 dpi (Figure 3.54A). GCs are sites of B cell activation during an immune 

response (MacLennan 1994). Since this is a primary immune response, it is 

likely that GCs would only appear at later time points of infection. Upon 

quantification, we did not observe any GCs in the white pulp areas in both the 

control siRNA and IgG siRNA knockdown mice before and after infection at 3 

and 6 dpi (Figure 3.54B). The percentage of total white pulp area to spleen 

area remained unchanged over days of infection in both groups (Figure 
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3.54C), with no significant difference.  

 

Figure 3.53: Hematoxylin and eosin staining of livers of infected control and IgG 
siRNA knockdown mice. Hematoxylin and eosin staining of livers from control 
siRNA and IgG siRNA knockdown mice (n=4) infected with 106 cfu P. aeruginosa 
over time course. Whole tissue section images (magnification; 2x, scale bar; 1 mm) 
are provided. Higher magnification to highlight areas of inflammatory cell infiltration 
(arrows) in liver of infected IgG siRNA knockdown mice. No infiltration is observed 
in livers of control siRNA treated mice (magnification; 20x, scale bar; 100 m). 
Images were taken using Mirax Midi microscope (Carl Zeiss) and offline analysis 
was done using Mirax viewer software.  
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Figure 3.54: Assessment of inflammation in spleens of infected control and IgG 
siRNA knockdown mice. (A) Detection of GC B cells in spleen sections of control 
and IgG siRNA knockdown mice at various days post-infection (dpi). Frozen sections 
were cut at 5 m thickness and stained with anti-B220 (B cell), anti-GL7 (germinal 
center) and anti-P.a. (bacteria). P.a. refers to Pseudomonas aeruginosa. Imaging was 
done using LSM meta 510 confocal microscope (63x objective. Scale bar, 10 m). (B 
and C) Quantification of GCs per mm2 white pulp area in spleen sections of mice at 
various dpi. Frozen sections were cut at 5 m thickness and stained with hematoxylin 
and eosin. Total number of GCs was manually counted using bright field microscopy 
in three consecutive sections per spleen. Total white pulp area and spleen area per 
section was calculated using Image J software. The number of GCs per mm2 white 
pulp area was calculated by taking an average value from the three sections. GCs per 
mm2 of white pulp area and percentage of white pulp area per total spleen area in 
spleens of control and IgG siRNA knockdown mice at 0, 3 and 6 dpi. Six mice per 
group were studied. n.s., not significant. 
 

The failure of IgG knockdown mice to clear the infection compromised 

survival (Figure 3.55). The IgG knockdown mice did not completely succumb 

to the Pseudomonas infection possibly due to sustained levels of natural IgM 
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and IgA (Figure 3.48A), which partially compensated for the lack of IgG. 

Additionally, although the IgG siRNA knockdown significantly reduced 

serum IgG level, it did not completely block IgG expression (Figures 3.48 A 

and B). 

 

 

 

 

 

 

Figure 3.55: Survival curve of infected PBS, control and IgG siRNA knockdown 
mice over time. Survival of PBS, control siRNA or IgG siRNA knockdown mice 
infected with 106 cfu P. aeruginosa over time course (n=8 per group). Differences in 
survival were analyzed by the log-rank test (*p<0.05).  
 

3.9. AID-/- mice completely lacking IgG succumb to infection 

To be more definitive, we used AID-/- mice to further confirm the role of 

natural IgG in infection. AID-/- mice lack the enzyme, activation-induced 

deaminase (AID) that is responsible for class switching from IgM to other 

immunoglobulin isotypes. Hence, these mice lack other isotypes such as IgG 

and IgA. Therefore, the potential loss-of-function of natural IgG mediated by 

ficolin was studied in these mice.  

 

3.9.1. AID-/- mice have IgM but lack both IgG and IgA 

We first checked for the presence of IgG, IgA, IgM, ficolin and C3 in WT and 

AID-/- mice. Figure 3.56A shows a Western blot indicating the presence of all 
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proteins in WT mice serum, whereas AID-/- mice lack IgG and IgA due to the 

absence of Ig-class switching. ELISA shows that the level of IgG is 

undetectable in AID-/- mice serum as compared to WT mice (Figure 3.56B).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.56: IgG and IgA are absent in AID-/- mice. (A) Immunoblot analysis of 
the heavy chains of IgG, IgA, IgM, ficolin and C3 in pooled sera of mice (n=6) show 
that AID-/- mice lack both IgG and IgA.  (B) ELISA shows that pooled sera of AID-/- 
mice (n=6) does not contain IgG, as compared to WT mice (n=6). Three replicates 
per sample were tested. Data are representative of three independent experiments. 
 

3.9.2. Impaired bacterial clearance leads to unresolved inflammation, 
tissue damage and higher mortality in AID-/- mice 

 
We performed in vivo infection of the AID-/- mice with P. aeruginosa. The 

bacterial load in both WT and AID-/- mice post-infection was similar in all 

tissues at 6 hpi, indicating equal administration of the inoculum at the start of 

infection. However, there was significant progressive increase in the bacterial 

burden in all tissues of AID-/- mice as compared to WT mice at 24 and 72 hpi 

(Figure 3.57A). The bacterial load was even higher than that of IgG siRNA 

knockdown mice post- infection (Figure 3.50A), that still retained ~25% of 

the IgG levels as compared to the WT mice (Figure 3.48B). This indicates that 

complete absence of natural IgG leads to much higher susceptibility to 
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infection. Indeed we observed a greater delay in the rate of clearance and 

increased persistence of P. aeruginosa in tissues of AID-/- mice (Figure 

3.57B).  

 

 
 
Figure 3.57: Bacterial load and clearance rate in tissues and serum of infected 
WT and AID-/- mice over time. (A) Log cfu P. aeruginosa per g of spleen, lung, 
liver and per l of serum assessed at 6, 24 and 72 hours post-infection (hpi) in WT or 
AID-/- mice (n=4). Freshly dead and alive mice were examined. Each point represents 
an individual mouse. Horizontal lines represent the mean log cfu/g of organ or cfu/l 
of serum. (B) Log cfu P. aeruginosa per g of spleen, liver and lung and per l of 
serum of WT or AID-/- mice (n=4). Freshly dead and alive mice were examined over 9 
days post-infection (dpi). *p<0.05; **p<0.01; n.s., not significant. 
 
 

Next, we measured the serum cytokines (IL6, TNFα and IL10) to 

assess the ensuing inflammatory response of AID-/- mice to P. aeruginosa 
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infection. Over the time of infection, we observed a significantly higher 

increase in the levels of IL6 and TNFα and a decrease in IL10 in AID-/- mice 

(without IgG) as compared to the (a) WT (with complete IgG) or (b) IgG 

siRNA knockdown mice (with near complete depletion of IgG i.e. ~25% of 

WT mice IgG levels) (Figure 3.58), indicating that impairment in the 

clearance of the bacteria in the AID-/- mice led to higher inflammation.  

 

Figure 3.58: Pro- and anti-inflammatory cytokine levels in infected sera from 
WT and AID-/- mice. ELISA to detect IL6, TNF and IL10 levels in pooled sera of 
AID-/- mice (compared to WT control mice) (n=4 each) infected with 106 cfu P. 
aeruginosa. Three replicates per sample were tested.  
 

Infiltration of inflammatory cells in the liver was observed in infected 

AID-/- mice (Figure 3.59), indicating impairment in the ability to clear the 

bacteria and the ensuing inflammation.  

In the spleen of AID-/- mice, germinal centers (GCs, stained by GL7 

antibody), were present throughout (with or without infection), while the WT 

mice only began to show GCs by 14 dpi (Figure 3.60A). The existence of 

GCs in the uninfected AID-/- mice may be explained by the continuous 

antigenic stimulation by gut microbiota owing to the absence of IgA in the gut 

(Fagarasan et al., 2002). Quantification of the GCs per mm2 of white pulp area 

in AID-/- mice showed an increase in their numbers at 9 and 14 dpi compared 
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to no infection (Figure 3.60B). This is consistent with the report of Zaheen et 

al., 2009. However for WT mice, we only detected marked increase in GCs 

per mm2 of white pulp area by 14 dpi. The percentage of total white pulp area 

to spleen area remained unchanged over days of infection in both groups 

(Figure 3.60C), with no significant difference.  

 

Figure 3.59: Hematoxylin and eosin staining of livers of infected WT and AID-/- 

mice. Hematoxylin and eosin staining of livers from WT and AID-/- mice (n=4) 
infected with 106 cfu P. aeruginosa over time course. Whole tissue section images 
(magnification; 2x, scale bar; 1 mm) are provided. Higher magnification to highlight 
areas of infiltration of inflammatory cell (arrows) in livers of infected AID-/- mice. No 
infiltration is observed in livers of WT mice (magnification; 20x, scale bar; 100 m). 
Images were taken using Mirax Midi microscope (Carl Zeiss) and offline analysis 
was done using Mirax viewer software.  
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Figure 3.60: Assessment of inflammation in spleens of infected WT and AID-/- 
mice. (A) Detection of GC B cells in spleen sections of WT and AID-/- mice at 
various days post-infection (dpi). Frozen sections were cut at 5 m thickness and 
stained with anti-B220 (B cell), anti-GL7 (germinal center) and anti-P.a. (bacteria). 
P.a. refers to Pseudomonas aeruginosa. Imaging was done using LSM meta 510 
confocal microscope (63x objective. Scale bar, 10 m). (B and C) Quantification of 
GCs per mm2 white pulp area in spleen sections of WT and AID-/- mice at various dpi. 
Frozen sections were cut at 5 m thickness and stained with hematoxylin and eosin. 
Total number of GCs was manually counted using bright field microscopy in three 
consecutive sections per spleen. Total white pulp area and spleen area per section was 
calculated using Image J software. The number of GCs per mm2 white pulp area was 
calculated by taking an average value from the three sections. GCs per mm2 of white 
pulp area and percentage of white pulp area per total spleen area were calculated in 
spleens of WT and AID-/- mice at various dpi. Six mice per group were studied. 
*p<0.05; **p<0.01; n.s., not significant. 
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Next, we observed the survival of AID-/- mice post-infection with P. 

aeruginosa. The extent of survival was significantly compromised in AID-/- 

mice, confirming that natural IgG confers important innate immune protection 

from Pseudomonas infection (Figure 3.61). Furthermore, the extent of 

survival was lower compared to IgG siRNA knockdown mice which had 

incomplete depletion of IgG. These results show that natural IgG plays an 

important innate immune role in limiting the infection and promoting survival.  

 

 

 
 
 
 
 
 
 
Figure 3.61: Survival of infected WT and AID-/- mice over time. Survival of WT 
or AID-/- mice (n=8) infected with 106 cfu P. aeruginosa. Mice were monitored 
continuously for up to 9 dpi. Differences in survival were analyzed by the log-rank 
test (**p<0.01).  
 

3.10. Reconstitution with natural IgG confers innate immune protection 
to AID-/- mice 

 

Finally, to ascertain the importance of natural IgG in clearing infection and 

promoting survival, we performed reconstitution experiments with the AID-/- 

mice using purified natural IgG (confirmed to be non-binding /non-antigen 

specific to P. aeruginosa). Six hours prior to infection with 106 cfu of P. 

aeruginosa, we administered a single dose of purified IgG by tail vein i.v. 

injection to a level equivalent to the normal serum levels of a WT mouse (2 

mg/ml serum). 
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3.10.1. IgG:ficolin complexes effectively recognize bacteria in IgG-
reconstituted AID-/- mice 

 
Upon reconstitution with IgG, we detected increasing amounts of ficolin 

associated with IgG in the serum of the infected AID-/- mice in the early phase 

of infection (Figure 3.62, red box). This indicates that natural IgG would be 

collaborating with ficolin to recognize bacteria in these reconstituted mice in a 

similar manner as compared to the WT mice. We observed that (a) the serum 

ficolin level in PBS-reconstituted and (b) the ficolin and IgG levels in IgG-

reconstituted mice remained unchanged (Figure 3.62, top 2 panels).  

 

 

 

 

 

Figure 3.62: IgG:ficolin complex formation in serum of AID-/- mice  reconstituted 
with IgG, post infection. AID-/- mice (n=8) were administered intravenously through 
tail vein, with 2 mg natural IgG purified from uninfected serum (to reconstitute to 
normal level of serum IgG of 2 mg/ml serum) or PBS (control), 6 h prior to infection 
with 106 cfu P. aeruginosa. Immunoblot analysis of IgG (50 kDa heavy chain) and 
ficolin levels in pooled sera of mice (n=8) and detection of IgG:ficolin complex 
(pulled down by Protein G beads, red box) in the serum post-infection in PBS- or 
IgG-reconstituted mice. The samples were derived from the same experiment, 
resolved under 12% reducing SDS-PAGE and the gels and blots were processed in 
parallel. Data are representative of three independent experiments. 
 
 
3.10.2. IgG-reconstituted AID-/- are protected from infection 
 
We checked the bacterial load in PBS and IgG-reconstituted AID-/- mice post-

infection with P. aeruginosa. Similar bacterial load in all tissues at 6 hpi 

indicates equal administration of the inocula at the start of infection. The 

bacterial load in the tissues of IgG-reconstituted mice was significantly lower 
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at 24 and 72 hpi, than in PBS-reconstituted mice, indicating that natural IgG 

was effective in controlling bacterial proliferation in the tissues (Figure 3.63). 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 3.63: Bacterial load in tissues of PBS- and IgG-reconstituted AID-/- mice 
over time post infection. Log cfu P. aeruginosa per g of spleen, lung, liver and per 
l of serum assessed at 6, 24 and 72 hpi in PBS- or IgG-reconstituted AID-/- mice 
(n=4). Freshly dead and alive mice were examined. Each point represents an 
individual mouse. Horizontal lines represent the mean log cfu/g of organ or cfu/l of 
serum.  *p<0.05, **p<0.01. 
 
 

Additionally, the pro-inflammatory cytokines, IL6 and TNF levels 

were lower, while the anti-inflammatory IL10 level was higher in the IgG-

reconstituted mice, indicating that IgG:ficolin immune complex aided 

bacterial clearance and limited the extent of inflammation (Figure 3.64). 
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Figure 3.64: Pro- and anti-inflammatory cytokine levels in infected sera of PBS- 
or IgG-reconstituted AID-/- mice. ELISA to detect IL6, TNF and IL10 levels in 
pooled sera of infected PBS- or IgG- reconstituted AID-/- mice. AID-/- mice (n=4) 
were reconstituted with purified IgG (tested to be non-binding to P. aeruginosa) 6 h 
prior to infection and infected with 106 cfu P. aeruginosa. Cytokine levels were tested 
at 3 and 6 hpi. Infected PBS-reconstituted AID-/- mice served as controls. Three 
replicates per sample were tested. *p<0.05; **p<0.01. Data are representative of 
three independent experiments. 
 

Owing to the efficient removal of the bacteria and lower inflammation 

levels, we observed no infiltration in livers of IgG-reconstituted AID-/- mice as 

compared to inflammatory cell infiltration in livers of PBS-reconstituted AID-/- 

mice (Figure 3.65).  

We also observed reduced GC area (stained by GL7 antibody, Figure 

3.66A) and lower GCs per mm2 of white pulp area in IgG-reconstituted AID-/- 

mice compared to PBS-reconstituted control AID-/- mice at 3 dpi, with no 

significant difference observed in the percentage of total white pulp area to 

spleen area in both PBS- and IgG-reconstituted AID-/- mice (Figure 3.66B). 

The percentage of total white pulp area to spleen area remained unchanged 

over days of infection in both groups (Figure 3.66C), with no significant 

difference. This suggests that natural IgG confers protection and lowers the 

number of GCs. IgG is reported to interact with the B-cell inhibitory Fc 

receptor, RIIB1 (Zaheen et al., 2009, D’Ambrosio et al., 1995). Thus, the 

reconstituted IgG probably downregulates the GC B-cell survival, explaining 
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the drop in the number of GCs per white pulp area. 

 

 

 

 

 

 

 

 

 
Figure 3.65: Hematoxylin and eosin staining of livers of infected PBS- or IgG-
reconstituted AID-/- mice. Hematoxylin and eosin staining of livers from PBS-
reconstituted (control) and IgG-reconstituted AID-/- mice (n=4) infected with 106 cfu 
P. aeruginosa at 3 dpi. Whole tissue section images (magnification; 2x, scale bar; 1 
mm) are provided. Higher magnification to highlight areas of inflammatory cell 
infiltration (arrows) in liver of infected PBS-reconstituted control mice. No 
infiltration is observed in the liver of IgG-reconstituted AID-/- mice (magnification; 
20x, scale bar; 100 m). Images were taken using Mirax Midi microscope (Carl Zeiss) 
and offline analysis was done using Mirax viewer software. 
 

Finally, we observed a significant increase in the survival of the AID-/- 

mice reconstituted with IgG as compared to PBS-reconstituted control mice 

(Figure 3.67). Thus, we conclude that “natural IgG:ficolin complex” aided 

anti-microbial response to limit the infection, to reduce inflammation, to 

diminish tissue damage which ultimately promotes survival.  
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Figure 3.66: Assessment of inflammation in spleens of infected PBS- and IgG-
reconstituted AID-/- mice. (A) Detection of GC B cells in spleens of P. aeruginosa-
infected PBS- and IgG-reconstituted AID-/- mice (n=6). Frozen sections were cut at 5 
m thickness and stained with anti-B220 (B cell, green), anti-GL7 (germinal center, 
red) and anti-P. aeruginosa (bacteria, purple). Imaging was done using LSM meta 
510 confocal microscope (63x objective. Scale bar, 10 m). (B and C) 
Quantification of GCs per mm2 white pulp area in spleens of mice at various dpi. 
Frozen sections were cut at 5 m thickness and stained with hematoxylin and eosin. 
Total number of GCs was manually counted using bright field microscopy in three 
consecutive sections per spleen. Total white pulp area and spleen area per section 
was calculated using Image J software. The number of GCs per mm2 white pulp area 
was calculated by taking an average value from the three sections. GCs per mm2 of 
white pulp area and percentage of white pulp area per total spleen area were 
calculated in spleens of PBS-reconstituted and IgG-reconstituted AID-/- mice at 3 dpi. 
Six mice per group were studied. *p<0.05; n.s., not significant. 
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Figure 3.67: Survival of infected PBS or IgG-reconstituted AID-/- mice over time. 
Survival of PBS- or IgG-reconstituted AID-/- mice (n=8) infected with 106 cfu P. 
aeruginosa. Mice were monitored continuously for up to 9 dpi. Differences in 
survival were analyzed by the log-rank test (*p<0.05). 
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CHAPTER 4: DISCUSSION 

Infection is caused by a wide range of virulent microbes including pathogenic 

viruses (Liu and Kimura, 2007), bacteria (Monack et al., 2004), fungi (Marina 

et al., 2008), protozoa and multi-cellular parasites (Osnas and Lively, 2004). 

These pathogens pose a grave challenge to health care diagnosis and treatment. 

Failure to curb the infection in a timely manner may result in life-threatening 

septic shock, multiple organ failure and possibly death. Therefore, the immune 

system has come up with a range of sentinels to provide protection to the host 

in a timely manner.  

To initiate an immediate protection against an infection, the host elicits 

innate immune response, where the PRRs recognize PAMPs and induce 

several activation cascades such as the complement pathway and signaling 

pathways, leading to phagocytosis and inflammatory responses for effective 

clearance of the pathogen. However, over production of pro-inflammatory 

cytokines could be dangerous to the host as exemplified by sepsis and auto-

immune diseases (Poltorak et al., 1998). Therefore, the responses have to be 

tightly controlled by associated negative feedback mechanisms and/or by anti-

inflammatory cytokines such as TGFβ, IL-10, and steroid hormones.  

In addition, the innate immune response is known to play an important 

role in initiating and shaping the subsequent adaptive immune response 

(Pulendran and Ahmed, 2006). On the other hand, adaptive immunity is also 

reported to influence the innate immune response (Hoebe et al., 2004). Thus, 

the two arms of the immune response mediate each other leading to synergistic 

interplay for effective pathogen clearance.  
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4.1.   Natural IgG is crucial in frontline immune defense 

Despite vast amount of literature available on the functions of natural IgM, 

little is known about why natural antibodies of IgG and IgA isotypes, which 

constitute the majority of serum natural antibodies, exist in the serum and 

whether they are redundant or serve any function during a foreign challenge to 

the immune system. 

In this study, we demonstrate for the first time, that natural IgG, the 

predominant natural antibody isotype in the serum, is not non-reactive but 

plays a fundamental pro-active role in systemic innate immune response. We 

first showed by in vitro studies that IgG purified from uninfected human 

serum is indeed able to recognize a wide variety of Gram negative and gram 

positive bacteria with the aid of ficolin and efficiently drives the phagocytosis 

of these bacteria via FcR1 on monocytes. Natural IgG also detects pathogenic 

bacteria in mice in a similar manner. Our in vivo studies highlighted the 

importance of natural IgG during infection. IgG knockdown and AID-/- mice 

with partial and complete absence of IgG respectively, were more susceptible 

to infection. In fact, reconstitution of with natural IgG promoted survival in 

AID-/- mice. Thus, our in vitro and in vivo studies conclusively prove that 

natural IgG is not passive but plays a pivotal protective role during infection.  

 

4.2. Natural IgG collaborates with pathogen-associated ficolins to form an 
interactome 

 
Over the past decade, extensive efforts and progress have been made in our 

understanding of how the immune system senses and responds to microbial 
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pathogens. The mechanisms underlying the ligand specificity, signaling 

pathways, and cellular trafficking of PRRs have been extensively 

characterized. However, microbial pathogens consist of multiple PAMPs, 

which simultaneously activate numerous PRRs, and it is now clear that 

crosstalk between them is a prerequisite for the induction of effective immune 

responses. Recent studies have highlighted the potential involvement of 

PRR:PRR collaborations acting in concert during the recognition of a 

pathogen. For example, CRP and ficolins, which are initiators of the classical 

and lectin complement pathways, respectively, have been shown to interact 

with each other to boost the immune response against the pathogen (Ng et al., 

2007; Zhang et al., 2009; Zhang et al., 2010). TLRs, in concert with other 

PRRs, have also been shown to orchestrate both pathogen-specific and cell 

type-specific host immune responses to fight infections (Gross et al., 2006). 

This crosstalk helps in inducing innate immune responses and in shaping the 

adaptive immune responses to various pathogens, including bacteria, viruses, 

fungi, and protozoan parasites. Thus, crosstalk between PRRs is important in 

mounting an effective immune response. In this thesis, we observed 

interaction amongst natural IgG and pathogen associated ficolin, which 

strongly illustrates and confirms the phenomenon of crosstalk amongst plasma 

proteins as an instantaneous event of pathogen recognition, which boosts 

immune defense. 

Our findings are supported by known literature wherein IgG is known 

to interact with other PRRs like CRP and MBL through its heavy chain 

constant region (Malhotra et al., 1995). Also, ficolins have been shown to 
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interact with CRP through their FBG domain (Zhang et al., 2009; Zhang et al., 

2010). Future in vivo studies using well-characterized ficolin-/- mice, double 

knockout mice of IgG and ficolin and FcR1-/- mice are required to support our 

in vitro and ex vivo findings on the mechanism of action of natural IgG:ficolin 

mediated immune defense.  

 

4.3. Infection-inflammation condition regulates the IgG:ficolin interaction 
and boots the immune response 

 
Infection leads to influx of inflammatory cells at the site leading to 

inflammation. This results in a drop in the pH and calcium levels in the body 

fluids as compared to the normal physiological scenario. By defining typical 

normal condition (pH 7.4 and 2.5 mM calcium) and infection-inflammation 

condition (pH 6.5 and 2 mM calcium) based on previous literature (Miyazawa 

et al., 1990; Aubert et al., 2006), we studied the interaction between IgG and 

ficolin to gain insight into how changes in pH and calcium influence the 

interaction and the subsequent immune response leading to clearance of 

bacteria. We observed that the infection-inflammation condition increased the 

affinity between IgG and ficolin and strengthened the degree of IgG:ficolin 

mediated phagocytosis. Site-directed mutagenesis studies provided further 

insight into how infection induced pH change influences the electrostatic 

interaction between IgG and ficolin by affecting the side-chain charge on 

amino acids of the proteins. These results suggest that the host system takes 

advantage of the prevailing changes occurring in serum pH and calcium levels 

under infection, for better pathogen recognition and effective immune 
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response. In addition, these findings have given us important clues into the 

immuno-modulatory activities taking place during an infection so as to avoid 

random over-activation of the immune system. 

 

4.4. Model to illustrate natural IgG mediated immune defense 

We have shown through various in vitro, ex vivo and in vivo studies that 

natural IgG is a crucial player in frontline immune defense. We showed that it 

specifically collaborates with pathogen associated ficolins to stage an effective 

antimicrobial action against the P. aeruginosa, an opportunistic pathogen 

which causes mortality in critically ill and immuno-compromised patients 

(Goldman et al., 2008). The immunoevasive nature (Kharazmi 1991) and 

multi-drug resistance (Zaborina et al., 2008) of P. aeruginosa makes it very 

difficult to clear off this microorganism during an infection. There is a lack of 

effective therapies available against P. aeruginosa infection. However, 

insights gained into the mechanisms of action of natural IgG mediated 

pathogen recognition and clearance shown in the present work are crucial in 

our understanding of the host defense to counter the immune evasiveness of 

this pathogen. This will contribute to the development of more potent immune 

therapies. 

Altogether, we have demonstrated a novel, fundamentally conserved 

role of natural IgG aided by ficolin, independent of the complement C3. The 

recruitment of natural IgG to the ficolin-bound pathogen effectively clears the 

invading bacteria through FcR1-mediated phagocytosis (Figure 4.1). The 

results obtained from the work in this thesis have been formulated into a 
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manuscript, which is currently under submission (Panda et al., unpublished 

data). 

 
 
Figure 4.1: Proposed model to illustrate the novel mechanism of bacterial 
recognition and phagocytosis by natural IgG. Assembly of ficolin (red), natural 
IgG (blue) and FcR1 (green) is found on monocytes, [bacteria- ficolin:IgG:FcR1-
monocytes]. Natural IgG acts as a crucial bridge between ficolin opsonized bacteria 
and FcR1, leading to direct and rapid phagocytosis of the pathogen. The right side of 
the model illustrates that in AID-/- mice (-natural IgG), the bacterial load remained 
high (supported by Figure 3.57), with higher pro-inflammatory cytokine levels in the 
early phase of infection (supported by Figure 3.58), which compromised survival of 
the mice (supported by Figure 3.61). The left side of the model illustrates that 
reconstitution of AID-/- mice with natural IgG (+ natural IgG) conferred early innate 
immune protection against infection compared to PBS-reconstituted controls 
(supported by Figures 3.62-3.67).  
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CHAPTER 5: CONCLUSION 

The natural antibodies comprise of IgM, IgG and IgA isotypes, of which 

elaborate studies have been done to elucidate the mechanisms of action and 

function of natural IgM. However, for over five decades since its discovery, 

natural IgG which is the most abundant natural antibody found in the serum of 

newborns and previously uninfected individuals, has been considered non-

reactive due to the general perception of its lack of antigen-specificity and 

affinity for pathogens, when studied in isolation. Thus, why natural IgG exists 

in the serum and what function it may play during a pathogen attack remain a 

very interesting biological question to explore. Hence, this thesis was focused 

on exploring the function of natural IgG.  The results obtained in this study 

define for the first time, the functional and mechanistic role of natural IgG. In 

this study, we demonstrated that natural IgG is not non-reactive; rather it 

actively recognizes a broad range of pathogens with the aid of ficolin. Our 

findings will fundamentally alter the axiom on the inactive nature of natural 

IgG and provide an impetus for immunologists to reassess the attributes of 

natural antibodies. Additionally, our findings directly imply new therapeutic 

strategies to broadly enhance natural resistance to infection. The elucidation of 

the binding interfaces between the natural IgG and ficolin has the potential to 

lead to development of immuno-modulators to regulate the frontline immune 

defense. As a whole, new insights gained from this thesis work will drive 

forward research on host-microbe interaction in immunity.  
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CHAPTER 6: FUTURE PERSPECTIVES 

Based on the findings in this thesis, there are several interesting questions that 

can be addressed in future. To further characterize the interaction of natural 

IgG with PRRs and explore various avenues where natural antibodies may 

play a critical functional role, following future studies are proposed as follows. 

 

6.1. In vivo studies with ficolin-/- and FcR1-/- mice 

Our studies involving in vitro and ex vivo work show that natural IgG 

collaborates with pathogen associated ficolins in the serum during an infection. 

We could gain more insight into the mechanism of pathogen detection and 

antimicrobial defense by studying the complex formation and mode of 

bacterial clearance in ficolin-/- mice. However, the recently available ficolin-/- 

mice have not been phenotypically well-characterized (Kilpatrick and 

Chalmers, 2011). A couple of recent reports showed that ficolin-/- mice were 

susceptible to localized intranasal infections caused by Streptococcus and 

influenza virus (Endo et al., 2012; Pan et al., 2012). It is likely that reduction 

in survival was observed as ficolins are abundant in the mucosa (Akaiwa et al., 

1999) and their absence will adversely affect the mice in a localized intranasal 

infection. However, it was found that other PRR induced immune pathways 

like the MBL mediated complement activation were fully functional in ficolin-

/- mice during infection (Endo et al., 2012). Moreover, other serum lectins like 

MBL are also known to interact with IgG (Malhotra et al., 1995). Hence, it is 

likely that ficolin-/- mice will be protected by natural IgG mediated interaction 

with MBL during a systemic infection. On the other hand, we propose that 
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future study using FcR1-/- mice will help to provide additional in vivo support 

for the mechanism of action of the natural IgG:ficolin opsonized bacterial 

clearance through FcgR1 receptor mediated phagocytosis. 

 

6.2. Collaboration of natural IgG with other pathogen-associated lectins 

Antigen-specific IgG has been shown to interact with other serum lectins such 

as CRP and MBL (Malhotra et al., 1995). It will be exciting to study the 

potential collaboration of natural IgG with other pathogen associated lectins 

and characterize their interaction under infection conditions. A variety of in 

vitro experimental techniques including ELISA, SPR, HDMS, cellular 

immuno-fluorescence and PLA studies could provide important advance into 

the biochemical characterization of the interactions. Subsequent ex vivo and in 

vivo studies using appropriate knockout mice models available like mbl-/- mice 

will additionally provide more details into the mechanism of action. These 

studies are crucial in extending our understanding of that natural IgG in 

general recognizes a wide range of pathogen associated lectins and thereby 

expand the range of antimicrobial functions it can perform.  

 

6.3. Exploring role of natural IgG:ficolin in mucosal immune defense 

Natural antibodies and ficolins are also abundant in the intestinal mucosa 

(Kroese et al., 1993;Akaiwa et al., 1999). Recent studies have highlighted the 

role of ficolin in preventing necrotising enterocolitis in newborns (Schlapbach 

et al., 2011). These reports pose interesting questions on the possible 

interaction between natural IgG and lectins and their protective action.  We 
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postulate that natural IgG may interact with pathogen associated lectins to 

elicit frontline defense in mucosal immunity. Insights gained from the findings 

in this thesis provide a strong foundation for testing this hypothesis. 

Ultimately, a better understanding of the PRR:PRR interactions in the gut will 

provide new opportunities for the prevention and treatment of a number of 

inflammatory disorders.  

 

6.4. Does natural IgA also interact with lectins during an infection? 

Recent study in our lab showed that IgA interacts with ficolins (Zhang et al., 

2010). In addition to ficolins, MBL is also known to interact with IgA (Roos et 

al., 2001) and activate the complement system in the serum. Also, MBL is 

seen to co-exist with IgA in immune disorders like IgA nephropathy (Endo et 

al., 1998; Matsuda et al., 1998; Hisano et al., 2001). Since AID-/- mice lack 

IgA, it will be a very good in vivo model to study the natural IgA:lectin 

mediated response and get a better idea of the immune strategies the host 

applies against infection in the gut.  
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