
LINKING ENTITIES TO A KNOWLEDGE
BASE

by

WEI ZHANG

(B. COMP)

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING
DEPARTMENT OF COMPUTER SCIENCE
NATIONAL UNIVERSITY OF SINGAPORE

2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48676492?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DECLARATION

I hereby declare that this thesis is my original work and it has been written

by me in its entirety. I have duly acknowledged all the sources of information

which have been used in the thesis. This thesis has also not been submitted for

any degree in any university previously.

————————

Wei Zhang

Jan. 1, 2013

ACKNOWLEDGEMENTS

Thanks very much to my teachers, friends, and family. They in various ways

have helped shape this work from beginning to end. It has been one very chal-

lenging and unforgettable adventure in my life.

First of all, I would like to express my thanks to my supervisors Dr. Jian

Su and Prof. Chew-Lim Tan sincerely for their valuable advice and in-depth

guidance throughout my Ph.D. study. In the past four and half years, I learned

a lot from them. With their help, I learned how to survey a field of interest,

how to discover interesting research topics, how to write research papers and

how to do presentation clearly. Besides, during the last half year, I sincerely

appreciate the help of Prof. Tan for the tuition waiver and the temporary job

provided by Dr. Su. I also thank Dr. Su for her kind help in my life rather

than only research, such as the advice and information on the job hunting of

my wife, and the newspapers and digital recorder given to me for improving

my spoken English.

I am also very thankful to Dr. Colin Keng-Yan Tan and Prof. Mong-Li Lee

for serving as examiners of my graduate research paper and thesis proposal.

Their valuable comments are of great help in my research work. Furthermore,

during my internship at Microsoft Research Asia, I got generous help from my

mentor Dr. Yunbo Cao and Dr. Chin-Yew Lin. I thank them very much.

My thanks also go to the following friends and lab-mates for their help

throughout my studies: Yan-Chuan Sim, Bin Chen, Wenting Wang, Zhiqiang

Toh, Man Lan, Long Qiu, Sinno Pan, Kai Wang, Zhijie He, Yun Huang and

Bolan Su.

Last but not least, I would like to give my deepest gratitude to my parents

i

Yongcheng Zhang and Suyan Zhang, who always encourage and support me

when I feel depressed. Meanwhile, I would also like to give my great thanks

to my wife Chaoya Liu. Her kind help and support make everything I have

possible. I dedicate this dissertation to my parents and my wife.

Wei Zhang

Jan. 1, 2013

ii

TABLE OF CONTENTS

Acknowledgements . i

Abstract . vii

List of Figures . ix

List of Tables . xi

Chapter 1: Introduction . 1

1.1 Motivations . 1

1.2 Entity Linking Benchmarks 2

1.3 Name Variation and Name Ambiguity 6

1.4 Related Tasks . 6

1.5 Thesis Contributions . 8

1.6 Thesis Overview . 11

Chapter 2: State of the Art . 13

2.1 General Architecture of Entity Linking System 13

2.2 Query Expansion . 13

2.2.1 Name Variations from Background Document for the

Mention in Query . 15

2.2.2 Name Variations from Wikipedia for KB Entries . . . 15

2.2.3 Query Rewrite . 17

2.3 Candidate Generation . 18

2.4 Candidate Ranking and NIL Detection 19

iii

2.5 Mention Collaborators . 23

Chapter 3: Training Data Creation and Instance Selection 25

3.1 Automatic Data Creation . 26

3.2 Instance Selection Strategy 28

3.3 Experiments and Discussions 32

3.3.1 With and Without Manual Annotated Data 32

3.3.2 Fixed Size Vs. Changing Size 35

3.4 (Un-)Annotated Development Set 36

3.5 Conclusions . 37

Chapter 4: Topical Features for Entity Linking. 38

4.1 Latent Dirichlet Allocation (LDA) 39

4.2 Wikipedia-LDA Model . 41

4.2.1 Modeling the Contexts as Distributions over Wikipedia

Categories . 42

4.2.2 Context Similarity 43

4.2.3 Wikipedia Category Selection 44

4.3 Experiments and Discussions 46

4.4 Conclusions . 49

Chapter 5: Lazy Learning for Entity Linking using Query Specific

Information . 50

5.1 Architecture of Lazy Learning 53

5.2 Training Instances Aq for Queried Name 55

5.3 Linear Function φq . 57

5.4 Incorporate M to u Estimation 58

iv

5.4.1 The Structural Learning Algorithm 59

5.4.2 Alternating Structure Optimization 60

5.4.3 Structural Learning for Entity Linking: Incorporate M

to u Estimation . 60

5.5 Predicting NIL Mentions . 62

5.6 Experiments and Discussions 63

5.6.1 Experimental Setup 63

5.6.2 Statistics of Data Set Aq 63

5.6.3 Exploring Θ Configuration 64

5.6.4 Evaluation Results for Lazy Learning 66

5.6.5 Comparison with State-of-the-Art Performance 68

5.7 Conclusions and Future Work 69

Chapter 6: Real-time Entity Linking in Microblog 71

6.1 Introduction . 71

6.2 Unsupervised Learning Framework 76

6.2.1 Bipartite Graphs for Entity Linking in Tweets 76

6.2.2 The Bipartite Graph of Context Enrichment 79

6.2.3 Off-Line Learning 82

6.2.4 On-Line Inference for New Tweets 85

6.3 Experiments and Discussions 85

6.3.1 Experiment Setup . 85

6.3.2 Experiment Results 88

6.4 Conclusions and Future Works 92

Chapter 7: Conclusions . 93

v

Bibliography. 95

vi

Linking Entities to a Knowledge Base

WEI ZHANG
National University of Singapore, 2013

Supervisors: Prof. Chew-Lim Tan and Dr. Jian Su

Abstract

The explosive growth in the amount of textual information brings a need for

building a structured Knowledge Base (KB) to organize the knowledge scat-

tered among these unstructured texts. On the other hand, the available KBs

such as Wikipedia and Google Knowledge Graph which contain rich knowl-

edge about the world’s entities have been shown to form a valuable component

for many natural language precessing (NLP) tasks. To populate or to utilize

the KBs, we need to link the mentions of entities in text to their corresponding

entries in the KB, which is called entity linking.

Most of state-of-the-art entity linking systems use annotated data to learn

a classifier or ranker by supervised learning algorithms. Our research initially

focuses on automatically labeling a large scale training corpus for the super-

vised learning algorithms, where we label the ambiguous mentions leveraging

on their unambiguous synonyms. We also propose an instance selection strat-

egy to select an informative, representative and diverse subset from the auto-

generated data set.

Next, we introduce topic models to entity linking for measuring the context

similarity between mention and KB entries. We propose a Wikipedia-LDA

method to model the context as some hidden topics instead of only treating the

vii

context as literal terms. We investigate the effectiveness of five subsets from

Wikipedia categories to represent the underlying topics.

Besides, we propose a lazy learning model for entity linking, which can

incorporate the query-specific information to the learning process by automat-

ically labeling some data for the queried name. Then, instead of only using

the labeled data set related with other names to train the linker, we propose to

use the predictive structure shared by the two data sets which are related with

queried name and other names respectively.

Finally, this thesis addresses entity linking task under a more challenging

scenario, where we link the mentions in microblog to a KB in real time. We

propose an unsupervised learning framework (USLF) which is based on three

bipartite graphs to address the new challenges in microblog. Our USLF uses

a Bayes method to model the three clues of disambiguation: the context infor-

mation of query and entities, popularity knowledge of entities and clustering

result on an additional tweet set. Besides, in our USLF, a tweet enrichment

function is embedded based on the word similarity, which is calculated in the k

principal component space of the word set with the help of auxiliary long text.

viii

LIST OF FIGURES

Figure 1.1 An Example of Wikipedia Article 3

Figure 2.1 General Entity Linking System Architecture 14

Figure 3.1 Annotated Mentions 25

Figure 3.2 Performance Curves for Two Batch Size Schemes . . . 36

Figure 3.3 Performance for Annotated Development Data 37

Figure 4.1 Graphical Model Representation of Latent Dirichlet Al-

location . 41

Figure 4.2 Graphical Model Representation of Labeled Latent Dirich-

let Allocation . 43

Figure 5.1 The System Architecture for Traditional Approaches.

(M contains a certain number of names. “Hoffman”

and “Chad Johnson” are two examples of them.) . . . 51

Figure 5.2 Instances Illustration in 3D Feature Space (Feature de-

tail is in Table 2.1) 52

Figure 5.3 Graphical Representation of Lazy Learning 54

Figure 5.4 Proportions of the Queries Based on the Sizes of their

Corresponding Aq . 64

Figure 5.5 Accuracy on Development Set (As Θ has one parame-

ter - its dimensionality h, the performance here is the

ceiling performance obtained on the development set at

the best dimensionality in {10, 50, 100,...}) 67

ix

Figure 5.6 A Comparison with TAC-10 Systems 69

Figure 6.1 Bipartite graphs of tweets, words, auxiliary words and

entities . 77

Figure 6.2 Bipartite graphs of tweets, auxiliary words and entities 82

Figure 6.3 (a)Acc, (b)F+ and (c)F− on data set WePS-D 90

x

LIST OF TABLES

Table 1.1 Number of TAC-09 Queries by NE Type and KB Presence 4

Table 1.2 Number of Queries in Data Sets of TAC-10 4

Table 1.3 Number of Queries in Data Sets of TAC-11 5

Table 2.1 Feature Set for Ranking (* Features used in our exper-

iments of the following chapters) 22

Table 3.1 Results of Entity Linking for Instance Selection 34

Table 4.1 Results of Entity Linking for Topical Features 47

Table 4.2 Sample Wikipedia Categories and Corresponding Top

15 Words . 49

Table 5.1 Unambiguous Variations for the Candidates of “AZ” . 56

Table 5.2 Micro-averaged Accuracy on Test Set 67

Table 6.1 Sizes of text collections (average value over the 100

short names) . 87

Table 6.2 Acc, F+ and F− on data set WePS-T 91

xi

Chapter 1: INTRODUCTION

——————————————————————————

1.1 Motivations

The last decade has seen an explosive growth in the amount of textual infor-

mation on the web and in some specific domains such as business reports and

news articles. There is a need for building a structured Knowledge Base (KB)

to organize the knowledge about the world’s entities scattered among these

unstructured texts. However, automatically populating an existing KB with

the fresh information from unstructured texts requires linking the mentions of

entities in text to their corresponding entries in the KB or highlighting these

mentions as new entries to the current KB.

On the other hand, the available KBs such as Wikipedia 1, OpenCyc 2,

KIM 3 (Popov et al., 2004), and Google Knowledge Graph 4 which contain

rich knowledge about the world’s entities have been shown to form a valuable

component for many Natural Language Processing tasks such as text classifi-

cation (Wang and Domeniconi, 2008), and cross-document coreference (Finin

et al., 2009). However, to be able to utilize the KB resource, these applica-

tions also require linking the mentions of entities in text to their corresponding

entries in the knowledge bases.

1http://www.wikipedia.org/
2http://www.opencyc.org/
3http://www.ontotext.com/kim
4http://www.google.com/insidesearch/features/search/knowledge.html

1

1.2 Entity Linking Benchmarks

Entity linking task has been proposed and studied in Text Analysis Conference

(TAC) since 2009 (McNamee and Dang, 2009). In TAC-09 5, entity linking is

defined as aligning a textual mention of an entity (entities are person, organi-

zation or geopolitical entities) in text to its appropriate entry in the knowledge

base if such entity has an entry in the knowledge base, otherwise highlight-

ing that the entity does not have an entry in the KB. More intuitively, given a

news article or web blog with a mention, for example, the mention SAS in the

following news article,

SAS creates R&D division to develop fraud and compliance applications

Business analytics firm SAS has created a R&D division to create applica-

tions to detect fraud and ensure compliance. The company has created the new

SAS R&D Fraud and Compliance Solutions Division to address the need for

enterprises to detect multichannel fraud and regulatory non-compliance...

and given a KB, e.g. Wikipedia 6 (an example of the KB entry shown in

Figure 1.1), entity linking system should return the correct KB entry for the

mention if such entry exists in KB, otherwise return NIL. In the SAS example

above, the KB entry for the software company shown in Figure 1.1 should be

returned.

In the remainder of this thesis, we use “query” to denote the mention and

its associated article.

In TAC-09, the KB derived from Wikipedia contains 818,741 different en-

tries. Each KB entry as shown in Figure 1.1 consists of the Wikipedia Infobox 7

5http://apl.jhu.edu/ paulmac/kbp.html
6http://www.wikipedia.org/
7http://en.wikipedia.org/wiki/Template:Infobox

2

Figure 1.1: An Example of Wikipedia Article

and the corresponding Wikipedia page text.

The annotated data set of TAC-09 has 3,904 queries across three named en-

tity (NE) types: Person (PER), Geo-Political Entity (GPE) and Organization

(ORG). The documents containing the mentions are from a document collec-

tion which contains 1.3 million documents from newswire text. The details of

the annotated data set can be found in Table 1.1.

3

Type # Queries in KB NIL
PER 627 255 372
ORG 2710 1013 1697
GPE 567 407 160
All 3904 1675 2229

Table 1.1: Number of TAC-09 Queries by NE Type and KB Presence

To evaluate entity linking systems, TAC-09 officially used micro-averaged

accuracy (i.e. the number of correct links divided by the total number of the

queries).

Entity linking at TAC-10 8 (Ji et al., 2010) is a follow-on to the evaluation

at TAC-09. The change in 2010 is to emphasize genre diversity by adding

0.4 million web documents into the document collection. Then, the document

collection in TAC-10 contains 1.7 million documents from newswire and blog

text. The training and test corpora statistics including genre and NE type are

listed in Table 1.2.

Corpus Genre PER ORG GPE All

Training
Newswire 627 2710 567 3904
Web data 500 500 500 1500

Test
Newswire 500 500 500 1500
Web data 250 250 250 750

Table 1.2: Number of Queries in Data Sets of TAC-10

This thesis will focus on the entity linking task as defined in TAC-09 and

TAC-10. TAC-11 9 (Ji et al., 2011b) further requires entity linking systems

to cluster NIL queries (the mentions do not have entry in KB) and then each

cluster represents one entity. Then entity linking system in TAC-11 is required

8http://nlp.cs.qc.cuny.edu/kbp/2010/
9http://nlp.cs.qc.cuny.edu/kbp/2011/

4

to: (1) judge whether each query can be linked to any KB entry; (2) cluster all

queries linked with NIL into clusters. The system output can be viewed as a

collection of various clusters: some clusters are labeled as KB entries.

In TAC-11, entity linking is also extended to a cross-lingual setting, in

which the queries come from both English and Chinese.

Table 1.3 lists the training and test corpora statistics at TAC-11.

Corpus Genre PER ORG GPE All

Training

Newswire (2009 test set) 627 2710 567 3904
2010 Training Web data 500 500 500 1500
2010 test Newswire 500 500 500 1500
2010 test Web data 250 250 250 750

Test
Newswire 500 500 500 1500
Web data 250 250 250 750

Table 1.3: Number of Queries in Data Sets of TAC-11

In the third evaluation campaign of Web People Search (WePS-3) 10, a task

of Online Reputation Management was proposed (Amigo et al., 2010; Spina

et al., 2011), which is the same as entity linking when KB only has one entry.

Given a set of tweets containing an ambiguous company name, and given the

home page of the company, this task is to filter out the tweets that do not refer

the company. For each company, systems are provided with the company name

(e.g. apple) used as a query to retrieve the stream of tweets to annotate, and a

representative URL (e.g. http://www.apple.com) that identifies the target com-

pany. The input information per tweet consists of a tuple containing: the tweet

identifier, the organization name, the query used to retrieve the tweet, the au-

thor identifier, the date and the tweet content. Systems have to label each tweet

as related (that is, the tweet refers to the company) or unrelated (the tweet does

10http://nlp.uned.es/weps/

5

not refer to the given company).

1.3 Name Variation and Name Ambiguity

The major challenges in the task of linking entities in text to a KB are the

problems: name variation and name ambiguity.

Name variation refers to the case that more than one name variations such

as alias, misspelling and acronym refer to the same entity. For example, both

“48th State” and “The Grand Canyon State” refer to state of Arizona, U.S..

Thus, the names for the same entity in the article and KB may be different, and

entity linking is required to bridge these different names.

Name ambiguity refers to the case that more than one entities share the

same name. For example, the mention “AZ” in the article may refer to the

US state state of Arizona, the Italian airline Alitalia, the country Azerbaijan, or

other entries in KB that have the same name, and entity linking system should

figure out the correct KB entry based on the context of the mention.

1.4 Related Tasks

In some work, entity linking is also called named entity disambiguation us-

ing Wikipedia (Bunescu and Pasca, 2006; Cucerzan, 2007). Bunescu and

Pasca (2006) employed several of the Wikipedia resources for entity disam-

biguation including Wikipedia entity pages, redirect pages 11, categories 12 and

hyperlinks. These resources have been widely used in the entity linking sys-

tems recently. Cucerzan (2007) stressed that the entities in the same document

11http://en.wikipedia.org/wiki/Wikipedia:Redirect
12http://en.wikipedia.org/wiki/Help:Category

6

should be related and they linked all the entities in the document to the KB

simultaneously by considering their global coherence. The details of the meth-

ods to utilize the Wikipedia resources and global coherence will be explored in

Chapter 2.

A similar task to entity linking is Wikification (Mihalcea and Csomai, 2007;

Milne and Witten, 2008; Ratinov et al., 2011), which links expressions in text

to their referent Wikipedia pages. Note that Wikification attempts to link all

“interesting” expressions to Wikipedia, mimicking the link structure found in

Wikipedia. In contrast, entity linking studies focus on linking named entities

(person, organization or geopolitical entities).

More generally, resolving ambiguous names in Web People Search (WePS)

(Artiles et al., 2007) and Cross-document Coreference (Bagga and Baldwin,

1998) disambiguates names by clustering the articles according to the entity

mentioned. For example, given a set of articles all containing the mention

“apple”, the system output will be a collection of clusters and articles in each

cluster refer to an entity such as the company Apple Inc, the fruit Apple and so

on. This differs significantly from entity linking, which has a given entity list

(i.e. the KB) to which we disambiguate the mentions.

Finally, a remote related task is word sense disambiguation (WSD) (Mi-

halcea and Moldovan, 1999; Kilgarriff and Rosenzweig, 2000; Edmonds and

Cotton, 2001; Lee and Ng, 2002; Ando, 2006), which aims to assign dictionary

meanings to the words in a corpus. The words in training and test corpora are

usually the same. This is differs significantly from entity linking, where names

in training and test corpora are different since the names of the entities form an

infinite set and the name in the query is unseen. Another difference is that en-

7

tity linking disambiguates entities to millions of KB entries, not disambiguate

words to a few pre-defined word senses. Thus, entity linking needs to generate

the candidate list from the whole KB on the fly. Besides, entities are infinite

and thus KB is partial. Entity linking needs to find NIL entity to populate the

KB.

1.5 Thesis Contributions

This thesis focuses on the supervised learning approaches for entity linking.

First, we automatically label the training data for entity linking. Next, we

design the features for the learning process. Third, we popose the learning

framework for entity linking. Finally, we focus on entity linking in short text.

We list the contributions of this thesis to the task of entity linking as fol-

lows:

1. Most existing studies on entity linking use thousands of annotated in-

stances to learn a classifier or ranker (Dredze et al., 2010; Lehmann et

al., 2010; Zheng et al., 2010; Zhang et al., 2010; Ploch, 2011; Ratinov et

al., 2011) or to estimate parameters (Gottipati and Jiang, 2011; Han and

Sun, 2011). Besides, from the analysis by (Ji et al., 2011b), all of the

top systems from the participants in the shared task of TAC-11 also use

supervised learning approaches to solve entity linking problem.

As manually creating a training corpus for entity linking is labor-intensive

and costly, we propose a method to automatically label a large scale train-

ing corpus for entity linking, where we label the ambiguous mentions

leveraging on their unambiguous synonyms. The basic idea is to take

an article with an unambiguous mention only referring to an entity E1,

8

and then replace the mention with a phrase which may refer to E1, E2 or

other entities.

Furthermore, the distribution of the unambiguous mentions is not consis-

tent with the mentions in the real world. Thus, to utilize the auto-labeled

data set without compromising the accuracy of entity linking system, we

also propose an instance selection strategy to select an informative, rep-

resentative and diverse subset from this auto-labeled data set.

2. The traditional entity linking approaches treat the context of the mention

and the text of a KB entry as literal term vectors where terms can be a

bag of words, n-grams, noun phrases or/and co-occurring named enti-

ties, and they measure the similarity between the context of the mention

and the text of the KB entry by the comparison of their weighted term

vectors. Such literal matching suffers from the problems: lack of se-

mantic information and sparsity issues. For example, the following two

sentences describe the same “Michael Jordan”, but literal matching can

not correctly link them together as there is no shared term between them.

(1) Michael Jordan (born February, 1963) is a former Ameri-

can professional basketball player.

(2) Michael Jordan wins NBA MVP of 91-92 season.

In this thesis, we introduce a topic model to entity linking to discover

the underlying topics in the context of mention and KB entries. Then,

the similarity between articles and KB entries also can be calculated in

the semantic space of the hidden topics. For example, the two sentences

above have the same topic “sports”.

9

3. Entities are infinite and thus names of the entities in the annotated data

set are partial. This property of entity linking causes that supervised-

learning based approaches disambiguate a new ambiguous name (e.g.

“AZ”) based on the distribution knowledge learned from instances in the

training set, which are related to other names (e.g. “Hoffman”, “Chad

Johnson”, etc.). However, there are some gaps among the distributions

of the instances related to different names, and these gaps hinder the

further improvement of the previous entity linking approaches.

To narrow down the gap between the query and the training data, this the-

sis proposes a lazy learning model, in which generalizing the model on

the labeled data is delayed until a query is made. This allows the training

instances specific to the name in the query (e.g.“AZ”) to be incorporated

into the learning process.

4. This thesis also addresses entity linking task under a more challenging

scenario, where we link the mentions in microblog to a KB in real time.

We propose an unsupervised learning framework which is based on three

bipartite graphs to address the new challenges in microblog.

First, microblog messages are much shorter usually consisting of only

not more than 140 characters. To address the problem of insufficient

text in microblog, we propose a bipartite graph based mapping function

to enrich the context of the microblog messages with the auxiliary long

texts from web.

Second, real-time entity linking in microblog requires a quick response

time, as it needs to monitor the tweets that keep coming at a fast pace.

10

However, the important technique for traditional entity linking systems

that gathers specific information for the query from external sources on-

the-fly can not meet this requirement. In this thesis, to benefit from the

external information: the microblog messages which also contain the

name in the query, and also to guarantee a fast response time, we propose

a bipartite graph based model to cluster the external tweets and then we

store the cluster information into a multinomial model off-line.

Third, in microblog messages, people usually only use the short name of

the entities, unlike news articles usually containing the unambiguous full

name of the entity. This property of entity linking in microblog disables

the method described above to automatically label training instances by

leveraging the unambiguous synonyms. In this thesis, we propose to

use the unsupervised clustering result to guide our supervised Bayesian

model. Thus, our method does not need human labor to annotate training

data.

Our publications related with the work presented in this thesis are as fol-

lows: the method to automatically label the training corpus is published in

(Zhang et al., 2010), the instance selection strategy and topic model for entity

linking are published in (Zhang et al., 2011b) and (Zhang et al., 2011c), and

the lazy learning for entity linking is published in (Zhang et al., 2012).

1.6 Thesis Overview

The rest of the thesis is organized as follows,

• Chapter 2 conducts a literature survey on entity linking. The survey sum-

11

marizes the existing work on entity linking and also presents their pros

and cons.

• Chapter 3 presents the method to automatically label the training corpus

and applies the proposed instance selection strategy to this corpus.

• Chapter 4 introduces the topic model to entity linking, where we investi-

gate both unsupervised and supervised topic models for entity linking.

• Chapter 5 describes the lazy learning which incorporates the query-specific

information into entity linking.

• Chapter 6 presents our unsupervised learning framework for entity link-

ing in microblog.

• Chapter 7 gives concluding remarks.

12

Chapter 2: STATE OF THE ART

——————————————————————————

2.1 General Architecture of Entity Linking System

Given a query q (a document dq with a mention mq) and a KB, our goal is

to select the correct KB entry e from the KB. Ji et al. (2011b) summarize the

existing work on entity linking and conclude a general architecture of entity

linking system (see Figure 2.1). It includes four steps: (1) query expansion

- expand the name in query into a richer set of variations using coreference

resolution in the background document and also expand the name variation set

of each entry in KB using Wikipedia; (2) candidate generation - finding all

possible KB entries Cq={c1,..,cN} that a query might link to; (3) candidate

ranking - rank the probabilities of all candidates Cq={c1,..,cN} and select the

top KB entry cn; (4) NIL detection - detect the NILs which got low confidence

at matching the top KB entry cn in step (3). Finally, the answer e is cn or

NIL. In the following subsections we will highlight the existing work and their

effective techniques used in each step.

2.2 Query Expansion

As shown in Section 1.3, name variation causes that the names in the query

and in the KB might be different. For example, the name in the query is “US”,

but “United States" in the knowledge base. Thus, entity linking systems firstly

13

Figure 2.1: General Entity Linking System Architecture

expand the name into a richer set of variations for both query and the entries

of knowledge base, expanding the name in the query to name variation set

{“US”, “USA”, ...} and expanding the name of KB entry to the set {“United

States”, “USA”, ...}. Then, we can bridge the mention and the KB entry by

string matching (e.g. the shared string “USA”).

14

2.2.1 Name Variations from Background Document for the Mention in

Query

Previous work (Srinivasan et al., 2009) used co-reference chain to find the name

variations from the background document for the query. More specifically, the

noun phrases co-occurring in the same chain with the mention of the query are

selected to form the name variation set.

Besides, Gottipati and Jiang (2011) mined variations by running a Named

Entity Recognizer on the background document. The recognized name strings

which contain the string of the query mention are selected as the variations.

For example, recognized name string - “Sophia Coppola” Vs. query mention-

“Coppola”) and recognized name string- “Apple, Inc” Vs. query mention- “Ap-

ple”).

2.2.2 Name Variations from Wikipedia for KB Entries

Entity linking systems also use external world knowledge to build the name

variation set for each KB entry. Since TAC uses a KB derived from Wikipedia,

and other KBs such as OpenCyc 1 and KIM 2 usually can be mapped to Wikipedia

(Nguyen and Cao, 2008), entity linking systems (Bunescu and Pasca, 2006;

Cucerzan, 2007; Varma et al., 2009; Bysani et al., 2010; Zhang et al., 2010;

Zheng et al., 2010; Lehmann et al., 2010; Cassidy et al., 2011; Zhang et al.,

2011b; Zhang et al., 2011c; Zhang et al., 2012) usually find the variations for

the entries in KB by leveraging name variation sources in Wikipedia: “titles of

1http://www.opencyc.org/
2http://www.ontotext.com/kim

15

entity pages”, “disambiguation pages 3”, “redirect pages 4”, “bold texts from

first paragraphs” and “anchor texts”.

Entity Pages: An entity page is a Wikipedia article that contains informa-

tion focused on one single entity, such as a person, a place, or a work of art.

For example, Wikipedia contains a page titled “Texas (TV series)”, which offers

information about the soap opera that aired on NBC from 1980 until 1982.

Disambiguation Pages: Disambiguation pages are specially marked arti-

cles having as title a name form, typically followed by the word “disambigua-

tion” (e.g., “Texas (disambiguation)”), and containing a list of references to

pages for entities that are typically mentioned using that name form. This is

more useful in extracting the abbreviations of entities, other possible names for

an entity, etc.

Redirect Pages: A redirect page in Wikipedia is an aid to navigation. When

a page in Wikipedia is redirected, it means that those set of pages are referring

to the same entity. They often indicate synonym terms, but can also be ab-

breviations, more scientific or more common terms, frequent misspellings or

alternative spellings, etc. For example, the article titled “Another World in

Texas” contains a redirection to the article titled “Texas (TV series)”.

Bold Text from First Paragraph: In Wikipedia the first paragraph usu-

ally contains a summary of the article or most important information about the

article, thus containing the most relevant words for that article. Entity linking

systems extract phrases from the first paragraph of Wikipedia article that are

written in bold font. This bold text generally refers to nick names, abbrevia-

tions, full names etc.
3http://en.wikipedia.org/wiki/Wikipedia:Disambiguation
4http://en.wikipedia.org/wiki/Wikipedia:Redirect

16

Anchor Texts: Wikipedia entity pages usually contain many hyperlinks

referring to another Wikipedia entity page. Illustratively, the article for Pam

Long contains a hyperlink which uses the name “Texas” to refer to “Texas (TV

series)”.

2.2.3 Query Rewrite

Sometimes the mention in the query is acronym (capitalized word). Expanding

a name in acronym form from the background document can effectively reduce

the ambiguities of the mention under the assumption that two variants in the

same document refer to the same entity. For example, the short form TSE in

Wikipedia refers to 33 entries, but with its full name Tokyo Stock Exchange,

which is unambiguous, we can directly link it to the correct entry without the

needs of disambiguation.

Zhang et al. (2011a) and Cassidy et al. (2011) mined full form for acronyms

using some common patterns such as “full form (acronym)” (e.g.“All Basotho

Convention (ABC)”). However, the rule-based methods cannot capture compli-

cated acronyms such as swapped or missed acronym letters (e.g. “CCP” vs.

“Communist Party of China”; “MD” vs. “Ministry of Defence”) and multi-

ple letters from expansion (“MINDEF” vs. “Ministry of Defence”). Zhang

et al. (2011b) trained a statistical classifier to detect full form for the acronym

from its context and achieved 15.1% accuracy improvement over state-of-the-

art acronym expansion methods.

If the full form of the query is found from its context, entity linking systems

will use the new mention with less ambiguity as the new query.

Besides, the mentions in the query sometimes are misspelled. Our work

17

(Zhang et al., 2010) also used the web tools such as “did you mean” feature

in Google and Wikipedia to correct the misspelling of mention. For example,

“Abbot Nutrition” can be corrected to “Abbott Nutrition” by Wikipedia “did

you mean”. Then, the correct spelling is used as the new query.

2.3 Candidate Generation

Because the knowledge base usually contains millions of entries, it is time-

consuming to apply the disambiguation algorithm to the entire knowledge base.

Thus, this step is conducted to filter out irrelevant KB entries and select from

KB only a set of candidates that are potentially the correct match to the given

query. Given the query and the name variations for each KB entry found in

Section 2.2.2, the candidates can be selected by comparing the name string of

the mention in query with the name strings in the variation set of each KB entry.

The KB entry with a name string which matches the name of the mention is

considered as a candidate.

To increase the recall of the candidate set, Dredze et al. (2010) further find

more candidates using the following approach:

• The titles of the KB entries are wholly contained in or contain

the mention (e.g., Nationwide and Nationwide Insurance).

• The first letters of the entity mention match the KB entry title

(e.g., OA and Olympic Airlines).

• The title has a strong string similarity score with the entity men-

tion. They include several measures of string similarity, including:

character Dice score > 0.9, skip bigram Dice score > 0.6, and

18

Hamming distance <= 2.

Besides, unlike the above methods using only the mention in the query,

(Srinivasan et al., 2009) and (Gottipati and Jiang, 2011) also used the name

variation set of the mention (built in Section 2.2.1) to generate the candidates.

2.4 Candidate Ranking and NIL Detection

In entity linking, the methods of candidate generation normally achieve a recall

of more than 95%. However, as the name ambiguity problem (See Section 1.3),

more than one candidates are usually generated for a given mention. Therefore,

the most crucial step for entity linking is ranking the KB candidates and then

selecting the best KB entry. Note that the contributions of this thesis in the

following chapters are all for this step of entity linking.

The ranking task can be formalized as follows. We are given a query q

(i.e. a document dq with a mention mq) and its associated KB candidates

Cq={c1,..,cN} generated in Section 2.3, and our goal is to select the correct

KB entry e from the set Cq. Specifically, let φq(q,ci) be a score function reflect-

ing the likelihood that the candidate ci is the correct KB entry for q. Then, a

ranking model for linking is to solve the following optimization problem:

e = arg max
ci∈Cq

φq(q, ci) (2.1)

The approaches exploited in existing entity linking systems can be gener-

ally categorized into two types:

(1)Unsupervised or weakly-supervised learning, in which annotated data

is minimally used to tune thresholds and parameters, and the score function

19

is largely based on the unlabeled contexts. For example, The top 1 system of

TAC-09 (Varma et al., 2009) used the Information Retrieval tool Lucene 5 to

index the candidates, and formulated the document dq as the input to Lucene

for ranking the candidates. Gottipati and Jiang (2011) used a KL-divergence

retrieval model to rank the candidates.

(2)Supervised learning, in which a pair of query and KB entry is modeled as

an instance for feature-based machine learning algorithms. Such a supervised

model can be learned from the annotated training data based on many various

features. The labels for training instances are positive (i.e. linked together)

and negative (i.e. not linked together). As supervised learning uses the super-

vision from labeled instances to combine a large range of information such as

surface and semantic knowledge in Table 2.1, supervised learning usually can

obtain a better linking accuracy than unsupervised methods only leveraging the

context information. Thus, more and more researchers have used supervised

learning approaches for entity linking recently, including Support Vector Ma-

chines (SVM) classification (Zhang et al., 2010; Zhang et al., 2011b; Zhang

et al., 2011c), Maximum Entropy (Cassidy et al., 2011; Chang et al., 2010),

Ranking SVM (Dredze et al., 2010), ListNet (Zheng et al., 2010), Generative

Model (Han and Sun, 2011), Logistic Regression Classifier (Monahan et al.,

2011), Random Forests (Zhao et al., 2011) and Markov-Logic Network (Dai et

al., 2010).

Support Vector Machines based ranking and Maximum Entropy based rank-

ing are the most popular methods in entity linking. (Chen and Ji, 2011) ob-

served that ListNet achieved the best performance compared to seven other

5http://lucene.apache.org/core/

20

ranking algorithms including SVMRank and Maximum Entropy at the same

setting of features and resources.

Supervised learning based methods involve a lot of feature engineering and

design. Table 2.1 summarizes the typical ranking features used in existing

entity linking systems.

Contextual Features (CF) capture the intuition that a candidate ci is more

likely to be referred to by a mention mq if the text of ci has more words or

named entities shared with the text of mq.

Semantic Features (SeF) capture the intuition that a candidate ci is more

likely to be referred to by a mention mq in dp if the text of ci has a high semantic

similarity to dq, or the named entity type of ci is consistent with mq.

Surface Features (SuF) represent the likelihood of a name referring to a

specific KB entry. For example, “Arizona” is more likely refer to “State of

Arizona” than “AZ”.

Generation Source (GS) allows disambiguation to make decision depend-

ing on the origin of the candidate.

For Popularity Features (PF), in TAC09 and TAC10 most systems had to

rely on Web access (e.g. ranking of Wikipedia pages from search engine) to es-

timate the popularity of a candidate KB entry. In contrast, Han and Sun (2011)

computed popularity based on the distribution of the name of the KB entry in

a large document collection.

For NIL mentions detection, some work (Dredze et al., 2010; Han and Sun,

2011; Dai et al., 2010) added NIL to the candidate set and ranked it together

with other candidates. The other work (Zhang et al., 2010; Zheng et al., 2010;

Monahan et al., 2011) used an additional classification step on the top 1 candi-

21

Name Description
Contextual Features (CF)

Bag of Words∗
The cosine similarity (tf.idf weighting) between query
text and text of the candidate.

Genre Genre of the query text (newswire, blog, ...)
Position∗ Query name appears early in KB text

Co-occurring NEs∗
Entities co-occurred, or involved in some at-
tributes/relations/events with the query

Semantic Features (SeF)

NE type∗
True if NE type (i.e. Person, GPE, Organization) of
the query and the candidate is consistent.

Profile Slot fills of the query, KB attributes

KB Link Mining
Attributes extracted from the hyperlink graphs (in-
links, out-links) of the KB article

Surface Features (SuF)

Spelling Match∗
Exact string match, acronym match, alias match,
string match based on edit distance, ratio of longest
common subsequence to total string length, name
component match, first letter match for abbreviations,
organization suffix word match

Name Gazetteer∗ Organization and geo-political entity abbreviation
gazetteers

Generation Source (GS)

Wikipedia Source∗
True for each Wikipedia source (i.e. “entity pages",
“disambiguation pages", “redirect pages" and “anchor
texts" (Section 2.2.2)) which generates the candidate

String Match∗
For the candidate not generated from Wikipedia
source, true if it is generated from full match.

Popularity Features(PF)
Web Top KB text ranked by search engine and its length
Frequency Frequency in KB texts

Table 2.1: Feature Set for Ranking (* Features used in our experiments of the
following chapters)

22

date to resolve this problem.

2.5 Mention Collaborators

Let M = {m1,m2, ...mN} denote the N mentions in a document and let

Ci = {ci1, ci2, cin} denote the candidate set for mention mi. The above meth-

ods for candidate ranking disambiguate each mention mi separately, utilizing

clues such as maximizing the textual similarity between the document and each

KB entry in Ci. This section discusses an important technique for candidate

ranking - Collaborative Ranking (also named as Collective Entity Linking or

Global Algorithm), in which all N mentions M = {m1,m2, ...mN} in the

document are disambiguated simultaneously to arrive at a coherent set of KB

entries {c1∗, c2∗, ..., cN∗}. Coherent set means Collaborative Ranking also max-

imizes the similarity among the N KB entries c1∗, c2∗, ... , cN∗. For example,

if a mention of “Michael Jordan” refers to the computer scientist rather than

the basketball player, then we would expect a mention of “Monte Carlo” in the

same document to refer to the statistical technique rather than the location, as

statistical techniques have a more close relation with the computer scientist.

Following this idea, Cucerzan (2007) and Radford (2010) extracted all en-

tities in the context of a given query, and simultaneously disambiguated all the

entities in the document to Wikipedia. As we know, each Wikipedia article

has some category labels at its bottom 6. Then, their Collaborative Ranking

is to maximize the agreement among the category labels associated with the

candidate KB entries c1∗, c2∗, ... , cN∗.

Fernandez et al. (2010), Han and Sun (2011) and Ratinov et al. (2011) used
6http://en.wikipedia.org/wiki/Help:Category

23

the Wikipedia hyperlink graph to estimate the coherence among the Wikipedia

articles c1∗, c2∗, ... , cN∗.

The approaches (Chen and Ji, 2011; Cassidy et al., 2011) further extended

this idea to cross-document level by constructing “collaborators” for each query

and exploiting the global context from the entire collaborator cluster for each

query. More specifically, given a query, they clustered the query document

together with a large document collection on-the-fly. Then, the features for

supervised algorithm also contain the cluster-level features such as maximum,

minimum and average tfidf/entity similarities between the candidate and the

document cluster which contains the query document.

24

Chapter 3: TRAINING DATA CREATION AND

INSTANCE SELECTION

——————————————————————————

As discussed in Section 2.4, the current state-of-the-art entity linking systems

are based on supervised learning approach, which require thousands of anno-

tated mentions to achieve good performance. Figure 3.1 shows some examples

of the annotated mentions.

Figure 3.1: Annotated Mentions

Manually creating this training corpus for entity linking is labor-intensive

and costly. Entity linking annotation is also highly dependent on the KB. When

a KB for a new domain comes, the annotating process needs to be repeated.

25

Thus, in this chapter, we present a novel method to automatically generate a

large scale annotated data set for ambiguous mentions leveraging on their un-

ambiguous synonyms. Furthermore, the distribution of the unambiguous men-

tions is not consistent with the mentions in the real world. Thus, to utilize the

auto-generated data set without compromising the accuracy, an instance selec-

tion strategy is proposed to select an informative, representative and diverse

subset from the auto-generated dataset. During the iterative selection process,

the batch sizes at each iteration change according to the variance of classifier’s

confidence or accuracy between batches in sequence, which not only makes the

selection insensitive to the initial batch size, but also leads to a better perfor-

mance.

We conduct evaluation on TAC-10 data (Ji et al., 2010). Experiments show

that our method achieves state-of-the-art performance without hard intensive

work on annotating thousands of articles. Besides, the instance selection can

make the dataset more balanced and it also produces a significant gain in entity

linking performance.

3.1 Automatic Data Creation

This section will describe our approach to automatically generate the train-

ing set for the supervised learning approaches in candidate ranking (see Sec-

tion 2.4). The basic idea is to take a document with an unambiguous reference

to an entity E1 and replacing it with a phrase which may refer to E1, E2 or

others.

Observation: Some full names for the entities in the world are unambigu-

ous. This phenomenon also appears in the given document collection of entity

26

linking at TAC-10. The mentions “Abbott Laboratories” appearing at multiple

locations in the document collection refer to the same entity “a pharmaceuti-

cals health care company” in KB.

From this observation, our method takes into account the name variations

of KB entry derived from (1) the title of Wikipedia Entity Pages (e.g. “Abbott

Laboratories”); (2) the title of Wikipedia Redirect Pages (e.g. “Abbott Labs”)

(see Section 2.2.2). As these name variations are unambiguous, their mentions

in the articles can be linked with the correct KB entry without disambiguation.

For example, the mention ”Abbott Laboratories” can only match the title of KB

entry E0272065. E0272065 is the ID of the KB entry for this pharmaceuticals

health care company. With the unambiguous name list for each KB entry, our

method to annotate training instances for entity linking is as follows.

We first use an index and search tool to find the documents with these un-

ambiguous mentions. For example, the name “Abbott Laboratories” occurs in

documents LDC2009T13 and LDC2007T07 in TAC document collection. The

chosen text indexing and searching tool is the well-known Apache Lucene in-

formation retrieval open-source library 1.

Next, to validate the consistency of NE type between entities in KB and

in document, we run the retrieved documents through a Named Entity Recog-

nizer, to tag the named entities in the documents. Then we link the document

to the entity in KB if the document contains a named entity whose name ex-

actly matches with the unambiguous name and type (i.e. Person, Organization

and Geo-Political Entity) exactly matches with the type of entity in KB. For

example, after Named Entity Recognition, “Abbott Laboratories” in document

1http://lucene.apache.org

27

LDC2009T13 is tagged as an Organization which is consistent with the entity

type of E0272065 in KB. Then, we link the “Abbott Laboratories” occurring

in document LDC2009T13 with entity E0272065 in KB.

Finally, we replaced the mention in the selected documents with its ambigu-

ous synonyms. For example, we replace the mention “Abbott Laboratories” in

document LDC2009T13 with an ambiguous synonym “Abbott”, which can re-

fer to many KB entries such as E0064214, E0272065 and so on. Then, we

can obtain the annotated instances for entity linking. Two examples of these

instances are as follows, where one is positive and the other is negative.

(Abbott, LDC2009T13)→ E0272065

(Abbott, LDC2009T13) 9 E0064214

Following this approach, from the 1.7 million documents in TAC-2010 text

collection, we generate 45,000 annotated instances.

3.2 Instance Selection Strategy

In this section, we explore the method to effectively utilize the large-scale data

auto-generated in Section 3.1. We generate the data set leveraging the unam-

biguous names. However, the distribution of the unambiguous mentions can

not perfectly represent the real distribution of all the mentions. In the case of

“Abbott Laboratories”, more than ten “Abbott” mentions are linked to “Abbott

Laboratories” entry in KB, but no “Abbott” example is linked to other entries

like “Bud Abbott” “Abbott Texas”, etc. Thus, we use an instance selection

strategy to select a more balanced subset from the auto-annotated instances

and reduce the effect of the distribution problem. However, the traditional

28

instance selection approaches (Brighton and Mellish, 2002; Liu and Motoda,

2002) only can solve two problems: 1) a large dataset causes response-time to

become slow 2) the noisy instances affect accuracy, which are different from

our needs here. We thus propose a new instance selection approach for select-

ing a more balanced subset from the auto-annotated instances. This instance

selection strategy follows the same principle of active learning (Brinker, 2003;

Shen et al., 2004) which aims to reduce the manual annotation effort on train-

ing instances through proposing only the useful candidates to annotators. As

we already have a large set of automatic generated training instances, the se-

lection here is a fully automatic process to get the useful and more balanced

subset. As this process is guided by a development data set, the distribution

of the selected instances is consistent with the real data set. Besides, during

our iterative selection process, the batch sizes at each iteration change accord-

ing to the variance of classifier’s confidence or accuracy between batches in

sequence. The details of our instance selection method is as follows.

We use the SVM classifier (Vapnik, 1995) to select the instances from the

auto-generated data set. The initial classifier can be trained on a set of initial

training instances, which can be a small part of the whole auto-generated data,

or the limited manual annotated training instances available, e.g. those training

data provided by TAC-10.

Our instance selection method is an iterative process. We select an informa-

tive, representative and diverse batch of instances based on current hyperplane

and add them to the current training instance set at each iteration to further

adjust the hyperplane for more accurate classification.

Schohn and Cohn (2000) show that an instance is informative for the learner

29

if the distance of its feature vector to hyperplane is not greater than that of the

support vectors to the hyperplane. Thus, we use the distance as the measure to

select informative instances. The distance of an instance’s feature vector to the

hyperplane is computed as Eq 3.1.

Dis(w) = |
N∑
i=1

αiyik(si, w) + b| (3.1)

Where w is the feature vector of the instance, αi, yi and si correspond to

the weight, class and feature vector of the ith support vector respectively. N

is the number of the support vectors.k is the kernel function and b denotes an

intercept.

Next, we quantify the representativeness of an instance by its density (see

Eq 3.2). Such density is defined as the average similarity between this instance

and all other instances in the dataset. If an instance has the largest density

among all the instances in the dataset, it can be regarded as the centroid of this

set and also the most representative instance.

Density(wi) =

∑
j 6=i sim(wi, wj)

N − 1
(3.2)

Where wi is the instance in the dataset and N is the size of dataset. Sim is

cosine similarity.

We combine the informativeness and representativeness by the function

λ(1 −Dis(w)) + (1 − λ)Density(w), in which Dis and Density are normal-

ized first. The individual importance of each part in this function is adjusted

by a trade off parameter λ (set to 0.5 in our experiment based on the active

30

learning work (Shen et al., 2004)). The instance with the maximum value of

this function will be selected first to the batch. This instance will be compared

individually with the selected instances in current batch to make sure their sim-

ilarity is less than a threshold β. This is to diversify the training instance in the

batch to maximize the contribution of each instance. We set β to the average

similarity between the instances in the original dataset. When a batch of α

instances is selected, we add them to the training instance set and retrain the

classifier.

Such a batch learning process will stop at the peak confidence of the SVM

classifier, since Vlachos (2008) shows that the confidence of the SVM clas-

sifier is consistent with its performance. The confidence can be estimated as

the sum of the distances to hyperplane for the instances of an un-annotated de-

velopment set. The development set guides the selection process to solve the

distribution problem mentioned above. Alternatively, we can also leverage on

some annotated development data and use accuracy instead to guide the selec-

tion process. We explore both approaches for different application scenarios in

our experiments.

We now need to decide how to set the batch size α at each iteration. It

is straightforward to set a fixed batch size α (Fixed Number), which never

changes during the process. However, there are some limitations as demon-

strated in our experiments of this chapter. First, the performance is sensitive

to the batch size. Second, if we set the batch size too big, it will impede fur-

ther improvement allowed by small batch size. But if we set the batch size too

small from the beginning, it will dramatically increase the number of iterations

needed which will make the selection too slow. To resolve the above issues,

31

we change the batch size according to the variance of classifier’s confidence on

an un-annotated set. Thus, we assign an integer to α1 and α2 in the first two

iterations, and αi(i > 2) in the ith iteration is computed as Eq. 3.3 (Flexible

Number).

αi =
αi−1 ∗ (coni−1 − coni−2)

coni−2 − coni−3

(3.3)

where coni is the confidence of the classifier on the un-annotated dataset at

ith iteration.

Algorithm 3.1 summarizes the selection procedure.

3.3 Experiments and Discussions

In our experiments, we use TAC-10 data set and adopt micro-averaged accu-

racy (See Section 1.2) to evaluate our auto-generated annotations and instance

selection strategy. For pre-processing, we perform sentence boundary detec-

tion derived from Stanford parser (Klein and Manning, 2003), named entity

recognition using a SVM based system trained and tested on ACE 2005 with

92.5(P) 84.3(R) 88.2(F), and co-reference resolution using a SVM based re-

solver trained and tested on ACE 2005 with 79.5%(P), 66.7%(R) and 72.5%(F).

In our implementation, we use the binary SVMLight developed by Joachims

(1999), and the classifier is trained with default parameters.

3.3.1 With and Without Manual Annotated Data

Table 3.1 shows the results for evaluating our auto-generated data set and the

instance selection strategy with Flexible Number Scheme. For instance selec-

32

Algorithm 3.1 Instance Selection Strategy

Input: Initial Training Set T = {T1, T2, ..., Tm}
Original Set where we select instance A = {A1, A2, ..., An}
BatchSet with the maximal size α

Output: Training Set T = {T1, T2, ..., Tm}

Initialization: BatchSet = φ

Loop until the confidence/accuracy of the classifier on a development set does
not increase

(a) Train a Classifier on T

(b) BatchSet = φ

(c) Update α according to Eq. 3.3

(d) Loop until BatchSet is full

i. Select Ai with maximal value P from A
P = λ(1−Dis(w)) + (1− λ)Density(w)

ii. RepeatFlag=false
iii. Loop for each Ak in BatchSet

• If Sim(Ai, Ak) > β Then,
– RepeatFlag=true
– Stop the Loop

iv. If RepeatFlag==false Then,
• Add Ai to BatchSet
• Remove Ai from A

(e) T = T
⋃
BatchSet

33

tion, this set of experiments check the variance of classifier’s confidence on the

unannotated test set to stop the process of selection and to decide the batch size

α of Flexible Number Scheme.

Methods ALL NIL in KB ORG GPE PER
Auto_Gen 81.2 81.8 80.5 80.8 72.5 90.3
Auto_Gen+IS 85.2 87.5 82.5 84.4 78.5 92.8
TAC 83.2 88.2 77.2 82.1 75.1 92.5
TAC+Auto_Gen 82.2 83.8 80.4 81.7 75.6 89.5
TAC+Auto_Gen+IS 85.5 87.7 82.9 84.7 78.9 92.8

Table 3.1: Results of Entity Linking for Instance Selection

We first evaluate the effectiveness of our instance selection strategy if no

manually annotated data is available. In the first block of Table 3.1, we com-

pare the performances of the systems with and without instance selection.

“Auto_Gen” uses the auto-generated dataset described at Section 3.1 as the

training set directly, and “Auto_Gen+IS” applies our instance selection to the

auto-generated data for training. In the instance selection process, we use the

KB entries with more than 15 linked documents in the auto-generated data as

our Initial Training Set (1,800 instances) to train a classifier, and then use this

classifier to select instance from the auto-generated dataset. The first block

of Table 3.1 shows that our instance selection gives significant improvements

(ρ < 0.05, χ2 test). These improvements show our selection strategy makes

the training set more balanced and it can effectively reduce the effect of dis-

tribution problem that the auto- generated data set only contains unambiguous

mentions.

We further evaluate our instance selection strategy when a large manually

annotated data is available in the second block of Table 3.1. “TAC” is trained

34

on the manually annotated TAC-10 training set. “TAC+Auto_Gen” is trained

on TAC-10 set and the auto-generated set. “TAC+Auto_Gen+IS” uses TAC-10

training set as the Initial Training Set, and applies instance selection process

to the auto-generated data. Comparing “TAC+ Auto_Gen” with “TAC”, we

can see that the unbalanced distribution caused serious problem which even

pull down the performance achieved by the large manual annotation alone.

The experiment results of “TAC” and “TAC+Auto_Gen+IS” show that our in-

stance selection strategy appears very necessary to bring further improvements

over the large manually annotated dataset (5,404 instances). These significant

(ρ < 0.05,χ2 test) improvements are achieved by incorporating more training

instances in a reasonable way.

Comparing the performance of “Auto_Gen+IS” with “TAC” in Table 3.1,

we can find that our method performs better without hard intensive work on

annotating 5,404 articles. This proves that using our instance selection can save

labor without compromise of entity linking accuracy. The pretty much same

performance of “Auto_Gen+IS” with “TAC+Auto_Gen+IS” also confirms the

above conclusion.

3.3.2 Fixed Size Vs. Changing Size

We are also interested in the effectiveness of the two schemes (i.e. Fixed Num-

ber and Flexible Number) of setting the batch size α mentioned in Section 3.2.

In Figure 3.2, we set the batch size α in Fixed Number scheme and α1, α2 in

Flexible Number scheme, to different numbers from 50 to 140 increasing 10

each time. We conduct instance selection to the auto-generated data. Figure 3.2

shows that flexible batch size outperforms the fixed size for entity linking. Es-

35

pecially, the improvement at α = 50, 60 and 70 is significant (ρ < 0.05,χ2 test).

This proves that batch size should be in line with the variance of the classifier’s

confidence at each iteration of instance selection. Furthermore, in this Figure,

the performance of flexible batch size is more stable than the Fixed Number

scheme. This shows that Flexible Number scheme makes the entity linking

system insensitive to the initial batch size during instance selection process.

Thus the initial batch size of the experiments in Table 3.1 is set to 80, which

we believe that very similar performance can be achieved even with a different

initial size. Another fact is that the selection process is similar to active learn-

ing, which needs to manually annotate the selected instances in each batch.

Thus, being a generic approach, the batch size changing method proposed in

this chapter can also benefit active learning for other tasks.

of Instances in Initial Set

Acc

Figure 3.2: Performance Curves for Two Batch Size Schemes

3.4 (Un-)Annotated Development Set

In the above study, we directly use the test set without annotations as the de-

velopment set for instance selection to optimize our solution to the application

data. Such an approach will be useful when the application set is available in

36

advance as in the case with TAC benchmarks. When the application set is un-

available beforehand, in other words, the articles to be linked only arrive one

after the other in linking stage, we leverage on the accuracy on annotated de-

velopment set for the instance selection. Figure 3.3 shows the performances on

different sizes of annotated development set. The results show that the different

sizes contribute more or less same performances. We only need to use a small

amount of annotated development data, 500 articles in our study to guide the

instance selection to achieve similar performance as with unannotated test set

being development data.

Acc

of Instances in dev set

Figure 3.3: Performance for Annotated Development Data

3.5 Conclusions

In this chapter, we create a large corpus for entity linking by an automatic

method. Furthermore, we proposed a batch size changing instance selection

strategy to reduce the effect of distribution problem in the auto-generated data.

It makes entity linking system achieve state-of-the-art performance without

hard labor. Meanwhile, the flexible batch size not only makes the selection

insensitive to the initial batch size, but also leads to a better performance than

the fixed batch size. Being a generic approach, the batch size changing method

proposed in this Section can also benefit active learning for other tasks.

37

Chapter 4: TOPICAL FEATURES FOR ENTITY LINKING

——————————————————————————

In the last chapter, we discussed the training instance generation for the super-

vised learning in entity linking. This chapter focuses on the feature design for

the supervised learning in entity linking.

For the feature design in candidate ranking (see Section 2.4), there has been

much existing work which demonstrates modeling context is an important part

of measuring the similarity between query text and the KB candidate. However,

the traditional approach for entity linking treats the context as a bag of words,

n-grams, noun phrases or/and co-occurring named entities, and measures con-

text similarity between query document and KB entry by the comparison of the

weighted literal term vectors. Such literal matching suffers from sparseness is-

sue. For example, consider the following four sentences with mention Michael

Jordan:

1. Michael Jordan is a leading researcher in machine learning and artificial

intelligence.

2. Michael Jordan is currently a full professor at the University of Califor-

nia, Berkeley.

3. Michael Jordan (born February, 1963) is a former American professional

basketball player.

4. Michael Jordan wins NBA MVP of 91-92 season.

38

As there is no shared term among these sentences, literal matching can not

correctly disambiguate the four Michael Jordan mentions. In this example, the

semantic knowledge underlying the words is needed. If we can detect that Sen-

tence 1 and Sentence 2 are related with topic “academic”, but Sentence 3 and

Sentence 4 are related with topic “sports”, we would correctly link the mentions

referring to the same person together. Topic modeling approaches have been

introduced to the similar task cross-document coreference such as (Kozareva

and Ravi, 2011).

In this chapter, we propose a Wikipedia-LDA model to effectively mine

the semantic knowledge from the contexts of the mentions. Such topic model

allows us to measure the similarity between articles and KB entries in the se-

mantic space of hidden topics.

We conduct evaluation on TAC-10 data (Ji et al., 2010). Experiments show

that the Wikipedia-LDA model is able to effectively capture the underlying

semantic information and produce statistically significant improvement over

literal matching alone.

4.1 Latent Dirichlet Allocation (LDA)

LDA (Blei et al., 2003) defines a topic underlying a document collection to be a

distribution over a fixed vocabulary. For example, the genetics topic has words

about genetics with high probability and the evolutionary biology topic has

words about evolutionary biology with high probability. Then, the documents

are represented as random mixtures over the topics. More formally, with the

following definition,

• A word is defined to be an item from a vocabulary indexed by {1, ..., V }.

39

• A document is a sequence ofN words denoted byW = (w1, w2, ..., wN),

where wn is the nth word in the sequence.

• A corpus is a collection of M documents denoted by

D = {W1,W2, ...,WM}

LDA defines the the following process to generate each document W in a

corpus D (see Figure 4.1):

1. Choose N ∼ Poisson(ε).

2. Choose θ ∼ Dir(α).

3. For each of the N words wn :

(a) Choose a topic zn ∼Multinomial(θ).

(b) Choose a word wn from p(wn|zn, β), a multinomial probability

conditioned on the topic zn.

Note that the dimensionality k of the Dirichlet distribution (and thus the

dimensionality of the topic variable z) is assumed known and fixed, and the

word probabilities are parameterized by a k × V matrix β where βij = p(wj =

1|zi = 1).

For our task, we train LDA models on Wikipedia texts of KB, where the

text of each entry is treated as a document. Once the model is trained, we

map the document where the name mention appears and the text of KB entry,

to the hidden topic space by calculating the topic proportions θ. Then, the

probability over each topic for KB entry and the query document is learned.

Thus, we can calculate the context similarity in the K-dimensional topic space

by their Hellinger distance as Eq. 4.1.

40

Figure 4.1: Graphical Model Representation of Latent Dirichlet Allocation

Similarityd,e =
K∑
k=1

(√−→
θd,k −

√−→
θe,k

)2

(4.1)

Finally, such semantic similarity can be combined with other term matching

features to SVM ranker and classifier for entity linking.

4.2 Wikipedia-LDA Model

The number k of topics in Latent Dirichlet Allocation (LDA) have to be defined

by human experience before the learning process, and the topics are hidden. In

fact, Wikipedia has explicitly defined the topics of articles as Wikipedia cate-

gories 1. For example, the category labels for the Wikipedia article of basket-

ball player “Michael Jordan” are African-American basketball players, Shoot-

ing guards, Baseball players from New York and so on. As manually defined

for Wikipedia, they are better and more suitable to model our KB topics. Our

experiments also prove that using Wikipedia categories as the topics can further

improve entity linking systems.

In the similar task cross-document coreference (Han and Zhao, 2009) and
1http://en.wikipedia.org/wiki/Help:Category

41

other tasks (e.g. text classification) (Wang and Domeniconi, 2008), Wikipedia

concepts are used to model the text. However, Wikipedia concept is a kind

of entity-level topic. This differs from our approach, where we use the cross-

entity topic Wikipedia Categories to represent the semantic knowledge.

In this Section, we model the contexts as the distributions over Wikipedia

categories. Then, the similarity between the contexts can be measured in a

semantically meaningful space. Finally, such semantic similarity, together with

other base features, is incorporated in the trainable models to learn the ranker

and classifier.

4.2.1 Modeling the Contexts as Distributions over Wikipedia Categories

Wikipedia requires contributors to assign categories to each article, which are

defined as “major topics that are likely to be useful to someone reading the arti-

cle”. Thus, Wikipedia can serve as a document collection with multiple topical

labels, where we can learn the posterior distribution over words for each topi-

cal label (i.e. Wikipedia category). Then, from the observed word in the con-

text of mention and KB entry, we can estimate the distribution of the contexts

over the Wikipedia categories. To obtain this distribution, we use a supervised

Latent Dirichlet Allocation (LDA) model-labeled LDA defined by Ramage et

al. (2009), which represents state-of-the-art method for multi-labeled text clas-

sification. It performs better on collections with more semantically diverse

labels, which we need in order to leverage on the large semantically diverse

categories from Wikipedia as the topical labels.

Figure 4.2 shows us a graphical representation of the labeled LDA for the

multi-labeled document collection. Labeled LDA is a three level hierarchical

42

Bayesian model. β is the multinomial distribution over words for a Wikipedia

category, which has a Dirichlet prior with hyperparameter η. Both the category

set Λ as well as the topic prior α influence the topic mixture θ. These distribu-

tions can be used to generate documents in the form of a collection of words

(w). D is the number of documents, N is the document length and K is the

number of categories.

Figure 4.2: Graphical Model Representation of Labeled Latent Dirichlet Allo-
cation

After the model is trained by Wikipedia data, the distributions of KB entry

and the article over K categories are estimated by calculating the topic pro-

portions θ. θ is given by an EM procedure that treats θ as a parameter with Z

missing.

4.2.2 Context Similarity

We have mapped the contexts to a K-dimensional semantic space. Thus, we

can calculate the context similarity by their distance in this space. To mea-

sure the context similarity in the K-dimensional topical space, we calculate

the Cosine value as Eq. 4.2.

43

Similarityd,e =

∑K
k=1 θd,k × θe,k√∑K

k=1 (θd,k)2 ×
√∑K

k=1 (θe,k)2
(4.2)

Where d means the document with the name mention and e means the KB

entry. Such semantic similarity can be further combined with other term match-

ing features for SVM ranker and classifier of entity linking.

4.2.3 Wikipedia Category Selection

Each article in Wikipedia is assigned several categories by the contributors as

requested. However, from our observation some categories in Wikipedia may

not be suitable to model the topics of a document. Thus, we shall consider

selecting an appropriate subset from the Wikipedia categories to effectively

model the contexts. We examined five possible category subsets:all, all-admin,

isa_all, isa_class, and isa_instance.

Wikipedia contains 165,744 categories. This is the set all.

There are some meta-categories used for encyclopedia management. For

example, “Wikipedia editing guidelines”, which are unsuitable to describe the

topics of a document. Thus, we remove the categories which contain any of

the following strings: wikipedia, wikiprojects, lists, mediawiki, template, user,

portal, categories, articles and pages. This leaves 127,325 categories (all-

admin).

Besides, some categories such as “River by Country” and “Geography by

place” in the all-admin set are still redundant, because all the categories in

is-a relation can serve as the knowledge graph of the world. For example, the

relation between the two topical categories “Singapore River” and “River” is an

44

is-a relation. These categories have covered topical information in the category

“River by Country” which is not in any is-a relation. We thus only select the

categories connected by is-a relation to isa_all subset.

Since the categories have been connected by unlabeled links in Wikipedia,

we just need to identify those links representing is-a relation. We use the four

methods as below proposed by Ponzetto and Strube (2007) to distinguish is-a

and not-is-a relation links.

We first use a syntax-based method: assign is-a to the link between two

categories if they share the same lexical head lemma (e.g. “British Computer

Scientists” and “Computer Scientists”).

Then, we use structural information from the category network: (1) for a

category c, look for a Wikipedia article P with the same name, for example the

article page “Microsoft” and the category “Microsoft”. Take all P ′s categories

whose lexical heads are plural nouns CP = {cp1, cp2, ..., cpn}. Take all super-

categories of c, SC = {sc1, sc2, ..., sck}. If the head lemma of one of cpi

matches the head lemma of scj , label the relation between c and scj as is-

a. For instance, the article “Microsoft” being categorized into “Companies

listed on Nasdaq” indicates that “Microsoft” is a company. Then, assign is-a

to the link between “Microsoft” and its super-category “Computer and video

game companies”. (2) assign is-a label to the link between two categories if a

Wikipedia article is redundantly categorized under both of them. For example,

“Internet” is categorized under both “Computer networks” and “Computing”

and there is a link between “Computer networks” and “Computing”. Then this

link is assigned is-a.

Next, we consider lexical-syntactic patterns in a corpus. This method uses

45

two sets of patterns. One set is used to identify is-a relations (Caraballo, 1999;

Hearst, 1992), for example “such NP1 as NP2”, NP1 and NP2 are the values

of categories and their subcategories respectively. The second set is used to

identify not-is-a relations. For example “NP1 has NP2”, where the link be-

tween NP1 and NP2 will be assigned not-is-a. These patterns are used with

a corpus built from Wikipedia articles, and separately with the Tipster cor-

pus (Harman and Liberman, 1993). The label is assigned by majority voting

between the frequency counts for the two types of patterns.

Finally, we assign is-a labels to links based on transitive closures - all cate-

gories along an is-a chain are connected to each other by is-a links.

Another fact is that the categories defined by Wikipedia are entities, not all

classes. For example, “Microsoft” is an instance of the class “Computer and

Video Game Companies”, and it appears both as an article page and as a cate-

gory in Wikipedia. We would like to further examine the two different subsets:

isa_class, and isa_instance in isa_all set for entity linking. To distinguish in-

stance and class in isa_all set, we use a structure-based method (Zirn et al.,

2008). The categories which have other sub-categories or Wikipedia articles

connected to them by is-a relation are assigned class label. In our problem, the

remaining categories are approximately regarded as instances.

4.3 Experiments and Discussions

In our study, we use TAC-10 data set and adopt micro-averaged accuracy to

evaluate our Entity Linker. For pre-processing, we perform sentence bound-

ary detection derived from Stanford parser (Klein and Manning, 2003), named

entity recognition using a SVM based system trained and tested on ACE 2005

46

with 92.5(P) 84.3(R) 88.2(F), and co-reference resolution using a SVM based

resolver trained and tested on ACE 2005 with 79.5% (P), 66.7% (R) and 72.5%

(F). In our implementation, we use the binary SVMLight developed by Joachims

(1999), and the classifier is trained with default parameters. The Stanford Topic

Model Toolbox 2 is used for Labeled-LDA with default learning parameters.

Table 4.1 lists the performance of entity linking with overall accuracy (ALL)

as well as accuracy on subsets (Nil, in KB, ORG,GPE and PER) of the data. In

the first row, only base features described in Table 2.1 are used. This baseline

system models the contexts with literal terms. The second row shows the accu-

racy combining base features with the hidden topical features learned by LDA

in Section 4.1. The third to seventh rows report the results combining base

features with topical knowledge (i.e. the context similarity is computed under

the topic space of the five different subsets of Wikipedia categories described

in Section 4.2.3).

Features ALL NIL inKB ORG GPE PER
Base Features 83.2 88.2 77.2 82.1 75.1 92.5
Base + Hidden Topics 84.5 81.4 87.1 92.7 82.7 78.1
Base + all 84.0 88.6 78.5 84.0 76.0 92.1
Base + all-admin 84.9 88.9 80.0 84.9 76.9 92.8
Base + isa_all 85.9 89.1 82.0 85.2 78.6 93.8
Base + isa_class 85.5 88.8 81.3 84.9 78.0 93.2
Base+isa_instance 83.9 88.9 77.8 82.9 76.6 92.1

Table 4.1: Results of Entity Linking for Topical Features

We see that all the six systems with topical features perform better than

the baseline system, which models the context similarity as literal term match-

ing. Especially, the isa_all and isa_class can achieve significantly better result

2http://nlp.stanford.edu/software/tmt/tmt-0.3/

47

than the baseline (ρ < 0.05, χ2test). These results prove that the semantic

knowledge underlying the contexts has good disambiguation power for entity

linking. Table 4.2 tells the reason of the improvements. Table 4.2 shows us

four sample Wikipedia categories and top 15 highly probable words identified

by the topic model for these categories. The topic model successfully assigns

a high probability to the words “researcher” and “professor” in the category

“Members of the National Academy of Sciences”, and assign a high probabil-

ity to the words “nba” “basketball” “professional” and “season” in the cat-

egory “American basketball players”. Such topical knowledge learned from

Wikipedia data is helpful in the example of “Michael Jordan” mentioned at the

beginning of this chapter. This shows that entity linking can benefit from the

topical information underlying the words and overcome the shortcomings of

literal matching

We further compare the performances of the five different category subsets.

From the last five rows of Table 4.1, we can see that isa_all subset performs

best among the five subsets for disambiguation. This should be because isa_all

includes more categories than isa_class and isa_instance, and thus can capture

more semantic information. However, although all and all-admin include even

more categories, they introduce many categories which are unsuitable to model

the topics of a news article or blog text, such as the two categories mentioned in

Section 4.2.3, “people by status” which is not in an is-a relation and “Wikipedia

editing guidelines” which is used for encyclopedia management.

Finally, we would like to compare our Wikipedia-LDA with LDA model.

Comparing Base + isa_all with Base + Hidden Topics in Table 4.1. We can

conclude that Wikipedia categories are better and more suitable to model our

48

American
novels

American
film actors

Members of the Na-
tional Academy of
Sciences

American
basketball
players

novel role prize nba
book actor researcher basketball
story films professor points
paperback appeared science rebounds
plot television nobel games
print hollywood institute draft
edition california theory guard
isbn roles physics overall
hardback movie received coach
characters acting sciences professional
published married medal assists
man death chemistry play
father character academy season
love starred award forward
written actress ph.d ncaa

Table 4.2: Sample Wikipedia Categories and Corresponding Top 15 Words

KB topics, since these categories are manually defined for Wikipedia.

4.4 Conclusions

In this chapter, we explored using two innovative approaches for entity linking

to address the sparseness issue of literal matching. First, we introduce LDA

to entity linking, which can discover the semantic knowledge underlying the

contexts. Since the number of topics learned by LDA have to be defined by

human experience before the learning process, and the topics are hidden, we

also proposed a Wikipedia-LDA to model the topics of texts, where we inves-

tigated the effectiveness of five subsets from Wikipedia categories to represent

the underlying topics.

49

Chapter 5: LAZY LEARNING FOR ENTITY LINKING

USING QUERY SPECIFIC INFORMATION

——————————————————————————

In the previous chapters we have discussed the training data and features for

the supervised learning algorithm. In this chapter, I will discuss the learning

framework. Figure 5.1 shows the learning framework of previous entity linking

systems where they start with a training data set then train a linker, and finally

use the learned linker to predict the query.

However, as there are infinite number of entity names, it is impossible to

manually create the labeled data set for each name. The available labeled data

for entity linking is only for a certain number of names. Thus, as shown in

Figure 5.1, the query is a mention of the name “AZ", but the names in train-

ing data set are “Hoffman", “Chad Johnson" and so on. In other words, the

existing approaches disambiguate a mention of the name (e.g.“AZ") based on

the distribution knowledge learned from the labeled mention-KB_entry pairs

in the training set M related to other names (e.g.“Hoffman",“Chad Johnson",

etc.).

Figure 5.2 illustrates the locations of the labeled instances related to the

three names “AZ”, “Hoffman” and “Chad Johnson” in a feature space (Bag

of Words, Named Entities and Edit Distance, the popular features used in en-

tity linking). We can see that the location of the hyperplane to separate positive

and negative instances for different names vary widely. Moreover, the positive-

50

Figure 5.1: The System Architecture for Traditional Approaches. (M contains
a certain number of names. “Hoffman” and “Chad Johnson” are two examples
of them.)

51

negative instance ratio of each name is also very different from others. Thus,

the entity linker generalized beyond labeled names (“Hoffman", “Chad John-

son", etc.) without considering the knowledge of the queried name (“AZ")

suffers from this distribution gap.

0
0.1

0.2
0.3

0.4
0.5

0

0.1

0.2

0.3

0.4
0

0.1

0.2

0.3

0.4

0.5

Bag of WordsNamed Entities

E
d

it
 D

is

AZ +

AZ −

Chad Johnson −

Chad Johnson +

Hoffman −

Hoffman +

Figure 5.2: Instances Illustration in 3D Feature Space (Feature detail is in
Table 2.1)

To narrow down the gap between the instance distributions related to la-

beled and queried names, this chapter proposes a lazy learning model, in which

generalization on the labeled data is delayed until a query is made. This al-

lows the training instances specific to queried name to be incorporated into the

learning process. To obtain these training instances, our lazy learning model

automatically labels some relevant instances for the queried name leveraging

its unambiguous synonyms.

In addition to the new notion of benefiting from the auto-generated in-

stances related with the queried name, our approach further benefits from the

52

manually labeled data related to other names. Specifically, the learned linker

generalizes on the labeled data sets related to both queried and other names by

exploiting the inherent predictive structure shared by these two data sets.

In the task of Online Reputation Management (Amigo et al., 2010; Spina et

al., 2011) mentioned in Section 1.4, Amigo et al. (2010) concluded that it was

not viable to train separate system for each of the companies, as the system

must immediately react to any imaginable company name. Thus, in this bench-

mark, the set of company names in the training and test corpora are different.

In contrast, the lazy learning approach proposed in this chapter demonstrates

that it is feasible to train separate system for each company, and the system

can immediately react to any company name without manually labeling new

corpora.

We conduct evaluation on TAC-10 data. Our experiments show that our

proposed lazy learning model significantly improves entity linking over the

traditional supervised learning framework.

5.1 Architecture of Lazy Learning

We formalize the disambiguation task as follows. We are given a query q

(i.e. a document dq with a mention mq) and its associated KB candidates

Cq={c1,..,cN} generated in Section 2.3, and our goal is to select the correct

KB entry e from the set Cq. Specifically, let φq(q,ci) be a score function reflect-

ing the likelihood that the candidate ci is the correct KB entry for q. Then, a

disambiguation model is to solve the following optimization problem:

e = arg max
ci∈Cq

φq(q, ci) (5.1)

53

To solve this optimization problem. As shown in Figure 5.3, our process of

lazy learning model is as follows:

1: Automatically label an instance set Aq based on the query q and

candidates Cq.

2: Generalize a function φq on the data set Aq related with the

queried name and a manually labeled data set M related with other

names.

3: Select the correct KB entry e from the candidates using the

function φq.

Figure 5.3: Graphical Representation of Lazy Learning

As shown in Figure 5.1, previous approaches generalize a universal linker

φ for all of the queries on a labeled data set M related to irrelevant names

(“Hoffman”, “Chad Johnson”, etc.), and they suffer from the distribution gap

shown in Figure 5.2. In contrast, our lazy learning approach delays the model

generalization until receiving the query. It can generalize a separate function φq

for each query leveraging the distribution knowledge learned from the instances

in Aq. As Aq is automatically labeled for the queried name, it can be used to

narrow down the gap of the instance distributions related to different names

54

shown in Figure 5.2. Besides, φq also benefits from M in our model by mining

its predictive information shared with Aq. Now, let us elaborate the method for

generating Aq, and the generalization of φq, respectively.

5.2 Training Instances Aq for Queried Name

In this section, we propose to label the instances Aq for the queried name.

Following the training data creation approach discussed in Section 3.1 which

automatically generates training data for entity linking, we automatically label

the instances related to the queried name.

Given a document dq with a mention mq and its associated KB candidates

Cq, for example,

dq (mq=“AZ”): ...We know that they looked at a house that they

might purchase before they left Scottsdale, AZ. ...;

Cq: {c1: state of Arizona, c2: Azerbaijan, ..., cN : Alitalia},

automatically creating the labeled set Aq for the name “AZ" requires automati-

cally linking some mentions of “AZ" in text with the KB candidates in Cq. Our

approach performs this linking based on two facts: (a) the title of the KB entry

is unambiguous (e.g. “state of Arizona”). (b) The name variations of KB entry

derived from “redirect pages” of Wikipedia in Section 2.2.2 are unambiguous

(e.g. “The Grand Canyon State”). Then, we can generate the unambiguous

name variation list for each candidate in Cq (see Table 5.1).

Because the unambiguous name only refers to one KB entry, we can link

unambiguous name appearing in a document with the correct KB entry directly

without human labor. Thus, we search the documents with these unambiguous

55

c1

state of Arizona; The Grand Canyon State; US-
AZ; 48th State; AZ (U.S. state); The Copper
State; Arizona, United States; ...

c2

Azerbaijan; Azerbaidzhan; Republic of Azer-
baijan; Azerbaijan Republic; Azerbaijani inde-
pendence; Azerbaijan (Republic); ...

...

cN
Alitalia; Alitalia Airlines; Alitalia airways; Al-
italia.it; Alitalia S.p.A.; ...

Table 5.1: Unambiguous Variations for the Candidates of “AZ”

name variations from a large document collection. Two examples of the re-

trieved documents are as below:

d1 (m1=“The Grand Canyon State”): ... The Grand Canyon State

will get its shot to host the big game a year from now, ...

d2 (m2=“Azerbaijan Republic”): ... It is located 30 km east of

Ardebil and on the borderline with Azerbaijan Republic. ...

We denote the labeled instance as a 4-tuple (d,m,e,+1/-1), which means

mention m in document d can/cannot be linked with KB entry e. Then, the two

unambiguous examples above can be labeled as (d1, m1, c1, +1) and (d2, m2,

c2, +1) automatically.

As we need to label the instances related to the name “AZ”, we further

replace the unambiguous names in the documents with their ambiguous syn-

onyms “AZ”. Then d1 and d2 are converted to:

d1
′ (mq=“AZ”): ...AZ will get its shot to host the big game a year from now,

...

d2
′ (mq=“AZ”): ...It is located 30 km east of Ardebil and on the borderline

with AZ. ...

56

Finally, the labeled data set Aq for the queried name “AZ" is generated,

where Aq={(d1
′, mq, c1, +1),(d1

′, mq, c2, -1), ...,(d1
′, mq, cN , -1),(d2

′, mq, c1,

-1),(d2
′, mq, c2, +1), ...,(d2

′, mq, cN , -1) ...}.

5.3 Linear Function φq

In this section, we formulate the disambiguation function φq in Eq. 5.1 as fol-

lows,

φq(q, ci) = uTXi (5.2)

where the document dq with a mention mq and the candidate ci in Cq are repre-

sented as a feature vector Xi ∈ χ, and u is a weight vector.

Estimate u on Aq. A popular method for finding u is empirical risk mini-

mization with least square regularization. In this work, given a training set

Aq={(di, mq, ei, Yi)}i=1,...,n(q) (Y ∈ {+1,-1}) related to the queried name mq,

firstly we constrct the feature vector Xq
i for the instance (di, mq, ei). Then,

Aq={(Xq
i , Yq

i)}i=1,...,n(q) , (X ∈ χ, Y ∈ {+1,-1}). Finally, we aim to find the weigh

vector u that minimizes the empirical loss on the training data,

û = arg min
u

 1

n(q)

n(q)∑
i=1

L(uTXq
i , Y

q
i) + λ‖u‖2

 (5.3)

where L is a loss function. We use a modification of the Huber’s robust loss

function: L(p, y) = (max(0, 1− py))2, if py ≥ -1; and -4py otherwise. We fix

the regularization parameter λ to 10−4.

57

Feature Vector X for Instance (q,ci). The features we adopted to construct

Xi from (q,ci) include four groups, contextual features (CF), semantic features

(SeF) 1, surface features (SuF) and generation source (GS) (see Table 2.1).

5.4 Incorporate M to u Estimation

A practical issue that arises in estimating u only on Aq is the paucity of la-

beled instances for some queries. This is because we automatically label the

instances Aq leveraging its unambiguous synonyms (see Section 5.2). How-

ever, for some queried names, it is hard to find a sufficient number of unam-

biguous synonyms or the related documents containing these synonyms. On

the other hand, the total number of available manually labeled instances M for

other irrelevant names is relatively large. To illustrate the role of M in learn-

ing, consider the disambiguation of the two mentions “CPC” and “NY” in two

documents. If the first mention “CPC” refers to entity “Communist Party of

China” and the second mention “NY” refers to entity “the city of New York”,

they have similar surface features (e.g. feature “acronym matching” is true).

Such surface features effective for linking to “Communist Party of China” may

be also effective for disambiguating “NY”, and vice versa.

However, with the gap in other aspects between the distributions of Aq and

M shown in Figure 5.2, directly adding M to our training set will produce a lot

of noise with respect to the queried name. Thus, instead of using all the distri-

bution knowledge in M, we propose to only incorporate the shared knowledge

with Aq from M into u estimation based on structural learning.

1It also includes the topic feature using Wikipedia categories as the topics described in
Chapter 4

58

5.4.1 The Structural Learning Algorithm

Structural learning (Ando and Zhang, 2005a) is a multi-task learning algo-

rithm that takes advantage of the low-dimensional predictive structure shared

by multiple related problems. Let us assume that we have K prediction prob-

lems indexed by l ∈ {1, .., K}, each with n(l) instances (Xl
i, Yl

i). Each Xl
i is a

feature vector of dimension p. Let Θ be an orthonormal h×p (h is a parame-

ter) matrix, that captures the predictive structure shared by all the K problems.

Then, we decompose the weight vector ul for problem l into two parts: one

part that models the distribution knowledge specific to each problem l and one

part that models the common predictive structure,

ul = wl + ΘTvl (5.4)

where wl and vl are weight vectors specific to each prediction problem l. Then,

the parameters Θ, wl and vl can be learned by joint empirical risk minimization,

i.e., by minimizing the joint empirical loss of the predictors for the K problems

on the training instances as Eq. 5.5,

arg min
Θ,wl,vl

K∑
l=1

 1

n(l)

n(l)∑
i=1

L
((
wl + ΘTvl

)T X(l)
i , Y

(l)
i

)
+ λ‖wl‖2

 (5.5)

It shows that wl and vl are estimated on n(l) training instances of problem l.

In contrast, Θ is estimated on all the training instances of theK problems. This

is the key reason why structural learning is effective for learning the predictive

structure shared by multiple prediction problems.

59

5.4.2 Alternating Structure Optimization

The Θ optimization problem in Eq. 5.5 can be approximately solved by the fol-

lowing alternating structure optimization procedure (Ando and Zhang, 2005b),

1: Learn K weight vectors u′l for all the K problems on their corre-

sponding instances independently using empirical risk minimiza-

tion (similar with Eq. 5.3).

2: Let U′ = [u′1,...u′K] be the p × K matrix formed from the K

weight vectors.

3: Perform Singular Value Decomposition on U′:U′=V1DV T
2 . The

first h column vectors of V1 are stored as rows of Θ̂

5.4.3 Structural Learning for Entity Linking: Incorporate M to u Esti-

mation

As previous entity linking systems do not consider the information of the queried

name, they usually use all the instances in M without any difference to train

the linker. However, in data set M, some instances related with some particu-

lar names may share more predictive information with the queried name than

other instances. Thus, in this work, we group the instances in M based on the

“name", and then learn the shared information from the “name" group instead

of individual instance. As shown in Figure 5.1, the data set M for entity linking

usually has a certain number of names (e.g.“Hoffman",“Chad Johnson", etc.),

each with some labeled instances. Then, we treat each “name” and its associ-

ated instances in M as a prediction problem of structural learning. Besides, the

60

queried name (e.g. “AZ" in Figure 5.1) with auto-labeled instances Aq is our

target prediction problem.

According to the applications of structural learning in other tasks, such as

WSD (Ando, 2006), structural learning assumes that there exists a predictive

structure shared by multiple related problems. In order to learn the predic-

tive structure Θ shared by M and Aq, we need to (a) select relevant prediction

problems (i.e. relevant names) from M. That is, they should share a certain

predictive structure with the target problem; (b) select useful features from the

feature set shown in Table 2.1. The relevant prediction problems may only has

shared structure with target problem over certain features. In our work, we use

a set of experiments including feature split and data set M partitioning to per-

form these two selection processes. This empirical method for selection will

be elaborated in Section 5.6.3.

Let us assume that we have selected relevant names from data set M, which

together with the queried name can be used as the K related prediction prob-

lems in structural learning. Applying structural learning to the K problems,

we can obtain the shared structure Θ̂ by alternating structure optimization.

Then, the weight vector u for the queried name in Eq. 5.2 can be approximately

solved by the following procedure:

1: Learn ŵ and v̂ for the queried name by minimizing the empirical

risk on data set Aq:

arg min
w,v

 1

n(q)

n(q)∑
i=1

L
(

(w + Θ̂Tv)Xq
i , Y

q
i

)
+ λ‖w‖2



61

2: The estimated weight vector u for the queried name is:

û = ŵ + Θ̂T v̂

The Θ̂T v̂ part is learned from the selected names in M and all the instances

inAq, and therefore it can model the shared predictive structure between M and

Aq, and remove the noises in M as we expected. The ŵ part is learned from

the data set Aq, which can tackle the distribution gap between training and test

data sets (see Figure 5.2) in the previous work only using M.

5.5 Predicting NIL Mentions

So far we have assumed that each mention has a correct KB entry; however,

when we run over a large corpus, a significant number of entities will not appear

in the KB. In this situation, the document dq with mention mq should be linked

to NIL. Traditional approaches usually need an additional classification step to

resolve this problem (Zheng et al., 2010; Lehmann et al., 2010). In contrast,

our approach seamlessly takes into account the NIL prediction problem. As we

define Y ∈ {+1,-1} to denote whether the pair of the mention and KB entry can

be linked together, the median 0 can be assigned to φq(q,NIL). Then Eq. 5.1 is

extended to:

e = arg max
ci∈Cq∪NIL

φq(q, ci) (5.6)

62

5.6 Experiments and Discussions

5.6.1 Experimental Setup

In our study, we use TAC-102 KB and document collection to evaluate the lazy

learning with query-specific information on entity linking, and adopt micro-

averaged accuracy officially used in TAC-10 evaluation for our experiments,

i.e. the number of correct links (including NIL) divided by the total number of

the mentions. The training set of TAC-10 consists of 5,404 mentions. Among

them, 3,404 mentions are used as the data set M in our approach and the re-

maining 2,000 mentions are used as development set in our experiments.

5.6.2 Statistics of Data Set Aq

To minimize the distribution gap between training data and queries discussed

at the beginning of this chapter, we incorporate the distribution knowledge

learned from Aq to the learning process. Thus, one of the key factors for the

success of our lazy learning model is whether we can obtain Aq for the queries.

Therefore, firstly we investigate the amount of the labeled instances created

for each query. When our model runs over the test data set which consists of

2,250 queries, we find that 359 queries are assigned empty candidate sets (i.e.

Cq = ∅) by the process described in Section 5.2. For these queries, we can

directly link them with NIL without disambiguation. Thus, we only need to

create Aq for the remaining 1,891 queries.

Figure 5.4 compares the proportions of the queries in different Aq size

ranges. It shows that we have successfully created non-empty Aq for 96%

2http://nlp.cs.qc.cuny.edu/kbp/2010/

63

of the 1,891 queries. This proves that our approach learning the distribution

knowledge for the queried name from the automatically labeled instances Aq is

feasible in practice. This also supports our assumption about the existence of

the document with unambiguous synonyms in the document collection.

Figure 5.4: Proportions of the Queries Based on the Sizes of their Correspond-
ing Aq

We also note that 49% of the queries have 10 to 99 labeled instances in

Aq and 37% have 100 to 999 instances for each linker . In contrast, previ-

ous approaches usually trained their model on thousands of labeled instances.

Thus, it suggests that we need more labeled instances for some queries and it

is necessary to still leverage the manually labeled data set M in our learning

process.

5.6.3 Exploring Θ Configuration

Because our lazy learning model generalizes on both the distribution knowl-

edge learned from Aq and the predictive structure Θ shared by Aq and M, the

effectiveness of such shared structure Θ is another key factor for the success of

our lazy learning model. Thus, inspired by the work (Ando, 2006) for WSD,

we design a set of experiments to investigate the configuration of Θ.

Consider the disambiguation of the two mentions “CPC" and “NY" in two

64

documents again. They have similar surface features (e.g. feature “acronym

matching" is true). The surface features effective for linking to “Communist

Party of China" may be also effective for disambiguating “NY" to “the city of

New York”, and vice versa. However, with respect to the semantic features,

these two disambiguation problems may not have much in common. This is

because “Communist Party of China" is likely related with the topic “politics",

but “the city of New York" does not have such particular topic. That is, shared

structure Θ between different names may depend on feature types, and in that

case, seeking Θ for each of feature groups (CF, SeF, SuF and GS in Table 2.1)

separately may be more effective. Hence, we experimented with both Θ con-

figuration in Eq. 5.5 and Θ configuration, learning a Θj for each feature group

j separately in Eq. 5.7.

K∑
l=1

 1

n(l)

n(l)∑
i=1

L

(
wT

l X(l)
i +

∑
j∈F

v
(j)T
l ΘjX

(l,j)
i , Y

(l)
i

)
+λ‖wl‖2

 (5.7)

where F is a set of disjoint feature groups, and X(j) (or v(j)) is a portion of the

feature vector X (or weight vector v) corresponding to feature group j, respec-

tively.

The NE types of the instances in Aq and M are PER, GPE and ORG. In-

tuitively, the predictive structures of the names with the same NE type may

be more similar than those of cross-NE-type names. Therefore, except for the

feature split discussed above, we explore another two Θ configurations. One

learns Θ from Aq and the whole M for each query. The other learns Θ from Aq

and the subset of M, where the instances have the same NE type with the query.

65

Thus, we experiment on our development data set with the combinations

of the two types of Θ configuration, i.e. configuration of feature split F and

configuration for partitioning of data set M.

Figure 5.5 compares the performance using the various Θ configurations,

and the results are in line with our expectation. F={CF+SeF+SuF+GS} treats

the features of these four types as one group. It is equivalent to the Θ con-

figuration without feature split in Eq. 5.5. Comparison of F={CF, SeF, SuF,

GS} (learning Θj for these four feature groups separately by Eq. 5.7) and

F={CF+SeF+SuF+GS} indicates that use of the feature split indeed improves

disambiguation performance. We are also interested in whether all the fea-

ture groups are suitable for learning Θj . Thus, we further experimented with

F={SeF, SuF, GS}, F={CF, SuF, GS}, F={CF, SeF, GS} and F={CF, SeF, SuF}.

Figure 5.5 shows that these different subsets of feature groups do not improve

the performance over using all the feature groups, and it proves that all the

feature groups contribute to the learning of Θ. Besides, this figure also shows

that learning Θ from Aq and the subset of M (i.e. instances have the same NE

type with the query) usually performs better than learning it from Aq and the

whole M. At last, as Θ has one parameter - its dimensionality h, the perfor-

mance shown in this figure is the ceiling performance on the development set

obtained at the best dimensionality (in {10, 50, 100,...}).

5.6.4 Evaluation Results for Lazy Learning

The experiments in this section evaluate our lazy learning model on the test

data set of TAC-10. Our experiments used the best dimensionality h = 150 of

Θ tuned on the development set in Section 5.6.3.

66

Figure 5.5: Accuracy on Development Set (As Θ has one parameter - its di-
mensionality h, the performance here is the ceiling performance obtained on
the development set at the best dimensionality in {10, 50, 100,...})

Table 5.2 shows the performances of three baseline methods and our ap-

proach with overall accuracy as well as accuracy on five subsets of the test

set.

ALL inKB NIL PER ORG GPE
M(Eq.3) 83.7 81.1 85.9 92.0 82.1 76.9
M(SVM) 84.0 78.5 88.6 92.1 84.0 76.0
M+Aq 84.5 81.4 87.1 92.7 82.7 78.1
Aq+Θ 86.6 84.5 88.3 94.8 85.2 79.7
Aq+Θj 87.8 85.5 90.0 96.1 86.3 80.9

Table 5.2: Micro-averaged Accuracy on Test Set

The second row (M (Eq.3)) used empirical risk minimization to estimate

the weight vector u on the data set M (similar with Eq. 5.3). The third row

(M(SVM)) used SVM classifier (Herbrich et al., 2000) to estimate the model on

67

M. These two methods are similar with most of the previous work for disam-

biguation, because all of them disambiguate a mention of a name based on the

distribution knowledge learned from other labeled names. Row 5 (or 6) Aq+Θ

(or Θj) shows the accuracy of our lazy learning model, which generalized the

linker on both the distribution knowledge learned from Aq and the predictive

structure Θ shared by Aq and M. Row 5 does not use feature split or data set

M partitioning for learning Θ, but Row 6 uses them. Comparison of Row 6

and Row 2, 3 indicates our lazy learning model achieves significant improve-

ments of 4.1% and 3.8%, respectively (ρ < 0.05, χ2 statistical significance

test). This significant improvement obtained by our approach is from solving

the distribution gap (see Figure 5.2) of previous methods.

Besides, Row 4 (M+Aq) used empirical risk minimization to estimate u on

the data set M and Aq directly. Comparing it with our lazy learning model,

the idea to learn the shared predictive information Θ achieves significant (ρ <

0.05) gain. This is because, rather than directly using M with a lot of noise,

we only incorporate the useful information in M shared with Aq to our learning

process.

5.6.5 Comparison with State-of-the-Art Performance

We also compare our approach with the top systems in TAC-10. As shown

in Figure 5.6, our lazy learning model achieves a 2% (or 5.9%) improvement

over the best (or second best) system in TAC-10. The best system “lcc” used

a state-of-the-art machine learning algorithm (i.e., logistic classifier) for dis-

ambiguation. However, same with other previous work, they only trained their

model on data set M without considering the knowledge related to the queried

68

name. Comparing it with our approach, it proves that our lazy learning model

has effectively tackled the distribution gap between training and test data set in

the previous work and indeed improved the disambiguation systems.

Figure 5.6: A Comparison with TAC-10 Systems

We participated in TAC-11, and the submitted system (Zhang et al., 2011d)

with the techniques: instance selection (see Chapter 3) and topic features (see

Chapter 4) achieved the second best micro-averaged accuracy 86.3% among 21

teams. The best is 86.8% by Cucerzan (2011). We apply our method proposed

in this chapter to our system at TAC-11 (Zhang et al., 2011d), which achieves

87.6% with a 1.3% improvement.

5.7 Conclusions and Future Work

With the goal of achieving higher disambiguation performance, our focus in

this chapter was to solve the distribution gap between training and test data

sets in previous approaches. We have presented a lazy learning model, which

can incorporate the distribution knowledge of the queried name to the learning

process. To obtain this distribution knowledge, we proposed to automatically

69

label relevant instances Aq for the queried name. Besides, instead of using or

combining labeled data set M directly to train the linker, we proposed to use

the predictive structure Θ shared by M and Aq. Our experiment showed that

the best configuration of Θ was to use feature split over all the feature groups

and use data set M partitioning according to NE type. Finally, our experiments

also proved that previous approaches for entity linking can be significantly

improved.

In the future, to further improve the disambiguation performance, we would

like to explore more methods to learn the knowledge from M and Aq.

70

Chapter 6: REAL-TIME ENTITY LINKING IN

MICROBLOG

——————————————————————————

6.1 Introduction

Nowadays, microblog (e.g., Twitter) significantly influences the way we live.

Millions of users post over 400 million status messages in Twitter daily and

these textual messages on microblog contains various information for the enti-

ties in the world. Thus, in this chapter, we address the entity linking task under

a more challenging scenario. Given a stream of messages from the microblog

platform such as Twitter and an ambiguous name shared by some entities, we

are required to link the name in the tweet to its corresponding KB entry in real

time (the given name and its associated tweet are referred to as “query” in the

remainder of this chapter).

Such an entity linking system can help other Twitter-based applications

to find the right entity. For example, Scandinavian Airlines System Group is

monitoring the feedback of passengers from Twitter. However, Twitter users

usually use the ambiguous name “SAS” to represent Scandinavian Airlines in

their status messages. Then it needs an entity linking system to filter out the

noise: tweets with “SAS” but regarding to other entities sharing the same name

“SAS” such as “New Zealand Special Air Service” and “SAS Institute, Inc.”.

Besides, entity linking system as the bridge between tweets and KB makes it

71

possible for them to borrow information from each other.

Compared with traditional entity linking task on long text, real-time entity

linking in microblog is more challenging in at least the following three aspects.

First, microblog messages are much shorter consisting of only not more

than 140 characters. The insufficient text in the messages makes it more dif-

ficult to properly characterize a common context between the short microblog

message and KB entry. Besides, insufficient text also hinders applying the col-

lective method (see Section 2.5) to entity linking in Twitter. The collective

methods for entity linking in long text such as Cucerzan (2007), Ratinov et

al. (2011) and Han et al. (2011), simultaneously disambiguated all the men-

tions in the same text by exploiting the interdependence among them. Note

that a long text usually contains hundreds of mentions, for example, the data

set used by Han et al. (2011) contains 161 name mentions per document on av-

erage. However, as a tweet usually contains only a small number of mentions 1,

the collective methods leveraging on the interdependence among the mentions

in the context would not perform well for entity linking in Twitter. Finally, the

scarcity of text in the microblog messages also makes the tweets mentioning

the same entity usually not share enough context and then it is difficult to clus-

ter the tweets only based on their short text. Thus, the scarcity of text also pulls

down the effectiveness of the query-level collaborative ranking method (Chen

and Ji, 2011), as they searched collaborations for one query by clustering all

the queries (i.e. tweets) containing the same mention.

To address the problem of insufficient text in Twitter, in this chapter we

propose a bipartite graph based mapping function to enrich the context of the

1We run a named entity recognizer (http : //github.com/aritter/twitter_nlp) on the
tweet collection used in our experiments. On average a tweet only contains 2.3 mentions.

72

microblog messages with the auxiliary long texts from web. The proposed

method first selects some words as the bridge between tweets and auxiliary

long text. The selected words should appear frequently in both tweets and aux-

iliary long texts, and also have the power to distinguish different entities. Then,

based on the auxiliary long text, we construct a term co-occurrence matrix for

the selected words and all other words. As the k largest eigenvectors of the

term co-occurrence matrix are the continuous solution of the cluster member-

ship indicators of the word set in the k-means clustering method, we propose

to measure the word similarity in an space of the k principal components hid-

den in the the word set. Finally, a mapping function is constructed for tweet

enrichment based on the learned word similarity.

Second, real-time entity linking in Twitter requires a quick response time,

as it needs to monitor the tweets that keep coming at a fast pace. However, the

important technique for traditional entity linking systems that gathers informa-

tion from external sources on-the-fly can not meet this requirement. For exam-

ple, as mentioned above, the collaborative ranking method (Chen and Ji, 2011)

tried to obtain external information from query collaborations by clustering the

text collection. Then their feature vector for the query also includes the cluster-

level features, such as maximum, minimum, average tfidf/entity similarities

between the KB entry and the texts in query collaboration cluster. Our lazy

learning described in Chapter 5 automatically labeled some instances which

contains the same mention with the query. As all these methods obtain exter-

nal information based on the query, they only can generalize their model after

the query is made, which causes the response time becomes slow. In this chap-

ter, we use the tweets also containing the name being monitored as the external

73

knowledge for the query. Instead of generalizing the model on-the-fly, we pro-

pose a bipartite-graph-based model to cluster the external tweets and then we

store the cluster information into a multinomial model off-line.

Third, traditional entity linking approaches used manually annotated data

to learn a classifier or ranker (Dredze et al., 2010; Lehmann et al., 2010; Zheng

et al., 2010; Zhang et al., 2010; Chen and Ji, 2011; Ploch, 2011; Ratinov et al.,

2011). However, in the Twitter platform, different users post their tweets using

diverse lexicons and styles which make it very difficult for the supervised learn-

ing approach trained on a small amount of training instance perform well on

the new coming tweets. Besides, new words or phrases are introduced in Twit-

ter daily, which quickly invalidates static linking models trained on a certain

manually labeled set. Thus, manually labeling training data is very expensive

for entity linking in Twitter. In Chapter 3, we proposed to automatically label

training instances for entity linking by leveraging unambiguous names in the

text. The basic idea is to take a news article with an unambiguous mention

referring to an entity e1 in KB and replace it with its variation which may refer

to e1, e2 or others. However, unlike news article, tweets usually only contains

the ambiguous name of the entities. For example, the new article for “Apple

Inc.” usually uses the full name “Apple Inc.” in the first paragraph, and uses

“Apple” for short name in the following paragraphs, but in tweets usually there

is only short name “apple”. This property of Twitter disables the method in

Chapter 3 for automatically labeling training instances.

In this chapter, we present our unsupervised learning framework (USLF)

based on three bipartite graphs for entity linking in Twitter to address the new

challenges above. Given the name which we are required to monitor on Twitter,

74

our USLF first collects a set of tweets containing the given name and then

enrich their context by our mapping function mentioned above. During the

unsupervised learning stage, nodes (i.e. tweets, words and KB entries) of the

bipartite graphs are partitioned into clusters. Cluster labels C = {1, 2, ...K}

are assigned to tweets and words, and also each cluster k are given probabilities

p(C = k|ej) for each KB entry ej . During the supervised learning stage, with

the clusters determined we learn a multinomial model for each cluster where

the cluster information is represented as a posterior probability of a tweet ti

given one cluster k, P (ti|C = k). Finally, during on-line prediction, for a new

query with tweet t, the correct entity is selected for the query by a Bayes model

with P (t|C = k), p(C = k|ej) and the prior probability of the entities P (ej).

P (ej) can be estimated by the popularity of the KB entities in the world.

The contribution of this chapter is the proposed USLF for real-time entity

linking in Twitter. The advantages of our model can be summarized as follows,

(1) A tweet enrichment function is embedded in our model based on the

word similarity, which is calculated in the k principal component space of the

word set with the help of auxiliary long text.

(2) Our model not only uses the information in the query, but also benefits

from the external information: the tweets which also contains the name be-

ing monitored. Meanwhile our model also can guarantee a fast response time.

This is because we generalize the multinomial model P (ti|C = k), and calcu-

lates probabilities of each cluster p(C = k|ej) for KB entries based on these

tweets off-line. This significantly differs from previous query-level collabo-

rative ranking method for traditional entity linking. As their model needs to

cluster texts together with the query and then extract cluster features for the

75

query, their approach benefits from the collaboration texts on-the-fly.

(3) Our USLF method leverages context information of query and KB enti-

ties, popularity knowledge of KB entities and clustering result on an additional

tweet set for disambiguation. By modeling these sources as probabilistic dis-

tributions, our method has a statistical foundation, which differs from previous

ad-hoc approaches (e.g., the way to represent the cluster-level information for

the query in previous collaborative ranking method).

(4) The multinomial model P (ti|C = k) and probabilities of each cluster

p(C = k|ej) for KB entries in USLF are learned from the unsupervised clus-

tering result. Thus, USLF does not need human labor to annotate training data

and then can easily update our model with the fresh data containing new words

or phrases in the message stream.

6.2 Unsupervised Learning Framework

6.2.1 Bipartite Graphs for Entity Linking in Tweets

In this section, we model the problem of entity linking in microblog as three

weighted bipartite graphs. Let us denote a graph by G(V,E), where V is the

vertex set and E is the edge set. The graph G(V,E) is bipartite with two vertex

classes X and Y if V = X ∪ Y with X ∩ Y = ∅ and each edge in E has one

endpoint in X and one endpoint in Y . A weighted bipartite graph is denoted

as G(X, Y,WT) with WT = wtij , where wtij > 0 denotes the weight of the

edge between vertex i and j and wij = 0 denotes there is no edge between

vertices i and j. As shown in Figure 6.1, the three weighted bipartite graphs

in our model are named as tweet representation, context enrichment and entity

76

representation. In the graphs, VT = {ti} represents the set of tweets with the

same name but they may refer to different entities, VW = {wi} represents a

set of words in Tweets, VA = {ai} represents a set of words in auxiliary long

text and VE = {ei} represents the set entities to which we link the mentions

of tweets. Note that the tweets in VT are not the queries, and we collect these

tweets also containing the monitored name as external collaborators. Also note

that the entities in VE share a same name which we are monitoring in Twitter.

In the graph of tweet representation G(VT , VW ,WT ′), the weighted edge

WT ′ = {wt′i,j} denotes the number of times word wj appears in tweet ti. The

second bipartite graph G(VW , VA,WT ′′) is used for context enrichment, where

WT ′′ = {wt′′i,j} denotes the number of auxiliary long text where bothwi and aj

appear. In the graph entity representation G(VA, VE,WT ′′′), WT ′′′ = {wt′′′i,j}

denotes the number of times word ai appears in the text of the entity.

t4

t3

t2

t1

w5

w4

w3

w2

w1

a5

a4

a3

a2

a1

e2

e1

Figure 6.1: Bipartite graphs of tweets, words, auxiliary words and entities

Based on these three bipartite graphs, we first give an overview of our

USLF framework in Algorithm 6.1.

Intuitively, there are two stages during off-line learning. In the unsuper-

77

Algorithm 6.1 Real-time Entity Linking in Twitter

– Off-line Learning

• unsupervised learning

1: Construct the tweet enrichment graph G(VW , VA,WT ′′)

2: Learn the word similarity matrix Si,j as Eq. 6.2 based on
G(VW , VA,WT ′′)

3: Given the tweet representation graph G(VT , VW ,WT ′), define the map-
ping function for tweet enrichment as WT ′S

4: Simplify the graphs in Figure 6.1 to two bipartite graphs
G(VT , VA,WT ′S) and G(VA, VE,WT ′′′) by tweet enrichment WT ′S

5: Partition VA and VT into K clusters C = {1, 2, ..., K} based on
G(VT , VA,WT ′S) and G(VA, VE,WT ′′′)

6: Compute the prior probability P (ej) for entity ej by the popularity of the
entity in the world.

• supervised learning from clustering result

7: From the clustering result, learn the probabilities of each cluster p(C =
k|ej) for KB entries as Eq. 6.4

8: Learn a multinomial model multinomial(pk) as Eq. 6.5 for each cluster
k based on the clustering result

– On-line Inference for a New Tweet ti

9: Enrich tweet by tiS

10: Calculate the posterior probabilities P (ti|C = k)

11: Return the correct entity by Eq. 6.9

78

vised learning stage, we compute the prior probability P (ej) for each entity,

learn the tweet enrichment function and also cluster the tweets, words and en-

tities. Then, supervised by the clustering result, the probabilities of each clus-

ter p(C = k|ej) for KB entries and the multinomial model P (ti|C = k) are

learned in the supervised learning stage. In the on-line linking, we compute the

probability distribution of a new tweet over predefined clusters acquired in the

learning stage by Bayes rule. Entity is selected as answer according to three

criteria: P (ej), P (ti|C = k) and p(C = k|ej).

6.2.2 The Bipartite Graph of Context Enrichment

Seeds Selection. Tweets (50.6% of the Tweets in our experiments) contain

URLs, we therefore crawl the content of the referenced URLs to form the set

of auxiliary long texts. This can also be achieved by sending the monitored

name as queries to a search engine to retrieve a set of most relevant results.

With the auxiliary long texts, we then need to identify some words used as the

bridge between the tweets and auxiliary long texts. The seeds of word should

occur frequently in both tweets and long text. Furthermore, the seeds should

also have the property which can distinguish different entities. Based on the

two criteria, we present two strategies for selecting the seeds.

The first strategy is to select seeds based on their frequency in both tweets

and long texts and the document frequency among texts of entities. Specifi-

cally, given the number l of words to be selected, we chose words with a tf.idf

value larger than β. β is set to be the largest number such that we can get at

least l such words.

The second strategy uses mutual information (MI) to measure the depen-

79

dence between words and text collections (i.e. tweets, long texts and the texts

of entities). LetW , T , L and {ej} denote words, tweets, long texts and the texts

of entities, respectively. Then, we would like to select the words wi with low

mutual information I(wi, {T, L}) and high mutual information I(wi, {ej}).

Thus, the seeds selection criterion using mutual information is as Eq. 6.1

I(wi, {ej})− I(wi, {T, L})

=
∑
ej

P (wi, ej)log(
P (wi, ej)

P (wi)p(ej)
)

−
∑

y=TorL

P (wi, y)log(
P (wi, y)

P (wi)p(y)
)

(6.1)

Tweets Enrichment. The tweets enrichment approach proposed in this section

is based on the bipartite graph G(VW , VA,WT ′′) in Figure 6.1. As we have

selected some proper seeds as the bridge between tweets and auxiliary long

text, WT ′′ = {wt′′i,j} can be defined as follows, if wi is in the seed set, wt′′i,j is

the number of auxiliary long text where both wi and aj appear, otherwise wt′′i,j

=0. Our goal is to learn a mapping function so that we can enrich the short text

of tweets using the auxiliary words in VA.

In the spectral graph theory (Ding and He, 2004), it has been proved that the

k largest eigenvectors of a term-document co-occurrence matrix are the contin-

uous solution of the cluster membership indicators of the data in the k-means

clustering method. This implies that our mapping function constructed from

the k largest eigenvectors can cluster the words and then we can calculate the

word similarity in the new space. Assume that the weight matrixWT ′′ in graph

G(VW , VA,WT ′′) is in a Rl×(m−l) space. Then we can form an affinity matrix

80

A for the bipartite graph G(VW , VA,WT ′′): A =

 0 WT ′′

WT ′′T 0

 ∈ Rm×m.

The k principal components can be obtained by the following procedures,

1. Form a diagonal matrix D, where Dii =
∑

j Aij , and construct the ma-

trix D−1/2AD−1/2.

2. Find the k largest eigenvectors ofD−1/2AD−1/2, referred to as u1, u2, ..., uk,

and form the matrix U = [u1u2...uk] ∈ Rm×k.

Then we form a matrix S as Eq 6.2, which is the word similarity between

the word set VW and the auxiliary word set VA based on the k principal com-

ponents of the word set. If the word wi is in the seed set, the similarity will be

calculated in the space of the k principal components.

Sij = sim(wi, aj)

=


WT ′′[i,:]U[1:m−l,:](U

T
[1:l,:]WT ′′[:,j]) wi ∈ seed set

1 wi = aj ∧ wi /∈ seed set

0 wi 6= aj ∧ wi /∈ seed set

(6.2)

Then, a tweet can be enriched by TS and we can transfer bipartite graphs

shown in Figure 6.1 to the bipartite graphs in Figure 6.2 by applying TS to

the tweets in VT . The new graphs are named as tweets enrichment represen-

tation G(VT , VA,WT), and entity representation G(VA, VE,WT ′′′). The new

weight matrix WT in G(VT , VA,WT) can be obtained by WT ′S, where WT ′

refers to the weight matrix in G(VT , VW ,WT ′) in Figure 6.1 and S refers to

the similarity matrix in Eq. 6.2.

81

t4

t3

t2

t1

a5

a4

a3

a2

a1

e2

e1

Figure 6.2: Bipartite graphs of tweets, auxiliary words and entities

6.2.3 Off-Line Learning

In this section, we present our learning process for entity linking in Twitter

based on the bipartite graphs: tweets enrichment representationG(VT , VA,WT)

and entity representation G(VA, VE,WT ′′′) in Figure 6.2. These weighted

graphs can be written as,

M =


0 WT 0

WT T 0 WT ′′′

0 WT ′′′T 0


.

We apply our proposed framework USLF to the matrix M , during the of-

fline learning stage, all the nodes in Figure 6.2 are first partitioned into clusters

by applying an unsupervised clustering method to M such as spectral clus-

tering (Ding and He, 2004), cluster labels C ∈ {1, 2, .., K} are assigned to

tweets and words as their cluster indicator, and the probabilities of each cluster

p(C = k|ej) given KB entry ej are calculated. Then, a multinomial model is

built to store the relation between tweet clusters and words.

82

Estimate the Probabilities p(C = k|ej). With bipartite graphG(VA, VE,WT ′′′)

constructed and the clusters C = {1, 2, ...K} for words VA determined, we es-

timate the probability p(C = k|ej) of cluster k given each KB entry as follows.

First, we define the closeness between a word cluster C = k and an entity

ei based on two criteria: (1) the clusters are more close to the entity ej if they

have a higher connectivity with ej than other clusters; (2) the clusters are more

close to the entity ej if they also have a lower connectivity with other entities.

Thus, our closeness score for entity ej and cluster C = k is defined as Eq. 6.3.

Closeness(ej, C = k) =

∑
iwt

′′′2
i,j√∑

i

∑n
j′=1wt

′′′2
i,j′

(6.3)

where, i satisfies that ai ∈ VA is clustered to the cluster C = k. n is the

number of entities in VE .

Then,

p(C = k|ej) =
Closeness(ej, C = k)∑K

k′=1Closeness(ej, C = k′)
(6.4)

Multinomial Model Learning. With bipartite graph G(VT , VA,WT) con-

structed and the clusters C = {1, 2, ...K} for words VA determined, we learn

a multinomial model to represent the relation between the word clusters and

tweets as follows.

An enriched tweet vector can be represented as the vector tiS = WTi,: =

[a1, a2, ...aq], where q is the number of words in VA. The distribution of the

tweet within each cluster k can be estimated by learning a multinomial model.

Let the cluster labels be C = {1, 2, .., K}, then

83

P (ti|C = k) = Mulnomial(p1,k, p2,k, ...pq,k) (6.5)

where pm,k ∈ {p1,k, p2,k, ...pq,k} is probability of cluster C = k generating

word m (word m ∈ VA).

Parameter Estimation. There are q×K parameters in the mixture multino-

mial model. With the clusters determined, we apply EM algorithm to estimate

the multinomial parameters pm ∈ {p(t)
1 , p

(t)
2 , ...p

(t)
q }.

The E-step estimates the posterior probability P (ti|C = k):

P (ti|C = k) = Mulnomial(p
(t)
1 , p

(t)
2 , ...p(t)

q) (6.6)

The M-step uses P (ti|C = k) to update the parameters of multinomial

distribution based on Laplace smoothing with a smoothing parameter α,

p̂t+1
m =

sft.cnt(wm) + α∑q
j=1 sft.cnt(wj) + αq

(0 < α ≤ 1) (6.7)

where,

sft.cnt(wj) =
∑

ti∈C=k

p(ti)count(wi,j);

count(wi,j) = WTi,j;

p(ti) =
K∑
k=1

P (ti|C = k);

Estimate the Probability of KB Entries p(ej). We estimate p(ej) based on

84

Wikipedia Hyper-links. Let IL(ej) denote the number of incoming links in

Wikipedia referring to the Wikipedia page of ej . Then,

p(ej) =
IL(ej)∑n

j′=1 IL(ej′)
(6.8)

where n is the number of entities in VE .

6.2.4 On-Line Inference for New Tweets

Given a new tweet ti containing the monitored mention, the corresponding

entity is determined by L(ti) = arg maxej
P (ej|ti). Apply the Bayes rule to it

as follows,

P (ej|ti) =
P (ej)P (ti|ej)

P (ti)

∝ P (ej)
K∑
k=1

[P (C = k|ej)P (ti|C = k)] (6.9)

where the three factors can be calculated by Eq. 6.8, Eq. 6.4 and Eq. 6.5,

respectively.

6.3 Experiments and Discussions

6.3.1 Experiment Setup

In our study, we employed the tweet collection introduced in the task of online

reputation management at Web People Search (WePS-3) (Amigo et al., 2010).

To compare with the state-of-the-art systems, the standard training and test set

85

of this task are used as our development set and test set, which are referred

to as WePS3-D and WePS3-T respectively. WePS3-D and WePS3-T contain

52 and 48 home pages of companies respectively. The tweets collection in

WePS3-D and WePS3-T is retrieved from Twitter API by 100 search keywords.

The keywords such as “apple”, “oracle” and “sony” are the short names of

the 100 companies. The number of retrieved tweets per search keyword is

variable: between 385 and 500 tweets. Based on each company homepage, the

tweets retrieved by that company’s short name are labeled as “related” or “non

related”. For example, based on the home page “http://www.apple.com”, two

tweets retrieved by keyword ‘apple’ are labeled as follows.

• you can install 3rd-party apps that haven’t been approved by Apple. -

related

• okay maybe i shouldn’t have made that apple crumble. -non related

In our algorithm, we use three additional data sets to construct the bipar-

tite graphs, a tweet collection VT = {ti}, auxiliary long text and an entity

list VE = {ei}. The tweet collection VT can be retrieved from Twitter API

using company’s short name (e.g. ‘apple’) as search keyword. In our experi-

ments, when we are predicting an ambiguous name (e.g. ‘apple’) in a tweet, the

remaining tweets in WePS3-D/WePS3-T also containing ‘apple’ serve as the

tweet collection VT . The auxiliary long text are formed from the two sources:

(1) there are 50.6% tweets in VT containing URLs, we therefore crawl the con-

tent of the referenced URLs to obtain auxiliary long texts (2) As mentioned

above, the short names of companies are used as the search keywords to col-

lect the tweets in WePS3-D/WePS3-T. Then, we also submit the short name to

86

Google and crawl the top 200 Google results as the auxiliary long texts. At last,

we use the articles of Wikipedia to form the entity list VE . We also employ the

short names to retrieve Wikipedia articles by Wikipedia disambiguation page.

The disambiguation page titled as “short name (disambiguation)” contains a

list of entities sharing such short name, For example, “Apple (disambiguation)”

contains a list of entities VE sharing the same short name “Apple”. Note that

the homepage of the company in WePS3-D/WePS3-T can be mapped to one

Wikipedia article in VE by URL matching, as the URL of the company always

appears in its corresponding Wikipedia article. Table 6.1 shows the sizes of the

three data sets for bipartite graph construction.

VT auxiliary long text VE
of texts 461 382 28

Table 6.1: Sizes of text collections (average value over the 100 short names)

During on-line prediction, our model links the short name in a new Tweet

to its corresponding entity in VE . Note that for each short name, only the en-

tity mapped to company’s homepage is annotated as “related” or “non related”.

We then convert our system output to “related” if the new tweet is linked to

that annotated entity, or “non related” if it is linked to other entities. Based on

the ground truth, system output can be grouped into four categories: true pos-

itives (TP), true negatives (TN), false positives (FP) and false negatives (FN).

Following online reputation management task (Amigo et al., 2010), we evalu-

ate the performance of our entity linking system in Twitter by three metrics as

Eq. 6.10: accuracy (Acc), F-measure of the “related” class (F+) and F-measure

of the “non related” class (F−). As supplemental metrics, the two kinds of F-

87

measure consider the distribution of “related” and “non related” tweets within

the correct outputs. That is, for a high ambiguous company name, even only

a few related tweets appeared in the corpus, the decisions taken in these cases

are crucial.

Acc =
TP + TN

TP + FP + TN + FN

Precison+ =
TP

TP + FP
;Recall+ =

TP

TP + FN

F+ =
2 ∗ Precison+ ∗Recall+

Precison+ +Recall+

Precison− =
TN

TN + FN
;Recall− =

TN

TN + FP

F− =
2 ∗ Precison− ∗Recall−

Precison− +Recall−

(6.10)

6.3.2 Experiment Results

To address the problem of context scarcity in a single tweet, a context enrich-

ment function is proposed in our model. This enrichment function is defined

based on a matrix of word similarity, which is calculated over the k principal

components of the word set with the help of auxiliary long text. As shown in

Section 6.2.2, we propose two methods based on tf.idf and MI to select top l

88

words as bridge between tweets and auxiliary long text. Thus, we designed a

set of experiments on development set WePS-D to evaluate the effectiveness

of the enrichment function under tf.idf-based or MI-based seed selection with

different l values (i.e. 50, 100, 150 ...). USLF without enrichment function is

used as the baseline system.

Figure 6.3 provides the results (Acc, F+ and F−) of these experiments,

where “None” is the baseline system, and X-axis represents the values of l.

We can find that both “tf.idf” and “MI” significantly outperforms the baseline

system under all the three metrics (Acc, F+ and F−) within a large range of

l value from 200 to 600. The improvements prove that the proposed context

enrichment function can effectively address the problem of context scarcity in

tweets by leveraging auxiliary long texts.

By checking the performance of “MI” and “tf.idf” at l values which are

greater than 600, we can find that the performances over all the three metrics

decrease as the increase of l value. This downward trend indicates that not all

the words can serve as the bridge between tweets and long text. It also proves

the effectiveness of our proposed seed selection methods that aim to find the

words with a high frequecy in both tweets and long text, and the property of

disignuishing entities.

By comparing “MI” with “tf.idf” in Figure 6.3, I also see that “MI” is able

to find a more proper set of seeds than “tf.idf” at most of the values of l. For

example, by checking Acc at l=200, 250 or 300, the difference between “MI”

and “tf.idf” is statistical significant (ρ < 0.05, t-test). This tells us that mutual

information is a better choice for seed selection, and thus we use MI-based

seed selection for the following experiments on data set WePS-T.

89

0 100 200 300 400 500 600 700
0.75

0.8

0.85

0.9

of seeds

A
c
c

 None

tf.idf

MI

(a)

0 100 200 300 400 500 600 700 800 900
0.5

0.55

0.6

0.65

0.7

0.75

of seeds

F
+

None

tf.idf

MI

(b)

0 100 200 300 400 500 600 700 800 900
0.5

0.55

0.6

0.65

0.7

of seeds

F
−

 None

tf.idf

MI

(c)

Figure 6.3: (a)Acc, (b)F+ and (c)F− on data set WePS-D

90

Acc Precison+ Recall+ F+ Precison− Recall− F−

USLF 0.87 0.77 0.73 0.69 0.89 0.53 0.59
WePS rank-1 0.83 0.71 0.74 0.63 0.84 0.52 0.56
WePS rank-2 0.75 0.75 0.54 0.49 0.74 0.60 0.57
WePS rank-3 0.73 0.74 0.62 0.51 0.74 0.49 0.47

Table 6.2: Acc, F+ and F− on data set WePS-T

In Table 6.2, we compare our USLF with the state-of-the-art entity link-

ing systems in Twitter on WePS-T. The three baselines are the top 3 systems

in WePS-3 task. WePS rank-1 used an SVM classifier, which employed a set

of features including keywords and “profile”. Both WePS rank-2 and rank-

3 use a naive Bayes classifier with a set of feature such as “is the query an

acronym” and “does Wikipedia have disambiguation page for the query”, but

difference between the two systems is only at some parameter setting. By

checking Acc, F+ and F− in Table 6.2, we can find that our approach signifi-

cantly outperforms all the three systems over all the metrics. This proves that

our bipartite-graph-based model is more suitable for entity linking in Twitter,

as it seamlessly combine the context information of query and entities, pop-

ularity knowledge of entities and clustering result on an additional tweet set.

Especially, popularity knowledge of entities, information of clustering result on

an additional tweet set and context enrichment are not covered in the baseline

systems. Besides, all the baseline systems use a set of manually labeled data

set to train their model. In contrast, our model is guided by the unsupervised

clustering result, which does not need human labor to annotate training data

and also can easily update our model to adapt to the new changes in Twitter.

91

6.4 Conclusions and Future Works

In this chapter, we present an unsupervised learning framework (USLF) based

on three bipartite graphs for entity linking in Twitter. First, a tweet enrich-

ment function is embedded in our model based on the word similarity, which

is calculated in the k principal component space of the word set with the help

of auxiliary long text. Second, our model not only uses the information in

the query, but also benefits from the external information: the tweets which

also contains name being monitored. Meanwhile our model also can guaran-

tee a fast response time. This is because we generalize the multinomial model

P (ti|C = k), and calculates probabilities of each cluster p(C = k|ej) give a

KB entry based on these tweets off-line. Third, our USLF method leverages

context information of query and entities, popularity knowledge of entities and

clustering result on an additional tweet set for disambiguation. By modeling

these sources as probabilistic distributions, our method has a statistical foun-

dation. Finally, the multinomial model P (ti|C = k) and probabilities of each

cluster p(C = k|ej) for KB entries in USLF are learned from the unsupervised

clustering result. Thus, USLF does not need human labor to annotate train-

ing data. This chapter shows that our USLF has a more quick response time

than previous work theoretically. In the future, we would like to design a set

of experiments to justify it. Besides, in this chapter, we conduct experiments

to compare our approach with the state-of-the-art entity linking in Twitter. In

the future, we will also design experiments to compare our approach with the

approaches in traditional entity linking. We also would like to incorporate user

information of Tweets to our model in the future as Cassidy et al. (Cassidy et

al., 2012) did.

92

Chapter 7: CONCLUSIONS

——————————————————————————

In this thesis, we have systematically conducted a literature survey on entity

linking. The survey starts on the definitions, benchmarks and related problems

for entity linking. Then, we summarized the existing work on entity linking

and presented their pros and cons.

Most of state-of-the-art entity linking systems use annotated data to learn a

classifier or ranker by supervised learning algorithms. Chapter 3 proposed to

automatically label a large scale training corpus for supervised learning algo-

rithms, where we label the ambiguous mentions leveraging on their unambigu-

ous synonyms. We also proposed an instance selection strategy to select an

informative, representative and diverse subset from the auto-generated dataset.

During the iterative selection process, the batch sizes at each iteration change

according to the variance of classifier’s confidence or accuracy between batches

in sequence.

Chapter 4 introduced topic models to entity linking, which can discover the

underlying topics in the context of mention and KB entries. we proposed a

Wikipedia-LDA to model the topics of texts, where we investigated the effec-

tiveness of five subsets from Wikipedia categories to represent the underlying

topics.

Chapter 5 presented a lazy learning model, which can incorporate the query-

specific information to the learning process. To obtain such information, we

93

proposed to automatically label relevant instances for the queried name. Be-

sides, instead of using or combining labeled data set related with other names

directly to train the linker, we proposed to use the predictive structure shared

by the two data sets which are related with queried name and other names re-

spectively.

Finally, this thesis addressed entity linking task under a more challenging

scenario, where we linked the mentions in microblog to a KB in real time. We

proposed an unsupervised learning framework (USLF) which is based on three

bipartite graphs to address the new challenges in microblog. First, in our USLF,

a tweet enrichment function is embedded based on the word similarity, which

is calculated in the k principal component space of the word set with the help

of auxiliary long text. Second, our model not only uses the information in the

query, but also benefits from the external information: the tweets which also

contains the name being monitored. Meanwhile our model also can guarantee

a fast response time. Third, our USLF method uses a Bayes method to model

the context information of query and entities, popularity knowledge of entities

and clustering result on an additional tweet set for disambiguation.

94

Bibliography

E. Amigo, J. Artiles, J. Gonzalo, D. Spina, B. Liu, and A. Corujo 2010. WePS3
Evaluation Campaign: Overview of the On-line Reputation Management Task.
CLEF (Notebook Papers/LABs/Workshops) 2010.

R. K. Ando. 2006. Applying Alternating Structure Optimization to Word Sense Dis-
ambiguation. In Proc. of the Conference on Natural Language Learning (CoNLL).
2006

R. K. Ando and T. Zhang. 2005a. A high-performance semi-supervised learning
method for text chunking. In Proceedings of Annual Meeting of the Association
for Computational Linguistics (ACL). 2005.

R. K. Ando and T. Zhang. 2005b. A framework for learning predictive structures
from multiple tasks and unlabeled data. Journal of Machine Learning Research,
6(Nov):1817–1853.

J. Artiles, J. Gonzalo and S. Sekine. 2007. The semeval-2007 web evaluation: Estab-
lishing a benchmark for the web people search task. In Proceeding of the Fourth
International Workshop on Semantic Evaluations (SemEval-2007).

A. Bagga and B. Baldwin. 1998. Entity-based cross-document coreferencing using
the vector space model. In Proceedings of joint conference of the International
Committee on Computational Linguistics and the Association for Computational
Linguistics (COLING-ACL), 79-85. 1998

D. Blei, A. Y. Ng, and M. I. Jordan. 2003. Latent Dirichlet Allocation. Journal of
Machine Learning Research 3:993-1022, 2003.

H. Brighton and C. Mellish. 2002. Advances in Instance Selection for Instance-Based
Learning Algorithms. Data Mining and Knowledge Discovery. 6,153-172. 2002

Brinker. 2003. Incorporating Diversity in Active Learning with Support Vector Ma-
chines. In Proceeding of International Conference on Mechine Learning. ICML
2003

R. Bunescu and M. Pasca. 2006. Using Encyclopedic Knowledge for Named Entity
Disambiguation. In Proceedings of the 11th Conference of the European Chapter
of the Association for Computational Linguistics, 2006

P. Bysani, K. Reddy, V. Reddy, S. Kovelamudi, P. Pingali and V. Varma. 2010. IIIT
Hyderabad in Guided Summarization and Knowledge Base Population. In Pro-
ceedings of Text Analysis Conference. 2010

S. A. Caraballo. 1999. Automatic construction of a hypernym-labeled noun hierar-
chy from text. In Proceedings of the 37th Annual Meeting of the Association for
Computational Linguistics, College Park, Md., 20-26 June. 1999.

T. Cassidy, Z. Chen, J. Artiles, H. Ji, H. Deng, L. Ratinov, J. Zheng, J. Han and D.
Roth. 2011. CUNY-UIUC-SRI TAC-KBP2011 Entity Linking System Description.
Proceedings of Text Analysis Conference (TAC2011).

Taylor Cassidy, Heng Ji, Hongzhao Huang, Lev-Arie Ratinov, Arkaitz Zubiaga. 2012.
Expanding Microblog Context to Enhance Disambiguation to Wikipedia. Proc.
24th International Conference on Computational Linguistics (COLING2012).

95

A. X. Chang, V. I. Spitkovsky, E. Agirre, C. D. Manning 2011. Stanford-UBC Entity
Linking at TAC-KBP, Again. In Proceedings of Text Analysis Conference. 2011

S. Cucerzan 2007. Large-Scale Named Entity Disambiguation Based on Wikipedia
Data. In Proceedings of the Conference on Empirical Methods in Natural Lan-
guage Processing. 2007

S. Cucerzan 2011. TAC Entity Linking by Performing Full-document Entity Extraction
and Disambiguation. In Proceedings of Text Analysis Conference. 2011

Z. Chen and H. Ji 2011. Collaborative Ranking: A Case Study on Entity Linking In
Proceedings of the Conference on Empirical Methods in Natural Language Pro-
cessing. 2011

H. Dai, R. Tsai and W. Hsu1. 2011. Entity Disambiguation Using a Markov-Logic
Network. In Proceedings of the 5th International Joint Conference on Natural Lan-
guage Processing, pages 846-855, Chiang Mai, Thailand, November 8-13, 2011. c
2011 AFNLP.

C. Ding and X. He 2004. K-means clustering via principal component analysis Inter-
national Conference on Machine Learning, 2004.

M. Dredze, P. McNamee, D. Rao, A. Gerber and T. Finin 2010. Entity Disambiguation
for Knowledge Base Population. 23rd International Conference on Computational
Linguistics, 2010, China.

P. Edmonds and S. Cotton. 2001. Senseval-2 overview In Proceedings of
SENSEVAL-2, 1-6.

N. Fernandez, J. A. Fisteus, L. Sanchez, E. Martin 2010. WebTLab: A cooccurrence-
based approach to KBP 2010 Entity-Linking task In Proceedings of Text Analysis
Conference. 2010.

T. Finin, Z. Syed, J. Mayfield, P. McNamee and C. Piatko. 2009. Using Wikitol-
ogy for Cross-Document Entity Coreference Resolution. In Proceedings of AAAI
Conference on Artificial Intelligence, AAAI 2009.

S. Gottipati and J. Jiang 2011. Linking entities to a knowledge base with query ex-
pansion. In Proceedings of the Conference on Empirical Methods in Natural Lan-
guage Processing. 2011

X. Han and J. Zhao 2009. Named Entity Disambiguation by Leveraging Wikipedia
Semantic Knowledge. In Proceedings of the 18th ACM conference on Information
and knowledge management (2009).

X. Han and L. Sun 2011a. A Generative Entity-Mention Model for Linking Entities
with Knowledge Base. In Proceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics (ACL). 2011.

X. Han, L. Sun and J. Zhao 2011b. Collective entity linking in web text: a graph-based
method. In Proceedings of SIGIR. 2011.

D. Harman and M. Liberman. 1993. TIPSTER Complete. LDC93T3A, Philadelphia,
Penn. Linguistic Data Consortium , 1993.

M. A. Hearst. 1992. Automatic acquisition of hyponyms from large text corpora. In
Proceedings of the 15th International Conference on Computational Linguistics,
Nantes, France, 23-28 August 1992.

96

R. Herbrich, T. Graepel and K. Obermayer. 2000. Large Margin Rank Boundaries for
Ordinal Regression. Advances in Large Margin Classifiers (pp. 115-132). 2000.

H. Ji, R. Grishman, H. T. Dang, K. Griffitt and J. Ellis 2010. Overview of the TAC 2010
Knowledge Base Population Track. In Proceedings of Text Analysis Conference
2010 (TAC 10).2010

H. Ji and R. Grishman 2011a. Knowledge Base Population: Successful Approaches
and Challenges. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics (ACL). 2011.

H. Ji, R. Grishman and H. T. Dang 2011b. An Overview of the TAC2011 Knowledge
Base Population Track. In Proceedings of Text Analytics Conference 2011.

T. Joachims. 1999. Making large-Scale SVM Learning Practical. Advances in Kernel
Methods - Support Vector Learning, MIT Press, 1999.

Zornitsa Kozareva and Sujith Ravi 2011. Name Ambiguity Resolution Using A Gen-
erative Model. Proc. EMNLP2011 Workshop on Unsupervised Learning in NLP

A. Kilgarriff and J. Rosenzweig. 2000. Framework and results for English Senseval.
Computers and Humanities, Special Issue on SENSEVAL, 15-48.

D. Klein and C. D. Manning. 2003. Fast Exact Inference with a Factored Model
for Natural Language Parsing. In Advances in Neural Information Processing
Systems 15 (NIPS 2002), Cambridge, MA: MIT Press, pp. 3-10.

Y. K. Lee and H. T. Ng. 2002. An Empirical Evaluation of Knowledge Sources
and Learning Algorithms for Word Sense Disambiguation. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing (EMNLP),
Philadelphia, July 2002, pp. 41-48.

J. Lehmann, S. Monahan, L. Nezda, A. Jung and Y. Shi. 2010. LCC Approaches
to Knowledge Base Population at TAC 2010. In Proceedings of Text Analysis
Conference 2010 Workshop.

H. Liu and H. Motoda. 2002. On Issues of Instance Selection. Data Mining and
Knowledge Discovery, 6, 115-130. 2002

P. McNamee and H. Dang. 2009. Overview of the TAC 2009 Knowledge Base Popu-
lation Track. In Proceedings of Text Analysis Conference 2009.

R. Mihalcea and A. Csomai 2007. Wikify!: linking documents to encyclopedic knowl-
edge. In Proceedings of the sixteenth ACM conference on Conference on infor-
mation and knowledge management, CIKM â07, pages 233-242, New York, NY,
USA. ACM. 2007.

R. Mihalcea and D. I. Moldovan 1999. An automatic method for generating sense
tagged corpora. In Proceedings of AAAI Conference on Artificial Intelligence
(AAAI). 1999

D. Milne and I. H. Witten. 2008. Learning to link with Wikipedia In Proceedings of
the ACM Conference on Information and Knowledge Management, 2008.

S. Monahan, J. Lehmann, T. Nyberg, J. Plymale, and A. Jung 2011. Cross-Lingual
Cross-Document Coreference with Entity Linking In Proceedings of Text Analysis
Conference. 2011

97

H. T. Nguyen, T. H. Cao. 2008. Named entity disambiguation on an ontology enriched
by Wikipedia. Research, Innovation and Vision for the Future, 2008. RIVF 2008.

D. Ploch 2011. Exploring Entity Relations for Named Entity Disambiguation. In
Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics (ACL). 2011.

S. P. Ponzetto and M. Strube. 2007. Deriving a Large Scale Taxonomy from Wikipedia.
In Proceedings of the 22nd National Conference on Artificial Intelligence, Vancou-
ver, B.C., 22-26 July, 2007, pp. 1440-1447.

B. Popov, A. Kiryakov, D. Ognyanoff, D. Manov and A. Kirilov. 2004. KIM - a
Semantic Platform for Information Extraction and Retrieval. In Journal of Natural
Language Engineering, Vol. 10, Issue 3-4, Sep 2004, pp. 375-392

W. Radford, B. Hachey, J. Nothman, M Honnibal and J. R. Curran 2010. Document-
level Entity Linking: CMCRC at TAC 2010. Proceedings of Text Analysis Confer-
ence. 2010.

D. Ramage, D. Hall, R. Nallapati and C. D. Manning. 2009. Labeled LDA: A super-
vised topic model for credit attribution in multi-labeled corpora. In Proceedings
of the 2009 Conference on Empirical Methods in Natural Language Processing,
2009.

L. Ratinov, D. Roth, D. Downey and M. Anderson 2011. Local and Global Algorithms
for Disambiguation to Wikipedia. Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics, 2011

D. Schohn and D. Cohn. 2000. Less is more: active learning with support vector
machines. In Proceedings of International Workshop on Adaptive Text Extraction
and Mining. 2000.

D Shen, J. Zhang, J. Su, G. Zhou and C. Tan 2004. Multi-Criteria-based Active
Learning for Named Entity Recognition. In Proceeding of Annual Meeting of the
Association for Computational Linguistics (ACL). 2004.

D. Spina, E. Amigo and J. Gonzalo 2011. Filter Keywords and Majority Class Strate-
gies for Company Name Disambiguation in Twitter. In Proceeding of CLEF 2011,
pp. 50-61

H. Srinivasan, J. Chen and R. Srihari 2009. Cross document person name disam-
biguation using entity profiles. In Proceeding of Text Analysis Conference. 2009

V. Vapnik. 1995. he Nature of Statistical Leaning Theory. Springer-Verlag, New
York. 1995.

V. Varma, V. Bharat, S. Kovelamudi, P. Bysani, S. GSK, K. Kumar N, K. Reddy, K.
Kumar, N. Maganti 2009. IIIT Hyderabad at TAC 2009. In Proceeding of Text
Analysis Conference. 2009

A. Vlachos. 2008. A Stopping Criterion for Active Learning. Computer Speech and
Language.22(3):295-312. 2008.

P. Wang and C. Domeniconi 2008. Building Semantic Kernels for Text Classification
using Wikipedia. In Proceedings of the 14th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining. 2008

98

T. Zhang, K. Liu and J. Zhao 2011a. NLPR TAC Entity Linking System at TAC2011.
In Proceedings of Text Analysis Conference. 2011

W. Zhang, J. Su, C. Tan and W. Wang. 2010. Entity Linking Leveraging Automati-
cally Generated Annotation. In Proceedings of 23rd International Conference on
Computational Linguistics. 2010

W. Zhang, Y. Sim, J. Su and C. Tan. 2011b. Entity Linking with Effective Acronym
Expansion, Instance Selection and Topic Modeling. In Proceedings of the Twenty-
Second International Joint Conference on Artificial Intelligence, IJCAI. 2011.

W. Zhang, J. Su and C. Tan. 2011c. A Wikipedia-LDA Model for Entity Linking with
Batch Size Changing Instance Selection. In Proceedings of the 5th International
Joint Conference on Natural Language Processing, pages 562-570, Chiang Mai,
Thailand, November 8-13, 2011.

W. Zhang, J. Su, B. Chen, W. Wang, Z. Q. Toh, Y. C. Sim, Y. B. Cao, C. Y. Lin and C.
L. Tan. 2011d. I2R-NUS-MSRA at TAC 2011: Entity Linking. In Proceedings of
Text Analysis Conference. Nov 14-15, 2011. Maryland. US.

W. Zhang, J. Su, C. Tan, Y. Cao and C. Lin. 2012. A Lazy Learning Model for Entity
Linking Using Query-Specific Information. In Proceedings of 24rd International
Conference on Computational Linguistics. 2012

Y. Zhao, W. He, Z. Liu and M. Sun 2011. THUNLP at TAC KBP 2011 in Entity
Linking. In Proceedings of Text Analysis Conference

Z. Zheng, F. Li, M. Huang, X. Zhu 2010. Learning to Link Entities with Knowledge
Base. In Proceedings of Annual Conference of the North American Chapter of the
ACL. 2010

C. Zirn, V. Nastase and M. Strube. 2008. Distinguishing Between Instances and
Classes in the Wikipedia Taxonomy. In Proceedings of the 5th European Semantic
Web Conference, Tenerife, Spain, 1-5 June 2008.

99

