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Summary 

MoO3 and WO3 have been widely studied for their broad applications in many 

industry fields, including photochromic devices, electrochromic devices, ion batteries, 

gas sensors and catalysts. The properties of these two materials can be significantly 

improved by either intercalation or nano-configuration. It is thus reasonable to 

intercalate ions into nanostructured MoO3 and WO3 to achieve better properties for 

the two materials. However, existing methods, which combine intercalation and 

nano-configuration, have various limitations, such as structure deformation upon ion 

intercalation, multi-step process and ion size limitation. 

 

This dissertation describes a simple one-step method to synthesize MoO3 and 

WO3 single crystalline nanostructure with a great amount of K ion intercalation. These 

two materials (KxMoO3, KxWO3 nanobundles) are fabricated by thermal evaporation 

on mica substrate. Despite the large amount of K ion intercalated (K:Mo/W>0.2), the 

layered and orthorhombic structure of MoO3 and pseudo-orthorhombic structure of 

WO3 are preserved. The method is simple and straightforward. It utilizes the open 

ended furnace only and is carried out in ambient and moderate temperature. The 

simpleness makes the method repeatable in other environment. 

 

Upon significant amount of ion insertion, many new properties are observed in 

MoO3 and WO3 nanostructures, including high conductivity, photoelectrical response 

and electromigration behaviour. Firstly, the electronic conductivity of MoO3 or WO3 

is enhanced by 7 orders in the case of MoO3 and 5 orders in the case of WO3 after ion 

insertion. The magnitude is also three orders higher than that of the lithiated MoO3 bulk 

and five orders higher than that of lithiated MoO3 nanobelt. The conductivity is further 

increased hundreds of times, when the material is heated from room temperature to 

200 degree. Secondly, high photon induced voltage (36.5 mV) or photon induced 

current (9 nA) is produced in single nanobundle under laser irradiation at low laser 
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power (2.2 mW) without external bias voltage. Remarkably, the amplitude and polarity 

of the voltage can be controlled by the location of focused laser spot. Finally, due to the 

large current density and the preserved layered structure, when an electric current is 

applied to a KxMoO3 nanobundle, the K ions migrate readily and rapidly in the flowing 

direction of electrons within the nanobundle.  

 

The simple preparation method provides a new direction to insert great amount of 

large ions into nanostructured materials without changing the structure of the 

materials. The charge transferred from inserted ions results in extremely high 

conductivity, modifies the band structure of the material, and induces photon-electron 

response. Moreover, the high current density, the single crystalline structure and the 

great amount of inserted ions will bring many unexpected phenomena into 

semiconductor nanostructures, such as electromigration behaviour. It is noted that 

KxMoO3 nanobundle and KxWO3 nanobundle are quite different with other materials 

which has the similar stoichiometry (such as potassium molybdenum bronze). Our 

materials are quite new and not reported before. Besides the excellent properties 

described in the thesis, lots of properties are not systematically studied. Future work 

are required to explore the materials and get further insight about the synthesis 

method. 
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Chapter 1 Introduction  
 

1.1  Wide applications of MoO3 and WO3 

 

In daily life, transition metal oxides are widely used, such as natural magnets 

(Fe3O4), pigments in all colors used in plastics, glass, ink, ceramics, paints and 

coating (CuO, Ti-Ni-O, ZnO), sunscreen and UV light absorber in cosmetics and skin 

care products (TiO2). With such a great variety of applications, transition metal oxides 

constitute one of the most interesting classes of solids1. Transition metal oxides are 

materials containing transition metals and oxygen, while transition metals are metallic 

elements that serve as a transition between two sides in periodic table as shown in 

Figure 1.1. Among these transition metal oxides, MoO3 and WO3 have been widely 

studied due to their interesting layered structures. Because of their unique structures 

and properties, MoO3 and WO3 have a wide range of applications in many different 

industry fields, including photochromic devices2, electrochromic devices3, ion 

batteries4 , gas sensors5 and catalysts6.  

 

Figure 1.1 Periodic Table with blue rectangle denoting the transition metals.7 
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MoO3 and WO3 have a variety of structures including orthorhombic structure, 

monoclinic structure, hexagonal structure and tetragonal structure. Among these 

various MoO3 and WO3 structures, orthorhombic MoO3 and monoclinic WO3 are two 

of the most common structures in MoO3 and WO3 family. Both materials are built up 

by MoO6/WO6 octahedra. Each octahedra (Figure 1.2(a)) contains a central Mo/W 

atom surrounded by six oxygen atoms with almost the same distance from the central 

atom. In the orthorhombic MoO3 structure, corner-sharing MoO6 octahedra are linked 

as a chain, and two similar chains are connected together by edge-sharing to form 

layers of MoO3 (Figure 1.2(b))2. These layers are stacked in a staggered configuration 

and held together by weak van de Waal´s forces. In the monoclinic WO3 structure, 

infinite array of corner-sharing WO6 octahedra forms a layer of WO3, and these layers 

are stacked in arrangement and held together by weak van de Waal´s forces (Figure 

1.2(c)).8 

 

Figure 1.2 (a) unit cell of MoO6/WO6 octahedra (b) structure of orthorhombic MoO3 

(c) structure of monoclinic WO3. 

 

In both structures, tunnels (continuous vacancies) are formed between layers in 

which small ions could stay or move in the event of the presence of an exterior force. 

The ability to accommodate ion insertion in this kind of structure makes it an 

excellent candidate to be applied in photochromic devices, electrochromic devices 
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and ion batteries. Moreover, both materials are easily reduced, a property which 

enables it to be applied as catalyst. Besides, the MoO3 and WO3 are n-type 

semiconductors, the electric property of which is sensitive to the exposed environment, 

making them good candidates for gas sensors.5 The detailed behaviours and 

mechanisms of these applications will be discussed below. 

 

Application 1: Photochromic devices 

Photochromism is the reversible transformation of a species between two forms 

with different colors upon the absorption of photo radiation. The reversible 

photochromism effect is observed in the MoO3 films. Specifically, the films are 

almost transparent in the visible region which turns blue under UV-light irradiation. 

The colored film can be bleached by electrochemical polarization, and be colored again 

by UV irradiation.2, 9 In particular, the change of colors corresponds to the difference 

in light absorption. The transparent MoO3 films exhibit strong absorption of light with 

wavelength below 400 nm, and the absorption arises from electron excitation from 

valence band to conduction band. For the colored film, significant absorption appears 

in the visible light range with the maximum absorption wavelength between 780 nm 

and 900 nm, which results from a superposition of electron excitation to many 

discrete bands.10  

 

 Many theoretical models try to explain the photochromism effect, including color 

center model, double insertion/extraction of ions and electrons model and small 

polaron model2. Double insertion/extraction of ions and electrons model is mostly 

accepted. The model indicates that when irradiated with UV light, electrons and holes 

are formed in MoO3 film, while holes react with adsorbed water (the prepared film 

always contain water on the surface or inside the structure) to generate protons (H+).2, 

10 These protons diffuse into the MoO3 lattice and react with photon generated 

electrons and MoO3 to form hydrogen molybdenum bronze (HxMoO3). In the bronze, 

part of Mo atoms are reduced to Mo5+, and due to the injected photon energy from 
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light, intervalence charge transfer occurs from the newly formed Mo5+ to adjacent 

Mo6+ . The absorption of light in certain wavelength makes the film turn blue. 

 

The photon induced color change phenomenon has made MoO3 and WO3 as 

promising candidates for many technological applications, such as large scale display, 

erasable optical storage media, radiation intensity controller, self-developing 

photography and so on.2 

 

Application 2: Electrochromism 

The electrochromic effect describes the reversible transformation of a material 

between two forms with different colors upon electrochemical ion intercalation3. The 

WO3 thin film is transparent, which turns blue upon ion insertion and electron 

insertion. The colored film can be bleached by ion extraction and colored again by ion 

insertion, illustrating the reversible and reproducible electrochromism effect.  

 

In the simplified model,3, 11 upon ion and electron insertion diffused from 

electrolyte, the following reaction takes place  

WO3 + xM+ + xe− ↔ MxWO3 

with M+ = H+, Li+, Na+ or K+ . In tungsten bronze MxWO3, part of W6+ ions are 

reduced to W5+. The inserted electrons are localized in these W5+ sites and polarize 

their surrounding lattice to form small polarons. These small polarons absorb the 

energy from incident photons and hop from one site to another, as in 

hν + W5+(A) + W6+(B) → W6+(A) + W5+(B) 

where hν is the energy of absorbed photon energy and polaron hops from A to B. Due 

to absorption of photons with certain wavelength, the film turns to dark blue. 

 

 The electrochromic effect has rendered MoO3 and WO3 as promising candidates 

for many technological applications12 such as “smart” window,13, 14 Electrochromic 

photonic crystals15 and Electrochromic imaging16. 
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Application 3: Ion battery 

 Lithium-ion batteries are quite popular these days. In lithium ion battery, the 

positive electrode is mostly made of Lithium cobalt oxide, contributing Li ions. The 

negative electrode is made of materials with layered structure, where Li ions could be 

inserted and extracted. When the battery charges, Li+ moves through the electrolyte 

from the positive electrode to the negative electrode and inserts between layers in 

electrode. During discharge, the lithium ions move back to the LiCoO2 from the 

cathode.4, 17  

 

 As described above, in MoO3 and WO3, continuous vacancies are formed 

between layers in which small ions could stay or move in the presence of exterior 

force. For the ability of reversible incorporation of Li ions into MoO3 or WO3 layered 

structure, they are used as the cathodes in lithium batteries.4, 18 

 

Application 4: Gas sensor 

 A reducing molecule (e.g., CO, H2) adsorbed on the sensor surface injects 

electrons into it. While oxidizing gases like NO, extract electrons from sensor surface. 

Consequently, in the case of n-type semiconductors, the resistance of the sensor 

decreases when contacts with reducing gas due to high electron population, while the 

resistance increases when contacts with an oxidizing gas.5 The changed resistance 

upon appearance of gases contributes to the sensitivity of MoO3 and WO3 to these 

gases. 

 

 Nitrogen oxides, NO and NO2, produced from combustion facilities and 

automobiles are main pollutants which damage human respiratory organs and nerves. 

WO3 have outstanding sensitive properties toward NOx at low and elevated 

temperature. Tong et al.19 reported that WO3 thin film sensors exhibit high sensitivity 

to NO2, and the lowest detection concentration of NO2 is 1 ppm. Meanwhile, the 

sensitivity to 10 ppm NO2 gas is five times larger than the response to 500 ppm CO, 
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H2S, CH4 gases. Compared with other materials, the low cross sensitivity makes WO3 

better candidate for detection of these two gases. 

 

 Ammonia is a reducing agent for nitrogen oxides converting them into nitrogen 

and water vapor. An ammonia sensor is required to selectively detect small quantities 

of ammonia fed into the inlet stream in the presence of interfering gases such as NOx, 

CO and hydrocarbons.20 MoO3 is sensitive to NH3 and NO2 gases in the temperature 

range from 200 to 450 oC, particularly the lowest detection concentration of NH3 is 3 

ppm. No cross sensitivity was recorded for other gaseous species.20, 21 The particular 

selectivity makes MoO3 a better candidate for NH3 based integrated sensors. 

 

Application 5: Catalyst 

 One quarter of all organic products produced worldwide are synthesized via 

selective partial oxidation. MoO3 is widely used in selective partial oxidation process 

on the fact that it is easily being reduced.6, 22 In the process, alkenes are absorbed to 

the (100) surface of MoO3 on coordinatively unsaturated Mo sites under the formation 

of an allylic intermediate, and a bond between the lattice oxygen and the allylic 

intermediate forms on the (010) surface. The attached oxygen is then inserted into the 

hydrocarbon to give the oxygenated product, leaving an oxygen vacancy at the 

catalyst surfaces.6 The MoO3 surface oxygen defects could be replenished by surface 

oxygen diffusion in the same layer or other layers. Thus, the alkenes could 

continuously be partially oxidized. 

 

1.2  Intercalation induced new properties and intercalation 

method  

 

As described above, in the layered structure of MoO3 and WO3, tunnels form 

between layers, where ions can move in by exterior force. Such ion insertion process 

between layers is called intercalation. Intercalating ions into MoO3 and WO3 boosts 
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their applications as photochromic devices, electrochromic devices and ion batteries. 

In addition, intercalating ions into the structure of MoO3 and WO3 improves the 

performance of these devices, such as displaying higher coloration efficiency, faster 

response, stronger absorption, higher stability and so on.  

 

Photochromic devices: Yao et al.23 reported that upon Li intercalation into MoO3, 

the sample showed a new photosensitive response in the region between 500 and 800 

nm, while the pure MoO3 was sensitive only to the UV light (wavelength below 400 

nm). This is attributed to the fact that upon Li+ incorporation, the shortest Mo–Mo 

separation distance increases and results in the formation of a new energy state. 

Therefore, electrons can be excited into a new state after irradiation with visible light, 

and then to the conduction band of molybdenum oxide. The process reduces Mo6+ to 

Mo5+, resulting in the formation of blue-colored molybdenum bronze.  

 

Electrochromic device: Zhang et al.24 reported that Li intercalation into MoO3 

film dramatically improved the electrochemical reversibility of the film. In the 

Li-doped MoO3 films, some degradation was observed between the third and the tenth 

cycle but a pronounced improvement in durability was achieved.  In contrast, pure 

MoO3 film showed significant irreversible insertion in the first cycle with subsequent 

degradation in the second cycle. 

 

Batteries: Leroux et al.25 reported that upon sodium (Na) intercalation, MoO3 

film exhibited high specific capacity of 940 mA/g in the voltage window of 

3.0~0.005V, and the charge capacity efficiency (the ratio of the charge capacity at nth 

circle over the value at first circle) was 88% after the 20th cycle and 75% at the 50th 

cycle, while in pure MoO3, the capacity at first cycle was around 700 mA/g and the 

capacity efficiency decreased to 67% at the 10th cycle. The comparison indicates that 

upon Na intercalation, higher charge capacity and more stable charge capacity 

retention is achieved. 
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Gas sensor: Wang et al.19 intercalated Polyaniline (PANI, a kind of polymer) into 

the MoO3 layered structure. The resulting (PANI)xMoO3 thin film displayed an 

increase in electrical resistivity in response to volatile organic compounds. The 

intercalated film was especially sensitive to formaldehyde and acetaldehyde, while 

pure MoO3 was not sensitive to either of the gases. These two volatile gases are 

poisonous to humans. Formaldehyde is highly toxic to all animals, regardless of 

method of intake. Ingestion of as little as 30 mL of a solution containing 37% 

formaldehyde has been reported to cause death in an adult human. Acetaldehyde, air 

pollutant resulting from combustion like automotive exhaust and tobacco smoke, is 

toxic when applied externally for prolonged periods, which possibly induce cancer. 

 

Besides the reports mentioned above, many species could be intercalated, thus 

improving the performance of MoO3. These species include ions like H+, Li+, Na+, K+, 

Rb+, Cs+, Ce3+26 and many kinds of polymers like PANI, SP, pyridines27. There are 

many methods to intercalate these species into MoO3/WO3 structure. These methods 

could be divided into two groups, electrochemical method and self diffusion method. 

 

Electrochemical method: Spahr et al.28 and Sian et al.29 carried out insertion 

experiments in galvanostatic mode using a standard three-electrode arrangement, in 

which the working and counter electrodes were soaked with an electrolyte solution. 

Poly-MoO3 films were used as a working electrode, platinum strip as a counter 

electrode, Ag/AgCl as a reference electrode, and an appropriate quantity of HClO4, 

LiClO4, NaClO4, KClO4, Mg(ClO4)2 dissolved in propylene carbonate (PC) as 

electrolyte solution for insertion of H+, Li+, Na+, K+ and Mg2+ ions separately. Driven 

by external electric field, these ions were intercalated between MoO3 layers. 

 

Self diffusion method: Tagaya et al.27 intercalated organic compound into MoO3 

by two steps. Firstly, MoO3 was suspended in an aqueous solution of Na2SO4 to form 

NaxMoO3. Then, the solvent was decanted and the residual solid was treated with an 

http://en.wikipedia.org/wiki/Air_pollution
http://en.wikipedia.org/wiki/Air_pollution
http://en.wikipedia.org/wiki/Tobacco_smoking
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ethanolic solution containing guest organic compound. Zhang et al.30 dissolved 

metallic molybdenum powder in H2O2 solution and then added LiOH•H2O. By drying 

the solution at 40℃ in an oven, Li-doped MoO3 xerogel powder can be produced. 

Mahajan et al.31 fused niobium pentoxide (Nb2O5) powder with potassium 

pyrosulphate (K2S2O7) in silica crucible. The solution was dissolved in tartaric acid 

and mixed with MoO3 powder dissolved ammonia solution. The final solution was 

pneumatically pulverized on the glass, and the Nb-doped MoO3 film was achieved 

after spraying. During these processes, compounds were intercalated by self diffusion 

method driven by concentration gradient force. 

 

It is noted that these methods are applied to MoO3 films or powders, and these 

materials turn into an amorphous structure after a great amount of ion intercalation or 

large size ion intercalation. 

 

1.3  Nanostructure induced new properties and 

nanomaterial synthesis method 

 

The materials in nano-scale are widely studied these days and they exhibit 

various advantages, such as the high surface to volume ratio of the nanostructures 

provides large contact surface areas for reaction, the short diffusion path in the 

crystalline structure improves ion reaction efficiency, and the high flexibility and 

adequate toughness accommodate strains induced by ion insertion, etc. The 

performance of MoO3 and WO3 in all application fields are greatly enhanced when 

both materials in nano-scale are utilized.  

 

Electrochromic device: The diffusion coefficient and the length of diffusion path 

determine the electrochromic efficiency. The former depends on the crystal structure, 

and the latter is determined by the material’s microstructure.32 With same crystal 

structure, the materials in nanoscale display short diffusion length for its small size 
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and thus exhibit excellent electrochromic efficiency. Se-Hee Lee et al.33 reported that 

by fabricating Electrochromic films from crystalline WO3 nanoparticles, the cycling 

stability and electrochromic efficiency of EC device were dramatically increased. In 

nanoparticle films, the current response increases slightly during the course of 3000 

cycles without a significant change in the shape of the CVs, while the amorphousWO3 

film degrades significantly after only 500 cycles. It indicates the excellent cycling 

stability of the nanoparticle films. Moreover, the total cathodic charge for the WO3 

nanoparticles is ~32 mCcm–2mg–1, compared to ~3 mCcm–2mg–1 for crystalline films 

and ~9 mCcm–2mg–1 for amorphous films. The high charge insertion density over the 

same time period indicates great electrochromic efficiency of the nanoparticle films.  

 

Batteries: There are several advantages associated with the utilization of 

nanomaterial as electrode for lithium batteries, including (a) better accommodation of 

the strain induced by Li+ insertion/extraction, improving cycle life (b) new reactions 

not available with bulk materials (c) larger electrode/electrolyte contact area, leading 

to higher charge/discharge rates (d) short electron transport path lengths, permitting 

operation under low electronic conductivity or at higher power (e) short Li+ transport 

path lengths, allowing operation under low Li+ conductivity or higher power.34 

Molybdenum oxide microrods with diameters of ~2–6 μm were investigated as a 

cathode and compared with ball-milled MoO3 particles.18, 35 The microrods maintained 

a reversible capacity of 199 mAh/g which was 88.4% of the highest capacity, while the 

particle electrode exhibited a capacity of 85 mAh/g after 100 cycles corresponding to 

47.2% of the initial capacity. It indicates that the nanostructures could more easily 

accommodate the structural strain occurred upon Li ion insertion. Liang Zhou et al.36 

reported that the α-MoO3 nanobelts exhibited a high discharge capacity of 264 mAh/g 

at 30 mA/g and 176 mAh/g at 5000 mA/g. The capacity was still up to 114 mAh/g 

after 50 cycles at the high current density of 5000 mA/g, while the bulk α-MoO3 

cracked during the same process. The excellent high rate performance is related to the 

nanobelt morphology of the α-MoO3 due to its short diffusion path length. 
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Sensor: For the large surface to volume ratio of nanomaterials, their conductivity 

is strongly influenced by surface reactions, which significantly improves their 

sensitivity to gases.37 E. Comini et al.38 reported that on the response to CO, MoO3 

nanorods showed the response to 30 ppm of CO was more than 100% while the thin 

film showed the response of 30% only. Moreover, the pure single crystalline of 

nanorod guaranteed long term stability of the sensor, which was not always satisfied in 

bulk due to grain coalescence.  

 

Large scale synthesis of MoO3 and WO3 nanostructure is achievable using 

various techniques ranging from direct thermal heating of foil in a furnace, hot wire 

chemical vapour deposition, hydrothermal, sol-gel methods, and etc. Chu et al.39 and 

Xie et al.40 reported that by heating the Molybdenum foil to ~500-600°C in a tube 

furnace or on hot plate, the oxidized vapour nucleated and nanostructure formed on 

the substrate covered on or nearby the foil. Zhou et al.36 synthesized MoO3 nanobelts 

by hydrothermal treatment of a peroxomolybdic acid solution, which was prepared by 

mixing H2O2 aqueous solution with Mo metal powder. Dillon et al.32 employed 

hot-wire chemical vapor deposition (HWCVD) to produce MoO3/WO3 nanostructure. 

A single W/Mo filament, was resistively heated to ~1400 °C in a static gas 

atmosphere consisting of Ar and O2 gases, and the metal oxide powder collected on 

the walls of the quartz tube as the filament was slowly oxidized.  

 

1.4  Challenge of intercalating large ions into nanostructure  

 

Considering that MoO3 and WO3 can achieve better performance through 

intercalation and nano-configuration, it is reasonable to intercalate ions into 

nanostructure so that better properties of MoO3 and WO3 are obtained. However, 

existing methods, which combine intercalation and nano-configuration, have various 

limitations.  
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One of the methods which intercalate ions into a MoO3 thin film is the 

electrochemical method. Intercalated species invariably take the interstitial positions 

between layers of the MoO3 structure. With the uptake of these ions, the interlayer 

spacing of the MoO3 increases. The over expansion induced from large size ion 

intercalation or from a great amount of small size ion intercalation destroys the 

layered structure of MoO3. The phenomenon has been observed in experiments 

carried out by many groups. Sian et al.41 reported that upon intercalation of 20% K 

ions (large size ion, atomic percentage ratio of K over Mo is 0.2), the layered structure 

of MoO3 is destroyed due to the over expansion between layers. The structural change 

phenomenon is illustrated by the disappearance of (020) peak in XRD measurement 

after intercalation, in which the (020) peak denotes the layered structure of MoO3. 

Joseph et al.42 reported that upon immersing MoO3 film into dilute (~10-9 M) LiClO4 

solution for a long time (60 min, intercalation of small ions Li+ with a great amount), 

the layered structure of MoO3 deforms step by step over the course: firstly cracks 

associated with the formation of LixMoO3 become prominent at the (010) surface of 

MoO3, then the cracks extend along other directions, and finally, the structural 

integrity of the (010) surface is diminished, the film disintegrates and flakes off.  

 

In addition to the limitation of structural deformation, the electrochemical 

method is also constrained in the application into nano-configuration. During the 

process of intercalation into nanostructures by the electrochemical method, a metallic 

substrate is required as electrode in the electrochemical process to hold the MoO3 

nanostructures (nanobelts, nanowires, nanoparticles). Zhou et al.36 pressed the powder 

mixture of MoO3 nanobelts, acetylene black and PTFE into thin film, and the film was 

placed onto Ni grid for the electrochemical process. Meduri et al.35 directly 

synthesized MoO3 nanowires onto stainless steel substrate. The conducting substrates, 

together with as synthesized nanowires, were used as electrodes for the 

electrochemical process. In these processes, multi-steps are required to achieve ion 
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intercalation in nanostructure; moreover, structural deformation in nanostructure still 

exists after ion intercalation. 

 

Self diffusion method is also a widely used method to intercalate ions into 

nanostructures. For small ions (such as Li+), lithiated MoO3 nanobelts were prepared 

by immersing MoO3 nanobelts into LiCl solution43. However, the efforts to intercalate 

large ions such as K+ into the MoO3 nanostructure by self diffusion method has never 

been successful due to the large size of these ions compared to the size of the gap 

between layers.  

 

Besides physical ion insertion, there are some synthesis methods to intercalate 

ions by chemical reaction. However, the structure of MoO3 and WO3 deforms greatly 

by these methods. Insertion of K+ ions in the synthesis of bulk potassium molybdenum 

bronze (K0.3MoO3) by electrolytic reduction of potassium molybdate and molybdenum 

oxide mixtures gives rise to a substantial structural distortion. The compound becomes 

infinite sheets consisting of clusters of ten edge-sharing molybdenum octahedral linked 

by corners in the [010] and [102] directions with the adjacent sheets held together by 

potassium ions.12 Zheng et al. synthesized potassium tungsten bronze nanowires by 

thermal heating potassium hydroxide solution treated tungsten foils.44 In the 

compound, WO6 octahedra are formed into a six member ring and K ion occupies the 

vacancy in the center of the ring. 

 

To date, intercalating large cationic species into MoO3/WO3 nanostructures 

without giving rise to severe structural deformation of the layered orthorhombic MoO3 

structure or monoclinic WO3 structure has remained a great technical challenge. 
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1.5  Research Aims 

 

In this study, we synthesize MoO3 and WO3 single crystalline nanostructure with 

a great amount of K ion (large size ion) intercalation. These two materials are 

fabricated by a simple method - thermal evaporation on mica substrate. The muscovite 

mica acts as K source and substrate for growth. With the simple one step method, we 

achieve single crystalline, nano-configuration and ion intercalation and preserved 

crystal structure at the same time, while in other reports, a multi-step method was 

used or structure became deformed. Despite the large amount of K ion intercalated 

(atomic ratio of K over Mo/W is larger than 0.2), the layered and orthorhombic 

structure of MoO3 and pseudo-orthorhombic structure of WO3 are preserved. The 

simple preparation method solves the problem that large size ion intercalation deforms 

the structure of MoO3 and WO3, and thus provides a new direction to develop 

nano-structured materials of large-ion intercalated metal oxides. 

 

A significant amount of ion insertion in the nanostructure induces many new 

properties, including in particular, high conductivity, photocurrent response and 

electromigration behaviour are observed in our materials. Firstly, the electronic 

conductivity of MoO3 and WO3 is enhanced several orders upon K insertion, and the 

value is further increased hundreds of times, when the material is heated from room 

temperature to 200 degree. The substantial high electric conductivity attributed to ion 

intercalation has not been observed in other reports. Secondly, the significant 

photoelectrical response of individual nanomaterial (KxMoO3, KxWO3 nanobundle) is 

observed. Before ion intercalation, both materials do not display such photocurrent 

response due to the large band gap of the materials. The comparison suggests that the 

method presented in the thesis provides an excellent way to introduce photoelectrical 

response property to the material. Finally, the rapid and reversible electromigration of 

intercalated K ions within a layered single crystalline KxMoO3 nanobundle is observed, 

which results from the facility of structure and high current density in the material. 
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The electromigration is always observed in the metal and induces cracks or piles in 

the material, but the phenomenon has not been observed in semiconductors before. 

The observation in our material opens a new route for the study of electromigration 

effect and provides new insight about such effect. 

 

1.6  Outline of the thesis 

 

The structure of the thesis will be as follows. In the Chapter one, we have 

introduced the properties and applications of MoO3 and WO3 and the enhanced 

performance induced by ion intercalation and nanostructure configuration. The 

synthesis methods to intercalate ions and to produce nanostructure are introduced as 

well. The challenge of intercalating large ions into nanostructure is discussed and the 

aim of the thesis is proposed. In Chapter two, we will introduce the experimental 

techniques used in the project including synthesis method, characterization techniques, 

individual nanostructure electrode device fabrication method and focused laser system. 

In Chapter three, the synthesis method to intercalate K ions into the single crystalline 

MoO3 nanostructure and the characterization of the material will be discussed in detail. 

Chapter four introduces the electrical properties of K enriched MoO3 nanobundle and 

the observation of photocurrent. In Chapter five, we look into the amazing 

phenomenon of electromigration of intercalated K ions between MoO3 layers. In 

Chapter six, we apply similar method to successfully synthesis K enriched WO3 

nanobundle, further characterization and applications are introduced. Finally, we 

conclude our work and discuss the future works in Chapter seven. 
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Chapter 2 Experimental Techniques 
 

In this chapter, we describe the thermal evaporation method to synthesize K ion 

intercalated MoO3 and WO3 nanostructure, and the various experimental 

characterization techniques utilized to identify the structure of the material. The 

preparation process of individual nanostructure electrode device for electrical 

property measurement is provided. The alignment of focused laser system for 

individual nanostructure photo-electrical response measurement is discussed as well. 

 

2.1 Fabrication of Mo and W oxide nanostructures 

 

Our group has successfully fabricated MoO3 nanobelt and WO3 nanowire using 

thermal evaporation method on glass and silicon substrate.40 Similar thermal 

evaporation method is utilized to fabricate K enriched MoO3 nanostructure. A 

horizontal tube furnace (Carbolite MTF 12/25/250) is used for the controlled growth 

of nanostructure by thermal evaporation method. The tube furnace contains a ceramic 

tube of diameter ~ 6 cm with both ends open in the ambient. We utilize a Mo/W foil 

(5 mm×5 mm×0.05 mm in size, from Aldrich Chemical Co., Inc.) as Mo/W source. 

The foil is polished by sand paper to remove the surface oxidized layer. Then, these 

foils are cleaned by sonicating in deionized water and isopropanol for 15 mins 

respectively, air dried in ambient and placed in the middle of ceramic boat. A 

muscovite mica sheet (K2O•3Al2O3•6SiO2•2H2O, 8 mm×8 mm in size, from Alfa 

Aesar Co., Inc.) is prepared as substrate and K source. The mica sheet is placed on top 

of the Mo/W foil at certain height in the ceramic boat. The ceramic boat is inserted into 

the tube furnace and placed in the middle, the hottest region of the tube furnace. The 

temperature of the furnace is then raised at a rate of 30 ℃/minute. After reaching a 

required temperature, the system is maintained at this temperature for certain period. 
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After growth, the system is cooled down to room temperature in ambient. During the 

synthesis, air flow is controlled by fan to provide adequate oxygen continuously. The 

synthetic scheme described above is shown in Figure 2.1(a). Figure 2.1(b) displays a 

photograph of the tube furnace used to fabricate nanomaterial.  

 

Figure 2.1 (a) Schematic representation of the synthesis system (b) Photograph of the 

tube furnace used to fabricate nanomaterial. 

 

2.2 Characterization Methods and Techniques 

 

As-synthesized products are characterized using various characterization tools. 

These characterization methods include morphology characterization by SEM, 

elemental composition and chemical state detection by EDX and XPS, lattice 

structure determination by TEM, XRD and Raman Spectroscopy. 

 

Scanning Electron Microscope (SEM)  

Scanning Electron Microscope (SEM) is the most widely used equipment to study 

surface features of materials in micro- and nano-scale. A focused electron beam scans 

on the samples and reacts with the surface atoms. The scattering interaction between 

beam electrons and surface atoms results in the ejection of secondary electrons. These 

secondary electrons are originated within a few nanometers from the sample, used for 

imaging.45 The morphological characterization of the grown substrate and the 

structures created in this work is carried out using the field emission SEM JEOL 

JSM-6700F with the spatial resolution of ~10 nm.  
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Transmission Electron Microscopy (TEM) 

 Transmission Electron Microscopy (TEM) is the technique with advantage of 

large magnification range. In TEM microscopy, a low magnification image of the 

nanostructures and a high resolution image of the alignment of atoms can be achieved. 

The low resolution TEM images provide the information about the size, shape and 

morphology of the nanostructures. The high resolution TEM images provide 

information about lattice structure, crystalline quality and details of the defect 

structures. In TEM, images are formed by a beam of electrons transmitting through 

the specimen. Because the wavelength of high-energy electrons is a few thousandths 

of a nanometer while the spacing between atoms in the solid is hundreds times larger, 

the atoms act as a diffraction grating to the electrons. When electrons transmit through 

the sample, some of these electrons are scattered to particular angles, determined by 

the crystal structure of the sample. The image on the screen will be a series of spots, 

named Selected Area Electron Diffraction pattern (SAED), telling the crystal 

structure of the material.46 The TEM analysis is carried out using JEOL JEM-2010F 

with 200 kV electron beam.  

 

Energy-dispersive X-ray spectroscopy (EDX) 

Energy-dispersive X-ray spectroscopy (EDX) is an analytical technique used for 

the elemental analysis. A high energy beam of electrons is focused on the sample, 

excites an inner shell electron in sample atoms, ejecting it from shell and creating 

a hole. An electron in the outer shell fills the hole, and releases the energy equalling to 

the difference between the higher-energy shell and the lower energy shell in the form of 

X-ray. The detected energy of the X-rays is characteristic of the atomic structure of the 

element, allowing the elemental composition of the specimen to be determined.47 The 

EDX measurement system is equipped in SEM or TEM. 

 

 

 

http://en.wikipedia.org/wiki/Diffraction_grating
http://en.wikipedia.org/wiki/Chemical_element
http://en.wikipedia.org/wiki/Electron
http://en.wikipedia.org/wiki/Electron_hole
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X-ray photoelectron spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) is an analytical technique that measures 

the elemental composition and chemical state of the elements in the material. A X-ray 

beam is irradiated towards the material, and the top 1 to 10 nm of the sample absorb 

the X-ray energy, ejecting outer shell electrons. The kinetic energy of these electrons 

are measured and the elements in the material are determined.48 The XPS spectrum is 

sensitive to the chemical environment of an atom. It enables the application of XPS in 

the identification of valance state of a particular element. The XPS spectrum is 

recorded under ultra-high vacuum condition using Omicron EA125 analyzer; 

monochromatic Mg Kα source (1253.6 eV), system. 

 

X-ray Diffraction (XRD) 

 The regular aligned atoms in the lattice structure scatter the incident wave and 

result in the diffraction. The significant diffraction appears when the wavelength of 

the incident wave is comparable with the distance between atoms. For the wavelength 

of X-ray is the same order of the magnitude as the spacing between planes in the 

crystal, X-ray Diffraction (XRD) spectrum is utilized to reveal the information about 

the crystal structure of materials by detecting the scattered intensity of an X-ray beam. 

The X-ray beam is originated from the source, and directed onto the sample. The 

scattered X-ray beam is  recorded by the detector as a function of incident and 

scattered angle. We record the XRD spectrum using Philips X’PERT MPD (Cu Kα 

(1.5418 Å) radiation) machine.  

  

Raman Spectroscopy 

Raman Spectroscopy characterizes the material by analysing vibrational, 

rotational and other low frequency modes in a sample. A focused laser beam is directed 

onto the sample and a spectrometer is utilized to detect the intensity of inelastic 

scattering of photons after photon-phonon interaction within the material. Results are 

recorded in terms of the difference in wavenumbers between the incident and scattered 

http://en.wikipedia.org/wiki/Photoelectron
http://en.wikipedia.org/wiki/Spectroscopy
http://en.wikipedia.org/wiki/Photoelectron
http://en.wikipedia.org/wiki/Spectroscopy
http://en.wikipedia.org/wiki/Chemical_state
http://en.wikipedia.org/wiki/Nanometre
http://en.wikipedia.org/wiki/Kinetic_energy
http://en.wikipedia.org/wiki/Electron
http://en.wikipedia.org/wiki/Crystal_structure
http://en.wikipedia.org/wiki/Scattering
http://en.wikipedia.org/wiki/Intensity_(physics)
http://en.wikipedia.org/wiki/X-ray
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photon, known as the Raman shift. The Raman spectra reported in this works are taken 

using Renishaw Ramascope 2000 system with an Olympus microscope attachment and 

a 514.5 nm laser used as the excitation source. 

 

2.3 Individual Nanostructure Electrode Device Fabrication 

 

To investigate the electrical properties of individual nanostructure, the 

micro-electrode device is fabricated. Individual nanostructure is transferred from the 

growth substrate to SiO2/Si substrate and photolithography method is utilized to 

achieve designed metal (Au(400 nm)/Cr(10 nm)) finger electrodes (of gap ~15 μm) that 

make contact with the nanostructure. Photolithography is a process used 

in micro-fabrication to make patterns on the thin film. Focused laser beam is used to 

transfer a pattern onto a light sensitive photoresist on the substrate. A series of chemical 

treatments are then applied to engrave the exposure pattern and enable deposition of 

other materials upon the pattern. The remaining photoresist is then removed and 

leaving the patterned materials on the substrate. 

 

Figure 2.2 Schematic images display the fabrication process of individual nanobundle 

electrode. 

 

http://en.wikipedia.org/wiki/Microfabrication
http://en.wikipedia.org/wiki/Chemical_engineering
http://en.wikipedia.org/wiki/Chemical_engineering
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UV lithography method is utilized to fabricate individual nanobundle electrode 

device. 7 schematic images in Figure 2.2 illustrate the preparation process. The Si 

wafer with 100 nm SiO2 layer is properly cut into 1 cm x 1 cm size. These SiO2/Si 

substrates are cleaned by sonicating in deionized water and isopropanol for 15 mins 

respectively, and dried by nitrogen gas flow (step 1). Individual KxMoO3 nanobundle is 

then transferred to the centre of clean substrate by the needle of micro-probe-station 

under microscope (step 2). The positive photoresist AZ1518 is spin coated onto the 

substrate with the thickness of 2 µm (step 3). The thickness of photoresist is optimized, 

while thinner one could not properly cover the nanobundle and thicker one will result 

in inconvenience of removing polymer. We design electrode patterns by the help of 

AutoCAD software, and load the design into the computer that controls the laser 

writing system. The laser writing system we use is uPG101 from Heidelberg Instrument 

Co. as shown in Figure 2.3(a). The substrate is placed in the centre of platform. There 

are holes on the platform and air pumping is performed, which tightly suck substrate on 

the platform by air pressure. UV laser is focused onto the substrate and moving around 

controlled by computer (step 4). The laser power is optimized according to the 

thickness of photoresist. The written substrate is then immersed into a developer, 

removing the part exposed to UV laser (step 5). The patterned substrates are collected 

and placed inside the sputtering chamber. The sputtering system is displayed in Figure 

2.3(b). In the system, plasma hit the metal target, driving atoms ejected from target. 

Most of the metal atoms diffuse to nearby substrates, and finally, a layer of material is 

covered on the patterned substrate. In our case, 20 nm Cr layer is first sputtered on the 

substrate to firmly adhere the Au layer with SiO2 substrate. 500 nm Au layer is then 

deposited on the Cr layer (step 6). The sputtered substrate is treated by acetone solution, 

removing the remaining photoresist and the metal layer covering on it (step 7). In the 

end, the device with Au finger electrodes covering on individual nanobundle is 

fabricated.  
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Figure 2.3 Optical image of (a) Laser Writing system (b) Sputtering system. 

 

After the fabrication of electrode device, copper wires are used to connect the 

device with sourcemeter to form a circuit. One end of copper wires are connected to 

the electrode by soldering and the other end of wires are connected to crocodile clips. 

The electrical measurements are carried out using Keithley 6430 Sub-fA Remote 

SourceMeter. 

 

2.4 Focused Laser System 

 

To investigate the photo-electrical response of individual nanostructure, laser 

beam should be focused and directed onto nanostructure. Thus, the focused laser 

system is set up to couple laser beam into microscope. Here we will describe in detail 

the components of the focused laser system. 
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Figure 2.4 Schematic of photon response measurement set-up with focused laser beam 

radiation on nanostructure. 

 

Figure 2.4 shows the schematic of the photon response measurement set-up with 

focused laser beam irradiation on nanostructure. The single mode, linearly polarized 

diode red laser beam (Intellite RS655-70, λ=660 nm) is directed into the microscope 

via two mirrors as shown. The mirrors are utilized to align the beam in right angle, 

which provide convenience for laser alignment. The optical microscope is custom 

made including an additional hole on one side to allow the laser beam to enter. Inside 

the microscope, the laser beam is reflected by a beam splitter towards the objective 

lens. We use Nikon 50× lens with a numerical aperture of 0.55 and a long working 

distance of 8.7 mm. The objective lens focuses the laser beam onto the individual 

nanostructure device positioned on the translation stage. A CCD camera is mounted on 

the top of microscope, and connected to a television monitor and a computer. The 

computer with recording software captures the laser illumination process in real time. 

The power of the laser beam after passing through the setup is measured around 30% of 

the original laser output, ranged from 1~20 mW. The diameter of focused laser spot is 

~6 µm. Illumination of the sample is provided by the optical microscope light source.  
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Chapter 3 Intercalate K ions into 

MoO3 layered nanostructure  
 

In this chapter, we describe the simple one-step method to synthesize K ion 

intercalated MoO3 nanostructure, the various experimental characterization techniques 

and density functional theory calculation utilized to identify the structure of the 

material, and the growth mechanism of intercalated nanostructure. 

 

3.1 Synthesis of K ion intercalated MoO3 nanobundle 

 

We begin with a Mo foil (5 mm×5 mm×0.05 mm, from Aldrich Chemical Co., 

Inc.) as Mo source. The foil is treated in the process described in Chapter 2 and placed 

in the middle of ceramic boat. A muscovite mica sheet (K2O•3Al2O3•6SiO2•2H2O, 8 

mm×8 mm, from Alfa Aesar Co., Inc.) is prepared as substrate and K source. The 

mica sheet is placed 1mm on top of the Mo foil supported by Si substrate in the ceramic 

boat. The system is inserted into the tube furnace (Carbolite MTF 12/25/250) and 

heated for 6 hrs in ambient at 600 ℃. At one end, air flow is controlled by fan to 

provide adequate oxygen continuously. The synthetic scheme of the K-intercalated 

MoO3 nanostructure described above is shown in Figure 3.1(a). Figure 3.1(b) displays 

the photograph of the tube furnace used to fabricate the nanomaterial.  
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Figure 3.1 (a) Schematic representation of the synthesis system (b) Photograph of the 

tube furnace used to fabricate nanomaterial. 

 

During the growth, adequate oxygen is required to successfully synthesize 

KxMoO3 nanostructure. We have tried two systems with insufficient oxygen. In one 

system, the prepared ceramic boat is loaded into sealed tube furnace by supplying 

10% O2. For the insufficient oxygen, nothing is produced on the substrate. In the other 

system, the prepared ceramic boat is loaded into unsealed tube furnace without fan. 

Upon heating in ambient, little fresh air flows into the tube. With the continuously 

usage of O2 in the middle of the tube furnace, oxygen is not adequate for nanomaterial 

growth. Consequently, a fan near the tube furnace is utilized to provide fresh air 

continuously. Meanwhile, mica substrate is elevated 1 mm above the Mo foil 

supported by small pieces of Si substrate to accommodate sufficient oxygen for 

reaction. Temperature for nanostructure synthesis is optimized as well. KxMoO3 

nanostructures are produced in the temperature window ranged from 580 ℃ to 650 ℃, 

while only MoO3 microbelts are observed when temperature is out of the range. 

 

3.2 Characterization of K ion intercalated MoO3 nanobundle 

 

After the synthesis process described above, the ceramic boat is cooled down to 

room temperature, and mica substrates are moved for further characterization. These 

characterization methods include morphology characterization by SEM, elemental 
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composition and chemical state detection by EDX and XPS, lattice structure 

determination by TEM, XRD and Raman Spectroscopy. 

 

Characterization 1: Morphology 

 

Figure 3.2 (a) SEM image of grown muscovite mica substrate with KxMoO3 

nanobundles extending out of substrate and MoO3 microbelts lying down on substrate 

(b) Typical morphology of individual MoO3 microbelt (c) Zoom in image in the 

middle where nanobundles grow highlighted by black square in (a). (d) Typical 

morphology of a single KxMoO3 nanobundle. 

 

 In the synthesis process, Mo atoms evaporate from the foil and are oxidized in the 

air flow. The deposition of the oxidized Mo vapor on the mica substrate produces two 

different types of products as shown in Figure 3.2(a). The first type of the materials 

are MoO3 microbelts lying down on mica substrate with a width of 3~5 μm, a length 

of 10~15 μm and a thickness of 1μm. These microbelts are dominating products. 

Figure 3.2(b) displays the typical morphology of individual MoO3 microbelt with the 
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length, width and thickness of 11 μm, 1.0 μm and 3.5 μm respectively. Another type 

of the materials are KxMoO3 nanobundles extending out of the substrate, with the 

length about 200~300 μm. Figure 3.2(c) is the zoom in image in the middle where 

nanobundles grow highlighted by black square in Figure 3.2(a). Significant number of 

nanobundles are packed in bundles and extend out. Single nanobundle is transferred 

to Si substrate for further observation. Since the end of the nanobundle is firmly 

attached to the mica substrate, only segment of nanobundle is transferred. Figure 

3.2(d) shows morphology of a typical nanobundle with the length, width and 

thickness of 100 μm, 0.9 μm and 0.5 μm respectively.  

 
Figure 3.3 (a~b) zoom in image of the end of KxMoO3 nanobundle (c) Nanobelts split 

from each other in the left end of KxMoO3 nanobundle (d) KxMoO3 nanobundle broke 

in the middle, inset image is the enlarged broken edge of nanobundle highlighted by 

black square. 

 

 Figure 3.3(a) displays the enlarged image of the right end of the nanobundle. 

Clearly, the nanobundle is constructed by several parallel nanobelts. These nanobelts 

are of the same length as the nanobundle but much thinner with a width and a 
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thickness of approximately 300 nm and 150 nm, respectively. In nanobundles, 

nanobelts are packed in different patterns. In Figure 3.3(a), three nanobelts align in 

one line and four lines of nanobelts stack regularly forming a rectangle side view. In 

Figure 3.3(b), each nanobelts possesses different orientations, and all nanobelts are 

packed into a triangle shape. Although the morphology of nanobundles are not exactly 

the same, the phenomena that nanobundle is packed by several nanobelts is always 

observed.  

 

 During transferring process, due to the stress applied by the needle of 

micro-probe-station, nanobelts in individual nanobundle split or nanobundle breaks in 

the middle. Figure 3.3(c) displays nanobelts split in the left end of nanobundle after 

transferring while right end of nanobundle is still packed. Clearly that the nanobundle 

is constructed by nanobelts and these nanobelts are not tightly packed as a unit, which 

can be peeled by stress. Figure 3.3(d) shows one long nanobundle broke in the middle 

during the transferring process, the inset image displays the enlarged broken edge 

highlighted by black square in Figure 3.3(d). In the enlarged image, nanobelts split 

from each other under stress, but every nanobelts keeps its morphology without being 

destroyed, suggesting that inner part of nanobundle is also constructed by these small 

nanobelts and they can split from each other with the intact of nanobelt morphology. 

 

By morphology characterization, two types of products with distinct morphology 

are observed after synthesis, one with microbelt morphology and the other one with 

nanobundle configuration. Elemental composition and chemical state detection is 

carried out next to identify these two materials. 
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Characterization 2: Elemental composition and chemical state  

 

Figure 3.4 EDX spectrum of MoO3 microbelt (upper curve) and KxMoO3 nanobundle 

(lower curve). 

 

EDX spectrum elemental analysis in TEM on the two types of products (microbelt 

and nanobundle) is carried out to identify the material. The upper curve in Figure 3.4 

shows EDX spectrum of individual microbelt, it reveals that the microbelt contains Mo 

and O as constituents, while Cu peaks come from TEM grid, denoting the microbelt is 

MoO3. The EDX spectrum of single nanobundle is shown in the lower curve of Figure 

3.4. Beside the Mo, O and Cu peaks, a significant K peak is observed, denoting a high 

percentage of potassium atoms in the nanobundle. The atomic percentage ratio of K 

over Mo is fixed in the same nanobundle but differs slightly between different 

nanobundles. We can denote the nanobundle as KxMoO3 with x ranging from 0.20 to 

0.25. Compared with result of MoO3 microbelts, the atomic ratio of O over Mo in the 

nanobundles is roughly 2.6±0.2, which is lower than the value in stoichiometric MoO3 

compound, implying that O vacancies may exist. Revealed by stoichiometry of 

nanobundle, valences of Mo is speculated from 4.6 to 5.4. Additional investigation on 

the valencies of the Mo was carried out via XPS study. 

http://en.wikipedia.org/wiki/Chemical_state
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Figure 3.5 XPS spectrum of MoO3 microbelt (upper curve) and KxMoO3 nanobundle 

(lower curve). 

 

We performed a XPS experiment to measure the valence variation of the Mo atoms 

in the nanobundle upon K intercalation using the MoO3 microbelts and transferred 

KxMoO3 nanobundles. The upper curve in Figure 3.5 shows XPS spectra of microbelt, 

the two peaks at position of 235.8 eV (Mo3d 3/2) and 232.7 eV (Mo3d 5/2) illustrate 

the valencies of Mo is 6+.49 Consequently, the microbelts are identified as MoO3 

microbelts. The black curve in lower chart of Figure 3.5 shows the measured XPS 

spectra of nanobundle with peak position at 235.3 eV (Mo3d 3/2) and 232.2 eV 

(Mo3d 5/2). The right-shifted peaks suggest the reduction from Mo6+ towards Mo5+. 

To precisely identify the valence, the curve is peak fitted by Mo6+ peaks (red peaks 

235.8 eV (Mo3d 3/2) and 232.7 eV (Mo3d 5/2)) and Mo5+ peaks (blue peaks 235.1 eV 

(Mo3d 3/2) and 232.0 eV (Mo3d 5/2)).50 The area ratio of Mo5+ over Mo6+ is around 

1.5, suggesting the valencies of Mo roughly +5.4, which is consistent with the 

estimation from stoichiometry of nanobundle. 

 

By EDX and XPS measurement, we confirm that K ion intercalated MoO3 

nanostructures are successfully synthesized, and the ion intercalation reduces part of 

Mo atoms from +6 to +5. To understand the effect of ion intercalation imposing on 

the MoO3 structure, lattice structure determination is carried out. 
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Characterization 3: Lattice Structure 

 As reported, intercalation ions would induce expansion of lattice and transform 

the crystalline structure into amorphous structure when great amount of ions or large 

size ions are intercalated.29, 42 To explore the lattice structure after intercalation, we 

subsequently remove the MoO3 microbelts and KxMoO3 nanobundles from the 

substrate and transfer them to the TEM grid for further characterization. The selected 

area electron diffraction (SAED) pattern of the MoO3 microbelts on the (010) surface 

orientation is shown in Figure 3.6 and the inset image shows the SEM image of the 

MoO3 microbelts along the [001] growth direction. The microbelts exhibit a typical 

rectangular diffraction pattern on the (010) surface as highlighted by yellow rectangle 

in the figure. The diffraction pattern denotes that the lattice adopting an orthorhombic 

lattice structure, same as bulk MoO3. Based on the diffraction pattern on (010) surface 

of MoO3 microbelt, we derive the lattice constants a and c as a = 4.01 Å and c= 3.69 

Å. The value is in excellent agreement with the reported experimental XRD data.51 

 

Figure 3.6 Electron diffraction pattern of the MoO3 microbelt on the (010) surface. 

The highlighted yellow rectangle denotes the orthorhombic lattice structure. The inset 

image shows a SEM image of the typical MoO3 microbelt growing in the [001] 

direction. 

 

 The SAED pattern of the KxMoO3 nanobundles on the (010) surface is shown in 

Figure 3.7(a) with the inset image displaying a low-magnification TEM image of the 
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nanobundles along the [001] growth direction. The highlighted yellow rectangular 

diffraction pattern formed by large bright spots represents K intercalated MoO3 

structure on the (010) surface. The rectangular diffraction pattern indicates that 

KxMoO3 nanobundles are single crystalline materials with orthorhombic lattice 

structure. It suggests that the orthorhombic structure of MoO3 is maintained upon 

insertion of significant amount of K atoms. Between every two bright spots there are 

five weaker, evenly-distributed spots along the [100] direction of the KxMoO3 

nanobundles (highlighted by white arrow). These smaller diffraction spots suggest 

that KxMoO3 nanobundles possess a periodic superstructure with 6 primitive cells 

along the [100] direction.  

 
Figure 3.7 (a~c) Electron diffraction pattern KxMoO3 nanobundle on (010) surface, 

the highlighted yellow rectangle constructed by large bright spots represents lattice 

structure of K intercalated MoO3, inset image in (a~b) shows TEM image of typical 
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KxMoO3 nanobundle growing in [001] direction. (d) HRTEM image of KxMoO3 

nanobundle, inset image is FFT analysis of select area highlighted by white square.  

 

 More diffraction patterns of different KxMoO3 nanobundles are shown in Figure 

3.7(b~c). Although the spacing between spots varies in nanobundles with different K 

atomic percentage, same diffraction pattern is observed. In Figure 3.7(c), for the 

middle brightest spot is not covered, the weaker spots are not all distinct, but blur 

lines formed by these weaker sports along [100] direction are still visible. The 

rectangular diffraction pattern and these smaller diffraction spots in all figures 

illustrate that all KxMoO3 nanobundles with x range from 0.20 to 0.25 possess the 

same orthorhombic lattice structure and periodic superstructure. The HRTEM image 

is acquired to reveal the detailed structure of the nanobundle as shown in Figure 

3.7(d). Fourier transformation (FFT) analysis of select area in HRTEM image 

highlighted by white square is shown in inset image. Same diffraction pattern is 

observed. Bright spots appear in rectangular configuration and 5 weaker spots evenly 

distribute between every two bright spots along [100] direction. The FFT analysis 

demonstrates that every area on the nanobundle possesses same orthorhombic lattice 

structure and periodic superstructure.   

 

Figure 3.8 (a~b) Black square spots shows calculated lattice constant a, c in different 

nanobundles with varied atomic percentage ratio of K over Mo, red lines are the fitted 

lines correspondingly. 

 

Based on the TEM diffraction pattern of KxMoO3 nanobundles with varied K 

atomic percentage, we derive the lattice constants a and c of the KxMoO3 nanobundles 
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with different atomic percentage ratio of K over Mo as shown in Figure 3.8(a) and (b) 

respectively. Compared with reported lattice constant of MoO3 that a = 3.96 Å and c= 

3.70 Å,51 significant lattice change is observed with the contract of the a axis and 

expansion of the c axis by approximately 0.3 Å upon K insertion. As the atomic 

percentage ratio of K over Mo increases from 0.22 to 0.25, the lattice constant a 

decreases from 3.72Å to 3.69Å while the lattice constant c increases from 3.98 Å to 

4.04 Å. Linear lines are fitted according to the calculated value. It shows that upon the 

K uptake lattice constant a linearly shrinks and it decreases more when greater amount 

of K atoms are intercalated, while lattice constant c behaves in opposite trend. The 

intercept of linear fitting lines in Figure 3.8(a) and (b) are 3.95 Å and 3.67 Å 

respectively. Both values are near the cell parameter of MoO3. It denotes that when no 

K atoms are inserted, the structure is exactly the same as MoO3, and the lattice structure 

gradually deforms as more K atoms are intercalated. Of course we cannot put more K 

ions in (atomic percentage ratio K/Mo >0.25) since this depends on the concentration 

of K ions in mica substrate. 

 

 For the relatively larger size of nanobundle width than thickness, the transferred 

nanobundles are placed on the TEM grid with the [010] direction perpendicular to the 

grid. Although the grid could be made to tilt by 15°, we are unable to find a clear 

diffraction pattern that contains information along the [010] direction. Instead, we 

utilize X-ray diffraction to further resolve the structure of the KxMoO3 nanobundles.  

 

Two pieces of mica substrate are used to produce materials at different 

temperatures for XRD analysis. During the growth, mica substrate A is heated at 500 

°C while mica substrate B is heated at 600 °C. Due to the significant role mica 

substrate plays in growing KxMoO3 nanobundles, the temperature to successfully 

synthesize KxMoO3 nanobundle is limited due to mica properties. Muscovite can be 

synthesized by hydrothermal treatment of mixtures at 650-700 °C, which suggests the 

surface melting point of muscovite mica roughly lies within 600-650 °C.52 To form 
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KxMoO3 liquid islands, surface of mica should be partly melted to react with MoO3 

vapour. Consequently, the heating temperature required to grow KxMoO3 

nanobundles should around 600 °C. As a result, only MoO3 mircobelts are produced 

on substrate A while both MoO3 mircobelts and KxMoO3 nanobundles are observed on 

substrate B. 

 

Figure 3.9 The XRD spectrum of the mica substrate A with the MoO3 microbelts 

(upper chart) and the mica substrate B with both the MoO3 microbelts and the KxMoO3 

nanobundles (lower chart). The label peaks with M are muscovite peaks while the 

label peaks without notation are MoO3 peaks. The three peaks that are labelled with 

asterisks denote the layered structure of KxMoO3 correspond to expand along (020), 

(040) and (060). The rest of the peaks could be attributed to other faces of KxMoO3. 

 

Figure 3.9 displays the XRD measurement of substrate A (upper curve) and 

substrate B (lower curve). In two curves, the peaks that labelled with M come from 

mica substrate and the peaks that labelled with (020), (040), (060) denoting the 

layered structure of MoO3 microbelts. According to these three peaks, the lattice 

constant b of MoO3 microbelts is calculated as 13.87 Å, in well agreement with 

reported value.51 Three new peaks highlighted with stars next to (020), (040), (060) 

surface of MoO3 appear in lower chart due to the significant amount of KxMoO3 

nanobundles on substrate B. Compared with these three peaks of MoO3, the left shifted 

peaks of KxMoO3 nanobundles suggest the expansion of lattice constant b upon K 
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intercalation. There are still some unlabeled peaks on substrate B, they should denote 

other surfaces of KxMoO3 nanobundle.  

 

The calculated lattice constant b of KxMoO3 nanobundle is 14.16 Å and the value 

is derived using the apex of the peaks in XRD spectrum from the most abundant 

nanobundles over the range of K contents (for x from 0.20 to 0.25). It is anticipated that 

the real value of b in individual nanobundle should be lower for x near 0.20 and higher 

for x close to 0.25 since a higher K content naturally leads to greater lattice expansion. 

Compared with the reported value in MoO3 lattice b =13.86 Å, the structure expands by 

0.3 Å. Considering the high atomic percentage ratio of intercalated K atoms and large 

radius of K (1.5 Å), the expansion in b axis (0.3 Å) is comparatively small. The XRD 

spectrum of the KxMoO3 nanobundles clearly indicates that the complex preserves a 

layered structure as evidenced by the significant peaks located at (020), (040) and (060). 

This is distinctively different from the XRD analysis reported by Sian et al.,11 in which 

the intensity of all the peaks associated with MoO3 was reduced with the increase of the 

K contents and, in particular, all peaks vanished upon x reaching 0.2, indicating the 

complete loss of the initially layered structure. 

 

Raman spectroscopy study also provides further insights about atomic structure. 

Upper chart in Figure 3.10 shows the Raman structure of individual MoO3 microbelt 

on silicon substrate. Strong peaks in the range of 600-1000 cm-1 correspond to 

stretching modes of MoO6 octahedra in three directions, 996 cm-1 (Ag, νas Mo=O 

stretch in [010] direction), 819 cm-1 (Ag, νas Mo=O stretch in [100] direction) and 668 

cm-1 (B2g, B3g, νas O-Mo-O stretch in [001] direction).53, 54 Peaks observed in the 

400-200 cm-1 range correspond to various bending modes of the orthorhombic MoO3 

crystal. The peak at 518 cm-1 comes from Si substrate. The vibration of Mo-O bond 

would shift to lower wavenumbers when bond length increases.55, 56 According to the 

lattice constant analysis in the above discussion, the expansion of lattice constant b 

and c suggests the increase of Mo-O bond length in [010] and [001] direction, thus in 
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the Raman spectrum of single KxMoO3 nanobundle as shown in lower chart in Figure 

3.10, the 996 cm-1 and 668 cm-1 peaks shift leftwards to 946 cm-1 and 630 cm-1. While 

the shrinkage of lattice constant a, explains the rightward shift peak at 820 cm-1. 

Considering the periodic superstructure along [100] direction with spacing of 6 

primitive cells, it is possible that three kinds of Mo=O bonds with different bond 

length arrange in certain sequence in every 6 cells in [100] direction due to the stress 

upon K intercalation in MoO3 structure. Consequently, the 820 cm-1 peak right shifts 

and splits into three peaks of 820 cm-1,841 cm-1 and 866 cm-1 respectively. 

 

Figure 3.10 Raman spectrums of individual MoO3 microbelt and KxMoO3 

nanobundle on Si substrate. 

 

After lattice structure determination, we find that with great amount of large size 

ion insertion (1.5 Å in size and ~0.2 in atomic ratio), the orthorhombic structure and 

layered structure of MoO3 preserves with small lattice constant adjustment. Especially, 

the lattice expansion in b axis is amazingly small compared with the atomic size. To 

achieve a thorough understanding about the structure after ion insertion, theoretical 

calculation is performed in the following. 
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3.3 Theoretical Simulation of KxMoO3 nanobundle structure 

 

To interpret the experimental results and clearly identify the atomic structure, we 

perform density functional theory calculations to understand the structures and 

properties of the pure and K-intercalated MoO3 materials. Compared with the size of 

atoms, the thicknesses and widths of the MoO3 microbelts and the KxMoO3 

nanobundles are several orders of magnitude larger. Therefore, it is justified to model 

these nanomaterials with 3-dimensional periodic bulk-like structures, assuming that the 

edge effects on structures and physical properties are insignificant. All simulations are 

carried out using the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional 

under the generalized gradient approximation as implemented in the Vienna Ab-initio 

Simulation Package (VASP). The projector augmented wave (PAW) method is used to 

describe the core electrons of the atoms, and the valence orbitals are represented with a 

plane wave basis set with a cutoff energy of 450.0 eV. All calculations are performed 

using a spin-polarization scheme. The brillouin zone integration is performed using a 

4×2×4 Monkhorst-Pack k-point mesh. For calculations of the band structure (BS) and 

density of states (DOS), the k-points mesh is doubled. The conjugate gradient algorithm 

is selected to optimize both the ion positions and the lattice parameters with no 

constraint. The energy and SCF convergence threshold is set to be 5.0×10-5 and 

1.0×10-5 eV, respectively. 

 

A 2×1×2 supercell of the MoO3 primitive lattice containing 16 Mo atoms and 48 O 

atoms (Figure 3.11(a)) is first selected to model the MoO3 microbelts. The fully 

optimized lattice structure of the MoO3 supercell, shown in Table 3.1, is in excellent 

agreement with the experimental result and reported experimental XRD data,51 

suggesting that our computational method is reliable for structural predictions for the 

type of materials we deal with.  

 

 



 

 

39 

 

 

 

Figure 3.11 The optimized structure of (a) the pure MoO3, and KxMoO3 structure 

with (b) K as intercalants, (c) K as occupants and (d) mixed. In the structures, red 

balls represent O atoms, blue balls represent Mo atoms and purple balls represent 

intercalated K atoms. In the mixed case, the purple and green balls represent 

intercalants and occupants, respectively. 

 

Table 3.1 The measured and calculated lattice constants of the MoO3 microbelt and 

the KxMoO3 nanobundle. 

 a(Ǻ) b(Ǻ) c(Ǻ) 

MoO3 Exp 4.01 13.87 3.69 

Calc 3.91 13.76 3.71 

Rep51 3.96 13.86 3.70 

KxMoO3 Exp 3.69-3.72 14.16 3.97-4.05 

Calc[a] 3.82 14.89 3.81 

[b] 3.73 14.25 3.86 

[c] 3.80 14.56 3.81 

K as [a] intercalants, [b] occupants and [c] mixed (half intercalants and half 

occupants). 
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Subsequently, we explore the lattice structure of KxMoO3 with various scenarios 

of K atoms acting as intercalants, as lattice occupants at oxygen vacancies or as both in 

the supercell for x=0.25. In the case of K intercalation, the K atoms are placed in 

between the MoO3 layers (Figure 3.11(b)). In occupation case, to model the O 

vacancies in the lattice, we remove one dangling O atom between the layers for each K 

atom introduced (Figure 3.11(c)). For K atoms act as both intercalants and occupants, 

we substitute two terminal O atoms with K atoms and place two K atoms as intercalants 

in the supercell (Figure 3.11(d)). In all cases, various K distribution configurations are 

calculated and, upon full lattice optimization, the lowest energy configurations are 

obtained. The optimized structures and the cell parameters are shown in Figure 3.11 

and Table 3.1, respectively. Clearly, only in the case where the K atoms act as 

occupants the calculated KxMoO3 cell parameters a, b and c are in good agreement 

with the experimental data. In the other two scenarios K-uptake in the lattice results in 

significantly higher lattice expansion (greater value of lattice constant b) than what is 

observed experimentally. Furthermore, the calculated average cohesive energies of 

-7.94 eV (occupants), -7.80 eV (intercalants) and -7.88 eV (mixed) indicate that the K 

occupation at the oxygen vacancy sites is indeed energetically preferred.  

 

According to the theoretical calculation, K atoms most possibly locate in the 

oxygen vacancies in the MoO3 structure, which results in the amazingly small 

expansion in b axis. This is also consistent with the experimental fact that the atomic 

ratio of O over Mo in the KxMoO3 nanobundle is lower than the stoichiometric value 

due to the existence of O vacancies.  

 

3.4 Growth Mechanism of KxMoO3 nanobundle 

 

We have successfully synthesized K ion intercalated MoO3 nanostructure without 

destroying the structure of MoO3 by the simple thermal evaporation method on 

muscovite mica substrate, which is not reported before. To further increase the 
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production and apply the simple method to synthesize other metal oxide nanostructure, 

we study the growth mechanism of KxMoO3 nanobundles.  

 

Muscovite mica K(Al2)(Si3Al)O10(OH)2, possesses laminated structure with 

potassium locating between the lamellae.57 Each lamella containing several layers 

displays typical structure of phyllosilicates. Potassium atoms easily diffuse between 

lamellae, which facile the release from mica to solution.58, 59 Considering the high 

diffusion coefficient of K in mica and the presence of K in nanobundles, we speculate 

that K atoms are absorbed from mica substrate to KxMoO3 nanobundle. To reveal the 

flow of K atoms in mica during growth process, two pieces of mica substrates are 

prepared for EDX Spectrum analysis in SEM.  

Table 3.2 Atomic percentage of compounds in mica (unit: %) 

 Pure Mica Treated Mica 

Area A Area B Area C 

Al 15.76 15.76 15.87 15.73 

Si 18.65 18.17 18.19 18.72 

K 1.79 0.41 1.00 1.79 

Mo 0 1.34 0 0 

 

The first piece of mica substrate is used as control, and the second piece is used 

for the growth of nanobundle and then subsequently all products are sonicated away. 

On second piece of mica, different areas are studied. Area A is the position where 

KxMoO3 nanobundles grew before, it includes grain boundaries. Area B is the place 

where MoO3 microbelts grew before and it is near Areas A. Area C is near the edge of 

mica, where nothing grew on it before. Table 3.2 shows atomic percentage of Al, Si, K 

and Mo in these two pieces of mica. Atomic percentage of Al and Si are around 16% 

and 18% respectively on both mica substrates in all areas, suggesting Al and Si on 

mica are not involved during synthesis process.  
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In Area A, atomic percentage of K decreases to 0.4%, reveals that K atoms are 

extracted to KxMoO3 nanobundles from mica. Although all products are removed, Mo 

is detected in this area, indicating Mo-K ion exchange during growth process. For the 

ion exchanged Mo atoms are below the top surface, they are not sonicated away. In 

Area B, there is around 1% of potassium. Due to the high diffusion coefficient of K in 

mica, K atoms diffuse to nearby area (Area A) where K concentration is depleted to 

support continuous growth of KxMoO3 nanobundles. Meanwhile, no Mo is detected 

and surface of area B is flat. It reveals that synthesis of MoO3 microbelts by 

nucleation of MoO3 vapour does not react with mica surface and they are easily 

removed without affecting the mica surface. In Area C, the components possess the 

same atomic percentage as pure mica, suggesting that mica is thermal stable in 

experiment. The measurement reveals that K atoms are extracted to KxMoO3 

nanobundles at the position nanobundles grew and the nearby K atoms diffuse to this 

area for continuous growth. 

 

Figure 3.12 (a) Optical microscope image of flat mica surface after growth for 20 min, 

inset image is the liquid island after 30 min growth (b) Cracked mica surface after 20 

min growth (c-e) schematic of growth process of KxMoO3 nanobundle. 
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For further characterizing the way K atoms being absorbed to nanobundle, the 

mica substrates that used to grow for short duration (20~30 min) are observed to 

elucidate the growth mechanism of KxMoO3 nanobundles. Figure 3.12(a) and (b) 

shows the different places where KxMoO3 nanobundles grow at the beginning. On the 

flat mica surface, liquid island forms in Figure 3.12(a). After heating for longer 

duration, nanobundle extends out of the island as shown in inset image of Figure 

3.12(a). On the crack surface (Figure 3.12(b)), KxMoO3 nanobundles directly grow out 

of the side of step, where is the cleavage of mica sheet. After long duration, more 

KxMoO3 nanobundles extend out of liquid island or side of steps. Meanwhile, MoO3 

microbelts grow with a layer of MoO3 on surface first as shown in the colourful part of 

Figure 3.12(a) and then MoO3 crystals nucleate on top of it layer by layer without 

reaction with mica substrate.  

 

According to the EDX measurement of mica substrate after nanobundle synthesis 

and the morphology of mica surface at the beginning of growth, we propose the 

following growth mechanism of KxMoO3 nanobundle. Figure 3.12(c-e) show the 

schematic of growth process. Mo is oxidized on Mo foil and vaporizes upwards till it 

arrives at mica substrate. On the surface of mica, MoO3 vapour reacts with surface of 

mica to form liquid islands of KxMoO3 and creating channel for ion exchange 

between K+ and Mo6+. With the continuous absorption of MoO3 vapour, KxMoO3 

becomes oversaturated in the island and KxMoO3 nanobundle nucleates out of the 

island in preferred direction. The growth of KxMoO3 nanobundle maintains the low 

concentration of K+ in island compared with that in mica sheet. This low 

concentration further induces the influx of K+ towards the island continuously. In 

return, the combination of K+ and MoO3 vapour promotes the further growth of 

KxMoO3 nanobundles. While on the side of steps, channels for K atoms to diffuse and 

intercalate into MoO3 structure already exist on the cleavage surface according to the 

laminated structure of mica. Consequently, KxMoO3 nanobundle can directly grow 

out of the steps.  
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Due to the facility to absorb K atoms from cleavage surface and lower energy 

required for nanobundles nucleating on steps, KxMoO3 nanobundles are widely found 

on these steps. It provides a method to pattern the growth of KxMoO3 nanobundles by 

designing steps on mica surface. On the other hand, liquid island possesses larger 

contact area with surrounding mica to extract more K atoms and provides larger area 

for KxMoO3 nanobundle to grow out. Although there are only a few islands forming on 

mica surface, each island produces great amount of nanobundles, as shown in the 

Figure 3.2.  

 

For the different growth mechanism of MoO3 microbelts and KxMoO3 

nanobundles, the morphology of them differs correspondingly. The bottom-up growth 

from substrate forces the nanobundles to grow with a strong orientational preference 

and extend into air. While microbelts produced by nucleation of MoO3 vapour does not 

display specific orientation. As Figure 3.2 shows, the length of KxMoO3 nanobundles 

can grow as long as 200~300μm with a width of roughly 700~900 nm, while the length 

of MoO3 microbelts is 10~15μm with width around 3~5μm. The corresponding aspect 

ratios are around 300 and 3 respectively, illustrating the difference in growth 

mechanism. 

 

3.5 Summary of Results 

 

We have discovered a simple but effective technique to grow K intercalated MoO3 

nanobundles by thermal evaporation method on muscovite mica substrate. With the 

help of various experimental characterization techniques, we find that the 

orthorhombic lattice structure and the layered structure remaining essentially intact. 

Considering the great amount of large size ion insertion (1.5 Å in size and ~0.2 in 

atomic ratio), the expansion between layers is amazingly small. Density functional 

theory is used to assist the KxMoO3 structural determination. Our results suggest that 
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the K atoms in the nanobundles most likely occupy the O vacancy sites, allowing the K 

atoms to be intercalated without incurring large distortion of the MoO3 layered 

structure. The absorption of K ions by Mo-K ion exchange in mica substrate and 

MoO3 vapour from heated Mo foil promotes the continuous growth of KxMoO3 

nanobundles. The simple synthesize method opens a new opportunity to develop 

nano-structured materials of large-ion intercalated metal oxides. It is noted that the 

preparation method is simple and straightforward. It utilizes the open-ended furnace 

only and is carried out in ambient and moderate temperature. The simpleness makes 

the method repeatable in other environment.  
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Chapter 4 Electrical Conductivity and 

Photo-Electrical Response  
 

Alkali ion intercalation into structure always deforms the band structure and 

enhances the electrical conductivity.3, 43, 60, 61 Considering the great amount of K ions 

being inserted into MoO3 nanostructure, the electrical performance of MoO3 is 

expected to be greatly enhanced. The electrical property of individual nanobundle is 

systematically studied, and the theory calculation about the band structure explains 

the high performance of nanobundle. Significant photon electrical response is 

observed and the mechanism is discussed as well. 

 

4.1 Electrical Measurement 

 

Electrode Device 

To investigate the electrical properties of individual nanobundle, the 

micro-electrode device is fabricated. Individual nanobundle is transferred from the 

growth substrate to SiO2/Si substrate and photolithography method is utilized to 

achieve designed metal (Au(400 nm)/Cr(10 nm)) finger electrodes (of gap ~10 μm) that 

make contact with the nanobundle. The process of device fabrication is described in 

Chapter 2 in detail. 

 

The SEM image of individual nanobundle electrode device is displayed in Figure 

4.1(a). Four Au finger electrodes with 10 µm width cover on 70 µm length individual 

nanobundle, and a ~10 µm gap exists between every two electrodes. Figure 4.1(b) 

displays the schematic side view of the device. On the Si substrate, the 100 nm SiO2 

layer acts as insulator to avoid current leaking through Si substrate. The individual 
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nanobundle is placed on the substrate and Au electrodes cover on the nanobundle. The 

electrode is further soldered with copper wire and connected to Keithley 6430 

source-measure unit for electrical measurement. Besides the photolithography method, 

Electron Beam Lithography (EBL) method can be utilized to design even smaller 

pattern on the substrate. Figure 4.1(c) displays the electrodes with width of 4µm and 

separation of 5µm written by EBL method. Figure 4.1(d) shows the side view of 

nanobundle electrode device with metal electrode covers on the nanobundle both on 

the top and two sides. 

 

Figure 4.1 (a) SEM image of individual nanobundle electrode device (b) Schematic 

image of the side view of device for electrical measurement. (c) Zoom in image of the 

gap between electrodes (d) Side view of electrodes. 
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Electrical Conductivity at Room Temperature 

 

Figure 4.2 I-V curves of KxMoO3 nanobundle and MoO3 microbelt. 

 

The KxMoO3 nanobundle device and MoO3 microbelt device are fabricated, and 

the electrical measurement on both devices are carried out subsequently. Figure 4.2 

displays the measured IV curves for the two materials. For the MoO3 microbelt (red 

curve in Figure 4.2), the measured current is on the order of ca. 1 pA at ca. 5 V. From 

the measured effective length and cross section of this material, we estimate the electric 

conductivity of the MoO3 microbelt to be ca. 10-6 S m-1, consistent with the reported 

value of the MoO3 nanobelts.43 For the KxMoO3 nanobundles (black curve in Figure 

4.2), at room temperature, the measured current is 6.64 μA at a bias of 5 V and the I-V 

curve displays typical semiconductor-like behaviour. It is remarkable that the electric 

conductivity is enhanced substantially by seven orders of magnitude from 10-6 S m-1 of 

the MoO3 microbelts to 24 S m-1 for KxMoO3 nanobundle. The magnitude is also three 

orders higher than that of the lithiated MoO3 bulk (Li0.25MoO3 3.1×10−2 S m-1)61 and 

five orders higher than that of lithiated MoO3 nanobelt (10-4 S m-1)43.  With same 

voltage amplitude, the magnitude of current may differ when polarity changes. As 

Figure 4.2 shows, the current is 8.5 μA at +6 V, while it becomes -5.6 μA at -6 V. The 

changed conductivity is possibly due to the different contact property between metal 

electrode and nanobundle. We have tested over twenty samples. The conductivity 



 

 

49 

 

varies a bit between different samples, but the order of values and the IV trend is the 

same. Considering the symmetric IV behaviour in both positive and negative voltage, 

and the repeatable electrical property in all samples, we excludes the possibility that 

non-linear behavior comes from Shottky barrier, which is non-symmetric and could not 

always be observed with similar conductivity values. Consequently, we believe that 

the electrical properties originate from nanobundle itself, instead of 

metal-semiconductor junction.  

 

Temperature Dependent Electrical Conductivity 

To study the temperature effect on the conductivity, the device is mounted on the 

heating stage to systematically control the temperature of nanobundle. The inset 

schematic image in Figure 4.3 displays the set up. The conductivity of the KxMoO3 

nanobundles increases rapidly upon heating as shown in Figure 4.3. At the bias of 5 V, 

the current increases from 6.64 μA to 0.15 mA as the temperature increases from 23 °C 

to 142 °C, raising the conductivity from 24 S m-1 to 530 S m-1. The significant thermal 

enhanced conductivity suggests great amount of electrons are excited by thermal 

energy, and it indicates the small band gap of the nanobundle. 

 
Figure 4.3 I-V curves of KxMoO3 nanobundle at different temperatures. Inset image 

shows the set up. 
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Figure 4.4 Temperature dependence conductivity of the nanobundle in log scale at 

voltage of 4 V. 

 

Subsequently, the conductivity at the voltage of 4 V as a function of reciprocal of 

temperature is plotted on a log scale as shown in Figure 4.4. Two kinks in the curve are 

clearly observed at 310 K and 410 K. At the temperature below 310 K, log scale of 

conductivity changes in smaller slope, and the slope gradually increases as temperature 

rises. As temperature increases from 310 K to 410 K, the log scale of conductivity 

varies linearly with reciprocal of temperature. In this region, electrical conductivity 

increases exponentially with reciprocal of temperature. According to σ=neμ, where σ is 

the conductivity of nanobundle, μ is the mobility of electrons, n is the electron density, 

the mobility in the region does not vary significantly due to relatively low electron 

density, the electron conductivity is thus determined by electron density. Moreover, the 

significantly increased conductivity (jumps 20 times higher by raising the temperature 

from 25 °C to 140 °C) suggests the effusion of excited electrons. The variation of σ 

with temperature in this linear range thus can be attributed to the change of electron 

density with temperature. Base on the thermally activated transport model,62, 63  

ln(𝑛) = ln(𝑛0) – W/2kT 
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where n is the electron density, n0 is the density value when T is infinity, k is the 

Boltzmann constant and W is the thermal activation energy. The thermal activation 

energy is determined to be around 0.5 eV based on the slope of the linear fit to the data 

(Figure 4.4). The value suggests the energy required to thermally excite localized 

electrons to conduction band. The effect of phonon scattering increases for thermally 

excited lattice atoms and the effect becomes more prominent at high temperature due to 

sufficient high electron density. Consequently, above 410 K, the conductivity decreases 

due to the decreasing mobility induced by significant phonon scattering. 

 

Electron Mobility 

Field Effect Transistor (FET) uses an electric field to control the conductivity 

of a channel of charge carriers in semiconductor material. By the way conductivity 

changes with gate voltage, the type of charge carriers could be identified, and the 

mobility of these carriers in the semiconductor material can be measured.  

 
Figure 4.5 (a) Schematic setup of FET device (b) Current (Isd) versus source drain 

voltage (Vsd) curves recorded at different gate voltages (0, +10 V and +40 V) for the 

device shown in (a).  

 

For FET measurement, the nanobundle device is further treated. The bottom of the 

device is scratched to remove the SiO2 layer, and silver paint is plastered on the bottom 

of it. Gate voltage is applied from the bottom and the surface electrodes act as source 

and drain (Figure 4.5(a)). The current between source and drain Isd versus source drain 

voltage Vsd at different gate voltage is displayed in Figure 4.5(b). Clearly that Isd 
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increases as gate voltage increases. The performance denotes the KxMoO3 nanobundles 

exhibit n-type semiconductor behaviour with electrons as charge carriers. 

The mobility of nanobundle device can be estimated using64 

 

where μ is the carrier mobility, C is the capacitance of the device, L is the active 

nanobundle length between the electrodes. The capacitance is given by 

 

in which h is the thickness of SiO2, d is the diameter of nanobundle, εSiO2 is the 

dielectric constant of the gate SiO2, ε0 is the vacuum permittivity. The calculated 

electron mobility in KxMoO3 nanobundle is ~10 cm2/ VS. The value is similar with 

the magnitude measured in ZnO nanowire FET.64 

 

4.2 Band Structure Analysis 

 

The electronic structure of MoO3 is well understood and the compound is an n-type 

semiconductor with a band gap of 3.3 eV.65 Little amount of electrons could be excited 

to conduction band for the large band gap. It results in the extremely low conductivity 

of MoO3 as measurements displaying above. In MoO3, the valence band is largely 

dominated by the 2p orbitals of oxygen, while the conduction band consists of chiefly 

the 4d states of molybdenum with a significant contribution from the 2p states of 

oxygen.65  

 

To understand the significantly enhanced conductivity of KxMoO3 nanobundle, we 

perform Bader charge analysis66 and calculate the band structure of KxMoO3 

nanobundles in which K atoms act as occupants at oxygen vacancies. Upon potassium 

uptake in the lattice, however, the electronic structure undergoes a substantial change 
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due to the charge transfer from potassium to molybdenum, which forces electrons to 

populate in the conduction band. This is clearly seen in the calculated band structure of 

the KxMoO3 lattice depicted in Figure 4.6. The projected density of states (PDOS) for 

the K-4s and Mo-4d states indicates that the electrons from the K atoms are fully 

transferred to the adjacent Mo atoms. This results in the reduction of the adjacent Mo 

atoms. The prediction is confirmed by the XPS experiment displayed in Chapter 3. The 

ion insertion reduces the average valence of Mo atoms from +6 to +5.4. 

 

Figure 4.6 Calculated Band structure and the Density of States (DOS) of KxMoO3 

Nanobundle.  

 

Because of the strong overlap between the Mo-4d orbitals and the O-2p orbitals in 

the conduction band, the transferred electrons are populated and readily delocalized. 

The electric conductivity is thus significantly enhanced. Therefore, the conductivity 

enhancement arises solely from the reduced Mo atoms, which are aligned in the [001] 

direction as shown in inset image in Figure 4.7. Electric conductivity along these rows 

thus reaches its maximum. Indeed, the calculated band structure displays wide bands 

across the Fermi level from GB and QF. The energy bands in other directions, 

particularly those along the [010] direction, are much narrower due to the high 

oxidation states of the Mo atoms away from the K atoms. Compared with Li, the 

ionization potential of K is much lower and thus the adjacent Mo is more readily 
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reduced. This explains nicely the much higher observed electric conductivity of 

KxMoO3 than that of LixMoO3. We further note that the KxMoO3 nanobundle 

crystalline grows along the [001] direction, in which the voltage is also applied in our 

I-V curve measurement. From the calculated band structure of K0.25MoO2.75, electric 

conductivity along the rows highlighted in Figure 4.7 is the highest. However, even in 

the [001] direction, the rows in which the Mo atoms remain in the high oxidation states 

are still semi-conducting due to lack of electron occupation in the conduction band. It 

therefore requires energy to shift electrons from the valence band to the conduction 

band to gain good conductivity. This explains the semiconductor-like behaviour of the 

nanobundles observed in our I-V curve measurement and indicates the energy (0.5 eV) 

required for thermal activation. 

 

Figure 4.7 Simulated Lattice Structure of KxMoO3 nanobundle, inset image display the 

flow path of electrons, where reduced Mo atoms align. Red balls represent O atoms, 

blue balls represent Mo atoms and purple ones represent K atoms. 

 

4.3 Photoelectrical Response Measurement  

 

Due to the wide bandgap (3.3 eV) and low conductivity, MoO3 is not known to be 

electrical responsive to photon excitation. However, with enriched K intercalation in 

the structure, the situation changes. The ionization of the K atoms gives rise to the 

reduction of the adjacent Mo atoms, leading to higher electron population in the 
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conduction band and consequently enhances the conductivity of the K enriched MoO3 

by seven orders. Although the precise band gap value of the individual nanobundle is 

not measured, both experimental measurements and theoretical calculation show the 

band gap of the material to be quite small. The small band gap of the material implies 

that only a small amount of energy is required to excite the localized electrons. Hence, 

these attributes make this nanobundle a viable candidate for the investigation of 

photoelectrical response. 

 

Nanostructured materials have been extensively studied and applied as nanoscale 

photonic and electronic devices, like optoelectronics, photovoltaics, photodetectors 

and sensors.67-71 To probe their opto-electrical properties, photoelectrical response of 

individual nanowires is widely studied.70 Due to the commonly adopted broad beam 

illumination on these nanowires based devices, the observed photoelectrical response 

depends on the interplay between the intrinsic response of the nanomaterials and 

nanomaterial-electrode contact barriers.72-75 In order to evaluate the efficiency of 

photovoltaic device made of these nanomaterials, it is necessary to elucidate the 

intrinsic characteristics of these nanomaterials. Hence, photoelectrical response 

measurements under focused laser beam irradiation are utilized.76-81   

 

In the following part of this chapter, we will display the photon induced 

voltage/current generated from single KxMoO3 nanobundle under localized focused 

laser illumination without externally applied voltage bias. Unlike the previous reports 

that photon induced voltage was generated from metal-semiconductor junction or PN 

junction in hybrid nanomaterial,72, 73, 76, 78, 82 the significant photo induced voltage (36.5 

mV) is produced from nanobundle itself with controllable polarity and amplitude by 

varying the location of focused laser spot irradiation. The measurement of photon 

enhanced current with externally applied voltage bias is studied as well to further 

demonstrates the electron excitation phenomenon in the nanobundle. 
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Figure 4.8 SEM image of the KxMoO3 nanobundle contacted with metal electrodes. 

Inset shows zoom in image of middle segment of nanobundle between two electrodes. 

 

 

Figure 4.9 Schematic of photon response measurement set-up with focused laser beam 

radiation on KxMoO3 nanobundle. 

 

The individual KxMoO3 nanobundle device is fabricated in the process described 

above. The individual KxMoO3 nanobundle is transferred to Si substrate with a 100 nm 

SiO2 layer. Patterned electrodes of 10 nm Cr and 500 nm Au are fabricated via standard 

photo lithography and sputtering of metals. A scanning electron microscopy (SEM) 

image of single KxMoO3 nanobundle device is shown in Figure 4.8. Inset shows the 
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width of the nanobundle is about 1 µm and the separation between the electrodes is 10 

µm. Figure 4.9 shows the schematic of the photon response measurement set-up with 

focused laser beam irradiation on KxMoO3 nanobundle electrode device. The red laser 

beam (λ=660 nm) is directed into the microscope via two mirrors and reflected by a 

beam splitter towards the objective lens. The 50× objective lens focuses the laser beam 

onto the device positioned on the translation stage. The alignment of set ups are 

described in detail in Chapter 2. 

 

4.4 Photon induced Electrical Response Measurement 

 

Localized Focus Laser Illumination induced Electrical Response 

 

Figure 4.10 Schematic of focused laser beam locally irradiating at four different 

locations and four optical images showing the position of laser spot on KxMoO3 

nanobundle device. 

 

Focused laser beam with spot size around 6 µm and power 2.2 mW is locally 

directed at specific locations as shown in Figure 4.10. Considering the Gaussian beam 

profile of the focused laser beam, the energy is centred within the width of the Gaussian 

beam. The ring surrounding the centre spot (as shown in Figure 4.10) is attributed to 

diffraction effect and it does not contribute any significant photon electrical response to 

the measurement since the beam energy in this ring is rather small. In location Ⅰ, laser 

is mainly focused on electrode. In location Ⅱ, the spot lands on the metal 
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semiconductor junction, half on nanobundle and half on electrode. In location Ⅲ and 

Ⅳ, laser is fully on the left end and right end of nanobundle respectively. 

 
Figure 4.11 Laser spot is directed on location Ⅳ, photon induced voltage and current 

are measured without externally applied bias voltage respectively in (a) and (b). 

  

Figure 4.11 displays the measured voltage and current between electrodes when 

laser is directed at location Ⅳ without externally applied voltage bias. As Figure 

4.11(a) shows, in the absence of laser beam irradiation, there is no voltage detected. 

The moment laser is present, voltage increase to 36 mV within 0.4 s. The voltage drops 

to 0 again when laser is blocked. Since the nanobundle acts as energy source during the 

electrical measurement, the measured current of circuit is in opposite polarity of 

measured voltage of the nanobundle. The measured photon induced current at same 

laser spot location is thus negative as shown in Figure 4.11(b). The moment laser is 

present, current increases to -240 pA in ~0.05 s. The short response time shows that the 

photon excited electrons are unlikely to originate from thermal effect, which requires 

long duration to achieve maximum current.78 It should be noted that significant voltage 

(36.5 mV) and current (240 pA) are produced under low laser power (2.2 mW) from 

individual nanobundle.  
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Location Dependence of Photon induced Electrical Response 

 

Figure 4.12 (a) Schematic of location dependence measurement process (b) Photon 

induced voltage at different distance between center of laser spot and center of 

nanobundle.  

 

Focused laser beam is directed at different locations and the corresponding photon 

induced voltage is measured as shown in Figure 4.12(b). The distance indicated in the 

horizontal axis is measured with respect to the center of the nanobundle. When focused 

laser is fully shone on the electrode or on the substrate, there is no photon induced 

voltage produced. When part of laser spot is shone on nanobundle, photon induced 

voltage is detected. With a thick gold layer (500 nm) covering on top of nanobundle, 

red laser could not penetrate. Thus, only the segment of nanobundle that is directly 

exposed to laser contributing photon induced voltage. With larger area exposed to laser 

spot, higher amplitude of voltage is achieved. Compare the measurement at location Ⅰ, 

Ⅱ and Ⅲ, when exposed area gradually reaches maximum, the amplitude of voltage 

increases with values of -3.8 mV, -19.5 mV and -36.5 mV respectively. In the reported 

photon induced current that originated from metal-semiconductor junction, the center 

of focused laser should land on the junction.79-81 A small movement from the junction 

would lead to significant drop of photon induced current. While in our case, the 

maximum current appears on the end of nanobundle with the whole laser spot lands on 

the nanostructure. The voltage amplitude on the junction is half of the maximum value, 

due to the half efficient area that expose to nanobundle. It shows that in KxMoO3 
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nanobundle device the photon induced voltage originates from nanobundle itself 

instead of nanowire-electrode junction.  

 

When the same area of the nanobundle is exposed to laser, the photon induced 

voltage produced by nanobundle is controlled by the location of laser spot. With 

focused laser spot gradually moves from location Ⅲ to location Ⅳ (left end of 

nanobundle to right end of it), the amplitude of voltage decreases first and the polarity 

reverses when laser spot passes through the middle of nanobundle. Then, the amplitude 

of voltage increases and achieves maximum value at location Ⅳ (+36 mV). The 

observation is reproducible for another three nanobundle devices prepared in the same 

way. In addition, similar phenomenon is observed when another laser (λ= 532 nm) is 

used. 

 
Figure 4.13 Photon induced current measured when laser spot is directed at four 

different locations without externally applied bias voltage. Inset schematic image 

displays the measurement set up. 

 

Photon induced current upon different laser locations are measured as well. Figure 

4.13 shows the measured current when laser is directed at four locations without 

external bias voltage. The laser induced current are proportional to the laser induced 

voltage but in opposite polarity as nanobundle device acts as source. Same with photon 
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induced voltage, similar laser spot location dependence is observed. With the 

increasing area exposed to laser spot, current increases as shown by the measurement at 

location Ⅰ, Ⅱ and Ⅲ with value 70 pA, 190 pA and 320 pA respectively (Figure 

4.13). The polarity of photon induced current reverse as the laser spot passes through 

the middle of nanobundle, and the amplitude reaches maximum when laser spot is 

directed on the right end of nanobundle with the value of -250 pA. At all locations, 

current achieved maximum within 0.05 s. The duration is shorter than the period for 

photon induced voltage reaching maximum (0.4 s), denoting the difference in these two 

measurement processes.  

 

Figure 4.14 Normalized photon induced voltage at the moment laser is present at four 

different locations. 

 

To further examine the relative long duration required for photon induced voltage 

reaching maximum, the change of measured voltage is carefully examined at the 

moment laser is present. Since the polarity and amplitude of photo induced voltage are 

different at various locations, normalized voltage as a function of time at the moment 

laser is present is displayed in Figure 4.14. In these experiments, the resolution of the 

detection is 50 ms and the time to expose the laser is manually controlled, 

consequently, the exposure time of the first data point at the onset of laser beam 

dispersed randomly within the 50 ms. Comparison between scenario (Ⅰ) and scenario 
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(Ⅱ) shows a lag less than 50 ms in scenario (Ⅱ), we believe that it is due to the smaller 

exposure time in the first 50 ms. At four locations, 0.4 s is required for photon induced 

voltage to reach equilibrium and the exponential fitting of four curves reveal that the 

exponential time constant are similar with value around 0.11~0.13 s. The similar 

voltage increasing pattern and same duration needed to attain maximum voltage at all 

locations illustrate that diffusion time of electrons does not contribute significantly to 

the effect. Moreover, the short duration (~0.05 s) required for photon induced current 

reaching maximum as shown in Figure 4.13 excludes the possibility of electron 

excitation time. Thus, these results suggest that the time required for photon induced 

voltage to achieve maximum corresponds to the time required to build up voltage near 

terminal instead of the time required to excite electrons or the diffusion time of 

electrons. 

 

Laser Power Dependence of Photon induced Electrical Response 

 
Figure 4.15 Photon induced voltage under different laser power when laser is directed 

at location Ⅳ. 

 

Neutral density filter is placed in the optical train to change the laser power and 

focused laser is directed at location Ⅳ. Figure 4.15 shows the measured photon induced 

voltage when exposed to laser with different power. It shows that at same location, 

photon induced voltage linearly increases with laser power, but a small non-linear 
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effect at low laser power is observed. The non-linear effect is contributed by the 

nanobundle configuration – nanobundle is packed by many parallel nanobelts. Under 

low laser power, light is not strong enough to penetrate through nanobundle and only 

excites part of nanobelts. When laser power increases, the amount of excited electrons 

in already excited nanobelts linearly increases with laser power and there are new 

contributions from nanobelts in the bottom of nanobundle as they are being excited as 

well. The combined effect makes photon induced voltage displays small non-linear 

behavior at low laser power. While in high laser power situation, the nanobundle is 

already penetrated by laser, thus, the photon induced voltage linearly increases with 

laser power in high power region.  

 

Mechanism of Photon induced electrical response 

According to the observation, we propose the following mechanism for the 

observed photon induced electrical response. Due to the small band gap of KxMoO3, 

localized electrons and holes are easily created in nanobundle when exposed to laser. 

The concentration of these charge carriers reaches its maximum in the location where 

the intensity of light is strongest. Subsequently, the possible processes that follow the 

creation of these charge carriers include charge recombination, diffusion of the charge 

carriers and scattering of the charge carriers. Although one expects significant 

contribution from the charge recombination, some of the charge carriers can diffuse to 

both electrodes under the influence of mutual repelling force especially in the event of 

the presence of high concentration of charge carriers. Consequently, if the electrode is 

far away from the position of laser spot, the amount of excited charge carriers reaching 

the electrode is low. Thus, at location Ⅰ, Ⅱ and Ⅲ, more charge carriers arrive at left 

electrode than right electrode due to the shorter distance from center of laser spot to left 

electrode. As the net charge carriers that reach left terminal result in positive current as 

shown in Figure 4.13, we attribute the charge carriers to be the electrons considering its 

higher mobility in lattice and the higher electron concentration in n-type 

semiconductor. At location Ⅳ, electrons are excited at right part of nanobundle, 
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significant amount of net electrons reach right electrode. Consequently, the measured 

photon induced current shows opposite polarity when focused laser is directed at two 

end of nanobundle. When the laser beam is focused at the middle of nanobundle, due to 

the equal distance from both electrodes, similar amount of photon excited charge 

carriers is expected to reach the two electrodes at both ends of the nanobundle. Hence 

there is no net current detected.  

 

The diffusion ability of electrons in the nanobundle is concluded from electrical 

measurement. The mobility of electrons μ is measured by FET configuration described 

above and the value is ~10 cm2/V s. The diffusion length of the charge carrier can be 

estimated by 

  

where D is the diffusion coefficient (D=μkT/e) and τ is the life time of the charge 

carrier. The lifetime of the photon excited electrons in semiconductor nanowire is 

normally in the time scale of microseconds to milliseconds.83 Consequently, the 

diffusion length is estimated to have a minimum value of ~5 μm. Moreover, the 

conductivity of the nanobundle increases from 24 to 530 S m-1 when temperature 

increases from 23 to 142 oC. Thus, the increased temperature induced from localized 

laser illumination would further increases the diffusion length of excited electrons. 

Considering the long diffusion length, it is plausible that diffusing charge carriers to 

find their way towards the electrodes that are in contact with both ends of the 

nanobundle. 

 

During voltage measurement, excited electrons reach an electrode and accumulate 

at the electrode due to extreme high resistance of voltmeter. At location Ⅰ, Ⅱ and Ⅲ, 

net accumulated electrons near left electrode introduce negative voltage while 

accumulated electrons near right electrode introduce positive voltage at location Ⅳ. 

Accumulated electrons repel further influx of excited electrons under Coulomb’s 

interaction and consequently the increase in voltage slows down time as shown in 
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Figure 4.14. After certain duration, the repulsive force originated from accumulated 

electrons near electrode and excited electrons in the center of laser spot equilibrates. 

The distribution of excited electrons achieves equilibrium, thus, photon induced 

voltage achieves equilibrium and remain constant. The process explains the relative 

longer duration (0.4 s) required to achieve maximum photon induced voltage than that 

of photon induced current (0.05 s). The study about duration required to build up 

voltage in nanoscale device is not reported before. It is possible that in conventional 

photocurrent report, photon response originates from Schottky barrier of metal 

semiconductor junction and peak concentration of excited electrons locates at 

junction,73, 79-81, 84 in which case the voltage builds up rapidly. 

 

4.5 Photon enhanced Electrical Response Measurement 

 

Figure 4.16 (a) Schematic of focused laser beam locally irradiated at four different 

locations under external bias (b) Photocurrent measured under external bias voltage of 

0.4 V with laser spot directed at location Ⅲ on KxMoO3 nanobundle device.  

 

Similar systematic research is carried out with external bias voltage on the 

individual nanobundle device. When external bias voltage is applied, photon excited 

electrons are driven to terminal by the applied electric field and thus current is 

enhanced. Figure 4.16(a) shows the schematic measurement setup. External bias 

voltage is applied between electrodes and an ammeter is used to measure the flowing 

current. Focused laser is locally shone on the nanobundle and the change of current is 
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recorded. Figure 4.16(b) displays the measured current between electrodes when laser 

is shone at location Ⅲ with external bias voltage of 0.4 V applied. When laser is 

blocked, current induced from external bias is around 482.1 nA. The moment laser is 

on, current increases to 486.6 nA in less than 0.05 s. The current dropped to 482.1 nA 

again when laser is off. The short response time suggests that excited electrons 

originated from photon excitation instead of thermal effect. 

 

Figure 4.17 The Photon enhanced current at different distance between center of laser 

spot and center of nanobundle. 

 

Focused laser is directed at different locations as shown in Figure 4.16 (a), the 

distance is measured with respect to the center of nanobundle and the corresponding 

photon enhanced current under external bias voltage of 0.4 V is detected as shown in 

Figure 4.17. When focused laser is fully shone on the electrode or on the substrate, 

there is no photon enhanced current observed. When part of laser spot is shone on 

nanobundle, photon enhanced current is detected, and with larger area exposed to laser 

spot, higher amplitude of enhanced current is achieved. Compare the measurement at 

location Ⅰ, Ⅱ and Ⅲ, with exposed area gradually reaching maximum, the photon 

enhanced current increases with value 0.2 nA, 1.0 nA and 4.5 nA respectively. When 

the same area of the nanobundle is exposed to laser, e.g. at location Ⅲ and Ⅳ, the 
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photon enhanced currents are almost the same. It is because that under external bias, 

majority of photon excited charge carriers are driven to the electrode under the applied 

electric field. With similar amount of charge carriers excited by laser spot, the 

amplitudes of enhanced current are almost the same. The observation that maximum 

enhanced current appears when laser spot is fully on the nanobundle and the same 

photon enhanced current at all locations with same exposure area suggest that photon 

excited electrons originated from nanobundle itself, consistent with the performance 

in photon induced electrical response measurement. 

 

Figure 4.18 (a) Typical I-V characteristics of nanobundle with and without laser spot 

shown at location Ⅲ respectively. Inset curve shows the IV behaviour at low bias (b) 

Photon enhanced current under different external bias voltage. 

 

When exposed to constant laser power at same location, the photon enhanced 

current is determined by applied voltage. Figure 4.18(a) shows the I-V behaviour of 

individual nanobundle without and with laser spot at location Ⅲ respectively. Inset 

curve shows the current behaviour at low voltage. At 0 bias, the current with laser on is 

140 pA. It comes from the photon induced electrons as shown in Figure 4.13. When 

external bias voltage is increased, the enhanced current increases spontaneously. As 

shown in inset curve, the enhanced current increases gradually from 140 pA at 0 V to 

206 pA at 15 mV. Figure 4.18(b) shows the enhanced current versus voltage in wider 

range. The enhanced value is 4.6 nA at 0.4 V as shown in Figure 4.16(b) and it 

increased to 190 nA at 4 V. The high external bias can readily overcome the mutual 
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attraction between the electron-holes pair, separate and collect the charge carriers and 

this contributing to the higher enhanced photocurrent.  

 

4.6 Summary of Results 

 

By photolithography and sputtering method, individual KxMoO3 nanobundle 

electrode device is fabricated. The electrical property of KxMoO3 nanobundle is 

systematically studied. Upon K ion insertion, the conductivity of MoO3 increases by 7 

orders of magnitude. The magnitude is also three orders higher than that of the lithiated 

MoO3 bulk and five orders higher than that of lithiated MoO3 nanobelt. The 

conductivity further increases 20 times as temperature increases from room 

temperature to 140℃. The calculated band structure of the K0.25MoO2.75 indicates the K 

atoms are fully ionized, giving rise to the reduction of the adjacent Mo atoms. As a 

consequence, the conduction band is populated, leading to electron delocalization along 

the rows containing low oxidation state Mo atoms in the [001] direction. These 

delocalized electrons contribute to the high conductivity of nanobundle. Moreover, as 

band structure indicates, the energy gap between two nearest states is quite small, and 

different energy states coexist at same energy level. Thus, the localized electrons 

below Fermi level could be easily excited to high energy level and contribute to the 

current. The effect explains the significantly increased conductivity upon heating, and 

the low thermal activation energy of the nanobundle. 

 

For the low energy required to excite localized electrons and high diffusion 

mobility of electrons in nanobundle, significant photoelectrical response is observed. 

High photon induced voltage (36 mV) and photon induced current (320 pA) without 

external bias voltage is produced from single KxMoO3 nanobundle device under low 

laser power (2.2 mW). The experiment measurements display that the photon excited 

electrons come from nanobundle itself. It is unlike the reported photoelectrical 

response, coming from metal-semiconductor junction or p-n hybrid junction. The 
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amplitude and polarity of photon induced voltage/current can be controlled by the 

location of focused laser spot. The property enables the potential application that 

KxMoO3 nanobundle acts as nanoscale electrical source with controllable polarity and 

amplitude by location of focused laser spot. The photon excited electrons also enhance 

the current when external bias voltage is applied. Unlike the performance of photon 

induced current, when laser is fully shone on the nanobundle, the enhanced current 

values are the same regardless the location of laser spot. The same amount of 

electrons excited by photon and the drive force from external voltage contribute to the 

effect. The behaviour further demonstrates that photon excited electrons originate 

from nanobundle itself regardless of distance away from the electrodes. The enhanced 

value is also determined by the amplitude of external bias voltage. The property can 

make the nanobundle a possible photo-detector that measures the power of the light. 

 

In conclusion, the great amount of K ion insertion into MoO3 nanobundles 

deforms the band structure, enhances the performance of the electronic devices and 

introduces significant photon electrical response. These excellent performances make 

MoO3 good candidate for wider application in electric and photonic related fields.  
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Chapter 5 Electromigration of K ions 

between MoO3 layers  
 

In our K enriched MoO3 nanobundle, many properties coexist including the 

high current density, the preserved layered structure, the single crystalline material and 

the significant amount of K ions being inserted. It is not odd to imagine that the 

inserted K ions can by driven by continuous collision of numerous electrons in the 

channel between layers. In this chapter, we will study the amazing reversible 

migration of K ions between MoO3 layers driven by electron flow. 

 

5.1 Introduction  

 

Electromigration describes the forced atomic or ionic motion driven by the force 

of electric field and associated electric current, named electrostatic force and electron 

wind force.85-87 The former is exerted by the electric field on the ion, and the electron 

wind is caused by momentum transfer to an atom from electrons on their scattering. 

The net driving force causes the atoms/ions to move from its original position. In an 

interstitial system with applied driving force in the form of electron wind force, small 

interstitial ions can jump from one interstitial site to neighbouring ones while large 

atoms can move by position exchange with neighbouring vacancies.87-89 In the event of 

high current density, a great amount of electrons scattering with atoms/ions induces 

electromigration, thus the phenomenon is mainly studied in metals or other materials 

with low resistivity.87, 88, 90-93 

 

With layered crystalline structure, MoO3 presents a wide range of sites for ions 

intercalation. In particular, Li ions intercalation into MoO3 is successfully 
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demonstrated and the layered structure is found to be preserved during Li+ 

insertion/extraction process.36, 94 When the current density within intercalated MoO3 is 

high enough to provide significant electron wind force, intercalated ions could migrate 

along layers. Compared with the high current density in bulk metal where 

electromigration takes place (103~104 A cm-2),85, 87 the current density of lithiated 

MoO3 bulk (Li0.25MoO3 1 A cm-2)61 and lithiated MoO3 nanobelt (10-3 A cm-2)43 is too 

low to cause electromigration. Some molybdenum bronze possesses high 

conductivity,60, 95, 96 but insertion of ions in the bronze gives rise to substantial 

structural distortion. Such as blue potassium bronze (K0.3MoO3), the compound 

becomes infinite sheets with the adjacent sheets held together by potassium ions.97 The 

K ions bound by seven or ten oxygen atoms to hold the adjacent sheet can hardly move 

around. Consequently, the electromigration phenomenon of intercalated ions in layered 

MoO3 structure has not been observed before. 

 

In last two chapters, we have successfully synthesized K ions intercalated MoO3 

(KxMoO3) nanobundle with the integrity of the layered structure remaining intact. The 

material displays semiconductor-like behaviour with dramatic enhancement of the 

electric conductivity from 10-6 S m-1 of MoO3 to 24 S m-1 upon potassium uptake. For 

samples (K-intercalated MoO3) with a length of 10 μm and biased at 5 V, the current 

densities are measured to be 5×10-5 A cm-2. The high conductivity of the 

K-intercalated MoO3 nanobundle excludes the possibility of ionic conductivity which 

is usually low at room temperature.98, 99 Experimental measurement of KxMoO3 

nanobundle reveals the significant amount of oxygen vacancies in the structure. 

Theoretical simulation shows that hopping barrier of intercalated K ions is 0.23 eV. The 

high current density, the preserved layered structure, the significant amount of oxygen 

vacancies for position exchange and the low hopping barrier suggest the possibility that 

K ions can migrate along the layers readily when they are driven by electron wind 

force.  
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In the following part of this chapter, we will display the surprising reversible 

electromigration of the intercalated K ions in KxMoO3 nanobundle driven by electron 

wind force. When an electric current is applied to a KxMoO3 nanobundle, the K ions 

migrate readily and rapidly in the flowing direction of electrons within the nanobundle 

and accumulate near an electrode. A significant variation in the distribution of K ions in 

KxMoO3 nanobundle before and after the application of current is observed. Upon the 

reversal of current, the accumulated K ions near one electrode could be driven back and 

gather near the opposite electrode. By controlling the direction of the electric current, 

the movement of K ions along layers is shown to be reversible. Most notably, the 

electromigration process only takes few seconds. Compared with the reported long 

duration to induce significant variation of ion distribution,100, 101 the K ions in KxMoO3 

nanobundle migrate in a much shorter time. Moreover, repeated reversible 

electromigration of the K ions does not result in any changes in morphology of 

nanobundles.  

 

5.2 Electromigration of K ions Detected by EDX 

 

Figure 5.1 SEM image of a typical segment of nanobundle between two gold 
electrodes. 
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Similar with the electrode device preparation process described in last chapter, 

individual KxMoO3 nanobundle is transferred to a Si substrate with a 100 nm SiO2 layer, 

and patterned electrodes of 10 nm Cr and 500 nm Au are fabricated via standard photo 

lithography and sputtering of metals. Figure 5.1 shows a scanning electron microscope 

(SEM) image of a typical segment of nanobundle between two electrodes. The length 

of the segment of nanobundle is around 10 μm and the growing direction of nanobundle 

is [001]. The Energy Disperse X-ray spectroscopy (EDX) (EDX in FESEM, JEOL 

JSM-7600F) of selected spots on nanobundle is measured to explore the distribution of 

K ions in KxMoO3 nanobundle before and after the application of electric current. In 

these experiments, the electrical measurements are carried out using Keithley 6430 

Sub-fA Remote SourceMeter. 

 

Figure 5.2 Typical EDX spectrum of KxMoO3 nanobundle between electrodes. 

 

The select zoom in spot on the nanobundle for EDX measurement is in the size ~ 

2μm, which is determined by the energy of electron beam, the atomic weight and 

density of the material. Figure 5.2 shows a typical EDX spectrum of zoom in spot on 

nanobundle, the Au peak comes from gold electrode, the Si peak is from Si/SiO2 

substrate, the Mo and K peaks originate from nanobundle. Since the measured atomic 

percentage of K varies when area exposed to Si substrate and Au electrodes change, 
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atomic percentage ratio of K over Mo is characterized to exclude the influence of 

substrate and electrodes. From the area of the peaks, the value and error of atomic 

percentage ratio of K over Mo are calculated. In MoO3 structure, each of the lattice Mo 

atoms is tightly bonded to the surrounding six O atoms and thus can hardly move, while 

the fully ionized intercalated K atoms are not completely trapped. Electromigration 

occurs primary through the untrapped interstitial atoms.87, 102 Consequently, it is 

reasonable that Mo atoms remain stable and uniformly distributed in the MoO3 lattice 

during electromigration process. Hence the atomic percentage ratio of K over Mo is 

used to study the distribution of K atoms in the following experiment. 

 
Figure 5.3 Measured atomic percentage ratio of K over Mo versus distance away from 

electrode 1 in the sample before applied bias voltage (black square), after applied 

positive bias voltage (red square) and after applied negative bias voltage (blue square). 

 

Before the application of current, the EDX spectra of selected positions along 

nanobundle in SEM are measured. The atomic percentage ratio of K over Mo versus 

distance away from electrode 1 is shown in black squares in Figure 5.3. The black line 

drawn to the data is meant to guide the eyes. The similarity in the magnitude of atomic 

ratio along the nanobundle reveals the uniformly distributed K ions in nanobundle 

before applying the current. The result is consistent with the EDX measurement in 

TEM as described in Chapter 3, that the atomic percentage ratio of K over Mo is fixed 

along the individual nanobundle. 
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Figure 5.4 Log scale of EDX intensity measurement from the area highlighted by 

black square in Figure 5.1 before (black curve) and after (red curve) application of 

electric current. 

 

Upon the application of a positive bias voltage (+5 V) for 30 min, the current flows 

from electrode 1 to electrode 2 as shown (black arrow) in Figure 5.1. For better 

displaying the change of ion concentration, log scale of detected X-ray intensity 

versus X-ray energy is performed. The black and red curve in Figure 5.4 shows the log 

scale of EDX intensity measurement in the square box highlighted in Figure 5.1 before 

and after applying current respectively. The area of Mo peak in two curves is almost 

the same but the area of K peak increases after the application of the electric current. It 

denotes the increased amount of K atoms in the square box. The red squares in Figure 

5.3 shows the measured atomic percentage ratio of K over Mo at different distances 

away from electrode 1 after applied current. Near electrode 1, the atomic ratio is around 

20.5%, while the value decreases to 16.5% for regions close to electrode 2. The 

accumulated K ions near electrode 1 and the depletion near electrode 2 show that K ions 

migrate from negative electrode (electrode 2) towards positive electrode (electrode 1) 

along the direction of electron flow (i.e. opposite to the electric current).  
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The sample is subsequently subjected to a reverse applied bias voltage (-5 V) for 

30 minutes, current flows from electrode 2 to electrode 1. The blue squares in Figure 

5.3 describe the resultant distribution of atomic percentage ratio of the sample. The 

high ratio near electrode 1 in red squares decreases to 16% in blue squares, and the ratio 

near electrode 2 increases to 20%. It reveals that the accumulated K ions near electrode 

1 are flushed back by electron wind force in opposite direction and accumulate near 

electrode 2 instead.  

 

During the EDX measurement, although the majority of detected X-ray comes 

from the small area centered at selected spot, the extended beam profile of the e-beam 

results in some EDX contribution of surrounding region. As shown in the EDX curve 

(Figure 5.2), due to the large area of surrounding Au electrodes, although the electron 

beam is aimed at the middle of nanobundle, a small peak of Au is detected. 

Consequently, the measured atomic percentage is the weighted average value of the 

area centered at selected spot instead of the precise value at the spot. Taking into 

account the spreading of electron beam, the value we obtained is thus an 

underestimation. Meanwhile, we could not carry out EDX analysis and apply the 

current simultaneously. The EDX measurement is carried out around 30 mins after the 

application of the electric current. We observe that the accumulated K ions gradually 

disperse overtime and this is driven by concentration gradient force. Thus the measured 

concentration of K ions is lower than the value obtained immediately after the 

application of current. Although the accumulation effect is underestimated considering 

these two factors, the EDX analysis does clearly show the trend of reversible 

electromigration of K ions driven by electron wind force. 
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5.3 Structural Characters for Electromigration 

 

Figure 5.5 (a) Structure of K enriched MoO3 nanostructure (b) Zoom-in image of area 

highlighted by black square in (a). 

 

Beside the high current density that guarantees the electromigration of K ions 

between layers, some unique structural properties of KxMoO3 nanobundle favour the 

electromigration process. According to experimental measurement and theoretical 

modelling, K atoms likely occupy the oxygen vacancy sites in the lattice. The 

schematic atomic structure is shown in Figure 5.5(a). Between the MoO3 layers, the 

dangling O are removed as O vacancies in the lattice and K atoms occupy these vacancy 

sites. These K atoms are aligned in the channel formed by O vacancies along [001] 

direction. The EDX measurement in Chapter 3 shows that the amount of O vacancies is 

larger than that of K atoms, suggesting that not all vacancy sites are occupied. Figure 

5.5(b) is the zoom-in image of the area highlighted by black square in Figure 5.5(a). 

Two kinds of Mo atoms are notable, one with O vacancy (reduced Mo atoms, green 

ball) and the other without (unreduced Mo atoms, blue ball). The ionization of the K 

atoms at vacancy site gives rise to the reduction of the adjacent Mo atoms, leading to 

electron population in the conduction band. Therefore, the high current density arises 

solely from the reduced Mo atoms, which are aligned in the [001] direction as shown in 

Figure 5.5(b). While the rows in which the Mo atoms remain in the high oxidation 

states are still semi-conductive due to lack of electron occupation in the conduction 

band. Consequently, when the current is applied in [001] direction, electrons mainly 
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flow along these rows with the reduced Mo atoms. This is exactly the position where K 

atoms reside. Thus, K atoms can be mobilized by scattering of a great amount of 

flowing electrons. 

 

Meanwhile, these fully ionized K ions are weakly bound to the surrounding O 

atoms in the lattice. Theoretical simulation reveals that the hopping barrier of 

intercalated K ions is 0.23 eV, which is comparable with electromigration activation 

energy in conventional electromigration.103-105 Moreover, a significant amount of 

oxygen vacancies available in the structure for position exchange ensures facile 

diffusion of K ions.87, 89 All these structural characters contribute to the ease of 

electromigration of K ions in KxMoO3 nanobundles. 

 

5.4 Remnant Voltage induced by Accumulated K ions 

 

Figure 5.6 Schematic figure shows remnant voltage measurement process. 

 

As shown by the EDX measurement, under the influence of electron wind force, K 

ions are driven to the electrode. The accumulation of K ions near the electrode 

introduces additional electric potential to the nearby electrode. After the applied current 

is removed, the electric potential between two electrodes induced by the accumulated K 

ions is measured and denoted as remnant voltage. The schematic figures in Figure 5.6 

display the described process. To probe the properties of the remnant voltage, the 

sample is applied at different bias voltage for 20 s and the remnant voltage is measured 

immediately the moment applied bias is removed.  
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Figure 5.7 After bias voltage (7 V, 5 V, 2 V and -2 V) is applied for 20 s, remnant 

voltage between two electrodes is measured with time respectively. 

 

The black, red and blue curves in Figure 5.7 show the measured remnant voltage 

after bias voltage of +7 V, +5 V and +2 V is applied respectively. The measured 

positive remnant voltage is consistent with the observation that K ions migrate towards 

positive electrode when positive bias voltage is applied. The significant starting 

remnant voltage (56 mV after applying 7 V bias for 20 s) indicates that great amounts of 

K ions are indeed accumulated upon the application of electric current. Figure 5.6 

clearly describes the process. Upon the application of the positive bias voltage, 

electrons flow from negative end to positive end and drive K ions to positive electrode. 

Immediately after the removal of the bias, the voltage between two electrodes is 

measured. Since accumulated K ions are near positive electrode, the recorded remnant 

voltage is positive. The green curve in Figure 5.7 shows the measured remnant voltage 

after negative voltage of -2 V is applied. The negative remnant voltage suggests that K 

ions migrate towards negative electrode and accumulate over there. The measured 

remnant voltage after applying positive and negative bias voltages proves that K ions 

migrate in the direction of electron flows driven by electron wind force.  
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Figure 5.8 Schematic images of K ions dispersion process. 

 

Driven by concentration gradient force, the accumulated K ions diffuse back 

toward opposite electrode in the nanobundle as shown in Figure 5.8. Accumulated K 

ions disperse gradually and finally equally distributed along the nanobundle. As the 

concentration of accumulated K ions decreases with time, the remnant voltage 

decreases as well. The exponential fitting of black, red and blue curves in Figure 5.7 

shows the decay time of remnant voltage is around 20 s. The results indicate a very 

short relaxation time of accumulated K ions, in contrast to the previously reported 

system where the relaxation of accumulated ions upon removal of the bias takes a few 

hours.92, 101 The short decay time reveals the facile diffusion of K ions along the channel 

formed by the layered structure.  

 

When accumulated K ions disperse in the same direction, the decay time and the 

pattern of curve are similar as shown in the black, red and blue curves in Figure 5.7. On 

the other hand, when accumulated K ions disperse in different directions, the decay 

time and the pattern of curve are different as shown in the black and green curves in 

Figure 5.7. This difference can be attributed to different history of the applied current in 

both directions and the random ion-vacancy position exchange. In addition, the 

channels, along which the K ions move, are not symmetrical in both ends. Moreover, 

the contact situation between metal electrode and nanobundle differs on two terminals. 

Hence even though the same current is applied for the same period in both directions, 

the distribution of accumulated K ions are different and the way these accumulated ions 

disperse are also different. It leads to the varied amplitude of starting remnant voltage 

and the different decay patterns of remnant voltage in both directions. For the same 
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reasons, the decay time of each device is different from each other. But the values of 

decay time in all devices are smaller than 40 s, significantly lower than the reported 

relaxation time of accumulated ions. 92, 101 

 

Figure 5.9 (a) Measured starting remnant voltage after different bias voltage is 

removed (b) Measured starting remnant voltage versus external bias current applied. 

 

Comparison among curves in Figure 5.7 reveals that a higher starting remnant 

voltage is measured when a larger bias voltage is applied. Figure 5.9(a) shows the 

measured starting remnant voltage after different bias voltage is applied. The 

experiment data is well fitted by exponential curve. A higher bias voltage induces a 

larger current density and higher electron energy and, consequently, enhances the 

electron wind force. With larger driving force, more K ions are accumulated, which 

provides higher remnant voltage. To further identify the effect of key parameter – 

current density, the measured starting remnant voltage versus applied bias current is 

plotted in Figure 5.9(b). Clearly that the starting remnant voltage increases linearly 

with bias current denoted by red fitting line. It suggests that the amount of 

accumulated K ions linearly depends on current density. A kink at 3 μA is observed. 

The measured starting remnant voltage is quite low and only increased a bit when bias 

current is lower than 3 μA. It is attributed to the fact that certain energy is required to 

dislodge K ions and the significant remnant voltage can be observed only when large 

amount of ions are driven. When low current density (<3 μA) is applied, the energy 

provided by electron momentum transfer is not strong enough to drive K ions to the 

electrode. The threshold bias current denotes the hopping barrier of K atoms in the 
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structure, and the low threshold bias current is indicative of the small activation 

energy of K atoms in the structure, which is consistent with the theoretical calculation 

of hopping barrier of K atoms (0.23 eV).  

 

5.5 Temperature dependence of Electromigration 

 

Figure 5.10 After bias voltage 2 V is applied for 20 s, normalized remnant voltage 

between two electrodes is measured versus time under different temperature.  

 

As described in last chapter, current density in the KxMoO3 nanobundle greatly 

increases with temperature (30 times with temperature increases from 25℃ to 200℃), 

and the diffusion coefficient increases with temperature as well. Both factors greatly 

enhance the amount of K ions being driven. Due to the limitation that around 1.5 s is 

required for Keithly source meter unit to switch between different functions (as source 

and as voltmeter), and more K ions diffuse back during the interval as temperature 

increases, the starting remnant voltage versus temperature could not be systematically 

studied. However, the temperature dependence could be studied by focusing on two 

factors, current density and diffusion coefficient. The effect of current density is 

systematically studied as shown in Figure 5.9(b). The change of diffusion coefficient 

under different temperature could be studied by decay time of remnant voltage under 

various temperature.  
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For temperature dependent electromigration observation, the sample is mounted 

on heating stage and the remnant voltage measurement is repeated under different 

temperature after bias voltage 2 V is applied for 20 s. To better characterize the 

diffusion coefficient under different temperature, the maximum remnant voltage 

values are normalized. The three curves (blue, cyan and green curves) displayed in 

Figure 5.10 correspond to normalized remnant voltage versus time under temperature 

of 25℃, 37℃ and 55℃ respectively. Obviously, as temperature increases, remnant 

voltage decays faster and faster, denoting the higher diffusion coefficient of K ions. 

These three curves are exponentially fitted, and the decay times are 5.6 s, 2.1 s and 

0.5 s respectively. The decreasing decay time suggests the increase of diffusion 

coefficient in the material as temperature increases. 

 

Figure 5.11 The exponential decay time of remnant voltage under different 

temperature. 

 

The decay time under different temperature is recorded and plotted versus 

temperature in Figure 5.11. The data is well fitted by an exponential function and 

shows that the decay time of remnant voltage exponentially decreases as temperature 

increases with the equation , τ is the decay time, T is the absolute 

temperature, T0 is the decay constant with the value around 12.7 K. Considering the 
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fact that given a fixed length, the diffusion time is inverse proportional to diffusion 

coefficient, thus, the diffusion coefficient (D) of K ions in the structure increases 

exponentially with temperature in the measured temperature region,  with 

constant T0 around 12.7 K.  

 

The exponentially increased diffusion coefficient of ions upon temperature is the 

same both in accumulation process and dispersion process. And the current density 

exponentially increases upon temperature described in Chapter 4. Although the 

temperature dependent electromigration of K ions driven by electrons are not directly 

measured, we can conclude that the K ion electromigration is exponentially dependent 

on temperature of nanobundle. 

 

5.6 Time dependence of Electromigration 

 

Figure 5.12 After bias voltage (+3 V) is applied for 10 s and 100 s, red and black curve 

show measured remnant voltage versus time respectively. 

 

In interstitial system, long period (103~104 s) is required to observe significant 

concentration change of interstitial atoms upon electromigration.100, 101 To study the 

time dependence of electromigration of intercalated K ions in MoO3 nanostructure, 

same bias voltage (+3 V) is applied to the sample for different durations and the 
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remnant voltage is measured immediately the moment bias voltage is removed. Due to 

the system limitation, the minimum period of the applied bias voltage is around 10 s. 

The red line in Figure 5.12 shows the measured remnant voltage versus time after bias 

voltage +3 V is applied for 10 s, and the starting remnant voltage is 18.7 mV. The black 

line shows the remnant voltage versus time after bias voltage +3 V is applied for 100 s, 

and the starting remnant voltage is 23.5 mV. Applying similar bias voltage for a longer 

duration, e.g. 3000 s, the starting remnant voltage is around 24~25 mV. The small 

variation of starting remnant voltage implies that the accumulation of K ions becomes 

saturated with no additional K ions accumulated near the electrode. Moreover, the 

pattern of remnant voltage decay is almost the same when different duration of bias 

voltage applied, suggesting the long time application of bias voltage does not impose 

effect on ion diffusion. 

 

We assume that the initial electron wind force is much larger than the 

concentration gradient force and electrostatic force, for the uniformly distributed K 

ions along nanobundle. This results in rapid accumulation and a significantly enhanced 

remnant voltage of 18.7 mV for the initial 10 s. With a longer period of current applied 

and more K ions accumulated, the net force on K ions gradually decreases and 

eventually diminishes without any net K ion accumulation. Thus, the starting remnant 

voltage only increases by 4.8 mV in the interval from 10 s to 100 s, and it further 

enhances slightly (<1 mV) in the period from 100 s to 3000 s. The short duration (10 s) 

required to achieve significant accumulation of K ions is consistent with the short 

relaxation time (30 s) of remnant voltage as shown in Figure 5.7. Both values indicate 

the high diffusivity of K ions in the structure. The duration is much shorter than the 

time (103~104 s) required in the interstitial systems reported previously.100, 101 It should 

be noted that in these interstitial system, only small intercalated ions, such as Li+ and 

H+, are studied, while in our system, the size of intercalated ion K+ is significantly 

larger. The performance that shorter duration required to move larger ions along 

layers makes our nanobundle an excellent material to act as ion channels.  
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5.7 Reversible Electromigration observation 

 

Figure 5.13 After bias voltage (+3 V) is applied for 10 s, the remnant voltage versus 

time is shown by red curve. After bias voltage (-3 V) is applied for 100 s and then bias 

voltage (+3 V) is applied for 10 s, blue curve shows measured remnant voltage. 

 

The accumulated K ions on one end forced by electric field could be driven back 

by concentration force between ions and electron wind force in opposition direction. 

The reversible electromigration in nanobundle is subsequently studied. We firstly 

apply negative voltage -3 V for 100 s, upon the removal of the negative bias voltage, 

positive bias voltage +3 V is immediately applied for 10 s and the remnant voltage is 

measured as shown in blue curve in Figure 5.13. The measured remnant voltage is 

positive, while the value after minus voltage applied should be negative as shown in 

Figure 5.7. It suggests the accumulated ions near negative electrode is driven back 

and partly accumulate near positive electrode. The starting remnant voltage is 1.2 mV, 

which is significantly lower than the starting remnant voltage (18.7 mV) when no bias 

voltage is applied before the application of positive voltage (red curve in Figure 5.13).  

 

Figure 5.14 Schematic image describes the reversible electromigration process. 
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The schematic figures in Figure 5.14 describe the above reversible 

electromigration process. Due to the long duration of negative bias voltage applied, 

great amounts of K ions accumulate near negative electrode driven by electron wind 

force. When positive bias voltage is applied, for the same direction of electron wind 

force and concentration gradient force, accumulated K ions are driven back quickly and 

aggregate near positive electrode. As a result, the K concentration near positive 

electrode is higher than that near negative electrode, and the measured remnant voltage 

is thus positive. However, it takes time to move K ions from negative side to positive 

side. Consequently, in the same duration (10 s), the measured starting remnant voltage 

(1.2 mV) is lower than the value (18.7 mV) when K ions are moved from uniform 

distribution to positive end. When longer duration (20 s) of positive voltage (+3 V) is 

applied, the measured remnant voltage versus time is almost the same as red curve in 

Figure 5.13 with starting voltage around 19 mV. Various arrangements of different 

voltage are further tried. The experiments show that when higher negative voltage (-5 

V) is applied for 100 s, the applied positive voltage (+3 V) for 10 s is not strong enough 

to drive large amount of ions to opposite terminal in limited duration (10 s). Thus, the 

measured remnant voltage is still negative. A longer duration or a larger positive bias 

voltage can drive more accumulated K ions back and make the remnant voltage 

positive.  

 

In general, the experiment shows that accumulated K ions can be driven back and 

gather in the other end when the current in opposite direction is applied. The 

distribution of accumulated ions depends on the duration and amplitude of the applied 

bias voltage and the history of the applied bias voltage. After the reversible ion 

movement is repeated for hundred times, the reversible migration of K ions is still 

observed in remnant voltage measurement and, in particular, no expansion, void and 

cracks in the nanobundle are observed, while expansion and cracks is always observed 

in traditional electromigration process both in bulk and in nanostructure.87, 106 The 

unchanged morphology and the existence of reversible electromigration suggest that 
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the MoO3 layered structure is highly stable, and the ions movement along layers and 

the ion accumulation do not significantly deform the structure. 

.  

Figure 5.15 Current increases with time when bias voltage (+2 V) is applied in sample 

without bias voltage applied before (black line) and with bias voltage (-2 V) applied 

before (blue line). 

 

During the application of current, K ions are driven to one end which imposes an 

additional voltage and thus influences the current. Positive bias voltage +2 V is applied 

to the sample and current is measured versus time as shown in black curve in Figure 

5.15. The current starts from 29.5 nA and increases sharply in the first few seconds. 

Then the slope gradually decreases, and finally the current reaches the equilibrium 

value of 37.5 nA. The increased current is due to the additional electric potential 

induced by accumulated K ions and the stable current suggests that the concentration 

distribution of K ions is equilibrated under electrostatic force, electron wind force and 

concentration gradient force. The sharp increase of the current in the first few seconds 

reflects the fast increase of additional voltage which is induced by the rapid 

accumulation of K ions at the beginning as discussed above.  
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Figure 5.16 Schematic image describes the distribution of K ions at the moment the 

polarity of external bias voltage reverses. 

 

Subsequently, negative bias voltage -2 V is applied to the sample for a certain 

period of time to drive back K ions to negative electrode. The measured remnant 

voltage becomes negative, denoting the accumulation of K ions near negative 

electrode. Then positive bias voltage +2 V is applied and the current is measured as 

shown in blue line in Figure 5.15. The starting current is 24.7 nA, lower than the 

starting current (29.5 nA) in black curve. Figure 5.16 describes the distribution of K 

ions at the moment the polarity of external bias voltage reverses and explains the 

mechanism of blue curve in Figure 5.15. Due to the negative bias voltage applied, K 

ions are driven to negative electrode. The accumulated K ions near negative terminal 

induce an additional remnant voltage which cancels part of electric potential when 

positive bias voltage is applied. Thus the starting current is lower than the value 

obtained with no prior applied voltage. If larger amplitude of negative bias voltage is 

applied, lower starting current can be then measured due to increased concentration of 

accumulated ions near negative electrode.  

 

In the first 10 s, the current increases more sharply from 24.7 nA to 29.8 nA (blue 

curve, increase 5.1 nA) than from 29.5 nA to 32.6 nA (black curve, increase 3.1 nA). It 

is consistent with the observation discussed above that greater amount of K ions moves 

in the same duration under same bias voltage when accumulated K ions are driven back. 

After 300 s, although the blue curve tends to close to the black curve, there is still a gap 

of approximately 2.5 nA between them. It is possible that when K ions are scattered by 

electrons, some of them hop to the oxygen vacancies in the nearby channels where the 
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current density is low due to the high oxidation state of surrounding Mo atoms. It makes 

these K ions hard to be driven back by electron wind force. Consequently, longer 

duration is required to achieve equilibrium. This is also the reason we could still detect 

accumulated K ions by the EDX measurement half an hour after K ions packing. 

 

5.8 Summary of Results  

 

In summary, we report an interesting observation of reversible electromigration of 

intercalated K ions in layered single crystalline KxMoO3 nanobundles. The varied 

concentration distribution of K ions from the EDX measurement, the remnant voltage 

measurement and I-t measurement confirm the observation that when subjected to the 

application of electric current, K ions in the lattice migrate along nanobundle and ions 

move in parallel to the flowing direction of electrons. Our results reveal that K ions are 

driven by electron wind force. Upon the reversal of current, accumulated K ions near 

one electrode are driven back and gather near the opposite electrode. For the rapid 

diffusion of K ions in the lattice, the duration required to induce significant 

accumulation of K ions and the relaxation time are significantly shorter than the value 

reported in other interstitial systems. The amount of accumulated ions can 

exponentially increase with temperature, resulted from exponentially increased 

current density and diffusion coefficient with temperature in the nanobundle. The 

layered structure is preserved during reversible electromigration of intercalated ions 

with no expansion, void or cracks observed.  

 

The reversible electromigration of K ions in our nanobundle provides a new 

direction to study the ion migration in semiconductor and in nanostructure. It is such a 

new phenomenon that electromigration mechanism could be further explored by 

systematic examination of the effect. Moreover, the easy electromigration of K ions in 

KxMoO3 nanobundle enable its application as ion diffusion channels or ion exchange 

hosts. 
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Chapter 6 Synthesis and Characters of 

K enriched WO3 nanostructure  
 

Considering the similar structural and chemical properties of W with Mo, we 

assume that the synthesis method of KxMoO3 could be used in WO3 system and the 

new performance induced by intercalated K ions should be observed. In this chapter, 

we apply the same simple one-step method to synthesize K ion intercalated WO3 

nanostructure. Various experimental characterization techniques are used to 

characterize the material. The electrical property and photon electrical response are 

studied as well.  

 

6.1 Introduction 

 

The lattice of tungsten oxide is capable of accommodating considerable ion 

insertion. Modified by ion incorporation, and together with oxygen deficiency 

commonly found in these compound, WO3 displays new properties and exhibits broad 

technological applications,107-109 including electrochromic devices,3, 110, 111 batteries,112 

photochromic devices,113 gas sensors114 and catalysts115, 116, as discussed in Chapter 1. 

However, upon the intercalation, the structure of WO3 is known to deform and proceed 

to higher symmetry. Intercalation of alkali metal ions into WO3 by electrochemical 

method reveals the phase transition from monoclinic phase to tetragonal phase occurs 

with x ~0.1 (LixWO3) and further deforms to cubic phase with x~0.36.117, 118 The 

chemical reduction of WO3 is also accompanied by structural changes. The lattice tends 

to eliminate these oxygen vacancies by a crystal shear mechanism, where groups of 

edge sharing WO6 octahedra are rearranged along some crystallographic planes.119-121 

Further reduction involving the formation of pentagonal columns occurs when x> 0.13 
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(WO3-x). Schematic images in Figure 6.1 display the monoclinic structure of WO3 and 

the structure of W5O14 in the [001] direction. Clearly that, the monoclinic structure of 

WO3 deforms after chemical reduction and displays a net-work of hexagonal and 

pentagonal columns.119 To date, intercalating cationic species into WO3 structure and 

chemical reduction of WO3 without giving rise to severe structural deformation or a 

change of phase has remained a technical challenge. 

 
Figure 6.1 Schematic representation of (a) monoclinic WO3 in the [001] direction (b) 

W5O14 in the [001] direction with a net-work of hexagonal and pentagonal 

columns.119 

 

 In last three chapters, we have shown the synthesis of enriched K ions 

intercalated MoO3 by simple thermal evaporation method on mica substrate. The 

layered MoO3 structure is found to be preserved despite the large amount of K atoms 

intercalation. Ion intercalation introduces many amazing properties to MoO3. The 

electrical conductivity of the K enriched MoO3 nano-material is enhanced by seven 

orders of magnitude, the significant photon electrical response and reversible 

electromigration are observed. Continuing our successful attempt, the same growth 

method is applied to grow K enriched WO3 nano-materials.  

 

 In the following of this chapter, we will describe the synthesis method and 

characters of K-intercalated WO3 single crystalline nanostructure. Although a high 

amount of K atoms are intercalated, the pseudo-orthorhombic structure (monoclinic 
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structure with β close to 90°)7 of WO3 is preserved. The KxWO3 nanostructure 

exhibits substantially high electrical conductivity with the value enhances five orders 

from 10-4 Sm-1 of WO3 to 40 Sm-1 upon potassium intercalation. This value further 

increases 200 times when temperature increases from 23 ℃  to 200 ℃.The 

electrical conductivity is also found to be thermally activated with an energy barrier 

of ~1eV. Density functional theory (DFT) under the generalized gradient 

approximation (GGA) is utilized to understand the variation of electronic structure of 

the nano-materials upon insertion of K ions and to explain the observed high n-type 

conductivity. Both calculated band structure and measured thermal activation energy 

consistently suggest that only a small amount of energy is required to excite the 

localized electrons to the conduction band. During experiment, the nanobundle 

exhibits significant photon induced current (9 nA) without external bias under low 

laser power (2 mW) while the value measured in reports concerning other 

semiconductor nanomaterials ranged from ~10 pA to ~500 pA.72, 77, 78 

 

6.2 Synthesis of K ion intercalated WO3 

 

Figure 6.2 Schematic of the synthesis system of KxWO3. 

 

Our group has successfully fabricated WO3 nanowire using thermal evaporation 

method on silicon substrate.122 Considering the similar structural properties, chemical 

properties and the synthesis process with MoO3 nanowire, we continue our effort on 

ion insertion into transition metal oxide nanostructure. Similar with the synthesis 

process described in Chapter 3, we begin with a W foil (5 mm×5 mm×0.05 mm in 
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size, from Aldrich Chemical Co., Inc.) as W source. A muscovite mica sheet is 

prepared as substrate and K source. Unlike the synthesis of KxMoO3, the mica sheet is 

placed directly on top of the W foil in this case. The system is inserted into a tube 

furnace (Carbolite MTF 12/25/250) and heated for 3 days in ambient at 650 ℃ with 

controlled air flow. The synthetic scheme of the K intercalated WO3 nanostructure 

described is shown in Figure 6.2.  

 

Same as the synthesis of KxMoO3, adequate oxygen is highly required to 

successfully synthesize KxWO3 nanostructure. A fan near one end of furnace is thus 

utilized to continuously provide fresh air flow. The distance between substrate and 

foil is controlled to maintain adequate vapour concentration and reaction speed. Since 

the melting point of WO3 (1473 ℃)123 is greatly higher than that of MoO3 (795 

℃)124, the concentration of WO3 surface vapour is significantly lower than MoO3. In 

KxMoO3 case, when mica substrate directly covers on the Mo foil, the concentration 

of MoO3 vapour is so high that the nucleation process suppresses the reaction with 

mica surface, resulting the low productivity of KxMoO3. While in KxWO3 case, when 

mica substrate is elevated, the concentration of WO3 vapour is so low that little 

reaction takes place, resulting low productivity of KxWO3. Consequently, the 

substrate is elevated in KxMoO3 case, but directly covers on foil in KxWO3 case. 

 

Temperature for nanostructure synthesis is optimized. KxWO3 nanostructures are 

produced in the temperature window ranged from 650 ℃ to 720 ℃, while nothing is 

observed when temperature is out of the range. The inferior temperature limit is 

determined by the high melting point of WO3. Higher temperature will accelerate the 

evaporation of WO3 vapour and prompt the synthesis. The superior temperature limit 

is determined by the structural stability of mica substrate. The mica substrate is heated 

under different temperature for 2 hrs and the XRD measurement is performed 

respectively to study the thermal stability of mica substrate. Figure 6.3 displays the 

peak denoting (004) surface125 after substrate is treated under different temperature. 
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The substrate displays distinct layered structure as shown by red curve with 

significantly large peak intensity. As heated in 600 ℃, the structure slightly deforms 

with distance between layers shifting a bit. It reduces the peak intensity and broadens 

the peak. However, the layered structure is still preserved and the peak position does 

not change as shown by green curve. As temperature increases to 750 ℃, the layered 

structure further deforms. Mica dehydrates as temperature increases and transforms to 

other material.52 The changed layer distance and the deformed structure block the 

diffusion channel of K ions between layers.58, 59 The formation of KxWO3 is thus 

terminated and no nano-material is produced. 

 

Figure 6.3 XRD spectrum of (004) surface of Mica substrate upon heating in different 

temperature for 2 hrs. 

 

The property of mica sets temperature limit for success synthesis of ion 

intercalated metal oxide nano-structure. As discussed in Chapter 3, the surface 

melting temperature of mica determines the inferior temperature limit, since metal 

oxide vapour should react with melted mica to form ion intercalated structure. The 

structure stability upon heating sets the superior temperature limit, for the layered 

structure of mica will be destroyed upon high temperature treating, which blocks the 

K ion diffusion between layers.  
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6.3 Characterization of K ion intercalated WO3 Nanobundle 

 

After the synthesis process described above, the ceramic boat is cooled down to 

room temperature, and nanostructures on mica substrate are transferred for further 

characterization. These characterization methods include morphology characterization 

by SEM, elemental composition and chemical state detection by EDX and XPS, 

lattice structure determination by TEM and XRD. 

 

Characterization 1: Morphology 

 

Figure 6.4 (a) Schematic of the position nanobundles grow (b) Top view SEM image 

displays nanobundle grown on the cleavage of mica substrate.  

 

The deposition of the oxidized W yields nanobundles on the cleavage of mica 

substrate, including the edge of substrate and steps on the top surface, as shown by 

schematic image in Figure 6.4(a). Figure 6.4(b) displays the top view SEM image of 

edge of the mica substrate. These nanobundles extend out of cleavage with a length of 

50~100 μm, a width of 500~700 nm and a thickness of 150~300 nm. Unlike KxMoO3 

nanobundles that packed in bundles on the top surface of substrate, the KxWO3 

nanobundles individually extend out of the cleavage. It should due to the low vapour 

concentration of tungsten oxide during the synthesis, the high activation energy on the 

steps and the presence of K ion channel on the cleavage surface. Thus, the amount of 

nanostructure at each growing point is quite small, and the KxWO3 nanobundle only 

extends out of the cleavage. These KxWO3 nanobundles vertically grow from the 
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cleavage, parallel with the layers of mica substrate, indicating the nanobundles adopt 

bottom up growth mechanism from the cleavage surface.  

 

Figure 6.5 (a) Typical morphology of a single KxWO3 nanobundle. The inset image is 

a zoom in image of the left end of the nanobundle (b) Zoom in image of the end of 

nanobundle. 

 

For further observation, individual nanobundle is transferred to Si substrate. 

Since the nanobundles are firmly attached to the substrate, only a segment of the 

nanobundle is transferred to Si substrate as shown in Figure 6.5(a) with the length, 

width and thickness of 21 μm, 550 nm and 250 nm respectively. The inset, displays 

the enlarged image of the left end of the nanobundle, indicating that the nanobundle is 

constructed by several parallel nanobelts. These nanobelts are much thinner with a 

width and a thickness of approximately 100 nm and 80 nm. The nanobundle structure 

is observed in all wires, as the side view from the end shown in Figure 6.5(b). These 

smaller nanobelts are regularly packed into layers. 

 

Characterization 2: Elemental Composition and Chemical States 

 

These nanobundles are transferred to TEM grid for further elemental analysis by 

micro-probe-station under microscope. Figure 6.6 shows the EDX spectrum elemental 

analysis for an individual nanobundle in TEM. The Cu peaks come from TEM grid 

while the K, W and O peaks originate from the nanobundle. It reveals that tungsten 

oxide nanobundle contains a significant percentage of K atoms (denoted as KxWO3). 
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The K:W ratio in the KxWO3 complex is fixed in the same nanobundle but differs 

between different nanobundles with x ranging from 0.18 to 0.28.  

 

Figure 6.6 EDX spectrum of individual nanobundle on TEM grid. 

 

 

Figure 6.7 XPS spectrum of W4f peaks in nanobundle. The raw data (red curve) is 

fitted by W6+ peaks (blue dash curve) and W5+ peaks (black solid curve). 

 

To further identify the material, XPS experiment is performed to measure the 

valence of W atoms in nanobundles. The energy distribution of W 4f photoelectrons is 

shown in Figure 6.7. The original data (red curve) is fitted by W6+ peaks (blue dash 
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curve) and W5+ peaks (black solid curve). The peaks at 36.1 eV, 38.2 eV and 42.0 eV 

represent emission from W 4f7/2, 4f5/2 and 5p3/2 levels from the W atoms in the 6+ 

oxidation state while the peaks at 34.4 eV, 36.6 eV and 40.2 eV come from W 4f7/2, 4f5/2 

and 5p3/2 levels from the W atoms in the 5+ oxidation state.121 The area ratio of W6+ 

over W5+ is around 4:3, revealing the valences of W is +5.57. For the most common 

K:W atomic percentage ratio found in individual nanobundles is ~0.23, the combined 

valencies of K and W is +5.80 in the material, considering the neutrality of the 

nanobundle, the stoichimetry of O is around 2.9, implying the existence of oxygen 

vacancies in the structure of WO3.  

 

Characterization 3: Lattice Structure 

 
Figure 6.8 (a~b) Electron diffraction pattern of the KxWO3 nanobundle along [010] 

zone axis, the highlighted blue rectangle formed by large bright spots represents the 

lattice structure of the K intercalated WO3. The inset image shows a TEM image of the 

typical KxWO3 nanobundle growing in the [001] direction.  

 

To characterize the structure of the complex, the selected area electron diffraction 

(SAED) pattern of the KxWO3 nanobundles on the (010) surface is shown in Figure 

6.8(a) with the inset image displaying a low-magnification TEM image of the 

nanobundle along the [001] growth direction. The nanobundle exhibits 

pseudo-rectangular diffraction pattern with β=90.37±0.02° along the [010] zone axis 

highlighted by blue rectangle formed by large bright spots. It represents the WO3 
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structure adopting a pseudo-orthorhombic configuration. Between every two bright 

spots, there is one weaker spot located in the middle along the [100] direction of the 

KxWO3 nanobundle indicated by white arrows. These smaller diffraction spots suggest 

that KxWO3 nanobundles possess a periodic superstructure with two primitive cells 

along the [100] direction. All nanobundles exhibit the same rectangular diffraction 

pattern, indicating the same pseudo-orthorhombic single crystalline structure in all 

wires. Figure 6.8(b) shows the diffraction pattern of another nanobundle. Rectangular 

diffraction pattern is observed, displayed by blue rectangle. Although the diffraction 

patterns are all the same, the distance between bright spots varies in different 

nanobundles, suggesting the different lattice constant in different nanobundles, which 

possibly induced by varied K ion concentration in nanobundles. 

 

Figure 6.9 Electron diffraction pattern of the nanobundle along the [122] zone axis. 

 

Since the diffraction pattern along the [010] zone axis only provides the structure 

information along a- and c- axes, the diffraction pattern along other zone axis is also 

captured to achieve lattice information along b-axis. Figure 6.9 shows the SAED 

pattern of the nanobundle along [122] zone axis, the diffraction pattern is similar with 

the projection of pseudo-orthorhombic structure along [122] zone axis. With the help of 

diffraction patterns along [010] and [122] zone axis, lattice constants of each 

individual nanobundle can be derived.  
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Table 6.1 The measured lattice constants of WO3 powder and KxWO3 nanobundle.  

 a(Ǻ) b(Ǻ) c(Ǻ) 

WO3 Exp. 7.40 7.60 7.79 

Rep.126  7.39 7.57 7.79 

KxWO3 X=0.18[a] 7.44 7.45 7.79 

Average[b] 7.58 7.32 7.81 

7.83 X=0.28[c] 7.63 7.15 

The data in [a] and [c] is calculated from TEM diffraction pattern, the data in [b] is 

calculated from XRD peaks with x around 0.23. 

 

 

Figure 6.10 Lattice constant (a) a and (b) c at various atomic percentage ratio of K over 

W. 

 

Upon the considerable uptake of K atoms in the WO3 structure, the 

pseudo-orthorhombic structure preserves with the expansion of a- c- axes and 

contraction of b-axis. Table 6.1 presents the lattice constant of individual KxWO3 

nanobundles with varied K concentration. As the K content in the lattice increases, the 

atomic percentage ratio of K over W (x) increases from 0.18 to 0.28, the lattice constant 

a increases from 7.44 Å to 7.63 Å, c-axis expands a bit from 7.79 Å to 7.83 Å and 

b-axis contracts from 7.45 Å to 7.15 Å. Lattice constant a and c under different atomic 

percentage of K are systematically studied as shown in Figure 6.10(a) and (b) 

respectively. Black squares present the calculated lattice constant, and these data 

points are exponential fitted shown by the red curves. The curve displays that both 

lattice constant a and c expand exponentially with the amount of K ions inserted, but to 

a different degree. It is noted that upon significant amount of K insertion (x=0.28), the 
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nanobundle maintains well aligned pseudo-orthorhombic single crystalline structure as 

displayed by SAED patterns. The transferred nanobundles are easily placed on the 

TEM grid with [010] direction perpendicular to the grid, it is hard to tilt the nanobundle 

to the suitable angle to achieve same diffraction pattern that contains information along 

the [010] direction for all nanobundles. Thus, the lattice constant b at various K 

concentrations is not systematically studied.  

 

Figure 6.11 XRD spectrum of WO3 powder (upper curve) and KxWO3 nanobundles 

(lower curve). 

 

Similar with the synthesis of KxMoO3 nanobundle, the KxWO3 nanobundle grows 

by the evaporated oxidized tungsten vapour reacting with cleavage surface of mica to 

form KxWO3 complex. With the continuous adsorption of WO3 vapour and K ions from 

mica substrate, KxWO3 becomes oversaturated on the cleavage surface and KxWO3 

nanobundle nucleates out of the surface in the preferred direction. According to the 

described growth mechanism, the structure of KxWO3 should be related to the initial 

WO3 powder where the oxidized tungsten vapour comes from. During synthesis 

procedure, the W foil is gradually oxidized and turns into yellow-green WO3 powders. 

The structure of these yellow-green WO3 powders suggests the structure of KxWO3 

with x=0. The X-ray diffraction is utilized to identify the structure of powder. Upper 
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curve of Figure 6.11 shows the powder exhibits orthorhombic structure of WO3 with 

lattice constant a =7.40 Å, b = 7.60 Å and c =7.79 Å, the values are consistent with the 

reported result (for better comparison, the experimental result and report result are list 

in Table 6.1).126 These values contribute to the first data points in Figure 6.10, which 

display the lattice constant of KxWO3 without K insertion.  

 

The KxWO3 nanobundles are also studied by XRD and the lower curve in Figure 

6.11 shows the structure of nanobundles. According to the structure of WO3, these 

three peaks denoting the (200), (020), (002) surfaces. From peak position, lattice 

constants of 7.81 Å, 7.58 Å, 7.32 Å are calculated corresponding to the peaks from 

left to right. Since the averaged K:W atomic percentage ratio measured by large scale 

EDX measurement is ~0.23 and the trend shown in Figure 6.10 suggest the averaged 

lattice constant should lie between the maximum and minimum value, three peaks are 

thus identified as (002), (200), (020) peaks respectively and the lattice constants 

determined are list in Table 6.1. The significant peaks confirm the 

pseudo-orthorhombic structure of the nanobundle analysed above. Compared with the 

fitting curve in Figure 6.10, the values of lattice constant a=7.58 Å and c=7.81 Å in 

the curve denoting the atomic percentage ratio of K over W is around 0.23, which is 

consistent with the measurement by EDX. 

 

According to previously reported formation of intercalated WO3 and reduced 

WO3, phase transition is observed to occur upon intercalation or chemical reduction. 

In these reported works, the monoclinic structure of WO3 upon intercalation proceeds 

to higher symmetry. In LixWO3 for example, this occurs initially by a phase transition 

to a tetragonal phase with x ~0.1 and later by phase transition to a cubic phase when 

x~0.36.117, 118 Upon chemical reduction, the structure of WO3 changes by crystal shear 

mechanism, where groups of edge sharing WO6 octahedra are rearranged along some 

crystallographic planes.119-121 In the case of tungsten oxide with similar stoichiometry 

W20O58, WO6 octahedras are rearranged with crystal shear planes along (103) direction 
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and the unit cell (monoclinic) is enlarged with a =12.1 Å, b =3.78 Å and c =23.4 Å.127 

These phase transitions are however not observed in our KxWO3 nanobundles, the 

pseudo-orthorhombic structure is preserved even with intercalation of great amount of 

K atoms and chemical reduction of WO3.  

 

We have effectively grow K intercalated WO3 nanobundles by thermal 

evaporation method on muscovite mica substrate. With the help of various 

experimental characterization techniques, we find that the pseudo-orthorhombic 

lattice structure and the layered structure remaining essentially intact upon K ion 

insertion. Considering the great amount of large size ion insertion (1.5 Å in size and 

~0.23 in atomic ratio), the deformation in the lattice is amazingly small. Compared 

with KxMoO3, the lattice deformation in KxWO3 is different with the contraction in b 

axis, while we naturally assume that ion insertion leads to layer expansion. It is 

possibly due to the different atomic bonding process. 

 

6.4 Electrical Properties of KxWO3 Nanobundle 

 

Electrical Conductivity at Room Temperature 

Alkali ion insertion would enhance the conductivity of the material. For electrical 

property measurement, individual nanobundle electrode device is next fabricated in 

the same process described in Chapter 2. Individual nanobundle is transferred from the 

growth substrate to SiO2/Si substrate and photolithography method is utilized to 

achieve designed metal (Au(400 nm)/Cr(10 nm)) finger electrodes (of gap ~15 μm) that 

make contact with the nanobundle. Figure 6.12 displays the SEM image of an 

individual KxWO3 nanobundle contacted by electrodes. The electrical measurements 

are carried out using Keithley 6430 source-measure unit.  
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Figure 6.12 SEM image of individual nanobundle contacted by electrodes. 

 

 

Figure 6.13 I-V curves of WO3 powder (black) and individual KxWO3 nanobundle 

(red). 

 

As a comparison, as-grown WO3 powder is compressed and deposited on similar 

electrode pattern on SiO2/Si substrate, the measured current is on the order of ca. 100 

nA at ca. 4 V, as shown in black curve in Figure 6.13. From the effective length of 

electrode (100 μm), separation between electrodes (15 μm) and thickness of the 

powder, we estimate the electric conductivity of the WO3 powder to be 10-4 S m-1, 
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consistent with the reported value of WO3 film.128 For the KxWO3 nanobundle, at room 

temperature, the measured current is 1.7 μA at a bias of 4 V (red curve in Figure 6.13). 

From the measured effective length and cross section of the nanobundle, the electric 

conductivity is estimated to be 40 S m-1. It is remarkable that the electrical conductivity 

is enhanced substantially by 5 orders of magnitude from 10-4 S m-1 of the WO3 powder 

to 40 S m-1 of the KxWO3 nanobundle. The I-V curve displays typical semiconductor 

behaviour of two materials. 

 

Figure 6.14 (a) Schematic setup of FET device (b) Current (Isd) versus source drain 

voltage (Vsd) curves recorded at different gate voltages (0, +20 V) for the device 

shown in (a). 

 

For FET measurement, the bottom of the device is scratched to remove the SiO2 

layer, and silver paint is plastered on the bottom of it. Gate voltage is applied from the 

bottom and the surface electrodes act as source and drain (Figure 6.14(a)). The current 

between source and drain Isd versus source drain voltage Vsd at different gate voltage is 

displayed in Figure 6.14(b). Clearly that Isd increases as gate voltage increases. The 

performance denotes the KxWO3 nanobundles exhibit n-type semiconductor behaviour 

with electrons as charge carriers. 

 

Temperature Dependent Electrical Conductivity 

To study the temperature effect on the conductivity, the device is mounted on the 

heating stage to systematically control the temperature of nanobundle. The inset 
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schematic image in Figure 6.15 displays the set up. The conductivity of the KxWO3 

nanobundles increases rapidly upon heating as shown in Figure 6.15. At the bias of 4 V, 

the current increases from 0.7 μA to 140 μA as the temperature increases from 23 ℃ 

to 200 ℃, raising the conductivity by 200 times from 40 to 8000 S m-1. The 

significant thermal enhanced conductivity suggests great amount of electrons are 

excited by thermal energy, and it indicates the small band gap of the nanobundle. 

 

Figure 6.15 I-V curves of KxWO3 nanobundle at different temperatures. Inset image 

shows the set up. 

 

 

Figure 6.16 Temperature dependence conductivity of the nanobundle in log scale at 

voltage of 4 V. 
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Subsequently, the conductivity at voltage of 4 V as a function of reciprocal of 

temperature is plotted on a log scale as shown in Figure 6.16. Two kinks in the curve 

are clearly observed at 331 K and 448 K. At the temperature below 331 K, 

conductivity does not change significantly. As temperature increases from 331 K to 

448 K, the log scale of conductivity varies linearly with reciprocal of temperature. In 

this region, electron conductivity increases exponentially with reciprocal of 

temperature. According to σ=neμ, where σ is the conductivity of nanobundle, μ is the 

mobility of electrons, n is the electron density, the mobility in the region does not 

vary significantly due to relatively low electron density. The electron conductivity is 

thus determined by electron density. And the variation of σ with temperature in this 

linear range can be attributed to the change of electron density with temperature. Base 

on the thermally activated transport model,62, 63 ln(𝑛) = ln(𝑛0) – W/2kT, where n is 

the electron density, n0 is the density value when T is infinity, k is the Boltzmann 

constant and W is the thermal activation energy. The thermal activation energy is 

determined to be around 1 eV based on the slope of a linear fit to the data (Figure 

6.16). The value suggests the energy required to thermally excite localized electrons 

to conduction band. The effect of phonon scattering increases for thermally excited 

lattice atoms and the effect becomes more prominent at high temperature due to 

sufficient high electron density. Consequently, above 448 K, the slope of conductivity 

decreases due to the decreasing mobility induced by significant phonon scattering. 

 

6.5 Theoretical Simulation of Lattice Structure and Band 

Structure  

 

To interpret the significantly enhanced conductivity, we perform density 

functional theory calculations to understand the structural and electronic properties of 

the pure and K-intercalated WO3 materials. Since the thicknesses and widths of the 

WO3 powders and the KxWO3 nanobundles are several orders of magnitude larger than 
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the size of atoms, we employ a 3-dimensional periodic bulk-like structure to model the 

present system. A 2×1×1 supercell of the pseudo-orthorhombic WO3 primitive lattice 

containing 16 W atoms and 48 O atoms (Figure 6.17(a)) is first selected to model the 

pure WO3 powder. The fully optimized lattice of the WO3 supercell, with the lattice 

constants a =7.45 Å, b = 7.65 Å and c =7.76 Å are in well agreement with the 

experimental data shown above and the reported XRD data,126 suggesting that our 

computational method is reliable for predicting structural information of the materials 

we deal with.  

 

Figure 6.17 Atomic structure of (a) WO3 and (b) K0.25WO2.875. 

 

Based on the stoichiometry of nanobundle, we substitute two O atoms with K 

atoms and place two K atoms as intercalants in the supercell. The optimized structure of 

K0.25WO2.875 in Figure 6.17(b) shows that, either as intercalants or occupants, K atoms 

finally relocate to the tunnel along [001] direction of the cell, where each K atom is 

encapsulated by 3 or 4 adjacent O atoms. The oxygen vacancies lead to slight distortion 

of the lattice, while the inserted K atoms cause an expansion of 0.2 Å along the a-axis, 

which is in good agreement with experimental observation.  
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Figure 6.18 The calculated band structure and the density of states (DOS) of (a) WO3 

and (b) K0.25WO2.875. 

 

The electronic structures of pseudo-orthorhombic WO3 and KxWO3 are calculated 

based on the optimized structure. The band structure and density of states of WO3 are 

displayed in Figure 6.18(a). The valence band is largely dominated by the 2p orbitals 

of oxygen, while the conduction band consists of chiefly the 5d states of tungsten with 

a significant contribution from the 2p states of oxygen. This calculated band structure 

of pseudo-orthorhombic WO3 with a direct band gap ~ 1.2 eV is consistent with other 

reports.129 The band structure of the K0.25WO2.875 lattice is depicted in Figure 6.18(b). 

Upon potassium uptake in the lattice, the electronic structure undergoes a substantial 

change due to the charge transfer from potassium to tungsten, which forces electrons 

to populate the conduction band. The projected density of states (PDOS) for the K-4s 

and W-5d states indicates that K atoms are fully ionized and the adjacent W atoms are 
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accordingly reduced, which is consistent with the observation from XPS measurement 

that averaged valencies of W ion reduces from +6 to +5.57. Because of the strong 

overlap between the W-5d orbitals and the O-2p orbitals in the conduction band, the 

transferred electrons are populated and readily delocalized, thus, the electrical 

conductivity is significantly enhanced.  

 

In the projected density of state of K0.25WO2.875 in Figure 6.18(b), the Fermi level 

(at 0 eV) is located in the conduction band and these electrons can easily be excited 

and delocalised to the higher energy states directly above upon heating as there are 

continuous available states in the conduction band (no gap). The excitation of these 

electrons to these states leaves unoccupied states, especially the ones near the bottom 

of conduction band. According to the band structure in Figure 6.18(b), the minimum 

energy to excite the valence electrons to the conduction band can be given by 

Conduction Band Minimum (CBM) – Valence Band Maximum (VBM) and it has a 

value of ~ 1 eV. Thus, the electrons in valence band require at least ~ 1 eV to be 

excited to these unoccupied states in conduction band to contribute to the measured 

current. Consequently, at relatively low temperature due to the insufficient thermal 

energy provided, electrons in valence band could not be excited to conduction band to 

increase the current density. As a result, below 331 K, the conductivity does not change 

with temperature as shown in Figure 6.16. When sufficient energy is provided, the 

localized electrons in valence band can be excited to the unoccupied states in 

conduction band and contribute to the conductivity. As such the electrical conductivity 

is greatly enhanced above 331K. Notably, the gap of ~1eV is close to the thermal 

activation energy for electrical conductivity shown in Figure 6.16.  

 

6.6 Photoelectrical Response Measurement  

 

The small activation energy of the material (~1 eV) implies the nanobundle is a 

viable candidate for the investigation of photon electrical response. Upon laser 
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illumination, localized electrons in nanobundle can be excited by photons and 

contribute to the current. The focused laser illumination system described in Chapter 

2 is utilized to study the photon electrical response of KxWO3 nanobundle. The green 

laser beam (λ=532 nm) is directed into the microscope via mirrors. Inside the 

microscope, the laser beam is reflected by a beam splitter towards a 100X objective 

lens. The objective lens focuses the laser beam onto the device that is positioned on 

the translation stage. The individual nanobundle electrode is the same as the device 

for electrical measurement shown in Figure 6.12. Focused laser beam with spot size 

around 2 µm and power 2 mW is locally directed at specific locations on the 

nanobundle as shown in Figure 6.19. In location Ⅰand Ⅲ, laser is focused on the left 

and right electrode-nanobundle junction respectively. In location Ⅱ, the spot lands on 

the middle of nanobundle.  

 

Figure 6.19 Schematic of focused laser beam locally irradiating at three different 

locations and three optical images showing the position of laser spot on nanobundle 

device. 

 

Photon Induced Electrical Measurement 

Figure 6.20 displays the measured current between electrodes when laser is 

directed at location Ⅰ without externally applied bias voltage. In the absence of laser 

beam irradiation, there is no current detected. The moment laser is present, current 
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increases to -9 nA within 50 ms. The current returns to 0 again when laser is blocked. 

It is noted that the photon induced current in the material is quite significant compared 

with other semiconductor nanomaterial with typical values ranging from ~10 pA to 

~500 pA under similar laser power.72, 77, 78 Since the size of laser spot (2 µm) is 

smaller than the gap between two electrodes (15 µm), the photon induced electrical 

measurement upon laser spot location could be subsequently systematically studied. 

 

Figure 6.20 Photon induced current measured when laser spot is directed at location 

Ⅰ without externally applied bias voltage.  

 

Focused laser beam is directed at different locations and the corresponding 

photon induced current is measured as shown in Figure 6.21. The distance indicated in 

the horizontal axis is measured with respect to the center of the nanobundle. The two 

broken lines denote the edge of electrodes and the nanobundle lies between two lines. 

Here we observe surprising photocurrent results at zero external bias. The photocurrent 

response exhibits an opposite polarity when the laser beam is focused at two different 

nanobundle-metal junctions. As focused laser spot moves from left junction to the 

center, the amplitude of photon induced current decreases gradually. When the 

focused laser beam is directed at the middle of the nanobundle, negligible photocurrent 

is observed. As the laser spot further move rightward, the polarity of photon induced 

current reverses and the amplitude gradually increases. The value achieves maximum 
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at the nanobundle-metal junction. When the laser spot moves from junction toward 

electrode, the amplitude of photon induced current gradually decreases.  

 

Figure 6.21 Photon induced current at different distance between center of laser spot 

and center of nanobundle at zero bias. Two red broken lines denote the edge of 

electrode and the nanobundle lies between two lines. 

 

The observed properties of the photocurrent can be interpreted by considering the 

nanobundle-gold system as a back-to-back Schottky diode model. Observations made 

in Figure 6.21 can be attributed to the properties of the Schottky barrier formed at the 

nanobundle-gold contacts. Shining of laser may facilitate an increase in the photon 

generated electrons to travel from nanobundles to the gold contact and give rise to the 

photocurrent. When the laser is shone onto the other contact, similar process occurs but 

the polarity of the photocurrent is reversed. When the laser is shone on the middle of the 

nanobundle, the charge carriers do not have sufficient energy to diffuse across the 

nanobundle and many are lost through recombination and scattering. Thus the 

photocurrent with laser shining on the middle of the nanobundle is found to be 

negligible. Similar observation is made in the case of Nb2O5 nanowires. 77, 78 In 

addition, the localized thermal heating caused by the focused laser can give rise to 

thermoelectric effect at the nanobundle-gold interface. This effect can give rise to net 

diffusion of electrons from the nanobundle to the gold electrode at the junction. 
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Similarly, the thermal effect will prompt electrons diffusion in opposite directions 

when shining the laser on the two junctions.  

 

Photon Enhanced Electrical Measurement 

 When external bias voltage is applied, under laser illumination, localized electrons 

are excited by photons and enhance the current. The set-up is shown in the inset image 

in Figure 6.22. The measured current between electrodes when laser is shone at 

location Ⅱ with an external applied bias voltage of 4V is displayed by the curve in 

Figure 6.22. When laser is blocked, current is around 1.42 µA. The moment laser is 

switched on, current increases to 1.82 µA in 12 s. The current drops to 1.42 µA again 

when laser is turned off. The current increases rapidly at the beginning (0.2µA in the 

first second) denoting that part of the excited electrons are originated from photon 

excitation, and the current further increases slowly (0.2 µA in the following 10 s) 

suggesting that part of excited electrons are originated from thermal effect.78 

 

Figure 6.22 Photocurrent measured under external bias voltage of 4 V with laser spot 

directed at location Ⅱ on the nanobundle device. Inset shows schematic of focused 

laser beam locally irradiating at three different locations under external bias. 

 

The photon enhanced electrical measurement upon laser spot location is further 

systematically studied. Focused laser is directed at different locations, the distance is 

measured with respect to the center of nanobundle, and the corresponding photon 
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enhanced current under external bias voltage of 4 V is detected as shown in Figure 

6.23. The two red broken lines denotes the edge of two electrodes and nanobundle lies 

between them. In the curve, the two highest amplitudes take place when laser spot is 

shone on the electrode-nanobundle junction (location Ⅰ & Ⅲ ). The amplitude 

gradually decreases a bit as laser spot moves to the center. When the laser spot lands on 

the middle part of nanobundle (from -10 µm to 10 µm), the values of current at every 

spots is almost the same. When laser spot is directed at location Ⅱ, only nanobundle 

contributes to the change of current. As shown in Figure 6.23, the current is enhanced 

by 0.4 µA. It suggests that significant amount of electrons are excited by the focused 

laser beam originated from nanobundle itself. In the center part of the nanobundle, the 

amplitude of enhanced current is almost the same. It suggests that the scattering and 

recombination of photon excited electrons under external bias is not significant. The 

enhanced amplitudes of photon current at both junctions are higher than the value in 

the center of nanobundle. The higher amplitude should due to the combined effects of 

photon excited electrons from nanobundle itself and nanobundle-electrode junction.  

 
Figure 6.23 The Photon enhanced current at different distance between center of laser 

spot and center of nanobundle under external bias voltage of 4 V. 

 

As discussed above, low energy is required for localized electrons to be excited to 

conduction band and contribute to the current. The difference between zero applied bias 

and non-zero applied bias is that with applied bias, the additional charge carriers can be 



 

 

117 

 

readily driven across the nanobundle and this gives rise to increase current. Regardless 

of where the laser is focused on the nanobundle, the photon generated charge carriers 

will be driven along the nanobundle in same direction. As a result, the polarity and 

amplitudes of enhanced current are similar as laser spot moves from left to right in 

Figure 6.23. Moreover, it should also be noted that the magnitude of the photocurrent 

with applied bias is much higher than the photocurrent obtained under zero bias. The 

external bias can readily overcome the mutual attraction between the electron-holes 

pair, separate and collect the charge carriers and this contributing to the higher 

photocurrent.  

 

6.7 Comparison with KxMoO3 nanobundle 

 

The same method is used to synthesis KxMoO3 and KxWO3 nanobundle. There 

are many similarities between these two materials, such as the similar amount of K 

ions being inserted, the preserved lattice structure, the nanobundle configuration, the 

high conductivity and photo-electrical response. However, there are many differences 

between them. Further investigation about the differences could reveal more insight 

about the growth mechanism and properties induced by ion insertion. Three main 

differences are discussed here, including the differences in growth orientation, lattice 

expansion and photoelectrical response.  

 

Growth orientation: Most of KxMoO3 nanobundles extend out of the surface in 

certain degree and many nanobundles are packed together on the substrate as displayed 

in Figure 6.24(a). While most of KxWO3 nanobundles extend out vertically from the 

cleavage surface of mica substrate and each nanobundles separate from each other as 

shown in Figure 6.24(b). The different amount of nanobundles should due to the 

different melting points of MoO3 and WO3. The melting point of WO3 (1473 ℃)123 is 

greatly higher than that of MoO3 (795 ℃)124, the concentration of WO3 surface 

vapour is thus significantly lower than MoO3 vapour during synthesis. It results in the 
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low concentration of WO3 nanobundles. However, the reason of different growth 

orientation of these two materials is not understood yet. Further research about the 

difference could provide insight about the growth mechanism of K ion intercalated 

nanostructure.

 

Figure 6.24 The morphology of mica substrate after the growth of (a) KxMoO3 

nanobundle (b) KxWO3 nanobundle.  

 

Lattice expansion: These two materials perform different lattice expansion as 

well. Upon 25% K ion intercalation, MoO3 expands in b and c axes for ~0.3 Å, and 

shrinks in a axis ~0.3 Å . WO3 expands in a axis ~0.2 Å and c axis ~0.02 Å, and shrinks 

in b axis ~0.4 Å. Meanwhile, the lattice variation trend in two materials are different. 

In KxMoO3, lattice constant a decreases linearly with the concentration of K ions as 

shown in Figure 6.25(a), while in KxWO3, lattice constant a changes exponentially 

with the concentration of K ions as shown in Figure 6.25(b). The different expansion 

direction and different variation trends in two materials possibly due to the different 

structure of MoO3 and WO3 and the different way K ions being intercalated in these two 

materials. Further theoretical simulation about it possibly reveal the atomic dynamics 

in lattice during ion insertion. 



 

 

119 

 

 

Figure 6.25 The lattice constant a under different atomic percentage ratio of (a) K 

over Mo in KxMoO3 nanobundle (b) K over W in KxWO3 nanobundle.  

 

Photo-electrical response: Although both materials show photo-electrical 

response, the laser spot location dependent behaviours are different. In KxMoO3 

nanobundle, the maximum laser induced photocurrent and laser enhanced 

photocurrent appears when laser spot fully lands on the nanobundle (shown in Figure 

4.12, Figure 4.17). While in KxWO3, the maximum value appears when laser spot 

lands on the metal-semiconductor junction (shown in Figure 6.21, Figure 6.23). The 

different behaviour should due to the different working functions of two materials. In  

KxWO3, the working function of the material is possibly lower than that of contact 

metal, and the metal-semiconductor Schottky barrier is established. Upon laser 

illumination, electrons in the semiconductor could be excited to metal over the barrier, 

and contribute to the current. Thus, the maximum photocurrent appears when laser is 

directed on the junction. While the working function of KxMoO3 is possibly higher 

than that of contact metal, thus, there is no Shottky barrier established and no 

photocurrent contribution from the junction. Obviously, the working function of 

MoO3 and WO3 are changed upon K ion insertion, but the values are different. Further 

theoretical calculation could reveal the mechanism of modifying working function by 

ion insertion. 
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6.8 Summary of Results 

 

In summary, we have successfully synthesize K intercalated WO3 nanobundles 

with the pseudo-orthorhombic structure remaining essentially intact by the simple 

method. The nanobundles adopt a bottom-up growth model via thermal evaporation to 

intercalate K atoms into the WO3 lattice. Although great amount of K atoms are 

inserted, the lattice constant expand or contract in small amount and the 

pseudo-orthorhombic single crystalline lattice structure preserves. Compared with 

KxMoO3 nanobundle, the amount of ions being inserted, the morphology (nanobundle 

configuration) and lattice structure after ion insertion are similar. It suggests the same 

ion insertion process in both materials. The success ion intercalation illustrates that 

the method is applicable to intercalate ions in other metal oxide nanostructures.  

 

Using individual nanobundle electrode device, we measure the I-V curves of the 

KxWO3 nanobundle. It is found that the material displays 5 orders higher electric 

conductivity than pure WO3 and the conductivity further increases by 200 times at 

elevated temperature. Density functional theory is used to elucidate the structure of the 

KxWO3 and to understand the origin of the high conductivity behaviour of the material. 

The calculated band structure of the K0.25WO2.875 indicates the K atoms are fully 

ionized, giving rise to the reduction of the adjacent W atoms, which is consistent with 

the observation from XPS measurement. As a consequence, the conduction band is 

populated, leading to electron delocalization and high conductivity of the nanobundle. 

Based on the calculated band structure, these delocalized electrons are easily excited 

to available states above and leave the states unoccupied and thus available to 

electrons in valence band at ~1 eV below. The value is consistent with the measured 

thermal activation energy of the nanobundle and the mechanism explains the 

significant enhancement of electrical conductivity upon heating (increases 200 times 

from 23 ℃ to 200 ℃). Under focused laser illumination, the nanobundle displays 

significant photon induced current (9 nA) without external bias at low laser power (2 
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mW), the amplitude and polarity of photocurrent can be controlled by location of laser 

spot. The photon electrical response is due to the combined effect of photon excited 

electrons from nanobundle itself and from nanobundle-electrode junction. 

 

The high electrical conductivity, the significant photon electrical response, the 

reduced metal ions and the deformed band structure, all these properties of WO3 after 

K ion insertion are the same as KxMoO3. It suggests that these properties are induced 

by the inserted great amount of K ion in the structure. We envisage that by the same 

ion insertion method, great amount of K ions could be inserted and similar properties 

will be introduced to other ion intercalated metal oxide nanostructure. Besides the 

similarities, there are some differences between KxMoO3 and KxWO3, including the 

difference in growth orientation, lattice deformation and photo-electrical response. 

Further research on these differences will provide insight about ion insertion 

mechanism and ion insertion induced properties. 
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Chapter 7 Conclusion and Future 

Works 

 

MoO3 and WO3 are widely studied for their broad applications in many industry 

fields, including photochromic devices, electrochromic devices, ion batteries, gas 

sensors and catalysts. The properties of these two materials are significantly improved 

by intercalation and nano-configuration separately. To further enhance the properties 

of materials, intercalation and nano-configuration should be combined together. Much 

effort has been spent on intercalating ions into nanostructure to achieve better 

properties. However, the existing methods have various limitations, such as structure 

deformation upon ion intercalation, multi-step process and ion size limitation. In this 

thesis, we developed a simple one step method to intercalate K ions into MoO3 and 

WO3 single crystalline nanostructure, and the layered structures of both materials 

were preserved with a great amount of large size ion insertion. Further, we studied the 

properties of both nano-materials after ion insertion. Excitingly, we found that these 

materials possessed many new properties, in particular, high conductivity, 

photoelectrical response and electromigration behaviour. 

 

Ion insertion method 

Thermal evaporation on mica substrate was used to grow K intercalated MoO3 

nanobundles. During the synthesis process, the continuous absorption of K+ from 

mica substrate and MoO3 vapour promoted the growth of KxMoO3 nanobundles. Our 

results suggest that the K atoms in the nanobundles most likely occupy the O vacancy 

sites. This structural arrangement allows the K atoms to be intercalated without 

incurring large distortion of the MoO3 layered structure. The same method was applied 

to grow K ion intercalated WO3 nanostructure. The single crystalline nanostructure 
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was successfully synthesized with the same growth mechanism. Although great 

amount of K ions was inserted, the pseudo-orthorhombic structure remained 

essentially intact. The success of applying the method in synthesizing two kinds of 

materials suggests the possibility to adopt the method to intercalate large ions into 

other metal oxides nanostructures without destroying the structures. 

 

High Electrical Conductivity 

With the use of a single nanobundle fabricated device, the electrical properties of 

the KxMoO3 nanobundles were measured. It was found that the electric conductivity of 

MoO3 dramatically was enhanced 7 orders upon potassium uptake, and the 

conductivity was further increased 25 times as the temperature increased from 23 °C to 

142 °C. Consequently, the current in an individual nanobundle could rise up to 0.15 

mA at bias of 5 V. It is notable that the value is greatly significant compared with the 

current (in nA range) in other semiconductor nanomaterials under the same bias 

voltage. Similar high conductivity was observed in K intercalated WO3 nanobundle. 

The nanobundles displayed a five fold increase in the electrical conductivity upon 

potassium intercalation. The electrical conductivity also increased by ~200 times as 

temperature increased from 23℃ to 200℃. The substantial high electric conductivity 

attributed to ion intercalation has not been observed in other reports. Theoretical 

calculation indicates that inserted K ions are fully ionized and transfer charges to 

Mo/W. It forces electrons to populate in the conduction band and leads to the high 

electrical conductivity of both materials. The increased high electrical conductivity 

after intercalation in both materials suggests that intercalating great amount of ions 

into the structure could significantly and efficiently modify the electrical properties of 

nanomaterials. 

 

Photoelectrical Response 

Pure MoO3 and WO3 did not display photo-electrical response due to their large 

band gap. After intercalation with K ions, photon induced voltage/ photon induced 



 

 

124 

 

current in individual K enriched MoO3/WO3 nanobundle was observed under 

irradiation of localized focused laser beam. Without external bias voltage, significant 

photon induced voltage (36.5 mV) /photon induced current (9 nA) was produced in 

single nanobundle under low laser power (2.2 mW). Remarkably, the amplitude and 

polarity of the voltage/current could be controlled by the location of focused laser spot. 

Unlike the common photon response that comes from metal-semiconductor junction or 

PN junction in hybrid nanomaterial, the observed photon induced effect is from 

nanobundle itself and attributed to small band gap of the material. The significant 

photoelectrical response in both two materials after intercalation suggests that 

intercalating ions into the structure could modify the band structure of the material 

and induce photoelectrical response property. 

 

Electromigration Behavior 

Due to the high current density, the momentum transferred from moving 

electrons is large enough to drive K ions. In addition to the high concentration of K 

ions, the preserved layered structure and low hopping barrier of ions, intercalated K 

ions could rapid and reversible migrate within a layered single crystalline KxMoO3 

nanobundle. The duration required to induce significant accumulation of K ions and 

relaxation time of accumulated ions were significantly shorter than the value reported 

in other interstitial systems. The reversible ion movement was repeated for hundred 

times and remarkably there were no obvious sign of structural damage in the 

nanobundle. It is noted that, the electromigration is always observed in the metal and 

induces cracks or piles in the material, while our material is semiconductor and the 

morphology preserves after hundred rounds. The observation in our material opens a 

new direction for the study of electromigration effect and provides new insight about 

the mechanism of electromigration behaviour. 
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Future Works 

Besides the well studied phenomenon described above, there are still some 

interesting performances of KxMoO3 nanobundle not systematically investigated, 

including electro-chromic effect, self-growth behaviour and superstructure. 

 

Electro-chromism Effect 

 

Figure 7.1 The optical image of nanobundle (a) before applied voltage (b) after 

applied voltage and current flow from electrode 1 to electrode 2 for ~1min (c) after 

applied current for ~3 min (d) ~5 min (e) ~7 min (f) ~9 min (g) ~10 min. The 

schematic image below each figure shows the color of KxMoO3 nanobundle at each 

step.  

 

 The KxMoO3 nanobundle is transparent under optical microscope. Through the 

nanobundle, we can observe the dark purple color of SiO2 substrate as shown in 

Figure 7.1(a). As voltage of +5 V is applied between electrodes and current flows 

from electrode 1 to electrode 2 for ~1 min, part of nanobundle that near the electrode 

1 turns to black, while the remaining part is still transparent (Figure 7.1(b)). As the 

time increases (Figure 7.1(c)~(f)), the black part gradually extends towards electrode 

2 and finally the whole nanobundle turns into black (Figure 7.1(g)). The schematic 

images below each figures show the color of nanobundle at each step. It takes ~10 
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min for 10 μm long nanobundle to change from transparent (Figure 7.1(a)) to fully 

black (Figure 7.1(g)). The performance is similar to electrochromism effect, in which 

the color of MoO3/WO3 changes from transparent to blue upon ion and electron 

insertion. However, in our case, K ions are already inserted, and the appearance of 

electron flow results in the color change. The mechanism of such electrochromism 

effect is not understood yet. 

 

Self-growth Behaviour 

 

Figure 7.2 SEM image of individual KxMoO3 nanobundle (a) before annealing (b) 

after annealing at 450 ℃ for 20 min (c) zoom in image of the edge of nanobundle in 

(b). (d) The nanobundle fully transforms into new KxMoO3 nanostructures. 

 

 To investigate the thermal stability of KxMoO3 nanobundle, individual 

nanobundle is transferred to Si substrate and annealed under different temperature. 

When the nanobundle is annealed in ambient below 400 ℃ for 20 min, the 

morphology of nanobundle is preserved. When the temperature increases to 450 ℃, 
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the nanobundle is partly melted and new nanostructure forms around the nanobundle. 

When annealed at 500℃, the nanobundle is fully melted and transformed into liquid 

spot. The self-growth behavior is observed when nanobundle is heated at 450 ℃. 

Figure 7.2(a) displays the morphology of nanobundle before annealed. Clearly, the 

sharp edge and layered structure is observed. Figure 7.2(b) shows the nanobundle 

after annealing, the surface of nanobundle is partly melted, the edge becomes smooth 

and new nanostructure extends out from the nanobundle. These nanostructures grow 

from the melted surface and extend out in certain orientation. The nanostructure 

possess nanobelt configuration, the top of these nanostructures gradually shrink and 

all structures show same width as shown in Figure 7.2(c). Some KxMoO3 nanobundles 

are fully transformed into these new nanostructures as shown in Figure 7.2(d). The 

Raman spectrum of the self-grow nanostructures is exactly the same as KxMoO3 

nanobundle, denoting the same lattice structure and component as KxMoO3 

nanobundle. According to the proposed growth mechanism of KxMoO3 nanobundle, 

KxMoO3 nanobundle extends out due to the over saturation of KxMoO3 liquid. 

Similarly, the over saturation of KxMoO3 liquid on the partly melted surface of 

nanobundle promotes the self-growth of new KxMoO3 nanostructure. The details of 

growth mechanism are not fully understood, such as the mechanism of same width of 

all new nanobelts, the difference between old KxMoO3 nanobundle and new KxMoO3 

nanostructure, etc.. Future works need to be carried out. 

 

Superstructure 

 Although the lattice structure of MoO3 and WO3 is preserved, super structure is 

observed after K ion insertion. Figure 7.3(a) shows the diffraction pattern of 

individual KxMoO3 nanobundle on (010) surface. As described in Chapter 3, the 

yellow rectangle constructed by four bright spots denotes the orthorhombic lattice 

structure of MoO3. Along [100] direction, there are always 5 small spots evenly 

distributed between two bright spots, as shown by the white arrows in Figure 7.3(a). It 

suggests the super structure along [100] direction in every 6 units. The super structure 
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is observed in all nanobundles, regardless the variation of K ion concentration (atomic 

percentage ratio of K over Mo ranges from 20% to 25%) in different nanobundles. 

Similar phenomenon is observed in KxWO3 nanobundle. Figure 7.3(b) shows the 

diffraction pattern of individual KxWO3 nanobundle on (010) surface. The blue 

rectangle constructed by bright spots denotes the pseudo-orthorhombic lattice 

structure of WO3. Along [100] direction, one small spot appears in the middle of 

every two bright spots, as shown by the white arrows in Figure 7.3(b). It suggests the 

super structure along [100] direction in every 2 units. The super structure is observed 

in all nanobundles, regardless the variation of K ion concentration in different 

nanobundles. In both KxMoO3 nanobundle and KxWO3 nanobundle, the 

superstructure appears in the direction perpendicular to the growth direction. The  

mechanism of super structure is not clearly understood. It is possibly due to the 

periodic alignment of K ions in the structure. Further study on it will reveal brand new 

method to create super structures and get deeper insight about structure dynamics. 

 

Figure 7.3 (a) Electron diffraction pattern of KxMoO3 nanobundle on (010) surface, 

the yellow rectangle constructed by large bright spots represents lattice structure of K 

intercalated MoO3, inset image shows TEM image of typical KxMoO3 nanobundle 

growing in [001] direction, white arrows highlight the superstructure. (b) Electron 

diffraction pattern of the KxWO3 nanobundle on (010) surface, the blue rectangle 

formed by large bright spots represents the lattice structure of the K intercalated WO3. 

The inset image shows a TEM image of the typical KxWO3 nanobundle growing in the 

[001] direction. White arrows highlight the superstructure. 
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In addition to these interesting properties of individual nanostructure, the 

properties in other applications, where large amount of nanobundles are required, 

should be systematically studied as well, such as the application in Li ion battery. 

However, the amount of nanobundles is not large enough by the current method and 

the mica substrate is not conductive. Future work should be carried out in enhancing 

the productivity of nanobundles and transferring them to conductive substrate. One 

possible way to increase productivity is creating steps on mica substrate by 

micro-etching method. Considering the wonderful properties of individual 

nanobundle, it is reasonable to expect good performance of K enriched MoO3 or WO3 

in these applications. 

 

In KxMoO3 and KxWO3, the x ranges from 0.2 to 0.25. As we know, the 

properties of material will changes as the amount of intercalated ions varies. We can 

assume that as x increases from 0.2 to 0.25, the properties such as conductivity, 

photo-electrical response should changes accordingly. However, after the nanobundle 

is made into device, the precise atomic percentage of K could not be detected by TEM. 

The silicon substrate is too thick for electron transmission in TEM. Further effort 

should made to systematically explore the properties of nanobundle under different K 

concentration. 

 

Although the chemistry stoichiometry of KxMoO3 nanostructure is similar with 

potassium molybdenum bronze (K0.3MoO3), the structure of K0.3MoO3 is quite 

different with the KxMoO3 nanobundle (as discussed in Chapter 1). Since the different 

structures lead to varied properties, the extensive studies about the K0.3MoO3 are not 

discussed in the thesis. However, there are some similarities between these two 

materials, such as layered structure (although in different orientations), similar amount 

of K ions being intercalated, it should be quite useful to carry out further research 

about KxMoO3 nanobundle in the field where K0.3MoO3 are extensively studied by 
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physicists, particularly in areas focusing on charge density waves. The comparison 

between these two materials in those fields possibly provides further insight.  

 

Besides the further study about the properties of KxMoO3 nanobundle and 

KxWO3 nanobundle, our simple, one-step synthesis method can be modified to 

develop various ion intercalated nanostructures. Firstly, besides the muscovite mica 

KAl2(AlSi3O10)(F,OH)2 we use, there are many other kinds of mica with different 

components and ion concentration, such as Lepidolite (KLi2Al(Al,Si)3O10(F,OH)2.  

It possibly introduces the insertion of different ions when different kinds of mica 

substrate is utilized during synthesis. Secondly, we can try to intercalate K ions into 

other layered nanomaterials by similar method, such as MoS2 nanostructure. The ion 

intercalation in these materials would modify the band structures and electric 

properties of the materials, and finally introduce many new applications. 

 

 

  



 

 

131 

 

Bibliography 

[1] C. N. R. Rao, Annu. Rev. Phys. Chem. 40, 291-326 (1989). 

[2] Tao He, Jiannian Yao, Journal of Photochemistry and Photobiology C: 

Photochemistry Reviews 4, 125–143 (2003). 

[3] C. G. Granqvist, Solar Energy Materials & Solar Cells 60, 201-262 (2000). 

[4] J. M. Tarascon, M. Armand, Nature 414, 359-367 (2001). 

[5] G. Eranna, B. C. Joshi, D. P. Runthala and R. P. Gupta, Critical Reviews in Solid 

State and Materials Sciences 29, 111-188 (2004). 

[6] Gerhard Mestl, Topics in Catalysis 38, 69-82 (2006). 

[7] http://en.wikipedia.org/wiki/Periodic_table. 

[8] Ekhard Salje, Acta Cryst. B 33, 574-577 (1977). 

[9] J. Scarminio, A. Lourenco, A. Gorenstein, Thin Solid Films 302, 66-70 (1997). 

[10] K. Ajito, L. A. Nagahara, D. A. Tryk, K. Hashimoto and A. Fujishima, J. Phys. 

Chem. 99, 16383-16388 (1995). 

[11] Se-Hee Lee, Hyeonsik M. Cheong, Ji-Guang Zhang, Angelo Mascarenhas, David 

K. Benson, and Satyen K. Deb, Appl. Phys. Lett. 74, 242-244 (1999). 

[12] David R. Rosseinsky, Roger J. Mortimer, Adv. Mater. 13, 783-793 (2001). 

[13] Gunnar A. Niklasson, C. G. Granqvist, J. Mater. Chem. 17, 127-156 (2007). 

[14] G.M. Sottile, Materials Science and Engineering B 119, 240-245 (2005). 

[15] Su-Lan Kuai, Georges Bader, and P. V. Ashrit, Appl. Phys. Lett. 86, 221110 

(2005). 

[16] Norihisa Kobayashi, Mami Nishimura, Hirosada Ohtomo, Electrochimica Acta 

50, 3886-3890 (2005). 

[17] http://electronics.howstuffworks.com/everyday-tech/lithium-ion-battery1.htm. 

[18] Natasha A. Chernova, Megan Roppolo, Anne C. Dillon and M. Stanley 

Whittingham, J. Mater. Chem. 19, 2526-2552 (2009). 

[19] Maosong Tong, Guorui Dai, Yuanda Wu, Xiuli He and Dingsan Gao, Journal of 

Materials Science 36, 2535-2538 (2001). 

[20] A.K. Prasad, D.J. Kubinski, P.I. Gouma, Sensors and Actuators B 93, 25-30 

(2003). 

[21] D. Mutschall, K. Holzner, E. Obermeier, Sensors and Actuators B 35-36, 

320-324 (1996). 

[22] M. Chen, C. M. Friend and Efthimios Kaxiras, J. Am. Chem. Soc. 123, 

2224-2230 (2001). 

[23] J. N. Yao, K. Hashimoto and A. Fujishima, Nature 355, 624-626 (1992). 

[24] Yuzhi Zhang, Sulan Kuai, Zhongchun Wang and Xingfang Hu, Applied Surface 

Science 165, 56-59 (2000). 

[25] F. Leroux, G. R. Goward, W. P. Power and L. F. Nazar, Electrochem. Solid-State 

Lett. 1, 255-258 (1998). 

[26] M. Dhanasankar, K.K. Purushothaman, G. Muralidharan, Materials Research 

Bulletin 45, 1969-1972 (2010). 



 

 

132 

 

[27] Hideyuki Tagaya, Kensuke Ara, Jun-ichi Kadokawa, Masa Karasu and Koji 

Chiba, J. Mater. Chem. 4, 551-555 (1994). 

[28] M. E. Spahr, P. Novák, O. Haas, R. Nesper, Journal of Power Sources 54, 

346-351 (1995). 

[29] Tarsame S. Sian and G. B. Reddyz, J. Electrochem. Soc. 152, A2323-A2326 

(2005). 

[30] Yuzhi Zhang, Jiaguo Yuan, Yunzhen Cao, Lixin Song, Xingfang Hu, Journal of 

Non-crystalline solids 354, 1276-1280 (2008). 

[31] S.S. Mahajan, S.H. Mujawar, P.S. Shinde, A.I. Inamdar, P.S. Patil, Applied 

Surface Science 254, 5895–5898 (2008). 

[32] A.C. Dillon, A.H. Mahan, R. Deshpande, P.A. Parilla, K.M. Jones, S-H. Lee, 

Thin Solid Films 516, 794-797 (2008). 

[33] Se-Hee Lee, Rohit Deshpande, Phil A. Parilla, Kim M. Jones, Bobby To, A. Harv 

Mahan, and Anne C. Dillon, Adv. Mater. 18, 763-766 (2006). 

[34] J. Maier, Nat. Mater. 4, 805-815 (2005). 

[35] Praveen Meduri, Ezra Clark, Jeong H. Kim, Ethirajulu Dayalan, Gamini U. 

Sumanasekera and Mahendra K. Sunkara, Nano Lett. 12, 1784-1788 (2012). 

[36] Liang Zhou, Lichun Yang, Pei Yuan, Jin Zou, Yuping Wu and Chengzhong Yu, 

J. Phys. Chem. C 114, 21868-21872 (2010). 

[37] Andrew N. Shipway, Eugenii Katz, and Itamar Willner, Chem. Phys. Chem. 1, 

18-52 (2000). 

[38] E. Comini, L. Yubao, Y. Brando, G. Sberveglieri, Chemical Physics Letters 407, 

368-371 (2005). 

[39] W.G. Chu, L.N. Zhang, H.F. Wang,Z.H. Han,D. Han,Q.Q. Li,S.S. Fan, J. Mater. 

Res. 22, 1609-1617 (2007). 

[40] Y. L. Xie, F. C. Cheong, Y. W. Zhu, B. Varghese, Rajesh Tamang, A. A. Bettiol, 

and C. H. Sow, J. Phys. Chem. C 114,  (2010). 

[41] Tarsame S. Sian, G. B. Reddyz, J. Electrochem. Soc. 152, A2323-A2326 (2005). 

[42] Joseph W. Bullard III, Richard L. Smith, Solid State Ionics  160, 335– 349 

(2003). 

[43] Liqiang Mai, Bin Hu, Wen Chen, Yanyuan Qi, Changshi Lao, Rusen Yang, Ying 

Dai and Zhong Lin Wang, Adv. Mater. 19, 3712-3716 (2007). 

[44] Zhe Zheng, Bin Yan, Jixuan Zhang, Yumeng You, Chwee Teck Lim, Zexiang 

Shen, and Ting Yu, Adv. Mater. 20, 352-356 (2008). 

[45] http://en.wikipedia.org/wiki/Scanning_electron_microscope. 

[46] http://en.wikipedia.org/wiki/SAED. 

[47] http://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy. 

[48] http://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy. 

[49] Pascale Delporte, Frédéric Meunier, Cuong Pham-Huu, Philippe Vennegues, and 

Marc J. Ledoux, Jean Guille, Catalyst Today 23, 251-267 (1995). 

[50] M. Anwar, C. A. Hogarth and R. Bulpett, Journal of Materials Science 24, 

3087-3090 (1989). 

[51] 2002 JCPDS (Card No. 89-5108) International Centre for Diffraction Data. 

[52] N.D. Chatterjee and W. Johannes, Contrib. Mineral. Petrol. 48, 89-114 (1974). 



 

 

133 

 

[53] M. A. PY, PH. E. Schimid and J. T. Vallin, Il Nuovo Cimento B 38 271-279 

(1977). 

[54] Rudy Coquet and David J. Willock, Phys. Chem. Chem. Phys. 7, 3819-3828 

(2005). 

[55] C.V. S. Reddy, Z. R. Deng, Q. Y. Zhu, Y. Dai, J. Zhou, W. Chen, S.-I. Mho, 

Apply Phys. A 89, 995-999 (2007). 

[56] Israel E. Wachs, Catalysis Today 27, 437-455 (1996). 

[57] Hendrik Heinz, Hein J. Castelijns and Ulrich W. Suter, J. Am. Chem. Soc. 125, 

9500-9510 (2003). 

[58] George L. Gaines Jr., J. Phys. Chem. 61, 1408–1413 (1957). 

[59] J. H. Chute, J. P. Quirk, Nature 18, 1156-1157 (1967). 

[60] T. M. Barbara, G. Gammie, J. W. Lyding, and J. Jonas, Journal of Solid State 

Chemistry 75, 183-187 (1988). 

[61] A. M. Hashem, M. H. Askar, M. Winter, J. H. Albering and J. O. Besenhard, 

Ionics 13, 3-8 (2007). 

[62] S. M. Sze, and K. K. Ng, “Physics of Semiconductor De-vice,” 3rd Edition, 

Wiley, New York,pp. 21-25. (2007). 

[63] Kien-Wen Sun, Ting-Yuan Fan, Materials Sciences and Applications 1, 8-12 

(2010). 

[64] Josh Goldberger, Donald J. Sirbuly, Matt Law, and Peidong Yang, J. Phys. Chem. 

B 109, 9-14 (2005). 

[65] Xianwei Sha, Liang Chen, Alan C. Cooper, Guido P. Pez, and Hansong Cheng, J. 

Phys. Chem. C 113, 11399–11407 (2009). 

[66] Graeme Henkelman, Andri Arnaldsson, Hannes Jo´nsson, Computational 

Materials Science 36, 354-360 (2006). 

[67] Yat Li, Fang Qian, Jie Xiang, and Charles M. Lieber, Mater. Today 9, 18-27 

(2006). 

[68] Wei Lu and Charles M. Lieber, Nature Mater. 6, 841-850 (2007). 

[69] Matt Law, Lorie. Greene, Justin C. Johnson, Richard Saykally and Peidong Yang, 

nature materials 4, 455-459 (2005). 

[70] Bozhi Tian, Thomas J. Kempa and Charles M. Lieber, Chem. Soc. Rev. 38, 16-24 

(2008). 

[71] Q. H. Li, Y. X. Liang, Q. Wan, and T. H. Wang, Appl. Phys. Lett. 26, 6389-6391 

(2004). 

[72] ZhiMin Liao, Jun Xu, JingMin Zhang, and DaPeng Yu, Appl. Phys. Lett. 93, 

023111 (2008). 

[73] C. Colombo, M. Hei, M. Grätzel, and A. Fontcuberta i Morral, Appl. Phys. Lett. 

94, 173108 (2009). 

[74] Bozhi Tian, Xiaolin Zheng, Thomas J. Kempa, Ying Fang, Nanfang Yu, Guihua 

Yu, Jinlin Huang & Charles M. Lieber, Nature 449, 885-890 (2007). 

[75] Michael D. Kelzenberg, Daniel B. Turner-Evans, Brendan M. Kayes, Michael A. 

Filler, Morgan C. Putnam, Nathan S. Lewis, and Harry A. Atwater, Nano Lett. 8, 

710-714 (2008). 



 

 

134 

 

[76] Y. Gu, E.-S. Kwak, J. L. Lensch, J. E. Allen, T. W. Odom, L. J. Lauhon, Appl. 

Phys. Lett. 87, 043111 (2005). 

[77] Binni Varghese, Rajesh Tamang, Eng Soon Tok, Subodh G. Mhaisalkar and 

Chorng Haur Sow J. Phys. Chem. C 114, 15149-15156 (2010). 

[78] Rajesh Tamang, Binni Varghese, Subodh G Mhaisalkar, Eng Soon Tok and 

Chorng Haur Sow, Nanotechnology 22, 115202 (2011). 

[79] Jiwoong Park, Y. H. Ahn, Carlos Ruiz-Yargas, Nano Lett. 9, 1742-1746 (2009). 

[80] Y. H. Ahn, A. W. Tsen, Bio Kim, Yung Woo Park, and Jiwoong Park, Nano Lett. 

7, 3320-3323 (2007). 

[81] Binni Varghese, Bablu Mukherjee, K. R. G. Karthik, K. B. Jinesh, S. G. 

Mhaisalkar, Eng Soon Tok, and Chorng Haur Sow, J. Appl. Phys. 111, 104306 

(2012). 

[82] Thomas J. Kempa, Bozhi Tian, Dong Rip Kim, Jinsong Hu, Xiaolin Zheng, and 

Charles M. Lieber, Nano Lett. 8, 3456-3460 (2008). 

[83] Sarah R. Cowan, R. A. Street, Shinuk Cho, and A. J. Heeger, Phys. Rev. B 83, 

035205 (2011). 

[84] K. Wang, J. J. Chen, Z. M. Zeng, J. Tarr, W. L. Zhou, Y. Zhang, Y. F. Yan, C. S. 

Jiang, J. Pern, and A. Mascarenhas, Appl. Phys. Lett. 96, 123105 (2010). 

[85] D. G. Pierce and P. G. Brusius, Microelectron. Reliab. 37, 1053-1072 (1997). 

[86] Richard S. Sorbello, Solid State Physics 51, 159-231 (1997). 

[87] Paul S Ho and Thomas Kwok, Rep. Prog. Phys. 52, 301-348 (1989). 

[88] J van Ek and A Lodder, J. Phys.: Condens. Matter 3, 7331-7361 (1991). 

[89] J van Ek and A Lodder, J. Phys.: Condens. Matter 3, 8403-8416 (1991). 

[90] J. R. Lloyd, Semicond. Sci. Technol. 12, 1177-1185 (1997). 

[91] B. C. Regan, S. Aloni, R. O. Ritchie, U. Dahmen & A. Zettl, Nature 428, 

924-927 (2004). 

[92] M. A. Haase, J. M. DePuydt, H. Cheng, and J. E. Potts, Appl. Phys. Lett. 58, 

1173-1174 (1991). 

[93] J. R. Lloyd, M. R. Polcari, G. A. Mackenzie, Appl. Phys. Lett. 36, 428-430 

(1980). 

[94] H. Ohtsuka, Y. Sakurai, Solid State Ionics 144, 59–64 (2001). 

[95] José-Luis Mozos, Pablo Ordejón, and Enric Canadell, Physical Review B 65, 

233105 (2002). 

[96] L. M. S. Alves, V. I. Damasceno, C. A. M. dos Santos, A. D. Bortolozo, P. A. 

Suzuki, H. J. Izario Filho, A. J. S. Machado, and Z. Fisk, Physical Review B 81, 

174532 (2010). 

[97] J. Graham, A. D. Wadsley Acta Cryst. 20, 93-100 (1966). 

[98] J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra, C. 

Leon, S. J. Pennycook, J. Santamaria, Science 321, 676-680 (2008). 

[99] Tatsumi Ishihara, Hideaki Matsuda, and Yusaku Takita, J. Am. Chem. Soc. 116, 

3801-3803 (1994). 

[100] H. Nakajima, M. Yoshioka and M. Koiwa, Acta mtall. 35, 2731-2736 (1987). 

[101] R. C. Brouwer and R. Griessen, Phys. Rev. Lett. 62, 1760-1763 (1989). 

[102] A. Priemuth, physica status solidi (a) 67, 505-510 (1981). 



 

 

135 

 

[103] I. A. Blech and E. S. Meieran, J. Appl. Phys. 40, 485-491 (1969). 

[104] M. W. Lane, E. G. Liniger and J. R. Lloyd, J. Appl. Phys. 93, 1417-1421 

(2003). 

[105] J. R. Lloyd, J. J. Clementi, Thin Solid Films 262, 135-141 (1995). 

[106] B. Stahlmecke, a  F.-J. Meyer zu Heringdorf, L. I. Chelaru, M. Horn-von 

Hoegen, and G. Dumpich, Appl. Phys. Lett. 88, 053122 (2006). 

[107] Anders Hjelm and Claes G. Granqvist, John M. Wills, Physical Review B 54, 

2436-2445 (1996). 

[108] Anandan Srinivasan, Masahiro Miyauchi, J. Phys. Chem. C 116, 15421-15426 

(2012). 

[109] Fumiaki Amano, Min Tian, Guosheng Wu, Bunsho Ohtani, and Aicheng Chen, 

ACS Appl. Mater. Interfaces 3, 4047-4052 (2011). 

[110] i. karakurt, j. boneberg, p. leiderer, Applied Physics/ A, Materials science and 

processing 83, 1-3 (2006). 
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