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Summary
Increasing availability of genomic and proteomic data has propelled Network Biol-

ogy to the frontier of biomedical research. Using graph models with nodes and links to

study the interactions between cellular components, Network Biology aims to under-

stand topological structures of biological networks, the flow of information inside those

networks, and how they control biological processes in living organisms. One of the

main research topics in Network Biology focuses on motifs, which are usually defined as

small connected subgraphs that appear in biological networks much more often than in

their random counterparts. Several over-represented motifs such as feed-forward loop,

bi-fan, bi-parallel, etc., have been highlighted in the literature as functional units or

building blocks of many complex networks in the real world.

A natural question is to gauge whether a motif occurs abundantly or rarely in a

biological network. However, counting motifs faces a challenging problem: current

high-throughput biotechnology is only able to interrogate a portion of an entire biolog-

ical network. For instance, recently updated high-throughput yeast two-hybrid assays

are only able to detect up to 20% of the protein-protein interactions in living organ-

isms. Moreover, there are a substantial number of spurious interactions that have been

wrongly detected. Due to these low coverage and inaccuracy limitations, currently

available biological networks actually only represent noisy subnetworks of the real ones.

These facts underscore the importance of a reliable method to estimate the number of

motif occurrences in biological networks from their noisy observed subnetworks.

In this thesis we develop a powerful method to address the problem of estimating

motif counts. Following the extrapolation idea, we first apply a scaling-based method

to estimate the number of occurrences of a motif in a network from its subnetworks.

The proposed estimation, however, is biased if there is noise, that is, spurious and

missing links in the subnetworks. Hence, we further refine the method by taking into
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account the link error rates, namely, false positive and false negative rates, and develop

the bias-corrected estimators. Our theoretical analysis show that the proposed estima-

tors are asymptotically unbiased and consistent for several types of motifs and a wide

class of commonly used random network models, including Erdos-Renyi, preferential

attachment, duplication, and geometric models. More importantly, the asymptotically

unbiased property holds without any assumption on the underlying network and the

motif of interest.

Next, we perform extensive simulation validation of the proposed estimators on

networks generated from random graph models as well as networks constructed from

real datasets. We fully explore how the accuracy of the estimators depends on the

underlying network, the subnetworks, and the motif type. Altogether, the theoretical

and simulation results confirm that our proposed method is universal and can be easily

applied to any complex network, including, but not limited to, biological networks,

social networks, the World-Wide-Web, etc.

We then apply the estimators to the protein-protein interaction and gene regulatory

networks of four species, namely, Human, Yeast, Worm, and Arabidopsis. Our estima-

tion reveals several important features of these networks while only using their noisy

observed subnetwork data. The main findings include the significant enrichment of

functional motifs, the linear correlation between motif counts, the association between

motif counts and cell functions, etc. The properties of the protein-protein interaction

and gene regulatory networks uncovered in our study are consistent with our biological

intuition about the complexity of living organisms.

The main findings of this work were first presented at the 17th Annual International

Conference on Research in Computational Molecular Biology (RECOMB) 2013, Bei-

jing, China. The revised version with substantial improvements was later accepted for

publication in the journal Nature Communication.
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3.8 Performance of the estimator ÑM with respect to the node sampling

probability in the PPI network of S. cerevisiae. . . . . . . . . . . . . . 68
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Chapter 1

Introduction

1.1 Introduction to Network Biology

1.1.1 What is Network Biology?

Following the discovery of the double helix structure of the DNA molecule in 1953 by

James Watson and Francis Crick [1], the completion of the Human Genome Project

(HGP) in 2003 has been the greatest achievement ever in the history of biology and

medicine [2]. This has enormous impacts on scientific research activities as well as

biomedicine related industries [3]. The HGP was then followed by an explosion of new

research areas which open up promising opportunities and challenges for the scientific

community in the post-genomic era. The ultimate goal is to enhance our knowledge

of Human Health and Diseases, and subsequently to provide humankind with better

living conditions, health-care services, and other benefits.

As one of the most active fields in biomedical research, Molecular Biology has at-

tracted a great deal of attention from scientists across different disciplines such as

biologists, chemists, mathematicians, computer scientists, etc. Intensive efforts have

been put into Molecular Biology to study cellular molecules (i.e., genes, proteins, en-
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zymes, metabolites, etc.), substantially improving human knowledge of the structures

and biological functions of the smallest elements of life.

However, information of individual cellular molecules alone is not enough to infer

a cell’s functions, and similarly, information of individual cells alone cannot tell us

the whole picture of biological processes in a living organism. While keeping focus on

each individual, one may ignore the interrelation between them. Cellular molecules

must be studied in the context of integrated systems of interacting components, and as

parts of the systems, they do not function in isolation, but in cooperation. That is the

underlying principle of Network Biology: biological functions, as well as dysfunctions

(i.e., genetic disorders or diseases), in a cell or in a living organism are co-regulated by

multiple types of complex networks of interacting cellular components.

Network Biology is a rapidly emerging field in post-genomic biomedical research.

It was first introduced at the beginning of the 21st century [4, 5], and recently has

become one of the most attractive fields because it has demonstrated potential impacts

in biology and medicine, especially on studies related to Human Health and Diseases [6].

Network Biology even serves as the fundamental background for the development of two

latest research topics, namely Network Medicine [7] and Network Disease [8]. Roughly

speaking, Network Biology is a multi-discipline research field in which different theories,

frameworks, models and techniques from diverse fields of science, including, but not

limited to biology, chemistry, physics, mathematics, statistics, computer science, are

integrated to study different types of biological networks, to explore their topological

structures and properties, and most importantly, to understand how these networks

control cellular functions and biological processes in living organisms.

Two basic elements in biological networks are nodes and links. Nodes are cellular

components (i.e., genes, proteins, enzymes, metabolites, etc.) and links represent the

interactions between the components (Fig. 1.1 and 1.2). Links can be undirected (e.g.,
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in protein-protein interaction networks) or directed (e.g., in gene regulatory networks,

metabolic networks, signaling pathways). A biological network thus represents a com-

plex system of interacting cellular molecules, and the flow of biological information

inside such systems regulates all activities of the cell.

The most surprising result of complete genome sequencing projects, perhaps, is that

the number of genes in the whole genome is not significantly different among species.

For example, the human genome contains approximately 22,000 protein coding genes

[2], which is much lower than expected, especially when compared to simple model

organisms such as yeast (6,500 genes) [9], worm (20,000) [10], fruit fly (17,000) [11].

The estimated number of genes of human is even smaller than that of Arabidopsis which

is estimated as 27,000 [12]. Moreover, there are just over two hundred genes that are

unique to human. Thus it is obvious that the number of genes alone cannot explain the

nature of biological complexity of living organisms as previously expected. However,

biological networks, which possess much more complicated architectural features rather

than the simple number of nodes, may provide us with better explanations to the

question of species diversity and evolution.

Another interesting phenomenon is the robustness of some model organisms against

gene mutations. For example, Wagner (2000) has reported the great tolerance of yeast

against gene removal in [13]. This resilience suggests that under genetic mutations, some

genes can be somehow functionally replaced by the others, and thus indicating that

there must be some functional connections between the genes. Indeed, one of the most

crucial findings of Biological Networks Alignment [14], a key research topic in Network

Biology, has reported that some specific groups of proteins, and more importantly, the

physical interactions between them are conserved and stick together through thousands

years of evolution across multiple species. Such unusual conservations suggest that

those protein pathways and complexes must play some critical roles in the survival,
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reproduction and evolution of an organism. Moreover, their functions are determined

not only by individual proteins, but also by the physical interactions between them.

Those are just a few examples from thousands of important findings that support the

underlying principle of Network Biology and underscore the importance of this new

perspective in biomedical research.

As a new research area, Network Biology opens up promising opportunities as well

as challenging problems for the scientific community. Fortunately, Network Biology in-

herits a solid theoretical background from graph theory, the fundamental field of math-

ematics which uses graphs to model pair-wise relations between objects [15]. More-

over, networks, or graphs representations are the most ubiquitous models that have

been used to study various complex systems in other fields of science such as physics,

computer science, social science [16, 17]. Some prominent examples include the World-

Wide-Web, human social networks, scientific citations networks, electrical and power

systems, neuron networks, etc. Most importantly, initial studies have pointed out that

several complex networks in the real world, including biological networks, unexpectedly

share some fundamental architectural features such as scale-free degree distribution

[18], small-world properties [19], hierarchical and clustering structures [20]. Thus, this

surprising universality allows us to apply well-developed and ready-to-use techniques,

tools, and soft-ware applications from other well-established domains to Network Biol-

ogy. The strong support from theoretical and technical sites as well as the rapidly in-

creasing availability of genomic and proteomic data accumulated from high-throughput

experiments have propelled Network Biology to the frontier of biomedical research. Net-

work Biology is expected to revolutionize our understanding and knowledge of biology,

medicine, Human Health and Diseases in this post-genomic era.

6



1.1.2 Types of biological networks, data sources and analysis

tools

There are three major types of biological networks that have been the target of most

studies in Network Biology: protein-protein interaction (PPI) networks, gene regulatory

networks (GRNs) and metabolic networks.

In protein-protein interaction networks (Fig. 1.1), each node represents a particular

protein and each link represents an interaction between two proteins. Links are undi-

rected as an interaction means that the two proteins bind to each other. There are

currently two high-throughput experimental techniques that are widely used to pro-

duce large-scale PPI networks [21]. Yeast two-hybrid (Y2H) assays, which were first

introduced by Fields and Song in [22], can detect direct physical, or binary, interactions

between any two proteins. This technology was used by Uetz et al. and Ito et al. in

[23, 24] to produce the first PPI maps of Saccharomyces cerevisiae, or yeast, a well-

studied model organism that has the most comprehensive and reliable data currently

available on PPIs. Later, Y2H assays were also applied to other model organisms such

as Caenorhabditis elegans (i.e., worm) and Drosophila melanogaster (i.e., fruit fly).

In 2005, two independent groups Rual et al. and Stelzl et al. successfully mapped

the first versions of the human PPI network [25, 26]. In particular, Rual et al. were

able to detect ∼2,800 new interactions connecting ∼7,000 protein-encoding genes, es-

pecially ∼300 interactions among them are linked to over 100 disease-associated pro-

teins. Recently, Y2H assays have been improved by the experts from the Center for

Cancer Systems Biology, Dana-Farber Cancer Institute, and are associated with an

empirical framework that allows us to estimate the overall accuracy and sensitivity of

high-throughput PPI mapping [27, 28, 29, 30].

Unlike Y2H assays which are able to detect direct binary interactions, affinity pu-
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Figure 1.1: Protein-protein interaction network of Saccharomyces cerevisiae. There
are 2018 nodes (proteins) and 2930 links (interactions). Data from Center for Cancer
Systems Biology, Dana-Farber Cancer Institute [28]. Network visualization: Cytoscape
[51].

8



rification followed by mass spectrometry (AP-MS) assays, which were first introduced

by Rigaut et al. in [31], can detect protein complexes and indirect associations between

proteins [32, 33]. Thus, a link detected from Y2H assays represents a direct physical

interaction between two proteins, whereas a link detected from AP-MS assays implies

that the two proteins belong to the same complex and there may be direct or indirect

interactions between them. For the same organism, PPI networks generated by these

two approaches may exhibit different structures and properties [21, 28]. In this thesis,

we mainly focus on PPI networks that are generated from high-throughput Y2H assays.

Another major type of biological networks is gene regulatory networks (GRNs)

(Fig. 1.2). There are two different kinds of nodes in a gene regulatory network: tran-

scription factors and target genes. A transcription factor is a DNA-binding protein that

can bind to specific DNA regions, which are called binding motifs, of a target gene or

another transcription factor and subsequently regulates the expression of that gene. A

target gene is regulated by transcription factors and cannot regulate any other gene.

Thus, links in GRNs represent regulatory (protein-DNA binding) interactions and they

are directed.

There are currently two experimental systems that can be used to reconstruct gene

regulatory networks in a high-throughput fashion. In yeast one-hybrid (Y1H) assays

[34], a specific regulatory DNA sequence of interest, called promoters, is used as bait

to identify all putative transcription factors (preys) that bind to that sequence. On the

other hand, Chromatin Immunoprecipitation (ChIP) experiments [35] are usually used

to determined all potentially associated DNA binding sites for a DNA-binding protein

of interest. Obviously, the two approaches are complementary and their combination

is required for the reconstruction of gene regulatory networks. As for PPI networks,

the most comprehensive and accurate GRN is that of Saccharomyces cerevisiae [36].

Recently, different research groups have attempted to map the entire GRN of human

9



Figure 1.2: Gene regulatory network of Escherichia coli. There are 186 transcription
factors (red nodes), 1,510 target genes (black nodes) and 3809 directed links. Data
from RegulonDB (version 7.0) [45]. Network visualization: Cytoscape [51].
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[37], and moreover, this can be done across multiple cell and tissue types [38].

The last major type of biological networks is metabolic networks, which actually

appeared even before protein-protein interaction networks and gene regulatory networks

[39]. In metabolic networks, nodes are biochemical metabolites and links represent

the reactions, or the enzymes catalyzing the reactions that convert one metabolite to

another. Links may be directed or undirected, depending on whether the reactions are

reversible or not. In some context, nodes may represent enzymes and an link between

two enzymes indicates that the product of one enzyme is the substrate of the other.

Metabolic networks have been constructed mostly by the meticulous literature-curation

of large numbers of publications for decades, and thus, are the most comprehensive

among all biological networks [40]. With recent advanced computational technologies,

metabolic network reconstruction also involves predicting orthologous reactions across

multiple species.

Emerging at the beginning of the 21st century, biological networks data has increased

rapidly, especially in the last few years thanks to novel advances in high-throughput

experimental technologies. Nowadays a huge amount of data are widely available, not

only from original publications, but also from several open-access databases as a result

of enormous efforts of literature-curation experts. Protein-protein interaction networks

data of multiple species including human are available in DIP [41], BioGRID [42],

STRING [43], etc. Gene regulatory networks data can be downloaded from TRANS-

FAC [44], RegulonDB [45], AtRegNet [46], etc. KEGG [40], perhaps, is the most

comprehensive database for metabolic networks and pathways. Some other useful re-

sources include MIPS [47], BIND [48], BioCyc [49], Reactome [50], etc. The databases

listed here just represent a few prominent examples among several hundreds of resources

that have been developed and maintained by diverse groups of scientists from over the

world. A brief summary of more than 300 resources related to biological networks and
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pathways can be found in the meta-database Pathguide (www.pathguide.org).

In order to deal with that huge amount of data on biological networks, where each

network is a complex system of thousands of nodes and hundreds of thousands of links,

several tools and applications have been developed to facilitate research activities in

Network Biology. Among them, Cytoscape is the most outstanding bioinformatics soft-

ware for network visualization, analysis and biomedical discovery [51]. This software

incorporates different formats of biological networks data and is linked to several pop-

ular databases and resources. Cytoscape also allows the integration of other types of

information such as gene expression profiles, Gene Ontology [52], functional annota-

tions, etc., as node or link attribute data. The most beautiful feature of Cytoscape is

that this is a freely available and open source Java platform that allows the research

community to develop their own plug-ins for more specific and advanced analysis tasks.

Cytoscape has been effectively supporting the research community for almost 10 years

and will continue to play its crucial role in Network Biology with the next major ver-

sion released soon in the near future. More importantly, following this flagship tool,

an open source suite of software technologies dedicated to biological networks visu-

alization, analysis and discovery is under development by the National Resource for

Network Biology (NRNB, www.nrnb.org) with support from the National Institutes of

Health (NIH). Such bioinformatics packages provide the research community with pow-

erful tools to gain more insights into those complicated systems of interacting cellular

components.

1.1.3 Topologies of biological networks and their implications

As biological networks are presented as graphs of nodes and links, a fundamental ques-

tion to ask is “what are their topologies?”, and the immediate next question will be

“how do those topological properties facilitate the flow of information inside the net-
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works?”. This is basically the underlying framework of any analysis in Network Biology:

the topological structure of a network of interest and the biological information of its

nodes and links (e.g., gene expression profiles and functional annotations of nodes, types

and scores of links, etc.) are combined to explore the functions of the entire network.

Moreover, as mentioned earlier, complex networks from diverse fields, including biolog-

ical networks, have been reported to share remarkable similarities in their structure.

This surprising observation further emphasizes the importance of understanding the

topologies of biological networks and their implications.

The most striking feature, perhaps, is the scale-free property that has been observed

in most biological networks of multiple species. In particular, the degree distribution in

PPI networks and the out-degree distribution in GRNs are believed to have the scale-

free property. For any node u in an undirected network, its degree is defined as the

number of links adjacent to it, or in other words, the number of its neighbors. In a

directed network, the out-degree of a node u is the number of links pointing-out of that

node. Scale-free property implies a coexistence of a large number of low-degree nodes

and a small, but significant, number of high-degree nodes, which are often referred to as

“hubs”. This scale-free structure has also been observed in many real-world networks

such as social networks, the World-Wide-Web, and other technological networks. More

importantly, it is suggested that the degree distribution in those networks follows a

power law: the probability that a randomly chosen node has degree k, that is, it has k

incident links, follows P (k) ∼ k−λ, where the exponent λ is network-specific and ranges

between 2 and 3 [18].

The scale-free topology attracts a great deal of attention from the research commu-

nity because such networks exhibit surprising tolerance against random perturbations.

Random failures mainly affect nodes of low degree, and usually such nodes do not play

important roles in a network. That also explains the robustness against gene muta-
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tions that has been observed in some model organisms [13]. However, deletion of hubs,

even just a few, may lead to the corruption of the entire network. This robustness and

vulnerability is a signature feature of scale-free networks, including biological networks

[53]. From a biological point of view, this double-edge feature suggests that hubs may

represent essential proteins for the survival and reproduction of a cell [54]. The re-

lationship between topological centrality and biological essentiality of proteins in PPI

networks has been the target of several studies in Network Biology [54, 55, 56].

Another notable feature of biological networks is the small-world effect which is

characterized by the two properties: small shortest path length and large clustering

coefficient [19]. The shortest path length, or characteristic path length, between any

two nodes u, v in a network is the length of the shortest path connecting u and v.

Although there may be some alternative paths between u and v, it is believed that

information always flows via the shortest path. Thus, the average over the shortest

paths between all possible pairs of nodes of a network, which is usually called the mean

path length, can be used to measure the efficiency of information flow in the network.

The smaller the mean path length is, the more well-connected the network is.

Another measure of the interconnectivity in a network is the clustering coefficient.

Intuitively, if node u is connected to v, and v is connected to w, then it is more

likely u is also connected to w. The clustering coefficient of a node u is defined as

Cu = ∆u/
(
ku
2

)
, where ku is the degree of u and ∆u is the number of links connecting

its neighbors. In other words, Cu describes how likely any two neighbors of u will

interact with each other. The average clustering coefficient of a network measures

the overall tendency of its nodes to form highly interconnected local clusters which

represent potential candidates for predicting functional modules. It has been observed

that biological networks exhibit significantly shorter path length and higher clustering

coefficient than those of a random network of equivalent size and degree distribution
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[57], indicating that biological networks are small-world.

The combination of scale-free and small-world topologies, in particular the coexis-

tence of hubs and highly interconnected clusters suggests that biological networks may

exhibit a hierarchical architecture [20]. The most important signature of a hierarchical

architecture is the dependence of the clustering coefficient on the degree of a node u,

which follows Cu ∼ k−1
u . Low-degree nodes tend to form small, densely interconnected

local clusters and hence have a high clustering coefficient. On the other hand, highly

connected hubs tend to have a low clustering coefficient because they do not participate

in any local clusters, but play their role as bridges to connect different clusters. Thus,

small clusters are connected via hubs to form larger ones, which in turn are connected

again via hubs to form even much larger clusters. Eventually, a hierarchical architec-

ture emerges and incorporates both scale-free topology and local clustering structure

[20, 6]. Furthermore, it has been found that transcription factors in gene regulatory

networks are organized in a pyramid-shaped hierarchial structure in which a few master

transcription factors on the top level regulate those at the middle levels, and altogether

regulate those at the bottom levels, where most transcription factors are located [58].

The hierarchical architecture is believed to best describe the global structure of most

biological networks.

Besides the global architecture, the local structure also plays a crucial role in bio-

logical networks. Network motifs, that is, small subgraphs that are significantly over-

represented in biological networks than in randomized networks, are believed to rep-

resent functional units of biological processes. Some prominent network motifs such

as single-input modules, feed-forward loops, bi-fans, bi-parallels have been detected in

many real-world networks, including biological networks [59, 60]. Detecting motifs in a

given network and exploring their properties are essential for the understanding of the

network’s functions [62, 61].
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1.1.4 Random network models

The goal of understanding the topological structures and properties of biological net-

works cannot be achieved without appropriate random network models that play as

null hypotheses based on which unusual features of biological networks can be de-

tected. For instance, as mentioned above, in order to detect network motifs in a given

biological network, one need to verify if a subgraph is significantly over-represented in

the observed network in comparison to randomized networks that have the same size

(numbers of nodes and links) and the same degree distribution [59, 60]. On the other

hand, a suitable random network model that well captures the topological structures

and properties of a real biological network can be used to facilitate theoretical as well

as simulation analyses to further explore more features of that biological network, make

predictions and estimations, etc. These analyses cannot be done if we only look at the

observed network.

A classical random graph model in graph theory is the Erdos-Renyi (ER) model

[63]. This model has two parameters: the number of nodes n and the link density ρ.

A random network G is generated from the ER model as follows: first, n singletons are

created, and then a link is placed independently and uniformly at random with prob-

ability ρ between any two nodes. The node degrees in a random network G generated

from the ER model follow a Poisson distribution in which all nodes tend to have similar

degrees, approximately equal to the average degree of the network. This can be clearly

seen from the symmetric and unimodal histogram in Fig. 1.3. Moreover, this network

has a symmetric structure, that is, subnetworks which are randomly sampled from G

tend to have similar topological properties.

However, the ER model is too simple to describe topological structures and prop-

erties of real-world networks, for example, the well-known scale-free property. In [18]

Barabasi and Albert proposed the first model that can capture this scale-free structure.
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Figure 1.3: An illustration of the degree distributions of networks generated from four
random graph models: Erdos-Renyi (ER), preferential attachment, duplication, and
geometric models. As the node degrees in networks generated from the ER model
follow a Poisson distribution, we use a histogram to plot the degree distribution for
the ER model. The distribution is symmetric, unimodal, and illustrates that nodes
tend to have similar degrees. We also use a histogram to plot the degree distribution
for the geometric model as there is no any significant skewness. On the other hand,
the node degrees in networks generated from the preferential attachment model are
scale-free, that is, there are a lot of nodes with low degrees and a small, but significant
number of nodes with high degrees. In particular, the node degrees follow a power-
law distribution, that is, P (k) ∼ k−λ, which is best illustrated by the linear pattern
between logP (k) and log k when the degree distribution is plotted in the log-log scale.
The degree distribution for the duplication model is also scale-free and is plotted in the
log-log scale.
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Their model is based on two fundamental features of real-world networks which are

not considered in the ER model: the growth process and the preferential attachment

mechanism. Firstly, real-world networks grow and nodes are continuously added to ex-

isting networks. Secondly, the authors have found a common phenomenon in real-world

networks which they referred to as the preferential attachment mechanism: when added

to an existing network, a new node is more likely to connect itself to a highly connected

node rather than a node of low degree. Indeed, a newly created web-site will prefer to

link itself to already well-known ones such that it can attract more users from those

web-sites. Similarly, a new research article is more likely to cite well-known ones, since

such highly-cited papers usually include important results that can be applied in new

research manuscripts. In this way, a highly connected node will have more chances to

get new links from newly created nodes, and hence its degree is more and more increas-

ing. This is the rich-get-richer phenomenon in real-world networks, a consequence of

the preferential attachment mechanism.

In particular, a random network G is generated from the preferential attachment

model as follows:

• A small initial random network G0 is generated from the ER model.

• At each iteration, a new node with l incident links is added to the current network.

Neighbors of the newly added node are chosen with probabilities proportional to

their current degrees.

Barabasi and Albert have shown that networks generated from the preferential attach-

ment model are scale-free, that is, there are a lot of nodes with low degrees and a small,

but significant number of nodes with high degrees. Moreover, they have shown that

the node degrees follow a power-law distribution, that is, P (k) ∼ k−λ. This power-law

distribution is best illustrated by the linear pattern between logP (k) and log k when
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the degree distribution is plotted in the log-log scale (Fig. 1.3).

The preferential attachment model, however, cannot be applied directly in the con-

text of biological networks. The evolution of biological networks requires more detailed

explanations: how a new gene is created and how it is connected to existing genes in the

current network. In [64] Chung et al. (2003) proposed duplication models to describe

the gene duplication event, which is believed to represent one of the two driving forces

of genome evolution [65]. In the full duplication model, a new gene is created by full

duplication from an existing gene. As a result, the newly created gene inherits all func-

tions of its original, including interactions with other genes. In the network context,

an existing node u is chosen from the current network and is duplicated to create a

new node u′ which is subsequently connected to all neighbors of u. Interestingly, if

the duplicated node u is chosen uniformly at random, that is, all existing nodes are

equally likely to be duplicated, a highly connected hub is more likely to have one of its

neighbors to be duplicated, and hence has a higher chance to get a new link. This is

indeed the “rich-get-richer” phenomenon. The newly created node u′ is more likely to

be duplicated from a neighbor of a highly connected hub, and hence is more likely to

be connected to that hub. This is the preferential attachment phenomenon.

The second driving force of genome evolution is the gene mutation event and it is

captured by the partial duplication model [64]. In particular, after the new node u′

is created by full duplication from the duplicated node u, u′ is allowed to “mutate”,

that is, to lose some of its current links and to gain some new links, according to some

controlling parameters of the model. Chung et al. (2003) have also demonstrated that

networks generated from the partial duplication model are scale-free and their degree

distributions follow a power law (Fig. 1.3). Perhaps this is currently the best model

that is strongly supported by biological theories and can capture important features

of biological networks such as scale-free, power-law degree distribution, preferential

19



attachment and “rich-get-richer” phenomenons.

The geometric model was also proposed in [66] to study biological networks. A

random network G is generated from the geometric model as follows: first, n nodes are

placed uniformly at random in a unit cube, and then any two nodes are connected if the

distance between them is less then a given threshold δ. Using graphlet frequency and

graphlet degree distribution as distance measures of similarity between two networks,

Przuli et al. have shown that the geometric model yielded better fit to biological

networks than the other three random network models [66] (the term graphlet was used

in that paper to denote a small connected subgraph with 3-5 nodes). As shown in

Fig. 1.3, the degree distribution for the geometric model is left-skewed with more nodes

of high degrees and less nodes of low degrees. However, the skewness is not as extreme

as in the scale-free degree distribution.

1.2 Inferring topological properties of biological net-

works from subnetworks

1.2.1 Limitation of biological networks data

The most challenging problem in Network Biology is the low coverage and the inac-

curacy of biological networks data due to the limitation of current experimental tech-

niques. Moreover, even measuring the quality and error rates of experimental high-

throughput datasets is also a difficult task.

Traditional assessment approaches which use gold-standard reference sets to bench-

mark interactions detected from high-throughput experiments have some considerable

limitations [67, 68, 69, 70]. In particular, gold-standard reference sets, which are usually

collected from literature curation, are themselves incomplete and biased. An interaction
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which is detected from high-throughput experiments but was not reported previously

in any gold-standard reference set may be considered as a false positive, but may also

represent a novel interaction. Computational methods developed to assess biological

relevance of detected interactions, e.g. expression profile reliability (EPR) index in [71],

cannot tell the whole picture of the quality of a high-throughput dataset. For instance,

two interacting proteins are not necessary to have their expression highly correlated.

Fortunately, an empirical framework was proposed recently to rigorously evaluate

quality parameters in association with “second-generation” high-quality Y2H assays

[27, 28]. The framework uses multiple cross-assay validation to estimate four quality

parameters, that is screening completeness, precision, assay sensitivity, and sampling

sensitivity, which altogether describe the overall performance of a high-throughput ex-

periment. For instance, the precision for the human PPI dataset CCSB-HI1 was esti-

mated at ∼ 79.4% in [27], which corresponds to a false discovery rate ∼ 20.6%, whereas

this false discovery rate had been previously overestimated up to 87%-93% using tradi-

tional comparison approaches [70, 25]. The precision for a new high-quality PPI dataset

of Saccharomyces cerevisiae, CCSB-YI1, was also estimated at ∼ 94% in [28]. Although

new Y2H assays achieve very high precision, the sensitivity is quite low, where the best

sensitivity is at ∼ 17% for Saccharomyces cerevisiae.

In general, even for the most well-studied model organism like Saccharomyces cere-

visiae, what we actually observe merely reflects a minor part of the whole picture, i.e.

a noisy subnetwork of a real complete network, which is much more complicated and

still remains unknown to the research community. While intensive efforts are ongoing

in laboratories to improve large-scale high-throughput experimental technologies, it is

highly desirable to infer some initial ideas on the global and local features of a com-

plete biological network, given its observed subnetwork. Such predictions are of critical

importance to shed light on the organizational architecture and topological properties
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of real biological networks, as well as to guide wet-lab experiments to focus on the right

target.

1.2.2 From observed subnetworks to the entire networks: mo-

tif count estimation

In this thesis we study the problem of inferring topological features of biological net-

works from their noisy observed subnetworks, which may contain spurious and missing

links (Fig. 1.4).

The simplest case of this problem is to estimate the size of an interactome, that is,

the number of interactions in a PPI network, has been the target of several studies. This

task is especially important to evaluate the progress of current PPI mapping projects

and to estimate how much work still needs to be done. Moreover, it is expected that

the size of interactomes may partially explain the question of biological diversity of

living organisms, which the number of genes has failed to answer. For example, one

may expect that Human interactome should have more interactions than other simple

organisms do.

There are two approaches to address the problem of estimating the size of inter-

actomes. In [72] the author proposed the first approach to estimate the size of an

interactome by modeling the overlap between two independent datasets of that interac-

tome using hypergeometric distribution. Hart et al. further extended this method by

taking into account the false positive rate, which was evaluated by comparing the two

datasets of interest with another reference dataset [70]. However, this method requires

that the two datasets must be generated from identical, or at least similar experimental

conditions, and they must be independent from the reference set. Unfortunately, this is

rarely the case for biological networks data. Most importantly, this approach is difficult

to generalize to the case of larger motifs.
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How to estimate the numbers of motifs in the real network? 

REAL   NETWORK 

Noisy Observed 

Subnetwork 

Biological  

Experiments 

triangle feedback loop feed-forward loop bi-fan bi-parallel 

Human Yeast Worm Arabidopsis E. coli 

Motifs: 

Figure 1.4: Schematic view of the motif count estimation problem. Biological networks
of most species are not completely known due to limitations of current biotechnolo-
gies. Their subnetworks are usually inferred with errors, that is, spurious (orange)
and missing (dashed and green) links, from high-throughput experiments such as Yeast
Two-Hybrid, Affinity Purification followed by Mass Spectrometry, etc. Spurious links
are the links that do not exist in the real network but are wrongly detected by the
experiments. Missing links are the links that exist in the real network but cannot be
detected by the experiments. In this study, we propose a method to estimate the num-
ber of motif occurrences in biological networks from their noisy observed subnetworks.
Some motifs such as triangle, feedback loop, feed-forward loop, bi-fan, bi-parallel have
been highlighted in literature as building blocks or functional units of many complex
networks in the real world [59, 60]. Our method is further applied to estimate the motif
count in protein-protein interaction networks of Yeast, Worm, Human, and Arabidopsis,
as well as in gene regulatory networks of E.coli and 41 different cell and tissue types of
Human.
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Using a different approach, which can be named as “extrapolation”, the authors

in [73] scaled up the number of interactions in observed PPI subnetworks to estimate

the size of real interactomes, assuming that the link density of a real network can be

approximated by the link density of its observed subnetworks. The unbiasedness and

consistence, two important requirements of any estimator, however were not justified

in this study. Moreover, the effect of experimental errors, that is spurious and missing

links, on the estimation has not been considered carefully in [73].

Using the same “extrapolation” approach together with the empirical framework

to assess quality parameters in association with Y2H assays mentioned in the previ-

ous section, the authors from Center for Cancer Systems Biology, Dana-Farber Cancer

Institute, have accurately estimated the interactome size of Homo sapiens, Saccha-

romyces cerevisiae (Yeast, Caenorhabditis elegans (Worm), and Arabidopsis thaliana

(Arabidopsis) in [27, 28, 29, 30]. Recently, Rottger et al. further applied this method

to gene regulatory networks [74]. Thus, they needed to distinguish between two differ-

ent types of nodes: transcription factors (TFs) and target genes (TGs). Subsequently,

they estimated the number of three different types of interactions: TF-regulating-TF,

TF-regulating-TG, and TF self-regulations. Unfortunately, the authors did not take

into account error rates of the datasets.

In chapter 2 of this thesis, we generalize the “extrapolation” idea in [27, 28, 29, 30,

73, 74] to the case of larger motifs. As mentioned earlier, network motifs are believed to

represent functional units of biological processes in living organisms [59, 60, 61]. They

have been observed at unusually high frequency in many real-world networks, including

biological networks. For example, Mangan and Alon (2004) have carefully studied the

structure and function of the feed-forward loop motif, a three-gene pattern which is

composed of two input transcription factors, one of which regulates the other, and both

jointly regulating a target gene [61]. The authors found that different types of the
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feed-forward loop motif can either accelerate or delay the response time of the target

gene and the abundance of those motifs in transcription networks can be partially

explained by their functionality. Some other examples include single-input modules,

bi-fan, dense overlapping regulons, etc [60]. Given their important roles in biological

processes, it is highly desirable to detect motifs in a biological network of interest. The

key idea to address that problem is to compare the frequency of a motif in the biological

network and that in random networks to find out if that motif occurs more often than

expected [59, 60, 62]. However, directly counting motifs is difficult and inaccurate

due to the incompleteness and the noise in biological networks data. We propose a

simple, yet powerful, method to estimate the number of occurrences of different types of

motifs in both directed and undirected networks from their observed subnetworks (Fig.

1.4). Next, we perform rigourous theoretical analysis on the properties of the proposed

estimators and prove that our proposed estimators are asymptotically unbiased and

consistent. Most importantly, the unbiased property holds for any arbitrary motif and

regardless of the topological structures of the underlying network. Finally, we further

refine the estimation method to take into account spurious and missing interactions,

and develop bias-corrected estimators for noisy data.

In chapter 3, the estimators are extensively validated for networks generated from

each of the following four widely used random graph models: Erdos-Renyi (ER) [63],

preferential attachment [18], duplication [64], and geometric [66] models. We carefully

study the accuracy of the proposed estimators with respect to random graph models,

network parameters, and sampling parameters. We also perform simulation validation

on real biological networks. Both of the theoretical and the simulation results show

that our proposed method performs consistently well on all four random network mod-

els, suggesting that the method is universal and can be easily applied to any type

of networks, including, but not limited to, biological networks, social networks, the
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World-Wide-Web, etc.

Finally, we apply our method to estimate the number of different types of motifs

in protein-protein interaction networks and gene regulatory networks of four species:

Human, Yeast, Worm, and Arabidopsis. Our estimation reveals several interesting fea-

tures of these networks while only using their noisy observed subnetwork data. For

example, we found that the estimated triangle density in Human and Worm are 2.5

times larger than that in Yeast and Arabidopsis, whereas the laters have higher link

density than the formers, indicating a higher clustering and well-connected structure

of the PPI network of Human and Worm. We also discover a strong positive linear

correlation between the number of occurrences of different three-node and four-node

motifs in forty-one Human cell-specific transcription factor regulatory networks. Our

estimation also shows that that the feed-forward loop and bi-fan are significantly en-

riched in these forty-one networks, and the motif counts are highly associated with the

functional class of the cell.

1.3 Thesis organization

This thesis is organized as follows. In chapter 2, we present our method to estimate the

number of motif occurrences in biological networks from noisy observed subnetworks

data. We provide rigorous analysis on the properties of the proposed estimators and

prove that they are asymptotically unbiased and consistent. In chapter 3, we first per-

form extensive simulation validations to study the accuracy of the estimators. Then, we

demonstrate how to apply them to real biological networks. In chapter 4, we concludes

this thesis with a summary of our contributions and discussion on the limitations of

our study, how to address those problems, and potential topics for future research.
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Chapter 2

Theoretical Analysis for Motif

Count Estimation

In this chapter, we propose the method to estimate the number of motif occurrences in

biological networks from their noisy observed subnetworks. The problem is schemati-

cally illustrated in Figure 1.4. Due to limitations of current biotechnologies, biological

networks of most species are not completely known. Their subnetworks are usually

inferred with errors, that is, spurious and missing links, from high-throughput experi-

ments such as Yeast Two-Hybrid, Affinity Purification followed by Mass Spectrometry,

etc. Spurious links are the links that do not exist in the real network but are wrongly

detected by the experiments. Missing links are the links that exist in the real network

but cannot be detected by the experiments. In this study, we also refer to spurious

links as false positives and missing links as false negatives. Exact motif enumeration in

real biological networks is impossible due to the incompleteness (i.e., only subnetworks

are inferred) and the inaccuracy (i.e., link errors) in the observed data.

In this proposed method, we first count the number of occurrences of the motif of

interest in the observed subnetwork, and then extrapolate to the entire network. In the
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second step, our estimation further takes into account the error rates to correct the bias

caused by missing and spurious links. We show, theoretically and empirically, that such

estimators are asymptotically unbiased and consistent, assuming that the subnetwork

is obtained from the original network under a uniformly random node sampling process.

More importantly, the results hold for different types of networks and motifs, allowing

our method to be easily extended beyond biological networks to apply to any other

type of complex networks such as social networks, the World-Wide-Web, engineering

and electrical circuitries, etc.

All theoretical analysis on the proposed estimators are given in this chapter. In

the next chapter, the estimators are extensively validated in networks generated from

four random graph models: Erdos-Renyi [63], preferential attachment [18], duplication

[64], and geometric [66] models. For each model, the performance of the estimators

is examined with respect to different parameters of the generated networks and the

sampling process. In addition to random networks, we also make use of observed PPI

subnetworks from real datasets of S. cerevisiae, C. elegans, H. sapiens, and A. athaliana.

In particular, we consider each observed subnetwork as an entire real network from

which we sample even smaller subnetworks (i.e., sub-subnetworks) and then do the

estimation & validation.

Details of our method are described in the following sections.

2.1 Asymptotically unbiased and consistent estima-

tors

In this section, we develop the estimators for the number of motif occurrences and show

that they are asymptotically unbiased and consistent, the two essential properties of

any estimator.
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First, we introduce some notations that will be used in our analysis. Any network

can be represented by a graph which consists of a set of nodes and a set of links.

Let G(V,E) denote a real biological network, where V is the set of nodes and E =

{(u, v)|u, v ∈ V, u 6= v} is the set of links. Here nodes represent proteins or genes, and

links correspond to their interactions. Note that we do not consider self-interactions.

Let n be the number of nodes in G, that is, n = |V |, and for simplicity, we enumerate

the nodes in G as V = {1, 2, 3, ..., n}.

A network can also be represented by an adjacency matrix. Let A = [aij]1≤i,j≤n

denote the adjacency matrix of G, where aij = 1 if there is a link from i to j, and

aij = 0 otherwise. Note that if G is undirected, then A is a symmetric matrix, that is,

aij = aji. For example, PPI networks are undirected whereas TF regulatory networks

are directed.

We use similar notations with the superscript “obs” for observed subnetworks. In

particular, let Gobs
(
V obs, Eobs

)
be an observed subnetwork of the real network G. The

number of nodes in the observed subnetwork is denoted as nobs, that is, nobs = |V obs|.

Our goal is to estimate the number of motif occurrences in the real network G from the

observed subnetwork Gobs.

In order to do that estimation, we need to know the relationship between the real

network G and the observed subnetwork Gobs, in particular, how Gobs is obtained from

G. Following [73], we model the observed subnetwork Gobs as the outcome of a uniformly

random node sampling process in the following sense: each node from V is indepen-

dently sampled with some probability p, 0 < p < 1; and the subgraph induced from G

by the sampled nodes is the observed subnetwork Gobs.

More specifically, this uniformly random node sampling scheme can be modelled

using a Bernoulli process. Let independent random variables Xi ∼ Bernoulli(p) denote

whether node i is sampled (Xi = 1) or not (Xi = 0), 1 ≤ i ≤ n. Then, V obs is the
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set of nodes i with Xi = 1 (sampled nodes), and Eobs is induced from E by V obs, that

is, Eobs is a subset of E that consists of all links connecting the sampled nodes. It

should be noted that by “induced” we mean there is neither spurious nor missing links

in Eobs. In this section, we first introduce our method for the case when the observed

subnetwork Gobs is free from experimental errors (that is, there is neither missing nor

spurious links), and then generalize it to handle noisy observed subnetworks in the next

section.

For the clarity of presentation, we first describe the estimator for the simplest motif

type, that is, the number of links in an undirected network. The analysis will then be

generalized to handle any arbitrary motif in both undirected or directed networks.

2.1.1 Estimator for the number of links in an undirected net-

work

Consider the case when the real network G(V,E) is undirected. Let N1 and Nobs
1 denote

the number of links in G and Gobs respectively. The number of links (and any motifs)

of any network can always be computed from its adjacency matrix. In the case of

the observed subnetwork Gobs, instead of using its adjacency matrix Aobs, we can also

use the adjacency matrix A of the real network G and Bernoulli random variables Xi,

1 ≤ i ≤ n. In particular, N1 and Nobs
1 can be written as following:

N1 =
∑

1≤i1<i2≤n

ai1i2 , (2.1)

N obs
1 =

∑

1≤i1<i2≤n

ai1i2(Xi1Xi2), (2.2)

where ai1i2(Xi1Xi2) implies that one can observe link (i1, i2) in Gobs if and only if link

(i1, i2) exists in G (that is, ai1i2 = 1), and both nodes i1 and i2 are sampled (that is,
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Xi1Xi2 = 1).

Remind that in this work we study the problem of estimating the number of oc-

currences of any arbitrary motif in the real network G using the observed subnetwork

Gobs. In particular, we assume that the real network G and its adjacency matrix A are

not fully known due to the low coverage and inaccuracy of biological networks data.

The only available information is the observed subnetwork Gobs and the total number of

nodes in the real network G, n, which corresponds to the number of genes (or proteins)

in the species under consideration. Thus, N1 is unknown and to be estimated using n

and N obs
1 , which can be counted in Gobs.

Under the uniformly random node sampling process, one could expect that the real

network G and the observed subnetwork Gobs should have many similar properties. In

particular, the link density in the real network G is intuitively very close to that in the

observed subnetwork Gobs. This gives rise to the following estimator

N̂1 =

(
n
2

)
(
nobs

2

)N obs
1 . (2.3)

This is the “extrapolation” approach for estimating the size of interactomes that we

have reviewed in chapter 1. This idea has been widely used to estimate the number

of interactions in PPI networks of different species in [27, 28, 29, 30, 73]. However,

the unbiased and consistent properties of this estimator have not been considered thor-

oughly in previous works. In the following theorem, we first prove that the estimator N̂1

is asymptotically unbiased. More importantly, this property holds for any topological

structure of the underlying network G, thus making this estimator widely applicable to

any real-world undirected networks.

Theorem 1. Let G be an arbitrary undirected network of n nodes, and Gobs be a sub-

network obtained from G via a uniformly random node sampling process that selects
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a node with probability p, 0 < p < 1. Let N1 denote the number of links in G, N obs
1

denote the number of links in Gobs, and N1 is estimated by the estimator N̂1 defined in

Equation (2.3). We have:

E

(
N̂1

N1

)
= 1− qn − npqn−1, (2.4)

where q = 1 − p. Therefore, N̂1 is an asymptotically unbiased estimator for N1 in

the sense that E
(
N̂1/N1

)
→ 1 as n goes to infinity. Moreover, the convergence is

exponentially fast in n.

Proof. By Equations (2.2) and (2.3),

E(N̂1) = E

( (
n
2

)
(
nobs

2

)
∑

1≤i1<i2≤n

ai1i2(Xi1Xi2)

)

= E

(
n(n− 1)

nobs(nobs − 1)

∑

1≤i1<i2≤n

ai1i2(Xi1Xi2)

)

= n(n− 1)
∑

1≤i1<i2≤n

ai1i2E

(
Xi1Xi2

nobs(nobs − 1)

)
. (2.5)

Since random variables Xi are independent and identically distributed, for any 1 ≤

i1 < i2 ≤ n, we have

E

(
Xi1Xi2

nobs(nobs − 1)

)
= E

(
X1X2

nobs(nobs − 1)

)
. (2.6)
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Subsequently, we have

E(N̂1) = n(n− 1)
∑

1≤i1<i2≤n

ai1i2E

(
X1X2

nobs(nobs − 1)

)

= n(n− 1)E

(
X1X2

nobs(nobs − 1)

)
N1

E

(
N̂1

N1

)
= n(n− 1)E

(
X1X2

nobs(nobs − 1)

)
. (2.7)

The number of nodes in the observed subnetwork Gobs, nobs, can be written as:

nobs = X1 +X2 + · · ·+Xn. (2.8)

By conditioning on the event that X1 = X2 = 1, we rewrite nobs as

(nobs|X1 = X2 = 1) = Z + 2, (2.9)

where Z ∼ Binomial(n− 2, p), since random variables Xi are independent.

Subsequently, we have

E

(
N̂1

N1

)
= n(n− 1)p2E

(
1

(Z + 2)(Z + 1)

)
. (2.10)

It can be shown that

E

(
1

(Z + 2)(Z + 1)

)
= E

∫ 1

0

(1− u)uZdu

=

∫ 1

0

(1− u)EuZdu

=

∫ 1

0

(1− u)[q + pu]n−2du

=
1− qn − npqn−1

n(n− 1)p2
,
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where the first and the last equations are obtained by integration by parts, the second

equation is obtained by interchange between integral and expectation, and the third

equation is obtained from the moment generating function of the random variable Z ∼

Binomial(n− 2, p).

Finally, we have

E

(
N̂1

N1

)
= 1− qn − npqn−1.

Thus, we have shown that the estimator N̂1 is an asymptotically unbiased estimator

for N1 in the sense that E
(
N̂1/N1

)
tends to one exponentially fast in n. We also study

the consistent property of the estimator N̂1. In the following theorem, we first obtain

the compact close-form expression for V ar
(
N̂1/N1

)
. We notice that the variation of

the estimator N̂1 depends on the topological structure of the underlying network G.

Subsequently, we show that the variance goes to zero when G is generated from four

widely used random graph models in studies of biological networks, including Erdos-

Renyi, preferential attachment, duplication, and geometric models. This indicates that

the estimator N̂1 is consistent for a wide class of random networks.

Theorem 2. Let G be an arbitrary undirected network of n nodes, and Gobs be a sub-

network obtained from G via a uniformly random node sampling process that selects a

node with probability p, 0 < p < 1. Let N1 denote the number of links in G, and N1

is estimated by the estimator N̂1 defined in Equation (2.3). Let N2 denote the number

of three-node paths in G (that is, the number of pairs of links that share exactly one

common node, see motif with ID u2 in Figure 2.1). We have:

V ar

(
N̂1

N1

)
=

2q

p

N2

N2
1

[1 +O(n−1)] +
(1 + p)q

p2N1

[1 +O(n−1)] +O(n−1), (2.11)
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where q = 1− p.

The convergence of the variance in Equation (2.11) is dominated by the term N2

N2
1
,

which subsequently depends on N1 and N2. In the following proposition, we obtain the

convergence rate of N2

N2
1
, and hence, show that V ar

(
N̂1/N1

)
tends to zero as n goes to

infinity.

Proposition 1. When G is generated by the Erdos-Renyi, preferential attachment, du-

plication, or geometric models, the corresponding convergence rate of N2

N2
1

is as following:

• ER model: O(n−1)

• Preferential attachment model: O( log(n)
n

)

• Partial duplication model: let β be the approximated exponent of the power-law

degree distribution of G, we have

– β = 2: O( 1
(log(n))2

)

– 2 < β < 3: O( 1
nβ−2 )

– β = 3: O( log(n)
n

)

– β > 3: O(n−1).

• Geometric model: O(n−1)

Thus, V ar
(
N̂1/N1

)
→ 0 as n→∞.

The detailed proofs of Theorem 2 and Proposition 1 are too long to present here, and

they can be found in the Appendix. It is important to note that the convergence rate

for networks generated from the Erdos-Renyi and geometric models are faster than that

for networks generated from the preferential attachment and duplication models. This

is due to the fact that the former models generate networks with symmetric structure,
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whereas the latter ones generate networks with the scale-free structure which subse-

quently increases the variation among sampled subnetworks, and hence, the variation

of the estimator N̂1.

We also note that the duplication model has a wide range of convergence rate, de-

pending on the exponent of the power-law degree distribution β. When β = 3, the

duplication model has the same convergence rate O( log(n)
n

) as the preferential attach-

ment model since both models have the same exponent. When β > 3, the duplication

model has the same convergence rate O(n−1) as the ER model and the geometric model.

In general, the convergence is faster when the exponent is higher, because there will be

more nodes with low degree and less nodes with high degree, which subsequently makes

the variation become smaller.

We wish to point out that the above notions “asymptotically unbiased” and “consis-

tent” are not in the usual statistical sense where the population is fixed and the number

of observations increases to infinity. In the context of biological networks, the number

of subnetworks observed from high-throughput experiments (that is, “the number of

observations”) is limited to just a few for each species. On the other hand, the genome

size or proteome size of species (that is, n, the number of nodes in G) is sufficiently large,

ranging from ∼6,000 for yeast [9] up to ∼22,000 for human [2] or ∼27,000 for Arab-

bidopsis [12]. Thus it is reasonable to study the asymptotic properties of the estimators

when the number of nodes, n, in the underlying network G is sufficiently large. Indeed,

our simulation validation in the next chapter will shows that the proposed estimators

perform accurately for n within the range of the genome size of the model organisms

under consideration.

In summary, we have shown in Theorem 1, Theorem 2, and Proposition 1 that the

simple estimator N̂1 derived in Equation 2.3 is asymptotically unbiased and consistent

for estimating the number of links in the real network G from the observed subnetwork
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Gobs. Most importantly, Theorem 1 and Theorem 2 hold for any arbitrary network G.

In Proposition 1, we have presented the convergence rate of for a wide class of random

graph models that are often used in studies of real-world complex networks. Thus,

the estimator N̂1 is widely applicable to any network of interest. In the next section,

we further generalize this idea to estimate the number of occurrences of any arbitrary

motif.

2.1.2 Estimator for an arbitrary motif M

The results obtained in the previous section can be generalized to the case of larger

motifs in both directed and undirected networks. Let M denote an arbitrary motif.

Let NM and Nobs
M denote the number of occurrences of M in G and Gobs respectively.

In general, the number of occurrences of any motif can be written in terms of the

adjacency matrix A and the Bernoulli random variables Xi, 1 ≤ i ≤ n, in a similar

way to N1 and N obs
1 in Eqn. (2.1) and (2.2). In partitular, the number of occurrences

of M in the whole network G, NM, can be written as a function of A. Similarly, Nobs
M

can be written as a function of the adjacency matrix of Gobs, or equivalently a function

of A and Bernoulli random variables Xi, 1 ≤ i ≤ n. For a subset J ⊆ {1, 2, . . . , n}, let

A[J ] denote the submatrix consisting of entries in the rows and columns indexed by J .

Then, for any motif M of m nodes, we have:

NM =
∑

1≤i1<i2<...<im≤n

fM(A[i1, i2, ..., im]), (2.12)

Nobs
M =

∑

1≤i1<i2<...<im≤n

fM(A[i1, i2, ..., im])Xi1Xi2 ...Xim , (2.13)

where function fM() is suitably chosen to count the number of occurrences of motif

M among any m nodes i1, i2, ..., im. Equation 2.13 can be interpreted as follows: we

can observe motif M among nodes i1, i2, ..., im in the subnetwork Gobs if and only if
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Table 2.1: Detailed expressions of function fM() for 9 undirected motifs. For any motif
M of m nodes, function fM() is suitably chosen to count the number of occurrences of
motif M among any m nodes i1 < i2 < . . . < im.

ID Motif fM()

1 f1(A[i1, i2]) = ai1i2

2 f2(A[i1, i2, i3]) = ai1i2ai1i3 + ai2i1ai2i3 + ai3i1ai3i2

3 f3(A[i1, i2, i3]) = ai1i2ai2i3ai3i1

4 f4(A[i1, i2, i3, i4]) = ai1i2ai1i3ai1i4 + ai2i1ai2i3ai2i4 + ai3i1ai3i2ai3i4 + ai4i1ai4i2ai4i3

5(*) f5(A[i1, i2, i3]) =
∑

aij(aikajl + ailajk)

6(**) f6(A[i1, i2, i3]) =
∑

aijajkaki(ail + ajl + akl)

7 f7(A[i1, i2, i3, i4]) = ai1i3ai1i4ai2i3ai2i4 + ai1i2ai1i4ai3i2ai3i4 + ai1i2ai1i3ai4i2ai4i3

8(*) f8(A[i1, i2, i3, i4]) =
∑

aikailajkajlakl

9 f9(A[i1, i2, i3, i4]) = ai1i2ai1i3ai1i4ai2i3ai2i4ai3i4

(*) The sum is taken over all possible combinations (i < j) chosen from {i1, i2, i3, i4}, and (k < l)
being the two remaining nodes (totally, there are 6 such combinations).

(**) The sum is taken over all possible combinations (i < j < k) chosen from {i1, i2, i3, i4}, and l
being the remaining node (totally, there are 4 such combinations).
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Table 2.2: Detailed expressions of function fM() for 11 directed motifs. For any motif
M of m nodes, function fM() is suitably chosen to count the number of occurrences of
motif M among any m nodes i1 < i2 < . . . < im.

ID Motif fM()

10 f10(A[i1, i2]) = ai1i2 + ai2i1

11 f11(A[i1, i2, i3]) = (ai2i1ai1i3 + ai3i1ai1i2) + (ai1i2ai2i3 + ai3i2ai2i1) + (ai1i3ai3i2 + ai2i3ai3i1)

12 f12(A[i1, i2, i3]) = ai1i2ai1i3 + ai2i1ai2i3 + ai3i1ai3i2

13 f13(A[i1, i2, i3]) = ai2i1ai3i1 + ai1i2ai3i2 + ai1i3ai2i3

14 f14(A[i1, i2, i3]) = ai1i2ai2i3ai3i1 + ai3i2ai2i1ai1i3

15 f15(A[i1, i2, i3]) = ai1i2ai1i3(ai2i3 + ai3i2) + ai2i1ai2i3(ai1i3 + ai3i1) + ai3i1ai3i2(ai1i2 + ai2i1)

16(*) f16(A[i1, i2, i3, i4]) =
∑

aikail(ajk + ajl) + ajkajl(aik + ail)

17(*) f17(A[i1, i2, i3, i4]) =
∑

(aikajl + ailajk)(akl + alk)

18(*) f18(A[i1, i2, i3, i4]) =
∑

(aikajl + ailajk)(aij + aji)

19(*) f19(A[i1, i2, i3, i4]) =
∑

aikailajkajl

20(*) f20(A[i1, i2, i3, i4]) =
∑

aikailakjalj + ajkajlakiali

(*) The sum is taken over all possible combinations (i < j) chosen from {i1, i2, i3, i4}, and (k < l) being the
two remaining nodes (totally, there are 6 such combinations).
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motif M exists in the whole network G (indicated by function fM()) and all m nodes

i1, i2, ..., im are sampled (indicated by the product Xi1Xi2 ...Xim).

Table 2.1 give the expressions of function fM() for all possible undirected motifs

that have up to 4 nodes. There are totally 9 of them. Table 2.2 give the expressions

of function fM() for 11 selected directed motifs. In this section, we will develop the

estimators for these 20 motifs, some of which such as feed-forward loop (FFL), bi-fan,

bi-parallel have been highlighted in literature as building blocks or functional units in

many real-world complex networks [59].

Similar to the case of the number of links in an undirected network with N1, N obs
1 ,

and N̂1, we want to develop an estimator N̂M for NM, using n and N obs
M . We generalize

the “extrapolation” idea of link density in the previous section to the case of larger

motifs: for any motifM, its density in the real network G can be approximated by that

in the observed subnetwork Gobs. This motivates us to consider the following estimator:

N̂M =

(
n
m

)
(
nobs

m

)Nobs
M . (2.14)

We obtain the following theorem, which is an generalized extension of Theorem

1. In particular, we show that the estimator N̂M is asymptotically unbiased for any

arbitrary motif M. Most importantly, this theorem does not require any assumption

regarding to the underlying network G. Thus, the proposed estimators can be applied

to any real-world complex network from diverse fields, including, but not limited to,

biological networks, social networks, the World-Wide-Web, engineering and electrical

circuitries, etc.

Theorem 3. Let G be an arbitrary network of n nodes, and Gobs be a subnetwork

obtained from G via a uniformly random node sampling process that selects a node with

probability p, 0 < p < 1. For any motif M of m nodes, the estimator N̂M defined in
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Eqn. (2.14) satisfies

E

(
N̂M
NM

)
= 1− qn − npqn−1 − . . .−

(
n

j

)
pjqn−j − · · · −

(
n

m− 1

)
pm−1qn−(m−1),

where q = 1 − p. Therefore, N̂M is an asymptotically unbiased estimator for NM in

the sense that E
(
N̂M/NM

)
→ 1 as n goes to infinity. Moreover, the convergence is

exponentially fast in n.

Proof. The proof is similar to the proof of Theorem 1.

Since random variables Xi are i.i.d., for any 1 ≤ i1 < i2 < . . . < im ≤ n, we have

E

(
Xi1Xi2 . . . Xim

nobs(nobs − 1) . . . (nobs −m+ 1)

)
= E

(
X1X2 . . . Xm

nobs(nobs − 1) . . . (nobs −m+ 1)

)
.

(2.15)

Thus, by Equations (2.12), (2.13), and (2.14), we have

E

(
N̂M
NM

)
= E

(
1

NM

(
n
m

)
(
nobs

m

)
∑

1≤i1<i2<...<im≤n

fM(A[i1, i2, ..., im])Xi1Xi2 ...Xim

)

=

(
n

m

)
∑

1≤i1<i2<...<im≤n fM(A[i1, i2, ..., im])E

(
Xi1Xi2 ...Xim

(n
obs
m )

)

NM

= n(n− 1) . . . (n−m+ 1)E

(
X1X2 . . . Xm

nobs(nobs − 1) . . . (nobs −m+ 1)

)
.(2.16)

By conditioning on the event that X1 = X2 = · · · = Xm = 1, we rewrite nobs as

nobs = Z +m, (2.17)

where Z ∼ Binomial(n−m, p). Subsequently, we have

E

(
N̂M
NM

)
= n(n− 1) . . . (n−m+ 1)pmE

(
1

(Z +m)(Z +m− 1) . . . (Z + 1)

)
. (2.18)
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It can be shown by integration by parts that

1

(Z +m)(Z +m− 1) . . . (Z + 1)
=

∫ 1

0

(1− u)m−1

(m− 1)!
uZdu. (2.19)

Thus, we further have

E

(
N̂M
NM

)
= pmn(n− 1) . . . (n−m+ 1)E

(∫ 1

0

(1− u)m−1

(m− 1)!
uZdu

)

= pmn(n− 1) . . . (n−m+ 1)

(∫ 1

0

(1− u)m−1

(m− 1)!
E(uZ)du

)

= pmn(n− 1) . . . (n−m+ 1)

(∫ 1

0

(1− u)m−1

(m− 1)!
(q + pu)n−mdu

)

= 1− qn − npqn−1 − . . .−
(
n

j

)
pjqn−j − · · · −

(
n

m− 1

)
pm−1qn−(m−1),

where in the second equality we use interchange between expectation and integral, in

the third equality we use the moment generating function of Z ∼ Binomial(n−m, p),

and in the last equality we use integration by parts.

To show the consistent property of the estimator N̂M, one needs to study the vari-

ation of the ratio N̂M
NM

, like what has been done for N̂1

N1
in Theorem 2. However, it is a

difficult task to work out the close-form of the variance of N̂M for an arbitrary motifM.

Thus, we decided to show the consistent property of the estimator N̂M via simulation

results in chapter 3.

Summary: in this section 2.1, we have developed the estimators of the number of

occurrences of any arbitrary motif M in any directed or undirected network. First,

the analysis was done for the simplest case, i.e. the number of links in an undirected

network, and then was generalized to any arbitrary motifM. Using the “extrapolation”

approach, we scaled up the motif count in the observed subnetwork Gobs to estimate

that in the real network G. Although the idea is very intuitive, little effort has been
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done to analytically explore the properties of these estimators. A previous attempt

by Stumpf et al. in [73] only focused the estimation of the number of links, and even

the analysis there is not complete yet. To the best of our knowledge, our study is

the first work to thoroughly explore the asymptotically unbiased and consistent of the

estimators N̂M. Most importantly, we have proved that the results obtained here hold

for any motif M and any underlying network G.

However, it should be noted that we have assumed so far that the observed subnet-

work Gobs is free from experimental errors, that is, there is neither spurious nor missing

links in Gobs. In the next section 2.2, we shall further refine the method to handle noise

in the observed subnetwork Gobs.

2.2 Noisy subnetwork data and biased-corrected es-

timators

As mentioned earlier in section 1.2, the low coverage and inaccuracy of data prevail in

Network Biology as one of the most challenging problems. In this section, we refine the

estimator N̂M developed in the previous section 2.1 to take into account the error rates

of real biological networks data.

There are two types of errors in biological networks data: spurious interactions

(that is, false positives) and missing interactions (that is, false negatives) (see Fig. 1.4).

Spurious links are the links that do not exist in the real network but are wrongly

detected by the experiments. Missing links are the links that exist in the real network

but cannot be detected by the experiments. We define the false positive rate r+ to be

the probability that a non-existing link is incorrectly detected, and the false negative

rate r− to be the probability that a true link is not detected. Using independent random

variables F+
i1i2
∼ Bernoulli(r+) and F−i1i2 ∼ Bernoulli(r−), 1 ≤ i1 < i2 ≤ n, to model
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(1) 

(2) 

(3) 

(5) 

(4) (8) (9) 

(7) 

(6) 

Figure 2.1: All possible (9) undirected motifs that have up to 4 nodes. The number
associated with each motif indicates its reference ID in the main text. The long red
arrow indicates the sub-motif relationship: motifs in each column are sub-motifs of the
ones on their right side.
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(10) 

(11) 

(12) 

(13) 

(14) 

FFL (15) 

(16) 

(17) 

(18) 

Bi-fan (19) 

Bi-parallel (20) 

Figure 2.2: 11 selective directed motifs, some of which such as feed-forward loop, bi-
fan, bi-parallel have been highlighted in literature as building blocks or functional units
in many real-world complex networks [59]. The number associated with each motif
indicates its reference ID in the main text. The long red arrow indicates the sub-motif
relationship: motifs in each column are sub-motifs of the ones on their right side.
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spurious and missing interactions in the observed subnetwork Gobs, we can represent

the effect of experimental errors on an ordered pair of nodes (i1, i2) as follows:

ãi1i2 = ai1i2(1− F−i1i2) + (1− ai1i2)F+
i1i2
. (2.20)

In other words, for any two nodes i1, i2 ∈ V obs, a link (i1, i2) is observed in the subnet-

work Gobs (that is, ãi1i2 = 1) if one of the following two mutually exclusive situations

happens. In the first situation, there is an link (i1, i2) in the real network G (that is,

ai1i2 = 1), and there is no false negative (that is, F−i1i2 = 0). This situation gives rise

to the term ai1i2(1 − F−i1i2). In the second situation, link (i1, i2) does not exist in the

real network G (that is, ai1i2 = 0), but false positive occurs (that is, F+
i1i2

= 1). This

situation gives rise to the term (1− ai1i2)F+
i1i2

.

To take these error rates into account, we need to replace each entry ai1i2 in the

adjacency matrix A with ãi1i2 to obtain a new matrix, Ã, and then replace A by Ã in

the expression of Nobs
M in Eqn. (2.13). As a result, the proposed estimator N̂M defined

in Eqn. (2.14) is no longer asymptotically unbiased. In particular, N̂M has the new

expression as follows:

N̂M =

(
n
m

)
(
nobs

m

)
∑

1≤i1<i2<...<im≤n

fM(Ã[i1, i2, . . . , im])Xi1Xi2 . . . Xim . (2.21)

Since the random variables Xi are i.i.d, 1 ≤ i ≤ n, and we assume that they are
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also independent of F+
i1i2

and F−i1i2 , 1 ≤ i1 < i2 ≤ n, we have

E(N̂M) = E

( (
n
m

)
(
nobs

m

)
∑

1≤i1<i2<...<im≤n

fM(Ã[i1, i2, . . . , im])Xi1Xi2 . . . Xim

)

= E

( (
n
m

)
(
nobs

m

)
∑

1≤i1<i2<...<im≤n

fM(Ã[i1, i2, . . . , im])X1X2 . . . Xm

)

= E

( (
n
m

)
(
nobs

m

)X1X2 . . . Xm

)
E

( ∑

1≤i1<i2<...<im≤n

fM(Ã[i1, i2, . . . , im])

)
.(2.22)

As shown in the proof of Theorem 3, we have

E

( (
n
m

)
(
nobs

m

)X1X2 . . . Xm

)
= 1− qn − npqn−1 − . . .−

(
n

j

)
pjqn−j − · · · −

(
n

m− 1

)
pm−1qn−(m−1)

= 1−
m−1∑

j=0

(
n

j

)
pjqn−j

=→ 1 as n→∞.

On the other hand, we can work out the second expectation in Eqn. (2.22) using

the fact that F+
i1i2
∼ Bernoulli(r+), F−i1i2 ∼ Bernoulli(r−), 1 ≤ i1 < i2 ≤ n, and they are

independent. In particular, the second expectation has the following form:

E

( ∑

1≤i1<i2<...<im≤n

fM(Ã[i1, i2, . . . , im])

)
= (1− r+ − r−)sNM +WM, (2.23)

where s is the number of links in motif M, WM is a function of n, the error rates r−

and r+, and the number of occurrences of all sub-motifs M′ of M, that is, NM′ .

Hence, to correct the bias caused by the error rates, we first need to estimate NM′

by ÑM′ for all sub-motifs M′ of M. Subsequently, we obtain W̃M, and adjust N̂M to

ÑM =
1

rs
(N̂M − W̃M), (2.24)
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where

r = 1− r+ − r−. (2.25)

Thus, we have used a re-centering factor W̃M and a scaling factor 1
rs

to correct the

bias caused by spurious and missing links. The bias-corrected estimator ÑM given in

Eqn. (2.24) now can be used to estimate the number of occurrences of any arbitrary

motif M in the entire network G from its noisy observed subnework Gobs. Note that

our method recursively estimates the number of occurrences of a motif based on its

sub-motifs. Fig. 2.1 and Fig. 2.2 respectively show the sub-motif relationship for 9

undirected motifs and 11 directed motifs considered in this study. Expressions of the

bias-corrected estimator ÑM are given in Table 2.3 (undirected motifs) and Table 2.4

(directed motifs). Detailed calculation of the bias-corrected estimator ÑM for those

motifs are omitted from this thesis since they are too long. Nevertheless, in the following

section, we give an example of how to obtain the bias-corrected estimator ÑM for the

feed-forward loop motif.

2.2.1 Example of calculating the bias-corrected estimator ÑM

for the feed-forward loop motif

For any three nodes 1 ≤ i1 < i2 < i3 ≤ n, the following function counts the number of

occurrences of feed-forward loop (FFL) motif among them (Table 2.2):

f15(A[i1, i2, i3]) = ai1i2ai1i3(ai2i3 + ai3i2) + ai2i1ai2i3(ai1i3 + ai3i1) + ai3i1ai3i2(ai1i2 + ai2i1).

(2.26)

The numbers of occurrences of FFL motif in the real network G and its observed
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Table 2.3: Detailed expressions of the bias-corrected estimator ÑM for 9 undirected
motifs.

ID Motif Bias-corrected estimator ÑM

1 Ñ1 = 1
r

[
N̂1 −

(
n
2

)
r+

]

2 Ñ2 = 1
r2

[
N̂2 − 2(n− 2)r+rÑ1 − 3

(
n
3

)
r2+

]

3 Ñ3 = 1
r3

[
N̂3 − r+r

2Ñ2 − (n− 2)r2+rÑ1 −
(
n
3

)
r3+

]

4 Ñ4 = 1
r3

[
N̂4 − (n− 3)r+r

2Ñ2 − 2
(
n−2
2

)
r2+rÑ1 − 4

(
n
4

)
r3+

]

5 Ñ5 = 1
r3

{
N̂5 − r+r

2
[
4
(
Ñ1

2

)
+ 2(n− 5)Ñ2

]
− 6
(
n−2
2

)
r2+rÑ1 − 12

(
n
4

)
r3+

}

6
Ñ6 = 1

r4

{
N̂6 − r+r

3
[
3(n− 3)Ñ3 + 3Ñ4 + 2Ñ5

]
− r2+r

2
[
4
(
Ñ1

2

)
+ (5n− 19)Ñ2

]

−8
(
n−2
2

)
r3+rÑ1 − 12

(
n
4

)
r4+

}

7 Ñ7 = 1
r4

{
N̂7 − r+r

3Ñ5 − r2+r
2
[
2
(
Ñ1

2

)
+ (n− 5)Ñ2

]
− 2
(
n−2
2

)
r3+rÑ1 − 3

(
n
4

)
r4+

}

8
Ñ8 = 1

r5

{
N̂8 − 2r+r

4(Ñ6 + Ñ7)− 3r2+r
3
[
(n− 3)Ñ3 + Ñ4 + Ñ5

]
− 4r3+r

2
[(

Ñ1

2

)
+ (n− 4)Ñ2

]

−5
(
n−2
2

)
r4+rÑ1 − 6

(
n
4

)
r5+

}

9
Ñ9 = 1

r6

{
N̂9 − r+r

5Ñ8 − r2+r
4(Ñ6 + Ñ7)− r3+r

3
[
(n− 3)Ñ3 + Ñ4 + Ñ5

]
− r4+r

2
[(

Ñ1

2

)
+ (n− 4)Ñ2

]

−
(
n−2
2

)
r5+rÑ1 −

(
n
4

)
r6+

}
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Table 2.4: Detailed expressions of the bias-corrected estimator ÑM for 11 directed
motifs.

ID Motif Bias-corrected estimator ÑM

10 Ñ10 = 1
r

[
N̂10 − 2

(
n
2

)
r+

]

11 Ñ11 = 1
r2

[
N̂11 − 2(n− 2)r+rÑ10 − 6

(
n
3

)
r2+

]

12 Ñ12 = 1
r2

[
N̂12 − (n− 2)r+rÑ10 − 3

(
n
3

)
r2+

]

13 Ñ13 = 1
r2

[
N̂13 − (n− 2)r+rÑ10 − 3

(
n
3

)
r2+

]

14 Ñ14 = 1
r3

[
N̂14 − r+r

2Ñ11 − (n− 2)r2+rÑ10 − 2
(
n
3

)
r3+

]

15 Ñ15 = 1
r3

[
N̂15 − r+r

2(Ñ11 + 2Ñ12 + 2Ñ13)− 3(n− 2)r2+rÑ10 − 6
(
n
3

)
r3+

]

16 Ñ16 = 1
r3

{
N̂16 − 2r+r

2
[(

Ñ10

2

)
+ (n− 3)(Ñ12 + Ñ13)

]
− 6
(
n−2
2

)
r2+rÑ10 − 24

(
n
4

)
r3+

}

17 Ñ17 = 1
r3

{
N̂17 − r+r

2
[
2
(
Ñ10

2

)
+ (n− 3)(Ñ11 + 2Ñ13)

]
− 6
(
n−2
2

)
r2+rÑ10 − 24

(
n
4

)
r3+

}

18 Ñ18 = 1
r3

{
N̂18 − r+r

2
[
2
(
Ñ10

2

)
+ (n− 3)(Ñ11 + 2Ñ12)

]
− 6
(
n−2
2

)
r2+rÑ10 − 24

(
n
4

)
r3+

}

19 Ñ19 = 1
r4

{
N̂19 − r+r

3Ñ16 − r2+r
2
[(

Ñ10

2

)
+ (n− 3)(Ñ12 + Ñ13)

]
− 2
(
n−2
2

)
r3+rÑ10 − 6

(
n
4

)
r4+

}

20
Ñ20 = 1

r4

{
N̂20 − r+r

3(Ñ17 + Ñ18)− r2+r
2
[
2
(
Ñ10

2

)
+ (n− 3)(Ñ11 + Ñ12 + Ñ13)

]

−4
(
n−2
2

)
r3+rÑ10 − 12

(
n
4

)
r4+

}
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subnetwork Gobs, given that there is no error in Gobs, are written as follows:

N15 =
∑

1≤i1<i2<i3≤n

f15(A[i1, i2, i3]), (2.27)

Nobs
15 =

∑

1≤i1<i2<i3≤n

f15(A[i1, i2, i3])Xi1Xi2Xi3 . (2.28)

Assuming that the density of FFL motif in G can be approximated by that in Gobs,

the following estimator can be used to estimate the number of occurrences of FFL motif

in G, given that there is no error in Gobs:

N̂15 =

(
n
3

)
(
nobs

3

)Nobs
15 . (2.29)

Taking error rates into account, we replace each entry ai1i2 in the adjacency matrix

A with ãi1i2 , defined in Eqn. (2.20), to obtain a new matrix Ã, and then replace A

by Ã in the expressions of Nobs
15 and N̂15. As a result, the estimator N̂15 is no longer

unbiased. In particular, its expectation has the following form:

E(N̂15) = E

( (
n
3

)
(
nobs

3

)
∑

1≤i1<i2<i3≤n

f15(Ã[i1, i2, i3])Xi1Xi2Xi3

)

= E

( (
n
3

)
(
nobs

3

)
∑

1≤i1<i2<i3≤n

f15(Ã[i1, i2, i3])X1X2X3

)

= E

( (
n
3

)
(
nobs

3

)X1X2X3

)
E

( ∑

1≤i1<i2<i3≤n

f15(Ã[i1, i2, i3])

)

=

[
1− qn − npqn−1 −

(
n

2

)
p2qn−2

] [
(1− r+ − r−)3N15 +W15

]
, (2.30)

where in the second and the third equalities we use the assumption that Xi are i.i.d,

1 ≤ i ≤ n, and independent of F+
i1i2

and F−i1i2 , 1 ≤ i1 < i2 ≤ n.
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The function W15 has the following form (detailed calculation is omitted):

W15 = r+r
2(N11 + 2N12 + 2N13) + 3(n− 2)r2

+rN10 + 6

(
n

3

)
r3

+, (2.31)

in which r = 1 − r+ − r−, N10, N11, N12, N13 are the numbers of occurrences of the

corresponding sub-motifs of FFL motif (Fig. 2.2).

Subsequently, we replace N10, N11, N12, N13 by their bias-corrected estimators and

obtain

Ñ15 =
1

r3

[
N̂15 − r+r

2(Ñ11 + 2Ñ12 + 2Ñ13)− 3(n− 2)r2
+rÑ10 − 6

(
n

3

)
r3

+

]
. (2.32)

Thus, Ñ15 is the bias-corrected estimator for the number of occurrences of FFL

motif (Table 2.4).

Summary: in this section 2.2, we have refined the estimator N̂M developed in section

2.1 by taking into account the false positive and false negative rates. As a result,

the bias-corrected estimator ÑM now can be used to handle noise in the observed

subnetwork Gobs. To the best of our knowledge, our bias correction approach is the

first attempt in Network Biology, as well as in other fields of Network Sciences, to

directly estimate the number of occurrences of motifs from noisy subnetwork data.

As discussed in the Introduction, previous works only focused on direct estimation of

the number of links, or indirect approaches that try to reconstruct the real network by

inferring spurious and missing links.

2.3 Summary

In this chapter, we have proposed a method to estimate the number of occurrences of

motifs in a real network from its noisy subnetwork data. Rigorous theoretical analysis
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has been done to thoroughly explore the asymptotically unbiased and consistent prop-

erties of the proposed estimators. Interestingly, the results have been obtained without

any assumption regarding to the structure of the real network and the type of the motif

of interest. Thus, the proposed estimators are widely applicable to different fields of

Network Sciences, including Network Biology, Social Networks, World-Wide-Web, etc.

Most importantly, our method is the first attempt that can take into account spurious

and missing links to directly estimate the number of occurrences of motifs from noisy

subnetwork data. In the next chapter, we shall present the simulation results and the

analysis on real network datasets that further confirm the accuracy of the estimators

N̂M, ÑM and our theoretical results obtained in this chapter.
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Chapter 3

Simulation Validation and

Application to Protein-Protein

Interaction & Gene Regulatory

Networks

In this chapter, we first present the simulation validation for the theoretical results

obtained in chapter 2. We study the accuracy of the two estimators N̂M and ÑM

with respect to different parameters of the whole network G, as well as parameters of

the sampling process used to obtain the subnetwork Gobs. In particular, we consider

four random graph models: Erdos-Renyi [63], preferential attachment [18], duplication

[64], and geometric [66]. As mentioned in the chapter Introduction, these four models

are the most widely used in Network Sciences because they are able to capture several

topological structures of real-worlds networks. Parameters required to generate network

G from these random graph models include the number of nodes n, the link density ρ,

and the power-law exponent β for scale-free networks. Sampling parameters include the
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sampling probability p and the error rates r+, r−. At this point we only focus on the

uniform random node sampling scheme, more detailed discussion on sampling schemes

will be given in the next chapter. In addition to random graph models, which can

only explain some, but not all characteristics of any complex network in the real-world,

we also examine the performance of the proposed estimators in “real” networks. In

particular, we consider observed subnetworks from real data sets as the entire complete

network G from which we draw smaller subnetworks, that is, sub-subnetworks, and

then perform similar estimation and validation. Detailed simulation results given in the

following sections confirm the accuracy of our proposed estimators and the theoretical

results obtained in chapter 2, including Theorems 1, 2, 3 and convergence rates in

Proposition 1.

In the second part of this chapter, we apply our method to estimate the number

of occurrences of different motif types from real datasets of protein-protein interaction

(PPI) and gene regulatory networks. Our results reveal several interesting features of

the PPI networks in four species: S. cerevisiae (Yeast), C. elegans (Worm), H. sapiens

(Human), and A. athaliana (Arabidopsis), as well as the transcription factor (TF)

regulatory networks in forty-one different cell types of Human. In particular, we found

that although PPI networks of Yeast and Arabidopsis have similar, or even higher link

densities than Human, the triangle density in the PPI network of Human is 5 times that

of Yeast, and 1.7 times that of Arabidopsis. This indicates a highly clustering and well-

connected structure of the PPI network of Human. We also discovered a very strong

positive linear correlation between the number of occurrences of important triad and

quadriad motifs in forty-one cell-specific TF regulatory networks of Human. Moreover,

the numbers of occurrences of motifs seem to be associated with the functional class of

the cell types. Details are given in the following sections.
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3.1 Simulation validation

3.1.1 Simulation from random graph models

In this section, we examine the accuracy of the proposed estimators in networks gen-

erated from four random graph models: Erdos-Renyi, preferential attachment, dupli-

cation, and geometric. Detailed properties and features of these models have been

discussed in the chapter Introduction. For the clarity of presentation, here we briefly

describe again how a network G is generated from these random graph models.

1. Erdos-Renyi model:

• We start with n singletons.

• Between any two nodes a link is placed independently and uniformly at

random with probability ρ.

2. Preferential attachment model:

• An initial random network G0 is generated from the ER model with 10 nodes

and edge density 0.5.

• At each iteration, a new node with l incident links is added to the current

network. Neighbors of the newly added node are chosen with probabilities

proportional to their current degrees.

3. Duplication model:

• An initial random network G0 is generated from the ER model with 10 nodes

and edge density 0.5.

• At each iteration, an existing node u is chosen uniformly at random. A new

node u′ is duplicated from u, that is, u′ is connected to each neighbor of u
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with probability pdup. The new node u′ is also connected to the duplicated

node u.

4. Geometric model:

• First, n nodes are placed uniformly at random in a unit cube.

• Any two nodes are then connected if the distance between them is less than

a given threshold δ.

Although these four models have their own parameters, for a meaningful comparison,

we will study the accuracy of the proposed estimators with respect to two common

important properties: the number of nodes, n, and the link density, ρ. The parameters

of each model are then adjusted so that the model can produce networks with desired

n and ρ.

The simulation and validation process is carried out as follows. Using each model,

we generate directed and undirected networks with different values of the number of

nodes n and the link density ρ. Each generated network is then considered as the real

network G from which 100 subnetworks are sampled using the uniformly random node

sampling scheme with different values of the sampling probability p. For each motif

M, we count its occurrences in each sampled subnetwork, that is Nobs
M , and scale up

to obtain the estimator N̂M, as described in chapter 2. To proceed further with the

noisy case, spurious and missing interactions are planted to each of those 100 sampled

subnetworks using different values of the error rates r+ and r−. Then, the bias-corrected

estimator ÑM is calculated from those noisy sampled subnetworks using the formula

derived in chapter 2.

Finally, we compare the estimators N̂M and ÑM with the real number NM, which

is calculated directly from G. The accuracy of each estimator depends on the random

graph model, the network parameters n and ρ, and the node sampling probability p.
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The bias-corrected estimator also depends on the error rates r+ and r−. We use the

mean square error (MSE) of the ratios N̂M
NM

and ÑM
NM

to measure the accuracy of the

estimators. As we expect the ratios to be close to one, the MSE is calculated as follows:

MSE

(
N̂M
NM

)
=

1

100

∑

1≤i≤100

(
N̂

(i)
M

NM
− 1

)2

, (3.1)

where N̂
(i)
M is calculated from the sampled subnetwork i, 1 ≤ i ≤ 100. The MSE of ÑM

NM

is calculated similarly. Since we have proved that the estimators are asymptotically

unbiased, the MSE will basically reflect their variation.

First, we study how the MSE of the estimators N̂M and ÑM depends on the pa-

rameters of the underlying network G. We fix the node sampling probability p = 0.1,

that is, only 10% of the nodes from G will be sampled. We choose the error rates

r− = 0.85 and r+ = 0.00001, which are similar to the error rates in real datasets (more

details of real datasets will be given in the next section). For each of the four random

graph models, we consider increasing number of nodes n = 500, 1000, . . . , 10000 and

increasing link density ρ = 0.01, 0.02, . . . , 0.1. For each combination of model, n, and

ρ, a network G is generated. The sampling and estimation process is then carried out

as described above.

Panels (A) and (B) in Fig. 3.1 show the MSE of the estimators N̂9 and Ñ9 for the

number of occurrences of FFL motif with respect to the network parameters n and ρ,

when the underlying network G is generated from the ER model. In both cases, for each

value of the link density ρ, the MSE decreases and converges to zero as n increases.

This confirms that our proposed estimators are asymptotically unbiased and consistent.

The MSE also decreases as the link density ρ increases, indicating that the estimators

have better accuracy when applied to denser networks. If we compare panel (A) versus

panel (B), it can be seen that for the same values of the parameters n and p, the MSE
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Figure 3.1: MSE of the estimators N̂9 and Ñ9 for the number of occurrences of FFL
motif in networks generated from the ER model. (A) MSE of the estimator N̂9, (B)

MSE of the estimator Ñ9 with respect to the number of nodes n and the link density
ρ. For each value of the link density ρ, we generate networks with increasing number
of nodes, n = 500, 1, 000, ..., 10, 000. From each network, we sample 100 subnetworks
with the node sampling probability p = 0.1, and calculate the estimator N̂9 from each
sampled subnetwork. Missing and spurious links are then introduced to each sampled
subnetwork with the error rates r+ = 0.00001, r− = 0.85, and the estimator Ñ9 is
calculated from each noisy sampled subnetwork. (C) MSE of the estimators N̂9 and

Ñ9 with respect to the node sampling probability p. We first generate a network with
the number of nodes n = 5, 000 and the link density ρ = 0.1, and repeat the sampling-
estimating process with increasing node sampling probability p = 0.05, 0.1, ..., 0.5, while
the error rates are fixed at r+ = 0.00001 and r− = 0.85. (D) MSE of the estimator

Ñ9 with respect to the error rates r+ and r−, when the other parameters are fixed at
n = 5, 000, ρ = 0.1, p = 0.1.
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Figure 3.2: MSE of the estimators N̂9 and Ñ9 for the number of occurrences of FFL motif
in networks generated from the preferential attachment (upper) and the duplication
(lower) models. Notations are similar to Fig. 3.1.
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of the bias-corrected estimator Ñ9 is higher than that of N̂9. This is not surprising

since Ñ9 suffers from extra fluctuation of the random noise added into the sampled

subnetworks.

Next, we study how the accuracy of the estimators N̂9 and Ñ9 depends on the

parameters of the sampling scheme. We first generate a network with the number of

nodes n = 5, 000 and the link density ρ = 0.1, and repeat the sampling-estimating

process with increasing node sampling probability p = 0.05, 0.1, ..., 0.5, while the error

rates are fixed as r− = 0.85 and r+ = 0.00001. As shown in panel (C) of Fig. 3.1, the

accuracy of the estimators increases (MSE decreases) as the node sampling probability

increases. This is to be expected because the larger the sampled subnetworks are, the

smaller the variation of the estimators is. Similar to panels (A) and (B), it can also be

seen clearly from panel (C) that the MSE of Ñ9 is higher than that of N̂9.

We also study the effect of the error rates r+ and r− on the estimators. We fix the

number of nodes n = 5, 000, the link density ρ = 0.1, the sampling probability p = 0.1,

and repeat the sampling-estimating process with different values of the false positive

rate r+ and the false negative rate r−. Since the false negative rate r− is ∼ 0.85 for

real datasets, whereas the false positive rate r+ is ∼ 10−5, which is much smaller than

r−, we consider different values of r− ranging from 0.5 to 0.9, and different values of r+

ranging from 10−5 to 10−2. Panel (D) of Fig. 3.1 shows that the MSE increases with

respect to the false negative rate r−, wheareas the false positive rate r+ has little effect

on the MSE because it is too low. There is almost no difference in the MSE for the

three cases r+ = 10−5, 10−4, 10−3.

Fig. 3.2 shows similar results for networks generated from the preferential attach-

ment and the duplication models. It can be seen from panels (A) and (B) that the MSE

for networks generated from the ER model is lower than for those generated from the

preferential attachment and the duplication models, especially for the estimator N̂9. As
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mentioned in section 1.1.4 in chapter 1, networks generated from the ER model have

a symmetric architecture. Thus, subnetworks which are sampled uniformly at random

from the original network tend to have similar structure. As a result, the variation of

the estimators calculated from sampled subnetworks will be smaller for the ER model

than for the other two models. This observation is similar to the theoretical results of

the variation of the estimator for the number of links in undirected networks, N̂1, which

have been proved in Proposition 1 in chapter 2.

On the other hand, if we look at the difference between the MSE of the two es-

timators N̂9 and Ñ9 illustrated in panel (C) of Fig. 3.2, it can be seen that there is

almost no difference for the preferential attachment and the duplication models. In

contrast, there is a consistent difference between N̂9 and Ñ9 for the ER model in panel

(C) of Fig. 3.1. This could be explained by the robustness of networks generated from

the preferential attachment and the duplication models. As mentioned in section 1.1.4

in chapter 1, networks generated from these two models are scale-free, and hence, are

robust against random attacks. As a result, the bias-corrected estimator is less affected

by the random noise added into the sampled subnetworks.

Similar simulation validation results for other motif-network combinations can be

found in the Appendix. In general, the simulation results confirm the theoretical re-

sults obtained in Theorem 1, 2, and 3 that our proposed estimators are asymptotically

unbiased and consistent for different types of motifs and regardless of the topologi-

cal structure of the underlying network G. Thus, they can be easily applied to any

complex network from diverse fields, including biological networks, social networks, the

World-Wide-Web, engineering and electrical circuitries, etc.

Last but not least, we show the simulation validation results to confirm the conver-

gence rates derived in Proposition 1 in chapter 2. Using each of the four random graph

models, we generate networks with the number of nodes n up to 100,000 to obtain a bet-
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ter evaluation of the convergence rates. Other parameters are fixed as ρ = 0.1, p = 0.1,

and the number of sampled subnetworks is 100. We then calculate the Var
(
N̂1

N1

)
and

the dominated term N2

N2
1

(see equation (2.11)). Fig. 3.3 and 3.4 show the results ob-

tained for the preferential attachment model. As shown in Fig. 3.3, the convergence

rate of Var
(
N̂1

N1

)
is very close to that of the term N2

N2
1

as we have seen in equation (2.11).

Moreover, Fig. 3.4 shows that the convergence rate of N2

N2
1

is bounded by log(n)
n

as derived

in Proposition 1. Similar results for the ER, geometric, and duplication models can be

found in the Appendix. All simulation results confirm the accuracy of the convergence

rates derived in Proposition 1 in chapter 2.

3.1.2 Simulation from real network data

Table 3.1: Number of nodes and links in the observed PPI subnetworks of S. cerevisiae,
C. elegans, H. sapiens, and A. thaliana.

S. cerevisiae C. elegans H. sapiens A. thaliana

Number of proteins 1,278 9,906 7,194 8,429

Number of links 1,641 1,816 2,754 5,664

Most random graph models can only explain some, but not all characteristics of

any complex network in the real-world. Thus, in addition to random networks, we also

examine the performance of the estimators in “real” networks. To do so, we consider

each observed subnetwork from real datasets as the entire complete network from which

we draw smaller subnetworks, that is, sub-subnetworks, and do the estimation and vali-

dation. In particular, we use the observed PPI subnetworks of S. cerevisiae, C. elegans,

H. sapiens, and A. athaliana. We obtained those subnetworks from the following four

datasets which were produced from high-throughput Y2H experiments recently by the

Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute: CCSB-HI1

[25, 27], CCSB-YI1 [28], CCSB-WI-2007 [29], and CCSB-AI1-Main [30]. The number
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Figure 3.5: Observed PPI subnetwork of H. sapiens from Y2H experiment.
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Figure 3.6: Degree distribution of four observed PPI subnetwork of S. cerevisiae, C.
elegans, H. sapiens, and A. athaliana (log-log scale). The linear pattern between the log
of the number of nodes and the log of the node degree implies the scale-free structure
of these subnetworks.
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of proteins and interactions in those four subnetworks are presented in Table 3.1.

The PPI subnetwork of H. sapiens is shown in Fig. 3.5, the other three PPI subnet-

works can be found in the Appendix. It can be seen from the figures that those subnet-

works have more complicated structures than networks generated from random graph

models. They are not symmetric, not hierarchical, etc. There is one large connected

component and a lot of isolated islands, indicating a significant number of missing links

between them. Moreover, those subnetworks just represent a part of the whole pictures

since the number of proteins in each subnetwork is only about 1/6 to half of the entire

proteomes. Interestingly, as shown in Fig. 3.6, the linear pattern between the log of the

number of nodes and the log of the node degree suggests that those four complex sub-

networks share similar scale-free structures, a prominent feature of biological networks

as mentioned earlier in the chapter 1. More details of those datasets will be discussed

in the next sections.

From each of those four networks, we repeat similar simulations as what have been

done for random networks. Note that in this case, the number of nodes, n, and the

link density, ρ, are fixed. Hence, we first study how the MSE of the estimators change

with respect to the node sampling probability p. In particular, we try different values

of the node sampling probability p = 0.05, 0.1, . . . , 0.5, while fixing the error rates as

r+ = 0.00001, r− = 0.85.

Figure 3.7 shows the performance of the estimator N̂M in the PPI network of S.

cerevisiae for different undirected motifs. Despite the small number of nodes and the

complex structure of the PPI network of S. cerevisiae, the estimator N̂M still performs

well, especially for small motifs and large values of the sampling probability p. In

general, the MSE decreases as the sampling probability p increases. This is as expected,

since the larger the sampling probability p is, the larger the sampled subnetworks are,

and the more information they contain.
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We also observe that larger motifs, that is, those with higher number of nodes and

links, have worse estimation than the smaller ones. This is due to their low frequencies

of appearance in the original network, making it difficult to estimate their number of

occurrences from sampled subnetworks. In some cases, when the sampling probability

is too low, we cannot get good estimation for large motifs. For example, as shown in

Figure 3.7, the estimation for motifs u4, u5, u6 can be done only for sampling probability

p ≥ 0.1. Similarly, we need p ≥ 0.15 for motif u7, and p ≥ 0.2 for motif u8.

Figure 3.8 shows the performance of the estimator ÑM. As expected, its perfor-

mance is not as good as the estimator N̂M due to the noise. The bias-corrected esti-

mation for motifs u3, u4, u5 can be done only for sampling probability p ≥ 0.2, while

we need p ≥ 0.3 for motif u6. Other larger motifs cannot be estimated with sampling

probability p ≤ 0.5. Similar simulation results for the other three PPI networks of C.

elegans, H. sapiens, and A. athaliana can be found in the Appendix.

We also study how the MSE of the bias corrected estimator ÑM depends on the false

positive rate r+ and the false negative rate r−. We fix the node sampling probability as

p = 0.5, that is, 50% of the proteins in the PPI network of S. cerevisiae will be sampled.

The error rates of Y2H assay are estimated as r+ ' 10−5 and r− ' 0.85 (more details

are given in the next sections). Thus, we try different values of the false positive rate

r+ = 10−2, 10−3, 10−4, 10−5 and false negative rate r− = 0.1, 0.2, . . . , 0.9.

Figures 3.9 and 3.10 show the MSE of the estimator ÑM for estimating the number of

links and triangles. Similar results for other motif types can be found in the Appendix.

In general, when the false positive rate r+ is fixed, the MSE is increased with respect

to the false negative rate r− as expected. There is no significant difference in the MSE

for small values of the false positive rate r+ = 10−5, 10−4, 10−3. However, the MSE for

r+ = 10−2 is remarkably higher than that for the other three cases. We also notice that

the MSE is higher for larger motifs, as previously observed.
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Figure 3.7: Performance of the estimator N̂M with respect to the node sampling prob-
ability p in the PPI network of S. cerevisiae for different undirected motifs. The motif
IDs, u1, u2, . . . , u8 correspond to those in Figure 2.1.
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Figure 3.8: Performance of the estimator ÑM with respect to the node sampling prob-
ability in the PPI network of S. cerevisiae.
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In summary, our proposed estimators also show good performance in “real” PPI

networks, despite their very complex structures. However, estimating the number of

occurrences of large motifs requires moderate sampling probability, i.e., sufficient infor-

mation from sampled subnetworks.

3.2 Computational time efficiency of the sampling-

estimating approach

As a side result of the study, we found that even if the real network G is fully known,

and hence, one can directly count the real number of motif occurrences by exhaustive

enumeration, sampling a sufficient number of small subnetworks and estimating the

number of occurrences of a motif M using the corresponding estimator N̂M is much

more efficient in terms of computational time than exhaustive counting , while still can

provide comparably accurate results. This is especially useful for huge networks for

which exhaustively enumerating all motifs is impossible.

Take the triangle motif for instance. Consider a naive method, for example, the link

iteration algorithm, which travels over all links of the network G and counts the number

of common neighbors of the two ends of each link. For counting the number of triangles

in a network with n nodes and link density ρ, the algorithm will travel over ∼
(
n
2

)
ρ links,

and for each link check (n − 2) nodes for common neighbors. Hence the total number

of iterations is approximately (n − 2)
(
n
2

)
ρ. However, under the sampling-estimating

approach with node sampling probability p, the number of nodes in a sampled sub-

network is ∼ np nodes. Hence, the number of iterations can be reduced by a factor

of ∼ (p3 × number of sampled subnetworks), which may be less than one by suitably

choosing small enough p and a sufficient number of sampled subnetworks.

We define the computational time efficiency as the ratio between the sampling-
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Figure 3.9: Performance of the estimator ÑM of the number of links with respect to
false positive and false negative rates in the PPI network of S. cerevisiae.
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Figure 3.10: Performance of the estimator ÑM of the number of triangles with respect
to false positive and false negative rates in the PPI network of S. cerevisiae.
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Figure 3.11: Computational time efficiency and MSE of the estimator N̂3 for estimating
the number of triangles in an example network of n = 5, 000 nodes and link density
ρ = 0.1. (A) Computational time efficiency versus MSE for four values of the node
sampling probability p. When p = 0.1, 0.2, 0.3, 0.4, the number of sampled subnetworks
was set to 125k, 25k, 5k, 2k (1 ≤ k ≤ 8), respectively, so that the computational time
efficiency is less than one. Using the sampling-estimation approach, we can achieve an
MSE ∼ 10−4, that is, an estimate within ∼ 1% deviation from the real number, while
using no more than ∼ 50% of the computational time of the exhaustive enumeration
approach. (B) When p is fixed, the computational time efficiency increases as a linear
function of the number of sampled subnetworks. (C) When the number of sampled
subnetworks (that is, “rep”) is fixed, the computational time efficiency increases as
a cubic function of p. (D) MSE decreases as the number of sampled subnetworks
increases. (E) MSE decreases as p increases.
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estimating time and the exhaustive enumeration time. Fig. 3.11 shows an example of

how the computational time efficiency and the MSE of N̂3, that is, our estimator for

the number of triangles, depend on the node sampling probability p and the number of

sampled subnetworks (or the number of repetitions “rep”). In this simulation, given

a random network with n = 5, 000 nodes and the link density ρ = 0.1, we first count

the number of triangles and record the counting time. Then for each value of the node

sampling probability p = 0.05, 0.1, ..., 0.5, we draw a sufficient number of subnetworks

from each of which we calculate the estimator N̂3. We take average of N̂3 over all

sampled subnetworks as an estimate for the number of triangles in the original network.

Finally, we calculate the sampling-estimating time and the MSE of the estimation.

As expected, panel (B) of Fig. 3.11 shows that the computational time efficiency

increases as a linear function of the number of sampled subnetworks when the node

sampling probability p is fixed. Similarly, panel (C) of Fig. 3.11 shows that the compu-

tational time efficiency increases as a cubic function of the node sampling probability

p when the number of sampled subnetworks, “rep”, is fixed . Panels (D) and (E)

show that the MSE decreases with respect to the number of sampled subnetworks and

the node sampling probability p. Finally, in panel (A), we show all possible combina-

tions of the number of sampled subnetworks and the node sampling probability p for

which the computational time efficiency is less than one, that is, when the sampling-

estimating approach is more efficient than the exhaustive enumeration approach. Using

the sampling-estimation approach, we can achieve an MSE ∼ 10−4, that is, an estimate

within ∼ 1% deviation from the real number, while using no more than ∼ 50% of the

computational time of the exhaustive enumeration approach.

Most importantly, this sampling-estimating approach is a friend rather than a com-

petitor to other counting algorithms. Any method which is able to count the number of

motif occurrences in a network can also be applied to its subnetworks in combination
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with this sampling-estimating approach. This is especially useful for huge networks for

which exhaustively enumerating all motifs is impossible.

3.3 Estimating motif counts in PPI networks

Together with the theoretical results obtained in chapter 2, the simulation validation

results in the previous sections have confirmed the accuracy of our proposed estimators.

In this section we apply the biased-corrected estimator Ñ1 and Ñ3 (see Table 2.3) to esti-

mate the number of links and triangles in the PPI networks of four species: S. cerevisiae

(Yeast), C. elegans (Worm), H. sapiens (Human), and A. athaliana (Arabidopsis).

Table 3.2: Observed PPI subnetworks of S. cerevisiae, C. elegans, H. sapiens, & A.
thaliana, and their quality parameters.

S. cerevisiae C. elegans H. sapiens A. thaliana

Total no. of proteins 6,000 20,065 22,500 27,029

No. of proteins screened 3,676 9,906 7,194 8,429
No. of links detected 1,130 1,816 2,754 5,664

Quality parameters
Precision 0.9400 0.8600 0.7940 0.8030
False discovery rate 0.0600 0.1400 0.2060 0.1970
Sensitivity 0.1700 0.0496 0.0950 0.1570
False negative rate (r−) 0.8300 0.9504 0.9050 0.8430
False positive rate (r+) 0.8× 10−5 0.5× 10−5 2× 10−5 3× 10−5

We obtain their PPI subnetworks from the following four datasets which have been

published recently by the Center for Cancer Systems Biology (CCSB), Dana-Farber

Cancer Institute: CCSB-HI1 [25, 27], CCSB-YI1 [28], CCSB-WI-2007 [29], and CCSB-

AI1-Main [30]. These datasets were produced from high-throughput Y2H experiments

and their quality parameters were accurately estimated by the authors from CCSB.

Table 3.2 summarizes the information of these datasets and their quality parameters.

Take Yeast for instance. It is estimated that the total number of proteins in Yeast
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is about 6,000. In this Y2H experiment, only 3,676 proteins available in hands were

tested. All of them were used both as bait and prey, so the test space is a 3, 676×3, 676

square matrix. There are 1,130 interactions detected between these 3,676 proteins. To

examine the accuracy of Y2H experiments and the quality of detected interactions, the

traditional approach is comparing the observed data with some gold-standard datasets

[67, 68]. However, as mention in chapter 1, all biological network data are incomplete

and so are the gold-standard datasets. Hence, it is not reliable to use the traditional

approach to assess the quality of the observed data. To overcome these limitations, in

[27] the authors from CCSB have proposed an empirical framework which uses multiple

cross-assay experiments to validate the detected interactions, and then, accurately es-

timate the quality parameters of the observed data, including precision, false discovery

rate, sensitivity, false negative and false positive rates.

Given the observed PPI subnetworks and their link error rates, we are now ready

to apply the bias-corrected estimators Ñ1 and Ñ3 to estimate the number of links and

triangles in the entire PPI networks.

3.3.1 Comparison of our estimator Ñ1 and CCSB estimator

ÑCCSB

We first re-estimate the size, i.e. the number of links, of these four interactomes using

the bias-corrected estimator Ñ1. As mentioned in chapter 1, this task is of critical

importance in Network Biology because the number of interactions together with the

number of genes/proteins may reflect the biological complexity of living organisms.

Moreover, the estimates also show us how complete the current biological network

data are and how much work still to be done. There are two approaches for this

task of estimation. The first approach is to model the intersection of two observed

PPI subnetworks of the same species using the hypergeometric distribution [70, 72].
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The second approach, which is applied in our work and [27, 28, 29, 30, 73, 74], is to

extrapolate the number of links in the observed subnetwork to estimate that in the

entire network.
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Figure 3.12: Limitation of gold-standard datasets. (A) Ideal classification: gold-
standard positive and negative sets are completely known. Hence, we can verify if
a detected interaction is a real one (TP) or a spurious link (FP), and if an undetected
interaction is a missing link (FN) or it really does not exist in the real network (TN).
(B) Gold-standard sets for biological networks data are currently limited and biased.
As a result, many detected as well as undetected interactions cannot be verified.

In [73] and CCSB papers [27, 28, 29, 30], the size of an interactome was estimated

from observed subnetwork data using the same “extrapolation” approach, but in a

slightly different way from ours. In particular, in both studies the number of links in

the observed subnetwork Gobs is first scaled up by the factor
(n2)

(n
obs

2 )
(which is referred
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to as 1
completeness

in [27, 28, 29, 30]) to obtain the estimator N̂1. The bias caused by

the missing and spurious links, however, is handled in different ways: we make use

of the false positive and false negative rates, whereas they consider the precision and

sensitivity.

Let ÑCCSB denote the CCSB estimator. We have:

Ñ1 =
N̂1 −

(
n
2

)
r+

1− r+ − r−
,

ÑCCSB =
N̂1 x precision

sensitivity
. (3.2)

Recall that the quality parameters are defined as follows:

• TP: true positives; FP: false positives; FN: false negatives; TN: true negatives;

• precision = TP
TP+FP

;

• false discovery rate rd = FP
TP+FP

= 1− precision;

• sensitivity = TP
TP+FN

;

• false negative rate r− = FN
TP+FN

= 1− sensitivity;

• false positive rate r+ = FP
FP+TN

.

In an ideal classification problem (panel (A), Fig. 3.12), the gold-standard positive

and negative sets are completely known. Hence, we can verify if a detected interaction

is a real one (TP) or a spurious link (FP), and if an undetected interaction is a missing

link (FN) or it really does not exist in the real network (TN). In this ideal classification,
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we have the following equalities:

N̂1 = TP+FP, (3.3)

N1 = TP+FN, (3.4)
(
n

2

)
−N1 = FP+TN. (3.5)

Since

N1 = TP+FN = N̂1 x precision +N1 x (1 - sensitivity), (3.6)

this gives rise to the CCSB estimator ÑCCSB.

On the other hand, we have

N̂1 = TP+FP = N1(1− r−) +

((
n

2

)
−N1

)
r+, (3.7)

and this gives rise to our estimator Ñ1.

Thus, in the ideal classification problem, our estimator Ñ1 and the CCSB estimator

ÑCCSB are mathematically equivalent.

However, for biological networks data, gold-standard positive and negative sets are

currently limited and biased (panel (B) Fig. 3.12). As a result, many detected as well as

undetected interactions cannot be verified. For example, even if a detected interaction

has not been reported previously in any gold-standard positive set, it is not necessary

a spurious link (FP) because it can also represent a novel interaction as well. Thus,

using gold-standard sets to infer the quality parameters is not a reliable approach. In

particular, equations in (3.3, 3.4, 3.5) no longer hold, and neither is the equivalent

relationship between the two estimators Ñ1 and ÑCCSB.

The empirical framework using multiple cross-assay validations proposed by CCSB

in [27] offers more accurate estimates of the quality parameters than traditional com-
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parison approaches [27]. In such cases, it can be shown that our estimator Ñ1 and the

CCSB estimator ÑCCSB are still almost the same. In particular, using the error rates

r−, r+, and rd, which are estimated from empirical experiments, the two estimators can

be rewritten as

Ñ1 =
1

1− r+ − r−

( (
n
2

)
(
nobs

2

)N obs

1 −
(
n

2

)
r+

)
, (3.8)

ÑCCSB =
1

1− r−

(
n
2

)
(
nobs

2

)N obs

1 (1− rd). (3.9)

Since r+ is much smaller than r−, we have

1− r+ − r− ' 1− r−. (3.10)

Then

Ñ1 − ÑCCSB '
(
n
2

)

1− r−

(
N obs

1 rd(
nobs

2

) − r+

)
=

(
n
2

)

1− r−

(
FPobs

(
nobs

2

) − FPobs

(
nobs

2

)
− Pobs

)
, (3.11)

where FPobs and Pobs respectively denote the number of false positive links and real

positive links in the observed subnetwork Gobs. It should be noted that biological net-

works are quite sparse, and so, Pobs �
(
nobs

2

)
. Hence, our estimator Ñ1 and the CCSB

estimator ÑCCSB are almost the same.

However using multiple cross-assay experiments to validate detected interactions

and to accurately estimate the quality parameters is not always possible due to time

and financial constraints. As a result, one must use gold-standard sets to make inference

although they are currently limited and biased (Fig. 3.12). In such cases, we believe

that our estimator is better than the CCSB estimator because estimating the false

positive and false negative rates is more reliable than estimating the precision.
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3.3.2 Estimating the number of links in PPI networks

In Table 3.3, we present our estimates of the interactome size of four species together

with the CCSB estimates. As our method only provides a point estimate, but not

the variation of the estimator, we need to use an empirical approach to quantify the

uncertainty in the estimation. However, there is only one observed subnetwork data set

available for each species. Hence, we use the re-sampling strategy to assess the variation

of the estimator. In particular, we sample 100 smaller subnetworks from each observed

PPI subnetwork, that is, sub-subnetworks, by using the same uniformly random node

sampling process. Each sub-subnetwork is used to estimate the interactome size, and

those estimates are then used to estimate the standard deviation of the estimator. We

set the node sampling probability to be small, p = 0.1, as we think that it is the

worst case and it gives the upper bound for the standard deviation. Larger values of p

give smaller estimates of the standard deviation. As shown in Table 3.3, the estimates

calculated from sampled sub-subnetworks agree well with the estimates calculated from

the observed PPI subnetworks, indicating that our estimator Ñ1 is consistent. Moreover,

, our estimates agree well with those of CSSB for three species Yeast, Worm, and

Arabidopsis, demonstrating again the accuracy of our estimator. For Human, our

estimate is ∼ 50% higher than CCSB estimate, suggesting that the interactome of

Human is larger than previously expected.

Since the total number of proteins of these four species are quite different , it is

reasonable to compare the link density rather than the total number of interactions of

these four PPI networks. The link density is defined as the ratio between the number

of interactions and the number of all possible pairs of proteins. Interestingly, as shown

in Table 3.3, the estimated link density of these four species are surprisingly quite

similar, around 6-9×10−4. This observation has also been reported previously in [30].

We notice that Yeast has the highest link density, but this may be due to the fact that
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Yeast is the most well-studied model organism. More importantly, the proteome size

and interactome size of Human are not as large as previously expected. For instance,

Arabidopsis has even larger proteome and interactome than Human does. Thus, it

seems that the number of proteins and their interactions simply cannot explain the

nature of biological diversity of living organisms, and we need to look at more complex

and informative features, in particular, network motifs.

3.3.3 Estimating the number of triangles in PPI networks

Table 3.3: The interactome size and the number of triangles in the PPI networks of
S. cerevisiae, C. elegans, H. sapiens, and A. thaliana, estimated based on recently
published datasets from the Center for Cancer Systems Biology (CCSB).

S. cerevisiae C. elegans H. sapiens A. thaliana

Total no. of proteins 6,000 20,065 22,500 27,029

No. of proteins screened 3,676 9,906 7,194 8,429
No. of links detected 1,130 1,816 2,754 5,664

Quality parameters
Precision 0.9400 0.8600 0.7940 0.8030
False discovery rate 0.0600 0.1400 0.2060 0.1970
Sensitivity 0.1700 0.0496 0.0950 0.1570
False negative rate r− 0.8300 0.9504 0.9050 0.8430
False positive rate r+ 0.8× 10−5 0.5× 10−5 2× 10−5 3× 10−5

Interactome size
CCSB estimate 18, 000± 4, 500 116, 000± 26, 400 130, 000± 32, 600 299, 000± 79, 200
Our estimatea 17,000 121,000 210,000 289,000
Mean ± SDb 18, 000± 2, 800 122, 000± 16, 600 214, 000± 32, 200 295, 000± 33, 400
Link density 9× 10−4 6× 10−4 8× 10−4 8× 10−4

No. of triangles
Our estimatea 82,000 6,263,000 10,270,000 7,381,000
Mean ± SDb 75, 000± 38, 400 5, 971, 000± 3, 593, 800 11, 255, 000± 4, 717, 100 7, 720, 000± 3, 132, 700
Triangle density 2× 10−6 5× 10−6 5× 10−6 2× 10−6

a estimates calculated from observed PPI subnetworks
b mean and standard deviation (SD) of the estimates calculated by sampling 100 sub-subnetworks from each observed PPI

subnetwork using the node sampling probability p = 0.1

We proceed further to estimate the number of triangles in these four interactomes

using the corresponding bias-corrected estimator Ñ3. For each interactome, we estimate

the number of triangles directly from the observed subnetwork data and from the 100

sampled sub-subnetworks. Again, the two estimates agree well for all species, indicating

that the bias-corrected estimator Ñ3 is consistent (Table 3.3). We noted that the
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estimates of the standard deviation are relatively high, approximately half of the mean

estimates. However, recall that we set the node sampling probability to be relatively

small, p = 0.1, which we think is the worst case, hence those estimates can be considered

as upper bounds of the standard deviation. Larger values of p should give smaller

estimates of the standard deviation. Similar to the link density, we also look at the

triangle density, which is defined as the ratio between the estimated number of triangles

and the number of all possible combinations of three proteins chosen from the entire

proteome. Surprisingly, we found that the triangle density of these four interactomes

are also in the same range 2-5×10−6. However, this time we notice that triangle density

of the Human and Worm interactomes are 2.5 times as large as that of the interactome

of Arabidopsis and Yeast, whereas as reported in the previous section, the link density

of the laters are higher than that of the formers. This may indicate a highly clustering

and well-connected structure of the PPI network of Human and Worm.

3.3.4 Gene Ontology (GO) analysis of triangles in the ob-

served PPI subnetwork of Yeast

To further explore the biological meaning of triangles in PPI networks, we analyze the

Gene Ontology (GO) annotations of triangles in the observed PPI subnetwork of Yeast.

GO annotations of Yeast were downloaded from the Gene Ontology website (July, 2012).

There are totally 60,982 unique annotations, corresponding to 6,383 genes and 4,705

GO terms. In the observed PPI subnetwork of Yeast, we found 112 triangles formed

by 155 proteins, which have been annotated to 616 GO terms via 1,671 annotations.

Among these 112 triangles, we found 61 triangles in which all three proteins share at

least one GO term. There are 53 GO terms that have been assigned to all three nodes

of at least one triangle.

For each of these 53 GO terms:
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Figure 3.13: The enrichment in shared GO annotations of triangles in the observed
PPI subnetwork of S. cerevisiae. (A) The triangle ratio and the triplet ratio of 43
GO terms that have less than 500 annotated genes and have been assigned to all three
nodes of at least one triangle. (B) The odds ratio between the triangle ratio and
the triplet ratio. The GO terms are grouped according to their number of annotated
genes. (C) Three GO terms GO:0008614 (pyridoxine metabolic process, 6 annotated
proteins), GO:0008615 (pyridoxine biosynthetic process, 8 annotated proteins), and
GO:0009228 (thiamine biosynthetic process, 16 annotated proteins) are assigned to 12
triangles of a complex formed by 6 proteins SNZ1-YMR096W, SNZ2-YNL333W, SNZ3-
YFL059W, SNO1-YMR095C, SNO2-YNL334C, and SNO3-YFL060C. These proteins
are connected to the remaining part of the subnetwork via three hubs: TAE1-YBR261C,
MUK1-YPL070W, and GCD7-YLR291C, where GCD7-YLR291C is the most highly
connected protein in the observed PPI subnetwork of S. cerevisiae.
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• We count the number of triangles in which all three proteins are annotated to

that GO term: XGO.

• We count the number of proteins in the whole genome of Yeast that are annotated

to that GO term: nGO.

• We calculate the triplet ratio,
(nGO3 )
(n3)

, where n = 6, 000 is the approximate genome

size of Yeast.

• We calculate the triangle ratio: XGO
112

.

• We calculate the odds ratio between the triangle ratio and the triplet ratio.

The triplet ratio represents the probability that any three randomly chosen pro-

teins of Yeast are all annotated to that particular GO. The triangle ratio represents

the probability that all three proteins of a randomly chosen triangle in the observed

PPI subnetwork are annotated to that particular GO. Thus, the odds ratio reflects the

enrichment of triangles in shared GO annotations, that is, how more likely three pro-

teins will share a particular GO if they come from a triangle rather than being chosen

randomly.

We use the number of annotated proteins, nGO, as a measure of the specificity of a

GO term: the smaller nGO is, the more specific the GO term is. We consider only those

GO terms with nGO ≤ 500 (43 out of 53). In Fig. 3.13, panel (A) shows the triangle

ratio and the triplet ratio, and panel (B) shows the odds ratio of those 43 GO terms with

respect to their number of annotated proteins. It can be seen that the triangle ratio is

orders of magnitude larger than the triplet ratio, suggesting that the triangles in the

observed PPI subnetwork of Yeast are enriched in shared GO annotations. Moreover,

panel (B) shows that the odds ratio decreases with respect to the number of annotated

proteins, indicating that the enrichment is more significant for more specific GO terms.
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Panel (C) of Fig 3.13 shows an example of the three GO terms GO:0008614 (pyri-

doxine metabolic process, 6 annotated proteins), GO:0008615 (pyridoxine biosynthetic

process, 8 annotated proteins), and GO:0009228 (thiamine biosynthetic process, 16

annotated proteins), which are assigned to 12 triangles of a complex formed by 6 pro-

teins SNZ1-YMR096W, SNZ2-YNL333W, SNZ3-YFL059W, SNO1-YMR095C, SNO2-

YNL334C, and SNO3-YFL060C. These proteins are connected to the remaining part

of the subnetwork via three hubs: TAE1-YBR261C, MUK1-YPL070W, and GCD7-

YLR291C, where GCD7-YLR291C is the most highly connected protein in the observed

PPI subnetwork of Yeast.

We also calculated the p-value for each GO term using the hypergeometric distri-

bution with parameters:

• population size:
(
n
3

)
; total number of successes:

(
nGO

3

)
;

• number of draws: 112; number of successes in draws: XGO.

and found that for 52 out of 53 GO terms, the p-value is less than 0.01, indicating

again that the triangles found in the observed PPI subnetwork of Yeast are significantly

enriched in shared GO annotations.

Details of the 53 GO terms and their odds ratio, p-value can be found in the Ap-

pendix.

3.4 Estimating motif counts in gene regulatory net-

works

In the previous section, we have demonstrated how to apply our proposed method

to real PPI networks, which are undirected examples. In this section, we shall apply

the method to the directed case with transcription factor (TF) regulatory networks.
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Recently, the TF regulatory network of forty-one Human cell and tissue types were

obtained from genome-wide in vivo DNasel footprints map [38]. In these networks, the

nodes are 475 TFs and the regulations of one TF by another are represented by network

directed links. There are totally 38,393 unique regulatory interactions detected, with

an average of 11,193 links per cell type.

3.4.1 Significant enrichment of motifs

Table 3.4: The estimated network size and the estimated counts of triad and quadriad
motifs (in thousands).

No. of links No. of feedback loop No. of FFL No. of bi-parallel No. of bi-fan

Epithelia 412 ± 68 2,836 ± 1,106 30,629 ± 10,512 3,261,403 ± 1,506,055 5,680,572 ± 2,363,616

Stroma 412 ± 38 2,727 ± 705 29,155 ± 6,290 3,052,803 ± 883,160 5,094,576 ± 1,337,401

Blood 434 ± 97 3,687 ± 1,699 37,884 ± 15,241 4,379,527 ± 2,320,472 7,359,970 ± 3,421,025

Endothelia 447 ± 40 3,160 ± 695 35,314 ± 6,567 3,844,161 ± 948,207 6,877,606 ± 1,540,212

Cancer 380 ± 7 2,378 ± 111 30,122 ± 710 2,862,215 ± 91,628 6,267,987 ± 99,444

Fetal Cells 426 ± 70 3,088 ± 998 33,782 ± 9,955 3,660,840 ± 1,500,838 6,498,027 ± 2,284,014

ES Cella 485 2,766 32,400 3,282,473 6,436,708
a There is only one embryonic stem (ES) cell TF network.

Given that Human has ∼ 2886 TFs [75], we want to estimate the number of oc-

currences of five motifs for each of seven functionally related classes of cells. The five

motifs include link, feedback loop, feed-forward loop, bi-fan, and bi-parallel (Fig. 2.2).

As mentioned in chapter 1, these motifs have been highlighted in previous studies [59]

as functional units or building blocks of real-world complex networks. Forty-one Hu-

man cell and tissue types are classified into seven functionally related classes: Epithelia,

Stroma, Blood, Endothelia, Cancer, Fetal, and Embryonic Stem cells [38]. Since there

is no information about the quality assessment of this dataset, we simply set the false

positive and negative rates to zero.

Table 3.4 shows our estimates of the five motifs counts in each of the seven func-

tional classes. For each class, the mean and standard deviation of the motif counts are

reported. We found that the feed-forward loop motif is significantly enriched in these
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forty-one Human cell-specific TF regulatory networks. In particular, the number of

occurrences of the feed-forward loop is an order of magnitude larger than that of the

feedback loop, whereas in a random network this ratio is approximately 3:1. Table 3.4

also suggests that bi-fan is relatively abundant in these forty-one networks as the ratio

of the bi-fan count to the bi-parallel count is 2:1, whereas in a random network this

ratio should be 1:2.

To accurately assess the enrichment of motifs in these forty-one Human cell-specific

TF regulatory networks, we need to compare the motif counts in the observed networks

with those in random networks. It is important to ensure that the random networks

must have similar topological structures as the observed ones. Hence, we consider the

following link-rewiring process:

• At each iteration, a pair of links “a-b” and “c-d” in the observed network are

randomly chosen.

• Rewire “a-b” and “c-d” to “a-d” and “c-b”

• From each of forty-one observed networks, 100k iterations are done to generate

one randomly rewired network.

• 50 randomly rewired networks are generated for each of forty-one observed net-

works.

After the rewiring process, the out-degree & in-degree distributions remain unchanged,

as well as the number of nodes and the number of links.

For each of the forty-one Human cell-specific TF regulatory networks, we calculate

the mean and the standard deviation of the motif counts from the corresponding 50

randomly required networks, and compare them with the observed ones. Fig. 3.14

and 3.15 show the simulation results for the feedback loop and feed-forward loop. It
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can be seen clearly from the figures that the feed-forward loop is significantly enriched

in forty-one observed networks, since the observed count is more than 3× standard

deviation higher than the mean count from 50 randomly rewired networks. In contrast,

the feedback loop is not enriched as its observed count is within 3× standard deviation

from the mean count. Similar results have been reported previously in [38]

3.4.2 Linear correlation of motif counts

Beside the enrichment of some functional motifs, we also found another surprising fea-

ture of the motif counts in these forty-one Human cell-specific TF regulatory networks.

In particular, there is a very strong linear correlation between the counts of triad and

quadriad motifs, although these motifs are topologically very different and the TF net-

works are from very different cell types (Fig. 3.16). The linear patterns can be seen

clearly from the scatter plots in the upper diagonal panels of Fig. 3.16. The lower

diagonal panels also show remarkably high correlation coefficients of the motif counts

in these forty-one networks. This linear correlation is an interesting phenomenon, and

further analysis is needed to explore its biological meaning. More details of the linear

correlation of motif counts will be given in the next chapter.

We notice that the TF regulatory networks of blood cells (red dots) have very

different motif counts. Specifically, for all triad and quadriad motifs, the promyelocytic

leukemia cell TF network has the largest number of occurrences whereas the erythoid

cell TF network has the smallest number of occurrences. The two cancer cells (green

dots) always stick to each other in all scatter plots, indicating that their networks should

have very similar motif counts, and perhaps, other topological structures as well.

Finally, the scatter plots in the first row of Fig. 3.16 show that the embryonic stem

cell network (black dot) seems to be far away from other networks and the regression

line. Our further analysis of the regression residuals confirms that its residual is more
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Figure 3.14: Motif count of feedback foop in forty-one observed networks (red “x”)
and in their randomly rewired replicates (µ ± 3σ from 50 replicates for each observed
network).
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Figure 3.15: Motif count of feed-forward loop in forty-one observed networks (red “x”)
and in their randomly rewired replicates (µ ± 3σ from 50 replicates for each observed
network).
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Figure 3.16: Correlation of motif counts in forty-one Human cell-specific transcription
factor (TF) regulatory networks. The TF regulatory networks were obtained from
genome-wide in vivo DNasel footprints map [38]. The upper diagonal panels are scatter
plots of the motif counts in these forty-one networks, including 1 embryonic stem cell
(black), 7 blood cell types (red), 2 cancer cell types (green), 31 other cell and tissue
types (grey). The diagonal panels show the distribution of the motif counts. Their
correlation coefficients are given in the lower diagonal panels.
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than 3× standard deviation from other networks’ residual. This means that the em-

bryonic stem cell TF network has the smallest number of motif counts relative to its

network size, suggesting that the embryonic stem cell TF network is less well-structured

than other “mature” networks

3.5 Summary

In the first half of this chapter, we have presented the simulation results to validate

the theoretical results obtained in chapter 2. We have studied the performance of our

proposed estimators N̂M and ÑM on random networks generated from four random

graph models: Erdos-Renyi, geometric, preferential attachment, and duplication mod-

els. We have also performed simulation validation on “real” PPI networks. For each

combination of network and motif, we assess the accuracy the estimators with respect

to the network parameters n, ρ, and the sampling parameters p, r−, r+. All simulation

results confirm the asymptotically unbiased and consistent properties of our proposed

estimators, as have been proved in Theorem 1, Theorem 2, and Proposition 1 in chapter

2.

In the second half of this chapter, we first applied our proposed estimators to the

PPI network of four species: Yeast, Worm, Human, and Arabidopsis. Our estimates

of the number of interactions, i.e. the size of the interactomes, are consistent with the

results from the Center for Cancer System Biology [27, 28, 29, 30]. Our estimate of

the number of triangles indicates that the PPI network of Human and Worm have a

higher clustering and well-connected structure than that of Yeast and Arabidopsis. The

GO annotation analysis further shows that triangles may play important roles in PPI

networks as they are significantly enriched in shared GO annotations.

We also applied our method to estimate the number of occurrences of link, feed-
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back loop, feed-forward loop, bi-fan and bi-parallel in forty-one Human cell-specific TF

regulatory networks. Our estimation shows that the feed-forward loop and bi-fan are

significantly enriched in these forty-one networks. We also found a striking feature that

there is a strong linear correlation between the motif counts in the networks. Finally,

our estimation suggests that cell-specific network motif counts are associated with the

functional class of the cell.

91



Chapter 4

Discussion

In this chapter we discuss some limitations of our study and some potential solutions

to address those problems. We then summarize all results obtained in the study and

their contributions to Network Biology, as well as other fields of Network Sciences. We

conclude this thesis with discussion on some further perspectives for future research.

4.1 Networks with different types of nodes

4.1.1 Baits and Preys in PPI networks

As discussed in chapter 1, a protein-protein interaction is detected in Y2H experiments

when one protein is used as “bait” and the other is used as “prey”. In high-throughput

Y2H experiments, in order to achieve the best sensitivity, all proteins in the experiments

are tested in two rounds, that is, both as bait and prey. In other words, the test space

is a square matrix. However, there are some limitations that could cause the set of bait

proteins slightly different from the set of prey proteins. For example, some proteins are

auto-activators and they cannot be used as bait. This issue violates our assumption

that the adjacency matrix of the observed subnetwork is a square nobs × nobs matrix,
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because if nbait 6= nprey, how should we choose nobs.

Actually, this problem can be considered as part of the sensitivity of the Y2H assay:

this type of experiment cannot detect interactions for auto-activating proteins. Hence,

an accurate estimate of the assay sensitivity, as what has been done in [27], already

takes this issue into account. Thus, one can simply use the total number of proteins

involved in the Y2H experiment as nobs, and there is no need to care about this bait

and prey problem. And this is actually what we have done for the PPI networks in

chapter 3.

Another more conservative approach is to consider the subnetwork Gobs that is

induced only by proteins in the intersection of the set of bait proteins and the set of

prey proteins. In this way, the assumption nobs = nbait = nprey holds in this induced

subnetwork. Mathematically, this approach should not cause any problem.

First, to form the set of bait proteins, we assume that each of n proteins in the real

network G is uniformly selected at random with probability pbait. Similarly, this process

is repeated again with probability pprey to obtain the set of prey proteins. We can use

Bernoulli random variables Xi and Yi, 1 ≤ i ≤ n, to indicate if node i is selected as bait

(Xi = 1) and prey (Yi = 1). Then we use Zi = Xi × Yi to indicate if node i belongs to

the intersection of the set of bait proteins and the set of prey proteins.

The only assumption we need is that X ′s and Y ′s are independent. Then we have Zi

follows Bernoulli distribution with probability pbait×pprey. Thus, the intersection of bait

proteins and prey proteins can be constructed by uniformly sampling nodes from the

real network G with probability pbait × pprey. In other words, the observed subnetwork

Gobs is obtained from the real network G via the uniform node sampling scheme: each

node from G is randomly selected with probability pbait × pprey, 0 < pbait, pprey ≤ 1.

Hence, we only need to replace the parameter p by the product of the two parameters

pbait, pprey, and all theorems still hold.
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Among the four PPI networks of Yeast, Worm, Human, and Arabidopsis in chapter

3, the condition nbait = nprey holds for Human and Worm, as confirmed by the authors

from CCSB (personal communication via email). For Yeast [28], 5,487 proteins have

been tested, 3,917 of them were used as bait, 5,246 of them were used as prey, and 3,676

were used both as bait and prey. For Arabidopsis [30], 8,430 proteins have been tested,

7,645 of them were used as bait, 7,896 of them were used as prey, and 7,108 were used

both as bait and prey. We have re-estimated the number of links and triangles in Yeast

and Arabidopsis from the subnetworks induced only by the intersection of bait proteins

and prey proteins. Table 4.1 shows that the new estimates are not very different from

the old ones, especially the link density and the triangle density. The overall message

still remains the same.

Table 4.1: Re-estimation of the interactome size and the number of triangles in the PPI
networks from the intersection of the set of bait proteins and the set of prey proteins.

S. cerevisiae C. elegans H. sapiens A. thaliana

Interactome size
Estimatea 17,000 121,000 210,000 289,000
Mean ± SDa 18, 000± 2, 800 122, 000± 16, 600 214, 000± 32, 200 295, 000± 33, 400
Link densitya 9× 10−4 6× 10−4 8× 10−4 8× 10−4

Estimateb 14,000 (same) (same) 377,000
Mean ± SDb 15, 000± 2, 700 (same) (same) 376, 000± 45, 600
Link densityb 8× 10−4 (same) (same) 10× 10−4

No. of triangles
Estimatea 82,000 6,263,000 10,270,000 7,381,000
Mean ± SDa 75, 000± 38, 400 5, 971, 000± 3, 593, 800 11, 255, 000± 4, 717, 100 7, 720, 000± 3, 132, 700
Triangle densitya 2× 10−6 5× 10−6 5× 10−6 2× 10−6

Estimateb 53,000 (same) (same) 10,697,000
Mean ± SDb 61, 000± 33, 800 (same) (same) 10, 158, 000± 4, 289, 000
Triangle densityb 1× 10−6 (same) (same) 3× 10−6

a Estimates from the full datasets
b Estimates from the subnetworks induced only by the intersection of bait proteins and prey proteins

4.1.2 Transcription factors and target genes in gene regulatory

networks

There are typically two types of nodes in gene regulatory networks: transcription factors

and target genes. A transcription factor (TF) can regulate as well as can be regulated
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by other transcription factors, whereas a target gene (TG) is regulated by transcription

factors and cannot regulate any other gene. As a result, for the same motif type, there

may be different variants depending on the type of nodes. For example, there are two

types of regulatory interaction: TF→TF and TF→TG. This problem has been studied

in [74] in which the authors estimated the number of three different types of regulatory

interactions separately: TF→TF, TF self-interaction, and TF→TG. Similarly, a feed-

forward loop may consist of three TFs, or two TFs and one TG. Thus, one may want to

distinguish these two types of feed-forward loop and estimate the number of occurrences

of each type. The first case, i.e. three-TF feed-forward loop, is exactly the same

as what we have done in chapter 3 for forty-one Human cell-specific TF regulatory

networks which only contain TFs, no TG. For the second case, one can apply the same

“extrapolation” approach, but with a different scaling factor:
(nTF2 )×nTG

(n
obs
TF
2 )×nobsTG

. This can

be further generalized for any arbitrary motif M. However, theoretical analysis of the

estimators and how to deal with noisy data are challenging problems for future research.

4.2 Effects of sampling schemes on the estimation

In order to make inference of the properties of a network G from its observed subnetwork

Gobs, we need a suitable model to describe how the subnetwork can be obtained from

the entire network. In chapter 2 and chapter 3, we consider the uniformly random

node sampling scheme that independently select nodes from the entire network G with

some given probability p, 0 < p < 1, and then form the subnetwork Gobs from the

sampled nodes. More specifically, independent and identically distributed Bernoulli

random variables Xi with parameter 0 < p < 1 are used to denote the event whether

the node i is sampled (Xi = 1) or not (Xi = 0), i = 1, 2, . . . , n.

In practice, biologists, however, do not randomly choose genes or proteins for inves-
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tigation but follow certain underlying hypotheses. In this section, we further explore

different random sampling schemes, which can be used to draw a subnetwork from a

real network, and their effects on the estimation of motif counts. For instance, highly

connected proteins are believed to be more essential than others, and thus are more

likely to be the target of biological studies. Hence, a random node sampling scheme

with probabilities proportional to node degrees also represents a good model to study

PPI subnetworks data.

First, we still keep the assumption of independence, but allow nodes in G to be

sampled with different probabilities:

Xi ∼ Bernoulli(pi), 0 < pi < 1, i = 1, 2, . . . , n. (4.1)

To keep the average proportion of sampled nodes to be p, 0 < p < 1, we consider

the following two distributions of pi:

1. Each pi is randomly drawn from a uniform distribution

pi ∼ Uniform(
p

2
,
3p

2
). (4.2)

2. Each pi is randomly drawn from a normal distribution

pi ∼ Normal(µ = p, σ2 =
p2

16
). (4.3)

Here, the variance of the distributions is chosen so that randomly generated values of

pi are not likely to be negative and the mean of pi is p in each sampling scheme. When

pi ≥ 1, we take it to be 1.

Biological networks are often modeled as scale-free, that is, most of the nodes have

low degrees, whereas a small number of nodes have significantly high degrees. As
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mentioned earlier, highly connected proteins are more likely to play many important

functions through their vast repertoire of interactions with other proteins. Thus, one

may select proteins with probabilities proportional to their degrees in the corresponding

PPI network. To take such bias selection into account, we also consider the following

degree-based sampling scheme:

3. Each pi is calculated from the node degrees as follows

pi = min{np di∑n
j=1 dj

, 1}, (4.4)

where di is the degree of the node i in the corresponding network G. Such a sampling

scheme also has the average sampling proportion p.

Next, we perform simulation validation to examine the effects of the above three

non-uniform sampling schemes on the motif counts estimation. As the degree-based

sampling scheme (scheme 3) is likely to have more significant impacts when applied

to scale-free networks, we generate network G from the preferential attachment model,

the best random graph model that can capture the scale-free property of real-world

networks. We choose the number of nodes, n, from 5,000 to 30,000, as most species

have their genome size in that range. The link density ρ is fixed at 0.001 so that

the resulting networks are similar to real PPI networks studied in this work. Another

important feature of scale-free networks is the exponent γ of the power-law degree

distribution. We choose γ = 1.5, 2, 2.5, 3, 3.5, which is the common range for most

biological networks.

We also consider different values of the average sampling proportion p = 0.1, 0.2, . . . , 0.9.

For each p and each non-uniform sampling scheme, we first generate a vector of sam-

pling probabilities (p1, p2, . . . , pn). For each sampling vector, we sample 50 subnetworks

and estimate the number of links and triangles using the estimators N̂1 and N̂3, respec-
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tively. Here we only consider the error-free case, that is, there is no link error in the

sampled subnetworks.

Fig. 4.1 demonstrates how the MSE of the estimator N̂3 for triangle count depends

on the sampling scheme and the average sampling proportion p. For each of the four

sampling schemes considered (uniform and three non-uniform schemes), the MSE de-

creases when p increases as expected. The first two non-uniform sampling schemes

are not significantly different from the uniform node sampling scheme. However, when

the degree-bias sampling scheme is used, the MSE is significantly higher than that of

the other three. This is not surprising because bias selection towards highly connected

nodes should lead to over-estimation.

Beside the preferential attachment model, we also study how the effects of the

degree-bias sampling scheme when applied to the Erdos-Renyi, geometric and duplica-

tion models. Fig. 4.2 further confirms the over-estimation bias since the mean of the

ratio of estimate to real count (i.e., N̂3/N3) is larger than one. Moreover, it can be seen

clearly from the figure that the over-estimation bias is significantly higher for networks

generated from the preferential attachment and duplication models because of their

scale-free degree distribution.

Fig. 4.3 shows how the over-estimation bias of the degree-bias sampling scheme

depends on the power-law exponent γ of scale-free networks. The mean of the ratio

N̂3/N3 slightly decreases as the power-law exponent γ increases. Interestingly, the ratio

mean does not change much when we change γ. This shows that estimation is robust

against different choices of exponents in the power law. Fig. 4.3 also demonstrates

how the mean of the ratio N̂3/N3 depends on the average sampling proportion p. In

particular, when more than 60% of nodes in G are sampled, the estimate is less than

five times the real count.
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Figure 4.1: Plots of the MSE of the estimator N̂3 for triangle count with respect to
four different sampling schemes and average sampling proportion p. Random networks
were generated in the preferential attachment model with different parameters n, ρ, γ.
Subnetworks are drawn using four sampling schemes: pi = p (uniform node sampling),

pi ∼ Uniform(p
2
, 3p

2
), pi ∼ Normal(µ = p, σ2 = p2

16
), pi = np di∑n

j=1 dj
, i = 1, 2, . . . , n.

4.3 Linear correlation of motif counts

In chapter 3 we have reported a striking feature of the motif counts in forty-one Human

cell-specific TF regulatory networks: the strong linear correlation between the counts

of triad and quadriad motifs, although these motifs are topologically very different and

the TF networks are from very different cell types (Fig. 3.16). To further explore if this

observation has any biological meaning, we generate random replicates from these real

networks using the link rewiring process. Surprisingly, we still observe a strong linear
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Figure 4.2: Plots of the mean of the ratio N̂3

N3
for triangle count with respect to four

network models and increasing average sampling proportion p. Random network is
generated using the Erdos-Renyi, geometric, preferential attachment, and duplication
models, where n = 20, 000 nodes, link density ρ = 0.001, power-law exponent γ = 2.0
(for preferential attachment and duplication models). Subnetworks are drawn using the

degree-bias sampling scheme with pi = np degree(i)∑n
j=1 degree(j)

, i = 1, 2, . . . , n.
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N3
for triangle count with respect to the

power-law exponent γ and average sampling proportion p. Random networks were
generated in the preferential attachment model, which have 20, 000 nodes and link
density ρ = 0.001. Subnetworks were drawn using the degree-bias sampling scheme
with pi = np di∑n

j=1 dj
, i = 1, 2, . . . , n. 100



Figure 4.4: Linear correlation of the motif counts in random networks which are gen-
erated from the forty-one Human cell-specific TF regulatory networks using the link
rewiring process. Different colors in the scatter plots correspond to different functional
classes of the cells.

Figure 4.5: Linear correlation of the residuals of the motif counts’ regression with
respect to the number of links in forty-one Human cell-specific TF regulatory networks.
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correlation between the motif counts in these randomly rewired networks (Fig. 4.4). One

possible explanation could be: “more links, more motifs”. Hence, we perform linear

regression of the motif counts on the number of links, and then study the residuals.

Again, the linear pattern is still there, but this time with lower correlation coefficients.

We also perform similar analysis with networks generated from the four random graph

models and found the same correlation. We are currently still studying this interesting

phenomenon to figure out reasonable explanations as well as some possible biological

meanings.

4.4 Conclusion

In this thesis, we have proposed a simple, yet powerful method to estimate the num-

ber of occurrences of any arbitrary motif in biological networks from their observed

subnetworks. More importantly, we have addressed the problem of the inaccuracy and

incompleteness of data, and developed bias-corrected estimators to account for noise,

that is, spurious and missing links, in observed subnetworks.

In chapter 2 of the thesis, we have performed rigorous theoretical analysis on the

properties of our proposed estimators and proved that the estimators are asymptot-

ically unbiased and consistent for any type of motifs and regardless of the structure

of the underlying network. Thus, the method can be further applied to any network

across diverse fields of Network Sciences, including, but not limited to, biological net-

works, social networks, the World-Wide-Web, engineering and electrical circuitries, etc.

In particular, the simulation results presented in chapter 3 further showed that the

proposed estimators performed well in networks generated from four random graph

models: Erdos-Renyi, preferential attachment, duplication, and geometric, which are

most commonly used to study real-world networks. For each combination of model and
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motif, we carefully examined the accuracy of the estimators with respect to different

network parameters and sampling parameters. Our simulation results also showed that

even if the network is completely known, the sampling-estimating approach is more effi-

cient than exhaustive enumeration approach, while still providing comparably accurate

results.

In chapter 3 we applied the method to estimate the number of links and triangles

in four protein-protein interaction networks of Yeast, Worm, Human, and Arabidopsis.

Our estimates of the interactome size of these four species agree well with previous

studies, indicating the accuracy of the proposed estimators. We found that the esti-

mated triangle density in Human and Worm were 2.5 times larger than that in Yeast

and Arabidopsis, whereas the laters have higher link density than the formers, indi-

cating a higher clustering and well-connected structure of the PPI network of Human

and Worm. We also performed Gene Ontology (GO) annotation analysis of triangles

in the observed PPI subnetwork of Yeast. Our results showed that those triangles are

significantly enriched in shared GO annotations, suggesting that triangles may also play

important roles in PPI networks.

For the case of gene regulatory networks, we found a strong positive linear correlation

between the number of occurrences of different three-node and four-node motifs in forty-

one Human cell-specific transcription factor regulatory networks. Our estimation also

shows that that the feed-forward loop and bi-fan are significantly enriched in these

forty-one networks, and the motif counts are highly associated with the functional class

of the cell. For instance, the embryonic stem cell exhibits a larger number of links,

but a smaller number of motifs, when compared to other more “mature” cell types.

The properties of protein-protein interaction and gene regulatory networks uncovered

in our study are consistent with our biological intuition about the complexity of living

organisms.
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The problem of estimating the size of interactomes, i.e. the number of links, has

been the target of several studies. One of the first attempt was proposed in [72] in which

the author estimated the average degree in the protein-protein interaction network of

Yeast by modelling the overlap between two independent datasets from [23, 24]. The

authors in [70] further extended the method in [72] by incorporating the false discovery

rate. However, this method requires that the two datasets must be generated from

identical, or at least similar experimental conditions, but this is rarely the case for

biological networks data. Moreover, this approach cannot be generalized to the case of

larger motifs.

The second approach to address this problem is the “extrapolation” idea. In [73]

the authors scaled up the number of interactions in observed protein-protein interaction

subnetworks to estimate the size of real interactomes, assuming that the link density in

a real interactome can be approximated by the link density in its observed subnetworks.

However, their proof of the unbiasedness property of the estimator was not complete.

In Theorem 1 and 2, chapter 2, we have showed both asymptotically unbiased and

consistent properties of the estimators. Moreover, in Theorem 3, we generalized the

results to any arbitrary motif. Most importantly, all results hold regardless of the

topological structures of the underlying network.

Taking into account noise in observed subnetworks, the authors from CCSB [27,

28, 29, 30] provided accurate estimates of the interactome size by carefully considering

different quality parameters of Y2H datasets. They handled the link errors in a slightly

different way from ours. In particular, our bias-corrected estimator Ñ (1) requires the

false positive rate r+ and the false negative rate r−, whereas the CCSB estimator ÑCCSB

requires the precision and the sensitivity. We have proved that the two estimators are

mathematically equivalent, and indeed, our estimates of the interactome size from real

datasets agree well with those of CSSB for all species. However, in the field of Network
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Biology, gold-standard sets, which are usually constructed from literature curation, are

limited and biased [27, 28]. In such cases, the estimated precision and false discovery

rate are less reliable than the sensitivity, the false positive rate r+, and the false negative

rate r− (as discussed in chapter 3). Most importantly, unlike the CCSB estimator, our

method can be easily generalized to larger motifs such as triangles, feed-forward loop,

bi-fan, etc.

The key assumption in our study is the uniformly random node sampling scheme. In

practice, biologists do not randomly choose genes or proteins for investigation but fol-

low certain underlying hypotheses. For example, highly connected proteins are believed

to be more essential than others, and thus are more likely to be the target of biological

studies. Hence, a random node sampling scheme with probabilities proportional to node

degrees also represents a good model to study protein-protein interaction subnetworks

data. In the previous sections, we have explored three non-uniform sampling schemes,

especially the degree-bias sampling scheme. We study how the over-estimation bias

depends on the scale-free structure of the network as well as the node sampling propor-

tion. How to correct the bias still remains as a challenging problem for future research.

The results we obtained here for the uniformly random node sampling scheme thus

serve as a guideline to study more complicated, yet interesting sampling schemes.

In the previous sections we have also discussed some other limitations the study. For

example, the huge amount of data in Network Biology eventually leads to the integration

of different types of datasets. Thus, the network of interest may consider different types

of nodes and links, and hence, even more complicated types of motifs which make the

motif count estimation problem more challenging. Another question that we haven’t

been able to answer is the linear correlation of the motif counts in forty-one Human TF

regulatory networks: what are the possible explanations, and what implications from

that observation? There are also some other limitations that we haven’t discussed, for
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example, the assumption of the independence and homogeneity of link errors. There

is always a trade-off between the two error rates, false positive and false negative, and

thus, a bivariate distribution may be better to model the link errors. All of these

limitations are potential topics for future research to fully explore all characteristics of

biological networks from noisy and incomplete data.

The approach of inferring properties of a real network from its observed subnetworks

is especially useful in Network Biology because of the current limitation of biological

networks data. Motivated by the estimation of the number of motif occurrences, further

research questions may focus on other network properties such as degree distribution,

clustering coefficient, shortest path length, etc., which also can be inferred from ob-

served subnetworks. However, handling the experimental errors, that is, spurious and

missing interactions, especially the high false negative rate, still remains as the most

challenging problem to the research community.
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Appendix

Proof of Theorem 2

Theorem. Let G be an arbitrary undirected network of n nodes, and Gobs be a sub-

network obtained from G via a uniformly random node sampling process that selects a

node with probability p, 0 < p < 1. Let N1 denote the number of links in G, and N1

is estimated by the estimator N̂1 defined in Equation (2.3). Let N2 denote the number

of three-node paths in G (that is, the number of pairs of links that share exactly one

common node, see motif ID u2 in Figure 2.1). We have:

V ar

(
N̂1

N1

)
=

2q

p

N2

N2
1

[1 +O(n−1)] +
(1 + p)q

p2N1

[1 +O(n−1)] +O(n−1),

where q = 1− p.

Proof. First recall that the estimator N̂1 has the following form:

N̂1 =
n(n− 1)

nobs(nobs − 1)

∑

1≤i<j≤n

ai,jXiXj.
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Hence, we compute the variance of N̂1 as follows:

n−2(n− 1)−2Var
(
N̂1

)
= Var

( ∑

1≤i<j≤n

ai,j
XiXj

nobs(nobs − 1)

)

=
∑

1≤i<j≤n

ai,jVar

(
XiXj

nobs(nobs − 1)

)
(5.1)

+
∑

(i,j,k,l)∈Γ1

ai,jak,lCov

(
XiXj

nobs(nobs − 1)
,

XkXl

nobs(nobs − 1)

)

+
∑

(i,j,k,l)∈Γ0

ai,jak,lCov

(
XiXj

nobs(nobs − 1)
,

XkXl

nobs(nobs − 1)

)
,

where

Γ0 = {(i, j, k, l) : 1 ≤ i < j ≤ n; 1 ≤ k < l ≤ n; {i, j} ∩ {k, l} = 0}, (5.2)

Γ1 = {(i, j, k, l) : 1 ≤ i < j ≤ n; 1 ≤ k < l ≤ n; {i, j} ∩ {k, l} = 1}. (5.3)

Note that in the second equality we use the fact that a2
i,j = ai,j for any 1 ≤ i < j ≤ n.

Since random variables Xi are independent and identically distributed (i.i.d), 1 ≤

i ≤ n, we have:

Var

(
XiXj

nobs(nobs − 1)

)
= Var

(
X1X2

nobs(nobs − 1)

)
, for 1 ≤ i < j ≤ n,

Cov

(
XiXj

nobs(nobs − 1)
,

XkXl

nobs(nobs − 1)

)
= Cov

(
X1X2

nobs(nobs − 1)
,

X2X3

nobs(nobs − 1)

)
, for (i, j, k, l) ∈ Γ1,

Cov

(
XiXj

nobs(nobs − 1)
,

XkXl

nobs(nobs − 1)

)
= Cov

(
X1X2

nobs(nobs − 1)
,

X3X4

nobs(nobs − 1)

)
, for (i, j, k, l) ∈ Γ0.
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Thus, Equation (5.1) can be rewritten as follows:

n−2(n− 1)−2Var
(
N̂1

)
= Var

(
X1X2

nobs(nobs − 1)

) ∑

1≤i<j≤n

ai,j (5.4)

+ Cov

(
X1X2

nobs(nobs − 1)
,

X2X3

nobs(nobs − 1)

) ∑

(i,j,k,l)∈Γ1

ai,jak,l

+ Cov

(
X1X2

nobs(nobs − 1)
,

X3X4

nobs(nobs − 1)

) ∑

(i,j,k,l)∈Γ0

ai,jak,l.

Note that

E
X1X2

nobs(nobs − 1)
= E

X2X3

nobs(nobs − 1)
= E

X3X4

nobs(nobs − 1)
, (5.5)

E

(
X1X

2
2X3

(nobs)2(nobs − 1)2

)
= E

(
X1X2X3

(nobs)2(nobs − 1)2

)
, (5.6)

E

(
X2

1X
2
2

(nobs)2(nobs − 1)2

)
= E

(
X1X2

(nobs)2(nobs − 1)2

)
, (5.7)

where in the first equation we use the fact that random variables Xi are i.i.d, and in the

last two equations we use the fact that X2
i and Xi have the same Bernoulli distribution

for any 1 ≤ i ≤ n.

Hence, we let

µ = E
X1X2

nobs(nobs − 1)
, (5.8)

α0 = E

(
X1X2X3X4

(nobs)2(nobs − 1)2

)
, (5.9)

α1 = E

(
X1X2X3

(nobs)2(nobs − 1)2

)
, (5.10)

α2 = E

(
X1X2

(nobs)2(nobs − 1)2

)
. (5.11)
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Then, we have

α0 − µ2 = Cov

(
X1X2

nobs(nobs − 1)
,

X3X4

nobs(nobs − 1)

)
, (5.12)

α1 − µ2 = Cov

(
X1X2

nobs(nobs − 1)
,

X2X3

nobs(nobs − 1)

)
, (5.13)

α2 − µ2 = Var

(
X1X2

nobs(nobs − 1)

)
, (5.14)

and Equation (5.4) can be rewritten as follows:

n−2(n− 1)−2Var
(
N̂1

)
= (α0 − µ2)

∑

1≤i<j≤n

ai,j (5.15)

+ (α1 − µ2)
∑

(i,j,k,l)∈Γ1

ai,jak,l

+ (α2 − µ2)
∑

(i,j,k,l)∈Γ0

ai,jak,l.

Since we have shown in Theorem 1 that

µ = E
X1X2

nobs(nobs − 1)
=

1− qn − npqn−1

n(n− 1)
, (5.16)

it remains to calculate α0, α1, and α2.

By conditioning on the event that X1 = X2 = X3 = X4 = 1, we have

α0 = E

(
X1X2X3X4

(nobs)2(nobs − 1)2

)
,

= p4E
(
(Z + 4)−2(Z + 3)−2

)
, (5.17)

where Z ∼ Binomial(n− 4, p).
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Similarly, by conditioning on the event that X1 = X2 = X3 = 1, we have

α1 = E

(
X1X2X3

(nobs)2(nobs − 1)2

)

= p3E
[
(Z + ξ + 3)−2(Z + ξ + 2)−2

]

= p4E
[
(Z + 4)−2(Z + 3)−2

]
+ p3qE

[
(Z + 3)−2(Z + 2)−2

]
, (5.18)

where ξ ∼ Bernoulli(p), Z and ξ are independent.

And finally, by conditioning on the event that X1 = X2 = 1, we have

α2 = E

(
X1X2

(nobs)2(nobs − 1)2

)

= p2E
[
(Z + ξ1 + ξ2 + 2)−2(Z + ξ1 + ξ2 + 1)−2

]

= p4E
[
(Z + 4)−2(Z + 3)−2

]
+ 2p3qE

[
(Z + 3)−2(Z + 2)−2

]

+p2q2E
[
(Z + 2)−2(Z + 1)−2

]
, (5.19)

where ξ1, ξ2 ∼ Bernoulli(p), Z, ξ1 and ξ2 are independent.

For simplicity, we define γm = E[(Z+m)−2(Z+m+1)−2], for m = 1, 2, 3. It follows

that

α0 = p4γ3, (5.20)

α1 = p4γ3 + p3qγ2, (5.21)

α2 = p4γ3 + 2p3qγ2 + p2q2γ1. (5.22)

On the other hand, let β0 be the number of pairs of edges in G which have no

common nodes. Recall that N2 is the number of pairs of edges in G that have exactly
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one common neighbor. Hence, we have

2β0 =
∑

(i,j,k,l)∈Γ0

ai,jak,l, (5.23)

2N2 =
∑

(i,j,k,l)∈Γ1

ai,jak,l, (5.24)

β0 +N2 =

(
N1

2

)
. (5.25)

Thus, Equation (5.15) can be rewritten as

n−2(n− 1)−2Var
(
N̂1

)

= (α2 − µ2)
∑

1≤i<j≤n

ai,j + (α0 − µ2)
∑

(i,j,k,l)∈Γ0

ai,jak,l + (α1 − µ2)
∑

(i,j,k,l)∈Γ1

ai,jak,l

= N1(α2 − µ2) + 2β0(α0 − µ2) + 2N2(α1 − µ2)

= N1(α2 − α0) + 2N2(α1 − α0) +N2
1 (α0 − µ2)

= N1(2p3qγ2 + p2q2γ1) + 2N2(p3qγ2) +N2
1 (p4γ3 − µ2)

= 2p3qγ2N2 + p2q(2pγ2 + qγ1)N1 + (p4γ3 − µ2)N2
1 , (5.26)

where in the second equality we use (5.23) and (5.24), in the third equality we use

(5.25), and in the last two equalities we used (5.20), (5.21), and (5.22).

Dividing both sides by N2
1 and using the fact that n2(n− 1)2 = n4 [1 +O(n−1)], we

have

Var

(
N̂1

N1

)
= n4

[
1 +O(n−1)

]{2p3qγ2N2

N2
1

+
p2q(2pγ2 + qγ1)

N1

+ (p4γ3 − µ2)

}
. (5.27)

We need the following lemma to study the asymptotic behavior of Var
(
N̂1

N1

)
in

Equation (5.27) as n→∞.

Lemma. Recall the notations Z and the γm’s. We have
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(i) n4γ2 = p−4 [1 +O(n−1)],

(ii) n4(2pγ2 + qγ1) = (1 + p)p−4 [1 +O(n−1)],

(iii) n4(p4γ3 − µ2) = O(n−1).

Proof. Since ϕ(x) = (x + 2)−2(x + 3)−2 is convex, we apply Jensen’s inequality (i.e.,

E[ϕ(X)] ≥ ϕ(E(X))) to obtain a lower bound on

γ2 = E
[
(Z + 2)−2(Z + 3)−2

]
≥ [E(Z) + 2]−2[E(Z) + 3]−2

= [(n− 4)p+ 2]−2[(n− 4)p+ 3]−2

= [np+ (2− 4p)]−2[np+ (3− 4p)]−2

= [(np)2 + (5− 8p)(np) + (2− 4p)(3− 4p)]−2

= (np)−4 − 2(5− 8p)(np)−5 +O(n−6),

where in the second equality we used the fact that Z ∼ Binomial(n− 4, p), and hence,

E(Z) = (n− 4)p.

For upper bound, we proceed as

γ2 = E
[
(Z + 2)−2(Z + 3)−2

]

≤ E

[
1

(Z + 1)(Z + 2)(Z + 3)(Z + 4)

]

= E

[
1

6

∫ 1

0

(1− t)3tZdt

]

=
1

6

∫ 1

0

(1− t)3E(tZ)dt

=
1

6

∫ 1

0

(1− t)3(q + pt)n−4dt

=
1− qn − npqn−1 −

(
n
2

)
p2qn−2 −

(
n
3

)
p3qn−3

p4n(n− 1)(n− 2)(n− 3)

= (np)−4 + 6p4n−5 +O(n−6),
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where the third equality is obtained from integration by parts, the fourth equality is

obtained from interchange of expectation & integral, the fifth equality is obtained from

the fact that Z ∼ Binomial(n−4, p), and the sixth equality is obtained from integration

by parts.

From these lower and upper bounds, we have γ2 = (np)−4 + O(n−5), and part (i)

immediately follows.

Similarly we can show that γ1 = (np)−4 +O(n−5) and γ3 = (np)−4 +O(n−5). Thus,

part (ii) also immediately follows.

Since µ2 = (1−qn−npqn−1

n(n−1)
)2 = n−4 [1 +O(n−1)], part (iii) also follows immediately

from these bounds.

From the above Lemma and Equation (5.27) we have

V ar

(
N̂1

N1

)
=

2q

p

N2

N2
1

[1 +O(n−1)] +
(1 + p)q

p2N1

[1 +O(n−1)] +O(n−1).
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Proof of Proposition 1

Proposition. When G is generated by the Erdos-Renyi, preferential attachment, dupli-

cation, or geometric models, the corresponding convergence rate of N2

N2
1

is as following:

• ER model: O(n−1)

• Geometric model: O(n−1)

• Preferential attachment model: O( log(n)
n

)

• Partial duplication model: let β be the approximated exponent of the power-law

degree distribution of G, we have

– β = 2: O( 1
(log(n))2

)

– 2 < β < 3: O( 1
nβ−2 )

– β = 3: O( log(n)
n

)

– β > 3: O(n−1).

Thus, V ar
(
N̂1/N1

)
→ 0 as n→∞.

Proof for the ER model

As described in the introduction, for the ER model, we first start with n singleton nodes

and then for each pair of nodes, a link is placed independently with some probability ρ. ρ

is also referred to as the link density of the network G generated from the ER model. As

a result, the number of links in G is a Binomial random variable: N1 ∼ Binomial(
(
n
2

)
, ρ).

Hence, when n tends to infinity, we approximate N1 by its expectation as follows:

N1 '
(
n

2

)
ρ. (5.28)
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On the other hand, we can obtain an upper bound for N2 as follows:

N2 ≤ 3

(
n

3

)
, (5.29)

where
(
n
3

)
is the total number of combinations of three nodes chosen from n, and for

every three nodes we can have at most three pairs of links that share exactly one

common neighbor.

In summary, we have

N2

N2
1

≤
3
(
n
3

)

[
(
n
2

)
ρ]2
' n(n− 1)(n− 2)/2

[n(n− 1)ρ/2]2
=

2

ρ2

n− 2

n(n− 1)
= O(n−1). (5.30)

Proof for the geometric model

Next, we proceed to the geometric model. Similar to the ER model, we also start

with n singleton nodes. However, the nodes now are placed uniformly at random in

the three-dimension unit cube. Then for each pair of nodes, we record the Euclidean

distance between them, and place a link if the distance is less than some given threshold

δ, 0 < δ < 1, .

For any node i, 1 ≤ i ≤ n, let ki denote its degree, that is, the number of neighbors

of node i, in the network G generated from the geometric model. For any node j 6=

i, 1 ≤ j ≤ n, node j is connected to node i if and only if the distance between them is

less than δ, as described in the model setting. In other words, node j must fall in the

sphere centered at node i with radius δ. On the other hand, we know that node j is

placed uniformly at random in the three-dimension unit cube. Hence, the probability

that node j is connected to node i is equal to the volume of the sphere, that is, 4
3
πδ3.

Note that here we do not take into account the effect on the boundaries of the cube.

Since the nodes are placed independently and identically, we have ki ' Binomial(n−
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1, 4
3
πδ3), for any 1 ≤ i ≤ n. Thus, we can have the following approximation:

∑n
i=1 ki
n

= k ' E(ki) ' (n− 1)
4

3
πδ3. (5.31)

On the other hand, since the number of links is actually half of the sum of node

degree, we further have:

N1 =

∑n
i=1 ki
2

=
n

2
×
∑n

i=1 ki
n

' n(n− 1)

2

4

3
πδ3. (5.32)

Then by noting that the upper bound of N2 is 3
(
n
3

)
, we finally obtain:

N2

N2
1

≤ 2

(4
3
πδ3)2

× n− 2

n(n− 1)
= O(n−1). (5.33)

Overall, the case of the geometric model is actually quite similar to the ER model.

The only difference is the link density, which is ρ for the ER model, and 4
3
πδ3 for the

geometric model. Hence, not surprisingly, we also observe from the simulation results

in chapter 2 that there is no significant difference in the accuracy of the estimators for

these two models.

Proof for the preferential attachment model

Recall that a random network G is generated from the preferential attachment model

as follows:

• First, an initial small random network G0 is generated from the ER model.

• At each subsequent iteration, a new node with l incident links is added to the

current network. Neighbors of the newly added node are chosen with probabilities

proportional to their current degrees.
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Then the number of links in G, N1, can be approximated as

N1 ' l × n, (5.34)

since the number of nodes and links in the initial network G0 are neglectable.

Next, let nk be the number of nodes of degree k, and pk = nk/n, 1 ≤ k ≤ n. It has

been shown by Barabasi & Albert in [18] that networks generated by the preferential

attachment model exhibit the scale free structure. In particular, the node degree follows

the power-law degree distribution with exponent β = 3:

pk ' Ck−3, (5.35)

where C is a normalizing constant.

On the other hand, N2 can also be written as a function of the node degree as

follows:

N2 =
n∑

k=1

(
k

2

)
nk

= n
n∑

k=1

(
k

2

)
pk

' n
n∑

k=1

(
k

2

)
C

k3

=
C

2
n

n∑

k=1

(
1

k
− 1

k2

)
. (5.36)

Using the fact that

log(n+ 1) <
n∑

k=1

1

k
< log(n) + 1, (5.37)
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and
n∑

k=1

1

k2
→ π2

6
, (5.38)

as n→∞, we have the following approximation:

N2

N2
1

'
C
2
n(log(n)− π2/6)

(ln)2
= O(

log(n)

n
). (5.39)

It can be seen that the convergence rate of the fraction N2

N2
1
, and hence the variation

of the estimator N̂1, in the preferential attachment model is slower than that in the ER

and geometric models. This is because the former has the scale-free structure, whereas

the latter have symmetric structure.

Proof for the duplication model

Finally, a random network G is generated from the duplication model as follows:

• An initial small random network G0 is generated from the ER model.

• At each iteration, an existing node u is chosen uniformly at random. A new

node u′ is duplicated from u, that is, u′ is connected to each neighbor of u with

probability pdup. The new node u′ is also connected to the duplicated node u.

It has been shown by Chung et al. in [64] that

N1 '





n
1−2pdup

+ C0n
2pdup if pdup 6= 1

2
,

n log(n) + C0n if pdup = 1
2
,

(5.40)

where constant C0 is determined by the initial network G0. Furthermore, the degree

distribution follows a power law, that is, pk ' Ck−β, where the exponent β satisfying

119



the following equation:

1 + pdup = pdupβ + pβ−1
dup . (5.41)

Recall that nk is the number of nodes of degree k, pk = nk/n, 1 ≤ k ≤ n. We have

N2 =
n∑

k=1

(
k

2

)
nk '

n∑

k=1

(
k

2

)
npk ' n

n∑

k=1

(
k

2

)
Ck−β =

C

2
n

n∑

k=1

(
1

kβ−2
− 1

kβ−1
). (5.42)

For pdup = 1
2
, from Equation 5.41 we have β = 2 and

N2 ' C

2
n(n−

n∑

k=1

1

k
) <

C

2
n(n− log(n+ 1)),(5.43)

N1 ' n log(n) + C0n, (5.44)

N2

N2
1

<
C
2
n(n−log(n+1))

(n log(n)+C0n)2
= O( 1

(log(n))2
). (5.45)

(5.46)

For pdup <
1
2
, from Equation 5.41 we have β > 2. There are three possible situations

as follows

• β > 3 :

– both
∑n

k=1
1

kβ−2 and
∑n

k=1
1

kβ−1 converge to O(1),

– N2 ' C
2
n
∑n

k=1( 1
kβ−2 − 1

kβ−1 ) = O(n),

– N1 ' n
1−2pdup

+ C0n
2pdup = O(n),

– Hence, N2

N2
1

= O(n−1).

• β = 3 (similar to the case of the preferential attachment model):

– N2 ' C
2
n
∑n

k=1( 1
k
− 1

k2
) = O(n log(n)),

– N1 ' n
1−2pdup

+ C0n
2pdup = O(n),

120



– Hence N2

N2
1

= O( log(n)
n

).

• 2 < β < 3:

–
∑n

k=1
1

kβ−1 converges to O(1),

–
∑n

k=1
1

kβ−2 <
∫ n

0
1

xβ−2dx = n3−β

3−β ,

– N2 <
C
2
n(n

3−β

3−β +
∑n

k=1
1

kβ−1 ) = O(n4−β),

– N1 ' n
1−2pdup

+ C0n
2pdup = O(n),

– Hence, N2

N2
1

= O( 1
nβ−2 ).

Thus, we have shown that the duplication model has a wide range of convergence

rate, depending on the exponent of the power-law degree distribution β. When β = 3,

the duplication model has the same convergence rate as the preferential attachment

model since both models have the same exponent. When β > 3, the duplication model

has the same convergence rate as the ER model and the geometric model. In general,

the convergence is faster when the exponent is higher, because there will be more nodes

with low degree and less nodes with high degree, which subsequently make the variation

become smaller.

The simulation results shown in Figures 5.19, 5.20, 5.21, 5.22, 3.3, 3.4, 5.23, 5.24,

confirm our theoretical results obtained in Theorem 2 and Proposition 1.
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Supplementary Figures

Figure 5.1: Cover art of the study.
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Figure 5.2: Performance of the estimators N̂ (3) and Ñ (3) for estimating the number of
triangles in networks generated from the ER model.
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Figure 5.3: Performance of the estimators N̂ (3) and Ñ (3) for estimating the number of
triangles in networks generated from the preferential attachment model.
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Figure 5.4: Performance of the estimators N̂ (3) and Ñ (3) for estimating the number of
triangles in networks generated from the duplication model.
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Figure 5.5: Performance of the estimators N̂ (3) and Ñ (3) for estimating the number of
triangles in networks generated from the geometric model.
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Figure 5.6: Performance of the estimators N̂ (8) and Ñ (8) for estimating the number of
three-node feedback loops in networks generated from the ER model.
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Figure 5.7: Performance of the estimators N̂ (8) and Ñ (8) for estimating the number of
three-node feedback loops in networks generated from the duplication model.
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Figure 5.8: Performance of the estimators N̂ (9) and Ñ (9) for estimating the number of
feed-forward loops in networks generated from the ER model.
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Figure 5.9: Performance of the estimators N̂ (9) and Ñ (9) for estimating the number of
feed-forward loops in networks generated from the duplication model.
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Figure 5.10: Observed PPI subnetwork of S. cerevisiae from Y2H experiment.

Figure 5.11: Observed PPI subnetwork of C. elegans from Y2H experiment.
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Figure 5.12: Observed PPI subnetwork of A. athaliana from Y2H experiment.
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Figure 5.13: Performance of the estimator ÑM for motif u2 with respect to false positive
and false negative rates in the PPI network of S. cerevisiae.
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Figure 5.14: Performance of the estimator ÑM for motif u4 with respect to false positive
and false negative rates in the PPI network of S. cerevisiae.
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Figure 5.15: Performance of the estimator ÑM for motif u5 with respect to false positive
and false negative rates in the PPI network of S. cerevisiae.
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Figure 5.16: Performance of the estimator ÑM for motif u6 with respect to false positive
and false negative rates in the PPI network of S. cerevisiae.
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Figure 5.17: Performance of the estimator ÑM for motif u7 with respect to false positive
and false negative rates in the PPI network of S. cerevisiae.
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Figure 5.18: Performance of the estimator ÑM for motif u8 with respect to false positive
and false negative rates in the PPI network of S. cerevisiae.
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Figure 5.19: The convergence rate of Var
(
N̂1

N1

)
in Equation 2.11 and the dominated

term N2

N2
1

for the ER model.
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Figure 5.20: The convergence rate of N2
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1

is bounded as shown in Proposition 1 for the

ER model.
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Figure 5.21: The convergence rate of Var
(
N̂1

N1

)
in Equation 2.11 and the dominated

term N2

N2
1

for the geometric model.
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Figure 5.22: The convergence rate of N2
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1

is bounded as shown in Proposition 1 for the

geometric model.
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Figure 5.23: The convergence rate of Var
(
N̂1

N1

)
in Equation 2.11 and the dominated

term N2

N2
1

for the duplication model, β = 2.
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Figure 5.24: The convergence rate of N2

N2
1

is bounded as shown in Proposition 1 for the

duplication model, β = 2.
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53 GO terms and their odds ratio, p-value

GO term X_{GO} Triangle_Ratio n_{GO} Triplet_Ratio Odds ratio p-value

GO:0000131 1 0.008928571 53 6.51048E-07 13714.15841 2.6346E-09

GO:0000398 2 0.017857143 84 2.6481E-06 6743.375068 4.23017E-12

GO:0000422 1 0.008928571 29 1.01551E-07 87922.24275 6.41081E-11

GO:0000956 2 0.017857143 14 1.01162E-08 1765208.104 5.21805E-15

GO:0001302 1 0.008928571 38 2.34451E-07 38082.9629 3.41664E-10

GO:0003674 2 0.017857143 1990 0.036447493 0.48994159 0.779097488

GO:0003723 5 0.044642857 434 0.000376032 118.7209007 6.54243E-12

GO:0003824 1 0.008928571 405 0.000305425 29.23325108 0.00056703

GO:0004679 1 0.008928571 5 2.77917E-10 32126787.5 0

GO:0005515 1 0.008928571 55 7.29115E-07 12245.77378 3.3043E-09

GO:0005575 7 0.0625 737 0.001846699 33.84417639 5.42199E-11

GO:0005634 24 0.214285714 2029 0.038633777 5.546589771 1.06337E-12

GO:0005688 2 0.017857143 9 2.3345E-09 7649235.119 3.10862E-15

GO:0005730 2 0.017857143 333 0.000169502 105.3508965 1.09468E-06

GO:0005732 2 0.017857143 9 2.3345E-09 7649235.119 3.10862E-15

GO:0005737 17 0.151785714 2091 0.042286543 3.589456657 1.1632E-06

GO:0005768 4 0.035714286 114 6.6829E-06 5344.132594 4.10783E-15

GO:0005777 1 0.008928571 67 1.33136E-06 6706.353721 1.10169E-08

GO:0005783 3 0.026785714 420 0.000340724 78.61405725 8.12797E-08

GO:0005789 2 0.017857143 320 0.00015036 118.7628922 7.65314E-07

GO:0005829 1 0.008928571 483 0.000518684 17.21390119 0.001610028

GO:0005933 1 0.008928571 47 4.50642E-07 19813.00493 1.26229E-09

GO:0006351 1 0.008928571 527 0.000674092 13.24533321 0.002688696

GO:0006355 1 0.008928571 505 0.000592998 15.05666027 0.002093047

GO:0006364 4 0.035714286 196 3.43444E-05 1039.886954 9.99201E-15

GO:0006397 3 0.026785714 171 2.2756E-05 1177.085661 1.66822E-12

GO:0006468 1 0.008928571 133 1.06527E-05 838.1498724 7.04843E-07

GO:0006810 4 0.035714286 832 0.002658067 13.43618887 1.4052E-05

GO:0006914 1 0.008928571 51 5.78762E-07 15427.02881 2.08206E-09

GO:0007118 1 0.008928571 17 1.88983E-08 472452.7574 2.21989E-12

GO:0008033 2 0.017857143 80 2.28336E-06 7820.542235 2.71516E-12

GO:0008134 1 0.008928571 11 4.58563E-09 1947078.03 1.29341E-13

GO:0008152 1 0.008928571 338 0.000177276 50.36544466 0.000192827

GO:0008380 2 0.017857143 112 6.33428E-06 2819.128422 5.79011E-11

GO:0008614 12 0.107142857 6 5.55833E-10 192760725 5.55112E-15

GO:0008615 12 0.107142857 8 1.55633E-09 68843116.07 0

GO:0009228 12 0.107142857 16 1.55633E-08 6884311.607 4.44089E-15

GO:0010008 2 0.017857143 58 8.5754E-07 20823.68907 1.4122E-13

GO:0015031 4 0.035714286 382 0.000256174 139.4140704 1.44661E-10

GO:0016020 11 0.098214286 1685 0.022120225 4.44002206 7.8109E-06

GO:0016021 5 0.044642857 1304 0.010246992 4.356679018 0.001097693

GO:0016787 1 0.008928571 633 0.001169267 7.636043672 0.007803397

GO:0030529 5 0.044642857 268 8.8164E-05 506.3617165 1.9984E-15

GO:0031120 2 0.017857143 8 1.55633E-09 11473852.68 0



GO:0031588 1 0.008928571 5 2.77917E-10 32126787.5 0

GO:0032258 1 0.008928571 37 2.15941E-07 41347.21686 2.89849E-10

GO:0034727 1 0.008928571 33 1.51631E-07 58883.40817 1.42916E-10

GO:0042254 2 0.017857143 172 2.31599E-05 771.0367317 2.82599E-09

GO:0042823 1 0.008928571 8 1.55633E-09 5736926.339 1.29896E-14

GO:0043162 3 0.026785714 15 1.26452E-08 2118249.725 0

GO:0043332 1 0.008928571 105 5.20983E-06 1713.794276 1.68652E-07

GO:0046020 1 0.008928571 9 2.3345E-09 3824617.56 3.69704E-14

GO:0046540 2 0.017857143 33 1.51631E-07 117766.8163 0
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