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Summary 

Previous research in ranking and selection focused on selecting the best 

design and subset selection. Little research has been done for ranking all 

designs completely. In the first part of the thesis, we consider the problem of 

ranking all designs completely where the performance of each design can only 

be estimated with noise via simulation. Simulation is time consuming and thus 

simulation budget needs to be allocated efficiently. We propose efficient 

simulation procedures to optimally allocate simulation replications with the 

objective of maximizing the probability of correctly ranking all designs 

completely. Compared with the previous indifference zone allocation strategy, 

our proposed allocation rule performs the best under different scenarios. The 

second part of the thesis extends the idea of complete ranking to rank top m 

designs out of k total alternatives, where m can be any value from 1 to k. It is 

motivated by the idea of integrating ranking procedures into evolutionary 

algorithms in a noisy environment where the fitness value of candidate 

solution can only be evaluated through simulation. Using optimal computing 

budget allocation (OCBA) framework, we formulate this problem as that of 

maximizing the probability of correctly ranking the top m designs subject to 

the constraint of a fixed simulation budget n. Based on large deviation theory, 

we have derived the asymptotically optimal allocation rule. The proposed 

simulation budget allocation rule is integrated with the genetic algorithm to 

solve simulation optimization problems. Numerical experiments have shown 

that a significant number of simulation replications could be saved by 

integrating our proposed allocation procedure. The last part of this thesis 
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considers the simulation budget allocation when the simulation output can be 

modeled by quadratic equations. The entire domain is divided into many 

partitions and the simulation output of each partition is modeled as a quadratic 

regression line. We formulate an optimization model to determine the 

asymptotically optimal simulation budget allocation for the problem. The 

optimization model is nonlinear and highly complex; therefore, we analyze the 

limiting allocation rule when the number of partitions goes to infinity in order 

to obtain an easily implementable budget allocation. The resulting simulation 

budget allocation rule matches our intuition, and the cross partition allocation 

rule is similar to the original OCBA rule. In addition, the allocation rule within 

partition is simply the optimal simulation design for the best partition, which 

contains the best design location and a feasibility check problem with 

quadratic regression for other partitions. The effectiveness of our proposed 

allocation rule is shown through several numerical experiments. 
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 Chapter 1. Introduction 

1.1. Background 

With the increasing complexity of modern industrial systems, it becomes 

more difficult to have an analytic model to evaluate the system while 

satisfying all the assumptions. As a result, discrete event simulation (DES) has 

been widely used to evaluate the performance of complex systems. Simulation 

has many advantages such as incorporating new information into the system 

without disrupting the on-going operations, compressing or expanding time 

scales for speed-up or slow-down investigation, performing bottleneck 

analysis and sensitivity analysis. Among all the advantages, the most 

significant advantage lies in the fact that fewer assumptions are needed in 

simulation models compared with analytical models, and therefore, simulation 

models are closer to the practical situation. While simulation has been 

successfully applied in many areas such as semiconductor manufacturing, 

construction engineering, project management, logistics and supply chain, the 

concern on the efficiency of simulation has never stopped, particularly when 

the simulation cost is very expensive (Law and Kelton, 1991).  

The performance of a simulation model can be mathematically 

represented as ( ( , , ))L x t   , where ( , , )x t    is the sample path evolving 

through time,   is the design variable and   is the randomness involved in 

the simulation. Because of the inevitable randomness within the simulation, 

we could only estimate the performance by its expected value as

 
1

( ) ( ( ( , , ))) 1/ ( ( , , ))
n

ii
L E L x t n L x t    


   . Therefore, in order to have a 
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statistically significant steady mean performance value, a large number of 

simulation replications are needed and this sample mean estimator cannot  

converge faster than  (1/ )O N , where N is the number of replications of 

simulation (Chen, 2002; Ho et al., 2007; Chen and Lee, 2010). On the other 

hand, the cost of per simulation run increases with the increasing complexity 

of the system. Therefore, the total simulation cost will be extremely high when 

evaluating a highly complex system with the requirement of high accuracy. 

For example, it will cost about 36 to 160 hours of computation for Ford Motor 

Company to conduct crash simulation of a full passenger car (Gu, 2001). 

To improve the efficiency of simulation, various simulation optimization 

methods have been proposed. Simulation optimization is the process of 

finding the best design where the performance of the design can only be 

estimated via simulation. Based on whether the decision variables are 

continuous or discrete, simulation optimization can be classified into 

continuous simulation optimization and discrete simulation optimization. 

Statistical ranking and selection (R&S) method is commonly used when the 

discrete decision variables are discrete, fixed and finite. As reported in Branke 

et al. (2007), optimal computing budget allocation (OCBA) is one of the top 

three R&S procedures in the context of simulation.  OCBA aims to determine 

the optimal allocation rule of simulation replications in order to compare a 

finite number of simulated alternatives. A comprehensive review of the recent 

development of OCBA problems can be found in Lee et al. (2010) and Zhang 

et al. (2013). 
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In this thesis, we consider three new types of OCBA problems. The first 

problem is to determine how to allocate the simulation replications efficiently 

in order to rank a finite number of alternatives completely. We further extend 

complete ranking to top m ranking which only tries to rank the top m designs 

out of a finite number of alternatives. The last problem considered in this 

thesis is to select the best design location when quadratic equations are used to 

model the simulation output.  

Compared with selecting the single best alternative, top m ranking and 

complete ranking require more simulation budget because more information 

would be needed in order to rank the alternatives. In practical situations, the 

ranking information could help the decision maker to select the most 

appropriate design when selection of the design is also subject to other 

qualitative constraints. For example, when several lift systems are available 

for selection for a multi-storey warehouse, we could rank the lift systems 

quantitatively based on the cost or efficiency. However, other qualitative 

requirements such as space utility, safety issue and environmental issue also 

need to be considered. Decision makers can use the ranking information and 

make the tradeoff among the designs based on the qualitative requirements.  In 

addition, ranking information could also be incorporated into population-based 

search algorithms to enhance the search efficiency. For example, in the 

selection step of a genetic algorithm, the better candidate is usually given a 

higher probability to be selected as the parents to produce the offspring. 

Therefore, the ranking of the solutions is important in determining the search 

direction of GA. It is straightforward to identify the ranking of the solutions in 

a deterministic scenario, but this is difficult and costly in a stochastic 
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environment. Therefore, we can use the proposed budget allocation rule to 

minimize the number of samples to simulate while achieving the same 

probability of correctly ranking the elite solutions. Other examples using 

ranking information can be found in maritime safety assessment (Dourmas et 

al., 2008), evolutionary algorithms (Schmidt et al., 2007), data envelopment 

analysis (Alirezaee and Afsharian, 2007). 

 When the total number of alternatives is large, selecting the best 

alternative also requires extremely large simulation budget even though 

OCBA (Chen et al., 2000) reduces the simulation replications significantly. 

However, if certain performance structure across the domain can be explored, 

we could further enhance the simulation efficiency by reducing the number of 

design points to be simulated. For example, the proposed approach can be well 

integrated with polynomial regression where an underlying regression function 

is assumed across the domain.  

In this thesis, we attempt to study the three problems discussed above to 

determine the most efficient way of allocating the simulation budget so as to 

maximize the probability of correct ranking or selection given a fixed number 

of simulation budget. We will also apply our budget allocation rule to 

population-based search algorithms to enhance the search efficiency in 

stochastic environments. 
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1.2. Motivation 

The research in this thesis is motivated by the fact that previous research 

had all focused on selecting a single best or a best subset from all the 

alternatives and little research has been done to rank the alternatives. Many 

simulation budget allocation procedures have been proposed to select the best 

alternative with a fixed limited computing budget. Three typical procedures 

include optimal computing budget allocation (OCBA) (Chen et al., 2000), 

indifference zone (IZ) formulation (Kim and Nelson, 2006) and value 

information procedure (VIP) (Chick and Inouem, 2001). The problem of 

selecting an optimal subset from a finite number of alternatives is also well 

studied in the literature (Koenig and Law, 1985; Dudewicz and Dlal, 1975; 

Chen et al., 2008; Zhang et al., 2012). However, the only substantial work 

addressing the problem of ranking alternatives that we are aware of is based 

on indifference zone formulation in Bishop (1978) and Beirlant et al. (1982). 

The indifference zone formulation aims to find a feasible way to guarantee 

that the pre-specified probability of correct ranking is achieved. Although 

OCBA has been shown to be effective in selecting the single best alternative 

(Chen et al., 2000) and an optimal subset (Chen et al., 2008; Zhang et al., 

2012), none of the previous research works has used OCBA for ranking the 

alternatives. This motivates us to use the OCBA framework to further enhance 

the simulation efficiency for ranking problems. As different problem settings 

may need different information about ranking, it is important to consider both 

complete ranking and top m ranking.  The proposed allocation rule has the 

potential to enhance the search efficiency for population-based search 

algorithms. 
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Although OCBA has proven to be very efficient in selecting the best 

alternative, the simulation budget also increases rapidly when the number of 

alternatives becomes large. Little research has been done to explore the 

underlying performance structure to further reduce the simulation budget. 

Brantley et al. (2013a; 2013b) proposed optimal simulation design procedure 

(OSD) and optimal simulation design procedure in partitioned domain (POSD) 

which incorporated the simulation output into regression equations, and 

successfully reduced the simulation budget significantly when the underlying 

performance structure is quadratic or approximately quadratic. However, the 

approach used in Brantley et al. (2013a; 2013b) to solve the problem is 

heuristic and non-optimal. This motivates us to use large deviation theory to 

derive an optimal allocation rule when regression analysis is integrated to 

model the simulation output. In addition, the complexity of the existing 

allocation rule inspires us to derive an easily implementable closed-form 

allocation rule. 

1.3. Objective 

The objective of our research is to enhance the simulation efficiency by 

intelligently controlling the allocation of simulation replications so as to 

maximize the probability of correct ranking or selection with a fixed limited 

number of simulation replications. The simulation budget allocation problems 

considered in this thesis include complete ranking of all alternatives, ranking 

of top m designs out of k alternatives and selecting the best design when the 

underlying performance can be modeled by quadratic regression equations. 

We formulate the problems as nonlinear optimization models using large 
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deviation theory and aim to derive the respective simulation budget allocation 

rules that are easy to implement.  

The effectiveness of the proposed allocation rules will be demonstrated 

in simulation experiments by comparing the number of simulation runs needed 

for our proposed rules with that of other existing rules. In addition, we also 

want to show how our proposed simulation budget allocation rule can be 

integrated with evolutionary algorithms to enhance the simulation efficiency 

for simulation optimization problems. 

1.4. Scope 

Our research concentrates on black-box simulation optimization, and 

belongs to a part of discrete simulation optimization.  We do not consider how 

to speed up the process of an individual simulation run. Instead, our scope of 

study is to find a way to reduce the number of simulation runs. We aim to 

derive the optimal simulation budget allocation procedure to find the best 

design or the ranking of the designs based on the mean performance of each 

design when their performance can only be estimated with noise via 

simulation, where the number of designs in our study is finite and fixed.   

1.5. Contribution 

The contributions of this thesis are listed as follows: 

 We extended the OCBA framework to address the problem of ranking 

all alternatives completely. Based on large deviation theory, we derived the 

asymptotically optimal allocation rule and approximated allocation rule to 
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maximize the probability of correct ranking. Practitioners who are more 

concerned about optimality can use a nonlinear programming solver to obtain 

the asymptotically optimal rule. The approximated allocation rule is an easily 

implementable closed-form solution which can be more useful for users of our 

allocation rule in finite budget with less effort spent on obtaining the 

allocation rule. 

 We further considered the problem of ranking the top m designs out of 

k total alternatives. When m is equal to k, the top m ranking problem becomes 

the complete ranking. It also reduces to the original OCBA problem if m is 

equal to 1. Therefore, it can be thought of as a generalization of the complete 

ranking problem and OCBA problem for selecting the single best design. 

 The proposed allocation procedure for ranking is integrated with 

genetic algorithm to reduce the number of samples needed for genetic 

algorithm in noisy environments. The numerical experiments indicate that 

significant simulation replications are saved by using the proposed budget 

allocation rule. 

 We formulated the optimal simulation budget allocation problem when 

the design locations can be divided into various partitions and the performance 

at every design location in each partition can be modeled as a quadratic 

regression line.  Relying on the large deviation theory, we developed efficient 

simulation budget allocation rule to select the best design point from all design 

locations in all partitions.  
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 We further analyzed the asymptotical behavior of the allocation rule 

when the number of partitions goes to infinity and derived the limiting 

asymptotically optimal allocation rule. Important insights on the allocation 

rule have been drawn based our derivation. The allocation rule cross partitions 

matches our intuition and follows similarly with the original OCBA rule. In 

addition, the allocation rule within partition is simply OSD for the best 

partition which contained the best design location and a feasibility check 

problem with quadratic regression for other partitions. 

1.6. Organization of the Thesis 

The thesis is organized as follows. Chapter 2 provides a comprehensive 

literature review of related works and Chapter 3 provides the formulation of 

complete ranking problem and derives the allocation rules. Chapter 4 studies 

the top m ranking problem and applied the allocation procedure to genetic 

algorithms to enhance the search efficiency. Chapter 5 studies the simulation 

budget allocation problem when quadratic regression functions are used to 

model the simulation output. Finally, we conclude the thesis in Chapter 6 and 

discuss some possible future research directions. 
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 Chapter 2. Literature Review 

We provide a comprehensive literature review that is related to our 

research in this section. Section 2.1 summarizes the existing research in 

simulation optimization. Section 2.2 reviews the development and extensions 

of the optimal computing budget allocation problem and their applications to 

various problems such as inventory control, production scheduling and search 

algorithms. A review on the optimal design of experiment that is related to the 

research work in Chapter 5 is presented in Section 2.3. Finally, we summarize 

the research gaps in Section 2.4.  

2.1. Simulation Optimization 

Simulation is the process of modeling the real-world operational process 

or systems over time. It can capture the key characteristics and behaviors of 

the selected system without making any assumption. Optimization is the 

process of finding the best solution based on certain criteria subject to some 

constraints.  Simulation optimization is the process of selecting the best 

solution when the performance of each solution can only be estimated with 

noise via simulation. It is also commonly called optimization via simulation.  

In general, simulation optimization can be categorized into two groups based 

on whether the decision variable is discrete or continuous (Ólafsson and Kim, 

2002).   

Continuous simulation optimization deals with the problems where the 

decision variables are continuous, i.e., uncountable and infinite. This is 

probably the most well studied area, and it can be traced back to 1950s, when 
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stochastic approximation (SA) was first proposed by Robbins and Monro 

(1951) and Kiefer and Wolfowitz (1952).  SA has been extended by Kushner 

and Yin (2003) and Borkar (2008). SA is an iterative process of moving from 

one solution to anther based on the estimation of the gradient. It is similar to 

the steepest descent gradient search method in nonlinear optimization problem. 

The difference is that we do not have a closed-form expression for the 

objective function.  The challenge of using SA is in estimating the gradient in 

the midst of the noise from the uncertainties. The simplest way to estimate the 

gradient is to use the finite difference method. The one-side estimation of 

finite difference requires 1n  simulation experiments and the two-sided 

estimation needs 2n simulation experiments. Therefore, considerable 

computational effort would be spent on using the finite different method. A 

more efficient way of estimating gradient will be simultaneous perturbation 

stochastic approximation (SPSA, Spall, 1999), which requires only two 

measurements of the objective function regardless of the dimension of the 

optimization problem. Both the finite difference method and SPSA treat the 

simulation process as a black box. No knowledge of the underlying simulation 

mechanics is known and no change is made in execution of the simulation 

model. Thus, they are referred to as indirect estimation methods. To further 

improve the computational efficiency and convergence properties of SA, other 

methods utilize the information about the simulation setting such as the 

distribution in generating the random variables to estimate the gradient. They 

are referred to as direct gradient estimation methods. These methods include 

perturbation analysis (Glasserman, 1991; Ho and Cao, 1991; Fu and Hu, 1997) 

and likelihood ratio (Glynn, 1989; Rubinstein and Shapiro, 1993). Compared 
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with the indirect gradient estimation method, the direct gradient estimation 

method usually provides an unbiased estimator which leads to faster 

convergence rate and the resulting estimator is usually more efficient 

computationally. A more detailed summary of different gradient estimation 

methods can be found in Fu (2006 and 2008).  Although SA receives the most 

attention in the literature, there are also some other alternative methods 

suggested by various researchers, such as the sample path method proposed by 

Gurkan et al. (1994). The basic idea of this method is to fix a sample path first, 

and use the deterministic optimization methods to find the optimal solution. It 

then moves to another sample path. By doing so, it moves towards the optimal 

solution iteratively. This method has been shown to converge almost surely by 

Robinson (1996). Another popular approach is to apply the response surface 

methodology (RSM) to simulation optimization, which aims to find a 

functional relationship between the input and output of the simulation. An 

example of such a method can be found in (Kleijnen, 2008). 

When the decision variables are discrete or countably finite, the methods 

for continuous simulation optimization typically do not apply since the 

gradient cannot be obtained. Furthermore, it is impractical to assume the 

discrete domain to be continuous. For example, we want to find the most 

reliable design out of a few alternative designs. It is not meaningful to have a 

fractional number to be the optimal solution. We can generally summarize the 

methods for solving the discrete simulation optimization problems into two 

categories. The first category aims to solve the simulation optimization when 

the number of decision variables is finite and small. It is typically called 

ranking and selection.  Examples of this can be traced back to as early as the 
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1950s, during which indifference zone (IZ) formulation was first established 

(Bechhofer, 1954). Gupta (1956) formulated the first subset selection problem 

in the area of ranking and selection. In the context of simulation, there are 

three major approaches to enhance the efficiency of selecting the best designs. 

The optimal computing budget allocation (OCBA) proposed by Chen et al. 

(2000) focuses on the efficiency of simulation by intelligently allocating 

further replications based on the mean and variance. A more detailed literature 

review on the OCBA is provided in Section 2.3 below. The IZ procedure 

focuses on finding a feasible way to guarantee that the pre-specified 

probability of correct selection is achieved. A typical example of such a 

procedure is the fully sequential two stage allocation KN++ procedure 

proposed by Kim and Nelson (2006). Lastly, Chick and Inoue (2001) use the 

Bayesian posterior distribution to describe the evidence of correct selection, 

and allocate further replications based on maximizing the value information. 

Recently, Branke et al. (2007) compared the three procedures in more detail 

based on their efficiency, controllability, robustness and sensitivity.  

When it is not possible to evaluate every solution using the ranking and 

selection method, some other methods must be considered for finding the 

optimal solution. Numerous methods have been developed in the literature for 

this purpose. The simplest method will be the random search which involves 

an iterative process to search for a better solution in the neighborhood of the 

current solution. The difference of various random search methods in the 

literature lies in the way of specifying the neighborhood structure, the way of 

selecting a candidate solution, and the way of defining acceptance criterion 

and stopping criterion. In addition to random search, some metaheuristic 
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methods have also been applied in simulation optimization.  These 

metaheuristics include simulated annealing (SA) (Haddock and Mittenhal, 

1992), Tabu search (Glover and Laguna, 1997), genetic algorithm and Nested 

partition (NP) method (Shi and Ólafsson, 1997). The main challenge of using 

these metaheuristics is on how to adapt these deterministic optimization 

techniques to noisy simulation environments with the objective of increasing 

the efficiency.  A more detailed summary on metaheuristics can be found in 

(Glover and Kochenberger, 2003) and Gendreau and Potvin (2010). Other than 

the global optimization method, some methods are guaranteed to find the local 

optimal solution efficiently for practical consideration. An example of such a 

method is the COMPASS algorithm proposed by Hong and Nelson (2006) and 

Hong et al. (2010). 

2.2. Optimal Computing Budget Allocation 

Optimal computing budget allocation was first proposed by Chen et al. 

(2000). It focuses on the efficiency of simulation by intelligently allocating 

further replications based on the mean and variance. It has been shown that the 

speed-up factor of OCBA is beyond exponential rate. The OCBA problem is 

formulated as that of maximizing the probability of correct selection (PCS) 

given a fixed number of computing budget. The resulting allocation rule 

matches the intuition that more simulation replications should be allocated to 

those designs that are critical in identifying the ordinal relationship in order to 

obtain a high probability of correct selection. OCBA was shown to be one of 

the top performing methods in the work done by Branke et al. (2007) and 

Waeber et al. (2010). 
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The original OCBA is an unconstrained single objective problem aiming 

to select the best design from all alternatives, i.e., the performance of each 

design is only measured in one dimension. The OCBA framework has been 

extended to solve simulation optimization problems in different settings. The 

first category, which is known as the OCBA-m problem, aims to select an 

optimal subset from all designs. Chen et al. (2008) has first proposed the 

allocation rule for selecting the optimal subset. The allocation rule has been 

incorporated into evolutionary algorithms such as cross entropy, population-

based incremental learning and neighborhood random search to enhance the 

search efficiency in simulation optimization.  Zhang et al. (2012) developed an 

allocation rule called OCBA-m+, which has been shown to perform better than 

the OCBA-m rule proposed by Chen et.al (2008). When the problem of 

selecting the best design is subject to stochastic constraints, this type of 

simulation optimization is known as the OCBA-CO, which is first studied by 

Pujowidianto et al. (2009). The finite domain is partitioned into four subsets: 

the set of unique best feasible systems, the set of suboptimal feasible systems, 

the set of infeasible systems with better objective value than the best feasible 

system and the set of infeasible systems with worse objective value than the 

best feasible system.  By intelligently controlling the allocation rule, the best 

feasible design is selected with the highest probability of correct selection 

under fixed limited computing budget. In this case, the performance of every 

design is assumed to be normally distributed. Further improvement and 

extensions of OCBA-CO problem include Lee et al. (2012), Pujowidianto et al. 

(2012; 2013) and Hunter et al. (2011). OCBA is also extended to solve multi-

objective simulation optimization problems, i.e., the performance of each 



16 

 

design is measured by more than one dimensions.  This type of problem is 

known as the MOCBA problem, which was studied by Lee et.al (2004) and 

Lee et al. (2010).  The aim of the MOCBA is to select the non-dominated 

designs rather than the single best design. Further research on MOCBA has 

also incorporated the indifference zone into the multi-objective computation 

budget allocation problem (Teng et al.,  2010).  

In addition, the OCBA framework has been extended in various other 

ways. Glynn and Juneja (2004) studied the simulation budget allocation when 

the performance of the designs follows a general distribution, i.e., it removes 

the assumption that the performance of each design is normally distributed.  

He et al. (2007) derived the budget allocation rule using the opportunity cost 

as the performance measure instead of the correct selection probability. Fu et 

al. (2007) considered the optimal budget allocation when the system 

performances are sampled in the presence of correlation. A more generalized 

version of correlated sampling can be found in Peng et al. (2013).  Jia et al. 

(2013b) formulated a new version of  OCBA in order to find the simplest good 

designs and the asymptotically optimal allocation rule which has been shown 

to be effective. Jia (2013a) futher quantified the relationship between 

simulation time and the performance estimation accuracy, which generalized 

the OCBA rule when the simulation time is stochastic. Some other research 

works related with OCBA include using the OCBA framework for rare event 

simulation (Shortle et al., 2012), deriving the adaptive sampling algorithm for 

simulation-based optimization with descriptive complexity preference (Jia, 

2011), and the work is generalized in Yan et al. (2012), and OCBA for 

discrete event simulation experiments (Chen et al., 2010). 
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Concurrent with the theoretical development and extension of OCBA, a 

large number of research papers discussed the applications of the OCBA 

framework to various search algorithms and some practical simulation 

problems. Examples of applying the OCBA framework to search algorithms 

can be summarized as follows. He et al. (2008) used the OCBA framework in 

simulation optimization using the cross entropy method. Chen et al. (2013) 

incorporated OCBA into the partitioned base random search algorithm. Other 

examples include nested partition search with OCBA (Chew et al., 2009), 

multi-objective evolutionary algorithm (Lee et al., 2008), population-based 

incremental leaning algorithm and neighborhood random search algorithm 

(Chen et al., 2008), and particle swarm optimization (Zhang et al., 2011). 

OCBA can also be applied in many practical simulation problems. For 

example, OCBA has been applied to the manufacturing scheduling of a 

semiconductor factory, where the computation efficiency is one of the major 

challenges (Hsieh et al., 2001; 2007).  Trailovic and Pao (2004) applied the 

OCBA framework to the target tracking algorithm aiming to find the best 

design with the minimum variance. Lee et al. (2007; 2008) and Chew et al. 

(2009) integrated multi-objective OCBA framework with a search algorthm to 

solve flight scheduing and invertory management problems. Other examples 

include using OCBA to improve the energy management in commercial office 

building (Jia et al., 2012), minimizing the processing cost for top k queries 

(Farley et al., 2012)  and data envelopment analysis (Wong et al., 2011). 

In summary, the research in the area of discrete simulation optimization 

in finite search space can be categorized as follows. Firstly, there is a large 

amount of literature on selecting the best system, where OCBA, VIP and IZ 
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are the three major approaches towards this problem. Secondly, OCBA has 

been extended to subset selection, constrained optimization and multi-

objective simulation optimization problems.  However, no previous research 

has used the OCBA framework to attempt the problem of ranking the 

alternatives. Lastly, many extension works and application papers exist in the 

literature, but little research has incorporated the response surface 

methodology with OCBA. 

2.3. Optimal Design of Experiment 

Design of experiment (DOE) is commonly used for gathering 

information when variation is present. DOE can be categorized into different 

categories based on different criteria (Melas, 2006), but the problem 

considered in our research is most related to that of the optimal design of 

experiments. Optimal design is a class of experiment design that determines 

the design locations and allocates samples in order to optimize the experiment 

process with respect to certain statistical criterion. It allows the parameters 

estimated to be unbiased and with minimum variance. On the other hand, the 

non-optimal designs will need more experimental runs in order to reach the 

same precision of estimation. In general, optimal design reduces the number of 

experiment runs, and thus the experiment cost. Barton (2005) discussed 

various optimal criteria for regression models in estimating simulation output. 

For example, A-optimality seeks to minimize the trace of the inverse of the 

information matrix. C-optimality aims to minimize the variance of a best 

linear unbiased estimator. D-optimality minimizes the determinant of the 

information matrix and G-optimality maximizes the maximal entry in the 
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diagonal of the hat matrix. Cheng and Kleijnen (1999) first applied the DOE 

method to simulation optimization and developed a criterion to provide the 

best fitting regression equation for queuing models. 

Unlike the traditional optimal experiment design, the optimal simulation 

design (OSD) method proposed by Brantley et al. (2013a) aims to maximize 

the probability of correctly selecting the best design location in a set of pre-

determined design locations. Unlike all previous OCBA problems that require 

conducting simulation at all design locations, OSD only needs to conduct 

simulation at a subset of the alternative design locations. The simulation 

output across the domain is then modeled by a quadratic regression function. 

The performance value at each design location is estimated from the 

regression function.  The objective of the OSD method is to determine which 

design locations should be selected for simulation and how the simulation 

samples should be allocated among the selected design locations. OSD has 

been shown to be very efficient when the underlying performance structure of 

all design points is quadratic and approximately quadratic. However, OSD 

assumes a common quadratic equation for all design locations and common 

noise across the entire domain. It is natural to think that the two assumptions 

used in OSD may not hold when the number of design locations is large. One 

way to resolve the problem is to divide the entire domain into many partitions, 

and assume a quadratic equation and different common noise for each 

partition. This problem is studied in Brantley et al. (2013b) where a simulation 

budget allocation problem is formulated for the scenario when the domain is 

partitioned into various sub-regions. The resulting simulation budget 

allocation rule is named as POSD. However, the POSD method proposed in 
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Brantley et al. (2013b) approximated the correct selection probability by a 

convenient lower bound. The simulation budget allocation is derived via 

analyzing the different scenarios of the approximated probability of correct 

selection. Therefore, the heuristic allocation rule is suboptimal. As mentioned 

in Brantley et al. (2013b), better allocation rules can be derived using optimal 

formulation or tighter probability bound. 

2.4. Summary of Research Gaps 

Based on the literature survey, some research gaps can be identified in 

the area of optimal computing budget allocation. Firstly, no previous research 

has used the OCBA framework to determine the optimal simulation budget 

allocation for the problem of ranking all alternatives completely.  The only 

work we found is based on inference-zone formulation (Bishop, 1978; Beirlant 

et al., 1982) which tries to find a feasible solution to achieve a pre-specified 

probability of correct ranking. The procedure is conservative and inefficient.  

Secondly, a more general problem than complete ranking is to rank the top m 

designs out of k alternatives. The top m ranking problem becomes complete 

ranking if m is equal to k, and it can be reduced to the original OCBA problem 

of selecting a single best design if m is equal to 1. In addition, top m ranking 

can be applied to population-based search algorithms in noisy environment to 

enhance the search efficiency by reducing the number of simulation 

replications needed for performance evaluation. Lastly, little research has been 

done to determine the simulation budget allocation when response surface 

methodology is used to model the simulation output, in particular when 

quadratic regression functions are used to model the simulation output. The 
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work done by Brantley et al. (2013a; 2013b) is heuristic in nature and non-

optimal. We can reformulate the problem using large deviation theory to 

characterize the optimal allocation strategy, and to analyze the asymptotical 

behaviors of the allocation rule.  

Given the research motivations and research gaps summarized above, 

we will study two categories of OCBA problems in this thesis, i.e., the 

ranking-based OCBA and regression-based OCBA. Ranking-based OCBA 

aims to develop efficient simulation budget allocation rule for ranking all 

alternatives completely, and selecting and ranking top m designs 

simultaneously. Regression-based OCBA tries to determine the simulation 

budget allocation when the simulation output can be modeled by a quadratic 

regression line in each partitioned domain. Table 2.1 below summarizes the 

major existing research works and identifies the research problems that will be 

studied in this thesis. 

Table 2.1. Summary of existing works and research gaps 

 Existing Works Problem Considered 

Problem  

Setting 

OCBA1: Select the single best 

Complete ranking: Rank all 

alternatives completely 
OCBA-m/OCBA-m+ : Select 

top m designs  

MOCBA: Select a Pareto set 

Top m ranking: Simultaneously  

select and rank top m designs  
OCBA-CO: Select the single 

best subject to constraints 

Output 

Modeling  

Sample mean Quadratic regression line 
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Chapter 3. Simulation Budget Allocation for 

Complete Ranking 

We present the first research problem of ranking all designs completely 

in this chapter. The simulation budget allocation rules derived asymptotically 

maximize the probability of correct ranking. The organization of this chapter 

is as follows. Section 3.1 provides an overview of the whole chapter.  In 

Section 3.2, we provide the formulation of the complete ranking problem. 

Section 3.3 states the necessary assumptions needed in deriving the optimal 

allocation rule. In Section 3.4, we provide the derivation of asymptotically 

optimal allocation rule. An easily implementable closed-form approximated 

allocation rule is presented in Section 3.5. We propose a heuristic sequential 

allocation algorithm to implement our allocation rules, and prove that the 

estimators are consistent in Sections 3.6 and 3.7 respectively. Numerical 

experiments are conducted in Section 3.8. Finally, we conclude in Section 3.9. 

The work of Chapter 3 has been published in Xiao et al. (2013).  

3.1. Overview 

Previous research in ranking and selection focused on selecting the best 

design and subset selection. Little research has been done for ranking all 

designs completely. In deterministic analysis, it is straightforward to identify 

the ranking of the solutions based on their performance values. However, in 

stochastic environment, a large number of simulation runs or experiments are 

needed in order to obtain a steady mean performance value.  The ranking 

information is usually needed when secondary or other performance 



23 

 

measurements are considered. For example, when several lift systems are 

available for selection for a multi-storey warehouse, we could rank the lift 

systems quantitatively based on the cost or efficiency. However, other 

qualitative requirements such as space utility, safety issue and environmental 

issue also need to be considered. Decision makers can use the complete 

ranking information and make the tradeoff among the designs based on the 

qualitative requirements. Some other examples of using ranking information in 

the literature are as follows. In reliability and life testing, experiments are 

conducted in order to rank several population items. The difficulty is to decide 

how many devices of each type should be tested (Bishop and Dudewicz, 1977). 

Zhao et al. (2004) proposed using a simulation approach for ranking of fire 

safety attributes of existing buildings. The complete ranking approach can be 

applied in their study in order to reduce the number of simulation runs. In data 

envelopment analysis (DEA), much work has been devoted to find the 

complete ranking of the decision-making units (DMU). As demonstrated in 

Wong et al. (2011), efficient budget allocation will reduce the data needed to 

estimate the performance when the efficiency measurement is in a stochastic 

environment. In addition, the complete ranking procedure could also be 

incorporated into population-based searching algorithm to enhance the search 

efficiency. For example, in a genetic algorithm (GA), better candidates are 

usually given higher probability to be selected as the parents to produce the 

offspring. Therefore, the ranking of the solutions is important in determining 

the search direction of GA. Examples of using ranking information in 

evolutionary algorithms can be found in (Blickle and Thiele, 1995;Schmidt et 

al., 2007). In the literature, the complete ranking problem has been approached 
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with the IZ formulation and a two-stage allocation algorithm is proposed to 

guarantee that the pre-specified correct ranking probability is achieved 

(Bishop, 1978; Beirlant et al., 1982). This result has been applied to decide the 

number of simulation replications for design of experiment (Bishop, 1978) and 

to rank the random number generators (Levendovszky et al., 1996). 

The IZ formulation of the complete ranking problem aims to find a 

feasible way to achieve the pre-specified probability of correct ranking, and 

the efficiency can be improved. In this chapter, we will formulate the complete 

ranking as an optimal computing budget allocation problem and derive an 

efficient budget allocation procedure to maximize the probability of correctly 

ranking all designs with a fixed limited computing budget. We will first 

formulate the correct ranking probability directly and derive its asymptotical 

optimal allocation rule based on the formulation. An approximated 

formulation of the correct ranking probability based on a lower bound is also 

presented, and an approximated allocation rule is derived based on this 

formulation. We will compare the asymptotical optimal allocation rule, 

approximated allocation rule, the existing two-stage IZ rule and equal 

allocation in the numerical experiments. The numerical comparison shows that 

our approximated allocation rule outperforms the other rules in terms of 

correct ranking probability in finite budget. 

3.2. Problem Formulation 

Consider the problem of ranking k designs according to their 

performance values. The performance value can only be estimated with noise 

via simulation. The mean performance is used as the measurement for 
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comparison. In order to have a statistically significant steady estimation, a 

large number of simulation replications are needed because of the inherent 

uncertainty within simulation. Given that there is a total of n simulation 

replications available, our objective is to find the best allocation strategy such 

that we could rank k designs as correctly as possible based on the mean 

performance value estimated from the simulation output. 

Without loss of generality, we assume that the mean performance values 

of designs 1,...,k  are 1,..., k   respectively with 1 2 ... k     . We assume 

that there exists 0   such that 1 , 1,..., 1.i i i k         In other words, 

designs with performance value difference smaller than   are not considered 

for comparison in our research. Let 1( ,..., )k α  represent the proportion of 

total budget to be allocated to each design with 
1

1.
k

ii



 Let

1

1
( ) ( )

in

i i i ijj
X n n X


  


  denote the sample mean performance of design  i , 

where 1 ,( ,..., )
ii i nX X   are the samples generated from design i . Our objective 

is to find the optimal allocation strategy * *

1( ,..., )k *
α  such that the 

probability of correctly ranking the k designs can be maximized with fixed 

limited computing budget n. 

Under the assumptions that 1 ... ...i k       and 1 i i     ,

1,..., 1i k   , correct ranking occurs if we have 1 1( ) ( )i i i iX n X n    for all

1,.., 1i k  . Therefore, the probability of correct ranking ( )P CR  can be 

written as follows: 
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 1 1

1,..., 1

( ) ( ) ( )i i i i

i k

P CR X n X n  

 

 
  
                            

(3.1) 

To maximize the probability of correct ranking, we can formulate this 

problem as an optimal computing budget allocation model as follows. 

1 ,...,

1 2

       max ( )

. .  ... =1 , 0, 1,...,

k

k i

P CR

s t i k

 

       
                        (3.2)

 

The objective of maximizing the probability of correct ranking is 

equivalent to minimizing the probability of false ranking. We will explore 

large deviation theory to asymptotically minimize the probability of false 

ranking.  

3.3. Assumptions 

Assumption 3.1: The performance of every design is independent. 

The independence of each design ensures that the samples 1 ,( ,..., )
ii i nX X   

for 1,...,i k  that we generated are independent. Thus, the results we obtained 

will not be affected by the correlations among different designs. 

Define the cumulant generating function of sample mean ( )iX n  to
 
be

( )( ) ( ) ln ( )iX nn

i E e
  . The effective domain of any function 

*: ff D R  is 

the set { : ( ) },fx D f x   while the range is
* { }.R R  Let 

{ : ( ) }
i iD R       and 

' 0{ ( ) : }
ii iF D     . For any set A, oA  

denotes its interior and A denotes its closure. 
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Assumption 3.2    For every 1,...,i k ,  

(1) The limit ( )1
( ) lim ( )n

i i
n

n
n

 


    is well defined as an extended real   

number for all   . 

(2) The origin belongs to 
0

i
D .  

(3) (.)i is strictly convex and steep, i.e., 'lim | ( ) |i n
n




  , where { }n  is a    

sequence converging to the boundary point of 
i

D . 

(4) 0

1 1[ , ] k

k i iF   . 

Assumption 3.2 implies that ' (0)i i    with ( )i iX n  a.s. when

n .  Furthermore, it indicates that the sample mean ( )i iX n  will satisfy 

the large deviation principle. The last condition in assumption 3.2 ensures that 

the sample means of every design can take any value between 1  and k , and

 1 1( ) ( ) 0i i i iP X n X n    .  

3.4. Asymptotically Optimal Allocation Strategy  

The correct ranking event happens when every design is at its correct 

position. For a minimization problem, this can be denoted as 

1 1( ) ... ( ) ... ( )i i k kX n X n X n       since 1 ... ...i k       is assumed. 

The false ranking event happens when 1 1( ) ( )i i i iX n X n    for any

 1,..., 1i k  . Mathematically, we can denote the false ranking probability as 
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1,..., 1
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i k
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                     (3.3) 

Note that  1 1

1,..., 1

( ) ( ) ( )i i i i

i k

P FR P X n X n  

 

 
  

 

 

is bounded from 

below by 

 1 1
1 1
max ( ) ( )i i i i

i k
P X n X n  

  


 

and bounded from above by
 

 1 1
1 1

( 1) max ( ) ( )i i i i
i k

k P X n X n  
  

  . 

Thus, for 1,2,..., 1i k  , 

 1 1 1

1
lim ln ( ) ( ) ( , )i i i i i i i
n

P X n X n G
n

     


   , 

Hence, 

 1 1

1,..., 1

1 1
lim ln ( ) lim ln ( ) ( )i i i i
n n

i k

P FR P X n X n
n n

  
 

 

 
  

 
 

Since the function ln( )  is strictly increasing, it is easy to see that 
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Therefore, we have, 

     
1

1 1

1
lim ln ( ) min ( , )i i i
n i k

P FR G
n

  
   

             
                

(3.4) 

Lemma 3.1   The rate function of false ranking probability of k designs is 

 
 1 1

1 1

1
lim ln ( ) min inf ( ) ( )i i i i
n i k x

P FR I x I x
n

   
   

  
                      

(3.5) 

where  ( ) sup ( )
R

I x x


 


  is the Fenchel-Legendre transform and 

( ) ln ( )XE e  . 

Proof:  Let  1 1( ), ( ) , 1,2,...n i i i iY X n X n n    .The cumulant moment 

generating function of nY  can be written as 

       1 1 1 1( ) ( ) ( ) ( )

1 1 1 1, ln / /i i i i i i i iX n X n n n

n i i i i i i i iE e n n
             

       

 

Under assumption 3.2, we know that 

1 1 1 1 1

1
lim ( , ) ( / ) ( / )n i i i i i i i i i i
n

n n
n

           


     . 
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From Crammer’s Theorem,  , 1,2,...nY n  satisfies large deviation 

principle with good rate function 
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    1

1 1 1

)

( ) ( )i i i i i iI x I x       

Hence, from large deviation principle, we know that 

   1 1 1 1 1

1
lim ln ( ) ( ) ( , ) inf ( ) ( )i i i i i i i i i i i
n x

P X n X n G I x I x
n

         


       

Therefore, 

 1 1 1
1 1 1 1

1
lim ln ( ) min ( , ) min inf ( ) ( )i i i i i i i
n i k i k x

P FR G I x I x
n

     
      

     .□

 

To maximize the probability of correct ranking is equivalent to minimize 

the false ranking probability. From Lemma 3.1, the asymptotically optimal 

allocation strategy will result from maximizing the rate at which P(FR) goes to 

zero as a function of 1( ,..., )k α . Thus, we wish to find the best  

1( ,..., )k α  that solves the following optimization problem: 

1
1 1

1

       max min ( , )

. .   1, 0, 1,..,

i i i
i k

k

i i

i

G

s t i k

 

 


  



   
 

It can be re-expressed as follows: 
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1
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. .     ( , ) 0, 1,..., 1

          1, 0,  1,..,
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i k

 

 





   

   
                       

(3.6) 

 1 1 1( , ) inf ( ) ( )i i i i i i i
x

G I x I x        is a concave and strictly 

increasing function of i  and 1i   as shown in (Glynn and Juneja, 2004). 

Therefore, the optimization problem (3.6) is a concave programming problem.  

Thus, the first order condition is also the optimality condition. We use this to 

determine the optimal allocation strategy in the following theorem.  

Theorem 3.1 Under assumptions 3.1 and 3.2, if the optimal allocation 

1

0, 1
k

i

i




 *
α  minimizes the probability of false ranking asymptotically, 

then, 

 * * * * * *

1 1 2 1 1 1

* *

1 1

* *

1

( , ) ... min ( , ), ( , )

                ... ( , ), 2,.., 2
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(3.7) 

where 
1 1 1( , ) inf ( ( ) ( ))i i i i i i i

x
G I x I x       . 

Proof: Since the optimization problem (3.6) is concave and 
*

α  is strictly 

positive, the first order condition is also the optimality condition. From the 

Karush–Kuhn–Tucker conditions, there exist 0, 1,..., 1i i k     and 0 

such that, 

1

1
1 0 

k

ii





                                                                       

(3.8) 
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(3.11)

* *

1( ( , )) 0    1 1i i i iz G i k       
                                   

(3.12)
  

0   1 1i i k    
                                                               

(3.13) 

From (3.8) and (3.13), we could conclude that 0 i  for some  i . From 

(3.9), we see that if 1 0  , then 0.   Since * *

1( , ) / 0i i i iG      , it will 

result in 1 0k    if we substitute 0   into (3.10). Substituting 1 0  , 0 
 

into (3.11)  results in 1 2 1... 0k       , which contradicts with (3.8). Thus, 

1 0   and 0.  Therefore, 1 0k    and 1max( , ) 0, 2,.., 2i i i k      , 

which means that i  and 1i   cannot be zero at the same time for 2 2i k   . 

From the constraint 1( , ) 0i i iG z     , we know that for any i  such that i  is 

zero, we have * *

1( , )i i iG z    . For any 0i  , we have * *

1( , )i i iG z     

because of the complementary slackness condition in equation (3.12). Since 

we know that 1 1, 0k     and 1max( , ) 0,i i    for 2,.., 2i k  , therefore,

* * * * * * * *

1 1 2 1 1 1 1 1( , ) ( , ) min( ( , ), ( , )), 2,.., 2k k k i i i i i iG G G G i k               .□ 

In simulation literature, most research works assume that the simulation 

output is normally distributed since the noise of simulation is normally 
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distributed. We will demonstrate the asymptotically optimal allocation rule in 

the case of normally distributed design performance.           

Suppose the performance of the design follows the normal distribution

2~ ( , ),i i iX N   1,...,i k . Since the rate function for normal distribution is

2 2( ) ( ) / 2i i iI x x    , we will obtain   

 2 2 2 2

1 1 1 1( , ) inf ( ) / 2 ( ) / 2i i i i i i i i i
x

G x x              . 

Since ( )iI x  is strictly convex, the sum of convex functions is convex, 

and the infimum of a convex function is also convex, therefore, the infimum 

can be achieved by differentiation with respect to x . We have, 

2 2
* 1 1

12 2 2 2

1 1 1 1

/ /

/ / / /

i i i i
i i i

i i i i i i i i

x
   

 
       

 


   

   
    

    
. 

Therefore,  

2

1
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1 1
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.                               (3.14) 

The optimal allocation rule from Theorem 3.1 is such that, 
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2 * 2 * 2 * 2 * 2 * 2 *
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* *
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/ / / / / /
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3.5. Approximated Allocation Strategy  

The allocation rule obtained from the previous section is asymptotically 

optimal in terms of maximizing the false ranking convergence rate. However, 

as shown in equations (3.7) and (3.15), there is no closed-form allocation rule 

even for the simple normal distribution. In order to derive an easily 

implementable allocation rule, we propose an approximated allocation strategy 

derived from minimizing an upper bound of false ranking probability. 

Define a strictly increasing sequence { , 0,1,..., }ic i k  such that

1( ) / 2,i i ic      0 1, k      . A lower bound for the probability of 

correct ranking can be approximated as 

 

 

1 1

1,..., 1

1

1,...,

( ) ( ) ( )
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i i i i

i k

i i i i

i k

P CR P X n X n

P c X n c

 



 

 





 
  

 

 
   

 
                         

(3.16) 

We could establish the corresponding upper bound for the probability of 

false ranking as 

 

    

    

1 1
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(3.17) 

To derive the large deviation rate function of the approximated 

probability of false ranking  APFR , we should first prove that the large 
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deviation principle is satisfied. It is easy to see from equation (3.17) that 

APFR  is bounded from below by 

  1max ( ( ) ) ( ( ) )i i i i i i
i

P X n c X n c    

and bounded from above by 

  1max ( ( ) ) ( ( ) )i i i i i i
i

k P X n c X n c   . 

Therefore, for 1,...,i k , 

  1 1 1

1
lim ln ( ) ( , )i i i i i
n

P X n c R c
n

  


    

   2

1
lim ln ( ) ( , )i i i i i
n

P X n c R c
n

 


    

for some rate functions 1 1( , )i iR c   and 2 ( , )i iR c . Then by the principle of 

largest term (Ganesh et al., 2004)  

    

    

 

1

1

1 1 2

1
lim ln ( ) ( )

1
lim ln ( ) ( )

min ( , ), ( , )

i i i i i i
n

i i i i i i
n

i i i i

P X n c X n c
n

P X n c P X n c
n

R c R c

 

 

 









 

   

 

                
(3.18) 

Similarly, 

    

  

11

1 1 2

1
lim ln 

1
lim ln ( ) ( )

min min ( , ), ( , )

n

k

i i i i i iin

i i i i
i

APFR
n

P X n c X n c
n

R c R c
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Lemma 3.2   The rate functions 1 1( , )i iR c   and 2 ( , )i iR c  are given as 

follows:
 

1 1 1

2

( , ) ( )

( , ) ( )

i i i i i

i i i i i

R c I c

R c I c

 

 

 


                                          

(3.20) 

where  ( ) sup ( )
R

I x x


 


  is the Fenchel-Legendre transform and 

( ) ln ( )XE e  . 

 Proof: Under assumption 3.2, we have  

   ( )1
lim ln ln /i iX n

i i i
n

E e
n

    


  . 

Moreover, 

   1 1 1
/

sup ( / ) sup / ( / ) ( )
i

i i i i i i i i i i i i
R

c c I c
  

           


      

   
/

sup ( / ) sup / ( / ) ( )
i

i i i i i i i i i i i i
R

c c I c
  

         


      

From Crammer’s Theorem, we know that ( )i iX n  satisfies the large 

deviation principle. Thus,  

1 1

1
lim ln {( ( ) )} ( )

1
lim ln {( ( ) )} ( ).   

i i i i i i
n

i i i i i i
n

P X n c I c
n

P X n c I c
n

 

 

 




  

  

 

Therefore, the rate function of the approximated probability of false 

ranking is 
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Our objective is to maximize the correct ranking probability. It is the 

same as minimizing the upper bound of false ranking probability. The 

asymptotically optimal allocation of minimizing the APFR is to solve for the 

best 1( ,..., )k α  from the following optimization problem. 

  1

1

       max min min ( ), ( )

. .   1, 0, 1,..,

i i i i i i
i

k

i ii

I c I c

s t i k

 

 




   

 

This can be re-expressed as, 

 

 1

1

      max     

. .     min ( ), ( ) 0,1

          1, 0,1

i i i i i i
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i i

i

z

s t I c I c z i k

i k

 

 





   

   
                   

(3.22) 

Theorem 3.2 below gives the optimal solution for (3.22). 

Theorem 3.2   Under assumptions 3.1 and 3.2, if the optimal allocation 

1

0, 1
k

i

i




 *
α  minimizes the approximated probability of false ranking 

asymptotically, then, 

* *

1 1min( ( ), ( )) min( ( ), ( )), , {1,..., }i i i i i j j j j jI c I c I c I c i j k    . 

Proof: Since (3.22) is a concave programming problem, the first order 

condition is the optimality condition. Therefore, from the Karush–Kuhn–

Tucker conditions, there exist i  and 0   such that, 
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1 0

k

ii



                                                                  (3.23) 

1min( ( ), ( )) ,    1i i i i iI c I c i k    
                              

(3.24) 

*

1[ min( ( ), ( ))] 0,  1
ii i i i iz I c I c i k     

                    
(3.25) 

 
0   1i i k   

                                                             
(3.26) 

From equation (3.23) we know that i  must be positive for some i . 

However, since 1min( ( ), ( ))i i i iI c I c  is always positive, any 0i   will lead to 

all 0i  . Therefore, we have  0i   for all i . As a result of (3.25), we 

conclude that  

* *

1 1min( ( ), ( )) min( ( ), ( )), , {1,.., }i i i i i j j j j jI c I c I c I c i j k     . □
 

In the case of the normal distribution, the performance of design 

, 1,...,i i k  is normally distributed with 2~ ( , )i i iX N   . The rate function of 

normal distribution is known as 2 2( ) ( ) / 2i i i i iI x x   . Therefore, 
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As a result of Theorem 3.2, the resulting simulation budget allocation 

rule can be computed as 



39 

 

* 2 2 2

1 1

* 2 2 2

1 1

/ min{( ) , ( ) }
, , {1,..., }

/ min{( ) , ( ) }

i i i i i i

j j j j j j

i j k
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(3.27) 

3.6. Sequential Allocation Procedure 

From Theorems 3.1 and 3.2, we know that the allocation rule or the 

value of α  can only be determined after we know the distribution of the 

design performance. In actual implementation, the distribution of the design 

performance is unknown. We will propose a sequential allocation rule and use 

the sampling distribution to estimate the allocation step by step. We have 

assumed 1 , 1,..., 1i i i k        , i.e., the mean performance of every 

design is different. We further assume that the
 
variance of the performance is 

finite. Together with assumptions 3.1 and 3.2, the sequential allocation 

strategy for complete ranking of k designs is proposed as follows. 

Define l to be the iteration number and , 1,...,l

iN i k  to be the total 

number of simulation replications that have been allocated to design i up to 

iteration l.  n is the total number of simulation replications available.   is the 

number of incremental simulation replications for each iteration. 

Step 0:  Perform 0n  simulation replications for every design.      

 1 00, ...l l

kl N N n     

Step 1:  If 
1

k
l

i

i

N n


 , stop. 

Step 2:  Increase the computation budget by  and compute the new budget  

   allocation using Theorem 3.1 or Theorem 3.2. 
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Step 3:  Perform additional 1max(0, )l l

i iN N 
 
simulation runs for design 

 , 1,..,i i k , 1l l  . Go back to Step 1. 

As the simulation continues, design i will be ranked number i for all i. 

However, the ranking of each design may change from iteration to iteration, 

although it will converge to the true ranking when the total computation 

budget goes to infinity. When ranking changes, the budget allocation in Step 2 

will be applied immediately. Therefore, the actual proportion of budget for 

every system will converge to the optimal proportion when the number of 

iterations is sufficiently large. 

Furthermore, we need to take note of 0 n , the initial number of 

replications for every
 
system. 0n

 
cannot be too small because the estimation of 

the rate function can be poor especially when the variance of the performance 

is large. On the other hand, if 0n  is too large, some portions of the system will 

be allocated excessively compared with its optimal allocation number. When 

the total budget is very limited, those portions that need more replications may 

suffer from large 0n  and this would eventually affect the simulation results. 

Other than the initial number of replications, the incremental budget   is also 

important in the implementation procedure. Large   may result in the wasting 

of budget, while small   will lead to expensive computation in Step 2.  
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3.7. Consistent Estimator  

It is natural to think that there will be significant variation in terms of 

performance because of the variability in the estimation. However, we will 

demonstrate in this section that the estimated optimal allocation strategy will 

converge to the true optimal strategy as the total budget n . To simplify 

notations, we assume that each system is allocated n  samples when we prove 

the consistency. Recall that the samples generated for design i  are denoted by 

1( ,..., )i inX X . The empirical cumulant generating function of system i  could 

be written as ( )

1
( ) ln((1/ ) ) ij

n Xn

i j
n e





    and the empirical rate function is 

( ) ( )( ) sup{ ( )}n n

i iI x x


   . Therefore, we are using ( ) ( )n

iI x  to estimate ( )iI x  

for the approximated allocation strategy, and using ( )

1( , )n

i i iG   
 to estimate 

1( , )i i iG     for the optimal allocation strategy.  

Theorem 3.3 below explains why ( )

1( , )n

i i iG   
is a consistent estimator 

of 1( , )i i iG    .
 

Theorem 3.3 The empirical estimation of the optimal allocation is consistent, 

i.e.,         

* *( ) , 1,..,i in i k     a.s. when n . 

Proof:  It has been argued that ( ) ( ) ( )n

i iI x I x  almost surely in (Glynn and 

Juneja, 2004). By a similar argument, we could conclude that the estimator 

* *( ) , 1,..,i in i k     as n  almost surely.  
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It has also been shown in Theorem 2 of Glynn and Juneja (2004) that 

( )

1( , )n

i iG   1( , ), 2,...,i iG i k    . Replacing ( )

1( , )n

i iG    by ( )

1( , )n

i i iG   
 

will not affect the proof. Thus, we conclude that ( )

1 1( , ) ( , )n

i i i i i iG G      

almost surely.□   

3.8. Numerical Experiments 

In this section, we will test our proposed algorithms with a series of 

numerical experiments. We will compare with the asymptotically optimal 

allocation (AOA) in Section 3.4, approximated allocation (AA) in Section 3.5 

and equal allocation (EA). Comparisons with equal allocation and indifference 

zone (IZ) formulation (Bishop, 1978; Beirlant et al., 1982) are also performed. 

Our numerical experiments have all assumed that the performance of every 

design follows a normal distribution. 

3.8.1. Comparing AOA and AA with EA 

The AOA provided in Section 3.4 is the asymptotically optimal 

allocation rule in terms of maximizing the convergence rate of false ranking 

probability. We also present an approximated formulation in Section 3.5 

which maximizes the convergence rate of approximated probability of false 

ranking. We will illustrate the difference of the two allocation rules and 

compare them through numerical experiments based on normally distributed 

design performance. 

For any i j , the allocation from AOA is such that, 
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where 0   and 1k    . 

Therefore, the percentage of allocation is positively correlated with the 

variance and inversely correlated with the square of the difference with its 

neighbors. From Section 3.5, we also know that the approximated allocation 

rule is such that, 

* 2 2 2

1 1

* 2 2 2

1 1

/ min{( ) , ( ) }
, , {1,..., }

/ min{( ) , ( ) }

i i i i i i

j j j j j j

i j k
     

     
 

 

 
  

 
, 

which also shows that the percentage of allocation is positively correlated with 

the variance and inversely correlated with the square of difference with its 

neighbors. The difference between them is that the AOA considers the 

allocation of neighbors simultaneously, while AA considers the allocation of 

neighbors separately. 

In the case of three designs, AOA yields  

22

2 31 2

2 * 2 * 2 * 2 *

1 1 2 2 2 2 3 3

* * * * * *

1 2 3 1 2 3

( )( )
 

/ / / /

1          , , 0  

  

       

     

 


 


     

                    (3.28) 

while AA yields 
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(3.29) 

If we use the results in (3.29) and substitute them into equation (3.28), 

we have the following relationships of (3.28): 

2 2

1 2 1 2
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2 * 1 21 1 2 2
2 2 2 2

1 2 2 3
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Without loss of generality, we could assume that 2 2

1 2 2 3( ) ( )      , 

leading to 

2 2 2

1 2 2 1 2

22 * 2 * *

1 21 1 2 2 2

2

2 3
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( ) ( )

/ / 2
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Therefore, as long as (µ1 – µ2)
2
 and (µ2 – µ3)

2
 are close to each other, 

AA will result in a similar allocation rule with AOA. Although this derivation 

is not accurate for more than 3 designs, a similar conclusion can be reached, 

i.e., AA and AOA rules will be close to each other when the mean differences 

between consecutive designs are the same or close. 
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3.8.1.1. Comparison of Convergence Rate of False Ranking Probability 

The convergence rate of false ranking probability based on AOA should 

be the largest since it is the asymptotically optimal result. Given the mean and 

variance, we are able to calculate the allocation rules, i.e., the value of α , 

through Theorems 3.1 and 3.2 for AOA and AA respectively. Then we could 

use α  as the input to Lemma 3.1 to compute the false ranking rates under the 

three scenarios for AOA, AA and EA. The value of α  for EA is simply 

(1/ ,...,1/ )k k . 

In this numerical experiment, we will randomly generate 100 sets of 

designs. Each set has 10 designs with different means and variances.  The 

convergence rates of false ranking probability of AOA, AA and EA are 

computed. We will compare these rates of the three allocation rules. Figure 3.1 

below provides the box plot of the convergence rates of AA and EA, where 

the rate from AOA is used as a benchmark of 100%. 

 
Fig.3.1. Boxplot for AA and EA. 

The numerical results show that the convergence rate of false ranking 

probability under AA rule is very close to AOA in most of the scenarios. Most 
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of the convergence rates computed are above 90% of the optimal rates. The 

convergence rate of false ranking probability under EA is much smaller than 

AOA and AA. This suggests that significant improvement can be made when 

compared with EA. 

3.8.1.2. Comparison of Correct Ranking Probability  

Although AOA performs better than AA in terms of convergence rates 

of false ranking probability as shown above, the empirical probability 

performance in finite budget may be different. Firstly, AOA is optimal under 

asymptotical analysis and this may not be true in the finite horizon situation. 

Secondly, it is optimal only when the convergence rate is used as the 

performance measurement. The result may be different when the correct 

ranking probability is used as the performance measurement.  

In the following numerical experiments, we will test three different sets 

of designs. The performance of every design is assumed to be normally 

distributed. We will compare the performance of AA, AOA and EA in terms 

of correct ranking probability with one-time allocation of the total available 

computing budget.  

The three numerical experiments are performed as follows. Experiment 

1 sets equal spacing between consecutive designs and different variances for 

each design. Experiment 2 sets equal variances for each design but the spacing 

between consecutive designs is different. Experiment 3 sets both the spacing 

and the variances as being different. The mean and variance of each 

experiment are summarized in Table 3.1. 



47 

 

Table 3.1. Mean and variance of three experiments in chapter 3 

 
Equal Spacing Equal Variance 

Increasing Spacing 

Decresing Variance 

Design Mean Variance Mean Variance Mean Variance 

I 2 1 1 100 1 100 

II 4 4 2 100 2 81 

III 6 9 4 100 4 64 

IV 8 16 7 100 7 49 

V 10 25 11 100 11 36 

VI 12 36 16 100 16 25 

VII 14 49 22 100 22 16 

VIII 16 64 29 100 29 9 

IX 18 81 37 100 37 4 

X 20 100 46 100 46 1 

The finite budget performances of the three allocation rules are 

simulated assuming known mean and variance. We vary the total budget T 

from 200 to 6000 for each allocation rule, and the probability of correct 

ranking (PCR) is estimated from 10,000 runs of simulation.  The performances 

for all the three scenarios are shown in Figure 3.2.  

From all the three experiments, it is clear that AA performs the best in 

finite budget in terms of correct ranking probability.  However, the 

performance of AOA will catch up with AA when the amount of budget 

becomes large. The performance of AA and AOA is closest under equal 

spacing scenario. This matches our prediction above. It is also interesting to 

note that EA will have similar or even better performance than AA and AOA 

when the amount of budget is very small.  
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Fig.3.2. Correct ranking probability comparison for AA,AOA and EA. (a) is 

for equal spacing scenario; (b) is for equal variance scenario; (c) is for 

increasing spacing but decreasing variance scenario. 

When the total computing budget is very small, designs with small 

percentage of allocation (non-critical designs) will receive extremely small 

number of replications. Although non-critical designs are easy to distinguish, 

too few replications would make them variable and hard to distinguish. 

However, if a few more replications are allocated to non-critical designs, they 

can be distinguished very easily. In other words, we can conclude that the 

marginal increase of correct ranking probability will be much larger if we 

allocate a few more replications to non-critical designs when the total budget 

is small. This explains why EA allocation is good when the total budget is 

very small. Although AOA is the asymptotically optimal allocation in terms of 

convergence rate, AA performs better in terms of correct ranking probability 

in finite horizon. AA rule is derived based on the upper bound of the false 

ranking probability, and the numerical experiments show that AA always 

allocates slightly less budget to critical designs and slightly more to non-
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critical designs compared with AOA. Following the same explanation, we 

could see that the reason why AA performs better in terms of correct ranking 

probability in finite budget than AOA is because AA gives a few more 

simulation replications to non-critical designs at an early stage. When the total 

budget is relatively large, the probability of correct ranking under either AOA 

or AA will go to 100%; therefore, little difference can be observed when total 

budget becomes very large.  

3.8.2. Comparing AA and IZ with EA  

The numerical experiments above are conducted assuming known mean 

and variance.  In the case when the expected means and variances are not 

available, we need to use the sequential algorithm proposed in Section 3.6 to 

find the correct ranking. We have shown that AA will perform better than 

AOA in terms of probability when the amount of budget is limited. In addition, 

implementing AOA requires solving a nonlinear programming problem at 

every iteration. In actual simulation, we may need to solve it as many as 

millions of times. It not only increases the computational cost but also brings 

about instability because of the process of solving the nonlinear programming 

problem. Most importantly, we only have finite computation budget when 

faced with a practical simulation problem. Therefore, AA is preferred over 

AOA. We will use the AA rule when the sequential allocation algorithm is 

used, and compare it with the existing IZ procedure and EA rule. 

In this numerical experiment, we will use the same set of data as shown 

in Table 3.1 and observe the performance when the sequential algorithm is 
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used with AA, IZ procedure and EA rule. We summarize the allocation 

algorithms as follows: 

AA procedure: Use the sequential algorithm proposed in Section 3.6. In 

Step 2, use the sample mean and sample variance as the estimation of the 

population mean and population variance to calculate the allocation rule in the 

next round based on Theorem 3.2. 

IZ procedure: Step 1: Decide the pre-specified probability to achieve 

the indifference zone 
*  and check the value of .h  Step 2: Simulate each 

design with 0n  replications and compute the sample variance is of design .i

Step 3: Decide the second stage allocation for design i  to be 

* 2

0max{ 1,( / ) }i in n s h   ,  and simulate 0in n  additional replications. 

EA: Equally allocate the computing budget for every design. 

It should be noted that the pre-specified probability we decide at Step 1 

of IZ procedure is the lower bound probability we could achieve, and the 

actual probability based on the allocation can be much higher than the 

specified probability. Therefore, we will use the IZ procedure and run the 

simulation to obtain the actual probability. 

The data that we use is summarized in Table 3.1.  We use the IZ 

formulation to decide how many simulation replications are needed for every 

pre-specified probability of 0.75, 0.8, 0.85, 0.9, 0.95, 0.975, and 0.99, and we 

run the simulation 10,000 times to obtain the actual probability of correct 

ranking. The performance of EA and AA is obtained through simulating the 

design 10,000 times by varying the total budget from 200 to 20,000. Figure 



51 

 

3.3 shows the results for the numerical experiments. The correct ranking 

probabilities in the horizontal axis are the actual probabilities based on the 

simulation experiments. 

It is easy to see that our proposed algorithm AA performs the best in all 

scenarios. However, it is of interest that that the EA performs better than the 

IZ rule under the equal variance scenario. This is not a random event. Based 

on the IZ procedure, we could easily see that the budget for every design will 

be approximately equal because they have the same variances. Therefore, they 

will perform slightly worse than the EA because of the inherent variability 

within simulation. The feature of increasing spacing is not captured by the IZ 

procedure. Therefore, its performance is not better than EA. 

Fig.3.3. Computing budget comparison for AA,AOA and EA. (a) is for equal 

spacing scenario; (b) is for equal variance scenario; (c) is for increasing 

spacing but decreasing variance scenario. 
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3.9. Conclusion  

In this chapter, we present the characterization of optimal allocation 

strategy for ranking of finite alternatives whose performance can only be 

estimated via simulation. Using the large deviation framework, we have 

presented two formulations and derived two allocation rules.  The AOA rule is 

derived based on exact formulation and it is the optimal allocation rule under 

asymptotical analysis when convergence rate of false ranking probability is 

used as performance measurement. The AA rule performs better than the AOA 

rule in terms of correct ranking probability under finite budget. A sequential 

allocation algorithm is proposed and used together with the AA rule. This 

algorithm is easy to implement when the underlying distribution governing the 

performance value is unknown or assumed. We then compare our proposed 

sequential allocation algorithm with IZ formulation and EA rules. Our 

proposed algorithm performs the best in every situation and it shows that 

significant budget can be saved by using this algorithm. 
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Chapter 4. Efficient Simulation Budget 

Allocation for Ranking an Optimal Subset with 

an Application to Genetic Algorithms 

Motivated by the idea of integrating ranking and selection procedure 

into evolutionary algorithms, we consider the problem of ranking top m 

designs. Top m ranking is also an important problem in statistical ranking and 

selection. It can be used to improve the simulation efficiency when the design 

performance can only be estimated with noise via simulation. On the other 

hand, top m ranking can be regarded as a generalization of complete ranking 

as presented in Chapter 3 and the OCBA problem of selecting a single best as 

in (Chen et al., 2000).  The organization of this chapter is as follows. Section 

4.1 provides the background and overview of the problem considered in this 

chapter. We will formulate an optimal computing budget model to solve the 

problem of ranking top m designs in Section 4.2. The asymptotically optimal 

allocation strategy is derived in Section 4.3. In Section 4.4, we propose an 

upper bound of the probability of correct ranking and derive a simple closed-

form allocation rule. We provide a sequential allocation algorithm and prove 

the consistency of the estimators in Section 4.5.  In Section 4.6, numerical 

experiments are conducted to compare different allocation rules. Furthermore, 

the allocation rules are integrated into genetic algorithms to show how our 

proposed allocation rule can enhance the search efficiency in solving 

stochastic simulation optimization problems.  Lastly, we conclude this chapter 

in Section 4.7. 
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4.1. Overview 

Genetic algorithm (GA) is a heuristic adaptive search method that 

mimics the process of natural evolution. The probabilistic search algorithm 

was first introduced by John Holland in 1970s. A higher probability of being 

selected to produce offspring will be given to better candidate solutions so that 

the solutions in the next generation will be better than that of the previous 

generation on average. GA has been widely used to solve deterministic 

optimization problems because it does not require knowing the problem 

structure. A comprehensive review of GA and its application can be found in 

books such as (Gen and Cheng, 2000), (Haupt and Haupt, 2004) and 

(Sivanandam and Deepa, 2010). 

While it has been successfully applied to deterministic optimization 

problems, GA becomes computationally expensive when the evaluation of 

candidate solution is subject to noise. In particular, the computational burden 

becomes extremely heavy if the performance can only be estimated via 

simulation. This is due to the fact that we must simulate each solution a large 

number of times in order to obtain a steady mean fitness value. The accuracy 

of the estimator cannot be improved faster than (1/ )O N , where N  is the 

number of simulation replications. Schmidt et al. (2007) has proposed the idea 

of integrating statistical ranking into evolutionary algorithms when the ranking 

of candidate solutions is used as the selection criterion. In order to reduce the 

number of samples to be simulated, we must focus the sampling on those 

solutions that are critical to the evolutionary algorithms. 
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A typical process of a genetic algorithm includes selection, reproduction 

and replacement. In the selection step, better fitness solutions are selected and 

assigned a probability of being selected to produce the offspring. In the 

replacement step, the set of new and old solutions is reduced to the usual 

population size. There exist various selection schemes for GA, and they can be 

classified as proportionate selection, ranking selection and tournament 

selection. In this thesis, we consider the GA type in which ranking information 

is used as the selection criterion. In particular, we are using GA with 

exponential ranking selection scheme in our numerical experiments. Ranking- 

based selection scheme overcomes the scaling problem of the direct fitness-

based approach (Gen and Cheng, 2000). In a deterministic scenario, GA has 

access to the complete ranking information. In a stochastic situation, it 

requires a huge number of simulation replications in order to obtain the 

ranking information. 

Motivated by the idea of integrating statistical ranking procedure into 

evolutionary algorithms, we propose an efficient ranking procedure such that 

the selection and reproduction can be done simultaneously while a higher 

probability will be given to better fitness value solutions. This motivates us to 

develop an efficient ranking procedure which can select and rank the top m 

candidates out of a total population of k candidates simultaneously, where k is 

greater than m. Our objective is to determine the optimal allocation of 

simulation budget among the k designs in order to maximize the probability of 

correctly ranking the top m designs. The problem of ranking the top m designs 

falls into a research area called ranking and selection in statistics (Bechhofer, 

1995). In recent years, ranking and selection procedures have been 
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successfully applied in simulation (Swisher, 2003; Andradóttir, 2005). Three 

major approaches are summarized and compared in Branke et al. (2007). 

Besides the application to genetic algorithms, top m ranking itself can be 

useful in many other aspects. If we want to determine the best m experiment 

parameter settings and their ranking, it is important to consider how to 

minimize the number of experimental runs, especially when the cost of the 

experiment is high. When the evaluation of a project is subject to multiple 

attributes including some qualitative measure, it can be useful to identify a few 

top choices and their relative ranking by considering one quantitative attribute. 

The best choice can be selected after considering all the attributes. In some 

scenarios, selecting the optimal subset without identifying their relative 

ranking may not be useful enough for the decision makers. Therefore, we 

propose the study of the problem of ranking the optimal subset. 

In this chapter, we will formulate the problem of top m ranking using the 

OCBA framework, and derive the efficient simulation budget allocation rule. 

In addition, we will also show how the proposed allocation can be integrated 

with genetic algorithms to enhance the search efficiency for simulation 

optimization problem using GA in noisy environments.  

4.2. Problem Formulation 

Consider the problem of ranking the top m designs out of k alternatives. 

The performance of every design can only be estimated through simulation. 

The mean performance is used as the ranking criterion. In order to have a 

steady mean performance value, a large number of simulation replications are 
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needed because of the randomness of individual samples. Given that we only 

have a total of n  simulation replications available, our objective is to decide 

the best allocation of the total n  replications to the k designs in order to 

maximize the probability of correctly ranking the top m designs. 

Without loss of generality, we assume the mean performances of designs 

to be 1 2, , , k   respectively. The mean performance is such that 

1 ... ...i k       and 1 , 1,..., 1i i i k       , where   is a positive 

number.  Let 1( ,..., )k α  be the proportion of the total computing budget n  

to be allocated to each design such that
 1

1, 1,..., .
k

ii
i k


   Let

1

1
( ) ( )

in

i i i ijj
X n n X


  


   denote the sample mean performance of design  i , 

where ( 1 ,,...,
ii i nX X  ) denotes the samples from population i . We ignored the 

case when in  is not an integer because we could let in  be in   , the 

greatest integer less than in . The analysis will remain unaffected. Our 

objective is to find the optimal allocation strategy * *

1( ,..., )k *
α  such that 

the probability of correctly ranking the top m designs can be maximized with a 

fixed limited computing budget n. 

Under the assumption that 1 ... ...i k      , the correct ranking of 

the top m designs happens if 1 1( ) ( )i i i iX n X n    for all 1,.., 1i m   and 

( ) ( )m m j jX n X n   for all 1,..., .j m k   Mathematically, we can write the 

probability of correctly ranking the top m designs as 
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1

1 1

1 1

( ) ( ) ( ) ( ) ( )
m k

m i i i i m m j j

i j m

P CR P X n X n X n X n   


 

  

     
            

.                                                                                                                   

(4.1) 

We can use this to formulate an optimal computing budget allocation 

problem that maximizes the probability of correctly ranking top m designs as 

follows: 

1 ,...,

1

       max ( )

. .  ... ... =1, 0, 1,...,

k

m

i k i

P CR

s t i k

 

        
                 

(4.2)

 

The objective of maximizing the probability of correctly ranking top m 

designs is equivalent to minimize the probability of falsely ranking top m 

designs. It is the same as maximizing the convergent rate at which the false 

ranking probability goes to zero. In this chapter, we will explore large 

deviation theory to derive this rate function. Therefore, the original OCBA 

problem can be reformulated as the problem of maximizing the convergent 

rate function. The assumptions we used here are the same as the assumptions 

in Section 3.3. 

4.3. Asymptotically Optimal Allocation 

The probability of correctly ranking top m designs is defined above in 

Section 4.2. The probability of falsely ranking top m designs is just its 

complement.  
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1

1 1

1 1

1

1 1

1 1

( ) 1 ( )

           = ( ) ( ) ( ) ( )

          ( ) ( ) ( ) ( )

m m

C
m k

i i i i m m j j

i j m

m k

i i i i m m j j

i j m

P FR P CR

P X n X n X n X n

P X n X n X n X n

   

   



 

  



 

  

 

       
               

    
     

    

(4.3)

                
 

where ( )C  represents its complement. Lemma 4.1 shows the convergent rate 

of the probability of falsely ranking top m designs. 

Lemma 4.1 The rate function of ( )mP FR is given by 

    1 1
1 1 1,...,

1
lim ln ( )

min min inf ( ) ( ) , min inf ( ) ( )

m
n

i i i i j j m m
i m x j m k x

P FR
n

I x I x I x I x   



 
    



  

 

where  ( ) sup ( )
R

I x x


 


  is the Fenchel-Legendre transform and 

( ) ln ( )XE e  . 

Proof: ( )mP FR is bounded below by  

    1 1
1 1 1,...,

max max ( ) ( ) , max ( ) ( )i i i i m m j j
i m j m k

P X n X n P X n X n    
    

   

and bounded  above by 

    1 1
1 1 1,...,

( 1)*max max ( ) ( ) , max ( ) ( )i i i i m m j j
i m j m k

k P X n X n P X n X n    
    

   . 

Thus, for 1,2,..., 1i m  , 
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1 1 1

1
lim ln { ( ) ( )} ( , )i i i i i i i
n

P X n X n G
n

     


   . 

For 1,...,j m k  , 

1
lim ln { ( ) ( )} ( , )m m j j j j m
n

P X n X n G
n

   


   . 

We then have                

 1
1 1 1,...,

1
lim ln ( ) min min ( , ), min ( , )m i i i j j m
n i m j m k

P FR G G
n

   
     

      (4.4) 

From Lemma 3.1, it can be concluded that  

   

   

1 1 1 1

1
lim ln ( ) ( ) inf ( ) ( )

1
lim ln ( ) ( ) inf ( ) ( )

i i i i i i i i
n x

m m j j j j m m
n x

P X n X n I x I x
n

P X n X n I x I x
n

   

   

   




   

   

 

    1 1
1 1 1,...,

1
lim ln ( )

min min inf ( ) ( ) , min inf ( ) ( ) .

m
n

i i i i j j m m
i m x j m k x

P FR
n

I x I x I x I x   



 
    

   

 

Our objective is to maximize the probability of correctly ranking top m 

designs. This can be achieved by minimizing the false ranking probability.  It 

is also the same as maximizing the convergent rate of ( )mP FR  subject to

1
1

k

ii



  and 0, 1,..,i i k    . The original OCBA optimization model is 

equivalent to the following: 
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  1 1
1 1 1,...,

1

max  min min inf ( ( ) ( )), min inf ( ) ( )

. .       1, 0,    {1,.., } 

i i i i j j m m
i m x j m k x

k

i i

i

I x I x I x I x

s t i k

   

 

 
    



 

  
(4.5)

         

 

By Glynn and Juneja (2004), 1 1( ) ( )i i i iI x I x    is a strictly increasing 

concave function. The infimum of concave functions is also concave. 

Likewise, the minimum of concave functions is a concave function too. Define

1 1 1( , ) arginf ( ( ) ( ))i i i i i i
x

x I x I x       . As shown in Glynn and Juneja 

(2004), 1( , )i ix     is  the solution to 1 1( ) ( ) 0i i i iI x I x   
    and 

      1 1 1 1 1( , ) ( , ) / ( , )i i i i i i i i i i i iI x I x I x                                                

      1 1 1 1 1 1 1( , ) ( , ) / ( , )i i i i i i i i i i i iI x I x I x                  . 

The result for ( ) ( )j j m mI x I x   follows similarly.
  

Therefore, the optimization model (4.5) is a concave maximization 

problem and it can be re-expressed as follows:
 

   

   
1 1 1 1

1

       max  

. .   ( , ) ( , ) , {1,.., 1}

       ( , ) ( , ) , { 1,.., }

       1, 0, {1,.., } 

i i i i i i i i

j j j m m m j m

k

i i

i

z

s t I x I x z i m

I x I x z j m k

i k

     

     

 

   



   

   

                (4.6)
 

Since model (4.6) is strictly concave and the functions of α  are 

continuous, a unique optimal solution must exist and the KKT conditions are 

necessary and sufficient for global optimality. 
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From the KKT conditions on problem (4.6), we define a new problem 

(4.7) by replacing some inequality signs and forcing i  to be strictly positive. 

   

   

   

   

1 1 1 2 2 2 1 2

1 1 1 1

1 1 1 1

       max  

. .   ( , ) ( , )

( , ) ( , ) ,
       min , {2,.., 1}

( , ) ( , )

       ( , ) ( , ) , { 1,.., }

     

i i i i i i i i

i i i i i i i i

j j j m m m j m

z

s t I x I x z

I x I x
z i m

I x I x

I x I x z j m k

     

     

     

     

   

   

 

  
   

  

   

1

  1, 0, {1,.., } 
k

i i

i

i k 


  

     (4.7) 

Theorem 4.1 Under the assumptions 3.1 and 3.2 in Section 3.3, problems (4.6) 

and (4.7) are equivalent, i.e., a solution * *

1( ,..., )k *
α  is the optimal solution 

to (4.6) if and only if it is also an optimal solution to (4.7).  

Proof:  We assume that a point satisfying the KKT condition of (4.6) is also 

feasible to (4.7). We first prove the forward and backward assertions. We then 

prove that the assumption that a point satisfying the KKT condition of (4.6) is 

also feasible to (4.7) is indeed correct. 

(=>) Suppose 
*

α  is the optimal solution to (4.7). Since the feasible 

region of (4.7) is a subset of that of (4.6), if the optimal solution to (4.6) is 

feasible to (4.7), it must be optimal to (4.7). Since the KKT conditions are 

necessary and sufficient for optimality in (4.6) and it is feasible to (4.7), 

therefore, if a point satisfies the KKT condition in (4.6), it is must be optimal 

to (4.7). 

(<=) Suppose the optimal solution to (4.6) is 
*

α  and the optimal solution 

to (4.7) is 
*

α , and * *
α α . Since the KKT conditions are necessary and 
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sufficient condition to (4.6), thus 
*

α  must satisfy the KKT conditions. 

Furthermore, the objective function of (4.7) is the same as that of (4.6), and 

the feasible region of (4.7) is a subset of that of (4.6). Therefore, 
*

α  must be 

infeasible to (4.7). However, we assumed that a point satisfying the KKT 

conditions of (4.6) must be feasible to (4.7). We have thus reached a 

contradiction. So we must have * *
α α . 

We are now in the position to prove that a point satisfying the KKT 

conditions of (4.6) must be feasible to (4.7). If we let 1/i k  , we can have 

0z  for problem (4.6). However, any 0i   for 1,..., 1i m   will lead to

1 1 1 1 1inf ( ) ( ) 0i i i i i
x

I x I        . If 0j  for 1,...,j m k  , we will have

inf ( ) ( ) 0m m m m m
x

I x I    .Therefore, the optimal solution must satisfy 

0i   for every 1,..., .i k  

Since the problem (4.6) is a concave optimization problem, the first 

order condition is also the optimality condition. According to the KKT 

conditions, there exist 0, 0, {1,.., 1},i j i m     { 1,.., }j m k   and 0   

such that, 

1

1 1

1
m k

i j

i j m

 


  

                                                                              
 
(4.8)

                                 
 

 * *

1 1 1( , )i iI x                                                                             
 
(4.9)

                                              
  

   * * * *

1 1 1( , ) ( , ) , {2,..., 1}i i i i i i i iI x I x i m                          
  
(4.10)
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   * * * *

1 1

1

( , ) ( , )
k

m m m m j m j m

j m

I x I x       

 

 
                             

(4.11)
                                              

  

 * *( , ) , { 1,..., }j j j mI x j m k                                                    (4.12)                

     * * * * * *

1 1 1 1( , ) ( , ) 0, {1,..., 1}i i i i i i i i iI x I x z i m                (4.13)
                  

   

    * * * * * *( , ) ( , ) 0, { 1,..., }j j j j m m m j mI x I x z j m k          
     

(4.14)
                    

  

If 1 0  ,   will be zero. Thus, we could conclude that all

, 0, 1,...,i j j m k     by putting 0   into equations (4.9) to (4.12). 

Substituting 1 0   and 0   into equations (4.10) and (4.11) will result in

0, 2,..., 1i i m    . However, this contradicts with equation (4.8) which 

requires at least one , 0i j   . Thus, we conclude that 1 0   and 0 

because  * *

1( , ) , 1,.., 1i i iI x i k      is strictly positive. Similarly, we could 

conclude that 0, 1,...,j j m k     from equation (4.12) and 

1max{ , } 0,i i    1,..., 1i m   from equation (4.10). 

Based on the results that 1 0,  0, { 1,..., },j j m k   

1max{ , } 0,i i     2,..., 1i m   and constraints of (4.6), we have the 

following equality from the complementary slackness condition in equations 

(4.13) and (4.14). For {2,..., 1},i m   { 1,..., }j m k  , 
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* * * * * *

1 1 1 2 2 2 1 2

* * * * * *

* * * * * *

1 1 1 1

* * * * * *

1 1 1 1

( , ) ( , )

 ( , ) ( , )

( , ) ( , ) ,
 min

( , ) ( , )

j j j m m m j m

i i i i i i i i

i i i i i i i i

z I x I x

I x I x

I x I x

I x I x

     

     

     

     

   

   

 

 

  
  

  

             (4.15)

  

So we have proved the assertion that a point satisfying the KKT 

conditions of (4.6) must be feasible to (4.7). 

Therefore, we could conclude that the optimal allocation rule to rank the 

top m designs * *

1( ,..., )k *
α  solves the equations E1 and E2 below. 

     

   

   

   

   

1

* * * * * *

1 1 1 1

* * * * * *

1 1 1 1

* * * * * *

1 1 1 2 2 2 1 2

* * * * * *

: 1, 0,

( , ) ( , ) ,
: min

( , ) ( , )

      ( , ) ( , )

      ( , ) ( , ) ,  2,...,

k

i i

i

i i i i i i i i

i i i i i i i i

j j j m m m j m

I x I x

I x I x

I x I x

I x I x i m

 

     

     

     

     



   

   

 

  
 

  

 

  

E1

E2

1; 1,...,j m k  

 

Suppose the performance of each design follows a normal distribution

2~ ( , ),i i iX N    1,..., .i k  Equations E1 and E2 can be re-written as follows 

in the case of normally distributed performance: 

         

1

2 2

1 1

2 * 2 * 2 * 2 *

1 1 1 1

2

1 2

2 * 2 *

1 1 2 2

2

2 * 2 *

: 1, 0,

( ) ( )
: min ,

2( / / ) 2( / / )

( )
      

2( / / )

( )
      ,   2,..., 1; 1,..., .

2( / / )

k

i i

i

i i i i

i i i i i i i i

j m

j j m m

i m j m k

 

   

       

 

   

 

   



 

   

 

  
 

  







    



E3

Ε4

 



66 

 

4.4. Approximated Asymptotically Optimal Allocation 

We have derived the asymptotically optimal allocation strategy in 

Section 4.3 above; however, the optimal allocation involves solving the 

nonlinear equations each time. In this section, we first propose an upper bound 

of the probability of false ranking. We derive the rate function of this upper 

bound probability, and obtain the optimal allocation strategy by maximizing 

this convergent rate at which the false ranking probability goes to zero. A 

simple closed-form allocation rule can be obtained based on this upper bound 

of the false ranking probability. 

Recall from the previous section that the probability of false ranking is 

defined as follows: 

   
1

1 1

1 1

( )

( ) ( ) ( ) ( )

m

m k

i i i i m m j j

i j m

P FR

P X n X n X n X n   


 

  

    
     

    

  

 

(4.16)

 

Define a strictly increasing sequence { , 0,1,..., 1}ic i m   such that

0 1... ...i mc c c      with 0, 1,..., ,i ic i m c    , where i  is the mean 

performance of design  i. We could approximate ( )mP FR  as 

      

      

1 1

1,..., 1,...,

1 11 1

( )

( ) ( ) ( )

( ) ( ) ( )

( )                           

m

i i i i i i j j m

i m j m k

m k

i i i i i i j i mi j m

m

P FR

P X n c X n c X n c

P X n c X n c P X n c

P AFR
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where the second equality follows from the fact that every design is mutually 

independent . 

To derive the large deviation rate function for ( )mP AFR , we should first 

prove that the large deviation principle is satisfied. It is easy to see that 

( )mP AFR  is bounded below by 

       1 1
1 1,...,

max max ( ) ( ) , max ( )i i i i i i j j m
i m j m k

P X n c X n c P X n c   
   

    

and bounded above by         

                        

       1 1
1 1,...,

*max max ( ) ( ) , max ( )i i i i i i j j m
i m j m k

k P X n c X n c P X n c   
   

   . 

Therefore, for 1,...,i m , 

1 1 1

1
lim ln {( ( ) )} ( , )i i i i i
n

P X n c R c
n

  


    

1 2 1

1
lim ln {( ( ) )} ( , )i i i i i
n

P X n c R c
n

  


    

and for 1,...,j m k  , 

1

1
lim ln {( ( ) )} ( , )j j m j m
n

P X n c R c
n

 


    

for some rate functions 1 1( , )i iR c  , 2 1( , )i iR c  and 1( , )j mR c  . Then, by the 

principle of largest term (Ganesh et al., 2004), 
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1 1

1 1

1 1 2 1

1
lim ln {( ( ) ) ( ( ) )}

1
lim ln{ ( ( ) ) ( ( ) )}

min{ ( , ), ( , )}

i i i i i i
n

i i i i i i
n

i i i i

P X n c X n c
n

P X n c P X n c
n

R c R c

 

 

 

 


 


 

 

   

 

 

Similarly, by the principle of largest term, the rate function of ( )mP AFR  

can be denoted as 

      

   
1 11 1

1 1 2 1 1
1 1,...,

1
lim ln ( )

( ) ( ) ( )

min min min ( , ), ( , ) , min ( , )

m
n

m k

i i i i i i j j mi j m

i i i i j m
i m j m k

P AFR
n

P X n c X n c P X n c

R c R c R c

  

  



   

 
   

    

 

 
 

From Lemma 3.2, the rate function for the approximated probability of 

false ranking is given by 

   
1 1 2 1

1 1
1 1,...,

1
lim ln ( )

min(min{ ( , ), ( , )})

min min min ( ), ( ) , min ( )

m
n

i i i i
i

i i i i i i j j m
i m j m k

P AFR
n

R c R c

I c I c I c

 

  



 

 
   







            (4.17)

 

Our objective is to maximize the probability of correctly ranking the top 

m designs. This can be achieved by minimizing the upper bound of the false 

ranking probability.  It is also the same as maximizing the convergent rate at 

which ( )mP AFR  goes to zero, i.e., 

   1 1
1 1,...,

1

max min min min ( ), ( ) , min ( )

. . 1, 0, 1,..,

i i i i i i j j m
i m j m k

k

i i

i

I c I c I c

s t i k
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 This can be re-expressed as follows: 

   1 1
1 1,...,

1

      max     

. .  min min min ( ), ( ) , min ( ) 0

        1, 0     (1 )

i i i i i i j j m
i m j m k

k

i i

i

z

s t I c I c I c z

i k

  

 

 
   



 

        

(4.18)

                      
 

Theorem 4.2 Under assumptions 3.1 and 3.2 in Section 3.3, if the optimal 

allocation *

=1
0, =1

k

ii
 *

α  minimizes the approximated probability of false 

ranking asymptotically, then 

   * *

1 1 1 1

*

min ( ), ( ) min ( ), ( )

( ), where , {1,..., }, { 1,..., }.

p p p p p q q q q q

j j m

I c I c I c I c

I c p q m j m k

 



   

   
 

Proof: We first re-write the optimization model (4.18) as follows: 

 1 1

1

        max     

. .  min ( ), ( ) 0, 1,...,

       ( ) 0, 1,....,

       1, 0     (1 )

i i i i i i

j j m

k

i i

i

z

s t I c I c z i m

I c z j m k

i k

 



 

 



  

   

                

(4.19)

                       

 

 

By Glynn and Juneja (2004), we know that (4.19) is a concave 

programming problem, and hence the first order condition is also the 

optimality condition. Therefore, under the KKT conditions, there exist i  and 

0   such that, 

 1
1 0

k

ii



                                                                

 
(4.20)                                                                    

                                                                                               
 

1 1min( ( ), ( )) , 1,..,i i i i iI c I c i m     
                          

(4.21)                                                                    
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( ) , 1,...,j j mI c j m k                                              (4.22)                                                                    
                                                                          

 

*

1 1[ min( ( ), ( ))] 0,1  
ii i i i iz I c I c i m                      

 
(4.23)                                                                    

                                                
 

    
*[ ( )] 0, 1,....,
jj j mz I c j m k    

                             
(4.24)                                                                    

                                                           
 

0,1i i k   
                                                              

(4.25)                                                                    
                                                                                             

 

From equation (4.20) we know that i  must be positive for some 

, 1,..., .i i k However, the rate function ( ), 1,...,i iI c i k is always positive. 

Therefore, any 0i   will lead to all other 0i  . Therefore, we have 0i 

for all i. As a result of equation (4.23), we conclude that

   * * *

1 1 1 1min ( ), ( ) ( ) min ( ), ( )p p p p p j j m q q q q qz I c I c I c I c I c        , where

, [1,..., ],p q m [ 1,..., ]j m k  .□ 

In the case of normal distribution, the performance of design i  is        

then denoted as 2~ ( , )i i iX N   . Since 0, 1,..., ,i ic i m c    and

2 2( ) ( ) / 2i i i i iI x x   ,  we have
2 2 ( ) ( ) / 2j m j m jI c     . As a result, 

    2 2
2

1 1 1 1min( ( ), ( )) min , / 2p p p p p p p p pI c I c            

and the optimal allocation is such that, 

* 2 2 2

1 1

* 2 2 2

1 1

* 2 2 2

1 1

* 2 2

/ min{( ) , ( ) }

/ min{( ) , ( ) }
                                        

/ min{( ) , ( ) }

/ ( )

where , [1,..., ], [ 1,..., ]

p p p p p p

q q q q q q

q q q q q q

j j j m

p q m j m k

     

     

     

   

 

 

 

  


 


 
 

  

      (4.26)         
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4.5. Sequential Allocation and Consistent Estimator 

In order to implement the proposed algorithm, we propose a similar 

sequential allocation algorithm as in Section 3.6. The proof of the estimator 

being consistent will also be similar to that in Section 3.7. Therefore, only a 

short summary of the results will be provided in this section. 

Step 0:  Perform 0n  simulation replications for every design.  

  
1 00, ...l l

kl N N n     

Step 1:  If 
1

k
l

i

i

N n


 , stop. 

Step 2:  Increase the computation budget by   and compute the new budget  

  allocation using E1 and E2 or Theorem 4.2. 

Step 3:  Perform additional 1max(0, )l l

i iN N 
 
simulation runs for design 

 , 1,..,i i k . 

Theorem 4.3 The empirical estimation of the optimal allocation is consistent, 

i.e.,        

                 * *( ) , 1,..,i in i k     as n  almost surely. 

Proof: See the proof of Theorem 3.3.□ 
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4.6. Numerical Experiments 

In this section, we will conduct several numerical experiments by 

comparing our proposed algorithm with different allocation procedures. The 

performance of every design is assumed to be normally distributed in all 

experiments. Therefore, the allocation rule derived in Section 4.3 can be 

obtained by solving equations E3 and E4. The allocation rule from Section 4.4 

is obtained through equation (4.26). 

4.6.1. Probability of Correct Ranking   

The first set of numerical experiments we will conduct is the comparison 

of the empirical probability of correct ranking for different allocation 

procedures. We will describe the different allocation procedures as follows. 

Equal Allocation (EA): The simulation budget allocated is such that 

every design has an equal number of replications, i.e., 1/ , 1,...,i k i k   . 

This is the simplest allocation rule and it can serve as a benchmark for other 

allocation procedures. 

Asymptotically Optimal Allocation (AOA-m): This is the allocation 

rule we obtain by solving the equations E3 and E4 in Section 4.3. This 

allocation rule optimizes the convergent rate of false ranking probability 

asymptotically. 

Approximated Allocation (AA-m): This is the closed-form allocation 

rule we derived in Section 4.4.   
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Table 4.1. Mean and variance of three experiments in chapter 4 

 
Equal Spacing Equal Variance 

Increasing Spacing 

Decresing Variance 

Design Mean Variance Mean Variance Mean Variance 

I 1 400 1 100 1 400 

II 2 361 2 100 2 361 

III 3 324 4 100 4 324 

IV 4 289 7 100 7 289 

V 5 256 11 100 11 256 

VI 6 225 16 100 16 225 

VII 7 196 22 100 22 196 

VIII 8 169 29 100 29 169 

IX 9 144 37 100 37 144 

X 10 121 46 100 46 121 

XI 11 100 56 100 56 100 

XII 12 81 67 100 67 81 

XIII 13 64 79 100 79 64 

XIV 14 49 92 100 92 49 

XV 15 36 106 100 106 36 

XVI 16 25 121 100 121 25 

XVII 17 16 137 100 137 16 

XVIII 18 9 154 100 154 9 

XIX 19 4 172 100 172 4 

XX 20 1 191 100 191 1 

The experimental setting is summarized in Table 4.1. The objective of 

this experiment is to rank the top 5 designs out of 20 alternatives. Three 

different scenarios are tested as follows: (a) Equal spacing scenario refers to 

the situation when the mean differences between consecutive designs are the 

same but the variance of each design is different.  (b) Equal variance scenario 

refers to the situation when the variance of each design is the same but the 

mean differences between consecutive designs are different. (c) increasing 

spacing but decreasing variance scenario refers to the situation when the 

variance of each design is different and the mean differences between 

consecutive designs are also different. 

The experiments are conducted in two ways. Firstly, we assume that the 

mean and variance of each design are known. Secondly, we assume the mean 
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and variance of each design is unknown.  The simulation procedure is 

summarized below for each method.  

Known Mean and Variance: 

Step 0: Perform 0n  simulation replications for all designs. 

Step 1: Determine the budget allocation rules for AA-m using equation (4.26). 

Determine the budget allocation rule for AOA-m by solving E3 and 

E4. The number of simulation replications for design i  is ,iN

1,...,i k . 

Step 2: Perform additional 0max(0, )iN n  simulation runs for design 

             , 1,..,i i k . 

Unknown Mean and Variance: 

Step 0: Perform 0n  simulation replications for all designs.  0l  , 

1 0...l l l

k kN N N n    . 

Step 1: If 
1

k
l

i

i

N n


 , stop.
 

Step 2: Increase the computation budget by   and compute the new budget 

allocation for AA-m using equation (4.26), and determine the budget 

allocation rule for AOA-m by solving E3 and E4, where the sample   

mean and sample variance are used as an estimation of the population            

mean and population variance. 
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Step 3: Perform additional 1max(0, )l l

i iN N 
 
simulation runs for design 

     , 1,..,i i k , 1l l  . Go back to step 1. 

 

Fig.4.1. Comparison of correct ranking probability of top m designs for AA-m, 

AOA-m and EA with expected mean and variance. (a) is for equal spacing 

scenario; (b) is for equal variance scenario; (c) is for increasing spacing but 

decreasing variance scenario. 

The probability of correct ranking is estimated as the number of times 

correct ranking occurs out of the total number of simulation runs we have 

conducted. We conducted 10,000 simulation runs for each experiment. Figure 

4.1 summarizes the results of the experiments in the case of known mean and 

variance, while Figure 4.2 shows the results in the case of unknown mean and 

variance. 
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Fig.4.2. Comparison of correct ranking probability of top m designs for AA-m, 

AOA-m and EA under sequential allocation strategy. (a) is for equal spacing 

scenario; (b) is for equal variance scenario; (c) is for increasing spacing but 

decreasing variance scenario. 

Given known mean and variance, AA-m performs the best among the 

three allocation rules in all three scenarios in terms of the probability of 

correct ranking in finite budget. However, AOA-m catches up with AA-m 

quickly when the total computing budget becomes large. In addition, the 

performance difference of AA-m and AOA-m is very small. 

On the other hand, AA-m performs the best among the three allocation 

rules in all three scenarios in terms of the probability of correct ranking when 

the simulation budget is sequentially allocated. However, the performance 

difference of AA-m and AOA-m is much larger than when the mean and 

variance are given. 

AOA-m rule is derived by optimizing the convergent rate of false 

ranking probability. Thus, it must be the rule which yields the largest 



77 

 

convergent rate compared with AA-m and EA. However, it may not be the 

best allocation rule when the probability of correct ranking is used as the 

performance measure.  

The convergent rate of false ranking probability, which can be computed 

by substituting the value of α  into Lemma 4.1, is well defined if we know the 

parameters of the underlying distribution. In the case of the normal 

distribution, the parameters are the mean and variance. However, as the mean 

and variance are unknown, they can only be accurately estimated when the 

number of simulation replications is infinite for every design.  In the 

experiments, the simulation replications are allocated sequentially. At an 

earlier stage, the estimation of the true mean and variance can be poor because 

of small budget. The AOA-m rule involves solving the nonlinear 

programming problem in each iteration. This process of solving the nonlinear 

programming problem brings instability into the process. A small change of 

the mean or variance can bring about a large change of the allocation, i.e., the 

value of α , by using the nonlinear programming solver. However, the change 

is minimal in the AA-m rule. This is one of the reasons why AOA-m is 

consistently worse in performance than AA-m in finite budget. However, 

when the simulation budget increases, AOA-m can eventually catch up with 

AA-m. 

On the other hand, the probability of correct ranking estimated from 

simulation depends heavily on the number of samples simulated for each 

design. When the total computing budget is small, designs with small 

percentage of allocation (non-critical designs) will receive extremely small 
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number of replications. Although non-critical deigns are easy to distinguish, 

too few replications makes them variable and hard to distinguish. However, if 

a few more replications are allocated to non-critical designs, they can be 

distinguished very easily. In other words, we can conclude that the marginal 

increase of correct ranking probability will be much larger if we allocate a few 

more replications to non-critical designs when the total budget is small. This is 

why AA-m is not the asymptotically optimal allocation rule, but it performs 

better in finite budget especially when computing budget is small. When the 

simulation budget becomes relatively large, we could see that the performance 

of AOA-m and AA-m is very close to each other in the numerical experiments 

with given mean and variance. 

To summarize, our proposed allocation rule in Theorem 4.2 performs 

best under finite budget when the probability of correct ranking is used as the 

performance measure although we made some approximation to the 

probability of false ranking and selection. Moreover, our objective is to 

provide a simple allocation rule that can be used easily and efficiently. 

Therefore, we will use the AA-m rule when integrating with genetic 

algorithms in Section 4.6.2 below. 

4.6.2. Numerical Experiments for Simulation Optimization 

In the following numerical examples, we will integrate AA-m with the 

genetic algorithm to solve the simulation optimization problem under noisy 

environment. Genetic algorithm is a search heuristic for global optimization 

problems. The selection scheme is the key step of the genetic algorithm. 

Blickle and Thiele (1995) summarized the different selection schemes used in 
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genetic algorithms. In general, the selection schemes are based either on the 

performance value of the candidates or on the ranking of the performance of 

the candidates. In our numerical experiments, we use the ranking information 

as the selection criterion and show how our proposed budget allocation rule 

can enhance the search efficiency for the genetic algorithm. 

The ranking-based selection scheme we use will give more opportunity 

to higher ranking candidates to be selected as parents to produce the children. 

The three allocation rules we will compare are AA-m, EA and OCBA-m 

(Chen et al., 2008). OCBA-m is the allocation rule that maximizes the 

probability of correctly selecting the top m designs, but it does not aim to 

distinguish the relative ranking among the top m designs.  

In simulation optimization, evaluating a solution is subject to noise. A 

large number of replications are needed in order to have a steady mean 

performance value. In every iteration of the genetic algorithm, we will 

simulate a large number of samples for each candidate solution and rank them 

according to their mean performance values. EA will simply allocate the 

available simulation budget equally to each candidate, while AA-m and 

OCBA-m will sequentially allocate the simulation budget based on their 

respective allocation rules. 

A general framework of the genetic algorithm in stochastic simulation 

optimization can be written as follows: 
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Step 1:  Initialize a population. 

Step 2:  Use sequential allocation algorithm to find the ranking of the top m  

elite solutions. 

Step 3:  Reproduce next generation based on the ranking information from 

Step 2. 

Step 4:  Mutate the solution to avoid trapping in the local optima. 

Step 5:  Repeat Steps 2-4 until the termination condition is met. 

Using the proposed genetic algorithm framework, we will conduct three 

numerical experiments for three well-known continuous deterministic 

optimization problems. The noise for all experiments is assumed to be 

normally distributed with mean 0 and standard deviation of 50. The population 

size of the GA is set to be 20, and the top 10 solutions will be ranked as they 

will be selected as the parents to produce the offspring. Exponential ranking 

selection scheme is used in the numerical experiments. For ranked solution 1 

to solution 10, the probability of being selected to produce offspring is set to 

be 10 10( 1) / ( 1)i

ip c c c   . The parameter c  is set to be 0.7 in all 

experiments. 1000 simulation replications are available for each iteration, and 

GA terminates when the total number of iterations reaches 1000.  

Experiment 1: Goldstein-Price function 

 

 

2 2 2

1 2 1 2 2 1 2 2

2 2 2

1 2 1 1 2 1 2 2

( ) 1 ( 1) (19 14 3 14 6 3 )

            * 30 (2 3 ) (18 32 12 48 36 27 )

S X x x x x x x x x

x x x x x x x x

        

      
 

where 1 2( , ), 3 3, 1,2iX x x x i     . 
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Goldstein-Price function has a unique optimal solution at (0,-1) with the 

objective value of 3. However, 4 local optima exist in the given feasible region. 

Experiment 2: Griewank function 

2 2 2
1 2 1

1
( ) ( ) cos( )cos( ) 2

40 2

x
S X x x x     

where 1 2( , ), 10 10, 1,2iX x x x i     . 

The unique optimal solution is at (0, 0) with objective value of 1. Many 

local optima exist in the given region. 

Experiment 3: Spherical function 

5
2

1

( ) ( )i

i

S X X c


   

where 5, 5 15, 1,2,3,4,5ic x i     . 

The value of c can be arbitrary. We use c = 5 in our experiment. This function 

has the optimal value of zero with (5,5,5,5,5)X  . 

Figure 4.3 summarizes the numerical results of using AA-m, OCBA-m 

and EA in the selection process of the genetic algorithm respectively for 

Goldstein Price Function, Giewank Function and Spherical Function.  

It is easy to see that the number of iterations can be reduced significantly 

by using the AA-m procedure in the selection process. As defined earlier, a 

simulation budget of 1000 is used for one iteration. Therefore, the total 

amount of budget saved is extremely large. 
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Fig.4.3. Numerical results of simulation optimization using genetic algorithm 

integrated with simulation budget allocation rules: AA-m, OCBA-m and EA. 

(a) is for Goldstein price function; (b) is for Giewank function; (c) is for 

Spherical function. 

4.7. Conclusion 

Motivated by the idea of integrating statistical ranking procedure into 

genetic algorithms, we have proposed an optimal computing budget allocation 

strategy of ranking top m designs out of k alternatives in this chapter. Based on 

the large deviation framework, we have derived the optimal allocation rule. 

Together with the heuristic sequential allocation algorithm, our method can be 

used to rank top m designs when the performance of the design can only be 

estimated from simulation. The proposed method is integrated with genetic 

algorithms and used to solve simulation optimization problems. The numerical 

experiments have shown that significant simulation budget can be saved by 

using our proposed method, and thus the searching efficiency is enhanced by 

integrating our simulation budget allocation rule with genetic algorithms. 
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Chapter 5. Simulation Optimization Using 

Regression in Partitioned Domains 

We consider the problem of determining the simulation budget 

allocation when the simulation output can be modeled by quadratic equations.  

The budget allocation rule proposed in Brantley et al. (2013b) is heuristic and 

non-optimal. We will reformulate this budget allocation prolem based on large 

deviation theory and present its optimal characterization. We further analyze 

the limiting behaviour of the allocation rule. The rest of the chapter is 

organized as follows. Section 5.1 provides an overview of the whole chapter. 

In Section 5.2, we provide the detailed description and mathematical 

formulation of the problem in consideration. A Bayesian regression 

framework is used to estimate the performance distribution in Section 5.3. In 

Section 5.4, we show that only three points are needed to be simulated in order 

to obtain a quadratic line. We characterize the optimal allocation in Section 

5.5. The limiting behavior of the allocation rule is discussed in Section 5.6. 

We present a sequential allocation algorithm for implementation in Section 5.7. 

In Section 5.8, we conduct the numerical experiments to compare our 

proposed allocation rule with some of the existing allocation rules. Finally, we 

conclude this chapter in Section 5.9. 
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5.1. Overview 

The optimal simulation design (OSD) method proposed by Brantley et al. 

(2013a) has been shown to be an efficient simulation budget allocation rule 

when the underlying performance structure of all design points is quadratic or 

approximately quadratic. OSD assumes a common quadratic equation for all 

design locations and a common normally distributed noise across the entire 

domain. It is natural to think that the two assumptions in OSD may not be 

satisfied. Brantley et al. (2013b) further developed a heuristic allocation rule 

when the entire domain is divided into many partitions.   

We will approach a similar problem differently and focus more on the 

theoretical derivation of the allocation rule. Firstly, our derivation is based on 

the large deviation rate of false selection probability, which is the speed at 

which the false selection probability goes to zero. Secondly, we provide the 

optimal characterization of the allocation strategy while Brantley et al. (2013b) 

only gives a heuristic way to obtain the allocation rule. Lastly, we analyze the 

limiting allocation rule when the number of partitions goes to infinity in order 

to obtain an easily implementable budget allocation. The resulted simulation 

budget allocation rule is very intuitive. The cross partition allocation rule is 

similar to the original OCBA rule (Chen et al., 2000) and the allocation rule 

within a partition is simply the OSD for the best partition which contained the 

best design location and a feasibility check problem with quadratic regression 

for other partitions.  
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5.2. Problem Formulation 

We assume that the entire domain can be divided into m  partitions, and 

there are k  design locations in each partition, i.e., there are mk design 

locations in total. Without loss of generality, we assume that this is a 

minimization problem, and our objective is to find the design location which 

has the minimum performance value among the mk locations. Let ( )hiy x  

denote the performance at design location hix . This minimization problem can 

be mathematically written as follows: 

min ( ) [ ( )]; 1,..., ; 1,...,
hi

hi hi
x

y x E f x h m i k   .
                     

(5.1) 

The performance value ( )hiy x  is unknown, and it can only be estimated 

with noise via simulation. Suppose that the performance of every design 

location in each partition can be modeled as a quadratic regression equation. 

The performance at design location hix  can be written as follows: 

2

0 1 2( ) ; 1,..., ; 1,...,hi h h hi h hiy x W W x W x h m i k     .            (5.2)                                   

Define a vector 0 1 2 [   ], 1,...,h h hW W W h m 
h

W . h
W  provides the 

coefficients of the quadratic function. It can only be estimated based on the 

simulation output. The performance value of each design location can be 

estimated by simulation output with a normally distributed noise h . The 

normally distributed noise is the same for every design location in the same 

partition. Let ( )hif x  denote the simulation output at design location hix . It can 

be represented as follows: 
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2( ) ( ) ; ~ (0, )hi hi h h hf x y x N    .                             (5.3) 

Although both h
W  and ( )hiy x  are unknown, ( )hiy x  can be estimated by 

the simulation output ( )hif x  and h
W  can be derived using the least squares 

estimation method. In order to avoid singularity, we must choose at least three 

design locations in each partition. Let 0 1 2
ˆ ˆ ˆ ˆ[   ]h h hW W WhW  denote the 

estimation of h
W  based on the simulation output. Let ˆ( )hiy x  denote the 

estimated value of ( )hiy x  based on the estimated quadratic function. Thus, the 

estimated quadratic regression formula can be written as the following 

expression: 

2

0 1 2
ˆ ˆ ˆˆ( ) ; 1,..., ; 1,...,hi h h hi h hiy x W W x W x h m i k     .               (5.4)                                 

Define hF  to be a vector with n entries of simulation output ( ).hif x  

Define hX  to be an 3n  matrix with each row 2[1   ] hi hix x corresponding to 

each entry ( )hif x  of hF . As shown in many design of experiment (DOE) 

literature, the least squares method minimizes the sum of the squared errors 

h  t

h h h h h h
(F - X W ) (F - X W ) , where the superscript t refers to the transpose 

of the matrix. 

To derive h
W , we expand h  as h  t t t

h h h h h h h h h
F F - 2W X F - W X X W . 

Differentiating h  with respect to h
W  results in /h   t t

h h h h h h
W X F - X X W . 

The minimum value of h  is achieved when the partial derivative is equal to 0, 
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i.e., 0t t

h h h h h
X F - X X W . We could solve for the estimated value of h

W . 

Therefore, ˆ
hW  can be represented as follows: 

 
ˆ t -1 t

h h h h hW = (X X ) X F                                          (5.5) 

where hX  refers to the design locations given beforehand and hF  is the 

performance value from the simulation. t

h h
X X  is called the information matrix 

in the DOE literature. In the context of a quadratic regression model, 

2

2 3

2 3 4

hi hi

hi hi hi

hi hi hi

N x x

x x x

x x x

 
 

  
 
 

 
  
  

t

h hX X . 

In the literature of DOE, there are many criteria used to decide the 

optimal allocation of simulation replications among the different design 

locations for each partition.  For example, A-optimality aims to minimize the 

trace of the inverse of the information matrix. It results in minimizing the 

average of the estimation of the regression coefficients. D-optimality seeks to 

minimize  
1

t

h hX X , i.e., maximizing the determinant of the information 

matrix. This criterion will lead to maximizing the differential Shannon 

information content of the parameter estimation. Another popular criterion 

called G-optimality tries to minimize the maximum variance of the predicated 

value.  Furthermore, other criteria such as E-optimality, I-optimality and V-

optimality have also been well studied. 

The problem considered here is different from all the optimality criteria 

discussed above. Our objective is to maximize the probability of selecting the 
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best design location with the minimum performance value among all the mk  

design locations with a fixed simulation budget T. Based on the estimation of 

the coefficients ˆ t -1 t

h h h h hW = (X X ) X F , we could compute the performance value 

at every design location 
2

0 1 2
ˆ ˆ ˆˆ( ) ; 1,..., ; 1,...,hi h h hi h hiy x W W x W x h m i k     . Let 

Bbx  be the design location with the performance value ( )Bby x  being the 

smallest. Therefore, the probability of correct selection is the probability that 

ˆ( )Bby x  is indeed the smallest performance value. Let hiN  be the number of 

simulation replications allocated to design location hix . Since the computing 

budget is always limited, our objective is to find the best way to allocate the 

total budget such that the probability of correct selection can be maximized. 

Mathematically, we can write this optimal computing budget allocation 

problem as follows: 

 

 

1 1

ˆ ˆmax   ( ) ( ) , 1,..., ; 1,..., ;

. .    

Bb hi

m k

hi

h i

P y x y x h m i k

s t N T
 

   


               

(5.6) 

where T  is the total number of computing budget available. 

The nature of the optimization model (5.6) makes it very difficult to 

solve. Firstly, the distribution of ˆ( )hiy x is unknown, and we must conduct 

simulation to estimate the mean performance value of ( )hif x . We can only 

have a good estimation when the total computing budget T is exhausted.  In 

the next two sections, we will simplify the optimization model (5.6) and make 

it easier to solve. 
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5.3. Bayesian Regression Framework 

The first step to solve the optimization model (5.6) is to obtain the 

distribution of ˆ( )hiy x . To do so, we must estimate the coefficients h
W  in the 

quadratic equations (5.4). We assume that the simulated performance value hF  

follows multi-variate normal distribution with mean h h
X W  and a covariance 

matrix 2

h I  , where I  is the identity matrix and 2

h  is the variance in 

equation (5.3). Given that h
W  and 2

h  are known, we can derive the 

probability density function of  hF  as follows: 

2

22

1 1
( | , ) exp[ ( ) ( )]

2(2 )

t

h
n

hh

p 



h h h h h h h h

F W F - X W F - X W      

  

(5.7)

                      

 

where h
W  is unknown, hF  is known from the simulation output and 2

h  can 

estimated based on the simulation output. 

 Our objective is to derive the distribution of h
W  . We could use the idea 

of conditional probability to express h
W  as a function of hF  as follows. 

Firstly, we can decompose the condition probability of equation (5.7) to 

be equation (5.8) below: 

2 2
2

2 2 2

( , , ) ( , , )1
( | , )

( , ) ( | ) ( )

h h
h

h h h

p p
p

p p p

 


  
 h h h h

h h

h h

F W F W
F W

W W
.         (5.8) 

                           

 

Secondly, given the simulation output vector hF , the condition 

probability density function of  h
W  can be written as 
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2 2
2

2 2 2

( , , ) ( , , )1
( | , )

( , ) ( | ) ( )

h h
h

h h h

p p
p

p p p

 


  
 h h h h

h h

h h

F W F W
W F

F F
.         

 

(5.9)

                            

 

Combining equations (5.8) and (5.9), we have the following equation:  

2 2
2

2

( | , ) ( | )
( | , )

( | )

h h
h

h

p p
p

p

 



 h h h

h h

h

F W W
W F

F
                     (5.10)

                                          

 

In this equation, we know that the term 2( | )hp 
h

F  does not provide any 

information on the estimation of the parameter h
W by Gill (2002). It is a 

normalization term to make sure that the probabilities sum up to one. 

Therefore, we could write the conditional probability 2( | , )hp 
h h

W F  as being 

parameterized by 2 2( | , ) ( | )h hp p 
h h h

F W W , 

2 2 2( | , ) ( | , ) ( | )h h hp p p  
h h h h h

W F F W W .                  (5.11)                                           

A noninformative improper prior distribution commonly used is 

2

2

1
( , )h

h

p 



h

W . 

Since 2

h  is assumed to be known in our problem, the conditional 

distribution of h
W  would be 2

2

1
( | )h

h

p 



h

W . We could write the 

conditional probability density function of 2( | , )hp 
h h

W F  as following the 

below expression: 

2

2 2

1 1
( | , ) exp[ ( ) ( )]

2

t

h n

h h

p 
 




h h h h h h h h
W F F - X W F - X W .       

 

(5.12)
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Hence, the mean and variance of  h
W  are as follows: 

2

2 2

( | , )

cov( | , )

h

h h

E 

 





t -1 t

h h h h h h

t -1

h h h h

W F (X X ) X F

W F (X X )                         

(5.13)

                                                        

 

Given that hF  is the performance value from simulation, the mean and 

variance of h
W  from the previous equation are in fact the mean and variance 

for the estimation of the coefficients ˆ
hW  . As 

2

0 1 2
ˆ ˆ ˆˆ( ) ;hi h h hi h hiy x W W x W x  

1,..., ;h m 1,...,i k  is a linear combination of ˆ
hW , it can be concluded that 

ˆ( )hiy x follows a multi-variate normal distribution: 

 2ˆ( ) ~hi hy x N t -1 t t t -1

hi h h h h hi h h hi
X (X X ) X F , X (X X ) X .             (5.14)                                  

5.4. Required Number of Support Points 

In the literature of the design of experiment, the design locations which 

are used to simulate the performance are called the support points for the 

regression. We have mentioned previously that we need at least three design 

locations in order to avoid singularity for the quadratic regression problems. 

The theorem below formally states that we only need three support points for 

the quadratic regression. 

Theorem 5.1 Given that we assume the expectation of our underlying function 

is quadratic within each partition, we require only three support points on each 

partition and two of these support points will be at the extreme design 

locations,  i.e., 1hx  and hkx  for partition .h   
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Proof: The result that we only need three support points comes from de la 

Garza (1954), which states that we only need m+1 support points for a 

polynomial of degree m. In addition, Kiefer (1959) concluded that two of the 

support points will be at the extreme regardless of what optimality criterion is 

used. □  

From the results of Theorem 5.1, we assume that the support points are

1{ , , },1h hs hkx x x s k   for partition h, where hsx  can be different in different 

partitions. Let hN   be the number of computing budget allocated to partition h. 

We also define / , 1, ,hi hi hN N i s k    to be the proportion of computing 

budget allocated to design location i in partition h. Therefore, the optimal 

computing budget problem (5.6) can be re-written as follows: 

 

1

1

1

ˆ ˆmax   ( ) ( ) , 1,..., ; 1,..., ;

. .    ( )

         , , 0

Bb hi

m

h h hs hk

h

h hs hk

P y x y x h m i k

s t N T  

  





   

  




                

(5.15) 

5.5. Characterization of Optimal Allocation Rule 

Section 5.3 concluded that  ( ), 1,..., ; 1,...,hiy x h m i k   is normally 

distributed with mean t -1 t

hi h h h h
X (X X ) X F  and variance 2

h
t t -1

hi h h hi
X (X X ) X . 

Hence, the large deviation principle is satisfied for these random variables. In 

this section, the rate function of false selection will be derived using large 

deviation theory. 
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Since Bbx is the best design location with performance value

( ) ( ); 1,..., ; 1,...,Bb hiy x y x h m i k    and ˆ( )hiy x  is the estimated value of 

( )hiy x , false selection will occur if ˆ( )Bby x  is not the smallest value. More 

specifically, false selection occurs if 

1,...,

ˆ ˆ( ) min ( )Bb Bi
i b
i k

y x y x



  or

 

, 1,...,
1,...,

ˆ ˆ( ) min ( )Bb hi
h B h m
i k

y x y x
 


 . The probability of false selection is 

 
, 1,...,

1,..., 1,...,

ˆ ˆ ˆ( ) min min ( ), min ( )Bb Bi hi
i b h B h m
i k i k

P FS P y x y x y x
  
 

   
    
    

.      (5.16)              

It is easy to see that this probability is bounded below by 

   
, 1,...,

1,...,

ˆ ˆ ˆ ˆmax max ( ) ( ) , max ( ) ( )Bb Bi Bb hi
i b h B h m

i k

P y x y x P y x y x
  



  
  

  

 

and bounded above by 

     
, 1,...,

1,...,

ˆ ˆ ˆ ˆ1 max max ( ) ( ) , max ( ) ( )Bb Bi Bb hi
i b h B h m

i k

km P y x y x P y x y x
  



  
    

  

. 

Define / ,  1,...,h hN T h m    to be the proportion of total budget 

allocated to partition h, where B  is the proportion of budget allocation to the 

best partition, i.e., the partition which contains the best design location Bbx . 

By definition, it can be concluded that 
1

1
m

hh



 . For partition h, define

/ , 1, ,hi hi hN N i s k    and 1 1.h hs hk      1( , , )h hs hk  
h

α  is the 

proportion of budget hN   allocated to design locations 1hx , hsx  and hkx  within 
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partition h, where 1( , , )B Bs Bk  
B

α  refers to the allocation within the best 

partition. 

Thus, for 1 ,1h m i k     ,  

 

 

,

,

1
ˆ ˆlim ln ( ) ( ) ( , , , ),

1
ˆ ˆlim ln ( ) ( ) ( , ),

Bb hi Bb hi B h
T

Bb Bi Bb Bi B
T

P y x y x R h B
n

P y x y x R i b
n

 







   

   

B h

B

α α

α
 

for some rate function , ,( , , , ), ( , )Bb hi B h Bb Bi BR R  B h Bα α α . Then 

  , ,
, 1,...,

1,...,

1
lim ln min min ( , ), min ( , , , )Bb Bi B Bb hi B h
T i b h B h m

i k

P FS R R
T

  
   



  
   

  
B B h

α α α

(5.17)

 

 

Let the scaled cumulant generating function of  ˆ ˆ( ), ( )Bb hiy x y x and

 ˆ ˆ( ), ( )Bb Biy x y x
 
be denoted as 

   

   

ˆ ˆ( ), ( ) ˆ ˆ( ) ( )

ˆ ˆ( ), ( ) ˆ ˆ( ) ( )

1 1
lim ( , ) lim ln 

1 1
lim ( ) lim ln 

Bb hi B Bb h hi

Bb Bi B Bb B hi

y x y x T y x T y x

B h
T T

y x y x T y x T y x

B
T T

T T E e
T T

T E e
T T

 

 

 





 



 

 

 
 

By the Gärtner-Ellis Theorem (Dembo and Zeitouni, 1998),
 

 ˆ ˆ( ), ( )Bb hiy x y x  and  ˆ ˆ( ), ( )Bb Biy x y x  satisfy the large deviation principle with 

good rate function as follows: 

 

 

,

,

( , , , ) inf ( ) ( )

( , ) inf ( ) ( )

Bb hi B h B Bb h hi
v

Bb Bi B B Bb B Bi
v

R I v I v

R I v I v

   

  

 

 

B h

B

α α

α
                (5.18)
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where  ( ) sup ln ( )x

R

I x x E e






  . In the case of normal distribution, 

 
2 2( ) ( ) / 2hi hi hiI v v y x     if  2( ) ~ ( ),hi hi hiy x N y x  .  

Lemma 5.1   The rate function of probability of false selection can be 

explicitly expressed as follows: 

  , ,
, 1,...,

1,...,

1
lim ln min min ( , ), min ( , , , )Bb Bi B Bb hi B h
T i b h B h m

i k

P FS R R
T

  
   



  
   

  
B B h

α α α  

,

2

2 2 2 2 2 222
,1 , , ,1 , ,

1 1

( , , , )

/ 2
, ,1

Bb hi B h

hi

Bb Bb s Bb k hi hi s hi khB

B B Bs Bk h h hs hk

R

h B i k
E E E E E E

 





       

    
   

       
   

B h
α α

 

,

2

2 2 2 2 2 22 2
,1 , , ,1 , ,

1 1

( , )

/ 2
,

Bb Bi B

Bi

Bb Bb s Bb k Bi Bi s Bi kB B

B B Bs Bk B B Bs Bk

R

i b
E E E E E E





 

       

  
   

       
   

B
α

 

   

1
,1 ,

1 1 1

2 22 21
,

1

( )( ) ( )( )
, ,

( )( ) ( )( )

( )( )
, ( ) ( ) , ( ) ( )

( )( )

hs hi hk hi h hi hk hi
hi hi s

h hs h hk hs h hs hk

h hi hs hi
hi k hi Bb hi Bi Bb Bi

hk h hk hs

x x x x x x x x
E E

x x x x x x x x

x x x x
E y x y x y x y x

x x x x
 

      
    

      

  
     

  
 

Proof: See Appendix A.□ 

Maximizing the probability of correct selection is equivalent to 

minimizing the false selection probability. The asymptotically optimal 

allocation strategy will result from maximizing the rate at which the false 

selection probability goes to zero as a function of , , 1,...,h h m 
h

α . Thus, the 
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optimization model (5.15) is equivalent to finding the best , , 1,...,h h m 
h

α  

that solves the following optimization problem: 

, ,
, 1,...,

1,...,

1

1

1

       max min min ( , ), min ( , , , )

. .   1, 1,...,

       1,  , , , 0, 1,...,       

Bb Bi B Bb hi B h
i b h B h m

i k

h hs hk

m

h h h hs hk

h

R R

s t h m

h m

  

  

    

  




  
 
  

   

  

B B h
α α α

   (5.19)

                 

 

The nonlinear optimization model above is highly complex because of 

the large number of decision variables as well as the complexity of the rate 

functions. Although we can use nonlinear optimization solver to get the 

optimal allocation directly, our objective is to derive a simple allocation rule 

which can be easily implemented in actual simulation studies.  In the 

following Section 5.6, we will analyze the limiting allocation rule when the 

number of partitions goes to infinity.  

5.6. Limiting Approximation to the Optimal Allocation 

Rule 

In order to solve the optimization model (5.19) efficiently, we propose a 

limiting approximation to the solution of model (5.19). We will explore the 

problem structure of model (5.19) through asymptotical analysis. The analysis 

will show that the process of solving β  and , 1,...,h mhα  can be decomposed. 

The results indicate that the budget allocation rule between partitions follows 

similarly with the OCBA rule (Chen et al., 2000), while the budget allocation 
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rules within the partitions is the OSD for best partition and a feasibility 

determination problem for other partitions. 

We consider the limiting scenario when the number of partitions m goes 

to infinity. To understand what drives m to infinity, consider the context when 

we divide the entire domain into more and more partitions. As m becomes 

large, the number of design locations within each partition tends to be smaller, 

and simulation noise among design locations within the partition tends to be 

closer. This justifies our assumption that the simulation noise is an 

independent identical standard normal random variable for each partition as 

shown in equation (5.3). 

The following assumptions are made before we start to analyze the 

limiting behaviors of the optimization model (5.19).  

Assumption 5.1: The design locations are approximately equally spaced, .i.e., 

( 1) ( 1)( ) ( ), {1,..., }; , {1,..., }hi h i hj h jx x x x h m i j k        . 

The importance of assumption 5.1 is demonstrated by the following 

Lemma 5.2 and the proofs of Theorem 5.2. This assumption is generally held 

since it is natural and common to discretize the continuous domain equally. It 

is not meaningful to make some of the points close to zero while the others are 

far away. 

Assumption 5.2: Assume the following conditions are true. 

(1) 0 ( ) ( )L Bb hi UV y x y x V       .  
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(2) There always exists 0   such that ( ) ( ) , ,hi Bby x y x h i    . 

(3) The simulation noise is such that 
20 ,h h   . 

Assumption 5.2 (1) states that the mean performance at each design 

location is finite. The second condition makes sure that the performance 

difference between any pair of design locations is significant. In other words, 

the performance at two different design locations is comparable. The last 

condition guarantees that the noise (variance) is finite. 

Lemma 5.2   Under assumption 5.1, the coefficient 

2 2 2

,1 , ,

1

hi hi s hi k

h hs hk

E E E

  

 
  

 
 is 

always finite, and there always exists a constant C such that 

2 2 22 2 2

,1 , ,,1 , ,

1 1

qj qj s qj khi hi s hi k

h hs hk q qs qk

E E EE E E
C

     

  
      

    

, 

where    , 1,.., ; , 1,...,h q m i j k  . 

Proof: See Appendix B.□ 

The results of Lemma 5.2 will be used when we prove Theorem 5.2 

below.  

Theorem 5.2: Under assumptions 5.1 and 5.2, the following statements are 

true. 

(1) There exists c   such that 
* *

h qc   for all  , 1,..., ; ,h q m h q B  and 

for all m . 
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(2) There exists c   such that  * * * *

min min, , minh q
q

c h B       .  

(3) * 0,  as h h B m     .  

(4) * */ 0,  as h B h B m      . 

Proof: See Appendix C.□   

The main assertion of Theorem 5.2 is that / 0h B    as the number of 

partitions m goes to infinity. In other words, it says that the fraction of 

simulation budget allocated to the best partition far exceeds the fraction given 

to other partitions when the number of partitions goes to infinity. This result is 

meaningful if we think of each non-best partition as an individual attempting 

to “beat” the best partition. Far more simulation budget should be allocated to 

the best partition in order for it to “defeat” all the competing partitions.  

The rate function associated with design location hix  for 1,... ;h m h B 

is as follows: 

2

, 2 2 2 2 2 222
,1 , , ,1 , ,

1 1

/ 2
( , , , ) hi

Bb hi B h

Bb Bb s Bb k hi hi s hi khB

B B Bs Bk h h hs hk

R
E E E E E E


 



       


   

       
   

B hα α .

 

The rate function above implies that the convergent rate associated with 

design location hix  depends on the value of , , ,B h 
B h

α α . As m , 

/ 0h B   , and hence 

2 2 2 2 2 222
,1 , , ,1 , ,

1 1

0
Bb Bb s Bb k hi hi s hi khB

B B Bs Bk h h hs hk

E E E E E E

       

        
               

         

. 
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Therefore, the rate function , ( , , , )Bb hi B hR   B hα α  approaches 

, ( , )Bb hi hR  hα  as m , 

2

, , 2 2 22
,1 , ,

1

/ 2
( , , , ) ( , ) hi

Bb hi B h Bb hi h

hi hi s hi kh

h h hs hk

R R
E E E


  



   

 
 

  
 

B h hα α α .      (5.20)                   

Hence, the optimization model (5.19) can be written as follows when

m : 

, ,
, 1,...,

1,...,

1

1

1

      max min min ( , ), min ( , )

. .   1, 1,...,

      1, , , , 0, 1,...,

Bb Bi B Bb hi h
i b h B h m

i k

h hs hk

m

h h h hs hk

h

R R

s t h m

h m

 

  

    

  




  
 
  

   

  

B h
α α

         (5.21)                        

Lemma 5.3  For each  1,..., ;h m h B  , suppose *

h
α  is the optimal solution to 

the problem 

,
1,...,

1 1

max min ( , )

. . 1, , , 0

Bb hi h
i k

h hs hk h hs hk

R

s t



     



   

hα
                            (5.22) 

and *

B
α  is the optimal solution to  

,

1 1

      max min ( , )

 . . 1, , , 0

Bb Bi B
i b

B Bs Bk B Bs Bk

R

s t



     



   

Bα
                           (5.23) 

*

h
α  and *

B
α  are also optimal solutions of  the model (5.21). 

Proof:  Optimization model (5.21) can be re-expressed as follows. 
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,

,

1

1

1

      max   

. .   ( , ) ,

       ( , ) , , 1,..., ; 1,...,

      1, 1,...,

      1, , , , 0, 1,...,

Bb Bi B

Bb hi h

h hs hk

m

h h h hs hk

h

z

s t R z i b

R z h B h m i k

h m

h m





  

    


 

   

    

   

B

h

α

α            (5.24) 

and optimization models (5.23) and (5.24) can be rewritten as 

,

1 1

     max

. . ( , ) , 1,...,

     1, , , 0

Bb hi h

h hs hk h hs hk

z

s t R z i k

     

 

   

hα                                (5.25) 

,

1 1

    max    

 . . ( , ) ,

      1, , , 0

Bb Bi B

B Bs Bk B Bs Bk

z

s t R z i b

     

 

   

Bα                            (5.26) 

It is easy to see that models (5.25) and (5.26) have the same objective 

function with model (5.24). However, the domain of model (5.24) is a subset 

of models (5.25) and (5.26). Therefore, if *

h
α , 1,..., ;h m h B  and *

B
α are 

feasible to model (5.24),  *

h
α  and *

B
α  are optimal to model (5.24). We see that 

from Lemma 5.1 and equation (5.20), 

,

2

2 2 2 2 2 22 2
,1 , , ,1 , ,

1 1

( , )

/ 2
, ,

Bb Bi B

Bi

Bb Bb s Bb k Bi Bi s Bi kB B

B B Bs Bk B B Bs Bk

R

h B i b
E E E E E E





 

       

   
   

       
   

B
α

 

         
2

, 2 2 22
,1 , ,

1

/ 2
( , ) hi

Bb hi h

hi hi s hi kh

h h hs hk

R
E E E






   


 

  
 

hα . 
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Therefore, the optimal solution to models (5.25) and (5.26) does not 

depend on the value of 1 2( , ,..., )m  β . The optimal solutions *

h
α  and *

B
α

remain the same even when β  changes. Let * * * *

1 2( , ,..., )m  β  be the 

optimal solution of model (5.24). Let any 
*β β , *

h
α  and *

B
α  remain the same 

and since 
*β β  is feasible to model (5.24), we conclude that *

h
α  and *

B
α are 

also optimal to model (5.21).□ 

The main assertion of Lemma 5.3 is that we can solve for *

h
α  for each 

h=1, 2,..., k separately when the number of partitions m goes to infinity. It is 

an important property since it helps us to decompose the solving process of α  

and β , which leads to a possible closed-form solution.  Solving the models 

(5.22) and (5.23) 2k   times assuming 2,3,..., 1s k   will determine the 

best location of s for each partition. Lemma 5.4 below further explains that the 

process of solving for α  is essentially a typical research problem found in the 

literature. 

Lemma 5.4 The limiting optimal allocation rules within each partition ,h h

can be determined as follows: 

(1) h B  ,  * * *

1, ,h hs hk  *

h
α  can be determined by solving the following 

feasibility determination problem: 

 

    

1

1

1

1 1

        min , ,

. .    , ,

        1, , , 0

h h hs hk

k

h h hs hk hi Bb

i

h hs hk h hs hk

g

s t g P y x

  

   

     



 

   

                  (5.27) 
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where Bb  is the constant mean performance value at best design location Bbx . 

(2) The budget allocation rule within the best partition  * * *

1, ,B Bs Bk  *

B
α  is 

simply the OSD. 

Proof:  (1) It is easy to see that  1, ,h h hs hkg     is bounded below and above 

as follows: 

       1max , , maxhi Bb h h hs hk hi Bb
i i

P y x g k P y x        .     (5.28)            

Since  hiy x  is a normally distributed random variable with variance 2

hi  

as shown above, Gartner-Ellis theorem implies that 

 
1

lim ln ( ) ( )hi Bb hi
n

P y x I x
n




   .                                  (5.29) 

Therefore,                

 1

1
lim ln , , min ( )h h hs hk hi
n i

g I x
n

  


  .                       (5.30) 

Furthermore, we can express (5.30) explicitly as 

 
  

 

2

1 2

2

2 2 22
,1 , ,

1

/ 21
lim ln , , min

( ) / 2
                                        min

hi Bb

h h hs hk
n i

hi

hi Bb

i
hi hi s hi kh

h h hs hk

y x
g

n

y x

E E E


  







   




 




 
  

 

         (5.31)                           

where (5.31) is the large deviation rate of  1, , .h h hs hkg    Minimizing 

 1, ,h h hs hkg    is equivalent to maximizing this convergent rate at which 
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 1, ,h h hs hkg     goes to zero. Therefore, the feasibility determination problem 

(5.27) is equivalent to the following model. 

 
2

1 12 2 22
,1 , ,

1

( ) / 2
max min    . . 1, , , 0

hi Bb

h hs hk h hs hk
i

hi hi s hi kh

h h hs hk

y x
s t

E E E


     



   


   

 
  

 

. 

(5.32)            

As a result, the optimization model (5.23) is essentially the same as the 

feasibility determination problem (5.27). 

(2) As shown in Lemma 5.3, the value of B  does not affect the optimal 

solution for model (5.23). The only decision variables in model (5.23) are

1, ,B Bs Bk   . This is essentially the same problem discussed in Brantley et al. 

(2013a) for solving the budget allocation problem if the entire domain is 

treated as one partition. □ 

The idea of Lemma 5.4 can be graphically shown in Figure 5.1. The 

comparison between design location ,hix h B  and the best design Bbx  is 

simply to determine whether ( )hiy x  is feasible to the range [ , )Bb  , where

Bb  is the mean performance value at the best design location. It is a constant 

and assumed to be known. However, the comparison within the best design 

location is the same as the OSD problem (Brantley et al. 2013a). 
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Fig.5.1. Graphical representation of Lemma 5.4 

As shown in Lemmas 5.3 and 5.4, the limiting optimal allocation rules 

within each partition h can be determined by solving a feasibility check 

problem (5.27) for h B , and allocation within the best partition is simply the 

OSD. The optimization model used to solve for , hhα  does not depend on the 

value of β .  

For each 1,..., ,h m h B  , let 
*

,
1,...,

arg max min{ ( , )}h Bb hi h
i k

i R 


 hα . Since the 

optimal model used to solve h
α  does not depend on the value of β , the 

optimal solution is always achieved at design location 
*

hi  for partition h  no 

matter what the value of β  is. Similarly, we can define

*

,arg max ( , )B Bb Bi B
i b

i R 



B

α . 
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Theorem 5.3 As  m , the limiting asymptotically optimal allocation that 

asymptotically minimizes the probability of false selection for the problem 

(5.19) 

, ,
, 1,...,

1,...,

1

1

1

      max min min ( , ), min ( , , , )

. .   1

       1, 1,...,

      , , , 0, 1,...,

Bb Bi B Bb hi B h
i b h B h m

i k

m

h

h

h hs hk

h h hs hk

R R

s t

h m

h m

  



  

   

  




  
 
  



    

  



B B h
α α α

 

is such that  

* * *

* * *

*

* *

2 2 2 *2
,1 , ,* 2

* * * 2 2 2
11 ,1 , ,2

* * *

1

2 2 2

,1 , ,2 2

* * *
*

1

* 2 2

,1 ,2

* *

1

/

h h h

h h h

h

q q

h
Bb Bb s Bb k h

B B

hB Bs Bk hi hi s hi k
h B

h

h hs hk

hi hi s hi k

h hi
h hs hk

h

q qi qi s

q

q qs

E E E

E E E

E E E

E E


 

  


  

 
  




 




 
       

  
 
 

 
  
 
 

 



*

*

2

, 2

*

, , 1,..., ; ,

/q

q

qi k

qi
qk

h q m h q B
E














 
 

  
  
  

     (5.33)  

                                                       

              

where * * * * * *

1 1, ,  and , ,h hs hk B Bs Bk      are obtained by solving the optimization 

problem in Lemma 5.4. 

Proof: Given that we could solve for *

hi  separately for each partition 

1,..., ,h m  the convergent rate ,
, 1,...,

1,...,

min ( , , , )Bb hi B h
h B h m
i k

R  
 


B h
α α  will be a 

function of B and h only. Therefore, we can write it as 

*,, 1,...,
min ( , )

h
B hBb hih B h m

R  
 

. Similarly, we can use *,
   min ( )

B
BBb Bii b

R 


 to replace 
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,min ( , )Bb Bi B
i b

R 


B
α  for the best partition. Since we know that the minimum rate 

occurs at design location *
hhi

x  for each partition 1,..., ,h m we can re-write the 

optimization model as 

 * *, ,, 1,...,

1

      max min ( ), min ( , )  

. .   1

      0, 1,...,

B h
B B hBb Bi Bb hih B h m

m

h

h

h

R R

s t

h m

  





 





 



            

(5.34) 

 

   

*

*

* * *

,

2

2 2 22 2 2
,1 , ,,1 , ,2 2

* * * * * *

1 1

( , )

/ 2
           

/ /

where  
h

h

h h h

B hBb hi

hi

hi hi s hi kBb Bb s Bb k

B B h h

B Bs Bk h hs hk

R

E E EE E E

 



   
     


  
      
    

    

(5.35) 

 

*,
( , )

h
B hBb hi

R   and
 

*,
( )

B
BBb Bi

R  are concave and strictly increasing 

functions of h  and B . Therefore, the optimization problem is a concave 

programming problem.  Thus, the first order condition is also the optimality 

condition.  We first re-write the optimization model as follows: 

*

*

,

,

1

max

. .  ( , ) 0, 1,...., ,  

      ( ) 0

      1

      0, 1,...,

h

B

B hBb hi

BBb Bi

m

h

h

h

z

s t R z h m h B

R z

h m

 









   

 



 

                 

(5.36) 
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From the Karush–Kuhn–Tucker conditions, we know that there exist 

0, 1,...,h h m   and 0  such that 

1

1 1 
m

h

h




                                                                            (5.37)                                                                                          

      
*

* *

,
( , )

0, 1,..., ;  h
B hBb hi

h

h

R
h m h B

 
 




   


                         (5.38)                                

* *

* * *

, ,

1,

( , ) ( )
0h B

m
B h BBb hi Bb Bi

h B

h h B B B

R R  
  

  

 
  

 


                   

(5.39)

                           *

* *

,
( , ) 0, 1,..., ;  

h
h B hBb hi

z R h m h B     

                           

(5.40)

                             
 *

*

,
( ) 0

B
B BBb Bi

z R  

                                                             

(5.41)

                                                    
Based on equation (5.37), there must exist some 0, 1,..., ;h h m  

however, if we assume that there is one 0, 1,..., ;h h m h B    , we could 

conclude that 0  from (5.38). 0  will lead to 0h  for all 

1,..., ;h m h B  . Therefore, we conclude that 0, 1,..., ;h h m h B    . This 

means we must have *

* *

,
( , ), 1,..., ;

h
B hBb hi

z R h m h B    . 

On the other hand, * *

* * *

, ,
( ) ( , ), 1,..., ;

B h
B B hBb Bi Bb hi

R R h m h B     since 

/ 0h B   as m goes to infinity. Based on this result, we can conclude that 

0B   from equation (5.41). As a result of 0B  , equation (5.39) can be 

simplified to 
*

* *

,

1,

( , )
 =h

m
B hBb hi

h

h h B B

R  
 

 




 .  
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Substituting equation (5.38) into the simplified equation (5.39), we 

obtain the following results: 

*

*

*

* *

,

* *
1 ,

* *

,

( , ) /
1

( , ) /

( , ), 1,..., ;

h

h

h

m
B h BBb hi

h B h hBb hi
h B

B hBb hi

R

R

z R h m h B

  

  

 




  
 
  



   


 

This is equivalent to the following expression: 

   

   

* * *

*

* *

*

2 2 22 2 2
,1 , ,,1 , ,2 2 * 2 *

* * * * * *

1 1

2 2
2 2 2

,1 ,,1 , ,2 2 * 2 *

* * * *

1 1

   / /

/ /

h h h

h

q q

q

hi hi s hi kBb Bb s Bb k

B B h hhi
B Bs Bk h hs hk

qi qi sBb Bb s Bb k

B B q qqi
B Bs Bk q qs

E E EE E E

E EE E E

    
     

    
    

   
       

      

 
     

 

*

2

,

* *

qqi k

qk

E



  
  
  

  

 

From Theorem 5.2, we know that * */ 0,  as h B h B m      . 

Therefore, we can simplify the equation above as follows:  

 

 

* * *

*

* * *

*

2 2 2

,1 , ,2 2 *

* * *

1

2 2 2

,1 , ,2 2 *

* * *

1

/

/

h h h

h

q q q

q

hi hi s hi k

h hhi
h hs hk

qi qi s qi k

q qqi
q qs qk

E E E

E E E

  
  

  
  

  
   

  
  

  
    
  

    

where 
* *, 1,..., ; , ;  and  h qh q m h q B i i  are the minimum rate location for 

partitions h  and q . The equations above can be further reduced to 

* * *

*

* * *

*

2 2 2

,1 , ,2 2

* * *
*

1

* 2 2 2

,1 , ,2 2

* * *

1

/

, , 1,..., ; ,

/

h h h

h

q q q

q

hi hi s hi k

h hi
h hs hk

h

q qi qi s qi k

q qi
q qs qk

E E E

h q m h q B
E E E

 
  


 

  

 
  
 
   
 
  
 
 

.

       

(5.42)
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The partial derivatives can be expressed explicitly as 

   

*

*

* * *

* *

,

2 2 2

,1 , ,2 2 *2

* * *

1

2
2 2 22 2 2

,1 , ,,1 , ,2 * 2 *

* * * * * *

1 1

( , )

/

/ /

h

h

h h h

B hBb hi

B

Bb Bb s Bb k

B Bhi
B Bs Bk

hi hi s hi kBb Bb s Bb k

B B h h

B Bs Bk h hs hk

R

E E E

E E EE E E
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h

h h h

h

h h h

B hBb hi

h

hi hi s hi k

h hhi
h hs hk

hi hi s hi kBb Bb s Bb k

B B h h

B Bs Bk h hs hk
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E E E

E E EE E E

 



  
  

   
     





 
  
 
 

   
       

      

. 

Hence, 
*

*

* *

,

* *
1 ,

( , ) /
1

( , ) /

h

h

m
B h BBb hi

h B h hBb hi
h B

R

R

  

  


 


 
  is equivalent to the following 

equation: 

*

* * *

*

2 2 2

,1 , ,2 2 *2

* * *

1

2 2 2
1

,1 , ,2 2 *2

* * *

1

/

1

/

   

h

h h h

h

Bb Bb s Bb k

B Bhim
B Bs Bk

h
hi hi s hi k

h B
h hhi

h hs hk

E E E

E E E

  
  

  
  




 
  

  
 
  
 
 


                          (5.43)

 

which can be rewritten as 

* * *

2 2 2 *2
,1 , ,* 2

* * * 2 2 2
11 ,1 , ,2

* * *

1

h h h

h
Bb Bb s Bb k h

B B

hB Bs Bk hi hi s hi k
h B

h

h hs hk
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This completes the proof of Theorem 5.3.□ 

The cross partition allocation rule presented in Theorem 5.3 is similar to 

the OCBA rule (Chen et al., 2000). The fraction of budget allocated to the 

non-best partition is proportional to its signal-to-noise ratio that is defined as 

the variance divided by the squared mean difference. The simulation budget 

allocated to the best partition is the weighted sum of all other partitions. The 

results match our intuitions that the best partition should take most of the 

simulation budget. The non-best partitions will be allocated more if they have 

larger variance or are closer to the best partition. 

5.7. A Sequential Algorithm for Implementation  

The allocation rule or the value of , 1,...,h mhα  and β  can only be 

determined after we know the distribution of ( )hiy x . In actual implementation, 

the distribution of ( )hiy x  is unknown. We will propose a sequential allocation 

rule and use sampling distribution to estimate the allocation rule step by step.  

The quadratic regression-based OCBA (OCBA-QR) procedure can be 

implemented as follows: 

Step 0: Define the input m  (the number of partitions), k  (the number of      

design locations), T  (the computing budget), hix  (the design 

locations with partitions pre-determined), 0n  (the number of initial 

runs),   (the increment at each iteration). 

Step 1: Perform 0

3

n

m
 simulation replications for three design locations in each  
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 partition using the D-opt support points with 0
1 ( 1)

2
3

h k hK
h

n
N N N

m
   . 

Step 2: While 
1

1

( )
m

h hs hk

h

N N N T


   , do 

a. Estimate a quadratic regression equation using the information 

from all prior simulation runs for each partition. 

b. Estimate the mean and variance of each design location using 

2

0 1 2
ˆ ˆ ˆˆ( ) ; 1,..., ; 1,...,hi h h hi h hiy x x x h m i k        

c. Determine the observed global best design so that 

ˆarg min ( )Bb i
Bi

x y x . 

d.  Solve the optimization model in Lemma 5.4 to obtain h
α  and s  

for 1,...,h m . 

e.  Compute β using Theorem 5.3. 

Step 3: Increase the computing budget by   and calculate the new budget 

allocations using , 1,...,h mhα and β  from step 2. 

Step 4: Perform , 1max{ , }, 1,..., ; 1, ,h i hiN N h m i s k    runs of simulation  

 replications, and go to step 2. 
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5.8. Numerical Experiments 

In this section, we will conduct several numerical experiments to test our 

proposed simulation budget allocation rule and compare it with some of the 

existing allocation procedures. Different allocation procedures are used to 

solve the same simulation optimization problem with identical experimental 

settings. We start our description by introducing other allocation procedures. 

5.8.1 Allocation Procedures 

The most commonly used and simplest method is to allocate the 

simulation budget equally to each of the design locations. The number of 

simulation replications received by each design location is /T mk  in equal 

allocation (EA). The best design location is the point bx  such that 

/

1

1,...,

( )
arg min

/

T mk

jj

b
q mk

f x
x

T mk








 

A better way of finding the best design location is to use the OCBA rule 

proposed by Chen et al. (2000). The OCBA rule allocates the computing 

budget sequentially with the number of simulation replications allocated to 

each design location being determined by the signal-to-noise ratio. Let b be 

the best design location among the total mk design locations, iN  be the 

number of simulation replications allocated to design location ,i

{1,2,..., },i mk i b   
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2 2

2 2

2

21,

/ ( )
, , {1,2,..., }, ,

/ ( )

i i i b

j j j b

mk i
b b i i b

i

N
i j mk i j b

N

N
N

  

  


 

 
  










 

  The best design location is the point bx  such that, 

1

1,...,

( )
arg min

jN

jj

b
i mk j

f x
x

N








. 

Both EA and OCBA use the mean performance value at each design 

location for comparison, and the mean performance value is computed directly 

from the simulation output.  They do not rely on any response surface to 

estimate the performance value at any design location. In the experiments, we 

will also compare the other procedures that use quadratic equations as the 

response surface to estimate the performance value. 

A typical simulation budget allocation rule in design of experiment is 

called D-optimal when it tries to maximize the determinant of the information 

matrix. According to the D-optimal rule, the simulation budget should be 

equally allocated to design locations 1, (1+k)/2 and k. In the case of partitioned 

domains, we equally allocate the simulation budget to each partition. 

In addition, we want to compare with the POSD method proposed by 

Brantley et al. (2013b). POSD is the improved allocation rule of OSD when 

the entire domain is divided into various partitions.  

The last method used in the comparison is the allocation rule we 

proposed in Theorem 5.3 and implemented using the sequential allocation 
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algorithm in Section 5.7. We name our proposed quadratic regression-based 

OCBA allocation rule as OCBA-QR. 

5.8.2. Experiments 

In our experiments, the probability of correct selection (PCS) is used as 

the performance measure. PCS is estimated by counting the number of times 

we successfully find the best design location out of 10,000 independent 

simulation runs for each of the allocation procedure. In order to have a fair 

comparison, we have set the initial number of simulation replications 0n  to be 

the same for different allocation procedures.  The number of partitions and the 

number of design locations in each partition are exactly the same for each 

allocation procedure.  

The experiments are conducted with 10,000 independent simulation runs 

each. Under exactly identical experimental settings, the performance of each 

allocation procedure is presented below. 

Experiment 5.1 

 The first experiment we conduct is taken from the classical experiment 

(Törn and Žilinskas,1989). The function we use for this experiment is 

( ) sin( ) sin(10 / 3) ln( ) 0.84 3i i i i if x x x x x     . 

The noise of simulation is assumed to be a standard normal random 

variable. As shown in Figure 5.2 below, we discretize the domain of the 

function into 60 evenly spaced points from 3 to 8.  There are three minimum 
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points within the domain [3, 8], but the global minimum point occur at 5.2x 

with ( ) 1.6y x   . 

 
Fig.5.2. Graph of optimization function in experiment 1 

This is the same experiment conducted in Brantley et al. (2013b). The 

simulation results of using different allocation rules are shown below in Figure 

5.3. It is clear that OCBA-QR, POSD and D-optimality allocation rule perform 

much better than OCBA and EA. This shows that incorporating the quadratic 

equations as the response surface has greatly increased the probability of 

correct selection with a limited fixed simulation budget. In addition, the 

performance of D-optimality between OCBA-QR and POSD are significant. 

Therefore, it is important for us to derive efficient simulation budget allocation 

rules instead of simply using the D-optimality method. Lastly, our OCBA-QR 

performs slightly better than POSD in this experiment. 
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Fig.5.3. PCS comparison of OCBA-QR, POSD, DOPT, OCBA and EA 

Experiment 5.2 

Consider the function

2

6 0.1
( ) 1 sin (5 )exp 2ln2

0.8

i
i i

x
f x x

  
       

. 

Under the assumption of discrete domain, we have divided the entire domain 

into 100 discrete points for [0.05,1.05]x .  It can be easily determined that 

the global minimum point is 16 0.1x   with the optimal value of 16( ) 0y x  . 

Four local minimum points can be found at 26 0.3,x 
46 0.5,x  66 0.7,x 

86 0.9x  . The graphical representation of this function is shown in Figure 5.4. 

The 100 discrete points are divided into 10 partitions, and each one 

contains 10 design locations. The experiment assumes that the noise for 

simulation is half of the standard normal random variables. Figure 5.5 shows 

the performance of each allocation procedure. 
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In this numerical experiment, our proposed method OCBA-QR also 

performs best among all five allocation rules. In particular, the advantage of 

using OCBA-QR rather than POSD becomes more significant for the problem. 

Fig.5.4. Graph of optimization function in experiment 2 

 

Fig.5.5. PCS comparison of OCBA-QR, POSD, DOPT,OCBA and EA. 
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Experiment 5.3 

We consider a two dimensional problem in our last experiment. We use 

the 2-D Griewank Function which is one of the most common examples in 

global optimization literature (Fu et al., 2006).  The 2-D form is given as 

2 2 2
1 2 1 2 1

1
( , ) ( ) cos( )cos( ) 1

40 2

x
f x x x x x     

where 1x  and 2x  are continuous variables with 1 210 , 10x x   . As shown 

below in Figure 5.6, there many local minimum points, while the global 

minimum point is at 1 2 0x x   with optimal objective value of  0.  

 
Fig.5.6. Graph of optimization function in experiment 3 

 In this experiment, we discretize the domain into 21 21 discrete 

points, i.e., 1 [ 10, 9,...,10]x     and 2 [ 10, 9,...,10]x    . The discrete points 

are divided into 21 partitions with 21 points in each partition. Partition i  
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consists of points ( 11, 10),( 11, 9), ,( 11,10)i i i     . For each partition, we 

assume that the underlying performance can be modeled as a quadratic 

function, where the independent variable is 2x  and the dependent variable is 

1 2( , )f x x . The noise of the simulation is assumed to be a standard normal 

random variable. We conduct the experiment for different allocation rules as 

shown previously. The performance of these methods is shown below in 

Figure 5.7. It is clear that our OCBA-QR method performs best among all 

different allocation rules. 

Fig.5.7. PCS comparison of OCBA-QR, POSD, DOPT, OCBA and EA. 

From all the three experiments, we could conclude that our proposed 

allocation rule OCBA-QR is not only a better allocation rule in terms of 

asymptotical optimality but also performs better in practical simulation. In 

addition, we approximate the allocation rule when the number of partitions 

goes to infinity. The numerical experiments also show that the advantage of 

using our allocation rule becomes more significant when the number of 

partitions increases. This matches our theoretical derivation that our allocation 
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rule approximates the optimal allocation when the number of partitions goes to 

infinity. 

5.9. Conclusion 

In this chapter, we have further enhanced the simulation efficiency of 

finding the best by incorporating the quadratic equation as the response 

surface. Based on large deviation theory, we have formulated the problem and 

derived the optimal allocation rule. We further analyze the limiting behaviors 

of the allocation rule when the number of partitions goes to infinity. The 

limiting allocation rule has been shown to be intuitive. The highly complex 

problem can be decomposed into small problems. The cross partition 

allocation rule is similar with the original OCBA problem, while the within 

partition allocation becomes the OSD for the best partition and feasibility 

determination problem for other partitions. We conducted numerical 

experiments to implement our proposed allocation rule. It has been shown to 

be the most efficient allocation rule compared with POSD, OCBA, DOPT and 

EA.  
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Chapter 6. Conclusion and Future Research 

6.1. Conclusion 

 We propose three new optimal computing budget allocation (OCBA) 

procedures in this thesis for ranking and selection with a fixed limited 

simulation budget. In order to improve the simulation efficiency, we use large 

deviation theory to formulate these problems as optimization models and 

derive respective asymptotically optimal allocation rules and closed-form 

approximated allocation rules. 

The first procedure aims to determine the most efficient way of 

allocating the simulation replications so as to maximize the probability of 

correctly ranking all alternatives completely. This procedure fills in the 

research gaps of OCBA in the area of statistical ranking as no previous 

research considered such a problem using the OCBA framework. Compared 

with existing indifference zone allocation rule, our procedure reduces the 

number of simulation budget significantly as shown in the numerical 

experiment results.  Asymptotically optimal allocation rules can be used by 

decision makers who are concerned more about optimality, while the 

approximated allocation rules can be useful for practical implementation under 

finite budget. 

Motivated by the idea of integrating the statistical ranking procedure 

into evolutionary algorithms, we extend the complete ranking problem to top 

m ranking, i.e., rank the top m designs out of k alternatives. The top m ranking 

problem can be reduced to complete ranking if m is equal to k, and to the 
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original OCBA problem when k is equal to 1.  Therefore, it can be regarded as 

a generalization of previous problems in the literature. We formulate the 

budget allocation problem using large deviation and derive the asymptotically 

optimal allocation rule and a closed-form approximated rule. The proposed 

approximated allocation rule is then integrated with genetic algorithms to 

solve simulation optimization problems. The numerical experiments have 

shown that significant simulation budget were saved by integrating our 

proposed budget allocation rule with GA. 

The last problem we consider in this thesis is to determine the simulation 

budget allocation rule when the simulation output can be modeled by 

quadratic regression functions. The domain is divided into many partitions, 

and a quadratic equation is regressed in each partition. Using the large 

deviation theory, we have characterized the asymptotically optimal allocation 

rule while a previous approach only provides a heuristic approximated 

solution. We further analyze the limiting behaviors of the allocation rule 

assuming that the number of partitions goes to infinity. The limiting scenario 

analysis has provided us with more intuition and insight on the problem. The 

cross partition allocation rule has been shown to be similar with the original 

OCBA rule while the within partition allocation rule reduces to the feasibility 

determination problems for non-best partitions and the OSD for the best 

partition. Our limiting asymptotically optimal rule has been shown to be 

effective through numerical experiments. 
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6.2. Future Research 

There are several limitations in our research which can lead to possible 

future research problems. Firstly, we have assumed independent sampling for 

the problem considered in the thesis. In practice, the design performances are 

usually sampled in the presence of correlation.  Therefore, a potential research 

problem will be on how to determine the simulation budget allocation for 

complete ranking and top m ranking with correlated sampling. 

Secondly, although we have integrated our budget allocation into GA, 

we only considered how the simulation budget should be allocated for each 

individual iteration. We did not consider how many simulation replications 

should be given to each iteration and how many iterations should the search 

algorithm run. Given that the total number of simulation replications is fixed, 

more iterations would mean less budget for each iteration and fewer iterations 

would result in more budget for individual iterations. How to make such a 

tradeoff between the number of iterations and the simulation budget for each 

iteration remains an open research topic. 

Lastly, we used quadratic regression functions to model the simulation 

output in Chapter 5. However, other response surfaces can also be used based 

on the underlying structure of performance across the domain. Therefore, one 

possible extension of Chapter 5 will be to consider the simulation budget 

allocation rule when the simulation output can be modeled by other functions 

such exponential and log-linear.  In addition, we only consider the one 

dimension problem in Chapter 5. It is also important to consider how we can 

use the quadratic equations to model the simulation output if each design 
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location has more than one performance measurements, i.e., how can we 

determine the simulation budget allocation for multi-objective simulation 

optimization problems. Moreover, one assumption made in Chapter 5 is that 

the partition of the domain is given beforehand.  It would however be more 

useful if we consider the scenario where the partition is not given. Therefore, 

how to partition the domain is another important research question that can be 

explored in the future. 
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Appendix A: Proof of Lemma 5.1 

From Theorem 5.1, we know that we only need three support points
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Appendix B: Proof of Lemma 5.2 

Under assumption 5.1, ( ) ( )*hs hix x s i d   where d is the distance 

between consecutive design locations. As a result, 
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Thus, we conclude that 
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Appendix C: Proof of Theorem 5.2 

(1)We can rewrite problem (5.19) as follows: 
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Since (C1) is a concave optimization problem, the KKT conditions are 

necessary and sufficient for optimality. Therefore, there exist 0hi  such that 
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where (C3) and (C4) are the stationary conditions and (C5) and (C6) are the 

complementary slackness conditions. 
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Suppose 0  . Since , ( ) / 0,Bb hi hR h     ,therefore 0, ,hi h i    . 

However, this contradicts with equation (C2) which indicates that at least 

0hi   for some h  and i . This concludes that   must be strictly positive. 
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which is not true as shown just now. Therefore, we can conclude that there 
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complementary slackness condition (C5), we can conclude with the following 

equation: 

* * * *

, ,( , , , ) ( , , , ), , {1,2,..., },
h qBb hi B h Bb qi B hz R R h q m h B       * * * *

B h B q
α α α α   (C7)              

which is equivalent to   
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Equation (C8) can be rearranged as 
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                 (C9) 

Case (a):  If ( ) ( )
h qhi qiy x y x , i.e.,    

22

( ) ( ) ( ) ( )
h qhi Bb qi Bby x y x y x y x   , 

equation (C9) yields   
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and it can be rearranged as 
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where , {2,3,..., 1}hs i k   and the second last inequality follows from 

assumption 5.2 and the last inequality follows from Lemma 5.2. 

Case (b):  If ( ) ( )
h qhi qiy x y x , i.e., ( ) ( )

h qhi qiy x y x , rearrange  (C9) to be the 

following equation: 
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  (C11)         

Substitute equation (C3) into equation (C4), 
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Therefore, 
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It can be shown that  
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Therefore, the inequality (C13) can be reduced to 
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.                   (C14)                                 

From Lemma 5.1, there always exist 0hiC  such that 
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 . Equation (C11) can be reduced to 
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Therefore, we conclude that 
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(2)  Let 
*arg min q

h q

 


  . According to (1), there must exist 0c  such that

* * ,h wc  h B  . Thus, (2) is true. 
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(3) From (1), we see that
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