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A Flexible Approach to Finding Representative
Pattern Sets

Guimei Liu, Haojun Zhang, and Limsoon Wong

Abstract —Frequent pattern mining often produces an enormous number of frequent patterns, which imposes a great challenge
on visualizing, understanding and further analysis of the generated patterns. This calls for finding a small number of
representative patterns to best approximate all other patterns. In this paper, we develop an algorithm called MinRPset to find a
minimum representative pattern set with error guarantee. MinRPset produces the smallest solution that we can possibly have
in practice under the given problem setting, and it takes a reasonable amount of time to finish when the number of frequent
closed patterns is below one million. MinRPset is very space-consuming and time-consuming on some dense datasets when
the number of frequent closed patterns is large. To solve this problem, we propose another algorithm called FlexRPset, which
provides one extra parameter K to allow users to make a trade-off between result size and efficiency. We adopt an incremental
approach to let the users make the trade-off conveniently. Our experiment results show that MinRPset and FlexRPset produce
fewer representative patterns than RPlocal—an efficient algorithm that is developed for solving the same problem.

Index Terms —representative patterns, frequent pattern summarization

✦

1 INTRODUCTION

Frequent pattern mining is an important problem
in the data mining area. It was first introduced by
Agrawal et al. in 1993 [1]. Frequent pattern mining
is usually performed on a transaction database D =
{t1, t2, ..., tn}, where tj is a transaction containing a
set of items, j ∈ [1, n]. Let I = {i1, i2, ..., im} be the set
of distinct items appearing in D. A pattern X is a set
of items in I , that is, X ⊆ I . If a transaction t ∈ D
contains all the items of a pattern X , then we say t
supports X and t is a supporting transaction of X .
Let T (X) be the set of transactions in D supporting
pattern X . The support of X , denoted as supp(X),
is defined as |T (X)|. If the support of a pattern X
is larger than a user-specified threshold min sup,
then X is called a frequent pattern. Given a trans-
action database D and a minimum support threshold
min sup, the task of frequent pattern mining is to find
all the frequent patterns in D with respect to min sup.

Many efficient algorithms have been developed
for mining frequent patterns [2]. Now the focus has
shifted from how to efficiently mine frequent pat-
terns to how to effectively utilize them. Frequent
patterns have the anti-monotone property: if a pattern
is frequent, then all of its subsets must be frequent
too. On dense datasets and/or when the minimum
support is low, long patterns can be frequent. All the
subsets of these frequent long patterns are frequent
too based on the anti-monotone property. This leads
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to an explosion in the number of frequent patterns.
The huge quantity of patterns can easily become a
bottleneck for understanding and further analyzing
frequent patterns.

It has been observed that the complete set of fre-
quent patterns often contains a lot of redundancy.
Many frequent patterns have similar items and sup-
porting transactions. It is desirable to group similar
patterns together and represent them using one single
pattern. The concept of frequent closed pattern is
proposed for this purpose [3]. Let X be a pattern and
S be the set of patterns appearing in the same set
of transactions as X , that is, S = {Y |T (Y ) = T (X)}.
The longest pattern in S is called a closed pattern,
and all the other patterns in S are subsets of it. The
closed pattern of S is selected to represent all the
patterns in S. The set of frequent closed patterns
is a lossless representation of the complete set of
frequent patterns. That is, all the frequent patterns
and their exact support can be recovered from the set
of frequent closed patterns. The number of frequent
closed patterns can be much smaller than the total
number of frequent patterns, but it can still be tens of
thousands or even more.

Frequent closed patterns group patterns supported
by exactly the same set of transactions together. This
condition is too restrictive. Xin et al. [4] relax this con-
dition to further reduce pattern set size. They propose
the concept of δ-covered to generalize the concept of
frequent closed pattern. A pattern X1 is δ-covered
by another pattern X2 if X1 is a subset of X2 and
(supp(X1) − supp(X2))/supp(X1) ≤ δ. The goal is to
find a minimum set of representative patterns that can
δ-cover all frequent patterns. When δ=0, the problem
corresponds to finding all frequent closed patterns.
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Xin et al. show that the problem can be mapped to
a set cover problem. They develop two algorithms,
RPglobal and RPlocal, to solve the problem. RPglobal
first generates the set of patterns that can be δ-covered
by each pattern, and then employs the well-known
greedy algorithm [5] for the set cover problem to find
representative patterns. The optimality of RPglobal is
determined by the optimality of the greedy algorithm,
so the solution produced by RPglobal is almost the
best solution we can possibly have in practice. How-
ever, RPglobal is very time-consuming and space-
consuming. It is feasible only when the number of
frequent patterns is not large. RPlocal is developed
based on FPclose [6]. It integrates frequent pattern
mining with representative pattern finding. RPlocal
is very efficient, but it produces more representative
patterns than RPglobal.

In this paper, we analyze the bottlenecks for finding
a minimum representative pattern set and develop
two algorithms, MinRPset and FlexRPset, to solve the
problem. Algorithm MinRPset is similar to RPglobal,
but it utilizes several techniques to reduce running
time and memory usage. In particular, MinRPset uses
a tree structure called CFP-tree [7] to store frequent
patterns compactly. The CFP-tree structure also sup-
ports efficient retrieval of patterns that are δ-covered
by a given pattern. Our experiment results show that
MinRPset is only several times slower than RPlocal
in most of the cases, while RPglobal is often several
orders of magnitude slower than RPlocal. Algorithm
FlexRPset is developed based on MinRPset. It pro-
vides one extra parameter K, which allows users to
make a trade-off between efficiency and the number
of representative patterns selected. When K = ∞,
FlexRPset approaches MinRPset. With the decrease of
K, FlexRPset becomes faster, but it produces more
representative patterns. When K=1, FlexRPset is often
faster than RPlocal, and it still produces fewer rep-
resentative patterns than RPlocal in almost all cases.
We use an incremental approach to allow users to
make a trade-off between running time and result size
conveniently.

In MinRPset and FlexRPset, a representative pattern
can represent its subsets only. To further reduce the
number of representative patterns, we drop this con-
dition to allow a representative pattern to represent
more patterns. Our experiment results show that this
relaxation can further reduce the number of represen-
tative patterns greatly.

The rest of the paper is organized as follows. Section
2 introduces related work. Section 3 gives the formal
problem definition. The two algorithms, MinRPset
and FlexRPset, are described in Section 4 and Section 5
respectively. The relaxation of the covered condition is
discussed in Section 6. Experiment results are reported
in Section 7. Finally, Section 8 concludes the paper.

2 RELATED WORK

The number of frequent patterns can be very large.
Besides frequent closed patterns, several other con-
cepts, such as generators [8], disjunction-free genera-
tors [9], δ-free sets [10], non-derivable patterns [11],
maximal patterns [12], top-k frequent closed patterns
[13] and redundancy-aware top-k patterns [14], have
been proposed to reduce pattern set size. The number
of generators is larger than that of closed patterns.
Furthermore, the set of generators itself is not lossless.
It requires a border to be lossless [9], so does the
set of disjunction-free generators and δ-free sets. The
number of non-derivable patterns can also be larger
than that of closed patterns on some datasets. The
number of maximal patterns is much smaller than the
number of closed patterns. All frequent patterns can
be recovered from maximal patterns, but their support
information is lost. Another work that also ignores the
support information is [15]. It selects k patterns that
best cover a collection of patterns.

Frequent closed patterns preserve the exact support
of all frequent patterns. In many applications, know-
ing the approximate support of frequent patterns is
sufficient. Several approaches have been proposed to
make a trade-off between pattern set size and the
precision of pattern support. The work by Xin et
al. [4] described in Section 1 is one such approach.
Another approach proposed by Pei et al. [16] uses
absolute error bound. It uses heuristic algorithms to
mine a minimal condensed pattern-base, which is
a superset of the maximal pattern set. All frequent
patterns and their support can be restored from a
condensed pattern-base with error guarantee.

Yan et al. [17] use profiles to summarize patterns.
A profile consists of a master pattern, a support and
a probability distribution vector, which contains the
probability of the items in the master pattern. The set
of patterns represented by a profile are subsets of the
master pattern, and their support is calculated by mul-
tiplying the support of the profile and the probability
of the corresponding items. To summarize a collection
of patterns using k profiles, Yan et al. partition the
patterns into k clusters, and use a profile to describe
each cluster. There are several drawbacks with this
profile-based approach: 1) It makes contradictory as-
sumptions. On one hand, the patterns represented
by the same profile are supposed to be similar in
both item composition and supporting transactions,
thus the items in the same profile are expected to
be strongly correlated. On the other hand, based on
how the support of patterns are calculated from a
profile, the items in the same profile are expected
to be independent. It is hard to make a balance
between the two contradicting requirements. 2) There
is no error guarantee on the estimated support of
patterns. 3) The proposed algorithm for generating
profiles is very slow because it needs to scan the
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original dataset repeatedly. 4) The boundary between
frequent patterns and infrequent patterns cannot be
determined using profiles.

Several improvements have been made to the
profile-based approach. Jin et al. [18] have developed
a regression-based approach to minimize restoration
error. They cluster patterns based on restoration er-
rors instead of similarity between patterns, thus their
approach can achieve lower restoration error. How-
ever, there is still no error guarantee on the restored
support. CP-summary [19] uses conditional indepen-
dence to reduce restoration error. It adds one more
component to each profile: a pattern base, and the
new profile is called c-profile. The items in a c-profile
are expected to be independent with respect to the
pattern base. CP-summary provides error guarantee
on estimated support. However, patterns of a c-profile
often share little similarity, so a c-profile is not repre-
sentative of its patterns any more.

Profiles can be considered as generalizations of
closed patterns. Wang et al. [20] make generaliza-
tion on another concise representation of frequent
patterns—non-derivable patterns. They use Markov
Random Field (MRF) to summarize frequent patterns.
The support of a pattern is estimated from its subsets,
which is similar to non-derivable patterns. Markov
Random Field model is not as intuitive as profiles,
and it is also expensive to learn. It does not provide
error guarantee on estimated support either.

The above approaches aim to summarize frequent
patterns. Mampaey et al. [21] aim to summarize data
instead with a collection of non-redundant patterns.
A probabilistic maximum entropy model is used in
their approach.

3 PROBLEM STATEMENT

We follow the problem definition in [4]. The distance
between two patterns is defined based on their sup-
porting transaction sets.

Definition 1 (D(X1, X2)): Given two patterns X1

and X2, the distance between them is defined as
D(X1, X2) = 1− |T (X1)∩T (X2)|

|T (X1)∪T (X2)|
.

Definition 2 (ǫ-covered): Given a real number ǫ ∈
[0, 1) and two patterns X1 and X2, we say X1 is ǫ-
covered by X2 if X1 ⊆ X2 and D(X1, X2) ≤ ǫ.
In the above definition, condition X1 ⊆ X2 ensures
that the two patterns have similar items, and con-
dition D(X1, X2) ≤ ǫ ensures that the two patterns
have similar supporting transaction sets and similar
support. Based on the definition, a pattern ǫ-covers
itself.

Lemma 1: Given two patterns X1 and X2, if pat-
tern X1 is ǫ-covered by pattern X2 and we use
supp(X2) to approximate supp(X1), then the relative

error supp(X1)−supp(X2)
supp(X1)

is no larger than ǫ.

Proof: supp(X1)−supp(X2)
supp(X1)

= 1 − supp(X2)
supp(X1)

= 1 −
|T (X2)|
|T (X1)|

≤ 1− |T (X1)∩T (X2)|
|T (X1)∪T (X2)|

≤ ǫ.

Lemma 2: If a frequent pattern X1 is ǫ-covered by
pattern X2, then supp(X2) ≥ min sup · (1− ǫ).

Proof: Based on Lemma 1, 1− supp(X2)
supp(X1)

≤ ǫ, so we

have supp(X2) ≥ supp(X1) · (1− ǫ) ≥ min sup · (1− ǫ).

Our goal here is to select a minimum set of patterns
that can ǫ-cover all frequent patterns. The selected
patterns are called representative patterns. We do not
require representative patterns to be frequent. Based
on Lemma 2, the support of representative patterns
must be no less than min sup · (1− ǫ).

When ǫ=0, the representative patterns are frequent
closed patterns. Restoring the support of a non-
representative pattern is the same as restoring the
support of a non-closed pattern. That is, to get the
support of a non-representative pattern X , we search
the supersets of X in the representative pattern set,
and then use the highest support of the supersets
to approximate supp(X). Based on Lemma 1, the
restoration error is bounded by ǫ.

In the next two sections, we describe two algo-
rithms to find representative patterns.

4 THE MINRPSET ALGORITHM

Let F be the set of frequent patterns in a dataset D
with respect to threshold min sup, and F̂ be the set
of patterns with support no less than min sup · (1− ǫ)
in D. Obviously, F ⊆ F̂ . Given a pattern X ∈ F̂ , we
use C(X) to denote the set of frequent patterns that
can be ǫ-covered by X . We have C(X) ⊆ F . If X is
frequent, we have X ∈ C(X).

A straightforward algorithm for finding a minimum
representative pattern set works as follows. First we
mine all patterns in F̂ , and then we generate C(X)—
the set of frequent patterns that X covers—for every
pattern X ∈ F̂ . We get |F̂ | sets. The elements of these
sets are frequent patterns in F . Let S = {C(X)|X ∈
F̂}. Finding a minimum representative pattern set is
now equivalent to finding a minimum number of sets
in S that can cover all the frequent patterns in F .
This is a set cover problem, and it is NP-hard. We
use the well-known greedy algorithm [5] to solve the
problem, which achieves an approximation ratio of
∑k

i=1
1
i
, where k is the maximal size of the sets in S.

We call this simple algorithm MinRPset.
The greedy algorithm is essentially the best-possible

polynomial time approximation algorithm for the set
cover problem. Our experiment results have shown
that it usually takes little time to finish. Generating
C(X)s is the main bottleneck of the MinRPset al-
gorithm when F and F̂ are large because we need
to find C(X)s over a large F for a large number
of patterns in F̂ . We use the following techniques
to improve the efficiency of MinRPset: 1) consider
closed patterns only; 2) use a structure called CFP-
tree to find C(X)s efficiently; and 3) use a light-weight
compression technique to compress C(X)s.
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4.1 Considering closed patterns only

A pattern is closed if it is more frequent than all of its
supersets. If a pattern X1 is non-closed, then there
exists another pattern X2 such that X1 ⊂ X2 and
supp(X2) = supp(X1).

Lemma 3: Given two patterns X1 and X2 such that
X1 ⊆ X2 and supp(X1) = supp(X2), if X2 is ǫ-covered
by a pattern X , then X1 must be ǫ-covered by X too.
The above lemma directly follows from Definition 2. It
implies that instead of covering all frequent patterns,
we can cover frequent closed patterns only, which
leads to the following lemma.

Lemma 4: Let F be the set of frequent patterns in a
dataset D with respect to a threshold min sup. If a set
of patterns R ǫ-covers all the frequent closed patterns
in F , then R ǫ-covers all the frequent patterns in F .

Lemma 5: Given two patterns X1 and X2 such that
X1 ⊆ X2 and supp(X1) = supp(X2), if a pattern X
is ǫ-covered by X1, then X must be ǫ-covered by X2

too.
This lemma also directly follows from Definition 2. It
suggests that we can use closed patterns only to cover
all frequent patterns.

The number of frequent closed patterns can be
orders of magnitude smaller than the total number of
frequent patterns. Consider only closed patterns im-
proves the efficiency of the MinRPset algorithm in two
aspects. On one hand, it reduces the size of individual
C(X)s since now they contain only frequent closed
patterns. On the other hand, it reduces the number of
patterns whose C(X) needs to be generated as now
we need to generate C(X)s for closed patterns only.

4.2 Using CFP-tree to find C(X)s efficiently

The CFP-tree structure is specially designed for stor-
ing and querying frequent patterns [7]. It resembles a
set-enumeration tree [22]. We use an example dataset
D in Table 1 to illuminate its structure. Table 2 shows
all the frequent patterns in D when min sup = 3. The
CFP-tree constructed from these frequent patterns is
shown in Figure 1. The CFP-tree is constructed using a
pattern-growth approach. The root node contains all
frequent items sorted in ascending frequency order.
Each item i in the root node points to a subtree, and
this subtree stores all the frequent patterns discovered
from item i’s conditional database.

Each node in a CFP-tree is a variable-length array.
If a node contains multiple entries, then each entry
contains exactly one item. If a node has only one entry,
then it is called a singleton node. Singleton nodes can
contain more than one item. For example, node 2 in
Figure 1 is a singleton node with two items m and a.
An entry E stores several pieces of information: (1)
m items (m ≥ 1), (2) the support of E, (3) a pointer
pointing to the child node of E and (4) the id of the
entry that is assigned using preordering. In the rest

TABLE 1
An example dataset D

TID Transactions
1 a, c, e, f, m, p
2 b, e, v
3 a, b, f, m, p
4 d, e, f, h, p
5 a, c, d, m, v
6 a, c, h, m, s
7 a, f, m, p, u
8 a, b, d, f, g

TABLE 2
Frequent patterns (min sup=3)

ID Itemsets ID itemsets ID itemsets
1 a:6 9 ac:3 17 acm:3
2 b:3 10 af:4 18 afm:3
3 c:3 11 am:5 19 afp:3
4 d:3 12 ap:3 20 amp:3
5 e:3 13 cm:3 21 fmp:3
6 f:5 14 fm:3 22 afmp:3
7 m:5 15 fp:4
8 p:4 16 mp:3

ma:3

ma:3 a:3

a:5m:3 a:4f:4

b:3 c:3 d:3 e:3 p:4 f:5 m:5 a:61

2 3

4

5

6

7

Fig. 1. CFP-tree constructed on the frequent patterns
in Table 2

of this paper, we use E.items, E.support, E.child and
E.preorder to denote the above fields.

The CFP-tree structure allows different patterns to
share the storage of their prefixes as well as suffixes.
Prefix sharing is easy to understand. For example,
patterns {f,m} and {f, a} share the same prefix {f}
in Figure 1. In a multi-entry CFP-tree node, only the
items after an entry E can appear in the subtree
pointed by E, and these items are called candidate
extensions of E. Suffix sharing occurs when a candi-
date extension of an entry E occurs in the same set
of transactions as the pattern represented by E. Let
i be a candidate extension of E and X be a pattern
represented by E. If supp(X) = supp(X ∪ {i}), then
for any pattern Z, we must have supp(X ∪ Z) =
supp(X ∪ {i} ∪ Z). In other words, X and X ∪ {i}
have the same extensions. In CFP-tree, a singleton
node containing item i is created to enable the sharing
between X and X ∪ {i}. In the root node of Figure 1,
item f is a candidate extension of item p. Patterns {p}
and {p, f} have the same support, so a singleton node
containing item f is created, which is node 3, to allow
{p} and {p, f} to share the same subtree.

Every entry in a CFP-tree represents one or more
patterns with the same support, and these patterns
contain the items on the path from the root to the
entry. Items contained in singleton nodes are optional.
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Let E be an entry, Xm be the set of items in the
multiple-entry nodes and Xs be the set of items in the
singleton nodes on the path from the root to the parent
of E respectively. The set of patterns represented by
E is {Xm ∪ Y ∪ Z|Y ⊆ Xs, Z ⊆ E.items, Z 6= ∅}. The
longest pattern represented by E is Xm∪Xs∪E.items.
Let us look at an example. In Figure 1, node 4 contains
only one entry. For this entry, we have Xm = {p},
Xs = {f} and E.items = {m, a}. Hence node 4 rep-
resents 6 patterns: {p,m}, {p, a}, {p,m, a}, {p, f,m},
{p, f, a} and {p, f,m, a}. We use E.pattern to denote
the longest pattern represented by E.

The above feature makes CFP-tree a very compact
structure for storing frequent patterns. The number
of entries in a CFP-tree is much smaller than the
total number of patterns stored in the tree. For each
entry, we consider its longest pattern only based on
Lemma 3 and Lemma 5. For an entry E, only its
longest pattern can be closed. Other patterns of E
that are shorter than the longest pattern cannot be
closed based on the definition of closed patterns. If
the longest pattern of an entry is not closed, then we
call the entry a non-closed entry.

The CFP-tree structure has the following property.
Property 1: In a multiple-entry node, the item of an

entry E can appear in the subtrees pointed by entries
before E, but it cannot appear in the subtrees pointed
by entries after E.
For example, in the root node of Figure 1, item p is
allowed to appear in the subtrees pointed by entries
b, c, d and e, but it is not allowed to appear in the
subtrees pointed by entries f , m and a. This property
implies the following lemma.

Lemma 6: In a CFP-tree, the supersets of a pattern
cannot appear on the right of the pattern. They appear
either on the left of the pattern or in the subtree
pointed by the pattern.

4.2.1 Finding one C(X)

Given a pattern X , C(X) contains the subsets of X
that can be ǫ-covered by X . CFP-tree supports efficient
retrieval of subsets of patterns. To find the subsets of a
pattern X , we simply traverse the CFP-tree and match
the items of the entries against X . For an entry E in
a multiple-entry node, if its item appears in X , then
entry E represents some subsets of X and the search
is continued on its subtree. Otherwise, entry E and
its subtree is skipped because all the patterns in the
subtree of E contain E.items /∈ X , and these patterns
cannot be subsets of X . For example, in the root node
of Figure 1, to search for the subsets of {c,m, a}, we
need to visit the subtrees pointed by c, m and a only.

Algorithm 1 shows the pseudo-codes for retrieving
C(X). Initially, cnode is the root node of the CFP-tree.
Parameter Y contains the set of items to be searched
in cnode. It is set to X initially. Once an entry E is
visited, the item of E is removed from Y when Y is
passed to the subtree of E (line 8, 18). The item of E is

Algorithm 1 Search CX Algorithm

Input:
cnode is a CFP-tree node; //cnode is the root node
initially.
Y is the set of items to be searched in cnode; //Y =X
initially.
supp(X) is the support of X ;

Output:
C(X);

Description:
1: if cnode contains only one entry E then
2: if E.support == supp(X) AND E.pattern ⊂ X AND

E is on the right of X then
3: Mark E as non-closed;
4: if E is not marked as non-closed AND E is frequent

then
5: if E.items

⋂
Y 6= ∅ AND E.support ≤ supp(X)

(1−ǫ)

then
6: Put E.preorder into C(X);
7: if E.child 6= NULL AND Y − E.items 6= ∅ then
8: Search CX(E.child, Y − E.items, supp(X));
9: else if cnode contains multiple entries then

10: for each entry E ∈ cnode from left to right do
11: if E.items ∈ Y AND E is frequent then
12: if E.support == supp(X) AND E.pattern ⊂ X

AND E is on the right of X then
13: Mark E as non-closed;
14: if E is not marked as non-closed then
15: if E.support ≤ supp(X)

(1−ǫ)
AND E is more

frequent than its child entries then
16: Put E.preorder into C(X);
17: if E.child 6= NULL AND Y − E.items 6= ∅

then
18: Search CX(E.child, Y −E.items, supp(X));
19: if supp(E.pattern ∪ Y ) > supp(X)

(1−ǫ)
then

20: return ;
21: Y =Y − E.items;

also excluded when Y is passed to the entries after E
(line 21). This is because the item of E cannot appear
in the subtrees pointed by entries after E based on
Property 1.

During the search of C(X)s, we also mark non-
closed patterns. If the longest pattern of E is a proper
subset of X , E.support=supp(X) and E occurs on the
right of X , then E is marked as non-closed (line 2-
3, 12-13), and it is skipped in subsequent search. For
example, when we search for the subsets of pattern
{p, f,m, a} using Algorithm 1 in Figure 1, we find that
one subset {f,m} has the same support as {p, f,m, a}
and {f,m} occurs on the right of {p, f,m, a}. Hence
the entry of {f,m}, which is the first entry in node 5, is
marked as non-closed. All the patterns in the subtree
pointed by this entry cannot be closed either because
for every pattern Z in the subtree, Z ′ = Z ∪{p, a} is a
proper superset of Z and it has the same support as Z.
Entry {f,m} and its subtree are skipped in subsequent
traversal.

The early termination technique. If a pattern is ǫ-
covered by X , then its support must be no larger than
supp(X)
(1−ǫ) based on Definition 2. We use this requirement

to further improve the efficiency of Algorithm 1.



JOURNAL OF IEEE TRANS. KNOWL. DATA ENG., VOL. ?, NO. ?, ? ? 6

Given an entry E in a multiple-entry node, after we
visit the subtree of E, if we find supp(E.pattern∪Y ) >
supp(X)
(1−ǫ) , where Y is the set of items that is passed to

E, then there is no need to visit the subtrees pointed
by entries after E (line 19-20). The reason being that
all the subsets of X in these subtrees must be subsets
of (E.pattern ∪ Y ), and their support must be larger

than supp(X)
(1−ǫ) too based on the anti-monotone property.

We call this pruning technique early termination.
Let us look at an example of early termination.

Let ǫ=0.25 and X = {p, f,m, a}. In the root node of
Figure 1, only the last four entries and their subtrees
need to be visited to get C(X). At entry m, we have
E.pattern = {m} and Y = {m, a}. After visiting the
subtree pointed by m, we get supp({m, a})=5, which

is larger than supp(X)
(1−ǫ) = 3

1−0.25 = 4. Therefore, {m, a}
cannot be covered by X = {p, f,m, a} because its
support is too high. The subsets of X that occur on
the right of {m, a} cannot be covered by X either as
they are subsets of {m, a}, and their support must be
no less than 5. Hence entry a can be safely skipped.

4.2.2 Finding C(X)s of all closed patterns
Algorithm 2 shows the pseudo-codes for generating
all C(X)s. It traverses the CFP-tree in depth-first
order from left to right. Using this traversal order,
the supersets of a pattern X that are on the left of
X are visited before X . If the support of X is the
same as one of these supersets, then X should be
marked as non-closed when Search CX is called for
that superset. If X is not marked as non-closed when
X is visited, it means that X is more frequent than
all its supersets on its left. Based on Lemma 6, the
supersets of a pattern appear either on the left of the
pattern or in the subtree pointed by the pattern. If
X is also more frequent than its child entries, then X
must be closed. The conditions listed at line 2 and line
3 ensure that Algorithm 2 generates C(X)s for only
closed patterns.

Algorithm 2 DFS Search CXs Algorithm

Input:
cnode is a CFP-tree node; //cnode is the root node
initially.

Output:
C(X)s;

Description:
1: for each entry E ∈ cnode from left to right do
2: if E is not marked as non-closed then
3: if E is more frequent than its child entries then
4: X=E.pattern;
5: C(X) = Search CX(root, X , E.support);
6: if E.child 6= NULL then
7: DFS Search CXs(E.child);

In Algorithm 2, if an entry E is marked as non-
closed because it has the same support as one of its
supersets on its left, then all the patterns in the subtree
pointed by E are non-closed. We can safely skip E

and its subtree in subsequent traversal (line 2). The
same pruning is done in Algorithm 1 (line 4, 14).
This pruning technique has been used in almost all
frequent closed pattern mining algorithms to prune
non-closed patterns [6], [23].

4.3 Compressing C(X)s

In a CFP-tree, each entry E has an id, and it is denoted
as E.preorder. In Algorithm 1, we put the id of entry
E into C(X) if E is ǫ-covered by X (line 6, 16). Each id
takes 4 bytes. The total number of C(X)s generated
by Algorithm 2 grows with the number of frequent
(closed) patterns. When the number of frequent closed
patterns is large, the total size of C(X)s can be very
large. If the main memory cannot accommodate all
C(X)s, the greedy set cover algorithm becomes very
slow.

To alleviate this problem, we compress C(X)s using
a light-weight compression technique [24]. Each entry
id occupies one or more bytes depending on its value.
To reduce the number of bytes needed for storing en-
tries ids, we sort the entry ids in ascending order and
store the differences between consecutive ids instead.
Our experiment results show that this compression
technique can reduce the space needed for storing
C(X)s by about three quarters in many cases.

Algorithm 3 MinRPset Algorithm

Description:
1: Mine patterns with support ≥ min sup·(1−ǫ) and store

them in a CFP-tree; let root be the root node of the tree;
2: DFS Search CXs(root);
3: Remove non-closed entries from C(X)s;
4: Apply the greedy set cover algorithm on C(X)s to find

representative patterns and output them;

Algorithm 3 shows the pseudo-codes of MinRPset,
and it calls Algorithm 2 to find C(X)s. Note that we
store all patterns, including non-closed patterns, with
support no less than min sup · (1 − ǫ) in a CFP-tree
(line 1). Non-closed patterns are identified during the
search of C(X)s. Hence it is possible that some C(X)s
contains some non-closed entries. These non-closed
entries are removed from C(X)s (line 3) before the
greedy set cover algorithm is applied.

4.4 Complexity Analysis

Let F̂ be the set of patterns with support no less
than min sup · (1 − ǫ). The first step of Algorithm
3 constructs the CFP-tree storing all patterns in F̂ ,
and its complexity is the same as that of a depth-
first frequent pattern mining algorithm since the CFP-
tree is constructed using a depth-first frequent pattern
mining algorithm [7].

Let F̂c = {X|X ∈ F̂ ∧X is closed}. The second step
generates C(X) for every pattern X ∈ F̂c by calling
Algorithm 1. In the worst case, Algorithm 1 needs to
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check all the 2|X| − 1 subsets of X to see whether
they are ǫ-covered by X . Hence the worst case time
complexity of the second step is O(

∑
X∈F̂c

(2|X| − 1)).
In practice, the cost of this step is much lower than
the worst case cost because the early termination
technique can prune many of the subsets, especially
when ǫ is small. Furthermore, we consider closed
subsets of X only, which also reduces the number of
subsets to be checked.

The third step removes non-closed entries from
C(X)s. This can be done by scanning all the C(X)s
once. Hence, the time complexity of the third step is
O(

∑
X∈F̂c

|C(X)|). The fourth step is the greedy set
cover algorithm, which can be implemented in time
complexity of O(

∑
X∈F̂c

|C(X)|) too.
The cost of the second step is higher than that of

the last two steps because the size of C(X) is usually
much smaller than 2|X| − 1. In the next section, we
describe an algorithm, which aims to reduce the cost
and the output size of the second step. The cost of the
last two steps is reduced consequently too.

5 THE FLEXRPSET ALGORITHM

When the number of frequent patterns is large on a
dataset, the MinRPset algorithm may become very
slow since it needs to search subsets over a large
CFP-tree for a large number of patterns. Furthermore,
the set of C(X)s may become too large to fit into
the main memory. To solve this problem, instead
of searching C(X)s for all closed patterns, we can
selectively generate C(X)s such that every frequent
pattern is covered a sufficient number of times, in
the hope that the greedy set cover algorithm can still
find a near-optimal solution. Intuitively, the fewer the
number of C(X)s generated, the more efficient the
algorithm is. This is the basic idea of the FlexRPset
algorithm.

The FlexRPset algorithm uses a parameter K to
control the minimum number of times that a fre-
quent pattern needs to be covered. Algorithm 4 shows
how FlexRPset selectively generates C(X)s. The other
steps of FlexRPset are the same as those of MinRPset.

Algorithm 4 still uses the depth-first order to tra-
verse a CFP-tree from left to right. It traverses the
subtree of an entry E first (line 3-4) before it processes
E (line 5-8), which means that when E is processed,
all the supersets of E have been processed already
based on Lemma 6, and E cannot be covered any
more except by itself. If E is frequent and it is covered
less than K times, then we generate C(E.pattern) to
cover E (the first condition at line 6). If E has already
be covered at least K times when E is visited, then we
look at the ancestor entries of E. For an ancestor entry
E′ of E, most of its supersets are already processed
too when E is visited, hence not many remaining
entries can cover E′. If E′ is frequent, E′ can be ǫ-
covered by E and E′ is covered less than K times,

Algorithm 4 Flex Search CXs Algorithm

Input:
cnode is a CFP-tree node; //cnode is the root node
initially.
K is the minimum number of times that a frequent
closed pattern needs to be covered;

Output:
C(X)s;

Description:
1: for each entry E ∈ cnode from left to right do
2: if E is not marked as non-closed then
3: if E.child 6= NULL then
4: Flex Search CXs(E.child);
5: if E is more frequent than its child entries then
6: if (E is frequent AND E is covered less than K

times) OR (∃ an ancestor entry E′ of E such that
E′ is frequent, E′ can be ǫ-covered by E and E′

is covered less than K times) then
7: X=E.pattern;
8: C(X) = Search CX(root, X , E.support);

then we also generate C(E.pattern) to cover E′ (the
second condition at line 6).

We use the CFP-tree shown in Figure 1 to illus-
trate how Algorithm 4 works. Let ǫ=0.25 and K=1.
Algorithm 4 traverses the CFP-tree in post-order from
left to right. The first entry b in the root node is first
visited. Since it has not be covered, so C({b}) is gener-
ated and it contains only pattern {b} itself. Next, node
2 is visited, and it contains only one entry. This entry
has not be covered, so C({c,m, a}) is generated using
Algorithm 1 and it contains only pattern {c,m, a}
itself. Among other subsets of {c,m, a}, pattern {c} is
excluded because it has the same support as its child
entry and it is not closed; pattern {m} is excluded
for the same reason; pattern {m, a} and {a} cannot
be covered by {c,m, a} because their support is too
high. Next, the second entry in the root node is visited.
This entry has the same support as its child node,
so it is skipped (line 5). Next, C({d}) and C({e})
are generated and both of them contain only the
pattern itself. Then node 4 is visited. It contains only
one entry and this entry has not be covered before.
C({p, f,m, a}) is generated, and it contains {p, f} and
{f, a}. At the same time, the first entry in node 5 is
marked as non-closed. Next node 3 is visited. Node
3 has already been covered by {p, f,m, a} and the
only ancestor entry of node 3 is not closed, so node
3 is skipped. In the remaining traversal, C({f, a})
is generated in order to cover {f} and C({m, a}) is
generated to cover itself and pattern {a}.

With the increase of parameter K, more information
are gathered, hence less representative patterns are
generated. However, the running time of FlexRPset
becomes longer. How can users make a trade-off
between running time and result size conveniently?
We observe that the C(X)s generated at a smaller
K value can be re-used at a larger K value. This
leads to the incremental FlexRPset algorithm. It starts
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from K=1 and works like FlexRPset. If the user is
happy with the number of representative patterns
generated at K=1, then it stops. Otherwise, it increases
K to 10 and generates C(X)s in a way similar to
Algorithm 4. The only difference is that the set of
C(X)s generated at K=1 are taken into consideration.
During the traversal of the CFP-tree, the times that an
entry E is covered is decided not only by the C(X)s
generated in the current traversal of the CFP-tree, but
also by the C(X)s generated at K=1. The greedy set
cover algorithm is then applied on all the C(X)s that
have been generated to find representative patterns.
This process is repeated until either users are happy
with the number of representative patterns, or K has
reached a certain limit. In every iteration, we increase
K by 10 times so that a significant number of new
C(X)s are generated in each iteration, which in turn
often leads to a considerable reduction in the number
of representative patterns.

6 RELAXING THE ǫ-COVERED CONDITION

In exploratory data analysis, users often need to
inspect individual patterns manually [25]. In such
situation, it is desirable to keep the number of repre-
sentative patterns as few as possible to reduce human
efforts. Definition 2 allows a pattern to cover its
subsets only. If we remove this constraint and allow a
pattern X to cover a pattern Y as long as D(X,Y ) ≤ ǫ,
then the number of representative patterns can be fur-
ther reduced. However, without the subset constraint,
it is impossible to estimate the support of a non-
representative pattern X from representative patterns
as we do not know which representative pattern cov-
ers X . Fortunately, this is not a problem for MinRPset
and FlexRPset because in these two algorithms, all
frequent patterns are stored in a CFP-tree compactly,
and users can retrieve support of patterns from the
CFP-tree directly. In this section, we relax Definition
2 by removing condition X1 ⊆ X2 to further reduce
the number of representative patterns. We also discuss
how to modify MinRPset and FlexRPset to select rep-
resentative patterns based on the relaxed definition.

Definition 3 (ǫ∗-cover): Given a real number ǫ ∈
[0, 1) and two patterns X1 and X2, we say X1 and
X2 ǫ∗-cover each other if D(X1, X2) ≤ ǫ.
Obviously, if X1 ǫ-covers X2, then X1 and X2 must
ǫ∗-cover each other. The reverse is not true, but the
following lemma holds.

Lemma 7: If two patterns X1 and X2 ǫ∗-cover each
other, then X = X1 ∪X2 ǫ-covers both X1 and X2.

Proof: X = X1 ∪ X2, so we have T (X) =

T (X1) ∩ T (X2). Therefore, D(X,X1) = 1 − |T (X)|
|T (X1)|

=

1− |T (X1)∩T (X2)|
|T (X1)|

≤ 1− |T (X1)∩T (X2)|
|T (X1∪T (X2)|

= D(X1, X2) ≤ ǫ.
That is, X ǫ-covers X1. Similarly, we can prove X ǫ-
covers X2.
The above lemma indicates that if two patterns ǫ∗-
cover each other, then they are likely to have similar

item composition as they have a common superset
that ǫ-covers both of them. Based on the above lemma
and Lemma 2, given a frequent pattern X1, if X2 ǫ∗-
covers X1, then we must have supp(X2) ≥ supp(X1 ∪
X2) ≥ supp(X1) · (1− ǫ) ≥ min sup · (1− ǫ).

Let C∗(X) be the set of patterns that are ǫ∗-covered
by X and C(X) be the set of patterns that are ǫ-
covered by X . We have C(X) ⊆ C∗(X). Given a
pattern X ′ ∈ C∗(X), X ′ can be in three cases:

1) X ′ ⊆ X . In this case, X ′ ∈ C(X). Let C∗
1 (X) =

{X ′|X ′ ∈ C∗(X), X ′ ⊆ X}.
2) X ′ ⊃ X . In this case, X ∈ C(X ′). Let C∗

2 (X) =
{X ′|X ′ ∈ C∗(X), X ′ ⊃ X}.

3) Otherwise, based on Lemma 7, we have X ′ ∈
C(X ′ ∪ X) and X ∈ C(X ′ ∪ X). Let C∗

3 (X) =
{X ′|X ′ ∈ C∗(X), X ′ −X 6= ∅, X −X ′ 6= ∅}.

We have C∗(X) = C∗
1 (X) ∪ C∗

2 (X) ∪ C∗
3 (X). Appar-

ently, C∗
1 (X) = C(X). To generate C∗

2 (X), we need
to find all patterns Y such that X ∈ C(Y ), and then
put all such Y into C∗

2 (X). To generate C∗
3 (X), we

need to find all patterns Y such that X ∈ C(Y ), and
then put other patterns in C(Y ) that are not subsets or
supersets of X into C∗

3 (X). However, not every such
pattern in C(Y ) can be put into C∗

3 (X). A pattern in
C(Y ) needs to satisfy some support constraint to be
put into C∗

3 (X).
Lemma 8: Two patterns X and X ′ ǫ∗-cover each

other if and only if supp(X ′) ≤ 2−ǫ
1−ǫ

·supp(Y )−supp(X),
where Y = X ∪X ′.

Proof: supp(X ′) ≤ 2−ǫ
1−ǫ

· supp(Y )− supp(X)

⇔ supp(X)+supp(X′)
supp(Y ) ≤ 2−ǫ

1−ǫ

⇔ supp(X)+supp(X′)−supp(Y )
supp(Y ) ≤ 1

1−ǫ

⇔ |T (X)∪T (X′)|
|T (X)∩T (X′)| ≤

1
1−ǫ

⇔ |T (X)∩T (X′)|
|T (X)∪T (X′)| ≥ 1− ǫ

⇔ 1− |T (X)∩T (X′)|
|T (X)∪T (X′)| ≤ ǫ

Algorithm 5 shows the pseudo-codes for generating
C∗(X)s from C(X)s. We first generate C∗

2 (X)s from
C(X)s (line 1-3), and then generate C∗

3 (X)s from
C(X)s and C∗

2 (X)s (line 6-12). Given a pattern Y
such that X ∈ C(Y ), for a pattern in C(Y ) to be in
C∗

3 (X), its support cannot be larger than (supp(Y ) ·
( 2−ǫ
1−ǫ

) − supp(X)) based on Lemma 8. Therefore, we
sort the patterns in C(Y ) in ascending support or-
der (line 4-5). When we check the patterns in C(Y )
and we reach a pattern with support larger than
(supp(Y ) · ( 2−ǫ

1−ǫ
)− supp(X)), we stop the checking on

C(Y ) (line 9-10).
In Algorithm MinRPset (Algorithm 3), if we add

one extra line “Gen C∗(X)(C(X)s)” after line 3, and
replace C(X) with C∗(X) at line 4, then we get the
algorithm for finding representative patterns based
on ǫ∗-cover. We denote this algorithm as MinRPset∗.
Similar modification can be done to FlexRPset, and
we denote the resultant algorithm as FlexRPset∗.

Complexity Analysis. Let F̂c be the set of
closed patterns with support no less than
min sup · (1 − ǫ). For MinRPset∗, the input of
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Algorithm 5 Gen C∗(X) Algorithm

Input:
C(X)s;

Output:
C∗(X)s;

Description:
1: for each C(X) do
2: for each pattern X ′ ∈ C(X) do
3: Add X to C∗

2 (X
′);

4: for each C(X) do
5: Sort the patterns in C(X) in ascending support order;
6: for each C(X) do
7: for each pattern Y in C∗

2 (X) do
8: for each pattern X ′ in C(Y ) do
9: if supp(X ′) > supp(Y ) · ( 2−ǫ

1−ǫ
)− supp(X) then

10: break;
11: else if X ′ − X 6= ∅ AND X ′ − X 6= ∅ AND

X ′ /∈ C∗

3 (X) then
12: Add X ′ to C∗

3 (X);

Algorithm 5 is S = {C(X)|X ∈ F̂c}. The time
complexity for generating C∗

2 (X)s (lines 1-3) is
O(

∑
X∈F̂c

C(X)), for sorting C(X)s (lines 4-5) is
O(

∑
X∈F̂c

|C(X)|log|C(X)|), and for generating
C∗

3 (X)s (lines 6-12) is O(
∑

X∈F̂c

C(X)2). Hence the
time complexity of Algorithm 5 is O(

∑
X∈F̂c

C(X)2),
and the time complexity of MinRPset∗ is
O(

∑
X∈F̂c

(2|X| − 1 + C(X)2)) + TFP , where TFP

is the cost for constructing the CFP-tree using a
depth-first frequent pattern mining algorithm. The
complexity of FlexRPset∗ is upper bounded by that
of MinRPset∗.

MinRPset∗ produces fewer representative patterns
than MinRPset in the cost of higher computation cost
as it requires an extra step—Algorithm 5—to generate
C∗(X)s. The size of C∗(X)s is usually much larger
than that of C(X)s, so the cost of the greedy set cover
algorithm increases too. FlexRPset∗ is less costly than
MinRPset∗ but it produces more representative pat-
terns than MinRPset∗. Our experiment results show
that FlexRPset∗ with a small K value often runs faster
than MinRPset and produces fewer representative
patterns than MinRPset. However, from the represen-
tative patterns produced by FlexRPset∗ or MinRPset∗,
we cannot estimate the support of non-representative
patterns even though a non-representative pattern is
still similar to its representative pattern. On the con-
trary, the support of non-representative patterns can
be estimated with bounded error from the represen-
tative patterns generated by MinRPset as discussed
at the end of Section 3. This feature may be useful
when storage space is a critical resource as we can
store representative patterns only.

7 EXPERIMENTS

Our experiments were conducted on a PC with
2.66Ghz CPU and 2.00GB memory. Our algorithms
were implemented using C++. We downloaded the
source codes of RPlocal from the IlliMine system

package [26]. All source codes were compiled using
Microsoft Visual Studio 2005.

7.1 Datasets

The datasets used in the experiments are shown in
Table 3. Dataset BMS-POS is contributed by Blue Mar-
tini Software for KDD cup 2000 [27]. Other datasets
are obtained from the FIMI repository (http://fimi.
ua.ac.be/data/). Table 3 shows the number of trans-
actions (#trans) and items (#items), the maximal and
average length of transactions (MaxTL, AvgTL) on the
datasets.

TABLE 3
Datasets

dataset #trans #items MaxTL AvgTL
accidents 340,183 468 52 33.81
BMS-POS 515,597 1,657 164 6.53

chess 3,196 75 37 37.00
connect 67,557 129 43 43.00
kosarak 990,002 41,270 2,497 8.10

mushroom 8,124 119 23 23.00
pumsb 49,046 2,113 74 74.00

pumsb star 49,046 2,088 63 50.48
retail 88,162 16,470 76 10.31

webdocs 1,692,082 5,267,656 71,472 177.23

7.2 Results on ǫ-covered

The first experiment compares MinRPset and
FlexRPset with RPlocal. Table 4 shows the number
of frequent closed patterns (column “#closedPats”),
number of representative patterns generated by
RPlocal, MinRPset and FlexRPset with K=10. The
number of representative patterns generated by
RPlocal is more than 10 times smaller than the
number of closed patterns on six datasets. MinRPset
is able to further reduce the number of representative
patterns on all datasets. In particular, MinRPset
reduces the number of representative patterns
by 67.4% on pumsb. The number of representative
patterns generated by FlexRPset with K=10 is close to
that by MinRPset. On dataset retail, RPlocal produces
more representative patterns than the number of
closed patterns, while MinRPset and FlexRPset
always produce fewer representative patterns than
the number of closed patterns.

Let N be the number of representative patterns
generated by an algorithm. Figure 2 shows the ratio of
N to the number of representative patterns generated
by RPlocal when min sup is varied. Obviously, the
ratio is always 1 for RPlocal. Parameter ǫ is set to 0.1
on all datasets. MinRPset always produces fewer rep-
resentative patterns than RPlocal. On retail, the num-
ber of representative patterns generated by FlexRPset
with K=1 and MinRPset is almost identical. The same
result is observed on accidents, BMS-POS and webdocs.
On kosarak and connect, the number of representative
patterns produced by FlexRPset with K=10 is pretty
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TABLE 4
Comparison with RPlocal on number of representative patterns (ǫ = 0.1)

dataset min sup #closedPats RPlocal MinRPset FlexRPset MinRPset∗ FlexRPset∗
(ratio to RPlocal) (ratio to RPlocal) K=10 (ratio to RPlocal) K=10

accidents 0.1 9,958,684 (43.6) 228,321 174,011 (0.762) 174,938 145,707 (0.638) 148,271
BMS-POS 0.0004 928,526 (1.93) 481,772 469,783 (0.975) 469,783 468,059 (0.972) 468,059

chess 0.4 1,361,158 (47.8) 28,500 17,263 (0.606) 18,897 7,883 (0.277) 11,751
connect 0.2 1,482,862 (23.0) 64,602 49,186 (0.761) 49,596 27,481 (0.425) 30,224
kosarak 0.002 35,865 (8.29) 4,324 4,200 (0.971) 4,210 3,794 (0.877) 3,820

mushroom 0.001 147,906 (1.13) 130,729 119,211 (0.912) 119,138 116,778 (0.893) 116,778
pumsb 0.7 241,197 (92.1) 2,618 854 (0.326) 1,273 218 (0.083) 754

pumsb star 0.1 1,512,866 (54.7) 27,660 19,767 (0.715) 20,494 12,006 (0.434) 13,731
retail 0.0001 189,078 (0.730) 258,860 170,152(0.657) 170,144 168,767 (0.652) 168,767

webdocs 0.11 101,600 (10.7) 9,466 7,485 (0.791) 7,522 5,756 (0.608) 5,811

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.0001 0.0002 0.0003 0.0004

R
at

io

Minimum Support

retail

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 0.001 0.0015 0.002

Minimum Support

kosarak

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0.1 0.3 0.5 0.7 0.9

Minimum Support

connect

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.65 0.7 0.8 0.9

Minimum Support

pumsb

RPlocal
K=1
K=10
K=1000
Incremental
MinRPset

Fig. 2. Number of representative patterns when varying min sup. ǫ=0.1
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close to that generated by MinRPset. The same result
is observed on mushroom and pumsb star. On pumsb
and chess, FlexRPset approaches MinRPset only when
K is large.

Figure 3 shows the running time of the several
algorithms when min sup is varied. The running time
of MinRPset and FlexRPset includes the time for con-
structing CFP-tree. We use a separate curve to show
the time for constructing CFP-tree, denoted as “CFP-
tree”. The running time of all algorithms increases
with the decrease of min sup. MinRPset is faster than
RPlocal on retail, BMS-POS and webdocs and slower
than RPlocal on other datasets. On kosarak and connect,
FlexRPset with a small K value is faster than RPlocal.
With the increase of K, FlexRPset becomes slower. On
other datasets, RPlocal is the fastest, and the running
time of FlexRPset with K=1 is close to that of RPlocal
on these datasets.

Figure 4 compares the number of representative
patterns generated by the several algorithms when ǫ is
varied. When ǫ increases, MinRPset generally achieves
greater reduction in the number of representative
patterns. However, its running time increases quickly
too as shown in Figure 5. The running time of RPlocal
is relatively stable with respect to ǫ, so is the running
time of FlexRPset when K ≤ 10. When K becomes
larger, the running time of FlexRPset increases more
quickly with ǫ.

For the incremental FlexRPset algorithm, we set
the maximum value of K to 1000. The incremental
algorithm tries 4 values of K incrementally: 1, 10, 100
and 1000. Figure 2 and Figure 4 show that the number
of representative patterns generated by the incremen-
tal FlexRPset algorithm with K=1000 (denoted as
“Incremental” in the figures) is slightly more than
that generated by FlexRPset with K=1000. The reason
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being that the two algorithms use different strategies
to selectively generate C(X)s. The strategy used by
FlexRPset seems to be more effective in reducing the
final number of representative patterns.

Figure 3 and Figure 5 show that the running
time of the incremental algorithm is slightly longer
than that of FlexRPset with K=1000. We decom-

pose the running time of the two algorithms into
three parts: frequent pattern mining (denoted as
“MineFP” in the figures), generating C(X)s (denoted
as “Search C(X)”) and finding a minimum set cover
(denoted as “GreedySetCover”). Figure 6 shows that
the most costly steps in the two algorithms are fre-
quent pattern mining and generating C(X)s. These
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TABLE 5
The effect of the early termination technique.

dataset min sup ǫ W/O(sec) With(sec) speedup
accidents 0.2 0.1 11.31 2.97 3.81
accidents 0.2 0.05 9.03 1.84 4.90
BMS-POS 0.0001 0.1 131.14 31.87 4.11
BMS-POS 0.0001 0.05 115.87 28.81 4.02

chess 0.3 0.1 284.76 51.50 5.53
chess 0.3 0.05 209.98 25.73 8.16

connect 0.2 0.1 94.05 28.69 3.28
connect 0.2 0.05 77.67 11.30 6.88
kosarak 0.0009 0.1 318.90 280.37 1.14
kosarak 0.0009 0.05 62.83 42.73 1.47

mushroom 0.001 0.2 2.89 0.266 10.87
mushroom 0.001 0.1 2.86 0.234 12.22
mushroom 0.001 0.05 2.828 0.219 12.91

pumsb 0.65 0.1 82.77 67.09 1.23
pumsb 0.65 0.05 33.905 16.58 2.05

pumsb star 0.1 0.1 97.62 39.97 2.44
pumsb star 0.1 0.05 77.69 22.52 3.45

retail 0.00003 0.1 6.64 5.86 1.13
retail 0.00003 0.05 6.66 5.86 1.14

webdocs 0.08 0.1 13.70 9.37 1.46
webdocs 0.08 0.05 7.97 2.70 2.95

two steps are shared among different K values in
the incremental algorithm, hence the incremental al-
gorithm has similar running time with FlexRPset for
the two steps. The incremental algorithm needs to call
the greedy set cover algorithm multiple times, one for
each K value, so it has longer running time for this
part. Overall, the incremental algorithm is just slightly
slower than FlexRPset in most of the cases except on
pumsb at K=1000. The two algorithms use different
strategies to selectively generate C(X)s. On pumsb,

the incremental algorithm generates fewer C(X)s than
FlexRPset when K=1000, so its cost for Search C(X),
as well as its overall cost, is lower.

7.3 Effect of the early termination technique

In Algorithm 1, we use an early termination technique
(described at the end of Section 4.2.1) to improve the
efficiency of Algorithm 1. Table 5 shows the effect
of the early termination technique on the generating
time of C(X)s in MinRPset. Columns “W/O (sec)”
and “With (sec)” are the generation time of C(X)s
without and with the early termination technique
respectively. The last column is the speedup achieved
by using the early termination technique. On most of
the datasets, the early termination technique achieves
several times of speedup. On mushroom, the speedup
is more than 10 times. The early termination technique
is more effective when ǫ is smaller. This is because
when ǫ is smaller, fewer subsets of X can be ǫ-
covered by X , and more subsets of X that do not
satisfy the support constraint are pruned by the early
termination technique.

7.4 Results on ǫ∗-cover

In this experiment, we study the performance of
MinRPset∗ and FlexRPset∗. They are compared with
RPlocal and MinRPset. The last two columns in Ta-
ble 4 show the number of representative patterns
produced by MinRPset∗ and FlexRPset∗ with K=10,
which is fewer than that by MinRPset and RPlocal on
all datasets.
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Figure 7 shows the ratio of the number of represen-
tative patterns generated by different algorithms to
that of RPlocal when min sup is varied. On BMS-POS,
the number of representative patterns generated by
MinRPset, MinRPset∗ and FlexRPset∗ with different
K values is very close. We observed the same result on
retail. On webdocs, FlexRPset∗ with K=1 already gener-
ates fewer representative patterns than MinRPset. The
same result is observed on kosarak and accidents. On
other datasets, FlexRPset∗ with K=10 produces fewer
representative patterns than MinRPset.

Figure 8 shows the running time of the algorithms
when min sup is varied. MinRPset∗ has similar run-
ning time with MinRPset and FlexRPset∗ on BMS-
POS and webdocs. Similar result is observed on retail
and mushroom. MinRPset∗ is slower than MinRPset
on other datasets. The extra cost is mainly spent
on generating C∗(X)s from C(X)s. When K=1, the
running time of FlexRPset∗ is close to that of RPlocal
in most cases.

Figure 9 and Figure 10 show the performance of
MinRPset∗ and FlexRPset∗ when ǫ is varied. Similar to
MinRPset and FlexRPset, MinRPset∗ and FlexRPset∗
achieve bigger reduction in the number of representa-
tive patterns when ǫ increases, but their running time
also increases.

8 DISCUSSION AND CONCLUSION

In this paper, we have described two algorithms,
MinRPset and FlexRPset, for finding minimum repre-
sentative pattern sets. Both algorithms first mine fre-

quent patterns, and then find representative patterns
in a post-processing step, while RPlocal integrates
frequent pattern mining with representative pattern
finding. Due to the use of the post-processing strategy,
MinRPset and FlexRPset have the following addi-
tional benefits besides producing fewer representative
patterns: 1) Users may not know what value should
be used for ǫ at the beginning. The post-processing
strategy allows users to try different ǫ values without
mining frequent patterns multiple times. This is espe-
cially beneficial on very large datasets. 2) In MinRPset
and FlexRPset, it is easy to keep record of the set of
patterns covered by each representative pattern. This
information is useful for users to inspect individual
representative patterns in more details. 3) We can
relax the conditions on ǫ-covered to further reduce the
number of representative patterns as what we have
done in Section 6.

MinRPset and FlexRPset have some drawbacks. On
some dense datasets, MinRPset and FlexRPset with a
large K value are often much slower than RPlocal.
Furthermore, the greedy set cover algorithm needs to
hold all the C(X)s and their inversion in memory,
otherwise it becomes very slow. When the number
of frequent closed patterns reaches several millions,
MinRPset and FlexRPset with a large K value be-
come infeasible on some dense datasets because all
the C(X)s and their inversion are too large to fit
into memory. RPlocal and FlexRPset with a small K
value are less memory-demanding, and they can still
work in such situation. The incremental approach is
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particularly helpful in such situation as it allows users
to have a result as early as possible.

In summary, both MinRPset and FlexRPset gener-
ate fewer representative patterns than previous work
RPlocal. MinRPset is often more expensive than RPlo-
cal. FlexRPset takes one extra parameter K, which
allows users to make a trade-off between result size
and running time. Users can make the trade-off con-
veniently using the incremental approach. When K is
small, FlexRPset is usually faster than or has similar
running time with RPlocal. We also allow users to re-
lax the conditions in the problem definition to further
reduce the number of representative patterns. Hence
our approach is a very flexible approach to finding
representative patterns.
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