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SUMMARY 

Since its discovery in 1986, the function of the 13 million Dalton vault 

complex has remained perplexing. Approximately three times larger than the 

ribosome, it is the largest ribonucleoprotein complex within the eukaryotic 

cell. With an enigmatic barrel-shaped structure and hollow interiors, vaults 

exhibit an intriguing 39 fold dihedral symmetry. About 70% of the complex is 

composed of the Major Vault Protein (MVP) which forms the exterior shell 

structure, while some vaults also harbor minor vault proteins, vault poly-ADP 

ribose polymerase (VPARP) and telomerase-associated protein 1 (TEP1), 

along with untranslated vault RNAs. This massive complex is conserved in a 

wide range of eukaryotes, but absent from model organisms like 

yeast, Arabidopsis, C.elegans and Drosophila raising speculation about its 

origin, evolution and function. Various hypotheses - that vaults could be a part 

of the nucelopore complex, could act as a molecular cargo-carrier, could 

effectively shuttle out drugs in multidrug resistance cancer cells or could play 

an important role in signaling cascades and immunity - have been postulated. 

But the lack of a distinct phenotype in knockout models has hindered 

researchers from defining a precise function for vaults. 

The current work focuses on unraveling the unique evolutionary 

history of vaults to track its origin, and also identify any subtle unifying traits 

in organisms with vault genes. A broad phylogenetic analysis of the vault 

particle genes including MVP, VPARP and TEP1 reveals a complex 

evolutionary pattern and clues to the ancestral roles of vault. It is evident that 

all eukaryotes and bacteria with vault genes have had an ancestral loss of 
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essential amino acid biosynthesis or nitrogen fixation, and hence are 

heterotrophic and largely autophagic, including one of the bacterial species. 

The MVP gene appears to have arisen in an ancient cyanobacterium that lost 

genes pertaining to nitrogen fixation and acquisition of vaults into distinct 

clades of heterotrophic eukaryotes and bacterial species appears to be the 

result of multiple events of horizontal transfer. The observations are consistent 

with an ancestral function for vaults as a stable amino acid storage complex 

complimenting loss of nitrogen fixation and amino acid biosynthesis. 

The efficacy of vault as an amino acid storage polymer was tested 

using compositional and theoretical biochemical analysis. There is a high ATP 

and carbohydrate energy equivalent of vault after amino acid recycling. A 

proposed synthesis-turnover based nutrient absorption function fits well with a 

number of reported vault expression and turnover patterns published in 

literature and other high throughput expression data. Key experimental 

observations associated with vault, including neuronal transport, accumulation 

in oocytes, and intrinsic immunity, can now be explained by this new 

proposed functional role of Vault. 

Though homologs of MVP are known to be present in single-celled 

organisms including Paramecium and Kinetoplastids, a majority of the vault 

characterization studies have been undertaken in multicellular eukaryotes. The 

only single-celled eukaryote in which vaults have been studied is the slime 

mold Dicytostelium discoideum,that displays growth defects on vault gene 

disruption under conditions of nutrient stress. To evaluate if the nutrient-

related roles of vaults extend to even those organisms that may have acquired 
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vault gene later in evolution through independent horizontal gene transfer 

events, the current study focused on characterizing vaults in ancient single-

celled eukaryote Kinetoplastid. It is shown that vault genes have undergone 

paralogous expansion in Kinetoplastids into three differentially diverging 

sequences (TbMVP1-3).Trypanosoma brucei can form vault-like structures 

and TbMVP1 sequence carries the inherent information that favors vault 

assembly. RNAi knockouts experiments reveal thatTbMVP1is not required for 

T. brucei under normal nutrient conditions, but affects the density of cell 

growth only under nutrient limiting conditions, similar to that displayed by 

Dictyostelium on vault gene knockout. The nutrient-phenotype that becomes 

obvious on vault gene knockdown in an evolutionarily distant single-celled 

eukaryote reiterates that the proposed roles for vaults in nutrient accumulation 

and storage may be an evolutionarily conserved feature. 
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Introduction 
 

 

 

While fractionating small subcellular structures including coated 

vesicles, ribosomes, smooth vesicles and ferritin from liver microsomal 

extracts using preparative agarose gel electrophoresis, Kedersha and Rome in 

1986 identified a discrete fraction that appeared as uniform structures with 

ovoid morphology under negative staining and transmission electron 

microscopy (negative EM) (Kedersha and Rome 1986). Under negative EM, 

these particles formed highly regular unique barrel-shaped structures 

measuring 65-70 nm and 35-40 nm in dimensions. These unusual subcellular 

structures were originally observed as contaminants in clathrin-coated vesicle 

preparations from rat liver tissues (Kedersha et al. 1986). With more than 70% 

of the structure dominated by a single polypeptide of mass 104 kDa that co-

migrates with a 100 kDa coated vesicle-associated polypeptide, it was 

speculated that these structures could be functionally related to clathrin-coated 
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vesicles. Though their fenestrated morphology bore some resemblance to 

those of clathrin-coats, it was established that these purified structures 

contained no clathrin and indeed were novel structures whose functions were 

unknown (Kedersha and Rome 1986). With a symmetric morphology 

reminiscent of the multiple arches of gothic cathedrals, the particles were 

named ‘Vaults’ (Kedersha and Rome 1986). 

Vaults, predominantly a protein complex with no detectable 

membranes, also harbor a single species of 5.6S RNA along with distinct vault 

associated proteins, making the complex the largest subcellular 

ribonucleoprotein complex. Its composition and structure mimics an RNA 

virus.  It is approximately three times the size of a ribosome, yet remained 

unnoticed until 1986. Even if vaults were found in cell preparations, they 

could have been mistaken for coated vesicles due to their ovoid morphology 

(Kedersha and Rome 1986). Conventional stains for EM are highly attracted to 

charged components of membranes and nucleic acids but show low affinity to 

protein material, thus particles like vaults are almost invisible using a positive 

stain. Vaults became apparent only after enrichment and negative staining as 

shown in Figure 1.1 (Rome et al. 1991). Vault structures of similar size and 

morphology have been isolated and observed from several eukaryotic species 

including the invertebrate sea urchins and the evolutionarily distant 

amoebozoan slime mold Dictyostelium(Hamill and Suprenant 1997; Kedersha 

et al. 1990).  While their wide distribution and conserved morphology is 

suggestive of an important function for vaults in eukaryotic cell, vaults are 

found to be conspicuously missing in certain other model eukaryotes including 

http://wizfolio.com/?citation=1&ver=3&ItemID=528&UserID=1682&AccessCode=EAD1DD51740B40D9883FEFDF4C66356F&CitationSuffix=
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http://wizfolio.com/?citation=1&ver=3&ItemID=578&UserID=1682&AccessCode=A3062EDC49CB45748C586A726D9613B9&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=286&UserID=1682&AccessCode=63BFBA55C82C47C0A6010BFECEF7D76E&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=286&UserID=1682&AccessCode=63BFBA55C82C47C0A6010BFECEF7D76E&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=310&UserID=1682&AccessCode=2AE1876E2BD440198A1CBB2FF1F11134&CitationSuffix=


3 
 

plants, insects (Drosophila melanogaster) and nematodes (Caenorhabditis 

elegans).  

 

 

 

Figure 1.1 Negative EM of highly structured vaults purified from various eukaryotic 

species 

(A) Vaults from rat liver; (B) Vaults from bullfrog liver; (C) Vaults from rabbit liver. Scale 

bar 100 nm. Figure reprinted from permission from (Kedersha et al. 1990)© Kedersha et. al 

and published by Rockefeller University Press. 
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1.1 THE DYNAMIC VAULT SHELL 

With a mass of about 13 million Daltons, vaults represent the largest 

ribonucleoprotein complex found in eukaryotic cells. Interest in characterizing 

its components and unveiling its function has been steady since the complex 

came to limelight. Mammalian vaults are composed of three proteins and also 

contain several copies of small-untranslated RNA termed the vault RNA 

(vRNA). The predominant 104 kDa polypeptide, named the Major Vault 

Protein (MVP), was found to be the same protein as the previously identified 

Lung Resistance Protein (LRP) that is overexpressed in multidrug resistant 

cancer models. (Tanaka et al. 2009).  Naturally occurring vaults also enclose 

minor vault proteins, 193 kDa vault poly-ADP ribose polymerase (VPARP) 

and 240 kDa telomerase-associated protein 1 (TEP1), along with a few copies 

of untranslated vRNA (vault RNA) that accounts for less than 5% of the entire 

structure(Kickhoefer et al. 1999; Kickhoefer et al. 1999; Kickhoefer et al. 

1993; van Zon et al. 2001).  

1.1.1 Structural Journey – Unveiling the Vault Cage 

Vault has a very unique structure, unlike any previously known 

macromolecule and efforts on understanding its architecture, structural 

complexity and assembly have been carried out using various techniques 

including TEM, cryo-EM, nuclear magnetic resonance (NMR) and X-ray 

crystallography. Electron micrographs revealed that vault particles display a 

barrel-shaped structure with an invaginating thin-walled ‘waist’ region and 

protruding ‘cap’ regions at either end. Studies based on quantitative scanning 

transmission EM suggested that each vault particle was symmetric and 

composed of two shell-like complexes joined together at the middle. Half-
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vaults were known to appear alongside intact vaults in preparations from 

Dictyostelium (Kedersha et al. 1990). Half-vaults can open into flower-like 

structures with each flower consisting of eight rectangular ‘petals’ based on 

observations using freeze-etch microscopy (Kedersha et al. 1991).  

Since, MVP accounts for more than 70% of the protein mass it was 

speculated that it constitutes the exterior shell of the particle (Rome et al. 

1991). Cryo-EM studies showed that the complex was indeed hollow with 

density around the central-barrel shaped cavity (Kong et al. 1999). The study 

also proposed an eightfold-symmetry for the vault complex based on three-

dimensional image reconstructions, however at low resolution of 31 Å.  Based 

on stoichiometric analysis, it was suggested that 96 molecules of MVP 

assemble to form the exterior shell of an intact vault complex.   

MVP monomers expressed in insect cells that do not have the MVP or 

related minor genes can assemble spontaneously into intact vault complexes, 

demonstrating that MVP is the primary molecule responsible for the structure 

of vaults (Kong et al. 1999; Stephen et al. 2001). These MVP-only structures 

were found to be hollow and displayed properties similar to that of native 

vaults. Baculovirus expression in insect cells has since been routinely used in 

obtaining recombinant vaults in quantity. Thus the MVP protein sequence 

contains all the inherent structural information that governs the 

multimerization and assembly of the entire vault structure.  

Deducing the structure of recombinant vaults with MVP N-terminal 

peptide tags using cryo-EM reconstruction techniques suggested that the 

internal density within the vault cage varied according to the length and size of 

the peptide tag. Reconstituting the structure using vaults with N-terminal 
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cysteine rich tags (cpMVP vaults) at 16-Å resolution also revealed a 48–fold 

rotational symmetry. Accordingly, it was suggested that 48 copies of MVP 

constitute each half vault and that two halves interact via non-covalent 

interactions between the N-terminal regions of MVP monomers at the vault 

waist region (Mikyas et al. 2004). These cryo-EM reconstructions also 

identified that the N-terminal region localize within the vault particle with 

their ends pointing towards the interior of the particle along the midsection 

(Mikyas et al. 2004). Thus, fusion tags engineered to the N-terminal region of 

MVP are generally packed within the interior space of the vault particle.  

MVP is characterized by short sequence pseudo-repeats of about 55 

amino acids occurring at the N-terminal half and also includes a long coiled-

coil domain towards the C-terminal end. The coiled-coil domain has been 

found to be important in the interaction of individual MVP monomers with 

each other, and hence considered essential for MVP multimerization and vault 

assembly (van Zon et al. 2002). NMR studies suggested that these sequence 

repeats constitute structural units that adopt β-sheet-rich-folds. Based on this 

analysis, it was suggested that the barrel structure was built from at least six 

repeating structural domains.  NMR analysis on a two-domain MVP fragment 

revealed a three-stranded antiparallel β-sheet with β2-β1-β3 architecture for 

each domain, with a flexible inter-domain linker region between β1 and β2 

and a more structured loop region between β2 and β3 (Kozlov et al. 2006). 

The first atomic model for vaults was proposed based on X-ray crystal 

structure data and computational model-building at 9-Å (Anderson et al. 

2007). Like the cryo-EM observations, a cage-like structure with invaginated 

waist and two protruding caps were proposed for recombinant cpMVP vaults. 
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Six distinct structural features namely ‘Waist’, ‘Barrel’, ‘Shoulder’, ‘Cap 

Helices’, ‘Crossover’ and ‘Double-layer cap disk’, were defined. A 48-fold 

dihedral symmetry was proposed with each MVP monomer folding into 14 

domains. However, at the ‘Crossover’ region, which forms the interface 

between the cap helix and the C-terminal cap disk region, it was suggested that 

the symmetry gets halved and this 24-fold symmetry is maintained in the C-

terminal cap disk region as well. Each half vault, representing an asymmetric 

unit of the crystal, was proposed to be built from 24 identical pairs of MVP 

chains A and B, the two chains being different conformations of the MVP 

protein. The two identical chains were suggested to assemble differently at the 

cap region, with the type A chains pointing outwards to form the cap region 

and the type B chains folding inwards, hence shaping to 24-fold symmetry at 

the cap region. A whole-vault model was assembled as a 41.7 nm x 41.7 nm x 

67.5 nm macromolecule.  

Several attempts to analyze the crystal structure of vaults followed. In 

one study, analysis of two dimensional crystals of naturally occurring vaults 

isolated from murine cells revealed 6-fold dihedral symmetry with vault 

particles arranged hexagonally and interacting with each other along the 

central barrel region (Querol-Audí et al. 2005). However, a 3-fold dihedral 

symmetry was revealed by three dimensional crystals of vaults from monkey 

cells with flat triangular morphology that diffracted to about 10-Å (Querol-

Audí et al. 2005). Concurrent with the reported 8-fold symmetry previously 

reported, it was suggested that the symmetry of vaults occurs in multiples of 

24-fold rotational symmetry.  
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While most of the studies pointed to a 48-fold dihedral symmetry for 

the vault particles, a high resolution structure demonstrated that rat liver vaults 

have an odd 39-fold dihedral symmetry based on crystal analysis at 10-Å 

resolution (Kato et al. 2008). Based on a tightly packed crystalline lattice with 

no overlap between individual particles, a dimension of about 40 nm x 40 nm 

x 70 nm was suggested for each vault complex.  On phase refinements by non-

crystallographic symmetry (NCS) averaging assuming 2-fold to 48-fold 

rotational symmetry, it was found that structures exhibiting 3-fold, 13-fold and 

39-fold symmetries revealed significantly lower reliability factors (R factors) 

and higher correlation coefficients. The deduced 39-fold dihedral symmetry, a 

unique observation for a macromolecular complex, was consistent with 

previously reported 3-fold symmetry observed in vaults isolated from monkey 

cells but challenged many earlier studies suggesting an eightfold or 48-fold 

dihedral symmetry. The detailed contours of the massive complex came to 

light after the X-ray crystal structure of rat liver vaults was resolved at 3.5-Å 

(Tanaka et al. 2009). The high resolution structure confirmed the 39-fold 

dihedral symmetry observed previously and also revealed that vaults assemble 

from 78 copies of MVP monomers, with 39 MVP chains in each half-vault and 

not from 96 copies as was believed earlier (Kato et al. 2008). This high 

resolution structure shows a graceful twist and packing of the coiled-coiled 

domain rather than the strange zig-zag structure in the previous low resolution 

model. The particle measures about 67 nm from top to the bottom with an 

internal cavity measuring about 62 nm x 35 nm (Figure 1.2). The cap region 

measures about 20 nm in diameter.  
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Figure 1.2 Structure of the Vault Complex 

(Left) The particle exhibits a 39-fold dihedral symmetry with 78 MVP chains assembling to 

form an entire complex. The particle displays a barrel-shaped structure with two protruding 

caps, two shoulders and an invaginated waist region. The two halves of the vault particle 

interact at the waist mediated by N-terminal domains of MVP. A single MVP chain is 

represented in red. (Right) Top view of the complex showing the cap ring region. From 

(Tanaka et al. 2009). Reprinted with permission from The American Association for the 

Advancement of Science.  

 

In contrast to the proposed 14 structural domains, the 3.5- Å structure 

shows that each MVP chain is comprised of nine structural repeat domains, a 

shoulder domain, a cap-helix domain and a cap-ring domain (Figure 1.3). End-

to-end association of structural repeat domain 1 was found to form the waist 

region. Except for domains 8 and 9 which assemble from five antiparallel β-

strands, the other repeat domains have two antiparallel β-strands, consistent 

with the NMR sub-structure (Kozlov et al. 2006). The structural domains end 

at the shoulder domain and assemble as four-stranded α helices on one side 

and four-stranded antiparallel β sheet on the other side, thus folding into a 
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single α/ β globular domain. This is followed by the cap-helix domain forming 

a spiraling 42-turn-long α helix that terminates as a U-shaped structure at the 

top of the cap forming the cap-ring domain. The self-assembly of MVP is 

attributed to 41 interactions that occurred specifically at the cap-helix region 

between two MVP subunits. The bulk of interaction strength arises from 

hydrophobic residues that appear at the interface between two helices 

contributing to specific hydrophobic interactions between two MVP chains. 

Although the N-terminal associations at the waist regions between two half-

vaults were found to be predominantly hydrophilic, the interactions were 

particularly weaker than the  hydrophobic interactions stabilizing the cap 

structure, thus explaining the appearance of half-vault structures that appear as 

flower-like structures (Kedersha et al. 1991).   
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Figure 1.3 Overall fold of an MVP chain 

The nine structural folded repeat domains in a single MVP chain  from rat are depicted as 

follows:  domain 1 (Met1-Pro55), purple; domain 2(Arg56-Thr110), pink; domain 3 (Pro111-

Ile163), light green; domain 4 (Gln164-Val216), coral; domain5 (Asp217-Val271), light blue; 

domain 6 (Pro272-Asp322), magenta; domain 7 (Val323-Gln378), yellow; domain 8 (Ala379-

Arg456), red; domain 9 (Val457-Gly519), cyan. The shoulder domain (Pro520-Val646),green; 

cap-helix domain (Asp647-Leu802), purple; and cap-ring domain (Gly803- Ala845), dark red. 

From (Tanaka et al. 2009). Reprinted with permission from The American Association for the 

Advancement of Science.  

 

 

Though the vault complex exhibits structural stability over a wide 

range of pH, temperature and cellular conditions, studies have established that 

the exterior shell is dynamic in nature (Esfandiary et al. 2008; Kedersha et al. 
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1991; Yang et al. 2010). At low pH conditions (pH 3.4) the complex loosens 

its associations along the midsection and dissociates into half-vaults (Figure 

1.4). In one of these studies, FRET revealed that individual MVP monomers 

can be exchanged between vault particles. The complex, as a whole, can 

spontaneously disassemble at the waist region and reassemble back into intact 

vault particle without compromising its structure, suggestive of a half-vault 

exchange. The ability of the complex to dissociate into half-vaults may be an 

important mechanism through which vaults interact with their cellular 

environment. However, the functional significance of this dynamic behavior is 

unexplained.  

 

 

Figure 1.4 Vault dissociation into two halves 

At low pH conditions, as in lysosomes, charge repulsion induces the disassembly of the 

particle along the waist region to form two half-vaults. The half-vault moiety can open up into 

a flower like structure as shown in right side of the figure. Figure reprinted with permission 

from (Querol-Audí et al. 2009). 
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1.1.2 Looking inside – Exposing Locations of Minor Vault 

Constituents 

While initially it was known that vRNA does not contribute to the 

structural integrity of the vault complex, the exact location and roles of the 

minor vault proteins VPARP and TEP1remainedunclear (Kedersha and Rome 

1986; Rome et al. 1991). Though the exact stoichiometry of the minor vault 

proteins associating remains uncertain, it has been estimated that about 4-16 

VPARP and 2-4 TEP1 molecules are found in intact vaults (Berger et al. 

2008). Expression of recombinant vaults in insect cells shows that VPARP and 

TEP1, when co-expressed separately or in combination with MVP, are 

incorporated into intact vault particles, and exhibit independent interaction 

with MVP. One yeast two-hybrid assay did not reveal any interaction between 

TEP1 and MVP or VPARP (van Zon et al. 2002). This hinted that TEP1only 

binds to intact vaults, instead of  individual MVP chains.  The ratio of 

incorporation of VPARPtoTEP1in recombinant vaults is higher than that in 

endogenous vaults (Mikyas et al. 2004).  Co-expression of MVP along with 

minor vault proteins resulted in formation of recombinant vaults that were 

more structurally stable and regular.  

In spite of an internal cavity large enough to enclose other 

macromolecules, the vault shell does not accumulate other proteins within its 

hollow interior excepting the minor vault proteins. The minor vault proteins 

can accumulate after the assembly of MVP is complete, suggesting a dynamic 

opening of vault exterior shell (Poderycki et al. 2006). Despite this 

observation, there has been no evidence of non-specific proteins being 

enclosed within the vault interior.  
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Cryo-EM images or TEM of negatively stained vault preparations 

consistently reveal regions of interior density, believed to arise from minor 

vault proteins. The production of recombinant vaults in large quantities proved 

useful in determining the location of VPARP, using various single-particle 

reconstruction techniques. Using differential mapping of cryo-EM 

reconstructions of various recombinant and tissue-derived vaults, VPARP 

molecules appear tucked within the inner waist surface of vault particles.  

A C-terminal sequence fragment of VPARP from 1562-1724 aa, 

termed the MVP interaction domain (mINT), was established as its assembly 

domain with MVP as established by a yeast-hybrid screen (Kickhoefer et al. 

1999). When various non-vault associated proteins including luciferase, GFP 

or mCherry were fused with mINT domain, the expressed recombinant vaults 

successfully enclosed the fusion protein within its hollow cavity(Kickhoefer 

2005; Kar et al. 2011). Cryo-EM and single-particle image reconstruction 

revealed that the recombinant vaults containing mINT fusion proteins exhibit 

properties similar to those of endogenous vaults, however, display additional 

density along the central barrel region (Kickhoefer 2005). Interaction studies 

using various MVP and VPARP truncated proteins established that N-terminal 

part of MVP could interact with the C-terminal region of VPARP containing 

the mINT domain (van Zon et al. 2002). Thus, the increased density found 

along the vault barrel region, particularly immediately above and below the 

waist regions, has been attributed to the interaction between mINT region of 

VPARP and N-termini structured region of MVP monomers. that the mINT 

region interacts with purified recombinant vaults and gains access to its 

interior surface even in the absence of cell extracts (Poderycki et al. 2006). 
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NMR experiments further suggested that VPARP mINT specifically 

binds to the exposed folded domains spanning 113-221 aa in MVP and that 

binding of VPARP does not impose major conformation changes in MVP 

molecule (Kozlov et al. 2006). Based on electrospray mobility analysis of 

vault complexes, it was calculated that about 9.5 VPARP molecules could be 

incorporated into preformed vaults similar to the calculated 8.3 enclosed 

copies of VPARP arising from co-expression in insect cells. 

The second minor vault protein, TEP1, with a notable RNA binding 

domain, is a constituent of another ribonucleoprotein, the telomerase complex. 

SinceTEP1is known to interact with telomerase RNA, it was speculated that 

the vault bound TEP1was responsible for binding vRNAs. This was confirmed 

by a yeast three-hybrid assay (Kickhoefer et al. 1999). It was found that 

TEP1residues 270-871, which comprise the p80 homology region, bind to 

both telomerase RNA and vRNAs (Poderycki et al. 2005).  

Comparisons of intact vault reconstructions with RNase-treated vaults 

suggested that vRNAs are contained within the cap region on both ends. Cryo-

EM reconstructions of RNase-treated vaults identified a dense region within 

the vault cap with a proposed 16-fold symmetry (Kong et al. 2000). 

TEP1contains 16 WD40 repeats at its C-terminus. The WD40 repeats are 

known to fold together as organized beta-propeller structures. This was 

thought to correlate to the 16-fold WD40 repeat of TEP1and was modeled 

accordingly along the cap region in close associations with vRNA, confirming 

the proposed 8-fold symmetry (Kong et al. 2000). However, another study 

reported 5 additional WD40 repeat regions and proposed that TEP1 may 

structurally fold as three connected seven-bladed propellers, as the seven-
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bladed β-propeller structure was a known feature of many WD-repeat 

containing proteins (Mikyas et al. 2004). Though cryo-EM reconstructions of 

vaults isolated from TEP1
-/- 

mice display overall structural features similar to 

those from wild type, the cap region density attributed to vRNA was missing. 

On comparing reconstructions of RNase-treated vaults with TEP1
-/- 

vaults, it 

was apparent that while the 16-fold dense region around the outermost edge 

was preserved in both reconstructions, regions of less density were identified 

within an intermediate ring in vaults isolated from TEP1
-/- 

mice. This led to the 

mapping of TEP1 to the protruding cap region, as was previously predicted 

based on structural modeling (Kickhoefer et al. 2001). Differential density 

mapping of various recombinant and tissue derived vaults, however, revealed 

very weak differential density within the cap cavity region and thus it was 

suggested that only a small region of TEP1 could possibly be involved in 

interaction with the vault interior (Mikyas et al. 2004).   

Recombinant vaults produced by co-expression of various 

TEP1truncations, revealed that only those proteins that retained the p80 

homology domain were successfully encaged within vault complexes 

(Poderycki et al. 2005). Though vRNA is found in close associations with 

TEP1, it does not mediate association of TEP1 with vaults. Akin to the mINT 

domain for VPARP, the p80 homology domain in TEP1 facilitates its 

association with both intact vault complexes and bound vRNA. It is also 

known that TEP1 is responsible for stable association of vRNA with vault 

particles as vaults purified from TEP1
-/- 

mice showed only small traces of 

vRNA(Kickhoefer et al. 2001). Approximately, three- to fivefold-reduced 

levels of vRNA have been reported in TEP1
-/- 

mice, suggestive that stability 
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and accumulation of vRNA within the vault is dependent on TEP1. A direct 

correlation between vRNA stability and TEP1was shown by comparing the 

half-lives of vRNA from wild type and TEP1
-/- 

mice. The vRNA half-life was 

reduced to about 0.5-1 hour in TEP1
-/- 

mice as against 4-6 hour in wild type 

mice. ThusTEP1acts as a vRNA stabilizing molecule, facilitating its 

localization within the internal cavity of the vault caps. However the role of 

this accumulated and stable vRNA within the vault complex remains unclear. 

1.1.1 Vault Components – A Perspective 

1.1.1.1 MVP 

The protein responsible for the cage-like structure of vault, MVP, is a 

unique and highly conserved protein through evolution. MVP can 

spontaneously assemble to form intact vault particles without minor vault 

constituents, implying that MVP primarily exhibits its cellular function as 

structured vault particles. With equilibrium favoring vault assembly against 

free MVP monomers, experiments show it takes about 4 hours for newly 

synthesized MVP chains to assemble into an intact vault particle (Zheng et al. 

2005).  Pulse-chase experiments have established that MVP assembled as vault 

particles represent a highly stable macromolecule structures with an apparent 

half-life of about 3 days (Zheng et al. 2005). The structural similarity of vaults 

isolated from a wide range of organisms including single-celled slime molds 

and multicellular metazoans, can be attributed to the conserved sequence of 

MVP.  

The conserved coiled-coil domain at the C-terminal region of MVP 

makes up the stable cap-helix region in vault particles and mediates 

interactions between individual MVP monomers, thus enabling vault 
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assembly. Abolishing the coiled-coil domain, either entirely or partly, affects 

interactions between MVP monomers and disrupts assembly (van Zon et al. 

2002). Motif analysis shows at least two putative EF-hands at the N-terminal 

region of MVP hinting at possible calcium or magnesium binding sites. EF-

hands are marked by a loop structure separated by two alpha helices, with 

residues in the loop involved in calcium binding. Calcium-binding assays have 

confirmed that the N-terminal region of MVP effectively binds calcium 

through these EF-hand motifs (Yu et al. 2002). MVP also interacts with PTEN, 

a tumor suppressor gene involved in the regulation of cell-cycle, in a calcium-

dependent manner and also mediates its nuclear translocation (Yu et al. 2002; 

Minaguchi et al. 2006).   

MVP is a widely expressed protein in many different cell types. The 

high expression of MVP in certain metabolically active cells provides vaults in 

high copy numbers. Mammalian cells have up to 10
4
 vaults and sea urchin 

oocytes harboring around 10
7
 vaults (Kickhoefer et al. 1998; Hamill and 

Suprenant 1997). Both the mRNA and protein levels of MVP have been found 

to be elevated in a certain cellular conditions including cancer related 

multidrug resistance, cell aging, rapidly dividing tumors, cell regeneration, 

oocyte/embryo development and intracellular infections. Mammalian MVP 

expression is up-regulated by the cytokine interferon-gamma, displaying 

increased levels of transcription and translation (Steiner et al. 2006). The 

proinflammatory cytokine primarily secreted by macrophages, tumor necrosis 

factor-alpha, negatively regulates expression of MVP at both mRNA and 

protein levels (Stein et al. 1997). A relatively small increase in transcription 

level magnifies the protein levels of MVP by many folds, suggestive of high 
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translation efficiency. This phenomenon has been observed in interferon-

gamma induced cells and also in actively regenerating cells (Steiner et al. 

2006). This suggests that the expression of MVP may be regulated at the post-

transcriptional level and the MVP mRNA is stabilized to allow enhanced 

translation resulting in elevated protein levels. Paradoxically, the high level of 

expressed cellular MVP is often accompanied by an increased MVP turnover 

rate, resulting in rapid degradation of the produced protein. Thus, protein 

stability seems to be compromised when MVP accumulates in the cell in 

response to various cellular conditions (Li et al. 1999; Steiner et al. 2006; 

Sutovsky et al. 2005). 

 The human MVP gene maps to chromosome position 16p11.2 and the 

promoter is TATA-less, akin to the murine counterpart. The regulatory human 

promoter region is marked by several transcription factor binding sites 

including an inverted CCAAT box, a GATA box, an E box and a GC box 

element, and is also defined by specific activating or inhibitory regions (Lange 

et al. 2000; Steiner et al. 2004). The expression of MVP at the transcriptional 

level involves binding of specific transcription factors during different cellular 

conditions.  Deletion analysis confirmed the GC-box element as a necessary 

region for basal MVP promoter activation. It has also been reported that the 

upstream gene region is positively stimulated by binding of several Sp-family 

transcription factors (Steiner et al. 2004).  Additional consensus binding for 

STAT1 (GAS element), activated upon interferon-gamma induction, has also 

been found on the core activating sequences in the promoter region. The 

inhibition of histone deacetylase (HDAC) leads to both transcriptional and 

translational upregulation of MVP.   
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It has been established that p53 binds to a response element within the 

Y-box region in the human MVP promoter region and negatively regulates 

vault expression. The binding of the HDAC2-p53 transcriptional repressor 

complex to the Y-box region has been found to repress the expression of MVP 

via interaction with YB-1 (Tian et al. 2011). The expression of MVP is also 

believed to be controlled by a mechanism of alternative splicing. An 

alternative 3’-splice site in intron 1 results in a longer splice variant within the 

5’- untranslated region of MVP mRNA (Lange et al. 2000). The longer variant 

appears to contain a small upstream open reading frame that represses 

expression of MVP, both in vitro and in vivo, and hence suggested a role in 

regulating MVP expression, particularly during malignant transformations 

(Holzmann et al. 2001). In murine promoters, essential regulatory elements 

have been mapped to regions of the first exon spanning all the way until the 

5’-end of first intron (Mossink et al. 2002).  

 

1.1.1.2 VPARP 

Characterization of the minor vault proteins that constitute naturally 

occurring vaults led to the identification of a 193 kDa protein that interacts 

with MVP in a yeast two-hybrid screen and also shares 28% identity with the 

catalytic domain of poly (ADP-ribose) polymerase (Kickhoefer et al. 1999). 

The novel protein termed the Vault Poly (ADP-ribose) Polymerase was found 

to catalyze the formation of poly (ADP-ribose) polymers, hence has been 

regarded as a novel PARP family protein. The PARP family of proteins 

represents a group of protein-modifying and nucleotide-polymerizing enzymes 

that play key roles in DNA repair, genomic stability, cell death, transcriptional 
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control and epigenetic regulation. Predominantly nuclear enzymes, they 

catalyze the attachment and elongation of poly-ADP-ribose units to glutamic 

and aspartic residues to target proteins and onto themselves using NAD+ as a 

substrate (Citarelli et al. 2010).  

At least 17 different members of this family, each encoded by different 

genes yet with overlapping functions, have been documented thus far. Of the 

distinctly identified members, including PARP-1, PARP-2, PARP-3, PARP-4 

(VPARP), tankyrase 1 and tankyrase 2, the nuclear PARP-1 involved in 

genomic stability remains the best-characterized protein. Poly (ADP-) 

ribosylation has been implicated in a wide range of cellular conditions 

including apoptosis, cancer, inflammation, neurodegeneration and brain 

damage. Evolutionary analysis of the PARP family of proteins suggested that 

an ancient eukaryotic ancestor harbored at least two PARP genes, one among 

them being highly similar to PARP-1 functioning in DNA repair (Citarelli et 

al. 2010). The expansion of PARP encoding genes into a broad family of 

PARP proteins over evolutionary time underscores their functional 

significance in diverse cellular processes. Because of its involvement in DNA 

repair and the observed tumor-suppressor effects of PARP inhibitors, the 

PARP proteins, particularly PARP-1, have been regarded as a potential target 

for cancer therapy (Wang et al. 2012; Basu et al. 2012; Lavarone et al. 2013).  

The VPARP gene mapping to chromosome 13q11 encodes a multi-

domain protein characterized by a PARP domain, BRCT domain, a putative 

van Willebrand type A domain (vWA) and a vault inter-alpha-trypsin domain 

(VIT) apart from the mINT domain that mediates interaction with MVP. A 

subset of total cellular VPARP is vault-associated and co-localizes with MVP, 
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observed as punctate patterns, in the cytoplasm of many cell types. Owing to 

its dynamic exterior shell, it has been found that vaults incorporate VPARP 

within their interior surface in about 1.5 hours (Zheng et al. 2005; Poderycki et 

al. 2006).  This is unlike many PARP proteins which display a predominant 

nuclear localization. In addition to ribosylating themselves, it has been found 

that vault-associated VPARP are also capable of ribosylating MVP, albeit with 

lower ribosylation efficiency compared to other PARP proteins. Whether poly 

(ADP-) ribosylation affects MVP or the conformation of intact vault 

complexes is yet to be explored.  

A fraction of VPARP is also localized within the nucleus but shows no 

co-localization with MVP, suggestive of a non-vault associated fraction. A 

portion of the nuclear VPARP also aligns along the mitotic spindle. In spite of 

belonging to the PARP family of proteins, which respond to DNA damage, no 

change in distribution of VPARP was detected following UV-treatment of cells 

(Kickhoefer et al. 1999). Contrary to the yeast two-hybrid assay, which failed 

to detect any interactions between VPARP and TEP1, co-immunoprecipitation 

of TEP1 along with non-vault associated VPARP was observed in cells 

transfected with both genes. However, this interaction is dubious as no such 

interactions could be observed between the endogenous minor vault proteins. 

Overexpressed VPARP, lacking both vWA and mINT domain, is also reported 

to display telomerase activity. It should be remembered that PARP proteins 

are responsible for chromosomal stability and also directly control telomere 

length (d'Adda di Fagagna et al. 1999). In spite of the reported telomerase 

activity, VPARP
-/-

 mice displayed no significant telomere abnormalities. The 

length and structure of telomere, telomerase activity and stability was 
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comparable to those of wild-type mice and remained unchanged in knockout 

mice, thus questioning the reported telomerase activity in VPARP transfected 

cells. It has also been established that VPARP plays no role in maintaining 

chromosomal stability or processes related to DNA damage repair.  This 

suggests that vault-associated VPARP has distinct roles to play and may not be 

directly involved in genome stabilization or repair like other conventional 

PARP proteins. The only reported phenotype for VPARP knockout mice is its 

increased susceptibility to carcinogen induced colon and lung tumorigenesis 

(Raval-Fernandes et al. 2005).  

Wrapping within the interiors of vault significantly increases the 

stability of VPARP, giving it an apparent half-life of at least 40 hours. While 

evolutionary analyses have revealed existence of VPARP based on sequence 

homology in single-celled Dictyostelium, no evidence on its expression or 

function has been described in any lower or single-celled eukaryotes (Citarelli 

et al. 2010). For instance, the single-celled protist Trypanosoma encodes 

proteins that display significant homology to MVP from higher eukaryotes; 

however no protein homologous to VPARP is encoded in its genome. It should 

be noted that VPARP is not essential for vault assembly and does not influence 

the incorporation of other minor vault constituents. This hints that 

incorporation of VPARP into vaults is an event that occurred late in evolution. 

However, the exact functions of VPARP being associated with vaults or even 

otherwise are unknown as yet. Thus, VPARP joins the likes of its host 

complex, the intriguing vault particle, and remains elusive thus far. 
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1.1.1.3 TEP1 

The 240 kDa minor vault protein that appeared along with VPARP in 

vaults isolated from rat liver was found to be identical to the previously 

described mammalian telomerase-associated protein, TEP1(Harrington et al. 

1997; Kickhoefer et al. 1999). The genes towards the ends of a chromosome 

are inherently maintained intact by addition of new telomeres to the existing 

ends of chromosome catalyzed by the telomerase ribonucleoprotein. The 

mammalian homolog to the Tetrahymena p80 telomerase protein, TEP1 

potently interacts with mammalian telomerase RNA and hence is alleged to be 

a part of the telomerase complex (Harrington et al. 1997). Based on co-

purification of Tetrahymena p80 protein with telomerase activity on 

immunoprecipitation with anti-serum, it was believed that p80 also exhibits 

significant interaction with the catalytic protein component, the telomerase 

reverse transcriptase (tTERT). However, interaction studies in Tetrahymena 

ruled out any association between p80 protein and tTERT, raising speculations 

on the role of p80 in telomerase activity (Mason et al. 2001). Hence, it was 

suggested that p80 protein was not a core telomerase specific component and 

displayed affinity to other RNA as well (Mason et al. 2001).  

TEP1interact as well as stabilize the association of vRNA within the 

interior cap region of the vault ribonucleoprotein (Poderycki et al. 2005; 

Kickhoefer et al. 2001). In spite of the association of TEP1, purified vaults 

neither display telomerase activity nor associate with telomeres (Kickhoefer et 

al. 1999). TEP1
-/-

 embryonic stem cells (ES cells) or mice do not differ 

significantly in their telomerase activity and distribution or mean length of 

telomeres from their wild type controls and remain fertile with no 
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developmental defects (Liu et al. 2000).  A double-knockout VPARP
-/-

TEP1
-/-

 

mouse strain displayed no chromosomal abnormalities and appeared normal 

with unaltered telomerase activity, excluding any functions related to 

telomerase catalysis for the minor vault proteins. Consequently, a more 

structural role of TEP1 in the assembly of the complexes was proposed based 

on its association with the two unrelated ribonucleoprotein complexes, vaults 

and telomerase. 

Whether TEP1 influenced the assembly of the ribonucleoproteins was 

studied in a series of experiments using a TEP1
-/-

 knockout model (Kickhoefer 

et al. 2001; Liu et al. 2004). TEP1plays no role in telomerase RNA processing 

or stability and does not influence its association with telomerase complex. 

This pointed to additional telomerase RNA binding proteins that may aid 

assembly of telomerase complex, making TEP1a functionally redundant 

protein. In contrast, TEP1 in vaults stabilizes vRNA, as evident from reduced 

half-life of vRNA from TEP1
-/-

 mice (Kickhoefer et al. 2001).  

Transcribed from 14q11.2 genomic loci, the TEP1 protein is 

characterized by several conserved domains including the p80 homology 

domain that mediates interaction with telomerase RNA and vRNA. 

Interestingly, the p80 homology domain is also sufficient to allow its 

interaction with intact vault complexes. Based on domain analysis, an 

evolutionarily conserved binding domain potentially involved in RNA-binding 

activity termed the TROVE module was identified in several RNA-interacting 

proteins including Tetrahymena p80, TEP1 and Ro RNP protein component, 

Ro 60, that interacts with the Y RNA (Bateman and Kickhoefer 2003). A 

vWA domain is also commonly present in all these RNA binding proteins. It 
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has been found that removal of the vWA domain interferes with the ability of 

TEP1 to bind vRNA and it is believed that vWA domain could probably 

maintain the conformation of the RNA-binding domain in the TROVE module 

(Poderycki et al. 2005)Notably, a vWA domain is also present inVPARP.  

In spite of the fact that TEP1 can interact with both telomerase and 

vault RNA, purified vault preparations only include vRNA and no traces of 

telomerase RNA. These details point to distinct mechanisms forTEP1in 

different complexes, binding to either vRNA or telomerase RNA and allowing 

for specific targeting towards vaults or telomerase complex, respectively. 

While TEP1 is stably enclosed within the interior surface of vault cap regions, 

no specific interactions have been established between MVP monomers and 

TEP1(Mikyas et al. 2004; Poderycki et al. 2005; van Zon et al. 2002). This 

emphasizes that the interaction between TEP1 and MVP occurs by virtue of 

the assembled vault structure cap region, within which TEP1 binds. Finally, 

WD40 repeat regions are found towards the C-terminus of TEP1 and they 

have been modeled within the cryo-EM density of the vault cap regions (Kong 

et al. 2000). Whether vault-associated TEP1 has additional roles to play, apart 

from stabilizing vRNA within vault interiors, remains ambiguous. 

1.1.1.4 vRNA 

In addition to the minor vault proteins, vaults isolated from a number 

of multicellular eukaryotes also featured untranslated vault RNAs that localize 

within the cap region and constitute about 5% of the total mass of a vault 

particle (Kedersha and Rome 1986). While in rats and mice only a single 

vRNA, 141 bases long, has been described, human vaults have been found to 

accommodate three vRNA sequences that vary from 86- 89 bases (Kickhoefer 
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et al. 1993; Kickhoefer et al. 1999). The vRNA genes, named hvg1-3, are 

arranged as a triplet-repeat structure on chromosome 5q33.1 (van Zon et al. 

2001). Based on homology search, a fourth vRNA gene, hvg4 has also been 

described and it is mapped on to Xp11.2 genomic loci. The vRNA gene is 

composed of a novel RNA pol III promoter containing two different classes of 

promoter elements, namely the external 5’flanking type-3 and internal type-2 

promoter elements (Vilalta et al. 1994). The two promoter elements function 

synergistically and mediate transcription by RNA polymerase III (Kickhoefer 

et al. 1993; Vilalta et al. 1994). The conserved internal promoter elements are 

marked by one A box and two B boxes (B1 and B2) (Vilalta et al. 1994; 

Kickhoefer et al. 2003). The region upstream of the transcription start site in 

all vertebrate vRNA genes includes a TATA box as well as a conserved 

proximal and distal sequence element defining the external promoter region 

(Kickhoefer et al. 2003).  

The hvg1vRNA transcript associates with the vault complex 

(Kickhoefer et al. 2001). A yeast three-hybrid screen demonstrated that 

vRNAs, hvg1, hvg2 and hvg4 could interact with TEP1, hinting at the 

association of the varied vRNA within intact vault complexes (Kickhoefer et 

al. 1999). Expression analysis of various human cell lines demonstrated that 

hvg1 was much more effectively expressed while hvg2 and hvg3 show low 

expression levels (Walker et al. 2004). Kickhoefer et al. demonstrated that 

hvg1 and hvg4 consistently co-purify with vaults as opposed tohvg2 and hvg3 

(Kickhoefer et al. 1999). Contrary to this, another study established that hvg4 

gene is not expressed in many analyzed cell lines (van Zon et al. 2001). It is 

interesting to note that the promoter regions of both hvg4 and a pseudo gene 
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described in mouse, mvg2, do not share significant regions of identity with the 

upstream regions composed of type-3 TATA and other conserved regions 

defining the external promoter elements of hvg1-3 (Kickhoefer et al. 2003). 

Given the importance of upstream promoter elements in transcribing vRNA, 

the expression and association of hvg4 with vaults is highly speculated and 

hvg4 is widely regarded as a pseudo gene(van Zon et al. 2001; Stadler et al. 

2009).  

It should be noted that a majority of vRNA is cytoplasmic in nature and 

only a small fraction of the expressed vRNA associates with vaults (van Zon et 

al. 2001). In spite of the fact that multiple human vRNAs hvg1-3 can associate 

with vault complexes, it has been experimentally determined 80% of the vRNA 

in vault complexes is constituted by hvg1, making it the predominantly 

associated species (van Zon et al. 2001). Evolutionary analysis suggested that 

hvg2 and hvg3 are genes that arose out of a recent duplication event (Stadler et 

al. 2009). In multidrug resistant cell lines in which vaults are more often 

overexpressed, the association of hvg3 with vaults increases (van Zon et al. 

2001). This highlighted the varied nature of the multiple vRNAs and suggested 

that they exhibit different levels of affinities to vault particles depending on 

cellular conditions.  

The known vRNA genes in all gnathostomes map to a conserved region 

linked to the protocadherin-α cluster encoding a family of synaptic adhesion 

molecules (Stadler et al. 2009). A novel non-coding RNA termed CBL-3 

displayed elevated expression levels in addition to canonical vRNAs (hvg1-3) 

in human lymphocytes exposed to Epstein-Barr virus infection (Nandy et al. 

2009). Interestingly, the CBL-3 transcript was found to co-purify with vaults 
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and hence was proposed as a novel vault complex-associating RNA. Based on 

homology search it was later identified as a new vRNA gene that syntenically 

maps to the TGFB1-SMAD5 locus in all eutherian mammals as against the 

canonical locus for most of the described vRNA genes (Stadler et al. 2009).  

The vRNAs do not mediate structure assembly of the vault particles as 

their digestion with ribonucleases still maintains the unique morphology of the 

vault particle, albeit with less density within the cap regions (Kong et al. 2000; 

Kickhoefer et al. 2001). Apart from its interaction with TEP1, vRNA has also 

been found to interact with La RNA-binding protein in-vivo and in-

vitro(Kickhoefer et al. 2002). The La phosphoprotein is known to associate 

with small-untranslated RNAs prior to their incorporation into larger 

ribonucleoproteins via the polyuridine-rich sequences found at the 3’end of 

RNAs transcribed by RNA polymerase III (Maraia and Bayfield 2006; Ford et 

al. 2001). In contrast to its usual transient associations with RNAs, La binds 

more stably with vRNA as the latter remains unprocessed and retains the 

polyuridylate tail at the 3’end intact. Since the La RNA-binding protein 

loosely purifies with vaults, it is believed that it could promote the vRNA-

TEP1 interaction within vault complexes (Poderycki et al. 2005).  The 

functional significance of the multiple copies of vRNAs in many eukaryotic 

species and why they are targeted to the interior of the vault complex remains 

mysterious thus far. 

 

1.2 CELLULAR FUNCTIONS ASCRIBED TO VAULTS 

Vaults were initially believed to diffuse freely through the cytoplasm 

(van Zon et al. 2006). However, on observations using enhanced-video 
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microscopy and FRAP analysis, vaults were found to move with a velocity of 

about 10 µm/s, suggestive of fast active transport (Slesina et al. 2006). This 

phenomenon showed high coherence with previous reports on fast anterograde 

and retrograde axonal transport of vaults, along the axons of electric ray, akin 

to the transport of synaptic vesicles and mitochondria along microtubules (Li 

et al. 1999). The movement of vaults within the cell is attributed to their 

association with cytoskeletal elements, particularly microtubules, and the 

involvement of molecular motors (Kedersha and Rome 1990; van Zon et al. 

2006). The co-localization and co-purification of microtubules with MVP have 

been observed in varied cell types and even after microtubule disassembly, 

specific interactions between vaults and tubulin dimers/oligomers remain 

intact (Herrmann et al. 1999; van Zon et al. 2006; Hamill and Suprenant 1997; 

Slesina et al. 2006; Eichenmüller et al. 2003). It has been observed that about 

5-6 vaults can associate with 1 µm-long microtubule, and the binding 

interaction has been found to occur along the vault cap regions (Eichenmüller 

et al. 2003). It has been found that microtubule depolymerization, in addition 

to resulting in slower vault movements, also causes vaults to aggregate into  

cylindrical dynamic structures termed ‘vault-tubes’(van Zon et al. 2006; van 

Zon et al. 2003). Though a number of studies have found vaults to co-localize 

with actin, a direct interaction between the two molecules has not been 

described (Kedersha and Rome 1990; Herrmann et al. 1999; Slesina et al. 

2006).  

In spite of their ubiquitous cytoplasmic distribution, vaults have been 

found to particularly accumulate along filamentous actin-rich lamellipodia of 

spreading fibroblasts, stress fibers and cell adhesion sites, neuritic tips, 
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presynaptic compartments, lipid rafts and along growth cones, in response to 

various cellular signals by virtue of their cytoplasmic transport mechanisms 

(Kedersha and Rome 1990; Herrmann et al. 1999; Herrmann et al. 1996; 

Kowalski et al. 2007).  

The observation of vault’s hollow structure, transported along the 

microtubule over long distances within the cells, provided an intriguing 

possibility for function. In a “form follows function” approach, it was 

hypothesized that vaults acted as molecular cargo-carriers. Vaults began to be 

regarded as molecular cargo-carriers that shuttle proteins or other molecules 

within cells. Some assumptions about vault functions are indeed based on the 

cargo-carrier hypothesis. Are vaults really involved in transporting cargo? Do 

they have other significant cellular roles to play? Are they really important to 

cell viability? In the next section, hypotheses about vault functions and their 

experimental support are discussed.  

 

1.2.1 Do Vaults Mediate Drug Efflux and Multidrug 

Resistance? 

Apart from the multidrug resistance protein (MRP) and P-glycoprotein 

(MDR1), chemotherapy resistant tumor cells were also found to frequently 

overexpress a lung resistance-related protein LRP, the expression of which 

was believed to serve as a marker to predict response in acute myeloid 

leukemia and ovarian cancer. LRPis in fact MVP(Scheffer et al. 1995). The 

observation that MVP was overexpressed in a number of cancer models, 

particularly those displaying multidrug resistance, and that it mapped proximal 

to MRP positioned at chromosome 16p13.1, raised questions concerning the 

role of vault expression in drug resistance (Slovak et al. 1995; Kickhoefer et 
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al. 1998; Steiner et al. 2006; Rimsza et al. 1999; Sasaki et al. 2002; Izquierdo 

et al. 1998; den Boer et al. 1998).   

Vaults have been known to be highly expressed in metabolically active 

cells including tumor cells, epithelial cells of lungs and digestive tracts, 

regenerating cells, macrophages and dendritic cells and also developing 

embryo (Hart et al. 1997; Berger et al. 2001; Izquierdo et al. 1996; Pan et al. 

2013; Schroeijers et al. 2002; Stewart et al. 2005; Sutovsky et al. 2005). The 

high expression of MVP in the above-mentioned tissues, which are frequently 

prone to attack by xenobiotics, suggested that vaults may be involved in 

protecting the cells from toxic compounds. Elevated levels of MVP persist in 

tumor cells resistant to a wide spectrum of chemotherapeutic drugs (Berger et 

al. 2008). HDAC inhibitor driven overexpression of MVP in colon carcinoma 

cells was reported to correlate with less sensitivity of cells to doxorubicin, 

etoposide, vincristine and paclitaxel, thus associating MVP with drug 

sequestration and efflux (Kitazono et al. 1999). It was pointed out that 

doxorubicin, which is known to accumulate in nucleus, was rapidly effluxed in 

cells overexpressing MVP and that inhibition of MVP using ribozymes altered 

drug efflux.  

Along with MVP, overexpression of vRNA, particularly hvg1, in 

glioblastoma and leukemia derived multidrug resistant cell lines and increased 

incidences of carcinogen induced tumors in VPARP deficient mice seemed to 

convince researchers all the more about mediation of drug resistance by vaults 

(Gopinath et al. 2005; Raval-Fernandes et al. 2005). Increase in levels of 

vaults and vault-associated proteins were constantly being associated with 

non-P-glycoprotein mediated multidrug resistance. The theory of ‘vault-
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mediated drug efflux’ became quite popular and prompted several clinical 

studies to correlate MVP expression to observed drug resistance, heralding 

vaults as a promising prognostic marker for chemotherapy outcome.  

While it seemed convincing that vaults are involved in multidrug 

resistance and function as drug sequesters, Mossink et al.showed that vaults 

are not involved in mediating resistance to cytostatic agents (Mossink et al. 

2002). They found that the embryonic stem cells and bone marrow cells 

derived from MVP-knockout mice, which are viable, healthy and display no 

obvious abnormalities, did not reveal any significant increase in sensitivity to 

various cytostatic drugs they were exposed to, compared to wild-type control 

cells. The actions of other multidrug resistance mediators, MDR1 and MRP, 

were also found to be unaffected on MVP depletion, ruling out notions that 

they function as redundant counterparts.  While MVP knockdown by siRNA in 

human bladder cancer cells was shown to result in increased doxorubicin 

sensitivity and nuclear accumulation, and hence increased cytotoxicity, no 

difference was found between MVP-knockout mice (MVP-/-) and wild type 

with regard to anthracyline doxorubicin response (Herlevsen et al. 2007; 

Mossink et al. 2002). These contradictory results cannot be attributed merely 

to the difference in the MVP gene silencing methodologies as lung carcinoma 

cells subjected to siRNA mediated MVP knockdown neither altered 

intracellular localization of doxorubicin nor showed increase in drug 

sensitivity or drug export efficacy (Huffman and Corey 2005).  

While knockdown/knockout experiments provided controversial 

results, several other experiments focused on studying whether MVP could 

confer improved resistance to drug-sensitive cells. Drug sensitive SW1573 
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cells overexpressing MVP (fourfold increase in MVP levels) display similar 

daunorubicin efflux kinetics as SW1573 cells not overexpressing MVP (van 

Zon et al. 2004). This suggested that increased levels of MVP did not confer 

any resistance to the drug sensitive cell line. Also, the elevated levels of MVP 

did not result in vault accumulation near daunorubicin-filled vesicles at 

nuclear membranes challenging views that vaults were engaged as drug 

shuttles in pumping out drugs from nucleus. Drug sensitive HeLa cells, 

induced for MVP overexpression, also did not show any improvements in 

resistance to the drug and displayed similar drug efflux rates with respect to 

doxorubicin differently (Huffman and Corey 2005). Even reintroduction of 

MVP-GFP fusion protein into Mouse Embryonic Fibroblasts (MEF) derived 

from MVP
-/-

 mice (MEFs from MVP
-/-

 mice showed no changes in drug efflux 

rates compared to MEFs from MVP
+/+

 mice) did not confer any additional 

resistance to daunorubicin compared to  MVP
-/-

 MEFs, strongly suggesting 

that vaults do not mediate efflux or sequestration of drugs (van Zon et al. 

2004). 

With contradictory data regarding vault function in mediating drug 

resistance, there may be a simple guilt-by-association assumption underlying 

this assignment of function. Metabolically active cells, more often in a state of 

stress or undergoing rapid proliferation, have been known to overexpress 

vaults. Thus, it should be remembered that tumor cells in a broad sense, not 

only multidrug resistant cells, exhibit elevated MVP levels. Unlike the 

functions of other known multidrug resistance mediators, no molecular 

mechanisms explaining how vaults may mediate drug efflux or resistance have 

survived experimental scrutiny. There has been no study yet that 
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unequivocally confirms drug binding to or being encaged within vault 

complexes. Negative results in this regard seem to have falsified the vault drug 

efflux hypothesis. The high expression of vaults may merely reflect a 

subsequent consequence of multidrug resistance but may not be the actual 

causative factor. 

 

1.2.2 Does Vault Shuttle Cargo In and Out of Nucleus? 

A subset of vaults, about 5% or less, has been reported to associate 

with the nucleus. In sea urchins, vaults were found to be concentrated around 

the nucelolus and around the nuclear envelope regions (Hamill and Suprenant 

1997). Localization of vaults along the nuclear envelope was also observed in 

numerous tumor cells and also in cortical neurons (Kickhoefer et al. 1998; 

Slesina et al. 2005; Paspalas et al. 2009). The nuclear envelope is marked by 

macromolecular pores formed by the nuclear pore complex (NPC) that 

responds to changes in cisternal calcium levels. Since, the size and symmetry 

of vaults were comparable to what might actually constitute the central plug of 

the NPC, it was proposed that vaults may represent a part of the central mass 

(Chugani et al. 1993). Except for a change in FRET signal on varying cisternal 

calcium, no direct evidence supports the notion of vaults constituting the 

central plug (Dickenson et al. 2007). Instead, vaults suggested to play a role in 

the biogenesis of NPCs, thus explaining their association with nuclear 

envelope (Vollmar et al. 2009).  

Vaults have been found to associate with cytoskeletal elements; in 

particular, they exhibit interactions with microtubules along their caps 

(Kedersha and Rome 1990; Eichenmüller et al. 2003). They have also been 
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found to be enriched within cholinergic nerve terminals and exhibit 

anterograde and retrograde transport within axons of the electromotor neurons 

(Herrmann et al. 1996; Li et al. 1999). The claims of a molecular cargo-carrier 

like function (Szaflarski et al. 2011) combined with their juxtaposition to the 

exterior of the nucleus, led to the hypothesis that vaults may participate in 

nucleocytoplasmic transport and mediate shuttling of proteins and mRNAs 

between the nucleus and cytoplasm (Hamill and Suprenant 1997). Yet apart 

from the distinct vault-associated molecules MVP, VPARP, TEP1 and vRNA, a 

wider range of cargo has eluded researchers thus far. Co-purification of MVP 

along with ribosomes in sea urchin embryos was suggestive of vaults 

functioning as carriers for ribosomes (Hamill and Suprenant 1997). However, 

the interaction was weak and did not remain intact after vault purification, and 

vaults do not enclose ribosomes. Despite vaults being implicated in the 

biogenesis and assembly of NPCs, mouse embryonic fibroblasts lacking MVP 

genes displayed no significant changes in nuclear import/export kinetics 

compared to control cells expressing MVP, suggesting no roles for vaults in 

nuclear trafficking (van Zon et al. 2006). The structure and mechanism of the 

nuclear pore is now well understood and requires no vaults to function, thus 

this function appears to have been also falsified.  

 

1.2.3 Are Vaults Important for Immune Responses? 

Dendritic cells (DCs) are an integral part of the immune system and 

function at the interface of innate and adaptive immunity. Functioning as 

antigen-presenting cells, they are ubiquitously found in tissues that are 

constantly exposed to external environment and play key roles in initiating 
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primary immune responses. Immature DCs process antigens and on maturation 

stimulate antigen specific T cells, eliciting an adaptive immune response.  A 

role for vaults in dendritic cell survival was postulated based on clear 

upregulation of vaults during maturation of dendritic cells derived from varied 

sources including blood monocytes, CD34+ mononuclear cells or chronic 

myeloid leukemia (Schroeijers et al. 2002). Based on overexpression of MVP 

in reactive monocytosis and chronic myelomonocytic leukemia, MVP as a 

putative marker of monocytic lineage was also proposed (Sunnaram et al. 

2003). Addition of antibodies against vaults in DC cultures severely 

challenged cell survival and resulted in reduced viability of LPS- or TNF-

alpha–matured DCs, underscoring the importance of vaults in immune 

response. Blockade of MVP also seemed to take a toll on expression of other 

critical differentiation and maturation markers including CD1a and CD83 and 

was reported to affect induction of T cell proliferation and subsequent 

interferon-gamma release (activators of macrophages) from T cells.  

Doubts about this role of vault in dendritic cell maturation arose when 

MVP knockout mice failed to reveal any DC-related immune impairment. The 

MVP deficient DCs showed no signs of altered surface marker expressions and 

displayed normal development (Mossink et al. 2003). The antigen uptake, 

processing and maturation of DCs from MVP deficient mice were comparable 

to those of control mice. Knockout mice are capable of inducing T cell 

proliferation and also efficiently elicit T cell mediated immune responses or T 

cell dependent humoral response, when challenged with varied T cell antigens, 

suggesting that DC maturation or their migration in vivo does not depend on 

MVP or vaults (Mossink et al. 2003). With no role for vaults in DC 
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development, the underlying reason for their high expression in these cells 

remains unanswered.  

MVP is however clearly an interferon-gamma inducible gene that 

involves JAK/STAT pathway based interaction of STAT1 within GAS 

elements in proximal regions of MVP promoter. Interestingly, interferon-

gamma induction not only led to efficient transcription and translation of MVP 

but also decreased the stability of vaults (Steiner et al. 2006). Of note, 

overexpression of MVP profoundly down regulates expression of interferon-

gamma induced expression of ICAM-1, the receptor on respiratory epithelial 

cells responsible for entry of infectious human rhinovirus, pressing on a role 

for MVP in mediating infection resistance.   

Another line of evidence comes from MVP expression suppressing 

hepatitis C virus (HCV) replication and protein synthesis by inducing type-I 

interferon expression via translocation of interferon regulatory factor IRF7 and 

NF-κB into the nucleus. It has been found that MVP expression is also 

effectively driven by other viruses, including the Influenza A virus and 

vesicular stomatitis virus. Apart from MVP, intense upregulation of vRNAs up 

to a 1000 fold on infections by Epstein-Barr virus or Kaposi’s sarcoma virus 

in human lymphocytes stressed that vaults as an entire structure effectively 

mediate antiviral response.  Thus, vaults are regarded as a virus induced host 

factor that somehow mediates antiviral responses. 

A profound role for MVP in reducing bacterial-burden and epithelial 

cell-mediated resistance to infection by Pseudomonas aeruginosa arises from 

studies conducted on MVP-deficient mice. MVP knockout mice appeared to 

display a threefold increase in mortality attributed to reduced bacterial 
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internalization and increased bacterial accumulation in lung. With the aid of 

cystic fibrosis transmembrane conductance regulator (CFTR), MVP mediates 

pathogen clearance by being rapidly recruited to lipid rafts.  

The evolutionary recruitment of vault binding proteins on the surface 

of the invasive bacteria Listeria monocytogenes leads to the accumulation of 

intact vaults on its surface, which helps these bacteria to evade autophagic 

recognition. The surface protein internalin InlK binds to vaults and mediates 

an evasion process of host defenses. This happens without the involvement of 

ActA (Actin assembly-inducing protein), the primary surface protein that 

hijacks actin assembly, propelling the bacteria through the mammalian host.  

From these lines of experimental evidence, an involvement of vaults in 

mediating infection resistance is apparent, yet mechanisms remain ambiguous.  

1.2.4 Are Vaults Major Players in Signaling Cascades? 

The increased expression of MVP in various tumor lines and its 

unrestrained movement within the cytoplasm implied that MVP could 

potentially be involved in cellular signaling related to growth and 

proliferation. Accordingly, it was reported that MVP could possibly regulate 

the epidermal growth factor (EGFR)-induced MAPK pathway. It has been 

found that MVP could be tyrosine phosphorylated and hence, establish 

interaction with many Src homology2 (SH2) domain-containing tyrosine 

phosphates including SHP-2 and Src kinase (Kolli et al. 2004; Kim et al. 

2006). It is interesting to note that SHP-2, a signal enhancer of EGF, plays 

crucial roles in embryonic development and directly mediates neural 

stem/progenitor cell differentiation and proliferation (Qu et al. 1999; Ke et al. 

2007).  In response to EGF, tyrosyl-phosphorylated MVP also associates with 
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extracellular-regulated kinases (Erks) and the SHP-2 to form a protein 

complex, suggestive of a cellular scaffold-like function for MVP in Erk 

pathway. However, on EGF stimulation, MVP-deficient MEFs displayed no 

significant change in overall activation of Erks except for a delayed Erk 

activation response. (Kolli et al. 2004)The transactivation of Elk1, another 

molecule positively regulated by SHP-2 on EGF stimulation, was found to be 

reduced by 50% in MVP-deficient MEFs compared to those of wild-type 

MEFs. Based on these observations, MVP was believed to modulate or fine-

tune the Erk pathway at the level of Ras or even downstream, rather than 

being a specific activator and/or inhibitor. 

MVP has also been found to interact with Src in an EGF-mediated 

manner (Kim et al. 2006). Src is an important signaling molecule and proto-

oncogene involved in malignant transformation, controlling various aspects of 

cell development, migration, synaptic transmission and plasticity, immune 

response and cell adhesion (Parsons and Parsons 2004). It has been found that 

Src activity and MVP phosphorylation are both important in mediating this 

interaction. Yet contrary to the observed activation of MAPK pathway by 

MVP interacting with SHP-2 and Erk, MVP overexpression was found to 

reduce EGF-dependent Erk activation in Src overexpressing cells. Purified 

MVP was also reported to quench tyrosine kinase activity of Src in vitro. The 

impeding effect of MVP on MAPK pathway has also been emphasized by 

another study that suggests that MVP interacts with and inhibits YPEL4’s 

ability to activate Elk-1 (Liang et al. 2010). Of note, YPEL4 a nuclear protein 

that localizes to the centrosome and nucleolus, is associated with functions 

related to cell division events (Hosono et al. 2004).   
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The tumor suppressor gene, p53, has been known to negatively 

regulate the expression of MVP, both at the mRNA and protein level (Marroni 

et al. 2003). Interestingly, another study suggested that MVP is up regulated in 

p53 overexpressing young human diploid fibroblasts (HDFs), contrary to the 

belief that MVP overexpression arose from defects in p53-related suppression 

of MVP(An et al. 2009). Senescent HDFs and aged organs also display 

increased levels of MVP and MVP has been believed to mediate resistance to 

apoptosis by regulating expression of anti-apoptotic Bcl-2 via the JNK 

pathway (Ryu et al. 2008; Ryu and Park 2009). A role for MVP in modulating 

anti-stress response has also been underscored by suppression of c-Jun 

mediated AP-1 transcriptional activity, possibly via the interaction of MVP 

with Constitutively Photomorphogenic 1 (COP1) (Yi et al. 2005). 

Interestingly, COP1, an E3 ubiquitin ligase, is also an important negative 

regulator of p53 (Dornan et al. 2004). MVP-deficient cells displayed elevated 

levels of c-Jun and AP-1 transcription activity, highlighting the importance of 

MVP in cell proliferation, differentiation and apoptosis (Yi et al. 2005). 

However, it should be noted that while COP1 is an essential gene for plant and 

regulates photomorphogenic development, there has been no report of vaults 

in plants.  

It is obvious that MVP is being implicated in a wide variety of signal 

transduction roles by virtue of its association with several key players in the 

signaling cascades. Interestingly, most of the reported interactions support 

functions relating to cell proliferation, survival and tumor progression, 

including association of vaults with PTEN (Yu et al. 2002). An important role 

for MVP in signal transduction pertaining to immune responses, particularly in 
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modulating interferon-gamma mediated JAK/STAT pathway, was suggested 

when MVP-induced attenuation of STAT1 phosphorylation and subsequent 

STAT1 translocation to the nucleus was observed (Steiner et al. 2006). The 

ubiquitous expression of MVP and the unrestrained movement of vaults 

through the cytoplasm gave credence to the notion that vaults could effectively 

function in cellular signaling. Though, the interactions of MVP with various 

key players are being suggested, it should be remembered that purified vault 

preparations do not reflect the presence of any of these additional interacting 

players. The observed MVP interactions with various signaling 

protein/complexes, in most cases, have been identified primarily via yeast 

two-hybrid assay or immunoprecipitation experiments and hence, may involve 

association of individual MVP monomers and not the complex as a whole. 

Even if intact vault complexes could possibly mediate such associations, the 

transient interactions, most likely, should occur at the periphery and not within 

the complex.  While there may be a role for vault in signaling, it may be late 

evolved functionality arising from non-specific phosphorylation and not the 

primary function of the entire complex. 

1.3 ‘PRECISE ROLES’ – DOES VAULT HAVE ANY? 

Ever since the vault complex was discovered in 1986, various 

functional roles have been attributed to the vault complex. But when 

challenged to describing a clear-cut functional and mechanistic role, the 

answer remains elusive. Some functions ascribed to vaults are based on 

appearance and guilt-by-association, and have not been substantiated by 

experimental evidence, and are often confounded by contradictory 

experimental evidences. Most of the observations made in vitro could not be 
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recapitulated in vivo. MVP-knockout mice appear completely normal with no 

defects in development, suggesting it is dispensable. 

While the barrel-shaped structure with hollow interiors emphasize a 

molecular cargo-carrier-like function, vaults purified from a wide variety of 

eukaryotes reveal no additional cargo other than the conventional vault-

associated proteins. If cells depended on vaults for shuttling important cargo 

like ribosomes or transcription factors through various regions within the cells, 

particularly into the nucleus, the MVP-knockout mice would have displayed 

obvious phenotypes pertaining to failures in transcription or translation 

machinery.  

The clearest phenotypes observed, are those pertaining to cell survival 

during nutritional stress and mediation of antiviral or antibacterial responses 

during infection resistance. Disruption of vaults in Dictyostelium displayed no 

defects under normal nutrient conditions, but showed reduced survival rates on 

nutritional stress (Vasu and Rome 1995). Similar observations have been 

made on MEFs lacking vaults and subjected to growth factor deprivation 

(Kolli et al. 2004). It should be noted that all cells that display elevated 

expressions of MVP both at the transcript and protein levels are those that are 

metabolically active and undergo rapid proliferation, including transformed 

cells, neuronal cells, regenerating cells, developing oocytes or embryos, 

stressing on the possible roles for vaults pertaining to cellular metabolism and 

survival (Li et al. 1999; Hamill and Suprenant 1997; Sutovsky et al. 2005; 

Yoshinari et al. 2009; Izquierdo et al. 1996; Berger et al. 2001; Rao et al. 

2009).  

http://wizfolio.com/?citation=1&ver=3&ItemID=538&UserID=1682&AccessCode=CF354AE1330442688B328DE0DA1986CE&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=414&UserID=1682&AccessCode=2C3F6627511145E9BBA9A9FA6E926BBE&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=527&UserID=1682&AccessCode=42D3A7A5A090491CB7A5BAB9C7F3F62E&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=527&UserID=1682&AccessCode=42D3A7A5A090491CB7A5BAB9C7F3F62E&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=292&UserID=1682&AccessCode=5316CECE8B6F46199F7E1527C602EE80&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=292&UserID=1682&AccessCode=5316CECE8B6F46199F7E1527C602EE80&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=521&UserID=1682&AccessCode=D9C1EDAE95D240B5BCB763E8615F8536&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=521&UserID=1682&AccessCode=D9C1EDAE95D240B5BCB763E8615F8536&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=317&UserID=1682&AccessCode=F2A61FA7C5CB4B22B0D746B86181BD37&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=317&UserID=1682&AccessCode=F2A61FA7C5CB4B22B0D746B86181BD37&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=522&UserID=1682&AccessCode=9AC51929A2224DB0AB55E5A48AFD02AF&CitationSuffix=


44 
 

1.4 OBJECTIVES AND SCOPE OF THIS WORK 

While vaults are dispensable for normal development in eukaryotes, a 

vast amount of cellular resources are invested in translating and constructing a 

molecular complex of this size. If vaults served no purpose in eukaryotic 

cellular physiology, they  should have been lost through years of evolution. 

The fact that they have been conserved and are present in a wide range of 

eukaryotes underscores the importance of vaults as cellular assets that engage 

in functional roles in a not so evident manner.   

The main objective of this thesis is to find the evolutionarily relevant, 

ancient and perhaps original cellular functional role for the vault complex. 

With the exception of slime-molds, it should be noted that a majority of vault 

characterization studies focus on multicellular eukaryotes. Although homologs 

of MVP have been identified in other single-celled eukaryotes including 

Paramecium and Kinetoplastids, there has been no study on elucidation of 

vaults in such organisms. The aims of this thesis are described as follows.  

 

i. Chart the evolutionary history of the vault complex to understand its 

origin and identify common traits unifying all organisms harboring 

vault genes. 

ii. Use phylogenetic information and compositional data of vault 

sequences to arrive at a putative novel cellular function for vaults and 

re-analyze the experimental literature in light of the proposed function. 

iii. Characterize vaults in the evolutionarily distant single-celled eukaryote 

Trypanosoma brucei to gain insights onto vault origin in 

Kinetoplastids and shed light on its possible ancestral functions. 
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Unraveling the Evolutionary History 
of the Vault Complex 
 

  

 

 

2.1 INTRODUCTION 

        Vaults have been isolated from numerous eukaryotic species including 

mammals, bullfrog, chicken and the slime mold Dictyostelium (Kedersha et al. 

1990).With advances in genomic and proteomic technologies, MVP has been 

described in many invertebrates including tubeworms and molluscs (Sanchez 

et al. 2007; Dondero et al. 2006). The absence of vaults in other prominent 

experimental organisms including Caenorhabditis elegans, Drosophila 

melanogaster, Saccharomyces cerevisiae and Arabidopsis thaliana has 

confounded researchers in understanding its functional evolution and its 

selective exclusion from certain lineages. Understanding the evolutionary 

origin of vault and its components may provide insights into their puzzling 

phylogenetic distribution and also help identify common traits between all 

organisms harboring vault genes, thus hinting on its primary function. In this 

Chapter 2  
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section, comparative genomics and phylogenetics-based approach have been 

used to understand the distribution of vault genes across all phyletic groups 

and also to reconstruct the evolutionary history of the vault complex.  

2.2 MATERIALS AND METHODS 

2.2.1 Sequence retrieval 

The human MVP sequence (Accession No. NP_059447.2) of length 

893 amino acids, was used as a query in a protein BLAST search to identify 

homologs in the GenBank non-redundant protein database. The BLAST hits 

were manually assessed and sequences smaller than 600 amino acids were not 

included for phylogenetic analysis. In addition, pre-computed sequence 

alignment list for the query sequence generated by an all-against-all BLAST 

search (BLINK) was also inspected to screen for additional sequences across 

the taxonomy. Position-specific-iterated BLAST (PSI-BLAST) was performed 

to improve sensitivity and capture potential orthologs from distant 

evolutionary groups. MVP homolog of the cyanobacteria Moorea producens 

3L (Accession ZP_08432100.1) annotated as ‘membrane protein, colicin 

uptake’ showed high levels of similarity with MVP sequences from molds. 

The gene mapped to the Lyngbya majuscula 3L genomic scaffold scf52120 

(Moorea producens was misclassified as Lygnbya majuscula previously). The 

sequence was retained for further analysis since the presence of the expressed 

protein was confirmed by MudPIT analysis. The protein annotated as MVP 

from Hordeum vulgare (barley) was dismissed from the dataset since the 

predicted protein, with accession BAK00750, was derived from the complete 

CDS (coding sequences) clone and the gene could not be located on the 

physical map of the barley genome assembly. The protein was excluded from 
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the analysis suspecting possible contamination from mold in the same 

environment. 

 In the compiled list of homologous proteins, sequences displaying 

duplicated copies within the same species were encountered. In such cases, the 

genome locus information was extracted for each of the proteins to confirm 

the presence of multiple genes transcribing similar proteins. If two proteins 

(isoforms or redundant proteins) have the same chromosomal information (or 

scaffold information), only one was retained for subsequent analysis. This 

resulted in a refined dataset of 109 full-length proteins. 

A similar search was also conducted for human TEP1 (Accession No. 

NP_009041) and human VPARP (NP_006428), comprising the minor vault 

proteins, using the human sequences as query. Redundant sequences and 

proteins that map to same genomic loci were discarded.  

2.2.2 Sequence alignment and phylogenetic analysis 

The sequences were aligned using the MUSCLE multiple sequence 

alignment algorithm (Edgar 2004). An initial alignment was constructed to 

remove truncated or poorly aligned proteins. For further refinement and 

subsequent phylogenetic analysis, the alignment was manually edited using 

MEGA5 (Tamura et al. 2011). Poorly conserved regions, which could obscure 

phylogenetic information, were deleted. The process of editing and realigning 

was repeated several times until large gaps were removed. Many regions in 

sequences of basal deuterostomes and kinetoplastids were not information rich 

and were based on predictions from genomic data. These possibly included 

non-coding regions or misidentified exon boundaries. Such blocks of 
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ambiguous regions were removed and not used for subsequent phylogenetic 

analysis. 

The phylogenetic analysis was performed using MEGA5 package. The 

refined alignment was used to identify the amino acid substitution model that 

fits the data best. It is known that the Bayesian information criterion (BIC) has 

higher accuracy and precision compared to the Akaike information criterion 

(AIC) for appropriate model selection (Luo et al. 2010). Hence, the model 

with the lowest BIC score was used for phylogenetic reconstruction.  The 

evolutionary history was inferred using the Maximum Likelihood method 

(ML). To account for variable substitution rate among sites, the gamma 

distribution was defined using 6 substitution rate categories and the tree was 

built using the best amino acid substitution model. Positions containing gaps 

and missing data were ignored for tree construction. The reliability of the tree 

was tested using 100 bootstrap replicates. The ML tree was established using a 

heuristic search based on nearest neighbor interchange. The Neighbor Joining 

(NJ) analysis based on equal input distances with 1000 bootstrap replicates 

was also performed in indicated datasets in addition to the ML inferences. In 

most cases both ML and NJ analyses gave similar topologies and hence, in the 

interest of clarity, only the topology obtained using ML will be presented. 

2.2.3 Essential amino acid analysis 

The pathways corresponding to synthesis and metabolism of common 

essential amino acids – Leu, Val, Ile, His, Trp, Met, Lys, Thr, Phe and 

conditionally essential amino acids Pro and Arg in the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) were used for the analysis. The biosynthetic 

pathways for the above-mentioned amino acids were analyzed in the 
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organisms included for phylogenetic analysis for their completeness. This was 

done by manually confirming the presence of all the enzymes required for its 

synthesis. For other organisms of interest including P. pacifica, M. marina and 

M. producens 3L for which data was not available on KEGG, the sequences of 

all enzymes involved in the amino acid biosynthesis pathways of closely 

related organismswere retrieved. The sequences of all enzymes obtained from 

Sorangium cellulosum were used to seed for enzyme orthologs in P. pacifica 

and the sequences obtained from Trichodesmium erythraeum were used to 

identify enzyme orthologs from M. marina and M. producens 3L. The BLAST 

hits thus obtained were manually screened for protein coverage, identity and e-

value to check for the presence of true enzyme orthologs. Amino acids, for 

which the organism retained enzyme orthologs required for synthesis, were 

considered non-essential. If the identified orthologs were found insufficient to 

make an intact synthetic pathway, the amino acid was considered essential in 

that organism. In cases where there are multiple or alternate pathways to 

synthesize an amino acid, all the subsidiary pathways were also considered. 

As a control, analysis was made on the eukaryote, Saccharomyces cerevisiae, 

which can synthesize all of the above-mentioned amino acids.For the purpose 

of analysis, protists including Entamoeba histolytica, Toxoplasma gondii, 

Tetrahymenathermophil and Trichomonas vaginalis that do not harbor vault 

genes were also included. 

2.3 RESULTS 

2.3.1 Unique Phylogenetic Distribution of MVP 

To reconstruct the evolutionary history of the vault complex, proteins 

homologous to the human MVP were extracted from all available taxonomic 
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groups and manually screened to include highly similar and full-length 

proteins. The initial dataset of 132 sequences comprised of more than one 

sequence from certain organisms. Some of these were redundant sequences, 

while others were paralogs that arose out of a gene duplication event. To 

identify the paralogs from the redundant sequences, a multiple sequence 

alignment was built from the initial dataset followed by constructing a 

neighbor joining tree, hence pruning the dataset to 109 sequences. The 

paralogs were also confirmed by mapping onto genomic loci whenever data 

was available.  

A Maximum Likelihood (ML) tree was generated for MVP proteins 

across all the lineages (Figure 2.1). The unrooted phylogenetic tree thus 

obtained suggested that there is but one autotroph with vault gene, a 

filamentous cyanobacterium Moorea producens 3L, and all sequenced plant, 

algae, fungi and archaea lack vault genes. Xenologs of MVP were also found 

in certain species of heterotrophic bacteria with gliding motility. The 

appearance of vault like sequences in discrete bacterial species is suggestive of 

independent horizontal gene transfer events. Single copies of the MVP gene 

were observed in all chordates including the invertebrate tunicates 

(Oikopluera dioica and Ciona intestinalis) and cephalochordates represented 

by lancelet Branchiostoma floridae. The heterotrophic single celled 

eukaryotes, choanoflagellates, considered to be the closest relatives of animals 

and represented by Monosiga brevicollis and Salpingoeca sp. also were found 

to have only one MVP homolog(King et al. 2008). Capsaspora owczarzaki, an 

amoeboid symbiont and a putative sister-organism to metazoans and 

choanoflagellates, of class Filasterea has two homologs ofMVP(Ruiz-Trillo et 
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al. 2006).The Cnidarians represented by Nematostella vectensis and Hydra 

magnipapillata and the ambulacrarians comprising the hemichordate 

Saccoglossus kowalevskii and the echinoderm Strongylocentrotus purpuratus 

have at least two copies of the MVP gene. The parazoan sponge, Amphimedon 

queenslandica, has multiple paralogs while the simplest multicellular 

metazoan and the only representative of the phylum placozoa Trichoplax 

adherans has one copy of the vault gene. 

Among the protists, the ciliate represented by Oxytricha trifallax and 

the amoebozoan slime molds Dictyostelium discoideium and Polysphondylium 

pallidum have two MVP paralogs that clearly separate out in the unrooted tree. 

Another ciliate, Paramecium tetraurelia seems to have undergone two rounds 

of duplication, which is evident from the branching within each paralog node. 

The paralogous proteins arise from different genomic scaffolds and hence are 

considered products of gene duplication events. As mentioned earlier, in the 

kinetoplastids represented by genus Trypanosoma and Leishmania, two of the 

three homologs (MVP2 and MVP3) have longer branches (rapidly evolving) 

and in the unrooted tree they cluster along with the ciliates, while MVP1 

clearly separates out. 
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Figure 2.1  Phylogeny of all retrieved MVP homologs across the taxa 

The shown topology is a bootstrap consensus tree obtained by maximum likelihood method 

based on the WAG model. Collapsed branches represent those that were produced in less than 

50% bootstrap replicates. In this and subsequent phylogeny figures, the node support values 

are given in the order of ML and NJ bootstrap percentages unless otherwise stated. Values are 

given for all nodes supported by >70% bootstrap support in either of the methods. The branch 

length is directly proportional to the number of substitutions per site. Sequences from 23 

organisms are clustered into the “Mammals” clade. The “Kinetoplastid” clade represent 

sequences from both Trypanosoma and Leishmania and the “Slime Molds” represent 

sequences from both Dictyostelium and Polysphondylium. The cyanobacterial MVP xenolog 

from Moorea producens is highlighted in green. The tree is modeled with sequences from 

diverse evolutionary groups evolving at different rates and hence, suffers from long-branch 

attraction. 
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2.3.1.1 MVP in a Non-Nitrogen-Fixing Cyanobacterium 

A well-conserved MVP gene is found in the very recent genome 

sequence of the marine filamentous cyanobacterium Moorea producens 3L 

(previously misidentified as Lyngbya majuscula 3L due to morphological 

similarities) (Engene et al. 2012). The filamentous cyanobacterium forms 

sheaths composed of exopolysaccharide and harbors heterotrophic bacteria 

and other microbes on its exteriors. The MVP gene was not only annotated at 

the genome level, but its protein product was confirmed to be abundant by 

mass spectrometry (Jones et al. 2011).  It is an ancient vault gene similar to the 

gene in molds and ciliates, and close to where one might anticipate the root of 

the MVP gene tree to be placed. It is worth noting that Moorea producens 3L 

has lost genes involved in nitrogen fixation and was shown, using heavy 

nitrogen labeling, to compensate through intracellular protein recycling. 

Interestingly, there are no MVP genes in the nitrogen-fixing filamentous 

cyanobacterial genomes of Nostoc punctiforme and Trichodesmium 

erythraeum or even in the closely clustering genera Coleofasciculus and 

Symploca (Jones et al. 2011; Engene et al. 2012).In the following phylogenetic 

reconstructions, the cyanobacterial sequence is used to root the trees.  

2.3.1.2 MVP Xenologs in Certain Gliding Heterotrophic Bacteria 

The search for MVP homologs also retrieved a small group of 

heterotrophic bacteria that encode full-length proteins and align along vault 

proteins from eukaryotes. The bacterial species are obligate heterotrophs with 

gliding motility. Two of the species Plesiocystis pacifica and Corallococcus 

coralloides belong to the Myxococcales, a family of social eubacterial 

predators that transition from single-celled to multicellular fruiting bodies 
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upon starvation, in a mechanism analogous to Dictyostelium discoideium 

(Iizuka et al. 2003; Huntley et al. 2012). P. pacifica has two MVP paralogs 

while C. coralloides has only one homolog. Vault coding genes, however, are 

absent from the complete genomes of other myxobacteria including 

Myxococcus xanthus or Sorangium cellulosum (Schneiker et al. 

2007).Microscilla marina and Flexibacter litoralis, which only has one copy 

of the gene, belong to Cytophagales that are marine unicellular gliders.  The 

Saprospira grandis, a multicellular filamentous Sphingobacteriale has one 

vault homolog. It is interesting to note that this organism preys on other 

bacteria and protists since amino acid biosynthetic pathways for the essential 

amino acids are incomplete (Saw et al. 2012). 

The topology of the ML tree constructed with only bacterial proteins 

clearly delineates the C. coralloides and M. producens 3L sequences from the 

rest of the sequences (Figure 2.2 ). While the rest of the proteins cluster into 

one clade, the paralog from P. pacifica clearly branches out. This may be an 

organism specific duplication event as no paralogs could be detected in other 

bacterial species.  
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Figure 2.2 Phylogenetic relationships among all the bacterial MVP xenologs 

Shown is the unrooted ML bootstrap consensus topology obtained based on the WAG+G+F 

model of evolution. C. coralloides is evolutionarily closer to the cyanobacterial ortholog 

(indicated in green) than to the rest of the bacterial sequences that seemed to have undergone 

substitutions over the period of evolution. The long branches and lack of large numbers of 

other related bacterial species with MVP genes suggests these xenologs correspond to 

independent horizontal transfer events, rather than common descent. Black diamond indicates 

100% bootstrap support for the indicated node by both ML and NJ methods. 

 

 

2.3.2 Evolutionary Origin of MVP and Independent Horizontal 
Gene Transfer Event into Eukaryotes 

While the initial phylogenetic tree gives an overview on the 

distribution of vaults across the taxonomy, it does not clearly define the 

evolutionary origins of vaults. The evolutionary relationships among the 

unicellular protists are, not surprisingly, ambiguous due to crowding from 

paralogs that have particularly long branches. Intriguingly, looking at the span 

of MVP genes across the phyletic groups, it is clear that while MVP is 

predominantly represented in the Unikont clade that comprise the 

amoebozoans and the opisthokonts (metazoans and choanozoa), there seems to 

be a limited representation of organisms with MVP from the superphylum 

Excavata (kinetoplastids) and from the chromalveolate clade (Phytophthora) 

that also includes the alveolata (ciliates) (Figure 2.3 Top). A comprehensive 

search for the all homologs of MVP in the Excavates using BLAST or PSI-

BLAST retrieved no other sequences except for the Kinetoplastids homologs 
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from phylum Euglenozoa and the closely related Naegleria gruberi homolog 

from phylum Percolozoa. Closely related groups including the Diplomonads 

or Jakobids belonging to the Excavates did not have any MVP homologs. Even 

organisms that are known to branch closely with the Kinetoplastids within the 

Euglenozoa phylum, Diplonemapapillatum or Euglenagracilis, did not have 

any putative MVP homologs (Simpson et al. 2006). Though a common 

ancestor of kinetoplastids had an MVP gene, it seems unlikely that it emerged 

in common ancestor of Euglenazoa. 

The situation is quite similar with respect to occurrence of MVP in 

Paramecium or Phytophthora. Except for the ciliates Paramecium and 

Oxytricha trifallax, other close-branching alveolates like Toxoplasma gondii, 

Tetrahymena thermophile or Plasmodium do not encode any vault genes. Even 

within the heterokonts, apart from the homologs of MVP in genus 

Phytophthora, there seems to be no other organism carrying genes similar to 

MVP. 

If MVP indeed arose in a single-celled eukaryote ancestral to both 

unikonts and bikonts, has the gene been specifically lost multiple times across 

many phyla over evolution so as to be underrepresented in only a sparse set of 

organisms in bikonts?  

Given the large amount of sequence data now available, as EST 

datasets and complete genomes, a scenario of repeated gene loss seems 

unlikely. Instead, a parsimonious interpretation would suggest multiple 

horizontal gene transfer events into the bikonts from an ancestral unikont. This 

may be compared to similar gene transfer events that led to the occurrence of 

vault genes in certain specific groups of bacteria. Taking into account the 
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current distribution of MVP in sequenced genomes, the existence of vault 

genes in specific organisms of excavates, ciliates or heterokonts could be 

parsimoniously explained by only five independent ancestral horizontal gene 

transfer events - two into excavates and ciliates each and one into 

Phytophthora (Figure 2.3 bottom). Apart from these horizontal transfer events, 

secondary loss events at the level of fungi, Icthyosporea (a sister clade to 

metazoans, choanoflagellates and Capsaspora) and ecdysozoan protostomes 

would best describe the most parsimonious evolutionary scenario that led to 

the origin of vault and its distribution among eukaryotes. Thus it appears that 

multiple horizontal transfer and loss best explains the anomalous phylogenetic 

distribution of MVP. 

The ancestral emergence of MVP genes in the unikont clade is shown 

in Figure 2.4 (top).  The ancestral unikont could have acquired the gene by 

horizontal transfer from a cyanobacterium (Moorea producens 3L) that relied 

on intracellular amino acid storage capability to account for the loss of 

nitrogen fixation genes. Hence, the tree has been rooted with this sequence. 

The clear delineation of amoebozoans from the rest of the opisthokonts can be 

observed. This tree is in acceptance with well-established organismal 

relationships except for the placement of Capsaspora within the invertebrate 

clade. The invertebrates seem to have undergone lineage specific duplications 

and form long branching paralogs. The long branches that skew the other 

branches were removed in (Figure 2.4 bottom) 
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Figure 2.3  Limited representation of MVP genes in Protists 

(A) Comparision of distribution of phylogenetic distribution of MVP genes as against a 

Reference phylogenetic tree (adapted from Eme et al. 2011) rooted between Unikonta and 

Bikonta showing the relationships between eleven major eukaryotic lineages for which 

genome sequencing are complete or nearly complete. Organisms with MVP genes in both trees 

are connected by coloured lines. Dotted lines represent organisms that possibly acquired MVP 

by horizontal gene transfer events. Red crosses in Reference Tree points to organisms that 

positively lack MVP genes. (B)Shown is the bootstrap consensus tree obtained by ML analysis 

based on rtREV+G+F model of evolution. The independent lineage-specific duplications that 

occurred in the protists are strongly supported. The slime molds that belong to unikonts 

display tightly supported branching. The bikont protists are marked by exceptionally long 

branching sequences suggesting considerable evolutionary changes. Black diamond indicates 

100% bootstrap support for the indicated node by both ML and NJ methods. 
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Figure 2.4 Evolutionary origin of MVP 

The tree that likely represents the origin of MVP genes in eukaryotes. The bacterial xenologs 

and long branching protists sequence have been removed. The shown topology is a bootstrap 

consensus tree obtained by ML method based on the rtREV +G (top) and JTT+G (bottom) 

model of evolution rooted with cyanobacterial sequence. The long branching paralogs (gray 

box in top) have been removed from the topology in bottom. Values are given for all nodes 

supported by >60% bootstrap support. The branch length is directly proportional to the 

number of substitutions per site. The black triangle represents all the vertebrate sequences that 

are clustered into a single clade. Black diamond indicates 100% bootstrap support for the 

indicated. 
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Although horizontal gene transfer is a rare event in multicellular 

opisthokonta and Plantea, it is well documented in Amoebozoa, Excavata and 

Chromalveolata (Nosenko and Bhattacharya 2007; Henze et al. 2001). Sparse 

phylogenetic distributions of specific gene families have been previously 

reported in protist genomes (Andersson et al. 2006). Horizontal gene transfer 

of certain enzymes involved in glycolytic pathway to protists (Excavates) from 

an ancestral cyanobacterium has also been observed (Henze et al. 2001). 

Lateral gene transfer is a recurrent attribute of protists that particularly follow 

a phagotrophic lifestyle (Andersson 2005).  The acquired genes more often 

may offer undue advantages to these eukaryotes to explore new environments. 

Thus it is speculated that these bikont protists also acquired MVP gene in a 

similar scenario. 

Accordingly, individual trees for depicting gene transfer into 

Kinetoplastids, Phytophthora and ciliates were constructed and the trees were 

rooted with the cyanobacterial sequence. The choanoflagellate sequences were 

also included for analysis as a representative from opisthokonts. In all the trees 

shown in Figure 2.5, it is evident that the choanoflagellates are closer to the 

cyanobacterial sequence than to any other protists, suggesting that the long 

branching and rapidly evolving protist sequences were a result of early 

horizontal gene transfer events. The ancestral kinetoplastid had one copy of 

the vault gene, even before the divergence of Trypanosoma and Leishmania 

likely occurred. It is known that gene duplicates in Trypanosoma arose out of 

tandem duplication events (Jackson 2007). In Trypanosoma chromosomes 4 

and 8 are revealed to be partial duplicons that arose out of a large-scale 
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duplication event (Jackson 2007).  The occurrence of multiple copies of MVP 

gene could be attributed such large scale duplication events. 

Of the ciliates Paramecium has four MVP paralogs, likely arising from 

whole genome duplication events, since at least three successive whole-

genome duplication events have been attributed to the appearance of most of 

the genes in Paramecium (Aury et al. 2006). The paralogs of MVP that arose 

out of the second round of duplication have not undergone many substitutions 

through evolution given the small branch lengths corresponding to the 

bifurcating branches. The duplicated paralogs map to different loci on the 

genome and hence, are not the same genes. However, another ciliate, 

Oxytricha trifallax, has only two paralogs. In Oxytricha trifallax, a chimeric 

chromosome that arose out of duplication events in a process akin to exon 

shuffling has been described (Zhou et al. 2011). Since, there are no other 

ciliate representatives it is difficult to assess if the paralogous expansion 

occurred in the common ancestor of these two organisms or if the duplicates 

arose independently in these two organisms.  
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Figure 2.5 Horizontal gene transfer events into eukaryotic protists belonging to Bikonta 

Shown are the topologies obtained using the ML method for (A) Kineotoplastids and NJ 

method for (B) Paramecium (C) Phytopthora. The ML tree was built using the WAG+G 

model of evolution. All the trees have been rooted with the cyanobacterial sequence and the 

choanoflagellates are included for the purpose of analysis. The tight branching of the 

cyanobacteria with the choanoflagellates away from the long branching bikont protist 

sequence in all topologies is suggestive of a horizontal gene transfer event into these ancient 

protists.  

 

 

Given the observation of vault gene and protein in a cyanobacterium, it 

could be argued that a common ancestor of both the cyanobacteria and the 

gliding heterotrophic bacteria had vaults. However, to claim such a common 

decent, massive numbers of loss events of the MVP gene in a large number of 

bacterial species must be accounted for. Hence, few independent horizontal 
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transfer events, possibly from ancestral unicellular protists which may have 

been in the same habitat, are more parsimonious. Also, unlike the 

cyanobacterium, the MVP genes in the heterotrophic bacterial species have 

undergone significant evolutionary changes adapting to G+C in both nucleic 

acid and protein sequence indicating the direction of horizontal transfer from 

eukaryote to bacteria. It is yet unknown if these gliding heterotrophic bacterial 

MVP genes produce protein or form functional vaults.  

2.3.3 Divergence of MVP in Opisthokonts 

From the previously discussed phylogenies, it is clear that MVP either 

originated or emerged by horizontal gene transfer into the unikonts clade. 

Apart from the amoebozoans, the unikonts comprise the choanozoa, fungi and 

metazoans. This section charts the spread of MVP in the opisthokont clade 

with emphasis on the metazoans.  

2.3.3.1 Evolution of MVP in Deuterostomes 

41 protein sequences representing deuterostomes from chordates, 

echinoderms and hemichordate were used to reconstruct a comprehensive ML 

phylogeny of the vault proteins. The JTT was selected as the best amino acid 

substitution model and gamma distribution parameter was estimated to be 

1.043 corresponding to moderate variation. The analysis also included the 

small branching Capsaspora homolog along with choanoflagellates as an out-

group (Figure 2.6). The deuterostome topology reveals a clear separation of 

the vertebrate and the invertebrate sequences with well-supported clades. As 

mentioned earlier, the chordates have only one MVP homolog. It is seen that 

the MVP homolog of the cephalochordates and tunicates (invertebrate 

chordates) clusters along with the ambulacrarians with good branch support in 
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the consensus tree, forming a sister clade to the vertebrates. The tunicate 

Oikopleura dioica, however, does not cluster along with the invertebrates, 

instead branches out separately as a long-branch attraction artefact. Though it 

looks like the sequence has undergone significant evolutionary changes, there 

is a possibility that non-coding or intron regions have been included, since the 

sequence is predicted from whole genome shotgun assembly. The paralogs of 

the ambulacrarians, sister group of chordates and represented by sea urchins 

and acorn worms, were distinctly grouped out to form a separate clade with 

long branches with 100% support. Analysis of the dataset suggests that these 

paralogs are likely the result of independent lineage-specific duplications that 

could have occurred in the invertebrates after divergence of vertebrates. It is 

difficult to distinguish whether the additional copies have altered or 

paralogous functions. Removing the paralogs and the long branching 

Oikopleura dioica sequence did not alter the topology of the deuterostomia 

tree. In both the reconstructed topologies, the Capsaspora sequence was found 

to cluster within the invertebrate clade instead of branching out as expected.  

The choanoflagellate has only one MVP homolog. Hence, it is prudent 

to consider that the ancestral deuterostome had only one MVP homolog and 

the appearance of paralogs occurred after the divergence of the chordates from 

ambulacrarians. The depicted phylogeny corresponds well to major events in 

vertebrate evolution including the teleost-tetrapod split that occurred around 

450 Mya and the origin of birds from a common ancestor of reptiles (Ravi and 

Venkatesh 2008). From the presented phylogeny it is evident that vault 

proteins are found in three of the deuterostome phyla except for the phylum 

Xenacoelomorpha, previously associated with Platyhelminthes, that includes 
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the Xenoturbellids and acoemomorph worms (Telford 2008). Searching the 

NCBI trace archive did not reveal any homologs in this newly classified 

phylum and hence, it is concluded that vault genes are lost in this phylum.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 MVP evolution in deuterostomes 

Maximum Likelihood (ML) tree describing evolutionary relationships among MVP genes in 

deuterostomes rooted with choanoflagellates with long branches included (top) and removed 

(bottom). The shown topology is a bootstrap consensus tree based on the JTT+G model of 

evolution. Black diamond indicates 100% bootstrap support for the indicated node by both 

ML and NJ methods. Values are given for all other nodes supported by >70% bootstrap 

support in either of the methods. The branch length is directly proportional to the number of 

substitutions per site. Sequences from 23 organisms are clustered into the “Mammals” clade.  

http://wizfolio.com/?citation=1&ver=3&ItemID=829&UserID=1682&AccessCode=30C94F6D4DDA444CBD8F477B41CFC4A9&CitationSuffix=


67 
 

2.3.3.2 MVP in Non-Deuterostome Opisthokonts 

Homologs from cnidarians, protostomes, choanoflagellates, parazoan 

organisms (including T. adherans and A. queenslandica), and sequences from 

molds were used to make an initial ML tree with the cyanobacterial species 

out-group (Figure 2.7). The tree showed a clear delineation of the non-

deuterostome opisthokonta from the molds. Paralogs from cnidarians, 

amoeboid symbiont C. owczarzaki and porifera A. queenslandica cluster 

together with long branches. The A. queenslandica sequence also had a long 

branch and hence was removed from subsequent analysis. Distinct paralogs 

were removed and the tree was reconstructed with only one species in each 

organism. Cnidarians, placozoan T. adherans, oyster C. gigas and C. 

owczarzaki formed a clade sister to the choanoflagellates Salpingoea sp. and 

Monosiga brevicollis. Sequence from molluscs clustered along with cnidarians 

and placozoa. The platyhelminthes (Clonorchis sinensis and Schistosoma 

mansoni) formed a paraphyletic group with strong support. The position of 

C.owczarzaki relative to metazoan and choanoflagellate has always remained 

unclear and is found to vary depending on the genes being analysed (Ruiz-

Trillo et al. 2008; Ruiz-Trillo et al. 2004). MVP orthologs and paralogs of the 

invertebrate deuterostomes including the ambulacrarians, lancelets and 

tunicates cluster near the orthologs and paralogs of non-deuterostome 

opisthokonta. There is a delineation in the evolution of vaults from the 

unicellular choanoflagellates to invertebrates and protostomes and finally to 

vertebrates. Protostomes, like the chordates, have only one MVP homolog and 

the fact that they cluster near choanoflagellates, invertebrate deuterostomes 
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and cnidarians with strong support underscores the lineage specific 

duplications that occurred after the protostome-deuterostome split.  

 

Figure 2.7 Evolutionary relationships between non-deuterostome opisthokonts 

ML tree showing evolutionary relationship among MVP genes in non-deuterostome 

opisthokonts and amoebozoans with long branches included (top) and removed 

(bottom),rooted with the cyanobacterial MVP sequence. Shown is a bootstrap consensus 

topology obtained based on the rtREV+G model of evolution. Black diamond indicates 100% 

bootstrap support for the indicated node by both ML and NJ methods. Values are given for all 

other nodes supported by >70% bootstrap support in either of the methods. The branch length 

is directly proportional to the number of substitutions per site. 
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2.3.3.3  Only Lophotrochozoan Protostomes have MVP 

From the depicted phylogenetic tree it is evident that a few 

protostomia, including the parasitic flukes and oyster that harbor vault genes 

(Figure 2.7). MVP transcripts have also been identified experimentally in 

annelid Riftia pachyptila (Sanchez et al. 2007). While lophotrochozoan 

protostomes represented by flatworms, annelids and molluscs have vault 

genes, many complete genomes from insects and nematodes representing 

ecdysozoan protostomes lack vault genes (Stephen et al. 2001; Berger et al. 

2008). The phylogenetic pattern of MVP gene distribution suggests that it 

appeared as a full-length gene in a single celled ancestor of eukaryotic animals 

and molds but it was subsequently lost after the metazoan radiation from the 

common ancestor of fungi and ecdysozoa explaining why vault complexes are 

missing from model organisms S. cerevisiae, Drosophila and Caenorhabditis 

elegans.  

2.3.4 Co-evolution of VPARP and TEP1with MVP 

The minor vault proteins, VPARP and TEP1, associate with naturally 

occurring vaults and co-purify along with the MVP gene product. In this 

section the evolution of these minor vault proteins are also analysed to trace 

their evolutionary timeline.  

A previous phylogenetic analysis aimed at understanding the evolution 

of poly-ADP-ribose family of proteins, classified organisms into two clades 

based on VPARP sequences (Citarelli et al. 2010). The analysis was extended 

by including more sequences and explaining the phylogeny in the context of 

origin of vaults. VPARP has been known to interact near the N-termini of 

MVP with its C-terminal binding domain (1562-1724 aa) (Kickhoefer et al. 
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1999). This minimum interaction domain (mINT) binds to MVP on the inner 

vault surface and when this region was excluded, it was shown that VPARP 

remains in the soluble fraction and cannot be packaged into intact vault 

particles (Kickhoefer 2005; Goldsmith et al. 2009). Unlike MVP, homologs of 

VPARP had a limited phylogenetic distribution. Except for slime molds and 

Capsaspora owczarzaki, homologs of VPARP were not found in any of the 

unicellular organisms including choanoflagellates, ciliates, kinetoplastids or 

bacteria. This suggests that the VPARP co-evolved along with MVP from a 

common ancestor of unikonta comprising the opisthokonta and amoebozoans, 

but was lost in clades representing fungi and nucleariids. It was also noticed 

that while the vertebrates had good conservation through the length of the 

sequence, other organisms showed very poor similarities beyond position 1200 

corresponding to human VPARP protein sequence. This trend was observed 

throughout the invertebrate and unicellular sequences.  Interestingly, multiple 

homologs of VPARP of different lengths in the invertebrates including sea 

urchin, sea anemone and oyster, the placozoan Trichoplax and the opisthokont 

Capsosporawere observed. The homologs from each of the above-mentioned 

organisms could not be successfully mapped onto the genome, since 

information on complete genome assembly is not available. One of the 

homologs from sea anemone and Capsapsora lacked the PARP-like domain 

and hence was dismissed from analysis, along with the Trichoplax homolog 

that was smaller and hence likely does not represent a full-length protein. Of 

the two full-length homologs identified in sea urchin and oyster, the true 

VPARP homolog could not be clearly distinguished and hence both were 

retained for analysis. The invertebrate sequences, in many cases, were 
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predicted by conceptual translation from genomic scaffolds. Whether the 

multiple homologs truly represent alternative splice forms of the same protein, 

or if they actually belong to different genomic loci and code for different 

proteins or if they are an artefact due to inclusion of intronic or other non-

exonic regions in some of the annotated proteins is unclear. 

From the unrooted ML tree a clear delineation of the vertebrates and 

invertebratesis evident (Figure  2.8). C. owczarzaki distinctly separates out 

from the metazoans, while the molds cluster together to form a separate clade. 

While the two sea urchin sequences included in the analysis clustered into a 

single clade, the position of the oyster sequence is ambiguous, as one of them 

clusters with other invertebrate sequences and the other branches out 

separately. Although, C. owczarzaki and choanoflagellates, both are 

considered to be the closest unicellular relatives to multicellular metazoans, 

there are no homologs of VPARP in choanoflagellates. This suggests that 

VPARP originated in a common ancestor prior to the divergence of C. 

owczarzaki from choanoflagellates and metazoans, but may have been lost in 

the choanoflagellate lineage. 
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Figure  2.8  Evolutionary origin of VPARP 

ML tree describing the evolutionary origin of vault poly-ADP ribose polymerase (VPARP) 

across all the taxa. The bootstrap consensus topology was obtained based on the JTT+G+I 

model of evolution. The clade “Mammals” is representative of 24 organisms. The ‘_’ implies 

that the depicted branching was not reconstructed by the NJ method. The Capsaspora clearly 

clusters out from the common ancestor of metazoans. The placement of the amoebozoans as 

out-group to the clade Filozoa that includes Capsaspora, choanoflagellates and all metazoans 

is strongly supported. The branching within the invertebrates remains poorly resolved. The 

placement of one of the C. gigas homolog is likely a long-branch attraction artifact. Black 

diamond indicates 100% bootstrap support for the indicated node by both ML and NJ 

methods. Values are given for all other nodes supported by >70% bootstrap support in either 

of the methods. The branch length is directly proportional to the number of substitutions per 

site. 

 

The phylogenetic distribution of TEP1 using the human protein sequence as a 

query revealed that the span of organisms was almost similar to VPARP except 

there are no orthologs of TEP1 in birds and in the hemichordate Saccoglossus 

(Figure 2.9). Homologs of TEP1 in both C. owczarzaki and choanoflagellate 

were found, suggesting a similar origin to that of VPARP.  While the C. 

owczarzaki aligns through the length of the sequence, the choanoflagellate M. 

brevicollis was found to align only in parts.  
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Figure 2.9 Evolutionary origin of TEP1 

(Top) ML tree describing the evolutionary origin of TEP1 across all the taxa retrieved. The 

bootstrap consensus topology was obtained based on the WAG+G model of evolution. The 

grey box points to the long branching sequences that are not likely to represent true TEP1 

homologs due to their incorrect placement on the evolutionary tree. (Bottom) The bootstrap 

consensus topology was obtained based on the JTT+G+I model of evolution. The long 

branching O. dioica, Trypanosoma and M. brevicollis sequences have been removed. The 

clade “Mammals” represents sequences from 22 organisms.  The ‘_’ implies that the depicted 

branching was not reconstructed by the NJ method. The placement of Capsapsora and 

amoebozoans with respect to metazoans is similar to that of VPARP. Black diamond indicates 

100% bootstrap support for the indicated node by both ML and NJ methods. Values are given 

for all other nodes supported by >70% bootstrap support in either of the methods. The branch 

length is directly proportional to the number of substitutions per site. 
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TEP1 homologs were found in Trypanosoma, but not in Leishmania, 

albeit with poor amino acid conservation and alignment. To identify if the 

choanoflagellate and Trypanosoma sequences are true homologs, an initial ML 

tree was constructed. The unrooted tree identified that these sequences along 

with the sequence from O. dioica form exceptionally long branches. Hence, 

these sequences were removed and the ML tree was reconstructed. The 

topology was similar to that of the VPARP unrooted tree with C. owczarzaki 

grouping out of the metazoans and molds forming a distinct sister clade. 

Vault isolates from sea urchin have identified heavy molecular weight 

bands around 200 kDa that might correspond to TEP1 and VPARP, and 

associated vRNA (Stewart et al. 2005). However, vaults isolated from 

Dictyostelium show no evidence of vault-associated proteins (Kedersha et al. 

1990). From this observation it is likely that the association of minor vault 

proteins within vault complexes could have evolved with the origin of 

multicellular eukaryotes. 

2.3.5 Organisms with MVP do have intact biosynthetic 
pathways for essential amino acids 

The phylogenetic distribution of vault genes forms a unique pattern, 

wherein some distinct eukaryotic branches corresponding to plants and fungi 

are missing. From a broad glimpse at the species distribution of vaults, it is 

seems that vault genes are present only in heterotrophs and absent from 

autotrophs including plants and species of fungi (non-auxotrophic organisms) 

that retain their capability to synthesize all amino acids. The only outlier in the 

list of organisms is the cyanobacterium, Moorea producens3L. Hence, the 

amino acid biosynthetic pathway of each species included in the phylogenetic 

analysis was analyzed, focusing on the metabolism of the nine essential amino 
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acids. The pathway data for each organism was accessed in the KEGG 

Pathway database. Interestingly, almost all of the eukaryotes had incomplete 

pathways for the synthesis of the nine essential amino acids – Leu, Val, Ile, 

Lys, Met, His, Thr, Phe, Trp. All the eukaryotic organisms had important 

enzymes missing for the synthesis of branched chain amino acids, namely, 

Leu, Val and Ile. In addition, the synthetic pathways of the aromatic amino 

acids, Phe and Trp, were also incomplete in all the eukaryotes analyzed 

(Figure 2.10). The unicellular choanoflagellate has retained the enzymes 

involved in the synthesis of Met and His, but has lost the ability to synthesize 

other essential amino acids. Other single celled protists including the 

Dictyostelium and the organisms that may have horizontally acquired MVP 

including kinetoplastids, Phytophthora and organisms within the ciliate clade 

also display similar nutritional demands. While the kinetoplastid Trypanosoma 

has lost its ability to synthesize Met, another kinetoplastid  Leishmaniahas Met 

biosynthetic enzymes intact. It is interesting to note that Phytophthora that are 

closer to plants also lack enzymes for synthesis of certain essential amino 

acids. 

The pathways corresponding to amino acids regarded as conditionally 

essential, including Pro and Arg, were also analyzed for the enlisted 

organisms. All organisms could synthesize Pro except for the ciliate 

Paramecium. It was observed that in all deuterostomes, cnidarians and the 

placozoan T. adherans the enzymes for the biosynthesis of Arg were intact; 

however in the unicellular protists, including the choanoflagellate, Arg had to 

be supplemented in diet.  
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The heterotrophic gliding bacterial species, which may have acquired 

vault genes from eukaryotes, also have amino acid nutritional requirements. 

Out of the nine essential amino acids analyzed, the C. coralloides can only 

synthesize Met, Thr and Lys. The multicellular filamentous S. grandis has an 

intact biosynthetic pathway for only Thr and it needs to prey on other protists 

to meet its nutritional needs. The F. litoralis, however, can synthesize two 

branched chain amino acids, Val and Ile, in addition to His, Thr and Met. The 

amino acid synthetic pathway information corresponding to M. producens 3L, 

P. pacifica and M. marina were not available on KEGG and hence, ortholog 

enzymes that render the amino acid biosynthetic pathway complete was 

identified using protein BLAST search. The enzymes from myxobacterium 

Sorangium cellulosum was used to seed for P. pacifica orthologs. The 

filamentous cyanobacterium Trichodesmium erythraeum, which is closely 

associated with M. marina, was used to identify orthologous enzymes from 

both M. producens 3L and M. marina (Hopkinson et al. 2008; Jones et al. 

2011). It was identified that Trp, Phe and Lys are essential in both the marine 

bacterium and P. pacifica. In addition, P. pacifica also lacked certain key 

enzymes involved in the synthetic pathways of Met and His. The two 

organisms analyzed indirectly may have incomplete biosynthetic pathways for 

other amino acids as well, since the identified enzyme orthologs more often 

displayed poor conservation through the length of the protein.  

The autotroph M.  producens 3L on the other hand, has orthologs for 

all the key enzymes involved in synthesis of essential amino acids except for 

Met. This cyanobacterium is unable to fix nitrogen and relies on recycling its 

internal sources of carbon and nitrogen, particularly, cyanophycin, a storage 
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polymer, made by non-ribosomal peptide synthesis of Arg and Asp, for its 

energy needs (Jones et al. 2011).  

 

Figure 2.10 Analysis of essential amino acid biosynthetic pathways across all organisms 

that harbor vault homologs 

Amino acids marked with ‘*’ point to conditionally essential amino acids. Dark Blue coloring 

indicates that the enzymes leading to synthesis of a particular amino acid are missing and that 

the amino acid is therefore essential. Orange coloring indicates amino acids that can be 

synthesized by the organism. White areas denote that the data was unavailable in KEGG for 

the particular organism. For P. pacifica, M. marina, M. producens 3L, the presence of enzyme 

orthologs for the synthesis of each amino acid was accounted for based on a protein homology 

search (for further details, see main text). Saccharomyces is included as a control organism 

that can synthesize all amino acids 
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In addition, other protists including ciliate Tetrahymena thermophila, 

apicomplexan Toxoplama gondii (both belong to alveolates), excavate 

Trichomonas vaginalis and also Entamoeba histolytica (amoebozoan) that do 

not harbor vault genes were also analyzed (Figure 2.11). The analysis revealed 

that these protists also display defects in essential amino acid biosynthesis and 

hence are heterotrophic protists. This leads to the conclusion that while all 

organisms carrying vault genes display loss of amino acid biosynthetic 

capability (except for cyanobacterium), not all heterotrophic protists have 

vault genes. The selective emergence of vaults in many of these heterotrophic 

protists including Paramecium and Kinetoplastids reiterates the notion that 

these protists acquired vaults by horizontal gene transfer from their 

environment.  

 

 

Figure 2.11 Amino acid synthesis analysis on other eukaryotic protists 

The closely branching organisms that do not have vaults but branch closely to those 

eukaryotic protists that harbor vault genes were subjected to similar pathway analysis. Amino 

acids marked with ‘*’ point to conditionally essential amino acids. Dark Blue coloring 

indicates that the enzymes leading to synthesis of a particular amino acid are missing and that 

the amino acid is therefore essential. Orange coloring indicates amino acids that can be 

synthesized by the organism. White areas denote that the data was unavailable in KEGG for 

the particular organism. 

Val Ile Leu Lys Phe Trp Met Thr His Pro* Arg*

Toxoplama gondii

Tetrahymena thermophila

Entamoeba histolytica
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2.4 DISCUSSION 

Vaults are known to be conserved in a wide range of eukaryotes; 

however, their absence in distinct eukaryotic branches including plants, fungi, 

nematodes, and insects has always been a puzzling aspect in understanding the 

evolution of vaults. The analysis on the evolution of vaults and its components 

sheds light on its unique phylogenetic distribution. Based on the conclusions 

made an evolutionary model that depicts the possible evolutionary timeline for 

the origin of vaults and their subsequent phylogenetic distribution has been 

proposed (Figure 2.12) 

From the phylogenetic distribution it is clear that vaults are present 

only in organisms that lost certain key enzymes pertaining to synthesis of 

essential amino acids. Loss of amino acid biosynthetic capability occurred 

independently across different lineages over the course of evolution. A Great 

Genomic Deletion model has been implicated in eukaryotic clades that lack 

essential amino acid biosynthetic enzymes (Guedes et al. 2011). Interestingly, 

fungi that are closely related to metazoans have no vault genes; yet, retain all 

enzymes essential for amino acid biosynthesis. A more reasonable 

interpretation, based on evolutionary reconstructions, would be that MVP, 

VPARP and TEP1, all co-evolved together in an ancestral unikont that evolved 

independently into the amoebozoans and opisthokonta clade and was 

subsequently lost in the fungi, nucleariida and also in class Icthyosporea. This 

common ancestor may have had enzymes for synthesis of amino acids intact. 

However, during course of evolution, as it diverged into organisms 

representing metazoans or choanozoans, the presence of vault genes may have 

compensated in some way for the subsequent loss of amino acid biosynthetic 
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capability. However, the fungal clade with no selective pressure to retain vault 

genes underwent a secondary loss. It is also interesting to note that except for 

metazoans, other eukaryotes that lack essential amino acid biosynthetic 

pathways (including those that have no MVP genes), all retain enzymes related 

to nitrogen assimilation (Guedes et al. 2011). Thus it seems like vault genes 

originated primarily in unikonts to compensate for the loss of both essential 

amino acid synthetic and nitrogen assimilative enzymes. 

It is interesting to note that even organisms that acquired vault genes 

by lateral gene transfer events, including certain heterotrophic bacteria with 

gliding motility, display defects in synthesis of essential amino acids. It is 

known that adaptation to specific environments is a major trigger for 

horizontal gene transfer events. Different eukaryotic lineages can 

independently acquire the same beneficial gene under certain circumstances. 

The horizontal gene transfers that contribute significantly to protist genomes 

are attributed to the phagotrophic or parasitic lifestyle of the organisms 

involved (Nosenko and Bhattacharya 2007). Not just the protists, even the 

bacterial xenologs that acquired vault gene have a lifestyle akin to those of 

slime molds and occupy similar niches. They also form multicellular 

aggregates under starvation. This reiterates that these organisms may have 

succumbed to some selective pressure that led to the acquirement of genes 

from organisms that ancestrally harbored vault gene. 

While vaults are observed in only organisms that lost synthesis of 

essential amino acids capability over evolution, there is one autotrophic 

cyanobacterium that harbors a clear conserved MVP homolog. An early 

eukaryotic MVP may have been acquired by Moorea producens 3L. 
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Alternatively, MVP originated in older filamentous cyanobacteria and was 

acquired by an ancestral single celled eukaryotic unikont, which also lost its 

core amino acid biosynthesis pathways. The key question is - In which 

direction did this obvious horizontal transfer occur? 

 

 

Figure 2.12 Proposed evolutionary model for the origin of Vault Complex 

The MVP gene harboring organisms are indicated with colored circles. The organisms are 

grouped according to well-established evolutionary relationships. The emergence of MVP in 

the Unikont clade comprising the Opisthokonts and Amoebozoa is depicted with the orange 

diamond.MVP could have originated in a non-nitrogen fixing cyanobacterium that recycles 

amino acids and been transferred to an ancient unikont ancestor. The minor vault proteins, 

VPARP and TEP1also emerged in the Unikont clade and co-evolved with MVPas depicted 

with blue diamond.vRNA evolved later in deuterostomes as shown as yellow diamond. The 

clades Excavates, Plantae, Chromalveolates together comprise the Bikonts. The specific group 

of bacteria with gliding motility, Kinetoplastids, Paramecium, Naegleria and Phytophthora, 

all have acquired MVP gene through horizontal gene transfer events.  

 

Bacterial species seem less capable of evolving complex multi-domain 

proteins like MVP, however filamentous cyanobacteria like Moorea producens 

3L are an exception, with domain-shuffled polyketide synthetases/non-
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ribosomal peptide synthetases, as well as abundant recombination and DNA 

repair enzymes (Jones et al. 2011). So MVP could have very well originated in 

such an organism, as mechanisms for domain duplication and shuffling are 

well supported. Vaults likely originated with a simple MVP gene in such an 

ancestral cyanobacterial species through the selective pressure of loss of 

nitrogen fixation process; a pressure which has most certainly influenced other 

genes and gave rise to complex strategies in M.producens 3L for amino acid 

storage. Therefore it should not be surprising that a long multidomain repeat 

protein like MVP could have emerged in such a cyanobacterial lineage, 

perhaps simply as a conventionally transcribed amino acid storage 

molecule.MVP may have been later acquired in a fully formed state by a 

cyanobacterium-feeding single-celled eukaryote through horizontal transfer 

from an ancestral cyanobacterium that lost nitrogen fixation. The acquisition 

of a cyanobacterial MVP may have helped complement the subsequent loss of 

amino acid biosynthesis genes in the ancient eukaryote.  

MVP knockout studies performed in multicellular eukaryotes have 

revealed no obvious phenotypic changes except under nutritional stress 

conditions (Vasu and Rome 1995; Mossink et al. 2003; Sutovsky et al. 2005; 

Kolli et al. 2004).  The correspondence of vaults with both lost essential amino 

acid biosynthetic capability and lost nitrogen fixation capacity, and the 

exclusion of vaults in cases of amino-acid synthesizing intracellular 

endosymbiosis, suggests that the function of vault may be most simply related 

to metabolism of amino acids. Evolution of nutrient-absorption systems to 

compensate for the loss of essential amino acids has already been 

hypothesized (Guedes et al. 2011). This reiterates that vaults may have an 
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important but overlooked role to play in cell survival under stress and 

starvation conditions.  

Within the multicellular metazoans, it is observed that vault genes have 

been specifically lost in the ecdysozoan protostomes. Although insects and 

nematodes lack amino acid synthesis genes, they often have widespread and 

evolutionarily ancient relationships with obligate intracellular endosymbiotic 

bacteria like Buchnera and Wolbachia, which are an internal source of 

essential amino acid synthesis.  Primary obligate endosymbionts have been 

associated with their insect hosts for millions of years and co-speciated with 

their insect hosts (Douglas 1998; Wernegreen 2002). The intracellular 

endosymbionts may compensate for the nutritional requirements in 

ecdysozoan protostomes. In the Lophotrochozoan mouth- and gut-less annelid 

tubeworm Riftia pachyptila, it was found that MVP mRNA is conspicuously 

and completely down-regulated in the specialized tissue trophosome that 

harbors nutrient providing intracellular endosymbionts (chemolithoautotrophic 

γ- Proteobacterium) but remains enriched in the branchial plume that is 

involved in exchange of metabolites with environment (Sanchez et al. 2007). 

It is interesting that though vaults and intracellular endosymbiosis are found in 

the same organism they remain segregated in different tissues and appear to be 

mutually exclusive.  

The notion of horizontal gene transfer events into specific organisms in 

bikonts is also supported by missing sequences corresponding to VPARP and 

TEP1 in these organisms as opposed to those of the opisthokonts and 

amoebozoans. It is also worth mentioning that the VPARP homologs from 

unicellular organisms (along with those from invertebrates) are very different 
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from their vertebrate counterparts and suffers from poor conservation through 

the length of the alignment, particularly along the mINT domain that is 

essential for interaction with MVP monomers. Therefore, it is not very clear if 

they are capable of being enclosed within the vault complex. Interestingly, 

both the minor vault genes are present in Capsaspora that diverged prior to 

that of choanoflagellates and metazoans, but have been specifically lost in 

choanoflagellates indicative of a lineage specific gene loss 

The results from the phylogenetic reconstructions shed light on the 

evolutionary history of the vault complex, alongside the minor vault 

components. Appearance of vault genes in independent lineages of organisms 

with lost amino acid biosynthetic capability suggests a possible and 

convincing correlation between loss of amino acid synthesis and vaults. The 

absence of vaults in fungi or ecdysozoan protostomes is likely compensated by 

amino acid availability either by intact biosynthetic pathways or through 

beneficial intracellular endosymbiosis. The puzzling phylogenetic distribution 

and selective occurrence in a few species of unicellular protists is 

parsimoniously explained as a horizontal gene transfer event that may have 

occurred due to selective pressure in adapting to specific nutrient niches where 

the gene was available. Based on the provided evidence it is reasonable to 

speculate that function of vault may be related to basal heterotrophic nutrient 

requirements. 

  



85 
 

 

 

  



86 
 

 

 

 

 

 

 

The Medium is the Message – Vaults 
as Nutrient Sequesters 
 

 

3.1 INTRODUCTION 

The detailed phylogenetic reconstruction tracing the evolutionary 

history of the vault complex reveals a connection between loss of essential 

amino acid biosynthetic capability and vaults. While the phylogenetic analysis 

distinctly points to the emergence of vault in a single-celled eukaryotic 

ancestor of unikonts, the specific loss of vault genes in fungi that has intact 

pathways for amino acid synthesis is interesting. Even organisms which 

possibly acquired vault later by horizontal gene transfer events, including 

ciliates, Paramecium and also specific species of gliding bacteria, are 

compromised in their ability to synthesize amino acids, especially branched 

chain amino acids Ile, Val, and Leu. Thus it seems possible that the function 

of vaults may have compensated for the loss of amino acid synthesis in  

Chapter 3  
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eukaryotes and those organisms that can synthesize their amino acids 

including plants, algae and fungi did not display any selective pressure to 

retain vault genes and hence, lost it through evolution.  

Proteins, apart from playing their specific cellular functions, also 

provide valuable amino acids once they are recycled. The cellular system 

represents dynamic machinery as opposed to a static system, where new 

organelles and proteins are constantly being synthesized while the old ones are 

being recycled from time to time. Autophagy, in particular macroautophagy, is 

an evolutionarily conserved self-digestive and recycling process in all 

eukaryotic cells, whereby the cells degrade older proteins and organelles to 

promote cell survival (Klionsky and Emr 2000). The process is more 

pronounced during limiting nutrient conditions, when the bulk of old proteins 

are recycled and the resulting amino acids are released back into the cytosol.  

Autophagy is known to be up regulated following nitrogen starvation in many 

multicellular eukaryotes from yeast through mammals (Mizushima 2007). 

Autophagy also plays a major role in starvation- induced development of the 

social amoeba Dictyostelium (Otto et al. 2003). Defects in autophagy have 

been implicated with many physiological conditions including cancer, 

neurodegeneration and infections (Mizushima et al. 2008; Amano et al. 2006). 

While the evolutionarily evolved autophagic process promotes cell survival in 

most cases, autophagy induced cell-death has also been reported.  

While most mammalian tissues reach autophagic maxima within 24 

hours, brain tissue does not exhibit autophagy even after 46 hours of nutrient 

starvation. Autophagy is also pronounced in embryos where degradation of 

maternally derived proteins provides energy and nutrients for development 
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(Tsukamoto et al. 2008; Tsukamoto et al. 2008). Though autophagy-deficient 

mice appear normal during birth, they are marked by dramatically reduced 

amino acid profiles in plasma and other tissues as early as 10 hours within 

birth and display higher mortality rates (Kuma et al. 2004). This emphasizes 

that amino acids degraded from the bulk of tissue proteins serve as prime 

energy sources during early phases of development (Onodera and Ohsumi 

2005).  

It is known that vaults are highly expressed in developing embryos and 

also during other physiological conditions involving cancer, infection or 

neurodegeneration. As mentioned above, all of these conditions involve 

autophagy and mobilization of amino acids derived from degraded proteins 

(Mizushima and Klionsky 2007). Are the elevated levels of vaults in highly 

autophagic tissues merely coincidental? Or is there a relationship between the 

large numbers of polymerized amino acids in vaults and autophagic turnover? 

In higher eukaryotes, the liver serves as the prime organ of protein 

metabolism including assembly of new proteins and dismantling of the old 

ones to generate useful amino acids. Intriguingly, the liver can sense amino 

acid concentrations and efficiently trigger necessary catabolic or anabolic 

processes. Accordingly, a dramatic decrease in protein degradation rate from 

4.5%/hr to 1.5%/hr has been reported in response to an increase in amino acid 

concentrations of up to tenfold (Schworer et al. 1981).  Apart from protein 

catabolism, the liver also houses a bulk of glycogen, oligomerized glucose 

molecules, that represents secondary long-term energy storage. Vaults have 

been primarily isolated from and are also known to be enriched in livers. 

Given their massive size and protein content, could vaults have evolved as 
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nutrient (amino acid) stores and represent a form of secondary storage for 

polymerized amino acids?  

 In this chapter, the possibility of vaults functioning as a nutrient store 

has been analyzed by using a combination of compositional and theoretical 

metabolic analysis. Also, experimental evidence pertaining to vault expression 

and expression profiles of vaults in several microarray experiments are re-

analyzed in light of a proposed nutrient storage function.  

3.2 RESULTS 

3.2.1 Conserved compositional bias of MVP and vRNA 

Regions that define folded protein domains or non-structural linkers in 

a structural protein are marked by distinct bias in their amino acid 

compositions. This has been established previously by Dumontier et al. based 

on analysis of a large number of crystal structures (Dumontier et al. 2005). A 

protein domain is most likely expected to fit into the amino acid compositions 

defined for folded and linker region depending on its structure. Interestingly, 

comparison of this expected ‘folded’ protein composition to MVP, revealed an 

excess of Glu, Val and Gln, and elevated amounts of Leu, Pro and Arg (Figure 

3.1A). The compositional bias appears to be a consequence of the unique vault 

structure. The cap region is Glu rich, and the waist is Glu + Val rich. Val 

residues play an important structural role in the stable interface between the 

cap helices. The long cap helix has no helix-breaks or turns, which may 

explain its simpler composition as against a folded domain. Consistent with 

this view, the long cap helix has a narrow amino acid composition with high 

numbers of Ala, Ser, Glu, and Gln residues.  
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From the phylogenetic analyses discussed in the previous chapter, it is 

evident that vault genes are conserved across a wide range of eukaryotes. 

Some species have acquired full length vault genes by horizontal gene transfer 

events and have undergone lineage-specific paralogous expansion. To 

determine if the observed compositional bias is conserved across all phyletic 

groups harboring vault genes, the sequence composition of vaults was 

analyzed across all the taxa. With over seventy-five amino acid sequences for 

MVP analyzed, it is shown that this amino acid bias is conserved across the 

phylogeny, with minor variations expected due to environmental conditions 

and G+C content. 

The vRNA represents a very simple structure with a loop region and a 

stem region. Though multiple copies vRNAs are reported in a wide variety of 

organisms, it has been difficult to curate the entire set of vRNA due to its poor 

sequence conservation and high variability in sequence length. Apart from the 

hairpin region, the loop region is highly variable among the studied sequences. 

It is known that the expression of vRNA is elevated during Epstein-Barr virus 

infections by almost 1000 fold (Nandy et al. 2009). A vRNA bias towards U, G 

and C was originally reported by Rome ((Kedersha and Rome 1986; 

Kickhoefer et al. 1996). To evaluate if the nucleotide bias itself could be 

conserved feature across the vRNA sequences, a comprehensive collection of 

computationally predicted vRNA sequence dataset was used (Stadler et al. 

2009). The nucleotide bias of vRNA across this dataset was analyzed and 

compared against basal genome compositions in organisms predicted to harbor 

vRNA genes (Table 3.1). Basal genome compositions were computed on 

downloaded complete genome assembly data for each organism from the 
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UCSC Genome Bioinformatics database. Based on the analysis, it was found 

that the U+G+C bias of vRNAs in mammals scores about 85.2% to that of 

basal eukaryotic genome composition of around 66.6%. The difference 

between the vRNA and basal eukaryote genome compositional bias was also 

pronounced in other groups – tetrapods, teleosts and basal deuterostomes. 

Akin to the paralogous expansion of MVP genes, the vRNA genes also seem to 

have duplicated into pseudo genes. Interestingly, the increased bias in 

nucleotide composition seems to be compromised in the pseudo genes (Table 

3.2). Out of the 7 predicted vRNA pseudo genes, U+G+C percentage is lower 

compared to that of functional vRNAs in 5 genes, suggestive of a possible 

evolutionary pressure that maintains the vRNA sequence bias. Given that the 

sequence conservation is poor and highly variable, the conserved nucleotide 

bias is interesting. It also suggests that there has been an active evolutionarily 

pressure that maintains the U+G+C (but not adenine) bias in vRNA.  

 Remarkably, a compositional enrichment of amino acids and 

nucleotides is evident for both MVP and vRNA, as evolution proceeded from 

sea to land (Figure 3.2 ). This indicates that vault contains two evolutionarily 

conserved and distinctly compositionally biased biopolymers: a protein MVP 

and a nucleic acid vRNA. 

 

Table 3.1 Comparison of U+G+C bias between vRNA and basal genome composition 

  Organism vRNA 

(%) 

Genome (%) 

Mammals Homo sapiens 85.51 65.57 

  Pan troglodytes 86.57 60.84 

  Pongo pygmaceus 85.66 63.15 

  Macaca mulata 85.79 65.05 

  Mus musculus 79.58 68.254 

  Rattus norvegicus 84.62 64.26 
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  Cavia porcellus 89.3 68.43 

  Oryctolagus cuniculus 83.76 68.4 

  Equus caballus 83.41 70.33 

  Canis familiaris 86.73 66.127 

  Bos taurus 85.42 66.37 

  Loxodonta africana 85.61 68.65 

  Dasypus novemicinctus 85.44 70.01 

  Monodelphis domestica 83.93 66.93 

  Ornithorhynchus anatinus 87.25 67.12 

Other Tetrapods Xenopus tropicalis 81.08 62.88 

  Gallus gallus 86.57 67.06 

Teleost Danio rerio 79.3 68.06 

  Oryzias latipes 82.04 56.6 

  Gasterosteus aculeatus 87.33 69.7 

  Takifugu rubipres 82.65 63.78 

  Tetraodon nigroviridis 88.37 61.7 

Basal Deuterostomes Petromyzon marinus 82.96 59.28 

  Ciona intestinalis 80.83 63.32 

  Branchiostoma floridea 81.51 64.99 

  Strongylocentrotus purpuratus 78.897 61.2 

 

 

 

Table 3.2 Comparison of U+G+C bias between vRNA (actual) and vRNA pseudo genes 

Organism Common Name Pseudogenes (%) vRNA 

(%) 

    

Spermophilus tridecimlineatus Squirrels 70.09 83.91 

Procavia capensis Rock Hyrax 80.39 86.73 

Bos Taurus Cow 78.49 85.42 

Canis familiaris Dog 76.19 86.73 

Tursiops truncates Dolphin 76.00 83.16 

Oryctolagus cuniculus Rabbit 85.57 82.41 

Latimeria menadoensis Coelacanth 81.44 74.75 

 
3.2.2 MVP is a Unique Protein with High CAI 

Translational efficiency, an important measure of protein expression 

within cells, depends on efficient use of codons. A significant correlation 

between mRNA levels and codon bias has been established in literature 

(Tuller et al. 2010). Codon bias corresponds to the differential usage of 

synonymous codons based on levels of corresponding tRNAs. Proteins that are 
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efficiently translated and expressed at elevated levels have the optimal codons 

that are recognized by an abundance of corresponding tRNA and are marked 

by high Codon Adaptation Index (CAI). The human MVP that is expressed in 

many cell types has a high CAI of 0.78 correlating with high copy numbers of 

vaults observed in purifications (Sharp and Li 1987; Kedersha and Rome 

1986).  

 Apart from its abundant expression, vaults have also been reported to 

undergo turnover or degradation during various cellular conditions including 

interferon-gamma induction, embryonic development or following an axonal 

accumulation. The vault particle can be broken down into its constituent 

amino acids via ubiquitin-mediated proteasomal proteolysis  or lysosome-

mediated autophagy which consequently releases its ribonucleotides (vRNA) 

(Kedersha et al. 1990; Mortimore and Pösö 1987; Sutovsky et al. 2005). Given 

that naturally occurring vaults are polymerized structures constructed from 78 

copies of MVP and also harbor few copies of minor vault constituents, an 

intact vault complex is a huge store of entrapped amino acids. With nearly 

100,000 amino acids in a single vault complex and high reported copy 

numbers, the metabolic fate of degraded vault is significant because 

concomitant increases in MVP transcription, translation and turnover have also 

been observed (Steiner et al. 2006; Li et al. 1999).  Taken in combination, 

these simultaneous increases in transcription, translation and turnover would 

represent a futile metabolic cycle of amino acid/ribonucleotide polymerization 

and release. In the absence of a clear distinct cellular function for vaults, the 

futile cycle itself could prove useful in controlling the concentrations of the 

free amino acid pool within the cell.  
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Any protein could essentially be turned over to derive useful amino 

acids to combat cellular stress. But what makes Vaults special? The most 

straightforward reason is its amino acid content and high copy numbers within 

cells. The vault composition bias is towards amino acids that are most readily 

utilized as nutrients in metabolism, with close to 50% contributed by Glu, Gln, 

Arg, Pro, Leu and Val. These amino acids could be routed through various 

metabolic pathways for cellular energy or may serve as precursors for 

synthesis of other useful molecules. The biased amino acids in vaults, Arg, Pro 

and Gln, can be efficiently converted into Glu and enter the tricarboxylic acid 

(TCA) cycle (Owen et al. 2002). Amino acids including Glu, Asp and Arg also 

serve to be important as neurotransmitters and are found in excess at axon 

terminals.  

The compositional bias and CAI as a function of protein length was 

plotted for all annotated human protein coding sequences from the NCBI 

Consensus CDS protein data set (Figure 3.1B). Remarkably, MVP is one of 

the two proteins (the other being CARD10, a caspase recruitment domain 

family member 10 protein with a known function) that holds a nutritional 

amino acid bias in combination with a high CAI, and at the same time forms a 

large, stable and folded protein with no large regions of low complexity 

sequence and no intrinsically disordered regions. Naturally all proteins can be 

recycled but the observed bias in amino acid composition complemented with 

a high CAI appears to be a rare combination and makes MVP unique as a 

molecule. Also, the fact that it polymerizes into a stable and neutral 

macromolecular structure makes it an ideal storehouse of nutrient amino acids. 

https://wizfolio.com/?citation=1&ver=3&ItemID=618&UserID=1682&AccessCode=7B18EA133E8C4A8786ADACE318DC595B&CitationSuffix=
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Figure 3.1Conserved compositional bias of MVP protein 

(A) Composition of vault and vault genes compared to the average composition for folded 

proteins (FOLD) and unstructured linker regions (LINKER)(Dumontier et al. 2005).  Amino 

acids are shown in clockwise order sorted from highest to lowest composition from the FOLD 

set, which appears as a smooth blue spiral starting at the top and going clockwise towards the 

centre.  The human vault particle composition is estimated by including 78 copies of MVP, 12 

copies of VPARP and 3 copies of TEP1.MVP exhibits higher than expected Leu, Val, Glu, 

Gln, Arg and Pro compared to FOLD, LINKER and actin (control). (B)Composition bias 

(EQPVRL Percentage) compared against Codon Adaptation Index (CAI) and length for all 

human protein coding regions obtained from the CCDS database. MVP is in yellow. Red 

represent sequences with length >600 amino acids, equal or higher CAI and compositional 

bias than MVP with significant low complexity regions (LCR). Blue and orange represent 

sequences that are similar in CAI and composition, but smaller than MVP (300-600 amino 

acids and less than 300 amino acids, respectively). The remaining proteins are represented by 

green dots. 
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Figure 3.2 Compositional enrichment of vaults through evolution 

Compositional enrichment of (A) U+G+C content in vRNA and (B) amino acids Glu, Gln, Pro, 

Val, Leu and Arg in MVP as organisms evolved from sea to land. Only deuterostome 

sequences were considered for this analysis. Also, (A) shows compositional enrichment of 

true vRNA compared with vRNA pseudogenes. For (B) only full length MVP sequences were 

used. 

 

3.2.3 Recycling Vaults – A Reserve of Useful Precursors 

Maintenance of cellular energy is an important determinant that 

controls cell growth and proliferation. However, during cellular stress, 

particularly starvation response, balancing cellular energy to promote cell 

survival becomes a challenging task.  The cell tackles starvation primarily by 

burning its glucose and fat reserves. The glycogen reserves in muscles and 

liver cells come handy during this process. But during prolonged starvation, 

the cell resorts to breaking down proteins in muscles and other tissues to 

derive useful cellular energy, primarily by autophagy. The process is initiated 

when a portion of the cytoplasm is sequestered into a double-membrane 

structure called the autophagosome and fuses with a lytic compartment that 

hosts materials to be degraded. It has been known that mature ribosomes also 



97 
 

undergo rapid degradation upon nutrient starvation in yeast by a process 

termed ribophagy, a type of selective autophagy (Kraft et al. 2008). Other than 

autophagy, the ubiquitin-proteasome system can also rapidly degrade proteins 

when fast adaptation is needed. The turnover of vaults by such a mechanism 

has already been proposed in developing embryo (Sutovsky et al. 2005).  

Vaults, being present in high copy numbers, particularly in 

metabolically active cells, could potentially serve as an energy reserve in 

response to various cellular stimuli including stress and nutrient starvation. 

Since the MVP-knockout models display no apparent phenotype and vaults are 

considered not essential for normal physiological functions, bulk degradation 

of vaults may not affect normal cellular functioning but could serve to provide 

a lot of amino acids within the cells. It has been well-established that amino 

acids can serve as a direct energy source for the cell and can also drive 

gluconeogenesis.  It has also been established that vaults dissociate at low pH 

suggesting that the acidic nature of the lysosomes could trigger the process 

(Goldsmith et al. 2007). Hence, it could be speculated that vaults are engulfed 

into such lytic compartments and subjected to degradation.  

To mimic such a process and account for the usability of vaults as a 

direct energy source or as precursors for important metabolic reactions, 

theoretical metabolic degradation of vaults and their constituent amino acids 

was performed. All the amino acids were subjected to canonical degradation 

pathways and the end products were routed through various metabolic 

pathways to determine the theoretical energy equivalent of one vault particle. 

This theoretical study assumed complete degradation of all amino acids 

constituting the vault complex. The total amino acid count for one vault 

http://wizfolio.com/?citation=1&ver=3&ItemID=1062&UserID=1682&AccessCode=DD100A1D9EB14A219CEBAECC71FFC591&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=292&UserID=1682&AccessCode=5316CECE8B6F46199F7E1527C602EE80&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=814&UserID=1682&AccessCode=723EE02BF06C48CFB8057BA91154F518&CitationSuffix=


98 
 

complex takes into consideration 78 copies of MVP, 12 copies of VPARP and 

3 copies of TEP1 (Table 3.3). The exact copy numbers of VPARP and TEP1 

within intact complexes remain unknown and hence, the indicated values are 

estimates (Anderson et al. 2007). The details of the theoretical metabolic 

degradation and routing of vault amino acids through the various catabolic or 

anabolic pathways are detailed in Appendices. 

 

 

Table 3.3 Amino Acid compositions of MVP chain and structured Vault Complex 

Amino 

Acid 

1 MVP 78 MVP 

Chains 

Composition 

of   MVP 

1 Vault 

Complex 

Composition 

of  Vaults 

A 80 6240 8.96 8106 8.25 

C 5 390 0.56 1002 1.02 

D 49 3822 5.49 5241 5.34 

E 86 6708 9.63 8760 8.92 

F 26 2028 2.91 3189 3.25 

G 58 4524 6.49 6117 6.23 

H 18 1404 2.02 2208 2.25 

I 35 2730 3.92 4053 4.13 

K 43 3354 4.81 4992 5.08 

L 92 7176 10.30 10542 10.73 

M 9 702 1.01 1254 1.28 

N 21 1638 2.35 2487 2.53 

P 54 4212 6.05 5928 6.04 

Q 55 4290 6.16 5808 5.91 

R 65 5070 7.28 6315 6.43 

S 38 2964 4.26 5571 5.67 

T 44 3432 4.93 4983 5.07 

V 91 7098 10.19 8841 9.00 

W 7 546 0.78 918 0.93 

Y 17 1326 1.90 1908 1.94 

Total 893 69654 100 98223 100 

 

 

 

http://wizfolio.com/?citation=1&ver=3&ItemID=993&UserID=1682&AccessCode=CC3DFBBCE5874B7A9FE8DDA29954665A&CitationSuffix=
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3.2.3.1 Vault Amino Acids as Substrates for Gluconeogenesis 

While glycogen serves as the primary reserve for glucose, nutrient 

deprivation leads to depletion of glycogen sources within one day. Hence, 

pyruvate or other tricarboxylic acid cycle intermediates in the liver are driven 

into gluconeogenesis to maintain glucose homeostasis. A bulk of the vault 

amino acids, except for leucine and lysine, on complete degradation either 

form pyruvate or other important intermediates that could be efficiently routed 

via the tricarboxylic acid cycle (Appendices, Table A.1). Pyruvate or 

oxaloacetate can be shuttled into the gluconeogenesis pathway for production 

of glucose. Taking into account total energy required for degradation of each 

amino acid in vault and total energy required for routing the intermediates 

through the gluconeogenesis pathway, in terms of ATP and other energy 

carriers including NADH, NADPH and FADH2, it is found that vaults can 

economically prime the synthesis of almost 44248 molecules of glucose with 

net ATP to spare (Figure 3.3). Molecular biology grade glycogen purified 

from oysters (Fermentas Inc., Canada) has a maximal molecular weight of 

about 8x106, comprising about 50,000 glucose molecules. Thus, these two 

particles are nearly equivalent in carbohydrate energetic value. 
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Figure 3.3 Glucose molecules recycled from one vault 

Total amino acids from one vault particle are theoretically degraded into TCA cycle 

intermediates and routed into gluconeogenesis pathway for synthesis of glucose. Total energy 

involved in the form of ATP and other energy equivalents are taken into consideration. Refer 

Appendix for details on calculation. 

 

 

3.2.3.2 ATP Equivalents Regenerated from a Degraded Vault 
Complex 

Extending the above analysis and completely routing all the amino acid 

degradation products through pathways of tricarboxylic acid cycle and 

oxidative phosphorylation via electron transport chain, results in the formation 

of more than a million molecules of useful chemical energy in the form of 

ATP (Figure 3.4 and Appendices, Table A.2). 
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Figure 3.4 ATP Equivalents available from one vault 

Total amino acids in one vault particle are subjected to degradation and intermediates routed 

to TCA cycle and oxidative phosphorylation. Each NADH molecule is equivalent to 3 ATP 

and each FADH2 molecule is equivalent to 2 ATP molecules. Refer Appendix for details on 

calculation. 

 

3.2.3.3 Vaults as precursors for de novo Nucleotide Biosynthesis 

De novo synthesis of nucleotides necessitates the involvement of Asp, 

Glu and Gly in several of the key reactions. A bulk of the vault amino acids 

including Gln, Glu, Pro and Arg could be converted into either Asp or Glu and 

hence, be driven into the synthesis pathway. Cys and Ser could also be routed 

into the pathway once they are converted into Gly (Appendices, Table A.3 

(Part 1). The de novo synthesis of both purine and pyrimidine involves the 

utilization of an activated sugar intermediate termed the 5-phospho-α-D-

ribosyl 1-pyrophosphate (PRPP). While a subset of amino acids is directly 

involved in the de novo synthesis, the other amino acids can be efficiently 

routed for the synthesis of PRPP (Appendices, Table A.3 (Part 2).  Such an 

efficient usage of amino acids in one vault particle could drive the synthesis of 

almost 9200 purine or 12500 pyrimidine skeletons theoretically (Appendices, 

Table A.3 (Part 3). Hypothetically speaking, the resources from about 5.6 x 

10
5
 vaults are sufficient to build an entire haploid human genome containing 3 
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billion base pairs. This appears to be also suited to scale, given the copy 

number of vaults reaching as high as 10
7
 in embryos. 

3.2.3.4 Assembling New Proteins from One Vault Particle 

Protein recycling may become particularly important when nutrients 

are sparse and basal proteins promoting cell survival have to be constantly 

synthesized (Mizushima and Klionsky 2007). It has been established that the 

median length of eukaryotic proteins is about 361 amino acids (Brocchieri and 

Karlin 2005). Assuming assembly of average sized proteins with folded 

domain compositions, it is found that amino acids in vaults are capable of 

forming as many as 146 proteins and also provide for all the ATP required for 

protein translation machinery, including initiation, elongation, translocation 

and translation.  (Appendices, Table A.4) 

It is evident based on the current study that vaults display prime 

attributes to serve as a cellular energy reserve and could be regarded as a 

dependable source for energy, amino acid and also for release of various other 

metabolic precursors during periods of cellular stress. 

 

3.2.4 Syntenic Conservation of MVP with BCKDK 

Comparison of entire genomes in charting the evolutionary history of 

eukaryotes, particularly mammals, has led to the identification of a limited 

number of syntenic segments. Syntenic segments, termed the ‘conserved 

linkage group’, are marked by regions of highly conserved gene orders in the 

chromosome (Kemkemer et al. 2009). These segments signify a selection 

pressure that has been active in maintaining the gene order among the different 

organisms over the years of evolution. The MVP gene maps to the 16p11.2 

http://wizfolio.com/?citation=1&ver=3&ItemID=433&UserID=1682&AccessCode=AC8F422A9759481899D0A3BB0C917D14&CitationSuffix=
https://wizfolio.com/?citation=1&ver=3&ItemID=617&UserID=1682&AccessCode=57451207DA254D7BA8FBC823C356B9CA&CitationSuffix=
https://wizfolio.com/?citation=1&ver=3&ItemID=617&UserID=1682&AccessCode=57451207DA254D7BA8FBC823C356B9CA&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=1063&UserID=1682&AccessCode=4614FA0FB6CD4F9AA5E6B05D43DA8AA3&CitationSuffix=
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genomic locus. To screen if MVP is also subjected to such an evolutionary 

pressure and maintains a specific gene order with its neighbors, the 

chromosomal regions in as many as 16 genomes were compared. The genomic 

regions neighboring to MVP were scanned using the Ensembl Genome 

Browser. On analysis, it was found that the particular locus in which MVP is 

present is syntenically conserved across all mammalian genomes including 

platypus. However, the conserved gene order, centered on MVP, is lost in the 

chicken genome. Synteny analysis revealed that at least 83 genes from mouse 

and 93 genes from chimpanzee, shared a conserved specific gene order 

upstream or downstream of MVP. Syntenic conservation of MVP gene locus 

between human, mouse and rat is shown in Figure 3.5. 

 

Figure 3.5 Synteny analysis of MVP gene locus 

The conserved gene order of MVP and its neighbors along the chromosome is shown between 

(A) human and mouse and (B) human and rat. The MVP gene is shown in red box. The 

colored arrows and lines connecting them represent genes that are syntenically conserved 

across the locus. Important genes that function in metabolism are highlighted in green. Genes 

that play a role in neural development or neurodegeneration are highlighted in red.  

 

 

Mouse (Chr 7)

Human

Human
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B
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Interestingly, MVP is also syntenically conserved with gene BCKDK 

(Branched Chain Ketoacid Dehydrogenase Kinase) within this region. 

Branched Chain Ketoacid Dehydrogenase (BCKDH) complex is an important 

regulator of the branched chain amino acid (BCAA) catabolism. BCAA are 

indispensable amino acids and account for almost 40% of the total body 

weight (Shimomura et al. 2004). BCKDK binding to the BCKDH complex 

reduces breakdown of BCAA by inactivating the complex, thus increasing 

BCAA pool within the cell. The proposed nutrient synthesis-turnover function 

for vaults agrees well with the observed gene association of MVP with 

BCKDK. The activity of the BCKDH complex is known to be up regulated 

during periods of nutritional stress to supply cellular energy. Conversely, 

amino acid deprivation enhances translation of BCKDK to increase the BCAA 

pool (DOERING and DANNER 2000). Concerted gene regulation, in the form 

of a negative feedback, or functional complementation of MVP and BCKDK 

may potentially determine the amino acid concentrations, particularly BCAA, 

within cells.  

 

3.2.5 The overlooked vault function – Clues from expression 
patterns 

Over the years, vaults have been implicated in various cellular 

functions. However, describing one precise function that can clearly explain 

all the observed expression patterns has remained complicated. The existing 

data, when subjected to meaningful analysis, reveals several clues that seem to 

correlate with the proposed function of vaults as a nutrient absorption particle 

that could efficiently function in a synthesis-turnover based manner in 

response to various cellular stimuli and remain dormant or neutral under 

http://wizfolio.com/?citation=1&ver=3&ItemID=1076&UserID=1682&AccessCode=6BD439790F754547A718C9B6BBCC167B&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=432&UserID=1682&AccessCode=5B10FE86CEF649B4BEA65C140296D811&CitationSuffix=
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normal conditions. In this section, the expression pattern of vault in various 

tissues or cellular conditions has been re-analyzed in light of the proposed 

novel function. Vault expression data hidden in various microarray 

experiments has also been re-visited. 

 

3.2.5.1 High Expression of Vaults in Nutrient Absorbing/Storage 
Tissues 

 Vault protein expression patterns in human tissues have been characterized 

previously using monoclonal antibodies(Izquierdo et al. 1996; Sugawara et al. 

1997). The MVP protein expression data was normalized and plotted along 

with observed MVP mRNA expression profiles in tissues of mouse, rat and 

human, retrieved individually from NCBI GEO (Gene Expression Omnibus) 

database (Su et al. 2002; Walker et al. 2004; Ge et al. 2005). On analyzing the 

pattern of expression, it was found that intestines consistently exhibited 

highest vault mRNA or protein expression across all the four independent 

datasets (Figure 3.6). Another microarray survey comparing expressions of 

mouse intestinal mesenchymal and epithelial cells reveals that MVP mRNA 

expression is pronounced in intestinal epithelial cells as shown in Figure 3.9 

(Li et al. 2007). Intestinal epithelial cells serve as prime sites for nutrient 

absorption and assimilation and the fact that MVP expression is highest in the 

intestine and specifically elevated in the epithelial cells accentuates the role 

for vaults as important players in nutrient absorption. Transcriptional profile 

data of Zebrafish intestine reveals that expression of MVP and VPARP is 

enriched in the anterior and middle intestine but fall rapidly towards the 

posterior end (Wang et al. 2010). The expression patterns of the vault genes 

also seems to follow trends displayed by other small molecule digestion and 

https://wizfolio.com/?citation=1&ver=3&ItemID=291&UserID=1682&AccessCode=51B53D559FDA4B95A4C56EAB75E5F9FB&CitationSuffix=
https://wizfolio.com/?citation=1&ver=3&ItemID=291&UserID=1682&AccessCode=51B53D559FDA4B95A4C56EAB75E5F9FB&CitationSuffix=
https://wizfolio.com/?citation=1&ver=3&ItemID=583&UserID=1682&AccessCode=5D834252F7E14D5E8B549FF62DA4D455&CitationSuffix=
https://wizfolio.com/?citation=1&ver=3&ItemID=546&UserID=1682&AccessCode=B3A88A07FB2642688FB92ED16DB991F8&CitationSuffix=
https://wizfolio.com/?citation=1&ver=3&ItemID=546&UserID=1682&AccessCode=B3A88A07FB2642688FB92ED16DB991F8&CitationSuffix=
https://wizfolio.com/?citation=1&ver=3&ItemID=585&UserID=1682&AccessCode=8668EF892DFD4446AA426AA88C324CA1&CitationSuffix=
https://wizfolio.com/?citation=1&ver=3&ItemID=548&UserID=1682&AccessCode=C0931E12A21E40D7BDAC9A769212BF44&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=1059&UserID=1682&AccessCode=A1B6D87108CB45CAA14F87E48C871062&CitationSuffix=
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uptake genes including apoa1, vil1l, fabp2 among others (Figure 3.7 ). Thus, 

the expression evidence data indicates that vault particles are expressed to a 

greater extent in the vertebrate digestive tract, particularly in the absorptive 

tissues of the intestine and also in the liver, where they may be involved in 

secondary storage.  

 

 

 

 

 

 
 

Figure 3.6 Comparison of tissue expression of vault 

Normalized graph of tissue specific expression levels of vault particles obtained from human 

tissue immunostaining (Sugawara et al. 1997) and mRNA expression of the MVP gene from 

three separate microarray surveys (Su et al. 2002; Walker et al. 2004; Ge et al. 2005). 

Unweighted averages of cell and tissue types belonging to a particular tissue are reported in 

cases where multiple samples or cell types were measured in the original study. Zero values 

reflect tissue results not available from the original dataset. 
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https://wizfolio.com/?citation=1&ver=3&ItemID=585&UserID=1682&AccessCode=8668EF892DFD4446AA426AA88C324CA1&CitationSuffix=
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Figure 3.7 Expression of MVP and VPARP in Zebrafish intestine 

Expression profiles of MVP, VPARP and other intestinal genes along the anterior-posterior 

intestine based on microarray results(Wang et al. 2010).Magenta: Apoa1 - Apolipoprotein A-

1;  Yellow: Apoa4 - Apolipoprotein A-4; Green: Vil1l - Villin 1 Like protein; Blue: Rdhe2 - 

Short chain dehydrogenase/reductase family 16C, member 5; Black: Fabp2 - fatty acid 

binding protein 2, intestinal; Red: ZGC:110410 - similar to glutamate receptor, ionotropic, N-

methyl D-aspartate-associated protein 1 (GRINA, glutamate binding); Light Blue: VPARP – 

Vault Poly ADP Riobose Polymerase; Grey: MVP - similar to MVP isoform 1.  

 

  

3.2.5.2 Starvation and Vaults – Clear Patterns from Dictyostelium 

Early MVP gene knockout experiments in Dictyostelium discoideum 

revealed a clear nutrient defect phenotype (Vasu and Rome 1995). 

Dictyostelium undergoes starvation-induced differentiation, beginning with 

single-cells in the vegetative state which then progress through many stages to 

form a multicellular fruiting body. Macroautophagy is an important 

determinant controlling this multicellular development of Dictyostelium. 

Autophagy mutants displayed reduced bulk protein degradation during 

starvation-induced development (Otto et al. 2003).  Vault protein expression 

has been examined during Dictyostelium differentiation, and was found to 

decline from 0 to 34 hours after differentiation, with the latter time point 

http://wizfolio.com/?citation=1&ver=3&ItemID=1059&UserID=1682&AccessCode=A1B6D87108CB45CAA14F87E48C871062&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=538&UserID=1682&AccessCode=CF354AE1330442688B328DE0DA1986CE&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=434&UserID=1682&AccessCode=31139433C1394C68AFE5ECBB09AB8104&CitationSuffix=
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corresponding to the terminal fruiting stage (Kedersha et al. 1990).  The 

protein expression pattern was plotted alongside mRNA expression trend of 

MVP observed by transcriptional profiling (Figure 3.8). The two MVP genes, 

MVPA and MVPB genes are expressed in the vegetative state and subsequently 

down regulated at the onset of starvation-induced differentiation (Iranfar et al. 

2003).  Thus, the data from both the experiments suggest that Dictyostelium 

vault particles become more concentrated during vegetative growth and that 

starvation halts vault expression. Since Dictyostelium depends primarily on 

protein catabolism to support cell survival during starvation-induced 

development phase, it is reasonable to speculate that vaults may contribute to a 

bulk of the protein-turnover process considering the amount of useful energy 

that could be obtained by vault degradation. 

In Dictyostelium, it is very well established that degraded amino acids 

function as substrates for the TCA cycle and provide energy as cells aggregate 

and form fruiting bodies (Shiraishi and Savageau 1993) Since differentiation 

in Dictyostelium results in the catabolism of about 50% of the cellular protein, 

the simplest explanation for the previously reported nutritional stress 

phenotype in Dictyostelium MVPA-/MVPB- knockouts is that the highly 

abundant vault particles function as feedstock proteins and offer valuable 

amino acids that could fuel differentiation and development. 
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Figure 3.8 Dynamics of DictyosteliumMVP expression at the transcript and protein levels 

MVP A/MVP B mRNA expression (Iranfar et al. 2003) and vault particle expression 

approximated by pixel density counting from the western blot illustrated in Ref. (Kedersha et 

al. 1990) with the Unscan-IT-gel software (Silk Scientific Inc. Utah, USA). Time is counted 

after induction of differentiation at T=0 h.  Vault particle western blot spot intensity is 

arbitrarily normalized to the value 2 at T=0 h. 

 

A nutrient particle theory for vault function would imply that a vault-

deficient Dictyostelium model would display defects in sequestering sufficient 

amino acids during vegetative phase and that it would have an adverse effect 

on cell survival during starvation-induced development stage. Consistent with 

this assertion, theMVP A
-
/MVP B

-
 knockout model of Dictyostelium displayed 

reduced growth rate and reached final cell densities of one-half to one-third to 

those of wild-type cells (Vasu and Rome 1995). Interestingly, this defect in 

cell survival or the observed nutrient phenotype became apparent only when 

the cells were subjected to limited nutrient medium (starvation) as the MVP-

knockout cells appeared to grow normally in nutrient rich medium. Similar 

nutrient phenotypes have also been noted in MVP
-/-

MEFs that display 

increased cell death on serum deprivation but show no obvious defects 

https://wizfolio.com/?citation=1&ver=3&ItemID=586&UserID=1682&AccessCode=B8F2CE099F5F4BA7B807A988C132DA93&CitationSuffix=
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otherwise.  (Kolli et al. 2004).  While other more complex vault functions 

could explain the limited growth during nutrient deprivation, the current 

theory still proves consistent with an impaired nutrient uptake in MVP-

deficient models. These studies also heighten the argument that phenotypes of 

vault knockout models become evident only during conditions of cell stress or 

starvation. This provides a reasonable explanation as to why most of the 

studies employing MVP-knockout models failed to see a clear phenotype.  

 

3.2.5.3 Explore the Unexplored – Hidden Clues from Microarray 
Profiles 

The gene expression profiles of MVP from various transcriptional 

profiling experiments were manually mined from the Gene Expression 

Omnibus (GEO) repository and analyzed in light of the proposed nutrient 

sequestration function of vaults (Figure 3.9 and 3.10). On analysis, it was 

found that MVP consistently displayed a higher percentile of expression when 

the study involved effects of nutrition or development. Consistent with the 

proposed function, transcriptome profiles of several studies pointed to low 

levels of MVP expression in muscles and liver on starvation. The differential 

expression profile of MVP in various tissues during a fasting response over 

various time points is illustrated below in Figure 3.9 (Hakvoort et al. 2011). A 

distinct upregulation of MVP in intestines even during starvation response is 

remarkable (Figure 3.9). The down regulation of MVP in liver and muscles is 

suggestive of protein degrading as a starvation response to mobilize amino 

acids. In addition, transcript level changes of MVP in response to several other 

experimental or physiological conditions have also been analyzed. The fold 
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expression of MVP was determined by comparing the extracted gene 

expression measurements for the samples involved. A few of the significant or 

interesting patterns obtained are plotted in Figure 3.10. 
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Figure 3.9 Changes in transcript profile of MVP expression across various tissues in 

response to fasting 

(A) Differential expression of MVP during the indicated time points in response to fasting is 

indicated as log2 ratio. A log2 ratio of zero indicates no change in expression while a log2 

ratio of 1 represents a 2-fold change with respect to control. (B) The rank order of expression 

measurements across the indicated time points for the various tissues during fasting. The 

percentile measurement is indicative of the expression of the gene with respect to other genes. 

A higher percentile ranks the gene high in terms of expression. Data obtained from (Hakvoort 

et al. 2011). 
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Figure 3.10 Expression of MVP across various transcriptomic profiles in the GEO 

database of NCBI 

The experimental details of the various datasets are given below in legend. The fold 

expression was determined by comparing the averaged expression measurements between two 

samples. ‘A/B’ for various experimental conditions listed in the legend (below) refers to 

average signal count of sample A divided by average signal count of sample B.  

Legend for Figure 3.10 

GEO 

Profile 
Experimental/Physiological Condition Reference 

Dataset 1 Mouse maternal mRNA utilization 

Embryo /  Oocyte 1-cell 

(Potireddy et al. 

2006) 

Dataset 2 B-lymphoblastoid cell line autophagy after 24 hours 

Starvation-induced autophagy  / Control 

(Dengjel et al. 2005) 

Dataset 3 Hepatitis C virus (HCV) core protein effect on 

hepatocytes: Infection  / Control 

(Nguyen et al. 2006) 

Dataset 4 Selective degradation of transcripts for oocyte 

maturation: Immature germinal vesicle stage  / 

metaphase II stage (mature) 

(Su et al. 2007) 

Dataset 5 Human dermal enodothelial cell response to herpes 

virus: Control  / Kaposi sarcoma-associated herpes 

virus (KSHV) 

(Hong et al. 2004) 

Dataset 6 Effect of ketogenic diet on liver: Control  /  Ketogenic 

Diet 

(Kennedy et al. 

2007) 

Dataset 7 Skeletal myoblast differentiation to myotubes 

Myotube  /  Myoblast 

(Chen et al. 2006) 

Dataset 8 Effect of dietary supplement on liver: Liver / Control (Kiela et al. 2005) 

Dataset 9 Myotube starvation model of atrophy: Control  /  

Starved 

(Stevenson et al. 

2005) 

Dataset 10 Dietary effects on hepatic and hippocampal gene 

expression: Liver  /  Hippocampus 

(Berger et al. 2002) 
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In addition, a large number of published vault experiments were re-

examined to determine whether any observations would falsify the proposed 

function as a nutrient amino acid sequestering and storage particle that 

undergoes regulated synthesis-turnover cycles. High expression of vaults in 

rapidly proliferating and metabolically active tumor or regenerating cells, 

unusually high concentrations of vault particles in sea urchin oocytes and in 

mammalian oocytes and embryos, and their observed depletion throughout 

embryogenesis are observations that are readily compatible with the proposed 

nutrient absorption function for vaults(Sugawara et al. 1997; Rao et al. 2009; 

Yoshinari et al. 2009; Sutovsky et al. 2005; Stewart et al. 2005).  
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3.3 DISCUSSION 

As originally noted by Rome in 1990, vault appears in all highly 

autophagic mammalian tissues (Kedersha et al. 1990). Autophagic recycling 

of amino acids is a well-established essential cellular function required for 

nutrient processing, and for surviving a number of conditions including 

starvation, muscle wasting, pathogenic infection, inflammatory bowel disease, 

neurodegeneration and cancer (Mizushima et al. 2008). Normal rat liver cells 

show 20-40% increase in protein content after a daily meal, which thereafter is 

released through lysosome-based autophagy back into the blood in a diurnal 

cycle (Mortimore and Pösö 1987). Protists including Dictyostelium rely on 

phagocytosis and autophagy to digest and recycle essential amino acids, and 

perhaps not coincidentally, the only filamentous cyanobacterium with MVP 

also relies on amino acid recycling to compensate for a genomic deficiency in 

nitrogen fixation (Otto et al. 2003; Jones et al. 2011). Based on vault 

expression patterns it could be concluded that vaults are preferentially 

distributed in tissues and organisms with a requirement for high protein 

turnover to support amino acid recycling. Hence, it appears likely that vault 

particles probably compensate for certain deficiencies in amino acid synthesis 

during periods of starvation, and probably this was the original selective 

pressure for the evolutionary origin of the vault particle.  

In many studies where vaults were reported to be highly expressed at 

the transcript or protein level, an increase in turnover rate of vaults was also 

observed. This is a paradox corresponding to high Transcription, Translation 

and Turnover. Vaults are known to be relatively stable structures with an 

apparent half-life of about 3 days (Zheng et al. 2005). However, in response to 
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specific stimuli including interferon-gamma induction or accumulation 

following axonal crush, vault particles have been reported to display reduced 

stability (Steiner et al. 2006; Li et al. 1999). While, interferon-gamma induced 

the expression of vault by threefold at the transcript and by six- to eleven-fold 

at the protein level, pulse-chase experiments following interferon-gamma 

treatment revealed that the labeled methionine remained higher at 12
th

 hour 

than at the 24
th

 hour, pointing to a reduced stability of vault particles and 

hence, increased turnover (Steiner et al. 2006).  

In the case of axons a bulk of vaults were reported to be accumulated 

at the nerve terminals along with synaptic vesicles by anterograde transport. 

Based on the signal obtained during retrograde transport it was speculated that 

more than half of them were degraded at the nerve terminals as only a few 

returned towards the cell body (Li et al. 1999).  Intriguingly, vaults displayed 

an accelerated accumulation at the nerve terminal while the accumulation of 

synaptic vesicles, the store house of neurotransmitters decelerated. An 

increased turnover following accumulation accentuates that vaults are bound 

to release their amino acids at the site of degradation. Given that one vault 

complex is a massive store of amino acids, the turnover of vaults at specific 

sites may prove beneficial to the cell. As mentioned earlier, vaults are enriched 

in amino acids Glu (8760/vault), Gln (5808/vault) and Asp (5241/vault) that 

serve as prime neurotransmitters and the degradation of vault is bound to be 

accompanied by a concomitant increase in useful amino neurotransmitter or 

neurotransmitter precursors. These neurotransmitters can later be loaded into 

the existing synaptic vesicle via neurotransmitter transporters. Of note, in the 
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PC12 cell line, MVP and secretory organelles like synaptic vesicles 

demonstrate co-localization at the developing neurites (Herrmann et al. 1999). 

Recent transcriptome profiling identified MVP to be up regulated in 

both larvae and in the adult during Zebrafish fin regeneration (Yoshinari et al. 

2009). Regeneration is a complex process that necessitates various coordinated 

cell events including wound closure by epithelial cells and formation of 

wound epidermis followed by formation of blastema, a mass of proliferating 

cells that makes up for the lost or damaged parts. (Yoshinari and Kawakami 

2011). While Zebrafish finfold regeneration reported 2.7 fold elevated levels 

of MVP in wound epidermis and blastema, a proteomic profiling data of adult 

urodele limb regeneration reported reduced protein levels immediately 

following amputation. Interestingly, the protein levels came back to normal 

once the regeneration process was completed. (Yoshinari et al. 2009; Rao et 

al. 2009). The two independent datasets are suggestive of an increased 

transcription and increased turnover of vaults, consistent with the paradox 

mentioned previously. Current literature data point to an indispensable role for 

vaults in regeneration as MVP-knockdown resulted in compromised locomotor 

functions and reduced growth of axons following spinal cord injury in 

Zebrafish(Pan et al. 2013). Given the indispensable role of MVP during 

regeneration, the proposed role of vault as a nutrient particle may be prudently 

implicated in such a process.  

The accumulation and turnover function may also prove advantageous 

during embryogenesis as degradation of maternally derived proteins has been 

known to supply nutrients to the developing embryo. The fact that MVP is 

accumulated in poor quality oocytes and embryos and also that such an 
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accumulation could be triggered in the presence of proteasomal inhibition in 

developing zygotes heightens the current argument that vaults could be 

effectively turned over to provide for valuable amino acids.  

MVP is strategically located at a chromosomal region, the deletion or 

duplication of which has been implicated in various neurodegenerative 

disorders including Schizophrenia and Autism and also energy imbalance 

(Guha et al. 2013; Zufferey et al. 2012). Upregulation of MVP has also been 

reported in other neurological conditions like frontal lobe epilepsy (Liu et al. 

2011). About 1% of patients with ASD have displayed microdeletions of about 

27 genes in this region and hence, these deletions are regarded as moderate 

risk factors for ASD. Recently a genomic study has narrowed on a critical 

deletion region of 5 genes that contributes to autism disorders (Crepel et al. 

2011). Intriguingly, MVP is one among the 5 identified genes along with 

CDIPT1, SEZ6L2, ASPHD1 and KCTD13that are syntenically linked. The 

SEZ6l2 (seizure related 6 homolog-like 2), like the MVP is also overexpressed 

in lung cancers and is regarded as a prognostic marker.   

Defects in functioning of the syntenically linked gene mentioned 

earlier, BCKDK, is also found to be the underlying cause for a rare form of 

autism (Novarino et al. 2012). The symptoms of this particular form of autism, 

arising from significant low levels of plasma and brain BCAA, could be 

completely abolished within one week of nutrient supplementation with 

BCAA enriched diet. Since amino acids serve as important precursors for 

neurotransmitters and given the accumulation of MVP in axons and nerve 

terminals, it is reasonable to suggest that vaults are important for brain 

function, with a more pronounced effect during specific cellular conditions 
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including stress or starvation. The evolutionarily conserved gene order at this 

particular chromosomal location and its implications in various 

neurodegenerative disorders and energy imbalance possibly hints at a 

controlled gene regulation mechanism that could be active during early phases 

of development.  

Thus, from the theoretical analysis of the vault particle in terms of its 

energy equivalents and from revisiting the huge amount of evidence reported 

in literature, it seems very likely that vaults could function efficiently in 

sequestering and recycling amino acids under appropriate cellular conditions.  
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Proposed Roles of Vault through 
Evolution 
 

 

 

Describing one cellular function for vault that is consistent with all 

experimental evidence established thus far has proven to be complicated. The 

proposed synthesis-turnover based nutrient absorption function for vaults 

seems to fit well with their observed high expression patterns in various 

metabolically active cells and also provides credible reasoning as to why 

vaults display selective accumulation and high turnover rates in response to 

specific stimuli. 

In this section, a cellular model has been described that puts the various 

roles of vaults in light of the proposed novel function (Figure 4.1). 

Experimental evidence on the functions of vault relating to autophagy, protein 

turnover, essential amino acid transport, interferon-gamma induced immune 

response and signal transduction in axons have been described through an 

evolutionary perspective to cumulatively sketch out the functions of vaults. 

Chapter 4  
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4.1 STARVE THE INVADER – SAVE THE CELL 

The earliest bacterial and archaeal ancestors of eukaryotes that harbored 

the ancestral proteasome possessed core metabolic pathways. Later, 

eukaryotes evolved to include features like the diversification of membrane 

trafficking and lysosome-based autophagy, reorganization of protein synthesis, 

marked by complexation of aminoacyl-tRNA synthetases and enlarging of the 

ribosome. Early large eukaryotic cells may have been prone to intracellular 

invasion from viruses and bacteria. In some cases these invaders may have 

become endosymbionts, as in the case of the chloroplast. In other cases, the 

development of an innate immune system to guard against these invaders 

could have provided selective advantages. A simple mechanism whereby the 

host removes free nutrient amino acids from the cytoplasm by increasing its 

protein synthesis could serve as an effective deterrent against invading 

bacteria. Nutrient starvation as an effective mechanism against infections has 

already been described for tryptophan (Kane et al. 1999; Leonhardt et al. 

2007). The polymerization of amino acids into a particle like vaults could have 

effectively served to limit the concentration of amino acids in large cells and 

at the same time store the precious amino acids in a non-functional but 

structurally stable protein. Thus vaults could have evolved as effective host 

mechanism against intracellular invaders. The later evolutionary inclusion of 

vRNA could have provided a similar mechanism to limit the concentration of 

free ribonucleotides, with the exception of A, for ATP dependent functions. 

This could be effective in starving RNA viruses of free ribonucleotides. 

4.2 ESTABLISH AMINO ACID GRADIENTS WITHIN CELLS 

The loss of essential amino acid biosynthesis pathways for Ile, Val, Leu, 

Phe, Trp, Met, Thr, His appears to have occurred prior to the eukaryotic 

appearance of vault. However, it is not possible to make a phylogenetic 
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analysis of lost genes for a direct comparison. Most of the essential amino 

acids including the important BCAA set (Leu, Val and Ile) transit through 

exchangers into the cell. Therefore, cellular intake of essential amino acids 

follows a gradient established by external and internal amino acid 

concentrations (Hyde et al. 2003; Mortimore and Pösö 1987; Bröer 2008). 

Maintenance of intracellular amino acid concentrations higher than that of 

extracellular environment depends on active membrane transport mechanisms. 

Primarily relying on amino acid exchangers, how does the cell effectively 

maintain a gradient for a constant supply of free essential amino acids? 

Amino acid exchangers such as System L function as a 1:1 amino acid 

exchanger and couple the uptake of essential amino acids with efflux of other 

neutral amino acids like glutamine. Because efflux of a neutral amino acid is 

necessary for an uptake, these exchangers rely on activity of secondary active 

transporters to maintain a continuous supply of neutral amino acids in the cell. 

Most essential amino acids are indispensable for the normal functioning of the 

cell. This stresses on the need for a judicious mechanism to retain them within 

cell membranes for use when they are insufficiently supplemented through 

food intake. Intracellular protein synthesis can alter the extracellular to 

intracellular amino acid gradient and hence it might be reasonable to speculate 

that some specific proteins may have emerged to take on a passive role as 

storage proteins. By evolving to achieve high rates of synthesis and precisely 

controlled mechanisms for turnover, such proteins could play a more active 

role in amino sequestration and release during various cellular conditions. It is 

possible that vaults may have originated to serve this function in a unicellular 

ancestor, and later evolved as efficient nutrient supplements for zygotes 

beginning with the first multicellular animals. 



124 
 

4.3 MEDIATE IMMUNE COMBAT 

In metazoan tissue, regulation of vault genes and the establishment of 

interferon-gamma induced expression may have offered finer regulation of 

vault expression as required during normal development or while under attack 

from bacterial or viral invaders. A cruder multi-copy strategy for MVP may 

have served this purpose in the non-bilaterian deuterostomes. The later 

establishment of vRNA and TEP1 may have been responsible for additional 

nutrient starvation of intracellular viral invaders (Nandy et al. 2009). This 

could effectively reduce the cytoplasmic concentrations of free 

ribonucleotides, especially C, G and U. It is known that interferon-gamma 

results in high expression rates of the MVP gene, both at the transcript and 

protein level. Apart from the effect on vault, interferon-gamma based 

upregulation of tryptophanyl-tRNA synthetase and indole-2,3-dioxygenase 

could also trigger additional nutrient starvation responses involving 

antimicrobial toxins derived from Trp (Schroecksnadel et al. 2012; Wood et 

al. 2004; Narui et al. 2009). Interferon-gamma inducible Nitric Oxide 

Synthases (iNOS) offer further antimicrobial effects from NO (nitric oxide) 

derived from Arg (Bronte and Zanovello 2005). Vaults being enriched in Arg 

could very well serve as a dependable reservoir for the NOS systems. MVP-

knockout mice suffer from poor survival rate due to increased bacterial load 

and decreased ability to clear Pseudomonas aeruginosa during lung infection 

(Kowalski et al. 2007). Apart from regulating the immune response, 

sequestering of amino acids into vaults may simply help in maintaining low 

intracellular amino acid and nucleotide concentrations that could effectively 

control the growth of invaders. Hence vault may play an important role in 

innate immunity through intracellular pathogen starvation. 
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4.4 A RELIABLE STORE OF AMINO ACID-BASED 

NEUROTRANSMITTERS 

The abundance of vault in neuronal tissue, including the glial cells, its 

anterograde and retrograde axonal transport and its distribution proximity to 

neurosecretory organelles also fit the proposed novel function for vaults(Li et 

al. 1999; Herrmann et al. 1996; Chugani et al. 1991). Vaults have been found 

to move along individual microtubules and are also highly expressed in 

presynaptic and postsynaptic structures (Paspalas et al. 2009). It has been 

speculated that more than half of the vaults that accumulate within nerve 

terminals are degraded (Li et al. 1999). It may be prudent to consider that 

amino acids, Glu, Asp and Gln, could be delivered to axon terminals via vault 

particles to stock or replenish vesicle bound neurotransmitter stores while 

other amino acids like Val may help power remote mitochondria. A clear 

mechanism detailing the bulk accumulation or movement of amino acids 

within cells has never been put forward. The movement of vault particles by 

motorized transport along microtubules effectively explains the transport of 

amino acids to distal parts of cells without the need for coordinated 

mechanisms involving amino acid gradients or exchangers. These aggregation 

and transport mechanisms would become very important in conditions of 

prolonged starvation, which may explain the lack of observed vault 

phenotypes in consistently fed animal models. Morphological differences in 

size of cell bodies and axon length are noted in edycosozoan protostomes 

lacking vault, as well as the lack of centralized brain tissues, which are found 

in lophotrocozoan protostomes. 
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4.5 AN ELUSIVE RESERVE OF ENERGY AND BUILDING 

BLOCKS 

Oocytes or embryos at various stages of development have consistently 

showed accumulation of vaults around lipid inclusions or membrane vesicles 

in cytoplasm (Sutovsky et al. 2005). An ubiquitin-proteasome dependent 

turnover for vaults has been suggested and vaults are found to accumulate in 

poor quality oocytes or embryos (Sutovsky et al. 2005). Collectively, this 

evidence suggests that vaults could succumb to significant turnover by the 

proteasome machinery and possibly, also through autophagy, and provide 

amino acids to cells that most need them. The developing or regenerating cells 

are in a constant demand for nutrients that serve as building blocks for cell 

proliferation, cell specialization and overall development. Not only can vaults 

provide an amino acid reserve but also serve to provide important building 

blocks for nucleotide or new protein synthesis. This can explain why vaults 

are present in copy numbers as high as 10
7
 in embryos (Hamill and Suprenant 

1997).  

Vaults have been found within the nucleus in numerous occasions. It 

has also been reported that the expression of vRNA increases about 1000 fold 

during infections. With a conserved compositional bias, the vRNA can indeed 

function as a nucleotide trapping mechanism to polymerize U, G and C 

nucleotides. Since ATP represents the energy unit of the cell, adenine 

nucleotides are probably not captured and polymerized as vRNA. Also, with 

vault amino acids providing sufficient starting material to drive de novo 

synthesis of nucleotides, it is reasonable to speculate that vaults move into the 

nucleus to possibly provide for nucleotide biosynthesis. All these mechanisms 
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may become more pronounced during high metabolic activity or during 

conditions of stress or starvation. The reported accumulation of vaults within 

the nucleus during embryonic development could be explained in light of this 

proposed function ( Hamill and Suprenant 1997). 
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Figure 4.1 Proposed schematic model explaining role of vaults in a generalized cell 

Various reported vault functions including axonal transport along microtubules (Eichenmüller 

et al. 2003), vaults in the nucleus, interferon-gamma induced MVP expression(Steiner et al. 

2006), vaults in Dictyostelium(Vasu and Rome 1995) and sea urchin oocytes(Hamill and 

Suprenant 1997) (macroautophagy), high expression of MVP and vRNA during 

infection(Berger et al. 2008) and proteasomal degradation of MVP(Sutovsky et al. 2005) are 

explained in the context of the nutrient particle hypothesis for the vault complex.  Based on 

our analysis of metabolic turnover, the glucose, ATP, nucleotides and new proteins possibly 

made from recycled vault particle have also been represented. Each functional segment in the 

model is based on experiments and observations from the literature. The vault enriched amino 

acids Val (V), Leu (L), Glu (E), Gln (Q), Pro (P) and Arg (R) are indicated in red and AA 

denotes amino acid. 
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5.1 INTRODUCTION 

The protozoan parasite Trypanosoma brucei is the causative agent of 

African trypanosomiasis that causes sleeping sickness in humans and Nagana 

in cattle. Two subspecies of this parasite, the T. brucei gambience and the T. 

brucei rhodesiense, are morphologically indistinguishable parasitic 

hemoflagellates,and are known to be responsible for chronic and acute 

infections in humans, respectively. The disease is characterized by two stages, 

a haemolymphatic stage associated with swelling of lymph nodes and a 

neurological stage that develops when the parasite crosses the blood-brain 

barrier. The disease is extremely fatal without medical intervention and the 

development of an efficient vaccine is challenged by antigenic variation of the 

surface protein exhibited by this parasite.  

Chapter 5  
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The parasite displays a complex life cycle that alternates between the 

insect (tsetse fly) and the mammalian hosts. The infection in mammals begins 

when the tsetse fly makes a blood meal and injects metacyclic trypomastigotes 

into the blood stream. The parasite undergoes transformation in the 

mammalian host into a long slender bloodstream form that starts to multiply in 

various body fluids including blood and lymph nodes. The proliferative form 

undergoes a density dependent differentiation into a non-proliferative short 

stumpy bloodstream form that has the kinetoplast, the mitochondrial genome 

holding organelle, in the terminal position. When the insect makes a blood 

meal, these short-stumpy bloodstream forms are ingested and differentiate into 

procyclic trypomastigotes in the midgut of the insect and start to divide. The 

procyclic form is morphologically different from the bloodstream form and 

has an extended and elaborated mitochondrion. In about two weeks, some of 

these proliferative forms leave the midgut and reach the salivary gland, where 

they become the epimastigotes and remain attached to the salivary gland. The 

epimastigotes later multiply and again convert to the metacyclic form that 

infects the mammalian host, thus completing one cycle of infection. 

During its complex life cycle through the mammalian and insect hosts, 

the extracellular parasite undergoes marked morphological changes and 

displays different metabolic requirements.  The cell typically alternates 

between stages of proliferation and stages of differentiation as it adapts to the 

varied environment. The most fascinating feature of these parasites is their 

ability to alter their surface proteins on differentiation and during infection. In 

the insect host, the procyclic forms expresses procyclins and as it differentiates 

into the bloodstream form it expresses variable surface glycoproteins (VSG) 
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that helps evade host immune responses. The parasite has the ability to express 

a new set of surface glycoproteins in approximately 1 out of every 100 cell 

divisions, thus challenging the host immune system.  

T. brucei contains several single copy organelles including a motile 

flagellum characterized by an axoneme that is closely associated with a single 

pair basal body situated at the base of the flagellum responsible for axoneme 

duplication, a single Golgi and associated ER exit and a kinetoplastid 

representing the compacted genome of the elongated mitochondrion. Though 

both the procyclic and bloodstream forms have been studied in vitro, a 

majority of cytological studies in understanding the parasite have been carried 

out in the procyclic form (McKean 2003). 

5.1.1 Cellular Architecture 

The complex cellular construction retains the shape and form of the 

cell relatively unchanged during the course of cell-cycle events.  Cytokinesis 

in Trypanosoma is a highly regulated process that initiates at the anterior end 

of the cell and continues longitudinally along the posterior end of the cell. The 

duplication and segregation of organelles during cell division are intricately 

orchestrated in a spatial and temporal manner, complimented by a well-

defined cytoskeletal structure that maintains the shape of the cell (Woodward 

and Gull 1990; Gull 1999). In this section the architecture of the parasite in 

light of cell division is described. 
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Figure 5.1 Schema showing Trypanosoma brucei cell cycle events 

The various morphological changes that occur during the course of the cell division and 

cytokinesis events are depicted. Figure reprinted with permission from (de Graffenried et al. 

2008), © de Graffenried et al. 2008. Originally published in Journal of Cell biology, doi 

10.1083/jcb.200708082 

 

 

5.1.1.1 Flagellum 

The most prominent feature of Trypanosoma is the single flagellum 

that plays a significant role in cell morphogenesis events. The flagellum is 

characterized by a canonical 9+2 microtubule axenome and an extra-axonemal 

paraflagellar rod (PFR) that can function like a biomechanical spring by 

transmitting energy derived from axonemal beating (Hughes et al. 2012).  The 

flagellum emerges from the flagellar pocket at the posterior side of the cell 

and remains attached through the length of the cell body with an overhang at 

the anterior side of the cell.  The flagellar pocket serves as an important player 

in the parasites’ defense against the host system, serves as the only site of 
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clathrin-mediated endocytosis and exocytosis and is also involved in the 

recycling and trafficking of surface proteins of tsetse midgut form, procyclin, 

and of the mammalian bloodstream form, variable surface glycoprotein (VSG) 

(Allen et al. 2003; Field and Carrington 2009). Duplication of the basal body 

and nucleation of the flagellum are the first events that mark the beginning of 

the cell cycle. As the flagellum exits via the flagellar pocket, events leading to 

assembly of external PFR and cytoplasmic FAZ components initiate and 

elongate over the course of the cell division (Kohl et al. 1999). Resistance 

builds up when the flagellar connector, that marks the distal tip of the new 

flagellum, reaches the old flagellum and a series of segregation events follow 

(Davidge et al. 2006). As the organelles duplicate they retain their close 

association with the new flagellum. It is interesting to note that the flagellum 

also displays remarkable control over cytoskeletal structures as non-flagellated 

cells are short, devoid of polarity and do not undergo cytokinesis (Kohl et al. 

2003). 

5.1.1.2 Flagellar Attachment Zone 

In T. brucei the flagellum exits from the flagellar pocket and remains 

attached through the length of the cell body by a structure termed the Flagellar 

Attachment Zone (FAZ). It forms a link between the cell body and the 

flagellum by defining discrete structures between the cell and flagellar 

membrane (Lacomble et al. 2009). The structure is characterized by a quartet 

of specialized microtubules (MtQ) and an electron dense protein filament, 

FAZ filament. The FAZ which originates at the basal bodies plays a very 

important role in setting the initiation site of the cell cleavage furrow. The axis 

of cytokinesis cleavage begins at the anterior end of the new FAZ (Robinson 
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et al. 1995). Like in most eukaryotes, the cytokinesis initiation is modulated 

by Polo-like kinases that associate with the FAZ region (Li et al. 2010).  It is 

interesting to note that that attachment of flagellum to the cell body and its 

growth positively regulates assembly of FAZ and a shorter FAZ results in 

shorter daughter cells (Vaughan et al. 2008; Vaughan 2010). The FAZ along 

with the growing new flagellum co-ordinates early events including basal 

body segregation and subsequent events pertaining to other organelles and 

structures (Absalon et al. 2007). 

5.1.1.3 Cytoskeletal Structure 

 The cytoskeleton in Trypanosoma is defined primarily by microtubules 

representing the flagellar axenome and those of the subpellicular microtubule 

corset. Other microtubule based structures include the basal bodies and the 

intranuclear mitotic spindle.  The subpellicular microtubule corset, consisting 

of up to 100 microtubules, forms a layer of connected microtubules under the 

cell membrane and helps the parasite retain its shape. It is also worth noting 

that the inter-microtubule distance remains constant even when the cell 

volume increases, due to the presence of specific linkers that cross link them 

with each other and with the plasma membrane (Lacomble et al. 2009; 

Hemphill et al. 1991).  The plus end of the microtubule is placed at the 

posterior end of the cell and new microtubules intercalate and insert into 

existing microtubules as cell cycle proceeds (Robinson et al. 1995; Sherwin 

and Gull 1989). In addition, Trypanosoma also have a set of four 

microtubules, called the “subpellicular microtubule quartet” (MtQ) that 

assembles early during the cell division near the FAZ region (Gallo and 

Precigout 1988). Extending between the basal body, the MtQ traverses around 
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the flagellar pocket and runs beneath the length of the flagellum, parallel to the 

FAZ filament. Displaying a polarity opposite to that of the rest of the 

subpellicular microtubules, with their plus ends at the anterior side of the cell, 

the MtQ is found in close association with the endoplasmic reticulum 

(Robinson et al. 1995). 

5.1.1.4 Other Organelles 

Apart from functioning as a mere motility organelle, the flagellum 

initiates a series of cell cycle events through its association with various other 

cell structures. An organelle that highlights its role very early in the cell cycle 

is the basal body that functions as the microtubule organizing center (MTOC). 

The maturation of probasal body, situated anterior to the mature basal body, is 

one of the first signs for a new round of cytokinesis. The basal body defines 

the proximal end of the flagellum and plays a significant role in the 

segregation of flagella and is physically linked to the kinetoplast. Microtubule-

mediated separation of basal bodies during cell cycle directly controls 

segregation of kinetoplast (Robinson and Gull 1991). The newly matured 

basal body also undergoes a rotational movement that mediates the formation 

of new flagellar pocket (Lacomble et al. 2010). 

The Trypanosoma is marked by a single Golgi and ER exit site. It is 

known that duplication of both the Golgi and the ER export site almost occurs 

at the same time and that the new Golgi appears with some material 

transferred from the old Golgi (He et al. 2004). The duplication and 

segregation of the ER exit site and the Golgi complex is mediated by a bi-

lobed structure, found near the flagellar pocket juxtaposed to the Golgi (He et 

al. 2005). The bi-lobed structure predominantly contains a class of calcium 
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binding proteins called centrins, which are a known component of 

centrosomes.  

In brief, the cell cycle initiates with the duplication of the basal body 

and nucleation of the flagellum, followed by the flagellar pocket nucleation. 

The bi-lobe in close association with the FAZ later duplicates as the FAZ 

extension begins. The elongation of the FAZ and the flagellum closely follows 

segregation of the bi-lobe. As elongation proceeds, the kinetoplast and the 

single nucleus divide and segregate, followed by remodeling of the cell 

membrane and cytokinesis. While the subpellicular microtubules, basal bodies 

and Golgi are inherited in a semi-conservative fashion, the microtubules 

comprising the MtQ, FAZ and the flagellum are synthesized de novo in the 

daughter cell (Farr and Gull 2012; He et al. 2004). 

5.1.2 A Single-Celled Eukaryote 

Trypanosoma belongs to an evolutionarily distant group of 

microorganisms called the Kinetoplastida, which represent a deep rooting 

eukaryote. Apart from the Trypanosomatid parasites, Kinetoplastids also 

include organisms belonging to the genus Leishmania. These single-celled 

protists are part of a larger supergroup called the Excavates. Phylogenetic 

reconstruction of Excavates groups Kinetoplastids and closely related 

euglenids alongside amoeboflagellate Heterolobosea (Naegleria gruberi) and 

heterotrophic flagellates jakobids forming a distinct clade. This clade is 

evolutionarily distinct from other clades represented by mitochondrion lacking 

flagellates diplomonads and parabasalids, or the oxymonads and Trimastix 

(Simpson et al. 2006). The kinetoplastids are marked by unique traits 

including extensive mitochondrial RNA editing, elaborated mitochondrial 
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architecture and their ability to vary their surface protein coat and evade host 

response. Their genes are also predominantly arranged in giant polycistronic 

clusters and more often have duplicated genes that point to adaptive evolution. 

Genes related to surface antigens, amino acid transporters and development 

are present in multiple paralogous copies and are positively selected favoring 

the evolution and survival of the parasite (Emes and Yang 2008).  

 

5.1.3 Purpose of this study 

The only single-celled eukaryotes in which vaults have been studied to 

some extent are the slime molds Dicytostelium discoideum. In spite of being a 

single celled eukaryote, these protists display a multicellular like lifestyle. The 

single celled spores grow into unicellular organisms but differentiate to form 

multicellular fruiting bodies in response to starvation to re-form a smaller 

population of spores. Unlike the higher eukaryotes which harbor only one 

MVP ortholog, the purified vaults in slime molds are composed of two 

paralogs, MVPA and MVPB. The characteristic vault like structure is lost when 

MVPA gene is disrupted by homologous recombination (Vasu et al. 1993). 

Though the two MVP genes are not essential for normal cell growth, as the 

cells remain viable on disrupting both the genes, it is worth noting that the 

MVPA
-/-

/MVPB
-/-

 cells reach limited cell density during conditions of nutrient 

stress (Vasu and Rome 1995). 

 The kinetoplastids belonging to the Excavates are evolutionarily 

distant from the slime molds, which are closer to multicellular metazoans. 

Phylogenetic reconstructions (refer Chapter 2) suggested an under-

representation of vault homologs in protists including the Excavates 

http://wizfolio.com/?citation=1&ver=3&ItemID=971&UserID=1682&AccessCode=3462CD420F314AE28AAEF9AFE53C7424&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=830&UserID=1682&AccessCode=2FB3B04A6AF9445DB293EBB74D453EED&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=538&UserID=1682&AccessCode=CF354AE1330442688B328DE0DA1986CE&CitationSuffix=
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suggestive of possible acquisition of vault genes horizontally later through 

evolution. A majority of studies in characterizing vaults have been carried out 

in multicellular eukaryotes, including the invertebrate echinoderms. There has 

been no study so far that has been carried specifically to study vaults in other 

protists including the Kinetoplastids. The current study focuses on 

characterizing vaults in ancient single-celled eukaryote Trypanosoma brucei 

and also evaluating if the nutrient-related phenotype is a common feature of all 

vault-containing organisms, including the Kinetoplastids, which may have 

acquired vault genes later through evolution. 
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5.2 MATERIALS AND METHODS 

5.2.1 Cell lines and cell culture 

The procyclic form Trypanosoma brucei, YTat1.1 and 29.13 cell lines 

were used for the study. The YTat1.1 cell line was grown in Cunningham’s 

medium supplemented with 15% heat-inactivated fetal bovine serum 

(Hyclone) and maintained at 28°C. The 427 cell line 29.13, expressing T7 

RNA polymerase and tetracycline repressor was maintained at 28°C in 

Cunninghams’s medium supplemented with 15% heat inactivated, 

tetracycline-free fetal bovine serum (Clontech) along with 15 µg/ml G418 and 

50 µg/ml hygromycin. The cells were diluted and maintained at exponential 

growth phase with fresh medium every two days. 

5.2.2 Plasmid Construction 

The GeneDB database accession number for 

TrypanosomabruceiTbMVP1 gene is Tb927.5.4460. The full length coding 

sequence corresponding to 838 amino acids were amplified from T.brucei 

genomic DNA using the primer pairs Hind3TbMVP1FP and Nhe1TbMVP1RP, 

digested with HindIII and Nhe1 and cloned into a pXS2 backbone vector that 

contains YFP coding sequence as a C terminal tag. For inducible 

overexpression, the full length coding sequence was amplified using 

Hind3TbMVP1FP and Hind3TbMVP1RP, single-digested with HindIII and 

cloned into a modified pLEW100 vector expressing YFP as a C-terminal tag. 

For expression of truncated proteins, coding regions corresponding to 1-512 

amino acids and 513-838 amino acids were amplified with the primer pairs 

Hind3TbMVP1FP/NterTbMVP1Nhe1RP and CterTbMVP1Hind3FP/ 
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Nhe1TbMVP1RP cloned into the pXS2-based vector for construction of N- 

and C-terminal truncated TbMVP1, respectively.  

Endogenous replacement of one of the TbMVP1 alleles with YFP-

TbMVP1 encoding allele was obtained using a double homologous 

recombination procedure. This was accomplished using a pCR4Blunt-Topo 

that allows cloning of both upstream and encoding genes regions on either side 

of regions containing blasticidin resistance gene, tubulin intergenic region and 

YFP-coding genes. The upstream region of TbMVP1 corresponding to the 5’-

untranslated region (5’-UTR) was amplified using 5’utrTbMVP1Pac1F and 

5’utrTbMVP1Hind3R and cloned into the pCR4Blunt-Topo vector ahead of 

the blastidicn resistance gene. A region corresponding to 1000 bp of TbMVP1 

was amplified using primer pairTbMVP1BamH1F and 1000-TbMVP1-NsiR 

and cloned into the same vector downstream of the YFP-coding region. The 

targeting construct thus established contained both the 5’-UTR and TbMVP1-

coding regions. For construction of inducible and inheritable RNAi, suitable 

RNA fragment was selected using RNAit 

(http://trypanofan.path.cam.ac.uk/software/RNAit.html), amplified using 

TbMVP1RnaiXba1F/TbMVP1RnaiXba1R and cloned into the pZJM vector. 

The GeneDB database accession numbers for 

TrypanosomabruceiTbMVP2 and TbMVP3 genes are Tb927.10.1990 and 

Tb927.10.6310, respectively. The full-length TbMVP2 gene encoding 863 

amino acids and the TbMVP3 gene encoding 862 amino acids were amplified 

using primer pairs Hind3TbMVP2FP/Nhe1TbMVP2RP and 

Hind3TbMVP3FP/Nhe1TbMVP3FP. The PCR fragments were digested using 
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HindIII and Nhe1 and cloned into the pXS2-based vector for expression of 

fusion protein with a C terminal YFP tag. 

 

Table 5.1 List of primers used for establishing various constructs 

Vector Name Primer Name Primer Sequence 

TbMVP1Topo TbMVP1BamH1F 5’-CG GGA TCC ATG AGT GAT 

ATC ATA CGA ATT AAA CGT C-

3’ 

1000-TbMVP1-NsiR 5’-TGC ATG CAT GTA GTG CCT 

CAT TCT TCC CGA TAG-3’ 

5’UTRTbMVP_1 

Topo 

5’utrTbMVP1Pac1F 5’-CCT TAA TTA ATT GAA TCT 

GAT GAG GTG TAG GGA-3’ 

5’utrTbMVP1Hind3R 5’-CCC AAG CTT CTT CGA AAC 

AGT TGG ACA AAA ATG-3’ 

TbMVP1_ pXS2 Hind3TbMVP1FP 5’-CCC AAG CTT ATG AGT GAT 

ATC ATA CGA ATT AAA CG-3’ 

Nhe1TbMVP1RP 5’-CTA GCT AGC TGA CTT TGT 

CTC GGT TGT TTG-3’ 

TbMVP3_ pXS2 Hind3TbMVP3FP 5’-CCC AAG CTT  ATG AAT GAT 

TAT TTA GCG AAT GAG CTG-3’ 

Nhe1TbMVP3FP 5’-CTAGCT AGCCTG CTG CAC 

ATG ACC AGT C-3’ 

TbMVP2_ pXS2 Hind3TbMVP2FP 5’-CCC AAG CTT ATG GTG GAC 

AAG GAG AAT CAG GTG A-3’ 

Nhe1TbMVP2Rp 5’-CTA GCT AGC TGG CAA CGC 

GTC GTT CC-3’ 

TbMVP1_plew100 Hind3TbMVP1FP 5’-CCC AAG CTTATG AGT GAT 

ATC ATA CGA ATT AAA CG-3’ 

Hind3TbMVP1RP 5’-CCC AAG CTT TGA CTT TGT 

CTC GGT TGT TTG-3’ 

TbMVP1_pZJM TbMVP1RnaiXba1F 5’-GC TCT AGA TGA ACA CCA 

CTA CGG GTG AA-3’ 

TbMVP1RnaiXba1R 5’-GC TCT AGA AAG AGT CAA 

AGT CCT CCG CA-3’ 
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Nter-TbMVP1 Hind3TbMVP1FP 5’-CCC AAG CTTATG AGT GAT 

ATC ATA CGA ATT AAA CG-3’ 

NterTbMVP1Nhe1RP 5’-CTA GCT AGC ACC CAA AAA 

GAG CTG TAG AGC-3’ 

Cter-TbMVP1 CterTbMVP1Hind3FP 5’-CCC AAG CTT ATG CCT CGT 

TTC TCC AGT GAC ACG-3’ 

Nhe1TbMVP1RP 5’-CTA GCT AGCTGA CTT TGT 

CTC GGT TGT TTG 

The greyed region refers to inclusion of restriction tag for the purpose of cloning. 

5.2.3 Stable and Transient Transfection 

A stables line of TbMVP1 overexpression was established by 

linearizing pXS2 construct with Nsi1 and transfecting into procyclic cells 

29.13. Endogenous replacement of TbMVP1 was achieved by transfecting 

Ytat.1 cells using linearized pCR4Blunt-Topo vector with Nsi1. Not1 digested 

pLEW100 construct was transfected into 29.13 cells for establishing a stable 

inducible overexpression line. The establishment of inducible TbMVP1 RNAi 

involved linearization of the pZJM construct with Not1and transfection into 

stable line endogenously expressing YFP-TbMVP1. 

For all stable transfections, cells in exponential growth phase were 

electroporated with 15 µg of linearized plasmid DNA using Gene Pulser 

Xcell
TM

 system (Bio-Rad Laboratories) and plated in 96 well plate containing 

appropriate antibiotics (Blasticidin 10 µg/ml (for pXS2 and pCR4Blunt-Topo 

vectors) or Phleomycin 5 µg/ml (for pLEW100 vector) or both (for pZJM 

RNAi). The positive clones were selected and maintained in respective media. 

For transient transfection 50 µg of plasmid DNA was transfected into 29.13 

cells by electroporation.  
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5.2.4 Immunofluorescence Microscopy 

Cells in log phase were spun down and settled onto coverslips for 20 

minutes. Intact cells were either fixed and permeabilized in methanol at -20°C 

for 10 minutes followed by rehydration with PBS for 10 minutes or fixed for 7 

minutes with ice cold 4% (w/v) paraformaldehyde in phosphate-buffered 

saline (PBS) followed by permeabilization for 5 minutes with 1% Triton-X-

100 (v/v). For detergent and salt extractions, cells on coverslips were treated 

with 1% NP-40 (v/v) and 1% NP40 (v/v) + 1M KCl in PBS for 5 minutes 

followed by fixation with ice cold 4% (w/v) paraformaldehyde in PBS. The 

coverslips were either directly mounted or prepared for indirect 

immunofluorescence. For antibody labeling coverslips were blocked with 3% 

BSA in PBS for 1 hour and then incubated with the indicated primary 

antibody for 1 hour and washed. Polyclonal anti-GFP (1:200), L3B2 (1:25), 

anti-CC2D (1:1000), anti-PAR (1:1000) and GRASP (1: 1000) antibodies 

were used to label YFP, FAZ filament, paraflagellar rod and golgi bodies 

respectively (Kohl et al. 1999; Zhou et al. 2011; He et al. 2004; Ismach et al. 

1989).  The fluorescent secondary antibodies (Invitrogen) were then used at 

1:2000 dilutions for 1 hour followed by DAP1 staining (20 µg/µl) to label 

DNA for 15 minutes). The coverslips were washed and mounted before 

visualization. Fixed cells were observed using Zeiss Axio Observer Z1 

fluorescence microscope (Carl Zeiss MicroImaging, Germany) with 63x/1.40 

oil DIC objective and image acquisition were performed using a CoolSNAP 

HQ
2
 CCS camera (Photometrics). The images were processed with ImageJ 

and Adobe Photoshop Elements 9.  

http://wizfolio.com/?citation=1&ver=3&ItemID=688&UserID=1682&AccessCode=4ED6D0AD15954254B880384638BA54EA&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=688&UserID=1682&AccessCode=4ED6D0AD15954254B880384638BA54EA&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=956&UserID=1682&AccessCode=E005F2D46C964A70BE5CE14F43DBB413&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=956&UserID=1682&AccessCode=E005F2D46C964A70BE5CE14F43DBB413&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=1075&UserID=1682&AccessCode=0F22F047C11B4BEB894168AD66C8A2E4&CitationSuffix=
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5.2.5 Cell Fractionation 

Intact vault particles are known to pellet at 100,000g (Kickhoefer et al. 

1998).  To perform cell fractionation to pellet vaults, 10
9
TbMVP1 

overexpressing cells were used. Cells were pelleted at 3000 RPM for 7 

minutes followed by washing twice with cold 10 ml of Buffer A (50 mM Tris-

HCl, pH 7.4, 75 mM NaCl, 1.5 mM MgCl2). The cells were then resuspended 

in 10 ml of Buffer A containing 1% Triton-X-100 (v/v), 1mM DTT and 1X 

protease inhibitors (cOmplete, EDTA-free Protease Inhibitor Cocktail Tablets, 

Roche Applied Science, USA) and incubated for 20 minutes at 4°C with 

intermittent vortexing. All the extraction procedures detailed below was 

carried out at 4°C .The extracted cells were pelleted at 8000 RPM for 15 

minutes to separate the extracted cytoskeleton and soluble cytoplasmic pool. 

The cytoskeletal and soluble pool were treated independently to obtain the 

heavy weight pellet. The soluble cytoplasmic pool was further pelleted at 

20,000 g for 20 minutes to remove any cytoskeletal debris and the supernatant 

(soluble cytoplasmic pool) was used for analysis. The extracted cytoskeleton 

was washed twice with 10 ml of Buffer A containing 1% Triton-X-100 (v/v), 

1mM DTT and 1X protease inhibitors and resuspended in 1 ml of the same 

buffer. The extracted cytoskeleton was subjected to sonication (2 seconds 

pulse for 3 times with 10 seconds rest) at 80% output and spun down for 15 

minutes at 13,000 RPM to obtain a supernatant fraction that is enriched in 

proteins released from the cytoskeletal extract. The obtained cytoskeletal 

fraction and soluble pool fraction was rotated at 100,000g for 1 hour using a 

Sw41 Ti swinging bucket rotor to obtain P100-cytoskeletal and P100-soluble 

fraction, respectively. The supernatants S100-cytoskeletal and S100-soluble 

were also processed for immunoblotting analysis.  

http://wizfolio.com/?citation=1&ver=3&ItemID=532&UserID=1682&AccessCode=FF7140C1CCAD49209D6A76A9D10FD405&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=532&UserID=1682&AccessCode=FF7140C1CCAD49209D6A76A9D10FD405&CitationSuffix=
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5.2.6 Purification of Vault Particles from Trypanosoma Cells 

10^9 cells expressing YFP tagged TbMVP1 were pelleted at 3000 RPM for 7 

minutes followed by washing twice with ice cold 10 ml of Buffer A ((50 mM 

Tris-HCl, pH 7.4, 75 mM NaCl, 1.5 mM MgCl2). The pelleted cells were 

resupended in 10 ml of Buffer A containing 1% Triton-X100 (v/v), 1 mM 

dithiothreitol (DTT) and 1X protease inhibitors (cOmplete, EDTA-free 

Protease Inhibitor Cocktail Tablets, Roche Applied Sciences, USA) and 

incubated on ice for 20 minutes with intermittent vortexing. Unbroken cells 

and other heavy organelles were pelleted at 20,000 x g  for 20 minutes at 4 °C 

and the supernatant fraction S20 was used for further analysis. A crude extract 

containing vaults were obtained by further centrifugation at 100,000 x g for 1 

hour at 4 °C. The supernatant was discarded and pellet was resuspended in 1 

ml of Buffer A containing 1 mM DTT and 1X protease inhibitors. The 

resuspended pellet was carefully layered on a sucrose step gradient of 20, 30, 

40, 45, 50 and 60% sucrose layers prepared in Buffer A, and centrifuged for 

25,000 RPM at 4 °C in a SW41 Ti rotor for 16 hours. The fractions 

corresponding to each sucrose layer were later collected and diluted 1:10 with 

Buffer A containing 1 mM DTT and 1X protease inhibitors. The individual 

fractions were centrifuged for 3 hours at 100, 000 x g at 4 °C to pellet vaults. 

The pellets were resuspended in 100 μl of Buffer A containing 1 mM DTT and 

1X protease inhibitors and analyzed using Western blot with anti-GFP 

antibody. 
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5.2.7 Negative Staining and Electron Microscopy 

The fractions corresponding to 40 and 45% sucrose layers were adsorbed onto 

carbon formvar coated nickel grids (EMS) for 4 minutes at room temperature. 

Following sample adsorption the grids were floated on 20 μl of 1% uranyl 

acetate for 1 minute and blot dried using filter paper. The grids were stored in 

dry cabinet prior to viewing in a JEOL JEM 2010F HRTEM microscope. 

5.2.8 Immunoelectron microscopy 

Immunogold labeling was performed on detergent-extracted cells that 

maintains the cell shape including the FAZ but removes most of the 

cytoplasmic pool. Briefly 10^7 cells were harvested, washed twice with PBS 

and resuspended in 50 μl of PBS prior to being attached into carbon formvar 

coated nickel grids (EMS). The cells were extracted in freshly prepared PEM 

buffer containing 1% NP40 for 5 minutes. The extracted cells were fixed with 

2.5% glutaraldehyde for 15 minutes followed by washing with PBS for 3 

times 5 minutes each. The grids were then neutralized with 100mM glycine 

for 5 minutes followed by blocking with 1% BSA for at least 30 minutes. The 

grids were labeled with mouse L3B2 (1:20) and rabbit anti-GFP (1:20) for 1 

hour. The labeled grids were washed 5 times 5 minutes each with 1% BSA 

prior to labeling with Goat anti-mouse IgG conjugated to 40 nm gold (1:100) 

and Goat anti-rabbit IgG conjugated to 25 nm gold (1:100) for 1 hour. The 

grids were washed with PBS 3 times 5 minutes each and later fixed with 2.5% 

glutaraldehyde for 15 minutes. The grids were washed once with PBS and 

twice with filtered water and briefly stained in a drop of 0.6% 

Aurothioglucose prepared in distilled deionized water. The grids were air-

dried prior to imaging by JEM 2010F HRTEM microscope. 
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5.2.9 RNAi Induction 

The TbMVP1-RNAi knockdown cell line was induced with 10 µg/ml 

of Tetracycline and monitored for cell proliferation in control and starvation 

media. The 15% tetracycline free 29.13 culture medium was diluted 10 times 

in HBSS (137 mM NaCl, 5.4 mM KCl, 0.25 mM Na2HPO4, 0.44 mM 

KH2PO4, 1.3 mM CaCl2, 1mM MgSO4, 4.2 mM NaHCO3, pH 7.3) with 

glucose (1 g/l)  and used as the nutrient limiting medium. 2 x 10
6 

cells/ml were 

maintained in nutrient rich or nutrient limiting medium with tetracycline and 

monitored for cell proliferation every 24 hours. Uninduced TbMVP1-RNAi 

cell line was used as a control in both nutrient conditions. Cells in nutrient rich 

medium were diluted with fresh media when the culture density exceeds 10
7 

cells/ml. Only motile cells were counted as viable cells every 24 hours using a 

hemocytometer. 

5.2.10 Immunoblotting Analysis 

10% SDS-PAGE gel was used for protein electrophoresis in a Tris-Glycine-

SDS running buffer (25mM Tris, 192mM glycine, 0.1% SDS; 1st BASE). A 

3x loading buffer (150mM Tris-HCl, 6% SDS, 30% Glycerol, 3% β-

Mercaptoethanol, 37.5mM EDTA, 0.06% Bromophenol Blue, pH 6.8) was 

used for sample preparation. The proteins were electrophoresed at a constant 

voltage of 100v. Precision Plus Protein Dual Color Standards ((Bio-Rad, 

USA) was used as a marker. For immunoblotting, the Polyvinylidene 

difluoride (PVDF) membrane (Bio-Rad, USA) was activated with absolute 

methanol, rinsed with transfer buffer (0.3% Tris, 1.45% glycine and 20% 

methanol) and set for transfer at 70v for 1 hour at 4°C. After transfer, the 

membrane was blocked with 5% skimmed milk in TBST (0.1% Tween-
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20,10mM Tris-HCl, 150mM NaCl, pH7.6) for at least 1 hour at room 

temperature with shaking. The membrane was then incubated with primary 

antibody (Anti-GFP) or anti-tubulin (mouse kmx1) at a dilution of 1: 500 or 

1:3000 respectively, overnight with gentle rocking. After washing for 3 times 

with 5%skimmed milk, the membrane was incubated with the desired HRP 

(Horseradish Peroxidase)-conjugated secondary antibody at a dilution of 

1:5000 for 1 hour. The membrane was given a final wash with TBST before 

the substrate solution from SuperSignal® West Dura Extended Duration 

Substrate Kit (Thermo Scientific, USA) was added. ImageQuant LAS 4000 

(GE Healthcare, UK) was used to scan the membrane and acquire the images. 
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5.3 RESULTS 

5.3.1 Identification of three vaults genes in kinetoplastids 

Sequence analysis and phylogenetics reveal that Kinetoplastids 

evolved three different MVP homologs. MVP originated in the common 

ancestor of kinetoplastids and underwent duplication events to give rise to 

differentially diverging paralogs prior to speciation events separating 

Leishmania and Trypanosomes (Figure 5.2). The sequence designated as 

MVP1, is closer in terms of sequence similarity to vault protein orthologs from 

other well-studied organisms compared to MVP2 and MVP3. 

In Trypanosoma brucei the three homologs are identified as TbMVP1, 

TbMVP2 and TbMVP3 (annotated as Tb927.5.4460, Tb927.10.1990 and 

Tb927.10.6310 respectively, in GeneDB). The TbMVP1 is an 838 amino-acid 

protein with a predicted molecular weight of 94.1 kDa and is closer in 

sequence similarity to MVP orthologs described in other eukaryotes. TbMVP2 

is an 863 amino acid protein (95 kDa) that has diverged considerably from the 

short-branching TbMVP1 over the years of evolution. TbMVP3 is an 862 

amino acid protein (96.2 kDa), but is significantly different from the 863 

amino acid TbMVP2 protein. An alignment between the three homologs is 

shown in Figure 5.3. Interestingly, while TbMVP1 maps to chromosome 5, 

both TbMVP2 and TbMVP3 maps to chromosome 10, hinting at a possible 

tandem duplication event. It is also worth noting that the shorter homolog in 

all identified Leishmania species also map to chromosome 5. Hence, it could 

be deduced that the MVP gene originated in a kinetoplastid ancestor as a 

single copy gene and later duplicated to give rise to multiple paralogs. (Refer 

Appendix for characterization studies of TbMVP paralogs) 
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Vaults purified from multicellular eukaryotes also have minor vault 

proteins, VPARP and TEP1 in addition to small untranslated vRNA. Protein 

BLAST search based on human VPARP sequence failed to identify any 

orthologs in kinetoplastid genomes. However, potential homologs of TEP1 

proteins from Trypanosomabrucei (but not in Leishmania) were identified 

using a human TEP1ortholog as query. However, pair wise alignment of the 

identified TEP1 homolog with human TEP1 revealed poor conservation 

through the length of the sequence (detailed in 2.3.4). It is known that TEP1, 

in addition to interacting with vault complex, also associates with Telomerase 

RNA complex. In the vault complex, TEP1 is known to stabilize the 

associated vRNA. However, no homologs of vRNA have been identified in 

kinetoplastids. Hence, it seems unlikely that TEP1 forms a stable association 

with vaults in kinetoplastids. 
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Figure 5.2 Distribution of MVP homologs across the Kinetoplastids 

Evolutionary relationships among the MVP homologues in kinetoplastids. Shown is 

the ML bootstrap consensus tree obtained based on the JTT+G model of evolution. 

The tree is robustly resolved and clearly supports the origin of paralogs in an 

ancestral kinetoplastid that could have likely preceded the divergence of 

Trypanosoma and Leishmania. The two T.cruziMVP2 sequences map to different 

genomic loci and hence, both were retained for analysis. 
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Figure 5.3 Clustal alignment between the Trypanosoma MVP paralogs 
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5.3.2 Endogenous expression of MVP1 shows punctate 
distribution 

To identify the subcellular distribution of TbMVP1, a stable line 

expressing YFP tagged TbMVP1 from one endogenous allele was generated 

by homologous replacement. The YFP tag was fused at the N terminus and 

hence, is expected to be enclosed within intact vault complexes. The 

production of YFP-TbMVP1 protein of the correct molecular weight was 

verified by Western blotting. The distribution of epitope tagged TbMVP1 was 

followed at all stages of Trypanosoma life cycle.  It was observed that 

TbMVP1 displayed punctate distribution through the cytoplasm but was 

excluded from the nucleus and kinetoplastid regions (Figure 5.4). The stable 

cell line was also subjected to indirect immunofluorescence with anti-GFP to 

confirm the expression of properly folded YFP. Previous studies with GFP 

tagged vaults in mammalian cells have also shown similar punctate 

distributions (Kickhoefer 2005).  
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Figure 5.4 Endogenous expression of YFP-TbMVP1 

(A)Cells stably expressing TbMVP1 tagged with YFP were fixed with methanol and viewed 

under fluorescence microscope, either directly or indirectly using anti-GFP. TbMVP1 shows a 

clear punctate patterning throughout the cytoplasm and is excluded from the nucleus. Scale 

bar, 2µm. (B) Western blotting that confirms the expression of YFP tagged TbMVP1. 

 

5.3.3 TbMVP1 can assemble to form intact vault particles 

It is known that 78 copies of MVP monomers assemble to form an 

intact vault complex that exhibits dihedral symmetry (Tanaka et al. 2009). 

Though TbMVP1 can be visualized as bright puncta, similar to those observed 

in multi-cellular metazoans, whether it assembles to form intact vault 

complexes in single celled kinetoplastids remains unknown. It has been 

previously established that vaults isolated from another single celled protist, 

Dictyostelium, forms intact vault complexes composed of at least two MVP 

paralogs, MVPA and MVPB. Intact vault complexes are known to pellet at 

speed as high as 100,000g and this method has been used traditionally to make 

crude vault preparations (Kickhoefer et al. 1998). It is known that monomeric 

MVP remains in the soluble S20 fraction and it takes about 4 hours for 

A 
B 
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individual monomers to assemble and form intact vault complexes that is 

found in the P100 pellet fraction (Zheng et al. 2005). Since, TbMVP1 is found 

both in the cytoplasmic and the cytoskeletal pool, it was hypothesized that 

intact vault complexes can freely float around in the cytoplasm and also 

associate with cytoskeleton. In that regard, the cells were first detergent 

extracted to segregate the cytoplasmic and cytoskeletal fractions (detergent-

extracted cell that retains the cytoskeleton) and the two samples were treated 

independently to retrieve the P100 pellet. The extracted cells were sonicated, 

cell debris removed by centrifugation and the supernatant representing the 

proteins released off the cytoskeleton was used for further analysis. The 

supernatants from both the cytoskeletal fraction and soluble fraction were 

subjected to high-speed centrifugation at 100,000g for 1 hour at 4 °C. The 

pellets thus obtained, P100-cytoskeletal and P100-soluble, and the 

supernatants S100-cytoskeletal and S100-soluble were analyzed by 

immunoblotting using anti-GFP (Figure 5.5). Interestingly P100 fraction was 

enriched in the soluble cytoplasmic pool than the extracted cytoskeletal pool. 

The cytoskeletal pool was subjected to more fractionation steps prior to high-

speed centrifugation and hence, some amount of sample loss is possible.  

In mammalian crude vault extracts, the S100 fraction does not show a 

positive band as a majority of MVP monomers assemble into intact vault 

particles. However, it was found that the S100 fraction from both cytoplasmic 

and cytoskeletal extracts showed strong bands for TbMVP1-YFP, pointing out 

to free MVP monomers that do not assemble into intact vault particles. Even in 

insect cells in which vaults are routinely overexpressed using a baculovirus 

system, the S100 fraction shows a positive band (Stephen et al. 2001). It has 

http://wizfolio.com/?citation=1&ver=3&ItemID=813&UserID=1682&AccessCode=0F577DE28B534258B1B2C2F1D96EDDA0&CitationSuffix=
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been established previously that MVP molecules prefer to stay in complex 

than as free floating monomers (Zheng et al. 2005). Hence, the high 

concentration of monomers found in S100 extract could be attributed to the 

effect of fusion protein overexpression. It should also be noted that the fusion 

tag is C terminally located and hence, extends out from the cap region outside 

the vault complex. Ideally, if vaults were assembled purely with TbMVP1-YFP 

fusion proteins, 39 molecules of highly structured YFP extending out from the 

cap region might pose significant steric hindrance and hence could affect 

particle stability. A previous study established that when a highly structured 

55 amino acid EGF tag was added to the C terminal region of MVP and co-

expressed with N terminally tagged VSGV-MVP, the recombinant vaults only 

contained 6-8 copies of C-terminally MVP-EGF incorporated into an intact 

particle, while the rest was composed of N-terminally tagged fusion MVP 

(Kickhoefer et al. 2009). This may be due to the spacious packing within the 

waist region with no potential steric hindrance effect. The positive signal 

obtained in the S100 fraction could be attributed to the same phenomenon. 

The presence of MVP in the cytoplasmic and the cytoskeletal P100 fractions 

may imply the assembly of intact vault complexes that comprise YFP tagged 

TbMVP1 along with endogenous TbMVP1. 
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Figure 5.5 TbMVP1 is retained within heavy weight pellet P100 

The high speed supernatant (S100) and high speed pellet (P100) from both the detergent 

resistant cytoskeletal extract and the soluble cytoplasmic pool were analyzed by 

immunoblotting with anti-GFP antibody. Intact vault particles pellet at 100,000g and are 

recovered as crude vault extracts.  Western blotting shows positive bands for both cytoskeletal 

and soluble cytoplasmic pool after high-speed centrifugation. Not all YFP-TbMVP1 can 

assemble into intact particles possibly due to crowding from C-terminal YFP at the vault cap 

region.  

 

Though YFP-tagged TbMVP1 pelleting at P100 fraction could possibly 

point to intact vault assembly, such a fractionation may also result from 

expressed fusion protein forming aggregates within the cells. Apart from 

pelleting at 100,000 x g fraction, vault purification from various cell types and 

organisms has revealed that intact vault particles predominantly purifies along 

the 40 and 45% sucrose layers. A few of the expressed MVP proteins also 

assemble into structures that fractionate at 50 and 60% sucrose layers. 

Accordingly, T.brucei cells expressed YFP tagged TbMVP1 were subjected to 

the vault purification on sucrose gradients (20%, 30%, 40%, 45%, 50% and 

60% sucrose layers) and analyzed using Western blot (Figure 5.6 A). Similar 

to what has been observed in other multicellular organisms and Dictyostelium, 

vaults in T.brucei also display similar fractionation along the sucrose gradient, 

YFP-TbMVP1 
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with a majority of the expressed protein found along the 40 and 45% sucrose 

layers. While additional material was found between 50 and 60% sucrose 

layers, there was no reactivity at lower sucrose fractions 20 and 30%. This 

suggests that TbMVP1 indeed forms vault-like structures and does not 

assemble into random aggregates that spread across the entire sucrose 

gradient. 

        To further ascertain the formation of intact vault complexes, the 

fraction from the 45% sucrose layer was analyzed using negative stain 

electron microscopy. Electron micrographs revealed particles displaying 

characteristic barrel-shaped structures with protruding caps and invaginating 

waist regions that resemble vault like particles (Figure 5.6 B). The structures 

were also comparable in size and shape to vaults purified from other 

multicellular organisms. This suggests that TbMVP1 sequence from T.brucei, 

in spite of being evolutionarily distant, carries all the necessary information 

that drives intact vault assembly from individual monomers. It should be noted 

that TbMVP1 is also closer in sequence similarity to MVP sequences from 

other well-characterized organisms. Hence, it is suggested that TbMVP1 likely 

represents the functional ortholog of vault gene in T.brucei. 
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Figure 5.6 TbMVP1 assembles into vault-like particles 

(A)YFP tagged TbMVP1 was expressed in Trypanosoma brucei and the protein lysate 

obtained was fractionated at 100,000 x g to obtain crude vault containing extract (P100). The 

P100 fraction was layered on a discontinuous step gradient and the individual fractions 

analyzed by Western blotting using anti-GFP antibody. The arrow represents full-length 

TbMVP1 tagged with YFP fractionating at specific sucrose layers suggestive of assemblage of 

large protein complexes. (B) Fraction from the 45% sucrose layer viewed under negative 

staining electron microscopy. Barrel-shaped particles resembling vault are marked with black 

arrows.  

 

5.3.4 MVP1 is not essential for cell proliferation under 
normal conditions 

 With the aid of gene specific RNA interference, a stable line in which 

expression of TbMVP1 can be knocked-down with the addition of tetracycline 

was established. Western blots confirmed that expression of endogenous YFP-

TbMVP1 was down-regulated after addition of tetracycline (Figure 5.7 C). The 

A 

B 
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effect of a specific gene knockdown on cell-division events can be assessed 

efficiently by a simple cell proliferation assay. In that regard, the cell number 

for uninduced control and induced knockdown cell lines was assessed in 

normal growth media supplemented with 15% serum for 10 days. The 

knockdown cells displayed similar growth patterns to those of control 

uninduced cells  (Figure 5.7 A). This suggests that the knockdown did not 

affect any changes that come along during Trypanosoma cell-cycle events 

including flagellum duplication, flagellar pocket duplication, FAZ elongation, 

kinetoplastid duplication and cytokinesis. Thus it is clear that TbMVP1 is not 

essential for cell proliferation under normal growth conditions. 

5.3.5 Mild nutrient phenotype on TbMVP1 knockdown at 
limited nutrient condition 

The Trypanosoma undergoes complex changes in life-style when 

acclimatizing to its insect and mammalian host. While in the mammalian host, 

the parasite is enriched with nutrients, in the insect host there is paucity of 

nutrients and the parasite has to overcome the nutritional stress. The procyclic 

form mimics the cell stage that is adapted to the insect host and hence a 

limited nutrient environment was created to see if knocking down TbMVP1 in 

procyclic cells has any potential effect on cell proliferation. The control and 

induced cells were grown in 10% diluted growth media in HBSS containing 

1g/l glucose. This reduces the total serum concentration to about 1.5% and 

dilutes other nutrients and other growth factors tenfold. On induction of 

tetracycline-inducible RNAi, TbMVP1knockdown cells displayed reduced 

growth rates in limited-nutrient medium compared to uninduced cells. 

However, the limiting cell density achieved by the knockdown cells was lower 

compared to those of the uninduced cells as can be seen in Figure 5.7 B. This 
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suggests that the role of TbMVP1 is pronounced only during conditions of 

nutrient stress or starvation. This corroborates with previous observations in 

which MVP knockout in Dictyostelium or mouse embryonic fibroblasts (MEF) 

display a nutrient phenotype only on starvation but display normal growth 

otherwise (Vasu and Rome 1995; Kolli et al. 2004).  

 

 

 

 

Figure 5.7 TbMVP1 is important for cell survival at limited-nutrient condition 

Depletion of TbMVP1 did not affect the cell growth under normal conditions but altered the 

growth rates under limited-nutrient conditions as shown in A and B. RNAi was induced by 

addition of tetracycline and the cell proliferation rates were monitored over the indicated time 

points. Viable parasites (judged by motility and cell appearance) were counted with a 

hemocytometer. The results are presented as mean +/- SD of three independent experiments 

(C) The efficiency of RNAi in knocking down YFP-TbMVP1 expression was determined 

using immunoblotting analysis with anti-GFP. ‘-‘indicates no tetracycline added and ‘+’ 

indicated addition of tetracycline.   
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5.3.6 TbMVP1 knockdown interferes with nutrient-stress 
related cell adhesion 

It has been reported previously that MVP knockout MEF cells display a 

nutrient phenotype only when the serum was completely removed as even 

cells growing in 2.5% serum had growth rate comparable to those of control 

cells (Kolli et al. 2004).  To see if TbMVP1 knockdown shows a pronounced 

effect on lowering the concentration of serum and nutrients further, the media 

was diluted 20x in HBSS with 1g/l glucose reducing the total serum 

concentration to 1%. Another set of experiments without glucose was also 

performed. The uninduced control and tetracycline induced test cells were 

monitored every 24 hours for 5 days (Figure 5.8 A). Though, the cell numbers 

were reduced to more than half in both flasks on 24 hours, more freely floating 

cells were observed in the induced flask than in the control flask. On closer 

examination it was found that, most of the control cells attached to the walls of 

the flask, while still being alive, which was evident from their flagellar 

beating. However, the TbMVP1 knockdown cells showed no signs of 

attachment. Since the exact number of attached cells could not be quantified, 

only the freely floating non-adherent cells were counted. The freely floating 

cells in the knockdown flask continued to divide and cell numbers increased 

until day 3 after tetracycline induction. Even when cell numbers began to drop 

the cells never attached. The control cells, on the other hand, remained 

attached through the course of the experiment and hence their cell 

proliferation could not be monitored assessed. To the attached control cells, 

tetracycline was added to check for any detachment following knockdown of 

TbMVP1. It was found that the floating cell population increased by as much 
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as tenfold on comparison to other flasks that remained uninduced (data not 

shown). 

 It is interesting to note that the induced cells subjected to limited 

nutrient media without glucose, seemed to exhibit higher proliferation until 

day 3, but the cell numbers dropped faster compared to other induced cells that 

were subjected to nutrient limitation with glucose ( Figure 5.8 B). Addition of 

glucose did not have any effect on the uninduced cells. This experiment 

suggests that on knocking down TbMVP1, the parasite loses its ability to 

initiate a nutrient stress induced attachment phenomenon, which may help the 

parasite stay in a dormant state until the nutrient conditions are revived.  

 

Figure 5.8 TbMVP1 interference with nutrient-stress mediated cell-adhesion 

A severe limited-nutrient condition (1% Serum + 20 times lowered amino acid levels to that of 

normal cultivation medium) triggered a cell adhesion response whereby cells attached to the 

walls of the flask while still being alive. While the uninduced control cells remained attached 

through the indicated time points in both A and B, induction by tetracycline retained more free 

floating cells and no cell adhesion to the flask was observed. The cell number in the y-axis 

corresponds to free floating cells. The results are presented as mean +/- SD of three 

independent experiments. 
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5.3.7 TbMVP1 overexpression improves cell survival at 
limited-nutrient condition 

MVP gene is overexpressed during many cellular conditions including 

cancerous progression and regeneration. To ascertain if TbMVP1 

overexpression displays any effect over the cell proliferation rates in 

Trypanosoma, a stable line constitutively overexpressing YFP-tagged 

TbMVP1 was established. Immunofluorescence (Refer Appendix for 

characterization of overexpression line) and Western blot was performed to 

confirm the presence of the tagged fusion protein. When the cells were 

cultured in normal growth media supplemented with 15% serum, the growth 

pattern of the TbMVP1 overexpressing cell line was similar to that of control 

29.13 cells (Figure 5.9 A). No obvious improvement or retardation of cell 

growth was observed. However, when the cells were subjected to limited-

nutrient environment (10% diluted growth media in HBSS containing 1 g/l 

glucose) containing only 1.5% serum and tenfold reduced nutrient, the 

TbMVP1 overexpression cells displayed a higher limiting cell density 

compared to those of the control 29.13 cells (Figure 5.9 B). On the second day 

of starvation, the cells overexpressing TbMVP1 reached cell densities almost 

1.5 times to those of control 29.13 cells. When equal numbers of the cells 

were analyzed by Western blotting it was observed that in spite of the 

constitutive overexpression, protein expression of TbMVP1 progressively went 

down as cells continued to starve (Figure 5.9 C). This suggests the possible 

turnover of vaults to overcome the cell starvation stress. However, during 

states of prolonged starvation, the constitutive overexpression of non-

housekeeping gene may add to the cellular burden on the cells. Accordingly, 

the cell number of the overexpressing cells began to drop into the third day of 
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continuous starvation. Thus, it is clear that TbMVP1 overexpression improves 

cell survival during conditions of nutrient starvation.  

 

 

 

Figure 5.9 Effect of TbMVP1 overexpression on cell proliferation rates 

Overexpression of TbMVP1 did not affect the cell growth under normal conditions but altered 

the growth rates under limited-nutrient conditions as shown in A and B. Viable parasites 

(judged by motility and cell appearance) were counted with a hemocytometer. The results are 

presented as mean +/- SD of three independent experiments (C) The protein levels of YFP 

tagged TbMVP1 continue to drop as the overexpression Trypanosoma cells are subjected to 

limited-nutrient conditions. 

 

 

5.4 DISCUSSION 

The kinetoplastids represent a group of flagellated single-celled 

protists that branch off early in eukaryotic evolution. Vault homologs are 

widely conserved across the eukaryotes and through sequence homology, 

kinetoplastids including Trypanosoma and Leishmania, have been found to 

harbor vault genes. Kinetoplastids carry multiple copies of the MVP gene, 

each of which maps to different genomic loci. Based on the phylogenetic 
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reconstruction, TbMVP1 was found to be more homologous to vault sequences 

from other multicellular organisms and Dictyostelium. The other two 

duplicated genes have accumulated non-synonymous mutations over the 

course of evolution to diverge into long-branching paralogs. From the 

evolutionary tree, it is evident that the ancestral kinetoplast MVP gene 

underwent one round of duplication. The chromosomal proximity of MVP2 

and MVP3 suggest a second round of duplication, resulting in the three 

paralogs observed. The tree indicates that all three genes were present in the 

common ancestor of Trypanosoma and Leishmania. The MVP1 gene, in both 

Leishmania and Trypanosoma, maps to chromosome 5.  MVP2 and MVP3 in 

Trypanosoma are located on chromosome 10 while those of Leishmania are 

found in chromosome 21 and 36. In Trypanosoma, it is known that the 

duplicated paralogs are a substrate of positive selection (Emes and Yang 

2008). Whether the paralogs perform similar functions in other kinetoplastids 

or have additional alternative functions is worth investigating. 

 Based on 3D structure predictions and quaternary structure analysis, a 

recent study looking at the MVP homologs from kinetoplastids revealed that 

only the short branch length orthologs from kinetoplastids, (TbMVP1 in the 

case of Trypanosoma), could dock laterally and fold into structures that 

resemble vault-like structures purified from rats or sea urchins (Daly et al. 

2012). Though two other paralogs exist in each of the kinetoplastid species, 

they have not been shown to form the conventional fold or establish interface 

interactions to assemble into a vault-like structure. In agreement, TbMVP1 was 

found to pellet at similar sucrose gradient fractions (40% -50%) as vaults from 

other multicellular eukaryotes and also form vault-like structures, suggesting 
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that TbMVP1 sequence carries all the inherent information necessary for vault 

assembly. 

A recent study conducted on TOR complexes in Trypanosoma, 

identified TbMVP1 as a protein that interacts with TbTOR4, one of the four 

TOR kinase paralogs in Trypanosoma, to form a unique TOR complex 

TbTOR4C (Barquilla et al. 2012). TOR plays an important role in stress 

resistance, cell growth and also acts as an important sensor for protein 

synthesis, and ribosome biogenesis. The TbTOR4C is distinct from the 

TbTORC1 and TbTORC2 complexes that are known to control cell size and 

cell growth, respectively, in Trypanosoma. Triggered by reduced cellular 

energy state (high AMP:ATP ratio),  the TbTOR4C complex is known to 

negatively regulate the differentiation of the proliferative slender bloodstream 

form into the G0 state arrested quiescent stumpy form. The quiescent form 

displays reduced motility and is also pre-adapted to transform into insect 

procyclic form. This implicates vaults in processes relating to cell-cycle 

regulation and also cell growth in response to nutrients and energy conditions. 

  The ubiquitous expression and wide conservation of vaults across 

many eukaryotes is suggestive of a very fundamental function for vaults. The 

appearance of vaults in kinetoplastids and their expansion into duplicated 

paralogs, possibly out of positive selection, is evidence that they evolved for 

specific functions. Since vault is a huge complex composed of many 

assembled amino acids, each cell expressing vaults is bound to invest 

significant amount of cellular energy into translating the protein. So far, the 

only phenotype to have been reported consistently in any MVP knockout 

studies has been a nutrient phenotype. In MEFs, the nutrient phenotype 
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became apparent only when serum was withdrawn completely for 24 hours as 

the MVP knockout cells displayed similar proliferation rates as control cells 

with 10, 5 or 2.5% serum (Kolli et al. 2004). The elevated population of cell 

arrest at G0 stage and increased cell death was positively correlated with 

growth factor deprivation. In Dictyostelium, the dual MVPA and MVPB 

knockout cells that reach only 1/3
rd

 of cell densities when grown in nutrient 

limited medium do not show any profound effect in normal media (Vasu and 

Rome 1995). These results are comparable to that observed in Trypanosoma 

on TbMVP1 knockdown. Cells grown in normal medium supplemented with 

growth factors and 15% serum showed similar proliferation rates compared to 

uninduced control cells, while knockdown cells grown in limited nutrient 

media achieve lesser cell densities than uninduced cells grown in similar 

conditions. The strategy employed here is an RNAi based knockdown 

approach, which may not display high efficacy comparable to a full-gene 

knockout method. The nutrient phenotype may become more obvious if such 

stringent check on gene expression is employed, and the remaining MVP2 and 

MVP3 genes were to be knocked out as well. On the other hand, 

overexpression of TbMVP1 seems to improve cell survival during conditions 

of nutrient limitation. These observations seem to fit well with the proposed 

synthesis-turnover based nutrient absorption function for the vault complex. 

Vaults are possibly involved in mobilizing amino acids within the cells during 

conditions of amino acid deprivation. 

 It is also observed that vault containing control cells compromise their 

motility and attach to the substrate as a nutrient stress response. MVP1 

knockdown cells with no vault lose the ability to attach to substrate under 

http://wizfolio.com/?citation=1&ver=3&ItemID=414&UserID=1682&AccessCode=2C3F6627511145E9BBA9A9FA6E926BBE&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=538&UserID=1682&AccessCode=CF354AE1330442688B328DE0DA1986CE&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=538&UserID=1682&AccessCode=CF354AE1330442688B328DE0DA1986CE&CitationSuffix=


170 
 

these conditions, which may indicate that vaults act as a nutrient sensor, 

perhaps structurally altering cell motility within the FAZ. In extreme nutrient 

stress situations, vaults could possibly co-ordinate events that would confer 

partial resistance to unfavorable conditions in Trypanosomatids by 

maintaining the parasite in a quiescent state.  This phenomenon is reminiscent 

of those observed in Trypanosoma cruzi, wherein metacyclogenesis and 

adhesion to substrate are induced by nutritional stress. Metacyclogenesis 

occurs when the insect form epimastigotes attach to intestinal walls before and 

differentiate into infective metacyclic trypomastigotes (Bonaldo et al. 1988). 

Incubation of the epimastigotes in chemically defined limited nutrient medium 

TAU3AAG creates a nutrient stress like environment and forces the parasite to 

attach to the walls of the substrate, before they differentiate (Figueiredo et al. 

2000). During this process, T. cruzi is known to rely on proteins accumulated 

in stores called reservosomes as energy source to fuel the attachment and 

differentiation process, thus establishing an important link between nutrient 

stress, adhesion and cell differentiation (Soares 1999). Unlike the T. cruzi, the 

epimastigotes of T. brucei are known to attach to salivary gland before they 

differentiate into metacyclic trypomastigotes. The attachment observed in the 

case of uninduced control procyclic Trypanosomes in limited nutrient 

conditions may be compared to such a process.  Thus, it could be suggested 

that vaults have a role to play in triggering attachment of cells as response to 

starvation. The cells probably display a quorum sensing mechanism that forces 

them into a quiescent non dividing state, thus conferring resistance to 

unfavorable conditions. A similar response is well known in Dictyostelium, 

whose cells become adherent and non-dividing during starvation-induced 
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multicellular fruiting body formation. As mentioned earlier, TbMVP1 is a part 

of the TbTOR4 complex that regulates differentiation of the proliferative 

bloodstream form into a quiescent stumpy form. This is suggestive of 

important roles for vaults in nutrient assisted morphogenetic events widely 

prevalent in single-celled eukaryotic species. Vaults seem to function both as a 

nutrient sensor, probably on similar lines of the TOR complex, and may also 

exert pivotal roles during differentiation process in Trypanosoma brucei.  
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Conclusions and Future Directions 
 

 

Unraveling the evolutionary history of the vault genes helped identify 

unifying traits in all organisms harboring vault genes. The evolutionary 

analysis also shed light on explaining the puzzling phylogenetic distribution of 

vaults. Accordingly, it is suggested that MVP genes emerged in separate 

eukaryotic clades and bacterial species by independent horizontal gene 

transfer events. Vaults are conspicuously missing in organisms that retain 

essential amino acids biosynthetic capability including plants, algae and fungi. 

Intriguingly, eukaryotes and bacteria that harbor MVP have had ancestral loss 

of enzymes pertaining to essential amino acid biosynthesis. It appears that 

organisms with vaults all depend on external sources for essential amino acid 

needs with the exception of the non-nitrogen-fixing cyanobacteria. However, 

not all heterotrophic protists have vault genes. The cyanobacterium that carries 

MVP gene also has lost genes pertaining to nitrogen fixation and relies on its 

internal store of amino acids to derive energy. Given its massive size and 

amino acid polymerization capability, vaults could very well have originated 

Chapter 6  
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in such an organism to compensate for amino acid needs or the loss of 

nitrogen fixation. The subsequent acquisition of this gene into early single-

celled eukaryotes or bacterial heterotrophs may have helped compensate for 

the loss of essential amino acid synthesis.  

The nutrient storage properties of vaults and fate of its protein 

composition (through catabolism and amino acid recycling into various 

metabolic routes) revealed interesting results. It was found that the vault 

amino acid composition is well suited for gluconeogenesis and nucleotide 

precursor formation, with one vault particle being very similar to a glycogen 

molecule in terms of carbohydrate equivalents after gluconeogenesis. Also, the 

proposed synthesis-turnover based nutrient absorption function fits well with 

various reported vault expression and turnover patterns published in literature 

and other high throughput expression data. The nutrient absorption and 

retention function succinctly explains the role of vaults in innate immunity via 

an intracellular parasite (bacterial or viral) starvation mechanism. A high 

composition of amino acid precursors for Glutamate explains the axonal 

transport of vaults as a potential enriched source of neurotransmitter 

equivalents. These functional roles previously associated with vault that 

remain unfalsified are, in fact, well explained by considering vault complexes 

most simply as stable ribonucleoprotein precursor storage particles with 

regulated synthesis, assembly, disassembly and turnover.  

The evidence presented here suggests that the connection between 

vault and autophagic vesicle activity may have arisen in single-celled 

heterotrophic eukaryotes through independent lateral transfer events. Vault 

may have played an important role in facilitating the emergence and radiation 
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of multicellular heterotrophic animals by first facilitating a flux of amino acid 

from altruistic storage cells to active germinal tissues as in the case of 

Dictyostelium. This may have led to an evolutionary breakthrough whereby 

multicellular animals were able to evolve separate specialized digestive cells, 

protective cells, and glutamate receptor-based nutrient signaling which 

subsequently evolved into nerve cells and synapses.  

If vault had originally contributed a prophylactic advantage against 

bacterial intracellular parasites via nutrient starvation, loss of vault or down 

regulation of vault would lead to increased bacterial parasite tolerance. This 

tolerance could lead to the development of beneficial endosymbiotic 

relationships so loss of vault in a common ancestor of ecdysozoan protostomes 

may have been complemented by a general increase in tolerance for 

endosymbiosis, allowing these creatures to evolve and occupy carbohydrate 

based nutrient niches (e.g. termites, ants, aphids) that would not support the 

multicellular phyla with sufficient essential amino acids.  

This study extends the characterization of vaults, for the first time, to 

an ancient single-celled eukaryote Trypanosoma brucei in an attempt to track 

down ancestral roles for vaults and also to evaluate the proposed functional 

roles for the vault complex. T. brucei is evolutionarily distant from the single-

celled amoebozoans and other multicellular eukaryotes in which vaults have 

been studied so far. It is revealed that vault genes have undergone paralogous 

expansion in a common ancestor of kinetoplastids to give rise to three 

independently diverging proteins (TbMVP1-3).  

 The knockdown of TbMVP1 intriguingly displayed no altered growth 

rates under normal cultivation conditions. This suggests that TbMVP1 is 
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dispensable under normal conditions and may play passive roles during events 

pertaining to cell division or motility. However under limited-nutrient 

conditions, knockdown affected the growth pattern resulting in reduced cell 

densities. The fact that knockdown alters growth patterns during limited-

nutrient condition stresses the role of vaults in nutrient-sensing and controlling 

cell proliferation rates. This becomes important in a parasite that constantly 

alternates between the mammalian and insect hosts, where it may be subjected 

to different nutrient environments. The mammalian host provides the parasite 

with a rich nutrient milieu, while within the insect gut the parasite is subjected 

to severe nutrient deficit. Thus, TbMVP1 is believed to play important roles 

during cell survival under nutrient stress or starvation.  

Based on the observations made thus far, it is suggested that a limited-

nutrient environment pronounces the functions of vaults which otherwise 

plays subtle roles in the cell. The constantly fed knockout models failed to 

recapitulate any of the phenotypes established in in vitro experiments. This 

might be because in vitro cultures are more often serum-starved to induce cell 

cycle synchronization, thus triggering MVP knockout phenotypes. Future 

experiments centered on characterizing vault functions in a limited-nutrient 

environment may provide a more definitive answer with regards to its 

function.  

With respect to Trypanosoma, the current study uses the procyclic 

forms that are adapted to survive in a limited-nutrient environment in the 

insect hosts. With regards to the proposed function as an ancestral reserve of 

amino acids, vaults may have a prominent role to play in the bloodstream form 

in sequestering nutrient amino acids. These sequestered amino acids may help 
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its survival in the nutrient-limited insect hosts. Future studies focusing on 

knockdown of TbMVP1 in the bloodstream form of Trypanosoma may reveal 

a stronger phenotype. A triple knockdown may accentuate this phenotype. 

Autophagy is also more pronounced in the bloodstream form and experiments 

that look for vault localization within autophagosomes upon induction of 

macroautophagy may give better insights into the functioning of vaults. 

 Since vaults are relatively stable and do not interfere with normal 

cellular functions, the potential of recombinant vaults as a drug delivery 

vehicle has remained a steady subject of research. With regards to the 

proposed function of vaults as a nutrient absorption particle, introducing vaults 

into plants or other cyanobacteria that are routinely used as dietary 

supplements (like Spirulina), may potentially serve to increase the amino acid 

content of these organisms. Vaults, being enriched in nutrient amino acids 

including BCAA, are well suited to be included in dietary supplements. To 

this end, a fellow student in the Hogue laboratory has pursued the creation of 

transgenic strains of rice and Arabidopsis with MVP genes in the hope of 

enriching protein content. 

It is reasonable to assume that vault structures evolved originally as 

particles for storing amino acids and later possibly evolved other additional 

functions with the incorporation of minor vault proteins. In the context of the 

theory presented here, observed mechanisms for vault expression and 

degradation may deserve a fresh examination. VPARP could represent an 

internal regulatory sensor molecule that is triggered to disrupt the vault 

particle via poly-ADP-ribosylation, possibly leading to its recognition by 

ubiquitin ligases. This would be consistent with the mechanistic role that the 
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PARP homologues play in disrupting nucleosomal structures during DNA 

repair (Schreiber et al. 2006). VPARP may be sensitive to the oxidative state 

of the cell or to specific nutrient concentrations. Recruitment of TEP1 within 

vaults may have evolved to potentially concentrate valuable ribonucleotides 

within vault interiors as a potential antiviral mechanism.  

In conclusion, if vault is indeed an evolutionarily conserved nutrient 

sequestering particle, it joins the likes of glycogen, starch, and triglycerides as 

a metabolically and nutritionally important molecular complex that warrants 

further study, and there are a large number of experiments that can be done in 

many organisms to further explore this possibility.  
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Table A.1 Routing Vault amino acids through Gluconeogenesis to generate Glucose (Part 1) 

Amino 
Acid 

End Products of Amino Acid 
degradation 

Energy/Reducing  
Equivalents involved in 

Catabolism 

Route to          
Gluconeogenesis 

Amino Acid Type Energy/Reducing Equivalents Required for 
Gluconeogenesis 

 

  ATP NADH NADPH    FADH2                                ATP            NADH            NADPH               FADH2  

A Pyruvate 0 1 0 0 via pyruvate Glucogenic -4 -1 -2 0  

C Pyruvate 0 -1 0 0 via pyruvate Glucogenic -4 -1 -2 0  

D Oxaloacetic Acid 0 0 0 0 via oxaloacetate Glucogenic -2 -1 -2 0  

E Alpha ketoglutarate 0 0 1 0 via oxalocetate Glucogenic -2 1 -1 1  

F Fumaric Acid + Acetoacetic Acid 0 0 -1 0 via oxaloacetate Gluco/Keto -2 0 -2 0  

G Pyruvate 0 2 0 0 via pyruvate Glucogenic -4 -1 -2 0  

H Glutamic Acid ( Alpha Ketoglutarate) 0 0 0 0 via oxaloacetate Glucogenic -2 1 -1 1  

I Succinyl CoA + Acetyl CoA 1 2 0 1 via oxaloacetate Gluco/Keto -2 0 -1 1  

K Acetoacetyl CoA 0 2 0 2 NA Ketogenic NA NA NA NA  

L Acetoacetic Acid + Acetyl CoA 1 1 0 1 NA Ketogenic NA NA NA NA  

M Succinyl CoA -2 1 0 0 via oxaloacetate Glucogenic -2 0 -1 1  

N Oxaloacetic Acid 0 0 0 0 via oxaloacetate Glucogenic -2 -1 -2 0  

P Glutamic Acid ( Alpha Ketoglutarate) 0 0 1 0 via oxaloacetate Glucogenic -2 1 -1 1  

Q 2 Glutamate (Alpha Ketoglutarate) 0 0 -1 0 via oxalocetate Glucogenic -2 1 -1 1  

R Glutamic Acid ( Alpha Ketoglutarate) 0 1 0 0 via oxaloacetate Glucogenic -2 1 -1 1  

S Pyruvate 0 1 0 0 via pyruvate Glucogenic -4 -1 -2 0  

T Acetyl CoA + Glycine (Pyruvate) 0 1 0 0 via pyruvate Gluco/Keto -4 -1 -2 0  

V Succinyl CoA 1 3 0 1 via oxaloacetate Glucogenic -2 0 -1 1  

W 2 Acetyl CoA + Acetoacetyl CoA+ 
Alanine (Pyruvate) 

0 1 -2 0 via pyruvate Gluco/Keto -4 -1 -2 0  

Y Fumaric Acid + Acetoacetic Acid 0 0 0 0 via oxaloacetate Gluco/Keto -2 0 -2 0  

*NA   Not Applicable                                    Negative values indicate consumption. Positive values indicate release 
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      Table A.1 Routing Vault amino acids through Gluconeogenesis to generate Glucose (Part 2) 

Amino 
Acid 

One 
Vault 

Energy/Reducing Equivalents available 
from one Vault 

Oxaloacetate 
formed 

Pyruvate 
formed 

Energy/Reducing Equivalents Required for 
Gluconeogenesis/Vault 

Glucose 
Available 

         ATP NADH NADPH    FADH2                   ATP              NADH        NADPH             FADH2  

A 8106 0 8106 0 0 0 8106 -16212 -4053 -8106 0 4053 

C 1002 0 -1002 0 0 0 1002 -2004 -501 -1002 0 501 

D 5241 0 0 0 0 5241 0 -5241 -2620.5 -5241 0 2620.5 

E 8760 0 0 8760 0 8760 0 -8760 4380 -4380 4380 4380 

F 3189 0 0 -3189 0 3189 0 -3189 0 -3189 0 1594.5 

G 6117 0 12234 0 0 0 6117 -12234 -3058.5 -6117 0 3058.5 

H 2208 0 0 0 0 2208 0 -2208 1104 -1104 1104 1104 

I 4053 4053 8106 0 4053 4053 0 -4053 0 -2026.5 2026.5 2026.5 

K 4992 0 9984 0 9984 NA NA NA NA NA NA NA 

L 10542 10542 10542 0 10542 NA NA NA NA NA NA NA 

M 1254 -2508 1254 0 0 1254 0 -1254 0 -627 627 627 

N 2487 0 0 0 0 2487 0 -2487 -1243.5 -2487 0 1243.5 

P 5928 0 0 5928 0 5928 0 -5928 2964 -2964 2964 2964 

Q 5808 0 0 -5808 0 5808 0 -11616 5808 -5808 5808 5808 

R 6315 0 6315 0 0 6315 0 -6315 3157.5 -3157.5 3157.5 3157.5 

S 5571 0 5571 0 0 0 5571 -11142 -2785.5 -5571 0 2785.5 

T 4983 0 4983 0 0 0 4983 -9966 -2491.5 -4983 0 2491.5 

V 8841 8841 26523 0 8841 8841 0 -8841 0 -4420.5 4420.5 4420.5 

W 918 0 918 -1836 0 0 918 -1836 -459 -918 0 459 

Y 1908 0 0 0 0 1908 0 -1908 0 -1908 0 954 

Total 98223 20928 93534 3855 33420 55992 26697 -115194 201 -64009.5 24487.5 44248.5 
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Table A.1 Routing Vault amino acids through Gluconeogenesis to generate Glucose (Part 3) 

Total Energy Available from One Vault Particle   Total Energy required to make  ~44,248 molecules of Glucose   

                      

ATP 20928         ATP 115194       

NADH 93534         NADH 201       

NADPH 3855         GTP 64009.5       

FADH2 33420         FADH2 24487.5       

                      

Assuming,         Assuming,           

1 NADH = 3 ATP         1 NADH = 3 ATP         

1 NADPH = 3 ATP       1 NADPH = 3 ATP         

1 FADH2 = 2 ATP          1 FADH2 = 2 ATP            

                      

Total ATP Available from One vault Particle 379,935   Total ATP required to make  ~44,248 molecules of Glucose 129,626 

                      

                      

                      

                      

Net ATP available = (379,935-129626) = 250309 
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Table A.2 Energy available from routing Vault amino acids through Tricarboxylic Acid (TCA) Cycle (Part 1) 

Amino Acid End Products of Amino Acid degradation Energy Available through TCA Cycle One Vault Energy Available through TCA Cycle/Vault 

NADH FADH2 GTP NADH FADH2 GTP 

Alanine Pyruvate 4    1 1 8106 32424 8106 8106 

Cysteine Pyruvate 4    1 1 1002 4008 1002 1002 

Aspartate Oxaloacetic Acid 3    1 1 5241 15723 5241 5241 

Glutamate Alpha Ketoglutarate 2    1 1 8760 17520 8760 8760 

Phenylalanine Fumaric Acid + Acetoacetic Acid 1    0 0 3189 3189 0 0 

Glycine Pyruvate 4    1 1 6117 24468 6117 6117 

Histidine Glutamic Acid ( Alpha Ketoglutarate) 2    1 1 2208 4416 2208 2208 

Isoleucine Succinyl CoA + Acetyl CoA 1    1 1 4053 4053 4053 4053 

Lysine Acetoacetyl CoA NA  NA NA 4992 NA NA NA 

Leucine Acetoacetic Acid + Acetyl CoA 3    1 1 10542 31626 10542 10542 

Methionine Succinyl CoA 1    1 1 1254 1254 1254 1254 

Asparagine Oxaloacetic Acid 3    1 1 2487 7461 2487 2487 

Proline Glutamic Acid ( Alpha Ketoglutarate) 2    1 1 5928 11856 5928 5928 

Glutamine 2 Glutamate (Alpha Ketoglutarate) 4   2 2 5808 23232 11616 11616 

Arginine Glutamic Acid ( Alpha Ketoglutarate) 2   1 1 6315 12630 6315 6315 

Serine Pyruvate 4   1 1 5571 22284 5571 5571 

Threonine Acetyl CoA + Glycine (Pyruvate) 3   1 1 4983 14949 4983 4983 

Valine Succinyl CoA 1   1 1 8841 8841 8841 8841 

Tryptophan 2 Acetyl CoA + Acetoacetyl CoA+ Alanine (Pyruvate) 6   2 2 918 5508 1836 1836 

Tyrosine Fumaric Acid + Acetoacetic Acid 1   0 0 1908 1908 0 0 

Total 
 

51 19 19  247350 94860 94860 

*
NA – Not applicable  ‘ 
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                                           Table A.2 Energy available from routing Vault amino acids through Tricarboxylic Acid (TCA) Cycle (Part 2) 

 

Total Energy Available through TCA Cycle   

NADH  247350 

FADH2 94860 

GTP 94860 

   

Assuming,   

1 NADH = 3 ATP   

1 FADH2 = 2 ATP   

    

Total ATP Available through TCA Cycle = 1,026,630   
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Table A.3 Vault amino acid precursors for de novo Nucleotide Biosynthesis (Part 1) 

Amino Acid Substrates in Nucleotide 
Biosynthesis 

   

Route to Glutamine E 8760 

   R 6315 

  P 5928 

  H 2208 

  Q 5808 

  D (+N) 7728 

Total   36747 

      

Route to Aspartate N 2487 

  D 5241 

  Q (+E+R+P+H) 29019 

Total   36747 

      

Route to Serine C 1002 

  S 5571 

  G 6117 

Total   12690 

      

Route to Glycine C 1002 

  S 5571 

  G 6117 

Total   12690 

Note: 
    Glutamine<---->Glutamate<---->Aspartate Interconvertable 

Serine<---->Glycine Interconvertable 
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                                          Table A.3 Vault amino acid precursors for de novo Nucleotide Biosynthesis (Part 2) 

 

 

 

 

 

 

 

 

 

 

                            

                                                         Negative values indicate consumption. Positive values indicate release 

 

 

 

Amino Acids to Form 
PRPP 

  (-5) (-1) (+2) 1 1 

    ATP NADH NADPH Ribose5P PRPP 

Leucine L nil nil nil nil nil 

Lysine K nil nil nil nil nil 

Tryptophan W nil nil nil nil nil 

Alanine A -20265 -4053 8106 4053 4053 

Threonine T -12455 -2491 4982 2491 2491 

Phenylalanine F -7970 -1594 3188 1594 1594 

Tyrosine Y -4770 -954 1908 954 954 

methioinine M -3135 -627 1254 627 627 

Valine V -22100 -4420 8840 4420 4420 

Isoleucine I -10130 -2026 4052 2026 2026 

       

 Total -80825 -16165 32330 16165 16165 
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Table A.3 Vault amino acid precursors for de novo Nucleotide Biosynthesis (Part 3) 

 
                          

        STOICHIOMETRY OF AMINO ACIDS IN NUCLEOTIDE BIOSYNTHESIS (De novo)          

                            

Glutamine 2   Glutamine 3   Glutamine 1   Glutamine 2   Glutamine  1 

Aspartate 2   Aspartate 1   Aspartate 1   Aspartate 1   Aspartate 1 

Glycine 1   Glycine 1   ATP 2   ATP 5   Serine 1 

ATP 4   ATP  5               ATP 2 

GTP 1                     NADPH 1 

NADH 1   NADH 1   NADH 1   NADH 1   NADH 1 

                            

                            

        NUCLEOTIDES AVAILABLE FROM ONE VAULT PARTICLE (one pathway/vault)         

                            

Glutamine 18372   Glutamine 27558   Glutamine 18373   Glutamine 24498   Glutamine  12690 

Aspartate 18372   Aspartate 9186   Aspartate 18373   Aspartate 12249   Aspartate 12690 

Glycine 9186   Glycine 9186   ATP 36746   ATP 61245   Serine 12690 

ATP 36744   ATP  45930               ATP 25380 

GTP 9186                     NADPH 12690 

NADH 9186   NADH 9186   NADH          18373   NADH 12249   NADH 12690 

                            

AMP 9186   GMP 9186   UMP 18373   CTP 12249   dTMP 12690 

           
Key 

  

           
  Consumed 

 

           
  Released 
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Table A.4 Recycling Vault amino acids to assemble average sized proteins (Part 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Amino Acid  Symbol 1 MVP 1 
VPARP 

1 TEP1 1 Vault Particle   Average 
Folded 

Domain 

  Vault/Avg Protein 

78 MVP + 12 VPARP Composition Average Protein       ~360 aa 

+3 TEP1         Rounded                
Off 

Alanine A 80 101 218 8106 8.53 30.79 31 261.48 

Cysteine C 5 37 56 1002 1.25 4.51 5 200.40 

Aspartate D 49 89 117 5241 5.85 21.12 21 249.57 

Glutamate E 86 134 148 8760 6.64 23.97 24 365.00 

Phenylalanine F 26 78 75 3189 3.98 14.37 14 227.79 

Glycine G 58 89 175 6117 7.52 27.15 27 226.56 

Histidine H 18 46 84 2208 2.29 8.27 8 276.00 

Isoleucine I 35 90 81 4053 5.72 20.65 21 193.00 

Lysine K 43 109 110 4992 5.81 20.97 21 237.71 

Leucine L 92 187 374 10542 9.12 32.92 33 319.45 

Methionine M 9 36 40 1254 2.17 7.83 8 156.75 

Asparagine N 21 53 71 2487 4.22 15.23 15 165.80 

Proline P 54 103 160 5928 4.51 16.28 16 370.50 

Glutamine Q 55 91 142 5808 3.71 13.39 13 446.77 

Arginine R 65 62 167 6315 5.02 18.12 18 350.83 

Serine S 38 160 229 5571 5.69 20.54 21 265.29 

Threonine T 44 98 125 4983 5.58 20.14 20 249.15 

Valine V 91 106 157 8841 7.19 25.96 26 340.04 

Tryptophan W 7 18 52 918 1.42 5.13 5 183.60 

Tyrosine Y 17 37 46 1908 3.57 12.89 13 146.77 
Total     98223   360  
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Limiting amino acid is tyrosine as indicated in bold in last column. Hence, number of average proteins available from one protein is 146. Amino acids used for protein synthesis 

will be 146 x 360 = 52560. Remaining amino acids catabolized for energy is 98223-58560 = 45663. The calculations for the energy derived out of catabolism are shown below. 

End Products of Amino Acid degradation Energy/Reducing Equivalents involved in Catabolism Remaining 
Vault Amino Acids 

Energy/Reducing Equivalents involved in Catabolism/Vault 

ATP NADH NADPH FADH2   ATP NADH NADPH FADH2 

Pyruvate 0 1 0 0 3580 0 3580 0 0 

Pyruvate 0 -1 0 0 272 0 -272 0 0 

Oxaloacetic Acid 0 0 0 0 2175 0 0 0 0 

Alpha Ketoglutarate 0 0 1 0 5256 0 0 5256 0 

Fumaric Acid + Acetoacetic Acid 0 0 -1 0 1145 0 0 -1145 0 

Pyruvate 0 2 0 0 2175 0 4350 0 0 

Glutamic Acid ( Alpha Ketoglutarate) 0 0 0 0 1040 0 0 0 0 

Succinyl CoA + Acetyl CoA 1 2 0 1 987 987 1974 0 987 

Acetoacetyl CoA 0 2 0 2 1926 0 3852 0 3852 

Acetoacetic Acid + Acetyl CoA 1 1 0 1 5724 5724 5724 0 5724 

Succinyl CoA -2 1 0 0 86 -172 86 0 0 

Oxaloacetic Acid 0 0 0 0 297 0 0 0 0 

Glutamic Acid ( Alpha Ketoglutarate) 0 0 1 0 3592 0 0 3592 0 

2 Glutamate (Alpha Ketoglutarate) 0 0 -1 0 3910 0 0 -3910 0 

Glutamic Acid ( Alpha Ketoglutarate) 0 1 0 0 3687 0 3687 0 0 

Pyruvate 0 1 0 0 2505 0 2505 0 0 

Acetyl CoA + Glycine (Pyruvate) 0 1 0 0 2063 0 2063 0 0 

Succinyl CoA 1 3 0 1 5045 5045 15135 0 5045 

2 Acetyl CoA + Acetoacetyl CoA+ Alanine (Pyruvate) 0 1 -2 0 188 0 188 -376 0 

Fumaric Acid + Acetoacetic Acid 0 0 0 0 10 0 0 0 0 

     45663 11584 42872 3417 15608 
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Table A.4 Recycling Vault amino acids to assemble average sized proteins (Part 2) 

Energy required to make 146 Average Folded Proteins from 52560 amino acids Total Energy available from Catabolism of Remaining Vault Amino Acids 

                    

Activation of Amino Acid    1 ATP/Amino Acid 52560     ATP 11584   

Initiation of Polypeptide Chain 1 GTP/Protein 146     NADH 42872   

  Elongation 1 GTP/Amino Acid 52560     NADPH 3417   

  Translocation 1 GTP/Amino Acid 52560     FADH2 15608   

  Termination 1 GTP/Protein 146           

            Assuming , 1 NADH = 3 ATP; 1 NADPH = 3 ATP; 1 FADH2 = 2 ATP   

                    

Total Energy Required to make 146 Average Folded Proteins  157972   Total ATP available from catabolism 181667   

                    

                    

NET Energy Available = (181667 - 157972) = 23695 
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Section B  

 

Characterization of Vaults in 
Trypanosoma brucei 

 

 

B.1     Overexpression causes a majority of TbMVP1 to assemble near the 
FAZ region 

The full length TbMVP1 coding region was fused upstream of YFP to 

construct the TbMVP1-YFP overexpression vector. The vector was transiently 

transfected into Ytat cells and observed for immunofluorescence. TbMVP1 was 

observed as very bright puncta, preferentially distributed along the FAZ region. While 

the puncta could also be observed in the cytoplasm, the signal from the FAZ 

associated TbMVP1 was very bright that the cytoplasmic puncta could not be 

observed clearly, except with very high exposure time. The targeting of TbMVP1 to 

the FAZ region was confirmed with two different vectors – i) pXS2 based fusion 

vector with C terminal YFP tag for constitutive overexpression and ii) modified 

plew100 fusion vector with C terminal YFP fusion tag for tetracycline inducible 

overexpression. The vectors were individually transfected into procyclic 29.13 cells 

and two different stable lines were established. Immunofluorescence confirmed that 

TbMVP1 localizes close to the FAZ region on overexpression.  

To confirm the accumulation of TbMVP1 along the FAZ region, dual labeling 

with antibodies that specifically mark the FAZ region was performed. The 

monoclonal antibody L3B2 specifically targets the FAZ structure in the cell body side 

by labeling the FAZ filament protein FAZ1 (Kohl et al. 1999). Indirect 

http://wizfolio.com/?citation=1&ver=3&ItemID=688&UserID=1682&AccessCode=4ED6D0AD15954254B880384638BA54EA&CitationSuffix=
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immunofluorescence (IF) and immunogold electron microscopy using L3B2 

confirmed the presence of TbMVP1 in close association with FAZ. IF was also 

conducted with another marker anti-CC2D that marks the FAZ filament and FAZ 

juxtaposed ER (Zhou et al. 2011). It was observed that TbMVP1 partially co-localizes 

with the FAZ region in all stages of cell cycle as can be seen in Figure I and Figure II.  

 

 

 

 

Figure I TbMVP1 is juxtaposed along the FAZ at all stages of cell cycle 

A coiled-coil and C2 domain containing protein (CC2D) that specifically localizes to the FAZ is used 

as a marker. The DAPI staining clearly marks small structures corresponding to kinetoplasts and larger 

structures corresponding to nucleus. The kinetoplast divides earlier than the nucleus and hence serves 

as a reliable marker for cell division.1K1N, 2K1N and 2K2N represents the various stages of cell 

cycle.  

 

http://wizfolio.com/?citation=1&ver=3&ItemID=684&UserID=1682&AccessCode=AA8438AB20F640308307944490D72CFC&CitationSuffix=
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Figure II Partial overlap of TbMVP1 with another FAZ marker, L3B2 

(A)TbMVP1-YFP is seen as punctate patterning near the FAZ region. The Merge+DIC image clearly 

shows the exclusion of TbMVP1 from the flagella extending from the cell body at the anterior tip. The 

cytoplasmic pool of TbMVP1 is visible as faint puncta throughout the cell body. Scale bar, 2 µm (B) 

Immunogold electron microscopy reveals accumulation of TbMVP1 along the FAZ region. The white 

arrows correspond to TbMVP1-YFP represented by 25 nm gold and the remaining represent L3B2 

labeling FAZ (40 nm) 

 

A 

B 
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B.2      TbMVP1 is excluded from flagella and nucleus 

While TbMVP1 was observed all along the length of the parasite from the 

anterior to the posterior cell body, whether TbMVP1 could also associate in parts with 

the single flagellum of Trypanosoma was examined. Indirect immunofluorescence 

was performed on methanol fixed TbMVP1-YFP overexpression stable line using 

anti-PAR, an antibody that labels the paraflagellar rod and hence, the flagellum. It 

was observed that TbMVP1 was specifically excluded from the flagella but was found 

only within the cell body (Figure III).  TbMVP1 signal was completely missing in the 

anterior tip detached from the cell body and all through the length of the flagella. This 

confirms that TbMVP1 is not a flagellar protein. 

 

 

 

 Figure III TbMVP1 is excluded from the flagella 

TbMVP1 overexpressing cells were   fixed methanol and labeled for flagella using the anti-PAR 

antibody that specifically marks the paraflagellar rods. TbMVP1 clearly runs along the flagella but 

never overlaps through the length of the cell. The Merge image clearly shows extension of labeling for 

flagella surpassing the expression of TbMVP1 towards the anterior end.  

 

B.3      A subset of TbMVP1 is cytoplasmic 

Vaults have been known previously to interact with cytoskeletal elements and 

sea urchin vaults have been known to co-purify with microtubules.  The Trypanosoma 

are characterized by a complex array of cytoplasmic subpellicular microtubule corset 

under the plasma membranes that helps in retaining the cell shape and remains intact 

through the complex life cycle. The Trypanosoma cytoskeleton being highly cross-
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linked can be isolated in an intact fashion by a detergent-based extraction procedure. 

To examine, if the MVP ortholog in Trypanosoma can also associate with 

cytoskeleton, the stable line overexpressing TbMVP1 was detergent extracted with 1% 

Triton in PEM to remove the soluble cytoplasmic pool and retain only the detergent 

resistant cytoskeletal matter comprising subpellicular microtublues, flagellar 

axenome, microtubule quartet and other microtubules associated structures. The 

extracted cytoskeleton was fixed and analyzed for immunofluorescence (Figure IV 

B). It was observed that TbMVP1 that localized near the FAZ region was still retained 

in the extracted cytoskeleton; however, the faint puncta observed throughout 

cytoplasm in intact cells was lost entirely. This confirms that a subset of TbMVP1 in 

Trypanosoma is cytoskeleton associated while others remain in the soluble pool. 

Vaults have been observed to move along the microtubules, possibly with the help of 

molecular motors (van Zon et al. 2006). The strong association of TbMVP1 with the 

cytoskeleton might suggest movement of vault complexes along the microtubules in 

the FAZ region. In Trypanosoma, the core cytoskeleton comprising the microtubule 

quartet and the flagellar axenome remains intact after treatment with 1M NaCl + 1% 

Triton treatment. To ascertain if TbMVP1 could represent a part of the core 

cytoskeleton, the cells were extracted with salt and detergent for 1 minute followed by 

fixation and viewing under fluorescence microscope. No signal was detected after the 

salt treatment suggesting that TbMVP1 does not associate with either the microtubule 

quartet or the flagellar axenome. 

Western blot analysis was also done to confirm the presence of TbMVP1 in the 

cytoskeletal fraction (Figure IV A). As mentioned earlier, the fluorescent signal 

arising from the puncta near the FAZ region was too bright that it occluded potential 

signal arising from the cytoplasmic pool. However, western blot analysis confirmed 

http://wizfolio.com/?citation=1&ver=3&ItemID=1019&UserID=1682&AccessCode=C7DD7044A95649799173E90E432B7594&CitationSuffix=
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that TbMVP1 also belongs to the soluble cytoplasmic pool and is not restricted to the 

FAZ region. 

 

 

 

 

 

 

 

 

 

B.4       Dynamics of TbMVP1 accumulation along the FAZ region 

The vaults have been known to exhibit dynamic behavior in the cytoplasm of 

mammalian cells. A previous study established that the fluorescence of MVP-GFP 

was recovered within 13 seconds of photobleaching (van Zon et al. 2006). However, 

when the cells are treated with nocodazole, a drug that inhibits microtubule assembly, 

a delayed recovery was observed, suggesting that the association of vaults with 

cytoskeletal elements is responsible for its movement within the cells. Experiments 

conducted on nerve cells suggested that vaults can be actively transported back and 

Figure IV: A subset of TbMVP1 associates with the cytoskeleton 

(A) YFP-TbMVP1 overexpressing cells were fractionated into a soluble cytoplasmic 

pool and a detergent resistant (1% Triton-X-100 (v/v) treated) cytoskeletal extract. 

Western blot analysis using anti-GFP antibody reveals that TbMVP1 is present in both 

the fractions. Bands of lower sizes correspond to possible degradation products. Vaults 

are known to associate with cytoskeletal elements, particularly microtubules, in higher 

eukaryotes. (B)YFP-TbMVP1 overexpressing cells were detergent extracted for 5 

minutes using 1%NP-40 in PBS, fixed with PFA and stained with DAPI.  TbMVP1 can 

be seen as distinct punta along the FAZ region. The signal from the soluble cytoplasmic 

pool is lost. Scale bar, 2µm 

http://wizfolio.com/?citation=1&ver=3&ItemID=1019&UserID=1682&AccessCode=C7DD7044A95649799173E90E432B7594&CitationSuffix=
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forth within axons (Li et al. 1999). To trace the dynamic buildup of TBMVP1-YFP 

near the FAZ region an overexpression stable line under the control of tetracycline 

was used to drive TbMVP1 expression. After addition of the drug, the cells were 

tracked for one cell cycle to observe the expression and specific localization of vaults 

(Figure V). The fluorescence signal was faintly noticeable by 2 hours after addition of 

tetracycline, however no significant signal was observed. At around 3.5 hours, 

TbMVP1-YFP started to appear as bright punctate structures distributed all through 

the cell body but excluded from the flagella. Additional faint diffuse patterning was 

also observed. At each time point, detergent resistant cytoskeletal extracts were also 

examined. Interestingly, the cytoskeletal extracts retained only the bright punctate 

structures and the rest of the signal observed earlier was lost. At around 5 hours, a 

distinct pattern was emerging with more TbMVP1-YFP assembling near the FAZ 

region, but excluded from the flagella. By 6.5 hours, most the cells retained only the 

punctate distribution along the FAZ and no diffuse patterning within cell body was 

observed. While the punctate structures were detergent resistant, extraction with salt 

and detergent, completely removed fluorescent signal arising due to TbMVP1, re-

emphasizing the association of TbMVP1 with subpellicular microtubules but not with 

the core cytoskeleton comprising the microtubule quartet. The dynamic behavior 

exhibited by Trypanosoma vaults is comparable to those observed in other 

multicellular metazoans where vaults move unconstrained within the cytoplasm along 

microtubules.  The specific accumulation near the FAZ region mid-way through the 

cell cycle reiterates a plausible unknown role for vaults in these single celled 

kinetoplastids. 

 

 

http://wizfolio.com/?citation=1&ver=3&ItemID=527&UserID=1682&AccessCode=42D3A7A5A090491CB7A5BAB9C7F3F62E&CitationSuffix=
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Figure V Dynamic accumulation of TbMVP1 near the FAZ region 

Using a tetracycline-inducible stable line, the expression of YFP-TbMVP1 was induced by the addition 

of tetracycline at time = 0 hours. The expression of TbMVP1 was followed over various time points as 

indicated. The cells were either methanol fixed (A) or detergent extracted with 1% NP-40 and fixed 

with PFA (B) before staining with DAPI. At less than 3.5 hours, a diffuse cytoplasmic distribution was 

observed (data not shown). Punctate structures start to appear at around 3.5 hours and move near the 

FAZ region over time. Most of the cells show the FAZ localization around 6.5 hours. The punctate 

structures that appear are detergent resistant. Scale bar, 2 µm. 

 

 

 

B.5    Coiled-coil domain in TbMVP1 is responsible for punctate distribution, 
but not localization 

The crystal structure of MVP from rat is composed of defined structural 

domains that contribute to the unique shape of the vault particle (Tanaka et al. 2009). 

The interaction between individual MVP molecules towards vault assembly is 

mediated by the C-terminal coiled-coiled domain. The coiled-coil domain marks the 

region between 648-800 amino acid positions in the human MVP protein.  

The coiled-coil domain maps to the region termed the cap helix domain. The 

TbMVP1 protein was then analyzed using the COILS program (http://embnet.vital-

it.ch/software/COILS_form.html) to determine the propensity of TbMVP1 to form a 

coiled-coiled domain (Figure VI). The region between 680-800 amino acids favored 

the formation of coiled-coil domain. To design the truncation constructs, a pairwise 
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alignment between the rat MVP sequence and the TbMVP1 was performed to 

establish the conservation among the structural domains (Figure VII). The sequence 

spanning the nine structural folded domains that builds the barrel constituted the N-

terminal truncated TbMVP1 and the rest of the sequence that included the coiled-coil 

domain comprised the C-terminal truncated TbMVP. 

 

 

 

Figure VI TbMVP1 has a C-terminal coiled-coil region 

Vaults are assembled into stable structures by interactions between individual MVP chains at the C-

terminal coiled-coil region.  The propensity of TbMVP1 to form a coiled-coil domain was predicted 

using the COILS program. The three-colored lines indicate the various window length in terms of 

amino acids the program uses to predict the region. The plot shows that a region spanning 680-800 

amino acids in TbMVP1 can potentially form a coiled-coil domain. 
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Figure VII Construction of N-terminal or C-terminal truncated proteins 

TbMVP1 was aligned with rat MVP protein, whose structure has been determined at 3.5 Å, to highlight 

the various structural regions including the nine structural folded domain, shoulder domain, cap-helix 

domain and cap-ring domain indicated with different colors in the same order (Tanaka et al. 2009). 

Based on the alignment, the N-terminal truncated TbMVP1 was designed to include only the structural 

folded domains forming the vault barrel and the C-terminal truncated protein included the region from 

the shoulder till the vault cap. 

 

 

N-terminal 

Truncated TbMVP1

C-terminal 

Truncated TbMVP1

http://wizfolio.com/?citation=1&ver=3&ItemID=301&UserID=1682&AccessCode=E22B77C4C80B466AB6C8076289AA1E21&CitationSuffix=


217 

 

The sequence encoding regions 1-512 amino acids and 513-838 amino acids 

were cloned independently into pXS2-YFP vectors resulting in the construction of N- 

and C- terminal truncated constructs. It was pointed out earlier that punctate 

distribution of TbMVP1-YFP possibly is a result of interaction between individual 

monomers, resulting in the formation of vault particles. The truncated constructs were 

designed to check if the coiled-coil domain correlates with the punctate distribution of 

TbMVP1-YFP. In that regard, transient transfection was performed into 29.13 

procyclic cells and immunofluorescence was performed. It was observed that, while 

expression of the C-terminal truncated protein (513-838 aa) exhibited a punctate 

distribution pattern, the N-terminal truncated protein (1-512 aa) formed a diffuse 

patterning similar to that observed for TbMVP3-YFP (Figure VIII). In spite of the 

punctate distribution pattern, the specific targeting near the FAZ region was abolished 

by expressing the C-terminal truncated TbMVP1 (513-838 aa). This reiterates that the 

coiled-coil domain is essential for interaction between MVP monomers and the 

phenomenon seems to be conserved through evolution. The punctate patterning is 

suggestive of individual monomers interacting and plausible vault particle assembly. 

Also while C-terminal truncated protein was detergent resistant and adhered strongly 

to cytoskeletal elements, the N-terminal truncated protein was detergent soluble and 

hence, remained in the soluble supernatant pool. This also correlates with previous 

observations that vaults preferentially interact with microtubules via their caps, with 

their long axis perpendicular to the interacting microtubule axis (Eichenmüller et al. 

2003). Hence, the C-terminal truncated proteins are capable of interacting with each 

other and also assemble along microtubules, however some component necessary for 

FAZ specific localization appears to reside in the N-terminal portion of the protein.  
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Figure VIII Altered distribution patterns of truncated TbMVP1 

The preferential FAZ targeting of TbMVP1 was hampered when the full-length TbMVP1 protein was 

truncated C-terminally or N-terminally. The N-terminal TbMVP1fragment that retained only the nine 

structural folded domains showed no puncta but a faint cytoplasmic distribution. The N-terminal 

truncated protein was detergent-susceptible (data not shown) and does not associate with cytoskeletal 

elements. The C-terminal protein fragment forms punctate structures throughout the cytoplasm, but 

shows no accumulation near the FAZ region. The C-terminal protein fragment that retains the coiled-

coil region is however detergent resistant (data not shown) and thus capable of interacting with 

microtubules. Scale bar, 5µm 

 

 

B.6     Differential subcellular localization of MVP paralogs 

The paralogs arising out of gene duplication events more often undergo 

significant evolutionary changes and may have paralogous function. It was 

hypothesized that if the other two vault paralogs, TbMVP2 and TbMVP3, exhibit 

similar subcellular localization and punctate distribution akin to TbMVP1, the 

possibility of  intact vault structures assembling with all three paralogs are high, like 

those of Dictyostelium composed of two MVP paralogs. In that regard, two 

overexpression vectors with C-terminal YFP tag were created individually from full 

length TbMVP2 and TbMVP3 coding sequences. The vectors were transiently 
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transfected into 29.13 procyclic cells and subjected to immunofluorescence 

microscopy.  

It was observed that TbMVP3 was dispersed throughout the entire cell 

structure with diffuse patterning (Figure IX A). Though an overexpression vector was 

used, the fluorescence signal was quite faint. There were no punctate structures like 

those observed for TbMVP1. The bright punctate distribution observed in cells 

expressing TbMVP1 is suggestive of individual monomers interacting. However, lack 

of similar patterning in TbMVP3-YFP expressing cells raises speculations if such 

interactions could occur between TbMVP3 monomers. TbMVP3-YFP also seemed to 

co-localize with the nuclear stain DAPI, that stains the nuclear and kinetoplastid 

material.  The transiently transfected cells were detergent extracted to analyze if 

TbMVP3 can associate with cytoskeletal material. Unlike TbMVP1 which strongly 

associated with cytoskeleton, TbMVP3-YFP showed no fluorescent signal in 

cytoskeletal preparations, suggesting that it remains in the soluble cytoplasm and does 

not exhibit associations with cytoskeletal elements.  

The distribution pattern of TbMVP2-YFP was different from those observed 

for TbMVP1 and TbMVP3. Transiently transfected procyclic cells expressed TbMVP2 

as one bright puncate spot, more often near the nucleus than the kinetoplastid in 

1K1N cell type (Figure IX B). However, in cells in which the kinetoplastid has 

divided (2K1N) or post mitotic cells (2K2N) more than one bright puncate spot was 

observed. The patterning was consistent in almost all the cells that expressed 

TbMVP2-YFP. The bright spot was located well within the cell body and it was 

speculated that they could be closely associated with basal bodies, flagellar pocket or 

Golgi structures. Also, detergent extracted cytoskeletons retained the punctate 



220 

 

structures intact suggesting that the long branching TbMVP2paralogs can still 

associate with cytoskeletal structures, unlike TbMVP3. 

Trypanosoma is characterized by a single Golgi structure (He 2007). The 

protist initially begins with a single Golgi structure in the G1 phase and as the cell 

proceeds though cell cycle new Golgi start to appear in about 2 hours. However, 

additional Golgi structures appear towards the end of the cycle (He et al. 2004). As 

the mother cell undergoes cytokinesis, only the old and new Golgi structures are 

retained and the additional smaller Golgi disappears. The cells transiently expressing 

TbMVP2-YFP were methanol fixed and indirect immunofluorescence was performed 

with anti-Tb-GRASP, an antibody that specifically labels the Golgi matrix protein. 

TbMVP3-YFP co-localized entirely with the additional Golgi structures that appeared 

small and faint compared to either old or new Golgi in most cases. Also, unlike the 

new or old Golgi that appear close to the kinetoplast, the additional Golgi structures 

are often found in proximity to the nucleus. The exact functions of these additional 

Golgi materials and why they appear at this point in the cell cycle is yet unknown. 

There has been no report of any marker that specifically labels these additional 

structures and the co-localization experiment suggests a possible role for TbMVP2 in 

Golgi duplication. 
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Figure IX Differential localizations of Trypanosoma MVP paralogs 

(A) Cells overexpressing TbMVP3-YFP shows a faint cytoplasmic patterning that spans all along the 

cell body including the nucleus. No clear punctate structures are formed. (B) Cells overexpressing 

TbMVP2-YFP reveal one or two circular punctate structures that appear close to nucleus. The puncta 

overlaps with faint structures that correspond to additional Golgi structures (white arrow) that appear 

during cell division. The pattern is consistent through all stages of cell cycle. Scale bar, 2µm. (C) 

Western blotting that confirms formation of full-length TbMVP2 and TbMVP3 tagged proteins. 
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B.7      Discussion 

It is known that vaults isolated from mammalian cells are entirely composed 

of one MVP ortholog while those from single-celled slime molds are made up of at 

least two proteins. To deduce if all the three MVP paralogs in Trypanosoma have 

similar subcellular localization, hinting at a possible structure composed of all three 

MVP paralogs, immunofluorescence studies were carried out. The subcellular 

localizations of the paralogs were different, suggestive of a different or evolved 

additional function for the paralogous genes. While TbMVP1 had a punctate 

distribution like those observed for vaults in mammalian cells, TbMVP3 had a diffuse 

patterning all over the cell body and TbMVP2 was expressed as a single bright puncta 

within the cell body, closer to the posterior end of the cell. About 5% of the total MVP 

expressed in mammalian cells is known to co-localize with the nucleus. Except for 

TbMVP3, which revealed patterns of co-localization with nucleus and kinetoplast, 

TbMVP1 and TbMVP2 remained excluded from the nucleus  

While TbMVP3 forms a diffuse patterning all over the cell, the localization of 

TbMVP2 is very specific and co-localizes with the additional Golgi formed during 

cell cycle. The role of these additional Golgi formed during Golgi duplication and 

subsequent cell division is unclear, but they are known to disappear shortly before the 

end of cytokinesis. Their exact route for turnover or degradation is not known.  The 

association of TbMVP2 along with these additional Golgi inferred by co-localization 

studies may hint at a possible role for TbMVP2 as a molecular marker, that helps 

discriminate the additional Golgi from those that will be inherited by daughter cells. 

This would allow the cell to maintain tight regulation in ensuring only one Golgi is 

inherited per daughter cells and any additional material is turned over.  
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 The FAZ region plays a very important role in flagellar assembly, cell 

flexibility, motility, and is also crucial for cell segregation. In Trypanosoma, TbMVP1 

(on overexpression) accumulates near the FAZ region and is expressed all along the 

cell body but excluded from the flagella. Co-localization studies with FAZ molecular 

markers, is suggestive of a partial overlap between TbMVP1 and FAZ filament, with 

TbMVP1 preceding the FAZ filament from within the cell body. In Trypanosoma, the 

region around the FAZ, is marked by the MtQ and other microtubule associated 

structures that regulate cell cycle, and hence it was speculated that knockdown of 

TbMVP1 might have adverse effects on cell division. However, the knockdown cells 

exhibited similar proliferation profiles like those of the control cells and displayed no 

obvious phenotype. This suggests that TbMVP1 is a dispensable gene in Trypanosoma 

under normal cellular conditions, as in other eukaryotes. 

 Various studies have established that vaults preferentially move inside the cell 

guided by its attachment to cytoskeletal matter. Though vault distribution in 

mammalian cells exhibits a punctate distribution, the metabolic state of the cell is 

known to influence their dynamic distribution and cause selective clustering. The fact 

that they remain enriched within lamellipodia in spreading fibroblasts raised 

speculations if they associate with actin fibers (Kedersha and Rome 1990). However, 

co-localization studies confirmed that they do not associate with actin stress fibers; 

instead they displayed profound co-localization with beta-tubulin molecules 

(Herrmann et al. 1999).  In fact vaults have been observed to arrange in a filamentous 

pattern along microtubules in a wide range of eukaryotic cells (Hamill and Suprenant 

1997). If the movement of the vault across the microtubule is a conserved feature, it 

should have evolved early in evolution. In Trypanosoma, a single-celled eukaryote it 

was observed that TbMVP1 is specifically retained in detergent extracted cells, 

http://wizfolio.com/?citation=1&ver=3&ItemID=802&UserID=1682&AccessCode=9996D93D380049C9B425219CD4850164&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=319&UserID=1682&AccessCode=C540FDBB90054D2993B9598A51EDBC83&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=286&UserID=1682&AccessCode=63BFBA55C82C47C0A6010BFECEF7D76E&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=286&UserID=1682&AccessCode=63BFBA55C82C47C0A6010BFECEF7D76E&CitationSuffix=


224 

 

possibly pointing to its association with the microtubule corset. The subpellicular 

corset in Trypanosoma is arranged as a linear array of microtubules that retain cross-

links with each other and with the membranes. The microtubules play a major role in 

dynamic remodeling of the cell and in maintaining the close tethering between all 

associated structures. The dynamic study that focused on accumulation of TbMVP1-

YFP suggested that a subset of vaults is retained after detergent-extraction as 

observed by bright punctate distribution. Vaults may possibly accumulate near the 

FAZ region in a microtubule-aided manner. It is worth mentioning that TbMVP2-YFP 

also is cytoskeletal-associated, while TbMVP3-YFP has undergone evolutionary 

changes that somehow abolish its interaction with cytoskeleton, and possibly disrupt 

vault complex formation.  

It is known that the vaults bind to microtubules via their cap region, with their 

long axis perpendicular to that of microtubules. Truncation studies in Trypanosoma 

suggested that the association of TbMVP1 with cytoskeletal extract was disrupted 

when the cap-helix and cap-ring domain were removed in the N-terminal fragment 

protein. The cap-helix region, which also forms a coiled-coiled domain, is necessary 

for interaction between MVP monomers. The C-terminal fragment protein, which 

retained the coiled-coiled domain, exhibited association with the cytoskeleton, albeit 

with no preferential accumulation near the FAZ region. The dynamic behavior of full-

length TbMVP1 suggested that it initially appears as punctate structures spread 

through the cell body and assembles near the FAZ region over time. It may be 

reasoned that the C-terminal fragment protein, in spite of forming an association with 

cytoskeleton, is not specifically bound to the FAZ region as it cannot form complete 

vault structures. Thus we can conclude that FAZ binding is mediated by some 

structure in the N-terminal portion of MVP1. Fully formed intact complex from 
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individual monomers may be a prerequisite for movement of vaults across 

microtubules using molecular motors. 

In many eukaryotic cell types studied till date vaults are known to cluster 

along the growing ends of cell, suggestive of a role for vault in cell growth (Paspalas 

et al. 2009). As mentioned earlier, a shorter FAZ correlates with shorter daughter 

cells. The N-terminal primary sequence of TbMVP1 seems to carry important 

information concerning this specific targeting, since the truncated proteins failed to 

exhibit selective distribution. In the case of TbMVP1, the process of accumulation 

near the FAZ region is almost complete within 6.5 hours. This underscores the 

importance of cytoskeletal- guided movement of vaults and also points to the 

involvement of molecular motors to drive the process. The preferential accumulation 

of TbMVP1 within this region hints at roles for MVP in motility, adhesion and cell-

division events.  
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