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Summary

High precision machines are widely used in industries like semiconductor, medical and

automobile. With rapid development in the technologies of high precision machining

and the ever increasing demand for high accuracy in the automation industry, address-

ing accuracy problems due to geometric, thermal and sensing errors are becoming more

critical in recent years. Retrofitting the mechanical design, maintaining the operational

temperature or upgrading sensors may not be feasible and can significantly increase

cost. The accuracy of the position measurement in the face of such issues is fundamen-

tal and critically important to achieve high precision control performance. There is a

requirement for an effective balance among measurement issues like conflicting interests

in cost versus performance and different performance measures arising in the same appli-

cation. Thus, this thesis focuses on the soft enhancement of high precision system using

approaches including selective data fusion of multiple sensors and error compensation

techniques using geometric error, thermal error and end-effector output errors.

First, a proposed method for the position control of an XY Z table using geometric

error modeling and compensation is discussed. Geometric error compensation is required

in order to maintain and control high precision machines. The geometric model is
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formulated mathematically based on laser interferometer calibration with displacement

measurements only. Only four and fifteen displacement measurements are needed to

identify the error components for the XY and XY Z table respectively. These individual

error components are modeled using radial basis functions (RBFs) and used by the

controller for error compensation.

Secondly, a displacement and thermal error compensation approach is proposed and

developed based on RBFs. Raw position and temperature signals are measured using the

laser interferometer and a thermistor respectively. The overall errors are related to both

movement positions and the machine operating temperatures, so a 2D-RBF network is

designed and trained to model and estimate the errors for compensation.

Thirdly, an approach towards precision motion control with a selective fusion of mul-

tiple signal candidates is furnished. A specific application of a linear motor using a

magnetic encoder and a soft position sensor in conjunction with an analog velocity sen-

sor is demonstrated. The weightages of the sensors are approximated using RBFs based

on measurement calibration results. The data fusion of the multiple sensors is used in

the controller to improve the system performance.

Lastly, an industrial application: a multi-valve micro-dispensing drop-on-demand (DOD)

system, is investigated and error compensation on both stage and the end-effector output

(the droplets from the printheads) are proposed and applied. A trajectory model is pro-

posed to study the characteristics of the printed droplets and image analysis techniques

are applied to identify the trajectory parameters for the compensation.

viii



In order to show the background and motivation of the research clearly, related lit-

erature reviews on geometric error compensation, thermal error compensation, selective

data fusion and micro dispensing system are given in the corresponding chapters. In

addition, extensive experimental results are presented to illustrate the effectiveness of

the proposed approaches throughout the thesis.
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Industrial applications of precision systems

Today, high precision machines like multi-axis milling machine, coordinated measuring

machine (CMM) are widely used in but not exclusive to various industries such as pre-

cision engineering, micro-fabrication, nano-fabrication, semiconductor manufacturing,

bio-tech product manufacturing and metrology.

Precision engineering is a set of systematized knowledge and principles for realizing

high-precision machinery [4], and concerns the creation of high-precision machine tools

involving their design, fabrication and measurement. There are many types of high

precision machines used in precision engineering industry, ranging from conventional

types like bridge type CMMs as shown in Fig. 1.1a, milling machines and drilling

machines, to non-contact machines leveraging on magnetic and air-bearing as shown in

Fig. 1.1b. The precision of these machines can vary from 100 micrometer in normal

machining to 0.1 micrometer in optic manufacturing industry [5].

Micro-fabrication is the process involving design and fabrication of miniature struc-
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Figure 1.1: Examples of precision machines in industry

tures of micrometre scales and smaller, and it can be extended to nanometer scales

which is called as nano-fabrication. Semiconductor manufacturing is also an important

part of micro/nano-fabrication industry. A nanoscale lithography machine is shown in

Fig. 1.1c. The devices fabricated in micro/nano-fabrication include but not limited

to integrated circuits, microelectromechanical systems (MEMS), nanoelectromechanical

systems (NEMS), microfluidic devices and solar cells. In micro/nano-fabrication indus-

try, the precision requirement varies from micrometer level to nanometer level [6].

Biotechnology is an industry making use of living systems and organisms to develop

useful products. In United Nations Convention on Biological Diversity, it is defined as

“any technological application that uses biological systems, living organisms or deriva-

2



tives thereof, to make or modify products or processes for specific use” [8]. The term

“biotechnology” is believed to have been firstly used in 1919 by Hungarian engineer Karl

Ereky [9]. Since late 20th century, the modern biotechnology has expanded to include

new and diverse sciences such as genomics, recombinant gene technologies, applied im-

munology, which requires high precision machines during manufacturing high precision

devices for minimally invasive surgery, surgical implant placement and intracytoplasmic

sperm injection (ICSI) [10], with the precision requirement varying from millimeter level

to nanometer level.

Defined by the International Bureau of Weights and Measures (BIPM), metrology is a

“science of measurement, embracing both experimental and theoretical determinations

at any level of uncertainty in any field of science and technology” [14]. To measure

products with sufficient accuracy and test parts against the design intent, precision

measuring machine such as CMM with accuracy from submicron to nanometer has

been developed and becomes a very important device in manufacturing and assembly

process [15] [16].

With the ever increasing demand for higher precision applications, the requirements

of higher precision and accuracy in these machines are becoming more important. The

precision machining accuracy can be classified into three categories: normal machining,

precision machining and ultraprecision machining [7]. Fig. 1.2 shows the development

of achievable machining accuracy with the data from prediction by Taniguchi [7] in 1983

and the current development [5]. In Fig. 1.2, the ultra-precision machining accuracy is

3



Figure 1.2: Trend in machining accuracy

the highest possible dimensional accuracy has been achieved, and the machining accuracy

increases at a rate of one order every twenty years.

Many factors can affect the accuracy of the precision machine. The relative position

errors between the end-effector of the precision machine and the workpiece will directly

affect the machine accuracy and the quality during production. Sensors such as encoders

and tachometers are typically installed on the precision machine to yield the necessary

measurements. The performance and accuracy of these sensors will also affect the final

performance of the machine. In this thesis, the techniques improving precision are

developed for precision machine using error compensation and sensor selective control

approaches. The ensuing subsections will elaborate these developments.

1.1.2 Error compensation technique in precision systems

A major problem in the precision machine is that no matter how well a machine may

be designed, there is always an accuracy limit. The positional inaccuracies or errors

between the end-effector and the workpiece may arise from various sources, like mechan-
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ical imperfection, misalignment, environmental temperature change etc. Those errors

can be roughly classified into two categories: systematic errors which are repeatable

and random errors which vary all the time. For random errors, it is very difficult to

completely eliminate them; while for repeatable errors which are mainly originated from

geometric errors of the precision machine, improving the mechanical design may be a

solution. But such an endeavor cannot solve errors caused by thermal deformation etc,

and the introduced manufacturing cost will be considerably large. So nowadays, error

compensation techniques which can effectively improve the accuracy of the precision

machines have been considered as a good approach to solve this problem [23]- [25], due

to its cost-effectiveness and ease of implementation.

There are mainly two types of error compensation techniques [2]: 1) Pre-calibrated

error compensation: the same error measured before or after the machine operation is

used to calibrate the machine for subsequent operations; 2) Active error compensation:

the error is monitored online during the machining operation and is used to calibrate the

same operation. The pre-calibrated error compensation method is suitable for repeatable

machining process and error measurement, and the active error compensation method

is more suitable for high accuracy achievement with low cost tools as live compensation

can provide more flexibilities in the compensation during manufacturing process.

In order to apply error compensation, the error components should be measured first

using corresponding instruments. Depending on the characteristics and similarities, the

error components in the precision machine can be classified into different groups of error
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components such as: linear error, angular error, straightness error, squareness error,

parallelism error, thermal error, force induced error, spindle error etc. The measurement

methods and procedures are different from each other. Usually instruments such as laser

interferometers, precision straight edges, electronic levels, capacitance gauges and ball

bar [27]- [29] [32]- [34] can be used to measure and identify those error components based

on various factors like motion position, environment temperatures etc.

In this thesis, the laser interferometer is used to collect the positional inaccuracies

and calibrate the precision machine. The laser interferometer is an instrument which

measures displacements with very high accuracy and precision, and are widely used in

high resolution real-time position control systems and characterization and calibration

of high resolution motions. The working principle of a laser interferometer is based on

the basic Michelson interferometer as shown in Fig. 1.3. The monochromatic light is

split into two beams at 90 degrees by the beam splitter: one is transmitted to a movable

mirror and another is transmitted to a fixed mirror. The reflections from both mirrors

are recombined at the beam splitter after reflection. When the movable mirror moves in

a direction parallel to the incident beam, interference exists in the recombined beam and

one interference cycle represents a half wavelength displacement of the movable mirror.

If the wavelength of the light is known, the displacement of the movable mirror can be

accurately determined. So the laser interferometer measures the relative displacement

and the accuracy can reach 1 nm [3].

But in order to measure all the error components directly using conventional laser

6



Figure 1.3: Working principle of Michelson interferometer

interferometer method, full sets of optics are necessary thus the overall cost can be

increased significantly. As different error components measurements require different

setups, the total calibration time of one precision machine can take several days [11].

As the accuracy of laser interferometer degrades under atmospheric conditions and can

be affected by environment factors like temperature, humidity and pressure [12], it is

very difficult to maintain the operational environment unchanged for several days and

the calibration results can be different from day to day. Another shortcoming of the

conventional laser interferometer method is that the roll errors can not be measured

directly [13]. Thus from this perspective, a complete, time efficient and cost effective

error compensation method using laser interferometer is desirable in precision machine

calibration.

1.1.3 Sensor fusion technique in precision systems

Sensing and instrumentation are fundamental enabling technologies in precision system.

To achieve high precision control, sensors are necessary to measure the related signals to

very fine resolution and repeatability. Accurate and reliable data collection is the basis
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which can lead to better design and performance by allowing more effective control in

the system. The acquired data of the precision machine strongly relies on the accuracy,

stability and repeatability of the sensors used.

Sensors have different specifications such as volume/size, signal type, speed, resolu-

tion, bandwidth, accuracy, coupling type and sensitivity [18], and the costs are different

based on different specifications. Many advanced technologies can be applied to sensing

industry like micro/nano-electronic technologies like MEMS and NEMS, the size of sen-

sors has been reduced significantly to micrometer and even nanometer level [19], with a

faster response speed and sensitivity compared with macroscopic scale sensors.

Besides the specifications, the performances of sensors are also affected by various

error sources such as hysteresis, bias, noise, nonlinearity and degradation. Digitalization

error exists in digital sensor as its output is an approximation of measured property,

although it can be directly used to communicate with processor and controller. Thus

analog sensor is generally more accurate and expensive due to the freedom to allow

further interpolation.

Due to the different specifications and performances of the sensors and the different

requirements of the precision machine, there is inevitably a limit to the overall perfor-

mance achievable with a single sensor. For example, the optical encoder has a higher

resolution than magnetic encoder, but it is less robust in harsh environment than mag-

netic encoder. For some sensors with excellent performance and accuracy, they may only

work well in a certain limited frequency range [95] [96]. Thus, the fusion of signals from
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multiple sensors can be a possible approach to solve above mentioned problems.

The applications of sensor data fusion technique can include an appropriate synergy

of sensors to achieve dynamic balance in different combinations of the specification like

speed and resolution, bandwidth and accuracy, cost and performance etc. The data

fusion approach has been used in certain domains, like location tracking systems [80],

reverse engineering in coordinate measuring machines [84]- [87] and robotics control [82]

[83] etc. But in precision system and control, such applications are relatively scarce,

like [95] [96] to solve the problem of different working frequencies of the sensors. The

concept of using multiple sensors or signals is more commonly used as selective control

in the process control industry, as the measurement reliability can be improved from

several sensors and is more suitable in hostile environments like high temperature, dirty

or vibrating surroundings [17].

In current sensor fusion technique, central limit theorem or Kalman filter is adopted

with weightages based on the quality of the measurements [81], which requires compli-

cated mathematics and extensive computation. In order to expand the sensor fusion

technique to precision system applications, a more general framework of sensor fusion

should be proposed from the measurements of different sensors on the precision machine,

with varying selector attribute of each sensor based on sensor performance. The oper-

ational speed of the precision machine should be considered during the computation of

the weightage of each sensor in the proposed framework, as it can affect the performance

of the sensor and the machine. For example, an analog speed measuring sensor such as
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tachometer can perform well in position control of the precision machine at relative low

operational speed range with proper digital integration, but due to delay and response

times in the control loop [22] and sensitivity of the sensor, the accuracy of the digital

integrated signal degrades at high operational speed. Noise variances can also signifi-

cantly affect the sensor performances [81] [94] and thus it should also be considered in

the frame work. A general framework of sensor fusion in precision machine with opera-

tional speed and noise variances as the selector attributes will be proposed and verified

via experiments in this thesis.

1.2 Objectives and Challenges

The main objective of this thesis is to enhance the accuracy and precision of the high

precision machines with the proposed error estimation models of the machine errors and

sensors selective control approach with compensation in the feedback control. The cor-

responding challenges in the modeling and compensation process during the experiments

are:

Lack of simple and efficient error estimation model There is a total of 21 geo-

metric errors in 3D precision machine, and each of them is independent with the others.

Measuring each error component requires unique set of measurement sensors like optics,

thus increases the calibration time and cost. Such a complete calibration may not be

necessary for a given performance specification. It would be more cost effective and

time efficient if each error component can be computed using one certain measurement
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method only. One existing method uses 22 displacement measurements to estimate the

21 errors which introduces one redundancy in the system [39]- [41]. Another existing

method assumes angular errors and straightness errors are dependent, and the com-

putation of high order polynomials increases the system complexity [42]. The existing

models are either overly done given the specifications, not rigorously verified, or ineffi-

cient. Thus, a simple and efficient estimation model for all error components based on

one certain measurement method only is a useful incremented result to the field which

constitute an objective of the work here.

Difficulty in modeling curvilinearity Curvilinearity exists in all the relevant quan-

tities in this thesis. The geometric and thermal errors are position and temperature

dependent in a complicated and non-predictable fashion typically a curvilinear relation-

ship, and the noise also introduces a strong random effect in the sensors’ measurement

results. Thus, the raw data must be collected considering all the relevant factors and

efficient models should be carefully adopted and adjusted to estimate and compensate

the curvilinearity in those data.

Extensive computational and storage requirement For error compensation method,

the look-up table based on the calibration data is the usually adopted method, and lin-

ear interpolation is used between the data collection intervals. But for compensation

with multiple parameters, the look-up table method requires significant increase in the

table size thus requires tremendous memory usage. The memory usage is even higher
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if higher resolution is required. For a huge table, the tedious search and interpolation

computation is necessary at every sampling interval. Thus, a parametric approximation

model which can solve above problems should be adopted.

Performance limitation of sensors under different requirements In many pre-

cision machines, a single sensor is used to measure the property of interest for precision

control. But due to the limitation in specification and performance of a single sensor,

using single sensor only may not be enough in situations such as high reliability re-

quirement and better precision under various operational environments. Using multiple

sensors in the precision machine can be considered as an option to deal with those situa-

tions, but the data from multiple sensors have to be appropriately fused with respect to

the operating conditions. Thus, a general framework for data fusion of multiple sensors is

necessary to solve this problem. These multiple sensors should offer different character-

istics and performances to work with the situations of different operational parameters,

thus a proper selection of suitable sensors in the experiments is also very important and

worthwhile for careful consideration.

1.3 Contributions

This thesis aims to propose efficient error compensation techniques at both the stage and

the end-effector and selective sensor fusion techniques to achieve precision improvement

in high precision system. The following contributions have been made in this thesis.
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Geometric Error Identification & Compensation Using Displacement Mea-

surement Only A new geometric error identification and compensation model is pro-

posed in this thesis, with displacement measurement only using laser interferometer.

As only displacement optics are involved compared with conventional method which

requires full sets of optics, the proposed method is cost-effective and also saves setup

and calibration time. The model of the error components is estimated using trained

RBF network, thus the method can be easily implemented in digital precision machines.

Different data collection intervals can be selected according to precision requirement,

which is very useful for machines requiring relatively lower level of accuracy but fast

calibration, like acceptance testing and periodic checking. Real-time experiments on

two XY tables illustrate the effectiveness of the proposed method.

2D RBF-based Displacement & Thermal Error Model Identification and

Compensation A 2D RBF-based identification and compensation model on both dis-

placement error and thermal error is proposed. Both measured position and temperature

signals are used as the inputs to train the 2D RBF networks for error estimation, instead

of the conventional method based on single input only [71]- [73]. Real time experiments

are conducted to validate the effectiveness of the proposed approach, with both fixed

and varying temperature cases.

Selective Control Scheme in Multiple-sensor based Data Fusion Model A

new general selective control frame work on the multiple-sensor based data fusion model
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is proposed. The objective is to achieve a higher quality and accuracy in precision ma-

chine measurement, not from individual sensor but an appropriate fusion of the multiple

sensors to yield a more optimal fit to the true values in a dynamic manner. With the

proposed frame work, the selector attributes of each sensor can be determined, base on

which the 2D RBF network can be trained. The systematic procedures to obtain all

the parameters of the frame work is furnished, and the trained RBF network is used to

estimate the selector attributes in the system control. The practical appeal of proposed

new method is verified by a real-time case study on the control of a DC linear motor

using a digital magnetic encoder and a soft position sensor in conjunction with an analog

velocity sensor.

Micro-Dispensing DOD System Development A multi-valve micro-dispensing

DOD system is developed and the relevant factors related to system accuracy is dis-

cussed. To accurately control the performance of the dispensing system, a parametric

model on the printed droplets with its identification and compensation method are pro-

posed. A camera vision system is setup and image processing techniques are applied to

identify the parameters of the proposed model online. A systematic set of procedures

to obtain all the parameters of the model is furnished. Real time experiments are con-

ducted on both geometric error compensation on the stage and error compensation on

printed droplets to illustrate the effectiveness of the proposed method.

All the approaches proposed in this thesis can be implemented in real time applications.

The proposed method on geometric error compensation with displacement measurement
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only is most suitable for precision systems which require fast calibration process such as

periodic inspection and system diagnostic. The proposed thermal error compensation

method is most suitable for precision systems which are significantly affected by thermal

effects but where the control of temperature is not feasible, such as in milling machines.

The proposed data fusion model for multiple-sensor is most suitable for systems with

signals of interests but a single sensor cannot satisfy all the requirements, or the same

type of signals must be measured of different locations (e.g.: the vibration signal). The

compensation methods used in the development of the micro-dispensing DOD system

is generally suitable for all types of DOD machines on which a top view camera vision

system can be installed.

1.4 Thesis Organization

The thesis is organized as follows: First, in Chapter 2, following the review of existing

geometric error compensation schemes, a new method on geometric error compensation

using displacement measurement only is proposed with the usage of laser interferometer.

The detailed modeling of each individual geometric error based on linear errors only is

explained and developed. The error components are estimated using trained RBF net-

works. The effectiveness of the proposal is exhibited via experiments on two precision

machines. Secondly, in Chapter 3, the relevant literature on the effects of machine op-

erating temperature over the machine precision is reviewed first, and a fast yet efficient

error compensation approach based on both thermal and displacement errors using 2D
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RBF network is proposed. Thirdly, Chapter 4 describes a selective control approach

with data fusion of multiple signal candidates towards precision motion control. A re-

view on previous related works using data fusion in engineering and precision control

has been made. The emphasis is placed on the selection weightage computation on each

sensor. A specific application towards precision motion control of a linear motor using

a magnetic encoder and a soft position sensor in conjunction with an analog velocity

sensor is demonstrated. Then, Chapter 5 describes the setup and precision control of

a multi-valve micro-dispensing drop-on-demand system in industrial applications. Both

geometric error compensation on the stage and error compensation on printed droplets

using image processing techniques are proposed and applied. The key parts of the image

processing include object detection, circle fitting and parameter identification. Real ex-

periments on the DOD system have been conducted and the verification of the accuracy

and the efficiency of the proposed method is demonstrated using the corresponding re-

sults. Finally, conclusions and suggestions for future works are documented in Chapter

6.
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Chapter 2

Geometric Error Identification &

Compensation Using Displacement

Measurements Only

2.1 Introduction

The technique of geometric error compensation in precision machines has been widely

applied to improve the accuracy of precision machines. In order to implement geometric

error compensation, it is necessary to measure these errors first. There are mainly three

types of methods to measure the geometric errors: direct method, artifacts method, and

displacement method. In the direct method, each error component is measured with

conventional equipment such as laser interferometers, precision straight edges, electronic

levels and capacitance gauges [27]- [29]. The laser interferometer system is the most

widely used instrument because it can measure linear displacement with an accuracy

of 1 nm and angular displacement with an accuracy of 0.002 arcsec [30] [31]. But

there are some shortcomings, like for different types of errors such as linear, straightness

and angular errors, different optics are required and each requires setting and calibration
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time. Because many equipments are involved, the direct method is quite time-consuming

and not cost efficient. In the artifacts method, the ball bar is used as the artifact

standard to collect the motion errors, and the error traces are used to identify the error

components, like double ball bar method by Kakino et al. [32], laser ball bar method

by Srinivasa et al. [33] and 2D ball plate method by Caskey et al. [34]. But if there are

more significant errors in the motion, extracting the error components becomes quite

difficult. Thus, the artifacts method is only suitable for a few dominant errors in short

range calibration.

In the displacement method, only linear errors are measured using the laser interfer-

ometer system. As the measured displacement results are influenced by other geometric

errors as well, all the remaining error components can be derived from displacement

measurements at different positions [35]. With only linear optics involved, the dis-

placement method is relatively simpler than the previous two methods. Therefore, the

displacement method is more suitable and popular in practical applications due to time

and cost efficiency [36]- [42]. But the calculation process in the displacement method is

quite sensitive to the noise level and repeatability of the machine, thus averaging tech-

niques are required to improve the accuracy [38]. Zhang et al. are the first to develop a

straightforward measurement method to assess the 21 geometric errors using linear dis-

placement measurements only [39]- [41]. In Zhang’s method, there are 22 lines required

to be measured, and techniques like least square fitting and iterative computation with

a series of intermediate equations are used to identify all the 21 errors. Zhang’s method
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can significantly improve the accuracy of the machine. However, this method also has

shortcomings. Using 22 lines to calibrate 21 errors apparently brings in redundancy

issue as there is an excess line, which implies that this method can be further improved

with fewer lines to reduce machine calibration time.

Chen et al. improved Zhang’s approach by measuring the displacement errors with

only 15 lines in the machine operational span [42]. Chen’s method is relatively simpler

and faster, but there are shortcomings in his approach. Firstly, the straightness errors

are assumed to be related to integration of angular errors and obtained via off-line cal-

culations instead of online ones, which thus save displacement lines measurement. The

validity of the assumption is quite debatable as the geometric errors may be indepen-

dent. Secondly, high order polynomials are assumed for pitch, yaw, roll and squareness

errors and least square algorithms are used to fit these polynomials from the measured

displacement results. Similarly, Umetsu et al. also use matrix and polynomials method

to estimate the errors [43]. But the problem in determining a suitable polynomial order

for all the errors involved requires time and this increases the complexity as well.

In this chapter, motivated by above mentioned problems, a new method for geometric

compensation with displacement measurements only is proposed. The method requires

fewer lines to be measured, with only 15 lines for an XYZ table, thus reducing the

complexity and calibration time. It also provides for flexibilities as some of the lines

can be arbitrarily chosen. Compared with previous methods, new approaches are used

to estimate the straightness and squareness errors. The RBF is used in this method

19



to approximate the errors measured for online compensation, so no order estimation or

look up table is needed. This proposed method is more suitable for machines requiring a

relative low level of accuracy but fast calibration, like those used for acceptance testing

and periodic quality checking.

2.2 Geometric Error Modeling Using Displacement

Measurement Only

2.2.1 Mathematical modeling of geometric errors

For positioning machines, geometric errors may exist thus reducing the machine accu-

racy. Then error compensation model is necessary if high precision movement needs

to be satisfied. To build the error compensation model, the machine should be cali-

brated and errors should be measured at selected points within the operation span of

the machine. For an XYZ table, the geometric errors may be decomposed into 21 un-

derlying components, which are 3 linear errors, 3 squareness errors, 6 straightness errors

and 9 angular errors [44]. The overall position is accumulated by these errors, and a

mathematical error model is provided and analyzed below.

Assume the tool on the XYZ table moves a nominal distance in y direction first, then

in x direction, and lastly in z direction, as shown in Fig. 2.1. After each movement, the

original coordinate may not be valid any more due to rotational and positional errors,

and a new coordinate system with the same origin should be established. Also assume

axis y is properly aligned compared to axis x, and axis x is properly aligned compared

to axis z. So the squareness of the system, αxy, αyz and αxz are defined as shown in Fig.
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Figure 2.1: XYZ motion analysis

Figure 2.2: Squareness errors

2.2.

The translation movements can be calculated as shown in Eq. 2.1-2.4, where P is

position of the tool on the XY Z table, δu(v) is the straightness error along u axis under

v direction motion, and δu(u) is the linear error along u axis with motion in the u

direction [45]- [48].

~AO0O1 =





δx(y)

y + δy(y)

δz(y)



 (2.1)

~BO1O2 =





x + δx(x)

δy(x) + cosαxy · x

δz(x)



 (2.2)
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~CO2O3 =





δx(z) + cosαxz · z

δy(z) + cosαyz · z

z + δz(z)



 (2.3)

~DO3P =





xp

yp

zp



 (2.4)

The rotational movements can be calculated as shown in Eq. 2.5-2.7, where εu(v) is

the angular error along u axis in the v direction.

A′

B R(y) =





1 −εz(y) εy(y)

εz(y) 1 −εx(y)

−εy(y) εx(y) 1



 (2.5)

B′

C R(x) =





1 −εz(x) εy(x)

εz(x) 1 −εx(x)

−εy(x) εx(x) 1



 (2.6)

C′

D R(z) =





1 −εz(z) εy(z)

εz(z) 1 −εx(z)

−εy(z) εx(z) 1



 (2.7)

So, based on the coordinate transformation theory of rigid body, the total movement

is:

~AO0P = ~AO0O1 +A′

B R(y) ~BO1O2 +A′

B R(y)B′

C R(x) ~CO2O3

+A′

B R(y)B′

C R(x)C′

D R(z) ~DO3P (2.8)

Substitute Eq. 2.5-2.7 into Eq. 2.8 and note that εu(v)δu(v) = 0, εu(u)εu(v) = 0,

εu(u)cosαuv = 0 as εu(v), δu(v), cosαuv are very small, the overall position error model
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of the table can be obtained as:

~AO0P =







~O0Px

~O0Py

~O0Pz






(2.9)

where

~O0Px =x + δx(x) + δx(y) + δx(z) + cosαxz · z + εy(x) · z + εy(y) · z

+ xp − yp · [εz(x) + εz(y) + εz(z)] + zp · [εy(x) + εy(y) + εy(z)] (2.10a)

~O0Py =y + δy(y) + δy(x) + δy(z) + cosαxy · x + cosαyz · z + εz(y) · x − εx(x) · z

− εx(y) · z + xp · [εz(x) + εz(y) + εz(z)] + yp − zp · [εx(x) + εx(y) + εx(z)]

(2.10b)

~O0Pz =z + δz(z) + δz(y) + δz(x) − εy(y) · x− xp · [εy(x) + εy(y) + εy(z)]

+ yp · [εx(x) + εx(y) + εx(z)] + zp (2.10c)

2.2.2 RBF approximation

Usually the look-up table method is used to approximate the nonlinear profile of these

errors, based on points collected and calibrated for the machine [28] [52] [53]. Literally

Edward Troughton was the first to use a look-up table to compensate the displacement

errors in the position of the slideway of a linear dividing engine based on previously

measured data [52]. In 1970s, R. Hocken was the first one using it in a practical imple-

mentation on a CMM system [53].

But there are several significant disadvantages with the look-up table method [48].

Firstly, look-up table requires extensive memory. If data collection of each axis increased

by a factor of N for 3D machine, the number of table entries will increase by the order of

N3. This is more significant for high precision machine as a huge amount of calibration
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data is necessary. Secondly, linear interpolation is used for the error compensation

with intermediate points of the recorded data. Linear estimation may suffice if the

calibration is done at very fine intervals, but tremendous memory will be required which

may beyond the capacity of a typical look-up table. Thirdly, there is no amenable

structure in look-up table for additional conditions like environment and thermal affects.

Additional tables are required when those factors are being considered when for a more

precise compensation. Finally, tedious search is necessary at every sampling interval for

continuous online error compensation, when the table is large in size, especially when

the calibration is not done at regular intervals.

Due to the shortcomings of the look-up table method, the coefficient table method is

then proposed and used by researchers [42] [43] [54]. In this method, the error functions

are in analytical form such as polynomial or Taylor series, and the coefficients of the

polynomial are stored in the table in the computer memory [28]. This method can

relatively reduce the amount of data stored in the computer memory, but it has a

heavier calculation process than the look-up table method. If the error has a strong

nonlinearity, very higher order polynomial function is necessary thus it also introduces

the inaccuracy risk in selecting the order of each polynomial.

To overcome the above mentioned problems, neural networks such as RBF can be

used [49] [50] to estimate those error components. RBF method is a versatile and

practical nonlinear function approximator and has several advantages. Firstly, RBF

uses parametric model resulting a more manageable manner instead of multitude of
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data. Secondly, RBF adopts nonlinear interpolation for compensation of intermediate

points resulting smoother error modeling. Thirdly, RBF can be recursively refined based

on additional conditions and factors resulting better expansion ability. Fourthly, in RBF

the output is computed directly based on input thus no search procedure is required.

Finally, compared with many other neural-networks techniques, the training of RBF is

more rapid [58]. In the derived error model above, each error component varies with

displacement in a nonlinear manner. So in order to estimate those error components,

RBF is used for error estimation in this chapter since it can approximate any nonlinear

function to any desired level of accuracy.

Derived from function approximation theory, the RBF network is a kind of feed-

forward network. They form mappings from an input vector to an output vector. Let

y(x) be a smooth function from R to R. Then, given a compact S ∈ R and a positive

number wM , there exists an RBF network such that with ||w0|| < wM for all x ∈ S,

as shown in Eq. 2.11. Typically Gaussian function is used as the property of universal

approximation by linear superposition of Gaussian basis functions has been proved [59].

y(x) =
M

∑

i=1

wiϕi(||x− µi||) + w0 (2.11)

where M is the size of the input vector, wi is the representative value vector, ϕi is the

Gaussian function which ϕi(||x − µi||) = exp(− ||x−µi||2

2σ2

i

), µi is the basis center of RBF,

and σi is the standard deviation.

There are three layers in the RBF networks: an input layer, a hidden layer with RBF

activation function and a linear summation output layer, as shown in Fig. 2.3. In
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Figure 2.3: Architecture of RBF network

order to calculate the nonlinear functions associated with the various error components,

the RBF should be trained using input and output data sets to obtain the function

parameters: w and µ so that the set of inputs can produce the desired set of output.

Thus, RBF training algorithms are required. There are mainly two methods used in

the RBF network training: supervised training with gradient descent and unsupervised

training with two-stage procedure. The gradient descent method determines all the

parameters at the same time simultaneously via iteratively update process and the two-

stage method decouples the training process into two parts by determining the centers

and weights separately. The main difference of the two methods is: in the first method

both inputs and desired outputs are needed in the training process, and in the second

method no desired output is required. Thus the first method may lead to optimal choice

of the parameters and the results from the second method may become unpredictable. So

in this chapter, the gradient descent method based on error back propagation is adopted

for parameter adaptation. Back propagation is a systematic method to train RBF, and

has expanded the range of problems where the neural networks can be applied [55]- [57].
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In the RBF network shown in Fig. 2.3, and assuming a network with differentiable

RBF activation functions, then the necessary condition to achieve a minimal error is the

derivatives of back propagated error E = yT i − yi vanish with respect to the weights

w and basis center µ. An iterative procedure to find a solution is the gradient descent

method. Define the parameter set W=(wi, µi), and η as the learning rate. Before

starting the training process, the weights w are initialized to small value. Then the

parameter set W should move by a small distance defined by η in the direction in which

the back propagated error E decreases most rapidly. The update of the parameters can

be obtained in Eq. 2.12, and the discrete time versions of this algorithm are given in Eq.

2.13 and Eq. 2.14 [51]. A termination condition in the form of mean square of error Ems

is adopted here to end the iterative adaption process. When the Ems between the actual

outputs and the desired outputs reaches the termination condition, the network is said

to be trained and the optimum RBF parameters can be obtained. Then the weights w

will not be changed and the trained RBF can be used to estimate the required error

components based on the inputs. The following algorithm is used in Matlab to train the

weights w and centers µ according to the gradient descent back-propagation method:

Algorithm 1 Gradient Descent Back Propagation Method

while Ems > threshold value do

Caculate RBF test output RBF test with current weights w and basis center µ

Compute error E between RBF test and RBF training set RBF train

Adjust weights w and basis center µ to minimize E

Compute and return updated Ems

end while

W (t + 1) = W (t)− η∇E(W (t)) (2.12)
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wi(t + 1) = wi(t) − ηwEϕi(||x− µi||
2) (2.13)

µi(t + 1) = µi(t) − ηµEwiϕi(||x− µi||
2)(xT − µi)/σ

2

i (2.14)

where E is the back propagated error yT i − yi, yT is the target RBF output, xT is the

ideal RBF input that yields the desired RBF output, ηw and ηµ are the learning rate of

w and µ, and σi is chosen as a constant.

2.2.3 Geometric error estimation using displacement measure-

ment

Linear error

Linear errors may arise from various sources, like the deficiencies along the guideway

or measurement errors. The linear errors can be obtained directly by displacement

measurement along each axis. The measured sets of data can be used to train the RBF

approximation. With the corresponding function weights, the linear errors of x and y

axis can be modeled as:

δx(x) =flin,x(x) (2.15)

δy(y) =flin,y(y) (2.16)

δz(z) =flin,z(z) (2.17)

Squareness error

Squareness error characterizes how far the two axis form a 90 degree orientation. One

of the squareness errors αxy can be illustrated in Fig. 2.4. Assume y axis is prop-

erly aligned, and the linear movement errors are repeatable. In order to calculate this
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Figure 2.4: Squareness error illustration

squareness error αxy, the face diagonal line OD on xy plane (where ODx = x1,ODy = y1

and plus the linear errors in both axis from the previous models) should be measured

using displacement measurement. Here the values of x1 and y1 are not necessary equally

chosen.

According to the law of cosine:

cos(π − αxy) =
x2

1
+ y2

1
− OD2

2x1y1

(2.18)

Then, the squareness error can be obtained:

αxy = π − arccos(
x2

1
+ y2

1
− OD2

2x1y1

) (2.19)

Using a similar method, the other two squareness errors αyz and αxz can be obtained

by measuring the face diagonal lines on yz plane and xz plane correspondingly. As each

squareness error only yields a single constant, no RBF approximation is needed for the

squareness error estimation.

Pitch and yaw error
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Figure 2.5: Yaw error illustration

Pitch and yaw error is mainly caused by non-uniformity and distortion of the guideway.

There are totally six pitch and yaw errors, and one of these errors εz(y) can be referred

as the angle β in Fig. 2.5. Usually the value of β is very small, so it is reasonable to

assume that:

β = sinβ = tanβ = εz(y) (2.20)

The movement AB = l(x1, y1, 0) along y axis, starting from point A = (x1, 0, 0), can

be measured using displacement measurement and expressed as:

l(x1, y1, 0) =y1 + δy(y1) + εz(y1) · [x1 + δx(x1)] + yp

+ xp · εz(y1) − zp · εz(y1) + cosαxy · [x1 + δx(x1)] (2.21)

The movement OC = l(0, y1, 0) along y axis, starting from origin O = (0, 0, 0) has

already been obtained from the linear error measurement:

l(0, y1, 0) = y1 + δy(y1) + yp + xp · εz(y1) − zp · εz(y1) (2.22)

As the value of cosαxy has been obtained previously, the error εz(y) can be calculated

as:

εz(y1) =
l(x1, y1, 0) − l(0, y1, 0)

x1 + δx(x1)
− cosαxy (2.23)
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Using the RBF approximation, the yaw error of y axis can be modeled as:

εz(y) = fyaw,y(y) (2.24)

The remaining 5 pitch and yaw errors can also be obtained using the same method by

measuring five displacement lines on plane xy,yz and xz correspondingly.

Straightness error

Straightness errors mainly arise from the guideway distortion. As each straightness

error only involves two dimensions, the third axis can be isolated when deriving the

straightness error. For example, for xy plane movement only and for tables with zero

tool offsets, the following equation can be derived from Eq. 2.9:

(

x

y

)

=

(

xa + δx(x) + δx(y)

ya + δy(y) + δy(x) + εz(y) · x + cosαxy · x

)

(2.25)

The calculation process for straightness error in Eq. 2.25 can be shown in Fig. 2.6.

The diagonal xy movement OD, with ODx = xa and ODy = ya, has been measured

using displacement measurement in previous section. Then it is apparent that:

tanθ =
ya

xa

, x = cosθ · OD, y = sinθ · OD (2.26)

From previous discussions on error determinations, the other four errors δx(xa),δy(ya),

εz(ya) and cosαxy in Eq. 2.25 have been obtained already, then the two straightness

errors can be calculated as:

δx(y) =cosθ · OD − xa − δx(x) (2.27)

δy(x) =sinθ · OD − ya − δy(y)− εz(y) · x − cosαxy · x (2.28)
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Figure 2.6: Straightness error illustration

The RBF approximation functions of above two straightness errors can be obtained

as:

δx(y) =fstr,x(y) (2.29)

δy(x) =fstr,y(x) (2.30)

The remaining four straightness errors can be obtained by isolating x axis or y axis

correspondingly and measuring two arbitrary planar lines.

Roll error

Similar to pitch and yaw errors, roll errors are also mainly caused by non-uniformity

and distortion of the guideway. There are totally three roll errors: εx(x),εy(y) and εz(z),

and the measurement process is shown in Fig. 2.7, where the z1E1 and z2E2 are diagonal

lines on xy plane with z = z1 and z = z2 respectively. For tables with zero tool offsets,
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Figure 2.7: Roll error illustration

the following equations can be derived from Eq. 2.9:

z1E1(x) =x + δx(x) + δx(y) + δx(z1) + cosαxz · z1 + εy(x) · z1 + εy(y) · z1 (2.31a)

z1E1(y) =y + δy(y) + δy(x) + δy(z1) + cosαxy · x + cosαyz · z1

+ εz(y) · x − εx(y) · z1 − εx(x) · z1 (2.31b)

and

z2E2(x) =x + δx(x) + δx(y) + δx(z2) + cosαxz · z2 + εy(x) · z2 + εy(y) · z2 (2.32a)

z2E2(y) =y + δy(y) + δy(x) + δy(z2) + cosαxy · x + cosαyz · z2

+ εz(y) · x − εx(y) · z2 − εx(x) · z2 (2.32b)

By checking Eq. 2.31 and Eq. 2.32, the only unknown variables are εy(y) and εx(x),

as the rest error components are already determined previously. So with two equations

describing by comparing z1E1 and z2E2, the roll error of x and y axes εx(x) and εy(y)
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Figure 2.8: Aerotech XY table

can be determined accordingly. The roll error of z axis can also be calculated with a

diagonal measurement along xz or yz plane, as the roll errors of x and y axes are known

already. Then the RBF function for εu(u) of u axis can be obtained as:

εu(u) = fpoll,u(u) (2.33)

2.3 Experiment on XY Tables

2.3.1 Error identification and compensation on Aerotech XY

table

To validate the proposed model of geometrical errors compensation, an XY table made

by Aerotech with linear servo motors is used as the experimental platform, as shown in

Fig. 2.8. The tool attached to the table can be moved in either X or Y direction, and

span a 200 mm × 200 mm 2-D space. Digital driver and encoders are used in both axes

with 1µm resolution.

Since there is no probe used in this experiment, the tool offset of this XY table is
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Table 2.1: Geometric Errors for XY Table
Error Symbol Error Type

δx(x) Linear error of x axis

δy(y) Linear error of y axis

δy(x) Straightness error of x axis

δx(y) Straightness error of y axis

cosαxy Squareness error of xy axis

εz(y) Yaw error

zero, i.e. xp = yp = zp = 0, from Eq. 2.9, the total error model will be:

~AO0P = ~AO0O1 +A′

B R(y) · ~BO1O2 (2.34)

where

~AO0P (x) =x + δx(x) + δx(y) (2.35a)

~AO0P (y) =y + δy(y) + δy(x) + εz(y) · x + cosαxy · x (2.35b)

~AO0P (z) =δz(y) + δz(x) − εy(y) · x (2.35c)

For XY plane motion, the movement of z axis can be assumed to be zero, so the final

error model can be mathematically described as:

~AO0P =

(

x + δx(x) + δx(y)

y + δy(y) + δy(x) + εz(y) · x + cosαxy · x

)

(2.36)

For a 2-D machine like this XY table, the total geometric errors reduced to six com-

ponents: two linear errors, two straightness errors, one angular error (yaw error) and

one squareness error, as shown in Table 2.1. The overall position error is accumulated

by these errors, and a mathematical error model is provided below.

The error data sets to be used for RBF training are collected using laser interferometer

and displacement measurement optics only, and the experiment setup is shown in Fig.
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2.9. Only displacement optics are used in raw data measurement for the error modeling

using RBF estimation, and full optics are used to measure all the geometric errors as

references. The comparison between the RBF estimation of raw data and reference data

can be used to validate the proposed method.

Based on the proposed method, four displacement lines are to be measured, as shown

in Fig. 2.10, where line 1© is along X direction with y = 0, line 2© is along Y direction

with x = 0, line 3© is an arbitrary chosen diagonal line of XY table, and line 4© is

along Y direction with an arbitrary offset x = x1. The raw data collection is done at

5 mm intervals along the 200 mm travel range including origin for both X and Y axis.

Hence a total of 41 data points are collected for each displacement line to be measured.

To minimize the effects of random influence, three cycles of data are collected for each

line in both forward and backward directions. The average value of those raw data is

used and RBF approximation is applied to each displacement separately to compute the

geometric error. Fig. 2.11 shows the linear error measurements along the X axis, and

the differences between the raw errors in each measurement cycle are all less than 1 µm,

which is the resolution of the XY table. This shows that the geometric errors in the

XY table with linear motors are not path related.

For the modeling of the error components, a total of five RBF are required to be

trained separately. Here each RBF network is trained using 41 samples of data which

are averaged values from three cycles of bidirectional operations. Thus M = 41 and

σ = 0.05 are selected for the RBF training. As the parameter adaptation process is done
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offline with pre-acquired data, a longer training time with a relative small value of the

mean square error can be used to get better fitting results. Thus Ems < 0.001 is selected

as the terminating condition for parameter adaption, and the learning rate ηw and ηµ are

chosen at 0.01. The training time for each RBF network with 41 samples of data takes

a few seconds only with small variations due to the convergence time, with the weights

w and basis center µ updating according to the Eq. 2.13 and Eq. 2.14. As discussed

in Section 2.2.2, the parameter adaptation process will converge according to gradient

descent back-propagation method. When each RBF training process converges to the

terminating condition, the trained weights w and centers µ are available to commission

the RBF estimation of error components.

The results of the RBF approximation are shown in Fig. 2.12 to Fig. 2.16, where the

circles represent the measured raw data, the solid lines represent the corresponding RBF

approximation and the asterisk-lines represent reference data. The raw data are the

estimated error components using the proposed method based on measurement using

displacement optic only, the RBF approximations are the estimated continuous error

components using RBF based on the raw data, and the reference data are the directly

measured error components using full optic sets. Thus the reference data can be treated

as a reference to validate the proposed error estimation method.

In Fig. 2.14, 2.15 and 2.16, there are local differences between reference data and the

RBF approximation. The reason is because the reference data and RBF approximation

are obtained using different methods at different cost: reference data is obtained directly
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Table 2.2: Estimated Errors for XY Table
Error components Value

Linear error of x δx(x) N.A.

Linear error of y δy(y) N.A.

Yaw error εz(y) 0-4 arcsec

Straightness error of x δy(x) 0-4.5 µm

Straightness error of y δx(y) 0-2 µm

Squareness error cosαxy 40 arcsec

using full optical sets (e.g. angular optics are needed to measure angular errors, square

optics are needed to measure square errors), while RBF approximation is computed

from displacement data obtained from linear optics only. The accuracy of the encoder

of the system is 1 µm only, and the difference of encoder measured data and laser

optics measured data can reach up to 6 µm along the X axis and 4 µm along the Y

axis from Fig. 2.12 and Fig. 2.13. During the computation of RBF approximation,

multiple displacement data are involved. Although repeatable errors may cancel during

the computation, but such cancellations cannot be achieved for non-repeatable errors.

So it is reasonable to have some micrometers difference from the reference data which

are measured directly from corresponding optics. From Fig. 2.14 to Fig. 2.16, the RBF

approximation is able to track the shape of the reference data, with maximum differences

of 2-4 µm, which means a good range of errors can be compensated with this approach.

Besides those plots, the estimated squareness error of XY is 899.9660 arcsec, while

the measured data is 859.96 arcsec. A summary of the error components based on the

RBF estimation and reference results can be obtained as shown in Table 2.2. It can be

observed that the outputs of RBF estimation can follow the reference errors closely.
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Figure 2.9: Experimental setup

Figure 2.10: Displacement measurements

Figure 2.11: Raw data of X axis linear error
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Figure 2.12: RBF approximation of X axis linear error δx(x)

Figure 2.13: RBF approximation of Y axis linear error δy(y)

Figure 2.14: RBF approximation of yaw error εz(y)
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Figure 2.15: RBF approximation of straightness error of X axis δy(x)

Figure 2.16: RBF approximation of straightness error of Y axis δx(y)

Figure 2.17: Error compensation result for Aerotech XY table
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Table 2.3: Results of Different Data Intervals
Data Interval(mm) Error RI(10−7m2)

5 5.031

10 5.730

20 5.843

25 5.920

40 5.969

50 6.124

With those estimated error components, the system performance after error compen-

sation can be obtained by measuring the diagonal line as shown in Fig. 2.17, where RI

abbreviates ’Riemann Integral’. It can be observed that the maximum error is 4µm,

instead of 8µm before error compensation. In order to observe the effect of the amount

of raw data collected on the estimated results, different data collection intervals along

the axis have been selected and the corresponding compensation outcomes have been

shown in Table 2.3 as well, where Riemann integral of the error after compensation is

used for comparison. With data collection at lower density, the calibration time can

be significantly reduced, and it can observed that the accuracy can be still controlled

within a certain level. This is very useful for machines requiring relatively lower level of

accuracy but fast calibration, like acceptance testing and periodic checking.

2.3.2 Error compensation on WinnerMotor XY table

Another XY table with 200mm×200mm 2-D work spacemade by WinnerMotor as shown

in Fig. 2.18 is investigated in this section. In this machine, digital driver and encoder

is used in X axis, while analog driver and encoder is used in Y axis. This machine is

a good investigation platform using the proposed error compensation method for fast
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Figure 2.18: WinnerMotor XY table

calibration and compensation.

In order to access the performance of the error compensation, both axes are controlled

to move the carriage along the diagonal line of the working area, with the ratio of

the positions of y and x set as y = kx. The linear errors are measured along the

movement path of the carriage using laser interferometer system and a total of 41 points

along the maximum working range of the machine are measured with and without error

compensation. The results when k = 1 and k = 0.5 are shown in Fig. 2.19 to Fig. 2.22,

and it can be seen that the errors can be as high as 0.4mm at the end of the test range

and 140µm for short range of 70mm. After compensation, the error can be controlled

within the range of 0.1mm for the full test range and 10µm for short range of 70mm.

The detailed analysis for error compensation outcome of this machine is shown in Table

2.4.
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Figure 2.19: Position errors for y = x measurement

Figure 2.20: Position errors for y = 0.5x measurement

Figure 2.21: Position errors for y = x measurement within 70mm
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Figure 2.22: Position errors for y = 0.5x measurement within 70mm

Table 2.4: System Geometric Error Analysis
Measurement Bef.Comp. Aft.Comp. Improvement

Y=X, 200mm Max 0.43mm Max 0.1mm 76.74%

Y=X, 70mm Max 0.15mm Max 0.01mm 93.33%

Y=0.5X, 200mm Max 0.29mm Max 0.07mm 75.86%

Y=0.5X, 70mm Max 0.12mm Max 0.02mm 83.33%

2.4 Conclusion

In this chapter, a new method for error compensation using only displacement measure-

ment has been proposed for geometric error compensation of precision motion systems.

The geometric model is formulated based on individual error components, and these

error components are estimated based on the raw data obtained with displacement mea-

surements only using laser interferometer. Compared with previous methods, different

measurement methods for straightness and square errors are adopted in this approach.

The measured raw data are modeled using RBF instead of the traditional look-up table

for error compensation in the controller. In this approach, four and fifteen displacement

lines are required to identify the six and twenty-first geometric errors for XY and XY Z
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table. The proposed method can significantly increase the system accuracy and decrease

the calibration and measurement time. It is also possible to use different intervals of

calibration points to reduce the calibration time and maintain a high level of accuracy

according to different user requirements.
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Chapter 3

Displacement and Thermal Error

Identification and Compensation

3.1 Introduction

The relative position errors between the end-effector of the machine and the workpiece

in precision machine can be classified into two categories: random errors which are very

difficult to be completely eliminated and systematic errors which are repeatable. Among

the repeatable errors, thermal errors represent one of the largest contributors, as up to

75% of the overall geometrical errors of machined workpieces can be induced by thermal

effects [61]. Generally, the thermal errors of machine tool can be divided into two

categories: position-independent and position-dependent errors [62]. The first category

is only correlative with temperature but not related to axis coordinate or command

position, and the corresponding thermal deformation may cause offset in machine’s origin

position and tilt in the spindle. The second category is related to both temperature and

coordinate positions, and the corresponding thermal deformation may cause errors along

the movement path.
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There are generally three methods which can be used to reduce thermal errors [62]:

1) Thermal error control: by maintaining the operational temperature using a cooling

system; 2) Thermal error avoidance: by re-designing the system like using thermally

insensitive materials; 3) Thermal error compensation: by compensating geometric errors

introduced by thermal deformation. The first two methods can reduce the thermal errors

effectively. But it is very difficult to precisely predict the machine behaviors at the design

stage due to reasons such as the thermal expansion coefficients differing with materials;

it is also not possible to maintain environment temperature in open space. The first

two methods may also significantly increase the cost. Thus, thermal error compensation

is more easily facilitated and cost efficient, as the algorithm can be easily implemented

and executed in the machine controller and no further modification of the machine is

needed.

Research has been conducted on the compensation of thermal errors, both in the

position-independent and the position-dependent categories [63]- [73]. Among them,

mathematical expressions were used to model the thermal errors, like statistical regres-

sion [67] and polynomial fit method [68] [69]. But to find suitable polynomial orders for

all the errors involved requires time and this also increases the design complexity. As

a result, some researchers used artificial neural networks to predict thermal errors from

discrete temperature measurements and compensate the thermal deformation [71]- [73].

Neural networks can be used as an ideal tool for non-linear modeling like geometric

errors [25]. As the thermal error of machine tools is generally a function of tempera-
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ture [27], Chen [71] and Yang [72] used time-based temperature measurements to train

the neural networks and predict the trend of the thermal errors for the compensation,

but no position information was used to train the neural networks. Mou [73] also used

time-based temperature measurements to train the neural networks, and kinetic model-

ing was used to predict the thermal errors based on neural network outputs and position

measurements. From observations during the experiments, thermal errors are related to

both temperature and position information. So in this chapter, both measured temper-

ature and position data are used as inputs to train 2D RBF networks.

As the heat generated during cutting or milling operation is one of the major heating

factors affecting the final accuracy of the system, the target of this chapter is to develop

an effective and simple real time system to compensate both displacement errors and

thermal errors in a milling machine. As both displacement errors and thermal errors

are dynamic errors with non-linear characteristics, the RBF which can approximate any

nonlinear function to any desired level of accuracy, is used to approximate the errors for

online compensation. No order estimation of polynomial or kinetic modeling is required.

Since the heat generated during milling operation is mainly from the end-effector which

is usually on the slide, a heat sensor attached to the slide and a heating pad is used to

simulate the thermal effects of milling operations. The rest of the chapter is organized as

follows: Section 3.2 describes the error modeling for 3D machine, including the selection

and training of the RBF and the measurement and estimation of the errors for 3D

machine, Section 3.3 describes the system setup in both temperature control subsystem

49



and position control subsystem, Section 3.4 discusses and analyzes the experiment results

and Section 3.5 concludes this chapter.

3.2 System Error Modeling

For 3D positioning machines, there are totally 21 geometric error components: 3 dis-

placement errors, 3 squareness errors, 6 straightness errors and 9 angular errors [44].

The overall positional inaccuracies is accumulated by those error components. All of

those error components are temperature dependent due to the thermal distortions and

expansions in the machine [63]- [73]. So an error compensation model is necessary if

high precision movement needs to be satisfied.

Fig. 2.1 shows the movement trace of the tool on a 3D machine. Define δu(v, T )

as the straightness error along u axis along the v direction motion at an operating

temperature of T , δu(u, T ) as the displacement error along u axis with motion along the

u direction at an operating temperature of T , εu(v, T ) as the angular error along u axis

along the v direction at an operating temperature of temperature T , and αuv(T ) as the

squareness error between u and v axes at an operating temperature of temperature T .

With the rotational and positional errors, the overall position error model of the machine

without tool offset is shown in Eq. 3.1, similar to Eq. 2.8. In order to build the error

compensation model and calibrate the machine, all of the 21 errors should be measured

within the operation span of the machine under different machine temperatures [62] [40].

~AO0P =







~O0Px

~O0Py

~O0Pz






(3.1)
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Figure 3.1: Flowchart of 2D RBF network

where

~O0Px =x + δx(x, T ) + δx(y, T ) + δx(z, T ) + cosαxz(T ) · z

+ εy(x, T ) · z + εy(y, T ) · z (3.2a)

~O0Py =y + δy(y, T ) + δy(x, T ) + δy(z, T ) + cosαxy(T ) · x

+ cosαyz(T ) · z + εz(y, T ) · x − εx(x, T ) · z − εx(y, T ) · z (3.2b)

~O0Pz =z + δz(z, T ) + δz(y, T ) + δz(x, T )− εy(y, T ) · x (3.2c)

3.2.1 RBF approximation

In the derived error model above, each error component varies with both displacement

and temperature in a nonlinear manner. To estimate those error components, neural

networks like RBF can be used [49] [50]. In this chapter, RBF networks are required

to be trained to obtain the relationship between the geometric error and the motor

temperatures and the displacement positions. The RBF networks have a 2-DOF (degree-

of-freedom) because the error characteristics depend on both motor temperatures and

the displacement positions, as shown in Fig. 3.1.
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3.2.2 Error measurement and estimation

Linear error

The 2-DOF RBF model of the displacement errors can be trained based on the mea-

surement results by displacement measurements along each axis using linear optics,

under different temperatures.

Squareness error

The squareness errors can be obtained by measurements on each plane using optical

square and straightness optics, under different temperatures. 1-DOF RBF approxima-

tion for each squareness error is adequate as it can be assumed to be position indepen-

dent.

Straightness error

The straightness errors can be obtained by measuring on each plane using straightness

optics, under different temperatures. The measured sets of data can be used to train

the 2-DOF RBF networks.

Angular error

There are three types of angular errors: roll, pitch and yaw errors. For pitch and

yaw errors, the measurements can be done using angular optics along the corresponding

axis under different temperatures. For roll errors, as it is not possible to make direct

measurement using laser interferometer and optics, a possible measurement process is

shown in Fig. 2.7. Then the 2-DOF RBF networks can be trained based on the measured

sets of data.
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3.3 System Setup

The main objectives of system setup are to monitor the operational temperature of the

system in real time, and to measure the motor positions and errors accurately. The

equipments used in the experiment are: 24V heating pad, thermistor (1KΩ at 25◦C),

temperature controller and NI DAQ for the temperature control part; an Akribis DC

linear motor, dSpace control card and the Agilent laser interferometer for the motion

control part.

3.3.1 Temperature monitoring and control

A single axis DC motor stage is used in this experiment. In order to simulate the

situation when the motor is heated during operations, a heating pad is attached on the

slide directly, as shown in Fig. 3.2. This heating pad is controlled by a temperature

controller and can reach maximum 70◦C when continuously heated.

A thermistor is attached to the slide to measure the real time temperature of the

slide, and its resistance-temperature characteristic is calibrated to follow the following

equation:

RT = RB ∗ exp(
α

100
∗ (TB + K)2 ∗ (

1

T + K
−

1

TB + K
)) (3.3)

where K is the temperature constant which equals to 273.15, RT is the thermistor resis-

tance at temperature T , RB is the known thermistor resistance at known temperature

TB, and α is the temperature coefficient at temperature TB.

Based on the previous equation, the temperature of the slide can be calculated when
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the thermistor resistance is measured. Thus, a simple sensor circuit is built and NI

DAQ is used to read in the resistance of the thermistor and calculate the temperature,

as shown in Fig. 3.2. The output of the DAQ is used to control the heating pad

controller. A PID closed loop control is written in LabVIEW to control the temperature

of the slide to reach the required temperature during experiments. The control structure

of the temperature measurement system is shown in Fig. 3.3.

The thermistor sensor is attached to the slide which is the most sensitive temperature

spot in this experiment, as the location of the heating pad is on the slide too. The

measured thermal errors are also very sensitive to the temperature measured at this

location, which would be shown in Section 3.3.3. Thus, one thermistor sensor which

is fixed on the slide (without touching the heating pad) is enough to monitor the tem-

perature. If it can be confirmed that there are other heating sources which may cause

expansion or distortion at different locations of the machines, more thermistor sensors

can be mounted near those locations to monitor the real time temperatures. If in real

applications where it may not be viable to attach contact type thermal sensor directly

to those locations like the machine spindle, non-contact thermal camera method [74]

can be used to monitor the real time temperatures. The machine can be divided into

different zones according to the dependency of the thermal errors on the readings of each

temperature sensor, then compensation can be applied for each zone separately.
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Figure 3.2: Temperature control system setup

Figure 3.3: Temperature control structure

3.3.2 System position measurement

A single axis DC linear servo motor stage manufactured by Akribis is used as the exper-

imental platform. The slide attached on the stage can move bi-directionally along the X

axis, with a working range of 200 mm. Digital driver and encoders are used in this axis

with a 1.25µm resolution. According to Eq. 3.1, only X axis displacement error exists

in the measurement of 1-dimensional motor stage and the measurement results can be

interpreted as Eq. 3.4:

xmeas = x + δx(x, T ) (3.4)

where xmeas is real movement position, x is the required movement position and δx(x, T )

is the displacement error in x axis related to both position x and temperature T . This

displacement error during the motor movement can be collected using laser interfer-

ometer and linear measurement optics, and the corresponding setup is shown in Fig.
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Figure 3.4: Motor position measurement setup

3.4.

3.3.3 System tests

Tests are conducted to observe the characteristics of the thermal errors based on the

measured slide temperature and slide positions. The thermal errors are measured using

laser interferometer at several slide positions with a fixed power of the heating pad.

The slide is heated from room temperature (around 26.8◦C) to 30◦C. The thermal

errors at different positions are shown in Fig. 3.5. It can be observed that at the

same slide position, the thermal errors increases (in negative Y direction) when the slide

temperature increases; and at a nearer slide position, the thermal errors are smaller. So

the thermal errors of this machine depend on both slide temperature and slide position.

The tests results can be explained physically. Generally, for a small change in tem-

perature, the change in the linear dimension of solid can be estimated as:

∆L = βL∆T (3.5)

where β is the linear expansion coefficient, L is the length of the solid and ∆T is the
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Figure 3.5: Thermal error at different slide position

change in temperature. As the temperature of the slide increases due to the heating

process, the slide expands. Thus, the reflector optic fixed on the slide moves nearer to

the interferometer optic and the distance measured by laser interferometer is shorter.

3.4 Experimental Results and Analysis

To illustrate the effectiveness of the proposed method, real-time experiments are con-

ducted. In the experiments, the linear motor stage is used to simulate a milling machine,

so the only heating source is at the slide. Thus, the heating pad is fixed on the slide

to simulate the heat generated during milling process, and the thermistor is also fixed

on the slide without touching the heating pad to measure the temperature. Based on

the proposed method, the displacement data is measured along the X axis direction at

different temperatures.

The motor system is controlled by Elmo motor driver, and the raw data collections are

done at 5 mm intervals along the 200 mm travel range from the defined origin. Hence,
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a total of 41 data points are collected for each displacement line, measured at each

temperature. The surface temperature of the slide at the room temperature without

air-conditioner is around 26.8◦C. The displacement data are collected four times using

laser interferometer when the temperature readings show 27, 28, 29 and 30◦C. Due to

the limited power of the heating pad and the high heat diffusivity of the metal surface

of the motor stage, thermal equilibrium is reached at 30◦C so measurements above 30◦C

are not possible (although the heating pad is able to reach 70◦C, the surface of the slide

is still fixed around 30◦C). To minimize the effects of random influence, three cycles

of data are collected for each line in both the forward and backward directions at each

temperature. The average values of those raw data are used and RBF networks are

trained based on those values, as shown in Fig. 3.6, where the raw data are indicated

using asterisks.

To obtain the modeling of the displacement error in the one-dimensional linear stage,

only one RBF network is necessary. The RBF network for the displacement error δx(x, T )

in Eq. 3.4 is trained with the measurement displacement errors, based on both displace-

ment positions and the slide temperatures, using the following equation:

δx(x, T ) = flin,x(x, T ) (3.6)

where δx(x, T ) represents the linear error of the motor, x represents the displacement

position, and T represents the motor temperature. The training process is done offline

with pre-acquired raw data and the parameters are finely tuned to avoid over-fitting

problem. The 2D and 3D results from the trained 2-D RBF network are shown in
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Figure 3.6: RBF approximations with different temperatures (2D)

Fig. 3.6 and Fig. 3.7 separately. In Fig. 3.6, the straight lines represent the RBF

approximations, and the asterisks represent the reference data at each temperature. It

can be observed that for the Akribis motor in the experiment, the displacement errors

decrease when the motor temperature increases.

To validate the effect of the proposed method, the system performance with and with-

out the proposed compensation method should be compared, under both fixed tempera-

ture and varying temperature cases. In the fixed temperature situation, the temperature

is maintained at 28.5◦C which is at the mid-point of the temperature range in experi-

ments. In the varying temperature situation, the temperature is controlled to follow the

designed trace shown in the Fig. 3.8. The compensation process is done using the RBF

approximation results as a feedback to the reference position command in the motor

controller with the help of dSpace controller. The results for both cases are shown in

Fig. 3.9 and Fig. 3.10, where the solid line shows the system performance after er-
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Figure 3.7: RBF approximations with different temperatures (3D)

Figure 3.8: Designed temperature trace

ror compensation using the proposed RBF approximation method and the dotted line

shows the system performance after error compensation based on geometric error com-

pensation only without thermal error compensation at room temperature. It can be

observed that the displacement error is reduced to between -2µm to 1.5µm with pro-

posed method, compared to between -6µm to 5µm with normal compensation method

at room temperature (i.e., without considering the temperature changes).
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Figure 3.9: Compensation results comparison at 28.5◦C

Figure 3.10: Compensation results comparison at varying temperatures
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3.5 Conclusion

In this chapter, a RBF-based displacement error and thermal error compensation ap-

proach is proposed and developed. The displacement errors are related to both move-

ment positions and the machine operational temperature. The raw data are measured

using laser interferometer, and the temperature sensor. A 2D RBF network is trained

to model and estimate the displacement errors, instead of the traditional look-up table

for error compensation in the controller. The precision and effectiveness of the proposed

method is verified through experiments.
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Chapter 4

Selective Control Approach Towards

Precision Motion Systems

4.1 Introduction

High precision motion control is a core requirement in many industries leveraging on pre-

cise robotics and automation such as semiconductor manufacturing, precision machining

and metrology. The measurement accuracy sustainable in an application relies critically

on the precision and resolution of the position sensors used as well as other important

characteristics such as response time, bandwidth, robustness to environmental factors,

control interface, physical dimensions, mounting and price. Commonly used position

sensors are the optical and magnetic encoders. While laser interferometry can yield a

finer resolution in position measurements, it is costly and more suited to calibration and

quality control purposes than providing real-time measurement in motion systems. The

optical encoder can produce more pulses per cycle than the magnetic encoder, which

effectively leads to a higher measurement resolution. To date, the scale grating on linear

optical encoders can reach less than four micrometer in pitch. However, there are rela-
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tive strengths associated with the magnetic encoder. It is less sensitive to vibration and

impact, and more robust to the presence of environmental contaminants such as dirt, oil

or water which may lead to a failure in the optical encoder. Comparing cost, generally

the cost of a magnetic encoder is also lower than the optical encoder. Thus, between

them, the optical encoder is not necessarily a clear choice for the superior resolution it

offers when there are other important factors to satisfy in an application. The mag-

netic encoder can outperform with respect to some of these requirements. Therein this

specific example, lies the potential of the use of multiple different sensors for the same

measurement, each suited to a certain set of operational factors possibly and collectively

arising in the same application.

There is inevitably a limit to the overall performance achievable with a single sensor.

Multiple sensors can be used and fused when multiple facets of performance measures

are necessary in an application, unattainable with one alone. As an example, a digital

encoder can be used to yield position measurements with satisfactory accuracy over

a good range of the control motion, but a higher accuracy is needed near the target

position. Replacing it by an alternate sensor like the laser interferometer to give fine

measurements throughout can be an unnecessarily costly alternative, the laser optics may

not be easily mounted on the system for the specific application, and the operational

environment may even rule it out as a feasible choice. Such limitations can be managed

by using a different position sensor(s) in parallel which is able to fill the gaps beyond the

reach of the other sensor. An additional position sensor such as an analog encoder which
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can be invoked around the settling point to yield or interpolate into finer resolution

measurements [75]- [79]. However, over the range when precision is not critical, the

digital encoder may be used instead to raise the maximum operation speed and reduce

data handling overheads. Other applications may include an appropriate synergy of

position sensors to achieve dynamic balance in response speed and resolution, bandwidth

and accuracy, cost and performance, robustness and sensitivity, or other combination of

these attributes.

Such an approach has been used in certain domains. In location tracking systems,

fusion of signals from global positioning systems and inertia navigation systems is com-

monly done [80]. Other domains of applications include reverse engineering in coordinate

measuring machines [84]- [87], robotics control [82] [83], surveillance system [88], lumber

grading [89], mill grinding process [90] and chemical odour mappings [91]. Sensor fusion

can also be used to avoid sensor degradation or failure situation to increase the relia-

bility [92]. In precision control, such applications are relatively scarce. Forbes [93] used

multiple laser trackers to improve the measurement accuracy deteriorated by the random

effects in the refractive index of air along the light path [94] using single laser tracker.

He used a general Bayesian approach and the weightages of data were determined by

noise parameters, but only applicable to large scale metrology systems. Sebastian et

al [95] used a thermal position sensor (TPS) and medium-derived position error signal

(PES) to compute the position information as TPS can measure position over an entire

travel range but it inherits noise and drift at low frequencies. PES offers excellent DC
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fidelity over a limited measurement range but an insufficient solution for the full range.

The selection process is controlled by the frequency. Mahmood et al [96] also designed a

frequency selective two-sensor controller of a nano-positioner in a discrete manner; using

the capacitive sensor signal at low frequencies and the strain displacement signal at high

frequencies. The use of multiple sensors is more commonly encountered in the process

control industry (albeit for other types of process measurements) under the name of se-

lective control, when variants such as auctioneering or median selector control can select

the maximum, minimum or the median value of the multiple sensing measurements for

control to satisfy the current control objective.

Current sensor fusion techniques are broadly based on applying the central limit theo-

rem or a Kalman filter to obtain a combined measurement from individual ones, weighted

by the quality of the measurements, commonly in the form of noise variances [81]. In

order to support an expanded applications of such fusion techniques, a more general

framework to enable a practically amenable fusion of sensors with weights that can be

selectively adapted to one or more general performance qualities is fundamentally im-

portant and useful. The first objective of this chapter is thus to present a framework

for combining measurements from different sensors in a practically efficient manner.

The weight attached to each measurement is not fixed but they are allowed to evolve

to selector attributes chosen to bring out the relative strengths of each measurement.

In the chapter, the approach is more specifically elaborated with respect to precision

motion control where the application of sensor fusion is less commonly encountered. A

66



case study is employed in the development which involves the control of a linear motor

using a digital magnetic encoder and an analog circuit providing incremental position

measurements from velocity measured by an analog sensor. An updated position signal

is derived given the positions from the magnetic encoder and the velocity sensor, with

different weightages on these measurements. The weightages applied are computed from

an optimal fitting procedures to match the final position closely (reference provided by

a laser interferometer) and they vary with two different selector attributes in the form

of velocity and relative noise present in the velocity sensor over the digital encoder. As

these weights change in a nonlinear manner to the selectors, the RBF is used to model

the weight variation over the range of operations. Once the RBFs are trained, they

provide the weights given the current attributes. A comprehensive set of experimen-

tal results are provided to illustrate the applicability of the proposed framework and

algorithms.

The rest of the chapter is organized as follows: Section 4.1 describes the proposed

sensor fusion framework based on multiple position sensors and a set of selector at-

tributes, Section 4.2 describes the selection and training of the RBF networks, Section

4.3 furnishes the experimental work and results and Section 4.4 concludes the chapter.

4.2 Proposed Framework

The main idea of the proposed framework is to facilitate the derivation of a single

combined measurement from multiple sensors providing the same type of measurement.
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Figure 4.1: Architecture of the proposed data fusion framework

Each sensor can be different in the operational principles and thus individually optimal

for a restricted set of scenarios classified under a set of selector attributes. The proposed

frame work is shown in Fig. 4.1 and Eq. 4.1. The objective is to achieve a higher quality

measurement in some sense of the application, not from any of the individual sensors

alone, but an appropriate fusion of the multiple sensors to yield a more optimal fit to the

true values in a dynamic manner. While the framework is general, it will be elaborated

with respect to position sensing in motion control in this chapter and substantiated

similarly with a linear motor setup and experiments.

y(s, k) = f(s1, s2, ..., su) · g(k1, k2, ..., kv) (4.1)

where s1, s2, ..., su are the sensor output signals of the multiple N sensors, k1, k2, ..., kv

are the selector attributes of the sensor outputs, and y is the data fusion output.

4.2.1 Position computation using multiple position sensors

Assume N position sensors are used to infer a single position measurement and the

fusion function is chosen to be linear with respect to the measurements as shown in Eq.
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Figure 4.2: Position computation using multiple position sensors

4.2 and Fig. 4.2:

xpos(k, x) =

N
∑

i=1

ki · xsensori

= k1 · xsensor1
+ k2 · xsensor2

+ ... + kN · xsensorN
(4.2)

where k1, k2,..., kN are parameters weighing the influence of each of the measurement

on the final value, and xsensor1
, xsensor2

,..., xsensorN
represent the measurements from the

N different sensors.

We would like to compute the weights so that the target combined value approaches

the true value. It should be pointed out that the optimal weights are not fixed but vary

with different scenarios which distinguish the strengths of each of the sensor. We refer

to the attributes classifying these scenarios as the selector attributes. The true value is

unknown in practice but it may be taken to be the value of a close calibration from a

gold standard calibration sensor.
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4.2.2 Selection weightage computation

For a fixed set of selector attributes, a laser interferometer is used to yield the reference

of the true position xlaser and the parameters k1, k2,..., kN are to be tuned to fit the

fused position xpos to be as close as possible to the reference xlaser. Since the function is

linear with respect to the parameters, they can be obtained efficiently in a non-iterative

manner using least squares estimation algorithms.

However, this single set of weights computed is optimal in the least squares sense with

respect to the set of selector attributes. This is fine and sufficient if these attributes

are not expected to change during the course of the operations expected of the motion

system. When they do change, the weights may not be optimal anymore. To this

end, a way to efficiently model and compute the parameters over a range of selector

attributes will be necessary. Such selectors may include the frequency of the trajectory,

the amount or variance of the noise present relatively among the sensors, the velocity or

acceleration of the motion, or the positional zones in the working area. The selectors are

necessary to bring out the strengths of individual sensors. For example, different sensors

have different characteristics such as response time, bandwidth, resolution, robustness

to environmental factors, physical size and cost. A higher weight should be assigned to

the specific sensor once the operation enters a domain where it offers relatively higher

performance above the others.

In this chapter, we consider two selector attributes in the motion velocity and noise

level nnoise in each sensor. For a controlled variation in each of these attributes, the
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optimal values of k1, k2,..., kN are computed to correspond to the least square estimation

between the computed xpos and the measured xlaser . For the linear data fusion function

used in Eq. 4.2, the equation can be re-written as the following matric-vector form:

xpos = S · K =















xsensor1
(t1) ... xsensorN

(t1)

xsensor1
(t2) ... xsensorN

(t2)

... ... ...

xsensor1
(tM ) ... xsensorN

(tM)















·













k1

k2

...

kN













(4.3)

where the entries of S are given by xsensori
(tj) which is the output of the sensori at time

tj (i = 1, 2, ..., N ; j = 1, 2, ..., M), the entries of K are given by ki, and the entries of

xpos are given by xpos(tj) at time tj.

To find the values of K using the least square estimation between xpos and xlaser, let

Eq. 4.3 equals to xlaser:

S · K = xlaser (4.4)

where the entries of xlaser are given by xlaser(tj) at time tj.

Assuming STS is non-singular, the least squares optimal solution of K is given by Eq.

4.4:

K = (ST S)
−1

STxlaser (4.5)

where the entries of xlaser are given by xlaser(tj) at time tj.

A recursive LS algorithm can be used to refine the weights with each incremental data

set obtained, so that estimation can begin after the first data set and each subsequent

incoming data set will improve the accuracy of the estimates. With this algorithm, the

optimal values of the weightings k1, k2,..., kN for each set of selector attributes can be
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obtained to yield a position output closest to the true value under the condition reflected

by the selector attributes. To this end, systematic errors such as certain geometrical

errors are also compensated in the process. RBF networks, which would be introduced

in the next section, are then trained to model those weights over the variation of the

attributes.

4.2.3 Parameter weightage modeling using RBF approxima-

tion

In the approach proposed above, each computed parameter weightage K varies with mo-

tion velocity and noise level nnoise in a nonlinear manner. To estimate those weightages,

neural networks like RBF method can be used [50]. It has been shown that under mild

assumptions, RBF is suitable for universal approximations, i.e., any continuous function

can be approximated over a compact set to any degree of accuracy. So, in this chapter,

RBF is employed for the modeling of the weights variation with respect to the selector

attributes.

In the case study considered in this chapter to be further highlighted in Section 4.3,

the two selector attributes in terms of the velocity velo and noise level nnoise in the

velocity sensor are considered as the input x. The selection weightage K computed

using least squares estimation is used as the target y. Thus, this specific RBF network

has 2-DOF since its characteristics depend on both motion velocity velo and noise level

nnoise. Based on Eq. 2.11, this RBF network can be re-written as:

K =

M
∑

i=1

wiϕi(||[velo, nnoise] − [µveloi
, µnnoisei

]||) + w0 (4.6)
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The RBF weights w can be obtained by replacing x and µ with [velo, nnoise] and

[µvelo, µnnoise
] accordingly in Eq. 2.13 and Eq. 2.14. The trained RBF function can

be used to model the variation of the weightages K with the selector attributes and

subsequently used to construct the data fusion function accordingly using Eq. 4.3.

4.3 Case Study

A single axis setup (Akribis DC linear motor) is used as the basis for a case study.

The slide attached on the stage can move bi-directionally along the X axis, with a

working range of 200 mm. A magnetic encoder with a resolution of 2 mm is used

to obtain the position signal xenc. An analog velocity sensor is also mounted to give

analog velocity measurements as well as positional information when the velocity is fed

into a digital integrator. Thus, in this case study, we have two different sources of

position measurement; one from the magnetic encoder and the other from the velocity

sensor integrated to yield the position. Being an analog sensor, the resolution of the

velocity sensor is infinitesimal. Thus, when digital integration is done accurately over

the lower velocity range, the latter position measurement can offer a better accuracy

than the magnetic encoder. However, as velocity picks up relative to the sensitivity

of the sensor, the accuracy of the velocity measurement degrades leading to accuracy

loss in the position measurements too after the digital integration. Thus, the relative

performance of each of the sensor varies with velocity and velocity is selected as the first

selector attribute in this case study. The relative amount of noise present from the two
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Figure 4.3: System setup 1

Figure 4.4: System setup 2

sources should also govern the priority to be attached to each of the two measurements

to infer the final position measurement. The magnetic encoder is a digital sensor. Thus,

the second selector attribute is chosen to be the amount of noise present in the velocity

measurements.

A laser interferometer is used to provide the “true” position measurement xlaser. The

system setup is shown in Fig. 4.3 and Fig. 4.4. The system flowcharts are shown in Fig.

4.5 and Fig. 4.6.
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Figure 4.5: RBF network training
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Figure 4.6: System flowchart
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4.3.1 Data collection phase

The motor is controlled to run at constant velocity mode with 200 mm total movement

length. The noise level associated with the velocity sensor used can be maintained at

5% in ideal and static laboratory conditions. However, it can vary with the presence

and interaction with EM sources, power interference or operating conditions. To enable

the results to remain applicable at other times and operating conditions of the motor,

the noise level as a selector attribute is allowed to vary during the data collection phase

by injecting or amplifying the noise to different levels. The raw data and true data are

collected with different velocities from 0.02 m/s to 0.6 m/s and different noise levels in

the velocity sensor from 5% to 1000% of the maximum reading for each velocity. At a

specific movement velocity and a specific noise level in the velocity sensor, the velocity

sensor output vvsensor , the magnetic encoder output xenc and the true data xlaser are

continuously collected during the motor movement, and the velocity sensor measured

position signal xvsensor is obtained separately after the integration of vvsensor .

4.3.2 Parameter estimation

Using the linear in the parameter form, the combined position can be expressed in the

following form:

xpos = k1 · xvsensor + k2 · xenc (4.7)

The reference position xlaser obtained by the laser interferometer is used as the refer-

ence position xlaser for the purpose of estimating the parameters k1 and k2. For each
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Table 4.1: k1 Values Selection for Different Velocities and Noise Levels

Noise
Velocities (m/s)

0.04 0.10 0.20 0.30 0.40 0.50 0.60

5% 0.87 0.875 0.61 0.46 0.25 0.29 0.00

10% 0.87 0.885 0.62 0.47 0.255 0.29 0.00

50% 0.89 0.98 0.585 0.405 0.30 0.265 0.00

100% 0.915 1.00 0.665 0.48 0.185 0.31 0.00

300% 0.825 1.00 0.48 0.285 0.025 0.105 0.00

500% 0.375 0.38 0.205 0.01 0.005 0.055 0.00

1000% 0.035 0.04 0.02 0.01 0.005 0.00 0.00

set of selector attributes, the optimal weight parameters can thus be estimated with the

algorithm as presented in previous section. Thus, with the full data set collected earlier,

two tables (Table 4.1 and 4.2) can be obtained, tabulating the optimal weights against

the velocity selector vvsensor and the noise selector nnoise. From those two tables, it can

be seen that at low noise situations, the value of k1 (the weightage of the velocity sensor)

is much larger than the value of k2 (the weightage of the encoder) at low velocity range,

and much smaller at high velocity range. Thus in this motor, the position measured

using velocity sensor is better than that using encoder in the low velocity range, and

vice versa. This means it is possible that the position measured using velocity sensor

can be better than encoder under specific situations. This is precisely why a selective

approach is developed.

4.3.3 RBF modeling of weights variation

In this specific case, a 2-dimensional RBF networks is trained and applied to approximate

the values of the weight parameters k1 and k2 as shown in Fig. 4.7 based on two selector
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Table 4.2: k2 Values Selection for Different Velocities and Noise Levels

Noise
Velocities (m/s)

0.04 0.10 0.20 0.30 0.40 0.50 0.60

5% 0.135 0.13 0.39 0.54 0.75 0.705 0.995

10% 0.135 0.12 0.38 0.53 0.745 0.705 0.995

50% 0.115 0.025 0.42 0.6 0.7 0.73 0.995

100% 0.09 0.01 0.34 0.525 0.82 0.69 0.995

300% 0.185 0.035 0.54 0.73 0.98 0.895 0.995

500% 0.65 0.665 0.82 1.00 1.00 0.945 0.995

1000% 1.00 1.00 1.00 1.00 1.00 0.995 0.995

Figure 4.7: Flowchart of 2D RBF network

inputs: vvsensor and nnoise as follows:

k1 = fk1
(vvsensor , nnoise) (4.8)

k2 = fk2
(vvsensor , nnoise) (4.9)

So the fused position signal can be represented as in Eq. 4.10, and this position signal

xpos can either be used directly by the controller, or be interpolated to a higher order to

improve the system resolution.

xpos = fk1
(vvsensor , nnoise) · xvsensor + fk2

(vvsensor , nnoise) · xenc (4.10)

The approximated functions fk1
(vvsensor , nnoise) of k1 and fk2

(vvsensor , nnoise) of k2 are

determined and plotted in Fig. 4.8 and Fig. 4.9, under different velocities and noise

levels. Only six lines are shown in each figure with six noise levels from 5% to 500% corre-

spondingly. A nonlinear relationship can be observed between k1/k2 values and selectors:
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Figure 4.8: RBF approximation of k1

velocity and noise levels. k1 decreases significantly with higher noise levels under same

velocity value. This is consistent with physical intuition as a higher content of noise will

shift weightage away from the analog sensor. k1 also decreases significantly with higher

velocity under same noise level. At lower velocities, the position measurements from the

digitally integrated velocity signal yield good accuracy but the accuracy is degraded at

higher velocities due to the sensitivity characteristics of the sensor. The complementary

relationships are observed in k2. In order to show the relationship between k1/k2 values

and velocities/noise levels, a two-dimensional RBF is used to approximate the functions

of k1 and k2, which are depicted in Fig. 4.10 and Fig. 4.11.

4.3.4 Control experiments

To observe the improvement on the overall precision with the proposed framework and

approach, control experiments on the testbed are done. Three sinusoidal reference signals

with the amplitude of 100mm and the periods of 3/4/5 seconds are applied to the linear
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Figure 4.9: RBF approximation of k2

Figure 4.10: 2-dimensional RBF approximation of k1

Figure 4.11: 2-dimensional RBF approximation of k2
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motor separately. The periods of the sinusoidal reference signals are specially chosen

to include all the measured velocities of the linear machine. A PID controller is used

to control the linear motor. The analog velocity sensor is used to measure the velocity

signal vvsensor , the magnetic encoder is used to measure the position signal xenc and the

laser interferometer is used to measure the reference position xlaser. Those collected

signals can be used to train the 2D RBF networks, and the estimated position xpos can

be obtained using Eq. 4.10.

As originally the magnetic encoder is installed in the motor stage, the system error

in the estimated position from data fusion is compared with the error in the magnetic

encoder, to observe the difference in the system performance before and after installing

the velocity sensor in the stage. The positioning and tracking performances of the

proposed method for the three reference sinusoidal signals are shown in Fig. 4.12 to

Fig. 4.14. To observe the error tolerance of the proposed approach, the system tracking

performance at different noise levels are plotted from Fig. 4.15 to Fig. 4.20, for reference

signals with period of 5 seconds and error percentages of 5%, 10%, 20%, 30%, 40% and

50%. It can be observed that the system performance can be improved if the noise level

is kept below 30%.

As can be clearly observed in the experimental study, the proposed method can im-

prove the tracking performance and system precision. Due to the nonlinear characteris-

tics of k1 and k2 and a large data set requirement (as shown in Fig. 4.8 and Fig. 4.9),

RBF networks are preferred as they require less data points compared with look-up ta-
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Figure 4.12: Tracking performance with sinusoidal reference input signal (amp=100mm

period=3s)

ble method under the same accuracy requirement. The usage of RBF can reduce the

memory requirement and improve the control execution speed.

4.4 Conclusion

A framework to fuse measurements from different sensors in a practically amenable man-

ner is presented in the chapter. The weight attached to each measurement is not fixed

but they evolve with selector attributes to yield an improved combined measurement

based on the situation as demarcated by the attributes. Algorithms to determine the

weights from measurements and model their nonlinear variation with the selector at-

tributes have been developed. A selective control approach towards precision motion

systems based on this framework is then developed and demonstrated with a case study

on a linear motor with two position measurements forthcoming from two different sen-

sors. Improved performance is observed compared to when only a single sensor is used.
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Figure 4.13: Tracking performance with sinusoidal reference input signal (amp=100mm

period=4s)

Figure 4.14: Tracking performance with sinusoidal reference input signal (amp=100mm

period=5s)
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Figure 4.15: Tracking performance with 5% velocity sensor error and sinusoidal reference

input signal (amp=100mm period=5s)

Figure 4.16: Tracking performance with 10% velocity sensor error and sinusoidal refer-

ence input signal (amp=100mm period=5s)
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Figure 4.17: Tracking performance with 20% velocity sensor error and sinusoidal refer-

ence input signal (amp=100mm period=5s)

Figure 4.18: Tracking performance with 30% velocity sensor error and sinusoidal refer-

ence input signal (amp=100mm period=5s)
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Figure 4.19: Tracking performance with 40% velocity sensor error and sinusoidal refer-

ence input signal (amp=100mm period=5s)

Figure 4.20: Tracking performance with 50% velocity sensor error and sinusoidal refer-

ence input signal (amp=100mm period=5s)
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Chapter 3 can also be considered as a special case of this chapter. In Chapter 3, two

sensors (displacement and thermal) are used together to obtain the displacement error

and the overall performance is also improved compared with the performance using one

displacement sensor only.
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Chapter 5

Development of Drop-On-Demand

Micro-Dispensing System

5.1 Introduction

Bio-chip microarray technology is becoming an important platform for biomedical solu-

tions. The most popular bio-chip microarrays are DNA and protein microarray, and the

key issue is microarray fabrication [104]. The methods for microarray fabrication can

be classified into two categories: contact printing and non-contact inkjet printing [106].

Contact printing is the first approach for microarray fabrication and involves loading a

printing pin with the solution at the loading station, tapping it to the substrate and

cleaning at the washing station. The operation speed is relatively low as limited by the

loading and cleaning procedure, and the shape of the spots may not be uniform due

to the surface tension, adhesive force and capillary action [106]. Due to the speed con-

strain and non-uniformity of the spots of contact printing method, non-contact inkjet

printing method is adopted and a micro-droplet dispensing system is designed: solutions

are ejected from the dispensing head onto the substrate from a certain distance and no
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loading or washing stations are needed [106]. Thus the procedure of the micro-droplet

dispensing system is much faster compared with that of contact printing.

A micro-droplet dispensing system with multiple dispensing heads has many engi-

neering applications, including micro fabrication, DNA micro-arraying, manufacture of

bio-sensor strips, micro-patterning on printed circuit board, rapid prototyping, etc. Due

to the requirements from different micro-fabrication applications, researchers usually

developed their own micro DOD systems [97] [107]- [110]. These systems basically con-

sist of two components: the multiple dispensing heads with their associated drivers and

the XY Z precision stage to move the dispensing heads and substrate onto the desired

position. In our DOD micro-dispensing system in this chapter, two solenoid actuating

micro-valve dispensers are used. Micro-valve nozzle is widely used in micro-dispensing

applications. To build tissue scaffold, Khalil et al. [100] and Lee et al. [101] proposed

the multi-material deposition system with different types of nozzles, among which micro-

valve was applied. However, their reports focused on the functional description of com-

ponents and system. Kwang and Ahn [102] gave a brief overview of micro-valves, based

on the actuation mechanisms and their applications. He believed that reliability was the

key for successful miniaturization and commercialization of fully integrated microfluidic

systems, and there was plenty of room for further improvement in the performance of ex-

isting micro-valves. Li et al. [103] characterized the performance of micro-valve in DOD

system with regards to operational time, pressure, and viscosity of dispensing material.

The influence of dispensing heads own operational parameters on printing performance
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has been extensively reported [98] [99].

However, the factors which can determine the final placement accuracy of the printed

pattern, such as the placement of the dispensing head, the accuracy of the droplet

trajectory, the positioning accuracy of the stage system, environmental noises like wind,

vibrations and time related disturbances, are not fully addressed yet [105]. In the micro-

droplet dispensing method, the dispensing head is well controlled in a repeatable manner

to eject individual drops of material such that the final size and position of the dot on

the substrate is predictable. The above factors can obviously affect the micro-fabrication

accuracy, thus it is very necessary to discuss their influence in the position accuracy of

the micro-dispensing process and apply compensations accordingly.

In the experiments, the system printing performance on the substrate is investigated

using statistical methods. The droplets from the dispensing head are printed and their

results on the substrates are examined in detail to obtain the print pattern. The error

compensation technique is applied to improve the accuracy of the droplets. In the

chapter, the experimental setup is introduced in Section 5.2, followed by the discussion

of factors related to printing accuracy in Section 5.3. Droplet distribution analysis of

the dispensing head is given in Section 5.4, and error compensations on the motor stage

and printed droplets are shown in Section 5.5 and Section 5.6. A conclusion is given in

Section 5.7.
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Figure 5.1: Micro-dispensing DOD system

5.2 Experimental Set-up of Micro-dispensing DOD

System

5.2.1 Introduction to micro-dispensing DOD system

Fig. 5.1 shows the micro-dispensing DOD system used in the experiment, including

XY Z precision stage and two dispensing units. The position speed for the X and

Y stage ranges from 1 to 250 mm/s with a positioning accuracy of 5µm and 1µm

respectively. The two dispensing units are attached on the Z axis with a mounting

structure. The substrate plate is mounted on the slide which rides on the XY plane so

it is able to move along both Y and Z axis directions. The stage positions are recorded

by encoders attached on XY Z axes. When the stage reaches the target position, the

stage will produce a set of TTL trigger signals to activate the dispensing driver and the

corresponding dispensing head for drop ejection.
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5.2.2 Micro-valve dispensing system

In this section, the micro dispensing units are introduced. Each dispensing head is con-

nected to 50ml reservoir with a 7µm filter to prevent nozzle clog. The trigger signal from

the stage driver, i.e. standard TTL signal, is used as the input of the dispensing head

drivers. The corresponding driver subsequently magnifies this signal to the appropriate

voltage levels for dispensing head operation.

The solenoid actuated micro-valve dispensing system consists of a micro-valve, a micro-

valve driver and a pneumatic controller. The micro-valve shown in Fig. 5.2 is from

Lee Company (VHS Starter Kit P/N IKTX0322000A) equipped with 3 nozzles with

diameter of 127, 190.5 and 254 µm respectively. Fig. 5.3a shows a schematic diagram of

the solenoid micro-valve with a cross-sectional image. The micro-valve operates through

a solenoid system to open or close the valve. A magnetic field is induced which forces

the piston to open the valve as indicted by the arrow. Likewise, the spring forces the

piston onto the valve seat to close the valve. Fig. 5.3b shows the triggering signal of

micro-valve driver. Under external trigger signal between 60 Hz and 1 kHz, the valve

driver outputs 24 V spike voltage to activate the valve and 3 V to hold the open status.

The total time period including spike and hold status is defined as operational on time

(OOT).
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Figure 5.2: Micro-vale from Lee company

Figure 5.3: Schematic diagram of the solenoid micro-valve

5.2.3 Pneumatic controller

The pneumatic controller used in this DOD system is shown in Fig. 5.4. It has two

outlets for a stable positive pressure and purge pressure to expel the liquid accumulated

at the nozzle tip. When the valve is open, the stable positive pressure pushes the liquid

along the chamber towards the nozzle. With the proper pressure and OOT, the liquid

can form a droplet at the nozzle tip.

5.3 Factors Related to Printing Accuracy

Besides own parameters of the dispensing heads, factors which can determine the final

placement accuracy of the printed pattern are the positioning accuracy of the precision
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Figure 5.4: Pneumatic controller

stage, the placement of the dispensing head, time related disturbances and environmental

noises like wind or vibrations.

5.3.1 Stage related parameters

The precision XY Z stages provide 3D printing capability by positioning the dispensing

heads and substrate under the predefined position. Inaccuracies in the precision stage

movement also lead to possible errors in geometry or accumulations of droplet in one

region. Error compensation can be applied to improve the stage accuracy.

5.3.2 Dispensing head placement

As the dispensing head is fastened using screws on the mounted structure of Z axis,

the placement of the dispensing head may not be properly aligned with Z axis. Both

displacement and angular differences may exist. The ejected droplets may be off the

target due to those differences. Error compensation can also be applied to adjust the

droplet positions on the substrate.
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5.3.3 Environmental noises

The printing performance of the micro-dispensing system is fairly sensitive to vibrations

in the fluid supply line and reservoir. The ejected droplets are also sensitive to the wind

in the environment. Both may cause erratic droplet dispensing in the system. As the

environmental noises are not repeatable and the unstable circumstances are not fully

understood, the best way is minimize those environmental noises. An isolation cage

can be applied to the stage to avoid the effect of wind, and lower printing speed and

improvement of dispensing heads’ fixture design with isolated and stationary connection

between dispensing head and reservoir can help reduce the vibration.

5.3.4 Time related disturbances

The printing time should be controlled to maintain a fabrication process with desired

accuracy. With the current observation of two dispensing heads functionality, a consis-

tent, steady droplet stream is less likely to be preserved upon stopping and restarting of

dispensing heads for more than one hour. It is also observed that the speed of the droplet

tends to decrease with printing time. With the increase of printing time, the change

in the reservoir level relative to the dispensing head, gradual magnification of internal

disturbances from the dispensing head actuation process, or corrosion of the orifice plate

could contribute to this phenomenon. With a progressive decrease in ejection speed over

time, the presence of crosswinds can greatly affect proper droplet placement on the sub-

strate. In some cases, cleaning the orifice plate with a compatible solvent introduces
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temporary impedance to stable droplet formation. When residual solvent evaporates

from the orifice plate surface, lingering solvent may interfere the ejected drops, notably

their speed in the air. This phenomenon is clearly illustrated by the observed gradual

shift in dispensed droplet position. Thus, sufficient time is required before fabrication

experiment so that the solvent can fully evaporate.

5.4 Statistics of Deposited Droplet Size

The diameter of printing droplets is very useful to define proper pitch and speed in

fabrication and to test the repeatability of the system. The measurement can be easily

determined in ink-based tests by measuring the ink drop size shown on paper using

microscope. For observation purpose, operational parameters and printing parameters

are selected carefully to ensure no overlapping among adjacent droplets. The dispensing

liquid is dispensed over five rows of length at 5cm each. For each dispensing head, about

80 samples are randomly selected from around 1,200 printed droplets on the photo paper

from both X and Y directions. Readings of droplet diameter are taken for five times.

The droplet characteristic is described using average droplet diameter and standard

deviation.

5.4.1 Droplet samples from micro-valve dispensing head

The droplet size samples are collected under two cases: pitch between 0.7 and 1.0 mm

(case 1); and speed between 1.8 and 72 mm/s (case 2). Table 5.1 shows droplet size

analysis in the two cases, and the dispensing material is distilled water with ink. The
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Table 5.1: Droplet Size Analysis in Micro-valve Dispensing Head
Case 1 Case 2

Droplet (mm)
xm d σm d xm d σm d

0.619 0.008 0.664 0.008

η (%)
Within ±σm d Within ±2σm d Within ±σm d Within ±2σm d

70.2 93.5 70.9 94.2

measured average droplet diameter and its standard deviation are denoted as xm d and

σm d separately. η is the percentage of droplet size located within a specific range.

In case 1, the average droplet size is 0.619 mm with the operational parameters of

OOT = 180µs and pressure P = 9.75psi. No obvious difference has been found in droplet

size samples collected from the pitch range [0.7, 1.0]mm, i.e. varying pitch can not affect

the dispensed droplet size on the substrate. Also, 70.2% of droplet size observation falls

within xm d ± σm d (one sigma) under varied pitch, and this number reaches to 93.4%

for xm d ± 2σm d (two sigma).

In case 2, the average droplet size is 0.664 mm with the operational parameters of

OOT = 200µs and P = 10psi. It is also noted that the dispensed droplet size does not

change with varied speed. In case 2, 70.9% of droplet size observation is located within

one sigma, this number reaches to 94.2% for two sigma, and almost all the data points

lie within three sigma. Fig. 5.5 illustrates the frequency distribution from the two cases,

and droplet size within ±σm d is highlighted.

5.4.2 Droplet size analysis

There are three notable observations. Firstly, it is found that varying pitch and speed

can not change the dispensed droplet size on the substrate. Secondly, the frequency
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Figure 5.5: Droplet diameter distribution for micro-valve dispensing head

distribution curve is bell-shaped, with a peak for each case. The droplet size from a

specific set of operational parameters tends to cluster around the average droplet size,

and the standard deviation is the width of the bell. Last but not least, the statistical

results of our droplet size samples approximates to normal distribution (68% of the

samples within one sigma, 95% within two sigma, and 99.7% within 3 sigma). These

conclusions provide valuable information for building theoretical models or empirical

equations in 3D micro-fabrication process.

5.5 Error Compensation on Motor Stage

According to previous analysis, there are many factors which may affect the printing

accuracy of the DOD system. But as the time related disturbances are not fully un-

derstood and the environment noises are not repeatable, only the first two factors can
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be compensated using proper modeling. As the accuracy of the stage is fixed, it is very

difficult and costly to implement hardware modification. So software compensation like

geometric error compensation is more feasible. For the motor stage used in the DOD

system, the influence from Z axis is not considered due to the less frequent movement

in this direction. The geometric error compensation on the motor stage is conducted

using the same method as in Chapter 2. The compensation results are shown in section

2.3.1 and the displacement error can be reduced by around 35% from result shown in

Fig. 2.17.

5.6 Error Compensation on Printed Droplets

In real experiment, the placement of the dispensing head may not be exactly aligned

with the desired position. Thus the final droplet position may be different from the

desired position. The error between the desired position and the actual droplet position

comprise of two components: systematic error and random error. The systematic error

can be determined from the trajectory analysis based on placement of dispensing head,

and can be compensated accordingly. The random error may come from system noises

and changes in environment condition etc. The random error cannot be compensated

but can be minimized by having more data to average out the effects. The detailed

flowchart of the error compensation procedure is shown in Fig. 5.6.
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Figure 5.6: Flowchart of droplet error compensation
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Figure 5.7: Droplet trajectory vertical

5.6.1 Trajectory analysis of the printed droplets

The droplet trajectory from the dispensing head is shown in Fig. 5.7 and Fig. 5.8, where

h is the distance from the end position of the dispensing head to the substrate, l is the

length of the trace projection OA on XY plane, α is the angle between OA and X and

θ is the angle between the dispensing trace and Z axis. Let xe and ye be the initial

placement errors of dispensing head on X and Y axes, and xp and yp are the measured

distances between the target position and droplet position on X and Y axes, then the

droplet trajectory can be modeled as:

[

xp

yp

]

=

[

1 0 tanθcosα

0 1 tanθsinα

]





xe

ye

h



 (5.1)

The four variables α, θ, xe and ye can be estimated with the coordinate measurement

of the droplet position. In order to minimize the random error, multiple droplet posi-

tions at different heights h of the dispensing head can be measured to average out the

effects. Then error compensation on the droplet position can be performed to correct

the misplacement of the droplet from the required position.
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Figure 5.8: Droplet trajectory horizontal

5.6.2 Camera calibration

In order to measure the coordinates of the droplets, the images of the droplets should be

captured. As the time related disturbances may affect the final droplet distribution, the

capture process must be online thus a real time camera vision system has been set up.

The maximum capture area of the camera is around 12mm×8mm, and the resolution is

around 10µm/pixel. The camera is driven and controlled by computer software directly

and the captured photos are analyzed by Matlab to extract the required parameters for

error compensation. The whole process is online and the camera system can be removed

after all the parameters are identified.

Before using the camera vision system, calibration of the camera is compulsory to ob-

tain the corresponding scale in the captured images in unit of µm/pixel. The calibration

ruler with reference circles of known radius is shown in Fig. 5.9 and the capture image

of the reference circles are shown in Fig. 5.10. As the colors of the droplet and the

plate are white and black respectively during the experiment, the color of the image is
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Figure 5.9: Calibration ruler

reverted as the color of the circle is white as shown in Fig. 5.11. The four circles of the

reverted circles are analyzed using circle fitting method as shown in Fig. 5.12 and the

scale is computed as the average of the ratio between the known radius Rreal and the

measured radius Rmeas of the four circles.

The flowchart of the camera calibration is shown in Fig. 5.13. First, the figure is

converted to a binary image with two colors: white and black, with logic value 1 for

white pixel and logic value 0 for black pixel. Second, one pixel P with logic value

1 (which means within a white circle) is recognized using “find” function in Matlab.

Third, the outline of the circle which has the pixel P is traced using “bwtraceboundary”

function. The location of the pixel P is used as the starting point for the boundary

tracing. Fourth, all the pixels (xi, yi) along the outline and the circle fitting method are

used to obtain the radius and the center coordinate of the circle.

5.6.3 Circle fitting

The circle fitting method is used to obtain the radius r and the center of a circle (xc, yc)

based on the known coordinates of the circle outline and the circle equation in Eq. 5.2:

(x − xc)
2 + (y − yc)

2 = r2 (5.2)

Let the coordinate of the circle center (xc, yc) = (a, b), and the circle radius r =
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Figure 5.10: Circles captured for calibration

Figure 5.11: Reverted circles for calibration

Figure 5.12: Recognized circles after circle fitting
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Figure 5.13: Flowchart of camera calibration
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√

(a2 + b2)/4 − c, where a, b and c are the unknown variables, then Eq. 5.2 becomes:

x2 + y2 + ax + by + c = 0 (5.3)

As the variables x and y are N × 1 vectors, then the Eq. 5.3 can be transformed as:

[

X Y I
]





a

b

c



 =
[

−(X2 + Y 2)
]

(5.4)

where I is a N × 1 identity vector

As all the pixels’ coordinates (x, y) on the circle outline have been identified, so the

unknown parameter a, b and c can be obtained using Eq. 5.5:




a

b

c



 =

[

X Y I
]

[

−(X2 + Y 2)
] (5.5)

5.6.4 Trajectory model parameter identification

To identify the parameters in Eq. 5.1, a few droplets without compensation at different

heights of the dispensing head are captured using camera vision system in Fig. 5.14. In

Fig. 5.14, droplets A and B are collected at height h1 and droplets C and D are collected

at h2. The four droplets are analyzed using circle fitting method and the coordinates

of the fitted circle centers (indicated using green circle) and the target circle centers

(indicated using red square) are measured within the image. The four coordinates can

be substituted in Eq. 5.1 and the parameters α, θ, xe and ye can be obtained accordingly.

Then error compensation can be done by updating the target coordinates into the

stage controller using Eq. 5.6:

[

xnew

ynew

]

=

[

xT

yT

]

−

[

1 0 tanθcosα

0 1 tanθsinα

]





xe

ye

h



 (5.6)
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Figure 5.14: Droplets image for trajectory model parameter identification

where xnew and ynew are the updated coordinates after compensation, xT and yT are the

target coordinates before compensation, and h is the height of the dispensing head

5.6.5 Compensation results & analysis

After camera calibration and trajectory model parameter identification, the parameters

of the camera vision system and the dispensing head can be obtained and the results

are shown in Table 5.2. The droplet results of DOD micro-dispensing system before and

after droplet error compensation at heights of 2mm and 20mm are shown in Fig. 5.15

and Fig. 5.16 respectively. Due to the limited resolution of the camera vision system,

only eight droplets during the experiment are shown in those two figures. In Fig. 5.15

and Fig. 5.16, the green circles and dotted lines represent the centers and outlines of the

fitted circles before compensation, the blue circles and dotted lines represent the centers

and outlines of the fitted circles after compensation, and the red squares and triangles

represent the target positions for droplets before and after error compensation. The
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Table 5.2: Estimated Parameters in Trajectory Model
Parameter type Value

Image scale 12.9 µm/pixel

Angle α 0.9739◦

Angle θ 89.696◦

Placement error xe 2.0 µm

Placement error ye 118.2 µm

Figure 5.15: Droplet results with and without error compensation at height=2mm

displacement errors of the droplets in Fig. 5.15 and Fig. 5.16 are shown in Table 5.3

and clearly the accuracy of the DOD micro-dispensing system get improved with error

compensation for both height of 2mm and 20mm.

5.7 Conclusion

In this developed micro-valve dispensing DOD system, the micro-valve dispensing head

are attached on the Z axis of a precision stage to perform system characterization

experiments. The deposited droplet positions on the substrate on the XY slide are used
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Figure 5.16: Droplet results with and without error compensation at height=20mm

Table 5.3: Displacement Errors Before and After Compensation at Different Heights
Before (mm) After (mm) Improvement

2mm height

0 0 N.A.

0.1175 0.1036 11.83%

0.1524 0.0988 35.17%

0.1056 0.0519 50.85%

20mm height

0 0 N.A.

0.0995 0.0482 51.56%

0.3499 0.2142 38.78%

0.1988 0.0806 59.46%
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to test the system accuracy, and the droplet size follows normal distribution. Error

compensations are conducted on both precision machine and printed droplets. The

accuracy of both the stage and the printed droplets are improved accordingly.
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Chapter 6

Conclusions

6.1 Summary of Contributions

The ultimate goal of the research work in this thesis is to investigate and compensate the

possible error sources in high precision machine to improve the precision and accuracy,

via error compensation technique and sensor selective control approaches. The geomet-

ric, thermal and end-effector errors are modeled and the corresponding compensation

methods are proposed in this thesis, and a selective control of data fusion of multiple

sensors is proposed to deal with the error raised in the sensor measurement.

The geometric error is the most common error in high precision system, but usually

the calibration and compensation process may take several days as many optics are

involved and each type of optic requires setup time. So first, a cost effective and time

efficient method on the geometric error compensation is proposed by computing the error

components using displacement measurement results only and estimating the position

errors using RBF networks. For validation purposes, all the geometric error components

are measured using full sets of optics as the reference and the error components estimated
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using RBF network can match the reference values closely. With the proposed geometric

error compensation method, the position accuracy of both XY tables are significantly

improved.

Together with the geometric error, the thermal error is also one of the main factors

behind the system error. Secondly, the system error is identified and modeled using

both position and temperature information and a 2D RBF network is used in the error

compensation. The position accuracy of the DC linear is improved at both fixed and

varying temperatures with the proposed thermal and displacement error compensation

method.

Thirdly, a selector control frame work in the data fusion of multiple sensors is pro-

posed to improve the accuracy in the sensor measurement of the precision system. The

proposed frame work decreases the computation complexity by using 2D RBF network

to estimate the selector attributes in the data fusion of multiple sensors instead of con-

ventional methods like Kalman filter. In the specific case on the control of a DC linear

motor using a digital magnetic encoder and an analog velocity sensor, the proposed

method can improve the tracking performance and system precision, by comparing the

output of the proposed frame work with the reference position signal measured using

laser interferometer.

In order to study the error caused by the end-effector, the development and control of

the micro-dispensing DOD system is investigated lastly. The proposed parametric model

of the printed droplets are identified online using image processing techniques on the
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droplets and are updated in the machine controller. Error compensation on both stage

and printed droplets are conducted to improve the performance of the DOD system.

In this thesis, extensive experiment results have been furnished to illustrate the effec-

tiveness of the proposed models or methods.

6.2 Suggestions for Future Work

Regarding the efforts and approaches used in this thesis for precision improvement in

high precision machine, although above contributions have been made in this thesis,

there are still improvements which can be achieved. Thus, the suggestions for future

works are given below.

The optimal data collection interval versus accuracy requirement

In Chapter 2, the geometric errors are estimated based on the raw linear data collected

using laser interferometer. These raw data are collected at a certain distance interval of

5mm on both machines. In the experiment, we observe that the overall outcome of the

error compensation can vary with different data collection intervals and the results with

different data collection densities are shown in Table 2.3. This information can be used

to reduce the calibration time while maintain the accuracy at a required level. Thus in

the future work, it is possible to compare the accuracy of each error component under

different data intervals to obtain the relationship between the system accuracy and data

collection interval. A RBF approximation can be used to estimate this relationship and

find the optimal value of data collection interval under certain accuracy requirement for
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future error compensation and calibration work.

Augmented error compensation method with other developed error model

In some situations, the error source may be fairly clear and a dynamic model may

be developed for the error source. One possible example is the vibration disturbance

generated by a machine. In those cases, the proposed method can be augmented using

the known dynamic error model.

If the error source in the developed dynamic error model is measurable in real-time

experiments, the induced system error can be calibrated with the error source and the

new N -dimensional model can be estimated and implemented into the system. This is

quite similar as the method used in Chapter 3, with temperature as another parameter

in the error computation and estimation. For example, if the vibration disturbance is

the known error model and the vibration source can be modeled and measurable in real

time experiments, the linear error can be updated easily from flinear(position, temp) to

flinear(position, temp, vibration) by calibrating linear error based on the vibration error

as another input parameter. Then updated linear error model with three parameters

can be used in the system compensation.

If the error source is not measurable in real-time experiments but the error model is

known, the relationship between the error source and the current known and measurable

parameters must be identified. Then the known error model can be described using a

new model with all current known parameters, and the new model can be implemented

into the system. In the vibration error example, if the vibration error is not measurable
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in real time but the relationship between vibration error and other parameters such as

temperature, velocity and position can be found, the vibration error can be described as

a new model g: fvibration = g(temp, velocity, position). This new model g can be used as

an input parameter with other parameters to calibrate the system and establish a new

model flinear(position, temp, g) in the system compensation.

The effect of heating rate in the thermal error

In Chapter 3, a 2D RBF network is used to estimate the geometric errors, based

on both temperature and position measurements, as shown in Fig. 3.1. During the

experiments, the heating rate (i.e. temperature changing rate) is considered as a constant

in the interpolation of RBF networks. But in real situation, the heating rate may vary

during the operational process. Thus, the data interpolation in RBF approximations

should be adjusted accordingly. For example, for three geometric error measurements at

temperatures T1, T2 and T3 as shown in Fig. 6.1, the RBF approximation should follow

the black solid line if the machine is heated at a slower heating rate first and a faster

heating rate later from T2 to T3, instead of the dashed line which represents constant

heating rate. Thus, 3D RBF network can be proposed to estimate the geometric errors,

based on three inputs: temperature, heating rate, and position measurements, as shown

in Fig. 6.2.

Dual RBF method in selective control approach

In the specific case of the Chapter 4, one 2-dimensional RBF network is used to

estimate computation weightages k1 and k2, based on both velocity and noise levels,
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Figure 6.1: Heating rate effect on error compensation

Figure 6.2: Flowchart of 3D RBF network

Figure 6.3: Single selector attribute with RBF model of noise versus velocity
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Figure 6.4: Force ripple signal measured

as shown in Fig. 4.7. In this case study, the noise level is obtained directly from the

manufacturer’s specifications under ideal conditions and introduced into the system as

an independent attribute. During real time experiments, we observe that the noise level

may vary with a change in velocity so there is also a nonlinear relationship between the

velocity measured and the noise level in the sensor. It is possible to use frequency domain

signal processing technique by applying filter to estimate the noise level dynamically and

directly from the raw data. This method is very commonly adopted but it introduces

additional dynamics into the system. It is also possible to train another RBF network

offline to model the relationship between the velocity and noise level, to obtain the noise

level directly from velocity measurements for a specific velocity sensor. So a dual RBF

network method can be proposed to estimate the selector attributes, as shown in Fig.

6.3.

Delay minimization in multi-sensor fusion
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In the feedback control, the multi-sensor fusion will lead to some level of delay. The

delay may come from both the fusion process of multiple sensors, and the operation

of each sensor (e.g., the integral activity in the velocity sensor). A significant delay in

the feedback control may cause several problems including control failure, as the data

obtained is not live or accurate. In order to minimize the delay, the following possible

approaches can be considered to improve the proposed method in Chapter 4:

a) For some situations, some of the sensors contribute very little to the overall fusion

output. Thus, in order to avoid the delay in the fusion process of the multiple sensors,

the outputs of those sensors can be disabled. With fewer sensors in the data fusion,

the computational complexity can be lowered. Thus, an intelligent and efficient sensor

switch schedule can be proposed during the operation process.

b) The current data fusion algorithm consists of several computations such as integra-

tion of velocity sensor output. The delay can be minimized if a new algorithm of the

data fusion is proposed to minimize the computational complexity.

c) The sampling intervals of each sensor at different situations can be changed to

minimize the delay in the sensor signal acquisition process, according to the operational

performance and system requirement. For example, at low speed operation of the ma-

chine, the sampling intervals can be decreased for some sensors while maintaining the

accuracy unaffected.

d) It is also possible to upgrade the hardware of the system like control card and

sensors with better specifications to minimize the delay from the hardware side.
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Extension from linear sensor fusion to nonlinear fusion

Nonlinearity exists in many systems and the linear sensor fusion may not be applicable

in these situations. Thus nonlinear sensor fusion method can be considered to deal with

the nonlinearity in the system. Two possible ways can be considered to extend the

proposed linear sensor fusion method in the thesis:

a) If the linear regions in the system can be identified, or the nonlinear system can

be divided into several regions which can be approximated using linear method, the

proposed linear sensor fusion method can still be applied to those linear regions (or

approximately divided linear regions). The calibration of the system can be done in

different regions to identify the specific weightages in those regions.

b) The data fusion output can be described using n-th order polynomial based on

the outputs of the individual sensors. Calibration work of the system can be conducted

to identify the order n and the coefficients of the polynomial. For example, with the

encoder sensor and velocity sensor in Chapter 4, the new position signal can be described

as: xnew = k0x
n
enc + k1x

n−1

enc x1

vel + ... + knxn
vel, where xnew is the sensor fusion output, ki

is the weightage coefficient, xenc is the encoder output and xvel is the velocity sensor

output. The linear data fusion method proposed in the thesis can also be considered as

a special case of the polynomial method with order n = 1.

Precision control with force ripple signal

Force ripple can significantly affect the performance of the precision system, due to the

attracting and repelling forces in the magnetic structure. Several techniques have been
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applied to identify and compensate the force ripple signal in precision systems [111]-

[113]. From experiment observations using linear motor in Fig. 4.4, the force ripple

is a repeatable, periodic and position dependent signal, as shown in Fig. 6.4. Besides

improving the system precision by compressing or compensating the force ripple signal,

it is also possible to identify and model the force ripple signal under different system

variables like current, voltage, position and velocity etc. With the proper modeling

of force ripple signal, a sensor-less position control in the precision machine may be

possible.
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