
 
 ELECTRON TRANSPORT IN ATOMIC-SCALE DEVICES  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

RAVI KUMAR TIWARI 
 
 
 
 
 
 
 
 
 
 
 
 
  

NATIONAL UNIVERSITY OF SINGAPORE  
 

2013 
 
 
 
 
 



ELECTRON TRANSPORT IN ATOMIC-SCALE DEVICES  
 
 
 
 
 
 
 
 
 
 
 
 
  

RAVI KUMAR TIWARI 
(B. Tech., Indian Institute of Technology Kharagpur, India)  

 
 
 
 
 
 

A THESIS SUBMITTED  
 
 

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  
 
 

DEPARTMENT OF CHEMICAL & BIOMOLECULAR ENGINEERING  
 
 

NATIONAL UNIVERSITY OF SINGAPORE  
 

2013 



I 
 

ACKNOWLEDGEMENTS 
 

First of all I would like to express my deepest gratitude to my supervisor, Dr. Mark Saeys, for 

giving me the opportunity to work on this exciting project and providing me constant support, 

timely encouragement, and invaluable guidance throughout my PhD candidature.  

 

Secondly, I would  like to thank all my lab mates present and past Hiroyo Kawai, Yeo Yong 

Kiat, Diana Otalvaro, Xu Jing, Sun Wenjie, Tan Kong Fei, Fan Xuexiang, Chua Yong Ping 

Gavin, Zhuo Mingkun, Trinh Quang Thang, Cui Luchao, Guo Na for their help and support. 

 

 I would also like to thank all my friends Praveen, Prashant, Deepak, Nikhil, Atul, Vishal, 

Raju, Tarang, Nirmal, Shyam, RP, Krishna, Suresh, Mojtaba, Chakku, to name a few and 

family members for their continual support and encouragement throughout this exciting 

journey.  

 

Last but not the least, I would like to thank National University of Singapore for giving me 

the opportunity to do my PhD here and providing world class infrastructure, faculty members 

and students all of which has helped me become  a better researcher. 

 

 

 

  



II 
 

TABLE OF CONTENTS 
Acknowledgements········································································································ I 

Table of content············································································································· II 

Summary························································································································ VI 

Symbols and abbreviations···························································································· X 

List of tables··················································································································· XIV 

List of figures················································································································· XV 

Publications···················································································································· XX 

Talks······························································································································· XXI 
  
Chapter 1 Introduction········································································································· 1 

1.1 Nanotechnology and its scope··········································································· 1 

1.2 Key driver of nanotechnology: Scanning tunnelling microscope················· 2 

1.3 Large scale application of tunnelling current: Magnetic tunnel Junction···· 3 

1.4 Ballistic conductance························································································· 7 

1.5 Key challenges addressed in this thesis··························································· 9 

1.6 Specific challenges addressed in this thesis···················································· 10 

1.7  Intellectual contribution of this thesis······························································ 11 

 1.7.1 Intrepretation of reduced current flow upon CO adsorption on 

Cu(111) in STM tunnel junction······················································· 

 

 

12 

 1.7.2 Elucidation of unknown surface structure obtained during 

thermal annealing of MoS2 surface··················································· 

 

 

12 

 1.7.3 Observation of reduced TMR ratio but higher current in a 

biaxially strained MTJ ······································································· 

 

 

13 



III 
 

 1.7.4 Observation of anomalous increase in the band gap with 

thickness in thin MgO········································································· 

 

 

14 

 1.7.5 Wider implications·············································································· 14 

Chapter 2 Modeling ballistic electron transport ······························································ 16 

2.1 Introduction········································································································· 16 

2.2 Quantum mechanical tunnelling······································································· 17 

2.3 Tunnelling probability through a square barrier············································ 18 

2.4 Landauer formula for current calculation······················································· 20 

2.5 Green function approach for the transmission probability···························· 23 

2.6 Transfer matrix technique for the transmission probability·························· 27 

 2.6.1 A simplified case – one atomic orbital per cell······························· 28 

 2.6.2 The general case – several orbital per cell······································· 31 

2.7 Extended Hückel theory···················································································· 34 

 2.7.1 Introduction·························································································· 34 

 2.7.2 Optimization of EHT parameters····················································· 36 

2.8 Density Functional Theory················································································ 38 

 2.8.1 Introduction·························································································· 38 

 2.8.2 Overview of the approximations······················································· 39 

2.9 GW calculation··································································································· 44 

 2.9.1 Green function···················································································· 47 

 2.9.2 Screened Coulomb energy································································· 50 

Chapter 3 Origin of the contrast inversion in the STM image of CO on Cu(1 1 1) ··· 54 

3.1 Introduction········································································································ 54 

3.2 Computational methods···················································································· 57 



IV 
 

3.3 Results and discussion······················································································· 61 

 3.3.1 Calculation of the Cu(1 1 1) surface band structure······················ 61 

 3.3.2 CO adsorption on Cu(1 1 1) and corresponding STM image······· 64 

 3.3.3 Simple tight-binding model······························································ 66 

3.4 Conclusions········································································································ 69 

Chapter 4 Surface reconstruction of MoS2 to Mo2S3······················································ 73 

4.1 Introduction········································································································ 73 

4.2 Experimental and computational methods······················································ 75 

 4.2.1 Experimental methods······································································· 75 

 4.2.2 Computational methods····································································· 76 

4.3 Experimental STM images of the MoS2(0 0 1) and Mo2S3 surfaces··········· 81 

4.4 Theoretical study of the Mo2S3 surface structure··········································· 83 

 4.4.1 Surface energy···················································································· 83 

 4.4.2 STM image calculation······································································ 86 

4.5 Conclusion·········································································································· 88 

Chapter 5 Calculation of the spin dependent tunnelling current in Fe|MgO|Fe  

tunnel junctions·································································································· 

 
 

91 

5.1 Introduction········································································································ 91 

5.2 Methods··············································································································· 95 

 5.2.1 Model geometry·················································································· 95 

 5.2.2 Description of the theory ·································································· 96 

 5.2.3 Determination of the Extended Hückel parameters ······················ 98 

 5.2.4 Fermi level alignment ······································································· 99 

5.3 Results and discussions ···················································································· 100 



V 
 

5.4 Summary ············································································································ 106 

Chapter 6 Biaxial strain effect of spin dependent tunneling in MgO magnetic 

tunnel junctions·································································································· 

 
 

109 

6.1 Introduction········································································································ 109 

6.2 Experimental method and  result····································································· 110 

6.3 Computational method and  result··································································· 114 

6.4 Summary············································································································· 120 

Chapter 7 Origin of the reduced band gap in ultrathin MgO films ······························· 123 

7.1 Introduction········································································································ 123 

7.2 Computational method······················································································ 127 

7.3 Results and discussion······················································································· 128 

7.4 Summary············································································································· 134 

Chapter 8 Conclusion and outlook ···················································································· 138 

8.1 Conclusion·········································································································· 138 

8.2 Outlook················································································································ 140 

8.3 Future work········································································································· 141 

 8.3.1 Simulation of atomic-scale logic gates············································· 141 

 8.3.2 Effect of strain on the behaviour of MTJs······································· 142 

 

 

 

 

 

 

 

 



VI 
 

SUMMARY 

 
Advances in nanotechnology have enabled the fabrication of devices in the nanoscale regime. 

At this scale, material properties are significantly different from the macroscopic scale due to 

quantum effects. Therefore, in order to design nanoscale devices and understand their 

properties, it is imperative to utilize the proper simulation toolset which can accurately model 

these effects. The goal of this thesis is to utilize such simulations to investigate the flow of 

current through nanoscale structures and develop its understanding from the electronic 

structure. 

 

In this thesis, current flow in well-defined Scanning Tunnelling Microscope (STM) tunnel 

junctions are studied first due to its ease of modelling and well-defined structure. Insight 

obtained from current flow in STM junction is then used to model current flow in industrially 

important Magnetic Tunnel Junctions (MTJ) that are widely used in Magnetoresistive 

Random-Access Memory (MRAM). The Elastic Scattering Quantum Chemistry (ESQC) 

formalism is used for the calculation of the current through the STM tunnel junction, while 

the non-equilibrium green function (NEGF) method is used to model the MTJ tunnel 

junction. In both cases, the extended Hückel theory is employed for the description of the 

system Hamiltonian. To ensure the accuracy of the predicted result, the extended Hückel 

parameters for each system are fitted to accurate electronic band structures obtained from 

Density Functional Theory (DFT) calculations. DFT calculations are also used to find the 

optimized geometry of the studied system.  
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The theoretical toolsets are first used to study the well-defined but intriguing case of CO 

adsorbed on a Cu(111) surface [1]. Based on topological considerations, it can be expected 

that the presence of adsorbed CO between the tip and the surface enhances the current flow 

between the tip and the Cu(111) surface for a constant tip-surface distance. However, 

experiments show a decrease in the tunnelling current [2]. We explain this effect by the 

interaction between the CO and surface states. According to the calculations, CO 5𝜎 states 

interact strongly with the surface states of Cu(111), and this interaction depletes the density 

of Cu(111) states near the Fermi level, leading to the decreased current.  

  

Next, a combination of STM image calculation and the thermodynamic stability calculation is 

used to investigate the surface structure obtained during the experimental thermal stability 

study of the MoS2 surface  [3], which can be used as a platform for constructing surface 

dangling bond wires [4]. The calculations show that MoS2 surface transforms into a S-rich 

Mo2S3 surface above 1300K. The calculations also confirm that the bright spots in the 

experimental STM image of the reconstructed surface originate from surface S atoms. This 

behaviour is in sharp contrast to the previous case where the CO molecule appears dark 

despite being closer to the tip. 

 

Subsequently, the developed theoretical framework is used to study the spin-dependent 

tunnelling in technologically important Fe|MgO|Fe magnetic tunnel junctions in the presence 

of biaxial strain [5]. The calculations reproduce both the increase in the conductances and the 

decrease in the TMR ratio upon the application of biaxial 𝑥𝑧-strain. The calculations further 

show that increase in the parallel conductance upon the application of strain occurs due to a 

decrease in MgO band gap by 0.3 eV and the barrier thickness by 5%. The anti-parallel 

conductance, however, is significantly more sensitive to strain because of the change in the 
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location of Fe(100) minority states at the Fermi level, which move closer to the centre of the 

Brillouin zone where transmission through the MgO barrier is higher. As a result, the 

conductance for both the minority channel and anti-parallel configuration increases faster 

than for the majority electrons, leading to the decrease in the TMR ratio. 

 

Finally, the band gap variation in thin MgO films observed during barrier thickness-

dependent TMR studies of Fe|MgO|Fe tunnel junctions is investigated in more detail. DFT 

calculations reveal that the Mg(001) band gap decreases with thickness below 5 ML, 

consistent with experimental observations [6]. The decrease in band gap with decreasing film 

thickness arises from a decrease in the Madelung potential. This is compensated by a 

decrease in the charge transfer from the Mg to O ions, which slightly increases the band gap. 

A simple electrostatic model, which accounts for both charge transfer and changes in the 

local Madelung potential, is able to reproduce the trend observed in the DFT calculation. 

 

In summary, tunnelling current at atomic scales for various scientifically and technologically 

important systems such as STM and MTJ is studied within a theoretical framework in this 

thesis. The ability to correctly predict and explain experimental observations makes them a 

very valuable toolset to study tunnelling current at atomic scales, which is required to design 

next-generation atomic scale electronic devices. 
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The surface Cu atoms are indicated (●). (b) STM junction structure used 
in the calculations. (c) The T(E) spectra for the clean Cu(1 1 1) surface 
(—) and for the junction with an adsorbed CO (- -). 
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Figure 3.3 (a) Density of states projected on the surface atoms for clean Cu(1 1 1). 
(b) Upon CO adsorption, the Cu states near the Fermi level (mostly 4pz) 
interact with the CO states, depleting the density of states near the Fermi 
level. (c) CO adsorption also leads to broadening of the CO levels. 
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Figure 3.4 (a) Tight-binding model for CO adsorption on Cu(1 1 1). (b) Effect of 
introducing a CO molecule on the electronic transparency of the junction, 
Δlog[T(EF)], as a function of the coupling between the surface state and 
the CO 5σ orbital, α and between the CO 5σ orbital and the STM tip, β. 
The CO 5σ orbital on-site energy = −13.25 eV, the Cu surface state 
energy ε = −10.6 eV, the Cu metal to metal coupling η = 1.00 eV, and the 
through space coupling between the surface and the STM tip 
γ = 0.019 eV. 
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Figure 4.1 (a) SEM image of the MoS2 surface. Micrometer scale, atomically flat 
terraces are separated by mono- or multi-steps. The atomic resolution 
STM image (inset) displays the hexagonal surface structure of 
MoS2(0 0 1)-(1 × 1). (b) SEM image of the MoS2 sample after flashing at 
1300 K. Flat, mesoscale islands appear. 
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Figure 4.2 (a) SEM image of a single island after flashing to about 1300 k. (b) STM 
image of a single island. Steps of 1.2 nm height (D) and of 0.6 nm height 
(arrows) were observed. The island surface is atomically flat. (c) STM 
image of the surface of the island, illustrating the long range periodicity. 
The nature of the defects is unknown. (d) Atomic resolution image of the 
same sample, showing individual atoms. The rectangular boxes indicate 
the two types of atomic pair rows, zig-zag and rectangular. STM images 
were recorded at V = −0.4 V and I = 0.2 nA. 
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Figure 4.3 (a) Mo2S3 bulk crystal structure. Large grey spheres indicate S atoms, 
while small black spheres indicate Mo. The crystal lattice parameters for 
the primitive monoclinic cell are: a = 6.09 Å; b = 3.20 Å; c = 8.62 Å and 
β = 102.4°. Selected (0 0 1) surface structures are illustrated. For the S-
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Rich1 surface two types of surface S atoms are indicated. (b) Top view 
for the S-Rich1 surface. (c) Rearrangement of the surface sulfur atoms 
leading to a rectangular pattern. 
 

Figure 4.4 Surface free energy for selected Mo2S3(0 0 1) surface terminations 
(Figure 4.3 and Figure 4.5) as a function of the S chemical potential, 
μs(T, p). The corresponding temperature for 𝑝𝑠2 = 3 × 10−7 𝑃𝑎 is 
indicated. The chemical potential μs(T, p) is relative to the total 
electronic energy of an isolated S2 molecule, 𝜇𝑠(0 𝐾,𝑝) = 1/2𝐸𝑆2

𝑡𝑜𝑡𝑎𝑙 
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Figure 4.5 Simulated low voltage STM image for the S-rich1 surface (a) 
corresponding surface structure (b) and experimental STM image 
recorded at V = −0.4 V and I = 0.2 nA. (c) Two types of surface S atoms 
can be distinguished. In the ESQC simulations, the average tip height 
above the surface is approximately 4 Å and the Fermi energy for the S-
rich1 surface is −9.9 eV. 
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Figure 4.6 Total and projected density of states for bulk Mo2S3. The bulk Fermi 
level, −9.2 eV, is indicated. Note that the bulk Fermi level differs from 
the surface Fermi level. 
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Figure 5.1 Arrangement of the atoms in a magnetic tunnel junction, consisting of 
Fe|MgO|Fe. The blue, red, and green balls represent Fe, O, and Mg 
atoms respectively. In the NEGF calculations, the Fe atoms extend to 
infinity at the both ends and the whole system is periodic in the direction 
parallel to the interface (xy). 
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Figure 5.2 Calculated MgO bandstructure using EHT (red solid line) and DFT-PBE 
after correction (green dotted line). Note that the original DFT-PBE 
valence bands have been shifted up by 3.3 eV to match the experimental 
band gap, 7.8 eV [23] 
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Figure 5.3 (a) Dependence of the pessimistic TMR ratio RTMR of an 
Fe|MgO|Fe(001) junction on the MgO thickness. (b) Dependence of the 
individual conductances Γ𝐹𝑀↑ , Γ𝐹𝑀↓ and Γ𝐴𝐹 on the MgO barrier thickness. 
 

101 

Figure 5.4 𝑘�⃗ || resolved transmission probabilitities for a Fe|MgO|Fe(001) junction 
with 1).four atomic planes of MgO and 2) eight atomic planes of MgO: 
(a) Majority-to-majority,  𝑇�𝐹𝑀↑ (𝑘�⃗ ||), (b) Minority-to-Minority,   T�𝐹𝑀↓ (𝑘�⃗ ||)  
and (c) Anti-parallel,   T�𝐴𝐹(𝑘�⃗ ||)     
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Figure 5.5 Spectral density for the Fe[001] surface at Fermi level (1) majority 
electrons (2) minority electrons. 
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Figure 6.1 (a) Schematic of the device with a DLC layer over the junction. (b) An 
SEM image with a DLC film. The top electrode width is 80 μm while the 
DLC strip has a width of 150 μm. (c) XPS spectra of the C1s core level 
for the DLC film. (d) A plot of TMR versus junction area. 
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Figure 6.2 Bias voltage dependence of RP, RAP, and TMR for MTJ before (a) and 
after (b) the DLC deposition at 300 K. Temperature dependence of RP, 
RAP, and TMR before (c) and after (d) the DLC deposition, for a device 
with the junction area of 73 μm2. 
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Figure 6.3 (a) Calculated conductance for a Fe(100)/MgO/Fe(100) tunneling 
junction as a function of the number of MgO layers. The conductance is 
shown for the P and the AP configurations for both the unstrained and for 
5% biaxial xz-strain cases. The relative increase in the conductance after 
applying strain is also shown to facilitate comparison with the 
experimental data in Figure 6.2. For 6 MgO layers, the P conductance 
increases by a factor 1.74 from 0.65 to 1.14 nS, while the AP 
conductance increases by a factor 22.32 from 7 to 157 pS. (b) Optimistic 
TMR ratio [(GP-GAP)/GAP, where GP and GAP is the conductance of the P 
and the AP state, respectively] for the unstrained and the strained 
tunneling junction. The relative change in the TMR ratio is also shown 
and ranges from a factor 7 to 27. (c) Central structure used to model the 
junction for 6 layers of MgO. The blue, green, and red circles correspond 
to Fe, Mg, and O atoms, respectively. In the calculations, both Fe(100) 
contacts extend to infinity. 
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Figure 6.4 𝑘�⃗ ||-resolved transmission spectra for the various transport modes for a 
Fe(100)/MgO(6 layers)/Fe(100) junction. Biaxial strain decreases the 
lattice in the x and z direction by 3.5%, and expands the lattice in y 
direction by 1.6%. Note the different scales for the various transmission 
spectra. 
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Figure 6.5 Effect of 3.5% biaxial xz-strain on the Fe(100) surface spectral density 
(number of states/eV/Å2) at the Fermi energy for the minority and the 
majority states. While changes for the majority states are relatively 
minor, the minority states at (kx, ky)=(±0.4, 0.0) clearly move closer to 
the gamma point. This is consistent with a broadening of the minority 
band and a decrease in the spin polarization. 
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Figure 7.1 DFT-PBE band structure of bulk MgO. The nature of the bands is 
determined by projection on to the atomic orbitals. The figure illustrates 
that the conduction band is mainly derived from Mg(3s) orbitals while 
the valence band is derived from O(2p) orbitals 
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Figure 7.2 Thickness-dependent bandgap for MgO thin films. Both the DFT-PBE 
and the more accurate HSE03-G0W0 band gap are shown. 
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Figure 7.3 Diagram illustrating the origin of the band gap in covalent solids (a) and 
in ionic solids (b). In covalent solids, the location of bonding and anti-
bonding orbitals determines the band gap. In ionic solids, the valence and 
conduction band result from different atomic orbitals and their relative 
position is determined by charge transfer and by the local Madelung 
potential. 
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Figure 7.4 (a) Site-dependent Bader charges on Mg atoms as a function of the MgO 133 
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film thickness. (b) Site-dependent Madelung constant (CM) as a function 
of the MgO film thickness  
 

Figure 8.1 Schematic of the single-atom transistor fabricated by Simmons and co-
workers [1]. A single phosphorus atom (red sphere) is placed with atomic 
precision on the surface of a silicon crystal (green spheres) between the 
metallic source (S) and drain (D) electrodes, which are formed by 
phosphorus wires that are multiple atoms wide. Electric charge flows 
(thick black arrows) from the source to the drain through the phosphorus 
atom when an appropriate voltage is applied across the gate electrodes 
(G). This schematic is not to scale: there are several tens of rows of 
silicon atoms between the phosphorus atom and the source and drain 
electrodes, and more than 100 rows of silicon atoms between the 
phosphorus atom and the gate electrodes. 
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CHAPTER 1 

Introduction 

1.1 Nanotechnology and its scope 

Nanotechnology has enabled the deliberate and controlled manipulation, measurement, 

modeling, and production at nanoscale, resulting in materials and devices with fundamentally 

new properties and functions [1]. As the name suggests, the nanoscale typically indicates 

length scales of a few nanometers where materials can no longer be considered to be 

continuous, rather it has to considered as composed of individual atoms. As a result, various 

properties exhibited by nano-materials are size-dependent and they differ considerably from 

their bulk counterpart.  Two factors are responsible for the appearance of new properties: 

first, at this scale, quantum phenomena starts to appear and second, the surface properties 

start to play an increasingly bigger role as the size of the system reduces. These novel 

properties exhibited by nanomaterials are finding wider application in a variety of systems. 

For example, electrical transport properties are increasingly being utilized in 

microelectronics, communication industries as well as data storage devices, and have led to 

smaller device sizes with improved functionality at reduced cost [2].  

 

As the properties exhibited at the nanoscale are not directly related to bulk properties, it 

becomes very vital to utilize the proper theoretical tool sets to understand them. This thesis 

mainly deals with the calculation of current flow at the nanoscale and explains the observed 

behaviour from the knowledge of the electronic structure.  
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In this thesis two different systems have been chosen to study tunnelling current. First, the 

theoretical tools are employed to study current flow in a well-defined system as represented 

by the scanning tunnelling microscope (STM). The developed theoretical framework is then 

employed to study current flow in industrially important multilayers such as magnetic tunnel 

junctions (MTJ). 

 

1.2 Key driver of nanotechnology: Scanning tunnelling microscope 

One of the key drivers of nanotechnology is the scanning tunnelling microscope (STM). STM 

not only makes it possible to observe atoms and molecules but also to manipulate them in a 

precise and controlled way. STM consists of an atomically sharp tip whose movement is 

controlled by piezoelectric controllers, Figure 1.1(a). Application of a bias voltage results in a 

tunnelling current between the tip and the surface. In order to image a surface, the tip is 

scanned over the surface while maintaining a constant distance between the tip and the 

surface. The tunnelling current decays exponentially with distance for a given tip and a 

surface. As a result, a slight variation in the surface structure leads to a large change in the 

tunnelling current. As the tip scans over the surface, the tunnelling current is recorded. The 

image of the surface is then derived by plotting the variation of the tunnelling current as a 

function of the tip location. As is clear from the above discussion, the STM image is a plot of 

the surface of constant current. The exact value of the tunnelling current depends on the 

interaction between the tip and the surface electronic states. As a result, in many cases, the 

STM images are not the actual topographical feature of the surface. Hence, it requires a 

complete understanding of the electronic interaction between the tip and the surface to 

correctly interpret STM images.   
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The STM is also used to manipulate individual atoms and molecules on a surface in a 

controlled way. In order to manipulate atoms, the tip is brought sufficiently close to the 

adsorbed atom or molecule. At close distance, a weak bond is formed between the tip and the 

adsorbed atom. The atom is then positioned at the desired location by moving the tip. 

Manipulation of atoms and molecules has resulted in many interesting quantum structures 

showing novel phenomena. For example, the quantum corrals made by confining surface 

state electrons by individually positioning iron adatoms over Cu(111) surface show a 

standing electron wave pattern [3] . 

 

 

 

 

 (a) (b) 

Figure 1.1: (a) Schematic diagram of a typical STM set-up. To form the image of the surface, 
the tip is scanned over the surface while maintaining constant value of the current. (b) The 
variation of the tunnelling current 𝐼 with the tip surface distance 𝑑. The tunnelling current 
decays exponentially when the tip surface distance is increased.  

 

1.3 Large-scale application of tunnelling current: Magnetic Tunnel Junction 

Bulk tunnelling currents also finds important application in an industrially important device, 

the magnetic tunnel junction (MTJ). A MTJ consists of a thin insulating spacer layer 
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sandwiched between two ferromagnetic electrodes, Figure 1.2. The application of a bias 

voltage across the barrier leads to a finite tunnelling current through the junction.  When the 

thickness of the insulating space is smaller than the spin relaxation length of the electrons, 

then the spin of the electrons is conserved during the transport process. This makes it possible 

to control the current flow by changing the relative magnetization direction of the 

ferromagnetic electrodes. 

 

The performance of a MTJ is measured by a quantity called the tunnelling magneto-

resistance (TMR) ratio, which is defined as 

 𝑇𝑀𝑅 =
�𝐼𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 − 𝐼𝑎𝑛𝑡𝑖−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙�

𝐼𝑎𝑛𝑡𝑖−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
 1.1 

where 𝐼𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 and 𝐼𝑎𝑛𝑡𝑖−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 are the current for parallel and anti-parallel configuration of 

electrode magnetization. Generally, the current flow in a MTJ is maximum (minimum) when 

the magnetization directions of the two electrodes are parallel (anti-parallel), though negative 

TMR ratios have also been reported [4].  

 

 

 

Figure 1.2: Schematic diagram of a magnetic tunnel junction. A thin insulating layer (𝐼) is 
sandwiched between two ferromagnetic electrodes (𝐹𝑀). In this diagram the magnetization 
of the bottom electrode is fixed, while the magnetization of the top electrode is free to rotate 
under the influence of an external magnetic field. 

 

The origin of the tunnelling magnetoresistance can be understood by noting that typically 

there are two types of electrons in a magnetic material: majority (spin-up) and minority (spin-

down). At a given energy the current due to an electron with a particular spin direction is 

I 

FM 

FM 
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proportional to its number at that energy which can be deduced from the density of states 

(DOS). The DOS, n(E), represents the number of states which have energy in the range (E, 

E+dE).  In a ferromagnetic material, the DOS of majority and minority spins are shifted in 

energy relative to each other to minimize the Coulomb repulsion under the Pauli Exclusion 

Principle. 

 

In the two current model, it is assumed that the electrons with different spins do not interact 

with each other [5-6]. As a result, we can find the total current by summing up the 

contribution due to each spin. Figure 1.3 depicts the current flow mechanism under parallel 

and  anti-parallel magnetization. The left hand side of the figure show the magnetization 

orientation of the electrodes under parallel (top) and anti-parallel (bottom) magnetization 

while the right hand side show corresponding density of states (DOS). For the typical length 

scale encountered in a MTJ the spin of the electrons are conserved throughout the transport 

process.  This means that when the magnetization is parallel, the up (down) spin electrons go 

to the empty up (down) spin states of the other electrode, while for the anti-parallel 

magnetization, the up (down) spin electrons go to the empty down (up) spin of the other 

electrode. 



6 
 

 

Figure 1.3: Schematic diagram of a) orientation of the magnetization for the parallel 
configuration and the corresponding DOS for the left and the right electrode b) orientation of 
the magnetization for the anti-parallel configuration and the corresponding DOS for the left 
and the right electrode. The dotted arrows on the figure on the right show the origin of 
electrons of a given state and the state they are accepted into after traversing the barrier. 

 

The extreme sensitivity of the MTJ current to the magnetic field, because of high magneto-

resistance ratio, has resulted in their application in a new generation of read-out head [7]. 

With the increased information density of the hard-disks, the magnetic area that stores the 

information in the form of differently magnetized areas also shrinks. As a result, the magnetic 

field of each byte becomes weaker and harder to read therefore a higher sensitivity is 

required. Additionally, the application of MTJs in MRAMs makes it possible to both read and 

write information resulting in the creation of a fast and easily accessible computer memory. 

As a result, these universal memories are expected to replace the traditional RAM and the 

hard disk.  
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1.4 Ballistic conductance 

In a STM as well as in a MTJ, the typical length scale an electron traverses between its 

injection and detection is of the order of a few nanometres. Classical transport theory, which 

deals with macroscopic materials whose dimensions are much larger than the mean free path 

of electrons, is inadequate to describe transport properties at this scale. In macroscopic 

materials, electrons experience a large number of inelastic scattering events during the 

transport. This regime is generally referred to as the diffusive regime [8]. In this regime, due 

to the large number of scattering events, electronic waves are randomized and only their 

amplitude determines the magnitude of the current. Since the amplitude of the electronic 

wave function is related to the number of electrons, transport in the diffusive region is 

determined solely by the number of electrons and their scattering events. 

 

When the dimension of the material becomes comparable to the mean free path of electrons, 

electrons do not experience inelastic scattering. Transport in this regime is termed ballistic 

transport [8]. In this regime, it is essential that the wave nature of the electrons is taken into 

account for the correct treatment of its transport properties. The Landauer-Büttiker 

formalism, which is usually employed for ballistic transport, does that by treating electron 

transport as a scattering event at the interfaces. The current is then calculated from the 

knowledge of the transmission probability across the interfaces. The transmission probability 

appearing in the Landauer-Büttiker method is generally calculated from the transfer matrix 

method [9]  or the green function method [10].  
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Figure 1.4 illustrates the scheme that is used to calculate the ballistic tunnelling current in a 

STM. For the modelling purpose, the STM is divided into two parts: a periodic part which 

consists of the left and the right electrodes, and a defect part which consists of the surface, the 

interface, the adsorbed molecule, the vacuum and the tip.  The electrons propagate in the 

periodic part without scattering. When the electrons encounter the defect, a part is reflected 

while the other are transmitted across the defect. The transmission probability is defined as 

the ratio of the square of the amplitude of the transmitted wave (C) to the square of the 

amplitude of the incoming wave (A).  

 𝑇(𝐸) = 𝐶2/𝐴2 1.2 

 

The model to describe current flow in a MTJ is very similar to the STM model. In this case, 

too, the left and the right electrodes are represented by semi-infinite periodic parts. The only 

difference is that now the defect part is insulating barrier material instead of the tip and the 

adsorbed molecule separated by the vacuum as in the case of the STM.  
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Figure 1.4:  Schematic diagram of an electronic wave scattered by a defect. At the interface, 
a part of the incoming wave with amplitude A is reflected with amplitude B while the rest is 
transmitted with amplitude C. 

1.5 Key challenges addressed in this thesis 

As discussed in the previous sections, all the theoretical tools to study quantum transport at 

the nano-scale are quite well established. However, what Paul Dirac said years ago, “The 

fundamental laws necessary for the mathematical treatment of a large part of physics and the 

whole of chemistry are thus completely known, and the difficulty lies only in the fact that 

application of these laws leads to equations that are too complex to be solved”, remains true 

even in the age of supercomputers.  Over the years, various realistic assumptions and 

approximations have been proposed which have been implemented in various computer 

codes that solve these equations numerically. Still, modeling the sheer complexity of the 

experimental set up and solving it exactly remains out of reach of even the most advanced 

supercomputers. Thus, to understand experimental observations, it becomes necessary that 

we build a simplified model that is able to capture all the essential physics, choose an 

appropriate level of theory and choose the parameters that are able to describe the 

experimental condition faithfully. Finally, the ultimate utility of the simulations lies not in 

reproducing the experimental results but to provide insight into factors responsible for the 

observed experimental behaviour and based on that insight propose experimental conditions 

that will lead to improved performance.  

 

 Above are the key general challenges that the conducted work addresses. To address the 

challenges, first a thorough knowledge of key theories, their applicability and their limitations 

was developed. Also a deeper knowledge of the experiments was acquired with consultation 

with the experimentalists that was the key to modelling the experimental system.  
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1.6  Specific challenges addressed in this thesis 

The specific challenge was to first acquire proficiency in the simulation tools and techniques 

applicable for the current flow at the nano-scale and then application of those tools to provide 

unique insights into experimental observations. 

 

The modeling of current flow at the nano-scale becomes complex mainly due to two reasons 

1) the wave nature of electrons comes into play therefore full quantum mechanical treatment 

is needed to model their behaviour  2) At such a small scale every atom matters and the 

detailed knowledge of their position becomes crucial to properly model the system. As most 

of the time information, about the system geometry is inaccessible experimentally, state-of-

the-art ab-initio calculations are required to arrive at optimized system geometries. 

 

The modeling approach was used to tackle two major systems: 1) STM and 2) MTJ. A STM 

provides one of the most powerful yet a very simple set-up to observe current flow through 

molecules, and surfaces that makes it an ideal system to benchmark theoretical predictions. 

From experiments alone, however, it is not always easy to interpret the observed image even 

in a simple STM set-up. For example, questions like what atoms appear bright?  Is the dark 

spot really a hollow site or some adsorbed atom or molecule? Does the experimental 

observation represent topology or the electronic structure of the system?  In the first part of 

the thesis, the challenge was to benchmark the calculations against the experimental 

observation and also to provide deeper insight into the mechanism leading to the 

experimental observation. The developed insights like role of the electronic structure, 
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adsorption geometry, interfaces would prove very valuable in formulating design rules for the 

nano-devices. 

 

Next, the acquired expertise was utilized to gain insight into more complex system that has 

tremendous industrial application, a MTJ. The highly desirable quality of high TMR ratio of a 

MTJ is somewhat offset by its high resistance. To overcome this limitation, our collaborators 

applied strain to the device which, indeed, resulted in the lowering of its resistance but at the 

expense of the lowered TMR ratio. In this case, the challenge was to find from the theoretical 

consideration reason behind the observed effect.  

 

1.7  Intellectual contribution of this thesis 

The intellectual contribution of this thesis lies in the use of theoretical calculations to provide 

deeper insights into a diverse range of experimental observations for which no intuitive 

explanations were available. In fact, in this study we chose mostly counter-intuitive and/or 

hard-to-interpret experimental observations to test the limits of the theoretical modeling. 

Below we provide a brief discussion of the systems that we studied, the insights and the 

wider implication of the studies. 
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1.7.1 Interpretation of reduced current flow upon CO adsorption on Cu(111) in STM 

tunnel junction 

Based on topological considerations, it would be expected that the presence of a CO molecule 

in the STM tunnel junction would enhance the current flow between the tip and the surface. 

This is indeed the case for CO adsorbed on Pt(111) [11].  

 

Surprisingly, CO adsorbed on Cu(111) reduces the tunnelling current for a range of bias 

voltages [12]. Intrigued by this counter-intuitive observation, we simulated this system using 

an accurate description of the Cu(111) electronic structure, and its interaction with adsorbed 

CO and the tip. Our simulations show that it is the destruction of the surface state by its 

interaction with CO molecular orbitals that is responsible for the reduced current.   

 

1.7.2 Elucidation of the unknown surface structure obtained during thermal annealing 

of MoS2 

Recently, MoS2 has received a lot of attention as promising substrate for creating various 

nano-scale devices. In fact, individual S atoms have been extracted from MoS2 surface by the 

application of pulse voltage [13].  Additionally, Yang et al. [14] showed theoretically that a 

line of S vacancies on MoS2 acts as a conducting channel. In one of the earliest attempts, our 

collaborators used thermal treatment to fabricate nano-wires on MoS2 surface by creating S 

vacancies. Unfortunately, the thermal treatment led to a major reconstruction of the MoS2 

surface. 
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From the Mo-S phase diagram, we determined that the experimental conditions led to the 

reconstruction of MoS2 to Mo2S3. Furthermore, the free energy calculation for a range of 

possible Mo2S3 surface chemical compositions showed that S-rich surface has the highest 

stability under the STM conditions. STM image calculations for the S-rich Mo2S3 surface 

showed a good agreement with the experimental image of the reconstructed surface, 

confirming that the observed structure is indeed the S-rich Mo2S3 surface. Incidentally, in this 

case S atoms which are closer to the tip appear bright while Mo atoms appear dark despite 

contributing most of the states at the Fermi level. In contrast to the previous study, topology 

becomes the deciding factor in this case. 

 

1.7.3 Observation of a reduced TMR ratio but a higher current in a biaxially strained 

MTJ 

The higher TMR ratio of a MTJ consisting of Fe|MgO|Fe is somewhat offset by its higher 

resistance. Our collaborators, therefore, used strain engineering to decrease the resistance of 

Fe|MgO|Fe tunnel junction. True to their expectations, the resistance decreased but the strain 

also decreased the TMR ratio. 

 

To understand the factors leading to this behaviour, we modeled this system using the non-

equilibrium Green’s function (NEGF) formalism coupled with extended Huckel theory 

(EHT). Our simulations show that the conductance increases due to the reduction in the MgO 

barrier thickness as well as barrier height. However, the relative increase in conductance for 

minority channels is much more pronounced because minority states move towards the centre 

of the Brillouin zone where the conductance inside MgO barrier is higher.  
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1.7.4 Observation of anomalous increase in the band gap with thickness in thin MgO 

During our previous study, we observed a counter-intuitive phenomenon of an increase of 

MgO bandgap with thickness for very thin MgO films. Since the bandgap is one of the 

dominant factors deciding the performance of a MTJ, we investigated this phenomenon in 

detail. 

 

We employed state-of-the-art HSE03+G0W0 calculations that accurately predict the MgO 

bandgap. Our calculations show that the band gap increases from 4.52 eV to 5.69 eV when 

the thickness of the MgO films is increased from 1 ML to 5 ML. The increase in the band gap 

arises from changes in the charge transfer from Mg to O ions, and more importantly, from 

changes in the Madelung potential at the site of ions when the thickness of the film increases. 

These two factors oppositely affect the band gap. However, the effect of the Madelung 

potential dominates and leads to an increase in the bandgap with thickness. 

 

1.7.5 Wider implications 

The insight obtained from the study of CO on Cu(111) and of the thickness-dependent MgO 

bandgap could have wider implication in the design of nano-scale devices. During the 

creation of nano-scale devices many unwanted states, i.e., surface states, edge states, might 

appear or their properties might change. These might influence the IV characteristics of 

devices in unforeseen ways. Additionally, the different components of the device might 

interact in unexpected ways leading to further complications in the device IV characteristics. 

Thus the role of the simulation becomes very important to understand and design the nano-

scale devices. 
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The study of the MoS2 phase transformation and of strained MTJs show the importance of 

theoretical modeling in providing understanding of the experimental observation at the nano-

scale. 
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CHAPTER 2 

Modeling ballistic electron transport  

2.1 Introduction 

The development of Landauer formula, which links electron transmission probability to 

current flow, is one of the most important theoretical achievements in the field of quantum 

transport. By relating the current to the transmission probability, the Landauer formula 

provides a conceptual framework to study ballistic conductance in atom scale structures that 

greatly simplifies computations [1]. As a result, the Landauer formula is increasingly being 

applied to study current flow in a variety of atom scale devices. For example, current flow in 

Scanning Tunnelling Microscope (STM), Magnetic Tunnel Junction (MTJ) as well as Giant 

Magneto-Resistance (GMR) devices have been studied with the Landauer formula [2–5].  

 

In this chapter the methodologies used for the calculations in the thesis are described in 

detail. First, the motion of a quantum particle in the presence of a square barrier is described 

to illustrate the tunnelling behaviour and the concept of transmission probability. Thereafter, 

the Landauer formula for current calculations is described in detail. Subsequently, the transfer 

matrix technique [6] and the green function [2] is described which are used to calculate the 

transmission probability for realistic systems.  Next, the extended Hückel method which is 

used in the construction of the Hamiltonian matrix is illustrated. The extended Hückel 

parameters for the description of the constituent’s atoms are calculated by fitting it to 

accurate bandstructure obtained from ab-initio DFT calculation. After that a brief description 

of DFT and various approximations used in its solution is provided. To avoid the 
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underestimation of bandgap associated with DFT calculations [7], many body perturbative 

GW theory is used for the bandgap calculation of semi-conductors and insulators. In the final 

section a brief description of the GW theory is given. 

 

2.2 Quantum Mechanical Tunnelling 

In classical mechanics, a particle can cross a potential barrier only when its total energy is 

greater than the height of the potential barrier.  However, quantum particles have finite 

probability of crossing a potential barrier even when their total energy is less than the height 

of the potential barrier. This phenomenon of particles overcoming a classically 

insurmountable barrier is referred to as quantum mechanical tunnelling. The tunnelling 

behaviour of electrons leads to the tunnelling current which forms the basis of operation for 

various atom scale devices like STM and MTJ. In STM, the image of a surface is formed 

from the tunnelling current between the STM tip and the surface when the tip is scanned over 

the surface. In a TMR device, the change in tunnelling current when the relative 

magnetization of electrodes is reversed forms the basis of its operation. 

 

Because of its technological importance, various methods have been proposed to calculate 

tunnelling probability. The transfer matrix technique [7] and the green function technique [2] 

are two widely used methods which have been employed to study tunnelling in various 

systems. In this thesis, the transfer matrix technique is employed for STM image calculations 

for CO/Cu(111) and for Mo2S3 surface, while the green function is employed for the 

calculation of tunnelling current in MTJ. 

 



18 
 

2.3 Tunnelling probability through a square barrier 

 In this section the analytical solution of a quantum mechanical particle, when it encounters a 

rectangular potential barrier is obtained by solving the Schrodinger equation of the system.  

The particle wave with unity amplitude encounters the potential barrier of height 𝑉0 and 

width 𝑎 at 𝑥 = 0 as shown in Figure 2.1. As a result, a part of the incoming wave is reflected 

with amplitude 𝑟, while the rest is transmitted with amplitude 𝑡. The transmission probability 

for the particle, the ratio of the square of the amplitude of the transmitted wave to the incident 

wave, is calculated by solving the Schrodinger equation of the system  

 �−
ℏ

2𝑚
𝑑2

𝑑𝑥2
+ 𝑉(𝑥)�Ψ(𝑥) = 𝐸Ψ(𝑥)  2.1 

   
Where ℏ is reduced Planck’s constant, 𝑚 is mass, 𝐸 is energy of the particle and 𝑉(𝑥) is the 

barrier potential which is 𝑉0 for 0 ≤ 𝑥 ≤ 𝑎  and 0 for all other values of 𝑥. Since the potential 

within a given region remains constant, the wave function in each region is expressed as free 

particle wave 

 𝜓𝐿(𝑥) = 𝑒𝑖𝑘0𝑥 +  𝑟𝑒−𝑖𝑘0𝑥 ,𝑥 < 0 

𝜓𝑐(𝑥) = 𝐵𝑟𝑒𝑖𝑘1𝑥 + 𝐵𝑙𝑒−𝑘1𝑥, 0 < 𝑥 < 𝑎, 

𝜓𝑅(𝑥) = 𝑡𝑒𝑖𝑘0𝑥,𝑥 > 𝑎 

2.2 

   

Where 𝐵𝑙 and  𝐵𝑟   represent the transmitted and the reflected amplitude at the left barrier. The 

transmission probability, when the energy is less than the barrier height, 𝐸 < 𝑉0 is given by 

 𝑇 = |𝑡|2 =
1

1 + 𝑉02𝑆𝑖𝑛ℎ2(𝑘1𝑎)
4𝐸(𝑉0 − 𝐸)

 
2.4 
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Thus it is clear from the above expression that there is a finite transmission probability when 

the particle energy is less than the height of the potential barrier. The transmission probability 

for both the quantum mechanical and the classical particles are plotted in Figure 2.2. For 

classical particles the probability is zero (one) when the barrier height is more (less) than the 

particle energy. However, in the quantum case there is a finite probability for the particle 

transmission, even when the particle energy is less than the barrier height. Interestingly when 

the particle energy is more than the barrier height the transmission probability becomes 1 

only for certain particle energies called the resonance energies.    

 

Figure 2.1 : A particle wave of unit amplitude encounters a potential barrier at 𝑋 = 0 with 
height 𝑉0 and width 𝑎. A part of it is reflected with amplitude 𝑟 while the rest is transmitted 
with amplitude 𝑡. 
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Figure 2.2 : Transmission probability for a finite potential barrier for �2mV0a/ℏ = 7. 
Classical results have been shown by dashed line and quantum mechanical results have been 
shown by solid line. 

 

2.4 Landauer formula for current calculation 

The origin of the Landauer formula can be understood by considering current flow between 

two reservoirs connected by a thin wire through two leads at their ends as shown in Figure 

2.3. When a small bias voltage (𝑉) is applied then the Fermi level of the reservoirs shifts such 

that 𝐸𝑓1 − 𝐸𝑓2 = 𝑒𝑉.  

 

 

 

Figure 2.3. Schematic diagram of 1D system used in the derivation of the Landauer formula 
showing a quantum wire connecting two reservoirs through two leads. 

 

As a result of the potential imbalance, a current flow is established through the wire whose 

magnitude is proportional to the number of electron in the given energy window (𝑒𝑉) 

multiplied by their respective velocity(𝑣). For small bias the number of electrons 

participating in the current flow is given by density of states times the difference in the Fermi 

levels of the two reservoirs. For such case, the expression for the current becomes 

 𝐼 = 𝑒[𝑛1𝐷(𝐸)𝑒𝑉]𝑣(𝐸) 2.5 

   

The velocity 𝑣(𝐸) appearing in the above equation can be calculated from the knowledge of 

the electronic structure of the leads. For that electronic wave packets, which are formed from 

Quantum wire 
Reservoir Reservoir 

 Lead Lead 
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the superposition of the waves with nearly identical wave vectors, are considered as given 

below  

 𝜓(𝑥, 𝑡) ∝ � 𝑐(𝑘)𝑒𝑖[𝑘𝑥−𝜔𝑡]
𝑘+Δ𝑘2

𝑘−Δ𝑘2

𝑑𝑘   2.6 

   

Such electronic wave packets travel with group velocity 𝑣𝑔 given by 

 𝑣𝑔 =
𝜕𝜔
𝜕𝑘

 2.7 

   

For the 1d case the group velocity is given by 

 𝑣𝑔 =
2

𝜋ℏ𝑛1𝐷
 2.8 

   

Putting the above value of the group velocity in equation 2.5 we get the expression for the 

current  

 𝐼 =
2𝑒2

ℎ
𝑉 2.9 

   

In the above expression it is assumed that the wire does not provide any resistance and all the 

electrons coming from the left reservoir are transmitted to the right reservoir. In practice, 

however a part of the electrons are reflected at the interface. To account for that in the current 

calculation the current value in the above equation is multiplied by the transmission 

coefficient 𝑇(𝐸) and the current for such case is given by 

 𝐼 =
2𝑒2

ℎ
𝑇(𝐸)𝑉 2.10 
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The current, when the leads have more than one channel as shown in Figure 2.4, can be 

calculated by summing up the contribution due to each of those channels. It is important to 

note that a given channel (𝑗) on the right receives an electron from a channel 𝑖 on the left 

with a probability 𝑇𝑖𝑗. The total current for this case is given by summing up contribution due 

to each channel 𝑗 on the left which in turn receives contribution from every channel 𝑖 on the 

right resulting in the double summation as given below.  

 𝐼 =
2𝑒2

ℎ
�𝑇𝑖𝑗(𝐸𝐹)
𝑖,𝑗

𝑉 2.11 

 

Figure 2.4: A multichannel system S. A unit current in channel 𝑖 is transmitted into 𝑗 with 
probability Tij and reflected into channel j with probability Rij. Both indices i and j run from 1 
to 𝑁. 

When a finite bias voltage is applied then the energy levels shifts as shown in Figure 2.5. To 

account for that the current 𝐼 is calculated by integrating in the applied bias range. This gives 

 𝐼(𝑉) =
𝑒
ℎ
� �𝑇𝑖𝑗�𝐸 + 𝐸𝑓�𝑑𝐸

𝑖𝑗

−𝑒𝑉

0
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Figure 2.5: Shift in the chemical potential of the left and the right lead channels upon the 
application of a bias voltage 𝑉.  

 

In the next two sections methods for the calculation of the transmission probability appearing 

in the Landauer formula is described in detail. 

 

2.5 Green function approach for the transmission probability 

The Green function for a system with Schrodinger equation 𝐻|𝜓〉 = 𝐸|𝜓〉 is given by 

 (𝐸 − 𝐻 + 𝑖𝜂)𝐺(𝐸) = 𝐼 2.12 

   

where 𝐺(𝐸) is the Green function of the system and 𝜂 is an infinitesimally small number. For 

a given system, two Green functions exists depending on whether a positive or negative value 

of 𝜂 is used in the calculation of the Green function. For positive 𝜂, the Green function is 

termed the retarded Green function (𝐺), while for negative 𝜂, the Green function is termed as 

the advanced Green function (𝐺†).  

 



24 
 

Knowledge of the Green function for a given system allows us to find its response under a 

constant perturbation |𝑣〉.  

 𝐻|𝜓〉 = 𝐸|𝜓〉 + |𝑣〉 2.13 

   

The response to perturbation �|𝑣〉 is 

 
(𝐸 − 𝐻)|𝜓〉 =  −|𝑣〉 → 

                    |𝜓〉 = −𝐺(𝐸)|𝑣〉 
2.14 

   

Thus, from the above equation it is evident that the wave function of a given system under the 

influence of a perturbation |𝑣〉 is given by the Green function of the unperturbed system 𝐺(𝐸) 

multiplied by the perturbation |𝑣〉. It is also possible to calculate the wave function of an 

unperturbed system (|𝜓〉) from the knowledge of the advanced and the retarded green 

function under any perturbation |𝑣〉.  

 |𝜓〉 = 𝐴|𝑣〉 2.15 

   

where 𝐴 is called the spectral function and is defined as  

 𝐴 = 𝑖(𝐺 − 𝐺†) 2.16 

   

This becomes evident, when we consider the two solutions of the Schrodinger equation, 

|𝜓𝑅〉 and |𝜓𝐴〉, obtained from the advanced and the retarded Green function upon the 

application of a perturbation |𝑣〉. 

 |𝜓𝑅〉 = −𝐺|𝑣〉 2.17 

 |𝜓𝐴〉 = −𝐺†|𝑣〉 2.18 
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By operating 𝐴|𝑣〉 on the Hamiltonian (𝐸 − 𝐻) we find 

 

 
(𝐸 − 𝐻)𝐴|𝑣〉 = (𝐸 − 𝐻)(𝐺 − 𝐺†)|𝑣〉 = (𝐼 − 𝐼)|𝑣〉 = 0 2.19 

The real advantage of the Green function method lies in the study of large systems. Such 

systems can be studied by dividing them into smaller subsystems resulting in large saving in 

the computational cost. For example, to study the current flow in a STM tunnel junction or a 

MTJ, the system is divided into three subsystems: the left periodic part, the defect part, and 

the right periodic part. The current is then determined from the modified Green function of 

the defect.  The modified Green function takes into account the effect due to the presence of 

the left and the right periodic part. The origin of the modified green function can be 

understood by considering the Green function of the whole system. 

 �
𝐸 −𝐻1 −𝜏1 0
−𝜏1

† 𝐸 − 𝐻𝑑 −𝜏2
†

0 −𝜏2 𝐸 − 𝐻2
��

𝐺1 𝐺1𝑑 𝐺12
𝐺𝑑𝑎 𝐺𝑑 𝐺𝑑2
𝐺21 𝐺2𝑑 𝐺2

� = �
𝐼 0 0
0 𝐼 0
0 0 𝐼

� 2.20 

   

where 𝐺 denotes the full Green’s function and 𝐺𝑖𝑗 denotes the Green’s function of its sub-

matrices, 𝐻1,𝐻2 and 𝐻𝑑 represents the Hamiltonian of the left periodic part, right periodic 

part, and the defect, while 𝜏1 and 𝜏2 represent the interaction between the left periodic part 

and the defect, and right periodic part and the defect, respectively.  

 

To find the Green function of the defect, the three equations in the second column are 

selected 

 (𝐸 − 𝐻1)𝐺1𝑑 − 𝜏1𝐺𝑑 = 0 2.21 
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 −𝜏1
†𝐺1𝑑 + (𝐸 − 𝐻𝑑)𝐺𝑑 − 𝜏2

†𝐺2𝑑 = 𝐼 2.22 

 (𝐸 − 𝐻2)𝐺2𝑑 − 𝜏2𝐺𝑑 = 0 2.23 

   

 

From equation 2.21 and 2.23 𝐺1𝑑  and 𝐺2𝑑 are calculated to have the following form 

 𝐺1𝑑 = 𝑔1𝜏1𝐺𝑑 2.24 

 𝐺2𝑑 = 𝑔2𝜏2𝐺𝑑 2.25 

   

where 𝑔𝑖’s are the green function of the isolated contacts, e.g., (𝐸 − 𝐻𝑖)𝑔𝑖 = 𝐼. Substituting 

the value of 𝐺1𝑑 and 𝐺2𝑑 in equation 2.22 and solving for 𝐺𝑑 we obtain 

 𝐺𝑑 = (𝐸 − 𝐻𝑑 − Σ1 − Σ2)−1 2.26 

   

where Σ1 = 𝜏1
†𝑔1𝜏1 and Σ2 = 𝜏2

†𝑔2𝜏2 are called the self energies, which take into account the 

effect of the left and the right periodic part on the defect green function. 

 

The self energies Σ𝑖 appearing in the above equation can be expressed as a sum of real and 

imaginary part. For Σ1 the values are given by 

 Σ𝐻1(𝐸) =
1
2

 [Σ1(𝐸) + Σ1
†(𝐸)] 2.27 

 Γ1(𝐸) =  𝑖[Σ1(𝐸) − Σ1
†(𝐸)] 2.28 

   

Physically, Σ𝐻 and Γ1 represents the correction to the Hamiltonian (shift in the energy level) 

and the broadening of the levels due to the presence of contacts. 
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Once the value of 𝐴𝑖 and Γ𝑖 are known, the transmission probability is calculated from the 

relation [10] 

 𝑇(𝐸) = 𝑇𝑟𝑎𝑐𝑒(Γ1𝐴2) = 𝑇𝑟𝑎𝑐𝑒(Γ2𝐴1) 2.29 

   

2.6 Transfer Matrix Technique for the transmission probability 

The transmission probability can also be calculated using the Elastic Scattering Quantum 

Chemistry (ESQC) approach developed by Sautet and Joachim [6], which incorporates the 

transfer matrix technique [11].  To apply this technique, the barrier is assumed to form a 

defect in otherwise periodic system. When travelling waves encounter this defect, a part of 

the wave is reflected back while the rest is transmitted to the other side. This is shown 

schematically in Figure 2.6, where the amplitude of the incoming waves is modified due to 

reflection and transmission when they come out of the defect.  

 

Figure 2.6: Schematic diagram showing the amplitude of the incoming (A, D) and outgoing 
(B, C) wave when waves traveling in a periodic lattice encounter a defect. 

 

The relationship between the left and the right wave amplitudes is given by the transfer 

matrix, T(E):  

 �𝐶𝐷� = 𝑇(𝐸) �𝐴𝐵� 2.30 
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where 𝐴,𝐵,𝐶, and 𝐷 are the amplitudes of the various waves as shown in the Figure 2.6. 

Symmetry considerations dictate that the transfer matrix has the following form:  

 𝑇(𝐸) = �
𝐹(𝐸) 𝐺∗(𝐸)
𝐺(𝐸) 𝐹∗(𝐸)� 2.31 

   

The transmission probability, 𝑡(𝐸), for this system is calculated to have the following form: 

 
𝑡(𝐸) =

|𝐶|2

|𝐴|2 2.32 

   

2.6.1 A simplified case – one atomic orbital per cell 

A model for a simple 1-D wire is shown in Figure 2.7 as an example. In the figure, e and 𝜔 

are the energy levels of the periodic and the defect part, respectively. h, α and β are the 

coupling between the periodic parts, between the periodic part on the left and the defect, and 

between the defect and the periodic part on the right, respectively.  

Figure 2.7: Tight binding model of 1-D linear periodic chain with defect embedded in it. The 
energy level of defect, and periodic part is 𝜔 and e, respectively.  The coupling constant 
between the defect, and the left and right periodic part is 𝛼 and 𝛽 respectively while for 
coupling between atoms of the periodic part its value is h. 

 

The wavefunction of the entire system (|Ψ(E)〉) is represented by a linear combination of the 

atomic orbitals (|𝑠𝑛〉) of the constituent atoms.  
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 |Ψ(𝐸)〉 = �𝐶𝑛(𝐸)|𝑠𝑛〉
𝑛

 2.33 

   

In the transfer matrix technique, the coefficients on the consecutive cell are calculated from 

the knowledge of the propagator matrix, P(E). For example, vector  𝑅𝑛 

 𝑅𝑛 ≡ � 𝐶𝑛𝐶𝑛−1
� 2.34 

   

is related to vector 𝑅𝑛+1  

 
𝑅𝑛+1 = 𝑃𝑅𝑛;  𝑛 ≠  −1, 0, 1 

𝑅2 = 𝑃0𝑅−1 
2.35 

   

where 𝑃 is the elementary propagator along the chain, and 𝑃0 is the propagator through the 

defect. The propagators are calculated by solving the Schrodinger equation of the system and 

for this sample 1D case in Figure 2.7 their values are given by  

 𝑃 = �
𝐸 − 𝑒
ℎ

−1

1 0
� 2.36 

   

 𝑃0 = �
𝐸 − 𝜖2
ℎ

�−
Γ
ℎ
�

1 0
� �
𝐸 − 𝜖1

Γ
�−

h
Γ
�

1 0
� 2.37 

   

where ϵ1 = e + α2

(E−ω)
,  𝜖2 = 𝑒 + 𝛽2

𝐸−𝜔2  and Γ = 𝛼𝛽
𝐸−𝜔

  .The coefficients 𝐶−𝑛,𝐶−(𝑛−1) on the far 

left of the defect are related by the coefficient 𝐶𝑛−1,𝐶𝑛 on the far right by the relation 
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 𝑅𝑛 = 𝑃𝑛−2𝑃0𝑃𝑛−2𝑅−(𝑛−1) 2.38 

   

In order to define the transfer matrix of the system, the coefficients on the far left and the far 

right are expressed in terms of the amplitude of the incoming and the outgoing wave at the 

left and the right side of the defect. This is achieved by the application of the Bloch theorem 

in the left and the right periodic part assuming the contact to be perfect. The required 

relationships are given by 

 
𝐶𝑛 = 𝐴𝑒𝑖𝑛𝜃 + 𝐵𝑒−𝑖𝑛𝜃          𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑛 

𝐶𝑛 = 𝐶𝑒𝑖𝑛𝜃 + 𝐷𝑒−𝑖𝑛𝜃         𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑛 
2.39 

   

Using matrix notation, the above equations are written as 

 �𝐶−𝑛−1𝐶−𝑛
� = �𝑒

−𝑖(𝑛−1)𝜃 𝑒𝑖(𝑛−1)𝜃

𝑒−𝑖𝑛𝜃 𝑒𝑖𝑛𝜃
� �𝐴𝐵� 

2.40 

   

 � 𝐶𝑛𝐶𝑛−1
� = � 𝑒𝑖𝑛𝜃 𝑒−𝑖𝑛𝜃

𝑒𝑖(𝑛−1)𝜃 𝑒−𝑖(𝑛−1)𝜃� �
𝐶
𝐷� 

2.41 

 

By defining  𝑈𝑛,𝑛−1 

 𝑈𝑛,𝑛−1 = � 𝑒𝑖𝑛𝜃 𝑒−𝑖𝑛𝜃
𝑒𝑖(𝑛−1)𝜃 𝑒−𝑖(𝑛−1)𝜃� 2.42 

   

 the above equations can be written compactly as 

 

𝑅−(𝑛−1) = 𝑈(−(𝑛−1),−𝑛) �
𝐴
𝐵� 

𝑅𝑛 = 𝑈(𝑛,𝑛−1) �
𝐶
𝐷� 

2.43 

   



31 
 

The transfer matrix, the relationship between the vectors �CD� and �AB�, is then obtained by 

substituting the value of 𝑅𝑛 and 𝑅−(𝑛−1) from equation 2.43 in equation 2.38. After some 

algebraic simplifications, the expression for the transfer matrix becomes 

 𝑇(𝐸) = 𝑈2,1
−1𝑃0𝑈−1,−2 2.44 

   

As mentioned before the final form of the transmission matrix is  

 𝑇(𝐸) = �𝐹(𝐸) 𝐺∗(𝐸)
𝐺(𝐸) 𝐹∗(𝐸)� 2.45 

   

Which gives the value of transmission probability to be 

 𝑡 =
1

|𝐹|2 2.46 

   

2.6.2 The general case – several orbital per cell 

In the general case, a  cell A located at the nth site of the periodic part is described by N 

atomic orbital, { �|𝑠𝑛𝑖〉, 𝑖 = 1,𝑁} while the defect cell B is described by N0 atomic orbitals, 

{ �|𝑠0𝑖〉, 𝑖 = 1,𝑁0}. 

 

The wave function for the above system in the tight binding approximation is given by 

 �|𝜓〉 = � �𝐶𝑛𝑖�|𝑠𝑛𝑖〉
𝑁

𝑖=1

+∞

𝑛=−∞
𝑛≠0

+ �𝐶0𝑖�|𝑠0𝑖〉
𝑁0

𝑖=1

 2.47 

 
 

𝜓𝑛 = �
𝐶𝑛1
⋮

𝐶𝑛𝑁
� 2.48 
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The propagator 𝑃 in this case, too, relates the coefficients on the adjacent cells, more 

specifically it relates 𝑅𝑛 to 𝑅𝑛+1 where 𝑅𝑛 = � 𝜓𝑛𝜓𝑛−1
�  and 𝜓’s are column vectors of 

coefficients of a given cell  

 𝜓0 = �
𝐶01
⋮

𝐶0𝑁0
� 2.49 

   

𝑅𝑛 for different values of 𝑛 are related by propagator 𝑃 through the relation given below  

  𝑅𝑛+1 = 𝑃𝑅𝑛 𝑓𝑜𝑟 |𝑛| > 0   2.50 

 𝑅2 = 𝑃0𝑅−1 2.51 

   

From the above two equations 𝑅𝑁 on the far left is found to be related to 𝑅−(𝑁−1) on the far 

right by  

 𝑅𝑁 = 𝑃𝑁−2𝑃0𝑃𝑁−2𝑅−(𝑁−1) 2.52 

   

In order to find the propagative channels, the channels that facilitates the electron on the far 

left of the barrier to travel to the far right of the barrier, the above equation is converted into 

eigenbasis of 𝑃 

 𝑉𝑁 = 𝐷2𝑁−3𝑉−(𝑁−1) 2.53 

   

Where 𝐷 = 𝑈−1𝑃𝑈 is the diagonal form of 𝑃 and 𝑉𝑁 = 𝑈−1𝑅𝑁. The boundary condition on 

the vector of coefficients 𝑅𝑁 dictates that its norm ‖𝑅𝑁‖ should remain bounded. This is 

achieved by grouping the eigenvalues of 𝑃 in pairs of the form �𝜆, 1
𝜆
� and choosing the 
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similarity matrix 𝑈 such that first 2𝑁0 elements of 𝐷 are eigenvalues of 𝑃 of moduli 1. Since 

only the first 2𝑁0 elements satisfy the criteria for the propagative channel, the corresponding 

vector of coefficient 𝑉𝑛 has the form   

 𝑉𝑛 = �

𝑥𝑛
𝑦𝑛
0
0

� 2.54 

   

Similar to the case of 1 orbital per cell, the coefficients of the far left and the far right are 

expressed in terms of the amplitude of the incoming and the outgoing wave at the left and the 

right side of the defect using Bloch theorem. Unlike the previous case, the amplitudes 

𝐴,𝐵,𝐶and 𝐷 are are column vectors whose 𝑖𝑡ℎ elements is related to the 𝑖𝑡ℎ element of the 𝑥𝑛 

and 𝑦𝑛 by 

 �𝑥−(𝑁− 1)�𝑖 = 𝐴𝑖𝑒−𝑖𝑁𝜃𝑖  2.55 

 �𝑦−(𝑁− 1)�𝑖 = 𝐵𝑖𝑒+𝑖𝑁𝜃𝑖  2.56 

 (𝑥𝑁)𝑖 = 𝐶𝑖𝑒−𝑖𝑁𝜃𝑖  2.57 

 (𝑦𝑁)𝑖 = 𝐷𝑖𝑒−𝑖𝑁𝜃𝑖  2.58 

   

The transfer matrix 𝑇 is obtained by substituting the value of 𝑥 and 𝑦 in terms of 𝐴 and 𝐵. For 

this case, too, the transfer matrix 𝑇 is found to have the same form as 1 orbital per cell case. 

 𝑇 = �𝐹 𝐺∗
𝐺 𝐹∗� 

2.59 

   

The transmission coefficient is then calculated to have the value  

 𝑡 = 𝑇𝑟(𝜏𝜏+) 2.60 

   



34 
 

Where  

 𝜏 = 𝐹∗−1𝐺∗ 2.61 

   

2.7 Extended Hückel Theory 

2.7.1 Introduction 

One of the powerful method to solve the Schrödinger equation  

 𝐸Φ(𝒓�⃗ ) = 𝐻�Φ(𝒓�⃗ ) 2.62 
   
is through the use of basis functions. In this method, the unknown wave function Φ(𝒓�⃗ ) is 

expressed as a sum of known functions 𝑢𝑚(𝒓�⃗ ) with unknown coefficients 𝜙𝑚 as given below 

 Φ(𝒓�⃗ ) = � ϕmum(𝒓�⃗ )
M

m=1

 2.63 

   
The use of basis function allows us to turn Schrödinger equation into a linear equation. This 

is achieved by first substituting the value of Φ(𝒓�⃗ ) into the Schrödinger equation to give 

 𝐸�𝜙𝑚𝑢𝑚(𝒓�⃗ ) = �𝜙𝑚𝐻�𝑢𝑚(𝒓�⃗
𝑚𝑚

) 2.64 

   
Multiplying both sides of the above equation by 𝑢𝑛∗ (𝒓�⃗ ) and integrating over all 𝒓�⃗  gives 

 𝐸�𝑆𝑛𝑚𝜙𝑚 = �𝐻𝑛𝑚𝜙𝑚
𝑚𝑚

 2.65 

   
For each 𝑛 the above equation gives a distinct linear equation. All such equations can be 

written compactly by using matrix notation 

 𝐸[𝑆]{𝜙} = [𝐻]{𝜙} 2.66 
   
Where {𝜙} is a column vector consisting of unknown coefficients  

 {𝜙} = �
𝜙1
⋮
𝜙𝑀

� 2.67 
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and [𝐻] and [𝑆] are known as Hamiltonian and Overlap matrix whose  𝑛𝑚𝑡ℎ elements  are 

given by 

 𝑆𝑛𝑚 = �𝑑𝒓�⃗ 𝑢𝑛∗ (𝒓�⃗ )𝑢𝑚(𝒓�⃗ ) 2.68 

   
And 

 𝐻𝑛𝑚 = �𝑑𝒓�⃗ 𝑢𝑛∗ (𝒓�⃗ )𝐻�𝑢𝑚(𝒓�⃗ ) 2.69 

   
In this method, the most time consuming part is the determination of the Hamiltonian and 

overlap matrix elements. The empirical methods avoid this time consuming step by 

determining the matrix elements from empirical rules as opposed to ab-initio calculations 

where they are calculated using equation 2.70 

 

One of the widely used Semi-empirical method and also used in this thesis is the Extended 

Hückel Theory (EHT) [12]. In the EHT the elements of the Hamiltonian matrix are 

determined empirically as described below. The diagonal elements (𝐻𝑖𝑖) are set equal to the 

valence orbital ionization potentials (VOIP). The off-diagonal elements are approximated by 

the Wolfsberg-Helmholz formula [13].  

 𝐻𝑛𝑚 =
1
2
𝐾𝑆𝑛𝑚(𝐻𝑛𝑛 + 𝐻𝑚𝑚) 2.70 

   
Where 𝐾 is a constant whose value is usually taken to be 1.75, 𝑆𝑛𝑚 is overlap between atomic 

orbital 𝑛 and 𝑚, and 𝐻𝑛𝑚  is the 𝑛𝑚𝑡ℎ element of the Hamiltonian matrix.  
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The overlap matrix elements on the other hand are calculated exactly using equation 2.68. 

The basis function appearing in the above equation are taken to be Slater type atomic orbitals 

which are given by 

 𝑆𝑛𝑙𝑚
𝜁 (𝑟,𝜃,𝜑) = 𝑁𝑟𝑛−1𝑒−𝜁𝑟𝑌𝑙𝑚(𝜃,𝜑) 2.71 

   
Where 𝑁 is the normalization constant, 𝑛 is principal quantum number of the orbital, 𝜁 is the 

orbital exponent that determines the diffuseness of a given orbital, and 𝑌𝑙𝑚(𝜃,𝜑) are the 

spherical harmonics that represent the angular part of the orbital.  

 

2.7.2 Optimization of EHT parameters 

The treatment of systems with large unit cells such as encountered in STM image calculations 

poses a big challenge because of their high computational needs. As a result, such systems 

are often studied using semi-empirical methods. Over the years, EHT has become the method 

of choice to treat such systems because of the several advantages it offers: 

i) Simplicity and chemical insight  

ii) Natural scaling laws for the interaction between atomic orbitals 

For the application of this theory, it is, however, important that the chosen parameters are 

able to describe the electronic properties of the system under study. Generally this condition 

is fulfilled by deriving parameters from a fit to an accurate electronic bandstructure obtained 

either from ab-initio calculations or experiment.  
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In this thesis, we used the parameterization scheme developed by Cerda et al. [12] because of 

the several advantages it offers 

i) Systematic way to search for the optimal value of the parameters  

ii) Limited number of parameters that requires fitting without comprising the 

accuracy 

iii) Transferability of the parameters across different geometries and different 

chemical environments 

 

In the parameterization scheme by Cerda et al. [12] the value of 𝐾 appearing in equation 

2.70, when atomic orbitals  𝛼 and 𝛽 are centred on two different atoms 𝑖 and 𝑗 is given by 

 𝐾𝛼𝑖,𝛽𝑗 = 𝐾𝐸𝐻𝑇 × (𝐸𝛼𝑖 + 𝐸𝛽𝑗)/2 2.72 

   

In the above formula the strength of the Hamiltonian matrix element is weighted by the mean 

value of the on-site energy, a shift in on-site energy of the atoms does not result in an 

equivalent shift in the energy of the EHT-bands. Therefore, to avoid any ambiguity in the 

energy scale, the Fermi level of the metals have been fixed to -10 eV while for semi-

conductors this has been fixed to -13 eV.  Additionally, the value of the constant 𝐾 has been 

chosen to be 2.3 as it consistently provides a better fit for all elements. 
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The parameter optimization is carried out by searching for the variables which minimize the 

root mean square deviation between the EHT band and the accurate band using the conjugate 

gradient method. For cases where there is a lack of good initial set of parameters, the 

algorithm utilizes simulated annealing optimization techniques.  

 

As noted above basis function appearing in EHT are Slater-type orbitals. In this thesis a 

minimal Slater spd orbital basis set where each orbital is represented by a double 𝜁 Slater 

atomic orbital has been employed. As a result we have 12 unknown variables per element, 3 

onsite energy [𝐸𝑠, 𝐸𝑝 and 𝐸𝑑], 2 orbital exponents [𝜁1𝑎𝑛𝑑 𝜁2 ] and the coefficient of the 

former (𝑐1) per 𝑙 quantum number. The coefficient of the latter is determined by imposing the 

normalization condition on the wavefunction.  

 1 = � 𝑐1𝜓𝜁1𝑑𝜏 
∞

0
+ � 𝑐2𝜓𝜁2𝑑𝜏 

∞

0
 2.73 

   

In the Cerda parameterization scheme, it is found that a very good description of  𝑠 and 𝑝  

orbitals of the transition metals is found by simply setting 𝜁2 to a large value, i.e.  𝜁2 > 20. 

Since such a large value of the orbital coefficient leads to highly localized orbitals, these 

values are omitted. However, their implicit presence cause the coefficient 𝑐1to assume values 

smaller than 1 because of the normalization condition. 

 

2.8 Density Functional theory 

2.8.1 Introduction 
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The Hamiltonian of a system with 𝑁 electrons, in atomic units, is given by 

 𝐻� = �[−
1
2
∇𝑖2 + 𝑣(𝒓�⃗ 𝒊

𝑁

𝑖=1

)]  +
1
2
��

1
|𝒓�⃗ 𝑖 − 𝒓�⃗ 𝑗|

+ 𝑉𝑛𝑛
𝑖≠𝑗𝑖

 2.74 

   

where 𝑣(𝒓�⃗ 𝑖) is the external potential arising from the interaction between electrons and nuclei 

and 𝑉𝑛𝑛 is the electrostatic potential among nuclei. The computation of the eigenfunctions of 

𝐻�, a function of 3N arguments, presents a major obstacle in the study of large systems. Kohn-

Sham [14-16] proved that the ground state properties can be calculated by solving self-

consistently, one electron Schrodinger equation containing 𝑁 orbitals 𝜓(𝑟𝑖), a function of 

only 3 variables 

 �−
1
2
∇2 + 𝑣(𝒓�⃗ ) + ∫

𝑛(𝒓�⃗ ′)
|𝒓�⃗ ′ − 𝒓�⃗ |𝑑𝒓

�⃗ ′ +
𝛿𝐸𝑥𝑐
𝛿𝑛(𝒓�⃗ )

�𝜓𝛼(𝒓�⃗ ) = 𝜖𝛼𝜓𝛼(𝒓�⃗ ) 2.75 

   

Where 𝐸𝑥𝑐 is the exchange-correlation energy that accounts for the exchange and the 

correlation energy missed in the one electron picture. 

 

2.8.2 Overview of the approximations 

Even with this simplification, the solution of the Kohn-Sham equation remains formidable. 

Further simplification is achieved by approximating exchange-correlation functional, using 

pseudopotential theory to model ion-electron interactions and special k-point integration 

schemes to obtain the expectation values of the desired properties. A brief discussion of all 

the issues is provided below 
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2.8.2.1 Exchange-correlation functional 

The density functional theory derives its usefulness from the fact that simple approximations 

for the functional 𝐸𝑥𝑐 provide a good description of real systems. Also, the possibility of 

further refinement opens the door to reach the higher level of accuracy. The general 

expression for 𝐸𝑥𝑐 is given by 

 𝐸𝑥𝑐 = ∫ 𝑛(𝒓�⃗ )𝜖𝑥𝑐(𝑛, 𝒓�⃗ )𝑑𝒓�⃗  2.76 

   

where 𝜖𝑥𝑐 is exchange-correlation energy per electron. 

There exists a hierarchy of approximations for 𝜖𝑥𝑐 that employ increasingly realistic 

approximation. At the lowest level is the local density approximation (LDA) which uses only 

the local electron density to construct this functional. The next level is called the generalized 

gradient approximation (GGA) and uses the density gradient in addition to the local electron 

density. Even more sophisticated functionals are constructed using the Kohn-Sham orbital 𝜓𝛼 

in the vicinity of volume element 𝑑𝒓�⃗ . In general, each additional term leads to additional 

constraints being satisfied and hence better description of the system. One such constraint 

arises because of the electron number conservation, the Pauli exclusion principle and 

Coulomb repulsion whereby each electron finds itself surrounded by a hole whose density 

satisfy the following sum rule 

 ∫ 𝑛𝑥𝑐(𝒓�⃗ ,𝒓�⃗ ′)𝑑𝒓�⃗ ′ = −1 2.77 

   

a) Local density approximation 
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In the local density approximation [14], the exchange energy is given by 

 𝐸𝑥𝑐 = ∫ 𝑛(𝒓�⃗ )𝜖𝑥𝑐
𝑢𝑛𝑖𝑓(𝑛, 𝒓�⃗ )𝑑𝒓�⃗  2.78 

   

where 𝜖𝑥𝑐
𝑢𝑛𝑖𝑓 is the exchange correlation energy per particle of an electron gas with uniform 

spin density 𝑛(𝒓�⃗ ) which is known accurately. For solid and solid surfaces LDA works 

surprisingly well. Confirming that actual electron density in such systems is very well 

described by uniform electron gas. Interestingly, LDA works better as a whole then when it is 

used to estimate 𝐸𝑥 and 𝐸𝐶, separately. The opposite nature of the non locality of the 

exchange and the correlation energy leads to cancellation of the errors when they are 

approximated in similar fashion [17]. 

 

The application of LDA to atoms and molecules leads to reasonable molecular geometries 

and the vibrational frequencies but their atomization energy is grossly overestimated [18]. 

 

b) Generalized Gradient Approximation 

In the generalized gradient approximation (GGA), the exchange energy is given by 

 𝐸𝑥𝑐 = ∫ 𝑛(𝒓�⃗ )𝜖𝑥𝑐
𝑢𝑛𝑖𝑓(𝑛, 𝒓�⃗ ,∇𝑛(𝒓�⃗ ))𝑑𝒓�⃗  2.79 

   

There are quite a few different types of GGA which differ in how they employ the charge 

density and the gradient to construct the functional. 
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The second-order gradient correction approximation (GE2) [14] results from incorporating 

the leading correction in LDA in systems where the spin density varies slowly in space. 

For realistic densities, application of GE2 leads to serious overcorrection to LDA. For 

instance, the negative correlational energies of atoms in LDA become improperly positive 

[19]. The worse performance of GE2 compared to LDA for realistic densities arises as it 

violates the sum rule [20].  

The PBE GGA functional [21] form satisfies the sum rule as well as the negative definite 

exchange hole condition. As a result PBE functional provides an accurate description of the 

binding energies compared to the LDA energies. 

 

2.8.2.2 Pseudopotential theory 

Pseudopotential theory [22] allows us to substitute the strong electron ion potential with a 

much weaker potential, known as the pseudopotential that reproduces all the major features 

of a valence electron in a solid. Since, in a weaker potential, wave function oscillation is 

reduced, a relatively small set of plane waves are needed in the expansion of the wave 

function which simplifies the solution of the Schrodinger equation considerably. One of the 

biggest drawbacks of the pseudopotential method is that all the information about the 

wavefunction is lost in the vicinity of the nuclei. The Projector augmented-wave (PAW) [23] 

method avoids this without being computationally intensive. It does that by transforming the 

physical wave function 𝜓(𝒓�⃗ ), into a smooth auxiliary wave function 𝜓� (𝒓�⃗ ), that is easily 

represented in a plane wave expansion  
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 𝜓�(𝒓�⃗ ) = 𝑢�𝜓(𝒓�⃗ ) 2.80 

   

The Schrodinger equation is then solved in the transformed space and the properties of the 

system are obtained by appropriately transforming the values obtained in the transformed 

space. 

PAW calculations improve magnetization energies. They also lead to better   description of 

alkali, alkaline earth and early transition metal geometry description [24]. 

 

2.8.2.3 K-point integration scheme 

The translational symmetry gives rise to a quantum number 𝑘�⃗ , known as the crystal 

momentum. The expectation values of one-particle properties are calculated from the integral 

of the matrix elements in the Brillouin zone. For the Brillouin zone integration two different 

methods have been proposed in the literature. 

i) Special point scheme: These methods are applicable to only insulators and semi-

conductors. In this method, Brillouin zone integration is obtained from the weighted 

sum over the selected k-points. The most widely used special k-point sets are due to 

Monkhorst and Pack [25] who proposed an equi-spaced grid of k-points. 

ii) Tetrahedron method [26-27]: This is more general scheme that is applicable for both 

insulators as well as metals. In addition to that, this method also provides better 

spectral function. In this scheme, the reciprocal space is divided into tetrahedral. 

Inside the tetrahedral, the band energies and the matrix elements are linearized in 𝑘�⃗ . 
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Because of the linearization, this method allows analytical integration of the Brillouin 

zone. 

 

2.9 GW calculation 

The Hamiltonian of a many electron system is given by  

 𝐻 = ��−
1
2

 ∇2(𝒓�⃗ 𝑖) + 𝑉(𝒓�⃗ 𝑖)� +
1
2

 �
1

|𝒓�⃗ 𝑖 − 𝒓�⃗ 𝑗|
𝑖≠𝑗𝑖

 2.81 

   

Where V(𝒓�⃗ i)is the external potential due to the presence of the nuclei and second summation 

gives the value of the electron-electron interaction. Over the years various approximations 

have been used to describe the electron-electron interaction. In the Hartree approximation the 

non-local electron-electron coulomb interaction is replaced by an average Coulomb 

interaction. Although this approximation results in reasonable description of a system, in 

many cases the calculated results deviate quite significantly from the experimentally 

determined value. Hartree-Fock Approximation (HFA), which also includes non-local 

exchange energy that accounts for the Pauli Exclusion Principle resulted in better description 

of the system. HFA works quite well for the atoms. However, the band gap of solids is 

overestimated within this formalism as the electron correlation or screening effect is not 

taken into account. 

 

Further improvement in the description of solids came about from the formulation of Density 

Functional Theory (DFT). In DFT the system of interacting electrons is mapped onto a 

system of non-interacting electrons moving in an average potential due to all other electrons. 
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The effect of exchange and correlation is included by the addition of an extra term called 

exchange-correlation potential 𝑉𝑥𝑐 . 

 (𝑇 + 𝑉𝑒𝑥𝑡 + 𝑉𝐻)𝜓𝑛𝑘(𝒓�⃗ ) + 𝑉𝑥𝑐(𝒓�⃗ )𝜓𝑛𝑘(𝒓�⃗ ) = 𝜀𝑛𝑘𝐷𝐹𝑇𝜓𝑛𝑘(𝒓�⃗ ) 2.82 

   

Where 𝑇 is the kinetic energy, 𝑉𝑒𝑥𝑡 is the external potential due to the presence of nuclei, 𝑉𝐻 

is the Hartree energy that describes electron-electron interaction, 𝑉𝑥𝑐 is the exchange-

correlation potential that accounts for the many body interaction which is missed in one-

electron equation, and 𝜓𝑛𝑘 is the wave function of an electron with band index 𝑛 and 

momentum vector 𝑘. In principal, this formalism provides an exact solution for the ground 

state properties and has been quite successful in predicting many ground state properties. 

However, properties like band gap is underestimated. For example, DFT band gap for Si 

calculated with LDA functional is 0.6 eV which is much smaller compared to the 

experimentally measured band gap of 1.25 eV.  

 

There have been a number of explanations given in the literature. According to Par and Yang 

[28] there is no simple physical meaning attached to Kohn-Sham orbital energies except for 

the highest occupied orbital energy that equals the negative of the ionization potential. 

Dreizler and Gross on the other hand state that the Kohn-Sham band gap is indeed exact for a 

non-interacting system [29]. For an interacting system, the correct band gap is obtained by 

adding the discontinuity in the exchange-correlation potential to the Kohn-Sham band gap. 

Williams and Von Barth [30] argue that it is the local nature of the functional that leads to 

incomplete cancellation of the self-interaction energy that is responsible for the 

underestimation of the band gap. 
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Many body perturbative theory corrects for this behaviour by considering a system of Quasi 

Particles (QP) that interact via non-local and energy dependent self-energy Σ. In this 

formalism the wave function and the energies are obtained from the equation given below 

 (𝑇 + 𝑉𝑒𝑥𝑡 + 𝑉𝐻)𝜓𝑛𝑘(𝒓�⃗ ) + ∫ 𝑑3𝒓�⃗ ′∑(𝒓�⃗ ,𝒓�⃗ ′;𝐸𝑛𝑘)𝜓𝑛𝑘(𝒓�⃗ ′) = 𝜀𝑛𝑘
𝑄𝑃𝜓𝑛𝑘(𝒓�⃗ ) 2.83 

   

The above equation is the same as the DFT equation except for the fact that local exchange 

correlation potential 𝑉𝑥𝑐 has been replaced by the non-local and the energy dependent self-

enegy Σ.  

 

The self energy Σ accounts for the many body effect by incorporating the effect of the 

exchange and the correlation. One of the most widely used expression for the self energy 

known as GW approximation was derived by Hedin that considers only the first term in the 

expansion of the self-energy arising from a many-body perturbation theory [31]. In the 𝐺𝑊 

approximation by Hedin the self energy is given by 

 Σ(1,2) = 𝑖𝐺(1,2)𝑊(1,2) 2.84 

   

where Σ, G and 𝑊 represent the self energy, the green function and the screened Coulomb 

potential of the system while 1 and 2 are abbreviated notation for (𝒓�⃗ 1, 𝑡1) and (𝒓�⃗ 2, 𝑡2), 

respectively. The green function of the system describes the propagation of the particle while 

the screened Coulomb potential describes how the bare interaction is modified in the 

presence of other electrons. In the later paragraphs we describe in detail the meaning as well 
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as the method to obtain Green function and the screened Coulomb potential. Here we 

describe how these calculations are carried out. 

 

The calculations within 𝐺𝑊 approximations are carried within two steps. In the first step 

DFT calculations are carried out to obtain DFT orbitals and eigenvalues. These are then used 

a first guess to obtain green function and the screened interaction. In the second step, Dyson 

equation (see equation 2.66) is used to calculate the green function of the system. In 

principle, this process of obtaining new green function from the old green function should be 

continued till self-consistency is achieved. In practice, however, due to large computational 

cost involved the calculations are often terminated before the full self-consistency is 

achieved. For example, the calculations where one stops after the first iteration is termed as 

𝐺0𝑊0. The other calculation which employ fully self-consistent green function and screened 

interaction obtained after the first iteration are termed as 𝐺𝑊0. And the calculations which 

employ fully self-consistent green function as well as the screened interaction are termed as 

𝐺𝑊.  

 

2.9.1 Green function 

The green function of a system described by Schrodinger equation   

 [𝑖𝜕𝑡 − 𝐻0(𝑟)]Ψ0(𝒓�⃗ , 𝑡) = 0 2.85 

   

is given by 
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 [𝑖𝜕𝑡 − 𝐻0(𝒓�⃗ )]𝐺0(𝒓�⃗ ,𝒓�⃗ ′; 𝑡, 𝑡′) = 𝛿(𝒓�⃗ − 𝒓�⃗ ′)𝛿(𝑡 − 𝑡′) 2.86 

   

The green function defined above is also called a propagator because it propagates the wave 

function. If the wave function is known at some time then the wave function at later times is 

given by 

 Ψ0(𝒓�⃗ , 𝑡) = ∫ 𝑑𝑟′∫ 𝑑𝑡′𝐺0(𝒓�⃗ , 𝒓�⃗ ′; 𝑡, 𝑡′)Ψ0(𝒓�⃗ ′, 𝑡′) 2.87 

   

This can be verified by inserting equation (2.87) into the Schrodinger equation(2.85) and 

using the definition 2.86. 

 

The most important application of the Green function lies in the determination of the green 

function of the interacting system from the knowledge of the green function of non-

interacting system using Dyson equations. Here, we are giving the proof for the time-

independent case for the sake of simplicity.  

 

For the derivation we consider the Schrodinger equation  

 [𝐻0(𝒓�⃗ ) + 𝑉(𝒓�⃗ )]Ψ𝐸 = 𝐸Ψ𝐸 2.88 

   

Where 𝐻0 is the Hamiltonian for the system with non-interacting particles whose eigenstates 

are known. The term 𝑉(𝒓�⃗ ) describes the change in the system’s Hamiltonian when the 

interactions between the particles are turned on. The green function of the interacting system 
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𝐺(𝒓�⃗ ) is determined from the knowledge of the the green function 𝐺0 of the non-interacting 

system.  

 �𝐸 − 𝐻0(𝒓�⃗ )�𝐺0(𝒓�⃗ ,𝒓�⃗ ′;𝐸) = 𝛿(𝒓�⃗ − 𝒓�⃗ ′) 2.89 

   

The above equation can also be written in terms of inverse of 𝐺0−1(𝒓�⃗ ,𝐸) which is defined as  

 𝐺0−1(𝒓�⃗ ,𝐸) = 𝐸 − 𝐻0(𝒓�⃗ ) 𝑜𝑟 𝐺0−1(𝒓�⃗ ,𝐸)𝐺0(𝒓�⃗ , 𝒓�⃗ ′,𝐸) = 𝛿(𝒓�⃗ − 𝒓�⃗ ′) 2.90 

   

The solution to the equation 2.88 can be written as an integral equation 

 Ψ𝐸(𝒓�⃗ ) = Ψ𝐸0(𝒓�⃗ ) + ∫ 𝑑𝒓�⃗ ′𝐺0(𝒓�⃗ ,𝒓�⃗ ′,𝐸)𝑉(𝒓�⃗ ′)Ψ𝐸(𝒓�⃗ ′) 2.91 

   

Or in terms of the full green function 

 Ψ𝐸(𝒓�⃗ ) = Ψ𝐸0(𝒓�⃗ ) + ∫ 𝑑𝒓�⃗ ′𝐺(𝒓�⃗ , 𝒓�⃗ ′,𝐸)𝑉(𝒓�⃗ ′)Ψ𝐸0(𝒓�⃗ ′) 2.92 

   

This is verified by inserting Ψ𝐸from 2.81 (2.82) into equation 2.88 and then using 2.90. The 

integral equation in 2.91 can be solved by iteration and upto first order in 𝑉 the solution is 

 Ψ𝐸(𝒓�⃗ ) = Ψ𝐸0(𝐸) + ∫ 𝑑𝒓�⃗ ′𝐺0(𝒓�⃗ ,𝒓�⃗ ′,𝐸)𝑉(𝒓�⃗ ′)Ψ𝐸0(𝒓�⃗ ′) + 𝒪(𝑉2) 2.93 

   

Where Ψ𝐸0 is an eigenstate to 𝐻0 with eigenenergy 𝐸. By iterating the solution we get 
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Ψ = Ψ0 + 𝐺0𝑉Ψ0 + 𝐺0𝑉𝐺0𝑉Ψ0 + 𝐺0𝑉𝐺0𝑉𝐺0𝑉Ψ0 + ⋯ 

= Ψ0 + (𝐺0 + 𝐺0𝑉𝐺0 + 𝐺0𝑉𝐺0𝑉𝐺0 + ⋯ )𝑉Ψ0 
2.94 

   

In the above equation the integration variable have been suppressed for the sake of simplicity. 

By comparison with equation (2.92) we see that the full Green’s function 𝐺 is given by 

 
𝐺 = 𝐺0 + 𝐺0𝑉𝐺0 + 𝐺0𝑉𝐺0𝑉𝐺0 + ⋯ 

= 𝐺0 + 𝐺0𝑉(𝐺0 + 𝐺0𝑉𝐺0 +⋯ ) 
2.95 

   

We arrive at the Dyson equation by noting that the last parenthesis is nothing but 𝐺 itself 

 𝐺 = 𝐺0 + 𝐺0𝑉𝐺 2.96 

 

2.9.2 Screened Coulomb energy 

The screened coulomb energy 𝑊 is given by 

 𝑊(𝒓�⃗ , 𝒓�⃗ ′;𝜔) = Ω−1∫ 𝑑3𝒓�⃗ ′′𝜖−1(𝒓�⃗ ,𝒓�⃗ ′′;𝜔)𝑣(𝒓�⃗ ′′, 𝒓�⃗ ′) 2.97 

   

Where Ω is the crystal volume, 𝑣 is the coulomb energy (𝑣(𝒓�⃗ " ,𝒓�⃗ ′) = 𝑒2/|𝒓�⃗ " − 𝒓�⃗ ′|), and 

𝜖(𝒓�⃗ ,𝒓�⃗ ′;𝜔) is the frequency dependent dielectric function. The dielectric function provides a 

measure of the screening encountered in a given system. It is calculated from the change in 

the total potential, 𝛿𝑉𝑡𝑜𝑡, due to a small variation in the external potential, 𝛿𝑉𝑒𝑥𝑡. 

 𝛿𝑉𝑡𝑜𝑡 = 𝜖−1𝛿𝑉𝑒𝑥𝑡 2.98 
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The dielectric function is determined from the independent particle polarizability 𝜒0, which 

gives the change in the electron density 𝛿𝜌 due to total perturbing potential 𝛿𝑉𝑡𝑜𝑡 

 𝛿𝜌(𝒓�⃗ ) = ∫ 𝑑𝒓�⃗ ′𝜒0(𝒓�⃗ , 𝒓�⃗ ′)𝛿𝑉𝑡𝑜𝑡(𝒓�⃗ ′) 2.100 

   

In the Random Phase Approximation (RPA) the dielectric function and the independent 

particle polarizability are related by 

 𝜖𝑅𝑃𝐴 = 1 − 𝑣𝜒0 2.101 

   

Finally the independent particle polarizability 𝜒0 is calculated from DFT using Adler-Wiser 

expression. Its value in reciprocal space is given by 

 

𝜒𝐺,𝐺′
(0) (𝑞,𝜔) = 2 � �𝑓𝑛,𝑘

𝑛,𝑛′,𝑘

− 𝑓𝑛′,𝑘+𝑞) 
〈𝜓𝑛′,𝑘+𝑞

𝐷𝐹𝑇 |𝑒−𝑖(𝑞+𝐺)𝑟�𝜓𝑛,𝑘
𝐷𝐹𝑇〉〈𝜓𝑛,𝑘

𝐷𝐹𝑇�𝑒�−𝑖𝑞+𝐺′�𝑟�𝜓𝑛′,𝑘+𝑞
𝐷𝐹𝑇 〉

𝜀𝑛,𝑘
𝐷𝐹𝑇 − 𝜀𝑛′,𝑘+𝑞

𝐷𝐹𝑇 − 𝜔 − 𝑖𝛿
  

2.102 

   

Appendix 

2A.1 Bra-Ket notation 

In the bra-ket notation, a wavefunction is represented using a “ket” |. . . 〉 , For example, 

𝜓𝑖  is written as |𝑖〉. 

The complex conjugate of a wavefunction is written as a “bra” 〈. . . |, for example, 

𝜓𝑖∗  is written as 〈𝑖|. 
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The rule is that if a bra appears on left and a ket appears on the right, integration over 𝑑𝜏 is 
implied. So 

 〈𝑗||𝑖〉 ≡ �𝜓𝑗∗𝜓𝑖𝑑𝜏 A.1 

   

Generally, the middle vertical lines are merged. So we have 〈𝑗|𝑖〉. 

Bra-ket notation is very compact. For example, the normalization and orthogonality condition 
can be written as 

 〈𝑖|𝑖〉 = 1 and 〈𝑗|𝑖〉 = 0 A.2 
   

A frequently encountered integral in quantum mechanics is ∫𝜓𝑗∗𝐻�𝜓𝑖 which in the bra-ket 
notation becomes 〈𝑗|𝐻|𝑖〉 
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CHAPTER 3 

Origin of the contrast inversion in the STM image of CO on Cu(111) 

3.1 Introduction 

Scanning tunneling microscopy (STM) has revolutionized surface science by providing 

atomic resolution images of surface structures and processes [1]. STM image contrast results 

from a complex interplay between the adsorbate and the surface electronic structure, as well 

as from the electronic interaction of the STM tip with the substrate via the adsorbate. It 

therefore requires calculations, accounting for the electronic structure of the surface, the 

adsorbate, and the STM tip, to extract the atomic surface structure from an experimental STM 

image [2]. STM image calculations not only allow linking experimental STM images to 

surface structures, but also provide a chemical interpretation of the STM contrast. Often, the 

STM contrast does not correspond to a steric model of the proposed surface structure, and 

contrast inversion can be observed, where CO adsorption on Cu(111) is a well-known 

example. Indeed, a low temperature STM study by Bartels et al. [3] shows that CO molecules 

adsorbed at top sites on Cu(111) appear as dark depressions in STM images for a range of 

bias voltages. This observation indicates that an adsorbed CO molecule reduces the 

conductance of the tip–CO–surface tunneling junction. Similar observation has also been 

made by Lauhon et al. who find that CO appears as a depression on Cu(100) [26].  

 

Using tight-binding simulations, Nieminen et al. [4] have attributed the reduced tunneling 

current upon CO adsorption on Cu(111) to interference between electron waves passing 

through the adsorbate states and electron waves passing through space directly from the tip to 

the surface. Using a quantum nanodynamics theory, Drakova et al. [5] argue that the current 
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in the vicinity of a CO molecule adsorbed on Cu(111) is reduced by a dynamic relaxation of 

transient electronic states of the metal surface created by the injection of electrons from the 

STM tip. Contrary to CO on Cu(111), the STM image of CO on Pt(111) shows a protrusion 

surrounded by a spherical depression. The protrusion is significantly smaller than the steric 

height of the CO molecule. Bocquet and Sautet [6] attribute the spherical depression 

surrounding the CO molecule to a perturbation of the surface electronic structure by adsorbed 

CO.  

 

A theoretical interpretation of STM images hence requires an accurate description of the 

surface electronic structure. Cu(111) is characterized by a Shockley-type surface state, the 

states that arise due to the change in the electron potential associated only with the crystal 

termination, arising in the L-gap of the bulk Cu reciprocal space [7]. This surface state has 

been studied experimentally and theoretically [7], [8] and [9]. Angle Resolved Photo Electron 

Spectroscopy (ARPES) reveals a surface state with a parabolic, free-electron-like dispersion, 

with a minimum at the Γ-point of the surface Brillouin zone, about 0.4 eV below the Fermi 

energy of the Cu(111) surface [7] and [10]. A similar parabolic dispersion is found in our 

calculations (Figure 3.1). The wave functions associated with the surface state are highly 

delocalized along the surface and confined near the surface by the vacuum potential [8]. 

Because of these characteristics, the Cu(111) surface state is a two-dimensional surface state 

and has been modeled as a 2-D jellium and a 2-D electron gas [11].  
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Figure 3.1 DFT-PBE band structure for Cu(111). Bands associated with the surface state for 
both sides of the slab are indicated in bold. EHMO surface states between −1 eV below and 
+1 eV above the Fermi energy are indicated by dotted lines. 

 

Using an accurate description of the Cu(111) surface state, its interaction with adsorbed CO 

and with the STM tip, it is shown that the decrease in the tunneling current upon CO 

adsorption is due to the strong interaction between the CO 5σ orbital and the Cu 4pz 

components of the surface state. The 5σ molecular orbital of adsorbed CO couples strongly 

with the 4pz of Cu surface states, creating bonding and antibonding states, and depleting the 

4pz electron density near the Fermi level. For the clean Cu(111) surface, 4pz derived surface 

states carry most of the tunneling current since they dominate the Density of States (DOS) 

near the Fermi energy and their spatial orientation facilitates overlap with the tip. Although 

the tails of the CO-induced states, in particular the 2π* orbital, have some weight at the Fermi 

level, the electron density associated with them is small compared to the total density near the 

Fermi energy at clean Cu sites. Finally, a 1-dimensional tight-binding model is presented to 

illustrate how the STM contrast results from the over-coupling between the surface state and 

the molecule. 
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3.2 Computational methods 

STM images were calculated using the Elastic Scattering Quantum Chemistry (ESQC) 

approach [2]. This approach allows calculating the conductance of a defect embedded in an 

infinite periodic material. For this purpose, the system is modelled as …..AAAABAAAA…., 

where A represents the periodic part which is repeated infinitely to the left and right and B 

represents the defect [12]. In the STM image calculations, the bulk of the tip and bulk of the 

substrate constitute the periodic parts (A), while the apex of the STM tip, the adsorbed 

molecule, and the surface region represent the defect (B). Each periodic part (A) is described 

by three layers of Cu(111). The defect (B) is described by six atomic layers of Cu(111), the 

CO and a tetrahedral tip. Six Cu(111) atomic layers are required to ensure that the surface 

states are localized in the defect part. The localization of the surface states is verified by 

orbital decomposition of the surface states. For six atomic layers, the orbital decomposition 

shows negligible contribution from the atoms at the bottom of the defect to the surface states. 

A lateral dimension of 10.2 Å (4 Cu–Cu distances) was used to minimize interactions 

between CO molecules in the neighboring unit cells when lateral cyclic boundary conditions 

are applied in ESQC. An energy step of 0.1 eV is employed in the calculation of T(E). The 

tunneling spectrum through the defect, T(E), is calculated from the full scattering matrix of 

the tip–molecule–surface junction. The tunneling current is then obtained from the Landauer 

formula [13]: 

 

 𝐼(𝑉) =
𝑒
ℎ
� 𝑇(𝐸)�𝑓0(𝐸 − (𝐸𝐹 − 𝑒𝑉/2)� − 𝑓0�𝐸 − (𝐸𝐹 + 𝑒𝑉/2)�𝑑𝐸 
+∞

−∞
 3.1 

which, for low bias, simplifies to: 
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 𝐼 =
2𝑒2

ℎ
 𝑇(𝐸𝐹)𝑉 3.2 

where f0 is the Fermi function, EF is the Femi energy, V is the bias voltage, and T(E) the 

electronic transmission spectrum through the tunneling junction. 

 

The atomic details of the Cu(111) surface and bulk, of the adsorbed CO molecule, and of the 

STM tip, as well as their electronic interactions, are fully taken into account using a linear 

combination of Slater type atomic orbitals (LCAO) representation. Bloch states propagating 

in the semi-infinite periodic part define the incoming and scattered states used to calculate the 

electronic transmission spectra, T(E), of the STM junction. The extended Hückel molecular 

orbital (EHMO) model was used to construct the electronic Hamiltonian of the tunnel 

junction because of the simplicity and chemical insight it offers [14]. To accurately describe 

the electronic structure of the Cu(111) surface, and in particular its Shockley-type surface 

state  (Shockley-states are the states that appear in the middle of the energy gap when s and p 

bands cross. These states appear even when no surface potential perturbation is present. This 

is in contrast to Tamm states that appear only when there is a potential perturbation at the 

surface), the extended Hückel parameters were re-optimized for surface and subsurface Cu 

atoms, following a procedure described by Cerdá and Soria [15]. The available Cu EHT 

parameters are bulk parameter. For sp bonded elements both experiments and ab-initio 

calculations show that upon creation of surface new states appear close to the Fermi level. 

These surface states change the 𝐼𝑉 characteristics of Cu(111) surface dramatically. For 

example Eigler et al. [9] find that there is a sudden increase in 𝑑𝐼/𝑑𝑉 value at the location of 

the surface state. In order to ensure that our theory is able to describe these effects, we 

reparametrized the EHT. 
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The re-optimization procedure ensures a better transferability of the parameters for their use 

in a different chemical environment [15]. In the EHMO Hamiltonian, each Cu atom is 

described by a basis set of s, p and d orbitals. The on-site energies (Es, Ep and Ed), the orbital 

exponents (ζ1 and ζ2) and the coefficients for the former (c1) for each atomic orbital are 

determined by fitting the EHMO band structure to the energy and momentum resolved 

projected DOS obtained from Density Functional Theory (DFT) calculations described 

below. Normalization of the wave function gives the coefficients c2. The STM tip apex atom 

orbitals were optimized to recover the exponential decay of the tunneling current with tip 

height [16] for the clean Cu(111) surface, consistent with a Cu(111) workfunction of 4.94 eV 

[17]. The EHMO parameters are provided in Table 3.1 of the Supporting Information. In the 

ESQC calculations, the atoms in the top three layers of the defect are described by the 

surface, subsurface, and sub subsurface parameters, respectively. The bottom three layers of 

the defect (B) are described by the bulk parameters. As stated earlier, the bottom three layers 

in the defect (B) ensure that the surface states are localized in the defect part. Indeed, the 

Cu(111) surface states are not completely localized on the surface atoms, but decay 

exponentially into the bulk, as also observed in DFT calculations [10]. Atoms in the periodic 

part act only as an electron reservoir and are described by bulk 4s orbitals. The interaction 

responsible for the STM image formation of CO occurs between the CO states and the 

surface states which are part of the defect region. We, can, therefore choose the nature of the 

bulk electrons that is computationally less expensive. This simplified description of the 

periodic part makes the calculation of such a large system possible without changing any of 

the physics behind the problem.  

Surface states for the semi-infinite system were identified as solutions of the Schrödinger 

equation arising as a combination dominated by atomic orbitals of surface atoms, using the 

Green function method [18] (scatter points in Figure 3.1). A similar procedure is not 
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implemented in plane wave DFT calculations; instead surface states were identified from the 

projected DOS (bold lines in Figure 3.1). 

 

The CO adsorption energy and the Cu(111) band structure were calculated using DFT with 

the Perdew–Burke–Ernzerhof functional [19] as implemented in the Vienna Ab initio 

Simulation Package (VASP) [20] and [21]. The calculations were performed using a plane 

wave basis, a cut-off kinetic energy of 400 eV, and projector-augmented-wave (PAW) 

pseudopotentials [22] and [23] to describe the inner shell electrons. A Γ-centered Monkhorst-

Pack grid with nine subdivisions along each of the surface reciprocal vectors was used. To 

compute the surface band structure, the high symmetry directions in the hexagonal surface 

Brillouin zone were sampled. The Cu(111) surface was modeled as a 9-layer fcc slab, 

separated by a 10 Å vacuum layer, where the top and bottom two layers were relaxed. With 

this slab thickness, the dispersion relations for the top and bottom surface bands are nearly 

degenerate, with a splitting due to interaction through the bulk of about 0.2 eV at the Γ point 

(Figure 3.1). Increasing the slab thickness to 13 layers reduces the splitting to 0.06 eV, but 

does not affect the overall character of the surface bands. The binding energy for the surface 

band at the Γ-point, 0.6–0.7 eV below the Fermi energy, is in reasonable agreement with the 

experimental value, 0.4 eV below the Fermi energy [7]. CO adsorption at top sites was 

calculated on a 5-layer, p(2 × 2) Cu(111) slab. The top two layers were relaxed, while the 

bottom layers were constrained at their bulk positions. The optimized Cu–C and C–O 

distances of 1.84 and 1.16 Å, and the CO binding energy of −0.58 eV, agree well with 

literature values [24]. Upon adsorption, the C–O bond length is calculated to increase by 

0.0165 Å. 
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Figure 3.2 (a) Calculated constant current STM image for CO adsorbed at a top on the 
Cu(111) surface. Bias voltage of 50 mV and a current of 0.1 nA. The surface Cu atoms are 
indicated (●). (b) STM junction structure used in the calculations. (c) The T(E) spectra for the 
clean Cu(111) surface (—) and for the junction with an adsorbed CO (- - -). 

 

3.3 Results and discussion 

First, we discuss the band structure of the Cu(111) surface to illustrate the accuracy of the 

fitted parameters in the EHMO Hamiltonian. Next, the electronic transmission spectrum of 

the junction, T(E), is calculated and the constant current STM image showing a clear 

depression at the CO position is presented. The decrease of the tunneling current by CO 

adsorption is analyzed in detail, and a simplified tight-binding model is developed to 

illustrate the decrease of the electronic transmission spectra by over-coupling. 

 

3.3.1  Calculation of the Cu(111) surface band structure 

The DFT-PBE band structure of a Cu(111) slab near the Fermi level is shown in Figure (3.1). 

The surface state bands are indicated by bold lines. The band structure and dispersion are 

similar to band structures reported in the literature [8]. The binding energy of the surface state 
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at the Γ-point, about 0.6 eV, is slightly stronger than experimental values [7]. Near the Fermi 

level, the band structure of Cu(111) is dominated by dispersive 4sp-bands. The Cu 3d-bands 

are located between 2 and 3 eV below the Fermi level, and are not shown in Figure (3.1). 

Because the 3d-bands are rather localized, typical of transition metal d-bands, they contribute 

only modestly to the tunneling current, as verified by decomposing the tunneling current into 

its orbital contributions. Near the Γ-point, the surface band is dominated by Cu 4pz orbitals. 

Though the Cu 4s orbitals contribute about 10% to the surface state (Figure 3.3a), they 

contribute less to the tunneling current because of their reduced extension into the vacuum. 

Note that the Cu 4pz derived surface states are symmetrically well prepared to interact with 

the CO 5σ molecular orbital. 
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Figure 3.3 (a) Density of states projected on the surface atoms for clean Cu(111). (b) Upon 
CO adsorption, the Cu states near the Fermi level (mostly 4pz) interact with the CO states, 
depleting the density of states near the Fermi level. (c) CO adsorption also leads to 
broadening of the CO levels. 

 

Figure 3.1 also shows the k-resolved projection of the surface state calculated within the 

EHMO framework (dotted lines). The good agreement between the DFT-PBE and the EHMO 

dispersion for the surface band near the Γ-point provides a validation of the fitted parameters. 

It is interesting to note that the binding energy of the EHMO surface band at the Γ-point, 
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0.4 eV below the Fermi energy, is closer to the experimental value than the DFT value. The 

states found near the K point of the Brillouin zone within the EHMO framework correspond 

to 4px and 4py surface orbitals. They contribute little to the electronic transmission spectrum, 

T(E), of the junction. The optimized values of the on-site energies (Table 3.1, Supporting 

Information) indicate a significantly weaker on-site energy for the orbitals of the Cu surface 

atoms, and correlate well with the coordination number and the local potential environment. 

Indeed, the orbitals of the bulk atoms are subject to the full lattice crystal potential and hence 

more tightly bound. 

 

3.3.2. CO adsorption on Cu(111) and corresponding STM image 

The calculated T(E) spectra, the constant current STM image, and the geometry used in the 

STM image calculations are shown in Figure 3.2. In the calculations, CO appears as a 0.4 Å 

depression with a radius of approximately 4 Å. Outside this radius the effect of CO on the 

tunnel junction conductance is small. Indeed, the tunneling current increases by an order of 

magnitude 5 Å from the center of the CO molecule and becomes comparable to the value for 

the clean Cu(111) surface. Experimental constant current STM images obtained at similar 

conditions (bias voltage of 40 mV and conductance of 1 nA) show dark, low current intensity 

spots with a depth of about 0.4 Å [3]. 

 

The STM T(E) spectrum for clean Cu(111) is characterized by a peak 0.6 eV below the Fermi 

level at the location of the surface state. The surface states consist mainly of Cu 4pz orbitals 

which facilitates overlap with the tip states. This enhanced overlap results in the peak at the 

location of the surface state. After adsorption of CO the peak disappears. The strong 
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interaction of the 4pz surface states with the CO 5σ states moves the surface states away from 

the Fermi energy as is seen in Figure 3.3. The higher T(E) values at around −1 eV below the 

Fermi level result from the higher density of broadened states of CO and Cu states in this 

region. It is clear from a comparison between the T(E) and LDOS curves in Figure 3.3 that 

the T(E) spectrum does not simply follow the LDOS. This confirms the importance of taking 

into account the full scattering matrix of tip–adsorbate–substrate tunnel junction to described 

the tunneling process and not only the LDOS. 

 

To further understand the origin of the contrast inversion upon CO adsorption, it is useful to 

recognize that the tunneling current results from two contributions: the electronic coupling 

between the tip, the surface and the molecular orbitals of adsorbed CO, and the surface DOS. 

Introduction of a CO in the tunneling junction opens up an additional path for electron 

tunneling near the Fermi level and hence enhances the effective electronic coupling between 

the surface and the STM tip. However, the strong interaction of the CO 5σ orbital with the 

surface state reduces the surface DOS, thereby decreasing the tunneling current. The 

depletion of the DOS near the Fermi level by CO adsorption is clearly illustrated by the 

projected DOS for the Cu(111) surface with and without adsorbed CO (Figure 3.3). For the 

clean surface, the DOS projected on the surface Cu atoms shows a sharp peak about 0.5 eV 

below the Fermi level, corresponding to the surface state. The surface state is dominated by 

Cu 4pz orbitals, with a minor contribution from the 4s orbitals. Near the Fermi level, the DOS 

projected on the surface atoms consists mainly of the surface state, with small contributions 

from bulk states. Upon CO adsorption, the DOS projected on the surface Cu atom where CO 

adsorbs changes dramatically (Figure 3.3b). The interaction between the CO 5σ molecular 

orbital at 3.2 eV below the Fermi level and the Cu surface state creates bonding and 
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antibonding states about 4 eV below and 2.5 eV above the Fermi level, as evident from a 

comparison of the DOS projected on the CO molecular orbitals (Figure 3.3c) and on the Cu 

surface orbitals (Figure 3.3b). The interaction with the CO 5σ orbital hence quenches electron 

density associated with the surface state near the Fermi energy. Interestingly, the position of 

the resonance resulting from the antibonding interaction between the CO 5σ orbital and the 

surface state about 2.3 eV above the Fermi level has been observed in the experimental dI/dV 

STM spectrum [25]. The CO 2π* orbital at 2.8 eV above the Cu(111) Fermi energy also 

interacts with the surface states, and states resulting from the bonding interaction with the Cu 

4px and 4py orbitals can be found about 2 eV below the Fermi level. Near the Fermi level, the 

majority of the DOS can be attributed to the tail of the CO 2π* lowest unoccupied orbital. 

 

To summarize, the interaction between the CO 5σ molecular orbital and the Cu(111) surface 

state dominated by Cu 4pz orbitals creates bonding and antibonding interactions and pushes 

the surface states away from the Fermi level. This decreases the tunneling current where CO 

adsorbs and leads to STM contrast inversion. In the next section, we will further illustrate this 

over-coupling phenomenon with a tight-binding model. 

 

3.3.3  Simple tight-binding model 

The effect of the interaction of the CO 5σ molecular orbital with the Cu(111) surface state on 

the tunneling current can be further illustrated with a 1-dimensional tight-binding model 

(Figure 3.4a). In this model, the STM tip and the surface reservoirs are modeled as semi-

infinite, one-dimensional chains of energy levels ε, where ε is taken at the binding energy of 

the bulk 4s orbitals, −10.6 eV. The interaction of the STM tip with the surface state is 
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described by the tunneling integral γ, and was optimized to reproduce the electronic 

transmission spectra at the Fermi energy, log(T(EF)) = −2.25, for a tip to surface distance of 

7 Å. A metal–metal coupling η of 1.0 eV was used to ensure a sufficiently broad bulk band. 

The CO 5σ orbital at −13.25 eV interacts with the surface through the coupling α, and with 

the STM tip through β. The interaction of the 5σ level with the tip, β, should be weaker than 

the interaction of the Cu surface orbital with the STM tip, γ, because of the smaller size of the 

O 2pz orbital and because the CO 5σ orbital is predominantly localized on the C atom. At the 

Fermi energy, E = −10.7 eV, T(E) was calculated using the scattering matrix technique [12]. 

Figure 3.4b shows the effect of introducing the CO 5σ level on the electronic transmission 

spectra of the junction as a function of its coupling with the surface state, α. 

 

 

 
Figure 3.4. (a) Tight-binding model for CO adsorption on Cu(111). (b) Effect of introducing 
a CO molecule on the electronic transparency of the junction, Δlog[T(EF)], as a function of 
the coupling between the surface state and the CO 5σ orbital, α and between the CO 5σ 
orbital and the STM tip, β. The CO 5σ orbital on-site energy = −13.25 eV, the Cu surface 
state energy ε = −10.6 eV, the Cu metal to metal coupling η = 1.00 eV, and the through space 
coupling between the surface and the STM tip γ = 0.019 eV. 
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The conductance of the tip–CO–surface tunneling junction, T(E), and hence the tunneling 

current are determined by the effective coupling between the reservoirs and by the surface 

DOS [12]. If the 5σ level is coupled weakly to the surface (α/η < 1.5) and to the tip, then 

adding CO to the junction increases its electronic transmission. In this case, CO enhances the 

effective coupling between the two reservoirs. If the CO 5σ level is not coupled to the tip 

(β = 0), introducing CO in the junction does not affect the surface to tip coupling. However, 

the interaction between the 5σ level and the surface state significantly reduces the tunneling 

probability through the junction by reducing the surface DOS. Indeed, coupling the 5σ level 

to the surface level ε, shifts the surface level in energy, reduces the surface DOS near the 

Fermi level, and hence reduces the tunneling current. For intermediate coupling between the 

CO 5σ level and the tip, adding the 5σ level to the junction can either increase or decrease the 

electronic transmission. Strong coupling (over-coupling) between the 5σ level and the surface 

(large α/η) always decreases the electronic transmission. This corresponds to CO adsorption 

on Cu(111) where the CO 5σ molecular orbital interacts strongly with the 4pz surface states. 

The surface to orbital coupling required to reduce the electronic transmission depends on the 

ratio between the tip to molecule coupling β, and the tip to surface coupling γ. Stronger tip–

molecule couplings (larger β/γ) require a stronger molecule–surface coupling (α/γ) to reduce 

the electronic transmission. 

 

The tight-binding model provides a phenomenological description of the decrease in 

tunneling current observed upon CO adsorption on Cu(111). The strong interaction between 

the CO 5σ orbital and the surface state depletes electronic density at Fermi level. The 

increase in effective coupling between the reservoirs by introduction of the extra CO 5σ level 
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is not able to compensate for the depletion of electron density. Although transmission can 

still occur through the tails of the broadened states, it is not comparable to the current through 

the original unperturbed surface state. 

 

3.4 Conclusions 

The contrast in STM images results from a complex interplay between the adsorbate and the 

surface electronic structure, as well as from the electronic interaction of the STM tip with the 

substrate via the adsorbate. Using electron scattering calculations, the origin of the reduction 

in the tunneling current upon adsorption of CO on Cu(111) is attributed to the strong 

interaction of the CO 5σ highest occupied molecular orbital with the Cu(111) surface state 

dominated by Cu 4pz orbitals. As illustrated with a tight-binding model, such over-coupling 

reduces the surface density of states near the Fermi level and decreases the tunneling current 

at the sites where CO is adsorbed. The strong coupling is facilitated by the spatial extent, the 

symmetry and the energy of the surface band in Cu(111). An accurate description of the 

surface electronic structure was shown to describe this effect. Thus to study a STM junction 

involving sp bonded metal as substrate under EHT, it is of utmost importance that they be re-

parameterized to reproduce the surface states. As, in sp bonded metals the free electron like 

surface states which are quite close to the Fermi level appear upon creation of the surface. 

Because of their proximity to the Fermi level these states are able to influence the IV 

characteristic in a drastic way.  

Additionally the study shows that the STM image does not always reproduces the topology of 

the system. Hence, quantum mechanical image calculation becomes vital to truly understand 

the interaction that lead to STM image formation. 
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The work on this counter-intuitive observation underlines the importance of simulation to 

understand the IV characteristics for nano-scale devices. First, it shows that during the 

creation of devices unexpected localized states, i.e. surface states, edge states, might appear. 

These states might affect the device characteristics in an unexpected way. Additionally, the 

device components might interact with each other in an unforeseen way leading to further 

complication in the IV characteristics. Thus to truly understand the nano-scale device 

characteristics simulations become extremely important. 

 

Table 3.1 Extended Huckel molecular orbital theory parameters used in this study.  

 On-site 
energy ζ1 c1 ζ2

a c2
a 

STM tip atom 
4s -10.56 1.70 0.56 0.85  0.05 
Surface Cu 
4s -10.12 1.70 0.61    
4p   -6.15 1.35 0.64    
3d -12.44 1.80 0.32 5.13 0.83 
Subsurface Cu                  
4s -10.61 1.70 0.61    
4p   -6.90 1.35 0.64    
3d -12.93 1.80 0.32 5.13 0.83 
Sub Subsurface Cu                  
4s -10.61 1.70 0.61    
4p   -6.89 1.35 0.64    
3d -12.92 1.80 0.32 5.13 0.83 
Bulk fcc Cu 
4s -10.56             1.70                      0.61    
4p   -6.78 1.34 0.65    
3d -12.87 1.85 0.37 6.77 0.84 
C 
2s -21.40 1.63 1.00   
2p -11.40 1.63 1.00   
O 
2s -32.30        2.28 1.00   
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2p -14.80        2.28 1.00   
 

aFor the Cu 4s and 4p orbitals, a very good fit to the DFT DOS can be obtained by fixing ζ2 to 
values greater than 20. Such a high orbital exponent leads to a negligible overlap with 
neighboring atoms and the corresponding orbitals were not explicitly used in the calculations. 
However, they lead to c1 values less than unity [15]. 

 

References 

[1] H.J. Guntherodt and R. Wiesendanger, Editors, Scanning Tunneling Microscopy I: 
General Principles and Applications to Clean and Absorbate-Covered Surfaces, Springer, 
New York (1992). 

[2] P. Sautet and C. Joachim, Chem. Phys. Lett. 185, 23 (1991). 

[3] L. Bartels, G. Meyer and K.-H. Rieder, Appl. Phys. Lett. 71, 213 (1997),   

[4] J.A. Nieminen, E. Niemi and K.-H. Rieder, Surf. Sci. Lett. 552, L47 (2004).  

[5] D. Drakova, M. Nedjalkova and G. Doyen, Int. J. Quant. Chem. 106, 1419 (2006). 

[6] M.-L. Bocquet and P. Sautet, Surf. Sci. 360, 128 (1996). 

[7] F. Baumberger, T. Greber and J. Osterwalder, Phys. Rev. B 64, 195411 (2001). 

[8] G. Hörmandinger, Phys. Rev. B 49, 13897 (1994). 

[9] M.F. Crommie, C.P. Lutz and D.M. Eigler, Nature 363, 524 (1993). 

[10] F. Baumberger, T. Greber, B. Delley and J. Osterwalder, Phys. Rev. Lett. 88, 237601 
(2002).  

[11] P. Heimann, H. Neddermeyer and H.F. Roloff, J. Phys. C 10, L17 (1997). 

[12] P. Sautet and C. Joachim, Phys. Rev. B 38, 12238 (1988). 

[13] R. Landauer, Phil. Mag. 21, 863 (1970). 

[14] R. Hoffman, Rev. Mod. Phys. 60, 601 (1998). 

[15] J. Cerdá and F. Soria, Phys. Rev. B 61, 7965 (2000). 

[16] A. Altibelli, C. Joachim and P. Sautet, Surf. Sci. 367, 209 (1996).  



72 
 

[17] ‘‘Electron Work Function of The Elements”, in: David R. Lide (Ed.), CRC Handbook of 
Chemistry and Physics, eighty ninth ed. (Internet Version 2009), CRC Press/Taylor and 
Francis, Boca Raton, FL. 

[18] J. Cerda, M.A. Van Hove, P. Sautet and M. Salmeron, Phys. Rev. B 56, 15885 (1997). 

[19] J. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). 

[20] G. Kresse and J. Furthmüller, Comput. Mat. Sci. 6, 15 (1996). 

[21] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). 

[22] P.E. Blochl, Phys. Rev. B 50, 17953 (1994). 

[23] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). 

[24] M. Neef and K. Doll, Surf. Sci. 600, 1085 (2006). 

[25] L. Bartels, G. Meyer and K.-H. Rieder, Chem. Phys. Lett. 297, 287 (1998). 

[26] L. J. Lauhon and W. Ho  Phys. Rev. B 60, R8525 (1999) 



73 
 

CHAPTER 4 

Surface reconstruction of MoS2 to Mo2S3 

4.1 Introduction 

The trend towards smaller and faster electronic devices requires the size of microelectronic 

circuits to ultimately reach the scale of atoms or molecules [1]. Using the elastic-scattering 

quantum chemistry technique, we have recently shown that if a surface atomic wire is 

fabricated by extracting a line of S surface atoms from the surface of lamellar MoS2 [2], this 

will create sufficient electronic states in the MoS2 surface band gap for this atomic wire to 

have a large conductance [3]. 

 

To quantify the stability of the MoS2 surface which will be supporting the atomic wire 

fabrication by vertical single atom manipulation, crystalline MoS2 was flashed to 

temperatures up to 1300 K. Up to 1200 K, very limited S vacancies were formed and the 

MoS2 surface stayed atomically perfect ( Figure 4.1). Above 1300 K, a major reconstruction 

of the MoS2 surface was observed, creating mesoscale islands (Figure 4.1b). At temperatures 

above about 950 K, the bulk Mo–S phase diagram [4] indicates that bulk MoS2 can 

reconstruct to the Mo2S3 phase. To form Mo2S3 from MoS2, 1S atom has to be removed per 

Mo2S4 unit. Since the specific density of Mo2S3, 5.8 [5], is higher than the specific density of 

MoS2, 5.0 [5], a contraction of the structure is expected. The transport of S atoms from the 

MoS2 bulk is likely to be kinetically limited. Indeed, XRD studies of the sample after flashing 

confirm that the bulk of the sample is still MoS2. 

 

http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S003960280800397X#bib1�
http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S003960280800397X#bib2�
http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S003960280800397X#bib3�
http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S003960280800397X#fig1�
http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S003960280800397X#fig1�
http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S003960280800397X#bib4�
http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S003960280800397X#bib5�
http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S003960280800397X#bib5�
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Figure 4.1: (a) SEM image of the MoS2 surface. Micrometer scale, atomically flat terraces 
are separated by mono- or multi-steps. The atomic resolution STM image (inset) displays the 
hexagonal surface structure of MoS2(0 0 1)-(1 × 1). (b) SEM image of the MoS2 sample after 
flashing at 1300 K. Flat, mesoscale islands appear. 

 

Though the bulk structure of Mo2S3 has been relatively well studied [6], [7] and [8], to our 

knowledge, its surface structure has not been reported. In this work, we present a combined 

theoretical and experimental investigation of the Mo2S3 surface structure, obtained after 

phase transformation of MoS2 to Mo2S3. The experimental work was performed using ultra 

high vacuum scanning tunneling microscopy (UHV-STM). To elucidate the surface structure, 

theoretical thermodynamic calculations were used to identify stable surface structures, while 

http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S003960280800397X#bib6�
http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S003960280800397X#bib7�
http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S003960280800397X#bib8�
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STM images were calculated using the elastic scattering quantum chemistry (ESQC) [9] 

approach to corroborate the experimental findings. 

 

4.2. Experimental and computational methods 

4.2.1. Experimental methods 

Experiments were carried out in an Omicron multi-probe UHV-STM system with a base 

pressure better than 2 × 10−8 Pa. The UHV-STM is equipped with an analysis chamber and a 

sample preparation chamber, separated by a gate valve. Crystalline MoS2 wafers cut from 

natural molybdenite were used as the initial sample. A freshly cleaved sample was first 

introduced into the UHV chamber. STM imaging confirmed the surface structure of the S-

terminated MoS2(0 0 1) surface, showing an atomic 1 × 1 surface structure (Figure 4.1a 

inset). After overnight degassing at 358 K, the sample was flashed to temperatures up to 

1300 K for 5–12 s. The flashing cycles were repeated three times before SEM and STM 

images were collected. During flashing, the vacuum in the chamber remains below 

6 × 10−6 Pa. Then, a new STM image of the sample was collected (Figure 4.2c and d). Some 

samples were transferred to a scanning electron microscope (SEM) to have a larger view of 

the surface corrugation changes after the flashing procedure. The large scale changes in the 

surface structure are evident in Figures 4.1b and 4.2a. 

 

http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S003960280800397X#bib9�
http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S003960280800397X#fig1�
http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S003960280800397X#fig2�
http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S003960280800397X#fig1�
http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S003960280800397X#fig2�
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Figure 4.2: (a) SEM image of a single island after flashing to about 1300 k. (b) STM image 
of a single island. Steps of 1.2 nm height (D) and of 0.6 nm height (arrows) were observed. 
The island surface is atomically flat. (c) STM image of the surface of the island, illustrating 
the long range periodicity. The nature of the defects is unknown. (d) Atomic resolution image 
of the same sample, showing individual atoms. The rectangular boxes indicate the two types 
of atomic pair rows, zig-zag and rectangular. STM images were recorded at V = −0.4 V and 
I = 0.2 nA. 

 

4.2.2 Computational methods 

To identify thermodynamically stable surface structures for Mo2S3, the ab initio 

thermodynamics procedure was followed [10]. This procedure allows comparing surface 

energies for two-component crystals such as Mo2S3 with many possible surface structures. 

Ab initio thermodynamics has previously been applied to determine the surface termination 

of corundum-type metal–oxide structures in equilibrium with an O2 environment [11] and 

http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S003960280800397X#bib10�
http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S003960280800397X#bib11�
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[12]. In this method, the surface free energy of a Mo2S3 slab, MonSm, in equilibrium with 

bulk Mo2S3 and an S2 environment is given by 

 𝛾 =
1

2𝐴
 �𝐺𝑀𝑜𝑛𝑆𝑚 + (3𝑛/4−𝑚/2)𝐺𝑆2 −

𝑛
2
𝐺𝑀𝑜2𝑆3� 4.1 

where 𝐺𝑀𝑜𝑛𝑆𝑚  is the Gibbs free energy of a slab with surface area A, 𝐺𝑀𝑜2𝑆3and 𝐺𝑆2 are the 

Gibbs free energies of bulk Mo2S3 and S2, respectively. Note that the top and bottom surface 

of the slab need to be identical to obtain a meaningful definition for the surface free energy. 

This leads to non-stoichiometric slabs, MonSm (Figure 4.3). Eq. (4.1) can also be viewed as 

an expression of the free energy of reaction to create a MonSm slab from bulk Mo2S3. S2 act as 

a S reservoir and is added or removed to close the mass balance. If the slabs are sufficiently 

thick, the surface energies of the top and bottom surface are additive. A number of simple 

checks, using stoichiometric slabs with a different top and bottom surface, confirmed that 

surface energies calculated following both approaches differ by less than 0.02 J/m2 when the 

slab is at least 0.8 nm thick. 

 

http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S003960280800397X#bib12�
http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S003960280800397X#fig3�
http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S003960280800397X#fd1�
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Figure 4.3: (a) Mo2S3 bulk crystal structure [22]. Large grey spheres indicate S atoms, while 
small black spheres indicate Mo. The crystal lattice parameters for the primitive monoclinic 
cell are: a = 6.09 Å; b = 3.20 Å; c = 8.62 Å and β = 102.4°. Selected (0 0 1) surface structures 
are illustrated. For the S-Rich1 surface two types of surface S atoms are indicated. (b) Top 
view for the S-Rich1 surface. (c) Rearrangement of the surface sulfur atoms leading to a 
rectangular pattern. 

 

The energies in Eq. (1) were obtained from first principles periodic density functional (DFT) 

calculations. They were performed using the Perdew–Burke–Enzerhoff (PBE) functional 

[13], plane augmented wave pseudopotentials, and a (6 × 6 × 1) Monkhorst–Pack k-point grid 

for slabs and a (6 × 6 × 6) k-point grid for the bulk, as implemented in the Vienna ab initio 

Simulation Package (VASP) [14]. Repeated slabs were separated by a 10–12 Å vacuum layer 

and all the atomic positions were fully relaxed. The Gibbs free energies of bulk Mo2S3 and 

MonSm slabs in (1) were replaced by the total electronic energy, neglecting relative entropic 

and PV contributions. The chemical potential of gas phase S2 was obtained by combining the 
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electronic energy with experimental temperature and pressure corrections [15]. To validate 

these assumptions, the Gibbs free energy of reaction for 

 𝑀𝑜 + 𝑆2 ⇔ 𝑀𝑜𝑆2 4.2 

And 

 2𝑀𝑜𝑆2 ⇔ 𝑀𝑜2𝑆3 +
1
2

 𝑆2 4.3 

were calculated at 300 K and 1 atm. The calculated Gibbs free energies of reaction, 

−296 kJ/mol and +180 kJ/mol for the reactions (4.2) and (4.3), respectively, match the 

experimental values of −294 kJ/mol and +178 kJ/mol [16] quite well. 

 

There are various ways to cleave bulk Mo2S3. With lattice vectors a and b of 6.08 Å and 

3.20 Å, only the (0 0 1) surfaces are consistent with the periodicity of the STM images 

(Figure 4.2). Starting from the bulk crystal structure, 10 possible surface terminations were 

considered for the Mo2S3(0 0 1) surface. Selected surfaces are indicated in Figure 4.3. 

Additional surface structures, illustrated in Figure 4.3, were considered to explain some 

details of the STM images. 

 

STM images were calculated using the Elastic Scattering Quantum Chemistry (ESQC) 

approach. In this approach, the full scattering matrix for the tip-substrate junction is 

constructed to calculate the transmission amplitude of the junction. The tunneling current is 

then obtained from the Landauer formula [17]: 
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 𝐼(𝑉) =
𝑒
ℎ
� 𝑇(𝐸)�𝑓0(𝐸 − (𝐸𝐹 − 𝑒𝑉/2)� − 𝑓0�𝐸 − (𝐸𝐹 + 𝑒𝑉/2)�𝑑𝐸 
+∞

−∞
 4.4 

which for low bias simplifies to 

 𝐼 =
2𝑒2

ℎ
 𝑇(𝐸𝐹)𝑉 4.5 

where 𝑓0 is the Fermi function, 𝐸𝐹 is the Fermi energy and 𝑉 is the bias voltage. 

 

The atomic details of the Mo2S3 surface and of the tip, as well as their electronic interactions 

are fully taken into account using a minimal linear combination of atomic orbitals 

representation. Our approach follows the procedure outlined by Altibelli et al. [18] for MoS2. 

Within the calculations, the virtual STM is modeled as two semi-infinite W metal pads, while 

a 12 Å thick Mo2S3 slab and a four atom W tip constitute the junction. Each part of the 

system, i.e. the W bulk, the Mo2S3 slab and the STM tip, is described atom by atom. The 

distance between the Mo2S3 slab and the semi-infinite W metal pad is 2.2 Å. Bloch states 

propagating in the semi-infinite W contacts define the incoming and scattered states used to 

calculate the electronic transparency 𝑇(𝐸𝐹) of the junction. Though the calculated current 

intensity depends on the details of the model, for a constant current scan, the corrugation does 

not depend on the details of the W metal pad–Mo2S3 slab–STM tip–W metal pad junction for 

typical tip-surface distances of 4–6 Å. Because of the size of the system, ab initio constant 

current STM image calculations become impractical and the extended Hückel molecular 

orbital (EHMO) [19] model was used to construct the electronic Hamiltonian of the 

corresponding tunnel junction. Standard Hückel parameters [20] were used in the 

calculations. To help elucidate the contrast in the simulated STM images, the density of states 

(DOS) of Mo2S3 was calculated using Bicon–Cedit [21]. For the DOS calculation, we used a 
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5X5X5 k-point grid. Standard EHMO parameters were also used in these calculations, 

preserving consistency with the ESQC results. The band structure and DOS were also 

calculated using periodic DFT to validate the EHMO results. 

 

4.3 Experimental STM images of the MoS2(0 0 1) and Mo2S3 surfaces 

SEM images of a freshly cleaved MoS2 surface show atomically flat terraces of over 100 μm 

diameter, separated by multi- and mono-layer steps (Figure 4.1a). Atomic resolution STM 

images of the higher and lower terraces (inset in Figure 4.1a) show the hexagonal 

MoS2(0 0 1)-(1 × 1) structure without lattice distortions. The atomic resolution image of the 

MoS2 surface has been studied before and our image is consistent with those data. A 

theoretical study by Altibelli et al. [15] showed that the image can be explained by a 

competition between through bond and through space electronic coupling between the tip 

apex end atom and the S and Mo orbitals contributions. 

 

Both the large scale surface morphology of the flat terraces and the atomic hexagonal surface 

structure on those terraces are preserved when the sample is annealed at temperatures up to 

1100 K. The Mo–S phase diagram reported by Brewer and Lamoreaux [4] indicates that bulk 

Mo2S3 becomes thermodynamically favorable over the MoS2 phase above about 950 K. For a 

phase transformation to occur, one S atom has to be removed for every two MoS2 units. The 

transport of S atoms is likely to be kinetically limited, especially from the MoS2 bulk, and 

higher temperatures are required in this case. When flashing the MoS2 sample to about 

1300 K, both the overall surface morphology and its local surface atomic structure change 

dramatically (Figure 4.1b). 
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SEM images of the sample flashed to 1300 K show islands of about 150 nm diameter 

(Figures. 4.1b and 4.2a). Figure 4.2b presents a STM image of one of those islands indicating 

that a given island has atomically flat terraces. The STM scan recorded at the surface of those 

islands (Figure 4.2c) shows rows with a periodicity of about 0.6 nm, as well as atomic 

defects. Atomic resolution STM images (Figure 4.2d) indicate that the rows correspond to 

atomic pairs with a periodicity of 0.32 nm along the rows. Two types of rows of atomic pairs 

are observed with an average periodicity of about 0.62 nm. The observed periodicity matches 

fairly well with the lattice vectors of the Mo2S3(0 0 1) surface structure, with a = 0.61 nm, 

b = 0.32 nm and the angle α = 90° [22]. X-ray diffraction (XRD) [6] and transmission 

electron microscope (TEM) [7] studies indicate that the Mo2S3 crystal structure is monoclinic 

with 10 atoms per unit cell (Figure 4.3). The Mo atoms are arranged in two inequivalent zig-

zag chains along the b-axis. One Mo atom covalently binds six S atoms and another Mo 

atom. 

 

We propose that the observed surface termination after a high temperature treatment in the 

UHV is indeed the (0 0 1) facet of a Mo2S3(0 0 1) crystal surface. First principles calculations 

discussed below confirm that the (0 0 1) surface energy is indeed lower than the surface 

energy for other low Miller index surfaces of this material. A closer look at the STM images 

allows distinguishing two types of atomic pair rows, a dominant type with a zig-zag 

organization along the rows and a type with a rectangular pattern. Both are indicated in 

Figure 4.2d. 
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4.4. Theoretical study of the Mo2S3 surface structure 

4.4.1. Surface energy 

Experimentally, the atomic surface structure of the MoS2 terraces is preserved up to 1100 K. 

Above 1300 K, both the overall surface morphology and the local surface atomic structure 

change dramatically. The limited number of S vacancies observed on the MoS2 terraces up to 

1100 K is consistent with the high reaction energy to create S vacancies on MoS2, with a 

calculated  Δ𝐺𝑟0 of +240 kJ/mol S vacancies. In comparison, the standard reaction Gibbs free 

energy to transform MoS2 to Mo2S3, Eq. (4.3), is +180 kJ/mol. 

 

To elucidate the atomic composition of the surface structure observed in the STM images, 

surface free energies were calculated for a range of possible Mo2S3 surface chemical 

compositions. Since some of the possible surface terminations are non-stoichiometric, i.e. S-

rich or Mo-rich, the surface energy depends on the S chemical potential (Eq. (4.1)), and the 

relative stability changes with the temperature and the S2 partial pressure in the UHV 

chamber. Because the periodicity of the STM images indicate that the surface structure is 

related to the (0 0 1) facet, our calculations focused on all possible (0 0 1)-1 × 1 surface 

structure derived from the Mo2S3 bulk positions. Surface energies for selected surfaces are 

shown in Figure. 4.4, and illustrated in Figure. 4.3. 
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Figure 4.4: Surface free energy for selected Mo2S3(0 0 1) surface terminations (Figure 4.3 
and Figure 4.5) as a function of the S chemical potential, μs(T, p). The corresponding 
temperature for 𝑝𝑠2 = 3 × 10−7 𝑃𝑎 is indicated. The chemical potential μs(T, p) is relative to 
the total electronic energy of an isolated S2 molecule,𝜇𝑠(0 𝐾,𝑝) = 1/2𝐸𝑆2

𝑡𝑜𝑡𝑎𝑙. 

 

The calculations indicate that the S-rich1 surface, presented in Figure. 4.3 and Figure 4.5, has 

the lowest surface energy for S relative chemical potentials, where zero of the chemical 

potential has been taken to be the total electronic energy of an isolated S2 molecule, up to 

−2.55 eV, or temperatures below 1100 K under UHV conditions, i.e. a S2 partial pressure 

below 3 × 10−7 Pa. The S-rich surfaces become less stable as the S chemical potential 

decreases or, equivalently, as the temperature increases. Indeed, the effect of entropy of the 

gas phase S2 increases with temperature, and the equilibrium reflected in (4.1) shifts towards 

the Mo-rich slabs. The slope of the surface energy vs. temperature relationship is determined 

by the stoichiometric coefficient of S2 in Eq. (1) and the surface energy of stoichiometric 

slabs is independent of the S chemical potential. At temperatures above about 1500 K and 

under UHV conditions, the calculations indicate that a Mo-rich surface becomes 

thermodynamically favorable. However, at the experimental temperatures of around 1300 K, 
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the S-rich1 surface remains the most stable surface formed by cleaving Mo2S3. The relative 

stability of this surface originates from the rather low energy cost required to create it, and 

can be explained by the low number of bonds broken to create the S-rich1 surface from the 

Mo2S3 bulk. Indeed, only three Mo–S bonds are broken per unit cell to create this surface, as 

compared to six Mo–S bonds to create the Mo-rich surface (Figure 4.3). At high S chemical 

potentials and low temperatures, the surface energy for the S-rich1 surface even becomes 

negative, indicating that it is thermodynamically favorable to create this surface from the 

Mo2S3 bulk when the S chemical potential is high. Negative surface energies have been 

reported and discussed before for two-component systems and are not unexpected [23]. 

 

Figure 4.5: Simulated low voltage STM image for the S-rich1 surface (a) corresponding 
surface structure (b) and experimental STM image recorded at V = −0.4 V and I = 0.2 nA. (c) 
Two types of surface S atoms can be distinguished. In the ESQC simulations, the average tip 
height above the surface is approximately 4 Å and the Fermi energy for the S-rich1 surface is 
−9.9 eV. 

 

The surface geometry of the S-rich1 surface is shown in Figure 4.5. The surface S atoms are 

consistent with the double row zig-zag pattern observed above in the experimental STM 

images. The spacing between the S atoms match the experimental spacing of 6.2 Å and 3.1 Å 

along two orthogonal directions. Note that the two S atoms, S1 and S2 in Figure 4.3 and 

Figure 4.5, are not equivalent and have a slightly different height. They are hence expected to 
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appear different in STM images. STM image calculations reported below indeed indicate that 

the S atoms are observed as protrusions for low voltages and for filled state STM images. 

 

Near the experimental temperature of 1300 K, the stability of the S-rich1 surface and of the 

Mo-rich surface becomes fairly similar. Two additional surface structures, created by 

removing a row of S1 and a row of S2 atoms from the S-rich1 surface, were also considered 

(Figure 4.4). The surface energy calculations indicate that a surface formed by removing the 

S1 row will be formed at high temperatures. Rectangular arrangements of the surface S atoms 

can be considered as well (Figure 4.3c). However, the structure in Figure 4.3c does not 

correspond with the bulk location of the S atoms and is less stable than the structure in Figure 

4.3b, probably because of repulsion between neighboring S atoms. Larger unit cells, 

considering combinations of zig-zag, missing S rows and rectangular patterns are needed to 

gain a full understanding of the possible surface structures, but are beyond the scope of the 

current work. 

 

4.4.2. STM image calculations 

ESQC was used to calculate constant current STM images for the S-rich1 surface (Figure 

4.5). At low voltages and an average tip-surface distance of around 4 Å the distance between 

the tip atom and the topmost sulfur atom, the surface S atoms appear as protrusions and lead 

to a zig-zag pattern, separated by a dark grove. Note that both surface sulfur atoms have a 

different height in the image, with S2 appearing brighter than S1. The S2 atoms sit slightly 

higher on the surface than the S1 atoms, giving rise to a better overlap between the surface 

and the tip states. The difference in height between S1 and S2 is 0.35 Å while the STM tip 
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moves slightly at 0.14 Å, indicating that the STM image results from both geometric and 

electronic effects. The corrugation along and orthogonal to the rows agrees fairly well with 

the experimental corrugation. The STM image results from the variation of the interaction 

between the electronic tip states and the electronic surface states near the surface Fermi level. 

To elucidate those surface electronic states, the total density of states (DOS) and the DOS 

projected on the Mo and S orbitals was calculated for Mo2S3 (Figure 4.6). 

 

Figure 4.6: Total and projected density of states for bulk Mo2S3. The bulk Fermi level, 
−9.2 eV, is indicated. Note that the bulk Fermi level differs from the surface Fermi level. 

 

The calculated DOS confirms the metallic nature of Mo2S3. The many peaks in the DOS plot 

results from the finite k-point sampling. It can be attributed to metal–metal binding between 

Mo atoms in Mo2S3. Indeed, the Mo–Mo distances of 2.80 Å and 2.81 Å are comparable to 

the distance in bcc Mo, 2.73 Å, and the states near the Fermi level are mainly attributed to 

Mo–Mo interactions. Following the procedure suggested by Hoffman [24], a DOS plot for 

the Mo sublattice of Mo2S3 indeed confirmed significant interactions between the Mo atoms. 

A similar procedure for MoS2 does not show significant Mo–Mo interaction, as expected. 

The S atoms are involved in Mo–S bonds and the DOS is mainly localized below and well 
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above the Fermi level. The position of the bonding S states is somewhat similar to MoS2 [3]. 

Since the states near the Fermi level are dominated by Mo d-orbitals of the Mo atoms, 

calculations based on the surface Fermi level states would predict the Mo atoms to appear 

bright. However, since the Mo d-orbitals have a shorter range than the S p-orbitals [25], the 

better overlap of the S orbitals with the STM tip states for typical tip-surface distances makes 

the S atoms appear bright. This overlap depends quite critical on the tip-surface distance, and 

an inversion of the calculated contrast can be observed for tip-surface distances below 2 Å. A 

similar observation was reported for the MoS2 surface [18]. 

 

4.5. Conclusion 

Under ultra high vacuum condition and at temperatures above 1300 K, a partial 

transformation of MoS2 to Mo2S3 is observed and this reconstruction can be imaged using 

scanning tunneling microscopy (STM). A combination of first principles surface free energy 

calculations and STM image simulations indicates that the dominant surface structure of 

Mo2S3 is sulfur rich up to temperatures of 1400–1500 K, despite the low sulfur chemical 

potential at these conditions. The S atoms form extended double zig-zag rows separated by a 

dark grove, which are clearly observed with the STM. The STM images result from 

competition between the higher density of Mo states near the Fermi level, and the larger 

range and hence better overlap with the STM tip states for the p-orbitals of the surface S 

atoms. 
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CHAPTER 5 

Calculation of the spin dependent tunnelling current in Fe|MgO|Fe tunnel 
junctions  

5.1 Introduction 

In the previous chapters, current flow through STM tunnel junctions was studied. In this chapter, 

we extend the methodologies further to treat spin-dependent ballistic electron transport as 

encountered in Magnetic Tunnel Junctions (MTJs). MTJs not only provide a convenient route to 

enhance our understanding of the spin-dependent transport at nanoscale but also form a basic 

building block in many technological important devices such as random-access-memory 

(MRAM), magnetic sensors and novel programmable logic devices [1–3].  

 

Earlier experimental studies of MTJs employed amorphous Al2O3 films as the barrier material 

due to the ease of fabrication. Amorphous barriers, as their name suggests, do not provide any 

spin filtering mechanism. In other words, electrons of either spin encounter similar resistance 

traversing it. This means we can understand the observed Tunneling Magneto-Resistance    

(TMR ) ratios for such systems from the spin polarization of the electrons at interface, as 

proposed by Julliere [4]. The success of the Julliere model in qualitatively predicting the TMR 

values of MTJs with amorphous barriers, indeed, confirms the absence of spin filtering in 

amorphous barriers. 
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Recent advances in the epitaxial growth of the films make it possible to grow crystalline barrier 

materials. Various studies with crystalline barriers have clearly demonstrated that spin filtering 

properties of the barrier materials play a very important role in determining the TMR ratio [5]. In 

fact, Yang et al. reported that the sign of the TMR of a CoFe|MgO|CoFe MTJ can be inverted by 

introducing a thin layer of NiO in-between contact and the barrier material [6]. To understand the 

observed TMR ratio for such systems, it becomes vital to incorporate the spin filtering property 

of the barrier materials in the model. Fortunately, the crystalline nature of the barrier material 

makes rigorous transport calculation for the whole system possible as the transverse 

momentum(k�⃗ ||) is conserved during the transport.  Indeed, the prediction of very high TMR 

ratios for Fe|MgO|Fe trilayer structures from transport calculation [7,8] and its subsequent 

experimental verification  [9,10] underline the importance of such transport calculations.  

 

In this chapter, we benchmark our methodologies for the well-studied Fe|MgO|Fe system for 

which a wealth of theoretical as well as experimental data is available. In the next chapter we 

employ the methodologies developed here to study the effect of strain on the TMR ratio of a 

MTJ.  In our study, we employ the semi-empirical extended Hückel theory (EHT) for the 

description of the Hamiltonian matrix, coupled with the non-equilibrium Green function 

formalism for the transport calculations, as implemented in the GREEN package [11]. For the 

construction of the Hamiltonian matrix our choice remains the EHT due to its numerous 

advantages as described in the previous chapters. As noted earlier, it combines the advantages of 

tight binding theory, i.e., its computationally efficiency, with the flexibility to optimize the 

parameters to provide a very accurate description of the electronic structure of the system. The 

non-orthogonality of the basis set, on the other hand, captures the bonding chemistry very well 
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and also ensures the transferability of the parameters across different environments and 

structures [12]. 

 

For  the transport calculation, however, we have used the Green’s function formalism as 

implemented in GREEN [11] instead of ESQC  [13,14]. Both GREEN and ESQC model the 

system as a periodic system with an embedded defect. The main difference between the two 

methods is the way scattering matrix is calculated. In ESQC, the scattering matrix is calculated 

via the transfer matrix technique, which typically requires identical electrodes on both sides of 

the defect. In GREEN, the scattering matrix is obtained via the use of the Green’s function that 

lifts the requirement of identical electrodes on both sides of the defect. Also in ESQC the real-

space matrices are directly used while in GREEN they are back transformed into reciprocal space 

before the calculation [15].  

 

Due to the lateral symmetry of the MTJs, reciprocal space calculations lead to faster 

convergence. Moreover, the IV curve is more easily interpreted in terms of the lateral momentum 

of the tunneling electrons. As the momentum of an electron is directly related to its reciprocal 

space wave-vector, reciprocal space calculations directly provide the information for the 

interpretations of the IV characteristics of the system. 

 

Due to the difference in the way the matrix elements are calculated, the convergence criteria also 

become different. In the real space calculations, it is important to check the convergence of the 
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result with respect to the lateral dimension of the system. For the reciprocal space calculations 

this requirement changes to the convergence with respect to the k-point number used to sample 

the 𝑘�⃗ || Brillouin zone. In many transport calculations the presence of the sharp peaks in the 

transmission coefficient T�(k�⃗ ||) requires a fine k-point mesh in order not to miss contributions 

due to such peaks. 

 

Another important factor that needs careful attention is the value of the imaginary part of the 

energy in the calculation of the Green function. The Green function, 𝐺(𝐸), of a system is given 

by 

 G(E)F(E) = I  

Where I is an identity matrix and F(E) is the usual secular matrix  

 𝐹(𝐸) = 𝐸S − 𝐻  

In the above equation, H and S are the Hamiltonian and the overlap matrix. In order to avoid 

divergence for certain energies, the value of E is taken to be complex by adding a small 

imaginary δ to the actual value of the real energy Er. 

 E = Er + iδ  

The presence of an imaginary energy, however, introduces damping of the Bloch waves [11]. In 

order to minimize energy losses due to damping, a very small value of the imaginary energy 

(typically 10−6 meV) is taken for the calculation of the Green function. 
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5.2 Methods 

5.2.1 Model Geometry   

Previous studies of Fe(001) deposited over the MgO(001) films suggest that Fe(001) grows 

epitaxially over the MgO(001) surface. Kanaji et al. [16] find that Fe(001) atoms are located on 

top of the O atoms of the MgO film. Using Low Energy Electron Diffraction (LEED) they 

estimate the Fe-O distance to be ~2 Å. Their finding is supported by full potential linearized 

augmented planewave (FLAPW) DFT studies by Li et al. [15].  They, too, find that Fe atoms are 

located directly above the O atoms of MgO. Their calculated Fe-O distance of 2.3 Å, however, is 

slightly longer than the experimental data. There is another theoretical study that models a MTJ 

structure exactly by considering MgO(001) layer sandwiched between two Fe(001) layers [7]. 

This study, too, finds that the Fe atoms are located directly above the O atoms. In this study, the 

authors find a Fe-O distance of 2.16 Å, intermediate between the previous values. 

 

Based on the above studies, we modeled our system to be epitaxial with an in-plane lattice 

constant of the experimental Fe(001) value of 2.886 Å (Figure 5.1). In order to place the O atoms 

of MgO directly above the Fe atoms, the MgO(001) slab was rotated by 45 degrees with respect 

to the Fe lattice. An Fe-O distance of 2.16 Å was used as in ref [8]. 

 

 

 

 



96 
 

 

 

 

 

 

Figure 5.1: Arrangement of the atoms in a magnetic tunnel junction, consisting of Fe|MgO|Fe. 
The blue, red, and green balls represent Fe, O, and Mg atoms respectively. In the NEGF 
calculations, the Fe atoms extend to infinity at the both ends and the whole system is periodic in 
the direction parallel to the interface (xy). 

 

5.2.2 Description of the theory  

In the transport calculations, we used the EHT [18] for the description of the device Hamiltonian 

and the non-equilibrium Green function [19] to determine the transmission probability, as 

implemented in the GREEN program [11,20].  The elements of the EHT Hamiltonian matrices 

are determined by the following prescription. The diagonal elements (𝐻𝑑(𝑖𝑖)) of the matrix are 

given by the ionization energies of the corresponding orbitals. The off-diagonal elements 

(𝐻𝑑(𝑖𝑗)) are given by  

Hd(ij) =
1
2

KSd[Hd(ii) + Hd(jj)] 

where Sd(ij) is the overlap integral given by ⟨i|j⟩ and 𝐾 is a scaling constant. The device is 

considered to be perfectly periodic perpendicular to the transport direction. As a result, we can 

write the various matrice elements in reciprocal space from their real space counterparts as 

follows (A ≡ Hd, Sd)  

Fe(001) MgO Fe(001) 
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A�k�⃗ ||� = �Amneik��⃗ .(r�⃗ m−r�⃗ n) 
n

 

In the above equation, m represents the unit cell located at origin and n represents the 

neighboring unit cells in the transverse directions.  

 

From the knowledge of Hamiltonian matrix Hd(k�⃗ ||) and overlap matrix  Sd(k�⃗ ||) the Green 

function G(E, k�⃗ ||) at a given energy (E) and and transverse momentum (k�⃗ ||) is easily calculated 

from 

G(E, k�⃗ ||) = [(E + i0+)Sd�k�⃗ ||� − Hd�k�⃗ ||� − Σ1�E, k�⃗ ||� − Σ2�E, k�⃗ ||�] 

Where Σ1 and Σ2 are the self energies of the contact that describe the effect of the left and the 

right contact on the central device. The transmission coefficient T��E, k�⃗ ||� at a given energy E for 

a given transverse momentum (k�⃗ ||)  is then calculated from the knowledge of the Green function 

as follows 

T��E, k�⃗ ||� = tr(Γ1GΓ2G†) 

In the above equation Γ1 and Γ2 are the broadening functions, which are the non-hermitian part of 

the self-energy and are given by Γ1,2 = i(Σ1,2 − Σ1,2
† ). The total transmission per unit area, T(E), 

is then calculated by integrating T��E, k�⃗ ||� over k�⃗ || 

T(E) =
1

4π2
∫ T��E, k�⃗ ||�dk�⃗ || 

This integral is calculated numerically by discretizing k�⃗ || as 
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T(E) ≈
1
A

 �T�(E, k�⃗ ||)
k��⃗ ||

 

Once  T(E) is known, the current JP,AP for the parallel and the anti-parallel configuration can be 

calculated from the Landauer formula [21] 

JP,AP =
e
h
∫ TP,AP(E)[f1(E − μ1) − f2(E − μ2)] 

Where f1and f2 are the Fermi-Dirac distribution of the left and the right contact and μ1 and μ2 are 

their respective chemical potential. 

 

5.2.3 Determination of the Extended Hückel parameters 

The electronic structure of the tunneling junction is described by a Extended Hückel Molecular 

Orbital (EHMO) Hamiltonian, using literature values for the Fe spd parameters [12]. As the 

MgO parameters are not available in the literature, we optimized them by fitting the EHT bands 

to accurate bandstructures derived from DFT calculations. The fitting is carried out by 

minimizing the error function (χ) which is the difference between the EHT derived bands and 

the DFT derived bands.  

χ = � �Em�k�⃗ ||,σ� − Edftm �k�⃗ ||,σ��
2

m,k,σ

 

In the above expression Em(k�⃗ ||,σ) represents the energy of mth band, with k-vector k�⃗ || and spin 

configuration σ. For the minimization of χ, we employed a Levenberg-Marquadt algorithm 

(LM), as implemented in GREEN [11,20].  
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Since DFT-GGA underestimates MgO bandgap, we first correct it by shifting the valence band 

as has been done in previous calculations [22]. The fitted parameters and the bandgap are given 

in Table 5.1. To confirm the accuracy of the fitted parameters, the EHT bandstructure is 

compared with the corrected DFT-PBE bandstructure in Figure 5.2. In the figure, the solid line 

represents the EHT bandstructure while the points represent the DFT bandstructure.  In the plot, 

the bands have been shifted so that the top of the valence band coincides with the 0 of the energy 

scale. The match is quite good in the region of 0-10 eV that encompasses the region between 

valence and the conduction band where the Fermi level lies. The close agreement between the 

two bandstructures in the region of interest illustrates the accuracy of the fitted parameters.  

 

Figure 5.2: Calculated MgO bandstructure using EHT (red solid line) and DFT-PBE after 
correction (green dotted line). Note that the original DFT-PBE valence bands have been shifted 
up by 3.3 eV to match the experimental band gap, 7.8 eV [23].  

 

5.2.4 Fermi level alignment  
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DFT-PBE calculations for a 4-layer MgO slab placed on a 6-layer Fe(001) slab show that the top 

of the MgO valence band edge is located about 3.5 eV below the Fermi level of the system. 

Therefore, a similar offset is used in our EHMO-based transport calculations. This value is 

consistent with the FLAPW-DFT study of 2 ML of Fe adsorbed on a 6 ML MgO slab, Li et al.  

where the authors  find that the top of the MgO valence band lies ~3.5 eV below the Fermi 

level [24]. This finding is also supported by experimental study of MgO(1-6ML)/Fe multilayer 

where Wulfhekel et al. find the difference between the MgO valence band and Fe Fermi level to 

be 3.6 eV from ultraviolet photoemission spectra [25].    

 

5.3 Results and the discussions 

In Figure 5.3(a), the barrier thickness dependence of the TMR ratio is presented. The TMR ratio 

in the Figure corresponds with the so-called pessimistic TMR ratio, defined as:  

𝑇𝑀𝑅 =
𝐼𝑃 − 𝐼𝐴𝑃
𝐼𝑃

   

Where 𝐼𝑝(𝐼𝐴𝑃) denotes current in the parallel (anti-parallel) configuration. 

 

From the figure it is clear that the TMR ratio increases with the thickness of the barrier film. This 

increase is more pronounced for thinner layers. For example, the TMR ratio for a 2 ML MgO 

thick barrier is 0.88 and increases quickly to 0.95 for a 4 ML barrier. With further increase in the 

barrier thickness, the rate of increase diminishes and for a 20 ML thick barrier the TMR ratio 

saturates to 0.98. 
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The increase in the TMR ratio can be understood from the individual conductances, as plotted in 

Figure 5.3(b). In the Figure the variation of the conductance is plotted on a logarithmic scale 

against the thickness of the MgO barrier. The plot shows that the conductance of the majority 

electrons is always higher than for the minority electrons for all the considered thickness. This 

behavior confirms the experimentally observed positive spin polarization of a MTJ consisting of 

Fe electrodes with an amorphous Al2O3 barrier  [26].  Also from the plot, the exponential decay 

of all the conductances for thicker barrier is quite clear. The rate of decay, even in the asymptotic 

regime is, however, different for all the three conductances. The majority conductance decays 

(decay constant 0.40 Å-1)  slower compared to the minority conductance (decay constant 0.50 Å-1 

) as well as anti-parallel conductance (decay constant 0.46 Å-1). Indeed, the slower decay rate of 

the majority electrons give rise to the increasing TMR ratio with thickness.  The difference in the 

decay rate for the three conductances alludes to the different mechanism of the transport which 

becomes evident when we look at the 𝑘�⃗ ||-resolved transmission coefficients in Figure 5.4. 
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Figure 5.3: (a) Dependence of the pessimistic TMR ratio RTMR of an Fe|MgO|Fe(001) junction 
on the MgO thickness. (b) Dependence of the individual conductances Γ𝐹𝑀↑ , Γ𝐹𝑀↓ and Γ𝐴𝐹 on the 
MgO barrier thickness. 

 

In Figure 5.4.1  𝑇(𝐸,𝑘�⃗ ||) for a 4 ML MgO barrier is shown, while Figure 5.4.2 corresponds to a 

8 ML MgO barrier. The selected thicknesses of the MgO barrier represent typical conductances 

in the pre-asymptotic and asymptotic tunneling region, respectively. In the pre-asymptotic 

region, the majority-to-majority conductance is dominated by a small circular region around the 

Gamma point. The minority-to-minority conductance, however, is dominated by four rectangular 

shaped regions lying at the edges of the Brillouin zone along 𝑘𝑥 = 0 and 𝑘𝑦 = 0 lines. There are 

also two rectangular ring-shaped regions with their centers at Gamma point where the 

conductances are comparatively higher but not as high as in the edge regions. These two rings 

are rotated 45⁰ with respect to each other and the corner of the inner ring joins the center of the 

edge of the outer ring. Finally, in the anti-parallel alignment, the dominant region for the 

conductance appears to be a convolution of the high conductance region of the majority-to-

majority and minority-to-minority conductance. It has a high conductance rectangular ring 

around the Gamma point which is reminiscent of the minority-to-minority conductance whereas 

large thickness of the ring and comparatively higher value of 𝑇(𝐸) points to its similarity with 

the majority-to-majority transport. 

 

For the 8 ML MgO barrier (Figure 5.4), the regions of high conductance for all the three cases 

move closer to the Gamma point. For the majority-to-majority transport, the radius of the circular 

region with high conductance becomes smaller. For the minority-to-minority transport, the inner 

rectangular ring region and the lobe joining it to the outer rectangular region become very 
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prominent. On the other hand, the regions far from the Gamma point become less important. In 

fact, the rectangular region near the edges of the Brillouin zone and the outer rectangular ring 

region contribute less than 0.1% for this thickness.  Finally, the conductance map for the anti-

parallel alignment follows the same trend. In this case, the outer and inner radii of the ring shrink 

and the high conductance region moves towards the Gamma point. It is interesting to note that 

both for the thicker as well as thinner barrier there is a hole in the conductivity map of minority-

to-minority as well as anti-parallel alignment at the centre of the Brillouin zone. The wave 

function matching method of McLaren et al.  [8] demonstrates that the hole originates from the 

symmetry mismatch of the tunneling electrons for the anti-parallel alignment. 

 

 a. Parallel majority channel b. Parallel minority channel c. Anti-parallel 
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Figure 5.4. 𝑘�⃗ || resolved transmission probabilitities for a Fe|MgO|Fe(001) junction with 1).four 
atomic planes of MgO and 2) eight atomic planes of MgO: (a) Majority-to-majority,  𝑇�𝐹𝑀↑ (𝑘�⃗ ||), 
(b) Minority-to-Minority,   T�𝐹𝑀↓ (𝑘�⃗ ||)  and (c) Anti-parallel,   T�𝐴𝐹(𝑘�⃗ ||)     
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The conductance behavior can be understood qualitatively from the surface spectral density of 

the Fe(001) surface and from the complex Fermi surface of the MgO barrier. The surface spectral 

density of the Fe(001) illustrates availability of tunneling electrons in the electrodes while the 

complex Fermi surface illustrates how these states decay inside the MgO barrier. The surface 

spectral density  in Figure 5.5 shows that the majority states are distributed quite uniformly 

throughout the Brillouin zone. Their concentration is higher along two perpendicular strips 

passing through the center of the Brillouine zone and parallel to the 𝑘𝑥 and 𝑘𝑦 axis. The minority 

electrons, however, are distributed along the thin ring shaped area with its center at the Gamma 

point. There are also more sharply localized thin strips of high density along the four corners. 

 

  

Figure 5.5: Spectral density for the Fe[001] surface at Fermi level (1) majority electrons (2) 
minority electrons.  

 

The complex Fermi surface of MgO shows that the region of the smallest decay lie in the circular 

area with its center at Gamma point [7]. As a result, perpendicular tunneling (𝑘�⃗ || = 0) inside 
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MgO barrier is favored. There are also four subsidiary minima along (𝑘𝑥 = 𝑘𝑦) lines which are 

responsible for the lobes found in the minority-to-minority conductance map. 

 

Qualitatively, the surface spectral density of Fe(001) and complex Fermi surface of MgO are 

able to explain the observed conductance behavior shown in the Figure 5.4. For small 

thicknesses, Figure 5.4.1, electrons everywhere in the Brillouin zone are able to overcome thin 

MgO barrier. Thus for small thicknesses, the conductivity map closely mirrors the spectral 

density of the Fe electrodes. For majority-to-majority transport that means the region of higher 

conductance lie in and around the center of the Brillouin zone where there is a higher 

concentration of the majority electrons. The low decay constant inside MgO barrier near the 

center of the Brillouin zone further enhances the conductivity of the electron in that region 

compared to other regions. For minority-to-minority transport, the regions of the high 

conductance lie away from the center of the Brillouin zone as minority electrons have no states 

in and around the center of the Brillouin zone. Also the location of the high conductance region 

roughly matches with the Fe(001) minority surface spectral density. For the anti-parallel 

alignment, as expected, the conductivity map appears to be the superposition of the majority-to-

majority and minority-to-minority conductance map. For thicker layer (Figure 5.4.2) the decay of 

the states inside the barrier becomes more important. Consequently, for all the three cases, the 

region of the high conductance move closer to the center of the Brillouin zone where the decay 

constant is quite low.  
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5.4 Summary 

The spin-dependent transport through a Fe|MgO|Fe multilayer was studied using the non-

equilibrium green function formalism coupled with extended Huckel theory. The study is able to 

replicate the quantitatively increasing TMR ratio with the increasing thickness of the barrier 

material  [7,8]. This study is also able to illustrate major features of the conductivity map for 

both thicker as well as thinner barriers. More importantly, despite the sensitivity of the results on 

the EHT parameters , this study finds the decay rate inside the MgO barrier to be 0.40 Å-1 and 

0.50 Å-1 for the majority and minority electrons, respectively which is very close to the earlier 

reported value of 0.44 Å-1 and 0.49 Å-1  [22]. Thus, this work demonstrates that NEGF coupled 

with EHT theory provides an ideal framework to study spin-dependent transport in MTJs. Next, 

this theory is used to study the effect of the biaxial strain in MgO magnetic tunnel junction which 

is described in the next chapter. 

         

Table 5.1.  EHT parameters for MgO used in the calculation. The parameters are obtained by 
minimizing the error between the corrected DFT-PBE bandstructure and the EHT bandstructure. 
The values under Eii (2nd column) are the Coulomb energies of the orbitals shown in the leftmost 
column. Values under ζ1 (3rd column) and ζ2 (5th column) are the orbitals exponents and the 
values under c1 (4th column) and c2 (6th column) are their corresponding coefficients. 

 

Mg  Eii (eV) 𝜻𝟏 C1  𝜻𝟐 C2 

3 s -7.66153  0.81483  0.57383  11.52503  0.81471  

3p -6.74562  0.93823  0.77203  12.97422  0.62945  

O       
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2 s -30.21043  2.57873  0.0001  2.94646  0.9999  

2 p -15.35389  1.3255  0.40594  3.97295  0.73713  
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CHAPTER 6 

Biaxial strain effect of spin dependent tunneling in MgO magnetic tunnel 
junctions 

6.1 Introduction 

The material and interface engineering of magnetic tunnel junctions (MTJ) is the key for the 

future of spin transfer torque based random access memories (STT-RAM). A value of tunneling 

magnetoresistance (TMR) exceeding 1000% has been predicted [1,2] and recently achieved in 

MTJs with single crystalline or textured MgO(001) tunnel barriers [3–5] through which the Δ1 

Bloch states tunnel coherently. In this case, the crystalline property of the structure, especially 

that of the ferromagnet/MgO interface plays a very critical role in the device performance [6,7] 

and the presence of strain in the structure can change the properties of the device significantly. 

Strain has been used to improve the performance of semiconductor devices such as the metal 

oxide semiconductor field effect transistors (MOSFETs) without failure at low cost over the last 

decade [8]. Recently, a new line stressor based on diamond like carbon (DLC) films has been 

proposed with very high intrinsic stress (few GPa) and high sp3 content [9,10]. 

 

For the case of MgO based MTJs, the role of epitaxial strain has been discussed previously [11]. 

Yeo et al. studied the interface states of a strained MgO/Fe(001) system and showed the position 

of the minority spin peak state near the Fermi energy shifts upwards in energy with respect to the 

Fermi energy for tensile strain, while it moves downwards for compressive strain [12]. A few 

experimental reports have been also studied the effect of lattice mismatch on the transport 

properties in Fe/MgO/Fe(001) and related systems [13–15].  
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In this work, we study the effect of a DLC film on the tunneling behavior of MgO based MTJs. 

With the deposition of DLC film over tunnel junctions, the TMR as well as the junction 

resistance is suppressed showing the effect of external mechanical strain on the transport 

properties. Though the TMR is reduced, it is interesting to understand the physics behind it and 

the strain induced reduction of the junction resistance is encouraging for industries utilizing 

MTJs as read sensors in hard disk drives. To corroborate the experimental results, the effect of 

biaxial strain is evaluated using Non-equilibrium Green’s function (NEGF) quantum transport 

calculations. The minority and the anti-parallel transmission both increase more than the 

majority transmission, and biaxial compressive strain is calculated to decrease the TMR ratio, in 

agreement with the experiments. 

 

6.2 Experimental method and result 

MTJs have been grown using magnetron sputtering in an ultra-high vacuum chamber with the 

structure of 100 Ta/300 Ir22Mn78/6 Co40Fe40B20/30 Co70Fe30/8 Ru/27 Co70Fe30/8 Mg/14 MgO/20 

Co40Fe40B20/50 Ta/50 Ru (all thickness in Å). The MgO barrier is formed by the reactive sputter 

deposition of Mg in Ar-O2 plasma (~2% oxygen). Samples are annealed at 300 ˚C for 30 minutes 

under 1 T magnetic field, and then MTJs are fabricated in a current perpendicular-to-plane (CPP) 

configuration using a combination of Ar ion-milling and photolithography processes. A number 

of devices of different junction areas are measured after fabrication and a 40 nm DLC film is 

then deposited over the junction. Figure 6.1(a) shows a schematic diagram of the device with the 

DLC layer on top, exerting a compressive biaxial strain on the tunnel junction along x and z 

axes [9], while Figure 6.1(b) shows a scanning electron microscope (SEM) image with a DLC 
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film over a tunnel junction. DLC films are grown by filter ed cathodic vacuum arc and a method 

used by Ehsan et al. has been adopted that provides good adhesion along with high sp3 content 

for enough strain [16]. Ion energy of about 100 eV is selected as it provides the highest fraction 

of sp3 bonds with the maximum density and hardness.  

 

Figure 6.1(c) shows the X-ray photoelectron spectroscopy (XPS) spectra of the C1s core level for 

the DLC film, which indicates a very high sp3 proportion (65%) of the film as has been used for 

MOSFETs with compressive stress as high as 7.5 GPa [9]. A higher sp3 fraction in the DLC film 

is important to induce enough strain. The atomic fraction of each component (C-C sp1, C-C sp2, 

C-C sp3, C=O, and C-O) is obtained by integrating the associated Gaussian curves deconvoluted 

from the C1s spectra after Shirley background subtraction [16].  
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Figure 6.1: (a) Schematic of the device with a DLC layer over the junction. (b) An SEM image 
with a DLC film. The top electrode width is 80 μm while the DLC strip has a width of 150 μm. 
(c) XPS spectra of the C1s core level for the DLC film. (d) A plot of TMR versus junction area.  

 

Figure 6.1(d) shows a plot of the TMR versus the junction area before and after the deposition of 

DLC film at room temperature. The TMR ratio is defined by (RAP-RP)/RP, where RP and RAP are 

the junction resistance in the parallel (P) and anti-parallel (AP) alignment of the ferromagnetic 

electrodes, respectively. Before the deposition of the DLC film, it is observed that the TMR 

gradually reduces as the junction area increases. The DLC film is then deposited over tunnel 

junctions of areas ranging from 50 to 104 μm2. It is clearly observed that there is a suppression of 

TMR for junction areas below 500 μm2, and that the TMR after the DLC deposition gradually 

reduces as the junction area decreases. The change due to the DLC layer is bigger in the devices 

with smaller junction areas due to higher effective strain in a smaller junction. The free layer 

loop of the device before and after the DLC deposition has no difference, therefore we rule out 

any possibility of pinholes in our samples due to strain, otherwise a shift in the free layer loop at 

lower temperatures is expected [17]. We have also done transport of ions in matter calculations 

for the energy of C ions used in this study. The maximum penetration depth of C in the Cu top 

electrode (100 nm thick) is only 5 nm with a peak at ~ 1 nm, which also support that the junction 

damage due to the DLC deposition is negligible. 

 

The voltage dependence of the TMR and junction resistance show a tunneling feature before the 

DLC deposition as shown in Figure 6.2(a), such that the TMR decreases with increasing bias 

voltage and RP is independent of bias voltage, as typically observed in MgO based MTJs [18]. 

Figure 6.2(b) shows suppression in the voltage dependence of TMR after the deposition of the 

DLC film over the device. For the unstrained device, the relative reduction in TMR at 0.4 V is 
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43% with respect to the value at zero bias, while for the strained device the relative reduction is 

only 14%. We have also carried out temperature dependent studies. For the unstrained device, RP 

has little temperature dependence, while RAP increases as the temperature reduces shown in 

Figure 6.2(c). On the other hand, when the same device is strained using the DLC film, in 

addition to reduction in the magnitude of TMR and RAP, their temperature dependence is also 

suppressed as shown in Figure 6.2(d). These observations can be related to the changes in the 

tunneling probabilities as shown by our calculations later.  
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Figure 6.2: Bias voltage dependence of RP, RAP, and TMR for MTJ before (a) and after (b) the 
DLC deposition at 300 K. Temperature dependence of RP, RAP, and TMR before (c) and after (d) 
the DLC deposition, for a device with the junction area of 73 μm2.  
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6.3 Computational method and result 

Coherent tunneling transport in a Fe/MgO/Fe tunneling junction [Figure 6.3(c)] is described by 

the NEGF formalism [19] as implemented in the Green program [20,21]. The electronic structure 

of the tunneling junction is described by an Extended Hückel Molecular Orbital (EHMO) 

Hamiltonian [22], using literature values for the Fe spd, Mg spd, and O sp parameters [23]. With 

those parameters, a bulk MgO band gap of 7.8 eV and a bulk Fe magnetic moment of 2.0 μB are 

calculated, in good agreement with experimental data of 7.77 eV and 2.2 μB, 

respectively [24,25], and with hybrid density functional theory calculations using the HSE03 

functional (DFT-HSE03) [26–28]. Detailed DFT-HSE03 calculations for a 4-layer MgO slab on 

a 6-layer Fe(100) slab show that the top of the MgO valence band edge is located about 4.0 eV 

below the Fermi level of the system. Therefore, a similar offset is used in our EHMO-based 

transport calculations. Note that the EHMO band gap for a 6-layer MgO slab, 7.2 eV, is 

significantly larger than the DFT-HSE03 value of 3.7 eV. The effect of biaxial strain on the MgO 

band gap is, however, accurately described by EHMO, as discussed below. 

 

Transport calculations are performed for MgO barriers of 4, 6, 8, 10, and 12 layers. For the 

unstrained transport calculations, the experimental Fe lattice constant of 2.87 Å is used for the 

Fe(100) contacts. MgO(001) slab, rotated 45 degrees with respect to the Fe lattice, is then placed 

2.16 Å over Fe (100) contacts so that O atoms sit directly above Fe atoms. Assuming a biaxial 

stress in the range of 5 to 10 GPa leads to a compression of about 2.5 to 5%. Therefore, the 

effects of compression on the conductance and the TMR ratio are evaluated for a compression of 

5% along the x and z direction [as defined in Figure 6.3(c)], and an expansion of 2.3% in the y 

direction using the MgO Poisson ratio of 0.187 [29,30]. In reality, the compression is likely 
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somewhat smaller than 5%. To confirm that our results remain valid for different amounts of 

strain, transport calculations are also performed for a 6-layer MgO junction with 2.5%, 3.5% and 

10% compressive strain. 

 

The effect of 5% biaxial xz-strain on the junction conductance is calculated as shown in Figure 

6.3(a) for different MgO barrier thicknesses. For the unstrained junction, both the P and AP 

conductance decrease exponentially with the number of MgO layers, as expected for tunneling 

transport. The conductance is quite sensitive to the details of the calculations. The conductance is 

quite sensitive to the details of the calculations. For example, the sensitivity of the TMR results 

to the EHT parameters of MgO has been examined by Raza et al. [23] where two sets of EHT 

parameters were used for MgO. One set reproduces the experimental band gap of 7.8 eV while 

the other set reproduces LDA-DFT band gap of 5.2 eV. The authors find that the current and the 

TMR ratio trend with the increasing thickness remains the same in both the cases, their actual 

values, however, differ. For example, EHT parameters that reproduces the experimental band 

gap of 7.8 eV give a %TMR ratio of 1200% for 4 layers of MgO which changes to 2500% when 

the parameters corresponding to LDA-DFT bandgap are used. Also due to its technological 

significance, many authors have studied Fe|MgO|Fe system. All the authors find similar trend of 

current and the TMR ratio with increasing thickness of MgO layers. However the actual values 

differ quite significantly. This shows utility of the theoretical calculations in establishing trends 

while pointing towards its inability to get quantitative values. Considering the sensitivity of the 

results to the parameters our decay rate of 0.40 Å-1 for the P configuration and 0.50 Å-1 for the 

AP configuration appear to agree well with published values of 0.44 and 0.49 Å-1, 

respectively [23]. The different decay rate can be understood from the 𝑘�⃗ ||resolved transmission 
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spectra in Figure 6.4. While majority-to-majority transport is dominated by states near the 

gamma point, no such states are available for minority-to-minority transport in agreement with 

earlier calculations [2]. This can be understood from the Fe(100) surface spectral density at the 

Fermi energy [Figure 6.5] and from the complex band structure of MgO [2]. The complex MgO 

band structure shows that the decay rate is minimum in a small region around the gamma point 

and increases away from the gamma point [2]. Therefore, the decay rate in the MgO junction is 

higher for the minority states.  

 

Figure 6.3: (a) Calculated conductance for a Fe(100)/MgO/Fe(100) tunneling junction as a 
function of the number of MgO layers. The conductance is shown for the P and the AP 
configurations for both the unstrained and for 5% biaxial xz-strain cases. The relative increase in 
the conductance after applying strain is also shown to facilitate comparison with the 
experimental data in Figure 6.2. For 6 MgO layers, the P conductance increases by a factor 1.74 
from 0.65 to 1.14 nS, while the AP conductance increases by a factor 22.32 from 7 to 157 pS. (b) 
Optimistic TMR ratio [(GP-GAP)/GAP, where GP and GAP is the conductance of the P and the AP 
state, respectively] for the unstrained and the strained tunneling junction. The relative change in 
the TMR ratio is also shown and ranges from a factor 7 to 27. (c) Central structure used to model 
the junction for 6 layers of MgO. The blue, green, and red circles correspond to Fe, Mg, and O 
atoms, respectively. In the calculations, both Fe(100) contacts extend to infinity. 
 

The application of 5% biaxial xz-strain increases the conductance for both the P and AP 

configuration [Figure 6.3(a)]. However, the increase is more pronounced for the AP 

configuration, and hence the TMR ratio decreases by a factor 10 to 30 [Figure 6.3(b)]. Biaxial 

strain decreases the decay constants to 0.37 and 0.45 Å-1 for the P and the AP configuration, 
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respectively. In addition, the contact conductance, a measure of the number of active transport 

channels in the Fe(100) contacts and their coupling at the Fe(100)/MgO interface [31], increases 

10-fold for the minority channels, whereas only 2-fold for the majority channels. The increase in 

the conductance by a factor 1.3 to 3.7 and the decrease in decay rate for the P configuration can 

be attributed to a decrease in the MgO band gap. Indeed, the EHMO band gap for a 6-layer MgO 

slab decreases from 7.29 eV to 7.02 eV, comparable to the 0.11 eV decrease calculated by DFT-

HSE03. The conductance for the AP configuration is more sensitive to biaxial strain, and 

increases by a factor 7 for a 4-layer MgO barrier and 5% strain, and by a factor 61 for a 12-layer 

MgO barrier.  

Figure 6.4: 𝑘�⃗ || -resolved transmission spectra for the various transport modes for a 
Fe(100)/MgO(6 layers)/Fe(100) junction. Biaxial strain decreases the lattice in the x and z 
direction by 3.5%, and expands the lattice in y direction by 1.6%. Note the different scales for 
the various transmission spectra. 

 

To compare the calculated changes in the TMR ratio and in the conductance with the 
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the AP conductance for 5% strain and for a 6-layer (13 Å) MgO barrier is significantly larger 

than the experimental increase of 2.9 for a 20 Å MgO barrier. Also the 15-fold decrease in the 

calculated TMR ratio for a 6-layer MgO barrier is larger than the experimental value of 4.8 for a 

20 Å MgO barrier. However, when the biaxial strain is reduced to 3.5% for the 6-layer MgO 

junction, the agreement with the experiments improves. The calculated increases in the P and in 

the AP conductance by factors 1.1 and 3.0, respectively, can be compared with the 

experimentally measured increases by factors 1.7 and 2.9, respectively [Figure 6.2]. Also the 2.7-

fold decrease in the calculated TMR ratio matches the experimental value of 4.8 quite well. The 

qualitative implications are preserved even for smaller levels of biaxial strain in the MgO layer.  

The more pronounced increase in the conductance for the minority channels and for the AP 

configuration can be understood from the 𝑘�⃗ ||-resolved transmission spectra, shown in Figure 6.4 

for a 6-layer MgO junction in the case of unstrained and a 3.5% biaxial strain. For the unstrained 

junction, majority transport is dominated by states at the gamma point. The 𝑘�⃗ ||-resolved spectra 

for the majority states are relatively unaffected by strain, except for a small broadening of the 

peak and an increase in the peak maximum from 0.846×10-3 to 0.853×10-3. Minority transport, 

however, is dominated by a circle of states around the gamma point and by states near the 

Brillouin zone edge. Biaxial xz-strain breaks the 4-fold symmetry in the xy plane, and 

transmission hot-spots move closer to the ky = 0 axis. The change in the location of minority 

states at the Fermi energy is also illustrated by the Fe(100) spectral density in Figure 6.5. The 

minority states are concentrated in a narrow square region around the gamma point, with few 

states at the gamma point. In this region the decay constant for MgO is quite high. Biaxial strain 

increases the orbital overlap in the x direction and hence broadens the d-band. As can be seen in 

Figure 6.5, this moves minority states closer to the gamma point along the kx axis. The effect is 
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even more pronounced in the transmission spectrum [Figure 6.4] and new hot-spots appear near 

the ky=0 axis. The change in the minority states is also reflected in a decrease in the Fe magnetic 

moment. For a 6-layer Fe(100) slab, the EHMO magnetic moment per Fe decreases from 1.96 to 

1.86 µB, again in good agreement with the 0.14 µB decrease calculated by DFT-HSE03.  

 

Figure 6.5: Effect of 3.5% biaxial xz-strain on the Fe(100) surface spectral density (number of 
states/eV/Å2) at the Fermi energy for the minority and the majority states. While changes for the 
majority states are relatively minor, the minority states at (kx, ky)=(±0.4, 0.0) clearly move closer 
to the gamma point. This is consistent with a broadening of the minority band and a decrease in 
the spin polarization. 

 

The above results also help to explain the experimental voltage and temperature dependence of 

the TMR. It was reported that the transmission for the minority spin channel is sensitive at low 

biases, however once the minority states moves closer to the gamma point, the bias dependent 
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transmission is significantly suppressed at higher biases [32].  From our calculations we 

conclude that the biaxial strain moves the minority states closer to the gamma point. This in turn 

weakens the sensitivity of the minority states to the voltage and temperature, resulting in a 

diminished voltage and temperature dependence of RAP and TMR.  

6.4 Summary 

We have demonstrated the effect of mechanical stress on the tunnelling properties of MgO tunnel 

junctions. The deposition of a DLC film with a very high intrinsic stress over the junction 

reduces the TMR ratio as well as the junction resistance. The NEGF calculations reproduce both 

the increase in the conductances and the decrease in the TMR ratio, when biaxial xz-strain is 

applied. The increase in the conductance for the parallel configuration can be attributed to a 

decrease in the MgO band gap by about 0.3 eV and the barrier thickness by 5%. The 

conductance for the anti-parallel configuration is significantly more sensitive to strain, which is 

attributed to changes in the location of the Fe(100) minority states at the Femi level. When strain 

is applied, the d-band broadens and the minority states at the Fermi energy move closer to the 

center of the 2D Brillouin zone where transmission through the MgO barrier is higher. As a 

result, hot-spots appear in the 𝑘�⃗ ||-resolved transmission spectrum and the conductance for both 

the minority channel and for the anti-parallel configuration increase rapidly. This study 

demonstrates the important effect of strain on the anti-parallel conductance, and suggests that 

strain can reduce the resistance-area product for MgO based read sensors with a sufficiently high 

TMR value. 
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CHAPTER 7 

Origin of the reduced band gap in ultrathin MgO films 

7.1 Introduction 

Oxide thin films find important applications in technologically important devices such 

as Magnetic Tunnel Junctions (MTJ) and Field Effect Transistors (FET)  [1,2]. A high 

Tunnel Magneto Resistance (TMR) ratio, i.e., the relative change in the resistance 

when the magnetization orientation of the electrodes is switched from parallel to anti-

parallel, of MTJs is key to developing magnetoresistive random-access-memory, 

magnetic sensors and novel programmable logic devices  [3–5]. The use of crystalline 

1.2 to 3.2 nm thick MgO films (6 to 15 layers of MgO(001)) as the tunnel barrier 

materials in MTJs has resulted in a large improvements in the TMR ratio  [6,7]. The 

high TMR ratio results from the spin-dependent coherent electron transport in 

crystalline MgO thin films and underlines the importance of the electronic structure of 

the barrier material  [8,9]. Recent work by Yang et al.  [10] shows that the TMR ratio 

can even be inverted by the introduction of an ultrathin 1 to 2 ML NiO film between 

the MgO barrier and one of the electrodes, and further illustrates the sensitivity of 

TMR ratio to the electronic structure of the barrier material and its interfaces.  

 

Also for FETs, new oxide barrier materials are desired. The relentless downscaling of 

transistors has reduced the thickness of the SiO2 barrier to a few atomic layers. For 

such thickness, the tunneling leakage current becomes considerable, and leads to a 

degradation in the device performance. Recently, it was proposed to replace the SiO2 

barrier with MgO [11] because of the larger MgO bulk band gap of 7.8 eV and the 

higher bulk dielectric constant of 9.8, as compared to SiO2.   
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One of the material properties that determine the tunneling current is the band gap of 

the barrier material, more precisely the difference between the Fermi energy of the  

electrodes and the conduction band edge of the barrier film.  Interestingly, the 

measured barrier height of MTJs, 0.39 eV,  [6] is considerably lower than the barrier 

of about 3.7 eV estimated from the bulk MgO band gap, 7.8 eV. This difference has 

been attributed to the presence of oxygen vacancy defects in the MgO thin films [6].  

Oxygen vacancies can be formed during the growth of the MgO film on the Fe 

electrode substrate, and are attributed to strain induced by the lattice mismatch. 

Oxygen vacancies introduce gap states about 1.2 eV below the bulk conduction band 

edge [12], and could therefore reduce the measured tunneling barrier height. Using 

reflection high-energy electron diffraction and low-energy electron diffraction 

patterns and scanning tunneling microscopy images, Klaua et al. however 

demonstrated that for very thin MgO(001) films grown on high-quality Fe(001) single 

crystals, the thickness of the film also affects the measured barrier height  [13]. For 

very thin and vacancy-free films, the barrier height measured by scanning tunneling 

spectroscopy is much smaller than expected from the MgO bulk band gap.  Moreover, 

the barrier height is a strong function of the film thickness and increases from 2.5 to 

3.6 eV when the MgO thickness increases from 2 to 6 layers. Scanning tunneling 

spectroscopy studies by Schintke et al.  [14] also showed that the band gap of thin 

MgO(001) films grown on Ag(001) increases with film thickness and converges for 

about 3 MgO layers. A similar trend was reported by Noguera  [15] using Hartree-

Fock theory calculations. The unique electronic properties of ultrathin oxide films 

were also observed in DFT calculations [16]. For example, the significant reduction in 
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the band gap of a two-layer Al2O3 film was attributed to a reduced Madelung 

potential at the undercoordinated surface sites. 

 

This behavior is very different from the increase in the band gap of semiconductor 

nanostructures with decreasing dimensions. DFT calculations for example illustrates 

that the band gap decreases with the number of Si layers in a Si/SiO2 multilayer [17]. 

An increase in the band gap was also calculated and measured for various 

semiconductor nanoparticles and nanowires as the size decreases [18].  In both cases, 

the increased band gap at the nanoscale was attributed to quantum confinement. 

 

In this work, we studied the effect of the thickness on the electronic properties of 

ultrathin MgO(001) films. To obtain an accurate description of the band gap, ab initio 

HSE03-G0W0 calculations were used. This approach is known to provide an accurate 

description of the electronic structure of oxides  [19]. The calculations show that the 

band gap of the MgO thin film decreases significantly as the thickness decreases 

below 1 nm or 5 ML. To understand this effect, a qualitative model was developed 

which includes variations in the Madelung potential and in the charge transfer 

between Mg and O.  

 

Our work on the thickness dependent bandgap started from our unexpected 

observation of increasing bandgap with increase in thickness during the simulation. 

We decided to study this effect in more detail and found an experimental paper that 

reported similar trends and claimed that theoretical modeling is needed to understand 

this size dependent phenomenon. That is when we started a systematic study using 

state-of-the-art ab-initio HSE03-G0W0 calculations. Additionally, we built a 
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qualitative model that explains the observed trend from the change in the Madelung 

potential and the Bader charges as the thickness of the slab increases. It is only during 

the later part of our work, we came across the work in references [15] and [16]. Those 

two works also show the same trend even though they have used a lower level of 

theory (Hartree Fock and DFT).  

 

The Madelung potential is the potential felt by an ion in a crystal due to the presence 

of all other ions. It is calculated from the Madelung constant, 𝐶𝑀, which is given by 

 𝐶𝑀 = �
(−1)𝑚+𝑛+𝑝

�𝑚2 + 𝑛2 + 𝑝2

,

𝑚,𝑛,𝑝

  

 

The above expression sums the 1/𝑟 terms in the Coulomb potential. The (−1)𝑚+𝑛+𝑝 

term accounts for the presence of alternating positive and negative charges. The prime 

over the summation sign indicates that the term corresponding to the zero vector 

(𝑚,𝑛,𝑝) = (0,0,0) should be avoided as an ion does not feel any potential due to 

itself.  

 

To determine the charges on atoms, we have used Bader charges [28]. The Bader 

charge of an atom in a molecule is a charge inside a volume containing the atom that 

is demarcated from the rest of the molecule by a zero-charge-flux –surface, i.e. 

surface where the gradient of the electron density becomes zero. This method gives 

charges on atoms that are independent of the basis-set employed. Additionally, this 

method does not require the assignment of basis functions to an specific atom which 

is particularly important for our case as we have used plane wave basis-set. 
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7.2 Computational Methods  

MgO(001) films with a thickness ranging from 1 to 5 layers were studied using 

periodic Density Functional Theory  [20] with the Perdew-Burke-Enzerhoff 

functional (DFT-PBE) [21] as implemented in the Vienna Ab Initio Simulation 

(VASP) package [22,23]. The calculations were performed with a plane-wave basis 

set with a cutoff kinetic energy of 450 eV and the electron-ion interactions were 

described by the projector-augmented wave (PAW) method  [24].  The MgO film was 

modeled with a (1x1) unit cell, and the atoms were kept frozen at their lattice 

positions. The experimental MgO lattice constant of 4.21 Å was used. The atoms 

moved by less than 1% upon geometry optimization as found in previous study [25]. 

The Brillouin zone was sampled with a 10x10x1 Monkhorst-Pack grid [26], and a 

Hermite-Gaussian smearing with a width of 0.2 eV was used. Repeated slabs were 

separated by a vacuum of 10 Å. 

 

Since DFT-PBE underestimates the bulk MgO band gap by 3.2 eV, the variation of 

the band gap was also studied with the ab initio GW method [19]. We used the 

HSE03-G0W0 approach [27], which is reported to provide an excellent balance 

between accuracy and speed [27]. 256 frequency points and 160 electronic bands 

were used to determine the electronic structure. The vacuum layer was increased to 15 

Å to converge the calculated band gap within 0.1 eV. With these setting, a bulk MgO 

band gap of 7.7 eV was calculated, in good agreement with experimental values.  

 

For the calculation of the charge transfer, we have used Bader’s partitioning 

method  [28,29]. 
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7.3 Results and Discussion 

The DFT-PBE band structure for bulk MgO is shown in Figure 7.1. The calculated 

bulk band gap of 4.57 eV is in good agreement with the 4.65 eV DFT-LDA band gap 

reported by Schonberger et al. [30], but much lower than the experimental band gap 

of 7.8 eV  [31]. The underestimation of the band gap in oxides by DFT-GGA is well-

known and attributed to self-interaction errors [29]. Using the HSE03-G0W0 method, 

a bulk band gap of 7.7 eV is obtained, in good agreement with the experimental value. 

We will therefore use the HSE03-G0W0 method to evaluate the effect of film 

thickness on MgO film band gap. The band structure in Figure 7.1 also illustrates that 

the conduction band edge consists mainly of Mg 3s orbitals, while the valence band 

edge consists of O 2p orbitals. Note that the conduction band shows a larger 

dispersion than the valence band, suggesting that the overlap between Mg 3s orbitals 

is larger. 

 

Figure 7.1: DFT-PBE band structure of bulk MgO. The nature of the bands is 
determined by projection on to the atomic orbitals. The figure illustrates that the 
conduction band is mainly derived from Mg(3s) orbitals while the valence band is 
derived from O(2p) orbitals 
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The effect of the thickness of the MgO(001) film on the band gap is shown in Figure 

7.2. For a single-layer MgO film (1 ML), the HSE03-G0W0 band gap is 4.52 eV; 3.19 

eV smaller than the bulk band gap. For comparison, the DFT-PBE band gap is also 

shown. DFT-PBE again underestimates the band gap, but the difference with the bulk 

band gap, 2.7 eV, is rather close to the HSE03-G0W0 difference. Adding a second 

layer of MgO increases the HSE03-G0W0 band gap by 0.69 eV. A similar increase, 

0.44 eV, is predicted by DFT-PBE. Increasing the film thickness to 3, 4, and 5 layers 

increases the HSE03-G0W0 band gap by 0.32, 0.11, 0.05 eV, respectively. Increasing 

the film thickness beyond 5 layers has a limited effect on the calculated band gap, and 

the band gap of thicker MgO(001) films saturates around 5.7 eV. This value is lower 

than the bulk band gap and the smaller band gap can be attributed to lower Madelung 

potential at the surface, as explained later. The 1.2 eV increase in the band gap when 

the film thickness increases from 1 to 5 layers can be compared with the 1.1 eV 

increase in the tunneling barrier height measured by Klaua et al. [10] when the film 

thickness was increased from 2 to 6 ML.   
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Figure 7.2: Thickness-dependent bandgap for MgO thin films. Both the DFT-PBE 
and the more accurate HSE03-G0W0 band gap are shown.  
 

To understand the decrease of the band gap in ultrathin MgO(001) films, we first 

illustrate how the valence and conduction band are formed (Figure 7.3). To start the 

discussion, we consider the two-step band formation process in covalent 

semiconductor materials  [33] (Figure 7.3(a)). First, the central atom coordinates 

covalently to its nearest neighbor in the unit cell. This splits the valence orbitals into 

bonding and the anti-bonding levels, according to the hybridization induced by the 

environment. When this structure is next placed in a periodic unit cell, the bonding 

levels form the valence band while the anti-bonding levels form the conduction band. 

The center of the valence and the conduction band is therefore related to the position 

of the bonding and the anti-bonding states, respectively. With increasing 

dimensionality, the bands broaden and hence the band gap decreases. For ionic 

materials such as MgO on the other hand, the valence and conduction band originate 
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from different atomic orbitals. This is illustrated in Figure 7.1 and 7.3b, where the 

valence band results from the O(2p) states and the conduction band from the Mg(3s) 

states. To construct the bands, we first consider the MgO unit. Charge transfer from 

Mg to O shifts the atomic levels compared to their atomic values. As Mg2+ becomes 

positively charged, the electrons bind more tightly and the energy level shift down, 

while the O2- energy levels shift up due to increased electron-electron repulsion. Next, 

the MgO unit is placed in an array of point charges such that the electrostatic potential 

at the Mg and O positions is the similar to the potential in the MgO crystal. using 

point charges allows separating the influence from the potential and the effect of 

orbital overlap. The point charges create a Madelung potential that move the Mg(3s) 

level up and the O(2p) level down. Indeed, since the Mg2+ ions are surrounded by O2- 

ions, the Madelung potential at the Mg2+ site is negative.  Finally, orbital overlap with 

neighboring MgO units leads to the formation of the valence and conduction band. 

The center of the valence and the conduction band are therefore determined by the 

relative position of the Mg2+(3s) and O2-(2p) levels in the presence of a Madelung 

potential, and are affected by charge transfer.  

 

 

 

Figure 7.3: Diagram illustrating the origin of the band gap in covalent solids (a) and 
in ionic solids (b). In covalent solids, the location of bonding and anti-bonding 
orbitals determines the band gap. In ionic solids, the valence and conduction band 
result from different atomic orbitals and their relative position is determined by 
charge transfer and by the local Madelung potential. 
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To analyze the variation in the band gap with the film thickness, we calculated the 

local Madelung potential and the Bader charges on the different ions in the thin film 

(Figure 7.4). The shifts in the energy levels due to the Madelung potential and due to 

charge transfer are given by 𝑄𝑒2𝐶𝑀/𝑅(𝑀𝑔 − 𝑂) and by 𝑄𝑒2〈1/𝑟〉 , respectively, 

where 𝑄 refers to the Bader charge on the atoms, 𝑒 is the elementary charge, 𝐶𝑀 is the 

Madelung constant, 𝑅(𝑀𝑔 − 𝑂) the Mg-O bond distance, and < 𝑟 > the average 

radius of the orbital from (to) which the charge is removed (added) [34].  

 

As shown in Figure 7.4(a). the Mg charge increases slightly from 1.737 to 1.744 e 

when the film thickness increases from one to two layers. The surface charges change 

little beyond two layers, but the change transfer in the subsurface layer is slightly 

larger than for the surface. For a 5-layer film, the charge transfer in the central layer, 

1.748 e, has essentially converged to the bulk MgO value, 1.75 e As illustrated in 

Figure 7.3b, the increase in the charge transfer with the number of MgO layers 

decreases the band gap and the smaller charge transfer at the surface corresponds with 

a larger surface band gap. Using the above formula, the decrease in the band gap due 

to charge transfer can be estimated. The 0.0065 e increase in the charge transfer when 

going from one to two layers shifts the Mg level down by 0.07 eV and the O level up 

by 0.05 eV. Increased charge transfer hence decreases the band gap by 0.12 eV, to be 

compared to the increase found in the HSE03-G0W0 calculations, 0.69 eV.  
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Figure 7.4: (a) Site-dependent Bader charges on Mg atoms as a function of the 
MgO film thickness. (b) Site-dependent Madelung constant (CM) as a function of 
the MgO film thickness.  
 

The second factor, the change in the local Madelung potentials with film thickness, 

(Figure 7.4b) has a much stronger influence on the band gap. The Madelung constant 

𝐶𝑀 was calculated by a direct summation, CM = ∑ (±)
pij

′
j   , where 𝑝𝑖𝑗 is an integer such 

that the inter-atomic distances 𝑟𝑖𝑗 are given by 𝑟𝑖𝑗  =  𝑝𝑖𝑗  𝑅, with 𝑅 the 𝑀𝑔 − 𝑂 

distance. Fast convergence was obtained using neutral cubic boxes in the summation 

[31].  

 

The surface Madelung constant increases from 1.61 to 1.68 when the MgO film 

thickness increases from 1 to 2 layers, and then stays nearly constant. The Madelung 

constant for the central layer of a 3-layer slab, 1.74, essentially reaches the bulk value, 

1.75. The Madelung constant hence converges rapidly and is determined by the 
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number of nearest neighbors. The 0.07 increase in the Madelung constant from one to 

two layers moves the Mg level up by 0.86 eV and the O level down by the same 

amount. The change in Madelung potential hence increases the MgO band gap by 

1.72 eV and far outweighs the decrease in the band gap due to increased charge 

transfer. The change in the band gap obtained from this qualitative electrostatic model 

is larger than the actual increase. Indeed, a number of factors such as the broadening 

of the levels due to orbital overlap, the polarization of the wavefunction, and further 

charge redistribution are neglected in this qualitative model. The further increase in 

the band gap for 3 and 4 MgO layers therefore can be understood from the larger 

Madelung potential, 𝐶𝑀 = 1.75, at subsurface sites. Indeed, the wavefunction is not 

localized on the MgO surface, but feels the effect of the higher Madelung potential 

(and hence the larger energy difference between the Mg2+ and O2- energy levels) from 

the subsurface layers. Beyond 4 layers, this effect however becomes small and the 

calculated band gap converges. Finally, the smaller band gap for the thicker films, 

about 5.7 eV, as compared to the bulk band gap hence results from the lower 

Madelung potential at the surface, CM=1.68. The 0.08 lower Madelung constant 

indeed translates to a 2.0 eV difference in the band gap. When the vacuum gap in the 

slab calculation is gradually reduced from 15Ǻ, the band gap indeed gradually 

increases, following the increase in the Madelung constant. 

 

 

7.4 Summary 

The thickness-dependent band gap of MgO(001) thin films  is calculated using the ab 

initio HSE03-G0W0 method. Different from covalent semiconductors where the band 

gap increases at the nanoscale due to quantum confinement, the band gap of oxide 
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thin films is significantly reduced at the nano-scale. For MgO, gradually increases 

with thickness from 4.5 eV for a monolayer of MgO to 5.7 eV for more than 5 layers. 

This increase matches the 1.1 eV change in the tunneling barrier measured by STS. A 

simple electrostatic model accounting for charge transfer and for changes in the local 

Madelung potential qualitatively describes the band gap variation and shows that the 

change in the Madelung potential is the dominant factor, and is hence general 

prototype of oxide thin films. The thickness dependent band gap of oxide films is 

expected to have an important effect as tunneling barriers and gate oxides approach 

this nanoscale. 
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CHAPTER 8 

Conclusion and outlook  

8.1 Conclusion 

This thesis aims at gaining a deeper insight into current flow at the nanoscale, which is vital to 

design nanoscale devices. Current flow at the nanoscale was studied for two systems: a Scanning 

Tunnelling Microscope (STM) junction which is an ideal test case due to its well-defined 

tunnelling junction structure, and a Magnetic Tunnel Junction (MTJ). For the calculation of 

current through the STM junction, the Elastic Scattering Quantum Chemistry (ESQC) method 

was used, while the Non-Equilibrium Green Function (NEGF) method was used to describe the 

MTJ. In both cases, the extended Hückel theory is employed to describe the system Hamiltonian. 

The theoretical calculations for the above systems led to a deeper insight into the current flow 

mechanism at the nanoscale. 

 

For example, the study of the STM image of CO on a Cu(111) surface [1] shows that the  

reduction in the tunnelling current upon adsorption of CO on Cu(111) results from the strong 

interaction of the CO 5σ highest occupied molecular orbital with the Cu(111) surface state, 

dominated by Cu 4pz orbitals. Such over-coupling reduces the surface density of states near the 

Fermi level and decreases the tunnelling current at the sites where CO is adsorbed. The strong 

coupling is facilitated by the spatial extent, the symmetry and the energy of the surface state of 

the Cu(111) surface.  
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A combination of STM image calculations and thermodynamic stability calculations was used to 

investigate the surface structure obtained during the experimental thermal stability study of the 

MoS2 surface, which can be used as a platform for constructing surface dangling bond wires  [2].  

The simulation shows that the MoS2 surface transforms to a S-rich Mo2S3  surface above 1300 

K [3].  The calculations also confirm that the bright spots in the experimental STM image of the 

reconstructed surface originate from surface S atoms. The proximity of the S atoms to the STM 

tip outweighs the higher density of states of underlying Mo resulting in the bright appearance of 

S atoms. This behaviour is in sharp contrast with CO on Cu(111), where CO molecules appear as 

a dark depressions despite being closer to the STM tip. An STM image hence is not a simple 

topological image of the surface, or of the electron density at the Fermi level.  

 

The study of the Fe|MgO|Fe MTJ shows that the application of xz biaxial strain increases the 

conductance and decreases the TMR ratio [4], elucidating the experimental findings in the 

laboratory of our collaborator. The increase in the conductance occurs because the MgO bandgap 

decreases by about 0.3 eV and because the barrier thickness decreases by 5%. The conductance 

for the anti-parallel configuration is significantly more sensitive to xz strain, which is due to the 

movement of the Fe(100) minority states at the Femi level towards the centre of the Brillouin 

zone where the decay rate inside MgO barrier is smaller. This drastically increases minority to 

majority transmission for the anti-parallel alignment, and results in a decrease of the TMR ratio 

with the application of biaxial 𝑥𝑧-strain. 
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Finally, the variation of band gap of MgO(001) thin films observed during barrier-thickness-

dependent tunneling current measurements is investigated in more detail because of the industrial 

importance of Fe|MgO|Fe MTJs. Our DFT calculations reveal that the MgO(001) band gap 

decreases with thickness below 5 ML, consistent with experimental observations [5]. The 

decrease in band gap with decreasing film thickness arises from a decrease in the Madelung 

potential. This is somewhat compensated by a decrease in the charge transfer from the Mg to O 

ions, which slightly increases the band gap. A simple electrostatic model, which accounts for 

both charge transfer and changes in the local Madelung potential, is able to reproduce the trend 

observed in the DFT calculation. 

In conclusion, the nanoscale tunneling current calculations provided valuable insights into the 

various transport mechanisms. Understanding the electronic origin of current flow through 

different systems, as illustrated in this work, would be very useful to begin to design atomic-

scale devices. 

8.2 Outlook 

The relentless downscaling of electronic devices will soon result in their sizes reaching atomic 

scales where quantum mechanical effects need to be included to understand their design.  In fact, 

recent work by Simmons and co-workers [6] has laid the groundwork for such futuristic 

nanoscale quantum computers. They fabricated a transistor atom by atom using a combination of 

STM and hydrogen-resist lithography, Figure 8.1. Their transistor consists of a single 

phosphorus atom positioned between source and the drain contacts and two gate electrodes all 

made up of phosphorous atoms on a silicon wafer. Similar to traditional transistors, the gate 

voltage is used to control the current flow between the source and the drain. 
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These nanoscale transistors would be orders of magnitude smaller and faster than the present-day 

silicon-based transistors.   

 

 Figure 8.1: Schematic of the single-atom transistor fabricated by Simmons and co-workers [1]. 
A single phosphorus atom (red sphere) is placed with atomic precision on the surface of a silicon 
crystal (green spheres) between the metallic source and drain electrodes, which are formed by 
phosphorus wires that are multiple atoms wide. Electric charge flows (thick black arrows) from 
the source to the drain through the phosphorus atom when an appropriate voltage is applied 
across the gate electrodes. This schematic is not to scale: there are several tens of rows of silicon 
atoms between the phosphorus atom and the source and drain electrodes, and more than 100 
rows of silicon atoms between the phosphorus atom and the gate electrodes.  
 

8.3 Future Work 

8.3.1  Simulation of atomic-scale logic gates 

In this thesis, we studied the IV characteristics of CO adsorbed on a Cu(111) surface. Our 

simulations provided deeper insight into the electronic origin of the reduction in the tunnelling 

current when CO is placed between the Cu(111) surface and the tip. In particular, the role played 
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by the CO frontier molecular orbitals and their interaction with the substrate electronic states was 

elucidated. 

 

Building on that work, the IV characteristics of an array of atoms and molecules arranged with 

atomic precision on a surface could be studied. Preliminary studies have shown that such atomic 

scale structures show potential as nano-scale logic gates. For example, a study by Ample et al. 

[7] showed that a three-terminal logic OR gate can be constructed using a single molecule or 

using with a surface circuit fabricated from surface dangling bonds created by H desorption from 

a Si(100)H surface. A more systematic study of how the electronic structure of the substrate 

atoms, of adsorbed atom or molecule frontier orbitals, their arrangements, and their adsorption 

site influence the IV characteristic of the nano-system. 

 

As shown in our study, the IV characteristics of even a single CO molecule on a Cu(111) 

substrate do not follow intuition. It is therefore important to perform detailed simulations to 

evaluate the function of atomic-scale devices, before fabrication and testing of the device. 

 

8.3.2.  Effect of strain on the behaviour of MTJs 

In a second part of this thesis, we studied the effect of biaxial strain on performance of a 

technologically important MTJ. Can we use strain engineering to improve the performance of 

these devices? Our study showed the application of xz biaxial strain increases the tunnelling 

current (a desired effect) because of the decreased barrier height and barrier thickness. 
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Unfortunately, xz strain also reduces the TMR ratio (a undesired effect) because minority states 

move closer to the centre of the Brillouin zone, which increases their conductivity faster than the 

conductivity of the majority electrons. However, other types of strain can be envisioned, which 

would increase both the tunnelling current and the TMR ratio. For example, the effect of the 

axial, transverse, longitudinal and transverse strain on the conductance should be studied. 

This study can be further expanded and include different combinations of electrode and barrier 

materials, opening a field of MTJ strain engineering. In such a study we would first investigate 

the effect of strain on the electronic states of the electrode and the on the electronic properties of 

the barrier material. This knowledge could be subsequently combined to arrive at combinations 

that increase both the TMR ratio and the tunnelling current.  

 

The scope of such a study can be further extended by the examining effect of the strain source. 

Indeed, strain might originate from mechanical, magnetic, and electrical sources.  Since strain 

introduced by magnetic fields only operates on magnetorestrictive materials could be exploited 

to evaluate what happens when strain is applied only to the electrode material. The effect of 

strain introduced by electric fields also needs closer examination, e.g., when ferroelectric 

materials are used as a barrier material. Indeed, it has been shown that, under an applied voltage, 

the piezoelectricity of a ferroelectric barrier produces a strain that changes the tunnelling 

transport characteristics of the barrier [9].  
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