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Summary

In this thesis, we consider three economic models with many agents, independent random

partial matchings with general types, large games with actions in infinite-dimensional

Banach spaces, and private information economies.

The deterministic cross-sectional type distribution in random matching models with

a large population had been widely used in the economics literature. To obtain the

deterministic type distribution, economists and geneticists have implicitly or explicitly

assumed the independence condition and the law of large numbers for independent ran-

dom matchings with a continuum population. However, the micro foundation for the

formulation, the existence and the law of large numbers of independent random match-

ings with a continuum population had been lacking. Duffie and Sun (2007, 2012) firstly

establish the micro foundation for the independent random universal matching and the

independent ransom partial matching with finite types. In Chapter 3, we formally formu-

late the independent random partial matching with general types, establish its existence,

and show the exact law of large numbers of it.

It is common sense that pure-strategy Nash equilibria may not exist in general non-

cooperative games. However, it is important from a game-theoretical point of view to

know when pure-strategy Nash equilibria exist. For games with a nonatomic measure-

theoretical structure and an uncountable compact metric action space, when the players’

payoffs depend on their own actions and the action distribution of other players, there

are several subtle possibilities; see Khan, Rath and Sun (1997), Khan, Rath and Sun

(1999), Khan and Sun (1999), Keisler and Sun (2009) and Rath (1992) for details. The

purpose of Chapter 4 is to consider the pure-strategy Nash equilibria for games with a

nonatomic player space and an uncountable compact action set in an infinite-dimensional

Banach space, where players’ payoffs depend on their own actions and the average action

of other players.
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xiv SUMMARY

One important topic in general equilibrium analysis is the incentive compatibility of

various solution concepts. In Chapter 5, we consider three solution concepts in a private

information economy, e.g., Radner equilibrium, private core and insurance equilibrium,

and show that they are not incentive compatible.



Chapter 1

Introduction

Every economic model involves economic agents. When a model considers a fixed finite

number of agents, the most natural agent space is the set {1, 2, . . . , n} for some positive

integer n. In a vast literature in economics, one also needs to model the interaction of

many agents in order to discover mass phenomena that do not necessarily occur in the

case of a fixed finite number of agents. As pointed out by von Neumann and Morgenstern

(1953),

When the number of participants becomes really great, some hope emerges

that the influence of every particular participant will become negligible, and

that the above difficulties may recede and a more conventional theory become

possible. Indeed, this was the starting point of much of what is best in

economic theory.

For more discussion of mass phenomena in economics, see Khan and Sun (2002). A

well-known example is the Edegeworth conjecture that the set of core allocations will

shrink to the set of competitive equilibria as the number of agents goes to infinity though

the former set is in general strictly bigger than the latter set for an economy with a fixed

finite number of agents.1

To avoid complicated combinatorial arguments that may involve multiple steps of

approximations for a large but finite number of agents, it is natural to consider economic

models with an infinite number of agents. The mathematical abstraction of an atomless

(countably-additive) measure space of agents provides a convenient idealization for a

1See Debreu and Scarf (1963).

1



2 Chapter 1. Introduction

large but finite number of agents. The archetype space in such a setting is the classical

Lebesgue unit interval. That is why a general atomless measure space of agents is often

referred to as a continuum of agents in a huge economics literature.

In this thesis, we will present three economics models, where the agent spaces are

modeled by atomless probability spaces: independent random partial matchings with

general types, large games with actions in infinite-dimensional Banach spaces, and pri-

vate information economies.

1.1 Independent random partial matching

The deterministic cross-sectional type distribution in random matching models with

a large population had been widely used in the economics literature. To obtain the

deterministic type distribution, economists and geneticists have implicitly or explicitly

assumed the independence condition and law of large numbers for independent random

matchings with a continuum population. However, the micro foundation for the formu-

lation, the existence and the law of large numbers of independent random matchings

with a continuum population had been lacking.

To resolve the problem above, Duffie and Sun (2007, 2012) propose a condition of

independence-in-types, and formulate independent random matchings for both static

and dynamic cases and for both full matchings and partial matchings. In Duffie and

Sun (2012), they prove the exact law of large numbers for independent random full

matchings with general types and for independent random partial matchings with finite

types in the static case, which follows immediately from the general exact law of large

numbers in Sun (2006); see Theorems 1 and 2 in Duffie and Sun (2012) respectively.

The first theoretical treatment of the existence of independent random matchings

with a continuum population is provided by Duffie and Sun (2007). In particular, in the

static case, Duffie and Sun (2007) show the existence of independent universal (i.e., type-

free) random full matchings, and the existence of independent random partial matchings

with finite types; see Theorems 2.4 and 2.6 therein respectively. Note that the proof

of the latter existence result strictly depends on the finiteness of type space, so the

formulation and the existence for independent random partial matchings with general

types would require a more general setup.

In Duffie, Malamud and Manso (2012), the authors consider a discrete-time dynamic
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random matching model, where in each period it is exactly an independent random

partial matching with the type space R. The type for each agent characterizes the in-

formation she obtained, and will change after matching and trading. Upon matching,

the two agents are given the opportunity to trade one unit of the asset in a double auc-

tion. Since there is no trading for agents with the same preferences, the authors assume

that the matching probability for two agents with the same preference is zero, and the

no-match probability is indeed the proportion of the agents with same preferences. By

assuming the exact law of large numbers, Duffie, Malamud and Manso (2012) find the

cross-sectional type distribution (density) after each period given the initial type dis-

tribution (density). In Molico (2006), another discrete-time dynamic random matching

model is considered, where the population is represented by [0, 1] and the type space

is [0,∞). In this model, the type for each agent is given by her/his money holdings

which is nonnegative. In every period agents are randomly and bilaterally matched,

and an agent meets a potential trading partner with probability α, which will produce

a random partial matching. By implicitly postulating the exact law of large numbers,

Molico (2006) get the law of money motion.

The purpose of Chapter 3 is to provide a micro foundation for the formulation, the

existence and the exact law of large numbers of independent random partial matchings

with a continuum population and general types in the static case. In Theorem 3.2.3, we

construct a joint agent-probability space that satisfies Duffie and Sun’s independence-in-

types condition. Though the existence result in Theorem 3.2.3 is stated using common

measure-theoretic terms, its proof makes extensive use of nonstandard analysis. In

particular, we construct a hyperfinite agent space, take the liftings for the initial type

distribution and no-match probability function, transfer to the hyperfinite setting, and

then work with a hyperfinite type space. Since the classical Lebesgue unit interval is

an archetype agent space for economic models with a continuum of agents, we show

that one can also take an extension of the classical Lebesgue unit interval as the agent

space for independent random partial matchings in the static case; see Theorem 3.2.4,

which is a generalization of Corollary 1 in Duffie and Sun (2012). Under Duffie and

Sun’s independence-in-types condition, the exact law of large numbers for independent

random partial matchings with a continuum population and general types also follows

immediately from the general exact law of large numbers in Sun (2006); see Proposi-

tion 3.3.1.
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1.2 Nonatomic games with infinite-dimensional ac-

tion spaces

It is common sense that pure-strategy Nash equilibria may not exist in general non-

cooperative games. However, it is important from a game-theoretical point of view to

know when pure-strategy Nash equilibria exist. For a finite-player game, the existence of

pure-strategy Nash equilibria follows from certain conditions on the payoff functions and

strategy spaces. For games with a nonatomic measure-theoretic structure that models

the space of players or information, a general purification principle due to Dvoretsky,

Wald and Wolfowitz (1951a) guarantees that one can always obtain a pure-strategy Nash

equilibrium from a mixed-strategy Nash equilibrium, when the action space is finite; see

Dvoretsky, Wald and Wolfowitz (1951b), Khan, Rath and Sun (2006) and their refer-

ences. For games with countable actions, similar results on pure-strategy Nash equilibria

can be found in Khan and Sun (1995).

For games with a nonatomic measure-theoretical structure and an uncountable com-

pact metric action space, when the players’ payoffs depend on their own actions and the

action distribution of other players, there are several subtle possibilities. First, when

the space of players or information is modeled by the Lebesgue unit interval, counterex-

amples are constructed to show the nonexistence of pure-strategy Nash equilibria; see

Khan, Rath and Sun (1997, 1999). Second, when the Lebesgue unit interval is replaced

by a nonatomic Loeb space, positive results on pure-strategy Nash equilibria are shown

in Khan and Sun (1999). Third, for a fixed nonatomic player space, it is shown in

Keisler and Sun (2009) that any game with the given player space has a pure-strategy

Nash equilibrium if and only if the underlying player space is saturated in the sense that

any subspace is not countably generated modulo the null sets.

The purpose of Chapter 4 is to consider the pure-strategy Nash equilibria for games

with a nonatomic player space and an uncountable compact action set in an infinite-

dimensional Banach space, where players’ payoffs depend on their own actions and the

average action of other players. As shown in Khan, Rath and Sun (1997), when the player

space is the Lebesgue unit interval and the action space is an uncountable compact

subset of the Hilbert space "2—the space of square-summable real-valued sequences,

pure-strategy Nash equilibria may not exist. Since various infinite-dimensional Banach

spaces are widely used in the economics literature, a natural question is whether we could

find a right infinite-dimensional Banach space rather than "2 to deliver a positive result
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on the existence of the pure-strategy Nash equilibria. We show that this is impossible as

long as the player space is the Lebesgue unit interval. In particular, given any infinite-

dimensional Banach space, there always exist nonatomic games with an uncountable

compact action set in this Banach space such that these games do not have pure-strategy

Nash equilibria, provided that the player space is the Lebesgue unit interval.

Nevertheless, if the player space is not the Lebesgue unit interval, it is possible

to deliver a positive result on pure-strategy Nash equilibria for nonatomic games with

infinite-dimensional action spaces. Khan and Sun (1999) show that when the Lebesgue

unit interval is replaced by a nonatomic Loeb space, there exists a pure-strategy Nash

equilibrium for any nonatomic game with any uncountable compact action set in an

infinite-dimensional Banach space. It follows from the existence result in Khan and Sun

(1999) and general saturation property that the existence result of pure-strategy Nash

equilibria still holds when the player space is modeled by a saturated probability space.

A further and more interesting question is whether the converse of the above result

is true. We provide an answer in the affirmative. In particular, we show that given a

nonatomic player space and a fixed compact subset of a fixed infinite-dimensional Ba-

nach space, if every game with this compact subset as the common action set has a

pure-strategy Nash equilibrium, then the underlying player space must be a saturated

probability space; see Theorem 4.4.7. Put differently, if the player space is not a sat-

urated probability space, then one can always construct a nonatomic game with this

player space where players take actions from a given infinite-dimensional Banach space,

such that it has no pure-strategy Nash equilibrium. It is worthwhile to note that our

necessity result is not implied by the necessity part of Theorem 4.6 in Keisler and Sun

(2009).

To summarize, to obtain a positive result on the existence of pure-strategy Nash

equilibria for nonatomic games with actions in infinite-dimensional spaces, the measure-

theoretic structure of the player space plays a fundamental role. It is worth noting that

as far as the above counterexamples on Lebesgue interval are concerned, to guarantee

the existence of pure-strategy Nash equilibria, one is not necessary to turn to saturated

probability spaces, a simple extension of the Lebesgue unit interval does serve this

purpose; see Proposition 4.5.1 below.
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1.3 Private information economy

Economic decisions are essentially made based on a decision maker’s vision of the fu-

ture. The future is not known yet, hence all decisions are made with some degree of

uncertainty. However, these decisions are not made entirely blindfolded. Agents rely on

available information in plotting future plan, and information is asymmetric to agents.

The classical Arrow-Debreu-McKenzie model has been extended to reflect these two

facts, namely, uncertainty and informational asymmetry.

The first attempt to introduce uncertainty in Arrow-Debreu-McKenzie model was

made by Arrow (1964) and Debreu (1959), who introduced a state-contingent claims

model in which agents’ utility function and initial endowment are contingent on the

underlying state of nature. By treating a same commodity in two states of nature as

different types of commodities, their model can be naturally mapped to a deterministic

economy model to which standard techniques and results apply.

Radner (1968) further extended Arrow-Debreu’s model to allow for asymmetric in-

formation. In Radner’s model, each agent possesses a piece of private information which

partially reveals the true state of nature. While Radner’s model has the feature of un-

certainty and informational asymmetry, no genuine perfect competition exists for each

individual agent has non-negligible influence in such a finite-agent model.

Based on Radner’s private information economy model and Aumann’s large deter-

ministic economy model (see Aumann (1964)), Sun and Yannelis (see Sun (2006), Sun

and Yannelis (2007a), Sun and Yannelis (2008a)) introduced a private information econ-

omy model with a continuum of agents. In the model, agents have no direct knowledge

of the underlying uncertainty. Instead, they are informed of a noisy private informa-

tion signal giving them a clue about the real state of nature. Informational negligibility

prevails in their model.

For the private information economy model, various solution concepts have been put

forward that parallel the standard notions in a deterministic economy model. Radner

(1968) introduced Radner equilibrium (a.k.a. Walrasian expectations equilibrium). In

a Radner equilibrium, commodity prices vary over the states of nature. Each agent

makes a state contingent consumption plan to maximize her expected utility, subject

to her interim budget set. While Radner’s notion of equilibrium has been unanimously

accepted in the literature as the extension of the classic Walrasian equilibrium for the

private information economy model, the situation is more complicated with the notion
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of core.

The complication is mainly due to the fact that in a private information economy,

members of a coalition may exchange information for their good. Several definitions of

core for the private information economy model have thus been proposed depending on

the amount of information to be shared in a coalition. Wilson (1978) (see also Kobayashi

(1980)) introduced the notion of coarse core with a minimal use of information that is

common to all coalition members. Yannelis (1991) formulated the concept of private

core in which each agent uses, and is limited to, her/his own private information.

Another notion of equilibrium that also deserves some attention is the so-called

insurance equilibrium. This equilibrium is used to study insurance systems where each

agent takes on individual risks and makes choices of consumption to spread risks across

states of nature. In the insurance equilibrium model, agents can transfer income from

one state to another through insurance against mishaps in the future. Therefore, in the

model, an agent’s budget set is not limited to the income in each state. This model was

studied in the large finite-agent setting by Malinvaud (1972) and the continuum agent

setting by Sun (2006). The latter paper further investigated the issue of insurability in a

economy with a continuum of agents and obtained a characterization of insurable risks

– individual risks are insurable if and only if they are essentially pairwise independent.

In the private information economy with finite agents, the solution concepts are not

equivalent. However, it is well-known that in a deterministic economy model, although

solution concepts are defined from different perspectives, they may coincide with each

other under certain assumptions. For instance, Aumann (1964) showed the equivalence

between Walrasian equilibrium and core in a large deterministic game. Sun et al. (2013)

examines the above-mentioned concepts and shows that the same equivalence relation-

ship continues to hold in the context of private information economy with a continuum

of agents. Note that in the private information economy with a continuum of agents, be-

sides the above-mentioned solution concepts, there are some others, e.g., ex ante efficient

core and ex post efficient core, and the equivalence may not still hold.

In the private information economy with finite agents, the solution concepts above-

mentioned are automatically incentive compatible, and in the private information econ-

omy with a continuum of agents, the ex ante efficient core allocation is also incentive

compatible; see Sun and Yannelis (2008a). In this chapter, we will see that the private

core allocation is not always incentive compatible (so are Radner equilibrium and insur-

ance equilibrium). Compared with the private information economy with finite agents,
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this issue comes from the resource feasibility. In the private information economy with

finite agents, feasibility is a restriction for the available allocation. However, in the pri-

vate information economy with a continuum of agents, feasibility immediately follows

the law of large numbers, and no allocation will be precluded by feasibility.

1.4 Organization

The main results in Chapters 3, 4 and 5 are based on the papers Sun (2013a), Sun and

Zhang (2013) and Sun et al. (2013) respectively.

This thesis is organized as follows. In Chapter 2, we present the general exact law of

large numbers, the saturated probability spaces and related definitions and properties.

Chapter 3 provide a micro foundation for independent random partial matchings with

a continuum population and general types. In Chapter 4, we study the existence of

pure-strategy Nash equilibria for nonatomic games where players take actions in an

infinite-dimensional Banach space. In Chapter 5, we consider the incentive compatibility

of three equivalent solution concepts, Radner equilibrium, private core and insurance

equilibrium, in a private information economy. Some concluding remarks are discussed

in Chapter 6.



Chapter 2

Mathematical Preliminaries

A Polish space means a complete separable metric space. For a Polish space X, denote

its Borel σ-algebra by BX , and by M(X) the space of all Borel probability measures on

X with the Prohorov metric ρ. We recall that M(X) is again a Polish space, M(X)

has the topology of weak convergence, and if X is compact then so is M(X).

Throughout this thesis, we will use the convention that a probability space is always a

complete, countably additive measure space. A probability space (I, I,λ) is atomless (or

nonatomic) if there does not exist A ∈ I such that λ(A) > 0, and for any I-measurable

subset C of A, λ(C) = 0 or λ(C) = λ(A). Given a subset C of I, denote by σ(C) the

smallest σ-algebra containing C.

For any subset A ∈ I with λ(A) > 0, denote by (A, IA,λA) the probability space

restricted to A, where IA is the σ-algebra {C ∈ I : C ⊆ A}, and λA is the probabil-

ity measure rescaled from the restriction of λ to IA. Moreover, for any I-measurable

function f from I to a Polish space X, fA is the restriction of f to A.

In this chapter we will present the exact law of large numbers and related concepts

in Section 2.1, and then concepts of saturated probability spaces in Section 2.2.

9
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2.1 Fubini extension, essentially pairwise indepen-

dence, and the exact law of large numbers

Let probability spaces (I, I,λ) and (Ω,F ,P) be our index and sample spaces, respec-

tively. Let (I ×Ω, I ⊗F ,λ⊗P) be the usual product probability space. For a function

f on I ×Ω (not necessarily I ⊗F -measurable), and for (i,ω) ∈ I ×Ω, fi represents the

function f(i, ·) on Ω, and fω the function f(·,ω) on I.

In order to work with independent processes arising from economies and games with

infinitely many agents, we need to work with an extension of the usual measure-theoretic

product that retains the Fubini property. A formal definition, as in Sun (2006), is as

follows.

Definition 2.1.1. A probability space (I × Ω,W ,Q) extending the usual product space

(I ×Ω, I ⊗F ,λ⊗P) is said to ba a Fubini extension of (I ×Ω, I ⊗F ,λ⊗P) if for

any real-valued Q-integrable function f on (I × Ω,W),

1. The two functions fi and fω are integrable, respectively, on (Ω,F ,P) for λ-almost

all i ∈ I, and on (I, I,λ) for P-almost all ω ∈ Ω;

2.
∫
Ω fi dP and

∫
I fω dλ are integrable, respectively, on (I, I,λ) and (Ω,F ,P), with

∫
I×Ω f dQ =

∫
I(
∫
Ω fi dP) dλ =

∫
Ω(
∫
I fω dλ) dP.

To reflect the fact that the probability space (I ×Ω,W ,Q) has (I, I,λ) and (Ω,F ,P) as

its marginal spaces, as required by the Fubini property, it will be denoted by (I × Ω, I !
F ,λ!P).

We now introduce the following crucial independence condition, defined by Sun

(2006). We state the definition using a Polish space X for the sake of generality.

Definition 2.1.2. An I ! F-measurable process f from I × Ω to a Polish space X is

said to be essentially pairwise independent if for λ-almost all i ∈ I, the random

variables fi and fj are independent for λ-almost all j ∈ I.

Sun (2006) establishes the following theorem, the exact law of large numbers (in

sample distribution) and its converse:

Fact 2.1.3 (Theorem 2.8 in Sun (2006)). Let f be a process from (I ×Ω, I !F ,λ!P)

to a Polish space X. Then the following are equivalent.
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1. The random variables fi are essentially pairwise independent.

2. For any set A ∈ I with λ(A) > 0, the sample distribution λ(fA
ω )

−1 is the same as

the distribution (λA ! P)(fA)−1 of the process fA for P-almost all ω ∈ Ω, where

fA is the restriction of f to A× Ω, IA = {C ∈ I : C ⊆ A} and (IA ! F) = {E ∈
I ! F : E ⊂ (A × Ω)}, and λA and (λA ! P) the probability measures rescaled

respectively from the restrictions of λ to IA and (λ!P) to (IA ! F).

2.2 Saturated probability space

The definition of saturated probability spaces introduced by Hoover and Keisler (1984)

is presented as follows:

Definition 2.2.1. 1. A probability space (T, T , µ) is said to satisfy the saturation

property for a measure τ ∈ M(X×Y ) if for every T -measurable function f : I →
X with the distribution µ ◦ f−1 = margX(τ), there exists another T -measurable

function g : T → Y such that µ ◦ (f, g)−1 = τ , where margX(τ) is the marginal of

τ in M(X).

2. A probability space (T, T , µ) is saturated (or has full saturation) if (T, T , µ) is

atomless, and for every pair of Polish spaces X and Y , (T, T , µ) satisfies the

saturation property for every τ ∈ M(X × Y ).

The saturated probability space has many equivalent characterizations, e.g., the ℵ1-

atomless probability space (see Hoover and Keisler (1984)), the nowhere countably-

generated probability space (see Loeb and Sun (2009)), and the probability space whose

Maharam spectrum is a set of uncountable cardinals (see Fajardo and Keisler (2002)).

The following concept, ℵ1-atomless probability spaces, is proposed by Hoover and

Keisler (1984).

Definition 2.2.2. Let (T, T , µ) be a probability space.

1. Let A be a sub-σ-algebra of T , we say that T is atomless over A, if for every

D ∈ T with µ(D) > 0 there is a T -measurable subset D0 ⊆ D, such that on some

set of positive probability,

0 < P [D0|A] < P [D|A],
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where P [D|A] is the conditional probability of D with respect to the σ-algebra A.

A σ-algebra is atomless if it is atomless over the trivial a-algebra.

2. We say T is ℵ1-atomless if T is atomless over every A which is countably gen-

erated.

Definition 2.2.3. A probability space (T, T , µ) is called countably generated (mod-

ulo the null sets) (or essentially countably generated) if there is a countable set

{An ∈ T : n ∈ N} such that for any S ∈ T , there is a set S ′ in the σ-algebra generated

by {An ∈ T : n ∈ N} with µ(S*S ′) = 0, where * denotes the symmetric difference in

T . A probability space (T, T , µ) is said to be nowhere countably generated if for any

subset S ∈ T with µ(S) > 0, the rescaled probability space (S, T S, µS) is not countably

generated.

Before introducing the probability space whose Maharam spectrum is a set of un-

countable cardinals, we need some preparation on measure algebra.

Let (T, T , µ) be a probability space. Consider a relation ‘∼’ on T as follows, for

any E,F ∈ T , E ∼ F if and only if µ(E*F ) = 0, where * denotes the symmetric

difference. It is clear that ∼ is an equivalence relation on T . For any E ∈ T , let

Ê = {F ∈ T : F ∼ E} be the equivalence class of E, and clearly E ∈ Ê. Th pair

(T̂ , µ̂) is said to be the measure algebra of (T, T , µ), where T̂ is the quotient Boolean

algebra for the equivalence relation ∼, i.e., the set of equivalence classes in T for ∼, and

µ̂ : T̂ → [0, 1] is given by µ̂(Ê) = µ(E), for some E ∈ Ê.

If µ1 and µ2 are probability measures on disjoint sample spaces T1 and T2 respectively,

1 > α > 0, then the convex combination α · µ1 + (1 − α) · µ2 is the probability space

on T1 ∪ T2 formed in the obvious way with µ1 and µ2 having probabilities α and 1 −
α. Convex combinations of measure algebras, and countable convex combinations of

probability spaces and of measure algebras, are defined in an analogous manner. Let

[0, 1]κ be the probability space formed by taking the product measure of κ copies of

the space [0, 1] with the Lebesgue measure. The measure algebras of the spaces [0, 1]κ

are of special importance, and are called homogeneous measure algebras. The

fundamental theorem about measure algebras in Maharam (1942) shows that there are

very few measure algebras.

Fact 2.2.4 (Theorem of Maharam (1942)). For every atomless probability space (T, T , µ),

there is a finite or countable set of distinct cardinals {κi} such that the measure algebra

of (T, T , µ) is a convex combination of the homogeneous measure algebras [0, 1]κi.
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The set of cardinals {κi} in Maharam’s Theorem is clearly unique. This set is called

the Maharam spectrum of (T, T , µ).

Fact 2.2.5. For each atomless probability space (T, T , µ), the following are equivalent:

1. (T, T , µ) is saturated.

2. (T, T , µ) is ℵ1-atomless.

3. (T, T , µ) is nowhere countably generated.

4. The Maharam spectrum of (T, T , µ) is a set of uncountable cardinals.

Proof. The equivalence of (1) and (2) is proved in Corollary 4.5(i) of Hoover and Keisler

(1984). The equivalence of (3) and (4) follows from Maharam’s Theorem (see Fact 2.2.4).

A direct proof that (1) is equivalent to (4) is also given in Theorem 3B.7 of Fajardo and

Keisler (2002).

Remark 2.2.6. It is well-known that the Lebesgue unit interval, denoted by (L,L, η),
is countably generated modulo the null sets, and hence not saturated. In contrast, any

atomless Loeb probability space is saturated; see Hoover and Keisler (1984). One can also

extend the Lebesgue unit interval into a saturated probability space, see Kakutani (1944),

Section 6 in Podczeck (2008) and Sun and Zhang (2009); furthermore, it is worth to note

that, the construction of a saturated extension of the Lebesgue unit interval in Sun and

Zhang (2009) is not an issue, while the key is to construct a rich Fubini extension based

on this extended Lebesgue interval.

Remark 2.2.7. The class of saturated probability spaces is first formally introduced by

Hoover and Keisler (1984), and developed by Fajardo and Keisler (2002) and Keisler and

Sun (2002, 2009). Besides “ℵ1-atomless spaces”, “nowhere countably-generated spaces”

and “spaces whose Maharam spectrum is a set of uncountable cardinals”, they also have

other names in literatures, e.g., “nowhere separable spaces” in Dz̆amonja and Kunen

(1995), “rich probability spaces” in Keisler (1997), and Noguchi (2009), and “super-

atomless spaces” in Podczeck (2008).

Fact 2.2.8. If (T, T , µ) is a saturated probability space, then any other probability space

whose measure algebra is isomorphic to (T̂ , µ̂) is also saturated.
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Chapter 3

Independent random partial

matching with general types

3.1 Introduction

The deterministic cross-sectional type distribution in random matching models with a

large population had been widely used in the economics literature. Some models consider

random matchings with finite types, e.g., Hardy (1908), Kiyotaki and Wright (1993) and

Duffie, Gârleanu and Pedersen (2005). On the other hand, for a wide class of random

matching models with a large population, it is impossible to capture the relevant prop-

erties within a finite type space; for example, Green and Zhou (2002), Molico (2006)

and Duffie, Malamud and Manso (2012) choose the intervals [0, 1], [0,∞) and the real

line R as the type space, respectively. Duffie and Sun (2012) also discuss extensive refer-

ences within general equilibrium theory, game theory, monetary theory, labor economics,

illiquid financial markets and biology. Additional references for matching with general

types include Shi (1997), Lagos and Wright (2005), Zhu (2003, 2005) and Mailath et al.

(2012).

To obtain the deterministic type distribution, economists and geneticists have im-

plicitly or explicitly assumed the independence condition1 and law of large numbers for

independent random matchings with a continuum population. Hardy (1908) is the first,

to our knowledge, to study the random matchings with a large population. In his paper,

1Roughly speaking, by independence condition, we mean that for distinct persons i and j, i’s match-
ing is independent of j’s matching. The precise definition will be given in Definition 3.2.1.

15
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Hardy (1908) proposed that with random matching in a large population, one could

determine the constant fractions of each type in the population. In fact, Hardy (1908)

implicitly assumed the independence condition, and then applied informally a law of

large numbers for random matchings to deduce his results. However, the micro foun-

dation for the formulation, the existence and the law of large numbers of independent

random matchings with a continuum population had been lacking.

To resolve the problem above, Duffie and Sun (2007, 2012) propose a condition of

independence-in-types, and formulate independent random matchings for both static and

dynamic cases and for both full matchings and partial matchings. In Duffie and Sun

(2012), they prove the exact law of large numbers for independent random full matchings

with general types and for independent random partial matchings with finite types in

the static case,2 which follows immediately from the general exact law of large numbers

in Sun (2006); see Theorems 1 and 2 in Duffie and Sun (2012) respectively. Note that

the independence condition is a general behavioural assumption. When agents choose

their partners without coordinations among themselves, it is reasonable to assume inde-

pendence for the underlying random matching. Furthermore, it should be necessary to

distinguish an ad hoc example with some particular correlation structure on the random

matching from a general result in the setting of the law of large numbers, where the

deterministic type distribution in the random matching follows from the independence

condition on the random matching. See Section 6 in Duffie and Sun (2012) for more

detailed discussions on the ad hoc random matchings without independence.

The first theoretical treatment of the existence of independent random matchings

with a continuum population is provided by Duffie and Sun (2007).3 In particular, in

the static case, Duffie and Sun (2007) show the existence of independent universal (i.e.,

type-free) random full matchings,4 and the existence of independent random partial

matchings with finite types; see Theorems 2.4 and 2.6 therein respectively. Note that

the proof of the latter existence result strictly depends on the finiteness of type space,

so the formulation and the existence for independent random partial matchings with

2Duffie and Sun (2012) also prove the exact law of large numbers for independent random matchings
in the dynamic case, which is beyond the scope of this chapter; see Theorem 3 in Duffie and Sun (2012).

3One should note that the exact law of large numbers and its corollary deterministic cross-sectional
type distribution for independent random matchings will make no sense if such models do not exist.

4The random matching is universal in the sense that it does not depend on particular type functions.
Moreover, this result implies the existence of an independent universal random full matching model that
satisfies a few strong conditions that are specified in Footnote 4 of McLennan and Sonnenschein (1991).
Podczeck and Puzzello (2012) give an alternative proof for the existence of independent universal random
full matchings with a continuum population in the static case.
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general types would require a more general setup.

In Duffie, Malamud and Manso (2012), the authors consider a discrete-time dynamic

random matching model, where in each period it is exactly an independent random

partial matching with the type space R. The type for each agent characterizes the in-

formation she obtained, and will change after matching and trading. Upon matching,

the two agents are given the opportunity to trade one unit of the asset in a double auc-

tion. Since there is no trading for agents with the same preferences, the authors assume

that the matching probability for two agents with the same preference is zero, and the

no-match probability is indeed the proportion of the agents with same preferences. By

assuming the exact law of large numbers, Duffie, Malamud and Manso (2012) find the

cross-sectional type distribution (density) after each period given the initial type dis-

tribution (density). In Molico (2006), another discrete-time dynamic random matching

model is considered, where the population is represented by [0, 1] and the type space

is [0,∞). In this model, the type for each agent is given by her/his money holdings

which is nonnegative. In every period agents are randomly and bilaterally matched,

and an agent meets a potential trading partner with probability α, which will produce

a random partial matching. By implicitly postulating the exact law of large numbers,

Molico (2006) get the law of money motion.

The purpose of this chapter is to provide a micro foundation for the formulation, the

existence and the exact law of large numbers of independent random partial matchings

with a continuum population and general types in the static case. In Theorem 3.2.3, we

construct a joint agent-probability space that satisfies Duffie and Sun’s independence-in-

types condition. Though the existence result in Theorem 3.2.3 is stated using common

measure-theoretic terms, its proof makes extensive use of nonstandard analysis. In

particular, we construct a hyperfinite agent space, take the liftings for the initial type

distribution and no-match probability function, transfer to the hyperfinite setting, and

then work with a hyperfinite type space.5 Since the classical Lebesgue unit interval is

an archetype agent space for economic models with a continuum of agents, we show

that one can also take an extension of the classical Lebesgue unit interval as the agent

space for independent random partial matchings in the static case; see Theorem 3.2.4,

5It is a well-known property that hyperfinite probability spaces capture the asymptotic properties of
large but finite probability spaces, so the use of such a probability space does provide some advantages.
Brown and Robinson (1975) introduce the application of nonstandard analysis into economics. For
recent applications of nonstandard analysis in economics, see also Anderson and Raimondo (2008), Khan
and Sun (2002) and Sun and Yannelis (2007b, 2008a). One can pick up some background knowledge
on nonstandard analysis from the first three chapters of the book Loeb and Wolff (2000).
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which is a generalization of Corollary 1 in Duffie and Sun (2012). Under Duffie and

Sun’s independence-in-types condition, the exact law of large numbers for independent

random partial matchings with a continuum population and general types also follows

immediately from the general exact law of large numbers in Sun (2006); see Proposi-

tion 3.3.1.

The remainder of the chapter is organized as follows. Section 3.2 provides the defini-

tion of independent random partial matchings with a continuum population and general

types, and discusses its existence in Theorem 3.2.3. Theorem 3.2.4 proves the existence

of independent random partial matchings with general types, where the agent space is

an extension of the Lebesgue unit interval. In Section 3.3, Proposition 3.3.1 shows the

exact law of large numbers for independent random partial matchings. Proofs of the

main results will be given in Section 3.4.

3.2 The existence of independent random partial

matchings

Let probability spaces (I, I,λ) and (Ω,F ,P) be our index and sample spaces, respec-

tively. In our applications, (I, I,λ) is an atomless probability space that indexes the

agents. Let (I × Ω, I ⊗ F ,λ ⊗ P) and (I × Ω, I ! F ,λ ! P) be the usual product

probability space and Fubini extension respectively. Below is the formal definition of

independent random partial matchings with a continuum population and general types

in the static case.

Definition 3.2.1 (Independent random partial matchings with general types). Let a

Polish space S be the set of types, S the σ-algebra of all Borel measurable subsets of S.

Let α : I → S be an I-measurable type function with type distribution p on S, that

is, for every B ∈ S, p(B) = λ(α−1(B)). Let q : S → [0, 1] be an S-measurable no-match

probability function, that is, for every k ∈ S, q(k) is the no-match probability for an

agent whose type is k.

Given a subset I ′ ⊂ I, a full matching φ on I ′ is a bijection from I ′ to I ′ such that

for each i ∈ I ′, φ(i) .= i and φ2(i) = i.

Let π be a mapping from I × Ω to I ∪ {J}, where J denotes “no-match”.

1. We say that π is a random partial matching with S-measurable no-match probability
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function q if:

(a) For each ω ∈ Ω, the restriction of πω to I − π−1
ω ({J}) is a full matching on

I − π−1
ω ({J});

(b) After extending the type function α to I ∪ {J} so that α(J) = J , and letting

g be the type process α(π), we have g measurable from (I × Ω, I !F ,λ!P)

to S ∪ {J};

(c) For λ-almost all i ∈ I, P(gi = J) = q(α(i)) and

P(gi ∈ C) = [1− q(α(i))]

∫
C [1− q(k)] dp(k)∫
S[1− q(k)] dp(k)

. (3.1)

for any C ∈ S.

2. A random partial matching π is said to be independent in types if the type process

g (taking values in S ∪ {J}) is essentially pairwise independent.

Condition 1-(a) of this definition says that an agent i with πω(i) = J is not matched,

while any agent in I − π−1
ω ({J}) is matched. This produces a partial matching on I.

Condition 1-(b) is the measurability requirement.

Condition 1-(c) means that if an agent i is matched, its probability of being matched

to an agent, whose type is in the given type subset, should be proportional to the

type distribution of matched agents. The fraction of the population of matched agents

among the total population is
∫
S[1− q(k)] dp(k). Thus, the relative fraction of types-C

matched agents6 to that of all the matched agents is
∫
C [1−q(k)] dp(k)/

∫
S[1−q(k)] dp(k).

This implies that the probability that an agent i is matched to a types-C agent is

[1− q(α(i))]
∫
C [1− q(k)] dp(k)/

∫
S[1− q(k)] dp(k). When

∫
S[1− q(k)] dp(k) = 0, almost

no agents will be matched.

Condition 2 (i.e., independence-in-types condition) says that for almost all agents

i, j ∈ I, whether agent i is unmatched or matched to a types-C agent is independent of

a similar event for agent j. Furthermore, this condition is weaker than pairwise/mutual

independence since each agent is allowed to have correlation with a null set of agents

(including finitely many agents since a finite set is null under an atomless measure).

Note that Condition 2 allows the application of the general exact law of large numbers

in Sun (2006) to claim that the fraction of the total population consisting of types-

6By a types-C agent, we mean an agent whose type belongs to C.
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B agents that are matched to types-C agents is aggregately proportional to the type

distribution of matched agents. This result is formally stated in Proposition 3.3.1, whose

proof is given in Section 3.4.4.

As indicated in the second paragraph on Page 1136 of Duffie and Sun (2012), the

universal matching as constructed in the proof of Theorem 2.4 in Duffie and Sun (2007)

also has the property that the mappings of the random partners of agents are not only

pairwise independent as shown explicitly on Page 399 of Duffie and Sun (2007), but

also mutually independent for finitely many different agents. Here we state the result

formally and give its proof in Section 3.4.1.

Proposition 3.2.2. There exists an atomless probability space (I, I,λ) of agents, a

sample probability space (Ω,F ,P), a Fubini extension (I ×Ω, I !F ,λ!P) of the usual

product probability space, and a random full matching π from (I × Ω, I ! F ,λ ! P) to

I such that

1. (i) for each ω ∈ Ω, λ(π−1
ω (A)) = λ(A) for any A ∈ I, (ii) for each i ∈ I,

P(π−1
i (A)) = λ(A) for any A ∈ I, (iii) for any A1, A2 ∈ I, λ(A1 ∩ π−1

ω (A2)) =

λ(A1)λ(A2) holds for P-almost all ω ∈ Ω;

2. π is mutally independent, which means that for any distinct i1, i2, . . . , ir ∈ I,

(πi1 , πi2 , . . . , πir) : (Ω,F ,P) → (×rI,!rI,!rλ) is a measure-preserving mapping.

Since the universal independent random matching as constructed in the proof of

Theorem 2.4 in Duffie and Sun (2007) can be applied to any type functions (taking

values in any finite or infinite space), there is no issue for independent random full

matching with general types.7 However, the formulations and the proofs for independent

random partial matching in Duffie and Sun (2007, 2012) do rely on the finite types used

there. Thus independent random partial matching for general types need to be treated

separately. The following theorem generalizes Theorem 2.6 in Duffie and Sun (2007) to

the case involving general types, whose proof is given in Section 3.4.2.8

7For any α : I → S, and any B1, B2 ⊂ S, item (iii) in Part 1 implies that λ(α−1(B1) ∩
π−1
ω (α−1(B2))) = λ(α−1(B1))λ(α−1(B2)), which is useful for applications.

8The author thanks Darrell Duffie for the following remark. When the no-match probability function
is constant, then the existence of independent random partial matching with general types follows imme-
diately from the existence of independent universal random full matching by introducing an additional
type to be interpreted as “no-match”.
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Theorem 3.2.3. There is an atomless probability space (I, I,λ) of agents, such that for

any given I-measurable type function α from I to S, and for any given S-measurable

no-match probability function q from S to [0, 1],

1. there exists a sample space (Ω,F ,P), and a Fubini extension (I×Ω, I!F ,λ!P);

2. there exists an independent-in-types random partial matching π from (I × Ω, I !
F ,λ!P) to I with q as the no-match probability function.

In the following theorem, we will show the existence of the independent random

partial matching with a continuum population and general types, where the agent space

(Î , Î, λ̂) is an extension of the Lebesgue unit interval (L,L, η) in the sense that Î = L =

[0, 1], the σ-algebra Î contains the Lebesgue σ-algebra L, and the restriction of λ̂ to L
is the Lebesgue measure η. Its proof is given in Section 3.4.3.

Theorem 3.2.4. For any given type distribution p on S, and any given S-measurable

no-match probability function q from S to [0, 1], there exists a Fubini extension (Î ×
Ω, Î ! F , λ̂!P) such that

1. the agent space (Î , Î, λ̂) is an extension of the Lebesgue unit interval (L,L, η).

2. there exists an independent-in-types random partial matching π from (Î × Ω, Î !
F , λ̂ ! P) to Î with type distribution p and with q as the no-match probability

function.

3.3 The exact law of large numbers of independent

random partial matchings

In the following, we will show the exact law of large numbers for independent random

partial matchings with a continuum population and general types in the static case.

Proposition 3.3.1. If π is an independent-in-types random partial matching from I×Ω

to I ∪ {J} with S-measurable no-match probability function q from S to [0, 1], then, for

P-almost all ω ∈ Ω:
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1. For any type subset B ∈ S, the fraction of the total population consisting of types-B

agents that are unmatched is

λ({i ∈ I | α(i) ∈ B, gω(i) = J}) =
∫

B

q(k) dp(k). (3.2)

2. For any type subsets B,C ∈ S, the fraction of the total population consisting of

types-B agents that are matched to types-C agents is

λ({i ∈ I | α(i) ∈ B, gω(i) ∈ C}) =
∫

B

[1− q(k)] dp(k)

∫
C [1− q(l)] dp(l)∫
S[1− q(l)] dp(l)

. (3.3)

3.4 Proofs

3.4.1 Proof of Proposition 3.2.2

Proof of Proposition 3.2.2. Fix an even hyperfinite natural number N in the set ∗N∞ of

unlimited hyperfinite natural numbers. Let I = {1, 2, . . . , N}, let I0 be the collection

of all the internal subsets of I, and let λ0 be the internal counting probability measure

on I0. Let (I, I,λ) be the Loeb space of the internal probability space (I, I0,λ0). Note

that (I, I,λ) is obviously atomless.

We can draw agents from I in pairs without replacement; and then match them in

these pairs. The procedure can be the following. Take one fixed agent; this agent can

be matched with N − 1 different agents. After the first pair is matched, there are N − 2

agents. We can do the same thing to match a second pair with N − 3 possibilities.

Continue this procedure to produce a total number of 1× 3× · · ·× (N − 3)× (N − 1),

denoted by (N−1)!!, different matchings. Let Ω be the space of all such matchings, F0 the

collection of all internal subsets of Ω, and P0 the internal counting probability measure

on F0. Let (Ω,F ,P) be the Loeb space of the internal probability space (Ω,F0,P0).

Let (I×Ω, I0⊗F0,λ0⊗P0) be the internal product probability space of (I, I0,λ0) and

(Ω,F0,P0). Then I0⊗F0 is actually the collection of all the internal subsets of I×Ω and

λ0⊗P0 is the internal counting probability measure on I0⊗F0. Let (I×Ω, I!F ,λ!P)

be the Loeb space of the internal product (I × Ω, I0 ⊗ F0,λ0 ⊗ P0), which is indeed a

Fubini extension of the usual product probability space.

Part (1) has already in Duffie and Sun (2007), and in the following we will focus on
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Part (2).

For distinct i1, i2, . . . , ir ∈ I, consider the joint event

E =
{
ω ∈ Ω : (πi1(ω), πi2(ω), . . . , πir(ω)) = (j1, j2, . . . , jr)

}
,

that is, agent iz is matched to agent jz, z = 1, 2, . . . , r. In order to show the measure-

preserving property of the mapping (πi1 , πi2 , . . . , πir) in the following paragraph, we need

to know the value of P0(E) in three different cases.

The first case is that there are x .= y ∈ {1, 2, . . . , r}, such that jx = jy. In this case,

P0(E) = 0. Let D1 denote the set {(j1, j2, . . . , jr) : jx = jy for some x .= y}

The second case is that there are x, y ∈ {1, 2, . . . , r}, such that ix = jy. In this case,

P0(E) = 1
|N−1| . Let D2 denote the set {(j1, j2, . . . , jr) : ix = jy for some x, y}.

The third case applies if the indices i1, i2, . . . , ir and j1, j2, . . . , jr are completely

distinct. In this third case, after the pairs (i1, j1), (i2, j2), . . . , (ir, jr) are drawn, there

are N−2r agents left, and hence there are (N−2r−1)!! ways to draw the rest of the pairs

in order to complete the matching. This means that P0(E) = (N −2r−1)!!/(N −1)!! =

1/((N − 1)(N − 3) · · · (N − 2r + 1)).

Let (×rI,⊗rI0,⊗rλ0) be the internal product of r copies of (I, I0,λ0), and (×rI,!rI,!rλ)

the Loeb space of the internal product. Fix any distinct i1, i2, . . . , ir ∈ I. The third case

of the above paragraph implies that for any internal set G ∈ ⊗rI0,

P0

(
{ω ∈ Ω : (πi1(ω), . . . , πir(ω)) ∈ G−D1 −D2}

)
0 |G|

N r
= ⊗rλ0(G) (3.4)

By using the formula for P0(E) in the first two cases, we can obtain that

P0

(
{ω ∈ Ω : (πi1(ω), . . . , πir(ω)) ∈ D1 ∪D2}

)
=

1

N − 1
0 0 (3.5)

Equations (3.4) and (3.5) imply that

P0

(
{ω ∈ Ω : (πi1(ω), . . . , πir(ω)) ∈ G}

)
0 ⊗rλ0(G).

It is easy to show that (πi1 , . . . , πir) is a measure-preserving mapping from (Ω,F ,P)

to (×rI,!rI,!rλ). Hence, Part (2) is shown.
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3.4.2 Proof of Theorem 3.2.3

We shall first consider a special case of Theorem 3.2.3.

Lemma 3.4.1. If the type space (S,S) is [0, 1] with the Borel σ-algebra, then there is an

atomless probability space (I, I,λ) of agents such that for any given I-measurable type

function α from I to S with uniform distribution p on S, and for any given S-measurable

no-match probability function q from S to [0, 1],

1. there exists a sample space (Ω,F ,P), and a Fubini extension (I×Ω, I!F ,λ!P);

2. there exists an independent-in-types random partial matching π from (I × Ω, I !
F ,λ!P) to I with q as the no-match probability function.

Proof of Lemma 3.4.1. We outline the proof first. In Step 1, we will construct the agent

space (I, I,λ), the sample space (Ω,F ,P), and the random matching π. In Step 2, we

will construct the type process gα and hyperfinite type process g, where the latter is

I ! F -measurable. In Step 3, we will show that g satisfies the distribution property

(i.e., Condition 1-(c)). In Step 4, we will show that g is essentially pairwise independent

(i.e., Condition 2). In Step 5, we conclude our proof by showing that g and gα are

almost same.

Step 1. Let K be any fixed unlimited hyperfinite natural number in ∗N∞. Let I =

{1, 2, . . . ,M} be the space of agents, where M = K2. Let I0 be the collection of all

the internal subsets of I, and λ0 the internal counting probability measure on I0. Let

(I, I,λ) be the Loeb space of the internal probability space (I, I0,λ0).

Let α be an I-measurable type function from I to S with the uniform distribution

p = λα−1. Let T = {1, 2, . . . , K}. Let T0 be the collection of all the internal subsets of

T , p0 the internal counting probability measure on T0, and (T, T , p′) the Loeb space of

the internal probability space (T, T0, p0).

Define α′
0 : I → T as follows: for each k ∈ T and for any i ∈ {1, 2, . . . , K}, α′

0(kK +

i) = k. Then α′
0 is internal, λ0α

′−1
0 = p0, and λα

′−1
0 = p′. Let st be a map from (T, T , p′)

to (S,S, p), where for each k ∈ T , st(k) is the standard part of k
K .9 Since st is measure

9For the definition and properties of standard part, see Section 1.6 in Loeb and Wolff (2000).
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preserving, we have λ(st ◦α′
0)

−1 = p. Proposition 9.2 in Keisler (1984) implies that

(I, I,λ) is homogeneous, that is, there exists an internal bijection σ : I → I, such that

α(i) = st ◦α′
0 ◦ σ(i) for λ-almost all i ∈ I. Let α0 = α′

0 ◦ σ, then st ◦α0(i) = α(i) for

λ-almost all i ∈ I (i.e., α0 is an internal lifting of α), and λ0α
−1
0 = p0.

For any S-measurable no-match probability function q from S to [0, 1], we will have

an internal lifting q0 : T → ∗[0, 1], that is, q0 is internal and st(q0(t)) = q(st(t)) for

p′-almost all t ∈ T .10

For each k ∈ T , let Ak = α−1
0 (k), and Mk = |Ak| with

∑K
k=1 Mk = M . Then

Mk/M = λ0(Ak) = λ0α
−1
0 (k) = p0(k) = 1/K, and hence for each k ∈ T , Mk = K is an

unlimited hyperfinite natural number.

For each k ∈ T , we will pick an internal sequence of hyperfinite natural numbers

{mk | k ∈ T}, such that Mk − mk ∈ ∗N∞, and N =
∑K

k=1(Mk − mk) is an unlimited

even hyperfinite natural number. It is easy to see that

N

M
=

K∑

k=1

Mk

M

(
1− mk

Mk

)
0

K∑

k=1

p0(k)[1− q0(k)].

For each k ∈ T , let Bk be an arbitrary internal subset of Ak with mk elements, and

let Pmk
(Ak) be the collection of all such internal subsets. For given Bk ∈ Pmk

(Ak) for

each k ∈ T , let πB1,B2,...,BK be a full matching on I − ∪K
k=1Bk produced by the process

described in the proof of Theorem 2.4 in Duffie and Sun (2007); there are (N − 1)!! =

1× 3× 5× · · ·× (N − 3)× (N − 1) such matchings.

Our sample space Ω is the set of all ordered tuples (B1, B2, . . . , BK , πB1,B2,...,BK ) such

that Bk ∈ Pmk
(Ak) for each k ∈ T , and πB1,B2,...,BK is a full matching on I − ∪K

k=1Bk.

Then Ω has [(N − 1)!!]
∏K

k=1

(
Mk

mk

)
many elements in total. Let F0 be the collection of

all the internal subsets of Ω, and P0 the internal counting probability measure on F0.

Let (Ω,F ,P) be the Loeb space of the internal probability space (Ω,F0,P0). Note that

(I, I0,λ0) and (Ω,F0,P0) are atomless. Let (I ×Ω, I !F ,λ!P) be the Loeb space of

the internal product (I × Ω, I0 ⊗ F0,λ0 ⊗P0), which is a Fubini extension of the usual

product probability space.

Let J represent no-match. Define a mapping π from I×Ω to I∪{J}. For i ∈ Ak and

ω = (B1, B2, . . . , BK , πB1,B2,...,BK ), if i ∈ Bk, then π(i,ω) = J (agent i is not matched);

10For the existence of internal liftings, see Chapter 5 in Loeb and Wolff (2000).
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if i .∈ Bk, then i ∈ I − ∪K
k=1Bk, agent i is to be matched with agent πB1,B2,...,BK (i),

and let π(i,ω) = πB1,B2,...,BK (i). It is obvious that π−1
ω ({J}) = ∪K

k=1Bk and that the

restriction of πω to I − ∪K
k=1Bk is a full matching on the set. Thus Condition 1-(a) in

Definition 3.2.1 is satisfied.

Step 2. Let gα be the matched type process from I × Ω to S ∪ {J} under the type

function α, that is, gα(i,ω) = α(π(i,ω)) with α(J) = J .

When
∑K

k=1 p0(k)[1− q0(k)] is infinitesimal, we know that N/M 0 0. It is clear that

(λ0 ⊗P0)({(i,ω) | π(i,ω) .= J}) =
∫

Ω

∫

I

1π(i,ω) &=J dλ0(i) dP0(ω)

=

∫

Ω

N

M
dP0(ω) =

N

M
0 0,

and thus (λ!P)({(i,ω) ∈ I×Ω | π(i,ω) .= J}) = 0, which means that (λ!P)(gα(i,ω) .=
J) = 0, and for λ-almost all i ∈ I, gαi (ω) = J for P-almost all ω ∈ Ω. Thus Conditions

1-(b), 1-(c) and 2 in Definition 3.2.1 are satisfied trivially; that is, one has a trivial

random partial matching that is independent in types.

For the rest of the proof, assume that
∑K

k=1 p0(k)[1− q0(k)] is not infinitesimal. Let

g0 be the matched type process from I ×Ω to T ∪ {J}, defined by g0(i,ω) = α0(π(i,ω))

with α0(J) = J . Extending st to T ∪ {J}, so that st(J) = J , let g : I ×Ω → S ∪ {J} be

st(g0). Since both α0 and π are internal, the fact that I0 ⊗ F0 is the internal power set

on I × Ω implies that g0 is I0 ⊗ F0-measurable, and hence g is I ! F -measurable.11

Step 3. Fix an agent i ∈ Ak for some k ∈ T . For any internal subset Ĉ in T , and

for any Br ∈ Pmr(Ar), r ∈ T , let NB1,B2,...,BK

iĈ
be the number of full matchings on

∪K
r=1(Ar−Br) such that agent i is matched to some agent in ∪l∈Ĉ(Al−Bl). It is obvious

that NB1,B2,...,BK

iĈ
depends only on the numbers of the points in the sets Ar −Br, r ∈ T ,

which are Mr − mr, r ∈ T , respectively. Hence, NB1,B2,...,BK

iĈ
is independent of the

particular choices of B1, B2, . . . , BK , and so can simply be denoted by NiĈ . Then fix

any i ∈ I, we have that P0({ω ∈ Ω : πi(ω) ∈ ∪l∈Ĉ(Al − Bl)}) is




| ∪l∈Ĉ (Al − Bl)|/(N − 1), if i .∈ ∪l∈Ĉ(Al − Bl),

(| ∪l∈Ĉ (Al − Bl)|− 1)/(N − 1), if i ∈ ∪l∈Ĉ(Al − Bl),

11See Theorem 5.2.4 in Loeb and Wolff (2000).
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and hence

NiĈ

(N − 1)!!
= P0(π

−1
i (∪l∈Ĉ(Al −Bl))) (3.6)

0
| ∪l∈Ĉ (Al −Bl)|

N
=

∑
l∈Ĉ(Ml −ml)

N
. (3.7)

It can be checked that the internal cardinality of the event {ω ∈ Ω | g0(i,ω) ∈ Ĉ} is

∣∣∣
{
ω ∈ Ω | i ∈ Ak −Bk, π

B1,B2,...,BK
i (ω) ∈ ∪l∈Ĉ(Al − Bl)

}∣∣∣ (3.8)

=

(
Mk − 1

mk

)∏

r &=k

(
Mr

mr

)
NiĈ , (3.9)

for ω = (B1, B2, . . . , BK , πB1,B2,...,BK ).

Hence Eqs. (3.6) and (3.8) imply that

P0({ω ∈ Ω | g0(i,ω) ∈ Ĉ})

=
Mk −mk

Mk

NiĈ

(N − 1)!!
0 [1− q0(k)]

∑
l∈Ĉ(Ml −ml)

N

= [1− q0(α0(i))]

∑
l∈Ĉ(1−ml/Ml)Ml/M

N/M

0 [1− q0(α0(i))]

∑
l∈Ĉ p0(l)[1− q0(l)]∑K
r=1 p0(r)[1− q0(r)]

. (3.10)

It is also easy to see that

P0({ω ∈ Ω | g0(i,ω) = J}) = mk

Mk
0 q0(k). (3.11)

For any Loeb measure zero set C̄ ⊂ T , there exists a sequence of internal sets

{Ĉn}∞n=1, such that C̄ ⊂ Ĉn, and p′(Ĉn) ↓ 0. Then by Eq. (3.10), we have

Loeb outer measure of g−1
0,i (C̄)

≤ st ◦P0(g
−1
0,i (Ĉn)) = [1− q(α(i))]

∫
Ĉn
[1− st ◦q0(l)] dp′(l)∫

T [1− st ◦q0(l)] dp′(l)

≤ [1− q(α(i))]∫
T [1− st ◦q0(l)] dp′(l)

∫

Ĉn

1 dp′(l) = a · p′(Ĉn) (3.12)
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where a = [1 − q(α(i))]/
∫
T [1 − st ◦q0(l)] dp′(l) is a positive constant number. Let n go

to infinity, then we have that g−1
0,i (C̄) is Loeb measurable with measure zero.

Then we will have

P({ω ∈ Ω | g0(i,ω) ∈ Ĉ}) = [1− q(α(i))]

∫
Ĉ [1− st ◦q0(k)] dp′(k)∫
T [1− st ◦q0(k)] dp′(k)

for λ-almost all i ∈ I and any Loeb measurable set Ĉ.

For any Borel measurable set C ∈ S, st−1(C) is Loeb measurable. Then the change

of variables formula implies

P({ω ∈ Ω | g(i,ω) ∈ C}) = [1− q(α(i))]

∫
C [1− q(k)] dp(k)∫
S[1− q(k)] dp(k)

for λ-almost all i ∈ I.

Similarly, we also have

P({ω ∈ Ω | g(i,ω) = J}) = q(α(i)),

for λ-almost all i ∈ I.

Hence the distribution condition on gi is satisfied for λ-almost all i ∈ I.

Step 4. Fix agents i and j ∈ I with i .= j. We first consider the case that both i and

j are in the same type k ∈ T , in the following three substeps.

Substep 4-1. Then we will have

P0({ω ∈ Ω | g0(i,ω) = J, g0(j,ω) = J}) = mk(mk − 1)

Mk(Mk − 1)

0
(
mk

Mk

)2

= P0({ω ∈ Ω | g0(i,ω) = J})×P0({ω ∈ Ω | g0(j,ω) = J}).

Therefore, we have

P({ω ∈ ω | g(i,ω) = J, g(j,ω) = J})

= P({ω ∈ Ω | g(i,ω) = J})×P({ω ∈ Ω | g(j,ω) = J}),
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for λ-almost all i ∈ I and λ-almost all j ∈ I.

Substep 4-2. It can be checked that the internal cardinality of the event {ω ∈ Ω |
g0(i,ω) ∈ Ĉ, g0(j,ω) = J} is

∣∣∣
{
ω ∈ Ω | i ∈ Ak −Bk, j ∈ Bk, π

B1,B2,...,BK
i (ω) ∈ ∪l∈Ĉ(Al −Bl)

}∣∣∣

=

(
Mk − 2

mk − 1

)∏

r &=k

(
Mr

mr

)
NiĈ , (3.13)

Hence Eqs. (3.6) and (3.13) imply that

P0({ω ∈ Ω | g0(i,ω) ∈ Ĉ, g0(j,ω) = J})

=
mk(Mk −mk)

Mk(Mk − 1)

NiĈ

(N − 1)!!

0 mk

Mk

Mk −mk

Mk

NiĈ

(N − 1)!!

0 P0(g0(i,ω) = J)×P0(g0(i,ω) ∈ Ĉ). (3.14)

For any C ∈ S, by the same argument in the paragraph including Eq. (3.12) in

Step 3, we have

P({ω ∈ Ω | g(i,ω) ∈ C, g(j,ω) = J})

= P({ω ∈ Ω | g(i,ω) ∈ C})×P({ω ∈ Ω | g(j,ω) = J}),

for λ-almost all i ∈ I and λ-almost all j ∈ I.

Therefore the events {ω ∈ Ω | g(i,ω) ∈ C} and {ω ∈ Ω | g(j,ω) = J} are

independent for λ-almost all i ∈ I and λ-almost all j ∈ I. Similarly, the events

{ω ∈ Ω | g(i,ω) = J} and {ω ∈ Ω | g(j,ω) ∈ C} are independent for λ-almost all

i ∈ I and λ-almost all j ∈ I.

Substep 4-3. For any internal subsets Ĉ, D̂ of T , and for any Bk ∈ Pmk
(Ak), k ∈ T ,

let NB1,B2,...,BK

ilĈD̂
be the number of full matchings on ∪K

k=1(Ak−Bk) such that agents i and

j are matched to some agents respectively in ∪l∈ĈAl−Bl and ∪t∈D̂At−Bt. As in the case
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of NB1,B2,...,BK

iĈ
, NB1,B2,...,BK

ilĈD̂
is independent of the particular choices of B1, B2, . . . , BK

and can simply be denoted by NilĈD̂. By taking G = ∪l∈Ĉ(Al −Bl)×∪t∈D̂(At−Bt), we

have

NilĈD̂

(N − 1)!!
= P0({ω ∈ Ω | (πi(ω), πj(ω)) ∈ G})

0 (λ0 ⊗ λ0)(G) =

∑
l∈Ĉ(Ml −ml)

N

∑
t∈D̂(Mt −mt)

N
. (3.15)

The event {ω ∈ Ω | g0(i,ω) ∈ Ĉ, g0(j,ω) ∈ D̂} is actually the set of all the ω =

(B1, B2, . . . , BK , πB1,B2,...,BK ) such that both i and j are in the same type k, and agents

i and j are matched to some agents in ∪l∈Ĉ(Al − Bl) and ∪t∈D̂(At − Bt), respectively.

Thus, the internal cardinality of {ω ∈ Ω | g0(i,ω) ∈ Ĉ, g0(j,ω) ∈ D̂} is

(
Mk − 2

mk

)∏

r &=k

(
Mr

mr

)
NilĈD̂. (3.16)

Hence Eqs. (3.10), (3.15) and (3.16) imply that

P0({ω ∈ Ω | g0(i,ω) ∈ Ĉ, g0(j,ω) ∈ D̂})

=
(Mk −mk)(Mk −mk − 1)

Mk(Mk − 1)

NilĈD̂

(N − 1)!!

0
(
Mk −mk

Mk

)2 ∑
l∈Ĉ(Ml −ml)

N

∑
t∈D̂(Mt −mt)

N

0 P0({ω ∈ Ω | g0(i,ω) ∈ Ĉ})×P0({ω ∈ Ω | g0(j,ω) ∈ D̂}). (3.17)

For any C,D ∈ S, by the same argument in the paragraph including Eq. (3.12) in

Step 3, we have

P({ω ∈ Ω | g(i,ω) ∈ C, g(j,ω) ∈ D})

= P({ω ∈ Ω | g(i,ω) ∈ C})×P({ω ∈ Ω | g(j,ω) ∈ D}),

for λ-almost all i ∈ I and λ-almost all j ∈ I.

Therefore the events {ω ∈ Ω | g(i,ω) ∈ C} and {ω ∈ Ω | g(j,ω) ∈ D} are indepen-

dent for λ-almost all i ∈ I and λ-almost all j ∈ I.
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Substep 4-4. For the case that agent i and agent j are in the different types, one can

use computations similar to methods in the above three substeps to show that the type

process g is essentially pairwise independent. The details are omitted here.

Step 5. We have proven the result for the type function α0. We still need to prove it

for α (and for gα = α ◦ π). For any agent i ∈ Ak, for some k ∈ T . For any internal set

A ∈ I0, and for any Br ∈ Pmr(Ar), r = 1, 2, . . . , K, let NB1,B2,...,BK
iA be the number of full

matchings on ∪K
r=1(Ar −Br) such that agent i is matched to some agent in A−∪K

r=1Br.

Then, we have

NB1,B2,...,BK
iA

(N − 1)!!
= P0(π

−1
i (A− ∪K

r=1Br)) 0 λ0(A− ∪K
r=1Br) =

|A− ∪K
r=1Br|

N
. (3.18)

The internal event π−1
i (A) is, for ω = (B1, B2, . . . , BK , πB1,B2,...,BK ),

{
ω ∈ Ω | i ∈ Ak − Bk, π

B1,B2,...,BK
i (ω) ∈

(
A− ∪K

r=1Br

)}
. (3.19)

Hence Eqs. (3.18) and (3.19) imply that

P0(π
−1
i (A)) =

∑

Bk∈Pmk (Ak−{i}), Bl∈Pml (Al) for l &=k

1
∏K

r=1

(
Mr

mr

)
NB1,B2,...,BK

iA

(N − 1)!!

0
∑

Bk∈Pmk (Ak−{i}), Bl∈Pml (Al) for l &=k

1
∏K

r=1

(
Mr

mr

)
|A− ∪K

r=1Br|
N

≤ |A|
N

(
Mk−1
mk

) (∏
r &=k

(
Mr

mr

))

∏K
r=1

(
Mr

mr

) =
Mk −mk

Mk

|A|
M

1

(N/M)

0 [1− q0(k)]λ0(A)∑K
r=1 p0(r)[1− q0(r)]

.

Let c = 1/
∑K

r=1 p0(r)[1 − q0(r)]. Then, for each i ∈ I and any A ∈ I0, P(π−1
i (A)) ≤

c · λ(A). Thus, Keisler’s Fubini property12 implies that (λ ! P)(π−1(A)) ≤ c · λ(A).
Let B = {i ∈ I | α(i) .= st(α0(i))}. We know that λ(B) = 0, (λ ! P)(π−1(B)) =

P(π−1
i (B)) = 0 for each i ∈ I. Since g and gα agree on I × Ω − π−1(B), gα must be

I!F -measurable. For each i ∈ I, gi and gαi agree on Ω−π−1
i (B), and hence the relevant

distribution and independence conditions are also satisfied by gα.

12See Section 5.3.7 in Loeb and Wolff (2000).
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Proof of Theorem 3.2.3. In the Step 1 of proof of Lemma 3.4.1, we have constructed a

agent space (I, I,λ).

For any probability measure p on S, we can find a L-measurable function Z : L → S,

such that ηZ−1 = p, where L = [0, 1], L is the Borel σ-algebra, and η is the Lebesgue

measure. Given any I-measurable type function α from I to S with type distribution

p, we can define a new type function α̃ from I to L with uniform distribution, such

that λ(Z ◦ α̃)−1 = λα−1. Proposition 9.2 in Keisler (1984) implies that (I, I,λ) is

homogeneous, that is, there exists an internal bijection σ : I → I, such that Z ◦α̃◦σ(i) =
α(i) for λ-almost all i ∈ I. Let α′ = α̃ ◦ σ, then Z ◦ α′(i) = α(i) for λ-almost all i ∈ I.

Given any S-measurable no-match probability function q from S to [0, 1], we also can

define a new L-measurable no-match probability function q′ from L to [0, 1]: q′ = q ◦Z.
Based on the construction of α′ and q′, we will have q′ ◦ α′(i) = q ◦ α(i) for λ-almost all

i ∈ I.

Now applying Lemma 3.4.1 again, there exists a sample space (Ω,F ,P), a Fubini

extension (I ×Ω, I !F ,λ!P), and an independent-in-types random partial matching

π from (I ×Ω, I !F ,λ!P) to I with q′ as the no-match probability function, that is,

the type process g′ = α′ ◦ π : (I × Ω, I ! F ,λ!P) → L ∪ {J} satisfies the Conditions

1-(b), 1-(c), and 2 in Definition 3.2.1.

Since gi(ω) = α ◦ π(i,ω) = Z ◦ α′ ◦ π(i,ω) = Z ◦ g′(i,ω) = Z ◦ g′i(ω), and

P({ω ∈ Ω | g′(i,ω) ∈ Z−1(C)})

= P(g′i)
−1(Z−1(C)) = P(Z ◦ g′i)−1(C) = P(gi)

−1(C)

= P({ω ∈ Ω | g(i,ω) ∈ C}),

holds for any C ∈ S, Conditions 1-(b), 1-(c) and 2 are also satisfied for the type process

g = α ◦ π.

3.4.3 Proof of Theorem 3.2.4

Let (I, I,λ) and (Ω,F ,P) be the probability spaces constructed in the proof of The-

orem 3.2.3. The following lemma is a strengthened version of Lemma 2 in Kakutani

(1944) and its proof is given in Duffie and Sun (2012); see also Lemma 419I in Fremlin

(2006) and Lemma 3 in Sun and Zhang (2009).
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Lemma 3.4.2. There is a disjoint family C = {Ci : i ∈ I} of subsets of L = [0, 1] such

that ∪i∈ICi = L, and for each i ∈ I, Ci has the cardinality of the continuum, η∗(Ci) = 0

and η∗(Ci) = 1, where η∗ and η∗ are, respectively, the inner and outer measures of the

Lebesgue measure η.

As in the Appendix of Sun and Zhang (2009), we follow some constructions used in

the proof of Lemma 521P(b) of Fremlin (2008).

Step 1 [Construction of subset C]. Define a subset C of L × I by letting C =

{(l, i) ∈ L× I : l ∈ Ci, i ∈ I}. Let (L× I,L⊗ I, η⊗ λ) be the usual product probability

space. For any L⊗ I-measurable set U that contains C, Ci ⊆ Ui for each i ∈ I, where

Ui = {l ∈ L : (l, i) ∈ U} is the i-section of U . The Fubini property of η ⊗ λ implies

that for λ-almost all i ∈ I, Ui is L-measurable, which means that η(Ui) = 1 (since

η∗(Ci) = 1). Since η ⊗ λ(U) =
∫
I η(Ui) dλ, we have η ⊗ λ(U) = 1. Therefore, the

η ⊗ λ-outer measure of C is one.

Step 2 [Probability structure on C]. Since the η ⊗ λ-outer measure of C is one,

the method in Doob (1953) (see p. 69 therein) can be used to extend η⊗λ to a measure

γ on the σ-algebra U generated by the set C and the sets in L ⊗ I with γ(C) = 1. It

is easy to see that U = {(U1 ∩ C) ∪ (U2\C) : U1, U2 ∈ L ⊗ I}, and that γ[(U1 ∩ C) ∪
(U2\C)] = η ⊗ λ(U1) for any measurable sets U1, U2 ∈ L ⊗ I. Let T be the σ-algebra

{U ∩C : U ∈ L⊗I}, which is the collection of all the measurable subsets of C in U . The
restriction of γ to (C, T ) is still denoted by γ. Then, γ(U ∩ C) = η ⊗ λ(U), for every

measurable set U ∈ L⊗I. Note that (L×I,U , γ) is an extension of (L×I,L⊗I, η⊗λ).

Step 3 [New probability structure on L]. Consider the projection mapping pL : L×
I → L with pL(l, i) = l. Let ψ be the restriction of pL to C. Since the family C is a

partition of L = [0, 1], ψ is a bijection between C and L. It is obvious that pL is a

measure-preserving mapping from (L × I,L ⊗ I, η ⊗ λ) to (L,L, η) in the sense that

for any B ∈ L, (pL)−1(B) ∈ L ⊗ I and η ⊗ λ[(pL)−1(B)] = η(B); and thus pL is a

measure-preserving mapping from (L × I,U , γ) to (L,L, η). Since γ(C) = 1, ψ is a

measure-preserving mapping from (C, T , γ) to (L,L, η), that is, γ[ψ−1(B)] = η(B) for

any B ∈ L.

To introduce one more measure structure on the unit interval [0, 1], we shall denote

it by Î. Let Î be the σ-algebra {S ⊆ Î : ψ−1(S) ∈ T }. Define a set function λ̂ on Î
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by letting λ̂(S) = γ[ψ−1(S)] for each S ∈ Î. Since ψ is a bijection, λ̂ is a well-defined

probability measure on (I, I). Moreover, ψ is also an isomorphism from (C, T , γ) to

(Î , Î, λ̂). Since ψ is a measure-preserving mapping from (C, T , γ) to (L,L, η), it is

obvious that (Î , Î, λ̂) is an extension of the Lebesgue unit interval (L,L, η).13

Step 4 [Fubini extension]. We shall now follow the procedure used in the proof of

Proposition 2 in Sun and Zhang (2009) to construct a Fubini extension based on the

probability spaces (Î , Î, λ̂) as defined above, and (Ω,F ,P) as in our Theorem 3.2.3 here.

First, consider the usual product space (L × I × Ω,L ⊗ (I ! F), η ⊗ (λ ! P)) of

the Lebesgue unit interval (L,L, η) with the Fubini extension (I × Ω, I ! F ,λ ! P).

In Step 1 of the proof of Proposition 2 in Sun and Zhang (2009), it is showed that the

probability space (L× I×Ω,L⊗ (I!F), η⊗ (λ!P)) is a Fubini extension of the usual

triple product space ((L× I)× Ω, (L⊗ I)⊗ F , (η ⊗ λ)⊗P).

Next, as shown in Step 2 of the proof of Proposition 2 in Sun and Zhang (2009),

the set C × Ω has η ⊗ (λ ! P)-outer measure one. Based on the Fubini extension

(L× I ×Ω,L⊗ (I!F), η⊗ (λ!P)), we can construct a measure structure on C×Ω as

follows. Let E = {D∩(C×Ω) : D ∈ L⊗(I!F)} (which is a σ-algebra on C×Ω), and τ

be the set function on E defined by τ(D∩ (C×Ω)) = η⊗ (λ!P)(D) for any measurable

set D in L⊗ (I!F).14 Then, τ is a well-defined probability measure on (C×Ω, E) since
the η⊗ (λ!P)-outer measure of C×Ω is one. In Step 2 of the proof of Proposition 2 in

Sun and Zhang (2009), it is showed that the probability space (C × Ω, E , τ) is a Fubini

extension of the usual product probability space (C × Ω, T ⊗ F , γ ⊗P).

Let Ψ be the mapping (ψ, IdΩ) from C × Ω to Î × Ω, where IdΩ is the identity map

on Ω. It clearly means that for each (l, i) ∈ C, ω ∈ Ω, Ψ((l, i),ω) = (ψ, IdΩ)((l, i),ω) =

(ψ(l, i),ω). Since ψ is a bijection from C to Î, Ψ is a bijection from C × Ω to Î × Ω.

Let W = {H ⊆ Î ×Ω : Ψ−1(H) ∈ E}; then W is a σ-algebra of subsets of Î ×Ω. Define

a probability measure ρ on W by letting ρ(H) = τ [Ψ−1(H)] for any H ∈ W . Therefore,

Ψ is an isomorphism from the probability space (C × Ω, E , τ) to the probability space

13Note that Kakutani (1944) is the first to consider the rich measure-theoretic extension of the
Lebesgue unit interval. For various Lebesgue extensions, see Duffie and Sun (2012), Khan and Zhang
(2012a), Podczeck (2008) and Sun and Zhang (2009). Note that, in Duffie and Sun (2012) and Sun
and Zhang (2009), it is not an issue to construct a Lebesgue extension but an independent random
matching with this Lebesgue extension as the agent space or a rich Fubini extension.

14Note that we replace the corresponding notation ν used in the Appendix of Sun and Zhang (2009)
by τ in this paper. The reason is that the notation ν has been used earlier for the match-induced
type-change probabilities.
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(Î × Ω,W , ρ). In Step 3 of the proof of Proposition 2 in Sun and Zhang (2009), it is

showed that the probability space (Î×Ω,W , ρ) is a Fubini extension of the usual product

probability space (Î × Ω, Î ⊗ F , λ̂⊗P).

Since (Î × Ω,W , ρ) is a Fubini extension, we shall follow Definition 2.1.1 to denote

(Î × Ω,W , ρ) by (Î × Ω, Î ! F ,λ!P).

Now, define a mapping ϕ from Î to I by letting ϕ(̂i) = i if î ∈ Ci. Since the family

C = {Ci : i ∈ I} is a partition of Î = [0, 1], ϕ is well-defined.

The following lemma is shown by Duffie and Sun in Duffie and Sun (2012).

Lemma 3.4.3 (Lemma 11 in Duffie and Sun (2012)). The following properties of ϕ

hold.

1. The mapping ϕ is measure preserving from (Î , Î, λ̂) to (I, I,λ), in the sense that

for any A ∈ I, ϕ−1(A) is measurable in Î with λ̂[ϕ−1(A)] = λ(A).

2. Let Φ be the mapping (ϕ, IdΩ) from Î×Ω to I×Ω, that is, Φ(̂i,ω) = (ϕ, IdΩ)(̂i,ω) =

(ϕ(̂i),ω) for any (̂i,ω) ∈ Î × Ω. Then Φ is measure preserving from (Î × Ω, Î !
F , λ̂!P) to (I × Ω, I ! F ,λ!P) in the sense that for any V ∈ I ! F , Φ−1(V )

is measurable in Î ! F with (λ̂!P)[Φ−1(V )] = (λ!P)(V ).

Proof of Theorem 3.2.4. It follows from Theorem 3.2.3 that for any type distribution p

on (S,S) and S-measurable no-match probability function q from S to [0, 1], there exist

1. an atomless probability space (I, I,λ) of agents, where the index space I has

cardinality of the continuum;

2. a sample space (Ω,F ,P);

3. a Fubini extension (I×Ω, I!F ,λ!P) on which is defined an independent random

partial matching π from (I × Ω, I ! F ,λ ! P) to I with type distribution p and

with q as the no-match probability function.

Let α̂ be the mapping α(ϕ) from Î to S. By the measure preserving property of ϕ, we

know that α̂ is Î-measurable type function with distribution p on S. By the definitions

of α̂, it is obvious that for each î ∈ Î,

α̂î(·) = αϕ(̂i)(·). (3.20)
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We shall first fix some bijections between the i-sections of the set C. For any i, i′ ∈ I

with i .= i′, let Θi,i′ be a bijection from Ci to Ci′ , and Θi′,i be the inverse mapping of

Θi,i′ . This is possible since both Ci and Ci′ have cardinality of the continuum, as noted

in Lemma 3.4.2.

Define a mapping π̂ from Î × Ω to Î ∪ {J} such that for each (̂i,ω) ∈ Î × Ω,

π̂(̂i,ω) =





J, if πω(ϕ(̂i)) = J ;

Θϕ(̂i),πω(ϕ(̂i))(̂i), if πω(ϕ(̂i)) .= J.

When πω(ϕ(̂i)) .= J , πω defines a full matching on I − π−1
ω ({J}), which implies that

πω(ϕ(̂i)) .= ϕ(̂i). Hence, π̂ is a well-defined mapping from Î × Ω to Î ∪ {J}.

Next we consider the partial matching properties of π̂. By the similar methods

adopted in the proof of Theorem 4 in Duffie and Sun (2012), we will have

1. π̂ω is a full matching on Î − π̂ω({J}).

2. Extending α̂ so that α̂(J,ω) = J for any ω ∈ Ω, we define ĝ : Î ×Ω → S ∪ {J} by

ĝ = α̂ ◦ π̂. Define ϕ(J) = J . Then ĝ is Î ! F -measurable and for each î ∈ Î,

ĝî(·) = gϕ(̂i)(·). (3.21)

3. Eqs. (3.1), (3.20) and (3.21) imply that for λ̂-almost all î ∈ Î,

P(ĝî = J) = P(gϕ(̂i) = J) = q(α(ϕ(̂i))) = q(α̂(̂i)),

and

P(ĝî ∈ C) = P(gϕ(̂i) ∈ C) = [1− q(α(ϕ(̂i)))]

∫
C [1− q(k)] dp(k)∫
S[1− q(k)] dp(k)

= [1− q(α̂(̂i))]

∫
C [1− q(k)] dp(k)∫
S[1− q(k)] dp(k)

,

for any C ∈ S.

By Eq. (3.21), the essential pairwise independence of ĝ follows immediately from that

of g and the measure-preserving property of ϕ. Therefore, we have constructed an new

independent-in-types random partial matching π̂ from (Î × Ω, Î ! F , λ̂!P) to Î, with
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the given type distribution p and no-match probability function q.

3.4.4 Proof of Proposition 3.3.1

Proof of Proposition 3.3.1. If p(B) = 0, Eqs. (3.2) and (3.3) are automatically satisfied.

Consider only p(B) > 0.

Then by Fact 2.1.3, for P-almost all ω ∈ Ω, the sample function gα
−1(B)

ω on α−1(B)

has the same distribution as gα
−1(B) on α−1(B)× Ω. Hence, for P-almost all ω ∈ Ω,

λα
−1(B)

((
gα

−1(B)
ω

)−1

({J})
)

= (λα
−1(B) !P)

((
gα

−1(B)
)−1

({J})
)
,

which means that

λ({i ∈ I | α(i) ∈ B, gω(i) = J}) =
∫

α−1(B)

∫

Ω

1(gi=J) dP(ω) dλ(i)

=

∫

α−1(B)

q(α(i)) dλ(i) =

∫

B

q(k) dp(k),

where 1C denotes its indicator function for a set C in a space, and the last equation is

a corollary of classical change of variables formula.

Similarly, for any C ∈ S, for P-almost all ω ∈ Ω, we have

λ(α−1(B) ∩ g−1
ω (C)) = (λ!P)

(
(α−1(B)× Ω) ∩ g−1(C)

)
,

which means that

λ({i ∈ I | α(i) ∈ B, gω(i) ∈ C}) =
∫

α−1(B)

∫

Ω

1(gi∈C) dP(ω) dλ(i)

=

∫

α−1(B)

[1− q(α(i))]

∫
C [1− q(l)] dp(l)∫
S[1− q(l)] dp(l)

dλ(i)

=

∫

B

[1− q(k)] dp(k)

∫
C [1− q(l)] dp(l)∫
S[1− q(l)] dp(l)

.
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Chapter 4

Nonatomic games with

infinite-dimensional action spaces

4.1 Introduction

It is common sense that pure-strategy Nash equilibria may not exist in general non-

cooperative games. However, it is important from a game-theoretical point of view to

know when pure-strategy Nash equilibria exist. For a finite-player game, the existence of

pure-strategy Nash equilibria follows from certain conditions on the payoff functions and

strategy spaces.1 For games with a nonatomic measure-theoretic structure that models

the space of players or information, a general purification principle due to Dvoretsky,

Wald and Wolfowitz (1951a) guarantees that one can always obtain a pure-strategy Nash

equilibrium from a mixed-strategy Nash equilibrium, when the action space is finite; see

Dvoretsky, Wald and Wolfowitz (1951b), Khan, Rath and Sun (2006) and their refer-

ences. For games with countable actions, similar results on pure-strategy Nash equilibria

can be found in Khan and Sun (1995).

For games with a nonatomic measure-theoretical structure and an uncountable com-

pact metric action space, when the players’ payoffs depend on their own actions and the

action distribution of other players, there are several subtle possibilities. First, when

the space of players or information is modeled by the Lebesgue unit interval, counterex-

1The supermodular game is a good example; see Topkis (1979). Here is another example, when
each player’s payoff function is quasi-concave and continuous, and the strategy space is a convex and
compact subset of a finite-dimensional Euclidean space, there exists a pure-strategy Nash equilibrium
by Kakutani’s fixed-point theorem.

39
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amples are constructed to show the nonexistence of pure-strategy Nash equilibria; see

Khan, Rath and Sun (1997, 1999). Second, when the Lebesgue unit interval is replaced

by a nonatomic Loeb space, positive results on pure-strategy Nash equilibria are shown

in Khan and Sun (1999). Third, for a fixed nonatomic player space, it is shown in

Keisler and Sun (2009) that any game with the given player space has a pure-strategy

Nash equilibrium if and only if the underlying player space is saturated in the sense that

any subspace is not countably generated modulo the null sets.2

The purpose of this chapter is to consider the pure-strategy Nash equilibria for games

with a nonatomic player space and an uncountable compact action set in an infinite-

dimensional Banach space, where players’ payoffs depend on their own actions and the

average action of other players.3 As shown in Khan, Rath and Sun (1997), when the

player space is the Lebesgue unit interval and the action space is an uncountable com-

pact subset of the Hilbert space "2—the space of square-summable real-valued sequences,

pure-strategy Nash equilibria may not exist. Since various infinite-dimensional Banach

spaces are widely used in the economics literature,4 a natural question is whether we

could find a right infinite-dimensional Banach space rather than "2 to deliver a posi-

tive result on the existence of the pure-strategy Nash equilibria. We show that this

is impossible as long as the player space is the Lebesgue unit interval. In particular,

given any infinite-dimensional Banach space, there always exist nonatomic games with

an uncountable compact action set in this Banach space such that these games do not

have pure-strategy Nash equilibria, provided that the player space is the Lebesgue unit

interval.

Nevertheless, if the player space is not the Lebesgue unit interval, it is possible

to deliver a positive result on pure-strategy Nash equilibria for nonatomic games with

infinite-dimensional action spaces. Khan and Sun (1999) show that when the Lebesgue

unit interval is replaced by a nonatomic Loeb space, there exists a pure-strategy Nash

equilibrium for any nonatomic game with any uncountable compact action set in an

2Similar results hold for finite-player games with nonatomic information spaces, see Khan and Zhang
(2012b). See Fu (2007) for the relation between the games with nonatomic player spaces and finite-player
games with nonatomic information spaces.

3When players’ payoff functions are linear in their own actions, see Khan (1986) for the existence
of the approximate pure-strategy Nash equilibria for nonatomic games with infinite-dimensional action
spaces; see also Rustichini and Yannelis (1991) for the existence of exact pure-strategy Nash equilibria
for nonatomic games with infinite-dimensional action spaces, provided that the game has “many more”
players than actions.

4See, for example, Bewley (1972), Yannelis (2009) and the books Khan and Yannelis (1991) and
Stokey, Lucas and Prescott (1989).
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infinite-dimensional Banach space.5 It follows from the existence result in Khan and

Sun (1999) and general saturation property that the existence result of pure-strategy

Nash equilibria still holds when the player space is modeled by a saturated probability

space.

A further and more interesting question is whether the converse of the above result is

true. In other words, whether the necessity result of the saturation property in Keisler

and Sun (2009) can be established in the context of nonatomic games with infinite-

dimensional action spaces. We provide an answer in the affirmative. In particular, we

show that given a nonatomic player space and a fixed compact subset of a fixed infinite-

dimensional Banach space, if every game with this compact subset as the common action

set has a pure-strategy Nash equilibrium, then the underlying player space must be a

saturated probability space; see Theorem 4.4.7. Put differently, if the player space is not

a saturated probability space, then one can always construct a nonatomic game with

this player space where players take actions from a given infinite-dimensional Banach

space, such that it has no pure-strategy Nash equilibrium. It is worthwhile to note that

our necessity result is not implied by the necessity part of Theorem 4.6 in Keisler and

Sun (2009).

To summarize, to obtain a positive result on the existence of pure-strategy Nash

equilibria for nonatomic games with actions in infinite-dimensional spaces, the measure-

theoretic structure of the player space plays a fundamental role. It is worth noting that

as far as the above counterexamples on Lebesgue interval are concerned, to guarantee

the existence of pure-strategy Nash equilibria, one is not necessary to turn to saturated

probability spaces, a simple extension of the Lebesgue unit interval does serve this

purpose; see Proposition 4.5.1 below.

This chapter is organized as follows. Section 4.2 presents basic definitions and no-

tations on the Banach spaces and on the nonatomic games. In Section 4.3, nonatomic

games are constructed on the Lebesgue unit interval with actions in any infinite-dimensional

Banach space, such that there does not have a pure-strategy Nash equilibrium for each of

them. The sufficiency and necessity results are established in Section 4.4. We conclude

in Section 4.5. The technical proofs are collected in Section 4.6.

5For nonatomic games with a compact action set in a finite-dimensional space, the existence of pure-
strategy Nash equilibria is shown in Rath (1992). See also Khan et al. (1997) for the positive results
on pure-strategy Nash equilibria for games with countable actions in an infinite-dimensional space.
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4.2 Basics

Let (T, T , µ) be a nonatomic probability space. In this chapter, the Lebesgue unit

interval is denoted by (L,L, η), that is, the unit interval L = [0, 1] is endowed with the

Lebesgue σ-algebra L and the Lebesgue measure η. Moreover, N denotes the set of all

nonnegative integers.

Let (X, ‖ ·‖) be an infinite-dimensional Banach space with the norm ‖ ·‖. Denote by
d(·, ·) the distance operator on X defined as d(x, y) = ‖x− y‖ for any x, y ∈ X. Let X∗

be the dual space of (X, ‖ · ‖). It is a well-known result that there exists a biorthogonal

system on X∗ × X, denoted by {(x∗
n, xn) : x∗

n ∈ X∗, xn ∈ X and n ∈ N}, such that

x∗
m(xn) = 0 for any distinct m,n ∈ N and x∗

n(xn) = 1 for all n ∈ N.6

We next review some concepts and notations on the measurability and integrability

for functions from (T, T , µ) to (X, ‖ · ‖).7 A function f : T → X is said to be T -

measurable if there exists a sequence of simple functions {fn}n∈N such that lim
n→∞

‖fn(t)−
f(t)‖ = 0 for µ-almost all t ∈ T . A T -measurable function f is called Bochner

integrable if there is a sequence of simple functions {fn}n∈N such that lim
n→∞

∫
T ‖fn −

f‖ dµ = 0, the Bochner integral of f , denoted by
∫
T f dµ, is defined to be lim

n→∞

∫
T fn dµ;

similarly,
∫
S f dµ is defined to be lim

n→∞

∫
S fn dµ for any S ∈ T . Let F : T " X be a

correspondence from (T, T , µ) to X. A selection of F is a T -measurable function f

such that f(t) ∈ F (t) for all t ∈ T . The Bochner integral of F is defined as follows,

∫

T

F dµ =

{∫

T

f dµ : f is a Bochner integrable selection of F

}
.

Let A be a nonempty norm-compact (henceforth compact) subset of X, and con(A)

the closed convex hull of A. Note that con(A) is also a compact set.8 Moreover,

con(A) ⊇
{∫

T

f dη(t) : f is a Bochner integrable function from T to A

}
. (4.1)

Let UA be the space of norm-continuous (henceforth continuous) real-valued functions on

A× con(A) endowed with the sup-norm topology and its corresponding Borel σ-algebra

which is generated by this topology.

6See Proposition 1.f.3 in Lindenstrauss and Tzafriri (1977).
7For more details, see Chapter 2 of Diestel and Uhl (1977).
8This is Mazur’s Theorem; see Theorem 12 in Diestel and Uhl (1977).
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Finally, we specify the model of the nonatomic games. The player space is modeled

by a nonatomic probability space (T, T , µ). It is worthwhile to note that we use the

phrase “player space” instead of “the set of players” or “the set of players’ names”

because we would like to emphasize the essence of the underlying probability structure

in this paper. A nonempty compact set A ⊆ X will be the common action set available

for all the players, and the closed convex hull of con(A) serves as the space of all the

possible societal responses. The payoff function for any player is a continuous function on

A×con(A), i.e., an element in UA. Put differently, the payoff of every player continuously

depends on this player’s own action and the “average” of the actions of others players.

Suppose that the action profile is a T -measurable function f : T → A, the nonatomic

condition allows us to model the average of others players by the Bochner integral
∫
T f dµ. It follows from (4.1) that

∫
T f dµ ∈ con(A). Now we are ready to present the

definitions of nonatomic games and pure-strategy Nash equilibria.

Definition 4.2.1. A nonatomic game with the player space (T, T , µ) and the common

action set A ⊆ (X, ‖ · ‖) is a T -measurable function G from T to UA. A T -measurable

function f : T → A is called a pure-strategy Nash equilibrium of G if for µ-almost

all t ∈ T and all a ∈ A,

G(t)
(
f(t),

∫

T

f(t) dµ(t)

)
≥ G(t)

(
a,

∫

T

f(t) dµ(t)

)
.

4.3 Counterexamples

In this section, we will present a class of nonatomic games Gs s ∈ (0, 1], each of which

does not have a pure-strategy Nash equilibrium. In these games, the player space

is the Lebesgue unit interval (L,L, η) and players can take actions from any infinite-

dimensional Banach space.

4.3.1 Preliminaries

We first review theWalsh system {Wn}n∈N defined on the Lebesgue unit interval (L,L, η).
Here W0 ≡ 1. For any n ≥ 1, let the binary representation be n = n0 + 2n1 + · · · +
2m−1nm−1, where nk is either 0 or 1 for 0 ≤ k ≤ m− 2 and nm−1 = 1. The n-th Walsh
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function Wn is defined as follows: for any t ∈ [0, 1], denote the binary representation9

by t = t0
2 + t1

22 + · · ·+ tk−1

2k + · · · , where each tk is either 0 or 1,

Wn(t) = (−1)n0t0+n1t1+···+nm−1tm−1 .

It is well-known that {Wn(t)}n∈N is a complete orthogonal basis of the space of square-

integrable functions on the Lebesgue unit interval.10 For each n ∈ N, let En = {t ∈
L : Wn(t) = 1}. It is clear that E0 = L and En is a union of some subintervals in L.

Moreover, for each integer n ≥ 1,
∫
L W0 ·Wn dη = 0, so we have that η(En) = 1/2.

Let (X, ‖ · ‖) be an arbitrary infinite-dimensional Banach space associated with the

fixed biorthogonal system {(x∗
n, xn) : n ∈ N} in Section 4.2. Define a function ψ : L → X

as follows, for any t ∈ L,

ψ(t) =
∞∑

n=0

xn

2n‖xn‖
Wn(t). (4.2)

It is easy to see that ψ is a Bochner integrable function.11 Let e ∈ X be the value of

Bochner integral of ψ, it is clear that

e =

∫

L

ψ(t) dη(t) =
x0

‖x0‖
. (4.3)

Moreover, let Ψ : L " X be the correspondence defined as follows, for any t ∈ L,

Ψ(t) = {0,ψ(t)}. (4.4)

Note that both 0 and e are in the Bochner integral of the correspondence Ψ. However,

we have the following negative result, which plays a central rule in our construction.

The proof is given in Section 4.6.

Lemma 4.3.1.
e

2
/∈
∫

L

Ψ dη.

Remark 4.3.2. Let G : L → X be a vector measure defined as G(E) =
∫
E ψ dη for any

E ∈ L. It is clear that the range of the vector measure, G(L) = {G(E) : E ∈ L}, is
identical to

∫
L Ψ dη. One implication of Lemma 4.3.1 is that the Bochner integral of

9In the case that a number has two binary representations, e.g., 1
2 has two binary representation,

either 1
2 itself or 1

22 + 1
23 + · · · , we choose and fix the simpler representation.

10See Walsh (1923).

11Take sm(t) =
m∑

n=0

xn
2n‖xn‖Wn(t). Then {sm(t)}m∈N is a sequence of Bochner integrable simple

functions, and lim
m→∞

∫ 1
0 ‖ψ(t)− sm(t)‖dη(t) = 0.
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Ψ, or the range of the vector measure G(L), is not a convex set. The classic Lyapunov

example on the range of vector measures (see p. 262 of Diestel and Uhl (1977)) is a

special case of Lemma 4.3.1 where X = "2, the space of square-summable sequences,

endowed with the norm ‖x‖ =
√∑∞

n=0 x
2
n for any x = (x0, x1, x2, · · · ) ∈ "2.12

Let A be a compact subset in X which contains the Bochner integral of Ψ,
∫
L Ψ dη.

Note that
∫
L Ψ dη is contained in the set {

∑∞
n=0 anxn : |an| ≤ 2−n}, which is norm

compact, hence such a set A can certainly be found. Let M = max{‖x‖ : x ∈ A}. It

is clear that M ≥ ‖e‖ = 1 since e ∈
∫
L Ψ dη ⊆ A. Moreover, for any b ∈ con(A), we

have ‖b‖ ≤ M and ‖b − e/2‖ ≤ ‖b‖ + ‖e/2‖ < 2M . Let β = 1/(2M). Note also that

β d(b, e/2) = 1
2M ‖b− e/2‖ ≤ 1 for all b ∈ con(A).

4.3.2 A counterexample

Recall that UA denotes the space of continuous functions on A × con(A). Define a

function V : L → UA as follows: for any t ∈ L, a ∈ A and b ∈ con(A),

V (t)(a, b) = −h(t, a,ψ(t), β d(b, e/2))− ‖a‖ · ‖a− ψ(t)‖, (4.5)

where h : L×X ×X ×R+ → R+ is a function to be defined as below. For any t ∈ L =

[0, 1], x, y ∈ X and " ≥ 0,

h(t, x, y, ") =





"
∣∣sin t

&π
∣∣
(
‖x‖+ 1− (−1)[

t
" ]
)(

‖x− y‖+ 1 + (−1)[
t
" ]
)
, if " > 0;

0, if " = 0.

(4.6)

Applying the same argument as in the proof of Lemma 3 in Khan, Rath and Sun (1997),

V : L → UA is a L-measurable function.

Now we are ready to specify our nonatomic game G1 : L → UA. The player space is

modeled by the Lebesgue unit interval (L,L, η). The set A ⊆ X above, which contains

the integral of the correspondence Ψ, serves as the common action set for all the players

in this game. Meanwhile, the closed convex hull of A, con(A) serves as the set of societal

responses. For any player t ∈ L, suppose that this player’s own action is a ∈ A and the

12For more discussion on the Lyapunov example on the range of vector measures, see e.g., Khan and
Zhang (2012a).
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societal response is b ∈ con(A), player t’s payoff is

G1(t) (a, b) = V (t) (a, b) , (4.7)

where V is defined in Eq. (4.5).

The following is our main result in this section. The proof is given in Section 4.6.

Theorem 4.3.3. There is no pure-strategy Nash equilibrium in the game G1.

Remark 4.3.4. Here is the key idea in the construction of the nonatomic game G1

and the game in Section 4 of Khan, Rath and Sun (1997). Based on the particular

payoff functions in Eq. (4.7), if there exists a pure-strategy Nash equilibrium in G1,

then the induced societal response of this equilibrium must be e/2. Meanwhile, when

facing this special societal response e/2, for η-almost all player t, the best response is

either 0 or ψ(t). In other words, if there exists a pure-strategy Nash equilibrium of

the game G1, it must be a L-measurable selection of the correspondence Ψ in Eq. (4.4)

and its Bochner integral is e/2. However, such a selection does not exist according to

Lemma 4.3.1. It is worthwhile to note that the idea which extends the counterexample

for "2 to a counterexample for arbitrary infinite-dimensional Banach spaces has been

roughly mentioned by Khan, Rath and Sun (1997).13

4.3.3 More examples

For any s ∈ (0, 1), we next construct a nonatomic game Gs : (L,L, η) → UA such that

there is no pure-strategy Nash equilibrium either. For any player t ∈ L, the payoff

function of this player is defined to be a function Gs(t) : A× con(A) → R as follows, for

every a ∈ A and every societal response b ∈ con(A),

Gs(t)(a, b) =






G1

(
t
s

) (
a, b

s

)
, if t ∈ [0, s] and b

s ∈ con(A);

G1

(
t
s

)
(a, c · b) , if t ∈ [0, s] and b

s /∈ con(A);

−‖a‖, if t ∈ (s, 1].

(4.8)

where G1(·) is the payoff function of the game G1 in Eq. (4.7), and c · b is the intersection
between the boundary of con(A) and the ray from 0 to b. Notice that for any t ∈ L, Gs(t)

13See p. 33 in Khan, Rath and Sun (1997), “by an appealing to Corollary 6 (p. 265) in Diestel
and Uhl (1977), one should hopefully be able to set a version of the counterexample in any arbitrary
infinite-dimensional Banach space.”
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is a continuous function on A × con(A). And it is easy to check that Gs is a Lebesgue

measurable function from the Lebesgue unit interval to UA.

Corollary 4.3.5. For any s ∈ (0, 1], there is no pure-strategy Nash equilibrium in Gs.

4.4 Saturation and games

If players take actions from an arbitrary infinite-dimensional Banach space, if the player

space is modeled by the Lebesgue unit interval, the nonatomic games in Section 4.3 do

not have pure-strategy Nash equilibria. In contrast, Khan and Sun (1999) find that

if the player space is modeled by a nonatomic Loeb space (see Theorem 2 therein),

there always exist pure-strategy Nash equilibria in such nonatomic games. This section

answers the question that which property of the Lebesgue unit interval (or of nonatomic

Loeb spaces) is responsible to the failure (or success) about the existence of the pure-

strategy Nash equilibria. We find that the underlying player space being saturated is a

sufficient and necessary condition for the existence of pure-strategy Nash equilibria in

nonatomic games; the sufficiency and necessity results are presented in Sections 4.4.1

and 4.4.2 respectively.

4.4.1 The sufficiency result

In this section, we assume that (X, ‖ · ‖) is an infinite-dimensional Banach space, and

A is a nonempty compact subset of it. As before, let UA be the space of continuous

real-valued functions on A× con(A) endowed with both the sup-norm topology and the

corresponding Borel σ-algebra (generated by this topology).

Proposition 4.4.1. If (T, T , µ) is a saturated probability space and G is a T -measurable

map from T to UA, then the game G has a pure-strategy Nash equilibrium.14

The following three remarks provide three straightforward but different proofs for

Proposition 4.4.1 based on the existing results.

Remark 4.4.2. Proposition 4.4.1 can be proved by transferring the existing results on

nonatomic Loeb spaces (see Theorem 2 in Khan and Sun (1999)) via the saturation

14A result similar to Proposition 4.4.1 is also obtained independently by Yu (2012), see Lemma 3
therein.
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property defined in Remark 3.15 For the game G on the saturated probability space

(T, T , µ), we have a game F on a nonatomic Loeb space such that F has the same

distribution with G. By Theorem 2 in Khan and Sun (1999), there is a pure-strategy

Nash equilibrium f of the game F . The saturation property implies the existence of

g : T → A, such that the joint distribution of F and f is same as the joint distribution

of G and g. It is not difficult to see that g is a pure-strategy Nash equilibrium of the

game G.

Remark 4.4.3. This proposition can also be proved via the existing result on nonatomic

games where the societal response is formulated as the distribution. Let ÛA be the space

of real-valued continuous functions on A×M(A) endowed with the sup-norm topology,

where M(A) is the space of all Borel probability measures on A with Prohorov metric.

A new game Ĝ : (T, T , µ) → ÛA can be defined as follows: for each player t, a ∈ A

and τ ∈ M(A),

Ĝ(t)(a, τ) = G(t)
(
a,

∫

A

IdA dτ

)
,

where IdA is the identity map on A. The existence of pure-strategy Nash equilibria in

this model of nonatomic games is a trivial consequence of the saturation property from

the earlier results on distributional equilibria or large games with a Loeb space of players;

see the sufficiency part of Theorem 4.6 and Proposition 5.3(1) in Keisler and Sun (2009),

and also Corollary 4(4) in Carmona and Podczeck (2009) and Theorem 2 of Noguchi

(2009). Let f : T → A be a pure-strategy Nash equilibrium of Ĝ. This f is also a pure-

strategy Nash equilibrium of the original game G because
∫
A IdA d(µ ◦ f−1) =

∫
T f dµ,

where the equation holds according to the substitution of variables.

Remark 4.4.4. One can also show Proposition 4.4.1 by applying the fixed-point theorem

of Fan (1952) and Glicksberg (1952). Towards this end, one needs to check the convexity,

compactness and preservation of upper hemi-continuity for the integration of Banach

space-valued correspondences on general saturated probability spaces.

We now briefly review the existing results on the integration theory of the Banach-

valued correspondences. Khan and Majumdar (1986) and Yannelis (1990) consider the

approximate versions of Fatou’s lemma. However, one should note that Proposition 4.4.1

needs the exact version of Fatou’s lemma which guarantees the preservation of upper

hemi-continuity. Rustichini and Yannelis (1991) show the properties of convexity, com-

pactness and preservation of upper hemi-continuity16 for the Bochner integral of a cor-

15For more discussion on this “transferring” technique, see Section 5 of Keisler and Sun (2009).
16Based on the compactness result, Yannelis (1990) points out “preservation of upper hemi-continuity”
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respondence from a probability space (T, T , µ) to a fixed weakly compact set in an

infinite-dimensional Banach space, under the condition that for each nonnegligible set

E ∈ T , the cardinality of L∞
E (µ) is larger than the continuum. Sun (1997) proves those

properties for the integration of general correspondences on nonatomic Loeb spaces.

Furthermore, Sun and Yannelis (2008b) find that all the existing results on Loeb spaces

can be transferred to results on saturated spaces via the saturation property easily.

Moreover, Podczeck (2008) shows the convexity and compactness results over general

saturated probability spaces without appealing to the existing relevant results on Loeb

spaces.

Remark 4.4.5. Other different models of nonatomic game with actions in an infinite-

dimensional spaces are also considered in Khan, Rath and Sun (1997) and Khan and

Sun (1999). First, instead of taking actions from a norm-compact subset, the players

in the nonatomic game in Theorem 2 of Khan and Sun (1999) can take actions from

a weakly compact subset of a separable Banach space and this nonatomic game is a

weakly continuous function. Note that a norm-compact set is also a weakly compact

set in a Banach space and norm-continuous functions on norm-compact sets are weakly

continuous. As a result, the model in Khan and Sun (1999) is more general than the

model in this paper. Nevertheless, our Proposition 4.4.1 above still holds for this more

general model, provided that the Banach space is separable. 17 It is in this sense that

we claim that our Proposition 4.4.1 generalizes Theorem 2 of Khan and Sun (1999).

Second, Section 6 of Khan, Rath and Sun (1997) also consider a setting of nonatomic

games where players taking actions from a weak* compact subset in the dual space of

a separable Banach space. In this setting, the societal response is formulated as the

Gel’fand integral of the strategy profile and a nonatomic game is a weak* continuous

function. This modeling is closely related to the nonatomic games with actions in com-

pact metric spaces, and the societal response is formulated as the action distribution of

the strategy profile; see Khan, Rath and Sun (1997) for more discussion. The existence of

pure-strategy Nash equilibria in this model can be obtained by applying the approach in

for the Bochner integral of correspondences can be proved directly; see Theorem 3.1 and Remark 3.1
therein.

17This claim follows from the Fan-Glicksberg’s fixed-point argument and the results in Sun and Yan-
nelis (2008b) on the integration of weakly compact Banach-valued correspondences over the saturated
spaces as discussed in Remark 4.4.3; the corresponding convexity and the compactness results are also
proved by Podczeck (2008). It is worthwhile to note that the separability is necessary for the preser-
vation of upper hemi-continuity property. This claim also follows directly from the existing results for
the games with the action distribution as the societal response (see Remark 4.4.4), and separability
guarantees the metrizability of weak compact action subset.
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Remark 4.4.3 or the standard Fan-Glicksberg fixed-point argument as in Remark 4.4.4.

It is worthwhile to note that the separability of the Banach spaces is required, either to

guarantee the metrizability of the action space when applying Remark 4.4.3, or to ob-

tain the preservation of the upper hemi-continuity property when using the fixed-point

arguments.

Remark 4.4.6. In Yu and Zhu (2005), a nonatomic game model is presented where the

players’ payoffs depend on their own actions and the average of certain transformation of

the strategy profile for all the other players, and the transformation is a continuous map

transforming actions into some statistics data in a finite-dimensional space. According

to Proposition 4.4.1, the results in Yu and Zhu (2005) can be generalized to infinite-

dimensional Banach spaces, provided that the player space is modeled by a saturated

probability space.

4.4.2 The necessity result

In this section, (X, ‖ · ‖) is any infinite-dimensional Banach space, and A is fixed to be

the compact subset of X which contains the integral of the correspondence Ψ : L " X

as in Eq. (4.4). We now present the following result.

Theorem 4.4.7. Fix a nonatomic probability space (T, T , µ) and the compact set A. If

there exists a pure-strategy Nash equilibrium for any nonatomic game with the player

space (T, T , µ) and the common action set A, then (T, T , µ) is a saturated probability

space.

Here is a claim equivalent to this Theorem. If the player space is modeled by a

nonsaturated probability space, then there is a nonatomic game based on this player

space such that there does not exist a pure-strategy Nash equilibrium. The following is

a sketch for the construction of the nonatomic game in this situation.

First, note that the player space is modeled by a non-saturated probability space

(T, T , µ), by Definition 2.2.1, there is a subset S with measure s = µ(S) > 0, such

that the probability space restricted to S is countably-generated modulo the null sets.

As a result of Maharam’s theorem (see Maharam (1942)), the measure algebra of the

restricted measure space over S is isomorphic to that of measure algebra of the Lebesgue

subinterval over [0, s]. It is a well-known result that there is a measure-preserving map q
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from the measure space restricted to S to the Lebesgue interval [0, s] such that q induces

the above measure-algebra isomorphism; see Theorem 4.12 (p. 937) of Fremlin (1989).

Next, a nonatomic game can be constructed by the composition of the nonatomic

game Gs in Section 4.3 and the above mapping q. Denote the new nonatomic game by

G ′
s, here the player space is (T, T , µ). Note that the game Gs is defined on the Lebesgue

unit interval and there is no pure-strategy Nash equilibrium; see Corollary 4.3.5. The

construction of the mapping q can ensure us to transfer the nonexistence result from

the game Gs to the new nonatomic game G ′
s. Suppose not, there is a pure-strategy Nash

equilibrium in G ′
s, then one can construct a pure-strategy Nash equilibrium in Gs. This

contradicts the statement in Corollary 4.3.5.

Remark 4.4.8. In Theorem 4.4.7, we show that the underlying player space being

a saturated probability space serves a necessity condition for the existence of pure-

strategy Nash equilibrium for nonatomic games with actions in infinite-dimensional Ba-

nach spaces. A similar necessity result is presented in Theorem 4.6 of Keisler and Sun

(2009) in the context of nonatomic games, where the common action set is an uncount-

able compact metric space and the societal response is the action distribution. Though

Proposition 4.4.1 is a straightforward result of the sufficiency part of Theorem 4.6 of

Keisler and Sun (2009) as in Remark 4.4.3, Theorem 4.4.7 is not implied by the neces-

sity part of Theorem 4.6 of Keisler and Sun (2009).

4.5 Discussion

In this paper, we find that the player space being a saturated probability space is a

“sufficient and necessary” condition for the existence of pure-strategy Nash equilibria in

nonatomic games with actions in infinite-dimensional Banach spaces.18 This property

is sufficient in the sense that if the player space is a saturated probability space, then

every such nonatomic game has a pure-strategy Nash equilibrium, and it is necessary

that if every nonatomic game has a pure-strategy Nash equilibrium, then the player space

must be a saturated probability space. This finding answers why one can not establish a

general result on the existence of pure-strategy Nash equilibria in nonatomic games on

the Lebesgue unit interval as in Theorem 4.3.3 but one can make it on nonatomic Loeb

18In Khan and Zhang (2012b), “sufficient and necessary” results on the property of saturation are
established in the context of finite-player games with diffused private information.
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spaces as in Khan and Sun (1999). It is simply because that the Lebesgue unit interval

is not saturated but nonatomic Loeb spaces are.

However, as far as the counterexamples Gs, s ∈ (0, 1] in Section 4.3 are concerned, to

guarantee the existence of pure-strategy Nash equilibria in such nonatomic games, it is

not necessary to turn to model the player space by a saturated probability space, while

a simpler essentially countably-generated probability space does work. The Lebesgue

extension in Khan and Zhang (2012a) is a candidate to serve this purpose.

We first briefly review the construction of this Lebesgue extension. Let K = [0, 1],

and (K,K,κ) another copy of the Lebesgue interval (L = [0, 1],L, η). First, there is

partition of L, denoted by {Ck ⊆ [0, 1] : k ∈ K}, such that η∗(Ck) = 0 and η∗(Ck) = 1

for each k where η∗ and η∗ are the corresponding inner and outer measure associated

to the Lebesgue measure η. Let C = {(i, k) ∈ L ×K : i ∈ Ck, k ∈ K}. It is clear that

C ⊆ L×K, and C has η⊗κ-inner measure 0 and outer measure 1. Second, the Lebesgue

σ-algebra L⊗K can be extended which contains C and C has measure 1 in this extension.

There is no harm to restrict this extension to C to get a probability structure on C.

Finally, note that the projection from C to L is a one-to-one mapping, a probability

structure can be obtained on L through this projection and the probability structure on

C. It turns out that the resulted probability structure on L is an essentially countably-

generated Lebesgue extension. Denote this countably-generated Lebesgue extension by

(I, I,λ).

Proposition 4.5.1. If the player space is modeled by the countably-generated extended

Lebesgue interval (I, I,λ), there exists a pure-strategy Nash equilibrium in Gs for all

s ∈ (0, 1].

The proof of this positive result is moved to Section 4.6.

Remark 4.5.2. It is worthwhile to note that we do not appeal to the results in Propo-

sition 4.4.1 to prove Proposition 4.5.1. For a fixed nonatomic game Gs, if the player

space is modeled by a saturated probability space ([0, 1], T , µ), it follows from Propo-

sition 4.4.1 that there does exist a pure-strategy Nash equilibrium, say fs : [0, 1] → A,

which is T -measurable but not Lebesgue-measurable. Let Is be the smallest σ-algebra

including both the Lebesgue σ-algebra L and the σ-algebra generated by fs, which is

an essentially countably-generated sub-σ-algebra of T . It is clear that Is is also essen-

tially countably-generated and fs is Is-measurable. However, for any s ∈ (0, 1], given

any arbitrary fs in the above sense, the smallest σ-algebra including both the Lebesgue
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σ-algebra L and the σ-algebras generated by these fs for all s ∈ (0, 1] could not be

essentially countably generated.

4.6 Proofs

4.6.1 Proofs of results in Section 4.3

Proof of Lemma 4.3.1. We prove this result by contradiction. Suppose that e/2 ∈
∫
L Ψ(t) dη(t), that is, there is a selection f : L → X of Ψ such that

∫
L f dη = e/2.

Here f is a L-measurable function and for any t ∈ L, f(t) is either 0 or ψ(t). Let

E = {t ∈ L : f(t) .= 0}. It is clear that E ∈ L and
∫
L f dη =

∫
E ψ dη. As a result

e/2 =
∫
E ψ(t) dη(t), that is,

1

2

x0

‖x0‖
=

∞∑

n=0

xn

2n‖xn‖

∫

E

Wn(t) dη(t). (4.9)

Apply x∗
0 on the both sides of Eq. (4.9), we will have η(E) = 1/2. Then for each

integer n ≥ 1, apply x∗
n on the both sides of Eq. (4.9), we will have

η(E ∩ En) = η(E ∩ Ec
n),

where Ec
n is the complement of En.

Let g = χE−χEc , where χE is the indicator function of E. Then
∫
L Wn(t)g(t) dη(t) =

0 for each integer n ≥ 0. Because that the Walsh system is a complete orthogonal basis

of the space of all square integrable functions on the Lebesgue unit interval, g = 0, hence

it is a contradiction to the definition of g. Therefore e/2 /∈
∫
L Ψ dη.

Before offering a proof of Theorem 4.3.3, we shall need three additional inequalities.

Lemma 4.6.1. For α > 0 and any real numbers b1, b2 and c, with b1 < b2, we have

∣∣∣∣
∫ b2

b1

(−1)[
t+c
" ] dη(t)

∣∣∣∣ ≤ ".

Proof. Routine.
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Lemma 4.6.2. For " > 0, and any integer n ≥ 0,

∣∣∣∣
∫ 1

0

(−1)[
t
" ]Wn(t) dη(t)

∣∣∣∣ ≤ min{1, 2n"}.

Proof. It is obvious that ∣∣∣∣
∫ 1

0

(−1)[
t
" ]Wn(t) dη(t)

∣∣∣∣ ≤ 1.

We next show the other part. Consider the binary representation of n,

n = n0 + 2n1 + 22n2 + · · ·+ 2m−1nm−1,

where nm−1 = 1 and n0, n1, . . . , nm−2 are either 0 or 1. For any t ∈
(
s−1
2m , s

2m

)
, where

s is an integer from {1, 2, . . . , 2m}, it is clear that the first m numbers in the binary

representation of t are fixed. By definition, Wn(t) = (−1)cs over
(
s−1
2m , s

2m

)
, where cs is a

constant integer. Then we have

∣∣∣∣
∫ 1

0

(−1)[
t
" ]Wn(t) dη(t)

∣∣∣∣ ≤
2m∑

s=1

∣∣∣∣∣

∫ s
2m

s−1
2m

(−1)[
t
" ]Wn(t) dη(t)

∣∣∣∣∣ =
2m∑

s=1

∣∣∣∣∣

∫ s
2m

s−1
2m

(−1)[
t+cs"

" ] dη(t)

∣∣∣∣∣ .

It follows from Lemma 4.6.1 that

∣∣∣∣
∫ 1

0

(−1)[
t
" ]Wn(t) dη(t)

∣∣∣∣ ≤
2m∑

s=1

" = 2m" ≤ 2n",

where the last equality holds because of the binary representation of n.

Lemma 4.6.3. For " > 0,

∞∑

n=0

1

2n+1

∣∣∣∣
∫ 1

0

(−1)[
t
" ]Wn(t) dη(t)

∣∣∣∣ < 2".

Proof. Take r = [1/(2")], then r ≤ 1/" and r + 1 > 1/(2"). By Lemma 4.6.2, we will
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have

∞∑

n=0

1

2n+1

∣∣∣∣
∫ 1

0

(−1)[
t
" ]Wn(t) dη(t)

∣∣∣∣ ≤
∞∑

n=0

1

2n+1
min{1, 2n"}

≤
r∑

n=0

1

2n+1
2n"+

∞∑

n=r+1

1

2n+1

= "

(
2− r + 2

2r

)
+

1

2r+1

= 2"− 2(r + 2)"− 1

2r+1
< 2".

Proof of Theorem 4.3.3. We will prove this result by contradiction. Suppose that there

exists a pure-strategy Nash equilibrium in the game G1, and assume that the L-measurable

function f : L → A is a pure-strategy Nash equilibrium. We next prove that the fol-

lowing two cases can not happen, (1)
∫
L f(t) dη(t) = e/2 and (2)

∫
L f(t) dη(t) .= e/2,

where
∫
L f(t) dη(t) is the societal response when players take actions as in the Nash

equilibrium f and e = x0/‖x0‖ as in Eq. (4.3). Therefore we obtain a contradiction.

Next we discuss these two cases separately by dividing our arguments into the following

two parts.

Part 1. Suppose that
∫
L f(t) dη(t) = e/2. Then for any player t ∈ L, the payoff

function of player t reduces to the following form, for any a ∈ A,

ut

(
a,

∫

L

f dη

)
= ut (a, e/2) = −‖a‖ · ‖a− ψ(t)‖, (4.10)

As a result, the best response of player t is the doubleton set {0,ψ(t)} for any

t ∈ L. Hence the pure-strategy Nash equilibrium f , as a function from the Lebesgue unit

interval to A, is a measurable selection of the correspondence Ψ in Eq. (4.4). However,

Lemma 4.3.1 ensures that there does not exist a Lebesgue measurable selection from

this correspondence Ψ whose Bochner integral is e/2. Hence it is a contradiction that
∫
L f(t) dη(t) = e/2.

Part 2. Suppose that
∫
L f(t) dη(t) .= e/2. That is, in the pure-strategy Nash equilib-

rium f : L → A, the societal response is no longer e/2. As a result, in the first item
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h, see Eq. (4.6), of the payoff function for any player t ∈ L, the fourth argument is no

longer zero. Let

"0 = βd

(∫

L

f(t) dη(t),
e

2

)
.

Certainly, 0 < "0 ≤ 1. Divide the unit interval L into intervals of length "0, so that we

obtain L ∩
(
∪n∈N [n"0, (n+ 1)"0)

)
, where N is the set of all nonnegative integers.

We first characterize the set of best responses for any player when other players take

actions in the Nash equilibrium f , i.e., the societal response is
∫
L f dη. On the one

hand, we first fix a player t ∈ (n"0, (n+1)"0). If n is even, then the integer part of t/"0,

[t/"0], is even, as a result the payoff function of this player t (see Eq. (4.7)) reduces to

the following form, for any a ∈ A,

ut

(
a,

∫

L

f dη

)
= −"0

∣∣∣∣sin
t

"0
π

∣∣∣∣ · ‖a‖ · (‖a− ψ(t)‖+ 2)− ‖a‖ · ‖a− ψ(t)‖.

Note that the value of ut(a,
∫
L f dη) ≤ 0 for any a ∈ A, and the value is 0 if and only if

a = 0. As a result, ut(a,
∫
L f dη) takes the maximum value only at a = 0. That is, the

best response for this player t, when facing the societal response
∫
L f dη, is the singleton

set {0}. Similarly, for player t ∈ (n"0, (n + 1)"0), if n is an odd natural number, so is

the integer part [t/"0]. As a result, the payoff function of this player t reduces to the

following form, for any a ∈ A,

ut

(
a,

∫

L

f dη

)
= −"0

∣∣∣∣sin
t

"0
π

∣∣∣∣ · (‖a‖+ 2) · ‖a− ψ(t)‖ − ‖a‖ · ‖a− ψ(t)‖.

Using the similar argument as above as n is even, we can obtain that the best response

for this player t, when facing the societal response
∫
L f dη, is the singleton set {ψ(t)}.

On the other hand, we consider the player t = n"0 for some n ∈ N. In this case, the

payoff function of player t (see Eq. (4.7)) reduces to the following form, for any a ∈ A,

ut

(
a,

∫

L

f dη

)
= −‖a‖ · ‖a− ψ(t)‖.

It is clear that the set of best responses for this player t, when facing the societal response
∫
L f dη, is a doubleton set {0,ψ(t)}.

To summarize, except for the players in the set {t = n"0 ∈ L : n ∈ N}, the best

response for any other player is a singleton set. Note also that {t = n"0 : n ∈ N} is
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a η-null set in the Lebesgue interval. As a result, the pure-strategy Nash equilibrium

f : L → A is of the following form, for almost all t ∈ L,

f(t) =
1− (−1)

[
t
"0

]

2
ψ(t). (4.11)

Next we calculate the distance between the societal response
∫
L f dη and e/2, where

the pure-strategy Nash equilibrium f is determined in Eq. (4.11) above.

d

(∫

L

f(t) dη(t),
e

2

)
=

∥∥∥∥
∫

L

f(t) dη(t)− e

2

∥∥∥∥

=

∥∥∥∥
∫

L

f(t) dη(t)− 1

2

∫ 1

0

ψ(t) dη(t)

∥∥∥∥

=

∥∥∥∥
1

2

∫

L

(−1)
[

t
"0

]

ψ(t) dη(t)

∥∥∥∥

=

∥∥∥∥∥
1

2

∫

L

(−1)
[

t
"0

] ∞∑

n=0

xn

2n‖xn‖
Wn(t) dη(t)

∥∥∥∥∥

=

∥∥∥∥∥

∞∑

n=0

∫

L

1

2
(−1)

[
t
"0

]
xn

2n‖xn‖
Wn(t) dη(t)

∥∥∥∥∥

≤
∞∑

n=0

1

2

∥∥∥∥
∫

L

(−1)
[

t
"0

]
xn

2n‖xn‖
Wn(t) dη(t)

∥∥∥∥

≤
∞∑

n=0

1

2n+1

∣∣∣∣
∫

L

(−1)
[

t
"0

]

Wn(t) dη(t)

∣∣∣∣

By virtue of the inequality in Lemma 4.6.3, we have

d

(∫

L

f(t) dη(t),
e

2

)
<

∞∑

n=0

1

2n+1
2"0 = 2"0. (4.12)

Notice that "0 = β d(
∫
f, e/2), where β = 1/(2M) and M = max{‖a‖ : a ∈ A}. Note

that M ≥ 1, it follows that β ≤ 1/2. It follows from Eq. (4.12) that d(
∫
f dη, e/2) <

2"0 = 2β d(
∫
f dη, e/2). This implies that β > 1/2. It is a contradiction with β ≤ 1/2.

Therefore we complete the proof of Part 2 that there does not exist a pure-strategy Nash

equilibrium f : L → A with
∫
L f dη .= e/2.

Proof of Corollary 4.3.5. We show it by contradiction. Suppose that f : [0, 1] → A is a

pure-strategy Nash equilibrium in the game Gs. Note that for any player t ∈ (s, 1], the
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best response is 0. As a result, in this Nash equilibrium f , the actions for players in

(s, 1] do not affect the societal response. In particular,

1

s

∫

L

f dη =
1

s

∫ s

0

f dη =

∫ s

0

f dη[0,s],

which is exactly an element in con(A). Moreover, for any player t ∈ [0, s], if the other

players follow actions as in this Nash equilibrium f , for any a ∈ A,

Gs(t)

(
a,

∫

L

f dη

)
= G1

(
t

s

)(
a,

1

s

∫ s

0

f dη

)
.

For η-almost all player t ∈ [0, s], since f is a pure-strategy Nash equilibrium, f(t) is

a best response for this player t given others players follow f . That is, for any a ∈ A

G1

(
t

s

)(
f(t),

1

s

∫ s

0

f dη

)
≥ G1

(
t

s

)(
a,

1

s

∫ s

0

f dη

)
. (4.13)

Let g : [0, 1] → A defined by g(t′) = f(t′ · s) for η-almost all t′ ∈ [0, 1]. It follows from

substitution of variables that 1
s

∫ s

0 f(t) dη(t) =
∫ 1

0 g(t′) dη(t′). According to Eq. (4.13),

for all t′ ∈ [0, 1] and a ∈ A

G1 (t
′)

(
g(t′),

∫ 1

0

g dη

)
≥ G1 (t

′)

(
a,

∫ 1

0

g dη

)
.

Hence g is a pure-strategy Nash equilibrium for the nonatomic game G1. It is a contra-

diction with Theorem 4.3.3.

4.6.2 Proof of Theorem 4.4.7

We prove this theorem by contradiction. Suppose that (T, T , µ) is not a saturated

probability space, we will construct a game with the player space (T, T , µ) and A the

set of common actions such that there is no pure-strategy Nash equilibrium in this game.

Since (T, T , µ) is not a saturated probability space, by Definition 2.2.1, there exists

a nonnegligible subset S ∈ T with µ-measure s ∈ (0, 1] such that the restricted prob-

ability space (S, T S, µS) is countably generated modulo the null sets. As a result of

Maharam’s theorem (see Maharam, 1942), the measure algebra of the Lebesgue subin-

terval, ([0, s],L[0,s], η[0,s]) is isomorphic to that of (S, T S, µS). It is a known result that
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this isomorphism can be realized by a measure-preserving map q from (S, T S, µS) to

([0, s],L[0,s], η[0,s]); see Theorem 4.12 in Fremlin (1989, p. 937).

We are now ready to construct a game with the player space (T, T , µ) such that there

is no pure-strategy Nash equilibrium, denote it by G ′
s. For any player t ∈ T , suppose

that the action of this player is a ∈ A and the other players take actions following the

action profile g : (T, T , µ) → A, the payoff function of player t is defined as follows,

G ′
s(t)

(
a,

∫

T

g dµ

)
=





Gs(q(t))

(
a,
∫
T g dµ

)
, if t ∈ S;

−‖a‖, if t /∈ S.

where Gs is the game defined on the Lebesgue unit interval in Corollary 4.3.5; see

Eq. (4.8).

Suppose that g : T → A is a pure-strategy Nash equilibrium for the game G ′
s. Ac-

cording to its payoff structure, it is clear that for any player t /∈ S, the best response is

0. As a result, such players do not affect the societal response. In particular,

1

s

∫

T

g dµ =
1

s

∫

S

g dµ =

∫

S

g dµS ∈ con(A).

As a result, for every player t ∈ S, the payoff function is, for all a ∈ A,

G ′
s(t)

(
a,

∫

T

g dµ

)
= Gs(q(t))

(
a,

∫

T

g dµ

)
= G1

(
q(t)

s

)(
a,

∫

S

g dµS

)
,

where the second equation follows from Eq. (4.8).

Since g is a pure-strategy Nash equilibrium in the game G ′
s, it follows from the proof

of Theorem 4.3.3 (see, e.g., Eqs. (4.10) and (4.11)) that for µ-almost all player t ∈ S,

the best response g(t) is either ψ (q(t)/s) or 0. Let S1 denote the set of players in S

whose best response is nonzero, i.e., S1 = {t ∈ S : g(t) .= 0}. Since g is T -measurable,

S1 ∈ T . Note that q induces a measure-algebra isomorphism over subspaces restricted

to S and [0, s]. By the definition of q, there exists a Lebesgue subset E ∈ [0, s] such

that q−1(E) ∈ T and S1 differ up to a µ-null set, i.e., µ[S1∆q−1(E)] = 0 where ∆ is the

symmetric difference operator in T .
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Now define g′ : [0, 1] → A as follows,

g′(t′) =





ψ
(
t′

s

)
, if t′ ∈ E;

0, otherwise.

It is clear that g′ is a L-measurable map and g′(q(t)) = g(t) for µ-almost all t ∈ S.

Moreover,

∫

T

g dµ =

∫

S1

g dµ =

∫

q−1(E)

g′(q) dµ =

∫

E

g′ dη =

∫ 1

0

g′ dη,

where the second equation follows from µ (S1∆q−1(E)) = 0, the third from substitution

of variables and µq−1 = η, and the first and last from the fact that g and g′ are 0 almost

elsewhere.

It is straightforward to check that g′ : [0, 1] → A is a pure-strategy Nash equilibrium

of the nonatomic game Gs. A contradiction to Corollary 4.3.5.

4.6.3 Proof of Proposition 4.5.1

It is sufficient to prove the result for the game G1. By Lemma 2 of Khan and Zhang

(2012a), there exists a subset S ∈ I such that for any t ∈ [0, 1], λ([0, t] ∩ S) = t/2.

Recall that E0 = [0, 1] and for n ≥ 1, En is a union of some subintervals of the Lebesgue

unit interval with η(En) = 1/2. As a result, λ(En ∩ S) = λ(En)/2 for all n ∈ N. Since

that (I, I,λ) is the extended Lebesgue interval, En ∈ I and λ(En) = η(En) for all n.

Now define a function f : (I, I,λ) → X as follows,

f(t) =





ψ(t), if t ∈ S;

0, if t /∈ S.

Note that f is an I-measurable function since ψ : I → X is a L-measurable function

and (I, I,λ) is an extended Lebesgue interval. It is easy to calculate that
∫
I f dλ =

e/2. It is routine to prove that the I-measurable function f is a pure-strategy Nash

equilibrium for the game G1 if the player space is upgraded by the extended Lebesgue

interval (I, I,λ).



Chapter 5

Equilibrium, core and insurance

equilibrium in a private information

economy

5.1 Introduction

Economic decisions are essentially made based on a decision maker’s vision of the fu-

ture. The future is not known yet, hence all decisions are made with some degree of

uncertainty. However, these decisions are not made entirely blindfolded. Agents rely on

available information in plotting future plan, and information is asymmetric to agents.

The classical Arrow-Debreu-McKenzie model has been extended to reflect these two

facts, namely, uncertainty and informational asymmetry.

The first attempt to introduce uncertainty in Arrow-Debreu-McKenzie model was

made by Arrow (1964) and Debreu (1959), who introduced a state-contingent claims

model in which agents’ utility function and initial endowment are contingent on the

underlying state of nature. By treating a same commodity in two states of nature as

different types of commodities, their model can be naturally mapped to a deterministic

economy model to which standard techniques and results apply.

Radner (1968) further extended Arrow-Debreu’s model to allow for asymmetric in-

formation. In Radner’s model, each agent possesses a piece of private information which

partially reveals the true state of nature. While Radner’s model has the feature of un-

61
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certainty and informational asymmetry, no genuine perfect competition exists for each

individual agent has non-negligible influence in such a finite-agent model.

Based on Radner’s private information economy model and Aumann’s large deter-

ministic economy model (see Aumann (1964)), Sun and Yannelis (see Sun (2006), Sun

and Yannelis (2007a), Sun and Yannelis (2008a)) introduced a private information econ-

omy model with a continuum of agents. In the model, agents have no direct knowledge

of the underlying uncertainty. Instead, they are informed of a noisy private informa-

tion signal giving them a clue about the real state of nature. Informational negligibility

prevails in their model.

For the private information economy model, various solution concepts have been put

forward that parallel the standard notions in a deterministic economy model. Radner

(1968) introduced Radner equilibrium (a.k.a. Walrasian expectations equilibrium). In

a Radner equilibrium, commodity prices vary over the states of nature. Each agent

makes a state contingent consumption plan to maximize her expected utility, subject

to her interim budget set. While Radner’s notion of equilibrium has been unanimously

accepted in the literature as the extension of the classic Walrasian equilibrium for the

private information economy model, the situation is more complicated with the notion

of core.

The complication is mainly due to the fact that in a private information economy,

members of a coalition may exchange information for their good. Several definitions of

core for the private information economy model have thus been proposed depending on

the amount of information to be shared in a coalition. Wilson (1978) (see also Kobayashi

(1980)) introduced the notion of coarse core with a minimal use of information that is

common to all coalition members. Yannelis (1991) formulated the concept of private

core in which each agent uses, and is limited to, her/his own private information.

Another notion of equilibrium that also deserves some attention is the so-called

insurance equilibrium. This equilibrium is used to study insurance systems where each

agent takes on individual risks and makes choices of consumption to spread risks across

states of nature. In the insurance equilibrium model, agents can transfer income from

one state to another through insurance against mishaps in the future. Therefore, in the

model, an agent’s budget set is not limited to the income in each state. This model was

studied in the large finite-agent setting by Malinvaud (1972) and the continuum agent

setting by Sun (2006). The latter paper further investigated the issue of insurability in a

economy with a continuum of agents and obtained a characterization of insurable risks
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– individual risks are insurable if and only if they are essentially pairwise independent.

In the private information economy with finite agents, the solution concepts are not

equivalent. However, it is well-known that in a deterministic economy model, although

solution concepts are defined from different perspectives, they may coincide with each

other under certain assumptions. For instance, Aumann (1964) showed the equivalence

between Walrasian equilibrium and core in a large deterministic game. Sun et al. (2013)

examines the above-mentioned concepts (i.e., Radner equilibrium, private core and in-

surance equilibrium) and shows that the same equivalence relationship continues to hold

in the context of private information economy with a continuum of agents. Note that

in the private information economy with a continuum of agents, besides the above-

mentioned solution concepts, there are some others, e.g., ex ante efficient core and ex

post efficient core, and the equivalence may not still hold.

In the private information economy with finite agents, the solution concepts above-

mentioned are automatically incentive compatible, and in the private information econ-

omy with a continuum of agents, the ex ante efficient core allocation is also incentive

compatible; see Sun and Yannelis (2008a). In this paper, we will see that the private core

allocation is not always incentive compatible (so are Radner equilibrium and insurance

equilibrium). Compared with the private information economy with finite agents, this

issue comes from the resource feasibility. In the private information economy with finite

agents, feasibility is a restriction for the available allocation. However, in the private

information economy with a continuum of agents, feasibility immediately follows the law

of large numbers, and no allocation will be precluded by feasibility. To resolve this issue,

by applying the maximin interim utility instead of expected interim utility, we will see

every interim efficient private core allocation should be incentive compatible.

This chapter is organized as follows: in Section 5.2 we introduce a framework for the

modeling of uncertainty and private information, a private information economy model

and its induced large deterministic economy model; in Section 5.3 we define three equiv-

alent solution concepts, Radner equilibrium, private core and insurance equilibrium; in

Section 5.4, we show that the private core allocation is not always incentive compati-

ble; in Section 5.5 we discuss related work in the literature; Section 5.6 contains all the

proofs.
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5.2 Modeling

5.2.1 Modeling of uncertainty and private information

We fix an atomless probability space (I, I,λ) representing the space of agent, and

S = {s1, s2, . . . , sK} the space of macro states of nature (its power set denoted by S),
which are not known to the agents. Let T 0 = {q1, q2, . . . , qL} be the space of all the

possible signals (types) for individual agents, and (T, T ) a measurable space that models

the private signal profiles for all the agents, and therefore T is a space of functions from

I to T 0.1 Thus, t ∈ T , as a function from I to T 0, represents a private signal profile for

all agents in I. For agent i ∈ I , t(i) (also denoted by ti) is the private signal of agent

i while t−i the restriction of the signal profile t to the set I−{i} of agents different from

i;2 let T−i be the set of all such t−i. For simplicity, we shall assume that (T, T ) has a

product structure so that T is a product of T−i and T 0, while T is the product algebra

of the power set T 0 on T 0 with a σ-algebra T−i on T−i. For t ∈ T and t′i ∈ T 0, we shall

adopt the usual notation (t−i, t′i) to denote the signal profile whose value is t′i for agent

i, and the same as t for other agents.

Let (Ω,F ,P) be a probability space representing all the uncertainty on the macro

states as well as on the signals for all the agents, where (Ω,F) is the product measurable

space (S×T,S⊗T ). To avoid verbosity, we often refer to ω ∈ Ω as a state which should

nevertheless be distinguished from a macro state of nature. Let s̃ and t̃i, i ∈ I be the

respective projection mappings from Ω to S and from Ω to T 0 with t̃i(s, t) = ti.3 Let

PS×T−i
ti be the conditional probability measure on the product space (S × T−i,S ⊗ T−i)

when the signal of agent i is ti ∈ T 0.

Let f be the signal process from I × Ω to T 0 such that f(i,ω) = ti for any

(i, t) ∈ I × T . Since Ω is the product of macro state space S and signal profile space

T , f(i,ω) can also be written as f(i, s, t) where ω = (s, t). We assume that f is I !F -

measurable.

1In the literature, one usually assumes that different agents have possibly different sets of signals and
require that the agents take all their own signals with positive probability. For notational simplicity, we
choose to work with a common set T 0 of signals, but allow zero probability for some of the redundant
signals. There is no loss of generality in this latter approach.

2It is a notational convention in the literature that tA refers to the restriction of a function t to the
subset A and t−A = tAc . When A = {i} is a singleton, they will further be shortened to ti and t−i

respetively.
3t̃i can also be viewed as a projection from T to T 0.
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For each agent i ∈ I, we can define a probability distribution πi of agent i’s private

information signal distribution. For q ∈ T 0, πi({q}) = Pf−1
i ({q}) is the probability

of agent i receiving a private information signal q. For notational simplicity, πi({q})
is often abbreviated as πi(q). Let Ti = {q ∈ T 0 | πi(q) > 0} be the set of all private

information signals that matter to agent i (in the probabilistic sense). Since T 0 is finite,

the agent space can be partitioned into a finite number of disjoint sets I1, . . . , Ih such

that all agents in Ij, 1 ≤ j ≤ h, have the same set of Ti. That is, i1, i2 ∈ Ij for some

1 ≤ j ≤ h if and only if Ti1 = Ti2 . Thus, we can use TIj , 1 ≤ j ≤ h to denote the common

set of Ti for all agents i ∈ Ij. Fix q ∈ T 0, note that πi(q) =
∫
Ω 1f−1({q})(i,ω) dP, hence

πi(q) is a measurable function if viewed as a function on I. Since

Ij =
(
∩q∈TIj

{i ∈ I | πi(q) > 0}
)
∩
(
∩q /∈TIj

{i ∈ I | πi(q) = 0}
)
,

Ij is measurable for all 1 ≤ j ≤ h. We assume that λ(Ij) > 0, 1 ≤ j ≤ h.

5.2.2 Private information economy

We shall now follow the definition and notation in Section 5.2.1. We consider a large

economy with asymmetric information. The space of agents is the atomless probability

space (I, I,λ). In this economy, agents i ∈ I are informed with their private signals

ti ∈ T 0 but not the macro state, and they can have contingent consumptions based on

the signal profiles t ∈ T announced by all the agents. Decisions are made at the ex ante

level. The common consumption set is the positive orthant Rm
+ . In the sequel, we shall

state several assumptions on the economy.

• The utility function of each agent depends on her/his consumption z = (z1, . . . , zm) ∈
Rm

+ and the private signal q ∈ T 0, where zj is the quantity of the j-th commodity

in the consumption z. Thus, we can let u be a function from I × Rm
+ × T 0 to R+

such that for any given i ∈ I, u(i, z, q) is the utility of agent i at consumption

z ∈ Rm
+ and the private signal q ∈ T 0.

• The utility function u is assumed to be measurable. For any given q ∈ T 0, u(i, z, q)

is continuous in z ∈ Rm
+ .

• Let e be an integrable function from I × T 0 to Rm
+ with e(i, q) as the initial

endowment of agent i.
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We shall now consider an economy where the agents are informed with their signals

but not the macro state. Formally, the collection

E = {(I × Ω, I ! F ,λ!P), u, e, f, s̃}

is called a private information economy.

5.2.3 Induced large deterministic economy

From the private information economy E , we can construct an auxiliary large determin-

istic economy Ē ; see also Sun (2006) and Malinvaud (1972). This large deterministic

economy will be handy in the proofs of our results.

For each i ∈ I, we define a function Ei from (Rm
+ )

Ti to Rm
+ as

Ei(y) =
∑

q∈Ti

πi(q) · y(q) =
∫

T 0

y(q) dπi.

Note that if y′ is a random variable from T 0 to Rm
+ and its restriction on Ti is y, then

∫

T 0

y′(q) dπi(q) =
∑

q∈T 0

πi(q) · y′(q) = Ei(y).

That means Ei(y) is equal to the expectation of y′. For this reason, Ei(y′) will also be

used to denote the expectation of y′ on the probability measure space (T 0, T 0, πi).

For any z ∈ Rm
+ , we define the following set

E−1
i (z) =

{
y ∈ (Rm

+ )
Ti | Ei(y) = z

}
.

The utility function v of the economy Ē is defined as

v(i, z) = max

{
∑

q∈Ti

πi(q) · ui(y(q), q)

∣∣∣∣∣ y ∈ E−1
i (z)

}

for agent i with consumption z.

The following lemma shows that v indeed defines a utility function.

Lemma 5.2.1. For each i ∈ I, vi is well-defined and continuous. Furthermore, if ui is
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(strictly) monotone, then vi is (strictly) monotone.

This lemma is proved in Sun (2006) (see Lemma 3.2 therein) for the case of complete

and continuous preference. An alternative proof that deals directly with utility function

is also provided in Section 5.6.

Each agent i ∈ I in the large deterministic economy Ē has an initial endowment

ē(i) = Ei(e) =
∫
Ω e(i, f(i,ω)) dP. We summarize the induced large deterministic

economy as

Ē = {(I, I,λ), v, ē}.

5.3 Equilibrium, core and insurance equilibrium

In this section, we introduce the definitions for Radner equilibrium, private core, insur-

ance equilibrium, and related concepts.

A price is a measurable mapping from Ω to ∆m, where ∆m denotes the unit simplex

in Rm
+ . For ω ∈ Ω, p(ω) is the commodity prices when ω occurs.

An allocation x is a measurable mapping from I×Ω to Rm
+ . For any (i,ω) ∈ I×Ω,

x(i,ω) is interpreted as agent i’s consumption at ω. When agents’ consumption depends

only on their private information signals, we simply write it as x(i, q), where q ∈ T 0. In

this case, x is also viewed as a mapping from I × T 0 to Rm
+ .

Let y be a measurable mapping from Ω to Rm
+ . For agent i ∈ I, if her/his consumption

plan is y, i.e., her/his consumption is y(ω) when ω occurs, then her/his (ex ante)

expected utility is given as

Ui(y) =

∫

Ω

ui(y(ω), f(i,ω)) dP(ω).

When agent i’s consumption plan is contingent on her/his private information signal,

i.e., y is defined on T 0, her/his (ex ante) expected utility becomes

Ui(y) =

∫

Ω

ui

(
y(f(i,ω)), f(i,ω)

)
dP(ω) =

∑

q∈T 0

πi(q) · ui(y(q), q) = Eiui(y(q), q).

One particular feature of Radner equilibrium is the possibility of wealth transfer

across states. Hence, agents are no longer constrained to their income at each state. They
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may spend their income in advance or save it up for the future. The only requirement is

that their expenditure remains balanced across the states. Consequently, they are faced

with a new type of budget set. Given a price p, agent i’s interim budget set is

Bi(p) =

{
y : Ω → Rm

+

∣∣∣∣
∫

Ω

p(ω) · y(ω) dP(ω) ≤
∫

Ω

p(ω) · e(i, f(i,ω)) dP(ω)

}
.

Now, we state the definition of Radner equilibrium:

Definition 5.3.1 (Radner Equilibrium or Walrasian Expectations Equilibrium). Let

E = {(I × Ω, I ! F ,λ ! P), u, e, f, s̃} be a private information economy. A Radner

equilibrium is a pair of an allocation x∗ and a price p∗ such that

(1) For each agent i ∈ I, x∗
i depends on her private information signal only.

(2) x∗ is feasible, i.e.,
∫
I x

∗(i, f(i,ω)) dλ =
∫
I e(i, f(i,ω)) dλ for P-almost all ω ∈ Ω.

(3) For λ-almost all agent i ∈ I, x∗
i is a maximizer of the following problem:

maximize
y

Ui(y)

subject to y ∈ Bi(p
∗).

An allocation x for the private information economy E is called a Radner equilib-

rium allocation if there is a price p such that (x, p) forms a Radner equilibrium. The

set of all Radner equilibrium allocations is denoted by RE(E).

Condition (1) indicates that each agent’s consumption is contingent on her/his pri-

vate information signal. Condition (2) is the standard market clearing condition. Con-

dition (3) shows that each agent makes an ex ante plan of consumption for all possible

states the future may reveal to her/him and the plan maximizes her/his expected utility

subject to interim budget set.

The concept of private core was initiated by Yannelis (1991). Before we formally

define it, we need the following definition.

Definition 5.3.2. Let x and x′ be two allocations for the private information economy

E , W a coalition. The allocation x′ is said to block the allocation x on W if

(1)
∫
W x′(i,ω) dλ =

∫
W e(i, f(i,ω)) dλ for P-almost all ω ∈ Ω.
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(2) Ui(x′
i) > Ui(xi) for λ-almost all i ∈ W .

When the allocation x′ depends only on agents’ private information signal, Condi-

tion (1) becomes:

∫

W

x′(i, f(i,ω)) dλ =

∫

W

e(i, f(i,ω)) dλ for P-almost all ω ∈ Ω.

If u is continuous and strictly monotone, Condition (2) is equivalent to:

Ui(x
′
i) ≥ Ui(xi) for λ-almost all i ∈ W and λ({i ∈ W | Ui(x

′
i) > Ui(xi)}) > 0.

We give the definition of private core below:

Definition 5.3.3 (Private Core). Let E = {(I ×Ω, I !F ,λ!P), u, e, f, s̃} be a private

information economy. The private core of E is the set of all allocations x such that

(1) For all i ∈ I, xi depends only on agent i’s private information signal.

(2) x is feasible, i.e.,
∫
I x(i, f(i,ω)) dλ =

∫
I e(i, f(i,ω)) dλ for P-almost all ω ∈ Ω.

(3) There is no coalition W and no allocation x′ which depends only on private infor-

mation signal such that x′ blocks x on W .

We denote the private core by PC(E).

In the definition of private core, we notice that there is no information sharing among

agents in a coalition. Each agent uses only their own private information signal in making

consumption plan. For the philosophy behind this definition, we quote Yannelis (1991)

“... since in most applications, agents do not have an incentive to reveal their own

private information (think of situations of moral hazard or adverse selection).”

The third solution concept we will encounter is called insurance equilibrium. When

there are a large number of risk bearing agents in a market and no collective risk pre-

vails, it is often conjectured that contingent commodity prices are the multiple of “sure

prices” and an objective probability; see Malinvaud (1972, 1973). To justify it, as shown

in Hildenbrand (1971), one can alter the standard state-wise market clearing condition

for economy with uncertainty by equating the aggregate expected demand to the ag-

gregate expected supply (in the case when there is no production, the aggregate supply
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is equal to the aggregate initial endowments). The exact law of large numbers (which

requires a large number of agents and some kind of independence between them) indi-

cates that market clearing condition is also satisfied state-wise. Since this model is often

used for the study of insurance system (see Malinvaud (1972) and Sun (2006)), we call

the corresponding equilibrium concept insurance equilibrium. It should be reminded,

however, that there is no standard name for this equilibrium in the literature. We define

insurance equilibrium below:

Definition 5.3.4 (Insurance Equilibrium). Let E = {(I ×Ω, I !F ,λ!P), u, e, f, s̃} be

a private information economy. An insurance equilibrium is a pair of an allocation

x∗ and a price p∗ such that

(1) The price p∗ is constant, i.e., p∗(ω) = p∗(ω′) for all ω,ω′ ∈ Ω.

(2) For each agent i ∈ I, x∗
i depends only on her/his private information signal.

(3) The expected allocation Ei(x∗
i ) is feasible in the sense that

∫

I

Ei(x
∗(i, f(i,ω))) dλ =

∫

I

Ei(e(i, f(i,ω))) dλ.

(4) For λ-almost all agent i ∈ I, x∗
i is a maximizer of the following problem:

maximize
y

Ui(y)

subject to y ∈ Bi(p
∗).

An allocation x for the private information economy E is called an insurance equi-

librium allocation if there is a price p such that (x, p) forms an insurance equilibrium.

The set of all insurance equilibrium allocations is denoted by IE(E).

Condition (1) shows that the price in equilibrium is a “sure price” in that it does

not depend on ω. Condition (2) indicates that each agent’s consumption is contingent

on her/his private information signal. Condition (3) is the market clearing condition for

expected demand and expected supply. This condition is special since market clearing

condition is usually required to hold state-wise (i.e., for each ω ∈ Ω). As we mentioned

above, under certain assumptions the law of large numbers implies that market is cleared

for each state ω when Condition (3) holds. As it is evident that state-wise market clearing

condition implies Condition (3), in fact these two conditions are equivalent provided that
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the law of large numbers holds. Condition (4) requires that each agent act to maximize

their expected utility subject to the constraint of interim budget set. When price is

constant, we notice that the interim budget set becomes

Bi(p) =

{
y : Ω → Rm

+

∣∣∣∣ p ·
∫

Ω

y(ω) dP ≤ p ·
∫

Ω

e(i, f(i,ω)) dP

}
.

Hence agent i chooses a contingent plan of consumption whose expected value does not

exceed the value of expected initial endowment.

By now, we have defined three solution concepts for the private information economy.

We state the equivalence result in the following, which has been showed in Sun et al.

(2013).

We make the following assumptions firstly.

A1 For P-almost all ω ∈ Ω,
∫
I e(i, f(i,ω)) dλ7 0.

A2 For P-almost all ω ∈ Ω,
∫
I e(i, f(i,ω)) dλ8 ∞.

A3 For any fixed i ∈ I, q ∈ T 0, the utility function u(i, ·, q) is continuous and strictly

monotone.

A4 For any fixed i ∈ I, q ∈ T 0, the utility function u(i, ·, q) is concave.

A5 The signal process f is essentially pairwise independent in the sense that for λ-

almost all i ∈ I, fi and fj are independent for λ-almost all j ∈ I.

The first four assumptions are standard in equilibrium analysis and need no ex-

planation. The last assumption indicates that for any two individuals, their private

information signals are pairwise independent. As we shall see later, that under this as-

sumption, each individual agent is informationally negligible. A detailed discussion on

this topic can be found in Sun (2006).

The following result is proved by Sun et al. (2013).

Fact 5.3.5. Let E be a private information economy. Then Radner equilibrium, insur-

ance equilibrium and private core coincide in E in the sense that IE(E) = RE(E) =

PC(E).
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5.4 Incentive compatibility

Koutsougeras and Yannelis (1993) show the incentive compatibility of the private core

allocation. In this section, we will consider the incentive compatibility for the three

solution concepts defined in Section 5.3, and will find that they are always not incentive

compatible. Since the set of macro states are finite, without loss of generality, we take

it to be a singleton set for sake of simplicity. When S is a singleton set, P and PT are

identical, and so are PT−i
ti and PS×T−i

ti .

Definition 5.4.1. For an allocation x, an agent i ∈ I, private signals ti, t′i ∈ T 0, let

Ui(xi, t
′
i | ti) =

∫

T−i

ui

(
ei(ti) + xi(t−i, t

′
i)− ei(t

′
i), ti

)
dPT−i

ti ,

be the interim expected utility of agent i when she receives private signal ti but mis-report

as t′i. The allocation x is said to be incentive compatible if for λ-almost all i ∈ I,

Ui(xi, ti | ti) ≥ Ui(xi, t
′
i | ti)

holds for all the non-redundant signals ti, t′i ∈ T 0 of agent i (i.e., πi(ti), πi(t′i) > 0).

The following proposition shows that the private core allocation is not always incen-

tive compatible, where agent’s endowment does not depend on her/his private signal.

Proposition 5.4.2. There exists a large private information economics E = {(I×Ω, I!
F ,λ!P), u, e, f, s̃}, such that every private core allocation is not incentive compatible,4

where agent i’s endowment is a constant function, and agent i’s utility is a function

from Rm
+ × T 0 to R+.

We also show that the private core allocation is not always incentive compatible,

where agent’s endowment depends on her/his private signal but agent’s utility only

depends on the allocation.

Proposition 5.4.3. There exists a large private information economics E = {(I×Ω, I!
F ,λ!P), u, e, f, s̃}, such that every private core allocation is not incentive compatible,

where agent i’s endowment is a function from T 0 to Rm
+ , and agent i’s utility is a function

from Rm
+ to R+.

4In this position and the following one, the private core is not required to satisfy Condition (1).
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5.5 Discussion

The study of the equivalence between core and competitive equilibrium first appeared

in Edgeworth (1881). In the book Edgeworth showed, in a very special setup, that core

collapsed to the set of competitive equilibria as the number of agents in an economy gets

large. He continued to conjecture that this equivalence relationship should hold for a

general economy. Edgeworth’s conjecture was first proved by Debreu and Scarf (1963).

Anderson (1978) proved a Core Equivalence Theorem with the help of Shapley-Folkman

Theorem. Following a argument similar to Anderson’s, Aumann (1964) obtained the

same result for large economies using Lyapunov Theorem. Anderson (1992) is a good

reference for a comprehensive survey on core equivalence theorems.

In this chapter, we investigate the relationship among private core, Radner equilib-

rium and insurance equilibrium in the private information economy model. We show

that these three concepts coincide in a large economy with private information provided

that agents’ private information signals are essentially pairwise independent.

The work in the literature that is closely related to ours is Einy et al. (2001). Our

work differs from theirs mainly in two aspects. In their paper, Einy, Moreno and Shi-

tovitz establish the existence of Radner equilibrium for “irreducible” large economy with

private information. An economy is “irreducible” if a coalition can always improve its

welfare with another coalition’s initial endowments. Einy et. al. further show that

Radner equilibrium and private core coincide in an “irreducible” economy. While in

our work, we do not impose the “irreducibility” assumption on the private information

economy. Furthermore, in their paper private information is modeled by partitions of

the macro state space for each agent. On the other hand, we use a signal process and

private information signals to model private information. This allows us to consider the

informational negligibility of an individual agent. When the signal process is essentially

pairwise independent, the exact law of large numbers indicates that each agent has neg-

ligible information. However, this is not so clear with their model although they also

consider an economy with a continuum of agents.

Sun and Yannelis (2007a) have also proved the core equivalence theorem for a large

private information economy. However, it is worth pointing out that the equilibrium and

core in their paper are defined in an ex ante sense. In particular, equilibrium allocation

and core depend on the aggregate signals. Private information plays its role in the study

of incentive compatibility. On the other hand, in our definitions an allocation depends
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only on agents’ private information signals. Hence, the concepts of equilibrium and core

in these two work are different.

5.6 Proofs of Propositions 5.4.2 and 5.4.3

We take S to be a singleton set. Then we can identify (Ω,F ,P) with (T, T ,PT ), where

PT is the marginal probability measure of P on (T, T ). The construction will use

nonstandard analysis. One can pick up some background knowledge on nonstandard

analysis from the first three chapters of the book Loeb and Wolff (2000).

Fix n ∈ ∗N∞. Let I = {1, 2, . . . , n} with internal power set I0 and internal counting

probability measure λ0 on I0 with λ0(A) = |A|/|I| for any A ∈ I0, where |A| is the

internal cardinality of A. Let (I, I,λ) be the Loeb space of the internal probability

space (I, I0,λ0), which will serve as the space of agents for the large private information

economy considered below.

Let T 0 = {0, 1} be the signals for individual agents, and T the set of all the internal

functions from I to T 0 (the space of signal profiles). Let T0 be the internal power set on

T , P0 an internal counting probability measure on (T, T0) (i.e., the probability weight

for each t = (t1, t2, . . . , tn) ∈ T under P0 is 1/2n), and (T, T ,P) the corresponding Loeb

space.

Let (I × T, I0 ⊗ T0,λ0 ⊗ P0) be the internal product probability space of (I, I0,λ0)

and (T, T0,P0). Let (I×T, I!T ,λ!P) be the Loeb space of the internal product (I×
T, I0 ⊗ T0,λ0 ⊗P0), which is indeed a Fubini extension of the usual product probability

space by Keislers Fubini Theorem (see, for example Section 5.3.7 in Loeb and Wolff

(2000)).

Proof of Proposition 5.4.2. We consider a one-good economy with utility functions u(i, z, q) =

(1 + q)
√
z and constant endowments e(i, q) = 1 for all the agents i ∈ I and q ∈ T 0.

Let x be a private core allocation, then for all i ∈ I, xi depends only on agent i’s

private information signal ti. Let ai =
∫
T xi(t) dP = 1

2xi(0) +
1
2xi(1), then Jensen’s
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inequality implies that

Ui(xi) =
∑

ti∈T 0

πi(ti)u(i, x(i, ti), ti) =
1

2
ui(xi(0), 0) +

1

2
ui(xi(1), 1)

=
1

2

√
xi(0) +

√
xi(1) ≤

√
5ai
2

with equality only when xi(0) =
2
5ai and xi(1) =

8
5ai.

Define an allocation y by letting y(i, t) = 2
5(1+3ti)ai. By exact law of large numbers,

we have

∫

I

y(i, t) dλ =

∫

I

∫

T

2

5
(1 + 3ti)ai dP dλ =

∫

I

2

5
(1 + 3/2)ai dλ =

∫

I

ai dλ = 1,

for P-almost all t ∈ T . That is, the allocation y satisfies the first two conditions in

Definition 5.3.3.

On the other hand, we have

Ui(yi) =

√
5ai
2
.

Hence Ui(yi) ≥ Ui(xi) with equality only when xi(0) = 2ai/5 and xi(1) = 8ai/5.

Since x is a private core allocation, it is ex ante efficient, and hence there exists a

set A in I with λ(A) = 1 such that for any i ∈ A, xi(0) = 2ai/5 and xi(1) = 8ai/5.

Let B = {i ∈ A | ai > 0}. Since
∫
I ai dλ = 1, we have λ(B) > 0. By the definition of

incentive compatibility, we have, for any agent i ∈ B,

Ui(xi, 1 | 0) = ui(xi(1), 0) =
√
8ai/5 >

√
2ai/5 = ui(xi(0), 0) = Ui(xi, 0 | 0).

Hence, x is not incentive compatible.

Proof of Proposition 5.4.3. We consider a one-good economy with strictly concave and

monotonic utility functions ui : R+ → R+ and endowments ei(ti) = 2ti for all i ∈ I. By

the exact law of large numbers, we have
∫
I ei(ti) dλ =

∫
I

∫
T 2ti dP dλ = 1 for P-almost

all t ∈ T .

Let x be a private core allocation. As in the proof of Theorem 1 in Sun and Yannelis

(2008a), we will have xi(t) =
∫
T xi(t) dP(t) for P-almost all t ∈ T .
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By the definition of incentive compatibility, we have, for λ-almost all agents i ∈ B,

Ui(xi, 0 | 1) =
∫

T−i

ui

(
ei(1)− ei(0) + xi(t−i, 0)

)
dPT−i

=

∫

T−i

ui(xi(t−i, 1) + 2) dPT−i

>

∫

T−i

ui(xi(t−i, 1)) dP
T−i = Ui(xi, 1 | 1).

Hence, x is not incentive compatible.
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Concluding remarks

The chapter concludes its comprehensive overview of the results that have been obtained

by suggesting several research topics, some of which remain open.

6.1 Random matching

In the static case, the foundations of the independent random (full and partial) matching

with a continuum population and general types have been established by Duffie and Sun

(2007, 2012) and Sun (2013a).

In the discrete-time dynamic case, Duffie and Sun (2007, 2012) provide the micro

foundation for the independent random full matching with general types and the in-

dependent random partial matching with finite types, and Sun (2013b) provides the

foundation for the independent random partial matching with general types.

In the continuous-time dynamic case, Duffie et al. (2013a) show the existence of in-

dependent random matching of a large population and finite types. In particular, they

construct a continuum of independent continuous-time Markov processes that is de-

rived from random mutation, random partial matching and random type changing. The

empirical type evolution of such a continuous-time dynamic system is also determined.

Besides, Duffie et al. (2013b) provide micro foundation for independent random

matching with directed probabilities, where the matching probabilities are type-relevant

and exogenous.

77
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6.2 Game theory

In He, Sun and Sun (2013), we propose the condition of “nowhere equivalence” to model

the space of agents. We show that this condition is more general than all of those

special conditions imposed on the spaces of agents to handle the failure of the classical

Lebesgue unit interval. We also illustrate the optimality of this condition by showing

its necessity in deriving the existence of pure-strategy Nash equilibrium for nonatomic

games. Actually, the results in Chapter 4 can be implied by the results in He, Sun and

Sun (2013).

Furthermore, He and Sun (2013) study the existence of pure-strategy equilibria for

the finite-player game with incomplete information based on the condition of “nowhere

equivalent”. We show that the condition of “nowhere equivalent” to model the in-

formation space is a necessary and sufficient condition to guarantee the existence of

pure-strategy equilibria.

6.3 General equilibrium

The theory of the value, as shaped by Aumann and Shapley (1974). In Aumann (1975),

where the set of agents by Lebesgue unit interval or some probability isomorphic, Au-

mann (1975) showed the equivalence between the value allocation and the competitive

allocation in a model of large economy. In Aumann (1975)’s paper, he implicitly used

the idea of nonstandard analysis in the sense that each player in the large economy oc-

cupies ε weight in the economy, where ε represents an infinitesimal number. In a follow

up paper, Brown and Loeb (1976) re-establish the equivalence between value and com-

petitive allocations, while the set of agents is modeled by a hyperfinite counting set, or

a hyperfinite Loeb counting space. Now, as an appeal of a general technique of Keisler

and Sun (2009), it is of interest to investigate whether such a value equivalence result

still holds when modeling the set of agents by saturated probability spaces, and above

all, it still remains open that how to define the value in such a large economy.
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D. Duffie, N. Gârleanu, and L. H. Pedersen, Over-the-counter markets, Econometrica

73 (2005), 1815–1847.

D. Duffie, S. Malamud and G. Manso, Information percolation in segmented markets,

working paper, Stanford University, 2013. Available at http://www.darrellduffie.

com/uploads/working/DuffieMalamudManso2013.pdf.

D. Duffie, L. Qiao, and Y. Sun, Continuous-time independent random matching, working

paper, Stanford University, 2013.

D. Duffie, L. Qiao, and Y. Sun, Independent random matching with directed probabili-

ties, working paper, Stanford University, 2013.

D. Duffie and Y. Sun, Existence of independent random matching, Ann. Appl. Probab.

17 (2007), 386–419.

D. Duffie and Y. Sun, The exact law of large numbers for independent random matching,

J. Econ. Theory 147 (2012), 1105–1139.

A. Dvoretsky, A. Wald, J. Wolfowitz, Relation among certain ranges of vector measures,

Pac. J. Math. 1 (1951), 59–74.

A. Dvoretsky, A. Wald, J. Wolfowitz, Elimination of randomization in certain statictical

decision procedures and zero-sum two-person games, Ann. Math. Stat. 22 (1951),

1–21.

M. Dz̆amonja and K. Kunen, Properties of the class of measure separable compact

spaces, Fund. Math. 147 (1995), 261–277.

F. Y. Edgeworth, Mathematical Psychics, C. Kegan Paul & Co, London, 1881.

http://www.darrellduffie.com/uploads/working/DuffieMalamudManso2013.pdf
http://www.darrellduffie.com/uploads/working/DuffieMalamudManso2013.pdf


Bibliography 81

E. Einy, D. Moreno and B. Shitovitz, Competitive and core allocations in large economies

with differential information, Econ. Theory 18 (2001), 321–332.

S. Fajardo and H. J. Keisler, Model Theory of Stochastic Processes, Massachusetts: A.

K. Peters, Ltd., 2002.

K. Fan, Fixed points and minimax theorems in locally convex linear spaces, Proc. Natl.

Acad. Sci. USA 38 (1952), 121–126.

D. H. Fremlin, Measure Algebra, in The Handbook of Boolean Algebra, vol. 3 (J. D. Monk

and R. Bonnet eds.), Amsterdam: North Holland, 1989.

D. H. Fremlin, Measure Theory, Volume 4: Topological Measure Spaces, second ed.,

Torres Fremlin, Colchester, 2006.

D. H. Fremlin,Measure Theory, Volume 5: Set-Theoretic Measure Theory, Part 1, Torres

Fremlin, Colchester, 2008.

H. Fu, From large games to Bayesian games: a unified approach on pure strategy equi-

libria, working paper, National University of Singapore, 2007.

I. L. Glicksberg, A further generalization of Kakutani’s fixed point theorem with appli-

cation to Nash equilibirum points, Proc. Amer. Math. Soc. 3 (1952), 170–174.

E. J. Green and R. Zhou, Dynamic monetary equilibrium in a random matching economy,

Econometrica 70 (2002), 929–970.

G. H. Hardy, Mendelian proportions in a mixed population, Science 28 (1908), 49–50.

W. He and X. Sun, On the diffuseness of incomplete information game, working paper,

National University of Singapore.

W. He, X. Sun and Y. Sun, Modeling infinitely many agents, working paper, National

University of Singapore.

W. Hildenbrand, Random preferences and equilibrium analysis, J. Econ. Theory 3

(1971), 414–429.

D. Hoover and H. J. Keisler, Adapted probability distributions, Trans. Amer. Math.

Soc. 286 (1984), 159–201.



82 Bibliography

S. Kakutani, Construction of a non-separable extension of the Lebesgue measure space,

Proceedings of the Imperial Academy (Tokyo) 20 (1944), 115–119.

H. J. Keisler, An infinitesimal approach to stochastic analysis, Memoirs of the American

Mathematical Society, 48 (297) (1984).

H. J. Keisler, Rich and Saturated adapted spaces, Adv. Math. 128 (1997), 242–288.

H. J. Keisler and Y. Sun, The necessity of rich probability spaces, draft paper, 2002.

This was a draft version of Keisler and Sun (2009) below. Some of the results were first

presented at a 2002 ICM satellite conference Symposium on Stochastics and Applica-

tions, Singapore, August 15–17, 2002; see http://ww1.math.nus.edu.sg/events/

ssa/default.htm for an abstract of the presentation.

H. J. Keisler and Y. Sun, Why saturated probability spaces are necessary, Adv. Math.

221 (2009), 1584–1607.

M. A. Khan, Equilibrium points of nonatomic games over a Banach space, Trans. Amer.

Math. Soc. 293 (1986), 737–749.

M. A. Khan and M. Majumdar, Weak sequential convergence in L1(µ,X) and an ap-

proximate version of Fatou’s lemma, J. Anal. Appl. 114 (1986), 569–573.

M. A. Khan, K. P. Rath and Y. Sun, On the existence of pure-strategy equilibria in

games with a continuum of players, J. Econ. Theory 76 (1997), 13–46.

M. A. Khan, K. P. Rath and Y. Sun, On a private information game without pure

strategy equilibria, J. Math. Econ. 31 (1999), 341–359

M. A. Khan, K. P. Rath and Y. Sun, The Dvoretzky-Wald-Wolfowitz Theorem and

purification in atomless finite-action games, Int. J. Game Theory 34 (2006), 91–104.

M. A. Khan and Y. Sun, Pure strategies in games with private information, J. Math.

Econ. 24 (1995), 633–653.

M. A. Khan and Y. Sun, Non-cooperative games on hyperfinite Loeb spaces, J. Math.

Econ. 31 (1999), 455–492.

M. A. Khan and Y. Sun, Non-cooperative games with many players, in Handbook of

Game Theory, vol. 3 (R. J. Aumann and S. Hart eds.), Chapter 46, 1761–1808, North-

Holland, Amsterdam, 2002.

http://ww1.math.nus.edu.sg/events/ssa/default.htm
http://ww1.math.nus.edu.sg/events/ssa/default.htm


Bibliography 83

M. A. Khan and N. C. Yannelis, Equilibrium Theory in Infinite Dimensional Space,

Springer-Verlag, Berlin, 1991.

M. A. Khan and Y. Zhang, Set-valued functions, Lebesgue extensions and saturated

probability spaces, Adv. Math. 229 (2012), 1080–1103.

M. A. Khan and Y. Zhang, On sufficiently diffused information and finite-player games

with private information, working paper, Johns Hopkins University, 2012b.

N. Kiyotaki and R. Wright, A search-theoretic approach to moneraty economics, Am.

Ecom. Rev. 83 (1993), 63–77.

T. Kobayashi, Equilibrium contracts for syndicates with differential information, Econo-

metrica 48 (1980), 1635–1665.

L. Koutsougeras and N. C. Yannelis, Incentive compatibility and information superiority

of the core of an economy with differential information, Econ. Theory 3, 1993, 195–

216.

R. Lagos and R. Wright, A unified framework for monetary theory and policy analysis,

J. Polit. Econ. 113 (2005), 463–484.

J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, Springer-Verlag, Berlin/New

York, 1977.

P. A. Loeb and Y. Sun, Purification and saturation. Proc. Am. Math. Soc. 137(2009),

2719–2724.

P. A. Loeb and M. Wolff, eds., Nonstandard Analysis for the Working Mathematician,

Kluwer Academic Publishers, Dordrecht, 2000.

D. Maharam, On homogeneous measure algebras, Proc. Natl. Acad. Sci. USA 28 (1942),

108–111.

G. J. Mailath, A. Postlewaite and L. Samuelson, Pricing and investments in matching

markets, Theor. Econ., forthcoming.

E. Malinvaud, The allocation of individual risks in large markets, J. Econ. Theory 4

(1972), 312–328.

E. Malinvaud, Markets for an exchange economy with individual risks, Econometrica 41

(1973), 383–410.



84 Bibliography

A. McLennan and H. Sonnenschein, Sequential bargaining as a noncooperative founda-

tion for Walrasian equilibrium, Econometrica 59 (1991), 1395–1424.

M. Molico, The distribution of money and prices in search equilibrium, Int. Econ. Rev.

47 (2006), 701–722.

M. Noguchi, Existence of Nash equilibria in large games, J. Math. Econ. 45 (2009),

168–184.

K. Podczeck, On the convexity and compactness of the integral of a Banach space valued

correspondence, J. Math. Econ. 44 (2008), 836–852.

K. Podczeck and D. Puzzello, Independent random matching, Econ. Theory 50 (2012),

1–29.

R. Radner, Competitive equilibrium under uncertainty, Econometrica 36 (1968), 31–58.

K. P. Rath, A direct proof of the existence of pure strategy equilibria in games with a

continuum of players, Econ. Theory 2 (1992), 427–433.

A. Rustichini and N. C. Yannelis, What is perfect competition, in Equilibrium Theory in

Infinite Dimensional Spaces (M. A. Khan and N. C. Yannelis eds.), Springer-Verlag,

Berlin/New York, 1991, 249–265.

S. Shi, A divisible search model of fiat money, Econometrica 65 (1997), 75–102.

N. L. Stokey, R. E. Lucas and E. C. Prescott, Recursive methods in economic dynamics,

Harvard University Press, 1989.

X. Sun, Independent random partial matching with general types, working paper, Na-

tional University of Singapore, 2013.

X. Sun, Independent random partial matching with general types: dynamic case, working

paper, National University of Singapore, 2013.

X. Sun, Y. Sun, L. Wu and N. C. Yannelis, Equilibrium, core and insurance equilibrium

in private information economy, National University of Singapore, 2013.

X. Sun and Y. Zhang, Pure-strategy Nash equilibria in nonatomic games with infinite-

dimensional action spaces, working paper, Shanghai University of Finance and Eco-

nomics, 2013.



Bibliography 85

Y. Sun, Integration of correspondences on Loeb spaces, Trans. Amer. Math. Soc. 349

(1997), 129–153.

Y. Sun, The exact law of large numbers via Fubini extension and characterization of

insurable risks, J. Econ. Theory 126 (2006), 31–69.

Y. Sun and N. C. Yannelis, Core, equilibria and incentives in large asymmetric informa-

tion economies, Games Econ. Behav. 61 (2007), 131–155.

Y. Sun and N. C. Yannelis, Perfect competition in asymmetric information economies

compatibility of efficiency and incentives, J. Econ. Theory 134 (2007), 175–194.

Y. Sun and N. C. Yannelis, Ex ante efficiency implies incentive compatibility, Econ.

Theory 36 (2008), 35–55.

Y. Sun and N. C. Yannelis, Saturation and the integration of Banach valued correspon-

dences, J. Math. Econ. 44 (2008), 861–865.

Y. Sun and Y. Zhang, Individual risk and Lebesgue extension without aggregate uncer-

tainty, J. Econ. Theory 144 (2009), 432–443.

D. M. Topkis, Equilibrium points in nonzero-sum n-person submodular games, SIAM

J. Control Optim. 17 (1979), 773–787.

J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, 3rd

edn., Princeton University Press, 1953.

J. L. Walsh, A closed set of normal orthogonal functins, Amer. J. Math. 45 (1923), 5–24.

R. Wilson, Information, efficiency, and the core of an economy, Econometrica 46 (1978),

807–816.

L. Wu, General equilibrium with negligible private information, Ph.D. thesis, National

University of Singapore.

N. C. Yannelis, On the upper and lower semicontinuity of the Aumann integral, J. Math.

Econ. 19 (1990), 373–389.

N. C. Yannelis, The core of an economy with differential information, Econ. Theory 1

(1991), 183–198.



86 Bibliography

N. C. Yannelis, Debreu’s social equilibrium theorem with symmetric information and a

continuum of agents, Econ. Theory 38 (2009), 419–432.

H. Yu, Point-rationalizability in large games, working paper, Ryerson University, 2012.

H. Yu and W. Zhu, Large games with transformed summary statistics, Econ. Theory 26

(2005), 237–241.

T. Zhu, Existence of a monetary steady state in a matching model: indivisible money,

J. Econ. Theory 112, 307–324.

T. Zhu, Existence of a monetary steady state in a matching model: divisible money, J.

Econ. Theory 123, 135–160.


	Acknowledgement
	Contents
	Summary
	Introduction
	Independent random partial matching
	Nonatomic games with infinite-dimensional action spaces
	Private information economy
	Organization

	Mathematical Preliminaries
	The exact law of large numbers
	Saturated probability space

	Independent random partial matching
	Introduction
	The existence of independent random partial matchings
	The exact law of large numbers
	Proofs
	Proof of Proposition 3.2.2
	Proof of Theorem 3.2.3
	Proof of Theorem 3.2.4
	Proof of Proposition 3.3.1


	Nonatomic games
	Introduction
	Basics
	Counterexamples
	Preliminaries
	A counterexample
	More examples

	Saturation and games
	The sufficiency result
	The necessity result

	Discussion
	Proofs
	Proofs of results in Section 4.3
	Proof of Theorem 4.4.7
	Proof of Proposition 4.5.1


	Private information economy
	Introduction
	Modeling
	Modeling of uncertainty and private information
	Private information economy
	Induced large deterministic economy

	Equilibrium, core and insurance equilibrium
	Incentive compatibility
	Discussion
	Proofs of Propositions 5.4.2 and 5.4.3

	Concluding remarks
	Random matching
	Game theory
	General equilibrium

	Bibliography

