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Summary 

 

Essential genes are widely recognized as ideal drug target candidates since their 

deletion can lead to lethality phenotypes. In most organisms, however, only a 

small fraction of genes are required for viability while the majority of genes are 

dispensable. Studies on the cause of the preponderance of dispensable genes 

revealed some functional backup mechanisms used for non-essential genes, such 

as genetic buffering by duplicate genes and the presence of alternative pathways. 

To further enrich our understanding on the cause of gene 

essentiality/dispensability, it is necessary to explore the altered biological network 

in response to single/multiple gene deletions and the epistatic interactions between 

mutants. Understanding the causes and evolution of gene essentiality can also be 

beneficial to explore more efficient way to identify essential gene. 

 

To understand the distinct deletion effects between essential and non-essential 

genes, we proposed a measure called ‘damage list’ to characterize single gene 

deletion effects in the context of metabolic networks. Our analysis showed that the 

size of damage list for essential genes is generally larger than non-essential genes. 

Moreover, it was observed that while essential genes can exert its deletion effects 

on both essential and non-essential genes, non-essential genes can only impact on 

other non-essential genes. Further analysis suggested that genes sharing highly 

similar damage lists tend to possess the same essentiality. It was also found out 

that essential genes spread its deletion effects through certain ‘associated gene sets’ 

whose cooperative effects is to block the production of key metabolites. The 
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failure of these metabolites finally disrupted normal cellular growth. Structural 

organization of essential and non-essential genes also supported our findings since 

essential genes preferred to be interconnected through low-degree metabolites 

while non-essential genes preferred to be interconnected through high-degree 

metabolites. Our analysis suggested a possible mechanism regarding how essential 

and non-essential genes are differentiated.  

 

We then moved our analysis to gene essentiality prediction. Some features that are 

tightly associated with essentiality were revealed. Using these features, a method 

was proposed to predict gene essentiality in the context of metabolic networks, by 

using limited number of known type genes. With optimized parameters, we 

computed the prediction accuracy and found that the prediction accuracy is quite 

high and robust, compared with other approaches, such as Flux Balance Analysis 

and other machine-learning based approaches. Our studies therefore emphasized 

that understanding the topological and functional features that tightly associated 

with gene essentiality is crucial for high-accuracy prediction of essential genes.  

 

Studies on epistasis between mutants identified gene pairs with either enhanced or 

reduced deletion effects. Further investigation on gene pairs with reduced deletion 

effects indicated that they are generally from the same pathway and their path 

distance in metabolic network is significantly reduced. Essential genes pairs with 

reduced deletion effects (i.e. those candidates for synthetic rescue) are located in 

pathways such as Metabolism of Terpenoids and Polyketides and Metabolism of 

Cofactors and Vitamins. Intriguingly, essential genes pairs from these two 
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pathways of Escherichia coli and Saccharomyces cerevisiae are orthologous. On 

the contrary, analysis of gene pairs with enhanced deletion effects suggested that 

they are mainly arising from diverse pathways. Further investigations on non-

essential gene pairs with enhanced deletion effects indicated that some additional 

metabolites/reactions/genes are disrupted compared with the damage caused by 

individual gene removal. Their loss can sometimes lead to cellular lethality, 

implying them suitability as candidates for synthetic lethal gene pairs. The strong 

dependency between gene essentiality and biological network topological 

organization emphasized the importance and necessity to integrate the network 

analysis into gene essentiality research.  
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Chapter 1 Introduction 
 

Molecular biology has uncovered a multitude of biological facts, such as 

providing explanations for phenomena observed at the molecular level, resolving 

proteins functions, and revealing the molecular basis of diseases. Yet, the 

traditional reductionist approaches seldom provide a comprehensive 

understanding of systemic issues related to genetic interactions, robustness of 

biological systems and evolutionary genomics. This is because a biological system 

is not a simple assembly of genes and proteins, but involves intricate interactions 

between them. Fortunately, the holistic exploratory approaches combined with 

high throughput data collection technologies make it possible to analyze 

biological processes and regulations from a systematic perspective.  

 

Robustness is one of the key characteristics of biological systems, which refers to 

the phenomenon that many biological systems keep functioning in response to a 

random attack. On the other hand, indispensable components which make the 

systems relatively fragile and easily attacked are considered as ideal drug targets, 

especially for infectious diseases. An in-depth understanding on these essential 

components may help us to unveil the structural and functional organizations of 

complex networks and gain new insights into drug design and development.  

 

In this thesis, we focused on essential genes analysis in the context of metabolic 

networks. Problems such as how deletion of essential and non-essential genes 
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exerts their distinct phenotypes (lethality/survival) and how they are associated 

with the structural organizations were addressed. The network topological features 

associated with gene essentiality were applied to predict essential and non-

essential genes, aiming to explore some efficient computational approaches that 

can handle with limited data. Beyond single gene analysis, the interactions 

between pairs of genes were also studied to unveil a higher order organization of 

biological networks and obtain a holistic understanding of biological robustness. 

  

1.1 An introduction to systems biology 

 

Systems biology is a newly emerging, multi-disciplinary field which studies the 

mechanisms regarding how the components of complex biological systems 

interact functionally.  

 

High throughput technologies [1-4] developed in the post-genomic era such as 

next-generation sequencing, and microarrays have generated huge quantities of 

multidimensional data and made it possible to analyze biological processes 

systematically. For example, next-generating sequencing can sequence a genome 

up to 1.5G base pairs in 2.5 days with more than 99% accuracy, which is rather 

more compared with the traditional Sanger-based sequencing approaches, for 

which only 3M base pairs can be generated every three days [5]. These data can 

be used for multi-dimension analysis, such as mRNA expression study [6-8], 
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transcriptional active sites identification [9, 10], and protein-DNA interactions [11, 

12] and so on.  

 

The focus of systems-level understanding of biological processes is to gain a 

comprehensive insight into a system’s structural organization, topological features 

and collective dynamics, rather than an individual’s. Two types of research 

methodologies are widely used in system biology studies: (1) knowledge 

discovery, aiming to explore the hidden patterns or information from the available 

experimental data, and then form a hypothesis; (2) simulation-based analysis, 

which tests hypothesis using in silico experiments.  

 

Knowledge discovery is the process of data integration and interpretation which 

extracts hidden patterns or new links by exploring the huge amount of data, and 

thereby derives some fundamental and applied biological information about the 

whole system. Approaches such as machine learning, statistical discriminators, 

and other sophisticated algorithms are widely used [13, 14]. By applying these 

approaches, researchers have elicited some interesting patterns and enabled this 

information or data that resides in large data repositories to be converted into new 

biological insights.  

 

Simulation-based studies are hypothesis-driven, which attempt to make 

predictions based on the hypothesis that has been validated by experimental data. 
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It is composed two steps: (1) Hypothesis validation. Based on the analysis scope 

and the available biological data, a hypothesis-driven model is constructed. The 

results of in silico experiments are compared with experimental data. 

Inconsistency between them indicates that the assumption made within the model 

is incomplete, and as a consequence the model will be rejected or modified. (2) 

Predictions. Models that can survive the initial validation can be used to make 

predictions which will further be tested by wet experiments. Approaches such as 

systems of ordinary differential equations (ODEs), partial differential equations 

(PDEs), stochastic differential equations (SDEs), and Petri Nets can be applied in 

simulation-based studies.  

 

1.2 Overview of network biology 

 

One way to systematically understand biological systems is to represent biological 

interactions as computable networks, which can facilitate our analysis on how 

these interactions contribute to the structural and functional organization of a 

living cell. The massive information emerging from the fields of genomics, 

transcriptomics, proteomics, and metabolomics makes it possible to reconstruct 

genome-scale networks (Table 1) and understand the biological processes and 

regulations on the system-level [15].  
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Table 1 Genome-scale metabolic networks. 

 

Organism Strain Gene Type  Reference  
Bacillus subtilis 168 4114 Bacteria  [16]  
Escherichia coli K-12 MG1655 4405 Bacteria  [17]  
Geobacter sulfurreducens  3530 Bacteria  [18]  
Haemophilus influenza Rd 1775 Bacteria  [19]  
Helicobacter pylori 26695 1632 Bacteria  [20]  
Lactococcus lactis lactisIL1403 2310 Bacteria  [21]  
Lactobacillus plantarum WCF51 3009 Bacteria  [22]  
Mannheimia 
succiniciproducens 

MBEL55E 2384 Bacteria  [23]  

Mycobacterium 
tuberculosis 

H37Rv 4402 Bacteria  [24]  

Mycoplasma genitalium G-37 521 Bacteria  [25]  
Neisseria meningitidis serogroup B 2226 Bacteria  [26]  
Pseudomonas aeruginosa PA01 5640 Bacteria  [27]  
Rhizobium etli CFN42 3168 Bacteria  [28]  
Staphylococcus aureus N315 2588 Bacteria  [29]  
Streptomyces coelicolor A3(2) 7825 Bacteria  [30]  
Methanosarcina barkeri Fusaro 5072 Archaea  [31]  
Halobacterium salinarum R-1 2867 Archaea  [32]  
Homo sapiens  28783 Eukaryotes  [33]  
Mus musculus  28287 Eukaryotes  [34]  
Saccharomyces cerevisiae Sc288 6183 Eukaryotes  [35]  

 

Biochemical processes that convert environmental stimuli into internal responses 

can be modeled as graph (or network) for computational convenience [36]. There 

are two basic components in each graph (or network): node and edge, where the 

node represents the element involved, such as metabolite, gene or protein while 

the edge represents interactions between these nodes. Two nodes are linked as 

long as they interact with each other, either physically or biochemically. 

According to the types of edges, each network can be distinguished as undirected 

network (Figure 1A) or directed network (Figure 1B). Sometimes, a certain 

‘weight’ is assigned to the edge to indicate interaction strength (Figure 1C). 

http://www.rsc.org/publishing/journals/MB/article.asp?doi=b916446d
http://www.ncbi.nlm.nih.gov/sites/pubmed/20094653
http://www.rsc.org/suppdata/MB/b9/b916446d/AbyMBEL891.xml
http://www.rsc.org/suppdata/MB/b9/b916446d/index.sht
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Though for most networks, nodes are of the same category (homogeneous node), 

the bipartite network is an exception, in which two kinds of nodes (heterogeneous 

node) are available and each node can only connect to nodes of the other kind.  

 

 

 

Figure 1 Adjacency matrix for (A) undirected network, (B) directed network and 
(C) weighted network.  
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Basically, these biological networks can be classified into three categories 

depending on the elements involved: protein-protein interaction (proteins), 

transcriptional networks (genes or transcriptional factors) and metabolic networks 

(metabolites or biochemical reactions). Protein-protein interaction network 

describes the physical interactions between proteins, within which each protein is 

represented as a node and each edge connects two interacting proteins. The 

transcriptional network describes the regulatory relationship between genes, 

where gene acts as node and edge denotes the regulation relations between gene 

pairs. Similarly, the metabolite network is consisted of a set of biochemical 

reactions / metabolites / enzymes.  

 

While protein-protein interaction networks are usually illustrated as undirected 

graphs, the transcriptional and metabolic networks are frequently modeled as 

directed graph. This is due to the nature of interactions. For instance, in 

irreversible reactions, the flux can only flow from substrates to products, 

indicating that each edge should start at the substrates and finish at products if 

using a metabolite network. Similarly, in a transcriptional network, if gene A 

regulates gene B, then the edge should go from A to B, indicating the direction of 

the regulation.  

 

For the same biological process, we can construct different types of networks 

depending on specific research focuses. For instance, for metabolic networks, 

there are reactions, metabolites, and genes involved. If we take the reactions as the 
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sole node, then two reactions are connected if the product of the first reaction is 

the substrate of the second one. Such a network can be tailored for studying the 

structural organization of biochemical reactions. If we are more concerned about 

metabolites, a metabolite network can be constructed in which node represents 

metabolite and edge represents that two metabolites can be coupled by means of 

any reaction. In these two cases, only one kind of node is available in the network, 

causing the loss of some information. To avoid losing any structural information, 

a bipartite network can be constructed in which there are two sorts of nodes, 

metabolites and reactions. Each metabolite node can only connect to reaction 

nodes, where an edge starting from metabolite to reaction node indicating that the 

metabolite is one of the substrates of the reaction whereas an edge starting at the 

reaction node and finishing at the metabolite node indicating that the metabolite is 

one of the product of the reaction. In this bipartite network, the activity of reaction 

node is controlled by the availability of the corresponding enzyme-coding genes. 

If the gene is knocked out or deleted, then the corresponding biochemical reaction 

should be inactive. 

 

1.3 Mathematical representation of biological network (adjacency 
matrix) 

 

Formally, a graph (or network)

 

G , consists of a set of vertices or nodes, ( )v G  

together with an edge set, ( )Gε . All the neighbors of node k are given by ( )N k . 

1 2( ) { , ,..., }nv G v v v=    ( 1 ) 
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( ) ( ) ( )G v G v Gε ⊆ ×    ( 2 ) 

( ) { ( ) : ( )}N k t v G kt Gε= ∈ ∈    ( 3 ) 

 

The adjacency matrix is the mathematical representation of the topological 

structure of a network, which is ready for the mathematical analysis and 

computational simulation of biological networks (for details of adjacency matrix 

for various types of networks, please refer to Figure 1). For a network with N 

nodes, the adjacency matrix is an N by N matrix where each entry in the matrix 

indicates the availability of linkage from one node to another. For unweighted 

network, the entry value is usually set to 1 or 0, where 1 indicates that the two 

nodes are connected somehow whereas 0 indicates that there is no edge linking 

these two nodes. The adjacency matrix of an undirected graph is symmetric 

(Figure 1A) while that of a directed graph is generally not (Figure 1B). 

 

In weighted networks, different strengths may be assigned to each edge which is 

represented as the numerical values in adjacency matrix (Figure 1C). Many real 

complex systems can be mathematically represented by weighted networks. For 

example, in a traffic network, the weight on each edge can be used to represent the 

traffic load in between two cities. The larger the weight, the more congestion the 

traffic considered to be. In metabolic networks, the amount of mass flow through 

bio-chemical reactions can be represented as some specific weights on each edge.  
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1.4 Characterizing the topological features of complex networks 

 

These topological characteristics of complex networks, which can be described by 

some statistical quantities, are quite different from ‘trivial’ networks such as 

regular lattice and random graphs. In the following sections, we will discuss some 

fundamental measures of a complex network (Figure 2):  

 

1.4.1 Degree and degree distribution  

 

Degree is one of the most basic topological characteristics of complex network, 

which indicates how many nodes are connected to the target node. For a directed 

network, the degree can be further distinguished as in- and out- degrees. In- 

degree denotes how many edges points to this node, whereas out- degree denotes 

how many edges start from this node. Nodes with high degree are called ‘hubs’. 

Mathematically, it is represented as: deg( ) | ( ) |k N k= .  
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Figure 2 Topological features of complex network. For undirected network (A) 
and directed network (B), topological features such as in-degree, out-degree, 
clustering coefficient, centrality, and shortest path are illustrated.  

 

The degree distribution ( )P k  of a network is defined as the fraction of nodes 

within the network with degree  k . For example, if in a network with N  nodes, 

( )N k  of them have degree  k , we define ( )P k as ( ) / .N k N  The degree 

distribution is very important in understanding the structural organization of 

networks. It is found that the degree distribution follows a power law distribution 

in many real networks [37, 38], such as social networks, World-Wide Web 

networks [39], and biological networks [40], i.e. ( ) ~ rP k k −  where  k  is the 

degree, the exponent r  is typically in the range 2~3 (Figure 3). In such scale-free 

networks, the probability of having highly connected nodes (hubs) is much larger 

compared with random networks [41].  
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The structure of scale-free network warrants that it is robust to random attack. 

However, attack on certain high-degree nodes (hubs) can easily cause network 

failure [42]. In addition, such characteristic indicates that it is convenient for 

information transmission, and epidemic spreading in scale-free network. For 

example, the viruses can be easily spread across the whole network by targeting 

on the high-degree nodes [43]. Hence, in order to avoid epidemic spreading, we 

can isolate the infected nodes with large degree [44]. 
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Figure 3 Degree distribution of scale-free network. (A) is the power law degree 
distribution in normal scale, while (B) is the same distribution in log-log scale. 
This figure is plotted from our scripts which are based on the Barabási–Albert 
(BA) model [41]. 
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1.4.2 Path and shortest path 

 

Let ,u v  be two vertices in a graph .G  A sequence of vertices 

1 2{ , , ,..., ,... , }i ku v v v v v  is said to be one of the path which starts at node u  and ends 

at node v , of length k. Suppose there is more than one path from node u  to node 

v , then the path covers the least nodes should be the shortest path. It is shown that 

the average path length (or distance) between any two vertices in complex 

network is much shorter than a random network [45].  

 

1.4.3 Clustering coefficient 

 

Clustering coefficient characterizes how likely the neighbors are connected to 

each other. The local coefficient is given by 2
( 1)u

eC
k k

=
−

 for undirected 

networks and 
( 1)u

eC
k k

=
−

 for directed network, where e  represents the number 

edges between the k  neighbors of u  in .G  The average clustering coefficient for 

a network is the average of clustering coefficients all over the nodes. Study has 

showed that the average clustering coefficient of real network is usually much 

larger than random network [45]. Actually, the idea of clustering coefficient 

comes from the observation that if node  A  connects to node B , and node B  

connects to node  C , it is likely that node  A  and node  C  also connect with each 

other. In other words, the local clustering coefficient can be interpreted as the 

number of triangles that can pass through a certain node.  
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1.4.4 Centrality 

 

In large complex networks, it is not likely that all nodes are equivalent. Removal 

of a node may introduce distinct deletion effects depending on its relative 

topological location within the network. It is evident that removal of a cut-node 

(the analog of a bridge for edges) is more severe compared with removal of a 

dead-end node. As a consequence, centrality is introduced to describe the 

significance of a node within the complex network.  

 

There are many ways to characterize centrality. Here we only discuss one of them 

- the betweenness centrality. For a given graph G , the betweenness centrality for 

vertex u  is given by ( )( ) st

s u t st

ug u σ
σ≠ ≠

= ∑ , where stσ  denotes the number of shortest 

paths from node s  to node t  and ( )st uσ  denotes the number of shortest paths 

from node s  to node t  that pass through node u . This formula needs to be 

normalized. The relative value of the betweenness centrality is a good indicator of 

the importance of the node. A larger value (close to 1) suggests that this particular 

node is inevitable to pass through for most of the shortest pathways.  

 

Besides these mathematical measures, there are two other important terms we 

should know. First is ‘giant component’, the largest component in the network 

within which any two nodes can be connected regardless of the direction of the 

edges. In most cases, we are only concerned of the giant component, whereas 
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ignoring those isolated nodes. The second one is ‘strongly connected component’, 

which is similar to giant component except that it also considers the directions. In 

other words, node u  and node v  can reach each other mutually.  

 
 

1.5 The application of network biology in drug development 

 

The potential applications of network analysis include identifying drug targets 

[46-48], understanding cellular organization [49-51] and determining the 

regulation of biological processes [52]. In this section, we will elaborate its 

applications in drug development. 

 

Network systems biology offers a novel way for drug discovery [53-55]. During 

the last century, drug discovery was driven by the assumption that ‘one gene, one 

target for one disease’ aiming to search for ‘disease-causing’ genes [56, 57]. 

Development of molecular biology and technologies in genomics [58] and high 

throughput screening facilitates the identification of genes responsible for diseases 

as candidates of drug targets [59, 60]. The target-based approach has successfully 

resulted in a variety of new drugs [61, 62]. Nevertheless, during the last few 

decades, there has been a significant decline in new drug candidates [63]. 

Researchers began to challenge the assumption of ‘one gene, one target for one 

disease’ [64, 65]. The growing field of network systems biology has also revealed 

the complexness underlying of molecular interactions. For example, genome-scale 
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knockout of genes in model organisms suggested that under laboratory conditions, 

many single-gene knockouts exhibit little impact on the phenotype. For example, 

in Escherichia coli, around 300 genes out of 4000 are vital for growth while all 

the others are dispensable [66]. Such robustness is considered to be caused by 

redundant genes or alternative pathways. In addition, research on drug-target 

networks [67] also indicates the common origins of many diseases and the distinct 

disease-specific functional modules. Furthermore, diseases like cancer are 

extraordinarily complicated with many genes and signaling pathways involved 

[63]. Therefore, it seems that the rational drug design based approach cannot 

guarantee success and may not be the best strategy. So in addition to searching for 

‘disease-causing’ genes, topological and perturbation analysis of the disease-

causing network or biological networks may offer valuable insights into diseases 

and approaches for drug discovery without losing any key information [53, 54].  

 

One obstacle encountered by experimental-based drug discovery is the intensive 

resources required for large-scale drug target screening. Network based approach, 

a complementary to the traditional experimental based approaches, offers 

alternative way for identifying drug targets through topological analysis and 

predicting effects of attacks on the targets [53]. Topological analysis proposes a 

novel way of target identification, either single-gene or combination genes, by 

searching for those perturbations which can achieve a desired phenotype. In 

addition, understanding on genetic interactions in the context of metabolic 

network such as synthetic lethality [68], synthetic rescue [69] and genetic epitasis 
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helps us gain additional insight into drug target identification. Drug inefficiency 

and side effects are the two major reasons for the high failure rate in new drug 

development and such inefficiency may be reduced by integrating drug 

development with network biology [70]. For example, drug inefficiency may be 

circumvented by selecting drug targets whose functions cannot be easily replaced 

by other genes or pathways. Besides, network-based approaches can also be 

utilized to estimate the damage effects of normal cellular homeostasis from 

endogenous and exogenous perturbations [71]. The attacks are characterized by 

‘knockout’ or ‘attenuation’ [72]. In a graph, ‘knockout’ removes target nodes and 

the relevant links from the network, while ‘attenuation’ weakens the strength of 

links. Algorithms such as flux balance analysis [73], and topological flux analysis 

[74] have been designed to characterize the damage effects from perturbations. In 

summary, network biology revolutionizes our view of disease and offers 

alternative ways for drug discovery.  

 

1.6 Identification and analysis of essential genes 

 

Large-scale use of antimicrobial agents such as penicillin, and streptomycin has 

saved millions of people from infectious diseases. However, in the last few years, 

the frequency of drug resistance was increasing [75, 76], indicating the necessity 

to explore more efficient drug targets.  
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Typically, drug targets are those elements involved in key biological processes, 

such as cell wall biosynthesis, cell membrane, protein biosynthesis, DNA 

replication and so on. Perturbation of these elements can lead to bacterial death or 

growth inhibition [77]. Hence, essential genes are considered as ideal candidates.  

 

By definition, essential genes are those genes necessary for cellular growth in rich 

medium [78]. The disruption of essential genes can confer lethality phenotypes 

even in the presence of all the other genes. It indicates that these essential genes 

may participate in certain key processes, where the disruption prevents normal cell 

functions. Therefore, studies on essential genes not only provide a list of drug 

targets, but also deepen our understanding of cellular functions and organizations. 

 

1.6.1 Molecular basis of gene mutation 

 

All organisms can undergo genetic mutations which refer to the alteration in 

nucleotide sequence of genetic material (such as DNA, RNA, and extra-

chromosomal genetic elements). Genetic mutations usually result from errors in 

the process of DNA replication, insertion or deletion of DNA segment to host 

genome by mobile genetic elements, or induced by exposing to chemicals 

mutagens and UV radiation [79-81]. 
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Genetic mutations can occur on a small scale, such as point mutation where a 

specific nucleotide changes from Adenine (A) to Guanine (G) or from Cytosine (C) 

to Thymine (T) or vice versa. Because of genetic code redundancy, the effect of 

point mutation can be either silent mutation (i.e. a point mutation does not result 

in a change to the amino acid sequence), missense mutation (i.e. a point mutation 

results in a codon that codes for a different amino acid), or non-sense mutation (i.e. 

a point mutation results in a premature stop codon). Other types of small scale 

genetic mutations include insertion and deletion mutation which add or remove 

one or more extra nucleotides into DNA, respectively. In addition, it is not 

uncommon to observe large scale chromosomal mutations. For example, 

duplication of larger range of sequences or chromosomal segments may occur 

during the process of genetic recombination [82].  

 

All the above stated molecular events can induce very distinct outcomes such as 

loss of function of genes (loss-of-function mutations), gaining new or abnormal 

functions (gain-of-function mutations), and so on. Some of those function changes 

are deleterious to the fitness of organisms which reduce fertility and even cause 

lethality. Other functional alterations can be either ‘neutral’ which have no 

biological impact on survival fitness or ‘advantageous’ which increase the fitness 

and the success of fertilization. Genetic mutations play a key role in species 

evolution. Under the pressure of natural selection, individual organisms with 

advantageous mutations can pass the good characteristics to offspring at a higher 
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rate of possibility, therefore, endows the offspring a better capability of adaptation 

to the changing external conditions [83, 84]. 

 

The genome of an organism normally carries a large number of mutations, 

whereas some deleterious mutations are tightly associated with diseases. 

Sometimes, even a very small amount of base pairs changing in the DNA 

sequence can result in serious physiological malfunctions. For example, sickle-

cell anemia is caused by alteration of a single nucleotide in the gene coding beta 

chain of haemoglobin protein [85]. Other than that, many complex human 

diseases, such as cancer, are proved to be related to genetic mutations. One 

example is that women with germline mutations in gene BRCA1 and BRCA2 

have a higher risk of developing breast and ovarian cancer [86]. 

 

Considering the important roles of genetic mutations in both normal and abnormal 

biological processes, it is valuable to identify those mutations and investigate their 

relation with physiological alterations. For example, identification of germline and 

somatic mutation can help to develop personalized therapeutics for cancer patients. 

Several genome-scale mutation projects on model animals (e.g. zebrafish) have 

been carried out [87]. However, distinguishing deleterious mutations from the 

large number of non-functional variants that occur within the whole genome is 

still a considerable challenge, and further endeavors are needed. 
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1.6.2 Experimental studies on essential genes 

 

Genome-scale knockout experiments have been used to identify essential genes 

for different model organisms, including E. coli and S. cerevisiae [66, 88, 89]. In 

2006, Baba et al. [66] systematically made a series of single-gene in-frame 

deletion for 4288 genes in E. coli K-12 by replacing the open-reading frame 

coding region with a kanamycin-cassette-flanked fragment and mutants for 3985 

were obtained. The remaining 303 genes that cannot be disrupted are candidates 

for essential genes. This is one of the most reliable systematically generated 

essential gene lists, widely used in essential gene studies [13, 90]. Earlier, a 

genetic foot printing approach was used to assess gene essentiality for E. coli in 

the aerobic, rich media [91]. 620 genes were identified as essential genes while 

3126 genes as non-essential under the given media. A systematic study on yeast 

[88] showed that around 1105 genes (18.7%) are essential for growth on rich 

glucose media. Techniques such as mutagenesis, transposon, or allelic 

replacement have also been used to disrupt target gene functions by replacing the 

corresponding open-reading frame with some non-functional fragment just like 

the Baba et al. experiments [66]. If the mutant strains can form clones or maintain 

a growth rate comparable with the wild type, the corresponding gene is considered 

as an essential gene, otherwise it is termed “non-essential”. Occasionally, 

researchers may be more concerned about identifying the conditionally essential 

genes which are the genes crucial in certain growth conditions [92], such as 

different carbon sources, aerobic, or anaerobic.  
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However, there are some limitations with these experimental techniques. First of 

all, the experiment is quite time-consuming, and resource intensive. Besides, it is 

not feasible to conduct experiments for all microorganisms, especially infectious 

ones. Moreover, the experimental results for the same species may vary a lot. For 

example, two experiments targeting on yeast generated essential gene lists of 

different sizes, one with around 600 genes [88], and the other with up to 900 

genes [93]. Profiling of E. coli Chromosome (PEC) is a database for E. coli [94], 

in which all the essentiality information is obtained from the literatures, including 

302 essential genes, 3136 non-essential genes and 5 unknown. Notably, a 

comparison with the Keio collection [66] indicates that they share 264 common 

essential genes while 50 genes specific to each database. This indicates that there 

is a demand to reconcile the experimental results.  

 

1.6.3 Identification of essential genes via computational approaches 

 

The development of high throughput technologies has made it possible to generate 

large-scale genome sequencing data, constructing large-scale computational 

models for a lot of organisms. Network based approaches either apply flux 

balance analysis (FBA), or network topological features for essentiality 

identifications. FBA [73] is a constraint-based approach which predicts the fluxes 

through each reaction with the knowledge of stoichiometric matrix, lower and 

upper constraints for each flux, and the biomass composition (for details, please 

refer to Section 2.4, Chapter 2). It has been widely used to predict the growth 

rate and viability of mutant strains, where a significant change in the growth rate 
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between mutant strain and wild type indicates the indispensable of target gene 

[95]. Later on, the assumption underlying flux balance analysis is challenged 

because researchers suggest that it does not make sense to assume that the mutant 

strains are also evolved optimally like wild type. As a result, a modified constraint 

based approach (MOMA) is proposed [96]. Though constraint-based approaches 

may have good prediction accuracy, clear and accurate nutrient availability 

information, biomass components, and a completeness network definition is 

required.  

 

Besides FBA approach, topological based methods are also widely used in 

predicting essential genes. For example, network topology alone is considered 

enough for predicting viability of mutant strains by employing a proposed 

network measure ‘synthetic accessibility’ in E. coli and S. cerevisiae [97]. 

Another category is machine learning based approaches. The principle of this kind 

of approach is to identify some properties or features that may associate with 

essentiality, and then use them to train the network model and finally provide 

some predictions. Features used may include network topology (such as degree, 

closeness, betweenness centrality, or clustering coefficient, in-degree, and out-

degree and so on) and genome sequence characteristics (such as codon adaption, 

GC content, localization signals) [98]. In some studies, more than 25 features are 

used to predict essentiality. However, one problem with this kind of approach is 

that there is no clear evidence indicating any causality between these features and 

essentiality. Although they may reveal some differences between essential and 
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non-essential genes in the structural organization, they are not the determinant 

factors to discriminate these two types gene. As a result, the prediction accuracy 

may not be that optimal. Instead of using these features, some causality features 

may achieve even better results. Therefore, it is necessary to find out the links 

between genotypes and phenotypes, and by what means. Studying on these 

internal interactions may deepen our insights in essential genes and shed light on 

the development of efficient essentiality prediction approaches.  

 

1.6.4 Single gene deletion analysis 

 

The advent of high throughput sequencing technologies makes it possible to 

reconstruct large-scale biological networks [1, 2, 5, 59]. Genome-scale single gene 

deletion analysis showed that most genes are dispensable, though a few of them 

are necessary for cellular growth [66, 88]. Such robustness is universal across 

species [99]. 

 

The concept of gene essentiality is also extended to metabolite/reaction/enzyme. 

A quantitative analysis of enzyme importance revealed that while a large fraction 

of enzymes can cause little damage when removed, there are a small fraction can 

cause serious damage [100]. Flux analysis on metabolic network showed similar 

findings. The global organization of metabolic fluxes [101] indicated that while 

most metabolic reactions have low fluxes, there are a few of them with quite high 

fluxes. Analysis on the flux distribution on central metabolism [102] suggested 
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that most reactions can be reduced greatly, for example, reduced to 19%, without 

having significant impact on the optimal growth rate. However, the fluxes via 

three-carbon glycolytic demonstrated limited robustness.  

 

Previous study showed that under laboratory conditions, 80% of yeast genes seem 

not to be essential for viability [88]. It raises the question of the cause and 

evolution of mechanistic basis for essentiality and dispensability. Three 

explanations are proposed: (1) Conditional essentiality, i.e. some experimentally 

identified non-essential genes are indeed essential in conditions that not examined 

[103]. Several experimental studies [92, 104, 105] have been implemented to 

identify conditional essential genes. (2) Genetic compensation by duplicated genes 

or genes with overlap functions [103, 106]. (3) The presence of alternative 

pathways or redistribution of flux distribution [103, 107]. ‘k robustness’ analysis 

for multiple genetic knockout indicates the available of functional backup [108]. 

One study showed that the metabolite essentiality elucidates the metabolic 

network robustness [109]. They illustrated that essential metabolites have the 

ability to maintain a steady flux-sum even in response to severer perturbations by 

redistributing the fluxes. Another study [110] revealed that essential reactions are 

usually associated with low-degree metabolites. These reactions are essential 

because they are the only source available to consume/produce the respective 

metabolites.  
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In the context of metabolic network, it is intrigue to know how genetic 

perturbation leads to lethality. The mechanisms which link gene deletion to the 

final phenotype are seldom studied. As the structural organization of metabolic 

network determines key functions and regulations [111], we would like to explore 

on the structural and functional organizations of essential genes and how it lead to 

lethality.  

 

1.6.5 Evolution of essential and non-essential genes 

 

Studies showed that essential genes are more conserved compared with non-

essential genes in bacteria [112]. As essential genes are highly participated in 

some key biological processes that are indispensable for an organism, it is 

expected that they are highly conserved across species [78]. This is further 

confirmed by some comparative genomic analysis. For example, sequencing of 36 

clinical Pseudomonas aeruginosa isolates [113] revealed that essential genes 

evolve at a lower rate and moreover, no sequence variation is observed for 980 

essential genes. Homologous analysis of Staphylococcus aureus and Mycoplasma 

genitalium genome [114] revealed 168 conserved genes. Interestingly, most of 

these genes are found to be essential in M. genitalium and other bacteria.  

 

The conservation of essential genes in bacteria is widely accepted as the premise 

for identifying novel essential genes across species. For example, by deleting open 

reading frames (ORFs) from E. coli genome, the encoded gene products of which 
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are homologous to proteins from bacterial pathogens, researchers identified 4 

novel essential genes, implying a new strategy for broad-spectrum antibiotics drug 

development [115]. Another down-selection approach is applied to DEG, a 

database of essential genes which includes a large number of putative essential 

genes [93], and identified 52 essential genes conserved across 7 (or more) out of 

14 genomes [116]. Further experiments confirmed that 7 out of 8 mutants are 

shown to be essential for survival for a non-related species. 

  

It is easy to conclude that the orthologous of essential genes in one species is 

essential in other species. However, this is not the case. Sometimes, orthologous 

of essential genes are missing or become non-essential genes in other species [91, 

117, 118], implying that function of essential genes may be replaced by other non-

essential genes.  

 

In contrast to bacteria, no significant difference between the evolution rates of 

essential and non-essential genes is observed by analyzing the evolutionary 

distance between S. cerevisiae and C. elegan proteins [119]. An analysis of mouse 

and rat orthologous genes found that essential and non-essential genes evolved at 

similar rates if the biased assumption (i.e. genes thought to evolve under 

directional selection) was excluded from the analysis [120]. 
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1.7 Genetic interactions 

 

As indicated by the genetic buffering mechanisms [106], understanding on the 

genetic interactions (or epistasis) may help unveil a higher-order organization of 

complex biological networks and deepen our insights on the mechanisms 

regarding the cause and evolution of dispensability and essentiality.  

 

By definition, epistasis is the ability of one mutant to ‘mask’ the phenotypes 

caused by other mutants, an indicator of the interactions between genetic mutants 

[121, 122]. Two types of interactions are especially of importance, namely, 

synthetic lethal and synthetic rescue. Synthetic lethal (or rescue) are gene pairs 

whose double deletion can lead to lethality (or survival) whereas their individual 

gene deletion cannot [123]. Their significance in anti-cancer drug development 

[68, 69, 124] motivated studies which targeting to identify/predict synthetic 

lethal/rescue pairs [90, 125]. 

 

Experimentally, synthetic genetic arrays (SGA) [126] and synthetic lethality 

analysis by microarray (SLAM) [127] are two approaches widely used for 

screening synthetic genetic interactions. A large-scale SGA screen for yeast 

identified a genetic network with ~1000 genes and ~4000 interactions [128]. 

Further network analysis revealed the small world properties, e.g. the length of the 

shortest path between pairs of genes is significantly shortened compared with 

random network [128].  
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As the experimental approaches are quite time-consuming and resource 

intensively, synthetic interactions are also extensively explored by computational 

approaches. In the framework of metabolic network, fitness may be computed to 

characterize the epistatic effects [129]. The epistasis analysis revealed that genetic 

interactions can be further classified as: buffering, aggravating, and non-

interaction [50]. Positive epistasis where double deletion can enhance the fitness is 

found prevalent in both E. coli and S. cerevisiae [130]. The epistatic interactions 

are hierarchically organized, forming functional modules within which purely 

aggravating or buffering links are observed [50]. Synthetic lethal interactions are 

demonstrated capable of predicting genetic compensatory pathways [131]. While 

the genetic interactions identified in yeast are not highly conserved across animals 

[132], the synthetic lethal genetic interaction networks between distantly related 

eukaryotes are significantly conserved [133]. 

 

Although both experimental and computational analyses have revealed some 

properties associated genetic interactions, a mechanistic understanding on how the 

cellular phenotypes arise in response to double/multiple gene deletion is limited 

studied. A comprehensive understanding on the genetic interactions may help 

unveil the organization of biological networks and offer explanations for the 

observed genetic buffering or aggravating. 
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1.8 Objectives and outline of this thesis 

 

1.8.1 Objectives of this thesis 

 

One of our goals in this thesis is to reveal the nature of essential and non-essential 

genes by addressing problems like what causes the essentiality and dispensability 

from the scope of metabolic network and how it evolves across species. The 

mechanism studies regarding this problem are controversial and there are mainly 

three explanations: (1) Conditional essentiality, i.e. those non-essential genes are 

actually essential in the conditions not examined. (2) Overlapped gene function, 

which means that those non-essential genes are functionally overlapped by other 

genes. (3) Pathway compensation, in other words, alternative pathway is available 

to compensate the lost function. The study of conditional essential genes is not the 

focus of this thesis. Instead, we will study from the perspective of functional 

complementary to reveal how essential gene deletion can trigger the lethality 

phenotypes whereas non-essential gene deletion cannot. We will study this 

problem by characterizing damage caused by single gene deletions and addressing 

questions like what the functional and structural differences made the distinct 

phenotypes.  

 

Another goal is to computationally predict essential genes from the reconstructed 

metabolic networks. Once we can gain new insights into how essential and non-

essential genes can exert distinct deletion effects, some features tightly associated 
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with essential genes can be extracted, which are the basis for essential gene 

prediction. The more we gain from the mechanism studies, the more efficient 

prediction approaches we can propose. 

 

Genetic interactions between pairs of genes is another goal of our study, which 

can help to reveal a higher order organization of biological networks and offer 

explanations for the observed ‘epistasis’. In this thesis, we study not only the 

characteristics of gene pairs with epistasis effects, but also how it evolves across 

species from the perspective of evolution.  

 

1.8.2 Outline of this thesis 

 

In Chapter 1, we first introduced network systems biology and reviewed some 

characteristics of network biology and its applications in drug discovery and 

development. Then, we illustrated the importance of essential gene analysis and 

its current progresses, including the development of essential gene prediction 

approaches, the mechanisms explanations for gene dispensability, evolution 

studies on essential genes, and genetic interactions between pairs of genes.  

 

In Chapter 2, we summarized some approaches and databases used in this thesis. 

A brief illustration of how we can construct metabolic networks from some 
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available databases was also given. The algorithm we proposed to capture gene 

deletion effects was illustrated in detailed steps. 

 

In Chapter 3, we systematically analyzed the differential deletion effects between 

essential and non-essential genes in the context of metabolic network. Initially, a 

new measure for single gene deletion effect was introduced. Then a mechanism 

was proposed to explain the distinct deletion effects between essential and non-

essential genes based on some comparisons between these two kinds of gene 

deletion effects. 

 

In Chapter 4, a newly developed method targeting for essential gene prediction 

was proposed. After a brief introduction of the algorithm, we then compared the 

performance of this approach with other available methods. Some suggestions on 

how to improve the prediction accuracy was also indicated.  

 

In Chapter 5, we applied the double gene deletion analysis on the genome-scale E. 

coli and yeast metabolic networks to reveal the genetic interactions. Gene pairs 

with reduced deletion effects and enhanced deletion effects were further analyzed 

in details. Characteristics associated with gene pairs were further studied across 

species.  

 



 
 

 
Chapter 1 Introduction                                                                                           34 

 

 
 

Chapter 6 summarized all the major findings and contributions of this work. 

Limitations and some potential future works were also discussed in this chapter. 



Chapter 2 Materials and methods 

 

2.1 Biological databases 

  

2.1.1 Kyoto Encyclopedia of Genes and Genomics (KEGG) 

 

Kyoto Encyclopedia of Genes and Genomics (KEGG) [134] is a database resource 

available for metabolic network reconstruction and pathway analysis. It is 

hierarchically organized within which there are three sub-databases KEGG 

LIGAND, KEGG GENE and KEGG PATHWAY [134]. KEGG LIGAND is the 

collection of chemical compounds and reactions relating to the cellular processes, 

whereas KEGG GENE is the collection of genomic information such as gene 

annotation. KEGG PATHWAY represents a higher order of functional related 

information, such as metabolism, and signal transductions, among which the 

metabolism are the best organized part. Metabolism is classified into 13 categories 

(Table 2), which are further grouped into around 160 reference metabolic 

pathways.  

 

Although these three sub-databases (i.e. KEGG LIGAND, KEGG GENES, and 

KEGG PATHWAYS) provide necessary knowledge for creating the draft of 

genome-scale metabolic network, lacking of the information of reaction directions 

for around 3000 biochemical reactions makes it insufficient for reconstructing a 

detailed directed metabolic network. Though previous studies [135] proposed 

some rules for determining the reaction directions, metabolic network 
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reconstructed from KEGG database is not the ideal candidate for our quantitative 

studies. However, the enzyme, gene, and pathway information are good resources 

for further pathway analysis and cross-species study.  

 

Table 2 13 categories of metabolism classification in KEGG database 

 

Label Pathway 
1.1 Carbohydrate metabolism 
1.2 Energy metabolism 
1.3 Lipid metabolism 
1.4 Nucleotide metabolism 
1.5 Amino acid metabolism 
1.6 Metabolism of other amino acids 
1.7 Glycan biosynthesis and metabolism 
1.8 Metabolism of cofactors and vitamins 
1.9 Metabolism of terpenoids and polyketides 
1.10 Biosynthesis of other secondary metabolites 
1.11 Xenobiotics biodegradation and metabolism 
1.12 Reaction module maps 
1.13 Chemical structure transformation maps 

 
 

2.1.2 BiGG database 

 

Biochemical Genetic and Genomic knowledgebase (BiGG) of large scale 

metabolic reconstructions is used for metabolic network reconstruction and further 

quantitative analysis in this thesis since the information contained in this database 

is of high confidence [136]. Different from KEGG database, BiGG is integrated 

from many available sources following by model refinement by approaches such 

as Flux Balance Analysis (FBA). Metabolic models available in BiGG is 

reconstructed by summarizing all the information from KEGG and other database, 
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followed by literature reviews and quantitative approaches such as FBA and gap 

analysis to fill in the ‘gaps’ by adding missing reactions into the network [137]. 

This procedure is iterated until the model is optimized and tested. Besides, each 

reaction is given a confidence level to indicate the reliability. As a consequence, 

network from BiGG is more reliable and suitable for modeling analysis.  

 

2.2 Metabolic network reconstruction 

 

2.2.1 Data source for network reconstruction 

 

The metabolic networks of E. coli and S. cerevisiae are reconstructed from models 

E. coli iAF1260 [17], and S. cerevisiae iND750 [138] (for details, please refer to 

Section 2.2.3, Chapter 2), exported from BiGG database (http://bigg.ucsd.edu/-

bigg/main.pl). The exported file includes information such as reaction 

abbreviation, subsystem, equation, gene association, confidence level and so on. 

In addition, BiGG provides the information of reaction directions by utilizing the 

symbols ‘--&gt’ and ‘&lt==&gt’ under the entry ‘Equation’. For the listed 

equation, ‘--&gt’ indicates that this reaction flows from the left side to the right 

side. If this is replaced by ‘&lt;==&gt’, it suggests that the reaction is reversible 

(Figure 4).  
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2.2.2 Gene-protein-reaction (GPR) association 
 

Biochemical reactions can be linked to enzyme-coding genes via gene-protein-

reaction (GPR) association information. Basically, there are two kinds of relations, 

isozymes and protein complex, although others may be the mixture [137]. 

Isozymes refer to those gene products that function independently, namely, each 

gene product is sufficient for catalyzing the reactions. As for protein complex, 

multiple gene products form a complex in order to catalyze reactions. In this case, 

all of them are necessary for proper functioning. In the exported SBML (System 

Biology Markup Language) file, the isozymes and protein complex are indicated 

by the logic word ‘AND’ and ‘OR’ respectively. For the first example (Figure 

4A), these genes are in the logic ‘OR’ relation, suggesting that either of them is 

enough to catalyze the reaction, which is the case of isozymes. For the second 

example (Figure 4B), these genes are in the logic ‘AND’ relation, indicating that 

all of them are required for the proper catalyzing, which is the case of protein 

complex. Sometimes the GPR association is a bit complex, involving both cases 

(Figure 4C). For this complicated case, proteins encoded by genes breakdown by 

logic ‘OR’ is enough for catalyzing the reaction (in this example, either gene pair 

b0077 and b0078, or gene pair b3670 and b3671 is enough for the reaction).  
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Figure 4 Samples of exported SBML file from BiGG database. (A) Isozymes; (B) 
Protein complex; (C) Combination of both isozymes and protein complex. In the 
exported SBML file, each reaction is characterized by the abbreviation, equation, 
confidence level, gene association, or enzymes. The equation can either be 
irreversible, or reversible, where ‘&gt’ indicates its irreversible, and ‘&lt;==&gt’ 
indicates its reversible.  

 
 

2.2.3 Metabolic network representation and visualization 
 

Network reconstruction is the process of converting and resembling biochemical 

reactions into computational data structure. In this thesis, we converted the model 
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into a directed, bipartite network, which consisting of two types of nodes, 

metabolites and reactions.  

 

For the example reaction, :R A B C D+ − > + , two types of nodes (or vertices) are 

defined in our graph structure, i.e. reaction node (e.g. R ) and metabolite nodes 

(e.g. , , ,A B C D ). A directed edge connects a metabolic node to a reaction node if 

the metabolite participates in the reaction as reactant (directed towards the 

reaction node) or product (directed towards the metabolite node). In this example, 

four edges are added to the graph, i.e. A R− >  , B R− >  , R C− >  and R D− > . 

For reversible reaction, we treated it as two separately reactions. In this example, 

eight edges are added to this graph.  

 

Currency metabolites, which typically involved in a variety of reactions, are 

generally excluded from metabolic network analysis as their presence may 

significantly decrease the path distance and add some meaningless links into the 

network [135, 139]. For example, in glycosis metabolism, a sequence of 

biochemical reactions can convert glucose to pyruvate (Figure 5). However, as 

ATP is involved in both the first and last reaction, these two reactions will be 

linked if currency metabolites are included in the network reconstruction.  
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Figure 5 The glycolysis pathway which converts glucose to pyruvate [135]. 
Currency metabolite ATP introduces meaningless links that ‘short cut’ the 
distance from glucose to pyruvate. 

 

As a consequence, 26 currency metabolites such as ATP, ADP, and NADPH are 

removed from our network (Table 3) [140]. Exchange reactions involving 

metabolites transporting between different cellular locations are also discarded as 

this is not our focus. The obtained E. coli iAF1260 network includes 2351 nodes 

and 4038 edges, while S. cerevisiae iND750 includes 1441 nodes and 2596 edges. 

A reconstructed bipartite metabolite from the cofactor and prosthetic group 

biosynthesis pathway of E. coli iAF1260 is demonstrated in Figure 6.  
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Table 3 26 currency metabolites. 

 

26 currency metabolites 
ATP UMP CMP propanoyl-CoA 
ADP GMP CTP L-glutamine 
UTP NAD CDP L-glutamate 
UDP NADH H2O phosphate 
GTP NADP CO2 2-oxogutarate 
GDP NADPH NH2  
AMP CoA acetyl-CoA  

 

 

Figure 6 Reconstructed metabolic network. The cofactor and prosthetic group 
biosynthesis pathway of E. coli iAF1260 is reconstructed and visualized by open 
software Cytoscape [141], a powerful tool to customize the visualizations. In this 
figure, it is noticed that most nodes form a giant component whereas some 
reactions are isolated. Reversible reactions can also be detected. 
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2.3 Characterize gene deletion effects 

 

In this thesis, we devised an algorithm which can characterize single and multiple 

gene deletion effects by a list of affected genes based on a previous topological 

flux balance analysis method [74].  

 

2.3.1 Corresponding reactions 

 

Before going further into our method, we need to clarify some terms used. 

Considering the GPR association (for details, please refer to Section 2.2.2), each 

gene may participate in several reactions. However, it is not likely that deletion of 

the gene can affect all of these reactions due to functional compensation. Hence, 

for each gene in the network, we can identify those reactions that cannot occur 

anymore due to the lack of a particular gene, which are termed as ‘corresponding 

reactions’.  

 

As mentioned in previous section, there are basically two kinds of logic relations 

‘AND’ and ‘OR’ in the GPRs associations (Figure 7). The logic ‘AND’ indicates 

that both genes are necessary for properly encoding the corresponding enzymes, 

which acting as the catalyst of reactions. The logic ‘OR’ suggests that either gene 

is enough for the reaction, implying the functional overlap between genes. 

Another complex one is the combination of two.  
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The ‘corresponding reactions’ of each reaction is determined case by case. For the 

first case (Figure 7A) where genes are in the logic ‘AND’ relations, all of these 

genes are necessary for the proper function of the reaction. Lacking any of them, 

the reaction cannot occur anymore since the lost function cannot be compensated. 

So in this scenario, the reaction is the ‘corresponding reaction’ for all of the 

associated genes.  

 

For the second case (Figure 7B) where genes are in the logic ‘OR’ relations, any 

of the genes is capable of encoding the corresponding enzyme. Therefore, 

removing any of the single genes associated will not affect the reaction because of 

the existence other genes of similar functions. In this scenario, the reaction is not 

the ‘corresponding reaction’ for all of the associated genes.  

 

Another case (Figure 7C) is a bit complex as it may involve both the logic ‘OR’ 

and ‘AND’. Since the logic ‘OR’ has high priority compared with the ‘AND’, we 

need to check the sub-gene groups. If one gene appears in all of the sub-gene 

groups, it indicates that the removal can affect all of sub-gene groups. As a result, 

the enzyme cannot be encoded and therefore no reaction occurs. So in this case, 

the reaction counts one ‘corresponding reaction’ for this gene. Hence, to judge 

whether one reaction belongs to the ‘corresponding reaction’ of a gene, we need to 

identify whether the removal of gene can affect the activity of the reaction.  
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Figure 7 Gene-protein-reaction Association. (A) ABTA is a reaction, which is 
catalyzed by the encoded product of gene b2662 or b1302. Either gene is enough 
for the reaction. (B) Gene b2222 and b2221 work cooperatively to catalyze the 
reaction ACACCT. Both genes are required for the reaction. (C) For reaction 
ACHBS, sub-gene group (b3670 and b3671), or (b0077 and b0078), or (b3768 
and b3769 and b3737) is enough to catalyze the reaction. All these reactions are 
obtained from BiGG database [136]. 

 

2.3.2 Cascading failure procedures 

 

Our gene deletion algorithm is based on the assumption that at the steady state, 

each internal metabolite should have a non-zero in-degree (generated by upstream 

reactions) and out-degree (consumed by downstream reactions). To initiate the 

algorithm, we first identified the ‘corresponding reactions’ for each query gene 

according to the GPR association information. Only when all the enzyme subsets 

are non-functional, we assumed that a particular reaction cannot occur. Next, we 

started the cascading failure procedures by removing all the ‘corresponding 
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reaction’ nodes for the query gene and their links from bipartite network 

simultaneously.  

 

In the following step, we searched the bipartite metabolic network upwards and 

downwards, finding all metabolites with zero in-degree or out-degree. These 

metabolites and their links are removed in the next step, followed by searching for 

reaction nodes with incomplete substrates or products. The procedures are iterated 

until all the leftover metabolite nodes with non-zero in-degree and out-degree 

whereas reaction node with complete substrates and products. A list of affected 

reactions can be obtained in this process. The detailed network failure procedures 

were illustrated in Figure 8.  
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Figure 8 Schematic diagram for network cascading failure for single gene 
deletion. (A) original metabolic network (B) delete the ‘corresponding reaction’ 
R1 (cross, box with dashed border) for the query gene and its links (dash lines) (C) 
remove metabolites with zero in-degree or out-degree (metabolites: d, circle with 
dashed border) and reaction R4 (box with dashed border) which with incomplete 
substrates and products and the corresponding links (dash line) (D) iterating the 
deletion procedures upward sand downwards in the network until all the 
sabotaged metabolite and reaction nodes are removed. Reactions R1, R2, and R4 
will be removed in response to query gene deletion.  

 

Finally, we mapped our obtained reaction lists to gene lists. For those affected 

reactions, as long as they belong to another gene’s corresponding reactions, we 

assumed that this particular gene will be affected in response to single gene 

knockout. The union of all the affected genes formed our damage lists. For the 

case that one gene is associated with reaction in the damaged reaction list, and 

also associated with reactions not in the list, we still put it in the damage list, 

because its partial function is affected. The overall procedures from query gene to 

damage list determination were summarized in Figure 9. 
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Figure 9 Overview of the self-devised algorithm. (A) The workflow of this 
algorithm. For any query gene, corresponding reactions can be identified through 
analyzing the gene-reaction association. The obtained corresponding reactions are 
the inputs for the topological flux balance, whose output is a list of affected 
reactions. These affected reactions are mapped to the corresponding genes based 
on gene-reaction association to find out genes whose function can be affected in 
response to the query gene deletion. (B) For reaction associated with genes in 
logic ‘AND’ relations, any gene is essential for the proper function. Therefore, 
this reaction is the corresponding reaction for either gene. For example, reaction 
ACACCT is catalyzed by the encoded protein of gene b2222 and b2221. This 
reaction is the corresponding reaction for either gene b2222 or b2221. (C) For 
reaction R1 deletion, initially all the edges connected to this reaction are removed, 
followed by metabolite nodes whose in-degree or out-degree becomes zero (such 
as metabolite node: d). Once metabolite d is removed from the network, reaction 
R3 cannot occur anymore since incompleteness of substrates. Such procedures are 
repeated until all the leftover nodes are satisfied with the criteria. In the end, 
metabolites d and f, and reaction R3 will be removed from the network. R3 is the 
affected reaction in response to R1 removal. 

 

 

2.4 Flux balance analysis (FBA) 

 

Flux balance analysis (FBA) is a widely used constraint-based approach in 

studying the genome-scale metabolic network [73, 142], which applying the linear 

optimization to determine the steady-state reaction flux distribution by 

maximizing or minimizing the objective functions. One of the key assumptions 

underlying FBA is that cells can perform optimally with respect to the different 

objective functions under the evolutionarily pressure [142]. The objective 

functions to be optimized may vary, depending on the purpose of the study. It may 

be maximization of the biomass production [143], or minimization of the nutrients 

requirement [144, 145]. Once the objective function is determined, the flux 

optimization problems can be solved to obtain the steady-state flux distribution by 
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adding the lower and upper boundary constraints to each flux. The obtained flux 

solutions may provide some insights into the metabolic network and some 

underlying biological processes [50, 146]. For example, FBA is applied to yeast 

metabolic network to study gene epistatic interactions, which helps to understand 

the functional organization of biological networks [50]. As the various forms of 

the FBA, it can be customized to solve different problems, such as predicting the 

phenotypes for single gene deletion strains [147, 148], the phenotypes under 

different carbon sources [145, 149]. In certain cases, FBA can even unveil 

interactions within the networks [150-152]. The FBA problems can be solved 

through two steps: mathematical representation and optimization.  

 

2.4.1 Mathematical representation of FBA 

 

The FBA problems can be converted to linear programming optimization problem. 

In the example below, metabolite A participates as a product in reaction R1 and 

substrate in reaction R2. 

 1:reaction R B C A+ →    ( 4 ) 

 2 :reaction R A D E+ →    ( 5 ) 

 

The concentration change with respect to time can be represented by the equation:  

[ ] ( ) ( )1 2
d A

v r v r
dt

= −
   

( 6 ) 

 



 
 
 

Chapter 2 Materials and methods                                                                          51 
 

 
 

where ( 1)v r  and ( 2)v r  are the flux through reaction R1 and R2 respectively, [ ]A  

is the concentration of metabolite A.  

 
 

At steady state, the consumption rate of metabolites should equal to the 

production rate, in other words, the time derivative of the concentration equals to 

zero. For each metabolite, we can generate one such equation. Mathematically, it 

means for each metabolite M, it should satisfy the relation:  

[ ] 0
d M

dt
=

   
( 7 ) 

 

These equations can instead be represented as the product of a matrix and a vector, 

where the vector is the flux through each reaction and the matrix is the 

stoichiometric coefficient. Here is an example:  

1: 1 2 3R M M M+ →     ( 8 ) 

2 : 2 4 5R M M M+ →   ( 9 ) 

3: 3 5 6R M M M+ →    ( 10 ) 

 

Six metabolites are involved in three reactions. As a consequence, the 

stoichiometric matrix is 6 by 3, where each column represents one reaction and 

each row represents one metabolite. Each entry is either 1 or 0, or -1, where 1 

indicates it acts as product, -1 as substrate and the leftover entries are filled with 

zero.  
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1 0 0
1 1 0

1 0 1
0 1 0
0 1 1
0 0 1

S

− 
 − − 
 −

=  − 
 −
 
      

( 11 ) 

 

Here is a generalized way to obtain the matrix. For each single metabolite, the 

equation (6) can be rewritten as:  

( ) ( )1 2 *dA v r v r S v
dt

= − =
   

( 12 ) 

 

where  [1; 1]S = −  and [ ( 1), ( 2)]v v r v r= .  

 

For any metabolite, it has one such equation and to sum up, we obtained an S-

matrix with dimension M by N, where M is the number of metabolites involved in 

the network and N is the number of reactions involved. Each row of the matrix 

represents one metabolite and each column represents one reaction. The entry of 

this matrix should be the negative (positive) stoichiometric coefficient if the 

metabolite is the substrate (product) of the reaction. In other cases, the entry value 

will be zero. The stoichiometric matrix is a sparse matrix as for most of the 

reactions, only a few compounds are involved. The dimension of the vector v  

should be N by 1. At steady state, the concentration change should be zero for any 

internal metabolites. Consequently, the equality constraints are obtained: .  

 

S *v = 0
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As the number of metabolites is larger than the number of reactions, this equality 

constraint is under-determined. That means additional constraints are required to 

solve the problem. Commonly, the lower and upper boundaries are added for each 

flux.  

 

One of the commonly used objective functions is the biomass production, which is 

frequently used as a measure of cellular growth, in terms of the biosynthetic 

requirements to produce a cell. The following is the biomass components in E. 

coli K-12 model (Table 4) [153], including some key biosynthetic precursors.  
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Table 4 Biomass components. 

 

Coefficient Metabolites Coefficient Metabolites 
0.001 AMP 0.488 L-Alanine 
0.0247 dATP 0.281 L-Arginine 
0.0254 dCTP 0.229 L-Asparagine 
0.0254 dGTP 0.229 L-Aspartate 
0.0247 dTTP 0.087 L-Cysteine 
45.7318 ATP 0.25 L-Glutamine 
0.126 CTP 0.25 L-Glutamate 
0.203 GTP 0.09 L-Histidine 
0.136 UTP 0.276 L-Isoleucine 
0.003 UDP-glucose 0.428 L-Leucine 
0.035 Putrescine 0.326 L-Lysine 
0.007 Spermidine 0.146 L-Methionine 
0.582 Glycine 0.176 L-Phenylalanine 
0.154 Glycogen 0.21 L-Proline 
45.5608 H2O 0.205 L-Serine 
0.05 5-Methyltetrahydrofolate 0.241 L-Threonine 
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0.00005 Acetyl-CoA 0.054 L-Tryptophan 
0.000006 Coenzyme A 0.131 L-Tyrosine 
0.00001 FAD 0.402 L-Valine 
0.00215 Nicotinamide adenine dinucleotide 0.0084 Lipopolysaccharide  
0.00005 Nicotinamide adenine dinucleotide - reduced 0.001935 Phosphatidylethanolamine  
0.00013 Nicotinamide adenine dinucleotide phosphate 0.0276 Peptidoglycan subunit of Escherichia coli 
0.0004 Nicotinamide adenine dinucleotide phosphate - 

reduced 
0.000464 Phosphatidylglycerol  

0.000129 Cardiolipin  0.000052 Phosphatidylserine  
0.000003 Succinyl-CoA   
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Different objective functions are used for diverse purposes. To maximize the 

growth rate, it is preferred to set the biomass equation as our object. Hence the 

flux balance analysis problem can be represented at follows: 

: *objective c biomass    ( 13 ) 

 :  * 0subject to S v =    ( 14 ) 

i i ilb v ub≤ ≤    ( 15 ) 

 

where c  is the coefficient of metabolites in biomass equations, S  is the 

stoichiometric matrix, v  is the vector of flux through each reaction, and equation 

(15) is the lower and upper boundary constraint on each individual flux.  

 

2.5 Essential gene lists 

 

Essential genes are defined as those genes necessary for cellular functions under 

the given medium, which is usually the rich medium. It is usually assessed 

through single gene knockout experiment. A series of single gene deletion strains 

were constructed and the final lethality phenotype suggested the essential genes. 

Experimental results for E. coli are quite abundant. For example, a genetic foot-

printing technology was applied to identify the gene essentiality in the E. coli K-

12 model under the uniform growth conditions, i.e. logarithmic aerobic growth of 

strain MG1655 in enriched LB medium [91]. Another list is the Profiling of E. 

coli Chromosome database (PEC database) [94], where the information of 

essentiality was concluded from a systematic review of experimental literature. In 
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this database, 302 genes are classified as essential genes, 4432 as non-essential 

while the left 5 are unknown. However, the most complete one should be the Keio 

collection [66], where a genome-scale single gene deletion in the E. coli K-12 was 

conducted. For the 4288 target genes, 3985 of them can obtain mutant strains. For 

the leftover 303 genes that cannot have the mutant strains, they are considered as 

essential genes. 3 of them have no corresponding gene name or the b-name, 

leaving 300 genes. In our studies, all the calculations are based on the Keio 

collection, whereas in the discussion part, PEC database is also used for cross-

reference. For yeast, the essential gene list is obtained based on Saccharomyces 

Genome Deletion Project (http://wwwsequence.stanford.edu/group/-

yeast_deletion_project/deletions3.html). 

  

 



 
 
 

 

Chapter 3 Single gene deletion analysis  

 

3.1 Introduction 

 

Living organisms are dramatically robust, resistant to various genetic 

perturbations and environmental stress [154]. It is reported that more than 80% of 

S. cerevisiae gene mutants are viable under rich glucose medium [88]. Genome-

scale single gene knockout study in E. coli also showed similar results [66]. Yet, 

some specific knockouts of single gene, the so-called ‘essential genes’ can be 

lethal to organisms [78], by halting cell growth due to their essential roles in 

crucial biological functions. Thus, essential genes have been conventionally 

considered as promising targets for antimicrobial drug development [155-158]. 

 

Typically, essential genes were determined by systematic single gene knockout 

experiments [66]. Genes whose disruption mutants cannot grow under the given 

medium (generally rich medium) were considered as essential genes. Previous 

studies [159, 160] on essential genes mainly concern the final metabolic 

phenotype (lethal/survival) following the genetic perturbation. Such approaches 

were widely used to predict gene essentiality [142, 161-163].  

 

As indicated by genome-scale gene deletion experiments [66, 88], most genes are 

dispensable without causing any significant impact on the cellular fitness. It raises 

the attention to study the cause and evolution of mechanistic basis for 
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dispensability. Three kinds of explanations are proposed: (1) Conditional 

essentiality, i.e. those non-essential genes are indeed essential in other conditions 

that not examined [103]. Studies [92, 104, 105] aiming to identify conditional 

essential genes have been implemented. (2) Genetic redundancy [103, 106], in 

other words, a gene’s function may be buffered by duplicates or functional 

overlapping genes. (3) Alternative pathways or redistribution of flux distribution 

[103, 107]. The latter two explanations involve functional back-up mechanisms.  

 

Previous studies showed that around 74% of yeast S. cerevisiae metabolic genes 

can contribute to some functional essential processes, although only 13% found to 

be essential [108]. It indicated that non-essential genes may be backed up through 

certain mechanisms. The intermediate processes, which connect the genetic 

perturbation (input) to their corresponding phenotypes (output), were less studied. 

Also, it is unclear to what extend an essential gene is correlated to other genes. 

Thus, a clear picture of these internal changes occurred in the intermediate 

processes may help us to bridge the gap from genotypic events to phenotypic 

consequences and enrich our understanding of the causes of gene essentiality. In 

this study, we focused on understanding the altered downstream processes 

following essential/non-essential gene deletion by conducting a thorough 

investigation of the cascade failure processes in genome-scale metabolic network. 

Knowledge obtained may unveil the topological/functional basis for the observed 

discrepancy between essential and non-essential gene perturbations. 
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In the context of metabolic network, the functions of enzyme-coding genes can be 

reflected by the activities of the corresponding biochemical reactions (reactions 

that are directly catalyzed by enzymes encoded by the gene). Hence, we 

characterize the effect of gene knockout on the whole systems by deleting the 

corresponding reactions in the metabolic network. However, at the steady state 

achieved following gene perturbation, the knockout effects are not limited to its 

own functions, but can spread to other functional related genes [164, 165], 

analogous to the ripple effects produced when a pebble thrown into the pond. As a 

result, the observed phenotype should be the cooperative or emergent effects 

produced by both the deleted genes and perturbed downstream processes, which 

we termed as ‘damage list’ in this study. Analysis of this ‘damage list’ may enrich 

our understanding of the differential deletion effects between essential and non-

essential genes.  

 

In this study, we modified and repurposed a previous method [74] to capture the 

deletion effects for any given gene knockout using metabolic network of E. coli 

[17], one of the most well studied models available. By incorporating essential 

gene information, we revealed the cooperative nature of metabolic essential genes 

and it suggested a possible mechanism concerning how essential genes can lead to 

lethal phenotypes. The obtained properties were quite conserved across species, 

found also in S. cerevisiae, indicating evolutionarily conserved features. We 

further showed that findings obtained from analyzing the structural organization 

of essential genes in metabolic network provided the structural basis for the 
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observed cooperative effects among essential genes, implying close relations 

between gene essentiality and network structure. 

 

3.2 Materials and methods 

 

3.2.1 Statistical hypothesis test  

 

Statistical hypothesis testing is a method widely used in scientific researches. A 

result is considered statistically significant if it is not likely to occur by chance, 

according to a pre-determined threshold probability (significance level), which is 

usually set to 0.05. Typically, research question is expressed in terms of there 

being no difference between two groups, which is known as null hypothesis. A 

probability ‘p-value’ stands for the probability that how likely that any observed 

differences between groups is due to chance. It is the determinant whether the null 

hypothesis is to be accepted or rejected. A smaller p-value, generally smaller than 

the pre-determined ‘significance level’, indicates that the observed difference is 

not due to chance. As a result, the null hypothesis is rejected. On the other hand, a 

p-value larger than the ‘significance level’ suggests that the observed difference is 

due to random variations, therefore the null hypothesis is accepted.  
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3.2.2 Null model 

 

The null model used was constructed via rewiring the edges in the metabolic 

network. We randomly chose 2 different edges from the network, for example, 

edge 1 (a ->b) and edge 2 (c->d). Here, a, b, c, and d represents nodes in the 

network. Then we swapped these two edges, forming the new ones: edge 1’ (a->d) 

and edge 2’ (c->b). Such procedures were repeated 2 times the total number of 

edges. The generated null model preserved the degree distribution of the real 

network. In our study, totally 1,000 null models were generated.  

 

3.2.3 Gene essentiality information 

 

Two E. coli essential gene lists are used in this study. One is from Keio collection 

[66] whereas the other is from PEC database [94]. Essential genes identified by 

Keio collection are used as the input whose deletion effects are compared with 

non-essential genes. Essential genes from PEC are used for cross-reference. For 

yeast, the list is based on Saccharomyces Genome Deletion Project 

(http://wwwsequence.stanford.-edu/group/yeast_deletion_project/deletions3.html). 

 

3.2.4 Metabolic network reconstruction 

 

As described in Chapter 2, networks are reconstructed from E. coli iAF1260 and 

S. cerevisiae iND1260 model. In the bipartite network, two kinds of nodes are 

available, metabolite node and reaction node. Enzyme-coding gene information is 
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stored for each reaction node. Our E. coli metabolic network includes 2351 nodes, 

and 4038 edges whereas S. cerevisiae with 1441 nodes and 2596 edges.  

 

3.2.5 Computational algorithm of cascading failure in metabolic network 

 

Single gene deletion is initiated by removing the corresponding reaction nodes 

and their links from the reconstructed bipartite metabolic network, followed by 

iterated procedures which search upwards and downwards the network until no 

further reaction or metabolite nodes to be removed, i.e. the leftover reactions are 

with complete substrates and products whereas metabolite nodes with non-zero in-

degree or out-degree. Detailed procedures are described in Section 2.3, Chapter 2. 

A pseudo-code can be found in the Appendix.  

 

3.3 Single gene deletion  

 

3.3.1 Single gene deletion in metabolic network 

 

The aim of this study is to investigate the mechanistic explanations why some 

genes (essential genes) are more important than others. To investigate the 

underlying reason, we studied the differential single gene deletion effects and then 

identified why some genes are more significant than others.  
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A bipartite metabolic network of E. coli was reconstructed from model E. coli iAF 

1260 [17] consisting of 2351 nodes (1354 reaction nodes and 987 metabolite 

nodes) and 4038 edges. There are totally 1261 genes in the E. coli metabolic 

networks, and among them 132 are classified as essential genes according to the 

Keio collection [66]. We initiated the gene failure by removing single gene’s 

corresponding reactions from the bipartite network and then propagated the failure 

upwards and downwards until the leftover nodes were satisfied with the criteria, 

which require each internal metabolite with non-zero in-degree and out-degree 

and reactions with complete substrates and products. The consequential effects 

were characterized by a set of genes whose corresponding reactions would be 

removed according to the previous iterations. We defined damage list as a set of 

genes whose corresponding reactions can be impaired and the number of genes 

within the damage list called damage size, is denoted as d . Essential and non-

essential genes are labeled as E  and N , respectively, and will be subsequently 

used hereafter.  

 

3.3.2 Essential gene deletion induces large damage list 

 

Based on the observation that single gene deletion can produce distinct 

phenotypes (lethal/growth), one may expect that their discrepancy can be reflected 

from the damage lists, i.e. those genes affected due to target gene deletion. So we 

first studied the relation between damage size and gene essentiality type. A 

comparison of the damage size of these two types of genes (essential and non-

essential genes) revealed that essential genes generally have a larger damage size, 
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in other words, the essential gene deletion causes wider spreading of perturbations 

in metabolic network. While more than 10% essential genes had a damage size 

bigger than 15, only 2% for the non-essential genes. Besides, around 50% non-

essential genes had a damage size of zero (Figure 10). However, large damage 

size does not necessarily imply essentiality as we can still observe a fraction of 

non-essentials with large damage size. Hence, it is rather intriguing to decipher the 

underlying properties that distinguish essentials from non-essentials.  
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Figure 10 Cumulative distribution of damage size. The cumulative distribution 
for essential and non-essential genes is shown, where rectangle (above) represents 
essential genes and circle (below) node represents non-essential genes. The inset 
is in the log-log scale (above is essential gene, and below is non-essential gene). 

 

 

3.3.3 Analysis of components within damage list  

 

An in-depth examination revealed some significant patterns in the damage lists. 

We used variables e  and n  to denote the number of essential and non-essential 

genes in the damage list of each gene, respectively. Genes with zero damage size 

were excluded from our studies. As a result, there are 300 E->E pairs, 186 E->N 

pairs, 103 N->E pairs and 1676 N->N pairs obtained with 116 essential genes and 

533 non-essential genes participated. Here, an E->E pair can be interpreted as the 

removal of the former essential gene can lead to the functional loss of the latter 
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essential gene. In other words, the latter essential gene is included in the former 

essential gene’s damage list. Our result suggested that genetic perturbation of one 

essential gene can always induce additional functional failure of other essential 

and non-essential genes, whereas majority of non-essential genes mainly exert 

their impact on non-essential genes. We validated the observed discrepancies 

between essential and non-essential genes using the χ2 tests (http://faculty.-

vassar.edu/lowry/odds2x2.html), with p-value smaller than 0.0001 (Table 5).  

 

Table 5 Damage list composition. Each entry represents the observed (or expected) 
number of corresponding gene pairs. 

 

#gene pairs Essential Non-Essential 
Essential  300(86) 186(399) 
Non-Essential 103(317) 1676(1462) 

 

Further, we investigated the composition of each damage list by using the ratio of 

essential and non-essential genes in the damage lists (Figure 11). The range of 

( / ( )e e n+ ) varies from 0 to 1, where 1 indicates the damage list is exclusively 

composed of essential genes (non-essential genes) and 0 denotes the damage list is 

solely made up of non-essential genes (essential genes). For a well-sorted gene list 

based on essentiality, a clear and strong pattern showed up that is consistent with 

our previous observations.  
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Figure 11 Distinct deletion effects between essential and non-essential genes. (A) 
Each row and column corresponds to one gene, sorted according to essentiality 
and the gene order in (B). A blue spot indicates that gene knockout (the 
corresponded row gene) can perturb the corresponding column gene function. 
Knockout of essential genes can cause a large range of essential gene function 
failure (as shown in the upper grey area) while knockout of non-essential genes 
mainly perturb non-essential genes function (as shown in the lower grey area). A 
quantitative representation is shown in (B), where each row is the same as in (A) 
while column is the percentage of essential genes and non-essential genes in the 
damage lists. The color is illustrated based on the color bar, where 1 is labeled as 
green and 0 is labeled as yellow. 

 

Briefly, analysis on the damage list composition revealed a distinctive difference 

between these two types of genes, implying that the cooperative effects of 

essential genes may have some connections with essentiality.  
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3.3.4 Genes with similar damage lists share the same essentiality 

 

Since the obtained damage list can capture the effects of single gene deletion on 

the whole metabolic network, we therefore considered whether two genes with 

highly similar damage list tend to function via similar mechanisms. To test the 

hypothesis, we used Jaccard similarity coefficient [166], one of the most widely 

used similarity coefficients in the literatures, which is defined as the size of 

intersection divided by the size of the union of the genes’ corresponding damage 

lists in this given context (Figure 12). We linked those gene pairs (node) with a 

similarity coefficient bigger than a threshold (in this study, we chose 0.6). It is 

intriguing that many sub-networks were formed, within which nodes were tightly 

associated (Figure 13). In most cases, genes within the same subnetwork shared 

the same property of essentiality (either essentials or non-essentials) and 

participated in the same or related pathways.  
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Figure 12 Overview of damage list similarity. Gene pairs with their damage list 
similarity bigger than 0 are connected. Nodes with red circle border and blue 
diamond border represent essential and non-essential genes respectively.  
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Figure 13 Essentiality consistency within gene subnetworks sharing similar 
damage lists. Gene pairs with large overlapping damage lists (bigger than 0.6) are 
connected. Genes within the same subnetwork tend to have the same essentiality. 
Nodes with red circle border represent essential genes while nodes with blue 
diamond border represent non-essential genes.  
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Quantitatively, we designed a score function | | /( )i i i i
N E N EN N N N− +  to evaluate 

the essentiality consistence within the same subnetwork, where i
EN  and i

NN  

denote the number of essential and non-essential genes within the ith  subnetwork 

respectively. The score ranges from 0 to 1, where 0 represents there is no 

essentiality preference within the subnetwork whereas 1 represents that genes 

within the subnetwork are biased to have the same essentiality property. The 

averaged score across all the subnetworks denoted the overall essentiality 

consistence, which in our case is up to 0.9. Our results indicated that the genes 

within each subnetwork were of high possibility to share the same essentiality 

property with others genes from the same subnetwork. Besides, our results were 

robust and invariant with respect to the threshold. (Table 6) 

 

Similar results were obtained when choosing other similarity coefficients (e.g. 

overlap coefficient ( 1 2) / min( 1, 2)D D D D∩ , or dice coefficient

2( 1 2) / (| 1| | 2 |)D D D D∩ + ). Furthermore, analogous observations can also be 

found in other species, such as S. cerevisiae, suggesting its university (Table 7).  
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Table 6 Essentiality consistency within genes sharing highly similar damage lists 
in E. coli. #group, # essential gene, and #non-essential gene represents the number 
of subnetworks obtained, essential genes, and non-essential genes for the given 
threshold. 

 

threshold #group #essential #non-essential score 

0.4 78 61 192 0.87 
0.5 80 55 186 0.90 
0.6 76 49 167 0.91 
0.7 69 39 146 0.90 
0.8 64 34 132 0.91 
0.9 59 29 120 0.89 

 

 

 

Table 7 Essentiality consistency within genes sharing highly similar damage lists 
in S. Cerevisiae. #group, #essential gene, and #non-essential gene represents the 
number of subnetworks obtained, essential genes, and non-essential genes for the 
given threshold.  

 

threshold #group #essential #non-essential score 
 

0.4 39 29 94 0.86 
0.5 39 27 87 0.87 
0.6 37 24 73 0.87 
0.7 32 24 60 0.84 
0.8 29 18 52 0.91 
0.9 28 13 49 0.86 
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Several subnetworks were extracted for further analysis. In Figure 13, the largest 

subnetwork is composed of 15 non-essential genes and 2 essential genes for the 

given threshold 0.6 (b3624, b3631, b3632, b0200, b3052, b3628, b3629, b3630, 

b3198, b3627, b1855, b2040, b3623, b0918, b3619, b3625, and b3626). As we 

increased the threshold, the subnetwork is totally composed of non-essential genes 

(as shown in Figure 14). It suggests that the most robustness part in this 

subnetwork is made up of those non-essential genes.  

 

 

Figure 14 Evolution of the largest subnetwork. (A) The largest subnetwork for the 
threshold 0.6 as shown in Figure 13. (B), (C), and (D) are at threshold 0.7, 0.8 
and 0.9, respectively. Increasing the threshold removes the essential genes from 
the subnetwork, indicating non-essential genes are the most robust components.  
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In this subnetwork, 16 out of 17 genes are from the subsystem Lipopolysaccharide 

Biosynthesis/Recycling, involved in LPS core biosynthesis. Here are the top five 

GO functions: GO: 0009103 (Lipopolysaccharide biosynthetic process) GO: 

0016740 (transferase activity) GO: 0005515 (protein binding) GO: 

0016757(transferring glycosyl groups) and GO: 0016020 (membrane) (Table 8). 

We also analyzed the common damaged genes of this subnetwork: b0622 (pagP), 

b2027 (cld), b2034 (wbbl), b2035 (rfc), b2040 (rfbD), b2254 (arnC), b2255 

(arnA), b2257 (arnT), b3622 (rfaL), b3623 (waaU), b3624 (rfaZ), b3626 (rfaJ), 

b3627 (rfal), b3628 (rfaB), b3620 (rfaF), b3631 (rfaG), b3785 (wzzE), b3790 

(rffC), b3793 (wzyE), b3794 (rffM), and b4481 (rffT). These common genes are 

non-essential genes except the gene b3623 (waaU), and b3793 (wzyE) according 

to the essential gene list identified through the Keio collection [66]. However, 

these two genes were considered as non-essential genes in other studies [94]. So 

according to our studies, these two genes were of high possibility to be non-

essential. They may have some important roles, but the lack of them may not lead 

to cell lethality.  

 

Table 8 Top five GO functions in the largest subnetwork.  

 

Accession Ontology Synonyms 
GO:0009103 Biological Process Lipopolysaccharide biosynthesis 
GO:0016740 Molecular Function Transferase activity 
GO:0005515 Molecular Function Protein amino acid binding 
GO:0016757 Molecular Function Glycosyltransferase activity 
GO:0016020 Cellular Component Membrane 
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3.3.5 Associated gene sets are necessary for survival 
 

Taking the previous findings relating the composition of damage lists into 

consideration, we noticed that essential genes within the same subnetwork share 

some common damage lists, where the loss can lead to lethality. Subnetwork 

consisting of genes murE (b0085), murD (b0088), murC (b0091), and murI 

(b3967) was extracted for further analysis. It is revealed that their damage lists 

share two common genes: murE (b0085) and murD (b0088). Interestingly, the 

corresponding reactions of these genes can disturb the production of UDP-N-

acetylmuramoyl-L-alanyl-D-gamma-glutamyl-meso-2, 6-diaminopimelate, a key 

metabolite involved in the cell wall biosynthesis [109]. Another example was the 

subnetwork: lpxH (b0524), lpxB (b0182), lpxK (b0915), and kdtA (b3633). The 

common damage lists of these genes were made up of lpxC (b0096), lpxD (b0179), 

lpxB (b0182), lpxH (b0524), and lpxK (b0915), which can perturb the production 

of lipid A, a principle and essential component for bacteria growth [167]. In this 

regard, we proposed that single gene deletion propagated its effects via these 

common damage lists, which were termed as ‘associated gene sets’ in our studies.  

 

Combined with previous findings that essential genes were distinguished from 

non-essential genes in respect of their capability to impact on other essential genes, 

it was estimated that the common damage lists required for survival should be 

composed mainly of essential genes rather than non-essential genes. For each 

essential gene, the affected essential genes in its damage lists form one candidate 
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for ‘associated gene sets’. In case one set can cover another completely, the 

minimal one was kept. Redundant modules were excluded. As a consequence, 72 

associated gene sets were identified with size ranging from 1 to 5, among which 

50 associated gene sets were of size 1, 17 were of size 2, while the leftover were 

of size more than 2. It is expected that most gene sets are of size 1 as it is 

consistent with our common understanding of essential genes which are defined as 

those genes whose deletion can lead to lethality [78]. It is intriguing to identify 

some associated gene sets with size more than 1 as it implies the significance of 

genetic interactions in the context of essentiality and gains new insights on the 

drug development.  

 

Genes within these sets mainly participated in the cell envelope biosynthesis, 

tRNA charging, nucleotide salvage pathway, or cofactors and prosthetic group 

biosynthesis subsystems. Besides, we found that the corresponding reactions of 

genes from each set were generally involved in the production of key metabolites, 

which were considered necessary for cell survival in other studies [109]. For 

instance, 14 sets of size 1 were composed of genes that encode aminoacyl-tRNA 

synthetase, which catalyze the attachment of a specific amino acid to its 

compatible cognate tRNA to form an aminoacyl tRNA. The produced aminoacyl 

tRNA plays crucial roles in translating during protein synthesis [168]. Therefore, 

we proposed that knockout of essential genes can spread its effects to such kind of 

associated gene sets, whose failure may lead to a lack of some key metabolites, 
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which are necessary for cell growth. Table 9 summarized how the loss of these 

sets can result in lethality. 
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Table 9 Associated gene sets 

Subsystem Gene Set Metaoblite Ref 
tRNA charging b0194 L-Prolyl-tRNA(Pro) [168] 
tRNA charging b0526 L-Cysteinyl-tRNA(Cys) [168] 
tRNA charging b0642 L-Leucyl-tRNA(Leu) [168] 
tRNA charging b0680 L-Glutaminyl-tRNA(Gln) [168] 
tRNA charging b0893 L-Seryl-tRNA(Ser) [168] 
tRNA charging b0930 L-Asparaginyl-tRNA(Asn) [168] 
tRNA charging b1637 L-Tyrosyl-tRNA(Tyr) [168] 
tRNA charging b1719 L-Threonyl-tRNA(Thr) [168] 
tRNA charging b1866 L-Aspartyl-tRNA(Asp) [168] 
tRNA charging b1876 L-Arginyl-tRNA(Arg) [168] 
tRNA charging b2514 L-Histidyl-tRNA(His) [168] 
tRNA charging b3384 L-Tryptophanyl-tRNA(Trp) [168] 
tRNA charging b3560 Glycyl-tRNA(Gly) [168] 
tRNA charging b4258 L-Valyl-tRNA(Val) [168] 
tRNA charging b1713,b1714 L-Phenylalanyl-tRNA(Phe) [168] 
tRNA charging b2114,b3288 L-Methionyl-tRNA (Met); N-Formylmethionyl-tRNA [168] 
Cofactor and 
Prosthetic Group 
Biosynthesis 

b0025 FMN; FAD [109] 

Cofactor and 
Prosthetic Group 
Biosynthesis 

b0174 Undecaprenyl diphosphate [109] 

Cofactor and 
Prosthetic Group 
Biosynthesis 

b0417 Thiamine diphosphate [169] 
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Cofactor and 
Prosthetic Group 
Biosynthesis 

b0420 Glyceraldehyde 3-phosphate [109] 

Cofactor and 
Prosthetic Group 
Biosynthesis 

b0583 (2,3-Dihydroxybenzoyl)adenylate [125] 

Cofactor and 
Prosthetic Group 
Biosynthesis 

b1740 Nicotinamide adenine dinucleotide [109] 

Cofactor and 
Prosthetic Group 
Biosynthesis 

b2153 2-Amino-4-hydroxy-6-(erythro-1,2,3-
trihydroxypropyl)dihydropteridine triphosphate 

[109] 

Cofactor and 
Prosthetic Group 
Biosynthesis 

b2315 Dihydropteroate [109] 

Cofactor and 
Prosthetic Group 
Biosynthesis 

b2615 Nicotinamide adenine dinucleotide phosphate [109] 

Cofactor and 
Prosthetic Group 
Biosynthesis 

b3650 Guanosine 3',5'-bis(diphosphate) [170] 

Cofactor and 
Prosthetic Group 
Biosynthesis 

b3835 2-Octaprenylphenol [171] 

Cofactor and 
Prosthetic Group 
Biosynthesis 

b0029,b2515 Isopentenyl diphosphate; Dimethylallyl diphosphate [172] 

Cofactor and b0173,b2747 2-C-methyl-D-erythritol 4-phosphate [173] 
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Prosthetic Group 
Biosynthesis 
Cofactor and 
Prosthetic Group 
Biosynthesis 

b0369,b3805 Uroporphyrinogen III [174] 

Cofactor and 
Prosthetic Group 
Biosynthesis 

b0415,b1662 6,7-Dimethyl-8-(1-D-ribityl)lumazine; 3,4-dihydroxy-2-
butanone 4-phosphate 

[109] 

Cofactor and 
Prosthetic Group 
Biosynthesis 

b0414,b1277 4-(1-D-Ribitylamino)-5-aminouracil [109] 

Cofactor and 
Prosthetic Group 
Biosynthesis 

b1210,b2400 L-Glutamyl-tRNA(Glu) [168] 

Cofactor and 
Prosthetic Group 
Biosynthesis 

b3634,b3639 Pantetheine 4'-phosphate; Dephospho-CoA [109] 

Cofactor and 
Prosthetic Group 
Biosynthesis 

b0475,b3850 Heme [175] 

Nucleotide 
Salavage 
Pathway 

b0474 AMP; ADP; IDP; etc [109] 

Nucleotide 
Salavage 
Pathway 

b0171 UMP; UDP; dUMP; dUDP [109] 

Nucleotide 
Salavage 

b1098 dTMP;dTDP [109] 
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Pathway 
Nucleotide 
Salavage 
Pathway 

b3648 GMP; ATP; dGMP [109] 

Nucleotide 
Salavage 
Pathway 

b2234,b2235 Reduced thioredoxin; Oxidized thioredoxin [109] 

Cell Envelope 
Biosynthesis 

b2533 dsRNA [176] 

Cell Envelope 
Biosynthesis 

b3729 D-Glucosamine 6-phosphate [109] 

Cell Envelope 
Biosynthesis 

b3730 N-Acetyl-D-glucosamine 1-phosphate; UDP-N-acetyl-D-
glucosamine; D-Glucosamine 1-phosphate 

[109] 

Cell Envelope 
Biosynthesis 

b0085,b0088 UDP-N-acetylmuramoyl-L-alanyl-D-gamma-glutamyl-meso-
2,6-diaminopimelate; UDP-N-acetylmuramoyl-L-alanyl-D-
glutamate 

[109] 

Cell Envelope 
Biosynthesis 

b0087,b0090 Undecaprenyl-diphospho-N-acetylmuramoyl-L-alanyl-D-
glutamyl-meso-2,6-diaminopimeloyl-D-alanyl-D-alanine; 
Undecaprenyl-diphospho-N-acetylmuramoyl-(N-
acetylglucosamine)-L-ala-D-glu-meso-2,6-diaminopimeloyl-D-
ala-D-ala 

[109] 

Cell Envelope 
Biosynthesis 

b3189,b3972 UDP-N-acetyl-D-glucosamine; UDP-N-acetyl-3-O-(1-
carboxyvinyl)-D-glucosamine 

[109] 

Cell Envelope 
Biosynthesis 

b0954,b1093,b2323 short-chain unsaturated acyl-ACP; short and long chain 
saturated and unsaturated β-ketoacyl-ACPs 

[109, 177] 

Cell Envelope 
Biosynthesis 

b1093,b1288,b2323 short-chain unsaturated acyl-ACP; short and long chain 
saturated and unsaturated β-ketoacyl-ACPs 

[109] 

 Threonine and b2472 LL-2,6-Diaminoheptanedioate [109] 
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Lysine 
Metabolism 
 Threonine and 
Lysine 
Metabolism 

b3433 4-Phospho-L-aspartate; L-Aspartate 4-semialdehyde [109] 

 Threonine and 
Lysine 
Metabolism 

b0031,b0166 2,3-Dihydrodipicolinate; 2,3,4,5-Tetrahydrodipicolinate [109] 

 Threonine and 
Lysine 
Metabolism 

b0031,b2478 2,3-Dihydrodipicolinate; L-Aspartate 4-semialdehyde [109] 

Lipopolysacchar
ide 
biosynthesis/rec
ycling 

b1215 3-Deoxy-D-manno-octulosonate 8-phosphate [109] 

Lipopolysacchar
ide 
biosynthesis/rec
ycling 

b3793 Undecaprenyl diphosphate [109] 

Lipopolysacchar
ide 
biosynthesis/rec
ycling 

b0096, b0181,b1094 UDP-3-O-(3-hydroxytetradecanoyl)-D-glucosamine [109] 

Lipopolysacchar
ide 
biosynthesis/rec
ycling 

b0096,b0179,b0182,b0524,b0915 LipidA [167] 

Glycerophospho b1912 Phosphatidylglycerophosphate [109] 
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lipid 
Metabolism 
Glycerophospho
lipid 
Metabolism 

b3018 acyl carrier protein [109] 

Glycerophospho
lipid 
Metabolism 

b4041 Glycerol 3-phosphate [109] 

Glycerophospho
lipid 
Metabolism 

b2585,b4160 phosphatidylserine; phosphatidylethanolamine [109] 

Glycolysis/Gluc
oneogenesis 

b1779 Glyceraldehyde 3-phosphate; 3-Phospho-D-glyceroyl phosphate [109] 

Glycolysis/Gluc
oneogenesis 

b2779 D-Glycerate 2-phosphate; Phosphoenolpyruvate [109] 

Glycolysis/Gluc
oneogenesis 

b2926 3-Phospho-D-glycerate; 3-Phospho-D-glyceroyl phosphate [109] 

Purine and 
Pyrimidine 
Biosynthesis 

b1131 N6-(1,2-Dicarboxyethyl)-AMP [109] 

Purine and 
Pyrimidine 
Biosynthesis 

b2780 CTP [109] 

Histidine b1207 5-Phospho-alpha-D-ribose 1-diphosphate; alpha-D-Ribose 5-
phosphate 

[109] 

Methionine 
Metabolism 

b2942 S-Adenosyl-L-methionine [109] 

Folate b0529 5,10-Methenyltetrahydrofolate [109] 
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Metabolism 
Alternate 
Carbon 
Metabolism 

b4084 D-Allose [178] 

Alternate 
Carbon 
Metabolism 

b3608 Dihydroxyacetone phosphate;Glycerol 3-phosphate [109] 

Membrane Lipid 
Metabolism 

b0185,b2316,b3255,b3256 Malonyl-CoA [109] 

Unassigned b0657 lipoprotein [179] 
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Previous analysis suggested that although the majority of non-essential genes 

cannot induce the functional loss of other essential genes, there were still 103 N-

>E pairs involving 58 non-essential genes inconsistent with our findings. A 

thorough investigation revealed that the majority of these inconsistent pairs 

involve at least one essentiality disputable gene compared with the PEC (Profiling 

of E. coli Chromosome) database [94]. For example, entD (b0583), an essential 

gene in the Keio collection, was identified as non-essential in the PEC database 

(Table 10). Accordingly, we removed these inconsistent genes, leaving 45 N->E 

pairs with 28 non-essential genes and 29 essential genes participated. Among 

them, 3 non-essential genes showed their ability to affect those essential genes 

that do not belong to any associated gene sets. Another 5 non-essential gene can 

induce the functional loss of those essential genes that were part of certain 

associated gene sets. For the leftover 20 non-essential genes, 7 of them were 

essential for growth on glycerol minimal medium [92]. These findings favored our 

proposed concept of functional core module and its relation to cell survival.  

Table 10 Comparison between Keio Collection and PEC database. There are 264 
common genes between these two databases (not shown in this table). The left 
side is genes specific to Keio collection, where the right side is genes specific to 
PEC database. 

Keio Collection PEC 
b0057 b1175 b2783 b3595 b0026 b2496 b3176 b2651 
b4503 b1356 b2941 b3623 b0103 b2695 b3198 b3935 
b0270 b1570 b3021 b3709 b0416 b2697 b3201 b3974 
b0583 b1572 b3113 b3793 b0455 b2891 b3559 b3976 
b0733 b1689 b3146 b3834 b0536 b3019 b3761 b3978 
b0886 b2017 b3159 b3835 b0672 b3058 b3783 b4143 
b1131 b2559 b3191 b3843 b0971 b3066 b3796 b4147 
b1145 b2567 b3471 b4084 b1133 b3067 b3797 b4161 
b1174 b2573 b3532 b4224 b1909 b3123 b3799 b4362 
    b1910 b3174   
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3.3.6 Structural organization of essential and non-essential genes in metabolic 
network 

 

The functional properties can always be related to the structural properties. We 

next studied how the structural organizations of essential and non-essential genes 

within the metabolic network contribute to essentiality. Two genes were 

considered linked together via certain metabolite as long as one gene’s 

corresponding reactions consume this particular metabolite whereas the other’s 

corresponding reactions produce it. According to essentiality, all these pairs can 

be classified into three groups, adjacent essential-essential gene pairs (EE), 

adjacent essential-non-essential gene pairs (EN), and adjacent non-essential gene 

pairs (NN). Next, we examined the degree features associated with these 

metabolites. Similarly, metabolites can be distinguished as: uniquely generated 

(UG) (in-degree equals to 1), uniquely consumed (UC) (out-degree equals to 1), 

and branched nodes (BN) (with in-degree and out-degree both bigger than 1) 

(Figure 15). The former two (i.e. UG and UC nodes) were combined together 

since many metabolites were both uniquely consumed and uniquely generated. 

Therefore, for each group (adjacent EE, adjacent EN, and adjacent NN) we 

calculated the percentage of gene pairs linked via UG/UC (either UG or UC) and 

BN nodes. Our results indicated that more than 45% of gene pairs were associated 

via UG/UC metabolite nodes in adjacent EE group, which was quite distinct from 

8.3% in adjacent EN group and 12.3% in NN group.  
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Figure 15 Different types of metabolites. In this figure, circle node represents 
metabolite, where rectangle node represents reaction. Metabolite m3 is an 
example of one in-degree and one out-degree. Metabolite m4 is an instance of one 
in-degree and multi out-degree. Metabolite m5 is an example of multi in-degree 
and multi out-degree. Metabolites m1 and m2 are external metabolites, which are 
the input of the whole network.  

 

Besides, such structural organization observed in the metabolic network was quite 

distinct from null model. The null model was constructed by switching pairs of 

randomly selected edges. 1,000 random networks were generated, with each 

switched 2 times the total number of edges (details refer to Section 3.2.2). For the 

adjacent EE group, we found that the percentage of UG/UC intermediate 

metabolites in the real network was significantly larger than that obtained for 

random networks. On the other hand, for the adjacent EN group, it was much less 

in the real network than in the null model. Furthermore, the average percentage of 

UG/UC nodes in these three groups (adjacent EE, adjacent EN, and adjacent NN) 

in the null model was 25.5%, 18.2%, and 13.3% respectively, suggesting the 

distinct organizations of the adjacent EE and adjacent EN groups in the real 

metabolic networks (Figure 16).  
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Figure 16 Structural organizations of essential and non-essential genes. (A) 
Distribution of the percentage of UG/UC metabolites linking the adjacent EE gene 
pairs (curve) in the 1,000 null models compared with in the real network (vertical 
line). (B) Distribution of the percentage of UG/UC metabolites linking the 
adjacent EN gene pairs (curve) in the 1,000 null models compared with real 
network (vertical line). (C)Distribution of the percentage of UG/UC metabolites 
linking the adjacent NN gene pairs (curve) in the 1,000 null models compared 
with real network (vertical line). (D) The percentage of UG/UC metabolites 
linking adjacent EE, EN, and NN gene pairs in E. coli metabolic network and null 
models, where bar with oblique lines represents metabolic network and bar 
without oblique lines represents the average percentage in the null model. 

 

Since essential genes were prone to be interconnected through UG/UC nodes, it is 

highly possible that removal of any one can easily spread its effects to the 

counterparts. On the other hand, as adjacent EN pairs were bridged via branched 

nodes, loss of one gene may not impose its effect directly on the other since 
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alternative pathway can compensate the functional loss. Thus, the topological 

organization of essential genes and non-essential genes provides a structural and 

mechanistic basis for the previously observed results.  

 

3.4 Discussions 

 

Essential genes have been widely studied considering their significance role in 

antimicrobial drug development. Mechanistic studies on gene dispensability 

indicate that there are potentially three kinds of explanations: (1) conditional 

essential genes; (2) genetic buffering by duplicate genes or gene with overlapping 

functions and (3) alternative pathway or redistribution of fluxes. The mechanisms 

are still controversial and no consensus has been reached. In this study, we will 

study from the perspective of functional back-up mechanisms, i.e. the latter two 

explanations. It is intriguing to know how the deletion of essential genes can be 

buffered while non-essential genes cannot. Current knowledge about essentiality 

cannot offer an explanation why some genes are much more significant than 

others although they all can be participated in some crucial biological processes. 

In our studies, we attempted to unravel the properties associated with essentiality 

in the context of metabolic networks from the perspective of functional and 

structural studies to show how these properties contribute to gene essentiality.  

 

In typical genetic studies, one gene is considered indispensable if knockout can 

lead to a lethal phenotype. However, single gene knockout disturbs not only that 
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particular gene function, but also a wide range of other genes, as suggested by 

gene expression profiles [180-182]. Furthermore, researchers argued that gene 

interaction was always neglected in the studies of gene essentiality [183]. 

Therefore, we modified and repurposed a previous algorithm to capture the gene 

knockout effects on the whole network using a set of genes whose function may 

be interrupted in response to the single gene deletion, which was totally 

determined by the metabolic network structure and the corresponding reactions.  

 

Damage list is a collective of genes whose functions may be impaired in response 

to single gene deletion and it is identified via initiating the cascading failure 

procedures. Integrating essentiality information into the damage lists revealed 

some remarkable differences between essential and non-essential genes lie in their 

impact on other essential genes. While knockout of essential genes can cause a 

large range of other essential gene function failure, knockout of non-essential 

genes can only interrupt other non-essential genes’ functions. This suggests that 

essential and non-essential genes propagated their deletion effects via distinct 

routes. Phenotypic differences observed between essential and non-essential gene 

knockout can be explained by the cooperative effects of essential genes. Such 

observed interactions were consistent with the previous epistasis studies, in which 

essential genes were found prevailingly positive epistatic [130] and interaction 

between essential genes were much more intense compared with non-essential 

genes [126, 128]. In addition, function of essential genes can be buffered by both 

non-essential genes and other essential genes [126, 128, 156, 184, 185].  



 
 
 

Chapter 3 Single gene deletion analysis                                                                92 
 

 
 

Our studies also revealed that genes with highly similar damage lists tend to have 

the same essentiality and participate in the same or related pathways. When genes 

with similarity coefficient larger than a threshold were correlated, genes with the 

same essentiality were modularly organized, forming many small subnetworks. 

These findings were consistent with the previous studies that for both essential 

and non-essential genes, their synthetic interactions were highly biased towards 

genes that shared related functions [184]. Particularly, functional related essential 

genes had a strong tendency to show similar spectrum of interactions [184].  

 

A further investigation revealed that subnetworks consisting of essential genes 

generally have an ‘associated gene set’, which can disrupt the production or 

consumption of certain essential components. Failure in the production or 

consumption of these indispensable components eventually resulted in lethal 

phenotype. Accordingly, we proposed the existence of associated gene sets, which 

were vital for cell survival. We identified 72 associated gene sets where mapping 

these sets to pathway we found their involvement in crucial pathways or 

metabolites. Our identified associated gene sets thus reflected the way how a gene 

exerted its impact over the whole cell, suggesting a possible mechanism relating 

the internal changes following gene knockout.  

 

Structural analysis revealed distinct organizational principles of essential and non-

essential genes. Adjacent EE pairs were overwhelmingly linked through UG/UC 

metabolites, whereas adjacent EN pairs were rare. Our findings offered an 
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explanation for the observed discrepancies underlying these two types of damage 

lists. The UG/UC metabolites were relatively fragile and perturbation on any gene 

can easily spread the damaging to the counterparts for lacking alternative 

pathways. Therefore, perturbation in adjacent EE pairs can easily spread to their 

respective counterparts. On the contrary, two genes connected via branched 

metabolites were irrelevant in their damage effects as alternative pathways can 

compensate the functional loss. Synthetic lethal pairs can be used to further 

validate our findings in these structural principles. Double knockout, especially 

those genes within the same pathway [128], may lead to the consequences that 

some gene pairs once linked through branched metabolites were replaced by 

UG/UC nodes, with increasing vulnerability. In brief, structural organization of 

essential and non-essential genes dictated their distinct impacts on the whole 

networks where perturbing the associated gene sets lead to lethal phenotypes.  

 

Hence, according to our results, we proposed that essential and non-essential 

genes spread their deletion effects via different routes (Figure 17). Following 

genetic perturbations, essential gene can spread its deletion effects to other 

functional related essential genes. On the other hand, non-essential genes seldom 

affected other essential genes. The associated gene sets, which involved in the 

production or consumption of the key metabolites required for cell survival, were 

affected in response to essential gene knockout. Genes with highly similar damage 

lists tend to share the same essentiality, since they may function via similar 

mechanisms. Our proposed scheme relating the internal changes following genetic 
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perturbations were supported by the structural organization of essential and non-

essential genes.  

 

 

Figure 17 Proposed mechanisms for the differential single gene deletion effects. 
For essential genes, they can affect other essential genes, where the cooperative 
effects can lead to lethal phenotypes. For non-essential genes, they can only affect 
other non-essential genes.  

 

 



 
 
 

Chapter 4 Essential gene prediction 

 

In this chapter, we discussed how to predict essential genes based on previous 

findings in the context of metabolic network. A variety of computational based 

methods have been implemented to predict essential genes from the scope of 

biological networks and most of them require network with high quality, or a large 

number of network topological features that associated with essentiality in order 

to have a high prediction accuracy. In this study, we aimed to propose an approach 

that can predict essentiality with high accuracy while using limited network 

information.  

 

4.1 Overview of essential gene predictions 

 

Essential genes are usually defined as those genes necessary for cell growth in a 

rich medium, i.e. medium containing all nutrients required for growth. Deletion of 

any essential gene is sufficient to confer a lethal phenotype even in the presence of 

all the other genes. It is widely believed these genes involved in crucial cellular 

processes whose impairment can disrupt normal cellular growth [186, 187]. 

Identification of such genes is rather significant, not only for understanding of the 

minimal requirement of cellular life [188], but also for antimicrobial drug 

development [189].  
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Experimental approaches such as transposon mutagenesis have been widely used 

in determining essential genes across a variety of species, generating large 

information [104, 190-192]. For example, a systematic transposon mutagenesis 

experiment is conducted in E. coli K-12 to replace the open reading frame of each 

target gene with a non-functional fragment, obtaining 3985 mutant strains out of 

4288 genes targeted [66]. The leftover genes that cannot get mutant strains are 

considered as essential genes. Similarly, in yeast S. cerevisiae, a systematic gene 

disruption experiment produced a collection of gene-deletion mutants for 96% of 

annotated open reading frames [88]. Although these methods have accumulated 

abundant resources concerning essentiality, the procedures are rather time 

consuming and resource intensive since we need to construct the mutant strains 

for each individual gene. Besides, such approach is not feasible for all organisms, 

especially those infectious microorganisms. Experimental results for the same 

species also vary, sometimes to a large extent. For example, for E. coli, the Keio 

collection [66] and PEC database [94] share 264 common essential genes, where 

36 genes are specific to Keio collection while 38 genes specific to PEC database 

(Table 10). 

 

The development of high-throughput technologies and whole genome sequencing 

make it possible to reconstruct large-scale computational models. The accurate 

metabolic networks of some model organisms have been reconstructed [17, 138]. 

Computational approaches such as Flux Balance Analysis (FBA) [95], and 

Minimization of Metabolic Adjustment (MOMA) [96] have been developed and 
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widely used to assess the essentiality of genes in silico. For example, FBA is a 

constraint-based approach used to analyze whether the growth rate is interrupted 

in the absence of genes (for details, please refer to Section 2.3, Chapter2). 

Although the results are of high confidential, it requires a clear definition of the 

metabolic network, nutrient availability and biomass components.  

 

Another category of computational approaches are based on machine learning [14, 

160, 193-195], which utilize a variety of network based topological features, 

sequence characteristics that potentially associated with essentiality to predict 

gene’s essentiality. However, one common problem regarding this kind of 

approaches is that they employed a large number of features but in most cases 

these features didn’t show clear cause and effect relations with gene essentiality. 

For example, some basic network features including degree, closeness, 

betweenness centrality, and clustering coefficient are considered potentially 

associated with essential genes. Yet, no observations or researches indicate that 

these basic network features are the cause of gene essentiality. Therefore, the 

exploration of some essentiality related features may be crucial, able to increase 

the prediction accuracy.  

 

In the previous chapter, we discussed why some genes are more important than 

others in details, from the perspective of both functional and structural 

organization in metabolic network. It is suggested that essential and non-essential 
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genes exhibit different deletion effects in the context of metabolic network. While 

essential genes can spread its deletion effects to both essential and non-essential 

genes, nearly all the non-essential genes can only affect themselves or other non-

essential genes. In this chapter, we used the previous findings as a start point to 

explore some biological network specific features that significantly associated 

with essentiality and then use them to predict essential genes in E. coli and other 

species. Some functional and structural related features turned out to have strong 

association with essentiality and hence we incorporated them into our approach. 

Given a small set of gene’s essentiality information, our approach can predict the 

majority of the leftover genes’ essentiality type based on the highly correlated 

topological features. Our approach showed a high level of prediction accuracy 

compared with other computational approaches. This is validated by yeast S. 

Cerevisiae, indicating the robustness across species, which also suggests its 

potential application in essential gene identification.  

 

4.2 Materials and Methods 

 

4.2.1 Identification of functional and network topological features associated with 
gene essentiality 

 

In the previous chapter, we investigated why some genes are more important than 

others in the context of metabolic networks. Some functional and network 

topological properties are revealed to be key factors in discriminating essential 
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and non-essential genes. Therefore, we inherited from the previous chapter to 

explore features strongly correlated with essential genes. 

 

First of all, we examined the relation between damage size and essentiality. It is 

noticed that although the size of the damage list cannot be a determinant feature in 

discriminating essential and non-essential genes, essential genes generally have a 

larger damage size. Besides, it is found out that among the 1261 genes 611 of 

them have a damage size of zero, where 595 (97.38%) of them are non-essential 

genes. Therefore, the gene damage list with size zero is considered as a promising 

feature in classifying essential and non-essential genes.  

 

Besides the damage size, the damage list similarity coefficient is also a good 

indicator. It is noticed that when we set a threshold to link gene pairs with 

similarity coefficient higher than the threshold, many subnetworks are formed. 

Interestingly, genes within each subnetwork nearly all share the same essentiality 

type (Table 11). For example, when the threshold is set to 0.9, around 95% gene 

pairs linked together have the same essentiality type. It is suggested that if one 

gene’s essentiality type is known, we can estimate that other genes from the same 

subnetwork should have the same essentiality type.  
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Table 11 The number of gene pairs with similarity coefficient at different level 
threshold. For different threshold, total gene pair refers to the number of gene 
pairs obtained if we link two genes with their damage list similarity coefficient 
bigger than the threshold, whereas rate refers to the percentage of gene pairs 
sharing the same essentiality, and genes refer to the number of genes involved.  

 

threshold total gene pairs rate genes 
0.1 2584 0.8 457 
0.2 1764 0.82 438 
0.3 1350 0.85 406 
0.4 1118 0.87 368 
0.5 1024 0.88 363 
0.6 826 0.88 280 
0.7 672 0.92 245 
0.8 546 0.95 235 
0.9 476 0.95 219 

 

 

4.2.2 Self-devised algorithm for predicting gene essentiality 

 

Here is our proposed method used to predict gene essentiality (Figure 18). 

Starting from metabolic network, we randomly chose certain number of genes and 

labeled them as known-type genes, where the essentiality information of these 

genes is inherited from Keio collection [66], which can be either be essential or 

non-essential genes. The leftover genes are labeled as unknown-type genes, where 

the essentiality type for these genes is to be predicted from the known-type genes.  

 

First of all, we calculated the damage lists for each gene in the metabolic network 

as we described in the previous chapter. If the size of the damage list is zero, we 
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assumed the corresponding gene to be non-essential gene. Otherwise, we 

calculated the Jaccard coefficient between the damage lists of the unknown-type 

genes and known-type genes. For each unknown gene, we picked out 5 genes 

from the known-type genes which have the highest damage list similarity 

coefficients with this query gene, where the similarity coefficient is also required 

to meet certain threshold (e.g. similarity coefficient > 0.4). If the number of genes 

satisfying this criterion is less than 5, we just keep them without further 

modifications. For these selected top 5 or less genes, as long as any of them is 

essential, we consider this unknown query gene to be essential, otherwise non-

essential or unknown (the case that we cannot find any known genes with 

similarity bigger than the threshold for the query gene). Such procedures are 

iterated until either all the unknown genes are labeled with an essentiality type, or 

a pre-defined iteration maximal number is reached. In the end, a parameter called 

prediction accuracy is introduced to measure the efficiency of our approach, 

which is defined as the number of corrected predicted genes over the total number 

of genes to be predicted ( ( _ ) / ( _ _ )N correct predicted N total to predicted ). 

Since some genes couldn’t be predicted through our approach as they are not 

associated with the features we adopted in this study, it is not appropriate to 

include them when computing the prediction accuracy. As a consequence, we also 

defined another parameter, called modified prediction accuracy, which is defined 

as the number of corrected predicted genes over the total number of predicted 

genes ( ( _ ) / ( _ )N correct predicted N total predicted . 
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Figure 18 Overview of the algorithm. Starting from E. coli metabolic network, in 
each computational cycle, N genes are randomly chosen, which are labeled as 
unknown-type genes, where the essentiality is to be predicted. The leftover genes 
are labeled as known-type genes, where the essentiality information is inherited 
from Keio collection. The damage list for each metabolic gene is calculated. For 
the unknown gene, if the size of the damage list is zero, we updated its essentiality 
to be non-essential. Otherwise, its damage list is compared with other known-type 
genes and a similarity coefficient is computed to measure their damage list 
similarity. The top five similar genes (if exists) are selected for each unknown-
type gene. The essentiality of the unknown-type gene is updated to be essential, 
non-essential, or unknown depending on the components of the selected top five 
similar genes. Details are described in the Method part. Such procedures are 
iterated until all the unknown genes are identified, or a pre-defined maximal 
iteration number is reached. Finally the prediction accuracy is computed as we 
discussed in the method part. This is one computational cycle. Such cycle is 
repeated using different unknown gene sets. An average is taken over all these 
cycles to get averaged prediction accuracy.  
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4.3 Gene essentiality prediction  

 

4.3.1 Results of gene essentiality prediction 

 

Before we made any predictions, we initialized single gene deletion according to 

the procedures detailed in the previous chapter for each gene in the reconstructed 

E. coli bipartite metabolic network. For each query gene, we can obtain a 

corresponding damage list, which is composed of genes whose functions may be 

impaired in response to the target gene deletion.  

 

In our study, all the genes are classified as unknown-type and known-type, where 

unknown-type refers to genes with unknown essentiality type and known-type 

refers to genes with known essentiality type. The details regarding how to predict 

these unknown-type genes from the known-type genes are illustrated in the 

previous section. The procedure from randomly choosing unknown-type genes to 

the prediction of these genes is called one calculation cycle. Such procedure is 

iterated multiple times and average was taken over all these cycles to obtain 

averaged prediction accuracy.  

 

In our method, there are some parameters involved, such as the number of 

unknown-type genes, pre-defined maximal iteration number, similarity coefficient 

threshold, cycle number and so on. The impact of each parameter is tested in the 

following sections and an optimal value for each parameter is also determined. 
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Besides the prediction accuracy, sensitivity and specificity are also calculated for 

each scenario, where the sensitivity is a measure of the ability to identify positive 

results and specificity is a measure of the ability to identify negative results. They 

are defined as:  

_ _
_ _ _ _

number true positivesensitivity
number true positive number false negative

=
+

  

_ _
_ _ _ _

number true negativespecificity
number true negative number false positive

=
+

 

Here, true (or false) positive refers to essential genes (or non-essential genes) 

correctly (or incorrectly) identified as essential, whereas true (or false) negative 

refers to non-essential genes (or essential genes) correctly (or incorrectly) 

identified as non-essential. 

 

4.3.2 The effect of iteration number on prediction accuracy 

 

In each calculation cycle, we iterated our prediction procedures until all the 

unknown genes are predicted, or a pre-defined maximal iteration number is 

reached. Based on our observation, it is always the iteration number reached first. 

The iteration number only impact on whether the iteration balance is reached. If 

no other gene can be predicted based on available knowledge, increment of the 

iteration number cannot further increase the prediction accuracy. A smaller 

iteration number sometimes may lead to lower prediction accuracy. Changing the 

iteration number while keeping other parameter the same, we found out that the 
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modified prediction accuracy stays robustness, fluctuates around 0.95. Besides, 

the number of non-predicted genes also shows a high level of consistence. 

Therefore, this parameter is considered not have much impact on the prediction 

accuracy. In the following sections, we use 500 as the maximal iteration number 

(Table 12). 

 

Table 12 The effect of iteration number on prediction accuracy. For different 
maximal iteration number (Iteration), prediction accuracy (prediction acc.), 
modified prediction accuracy (modified prediction acc.), sensitivity, specificity, 
and the number of unpredicted genes (unpredicted) are computed. 

 

Iteration prediction 
acc. 

modified 
prediction 

acc.  

sensitivity specificity unpredicted 

500 0.58244 0.95273 0.50792 0.98446 388 
1000 0.58714 0.95314 0.47018 0.98563 383 
1500 0.58778 0.95396 0.50166 0.9857 383 
2000 0.58512 0.95345 0.47562 0.98705 386 
2500 0.58466 0.95231 0.48612 0.98412 386 
3000 0.58396 0.95365 0.47223 0.98682 387 

 

 

4.3.3 The effect of threshold on prediction accuracy 

 

Threshold is another important parameter used in our study. As mentioned, gene 

pairs with high similarity coefficients tend to share the same essentiality. Thus, a 

moderate threshold is required since it may guarantee the correlation between 

similarity coefficient and gene essentiality. The cost of a high threshold is the 

number of unpredicted genes since fewer genes are involved when increasing the 
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threshold. On the other hand, a relative low threshold may introduce some false 

positive (or false negative) predictions. As a result, we need to balance the 

tradeoff between prediction accuracy and the number of unpredicted genes. To 

find an optimal threshold, we studied two scenarios, one with 800 unknown genes 

(Table 13) and the other with 100 unknown genes (Table 14). The leftover genes 

for each individual scenario are known-type genes, whose information is used to 

predict the unknown genes. In the first scenario, the overall prediction accuracy 

goes up when the threshold goes up. So does the overall unpredicted genes. 

Similar observations can be found in the second scenario. Considering the tradeoff 

between sensitivity and specificity, we choose the threshold 0.4, because it may 

correspond to a moderate sensitivity and specificity compared to other threshold.  
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Table 13 The effect of threshold on the prediction accuracy (800 unknown). For each threshold, prediction accuracy (prediction acc.), 
modified prediction accuracy (modified prediction acc.), sensitivity, specificity, and the number of unpredicted genes are computed 
(unpredicted gene). The maximal iteration number, number of top genes, cycle number, and the number of unknown-type genes are: 
2000, 5, 50, and 800 respectively.  

 

Threshold prediction acc. modified prediction 
acc. 

sensitivity specificity unpredicted gene 

0.1 0.710 0.911 0.614 0.940 176 
0.2 0.696 0.926 0.615 0.957 198 
0.3 0.665 0.936 0.586 0.968 231 
0.4 0.635 0.948 0.569 0.980 264 
0.5 0.622 0.951 0.529 0.985 277 
0.6 0.590 0.958 0.521 0.989 307 
0.7 0.573 0.963 0.476 0.991 324 
0.8 0.566 0.965 0.445 0.993 330 
0.9 0.557 0.966 0.390 0.993 338 
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Table 14 The effect of threshold on the prediction accuracy (100 unknown). For each threshold, prediction accuracy (prediction acc.), 
modified prediction accuracy (modified prediction acc.), sensitivity, specificity, and the number of unpredicted genes are computed 
(unpredicted gene). The maximal iteration number, number of top genes, cycle number, and the number of unknown-type genes are: 
2000, 5, 50, and 100 respectively. 

 

Threshold prediction acc. modified prediction 
acc. 

sensitivity specificity unpredicted genes 

0.1 0.766 0.908 0.665 0.935 15 
0.2 0.757 0.920 0.683 0.944 17 
0.3 0.739 0.929 0.677 0.953 20 
0.4 0.730 0.943 0.703 0.965 22 
0.5 0.717 0.944 0.679 0.969 24 
0.6 0.668 0.954 0.644 0.981 29 
0.7 0.644 0.958 0.649 0.984 32 
0.8 0.639 0.953 0.570 0.986 32 
0.9 0.617 0.961 0.558 0.988 35 
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4.3.4 The effect of top N similar genes on prediction accuracy 

 

Although we set a threshold for the damage list similarity coefficient to identify 

those correlated gene pairs, occasionally the number of qualified genes is too 

many. Therefore, we added a second filter, the top N similar genes, which are 

defined as those top N genes in the list of genes satisfying the first threshold 

criterion sorted according to the similarity coefficient. For each query unknown 

gene, we first identified those genes have a similarity coefficient bigger than the 

defined threshold, and then selected the top N genes. We examined the essentiality 

type of these N genes. If any one of them is essential, we predicted that this query 

gene is also an essential gene, otherwise non-essential. If the total number of 

genes satisfying this requirement is less than N, we used all these genes. By 

changing the value of N, we found out this parameter may affect our prediction 

results (Table 15).  

 

Table 15 The effect of Top N similar genes on the prediction accuracy. For 
different N, predicted accuracy (prediction acc.), modified prediction accuracy 
(modified prediction acc.), sensitivity, specificity, and the number of unpredicted 
genes (unpredicted gene) are computed. The maximal iteration number, threshold, 
cycle number, and the number of unknown-type genes are: 2000, 0.4, 50, and 100 
respectively. 

N prediction 
acc. 

modified 
prediction 

acc. 

sensitivity specificity unpredicted 
gene 

2 0.727 0.941 0.647 0.973 22 
5 0.722 0.941 0.661 0.97 23 
8 0.713 0.937 0.669 0.963 23 
10 0.7176 0.933 0.63 0.965 23 
15 0.702 0.925 0.674 0.948 24 
20 0.7064 0.923 0.681 0.948 23 
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Our results indicated that the prediction accuracy is quite sensitive with respect to 

the number of similar genes selected. A lower number of similar genes (e.g. 2) 

always correspond to high prediction accuracy and a relative low sensitivity, 

whereas a higher number of similar genes (e.g. 20) always associated with low 

prediction accuracy and high sensitivity. In our work, we chose 5 as our optimal 

parameter because at this level, we not only have high prediction accuracy, but 

also reasonable sensitivity and specificity.  

 

4.3.5 The effect of cycle number on prediction accuracy 

 

In each simulation cycle, we randomly selected one set of unknown genes. To 

reduce the effects of such randomness, we repeated the simulation cycle multiple 

times, which is termed as cycle number. The prediction accuracy for each 

unknown gene set is computed and then averaged. It is observed that the effect of 

this parameter is quite similar to the iteration number. As long as this number is 

large enough, the obtained result is robust. For the cycle number ranging from 10 

to 80, we didn’t observe any significant difference between them. In our work, we 

chose 50 for this parameter (Table 16). 

 

 

 

 



 
 
 

Chapter 4 Essential gene prediction                                                                    112 
 

 
 

Table 16 The effect of cycle number on prediction accuracy. For different cycle 
numbers, prediction accuracy (prediction acc.) and modified prediction accuracy 
(modified prediction acc.) are computed. The maximal iteration number, threshold, 
similar genes, and the number of unknown-type genes are: 2000, 0.4, 5 and 1000 
respectively. 

 

cycle threshold top unknown  
gene 

iteration prediction 
acc. 

modified  
prediction acc. 

10 0.4 5 1000 2000 0.576 0.951 
20 0.4 5 1000 2000 0.58545 0.951 
30 0.4 5 1000 2000 0.5865 0.955 
40 0.4 5 1000 2000 0.58538 0.953 
50 0.4 5 1000 2000 0.58778 0.954 
80 0.4 5 1000 2000 0.5851 0.953 
 

 

4.3.6 Prediction accuracy for different number of unknown genes 

 

Using all the optimized parameters we identified in the previous section, we 

performed simulations for different number of unknown genes, varying from 100 

to 1200. The summarized results are listed in the following table (Table 17).  

 

We found out that the modified prediction accuracy can be up to 0.97 and is rather 

robustness, which is even higher than FBA approaches, which is around 0.87 

(Figure 19). However, there are a number of genes that cannot be predicted using 

our approach, which may due to the incompleteness and the quality of the 

reconstructed metabolic network. The ratio of unpredicted genes also increases 

associated with increasing number of unknown genes. So if we take these genes 
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into account and considered them as misclassified, the prediction accuracy may 

drop to around 0.7 (when the number of unknown genes is less than 600), which is 

still comparable with some machine learning based prediction methods. One limit 

is that when the number of genes to be predicted is too many (e.g. 1200), our 

prediction accuracy (without modified) is relative low (e.g. 0.505) as there is a 

large number of genes that cannot be predicted (e.g. 573). However, those 

predicted are with high accuracy (e.g. 0.967).  
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Table 17 Summary of the prediction results for E. coli. For simulations with different number of unknown genes (ranging from 50 to 
1200), prediction accuracy (prediction acc.), modified prediction accuracy (modified prediction acc.), sensitivity, specificity, the number 
of unpredicted genes (unpredicted), and the ratio of unpredicted genes (unpredicted ratio) are computed.  

 

unknown 
genes 

prediction acc. modified 
prediction acc. 

sensitivity specificity unpredicted unpredicted ratio 

50 0.733 0.943 0.646 0.971 11 0.220 
100 0.722 0.941 0.657 0.970 23 0.200 
150 0.707 0.942 0.654 0.971 37 0.280 
200 0.718 0.944 0.642 0.975 47 0.220 
250 0.708 0.945 0.647 0.972 62 0.240 
300 0.698 0.946 0.655 0.973 78 0.257 
350 0.702 0.944 0.633 0.974 89 0.233 
400 0.696 0.944 0.639 0.972 105 0.217 
450 0.691 0.945 0.635 0.974 120 0.277 
500 0.684 0.946 0.639 0.975 138 0.267 
550 0.676 0.945 0.605 0.976 156 0.285 
600 0.666 0.945 0.618 0.974 177 0.273 
650 0.662 0.946 0.599 0.976 195 0.284 
700 0.653 0.947 0.585 0.978 217 0.269 
750 0.645 0.949 0.585 0.979 240 0.282 
800 0.629 0.949 0.564 0.980 269 0.324 
850 0.627 0.952 0.546 0.983 289 0.355 
900 0.613 0.952 0.540 0.983 319 0.351 
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950 0.592 0.952 0.525 0.984 359 0.340 
1000 0.582 0.953 0.507 0.984 388 0.324 
1050 0.567 0.957 0.453 0.988 427 0.407 
1100 0.552 0.958 0.384 0.990 466 0.414 
1150 0.525 0.961 0.291 0.992 521 0.407 
1200 0.505 0.967 0.248 0.996 573 0.420 
1250 0.478 0.972 0.051 0.999 635 0.406 
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Figure 19 Prediction results for different number of unknown genes. In this figure, 
the horizon is the number of unknown type genes to be predicted in our study, and 
the vertical is the prediction accuracy, where dot is the modified prediction 
accuracy and rectangle is the prediction accuracy. 

 
 

4.3.7 Strategies to increase the prediction accuracy 

 

4.3.7.1 Combination with FBA 

 

Since some genes cannot be predicted using our approach, we proposed the idea 

of combining our approach with other available prediction methods, such as FBA. 

In other words, we first predicted the essentiality type with our own method, and 
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for those unpredicted genes, we applied FBA method. The overall prediction 

accuracy is computed. It turned out that the combined method could maintain a 

high level of prediction accuracy (Figure 20). This is validated even in the 

presence of limited information (the number of known gene less than 100).  

 

4.3.7.2 Increased number of known essential genes 

 

In practice, researchers are more concerned about essential genes. Experimental 

results have accumulated abundant information regarding these genes [91, 92, 191, 

196]. Besides, essential genes are considered more evolutionary conserved 

compared with non-essential genes in bacteria [112, 117]. Mapping from one 

species to another may also provide some information for essential genes. 

Therefore, it is reasonable to adequately increase the weight for essential genes in 

the known type genes. It is noticed that when the number of unknown essential 

genes decreases (corresponding to an increased number of known essential genes), 

the prediction accuracy increases. This is another strategy we can use to increase 

the prediction accuracy (Figure 21). 
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Figure 20 Prediction accuracy combined with FBA. In this figure, the horizon is 
the number of unknown genes to be predicted, whereas the vertical is the modified 
prediction accuracy. The starting point of the vertical is the prediction accuracy 
for FBA solely. It is evident that combination with FBA, our prediction accuracy 
can still maintain at a high level. The iteration number, cycle number, threshold, 
and the number of similar genes are: 500, 50, 0.4, and 5 respectively.  
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Figure 21 The prediction accuracy corresponding to different level of essential 
genes to be predicted. When we decrease the number of essential genes to be 
predicted (corresponding to an increased number of known essential genes), the 
overall prediction accuracy will increase. The iteration number, cycle number, 
threshold, the number of similar genes, and the number of unknown genes are: 
500, 50, 0.4, 5 and 800 respectively.  
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4.3.8 Cross-species validation 

 

Here we extended our work to another model organism, yeast S. cerevisiae. In 

yeast there are around 760 genes involved in the metabolic network. Using the 

optimized parameters we determined for E. coli as a reference, we obtained the 

prediction accuracy for yeast. Since the parameters used in E. coli may not be the 

optimized parameters for yeast, it is expected that the prediction accuracy for 

yeast should be higher than we actually obtained.  

 

It is obvious that the prediction results are quite similar to those obtained for E. 

coli. When the unknown gene set is relative small, our prediction accuracy is high 

and the ratio of unpredicted genes is also small. However, when the number of 

unknown genes increase, sensitivity decreases and so does the prediction accuracy 

(Table 18, Figure 22). This may be explained by the fact that our unknown genes 

are generated randomly. Since the total number of essential genes is fewer 

compared with non-essential genes, a relatively small quantity of essential genes 

would be included as known genes. On the other hand, as we see in the previous 

results, some essential genes are only connected to 1 essential gene, or even zero. 

In this sense, it is not strange that our sensitivity is quite low when the unknown 

gene is large.  
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Table 18 Summary of the prediction results for yeast S. cerevisiae. For predictions with different number of unknown genes (ranging 
from 50 to 700), prediction accuracy (prediction acc.), modified prediction accuracy (modified prediction acc.), sensitivity, specificity, 
the number of unpredicted genes (unpredicted), and the ratio of unpredicted genes (unpredicted ratio) are computed. The iteration number, 
number of similar genes, threshold, and cycle number are: 2000, 5, 0.4, and 10 respectively.  

  

unknown 
genes 

prediction 
acc. 

modified 
prediction 

acc. 

sensitivity specificity unpredicted unpredicted 
ratio 

50 0.628 0.883 0.468 0.931 14 0.29 
100 0.634 0.893 0.489 0.941 28 0.29 
150 0.622 0.891 0.463 0.944 45 0.30 
200 0.625 0.899 0.508 0.947 61 0.31 
250 0.612 0.893 0.448 0.946 78 0.32 
300 0.605 0.896 0.459 0.949 97 0.33 
350 0.599 0.898 0.431 0.953 116 0.33 
400 0.591 0.899 0.399 0.958 137 0.34 
450 0.575 0.902 0.403 0.959 163 0.36 
500 0.566 0.906 0.378 0.966 187 0.38 
550 0.553 0.910 0.370 0.966 215 0.39 
600 0.534 0.914 0.300 0.977 249 0.42 
650 0.517 0.925 0.260 0.984 286 0.44 
700 0.489 0.931 0.198 0.987 332 0.47 
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Figure 22 Prediction results for yeast S. cerevisiae. The horizon is the number of 
unknown genes to be predicted, and the vertical is prediction accuracy (circle), 
modified prediction accuracy (rectangle), or the ratio of unpredicted genes (triangle). 
The iteration number, number of similar genes, threshold, and cycle number are: 2000, 
5, 0.4, and 10 respectively.  
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4.4 Discussions 

 

Essential genes are considered as promising drug targets considering their ability to 

cause lethal phenotypes [189]. Two categories of computational based approaches are 

widely used to assess gene essentiality. One is constraint-based approaches, such as 

FBA [95] and its variants [96, 197], while the other is machine learning based 

approaches, which utilizing a variety of network topological features, sequencing 

characteristics that potentially associated with essentiality to predict gene essentiality 

[160, 193, 194, 198].  

 

In Chapter 3, we revealed some functional and structural features that tightly 

associated with essential genes, which may confer to the differential deletion effects 

between essential and non-essential genes. Our studies indicated that essential genes 

generally have a larger damage list whereas majority of non-essential genes with zero 

damage list. Gene pairs with a higher damage list similarity coefficient tend to share 

the same essentiality. From the perspective of structural organization, essential genes 

tend to be interconnected through low-degree metabolites. Based on these findings, 

we derived some features that significantly associated with essential and non-essential 

genes, which are then used to predict unknown-type genes. Two features are used in 

our work. One is that genes with zero damage lists are significantly to be non-

essential genes. Another is that gene pairs with a higher damage list similarity 
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coefficient tend to share the same essentiality type, which in other words, we can 

predict unknown genes’ essentiality using known type genes based on their damage 

list profiles. 

 

Since there are several parameters, such as similarity threshold, number of similar 

genes in our proposed approach, we first examined their individual effects on the 

prediction accuracy and then optimized these parameters. Using the optimized 

parameters, we examined the prediction accuracy for different number of unknown 

genes. Our results are quite consistent and robust, where the prediction accuracy can 

be up to 0.97, much better than some available approaches. For example, the 

prediction accuracy for FBA is around 0.87 and 0.83 for E. coli and yeast respectively 

[17, 138]. Other machine learning based approaches have worse prediction accuracy 

even though a lot of structural and functional features are employed [14]. Similar 

prediction is performed in yeast, which also showed high accuracy.  

 

Here we made a simple comparison between our approach and machine learning 

based approaches, since both are based on structural and functional features. First of 

all, our features are based on previous studies on how essential and non-essential 

genes confer to different deletion effects. We unveiled some structural and functional 

features that potentially associated with it and also proposed mechanisms explaining 

how the differential deletion effects are caused, which is supported by literatures. In 
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most machine learning based approaches, there is no clear causality between 

essentiality and these features, although with high statistical significance.  

 

One major limit of our approach is that there are some genes cannot be predicted 

solely using our approach. If we consider these genes as misclassified, the prediction 

accuracy will drop to around 0.7, changing depending on other parameters. This may 

due to the incompleteness of our network or some critical links are missing. We 

analyzed the genes that cannot be predicted and classified them into two categories: 

the largest category is the genes that cannot be captured using these features. For 

these genes, they can only affect themselves. As a result, when we calculated 

similarity coefficients for gene pairs, these genes are always neglected. Such 

phenomena may due to the incompleteness of metabolic network and some critical 

links may be missing in the network. Another kind of gene is those that can only 

affect other unknown-type genes. As a consequence, these pairs are neglected 

together as no other genes in the known-type list can be used to give a proper 

prediction. This happens when the number of unknown genes is large.  

 

We proposed two strategies to improve the prediction accuracy. First of all, combine 

with other methods. For example, combined with FBA showed improved prediction 

accuracy compared with FBA alone, with all the genes predicted. Another strategy is 

to slightly increase the ratio of essential genes in the known-type list. Studies showed 
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that increasing the ratio of known essential genes can increase prediction accuracy. 

This can be achieved via mapping essential genes between different species since it is 

more conserved. The most important way to increase prediction accuracy is to 

explore more essentiality related features to increase the coverage.  

 

In summary, although we used limited number of functional and structural features, 

the prediction accuracy is comparable with other methods which may use up to 20 

features. It is suggested that the most important factors in essential gene identification 

is how to unveil some useful and essentiality related features. Effects in 

understanding gene organization may shed light on essential gene identification. 
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In Chapter 3, we have extensively discussed single gene deletion effects and how 

essentiality is arising from the perspective of functional and topological organization. 

To reveal a higher order functional and structural organization of complex metabolic 

network (such as genetic buffering), it is necessary to study the genetic interactions in 

the context of metabolic networks. Here, we studied the systems-level double genetic 

interactions by computing the double gene deletion effects in both E. coli and S. 

cerevisiae using the proposed cascade failure procedures as described in Chapter 2. 

A comparison with single gene deletion effect revealed pairs of genes with reduced, 

enhanced, and unchanged deletion effects. Our analysis indicated that gene pairs with 

reduced deletion effects tend to be from the same pathway whereas gene pairs with 

enhanced deletion effects tend to be from diverse pathways, which is consistent with 

findings from the shortest path distance between gene pairs. Detailed investigations 

on these gene pairs offered some evolutionary clues and also the mechanisms 

regarding how double gene deletion can lead to lethality or survival. 

 

5.1 Introduction 

 

Robustness is an intrinsic property of metabolic networks [154], which enables the 

living organisms maintaining its functions in response to various genetic 

perturbations and environmental stresses. As most genes are dispensable for growth 
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[66, 88], implying the presence of compensatory mechanisms [199], an in-depth 

understanding on the genetic interactions (or epistasis) in the framework of metabolic 

network would gain insights into the complex organization of metabolic networks 

[200]. Though single gene deletion has been extensively studied [66, 88], which also 

revealed some valuable functional and structural organization principles of metabolic 

networks [49, 74, 102, 109, 201], a comprehensive understanding on the higher order 

organization requires large-scale double- or even multiple- gene deletion analysis.  

 

Epistatic interaction, defined as the ability of one gene to mask the phenotypic impact 

caused by other mutants [121], may help us to elucidate functional associations 

between genes and the whole organizations of metabolic network. For example, a 

system-level single and double gene deletion analysis of 890 yeast genes revealed that 

the epistatic interaction networks can be organized hierarchically into function-

enriched modules [50]. Positive epistasis (i.e. interactions between genes that can 

enhance their functionality) was prevalent observed in both E. coli and S. cerevisiae 

metabolic network [130]. Analysis of epistatic interactions also serves as the 

fundamental basis for understanding the synthetic lethal/rescue mutants [90, 125], 

which have attracted wide attention due to their pivotal role in drug development [68, 

70, 124]. Despite the significance of epistatic interaction, the extent and nature of 

epistasis are less studied. As we have explored the nature of essentiality via 
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computing damage list for single gene deletion in Chapter 3, investigations on the 

damage lists for double gene deletion may shed light on the understanding of epistasis.  

 

Mathematically, the way to characterize the deletion effects of two independent genes 

is not consistent between studies. One may define it as the sum of individual deletion 

effects [122], i.e. ( ) ( ) ( )W xy W x W y= + , whereas other may use the multiplicative 

model, defining it as the production of individual mutational effects [122], i.e. 

( ) ( )* ( )W xy W x W y= . The epistatic interaction is determined by the relative 

difference between the actual double deletions effects and the expected effects 

assuming they are independent. The different definitions of independence are 

partially due to the various ways to measure the deletion effects. For example, in the 

fitness analysis [50, 130], the growth rate is computed and compared to determine 

whether one gene is essential or not. For such traits, it is convenient to use the 

production rule. On the other hand, in our study, the damage list is adopted to capture 

the deletion effects for both single/double mutants, the additivity rule would be more 

appropriate. 

 

In this study, we extended the single gene deletion procedures to capture the double 

gene deletion effects for any given gene pairs using metabolic network of E. coli and 

S. cerevisiae. Gene pairs with enhanced deletion effects, reduced deletion effects 

were identified and investigated. Pathway analysis suggested that gene pairs with 
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reduced deletion effects have a tendency of arising from the same pathway, whereas 

gene pairs with enhanced deletion effects tend to be from diverse pathways. The 

obtained properties are quite conserved, also found in yeast, suggesting evolutionarily 

conserved features. We further showed that lethality caused by non-essential gene 

pairs with enhanced deletion effects are due to the fact that their deletion effects can 

disrupt some key metabolites/reactions/genes, the loss of which lead to lethality. 

Essential gene pairs with reduced deletion effects are quite conserved across species. 

Our analysis implied the potential way to identify the candidates for synthetic 

lethal/synthetic rescue pairs and some clues to drug design.  

 

5.2 Materials and methods 

 

5.2.1 Metabolic network 

 

The E. coli and S. cerevisiae metabolic networks used in double-gene deletion 

analysis are reconstructed from E. coli iAF1260 and S. cerevisiae iND1260 model 

which are available in BiGG database [136]. The reconstructed network is a directed 

bipartite graph which contains two types of nodes (metabolites and reactions nodes) 

(for details, please refer to Section 2.2, Chapter 2).  
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5.2.2 Deletion effects in response to double gene removal 

 

In Chapter 3, we have introduced an approach which is used to characterize single 

gene deletion effects in the context of metabolic networks. This approach is extended 

to capture double gene deletion effects in this chapter, where the deletion effects are 

also characterized by a list of affected genes. The major difference between single 

gene deletion and double gene deletions is how to determine the corresponding 

reactions. For single gene deletion, it is defined as reactions that cannot proceed 

further due to the single gene removal. We cannot simply union the corresponding 

reactions for the gene pairs for double gene deletion. Instead, it is necessary to take 

the gene interactions into consideration. For instance, the removal of two isozymes 

can lead to the failure of reactions for lacking compensating pathways, which is not 

the case in single gene deletion. The non-linear effect introduced by the topological 

characteristics of metabolic network determines that the corresponding reactions of 

double genes are not simply equal to the additive of their individual.  

 

In this algorithm, we first identify the ‘corresponding reactions’ for each pair of genes 

according to the gene-protein-reaction (GPR) association information (for details, 

please refer to Section 2.2.2, Chapter 2). Only when all the enzyme subsets are non-

functional, we assume that a particular reaction cannot occur. Next, we initiate the 

cascading failure procedures by removing all the ‘corresponding reactions’ and their 
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links from the network simultaneously. Metabolite nodes with either zero in-degree or 

out-degree and their links are to be removed in the next step. Following, reactions 

nodes with incomplete substrates or products and their associated links are removed 

from the metabolic networks. Such procedures are repeated until all the leftover 

metabolites with non-zero in-degree and out-degree and reactions with complete 

substrates and products. Consequently, double gene deletion can be characterized by 

a list of affected reactions.  

 

The removed reactions from previous step are then mapped to the corresponding gene 

lists. For each reaction identified, as long as they belong to another gene’s 

corresponding reactions, we assume that this particular gene will be affected in 

response to double gene deletions. The union of all the affected genes is the damage 

lists for double gene deletion.  

 

5.2.3 Shortest path distance 

 

In a directed graph, for any gene pair 1 2{ , }G G , a path is defined as a series of nodes 

1 2{ , ,... }nP v v v=  that can connect these two nodes. The path with minimal nodes is 

called the shortest path and the number of nodes in this path is termed as the shortest 

distance between these two genes.  
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In our studies, a directed bipartite metabolic network is used, which is composed of 

metabolite and reaction nodes. Firstly, the reactions catalyzed by each gene are 

identified. For instance, 1 2{ , ,... }mR R R are the reactions for gene 1G  and 1 2{ , ,... }nr r r are 

the reactions for 2G . In the next step, we search the graph for the shortest paths 

between any pair of reactions, i.e. 1 2 1 2{ , ,.. } { , ,.. }m nR R R r r r× and among all these pairs, 

the one with the shortest distance is defined as the shortest path for gene pairs.  

 

5.3 Double gene deletions in E. coli 

 

5.3.1 Comparisons between damage lists for single- and double- gene deletions 

 

The algorithm to characterize single gene deletion is tailored to capture the double 

gene deletion effects. The cascade failure procedures are initiated by removing the 

corresponding reactions of the target genes from the reconstructed metabolic network 

iAF1260 [17], followed by the iterated failure procedures, which goes upwards and 

downwards until all the leftover metabolite nodes are of non-zero in-degree and out-

degree and reaction nodes with complete substrates and products. To distinguish with 

single gene deletion, the damage list obtained for double gene deletion is termed as 

‘damage list for double gene deletion’. Analysis in previous chapter reveals that 

essential genes spread their deletion effects via other essential genes. Thus, in this 
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study, instead of studying the whole damage lists, we only concern those affected 

essential genes (i.e. the essential genes in the damage list). 

  

A comparison between the damage lists of single- and double- gene deletion unveiled 

gene-gene epistatic interactions. In this study, gene pairs are further grouped into 

three categories: gene pairs with enhanced deletion effects, reduced deletion effects 

and unchanged effects based on the relative relations between the damage list size of 

double gene deletions and single gene deletion. Suppose one gene pair { 1, 2}g g  

where the damage list of individual gene is represented as ( 1), ( 2)d g d g , whereas the 

damage list of double deletion is denoted as ( 12)d g . It is considered as gene pair with 

enhanced deletion effects if ( 12) ( 1) ( 2)d g d g d g> ∪ . Similarly, it is classified as 

gene pair with reduced deletion effect if ( 12) ( 1) ( 2)d g d g d g< ∪ . The leftover gene 

pairs are those pairs with unchanged effects. From the perspective of genetic 

interactions, gene pairs with unchanged effects are of less information since it 

indicates the irrelevance of genes in terms of lethality or survival.  

 

Among the 608075 gene pairs studied (those gene pairs with damage size larger than 

0), 7628 of them showed enhanced deletion effects, whereas 47 with reduced deletion 

effects. As there are a large number of gene pairs with both zero double gene deletion 

(i.e. 12( ) 0d g = ) and single gene deletion effects (i.e. 1( ) 0d g =  and 2( ) 0d g = ) (result 
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totally 158047 gene pairs), we excluded these gene pairs from our analysis. As a 

consequence, around 5% (7628 out of 158047) gene pairs with enhanced deletion 

effects, and less than 1% (47 out of 158047) gene pairs with reduced deletion effects 

are identified.  

 

Further quantitative analysis of the difference between damage list sizes of double 

gene deletion and single gene deletion (Figure 23) indicates that although majority of 

the gene pairs have an absolute difference around 2 or 3, a small fraction of them can 

have a difference up to 10. The larger the difference, the tighter the interactions are 

considered to be.  

 

19 essential/essential gene pairs (E-E) (Figure 23A) and 15 essential/non-essential 

(E-N) gene pairs (Figure 23B) are identified to have reduced deletion effects, while 

2716 non-essential/non-essential gene pairs (N-N) show enhanced deletion effects. 

While the former are the ideal candidates for synthetic rescue, the latter pairs are 

considered to be ideal candidates for synthetic lethal. We will discuss these pairs in 

details. In the following sections, we will use E-E, E-N, and N-N to denote the 

corresponding gene pairs. 
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Figure 23 Epistatic interactions in E. coli between (A) E-E pairs, (B) E-N pairs, and 
(C) N-N pairs. The vertical is the epistasis between genes while the horizon 
represents the corresponding number of gene pairs. A positive epistasis indicates the 
enhanced deletion effects whereas a negative epistasis suggests the reduced deletion 
effects. Genes with non-epistatic interactions are excluded. The inset is the 
percentage of gene pairs with enhanced deletion effects, reduced deletion effects, and 
unchanged deletion effects in each individual group.  

 

 

5.3.2 Pathway analysis for gene pairs with enhanced and reduced deletion effects 

 

Two genes are participated in the same pathway if reactions catalyzed by the enzymes 

encoded by the genes belong to the same pathway. Statistical results of gene pairs 
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from different categories (total gene pairs, E-E, and N-N) breakdown by the sign of 

epistasis and pathway indicate that gene pairs with enhanced deletion effects tend to 

be from different pathways whereas gene pairs with reduced deletion effects are 

mainly from the same pathway (Table 19). Interestingly, such observations are 

strengthened in E-E pairs with reduced deletion effects (100% in E-E pairs versus 94% 

in Total gene pairs), and N-N pairs with enhanced deletion effects (85% in N-N pairs 

versus 83% in Total gene pairs).  

 

Table 19 Summary of pathway analysis in E. coli 

 

Enhanced Deletion 
Effect Unchanged Reduced Deletion 

Effect 
Same 

Pathway 
Different 
Pathway 

Same 
Pathway 

Different 
Pathway 

Same 
Pathway 

Different 
Pathway 

Total No. 1319 6309 32970 567430 44 3 
% 17% 83% 5% 95% 94% 6% 

E-E No. 198 651 1039 6619 19 0 
% 23% 77% 14% 86% 100% 0% 

N-N No. 399 2317 26215 431097 12 1 
% 15% 85% 6% 94% 92% 8% 
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Figure 24 Pathway analysis of gene pairs in E. coli. The ratio of gene pairs from the same pathway for each epistasis level 
(labeled as DIFF) is computed for (A) Total gene pairs (B) E-E gene pairs (C) N-N gene pairs and represented as color 
gradient.  
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The detailed pathway analysis by considering gene pairs with different levels of 

epistasis is presented in Figure 24 and the results are consistent with Table 19. In 

addition, the path distances between pairs of essential genes with reduced deletion 

effects are significantly shorten compared with the general E-E pool (Figure 25). On 

the other hand, the shortest distances between pairs of non-essential genes with 

enhanced deletion effects are lengthened compared with the general N-N pool 

(Figure 26).  

 

Figure 25 Distribution of shortest path distance between E-E pairs. The percentage of 
gene pairs with the corresponding shortest path distance (horizon) is plotted. Nearly 
50% of E-E gene pairs with reduced deletion effect have a distance smaller than 5 
(circle), while the average distance for E-E group is around 10 (rectangle).  
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Figure 26 Distribution of shortest path distance between N-N pairs. The percentage 
of gene pairs with the corresponding shortest path distance (horizon) is plotted. The 
distribution for N-N pairs with enhanced deletion effect (circle) is left-skewed 
compared with whole N-N gene pairs (rectangle).  

 

 

5.4 Double gene deletions in S. cerevisiae 

 

To compare double gene deletion effects between organisms, a genome-scale double 

gene deletion analysis is conducted to S. cerevisiae iND750 model [138]. Among the 

212979 gene pairs studied, 2239 of them show enhanced deletion effects, whereas 45 

with reduced deletion effects. Further quantitative analysis of the epistasis 
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interactions indicates that although majority of the gene pairs have an absolute 

difference around 1, a small fraction of them can have a difference up to 6 (Figure 

27).  
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Figure 27 Epistatic interactions in S. cerevisiae between (A) E-E pairs, (B) E-N pairs, 
and (C) N-N pairs. The vertical is the epistasis between genes while the horizon 
represents the corresponding number of gene pairs. A positive epistasis indicates the 
enhanced deletion effects whereas a negative epistasis suggests the reduced deletion 
effects. Genes with non-epistasis interactions are excluded. 

 

 

20 E-E pairs and 20 E-N pairs show reduced deletion effects while 637 N-N pairs 

show enhanced deletion effects. Findings from pathway analysis (Table 20, Figure 

28) are also consistent with E. coli, in other words, E-E pairs with reduced deletion 

effects tend to be from the same pathway, whereas N-N pairs with enhanced deletion 

effects are mainly from different pathways.  

 

Table 20 Summary of pathway analysis for S. cerevisiae 

 

 

Enhanced Deletion 
Effect Unchanged Reduced Deletion 

Effect 
Same 

Pathway 
Different 
Pathway 

Same 
Pathway 

Different 
Pathway 

Same 
Pathway 

Different 
Pathway 

Total No. 98 2141 5751 204944 41 4 
% 4% 96% 3% 97% 91% 9% 

E-E No. 25 359 201 6116 19 1 
% 7% 93% 3% 97% 95% 5% 

N-N No. 41 596 3946 135181 5 0 
% 6% 94% 3% 97% 100% 0% 
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Figure 28 Pathway analysis of gene pairs in S. cerevisiae. The ratio of gene pairs from the same pathway for each epistasis 
level is computed for (A) Total gene pairs (B) E-E gene pairs (C) N-N gene pairs and represented by color gradient. 
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5.5 Gene pairs with reduced deletion effects arise from the same pathway 
and are conserved between species 

 

Investigations on gene pairs with reduced double gene deletion effects indicate a 

tendency of genes arising from the same pathway, or functional related pathways. 

This is easy to be understood since the deletion effects are more likely to be 

interrupted shortly after the cascade failure procedures are initiated in order to have 

the reduced effects. Mapping the gene pairs to KEGG PATHWAY database shows 

that these gene pairs from E. coli are mainly located in the following pathways: 

Glycan Biosynthesis and Metabolism, Metabolism of Terpenoids and Polyketides, 

Metabolism of Cofactors and Vitamins and Metabolism of other Amino Acids (Table 

21). On the other hand, those genes from S. cerevisiae are found to be from these 

pathways: Metabolism of Terpenoids and Polyketides, Metabolism of Cofactors and 

Vitamins, Lipid Metabolism, and Amino Acid Metabolism (Table 22).  

 

Two common pathways are shared by these two E. coli and S. cerevisiae. One is 

Metabolism of Cofactors and Vitamins, the genes from which pathways are further 

identified to be orthologous genes and encode the same enzymes (Table 23). Another 

is Metabolism of Terpenoids and Polyketides, genes of E. coli and S. cerevisiae are 

found belong to two alternative pathways of Isopentenyl-diphosphate production. For 

the biosynthesis of Isopentenyl-diphosphate, there are usually two ways: one is the 

classical mevalonate pathway, which is available in higher eukaryotes and many 
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bacteria, whereas the other is the non-mevalonate pathway [172]. Our analysis 

suggests that those genes of yeast are actively present in mevalonate pathway, 

whereas their counterparties from E. coli are available in non-mevalonate isoprenoid 

pathway. In addition to these common pathways, there are some species-specific 

pathways, e.g. Glycan Biosynthesis and Metabolism, the function of which is to 

maintain cell wall integrity.  
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Table 21 E-E gene pairs with reduced deletion effects (E. coli)  

 

Gene1 Gene2 Symbol1 Symbol2 Pathway Pathway Category 
b0029 b2515 ispH ispG Terpenoid backbone biosynthesis Metabolism of terpenoids and polyketides 
b0029 b2746 ispH ispF Terpenoid backbone biosynthesis Metabolism of terpenoids and polyketides 
b0085 b3967 murE murI Peptidoglycan biosynthesis Glycan biosynthesis and metabolism 
b0085 b3972 murE murB Peptidoglycan biosynthesis Glycan biosynthesis and metabolism 
b0086 b0087 murF mraY Peptidoglycan biosynthesis Glycan biosynthesis and metabolism 
b0086 b0090 murF murG Peptidoglycan biosynthesis Glycan biosynthesis and metabolism 
b0087 b0090 mraY murG Peptidoglycan biosynthesis Glycan biosynthesis and metabolism 
b0088 b3972 murD murB Peptidoglycan biosynthesis Glycan biosynthesis and metabolism 
b0091 b3967 murC murI D-Glutamine and D-glutamate metabolism Metabolism of other amino acids 
b0096 b0524 lpxC lpxH Lipopolysaccharide biosynthesis Glycan biosynthesis and metabolism 
b0154 b1210 hemL hemA Porphyrin and chlorophyll metabolism Metabolism of cofactors and vitamins 
b0154 b2400 hemL gltX Porphyrin and chlorophyll metabolism Metabolism of cofactors and vitamins 
b0173 b1208 dxr ispE Terpenoid backbone biosynthesis Metabolism of terpenoids and polyketides 
b0173 b2747 dxr ispD Terpenoid backbone biosynthesis Metabolism of terpenoids and polyketides 
b0179 b0524 lpxD lpxH Lipopolysaccharide biosynthesis Glycan biosynthesis and metabolism 
b0369 b3805 hemB hemC Porphyrin and chlorophyll metabolism Metabolism of cofactors and vitamins 
b0415 b3041 ribE ribB Riboflavin metabolism Metabolism of cofactors and vitamins 
b1208 b2747 ispE ispD Terpenoid backbone biosynthesis Metabolism of terpenoids and polyketides 
b2515 b2746 ispG ispF Terpenoid backbone biosynthesis Metabolism of terpenoids and polyketides 
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Table 22 E-E gene pairs with reduced deletion effects (S. cerevisiae) 

 

Gene1 Gene2 Symbol
1 

Symbol
2 

Pathway Pathway Category 

YDL205C YDR232
W 

hem3 hem1 Porphyrin and chlorophyll metabolism Metabolism of cofactors and vitamins 

    Glycine, serine and threonine metabolism Amino acid metabolism 
YDL205C YOR278

W 
hem3 hem4 Porphyrin and chlorophyll metabolism Metabolism of cofactors and vitamins 

YDR044W YDR047
W 

hem13 hem12 Porphyrin and chlorophyll metabolism Metabolism of cofactors and vitamins 

YDR232W YGL040C hem1 hem2 Glycine, serine and threonine metabolism Amino acid metabolism 
    Porphyrin and chlorophyll metabolism Metabolism of cofactors and vitamins 
YDR232W YOR278

W 
hem1 hem4 Glycine, serine and threonine metabolism Amino acid metabolism 

    Porphyrin and chlorophyll metabolism Metabolism of cofactors and vitamins 
YER043C YGL001C sah1 erg26 Cysteine and methionine metabolism Amino acid metabolism 
    Steroid biosynthesis Lipid metabolism 
YGL001C YLR100W erg26 erg27 Steroid biosynthesis Lipid metabolism 
YGL040C YOR278

W 
hem2 hem4 Porphyrin and chlorophyll metabolism Metabolism of cofactors and vitamins 

YGR175C YHR072
W 

erg1 erg7 Steroid biosynthesis Lipid metabolism 

    Sesquiterpenoid and triterpenoid 
biosynthesis 

Metabolism of terpenoids and 
polyketides 

YGR175C YHR190
W 

erg1 erg9 Sesquiterpenoid and triterpenoid 
biosynthesis 

Metabolism of terpenoids and 
polyketides 
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YGR175C YJL167W erg1 erg20 Sesquiterpenoid and triterpenoid 
biosynthesis 

Metabolism of terpenoids and 
polyketides 

    Terpenoid backbone biosynthesis Metabolism of terpenoids and 
polyketides 

YHR007C YHR190
W 

erg11 erg9 Steroid biosynthesis Lipid metabolism 

    Sesquiterpenoid and triterpenoid 
biosynthesis 

Metabolism of terpenoids and 
polyketides 

YHR007C YJL167W erg11 erg20 Steroid biosynthesis Lipid metabolism 
    Terpenoid backbone biosynthesis Metabolism of terpenoids and 

polyketides 
YHR072W YHR190

W 
erg7 erg9 Steroid biosynthesis Lipid metabolism 

    Sesquiterpenoid and triterpenoid 
biosynthesis 

Metabolism of terpenoids and 
polyketides 

YHR072W YJL167W erg7 erg20 Steroid biosynthesis Lipid metabolism 
    Terpenoid backbone biosynthesis Metabolism of terpenoids and 

polyketides 
YHR190W YJL167W erg9 erg20 Sesquiterpenoid and triterpenoid 

biosynthesis 
Metabolism of terpenoids and 
polyketides 

YMR208
W 

YPL117C erg12 idi1 Terpenoid backbone biosynthesis Metabolism of terpenoids and 
polyketides 

YMR220
W 

YPL117C erg8 idi1 Terpenoid backbone biosynthesis Metabolism of terpenoids and 
polyketides 

YNR043W YPL117C mvd1 idi1 Terpenoid backbone biosynthesis Metabolism of terpenoids and 
polyketides 

YOR176W YOR278
W 

hem15 hem4 Porphyrin and chlorophyll metabolism Metabolism of cofactors and vitamins 
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Table 23 Gene pairs from Metabolism of Terpenoids and Polyketides 

 

Yeast Gene Yeast Gene Name E. coli Gene E. coli Gene 
Name 

Enzyme 

YGL040C hem2 b0369 hemB EC4.2.1.24 
YDL205C hem3 b3805 hemC EC2.5.1.61 
YOR278W hem4 b3804 hemD EC4.2.1.75 
YDR047W hem12,hem6 b3997 hemE EC4.1.1.37 
YDR044W hem13 b2436 hemF EC1.3.3.3 
YER014W hem14 -- -- EC1.3.3.4 
-- -- b3850 hemG EC1.3.5.3 
YOR176W hem15 b0475 hemH EC4.99.1.1 
-- -- b3867 hemN EC1.3.99.22 
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5.6 Gene pairs with enhanced deletion effects disturb key reactions or 
metabolites 

 

In the following section, we will discuss those N-N pairs with enhanced deletion 

effects, i.e. gene pairs whose double deletion effects have a relative larger impact on 

the whole network in comparison with the sum of their individual’s. Pathway analysis 

shows the diverse pathways they are arising from. In E. coli, the most frequently 

pathway combinations are Amino Acid Metabolism & Carbohydrate metabolism, and 

Amino Acid Metabolism & Metabolism of cofactors and vitamins (Table 24), 

whereas in yeast, the combination is shifted to: Amino Acid Metabolism & Lipid 

metabolism (Table 25). 

 

Further examination on the damage lists for these N-N pairs from E. coli suggests that 

essential genes can be impaired in response to these double gene deletions, although it 

seldom occurs for individual gene deletion. The summarized results are listed for N-N 

pairs with epistasis larger than 5 (Table 26). It is noticed that b0159/b2436 

(mtn/hemF), b0908/b2265 (aroA/menF), and b2265/b2329 (menF/aroC) can affect 

essential gene b3835 (ubiB) and reaction OPHHX3. Interestingly, these two are found 

to be synthetic lethal pairs in other studies [125]. Besides, gene pairs b1107/b3809 

(nagZ/dapF), b1119/b3809 (nagK/dapF), and b1640/b3809 (anmK/dapF) can impair 

the function of essential genes, such as b0085 (murE), b0086 (murF), b0087 (mraY), 

b0088 (murD), b0090 (murG), b0091 (murC), b2472 (dapE), b3189 (murA), and 
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b3972 (murB). It is discussed in Chapter 3 that they can form associated gene sets, 

whose impairment can disrupt the production of certain key metabolites. We will 

address this point in details later.  
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Table 24 N-N gene pairs with enhanced deletion effects (E. coli)  

 

Gene1 Gene2 Symbol1 Symbol2 Pathway Category for Gene1 Pathway Category for Gene2 
b1054 b2378 lpxL ddg Glycan biosynthesis and metabolism - 
b1107 b3809 nagZ dapF Carbohydrate metabolism Amino acid metabolism 
b1119 b3809 nagK dapF Carbohydrate metabolism Amino acid metabolism 
b1640 b3809 anmK dapF - Amino acid metabolism 
b1849 b4079 purT fdhF Metabolism of cofactors and vitamins Carbohydrate metabolism 
b0159 b2436 mtn hemF Amino acid metabolism Metabolism of cofactors and vitamins 
b0908 b2265 aroA menF Amino acid metabolism Metabolism of cofactors and vitamins 
b2265 b2329 menF aroC Metabolism of cofactors and vitamins Amino acid metabolism 
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Table 25 N-N gene pairs with enhanced deletion effects (S. cerevisiae)  

 

Gene1 Gene2 Symbol1 Sybmbol2 Pathway Category for Gene1 Pathway Category for Gene2 
YDR127W YGL012W aro1 erg4 Amino acid metabolism Lipid metabolism 
YDR354W YGL012W trp4 erg4 Amino acid metabolism Lipid metabolism 
YDR538W YGL012W pad1 erg4 Metabolism of cofactors and vitamins Lipid metabolism 
YER055C YGL012W his1 erg4 Amino acid metabolism Lipid metabolism 
YGL012W YIL020C erg4 his6 Lipid metabolism Amino acid metabolism 
YHR208W YJR148W bat1 bat2 Amino acid metabolism Amino acid metabolism 
YAL012W YGR012W cys3 - Amino acid metabolism Amino acid metabolism 
YBR041W YGL012W fat1 erg4 - Lipid metabolism 
YBR176W YGL012W ecm31 erg4 Metabolism of cofactors and vitamins Lipid metabolism 
YBR184W YHR046C - inm1 - Metabolism of cofactors and vitamins 
YDR007W YGL012W trp1 erg4 Amino acid metabolism Lipid metabolism 
YGL012W YGL026C erg4 trp5 Lipid metabolism Amino acid metabolism 
YGL012W YJR078W erg4 bna2 Lipid metabolism Amino acid metabolism 
YGL012W YKL184W erg4 spe1 Lipid metabolism Amino acid metabolism 
YGL012W YKL211C erg4 trp3 Lipid metabolism Amino acid metabolism 
YGL012W YOL052C erg4 spe2 Lipid metabolism - 
YGL012W YPR069C erg4 spe3 Lipid metabolism Amino acid metabolism 
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Table 26 Detailed analysis of N-N gene pairs with enhanced deletion effects. Some additional essential genes can be affected 
in response to double gene deletions.  

 

Gene1 Gene2 Additionally affected essential genes 
b1054 b2378 b0096, b0179, b0182, b0524, b0915, b0918, b1215, b3623, b3633, b3793 
b1107 b3809 b0085, b0086, b0087, b0088, b0090, b0091, b2472, b3189, b3972 
b1119 b3809 b0085, b0086, b0087, b0088, b0090, b0091, b2472, b3189, b3972 
b1640 b3809 b0085, b0086, b0087, b0088, b0090, b0091, b2472, b3189, b3972 
b1297 b3870 b0142, b0680, b2315, b2514, b2780, b3729 
b1849 b4079 b0414, b0415, b1277, b1662, b2153, b3041 
b0159 b2436 b0369, b0475, b3804, b3805, b3835, b3850, b4040 
b0908 b2265 b0142, b2315, b3187, b3835, b4040 
b2265 b2329 b0142, b2315, b3187, b3835, b4040 
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5.7 Discussions 

 

In this chapter, a genome-scale double gene deletion is carried out, aiming to 

reveal some higher level functional or structural organizations of the complex 

metabolic networks. A comparison with single gene deletion revealed some gene 

pairs with either enhanced or reduced deletion effects. It is shown that for most 

gene pairs, the absolute damage size difference between double gene deletions and 

single gene deletion ranges from 1 to 3, whereas for a small fraction of gene pairs, 

the difference can be up to 6 or even higher. As observed, the number of gene 

pairs with enhanced deletion effects is much more than those with reduced effects, 

indicating that multiple gene mutants frequently introduce deleterious effects and 

a decreased fitness of organism. Furthermore, the existence of gene pairs with 

reduced deletion demonstrates that the deleterious phenotypes can be masked due 

to certain genetic interactions.  

  

Pathway analysis indicates that gene pairs with reduced deletion effects tend to be 

from the same pathway, whereas gene pairs with enhanced deletion effects are 

more likely to be from different pathways. Such observations are strengthened for 

E-E pairs with reduced deletion and N-N pairs with enhanced deletion. The reason 

we concerned about E-E pairs with reduced double deletion effects and N-N with 

enhanced deletion effects is that they are the ideal candidates for synthetic rescue 

and synthetic lethal pairs. Synthetic rescue are defined as essential gene pairs 
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whose double deletion cannot lead to lethality anymore, whereas synthetic lethal 

are non-essential gene pairs whose double deletion can lead to lethality.  

 

Back to our analysis, gene pairs with a shorter distance are more likely to impact 

on each other and thus lead to a truncated damage list. On the other hand, for gene 

pairs from diverse pathways, it is more likely that the impact from the other gene 

occurs at the end of the cascade failure procedures, instead of the intermediate, 

considering the damage list size of single gene deletion. Thus, an enhanced 

deletion effect is expected for this case. The strengthened effects of E-E with 

reduced deletion effects can be explained by the structural organization of 

essential gene pairs, as they are more likely to be linked via low-degree 

metabolites [201].  

 

Further analysis on the shortest path distance between E-E gene pairs with 

reduced deletion effects shows a significantly shortened distance compared with 

the whole pool of E-E gene pairs. On the other hand, for N-N gene pairs with 

enhanced deletion effects, the distances are relatively higher than the control N-N 

gene pairs.  

 

In Chapter 3, we have discussed how essentiality is arisen. For essential genes, 

their damage lists showed the ability to affect other essential genes and non-

essential genes. The cooperative effects of these essential genes finally can disrupt 
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some associated gene sets and block the production or consumption of certain key 

metabolites, the loss of which finally impact on the cell survival. An in-depth 

analysis on gene pairs with enhanced deletion effects offers some functional 

organization clues. For example, for gene pair b2265 (menF) and b2329 (aroC), it 

will affect the following essential genes: b0142 (folK), b2315 (folC), b3187 (ispB), 

b3835 (ubiB), and b4040 (ubiA), whereas their individual gene deletion cannot. 

Other than these essential genes, some reactions such as OPHHX3 can also be 

impaired. Interestingly, b3835 (ubiB) and OPHHX3 are identified as synthetic 

lethal pairs in other studies [125], implying the synthetic lethal relations between 

b2265 (menF) and b2329 (aroC). Another example is: b1107/b3809 (nagZ/dapF), 

b1119/b3809 (nagK/dapF), and b1640/b3809 (anmK/dapF). All of these three 

gene pairs can disrupt the following essential genes: b0085 (murE), b0086 (murF), 

b0087 (mraY), b0088 (murD), b0090 (murG), b0091 (murC), b2472 (dapE), 

b3189 (murA), and b3972 (murB). Among these genes, b0085/b0088 

(murE/murD), b0087/b0090 (mraY/murG), and b3189/b3972 (murA/murB) form 

three associated gene sets as identified in our previous studies. Perturbations on 

these modules can impact on some key metabolites, such as UDP-N-

acetylmuramoyl-L-alanyl-D-gamma-glutamyl-meso-2,6-diaminopimelate, UDP-

N-acetylmuramoyl-L-alanyl-D-glutamate, Undecaprenyl-diphospho-N-

acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminopimeloyl-D-alanyl-D-

alanine, Undecaprenyl-diphospho-N-acetylmuramoyl-(N-acetylglucosa-mine)-L-

ala-D-glu-meso-2,6-diaminopimeloyl-D-ala-D-ala, UDP-N-acetyl-D-gluco-

samine and UDP-N-acetyl-3-O-(1-carboxyvinyl)-D-glucosamine. These 

metabolites are indispensable for the cell envelope biosynthesis.  
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Our analysis is further extended to gene pairs with reduced deletion effects, 

especially those essential gene pairs. Two essential genes with reduced deletion 

effects are revealed to be from the same pathway. For E. coli, these genes are 

mainly located in the following pathways: Glycan Biosynthesis and Metabolism, 

Metabolism of Terpenoids and Polyketides, Metabolism of Cofactors and 

Vitamins and Metabolism of other Amino Acids. Studies on S. cerevisiae imply 

the conservation of pathways as gene pairs from Metabolism of Terpenoids and 

Polyketides, and Metabolism of Cofactors and Vitamins are observed. The former 

are the substances that are required for the activity of an enzyme or protein. It is 

actively bound to the chemical groups and then carries them between different 

reactions. These cofactors act as the important intermediates for metabolism 

reactions. From our analysis, it is suggested that the functional organization of 

essential genes in some key processes are quite conserved across species.  

 

Besides these shared pathways, each species have its own specific pathways 

which include E-E pairs with reduced deletion effects. For example, Glycan 

Biosynthesis and Metabolism involves the biosynthesis of peptidoglycan. 

Peptidoglycan is the fundamental component of bacteria cell wall, which 

surrounds and protects individual bacteria cell. This process is unique to bacteria. 

So while some essential gene pairs with reduced deletion effects are from some 

functional conserved pathway, there are a few species-specific pathways.  
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Our scope is not limited to E. coli and a parallel study is also carried out in S. 

cerevisiae. Investigations on gene pairs with enhanced and reduced deletion 

effects support our findings, implying some evolutionary clues. As discussed, 

there is a tendency that essential gene pairs with reduced deletion effects are 

arising from the same pathways. Detailed investigation demonstrates that genes 

from Metabolism of Cofactors and Vitamins are indeed orthologous genes 

between E. coli and S. cerevisiae, further suggesting the conservations between 

species. Apart from those conserved pathways, there are some species-specific 

pathways involved, such as Glycan Biosynthesis and Metabolism. Analysis of N-

N pairs with enhanced deletion effects implies that the mapped pathways are quite 

diverse. For example, in E. coli, the most frequent pathway combination is Amino 

Acid Metabolism & Metabolism of Cofactors and Vitamins, whereas it is shifted 

to Amino Acid Metabolism & Lipid Metabolism in yeast.  

 

In summary, genome-scale analysis of double gene deletion offers some new 

insights into the functional and structural organizations of complex biological 

networks. From the structural point of view, gene pairs with enhanced deletion 

effects tend to be from different pathways, meanwhile those with reduced deletion 

effects are from the same ones. From the functional perspective, our analysis 

indicates a possible mechanism regarding how N-N gene pairs can lead to lethality, 

i.e. they can affect some essential genes/reactions/metabolites, and the deletion of 

which finally lead to lethality. The cross comparison between E. coli and yeast 

also implies some evolutionary clues.   



 

Chapter 6 Summary and future work 
 

In this chapter, the major findings and contributions are summarized. We also 

discuss the limitations of this work and some possible future directions. 

 

6.1 Major findings and contributions 
 

Considering the indispensable role of essential genes in cellular growth, gene 

essentiality has been intensively studied, including gene deletion analysis [88, 

109], essential gene prediction [159, 160], and genetic epistasis studies [50, 129-

131]. Three types of mechanisms are deemed to be the causes of gene 

dispensability: (1) Conditional essentiality, i.e. those genes identified as non-

essential genes are actually essential in other conditions that have not been 

examined in current laboratory conditions [103]; (2) Genetic buffering by 

duplicated genes or genes with overlapping functions [103, 106]; (3) Functional 

compensation by alternative pathways or redistribution of fluxes [103, 107]. 

However, knowledge about the intermediate biological processes following 

essential and non-essential gene deletion is extremely limited. Therefore, in this 

thesis, we tried to fill this gap by studying the topological features and functional 

organizations of genes at the metabolic network context, with the aim to enrich 

our understanding on the causality of gene essentiality.  
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We firstly introduced a novel way to measure single gene deletion effects by 

‘damage list’, which is defined as a set of affected genes in response to target gene 

deletion. For E. coli iAF1260 metabolic network, we found that the deletion of 

essential genes generally cause a wider range of network failure. Further 

analyzing the composition of the damage list revealed that essential genes tend to 

spread the deletion effect to other essential and non-essential genes, whereas non-

essential genes seldom affect other essential genes. Based on the distinct deletion 

patterns, we made a conjecture that genes sharing similar damage lists are more 

likely to exhibit similar type of essentiality. Furthermore, we identified some 

associated gene sets, which were able to perturb the production of certain key 

metabolites, and whose failure might induce lethality [109, 168]. Network 

structural analysis also suggested the distinguishable topological organizations of 

essential and non-essential genes in the metabolic system. Neighboring essential 

gene pairs tend to be interconnected through low-degree metabolites (namely 

there are no redundant paths between them), whereas neighboring non-essential 

genes pairs are mainly linked by high-degree metabolites. Therefore, the failure of 

one essential gene can easily spread its deletion effects to neighboring essential 

genes through the ‘fragile’ irreplaceable path. This served as an important 

evidence for the observed phenomenon that the damage list of one essential gene 

is mainly made up of other essential genes.  

 

Inspired by the above findings that some structural and functional features are 

tightly associated with gene essentiality, we developed a novel approach that aims 
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to predict unknown genes from a limited number of genes with known essentiality 

type. By using the gene essentiality associated features and optimized parameters, 

we tested the prediction accuracy of our algorithm for the number of unknown 

genes ranging from 100 to 1200 for E. coli. It is found out that the prediction 

accuracy is quite high and robust. As some genes cannot be predicted using this 

method, we combined our approach with some existing ones (such as FBA). The 

hybrid method can predict all the target genes while giving high-level prediction 

accuracy. Similar results were also obtained for yeast metabolic network, 

indicating the robustness of our algorithm.  

 

The epistatic effects between mutants were also studied in order to gain in-depth 

insights on the higher order structural and functional organization principles of 

biological networks. Gene pairs with enhanced and reduced deletion effects were 

identified and studied. It is revealed that gene pairs with reduced deletion effects 

tend to be arisen from the same pathway whereas those pairs with enhanced 

deletion effects tend to be arisen from different pathways. This is further 

confirmed by the shortest path studies which implied that the shortest path 

distance between gene pairs (particularly E-E pairs) with reduced deletion effects 

are significantly decreased, whereas the shortest path distance between gene pairs 

(especially N-N pairs) with enhanced deletion effects are significantly increased. 

The observed properties are quite robust, as also had been found in yeast 

metabolic network, indicating evolutionarily conserved features. Further 

mechanism studies showed that lethality caused by non-essential gene pairs with 
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enhanced deletion effects are due to the fact that their deletion effects can disrupt 

some key metabolites/reactions/genes, leading to cellular lethality. In addition, 

essential gene pairs with reduced deletion effects are quite conserved across 

species. 

 

In summary, our studies proposed a reasonable explanation for the differential 

deletion effects between essential and non-essential genes from the network 

perspective, which is seldom investigated by previous studies. Other than the 

heavy focus on essential gene identification, understanding the functional and 

structural organization principles of essential and non-essential genes is equally 

important since they can help us to interpret cellular processes clearly and to 

design more efficient drug targets. Furthermore, we proposed an effective 

computational strategy to predict essential genes. By applying features tightly 

associated with essential genes, our algorithm for gene essentiality prediction 

outperformed the traditional constraint-based and machine learning approaches. 

This further emphasized the fact that understanding the nature of essential genes is 

a prerequisite for designing high quality gene essentiality prediction approaches. 

Last but not least, our studies enriched the understanding on the epistatic effects 

between mutants. The essential/essential (E-E) gene pairs with reduced deletion 

effects and non-essential/non-essential (N-N) gene pairs with enhanced deletion 

effects were intensively studied from the topological, mechanistic, and 

evolutionary perspectives, which warranted a new way to identify synthetic 

lethality and synthetic rescue gene pairs.  
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6.2 Future work 
 

A comprehensive understanding of gene essentiality can provide novel insights for 

drug design and development [70, 72, 189]. It would be much easier and more 

efficient to select certain genes as drug targets if we have a clear picture of gene 

essentiality and epistatic interactions. Therefore, our future work will dig deep 

into gene deletion effects not only from the context of metabolic network but also 

from other types of biological networks such as protein-protein interaction 

networks and transcriptional networks. We will also attempt to unveil other 

network topological features that tightly associated with gene essentiality, for 

example, finding key functioning motifs that are associated to essential genes 

[202]. Those network measurements combining with biological classifications 

such as GO terms [203] could also increase the power to discriminate between 

essential and non-essential genes.  

  

We may also design some efficient therapeutic strategies to avoid negative effects 

arising from traditional ‘one gene, one target, one disease’ paradigm. By 

analyzing biological networks under pathological states, we may propose 

sophisticated and personalized strategies, such as simultaneously enhance, reduce, 

or even totally inhibit the activities of a group of genes, proteins, and metabolites 

to optimize therapeutic effects. 
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The concept of synthetic lethality has also been widely accepted in the context of 

cancer therapy [204]. For example, experimental studies indicated that BRCA1 

and BRCA2 are key genes involved in double-strand break repair and inhibition of 

Poly (ADP-ribose) polymerase (PARP) (forming synthetic lethal pairs with 

BRCA1/2), an important enzyme involved in base excision repair, can lead tumor 

cells carrying BRCA1 or BRCA2 deficient to apoptosis while maintaining the 

activities of normal cells [205]. This emphasizes the significance of gaining a 

comprehensive understanding on synthetic lethality, especially in eukaryotes such 

as human beings. However, evolutionary analysis of essential genes suggested that 

they are not conserved in eukaryotes [119, 120]. For example, some non-essential 

genes in yeast had become essential in mouse. Biological network rewiring is 

considered to be an important mechanism for gene essentiality change during 

evolution [206]. One may expect that essentiality studies from the perspective of 

network biology can offer some novel findings on how synthetic lethality changes 

across species.  

 

In this thesis, our analyses are limited to understand the cause and evolution of 

essentiality in model organisms, such as E. coli and yeast. A more comprehensive 

description of topological features and functional characteristics that tightly 

associated with genes that are essential for cancer cell survival and proliferation 

might shed light on cancer therapy [207]. Genome-wide screenings on short-

hairpin RNA (shRNA) have identified genes indispensable for cancer cell growth 

[208]. Considering the promising results shown in our works, integrating network 
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analysis into genome-wide shRNA screens might offer new insights on the cause 

of gene essentiality in cancer cells which may serve as basis for drug development. 
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Appendix 1: C++ Code for identifying corresponding reactions 
 

In the following C++ code, r2g_map is extracted from SBML file exported from 
BiGG database. It stores the gene-reaction association information. Another data 
structure used is: reaction_sets, which stores all the reactions available in this 
network in a vector. The i-th element in r2g_map is the gene structure associated 
with the i-th reaction in reaction_sets.  
 

vector<vector<set<string> > > r2g_map; 
vector<string> reaction_sets; 
void corresponding_reactions(string gene, set<string>& rt_sets) 
{ 
 for(int i=0; i<r2g_map.size(); i++) 
 { 
  int count=0; 
  if(r2g_map[i].size()!=0) 
  { 
   for(int j=0; j<r2g_map[i].size(); j++) 
   { 
    if(r2g_map[i][j].find(gene)!=r2g_map[i][j].end()) 
     count++;   
   } 
   if(count==r2g_map[i].size()) 
    rt_sets.insert(reaction_sets[i]); 
  } 
 } 
} 
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Appendix 2: Pseudo Code for identifying damage lists for single 
gene deletion 
 
As the codes for identifying damage lists for single gene deletion is too long, with 
more than 200 lines, we illustrated the pseudo code for this algorithm.  
 
Input: graph G, corresponding reaction lists CRs  
Output: Damage Reaction List DRs 

Step1: Identifying the affected reaction lists in response to single gene deletion;  

BEGIN  
For each reaction in CRs 
 IF the reaction is REVERSE  
  Retrieve all its neighbors NN; 
  Assign each node in NN to NP and NS; 
  Insert reaction in DRs; 
  Erase reaction node and its links from G; 
 Else 
  Retrieve all its parent nodes and store them NP; 
  Retrieve all its son nodes and store them in NS; 
  Insert reaction in DRs; 
  Erase reaction node and its links from G; 
 END IF 
 
Do  
 FOR each metabolite M in NP 
  IF the out-degree of M is zero 
   Retrieve the parent nodes and store them in R; 
   Erase metabolite node and its links from G; 
  END IF 
 END FOR 
 FOR each metabolite M in NS 
  IF the in-degree of M is zero 
   Retrieve the son nodes and store them in R: 
   Erase metabolite node and its links from G; 
  END IF 
 END FOR 
 
 FOR each reaction node r in R 
  Retrieve the parent metabolite nodes and store them in NP; 
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  Retrieve the son metabolite nodes and store them in NS;  
  Insert reaction in DRs; 
  Erase reaction node and its links from G; 
 END FOR 
WHILE (NP and ND are non-empty) 
END 
 
Step2: Identifying the affected gene lists in response to single gene deletion;  

Input: Damage Reaction List DRs identified in Step 1; 
Output: Damage Gene List DGs; 
 
BEGIN 

FOR each reaction in DRs 
  IF it is the corresponding reaction of gene GENE 
   Insert GENE into DGs; 
  END IF 

END FOR 
END 
 
The obtained DGs is the affected gene lists in response to single gene deletion.  
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