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Summary

Visual object recognition is of fundamental importance to artificial intelligence. In

this thesis, we aim to build the most effective general object recognition system

on well-known benchmarks, e.g. PASCAL VOC. Furthermore, we successfully scale

this system into a large scale setting with much less complexity compared with other

works.

This thesis addresses a number of key issues that are needed to build a work-

ing system. At the feature representation part, we first introduce the SuperCoding

which extends the GMM-based coding to the second order statistic while remaining

the favourable linearity. Based on the coded features, we perform the object-centric

pooling by means of the proposed Generalized Hierarchical Matching (GHM) with

useful side information. At the model learning part, we consider the high level task

context from the object detection and classification tasks. We develop a novel mu-

tual and iterative contextualization scheme for both tasks based on the so-called

Contextualized Support Vector Machine (Context-SVM) method. Extensive exper-

iments show the effectiveness of these novel methods.

Furthermore, we scale this effective system to the large scale setting with thou-

sands of categories and millions of images. By means of efficient Pointwise Fisher

Vector coding, per-pixel pooling and the context modelling, our experiments show

that the proposed system can perform detection of 1000 object classes in less than

one minute on the ImageNet ILSVRC2012 dataset using a single CPU, while achiev-

ing comparable performance to state-of-the-art algorithms.
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To sum up, by utilizing several novel keys, we build an effective visual object

recognition system demonstrated on benchmarks and propose a scalable solution for

large scale object recognition problem.
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Chapter 1

Introduction

Artificial intelligence (AI) is the intelligence of machines and robots and the branch

of computer science that aims to create the intelligence. AI research is highly tech-

nical and specialized, divided into subfields that often fail to communicate with

each other. The central problems of AI are found in traits as reasoning, knowl-

edge, planning, learning, communication, perception and the ability to move and

manipulate objects. Of all these traits, perception is the ability to use input from

sensors (such as cameras, microphones, sonar and others more exotic) to deduce

aspects of the world. One key function of perception is visual recognition that help

the robots/machines to see the world and to understand the world using the visual

clues. This thesis focuses on different aspect of visual recognition, especially the

problems of visual object recognition.

In the last decade, visual recognition or visual object recognition, has raised

a lot of attention in both academia and industry. It is the ability to perceive an

object’s physical properties (such as shape, colour and texture) and apply semantic

attributes to the object, which includes the understanding of its use, previous ex-

perience with the object and how it relates to others. Visual object recognition has

a lot of applications. For example, in intelligent surveillance system, object detec-

tion technique including pedestrian detection and car detection helps to identify the

18



particular object of interest and object attribute detection helps to further assist

humans to localize and search for specific persons or objects. In online social net-

work, face recognition techniques are popular since it provides accessibility for users

to annotate and recognize people. More importantly, with the increasing number of

digital images, the need for visual object recognition are more and more demanding.

This thesis focuses on the general problems of visual object recognition that are to

predict/localize any object in the image/video. The techniques discussed can be

used in most of the applications. Among them, we are especially interested in some

key topics which show promising improvement over the traditional techniques in the

past decades. Firstly, to enable effective object classification and detection, sophistic

feature encoding, feature pooling and context modelling is needed. Feature encoding

and pooling helps to extract more meaningful and robust information from the low

level noise feature. Context modelling can be utilized for the discrimination of the

ambiguous samples. Furthermore, the large scale visual recognition also attracted

a lot of attention recently. The large scale problem often refers to the large scale

of categories, the large amount of data. Efficient solution is required to meet these

problems.

This thesis focuses on the sub problem of artificial intelligence which is visual

object recognition. Objects recognition is the basic level of human real world un-

derstanding and building an effective and scalable visual object recognition system

for machine is one important building block of artificial intelligence. There is a lot

of research work on this problem. This thesis reports on the pioneering work during

the year 2010-2012.

1.1 Background and Related works

With the increasing number of digital images, the need for visual recognition is get-

ting greater and greater demanding. Classifying images into semantic categories(e.g.
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Figure 1.1: Standard visual object recognition tasks: object classification, object
detection and object segmentation.

coast, mountains, streets) and also classifying its semantic objects(e.g. motorbikes,

sky, planes, faces) is a challenging and important problem nowadays. In visual

recognition research, there are several main challenges including view point varia-

tion,illumination changes,intra-class variation, occlusion and scale. All these facts

make this problem very challenging.

There are several typical tasks defined for visual object recognition as show in

Figure 1.1: (1) Object Classification which aims to predict the existence of certain

objects in the images, (2)Object Detection which targets to predict and localize

the objects in the images, and (3) Object Segmentation which tries to obtain the

per-pixel object level indication masks for the images. Although these tasks seems

diverse, the ultimate target (visual recognition) is the same but at different levels,

i.e. at the whole-image level - object classification, at the sub-window level - object

detection, and at the pixel level - object segmentation.

Due to their intrinsic consistency among these tasks, the standard visual object

recognition pipeline shares the most of the parts for different tasks as shown in Fig-

ure 1.2. Traditionally, the most practical pattern recognition systems are composed

of multiple modules, e.g. feature representation, model learning, context model-

20



ing [2]. For the feature representation part, the standard main components are

these steps: (1) low level feature extraction which extracts meaningful features from

the raw image space. Different low level features are often extracted, e.g. Histogram

of Gradients (HoG) [3], SIFT [4], Local Binary Pattern(LBP) [5]. (2) feature coding

which encodes these low level feature to a predefined model, e.g. Bag of Word [6].

The recent coding schemes can be divided into Vector Quantization (VQ) based,

Sparse Coding (SC) based and Gaussian Mixture Models based (GMM). (3) fea-

ture pooling which pools these encoded features over sub-clusters through different

side information, e.g. the spatial, i,e. Spatial Pyramid Matching (SPM) [7] or

feature space domain, i.e. Pyramid Matching Kernel (PMK) [8]. Beyond various

modelling (classifier learning) methods, the usage of context has become more and

more popular for enhancing the algorithmic performance. Many recent studies have

demonstrated considerable improvement for object detection and classification by

using external information, which is independently retrieved and complementary

with traditional image descriptors. These contexts have been proved useful object

recognition tasks [9] [10].

All those integral parts serve as the core of visual object recognition system

for different tasks. There are also some specific techniques for different tasks, e.g.

the structural learning and hypothesis search for object detection and segmentation

tasks which are beyond the discussion of this thesis.

This thesis focuses on the recent progress on core parts of visual object recogni-

tion, i.e. the feature coding and feature pooling part at the feature representation

part, and the context modeling at the model learning stage. Furthermore, only re-

cently efficient solution of object recognition has attracted increasing attention due

to the practical need, the thesis is also interested to discuss these solutions which

make the visual system more scalable. The next subsection will first review the

related work on Feature Encoding, Feature Pooling and Context Modelling followed

by a comprehensive review on Efficient Object Recognition.
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Figure 1.2: Visual object recognition pipeline.

1.1.1 Feature Encoding

We define the term Feature Encoding as a process that adapt a set of low level

features to a existing model and thus obtain a comparable representation between

different sets. For example, the traditional BoWs model adapts the set of low level

features, e.g. SIFT, to a predefined visual dictionary. Thus the obtained visual

histogram can be used as comparable representation for different images. Recent

feature encoding approaches, such as Sparse Coding [11] and Locality-constrained

Linear Coding(LLC) [12], introduced soft assignment for local feature quantization

to substitute previous discrete quantization methods and can be seen as the gentle

extension of Vector Quantization. For the recognition problem, these two coding

methods benefit from large size codebooks as demonstrated in a recent comparison

survey [13]. The large codebook size and the introduction of soft assignment nar-

row down the quantization error but also bring a lot of computation cost. Lately,

the aggregation coding, e.g. Fisher Vector coding or Super Vector coding, demon-

strated to greatly improve the discriminative power of local features [13]. Fisher

encoding [14] tries to capture the average first and second order differences between

local features and centres of a Mixture Gaussian Distributions learnt from general

datasets while Super vector encoding [15] only focuses on the first order difference.

Recently, G. Csurka et.al [16] extended Fisher Vector coding to patch level for the

22



semantic segmentation task and achieves good performance.

1.1.2 Feature Pooling

We define the term Feature Pooling as the process that select subsets of the

encoded features and get the pooled feature over these subsets. For example, for

Sparse Coding based methods [11], the “Max Pooling” is often used to select the

max response from the pool of encoded feature and use this as the representation.

However, the “Pooling” process is not only restricted to this simple logic opera-

tion. The underlining nature of the defined “Feature Pooling” is to select subsets

according to some rules so that these subsets have more comparable meaning. For

example, the spatial pooling which is widely used in image classification, i.e. Spatial

Pyramid Matching [7], forms the subsets according to the spatial locations. This

approximate geometric alignment can better make the pooled feature comparable

at different levels.

1.1.3 Context Modelling

Traditionally, the context is often considered as special features. Most of the exist-

ing strategies [10][9][17] utilize the context via feature concatenation, model fusion

or confidence combination, and take the context as another independent compo-

nent. However, context may have unstable distribution, and its reliability and noise

level are not controllable. Therefore it demands adaptive contextualization with

proper constraints from the main task to avoid the inappropriate usage of context

information. Harzallah et al. [17] introduced the pioneer work for object detection

and classification contextualization through the postprocessing of probability com-

bination. The mutual contextualization shows promising performance improvement.

However the learning scheme which seamlessly integrates the context information

for collaborative learning is missing.
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1.1.4 Efficient Object Detection

Recent shape-based object detection methods rely on discriminative shape templates

using orientation histograms of image gradients. Initially, Dalal and Triggs [3] used

a single rigid template to build a detection model for pedestrians. Thereafter, the

PASCAL VOC dataset [18] was released, comprising objects with more deformable

shapes like animals and vehicles. Hence the single template model was extended to

part-based models [19] by Felzenswalb et al. to handle small shape deformations.

Although the deep convolution network [20] shows promising result on ImageNet,

the part-based model methods [21, 22, 23] are still the best-performing methods on

the practical detection datasets. Generally saying, the part-based models benefit

from the relaxed template relation by splitting a single rigid model into smaller

part models, and each part model can be learnt on a finer level with more shape

details of the object. However, because the shape template is sensitive to position,

scale, view, etc., each fine part template can only handle a specific kind of object

deformation or view change. Hence the complexity becomes intractable if the object

deformation is very large. Consequently, such approaches are not suitable for our

proposed large-scale object detection problem with unconstrained deformation.

Previous research [24, 25, 26, 27, 28] have also explored the BoW model detec-

tion. The MKL object detection [24] which uses kernel-based models and spatial

pyramid (SP) feature combination achieves promising results but the computation

cost is very high. Efficient Subwindow Search (ESS) [25, 26, 27, 28] tries to speed

up the VQ-based BoW model using a branch and bound technique but often with

much poorer performance on standard datasets. The main disadvantage of VQ is

that it encodes the local feature as one specific visual word index, thus no complex

local discriminative model can be build upon this.

The BoW-based model has the advantage of efficiency if one linear model can be

applied and the possible theoretical computation cost is much less than the template-

based approach. Suppose we use the same low level feature for both models, e.g.
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HOG. For a template model with m × n cells, we need to compute m × n times

convolution at each pixel for each category test searching over the image. The

search complexity is O(mnP ) where P is the searching space complexity for an

image. For a BoW model, the cost is separated into two parts, i.e. the local feature

coding step and inference (dot-product ) over the linear model. The cost of local

feature coding step often increases with the codebook size K which is independent

for each categories. For multi-class object detection, the only cost addition is the

inference cost which depends on the sparseness E of the coding. The sparseness is

1/K for hard Vector Quantization (VQ),and is around 3% for Fisher Vector coding

(FV) [14] in our experiments. So the inference complexity is O(EP ) which is much

less than the template-based approach (mn� E).

1.2 Thesis Focus and Main Contributions

The recognition system follows the pipeline of feature extraction, feature encoding,

feature pooling and model learning. In this thesis, we focus on the later three parts

of the pipeline. The main motivations and gaps are as follows:

1. For the feature encoding part, feature encoding has attracted numerous atten-

tions in recent object recognition works. Among those work, the GMM-based

approaches achieved the most significant result, e.g. the SuperVector [15] and

FisherKernel [14]. However the underlining theoretical analysis is missing.

2. At the feature pooling part, Bag of Words (BoWs) and spatial pyramid match-

ing (SPM) are often used. The popular SPM has been used as the common

technique used in object recognition at the feature pooling stage. This method

has demonstrated effective for image classification. However, the object-centric

task requires object-oriented pooling instead of this weakly spatial pooling.

3. Previously, there are some of the work that focused on the context model

learning in terms of object co-occurrence, object size and spatial layout. How-

25



ever, the significance of mutual context model between object classification

and detection has been underestimated.

In this thesis, the demonstrated most effective object recognition system on

PASCAL VOC has been presented. Furthermore, we successfully scale this system

into a large scale setting with much less complexity compared with other works.

More specifically, we conduct research on the following aspects:

1. Recent Advance of Feature Encoding. We give qualitative analysis to explain

the question that why these feature encoding methods work well. Based on the

analysis, we re-introduce the generative version GMM modelling, called Super-

Coding. SuperCoding extends the previous Universal Background Modelling

into the second order and it well fits the current encoding framework.

2. Generalized Hierarchical Matching/Pooling with Side Information. To bet-

ter serve the object-centred problem, we propose the Generalized Hierarchical

Matching (GHM) approach which is more suitable for object-centred recogni-

tion while SPM is optimized for scene recognition. Each image is expressed as

a bag of orderless pairs, each of which includes a local feature vector encoded

over a visual dictionary, and its corresponding side information from priors or

contexts. The side information is used for hierarchical clustering of the en-

coded local features. Then a so-called hierarchical matching kernel is derived

as the weighted sum of the similarities over the encoded features pooled within

clusters at different levels.

3. Contextualized Object Classification and Detection. To further enhance the

robustness of the context model, we develop a novel mutual contextualization

scheme for object detection and classification based on the so-called Contex-

tualized Support Vector Machine (Context-SVM) method. Extensive experi-

ments show that Context-SVM can efficiently learn the context models under
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various conditions and effectively utilize context information for performance

boosting.

4. Efficient Maximum Appearance Model for Large Scale Object Detection. Fur-

thermore, we consider the problem of large scale object recognition. We rep-

resent the image as an ensemble of densely sampled feature points with the

proposed Pointwise Fisher Vector encoding. The learnt discriminative model

can be applied to the enriched local representation unlike the state-of-the-art

template-based model in which the learned model has to be applied to each

testing window exhaustively. Consequently the object detection problem is

transformed into searching an image sub-area with maximum local appear-

ance probability. The overall complexity of the proposed framework is much

less than the traditional template-based detection methods. The advantage

of low computation complexity enables us to explore the large scale object

detection problem with huge number of categories.

Each of these works serves as one piece of our visual object recognition system

towards the effectiveness and efficiency. There are many other works for visual

object recognition in the literature for the past years. It is inevitable that this

thesis has bias towards the general problems instead of specific application, e.g.

human detection or face recognition techniques. In all the work of the whole thesis,

the only used label information are the object bounding box and object existence

label. Other popular information, e.g. object masks or object attributes are not

utilized.

1.3 Organization of this thesis

In Chapter 2, the related benchmark datasets proposed in recent years are intro-

duced followed by the recent advance analysis of feature encoding in Chapter 3.

Then in Chapter 4, we propose the Generalized Hierarchical Matching representa-
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tion for image classification, the relation of localized model and global model as

context is introduced in Chapter 5. Based on the aforementioned techniques, we

further scale the framework in a large scale setting in Chapter 6.
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Chapter 2

Datasets and Benchmarks

The task of visual object recognition research needs large amount of annotated

data. In the past decade, researchers have provided a lot of well-organized datasets

along with different research tasks. The object classification task only needs the

proper image labels. The object detection task requires the bounding box annotation

along with the label information. For object segmentation task, the per pixel level

annotation is often needed. In this chapter, we introduce the relevant datasets from

the historic development view.

2.1 The Start

A number of well labeled small datasets (Caltech101/256, MSRC, PASCAL VOC,

etc.) have served as training and evaluation benchmarks for most of todays com-

puter vision algorithms. As computer vision research advances, larger and more

challenging datasets are needed for the next generation of algorithms.

The first well known object recognition/image classification dataset is the Cal-

tech 101 [29] dataset which was collected by choosing a set of object categories,

downloading examples from Google Images and then manually screening out all im-

ages that did not fit the category. In the late years, Caltech-256 [30] was collected
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in a similar manner with several improvements: a) the number of categories is more

than doubled, b) the minimum number of images in any category is increased from

31 to 80, c) artifacts due to image rotation are avoided and d) a new and larger

clutter category is introduced for testing background rejection.

In 2006, the PASCAL VOC [18] datasets start to release along with the well-

known challenges, i.e. PASCAL VOC Challenges. The main goal of this series of

challenges/datasets are to recognize objects from a number of visual object classes

in realistic scenes (i.e. not pre-segmented objects). It has been updated yearly since

2006. The images of VOC is obtained from Flickr and manually labeled and close

to realistic scenes. 20 classes ranging from outdoor objects to indoor objects are

annotated with detection window and a part of them are segmented. Currently,

the train/val data of VOC 2011/2012 has 11,530 images containing 27,450 ROI

annotated objects and 6,929 segmentations.

Lotus Hill is another general purpose image database with human annotated

ground truth. Three levels of information are labeled, i.e. scene level (global geo-

metric description), object level (segmentation, sketch representation, hierarchical

decomposition), and low-mid level (2.1D layered representation, object boundary

attributes, curve completion, etc.). The database consists of more than 636,748

annotated images and video frames. However, due to its non-academic nature, few

researchers reported results on this datasets.

There also exist some other datasets which were collected by researchers avail-

able for different research purpose, e.g. MSRC 1 for segmentation, MIRFlickr

dataset [31] 2 for image classification and retrieval, 15 scenes [7] 3 for scene un-

derstanding and image classification, etc.

1http://research.microsoft.com/en-us/projects/ObjectClassRecognition/
2http://press.liacs.nl/mirflickr/
3http://www-cvr.ai.uiuc.edu/ponce_grp/data/
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Name # of Images # of Classes Annotation Level

Caltech101 (2004) 9,146 101 Cls

Caltech256 (2007) 30,607 256 Cls

TinyImages (2008) 79,302,017 53,464 no.

PASCAL VOC (2012) 11,530 +12300 20 Cls, Det, Seg

Lotus Hill (2007) 636,748 13 subsets Seg, 3D

LabelMe (2007) 187,240 Cls, Seg

ImageNet(2009) 14,197,122+ 21841+ Cls, Det

Table 2.1: Some statistical data of different datasets

2.2 Large Scale Datasets

Only in recent years, the explosion of image data on the Internet has the potential

to foster more sophisticated and robust models and algorithms to index, retrieve,

organize and interact with images and multimedia data. Now, people are trying

to grasping the metric of Internet and construct large scale datasets with finer

annotation.

TinyImages [32] can be thought as the beginner of large scale dataset from

Internet. It is a dataset of 80 million 32x32 low resolution images, collected from the

Internet by sending all words in WordNet as queries to image search engines. Each

synset in the TinyImage dataset contains an average of 1000 images, among which

10-25% are possibly clean images. Although the TinyImage dataset has had success

with certain applications, the high level of noise and low resolution images make it

less suitable for general purpose algorithm development, training, and evaluation.

Furthermore, Internet contributes at more aspect for the large scale dataset. (1)

LabelMe [33] an online annotation tool to build image databases for computer vision

research. (2) ImageNet [34] an image database organized according to the WordNet

hierarchy (currently only the nouns), in which each node of the hierarchy is depicted

by hundreds and thousands of images.

LabelMe provides a general tool for labeling images with deep information. For

each concept, e.g. scene, objects, it provides the polygon annotation so that it
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enables more high level content analysis, e.g object detection and segmentation. In

2011, SUN 4, is organized as two parts, i.e. scene recognition and object recognition.

ImageNet [34] is first introduced in 2009. It is an image database organized

according to the WordNet hierarchy (currently only the nouns), in which each node

of the hierarchy is depicted by hundreds and thousands of images.

the usage of Amazon Mechanical Turk(AMT): To collect a highly accurate

dataset, it needs a lot of human labours to verify each candidate image collected in

the previous step for a given synset. This is usually achieved by using the service

of Amazon Mechanical Turk (AMT), an online platform on which one can put up

tasks for users to complete and to get paid. AMT has been used for labeling vision

data [35]. With a global user base, AMT is particularly suitable for large scale

labeling.

2.3 Challenges

Along with the rise of large scale datasets, some challenging contests are being

held. TRECVID [36]: The main goal of the TREC Video Retrieval Evaluation

(TRECVID) is to promote progress in content-based analysis of and retrieval from

digital video via open, metrics-based evaluation. TRECVID is a laboratory-style

evaluation that attempts to model real world situations or significant component

tasks involved in such situations. It includes several datasets, each of which contains

huge amount of data, e.g. IACC.1.B and IACC.1.A each contains 8000 internet

videos (about 200 hours each), the MED task uses 4000 hours of multimedia clips.

The ImageNet Large Scale Visual Recognition Challenge starts from 2010 and

continues to be held yearly (ILSVRC2010, 2011, 2012 and 2013). ILSVRC [34] is

now a benchmark challenge for large scale object recognition. It starts from 2010

and at each year about 1 million images and 1000 categories data will be released.

4http://groups.csail.mit.edu/vision/SUN/
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In recent two years, several taster challenges also were included, e.g. the large scale

object detection task and fine grained object recognition.

2.4 In the future

The real world human recognition ability is surely much beyond the current academic

definition. Object classification, detection and segmentation are three separate tasks

defined by the academical world. More interesting and important tasks have been

proposed with the deeper understanding of visual object recognition system. With

the help of the rich data content brought by the Internet, these tasks are becoming

possible and these directions have attracted increasing attentions.

• Fine-grained visual recognition. Fine-grained visual recognition aims to rec-

ognize fine detailed categories for certain objects. It extents the basic level

recognition to a deeper and finer level. For example, one typical fine grained

recognition target proposed in ImageNet ILSVRC 2012 [34] is to recognition

the dog species from 200 kinds of dogs. Other datasets are also built up

to achieve the target of fine-grained visual recognition, e.g. the CUB-Birds

containing 200 kinds of birds with bounding box and detailed parts annota-

tion [37]. Another interesting fine-grained recognition system is [111] in which

it describes a working computer vision system that aids in the identification

of plant species.

• High-level visual annotation/recognition. The ultimate goal of visual recog-

nition is to “understand” the images. Some tasks of visual recognition is

higher level than the current category-level understanding, e.g. human action

recognition which tries to answer the questions of “what is/are the person

doing in the image?”. This task is interesting and worth exploring. Some of

the pioneering works have been conducted with some preliminary datasets,

e.g. the Action Recognition dataset in VOC [18], the People Playing Musical
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Instrument (PPMI) dataset [38].
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Chapter 3

SuperCoding: High Order

Parametric Coding for Visual

Recognition

We define the term Feature Encoding as a process that adapt a set of low level

features to a existing model and thus obtain a comparable representation between

different sets. For example, the traditional BoWs model adapts the set of low level

features, e.g. SIFT, to a predefined visual dictionary. Thus the obtained visual

histogram can be used as comparable representation for different images.

Recently, feature encoding has attracted numerous attention for visual recogni-

tion work. Among those work, the distribution-based approaches which depict the

images as a distribution over predefined generative model, e.g. the MeanVector [49]

and FisherVector [14], achieved the most significant results over the other encod-

ing methods on the standard datasets, e.g. PASCAL VOC [18] and ImageNet [34].

In this work, we first give comprehensive and qualitative analysis on the various

distribution-based approaches. Based on the analysis, we introduce the parametric

coding, the so-called SuperCoding, where the codes consist of parameters from the
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adapted model with the high order statistics. A linear kernel can be obtained for

the corresponding KL divergence distance measurement. Thus efficient training and

testing can be achieved with the linear representation. We also propose several im-

provement which promotes the performance and verified by extensive experiments.

Further more, we show that the proposed coding method can be generalized to var-

ious recognition tasks with formal spatial modeling, e.g. object classification and

scene recognition etc. Extensive experiments on these tasks shows the advance of

the proposed encoding method.

3.1 Introduction

Visual recognition is one key task of artificial intelligence. The performance of

visual recognition highly relies on the construction of representation and the metric

learning defined upon this. Representation can be roughly divided into several levels

according to its semantic meaning: (1) Low level feature describes certain aspect

of one local image patch, e.g. SIFT for edge, Color Moment for color. (2) Middle

level feature representation often merge a sets of low level feature from image (e.g.

the whole image). (3) high level representation often refers to those work with high

level semantic meaning, e.g. attribute, meta information. We focus on the problem

of middle level feature learning.

The term Feature Encoding1 can be considered as a process that adapts a set

of low level features to a existing model and thus obtain a comparable representation

between different sets. There are several main streams of visual representation in

the literatures: (1) Template feature which is the naive concatenate of local features.

The underlying model is the spatial grid which restricts the way of local feature con-

catenation. (2) Reconstruction-based representation aims to reconstruct each local

feature with a dictionary model with minimum error and pools the reconstruction

1The term “feature encoding” and “feature coding” has the same meaning in this paper. We
will use them indiscriminately.
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coefficients as the representation, e.g. Vector Quantization, Sparse Coding, etc. (3)

Distribution-based representation considers each image patch is generated through

a probabilistic model, e.g. GMM. The combination of all the local features forms

the adapted distribution of model characterized by statistics, e.g. Fisher Kernel [14],

Mean Vector [49], Super Vector [15]. In recent years, a large number of novel feature

encodings methods, for image analysis have been proposed. Performance are pro-

moted by simply replacing with new image representation. For example, by using

vocabulary tree instead of the flat BoW for image retrieval, the speed and accuracy

are both enhanced in UKBench datasets. For image classification, the accuracy is

boosted from 15% to 34% by replacing the VQ with the sparse coding representation

on caltech 256 with the similar learning scheme.

Among all these encoding methods, various studies shows that the distribution-

based methods achieved most success on different datasets for object classification

task. The distribution-based methods assume the generation of image come from

a probabilistic model, thus measuring the distance of two images is equal to the

measurement upon the image model. There are two categories between these cod-

ing methods. One is the parametric representation, where the feature codes consist

of parameters from the utterance-dependent or adapted model, e.g. the MeanVec-

tor [49], and the other is the derivative representation, where the derivatives of

the loglikelihood with respect to parameters of a generative model are used, e.g.

FisherVector [14] and SuperVector [15].

Although there are a lot of work focusing improving the recognition task by

means of proposing new coding method, the underlying analysis about the questions

about distribution-based methods: “what’s the difference” and “why this works” is

missing. In this work, we first give qualitative analysis on those distribution-based

approaches under the same GMM adaption framework. This analysis directly points

out the missing component of current parametric representation. Thus, we propose

the SuperCoding with high order statistics after the model adaption. We also pro-
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pose several key ingredients for the SuperCoding which promote the performance

greatly. We further demonstrate that the proposed SuperCoding, also works for

various recognition task, e.g. face age/gender estimation, object recognition and

scene classification. Surprisingly good results have been obtained when combined

with appropriate spatial modeling techniques.

In the following sections, we first introduce some related works in Section 5.2.

We give qualitative analysis on the difference of the distribution-based approaches

in Section 3.3. The SuperCoding is introduced in Section 3.4.

3.2 Overview of Recent Coding Schemes

In recent years, huge improvement has been made for the visual recognition research.

The most important part among them is progress of the image representation. Per-

formance are promoted by simply replacing with new image representation. For

example, by using vocabulary tree instead of the flat BoW for image retrieval, the

speed and accuracy are both enhanced in UKBench datasets. For image classifi-

cation, the accuracy is boosted from 15% to 34% by replacing the BoW with the

sparse coding representation on caltech 256 with the similar learning scheme.

We consider the image I consisting of N patches {pi, i ∈ 1 · · · , N}, feature

encoding step aims to assign each local patch to a predefined model/codebook C

and generate corresponding codes for further high level tasks. This procedure can

be abstracted as follows:

Codes(I) = φ(Ω(p1, C), · · · ,Ω(pN , C)), (3.1)

where Ω is the assignment function for each local patch with predefined codebook

C, φ is the codes generation function for the patch sets.
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3.2.1 BoW and its extension to large scale

The key idea of BoW is that using N local descriptor describing the image to form

a unique vector. The sparse vectors often brings efficient comparison and it inherits

invariance of the local descriptors. The BoW aims to find the following assignment

values:

Ωbow(p, C) : arg min
i
||p− Ci||2; (3.2)

Then the codes of the BoW is the average of the assignment/voting for all the local

patches. BoW achieved great success for many visual recognition tasks, e.g. image

classification, image retrieval, etc. With the development of BoW, researchers found

there are two main problems: Codebook size. BoW is often favorable to use large

codebook for image retrieval and image classification. For large scale setting, the cost

for assigning each local features is very sensetive. To solve this problem, hierarchical

KD-tree or hashing is often used to reduce to comparison cost [45]. Quantization.

Another problem of BoW is the quantization error brought by the modeling. Many

coding methods built upon this is trying to minimize the quantization error of the

local feature, e.g. [12] [11] [40].

3.2.2 Reconstruction-based Encoding

As discussed above, one problem of the original BoW coding is the quantization

error. Sparse coding methods, e.g. ScSPM [11], Locality-constrainted Linear Cod-

ing [12], aims to find the assignment function with the sparsity constraints:

Ωsc(p, C) : arg min ||p− viCi||2 + λ||v||1; (3.3)

To improve the scalability, researchers aim at obtaining nonlinear feature represen-

tations that work better with linear classifies, e.g. [11, 41]. In particular, Yang et
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al. [11] proposed the ScSPM method where sparse coding (SC) was used instead of

VQ to obtain nonlinear codes. The method achieved state-of-the-art performances

on several benchmarks. Yu et al. [41] empirically observed that SC results tend

to be local nonzero coefficients are often assigned to bases nearby to the encoded

data. They suggested a modification to SC, called Local Coordinate Coding (LCC),

which explicitly encourages the coding to be local, and theoretically pointed out that

under certain assumptions locality is more essential than sparsity, for successful non-

linear function learning using the obtained codes. Similar to SC, LCC requires to

solve L1-norm optimization problem, which is however computationally expensive.

To further reduce the computation cost, [12] presented a practical coding scheme

called Locality-constrained Linear Coding (LLC), which can be seem as a fast im-

plementation of LCC that utilizes the locality constraint to project each descriptor

into its local-coordinate system.

3.2.3 Distribution-based encoding

Another line of recent image representation is distribution-based encoding. Most

of these works used the Gaussian Mixture Models (GMM) for describing the data

distribution except the original Vector Quantization coding which only records the

histogram of model statistics. It has been demonstrated that the higher order statis-

tics achieved much better result than the Vector Quantization approaches. Thus in

the following sections, we only focuses on the GMM-based encoding methods which

include a lot of diverse techniques. But they have one same part that is the GMM

modeling of the data and further use its mixture model parameters. The assign-

ment function of these approaches often refer to calculate the posterior of the patch

p belonging to mixture k of GMM C:

Ωgmm(p, C) : γp,k; (3.4)
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Table 3.1: Summary of different GMM-based coding methods.

Methods Coding Rep Order L/NonL

SuperVector
sk = s

√
pk, pk = 1

N

∑N
i=1 γik, [s1, u1, · · · , sK , uK ] 1st L

uk = 1√
pk

∑N
i=1 γik(xi − µk)

MeanVector uk =
√
πk

µ̂k
σk

[u1, u2, · · · , uK ] 1st L/NL

FisherVector
uk =

∑N
i=1

1
N
√
πk
γik

xi−µk
σk

,
[u1, v1, · · · , uK , vK ] 1st&2nd L

vk =
∑N

i=1
1

N
√
2πk

γik[
(xi−µk)2

σ2
k
−1]

SuperCoding uk = µ̂k√
σk
, vk = σ̂k

σk
[u1, v1, · · · , uK , vK ] 1st&2nd L

The difference of these encoding function lies on the coding generation function

φ. The GMM Meanvector [49] takes the adapted mean vector of the GMM as the

representation. The SuperVector [15] includes another soft assignments term as the

GMM histogram other than the mean vector term. The Fisher Kernel coding [14]

and its improved version incorporates higher order of statistics, e.g. first order and

second gradient, and show great performance improvement over traditional BoW

representation. Some of these works have been evaluated in a recent comparison

paper [13] and advantages can be seen when compared with other coding methods.

We give detailed comparison in the following section and point out the missing

components.

3.3 GMM-based Coding for Visual Recognition

We summary the different GMM-based coding methods for visual recognition and

their codes generation functions. All those methods incorporating the posterior

calculation. Given a GMM model uλ(x) =
∑K

i=1 ωiui(x), for a set of low level

features X = {x1, · · · , xN} extracted from a image y, the soft assignments of the

descriptor xi to the kth Gaussian components γik is computed by:

γik =
πkuk(xi)∑K
k=1 πkuk(xi)

(3.5)
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3.3.1 Parametric and Derivative Coding

There are two categories between these coding methods. One is the parametric

representation, where the feature codes consist of parameters from the utterance-

dependent or adapted model, e.g. the MeanVector [49], and the other is the deriva-

tive representation, where the derivatives of the loglikelihood with respect to param-

eters of a generative model are used, e.g. FisherVector [14] and SuperVector [15].

Parametric Coding

GMM Meanvector: In [49], the author proposed to use the mean vector of

adapted GMM models using MAP (maximum a posterior). The idea is to measure

the distance between two images using the distance of two adapted GMM models.

The mean vector is used as the representation. The distance has the following forms:

d(Ia, Ib) =
1

2

K∑
k=1

πk(µ
a
k − µbk)Tσ−1k (µak − µbk), (3.6)

In [49], a conventional Gaussian kernel is defined as

k(Ia, Ib) = exp
−d(Ia,Ib)

δ2 , (3.7)

which can be considered as a conventional Guassian kernel defined on the so-called

MeanVector,

φ(xa) = [

√
π1
2
σ
− 1

2
1 µa1, · · · ,

√
πK
2
σ
− 1

2
K µaK ], (3.8)

We can also define the linear kernel from the distance metric with the form:

k(Ia, Ib)lin =
K∑
k=1

πkµ
a
kσ
−1
k µbk, (3.9)

=

K∑
k=1

(
√
πkσ

− 1
2

k µak)
t(
√
πkσ

− 1
2

k µak). (3.10)
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The corresponding linear vector has the same representation as Eqn.(3.8) which

means that Mean Vector is a natural linear representation.

Derivative Coding

Super Vector: In [15], the authors provide two variants of feature coding, based

on hard assignment to the nearest codeword or soft assignment to several near

neighbours. For the hard super vector encoding, let γi,k = 1 if xi is assigned to

cluster k by k-means and 0 otherwise. [15] does not specify how γi,k are set in

the soft assignment case. We define the γi,k to be essentially the same as for the

GMM coding. As reported in [13], this procedure is reasonable. Thus the obtained

SuperVector for X is denoted as φ(X) = {s1, u1, · · · , sK , uK} where sk and uk is

defined as:

sk = s
√
pk; (3.11)

uk =
1
√
pk

N∑
i=1

γik(xi − µk), (3.12)

where pk = 1
N

∑N
i=1 γik, is the mean of soft assignments and s is a constant.

Fisher Vector: In [117], the author proposed the Fisher Kernel for image

classification and its corresponding Fisher Vector. In [14], notable improvement has

been made to promote the performance of the original method by applying power

normalization and spatial pyramid.

For each image X, the Fisher Vector is computed as φ(X) = {u1, v1, · · · , uK , vK}

where uk and vk is defined as:

uk =

N∑
i=1

1

N
√
πk
γik

xi − µk
σk

, (3.13)

vk =

N∑
i=1

1

N
√

2πk
γik[

(xi − µk)2

σ2k
− 1]. (3.14)
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while σk are square root of the diagonal values of Σk. The FV has several good

properties: (a) Fisher Vector encoding is not limited to computing visual word

occurrence. It also encodes additional the distribution information of the feature

points, which will perform more stable when encoding a single feature point. Those

high order feature encoding brings exciting performance along with high dimen-

sional feature representation in practical. (b) it can naturally separate the video

specific information from the noisy local features(b) we can use linear model for this

representation.

Variants of Fisher Vector: VLAD [47] includes first order and VLAT [48] in-

cluding second order. VLAD and VLAT are simple yet efficient way of aggregating

local image descriptors into a vector of limited dimension, which can be viewed as

a simplification of the Fisher kernel representation.

3.3.2 Analysis

We give summary of these GMM-based coding with respect to their codes generation

function, representation, their order of statistics and whether they are suitable for

feeding into linear/nonlinear classifier in their original setting in Table 3.1. There

are several observation:

• Parametric vs. Derivative representations: We can conclude these

GMM-based coding as two categories: the parametric approach,e.g. Mean-

Vector, and derivative approach, e.g. FisherVector and SuperVector. The

parametric approach first perform the model parameter adaption and takes

the adapted parameters as the feature representation, e.g the MeanVector us-

ing the adapted mean values. The derivative approach directly calculates the

derivatives of model parameter as the feature representation, e.g. SuperVector

used the derivative of mean values of GMM and FisherVector used both the

derivatives of mean values and variances.
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• Higher order of statistics brings better performance: All of these

GMM-based coding methods incorporate higher order of statistics than the

traditional Vector Quantization-based approaches which only utilized the statis-

tics of histogram. Among those approaches, the literature [13] shows that

FisherVector achieves much better performance for visual recognition than

SuperVector in a similar setting (same size of GMM). The additional gradi-

ents of variance of FisherVector brings the further improvement.

• Linear Representation: All of these approaches has the nice property that

linear classifier can be operated upon these representations since they have

meaningful metrics.

We notice in Table 3.1 that only FisherVector has the second order statistics while

the model adaption approaches has this kind of information. One important reason

of this missing components is due to the lack of proper metrics for the second order

statistics. In the following section, we will show how to construct a relaxed metrics

for the second order statistics followed by further several improvement which results

a efficient and effective high order GMM-based coding which we call as SuperCoding.

3.4 SuperCoding: High Order Parametric Coding

3.4.1 GMM adaption

Given a GMM model uλ(x) =
∑K

i=1 ωiui(x), for a set of low level features X =

{x1, · · · , xN} extracted from a image y, the soft assignments of the descriptor xi to

the kth Gaussian components γik is computed by:

Compute a posteriori:

γik =
πkuk(xi)∑K
k=1 πkuk(xi)

, (3.15)

(3.16)
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We then compute the sufficient statistics for the weight, mean and variance

parameters:

Weight : nk =

N∑
i=1

γik; (3.17)

Mean : Ek(x) =
1

nk

N∑
i=1

γikxi; (3.18)

V ariance : Ek(x
2) =

1

nk

N∑
i=1

γikx
2
i ; (3.19)

Lastly, these new sufient statistics from the training data are used to update the

prior sufient statistics for mixture i to create the adapted parameters for mixture i

(Figure 2(b)) with the equations:

π̂k = [απni/N + (1− απ)πk]∆, (3.20)

µ̂k = αµEk(x) + (1− αµ)µk, (3.21)

σ̂2k = ασEk(x
2) + (1− ασ)(σ2k + µ2k)− µ̂2k, (3.22)

(3.23)

3.4.2 SuperCoding

Let’s look back the deduction of GMM meanvector: Suppose there exists an Gaussina

Mixture Model as the universal background model. Then, from the GMM adap-

tation process, we can obtain two adapted GMMs for them, denoted as ga and gb.

Consequently, each image is represented by a specific GMM distribution model, and

a natural similarity measure between them is the Kullback-Leibler divergence,

D(ga||gb) =

∫
ga(x) log(

ga(x)

gb(x)
)dx, (3.24)
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The Kullback-Leibler divergence itself does not satisfy the conditions for a kernel

function, but there exists an upper bound from the log-sum inequality,

D(ga||gb) ≤
K∑
k=1

πkD(N (xa;µ
a
k,Σ

a
k)||N (xb;µ

b
k,Σ

b
k)), (3.25)

The symmetric KL divergence is based on Kullback Leibler measure of discrimina-

tory information. Kullback realizes the asymmetry of DKL(ga, gb) and describes it

as the directed divergence. To achieve symmetry, Kullback defines the divergence as

DKL(ga, gb) +DKL(gb, ga) and notes that it is positive and symmetric but violates

the triangle inequality. Hence, it can not define a metric structure. The closed form

expression for the symmetric KL divergence between N1 and N2 can be written as

DKL(ga||gb) =
1

2
µT (Σ−1a + Σ−1b )µ (3.26)

+
1

2
TR(Σ−1a Σb + Σ−1b Σa − 2I). (3.27)

where µ = µa − µb. We can note that if we assume Σa = Σb = Σ, then DKLmean =

µTΣ−1µ which is related to the GMM mean vector. Futhermore, if we assume µa =

µb = µ, then DKL expresses the difference, or the dissimilarity between covariance

matrices Σa and Σb.

DKLcov =
1

2
TR(Σ−1a Σb + Σ−1b Σa − 2I); (3.28)

It is easy to see that DKLmean is the distance measurement for the GMM mean

vector representation. As introduce in [50], we can construct a kernel function

kmean(a, b) so that it satisfies the condition that D(a, b) = k(a, a)+k(b, b)−2k(a, b).

Thus intuitively we can find that the linear kernel kmean(a, b) = µTaΣ−1µb satisfies

this condition.

The problem is now at the part of DKLcov . It is not easy to directly obtain the

kernel function from this distance. One possible way to achieve this is to approxi-

47



mate this KL divergence distance of the covariance part.

DKLcov(ga||gb) =
1

2

∑ σ2a + σ2b − 2σaσb
σaσb

≈ 1

2

∑ σ2a + σ2b − 2σaσb
σ2

(3.29)

It is easy to obtain that kcov(a, b) = σTa Σ−2σb is the kernel function of the ap-

proximated distance DKLcov(ga||gb). Thus we can construct the combined kernel

for the DKL with both the mean vector term and the covariance term. k(a, b) =

µTaΣ−1µb+σTa Σ−2σb. It is desirable to see that the kernel defined is the dot product

of the representation: Ca = [
µa1√
σ1

; · · · ;
µaK√
σK

;
σa1
σ1

; · · · ;
σaK
σK

]. We call this representation

as SuperCoding.

3.4.3 Further Improvement

There are several possible improvement which can further improve the representation

power.

Residual as representation

There are strong evidence demonstrating that it is better to represent adapted model

with its residual instead of its model parameter. Thus we derive the residual repre-

sentation as the final SuperCoding:

Ca = [
µa1 − µ1√

σ1
; · · · ;

µaK − µK√
σK

;
σa1 − σ1
σ1

; · · · ;
σaK − σK
σK

]; (3.30)

In fact, it can be derived that the linear kernel of the modified residual rep-

resentation can also satisfy the KL distance metric. For examples, let’s take the

first half representation of Ca as Cmean, the obtained linear kernel k̂mean(a, b) =
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(µa − µ)TΣ−1(µb − µ). Then we can obtain the following equation:

k(a, a) + k(b, b)− 2k(a, b) (3.31)

= (µa − µ)TΣ−1(µa − µ) + (µb − µ)TΣ−1(µb − µ)

− 2(µa − µ)TΣ−1(µb − µ),

= (µa − µb)TΣ−1(µa − µb),

= DKLmean .

It shows that the residual offset of the mean value part does not change the linear

kernel property - the obtained linear kernel is a valid kernel function of the KL

divergence distance. Similar deduction can be used to prove that the second half

representation of Ca satisfy the covariance KL distance metric. Thus the overall

residual representation can still form a valid linear kernel.

Spatial Modeling

The image has 2D structure and has spatial correlation, however all the coding

mentioned above treats each local patch equally and does not consider the spatial

information. Thus we have to explicitly model this spatial geometry relation. There

are typical two types of spatial modeling for visual recognition proved to be effective.

(1) Spatial Pyramid Matching (SPM) which partitions the image plane into finer

subcell and extract corresponding features within each cell. (2) Spatial Feature

(SF) which often concatenate the patch coordinates li into the raw patch feature xi

with proper normalization, e.g. [xi, li].

These two kinds of spatial modeling approaches has different properties which

often is favored by different tasks: (1) For scene/image classification, SPM is often

favored since it extracts much larger features that can be feeded into classifier. (2)

For face-related application, SF is often utilized due to its low cost and effectiveness

for well-structured face problem.
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(b) FisherVector 

Gradients 

Gradients 

(a) Two data distribution and one GMM. 

Adaption 

Adaption 

(c) SuperCoding 

Figure 3.1: The intuition behind FisherVector and SuperCoding. (a) Two data
distribution and one GMM model. (b) FisherVector calculates the gradients of the
model parameters as the representation. (c) SuperCoding first performs the model
adaption and uses the model parameters as the representation.

Normalization

We follow the power normalization as suggested by numerous recent works followed

by l2 normalization. Each code has been through a point-wise normalization f(z) =

sign(z)|z|α where 0 ≤ α ≤ 1 is the normalization parameter. The idea of power

normalization is to depress the noisy value of the representation and gives relative

smooth codes.

3.4.4 Discussion

1. The relation of SuperCoding and MeanVector: As can be seen in Ta-

ble 3.1, the SuperCoding proposed here is a natural generation of GMM Mean-

Vector. The MeanVector uses the adapted weighted mean vector as the rep-

resentation. The SuperCoding considers further by introducing the adapted

covariance. The extended representation naturally forms the linear kernel as

the similarity measurement which has linear cost at training and testing stage.

2. The relation of SuperCoding and FisherVector: As shown in Figure 3.1,

both SuperCoding and FisherVector calculate the first order and second statis-

tics. However, these statistics are different in terms of their meanings. For

FisherVector, those statistics are gradients with regards to the GMM model.
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Then the measurement of these gradients forms the Fisher Kernel which aims

to extract the discriminative information. The SuperCoding follows another

strategy: Each image has been adapted to a new GMM. Thus measuring the

distance of two images has been transferred to the problem of calculating the

distance between two GMM distance. This difference has been illustrated in

Figure 3.1. Another interesting observation is that we find the main compu-

tation cost of the SuperCoding and FisherVector are at the same step, i.e.

the posterior calculation. It implies that once getting SuperCoding, we can

easily obtain the FisherVector coding. The possible mutual enhancement can

promote the performance for different applications.

3. High dimensionality and compression: The proposed high order image

statistic representation often come with very high dimensionality, e.g. for a

model with 1024 Gaussians, 8 tiles SPM for SIFT feature, the dimensionality

would be 128× 1024× 8× 2 ≈ 2 million. When meeting large-scale problem,

it is often intractable and the role of data compression becomes increasingly

important. In this work, we adopt the Product Quantization (PQ) [42] which

is to represent each fragment of the coding e.g. 8 dimension, using a simple

codebook, e.g. 256 words. Thus a high compression rate will be achieved, i.e.

8 bits for 8 double/float.

3.5 Experiments

3.5.1 Experimental Setting

Object Classification: We perform object classification tasks on two different

datasets. The parameter evaluation is conducted on PASCAL VOC 2007 dataset

which is the “benchmark” dataset for object recognition. The PASCAL Visual Ob-

ject Challenge (VOC) datasets [18] are widely used for many image understanding

tasks and provide a common evaluation platform for both object classification and
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Figure 3.2: The effect of codebook size on different datasets.

detection. We use PASCAL VOC 2007 for experiments. VOC 2007 datasets con-

tains 9,963. The two datasets are divided into “train”, “val” and “test” subsets.

We conduct our experiments on the “trainval” and “test” splits. The employed

evaluation metric is Average Precision (AP) and mean of Average Precision (mAP)

complying with the PASCAL challenge rules.

Scene Recognition We perform scene recognition on the SUN397 dataset [118]

which is probably the largest database for scene classification. It contains 108,754

images over 397 well-sampled categories. The number of images varies across cat-

egories, but there are at least 100 images per category. Ten subsets of the dataset

have been chosen for evaluation, each of which has 50 training images and 50 testing

images per class. We follow the common experimental setting [118] on this database:

In each experiment, different number of images are used for training, and all the 50

testing images are used for testing no matter what size the training set is.

3.5.2 The Effect of GMM Size

The number of the mixtures in the GMM is critical for representation power. Previ-

ous works clearly demonstrate that larger number of mixtures lead to higher accu-

racy. Here we compare different size setting on PASCAL VOC and Caltech 101. The

obtained results are listed in Figure 3.2. It shows that performance of SuperCoding

is always superior than the baseline of MeanVector and FisherVector.
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3.5.3 Task 1: Object Classification

PASCAL VOC 2007

The detailed comparison results are listed in Table 3.2. We can observe that the

GMM-based coding methods is general better than the VQ-based and the Sparse

Coding-based methods. The mAP for VQ is only 0.484 even with non linear kernel.

The LLC performs better than VQ and it only utilizes the linear solver. The GMM

based methods achieve the most improvement. Only with the first order statistic,

MeanVector [49] obtains 0.568 mAP and Fisher Vector obtains 0.586 with second

order gradients. Our SuperCoding achieves impressive 0.602 mAP. This is the state-

of-the-art result for single SIFT feature and no SPM setting as far as we know.

Table 3.2: Performance Evaluation on PASCAL VOC 2007 dataset.

VQ(4K) LLC(8K) MeanVector [49] FisherVector [14] SuperCoding

aeroplane 0.685 0.641 0.750 0.760 0.799

bicycle 0.496 0.578 0.629 0.659 0.676

bird 0.394 0.350 0.465 0.466 0.508

boat 0.608 0.616 0.695 0.707 0.709

bottle 0.207 0.177 0.270 0.309 0.293

bus 0.480 0.528 0.639 0.656 0.671

car 0.679 0.730 0.790 0.779 0.809

cat 0.452 0.515 0.588 0.576 0.617

chair 0.470 0.448 0.451 0.480 0.481

cow 0.318 0.385 0.435 0.485 0.485

diningtable 0.352 0.328 0.480 0.530 0.522

dog 0.408 0.353 0.437 0.455 0.461

horse 0.664 0.710 0.778 0.770 0.807

motorbike 0.518 0.578 0.644 0.657 0.682

person 0.796 0.786 0.837 0.830 0.857

pottedplant 0.236 0.139 0.257 0.300 0.318

sheep 0.351 0.348 0.485 0.515 0.517

sofa 0.429 0.391 0.446 0.481 0.488

train 0.671 0.694 0.761 0.766 0.792

tvmonitor 0.465 0.459 0.515 0.546 0.556

mAP 0.484 0.488 0.568 0.586 0.602

Time/Img N.A. 16sec 1.0sec 1.1sec 1.2sec
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3.5.4 Task 2: Scene Recognition

We also conduct our experiments on the SUN397 dataset which is the largest dataset

for scene classification. We compare our result with the multiple feature combina-

tion result from [118] and the work using attribute as middle feature [116] and

our implementation of FisherVector and MeanVector. It shows again that the pro-

posed SuperCoding has comparable performance with FisherVector given the sin-

gle/multiple feature setting. Even more, we can observe further improvement when

naively combine the result of FK and SC.

Table 3.3: Scene recognition performance on SUN397 dataset.

Methods Number of training samples

dSIFT 5 10 20 50

MultiFea [118] 14.46 20.87 28.12 38.0

Context+Semantic [116] 35.6

FisherVector 17.06 23.38 30.37 38.4

SuperCoding 17.53 24.02 30.7 38.59

MeanVector 14.25 21.02 27.85 36.01

FV+SC 18.2 24.67 31.49 39.17

dSIFT+CM 5 10 20 50

FisherVector 20.13 27.43 35.24 43.96

SuperCoding 20.51 27.83 35.78 44.43

MeanVector 17.92 25.53 33.45 42.02

FK+SC 21.2 28.53 36.51 45.09

3.5.5 Data Compression vs. Performance

In [1], the authors thoroughly compared the performance vs. data compression for

Product Quantization. It appears that for the feature coding with obvious data

structure, e,g. Fisher Vector, the PQ achieves impressive good tradeoff between

compression rate (CR) and recognition performance. For example, in their experi-

ments, the performance dropped about 1% with a 32 compression rate. We follow

this setting and conduct the experiment to verify the effectiveness of using PQ for

SuperCoding. The detailed mAPs on VOC 2007 dataset are shown in Table 3.4.
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Table 3.4: Data Compression vs Performance on VOC 2007 with Product Quanti-
zation [1].

FisherVector SuperCoding

Baseline 0.586 0.602

Compressed(CR=32) 0.574 0.586

Peformance Drop -0.012 -0.016

Data Size(Before& After) 736MB vs. 23 MB 736MB vs. 23 MB

It can be observed that the performance of SuperCoding is slightly dropped (0.016)

due to the data compression step. However, we can add more compressed training

samples with this high compression rate (32) to improve the performance. This prop-

erty is very important in the problem of large scale image classification in terms of

large scale training samples and high dimensional feature representation.

3.6 Conclusion

In this chapter, we firstly reviewed the recent coding methods including the tradi-

tional VQ-based coding and the Sparse Coding-based methods. Then we focus on

GMM-based coding. From the point view of GMM adaption, we extend the current

the adaption-based method to the second order while retaining the favourable linear

kernel representation. The experimental part demonstrated the effectiveness of the

proposed SuperCoding.
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Chapter 4

Generalized Hierarchical

Matching/Pooling with Side

Information

In this chapter, we aim to study the problem of “Feature Pooling”. We define the

term Feature Pooling as the process that select subsets of the encoded features

and get the pooled feature over these subsets. For example, for Sparse Coding based

methods [11], the “Max Pooling” is often used to select the max response from the

pool of encoded feature and use this as the representation. However, the “Pooling”

process is not only restricted to this simple logic operation. The underlining nature

of the defined “Feature Pooling” is to select subsets according to some rules so that

these subsets have more comparable meaning. For example, the spatial pooling

which is widely used in image classification, i.e. Spatial Pyramid Matching [7],

forms the subsets according to the spatial locations. This approximate geometric

alignment can better make the pooled feature comparable at different levels.
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(a) Images (b) SPM partition (c) Object Confidence
Map partition

Represent image with hierarchical structure

Fig1 last revised on Nov 21

Figure 4.1: Illustration of the hierarchical matching representation. The local fea-
tures are pooled according to partition of (b) traditional SPM and (c) the proposed
object confidence prior. The figure shows our framework is superior than SPM in
object matching across different images. For better viewing of all figures in this
chapter, please see original color pdf file.

4.1 Introduction

In this work, we focus on image classification according to the objects contained

in the images. More specifically, we focus on the classification of complex images

which contain objects as well as cluttered background areas. Ideally, different parts

of image should serve different roles for the classification. The appearance model of

object itself plays a key factor while rich context information from background is

helpful for the classification process. However, since the objects may only occupy

a small portion of the images, rich context information as well as background noise

introduced by the rest area of the image must be well handled in practice. State-

of-the-art methods following the bag-of-words (BoW) framework [6] mainly contain
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three steps: local feature extraction, feature encoding/pooling, and classifier learn-

ing. The local features are extracted from the dense grids, or via sparse interest

point detection in the images. Feature encoding forms global image representations,

e.g. a frequency histogram of visual words, which encodes the local features with

a predefined visual dictionary such that the image representation has a comparable

unified coordinate. The classifier learning step generally uses the kernel built on

matching scores of the global image representations.

Traditional BoW framework equally encodes all local features and does not em-

phasize any elements with regard to image layout. Hence, pyramid structure rep-

resentation is often used to extend the global BoW representation in image classi-

fication, e.g. Spatial Pyramid Matching (SPM) [7] for natural scene classification.

SPM models global geometric correspondence by partitioning the image plane into

increasingly fine sub-regions. The success of SPM comes from the valid assumption

that the images with similar scene and geometry layout possibly belong to the same

category. However, we argue that this representation is not optimum for object-

centered recognition problem. As Figure 5.1 indicates, the spatial partition based

on SPM may have mismatch problem caused by different object locations and scene

layouts. In other words, if a prior knowledge, e.g. the possibility of object existence

confidence in the image as shown in Figure 5.1 is acquired, we can construct the

representation to match the corresponding object and background more accurately.

To this end, we propose a generalized hierarchical matching/pooling (GHM),

which is capable to integrate different kinds of prior knowledge, including clues of

object layout, for enhancing feature matching and towards object-oriented recog-

nition. The prior knowledge, which is called side information in this chapter, is

associated with each local feature in image. Using the side information, the image

local feature pool can be clustered into cells and further a coarse to fine hierarchical

representation can be generated. Since the partition of the cells is guided with side

information more semantically concerned, the encoding within each cell tends to be
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more semantically matchable and thus is expected to achieve better performance.

Figure 5.1 demonstrates an example of how object-level side information is sup-

plied to the proposed GHM framework. The side information of object confidence

map can be used as an object-oriented prior for spatial partition of the image local

feature pool. Consequently the images represented as hierarchical structures could

carry out a coarse to fine matching.

Our contributions are two-fold. First, we propose the Generalized Hierarchical

Matching framework for image classification. It gracefully extends the popular pyra-

mid matching work, but further enables us to integrate other semantically useful

side information with the flexibility. Second, two novel kinds of side information,

i.e. object confidence map and visual saliency map, are introduced to enhance

object-oriented image classification tasks based on the proposed GHM framework.

4.2 Related Work

4.2.1 Hierarchical Matching

Pyramid structure representation is often used to extend the global BoW repre-

sentation in image classification, e.g. Spatial Pyramid Matching (SPM) [7] and

Pyramid Match Kernel (PMK) [8]. SPM models approximate geometric layout by

partitioning the image plane into increasingly fine sub-regions, and due to its better

performance and simple implementation, it has become a standard procedure for

image classification. However, for object-oriented classification, the increased com-

plexity brought by SPM cannot contribute much to the recognition target because

the object may appear in arbitrary position within an image, which thus may reduce

the recognition efficiency and bring misalignment issue due to the unpredictable ob-

ject locations in images.

PMK maps each feature set to a multi-resolution histogram that preserves the

individual features’ distinctness at the finest level. The histogram pyramids are
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then compared using a weighted histogram intersection computation, which implic-

itly defines the correspondence based on the finest resolution histogram cell where

a matched pair first appears. It focuses on the mismatch problem caused by inac-

curate Vector Quantization in feature encoding procedure. GHM framework well

generalizes the SPM and PMK approaches and Section 4.3.3 will detail their rela-

tionship.

4.2.2 Saliency-guided Object Recognition

The saliency map [52] is a topographically arranged map that represents visual

saliency of a corresponding visual scene. The purpose of the saliency map is to

represent the conspicuity or “saliency” at every location in the visual field by a

scalar quantity and to guide the selection of attended locations, based on the spa-

tial distribution of saliency. Many of these saliency models are based on findings

from psychology and neurobiology and explain the mechanisms guiding attention

allocation [53, 52]. More recently, a number of models [54, 55] attempt to explain

attention based on more mathematically motivated principles. Both types of mod-

els tend to rely solely on the statistics of the current test image when it comes to

computing the saliency of a point in the image.

Some previous studies attempt to use saliency map as guidance for object recog-

nition. [56] use color to guide attention by means of a top-down category-specific

attention map. The color attention map is deployed to modulate more shape fea-

tures from regions within an image that are likely to contain an object instance. [57]

attempt to solve image classification using a biologically-inspired model to approxi-

mate the human eye fixations. These fixations are extracted from the feature maps

at the sampled location, followed by probabilistic classification and the acquisition

of additional fixations. The major difference between the proposed saliency map

based GHM algorithm and these methods lies on how to utilize the saliency maps.

In other words, GHM attempts to re-partition the features so that the group of
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features has more meaningful structure and each layer of partition has consistent

elements to be matched.

4.2.3 Region-based Object Recognition

Recently, some work attempts to process the object recognition at the image region

level. [58, 59] explore multiple instance learning respectively to classify images by the

highest scored image region. Following this idea, [60] use a latent-SVM model, which

scores an image using all regions and associates each region with a latent variable

indicating whether the region represents the object of interest or not. The solution

takes the classification and foreground estimation into a joint inference framework.

Though simpler than our proposed two-step solution, the critical drawback of the

joint inference is that it will restrict the source of side information and cannot

handle information from too complex sources. Other similar recognition work for

image classification also exists. [61] propose to segment the images into foreground

and background within co-segmentation scenario to improve image classification

performance. [62] define a Region-Of-Interest in the image and take the maximum

response over the coarse image grid as the output of classifier. Comparing to these

region-based approaches, the GHM framework aims to utilize all image information

including object itself and context from different kinds of sources.

4.3 Generalized Hierarchical Matching/Pooling

4.3.1 Image Classification Flowchart

Figure 4.2 shows the diagrammatic flowchart for image classification. Each image

is expressed as a bag of orderless pairs I, each of which includes a local feature

vector xi encoded as ci over a visual dictionary, and the side information fi from

priors and/or context, i.e. I = {{xi, ci}, fi}Ni=1. The side information is used for

hierarchical clustering of the encoded local feature.
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Table 4.1: Unified framework of Generalized Hierarchical Matching

Method Name Side information Coding method Similarity function

PMK [8] Histogram Index Vector Quantization Intersection

SPM
General [7]

Location Coordinate
Vector Quantization Arbitrary

ScSPM [11] Sparse Coding Linear
ImprovedFV [14] Fisher Vector Coding Linear

The proposed GHM
Object Confidence Map,

Arbitrary
Visual Saliency Map

Along with the image itself, we may obtain the side information from vari-

ous sources, e.g. the object confidence map denoting the existence probability of

an object from object detector as shown in Figure 4.2. The side information is

quantized into M discrete types. The encoding vectors ci are assigned into differ-

ent levels of clusters according to the quantization of side information, and form

the hierarchical matching representation. To measure the similarity of two images

I1 = {{x1i , c1i }, f1i }
N1
i=1 and I2 = {{x2i , c2i }, f2i }

N2
i=1, a kernel is constructed based on

this representation. The kernel could be fed into any popular machine learning algo-

rithm for classification purpose. We detail the GHM representation in the following

section.

4.3.2 Hierarchical Matching Kernel

Assuming there are two images I1, I2, we can allocate each pair in I1, I2 into a hierar-

chical structure G = {G1, G2, ..., GL} , where L is the number of hierarchical levels.

Same as in previous hierarchical matching algorithms, only the elements grouped to

the same cluster are supposed to match to each other. Hence we quantize all encoded

feature vectors into Ml cells at level l, and the corresponding pooling is functioned

on each cluster. We explored two ways to construct hierarchical structure. One is to

perform hierarchical clustering on single/combined maps. The clustering is operated

on the side information of training set. The other one is to design mixed meaningful

structure from prior knowledge instead of automatic hierarchical clustering.

63



Then we can define a cluster kernel through a similarity function, i.e. κjl12 =

S(I1, I2, G
j
l ), where S is a similarity function based on local feature cluster Gjl on

cell j at level l for images I1 and I2, and κjl12 represents the similarity value on cell j

at level l. Then the similarity kernel between two images is defined as the weighted

sum of similarity values:

K12 =
L∑
l=1

Ml∑
j=1

wjlκ
jl
12. (4.1)

Similar to other hierarchical methods, it degenerates to a standard BoW when

L = 1,Ml = 1. It is easy to verify that if the κjl is a Mercer Kernel, then K is

also a Mercer Kernel and thus it can be embedded into any popular kernel-based

machine learning algorithm. The kernel weight wjl can be intuitively set or learnt

by popular Multiple Kernel Learning (MKL) [63] method.

4.3.3 Generalization and Flexibility

In Table 4.1, we demonstrate the generalization capability with various configura-

tions of GHM to realize previous hierarchical matching algorithms as well as our

proposed object-oriented recognition with new side information.

First, we show that the Pyramid Match Kernel (PMK) [8] is one exemplar of the

GHM framework. To encode and match the local feature with more accurate quan-

tization, PMK uses multiple levels of local feature pooling and intersection kernel

matching based on Vector Quantization (VQ). The pool of local image features is

hierarchically partitioned into clusters according to their histogram indices and the

final matching score is defined as weighted sum of all cluster matching scores, which

can be straightforwardly explained by our GHM framework. As aforementioned,

SPM uses the location coordinate of local features as side information for clustering

and it is easily adapted as one special case of the GHM framework. GHM is the

general form of PMK and SPM, which use diverse side information respectively.

Table 4.1 also illustrates that GHM framework can embed any popular cod-
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ing method with flexibility. The BoW feature encoding approaches such as Sparse

Coding [11] and Locality-constrained Linear Coding (LLC) [12] introduce soft as-

signment for local feature quantization. Fisher encoding[14] and Super vector encod-

ing [15] capture the average first and second order differences between local features

and their distribution centres modeled by Gaussian Mixture Models. Most of the

coding work include SPM as the spatial pooling step. GHM could also help this

step and indicate image coding on well-designed clusters based on provided side

information, e.g. object confidence map and visual saliency map which is detailed

in next section.

4.4 Side Information Design

In this section, we design two schemes to construct side information: (1) the object

confidence map which reveals the possibility of a local patch containing a object.

(2) the visual saliency map which takes advantage of natural image statistic and

distinguishes the foreground against the background. Further these two kinds of in-

formation, as well as the location coordinate information, can be combined parallelly

or hierarchically as side information to reflect meaningful structure for GHM-based

image recognition.

4.4.1 Object Confidence Map

For object recognition task, it is commonly believed that in traditional well-proposed

object recognition datasets, such as CMU PIE face [64] and Caltech-101 [29], most

objects are cropped after fine alignment and with little background noises, and

such preprocess always leads to much better performance. But it does not work

for general object recognition datasets such as Caltech-UCSD Birds [65], PASCAL

VOC [18], etc, where no object pre-alignment and cropping is performed. Intu-

itively the most useful recognition prior for these object-unaligned images is object

65



Fusing

Images

Object Confidence Maps

Random 
sub-window

Sliding 
window

Score vote 
back to image

Shape Model Appearance Model

Process

Score vote 
back to image

Fig3 last revised on Nov 21Figure 4.3: Object confidence map and some examples from car category.

position. And object position should be extremely beneficial for fine-grained image

classification task.

The steps to construct an object confidence map, denoted as GHM Object, is

illustrated in Figure 4.3. For each object category, e.g. car, we train one shape-based

and one appearance-based object detectors, respectively. The usage of two detectors

is to guarantee both high precision and high recall on object detection since none

of the detectors can achieve this alone and they complement each other in certain

way. Instead of constructing the local classifiers on a super-pixel representation as

in other work [66, 67], we use square grid samples and sliding-window approach for

efficiency consideration.

The shape-based object detection adopts the state-of-the-art part-based model

from [19] using HOG [3] features. And the appearance-based object detector is

trained with BoW features. We use dense SIFT [4] and LBP [5] as local features and
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the codebook sizes for dense SIFT and LBP are 2000 and 1000 respectively. Each

detection sub-window is divided into 3x1 spatial pyramid to provide weak geometry

constraint. The BoW histogram is mapped into high-dimension space via Additive

Kernel Mapping [68]. This nonlinear transformation guarantees the possibility of

using linear classifier for fast detection. We further accelerate the detection by

using integral image to construct BoW representation within sub-window. Multiple

scale detection is performed in each image and the obtained multi-scale scores are

averaged to get final single object confidence map.

4.4.2 Visual Saliency Map

For some object categories, such as flowers, detection models may perform poorly.

We propose another apparent foreground prior on finding visually salient image re-

gions from human attention models and construct saliency maps as side information,

denoted as GHM Saliency.

We consider the saliency under the scenario of general visual classification prob-

lem. In other words, the saliency information should reflect how human sees the

objects against the natural background clutter. For this reason, we use the saliency
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Object Scene Layout

Figure 4.5: Combine object confidence map and spatial layout into one GHM. Level
2 is clustered according to object confidence map. Level 3 is designed for foreground
matching and scene layout matching.

model SUN (Saliency Using Natural statistics) [69]. This measure of saliency is based

on natural image statistics, rather than based on a single test image, providing a

straightforward explanation for many search asymmetries observed by humans.

The SUN model illustrated in Figure 4.4 defines the bottom up saliency as

P (F )−1, where F indicates the transformed color features through Independent

Component Analysis (ICA) [70] on local color patch. Since the components of F

have been made largely statistically independent by ICA, SUN models P (F ) as the

product of unidimensional distributions: P (F = f) =
∏
i P (fi), where fi is the ith

value of these filter responses at this location. The ICA feature responses to natural

images can be fitted very well using Generalized Gaussian Distributions [71], and

we obtain the shape and scale parameters for each ICA filter by fitting its response

to the ICA training images.

4.4.3 Side Information Combination

The nature of the GHM framework enables us to flexibly combine side informa-

tion from various sources. One straight way to combine the side information is

parallel information fusion, e.g. the spatial location information and the saliency
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map coupling as f = {flocation, fsaliency} collaboratively. The clustering over this

combination aims to consider the geometric constraint and saliency information so

that each of the sub-cluster in the image contains equal amount of salient area. We

denote this parallel combination as GHM LocSaliency.

Another feasible solution for side information combination is to design mixed

hierarchical structure. Most natural images (e.g. those from PASCAL VOC dataset)

contain large amount of background area, which in fact supplies rich contexts for the

recognition of certain object categories e.g. sky for aeroplane/bird, urban scene for

various vehicles. This motivates us to design a configuration which simultaneously

matches foreground objects and background scenes. The background confidence can

be simply obtained from the foreground object confidence with reversed process, i.e.

small object confidence map value meaning higher possibility of background. The

spatial layout is proved to be useful for the recognition of background scenes [7]. We

design a 3 level hierarchical structure with combined side information: the whole

image as level 1, object confidence map is used in level 2 as the foreground confidence

map, and the small value denoting the background area will be further utilized in

level 3 to construct the 3×1 spatial layout modeling the background scene as shown

in Figure 4.5. We denote this hierarchical combination as GHM ObjHierarchy.

In summary, we propose two useful resources of side information to fit into pro-

posed GHM framework for image classification, i.e. the object confidence map and

the visual saliency map. We further propose to associate the side information from

multiple resources, either through simple parallel combination or via sophisticated

hierarchical design to reflect the semantic complexity in real image recognition task.
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Figure 4.6: Sample images from Oxford Flowers 17 and CUB 200. The images in
the same row belong to the same category.

4.5 Experiments

4.5.1 Datasets and Metric

We evaluate our proposed Generalized Hierarchical Matching framework on several

popular datasets, the recently released Caltech-UCSD Birds 200 (CUB-200) [65], the

Oxford Flowers 17 (Flowers 17) [72] and 102 (Flowers 102) [73], and the PASCAL

Visual Object Challenge (VOC) datasets [18].

The CUB-200 contains 200 bird categories and 6033 images in total. It is cre-

ated to enable the study of subordinate categorization. The Flowers 17 [72] dataset

contains 17 different flower species with 80 images per category. The dataset pro-

vides three different data splits with each including 60 training and 20 test images.

The Flowers 102 [73] dataset includes 8289 images divided into 102 categories with

40 to 250 images per category. We use the provided data split with 20 images per-

category for training and the rest for testing. Figure 4.6 shows some examples of the

Oxford Flowers and CUB-200 images. It can be seen that these two fine-category

classification datasets are very challenging due to the large intra variances.
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The PASCAL Visual Object Challenge (VOC) datasets [18] are widely used for

many image understanding tasks and provide a common evaluation platform for

both object classification and detection. We use PASCAL VOC 2007 and 2010

datasets for experiments. VOC 2007 and VOC 2010 datasets contain 9,963 and

21,738 images respectively. The two datasets are divided into “train”, “val” and

“test” subsets. We conduct our experiments on the “trainval” and “test” splits.

The employed evaluation metric is Average Precision (AP) and mean of Average

Precision (mAP) complying with the PASCAL challenge rules.

4.5.2 Experimental Details

Baseline Configuration: For CUB-200, Flowers17 and Flowers102 datasets, the

local features used for the image recognition are RGB color moment and dense

SIFT descriptors. The implementation of dense SIFT is based on VL-Feat [51]

using multiple scales setting (spatial bins are set as 4, 6, 8, 10) with step 4. We use

the improved Fisher vector coding [14] with SPM setting which has demonstrated

the superiority over other coding methods in a fair setting [13]. The size of Gaussian

Mixture Model in Fisher vector coding is set to 256 for these two features separately.

One-vs-All SVM is learnt for each category using the representation generated by

GHM and returns the class with the maximum score over all the image classifiers.

The SPM is with typical setting, 3 levels are used, 1×1, 2×2, 4×4 spatial separation.

For PASCAL VOC 2007 [18] datasets, we use only dense SIFT feature with

the Fisher vector coding to make it comparable with other popular works. We also

conduct the experiments with “heavy” setting to obtain state-of-the-art performance

for PASCAL VOC 2010 dataset. For local features, we extract dense SIFT, HOG,

color moment and LBP features in a multi-scale setting. Typically, the number of

local features for each image is around 30K for SIFT, 5K-10K for others. This is

critical in feature coding to produce non-sparse representation. All these features

are also encoded with improved Fisher vector coding. One-vs-All SVM is learnt and
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the performance is evaluated by AP.

Side Information Generation: We implement the proposed two kinds of side

information: (1) the supervised object confidence map and (2) the unsupervised

visual saliency map. The two detectors used to generate object confidence map are

trained with PASCAL VOC images. For part-based model [19], the HOG and LBP

features are used for object description and the number of part models for each

object category is set to 8. For appearance-based approach, we sample 4000 sub-

windows with different size and scale and perform the BoW based object detector on

these sub-windows. We construct the hierarchical structure with three-level clusters,

each of which includes 1, 2, 4 nodes respectively on the training images. For each

class, we sample the responses from the positive images and the same number of

negative images and get various cluster centers with clustering process. Finally each

local feature is assigned to the nearest center at each level.

For the saliency map generation, we follow the SUN [69] framework and adopt

the ICA filters model from [57]. These filters are learned with the images from the

McGill color image dataset [74]. For the following experiments, we use this setting

unless otherwise stated: three-level clusters for hierarchical structure, each of level

with 1, 2, 4 nodes respectively. The clustering is operated on single image but not

cross dataset since we find that the saliency map values for different images are not

comparable.

The weight wjl is intuitively set without fine tuning: the higher confidence cluster

has higher weight within each level and the weights are normalized to have unit sum

for each level.

4.5.3 Exp1: Caltech-UCSD Birds 200

We first evaluate our methods on the newly released Caltech-UCSD Bird 200 dataset

and show that the visual saliency map and the object confidence map are very helpful

for the fine categorization problem. The dataset is extremely challenging, and its
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Table 4.2: Performance comparison on Caltech-UCSD Birds 200. The proposed
methods lead to the highest recognition accuracy.

Methods Recognition Acc.

[61] 17.0

[75] 19.0

BoW Baseline 15.2

FVSPM 15.0

GHM Saliency 18.1

GHM Object 19.2

authors report only 19% recognition accuracy [75] when using ground truth masks.

The recognition performance is listed on Table 4.2 (using the suggested 20 training

images per class split). [61] first segment the image into foreground and background

and then extracted feature on the foreground. We also implement the Fisher vector

coding with SPM (FVSPM) [14].

For this fine-grained categorization problem, the spatial layout has no exact

meaning for different fine classes since most of classes share the same background.

We propose to use saliency map (GHM Saliency) and the object confidence map

(GHM Object) as a guidance to partition the images into different levels. The object

confidence map is obtained by performing the “bird” detector trained from VOC

2010 datasets. Both of the results are much better than FVSPM. The results show

that the unsupervised saliency performs very well on this dataset and the object

confidence map gives strong support for separating the foreground and background

so that fine-grained categorization is possible.

4.5.4 Exp2: Oxford Flowers 17 and 102

We compare our proposed GHM method with other state-of-the-art results on Ox-

ford Flowers datasets. [76] adopt multiple feature combination method. [57] use

the same saliency map as ours. [61] use segmentation to get the foreground area

which is current leading method in this dataset. It is almost impossible to train a

“flower” detector for this dataset, on the other hand, the saliency map shows strong

73



Table 4.3: Performance comparison on Oxford Flowers datasets.

Flowers 17 Flowers 102

Methods Recognition Acc.

[76] 88.5 ± 3.0 –

[57] – 72.8

[61] 90.4 ± 2.3 80.0

FVSPM 93.0 ± 1.7 82.0

GHM Saliency 93.1 ± 1.8 82.3

GHM LocSaliency 93.5 ± 1.5 82.6

evidence over this datasets: most of the flowers are within the salient foreground

area of the images. So we evaluate the GHM with saliency map performance and

its combination with spatial information. The recognition performances on Oxford

Flowers 17 and 102 are listed on Table 4.3.

The GHM with the saliency map (GHM Saliency) achieves comparable perfor-

mance with FVSPM. It shows that the saliency map is comparable prior for object

recognition with the weak geometric alignment at these two datasets. It is worth

noting that for these two datasets, we use compact representation. i.e. 3 levels of

saliency map with total 1+2+4=7 cells compared with 21 cells in SPM. We also use

the parallel combination design of side information by using saliency map together

with spatial information (GHM LocSaliency). The side information is designed as

f = {flocation, fsaliency}. Then a 2 level GHM with 1 × 1, 2 × 2 setting is con-

structed. The results show the additional improvement over the single channel of

side information with very compact representation.

4.5.5 Exp3: VOC 2007 and VOC 2010

We evaluate our proposed method on PASCAL VOC 2007 and VOC 2010 dataset.

The classification results on VOC 2007 are listed on Table 6.3. INRIA [77] is the

winner of VOC 2007 and uses multiple kernel learning to balance the weight of dif-

ferent features. LLC [12] is the popular state-of-the-art feature coding method. We
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follow coding method in FisherVec [14] which results in mAP 58.3%. Our baseline

FVSPM (mAP 60.6%) achieves higher performance than FisherVec approach, since

more dense SIFT features with smaller step for one image is extracted. All these

methods report much lower mAP than the leading score in [78] which uses “heavy”

setting. Also note that the object classes in this dataset are conflicted with the

saliency map assumption since many of the concerned classes and object instances

in VOC are not at the foreground area, e.g. bottle, chair, tv. So we mainly use the

object confidence map for each class and encode the features with GHM. The results

(GHM Object) show mAP +3% absolute improvement over the baseline method us-

ing SPM. The prior of object confidence map is much stronger than the spatial

layout for object-oriented classification.

VOC images contain large amount of background area which provides rich con-

text information for recognition of certain objects. This also leads us to design

a configuration which simultaneously matches foreground objects and background

contexts. We design the mixed hierarchical structure setting with combined side

information as proposed in Sec. 4.4.3. The significant performance improvement

from mAP 60.6% (by FVSPM) to 64.7% (by GHM ObjHierarchy) demonstrates

the effectiveness of this hierarchical structure of mixed spatial layout and object

confidence modeling.

We also compare our method with the current leading approach [78] on PASCAL

VOC 2010 with “heavy” setting. We adopt the Context SVM method with its con-

figuration which combines the object detection and classification in a context-aware

scenario, but generate the representation with GHM ObjHierarchy. The classifi-

cation results on VOC 2010 are listed in Table 4.5. The final results of GHM

ObjHierarchy outperform the leading scores in VOC 2010 challenge. The usage of

hierarchical object and scene layout side information provides great gain for this

classification task.
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Table 4.4: Classification results (AP in %) on VOC 2007. The proposed GHM
Object and GHM ObjHierarchy outperform the baseline methods.

INRIA [77] LLC [12] FisherVec [14] FVSPM GHMObject GHMObjHierarchy

plane 77.5 74.8 75.7 75.8 77.0 76.7

bike 63.6 65.2 64.8 68.1 73.5 74.7

bird 56.1 50.7 52.8 51.6 51.8 53.8

boat 71.9 70.9 70.6 71.6 71.1 72.1

bottle 33.1 28.7 30.0 30.0 37.1 40.4

bus 60.6 68.8 64.1 69.4 70.8 71.7

car 78.0 78.5 77.5 78.9 82.3 83.6

cat 58.8 61.7 55.5 61.9 63.4 66.5

chair 53.5 54.3 55.6 50.7 52.0 52.5

cow 42.6 48.6 41.8 50.6 55.2 57.5

table 54.9 51.8 56.3 55.5 60.9 62.8

dog 45.8 44.1 41.7 45.8 49.9 51.1

horse 77.5 76.6 76.3 79.2 80.7 81.4

motor 64.0 66.9 64.4 69.1 71.2 71.5

person 85.9 83.5 82.7 84.6 86.0 86.5

plant 36.3 30.8 28.3 31.9 36.3 36.4

sheep 44.7 44.6 39.7 49.9 53.8 55.3

sofa 50.6 53.4 56.6 53.1 59.8 60.6

train 79.2 78.2 79.7 79.7 79.6 80.6

tv 53.2 53.5 51.5 54.4 57.8 57.8

mAP 59.4 59.3 58.3 60.6 63.5 64.7

4.6 Conclusions and Future Work

In this work, we introduced a generalized hierarchical matching (GHM) framework

for image classification task. This general and flexible scheme allows us to embed any

useful side information into the image recognition framework. We also presented two

novel exemplar approaches for side information generation towards object-oriented

recognition, i.e. object confidence map and visual saliency map. Extensive ex-

perimental results clearly demonstrated the proposed GHM together with designed

varieties of side information could achieve state-of-art performance on diverse and

popular image recognition datasets. In future, we shall further explore more seman-

tically meaningful side information and new approach for combining different types
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Table 4.5: Classification results (AP in %) on VOC 2010. The proposed GHM
ObjHierarchy outperforms the state-of-the-art performance.

NLPR [18] NEC [18] ContextSVM [78] GHMObjHierarchy

plane 90.3 93.3 93.1 94.3

bike 77.0 72.9 78.9 81.3

bird 65.3 69.9 73.2 77.2

boat 75.0 77.2 77.1 80.3

bottle 53.7 47.9 54.3 56.3

bus 85.9 85.6 85.3 87.3

car 80.4 79.7 80.7 83.8

cat 74.6 79.4 78.9 82.2

chair 62.9 61.7 64.5 65.8

cow 66.2 56.6 68.4 73.7

table 54.1 61.1 64.1 67.0

dog 66.8 71.1 70.3 75.9

horse 76.1 76.7 81.3 82.3

motor 81.7 79.3 83.9 86.5

person 89.9 86.8 91.5 92.0

plant 41.6 38.1 48.9 51.7

sheep 66.3 63.9 72.6 75.1

sofa 57.0 55.8 58.2 63.3

train 85.0 87.5 87.8 89.9

tv 74.3 72.9 76.6 77.3

mAP 71.2 70.9 74.5 77.2

of side information.
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Chapter 5

Context Modelling: High Level

Task Context for Object

Detection and Classification

In this chapter, we study the problem of Context Modeling. Traditionally,

the context is often considered as special features. Most of the existing strate-

gies [10][9][17] utilize the context via feature concatenation, model fusion or confi-

dence combination, and take the context as another independent component. How-

ever, context may have unstable distribution, and its reliability and noise level are

not controllable. Therefore it demands adaptive contextualization with proper con-

straints from the main task to avoid the inappropriate usage of context information.

Harzallah et al. [17] introduced the pioneer work for object detection and classifica-

tion contextualization through the postprocessing of probability combination. The

mutual contextualization shows promising performance improvement. However the

learning scheme which seamlessly integrates the context information for collabora-

tive learning is missing.

78



5.1 Introduction

Recognizing objects in an image requires combining many different signals from the

raw image data. Two kinds of information are often used: the local appearance that

describes the object itself and the global representation that captures the image

specific information. These two types of information are often used in two tasks

on visual recognition: object detection and classification. Object detection and

classification are two key tasks for image understanding, and have attracted much

attention in the past decade [19] [7] [11]. The object classification task aims to

predict the existence of objects within images, whereas the object detection task

targets to localize the objects. Several image databases tailored for these two tasks

have been constructed, such as Caltech-101 [79]/256 [30], SUN dataset [80] and

PASCAL Visual Object Classes (VOC) [18]. Many efforts [19][7] have been devoted

to these two tasks.

Beyond various image descriptors and modeling methods, the usage of context

for visual recognition has become increasingly popular for enhancing the algorithmic

performance. Many recent studies have demonstrated considerable improvements

for object detection and classification by using external information, which is inde-

pendently retrieved and complementary with traditional image descriptors. Specif-

ically, the external context includes user-provided tags [81][10], surrounding texts

from Internet [82][83], geo-tags and time stamps [9], etc. The context may also be

the information lying within individual images. Intuitively, spatial location of the

object and background scene from the global view can be used as intrinsic context

of the image [84][85].

We consider the context from the high-level task perspective. It has been demon-

strated that the object detection and classification tasks can provide natural com-

prehensive context for each other without any external assistance, and thus can be

mutually contextualized for performance boosting [17]. It is intuitively straightfor-
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Figure 5.1: Illustration of the iterative contextualizing procedure. The object de-
tection and classification tasks utilize context from each other and mutually boost
performance iteratively. For better viewing, please see original color PDF file.

ward that for object classification task, the information from the local appearance

promotes the performance significantly. For object detection task, the global con-

text from object classification helps the detector better eliminate the false alarm.

Although there are some works focusing on this direction, we notice that the un-

derlying improvements brought by the context models for both two tasks have been

underestimated. And the previous works take the context model in a multi-feature

fusion fashion [81, 17] without dedicated design.

In this work, we develop a novel mutual contextualization scheme for object

detection and classification based on the Contextualized Support Vector Machine

(Context-SVM) method. First, we present a contextualized learning scheme via

Context-SVM with the following characteristics:

• Adaptive contextualization: As many studies have shown [86][87], context

should be activated to be supportive mostly for those ambiguous samples and

thus the context effectiveness should be conditional on the ambiguity of sample

classification. The Context-SVM is superior over traditional learning schemes

by complying with this principle in its formulation.

• Multi-mode contextualization: The ambiguity nature of the recognition prob-
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lem at the boundary requires elegant design of the context model. We are

interested in designing the localized context model along the decision bound-

ary which often shows various modalities. We propose to learn the multi-mode

context model with mode selection function. Based on the general formula-

tion, we further extend the context model to the ambiguity-guided mixture

model. The mixture model naturally partitions the feature space at the de-

cision boundary with regards to the ambiguity degree. Thus the proposed

Context-SVM with multi-mode initialization can naturally embed the context

model at the classification hyperplane.

• Configurable model complexity : The contextualization process should be effi-

cient for both detection and classification tasks, and thus the solution should

not involve many parameters. In this work, the Context-SVM with tractable

control on the complexity of the context model is well formulated, so that the

generalization capability is guaranteed.

Then we propose an iterative contextualization procedure based on the Context-

SVM, such that the performance of object classification and detection can be itera-

tively and mutually boosted as illustrated in Figure 5.1. Extensive experiments show

that Context-SVM can efficiently learn the context models under various conditions

and effectively utilize context information for performance boosting. We implement

and evaluate the proposed scheme on object detection and classification tasks of the

VOC 2007, VOC 2010 datasets [18] and SUN09 [80], and the results are superior

over the state-of-the-art on most object categories.

An earlier version of this manuscript was presented as [78]. This version in-

cludes a clearer motivation section with a refined max margin model. Two ambi-

guity modeling methods are introduced with deeper analysis. Additional diagnostic

experiments are conducted on both VOC and SUN09 datasets and new state-of-

the-art results are presented. In the following, we first briefly review the related
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work for object recognition context modeling in Section 5.2. Then we introduce

our ContextSVM model with two ambiguity modeling approaches in Section 5.3.

Section 5.4 details our mutual and iterative contextulization for object detection

and classification tasks. And we give extensive experiments on different datasets in

Section 6.5.

5.2 Related Work

5.2.1 Context Modeling for Object Recognition

In recent years there has been a surge of interest in context modeling for numerous

applications in computer vision. The basic motivation behind these diverse efforts

is generally the same-attempting to enhance current image analysis technologies by

incorporating information other than the image itself, e.g. semantic analysis result

and metadata.

In the early work of Galleguillos and Belongie [88], the context refers to three

main types of contextual information that can be exploited in computer vision:

(1) the semantic context which refers to the likelihood of an object being found

in some scenes but not in others, and from the point of view of modeling, can be

expressed in terms of the corresponding object’s probability of co-occurrence with

other objects and the probability of occurrence in certain scenes; (2) the position

(spatial) context which corresponds to the likelihood of finding an object in some

positions and not others with respect to other objects in the scene; and (3) the

size (scale) context which exploits the fact that objects have a limited set of size

relations with other objects in the scene.

A natural way of representing the context of an object is in terms of its relation-

ship with other objects, e.g. co-occurrence based context model [89]. An alternative

terminology was proposed by Heitz and Koller [84] who introduced a “Things and

Stuff” (TAS) context model. In their work, the terms “stuff” and “things” (originally
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introduced by Forsyth et al. [90]) are used to distinguish “material” that is defined

by a homogeneous or repetitive pattern of fine-scale properties, but has no specific

or distinctive spatial extent or shape (stuff) from “objects with specific size and

shape” (things). Heitz and Koller claimed that “classifiers for both things or stuff

can benefit from the proper use of contextual cues”. Rabinovich and Belongie [91]

proposed a classification of contextual models for computer vision (in general) and

object recognition (in particular), consisting of models with contextual inference

based on the statistical summary of the scene (which they referred as Scene Based

Context models, SBC for short) and models representing the context in terms of

relationships among objects in the image (Object Based Context, OBC for short).

Also, some methods have been proposed to model the context in a comprehensive

manner, e.g. [92], but they are quite specified and designed for one certain task, and

thus cannot be generalized for our target in this work.

Only recently, object hierarchy context has drawn much research attention [93,

80]. The object hierarchy is the further research of object co-occurrence context

under the assumption that objects should be related with a semantic hierarchy. With

the increased number of object categories, object relationship is naturally exhibited

as a hierarchical structure. Context modeling with hundreds or thousands of object

categories seeks to model this relationship with high level semantic structure or

learned from data [94].

5.2.2 Mutual Contextualization for Object Classification and De-

tection

Although there are lots of works on context representation and modeling, few of them

focus on contextualization between object detection and classification, namely, high

level task context.

For object classification, the task cares more about whether the image contains

a certain kind of object rather than where it is. The task is solvable due to the facts
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that (1) many datasets only concern the objects which occupy most of the images,

e.g. Caltech 101 and 256 [79], (2) the same category objects often share similar

scene level information, e.g. VOC and SUN09 datasets, and (3) the current preva-

lent object classification pipeline uses the sophistic feature encoding and learning

method to extract image specific information which often reveals the object-specific

contents, e.g. Fisher Vector Coding [14] and SVM classifier [95]. The methods used

in classification are often built with a top-down manner that uses global informa-

tion to infer the existence of a local object. For object detection, the task tries to

localize the object within the image. Usually, the object detector models the object

appearance [96] or object shape [3][19] through the annotated object samples while

discarding the context information defined by the object surrounding. The localized

nature of the object detector restricts the model to effectively differentiate the false

alarm which occurs at obviously different context. Harzallah et al. [17] introduced

the pioneering work for object detection and classification contextualization through

the post-processing of probability combination.

Moreover, traditionally, the context is considered as special features. Most of

the existing strategies [10][9][17] utilize the context via feature concatenation, model

fusion or confidence combination, and take the context as another independent com-

ponent. However, context may have instable distribution, and its reliability and

noise level are not controllable. Therefore it demands adaptive contextualization

with proper constraints to avoid the inappropriate usage of context information.

In this work, we follow this line to design the learning scheme for utilizing context

information.
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5.3 Contextualized SVM

In this work, the context is generally defined as certain extra supportive information

for one task, which is retrieved independently from the subject task 1. In this section,

we first introduce the probabilistic motivation of the contextualized SVM (Context-

SVM) and derive its linear formulation based on the probabilistic motivation. We

then propose two ambiguity modeling methods for the Context-SVM which enables

the multi-mode context modeling. Finally, we extend the linear Context-SVM to

the kernel version for more general usage.

5.3.1 Probabilistic Motivation

Let xfi ∈ Rn denote the features of a sample for the subject task, xci ∈ Rm denote

the features of the corresponding context, and yi ∈ R denote the ground-truth class

label. Then the entire training data can be expressed as

{xi = {xfi , x
c
i}, yi; i = 1, 2, ..., N}. (5.1)

Generally, the objective of a discriminative learning model can be defined to maxi-

mize:

N∏
i=1

P (y = yi|xi),

namely the Maximum a Posteriori (MAP).

There are two components within xi, and usually the independent assumption

of the subject features xfi and the context xci is made and then maximizing the

probability of label y for a given sample xi, i.e. p(y|xi) can be approximated to

1We refer the main/principal task concerned as the subject task.
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maximize the following formulation:

p(y|xfi )p(y|xci ). (5.2)

The inference based on (5.2) is right for the traditional solution of confidence com-

bination [17][9] or multiple feature/model fusion [10].

The independence assumption, however, is often invalid for real data, and hence

we propose to infer the label probability by (5.3) which explicitly models the con-

ditional usage of context with respect to the given subject features, i.e, maximizing

p(y|xi) = p(y|xfi , xci ) is converted to maximizing:

p(y|xfi ) · p(y, xci |x
f
i ). (5.3)

More specifically, we aim to infer the label probability via two components si-

multaneously. The first one is based on the subject features, i.e. p(y|xfi ), and the

second one is based on the context features, which contribute to the inference when

only ambiguous decision from the first component is expected, i.e. p(y, xci |x
f
i ).

The second component is critical for a contextualized learning model. For object

detection, the context of scene information from object classification is nearly the

same for all detected windows within one image and may be unnecessary for many

windows. Instead, only the most ambiguous detections need the assistance from

context.

For object classification, the context from object detection generally shows low

reliability due to the possible false alarms and the selective usage of context can

effectively avoid the disturbance caused by the false context to those already high-

confident object patterns.
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5.3.2 Context-SVM: Formulation and Solution

General Formulation

For ease of formulation, we only consider the binary classification problem for object

detection or classification task, i.e. yi ∈ {+1,−1} and the Nc-class problem can

be decomposed into Nc binary classification problems through one-vs-all strategy.

SVM [95] provides a general supervised learning framework by maximum margin

optimization, and in this work, we extend SVM by introducing a novel parametrized

model to describe the dependence between the context features and the subject

features.

The general SVM learns a classifier over the subject feature space:

f(xi, w0) = wT0 · xf + b. (5.4)

We can relate this scoring function with the log probability log p(y|xf ). As the

corresponding context features xci can provide extra supportive information for the

classification of xfi , we propose to utilize xci to adapt w0 for sample xi. Then a

sample-specific wi can be obtained to substitute w0, which essentially optimizes the

margin of sample i and can consequently improve the discriminative power of the

classifier. The probabilistic formulation indicates that we need to formulate the

context model with regards to the subject feature distribution. Explicitly, we model

the context model as,

log p(y, xci |x
f
i ) = log p(y, xci |x

f
i , θ) (5.5)

≈
R∑
r=1

ur,i(x
f
i , w0, θ)q

T
r x

c
i ; (5.6)

where ur,i is the ambiguity indicator function which determines how ambiguous the

sample i is with the context mode r, and θ is the parameter associated with ur,i.

Each ur,i along with the corresponding qr models one aspect of context when given

87



the subject hyperplane. The combination of R modes, each of which is composed of

one {ur,i, qr}, forms a natural multi-mode structure of the context model.

By defining wi = [w0;u1,iq1; · · · ;uR,iqR] as the sample specific hyperplane which

consists of the subject task model and R modes of context model parameters, and the

sample feature as xi = [xfi ;xci , · · · , xci ], we obtain the sample scoring function (5.7),

and the margin γi for sample xi can be derived as in (5.8):

f(xi, w) = wTi · xi + b; (5.7)

= wT0 x
f
i +

R∑
r=1

ur,i · (qTr xci ) + b;

γi = yi(w
T
0 x

f
i +

R∑
r=1

ur,i · (qTr xci ) + b). (5.8)

Here, we model the log probability log p(y|xf , xc) with the sample scoring func-

tion f(xi, w). These two equations well show the more insightful meaning of the

contextualized SVM formulation:

• The adaptive hyperplane wi is the combination of the subject hyperplane

w0 and R rectifications via {ur,i, qr}’s with the corresponding contributions

determined by the context feature xci . Intuitively, we can treat ur,i as a switch

to determine whether the context should be activated while the value qTr x
c
i

determines how to rectify w0.

• Motivated by probabilistic motivation (5.3), the {ur,i} and {qr} collaboratively

describe one mode of the context model. {ur,i} serves to judge the discrimina-

tion ambiguity of xfi , and {qr} is utilized to integrate the context feature xci for

the classification of the samples with different ambiguities. The combination

of R modes, each of which is composed of one {ur,i, qr}, enables the context

model to approximate complex decision boundary.

We can formulate the Context-SVM as a max-margin optimization problem with
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the margin described as the average of the rectified individual margins related to

‖wi‖’s, namely,

min
w0,{qr}

1

2N

N∑
i=1

‖wi‖22 + C

N∑
i=1

ξi, (5.9)

s.t. yi(w
T
i xi + b)− 1 + ξi ≥ 0, ξi ≥ 0, ∀i,

where C is a tunable parameter for balancing two items and ξi are relaxation pa-

rameters.

Optimization for Context-SVM

The formulation can be further compiled with respect to {qr} and w0 as:

minv
1

2N

N∑
i=1

vTUTi Uiv + C

N∑
i=1

ξi, (5.10)

s.t. yi[(Uiv)Txi + b]− 1 + ξi ≥ 0, ξi ≥ 0, ∀i,

where we can set the matrices Ui = diag([In, u1,iInc , · · · , uR,iInc ]), v = [w0; q1; q2; · · · ; qR]

with the instantiated {ur,i}. In is an n×n identity matrix; n and nc are the dimen-

sion of subject and context feature separately.

Then the first part of the objective can be translated as:

1

N

N∑
i=1

vTUTi Uiv = vT
N∑
i=1

1

N
UTi Uiv = vTMv. (5.11)

Here M is a symmetric positive matrix and can be uniquely factorized as M = F TF

using Cholesky decomposition. Set z = Fv. Then the objective function turns to:

min
w0,{qr},ξ

1

2N

N∑
i=1

||wi||22 + C

N∑
i=1

ξi = min
z,ξ

1

2
||z||22 + C

N∑
i=1

ξi. (5.12)

We can set x̂i = (F−1UTi xi) with Uiv = UiF
−1z. Then overall objective function
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with constraints can be defined as follows:

minz,ξ
1

2
||z||22 + C

N∑
i=1

ξi,

s.t. yi(z
T x̂i + b)− 1 + ξi ≥ 0, ξi ≥ 0 ∀i, (5.13)

which can be optimized by traditional SVM solvers. Once we get the z, v = F−1z

and ur,i, qr, w0 are obtained by selecting corresponding elements from v.

Note that in this optimization problem, there are only (R×m+ n) parameters

to optimize, and generally R is small. Therefore the overfitting issue can be well

alleviated. Eqn. (5.10) has been converted to a standard SVM problem and its

solution can be derived with standard SVM solvers, e.g. LibSVM [97].

5.3.3 Ambiguity Modeling

In this subsection, we describe two methods to instantiate the {ur,i}. As afore-

mentioned, {ur,i} is the ambiguity selection function used to identify the ambiguity

samples around the classification hyperplane so that finer classification is possible

with the context feature. The flexible nature of Context-SVM allows us to instan-

tiate the {ur,i} with multiple choices. Here we list two methods which we use in

our experiments to instantiate the ambiguity selection function. The first one is

the Linear Scaling Instantiation (LSI) which uses two linear scaling functions

to select the ambiguity samples. The second one takes the estimation error of the

original hyperplane as the ambiguity degree and then an Ambiguity-guided Mix-

ture Model (AMM) is learned. The corresponding {ur,i} severs as a context mode

selection function at the decision boundary.

Linear Scaling Instantiation

As aforementioned, we design {ur,i} to highlight samples which are classified am-

biguously with their subject features {xfi }. Practically, we instantiate {ur,i} as a
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Figure 5.2: Illustration of Linear Scaling Instantiation. a) The sample data with
SVM hyperplane, red and blue dots representing positive and negative samples. b)
The linear scaling functions. The black and blue dashed lines represent two different
scaling functions. Each function scales one part of SVM scores with the range of
[0, 1]. c) Illustration of the relationship between original sample confidence and
confidence variation amount from context. The blue and red dots represent positive
and negative samples respectively. The x-axis denotes the sample confidence in
subject feature space and y-axis denotes the absolute amount of confidence changed
by the contextualization procedure. The confidences are converted into probabilistic
values within [0, 1] indicating strongest negative and positive decisions respectively.
For better viewing, please see original color PDF file.

set of scores with a learned hyperplane w0 in subject feature space by traditional

SVM:

ur,i = αrw
T
0 x

f
i + βr, r = 1, 2, · · · , R. (5.14)

Intuitively, for αr > 0, if we set αr and βr properly such that all {uTr,i} are

within [0, 1], those samples classified as negative by w0 with high confidences shall

be suppressed, namely their corresponding values of {ur,i} being small. At the same
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time, for αr < 0, if we set αr and βr properly such that all {uTr,i} are within [0, 1],

those samples classified as positive by w0 with high confidences shall be suppressed,

namely their corresponding values of {uTr,i} being small. Therefore we can sample

multiple combinations of αr and βr, and both strong negative and positive samples

shall be suppressed by {ur,i} such that the samples with ambiguous decisions by w0

are highlighted.

More complicated {ur,i} with larger R may derive better ambiguity modeling

but may also lead to overfitting. Our empirical study shows that it is a good trade-

off by setting R = 2, i.e. using two auxiliary functions u1,i and u2,i where α1 > 0

and α2 < 0. Then the combination of u1,i and u2,i can provide a rough yet efficient

judgement for the decision ambiguity of a sample and force the context model to

concentrate on the samples with large ambiguities.

We illustrate one exemplar contextualization result by Context-SVM on object

classification task of the “aeroplane” category in Figure 5.2. This figure shows the

adaptive contextualization with respect to the sample ambiguity: the output of the

samples with higher ambiguities (i.e. samples lying in the middle of the figure) are

changed (absolute difference value of the pre and after contextualization) largely by

the contextualization procedure while the well-classified samples (i.e. samples lying

on the two sides of the figure) are nearly unaffected.

Ambiguity-guided Mixture Model

The flexibility of {ur,i} enables us to create the more complex context model near

the classification boundaries. In the subject feature space, the ambiguous areas

may be distributed in multiple localized areas and those areas naturally generate

different modes. Thus an Ambiguity-guided Mixture Model is necessarily learned to

describe this ambiguity distribution. The local classifiers are then placed in areas

with high ambiguity. We first define the ambiguity degree ai of a sample i as the

hinge loss from the subject classification model:
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Figure 5.3: Illustration of the Ambiguity-guided Mixture Model (AMM) on a toy
problem. The left figure shows the original data. The red and blue dots represent
the positive and negative samples. The linear SVM hyperplane is illustrated by
the black dashed line. The right figure shows the AMM model with three mixtures
(yellow, red and blue). It can be seen that the three mixtures are spreading over
the hyperplane where the most ambiguous samples exist. The black dots represent
the confidence samples which may not require the context model.

ai = max(0, 1− yi(wT0 x
f
i + b)). (5.15)

We propose the ambiguity-based mixture model for modeling the ambiguity distri-

bution of the data. It is a mixture of R Gaussians, with each mixture component

normally distributed as N(Σr, µr) with prior πr, mean mr and covariance matrix

Σr. Assuming the parameter of the mixture model is ρ, the (combined) distribution

function p(xi|ρ) at a particular sample xi is the mixture probability. Obviously, the

local classifiers should be placed near the decision boundary, where classification

is the most difficult. Consequently, the mixture should have a high responsibility

for areas with high uncertainties. In other words, p(xi|ρ) should be large when ai

is large, and vice verse. To achieve this goal, we maximize the following objective

function:
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F (a,X|ρ) =

N∑
i=1

ai log p(xfi |ρ). (5.16)

We use Expectation-Maximization (EM) to solve this objective.

E-Step

p(r|xfi ) =
πrp(x

f
i |r, ρ)∑R

r=1 πrp(x
f
i |r, ρ)

. (5.17)

M-Step

µr =
∑N
i=1 aip(r|x

f
i )x

f
i∑N

i=1 p(r|x
f
i )ai

, (5.18)

Σr = [
∑N

i=1
p(r|xfi )ai∑N
i=1 p(r|x

f
i )ai

(xfi − µr)(x
f
i − µr)T ]−1, (5.19)

πr =
∑N
i=1 p(r|x

f
i )ai∑R

r=1

∑N
i=1 p(r|x

f
i )ai

. (5.20)

We can then optimize the parameters of the mixture model iteratively until con-

vergence. Then the ur,i is defined as the posterior probability of each mixture, i.e.

ur,i = p(r|xfi ). In practice, we notice that the dimensionality of xfi is often very

high. The mixture model built upon this can be inaccurate. Thus we use Princi-

ple Components Analysis (PCA) [98] to reduce the dimensionality, e.g. 512, while

keeping the majority of data covariance.

We illustrate the concept of the Ambiguity-guided Mixture Context Model (AMM)

on a toy problem in Figure 5.3. The red and blue dots on the left figure represent

the positive and negative samples. The linear SVM hyperplane is illustrated by

the black dashed line. It is obvious that linear SVM cannot get perfect separation

on this data distribution. AMM models the ambiguity weighted data distribution.

Each mixture describes one local ambiguous area without considering the data dis-

tribution of the most confident samples. Thus the learned context model forming

the localized classifier can better separate the data. The right figure shows the
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AMM model with three learned mixtures (yellow, red and blue). It can be seen that

the three mixtures are spreading over the hyperplane where the most ambiguous

samples exist. The black dots represent the confident samples which will not utilize

the context model.

5.3.4 Kernel Extension

For many visual understanding problems, image descriptors are further encoded as

similarity measurements or kernel matrices, and there is no explicit vector repre-

sentation for each image. Therefore, it is necessary to generalize the Context-SVM

formulation to the case with only kernel matrices available. It is worth noting that

we only consider the subject feature in the kernel space. The context feature men-

tioned in this work is with low dimension and thus kernelization is not necessary. We

consider the problem in a feature space F induced by a certain nonlinear mapping

function φ : Rn → F . For a properly chosen φ, an inner product 〈·, ·〉 can be defined

on F which induces a Reproducing Kernel Hilbert Space (RKHS). More specifically,

〈φ(xfi ), φ(xfj )〉 = K(xfi , x
f
j ) where K(·, ·) is a positive semi-definite kernel function.

The context-adaptive scoring function for each sample can be defined as:

f(xi, w0) = wT0 φ(xfi ) +
R∑
r=1

ur,i · (qTr xci ) + b = 0, (5.21)

which is similar to (5.7).

By Representer Theorem [99], w0 can be expressed as linear combinations of

{φ(xfi )}. Thus, there exist sets of coefficients such that w0 =
∑N

i=1 αiφ(xfi ). Let

α = [α1, · · · , αN ]T and Φ(Xf ) = [φ(xf1), · · · , φ(xfN )]. Then, the scoring function can

be expressed as:

αT ·K(:, i) +

R∑
r=1

ur,i · (qTr xci ) + b = 0, (5.22)

where K is the kernel matrix with Kij = 〈φ(xfi ), φ(xfj )〉 and K(:, i) is the i-th column
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vector of the matrix K.

Then the formulation can be compiled with respect to {qr} and α0 as:

minc
1

2N

N∑
i=1

cTBT
i Bic+ C

N∑
i=1

ξi, (5.23)

s.t. yi[(Bic)
T ti + b]− 1 + ξi ≥ 0, ξi ≥ 0, ∀i,

in which we define Bi = diag([IN , u1,iInc , · · · , uR,iInc ]), c = [α; q1; q2; · · · ; qR],

ti = [K(:, i);xci , · · · , xci ] and IN is an N ×N identity matrix. The main differences

between the kernel version and the linear version include: 1) the original subject

feature vector xfi is replaced by the column vector of the kernel matrix K, and 2)

the formulation in Eqn (5.23) is similar with (5.10). Thus, the same optimization

approach can be used for solving the kernel extension of Context-SVM.

5.4 Application: Contextualizing Object Detection and

Classification

Algorithm 1 Contextualizing Classification and Detection

Input:
Mdet(0): Initial object detection model,
Mcls(0): Initial object classification model,
{Ii}: Training images,
For t = 1, 2, . . . , Tmax

1. Extract detection features and context for each image,

xfi (t) ← extract(Ii), ∀i,
xci (t) ← eval(Mcls(t− 1), Ii), ∀i. (5.24)

2. Instantiate {ur,i} with {{xfi (t)}, R} and Mdet(t− 1).

3. Learn Mdet(t) via Context-SVM on {xfi (t), xci (t)}.

4. Similarly, learn Mcls(t) via Context-SVM by using the outputs from Mdet(t− 1) as
context.

EndFor
Output Mdet(Tmax),Mcls(Tmax).
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In this section, we apply the Context-SVM to contextualize two prevalent tasks

of image understanding, namely object detection and classification.

5.4.1 Initializations

The initial object detection and classification models Mdet(0) and Mcls(0) for the

first iteration are learned based on the state-of-the-art algorithms. For VOC dataset,

we follow the part-based model proposed by Felzenswalb et al. [19] for the initial

detection model training. The Histogram of Gradient (HOG) [3] and Local Binary

Pattern (LBP) [5] features are used for object description and the number of part

models for each object category is set as 6. For SUN09 dataset, we use the newly

proposed EMAS [96] object detection method due to its efficiency dealing with large

number of categories.

For the object classification task, the traditional Bag-of-Words (BoW) model [6]

is employed. We first extract the low-level features including SIFT and its color

variants [100], LBP and HOG by dense sampling strategy in three scales. Each

image is represented by BoW model with spatial pyramid matching [7]. The kernel

function is based on χ2 distance for each type of features, and then all kernels are

combined as an average kernel for kernelized Context-SVM.

5.4.2 Iterative Mutual Contextualization

The detailed algorithm for contextualizing object detection and classification by

iterative Context-SVM is listed in Algorithm 1. At the t-th step, the context features

of one task are the summarized outputs by evaluating the (t − 1)-th model of the

other task on the training data {Ii}. We use cross validation method to obtain

context from object classification in (5.24) as kernel model is easy to overfit on its

training data. Hence we use 10-fold of training data and evaluate each fold via the

model trained on all other folds.

More specifically, the context features for both tasks refer to the probabilities
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that the object categories exist in the image. Thus the context feature values are

within [0, 1] and the dimension of context feature vector is the number of object

categories. The context from the object classification task is obtained by converting

classification scores on the training set to probabilities via sigmoid scaling. The

context features from the object detection task are obtained by converting the de-

tected highest score for each object category to the probability in the same manner

as for object classification. If there is no object detected for a certain category, the

corresponding entry in context feature vector is set as 0.

We instantiate {ur,i} based on the extracted subject features and the learnt

model from the previous step. For Linear Scaling Instantiation, we use two

linear functions to model the ambiguity, i.e. R = 2. One function is used to

suppress the strong positive samples and the other is used to suppress the strong

negative samples. For Ambiguity-guided Mixture Model, all the raw features

are first reduced to 512 dimensions using PCA. Then the ambiguity degree ai is

obtained from the baseline models. A mixture model with R = 20 is constructed

for each class.

Then we can proceed to conduct Context-SVM based on {ur,i}, subject features

and the corresponding context features for all training images.

5.5 Experiments

5.5.1 Datasets and Metrics

The PASCAL Visual Object Classes Challenge (VOC) datasets [18] are widely used

as testbeds for evaluating algorithms for image understanding tasks, and provide

a common evaluation platform for both object classification and detection. These

datasets are extremely challenging since the objects vary significantly in size, view

angle, illumination, appearance and pose. We use PASCAL VOC 2007 and 2010

datasets for experiments in this chapter.
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VOC 2007 and VOC 2010 datasets contain 20 object classes with 9,963 and

21,738 images respectively. The two datasets are divided into “train”, “val” and

“test” subsets, i.e. 25% for training, 25% for validation and 50% for testing. The

annotations for the whole dataset of VOC 2007 and “train”, “val” set of VOC 2010

are provided while the annotations for “test” set of VOC 2010 are still confidential

and can only be evaluated on the web server with limited trials. The employed

evaluation metric is Average Precision (AP) and mean of AP (mAP) complying

with the PASCAL challenge rules.

We also use the SUN 09 dataset [80], which contains 4,367 training images and

4,317 testing images, for object classification and detection evaluation of 107 object

categories. SUN 09 [80] has been annotated using LabelMe[33]. The author also

annotated an additional set of 26,000 objects using Amazon Mechanical Turk to

have enough training samples for the baseline detectors [19]. In the SUN09 dataset,

the average object size is 5% of the image size, and a typical image contains seven

different object categories while the average PASCAL VOC bounding box occupies

20% of the image. These classes span from regions (e.g., road, sky, buildings) to well

defined objects (e.g., car, sofa, refrigerator, sink, bowl, bed) and highly deformable

objects (e.g., river, towel, curtain). The employed evaluation metric is Average

Precision (AP) and mean of AP (mAP) following [80].

In the following experiments, we first evaluate the mutual contextualization ca-

pability for ContextSVM with different ambiguity modelings (i.e. ContextSVM LSI

and ContextSVM AMM) using VOC 2010 “train/val” dataset (i.e. “train” set for

training and “val” set for test) for both object classification and detection tasks for

proof of concept and ease of parameter tuning. The iterative performance boosting

is demonstrated in Section 5.5.3 on the VOC 2010 trainval/test dataset. Then sev-

eral traditional methods for contextualizing object detection and classification are

compared with our iterative Context-SVM on the VOC 2010 trainval/test dataset

in Section 5.5.4. Finally, we evaluate the optimal configuration of our method on
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Table 5.1: The results of ContextSVM and its baseline for object detection and clas-
sification tasks on VOC 2010 train/val. One iteration of ContextSVM is performed
with two different ambiguity modeling methods, i.e. LSI and AMM. The relative
improvement of mAP over the baseline without contextualization is also listed.

Classification Detection

Baseline CtxSVM LSI CtxSVM AMM Baseline CtxSVM LSI CtxSVM AMM

plane 86.9 89.2 89.2 46.6 50.2 51.3

bike 59.1 72.8 73.0 48.0 49.3 50.5

bird 61.7 64.7 66.1 9.8 16.8 17.2

boat 68.3 72.5 73.4 6.8 11.6 11.8

bottle 29.9 49.9 49.4 25.6 27.0 27.5

bus 82.9 87.4 87.9 54.0 55.4 58.8

car 63.3 77.3 78.1 38.5 39.8 40.9

cat 70.1 74.3 75.4 26.9 36.7 35.0

chair 55.2 62.5 63.3 14.8 16.4 16.9

cow 36.4 40.1 40.8 12.9 17.7 20.5

table 50.6 49.6 50.9 14.9 19.8 17.6

dog 53.4 58.5 59.3 15.6 23.1 23.5

horse 53.7 66.3 69.0 37.6 41.0 41.0

motor 64.1 73.1 74.8 41.7 44.4 46.3

person 84.5 91.4 91.7 42.1 45.6 45.4

plant 36.1 41.8 46.4 6.5 11.1 10.1

sheep 60.1 64.8 65.5 29.4 32.6 29.7

sofa 49.1 52.8 53.6 22.3 30.2 28.3

train 79.2 84.7 85.2 36.5 39.3 42.5

tv 66.2 70.6 69.9 36.4 38.3 38.1

mAP 60.5 67.2(+11.07%) 68.1(+12.56%) 28.3 32.3(+14.13%) 32.7(+15.55%)
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PASCAL VOC 2007, 2010 trainval/test datasets and SUN09 and compare with the

state-of-the-art performance ever reported.

5.5.2 Mutual Contextualization

We first give the quantitative results for Context SVM on VOC 2010 train/val

dataset in Table 5.1 with one iteration setting. The improved results for object

classification and detection tasks demonstrate the effectiveness of Context SVM.

For VOC 2010 classification task, we obtain the mAP of 0.681, a relative improve-

ment of 12.56% over the classification baseline (0.605), with the context information

from the detection raw results. The classification result shows the most improvement

at those categories which often occupy small amount of the image space, e.g. bottle,

tvmonitor, etc. We list some sample images improved by the contextualization as

shown in Figure 5.4. There are two rows showing the confidence change before and

after the contextualization. The confidence has been normalized to [0, 1]. It is worth

noting that the large changes are with those ambiguity samples whose original confi-

dences are close to the 0.5. For example as shown in the first row, the third column

of Figure 5.4, the motorbike image has been classified with a confidence value of

0.41, and then the detection has a positive response within this image, so the final

contextualized classification score for motorbike is very high. The contextualization

for the classification task shows that the detection can be utilized to increase the

recall rate of classification since the local model used by the detection task can find

the objects occupying small part of the images.

For VOC 2010 detection task, we obtain the mAP of 0.327, a relative improve-

ment of 15.55% over the detection baseline (0.283), with the context information

from the classification results. The detection result shows the most improvement

at those categories which often occupy large amount of the image space with large

appearance variance, e.g. dogs, tables, etc. We list some sample images improved by

the contextualization in Figure 5.5. The role of the classification context model for
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detection tasks is mainly reflected by the fact that (1) the detection often fails for

those samples with large appearance variance and the classification model is better

to model the appearance changes, and (2) the local model used by detection tasks

generally has no scene level context. In those two cases, the classification context

model can help (1) to identify those objects with better appearance modeling and

(2) to eliminate those false alarms by using the high level global context model. For

example, as shown in the first row, the first two columns of Figure 5.5, the classi-

fication context model helps to eliminate the false alarm detection of “tvmonitor”

and further localize the true positive detection of “table”.

Ambiguity Modeling Comparison: We give the quantitative results using

different ambiguity modeling functions, i.e. Linear Scaling Instantiation (LSI)

and Ambiguity-guided Mixture Model (AMM). As shown in Table 5.1, both

of these methods outperform the baseline methods with a large margin. Especially,

AMM works better in terms of mAP. However, AMM does not outperform LSI at

all 20 classes. Another observation is that for those classes with low AP accuracy,

AMM performs similarly with LSI. It is reasonable since in that case the ambiguity

modeling itself is not accurate. An analysis of AMM and LSI is as follows:

• The ambiguity modeling of LSI largely depends on the baseline prediction.

It linearly scales the confidence obtained by the baseline and assigns higher

values of {ur,i} to those ambiguous samples and lower values to those strong

negative or positive samples. Then the learned context model qr will act

correspondingly.

• Unlike LSI, AMM models the data distribution as well as the baseline estima-

tion. At the training stage of AMM, it incorporates the estimation error into

the learning of the mixture model. The AMM learning concentrates on the

data distribution of the ambiguous samples so that the learned mixtures bet-

ter describe the complex decision boundary. The obtained {ur,i} corresponds
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'car' 'dog' 

Cls 0.39 0.30 

Cls+Det 0.90 0.65 

'dog' 'tvmonitor' 

0.62 0.09 

0.54 0.89 

'motorbike' 

0.41 

0.98 

'cat' 'tvmonitor' 

0.33 0.68 

0.56 0.97 

'bottle' 

Cls 0.48 

Cls+Det 0.98 

'car' 'pottedplant' 

0.50 0.90 

0.92 0.91 

'bicycle' 'cat' 'chair' 

0.74 0.61 0.94 

0.95 0.86 0.91 

'car' 'dog' 

0.37 0.95 

0.74 0.98 

'person' 

Cls 0.28 

Cls+Det 0.56 

Figure 5.4: Representative examples of the baseline (without contextualization)
and Context-SVM for classification task. The classification accuracy is promoted
via detection contextualization. The first row of the table below each image shows
the classes the image belongs to. The second row is the confidence of the baseline
while the third row is the refined result after contextualization. For better viewing,
please see original color PDF file.

to the posterior of sample i belonging to mixture r.

• The superiority of AMM over LSI probably comes from that (1) AMM con-

siders the data distribution of ambiguous samples instead of only the baseline

prediction in LSI, and (2) the number of mixtures in AMM is much larger than

R = 2 in LSI. It is straightforward that a larger number of mixtures can better

fit to the distribution of decision boundary, i.e. the ambiguous modeling. In

all the experiments, we have fixed R = 20 in AMM as no obvious improvement

can be observed when R > 20 from our offline experiments.

The Role of Contextualization: As shown in the results of VOC 2010

train/val dataset, the Context SVM shows great improvement over the baseline

for object detection and classification. Through the analysis and the experiments

described above, it can be observed that it is necessary to use context for both

object classification and detection tasks.

• For object classification, the prevalent methods [15][101] use global features
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Figure 5.5: Representative examples of the baseline (without contextualization) and
Context-SVM for detection task. The detection accuracy is promoted via classifi-
cation contextualization. The left side image is the result before Context SVM and
the right side image is the result after contextualization. For better viewing, please
see original color PDF file.

and discriminative modeling to achieve the goal. Although the current state-

of-the-art recognition pipeline uses sophisticated feature encoding and learning

methods to extract image specific information which often reveals the object-

specific contents, e.g. Fisher Vector Coding [14] and SVM classifier [95]. The

methods used in classification task are often built with a top-down manner

which use global information to infer the existence of a local object. On the

other hand, the context from the detection model contains rich local informa-

tion. It greatly enhances the classifier to learn the image-specific information.

As shown in Figure 5.4, a lot of images containing small (or small-sized) ob-

jects are re-identified through contextualization.

• For object detection, usually the object detector models the object appear-

ance [96] or object shape [3][19] through the annotated object training samples

while discarding the context information defined by the object surroundings.

The localized nature of object detector restricts the model to effectively dif-

ferentiate the false alarm which occurs in those obviously different contexts.

The context information from classification model helps to define the context

of the object. As shown in Figure 5.5, it is helpful to eliminate the false alarm
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Figure 5.6: Mean AP values of 20 classes on VOC 2010 train/val dataset along
iterative contextualization.

and promote the possible true positive.

• The ambiguity modeling enables that the learned context model concerns most

on the ambiguous samples. The probabilistic motivation as introduced in

Section 5.3.1 implies that it is desirable to learn the joint distribution of subject

and the context feature instead of the independent learning as in [17][10]. We

propose to use the ambiguity modeling as a bridge between the subject and

context task so that joint learning is possible. The learned context model

operated on the ambiguous samples is better than the other context modeling

method as demonstrated in Section 5.5.4.

• Another key advantage of conducting contextualization for both object clas-

sification and detection is that we can further build a more accurate context

model with better classifier and detector through mutual contextualization.

This step can be iterative until no further useful information can be learned

as demonstrated in later Section 5.5.3.

5.5.3 Iterative Performance Boosting

To evaluate the effectiveness of our proposed iterative and mutual contextualization

process, we conduct three experiments on VOC 2010 “train/val” dataset. Firstly,

we demonstrate the performance improvement measured by mean AP for all the
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Figure 5.7: Illustration of performance improvement with comparison Precision-
recall curves of object detection (upper row) and classification (lower row). The
performance of baseline (without contextualization) and those of Context-SVM at
iteration 1-3 are plotted.

20 classes in Figure 5.6. In this experiment, the mutual contextualization using

LSI is conducted for 3 iterations, and obvious performance improvement is observed

for the first and second iteration. As the improvement from the third iteration

becomes trivial, we set the maximum iteration number, namely Tmax to 3 for all the

experiments in this work.

In the second experiment, we show exactly how the mutual contextualization

process benefits each class by Precision-Recall curves of several representative classes

in Figure 5.7, and also show the representative object detection and classification

results in Figure 5.8 for the third experiment. As can be observed from Figure 5.7,

great performance improvement can be achieved for the first two iterations and in

the third iteration, certain amount of improvement can still be achieved for several

classes such as “bus” and “dog”. From Figure 5.8, it can be observed that the

Context-SVM shows good stability in refining the classes even without accurate

context such as “pottedplant”. The example detection results demonstrate that

the improvement of object detection is mainly achieved by effective removal of the

ambiguous negatives while the object classification benefits from detection context
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Figure 5.8: Representative examples of the baseline (without contextualization) and
Context-SVM at iteration 3. The detections are shown via the detected bounding
boxes on images (with proper threshold): the green boxes with dashed lines denote
the false alarms from baseline, which are further removed by contextualization and
red boxes denote the true detections of both methods. The classification results are
compared by the confidences for each object category before (green) and after (red)
contextualization. For better viewing, please see original color PDF file.

by calling back those missing objects, e.g. “person” and “chair” missed in the

baseline results as shown in Figure 5.8.

5.5.4 Contextualization Methods Comparison

In this subsection, we compare our proposed iterative and mutual contextualization

method with other mutual classification and detection contextualization models.

We perform experiments on PASCAL VOC 2010 “trainval/test” dataset and

the results are shown in Table 5.2. We compare with the method proposed by

Harzallah et al. [17] denoted as Fuse, which combines the confidences from several

probabilistic models and is the most representative one among those confidence

combination approaches [19] [9]. For object classification, Multiple Kernel Learning

(MKL) [63] method used in [10] is also implemented for comparison, which is a

general model fusion method and widely used to combine features in kernel form for

object classification. An extra linear kernel is constructed for the context features

from the object detection task, and then two kernels are combined with MKL.

MKL performs badly for object detection task, and thus we do not report the
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Table 5.2: Contextualization method comparison on the PASCAL VOC 2010 (train-
val/test) dataset. “Det” and “Cls” respectively denote object detection and classi-
fication tasks. Three iterations of ContextSVM has been performed.

Detection Classification

DetFuse CtxSVM LSI CtxSVM AMM ClsMKL ClsFuse CtxSVM LSI CtxSVM AMM

plane 50.5 53.1 54.6 91.4 90.7 92.2 92.8

bike 49.8 52.7 53.7 76.6 74.0 77.7 79.2

bird 16.0 18.1 16.2 66.7 67.2 69.2 70.9

boat 10.4 13.5 12.5 72.3 73.9 75.7 78.1

bottle 30.4 30.7 31.2 53.1 53.8 53.5 54.2

bus 54.3 53.9 54.0 83.7 81.7 84.7 85.2

car 43.3 43.5 44.2 77.1 74.1 80.9 78.9

cat 38.3 40.3 40.0 75.3 73.6 76.1 78.5

chair 15.9 17.7 16.7 62.9 60.9 62.8 64.4

cow 30.0 31.9 32.2 59.8 59.8 65.5 64.5

table 24.1 28.0 29.1 57.1 60.5 63.1 63.2

dog 23.1 29.5 30.1 63.6 62.3 65.6 68.7

horse 47.8 52.9 54.3 76.5 75.1 79.6 81.5

motor 54.2 56.6 57.2 81.8 80.2 83.4 84.5

person 42.1 44.2 43.9 91.2 90.4 91.2 91.3

plant 11.8 12.6 12.5 44.1 45.8 47.5 48.4

sheep 33.5 36.2 35.4 64.1 61.7 71.9 65.0

sofa 27.5 28.7 28.8 48.4 56.0 55.2 59.5

train 47.3 50.5 51.1 84.0 85.9 86.3 89.3

tv 38.8 40.7 40.7 75.5 76.0 76.7 76.0

mAP 34.5 36.8 36.9 70.3 70.2 73.0 73.7

result of MKL for object detection task here. The main reason is that the context

is fixed for all candidate windows within an image and the inaccurate context may

severely affect the results for quite many candidate windows. The comparison results

show that the proposed iterative and mutual contextualization method outperforms

these two traditional contextualization methods for most object categories. We also

notice that AMM is consistently better than LSI for object classification task while

achieving similar performance on the object detection task.
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5.5.5 Comparison with State-of-the-art Performance

We also compare the proposed contextualization method with the reported state-

of-the-art object detection and classification approaches on VOC 2007, VOC 2010

and SUN09 datasets. The detailed performance comparison results are listed in

Table 5.3, Table 5.6 and Table 5.7.

We compare with the best known VOC 2007 performance from several recent

papers in Table 5.3. For object detection, the methods compared include [MIT 2010]

by Zhu et al. [102] using latent hierarchical structural learning, [UCI 2009] by Desai

et al. [103] using context of object layout, [INRIA 2009] by Harzallah et al. [17]

fusing classification scores, and [UoC 2010] by Felzenswalb et al. [19] using part-

based model with context of object co-occurrence. For the detection challenge of

2007, our method outperforms 13 classes out of 20 classes and the MAP outperforms

the second best [UoC 2010] by 3.6%.

The well-known methods compared for VOC 2007 object classification task are:

[INRIA Genetic] [77], the winner of VOC 2007, [NEC 2010] [15] performing non-

linear feature transformation on descriptors, [INRIA 2009] fusing detection scores,

and [TagModal] [10] using extra tag information of VOC 2007 dataset. Our method

significantly outperforms the competing methods for 12 classes out of 20 classes.

Note that our mAP (AMM 0.713) achieves a leading margin by 6.90% to the result

of [TagModal](0.667). It well validates the effectiveness of the proposed strategy in

utilizing detection context for object classification.

For VOC 2010 dataset, we compare with the released results from the VOC 2010

challenge [18], which are all obtained through the combinations of multiple methods

including mutual combination of detection and classification. Necessary postpro-

cessing is also implemented in these methods. Therefore for a fair comparison, we

refine the framework used by Chen et al. in their submission [NUSPSL] [105] with

the following differences: 1) the combination of detection and classification is fur-

ther refined by the proposed iterative Context-SVM and 2) we exclude the fusion of
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other learning schemes used in [105], e.g. the kernel regression fusing, to verify the

effectiveness of the Context-SVM.

The comparison results are shown in Table 5.6, from which we may observe that

the classification results from our proposed method outperform the others in 16

classes out of 20 classes, and 6.46% in terms of mean AP over the second best VOC

2010 submission [NLPR Context]. Note that the submission [NLPR Context] com-

bines the best-performed detection results in this challenge for classification. Our

proposed method also outperforms the winner submission [NUSPSL] in 17 classes

out of 20 classes and achieves the highest mean AP even without the fusion with

other learning methods. The object detection results from our proposed method

based on Context-SVM also outperform 7 classes out of 20 classes, and our method

achieves the highest mean AP together with the winner submission [NLPR Context],

which outperforms 6 classes out of 20 classes in this competition.

We also conduct experiments on SUN09 dataset [80]. The 107 classes mAP re-

sults on SUN09 dataset for both object classification and detection tasks are listed

in Table 5.7. The SUN 09 dataset contains over 200 object categories but only

107 classes are used in [80] since some categories contain insufficient training sam-

ples. The baseline detectors of [80] for some objects have poor quality even with

additional set of annotations. The current state-of-the-art performance is achieved

in [80] which reported 8.55 for detection task and 26.08 for classification. In [80],

the authors used a tree-based model to explore the hierarchical context between

different objects. Compared with its baseline, the improvement of the TreeContext

model is 3.82% (promoted from 7.06 mAP to 7.33) for object detection task and

11.15% (promoted from 19,93 mAP to 17.93) for object classification task. It fur-

ther incorporates additional global features, i.e. gist feature, and context feature,

i.e. location information to achieve the state-of-the-art performance with mAP 8.55

on the detection task. The other top performance is DPMContext which also used

different scale and location information as the context feature.

110



We used the baseline of the EMAS object detector which shows great efficiency

for object detection problem with a large number of object categories. EMAS per-

forms better than the DPM [19] with 7.27 mAP for 107 classes while DPM reaches

7.06. The overall detection mAP over all object categories is 8.39 for the LSI instan-

tiation and 8.56 for the AMM instantiation which leads to a 17.74% improvement.

Our baseline of object classification has the result of mAP 22.23 which is slightly

better than the result of [104]. Using the Context SVM, the performance with AMM

instantiation can be boosted to 31.43 which is a 41.39% improvement over the orig-

inal recognition score. Our implementation shows that we can achieve comparable

state-of-the-art result with only the context from the high level task.

5.6 Conclusions

In this chapter, we have proposed an iterative contextualization scheme to mutually

boost performance of both object detection and classification tasks. We first pro-

pose the Contextualized SVM to seamlessly integrate external context features and

subject features for general classification, and then Context-SVM is further utilized

to iteratively and mutually boost performance of object detection and classification

tasks. The proposed solution is extensively evaluated on both PASCAL VOC 2007,

2010 and SUN09 datasets and achieves the state-of-the-art performance for both

tasks.
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Table 5.3: Comparison with the state-of-the-art performance of object classification
and detection on PASCAL VOC 2007 (trainval/test).

Table 5.4: Detection on VOC 2007

MIT ZL [102] UCI ICCV09 [103] INRIA 2009 [17] UoC 04 [19] CtxSVM LSI CtxSVM AMM

plane 29.4 28.8 35.1 31.2 38.6 39.8

bike 55.8 56.2 45.6 61.5 58.7 59.0

bird 9.4 3.2 10.9 11.9 18.0 18.7

boat 14.3 14.2 12.0 17.4 18.7 18.9

bottle 28.6 29.4 23.2 27.0 31.8 30.0

bus 44.0 38.7 42.1 49.1 53.6 54.2

car 51.3 48.7 50.9 59.6 56.0 57.2

cat 21.3 12.4 19.0 23.1 30.6 30.4

chair 20.0 16.0 18.0 23.0 23.5 23.5

cow 19.3 17.7 31.5 26.3 31.1 30.9

table 25.2 24.0 17.2 24.9 36.6 38.2

dog 12.5 11.7 17.6 12.9 20.9 20.7

horse 50.4 45.0 49.6 60.1 62.6 63.8

motor 38.4 39.4 43.1 51.0 47.9 48.8

person 36.6 35.5 21.0 43.2 41.2 41.5

plant 15.1 15.2 18.9 13.4 18.8 18.7

sheep 19.7 16.1 27.3 18.8 23.5 23.8

sofa 25.1 20.1 24.7 36.2 41.8 42.5

train 36.8 34.2 29.9 49.1 53.6 54.8

tv 39.3 35.4 39.7 43.0 45.3 44.9

mAP 29.6 27.1 28.9 34.1 37.7 38.0

Table 5.5: Classification on VOC 2007

INRIA Genetic [77]SuperVec [15]INRIA 2009 [17]TagModal [10]CtxSVM LSICtxSVM AMM

plane 77.5 79.4 77.2 87.9 82.5 84.5

bike 63.6 72.5 69.3 65.5 79.6 81.5

bird 56.1 55.6 56.2 76.3 64.8 65.0

boat 71.9 73.8 66.6 75.6 73.4 71.4

bottle 33.1 34.0 45.5 31.5 54.2 52.2

bus 60.6 72.4 68.1 71.3 75.0 76.2

car 78.0 83.4 83.4 77.5 87.5 87.2

cat 58.8 63.6 53.6 79.2 65.6 68.5

chair 53.5 56.6 58.3 46.2 62.9 63.8

cow 42.6 52.8 51.1 62.7 56.4 55.8

table 54.9 63.2 62.2 41.4 66.0 65.8

dog 45.8 49.5 45.2 74.6 53.5 55.6

horse 77.5 80.9 78.4 84.6 85.0 84.8

motor 64.0 71.9 69.7 76.2 76.8 77.0

person 85.9 85.1 86.1 84.6 91.1 91.1

plant 36.3 36.4 52.4 48.0 53.9 55.2

sheep 44.7 46.5 54.4 67.7 61.0 60.0

sofa 50.6 59.8 54.3 44.3 67.5 69.7

train 79.2 83.3 75.8 86.1 83.6 83.6

tv 53.2 58.9 62.1 52.7 70.6 77.0

mAP 59.4 64.0 63.5 66.7 70.5 71.3112



Table 5.6: Comparison with the state-of-the-art performance of object classification
and detection on PASCAL VOC 2010 (trainval/test).

Detection on VOC 2010

NLPR [18] MITUCLA [18] NUS [18] UVA [18] CtxSVM LSI CtxSVM AMM

plane 53.3 54.2 49.1 56.7 53.1 54.6

bike 55.3 48.5 52.4 39.8 52.7 53.7

bird 19.2 15.7 17.8 16.8 18.1 16.2

boat 21.0 19.2 12.0 12.2 13.5 12.5

bottle 30.0 29.2 30.6 13.8 30.7 31.2

bus 54.4 55.5 53.5 44.9 53.9 54.0

car 46.7 43.5 32.8 36.9 43.5 44.2

cat 41.2 41.7 37.3 47.7 40.3 40.0

chair 20.0 16.9 17.7 12.1 17.7 16.7

cow 31.5 28.5 30.6 26.9 31.9 32.2

table 20.7 26.7 27.7 26.5 28.0 29.1

dog 30.3 30.9 29.5 37.2 29.5 30.1

horse 48.6 48.3 51.9 42.1 52.9 54.3

motor 55.3 55.0 56.3 51.9 56.6 57.2

person 46.5 41.7 44.2 25.7 44.2 43.9

plant 10.2 9.7 9.6 12.1 12.6 12.5

sheep 34.4 35.8 14.8 37.8 36.2 35.4

sofa 26.5 30.8 27.9 33.0 28.7 28.8

train 50.3 47.2 49.5 41.5 50.5 51.1

tv 40.3 40.8 38.4 41.7 40.7 40.7

mAP 36.8 36.0 34.2 32.9 36.8 36.9

Classification on VOC 2010

NLPR Context [18] NEC Nonlin [18] NUSPSL [18] CtxSVM LSI CtxSVM AMM

plane 90.3 93.3 93.0 93.1 93.8

bike 77.0 72.9 79.0 78.9 80.5

bird 65.3 69.9 71.6 73.2 74.7

boat 75.0 77.2 77.8 77.1 78.3

bottle 53.7 47.9 54.3 54.3 53.9

bus 85.9 85.6 85.2 85.3 86.5

car 80.4 79.7 78.6 80.7 82.4

cat 74.6 79.4 78.8 78.9 80.3

chair 62.9 61.7 64.5 64.5 64.9

cow 66.2 56.6 64.0 68.4 72.8

table 54.1 61.1 62.7 64.1 65.7

dog 66.8 71.1 69.6 70.3 73.3

horse 76.1 76.7 82.0 81.3 81.2

motor 81.7 79.3 84.4 83.9 85.3

person 89.9 86.8 91.6 91.5 91.8

plant 41.6 38.1 48.6 48.9 50.2

sheep 66.3 63.9 64.9 72.6 72.9

sofa 57.0 55.8 59.6 58.2 61.6

train 85.0 87.5 89.4 87.8 89.2

tv 74.3 72.9 76.4 76.6 77.2

mAP 71.2 70.9 73.8 74.5 75.8
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Table 5.7: mAP results of 107 classes on SUN09 dataset for both object classification
and detection tasks. The relative improvement of mAP over the baseline is also
listed.

Detection Classification

Baseline DPM 7.06 17.93

TreeContext [104] 7.33 (+3.82%) 19.93 (+11.15%)

TreeContext+loc+gist [104] 8.55 (+21.10%) 26.08 (+45.45%)

DPMContext [19] 8.34 (+18.13%) 23.79 (+32.68%)

Baseline EMAS 7.27 22.23

CtxSVM LSI 8.39 (+15.41%) 30.12 (+35.49%)

CtxSVM AMM 8.56 (+17.74%) 31.43 (+41.39%)
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Chapter 6

Large Scale Object Recognition:

Efficient Maximum Appearance

Search for Large-Scale Object

Detection

In this chapter, we consider the problem of large scale object detection. General ob-

jects are believed to be detectable by combining appearance and shape cues. Most

current object detection methods focus on shape modeling with rigid/deformable

templates, however the study on enhancing the localized object appearance repre-

sentation is not sufficient. In this chapter, we present an efficient appearance-based

object detection model which is very suitable to large scale object detection, espe-

cially when there exists a large number of object categories.

We represent the image as an ensemble of densely sampled feature points with

the proposed Pointwise Fisher Vector encoding, so that the learnt discriminative

scoring function can be applied locally. Consequently the object detection problem

is transformed into searching an image sub-area with maximum local appearance
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EMAS Detection 
Model 

Template-based 
Detection Model 

Figure 6.1: Upper part: the proposed EMAS detection. The model inference is
operated on the local transformed feature followed by an efficient maximum subarray
search. Lower part: the traditional template-based detection.

probability, which has much less complexity than traditional detection methods. The

proposed model is suitable to incorporate the global object context with neglectable

extra computational cost and multiple feature fusing, which greatly improves the

performance in detecting multiple object categories. Our experiments show that

the proposed algorithm can perform detection of 1000 object classes in less than

one minute on the Image Net ILSVRC2012 datasets and 107 object classes in less

than 5 seconds per image on the SUN09 dataset using a single CPU, while achieving

comparable performance to state-of-the-art algorithms.
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6.1 Introduction

Object detection is a fundamental vision problem which predicts where and which

object categories are present in an image. Ongoing research [3, 19, 106, 107, 25, 24]

is devoted to developing novel feature representations and classification algorithms

as well as designing challenging datasets. To present, the best performing detection

models are designed to discriminate object foreground from background on densely

sampled sub-windows of images. The discriminative models are normally learnt on

a large number of training examples annotated with object bounding boxes.

Most of state-of-the-art object detection methods focus on modeling the ob-

ject shapes. Among them, the template-based approaches such as the popular De-

formable Part Model (DPM) [19] use linear models constructed from a number of

part templates of image gradient features. Since templates are sensitive to sampling

scale and the pose of objects, inference of such models often entails exhaustively

searching for the best template configuration regarding pose, scale, rotation, etc.

Refinements to remedy this sampling problem brings extra computation cost, e.g

DPM need search the template configuration for best part combinations. Most ob-

ject detection systems based on the aforementioned methods work at seconds to

tens of seconds per object model per image [106, 107], and hence are difficult to be

applicable in detecting a large number of object categories.

In this chapter, we propose an Efficient Maximum Appearance Search (EMAS)

framework which is efficient and effective in a multi-class object detection. As

illustrated in Fig 6.1, we represent the image as an ensemble of densely sampled

feature points with the proposed Pointwise Fisher Vector encoding. The learnt

discriminative model can be applied to the enriched local representation unlike the

state-of-the-art template-based model in which the learned model has to be applied

to each testing window exhaustively. Consequently the object detection problem

is transformed into searching an image sub-area with maximum local appearance
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probability. The overall complexity of the proposed framework is much less than

the traditional template-based detection methods as analyzed in Sec. 6.2.1 . The

advantage of low computation complexity enables us to explore the large scale object

detection problem with huge number of categories. We show in our experiment part

that with the large number of categories, the large diversity of samples brings more

challenging, our appearance-based approach shows better result than the traditional

shape-based approach. Our contributions are the following ones:

• We propose an efficient maximum appearance search model for large scale

object detection. Our proposed EMAS appliy the model locally to each trans-

formed local points and the inference problem is transferred to searching the

sub-window with maximum sum. As far as we know, this is the first model

specifically designed for object detection with large number of categories which

is different from the other efficient works concentrating on improving the effi-

ciency of current DPM model [107, 108, 109].

• We propose the Pointwise Fisher Vector coding as the enriched local repre-

sentation of our detection model. We argue that this local feature coding can

enhance the discriminative power of the local feature and model the object

appearance in a continuous local feature space. This is the key step to adopt

maximum sub-window search and preserve the good performance. This rep-

resentation can also generate the global feature (context) for the image with

negligible cost. Thus it is easy to get the multi-class global classification model

which is very useful to form global multi-class context in a large scale setting.

• We show state-of-the-art performance on two challenging datasets with large

number of categories, i.e. SUN09 [80] and ILSVRC2012 [34]. Experimental

evaluations show that the algorithm can perform detection of 1000 object

classes in less than one minute on the Image Net ILSVRC2012 datasets and

107 object classes in about 5 seconds per image on the SUN09 dataset using
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single CPU with comparable performance to state-of-the-art algorithms.

6.2 Related Works

6.2.1 General Object Detection

Recent shape-based object detection methods rely on discriminative shape templates

using orientation histograms of image gradients. Initially, Dalal and Triggs . [3] used

a single rigid template to build a detection model for pedestrians. Thereafter, the

PASCAL VOC dataset [18] was released, comprising objects with more deformable

shapes like animals and vehicles. Hence the single template model was extended to

part-based models [19] by Felzenswalb et al. to handle small shape deformations.

Although the deep convolution network [20] shows promising result on ImageNet,

the part-based model methods [21, 22, 23] are still the best-performing methods on

the practical detection datasets.

Previous research [24, 25, 26, 27, 28] have also explored the BoW model detec-

tion. The MKL object detection [24] which uses kernel-based models and spatial

pyramid (SP) feature combination achieves promising results but the computation

cost is very high. Efficient Subwindow Search (ESS) [25, 26, 27, 28] tries to speed

up the VQ-based BoW model using a branch and bound technique but often with

much poorer performance on standard datasets. The main disadvantage of VQ is

that it encodes the local feature as one specific visual word index, thus no complex

local discriminative model can be build upon this.

The BoW-based model has the advantage of efficiency if one linear model can be

applied and the possible theoretical computation cost is much less than the template-

based approach. Suppose we use the same low level feature for both models, e.g.

HOG. For a template model with m × n cells, we need to compute m × n times

convolution at each pixel for each category test searching over the image. The

search complexity is O(mnP ) where P is the searching space complexity for an
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image. For a BoW model, the cost is separated into two parts, i.e. the local feature

coding step and inference (dot-product ) over the linear model. The cost of local

feature coding step often increases with the codebook size K which is independent

for each categorie. For multi-class object detection, the only cost addition is the

inference cost which depends on the sparseness E of the coding. The sparseness is

1/K for hard Vector Quantization (VQ),and is around 3% for Fisher Vecotr coding

(FV) [14] in our experiments. So the inference complexity is O(EP ) which is much

less than the template-based approach (mn� E).

6.2.2 Feature Encoding

Recent feature encoding approaches, such as Sparse Coding [11] and Locality-constrained

Linear Coding(LLC) [12], introduce soft assignment for local feature quantization to

substitute previous discrete quantization methods and can been seen as the gentle

extension of Vector Quantization. For the recognition problem, these two coding

methods benefit from large size codebooks as demonstrated in a recent comparison

survey [13]. The large codebook size and the introduction of soft assignment nar-

row down the quantization error but also bring a lot of computation cost. Lately,

the aggregation coding, e.g. Fisher Vector coding or Super Vector coding, demon-

strated to greatly improve the discriminative power of local features [13]. Fisher

encoding [14] tries to capture the average first and second order differences between

local features and centers of a Mixture Gaussian Distributions learnt from general

datasets while Super vector encoding [15] only focus on the first order difference.

Recently, G. Csurka et.al [16] extend Fisher Vector coding to patch level for the

semantic segmentation task and achieves good performance. We propose a point-

wise extension and the scoring function is operated on the point level instead of the

patch level scoring and back projection used in [16].
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6.2.3 Efficient Object Detection

In the past few years, various ways to reduce detection time have been explored

to decrease the time cost in detection window sampling. The cascade part-based

model [107] accelerates the part-based models [19] by learning stagewise thresholds

to fast reject negative sampling windows. Some other methods try to improving the

efficiency of current DPM model [108, 109]. The jumping windows method [106]

generates sparse candidate windows by back-projecting Bag-of-Word image classi-

fication scores and assumes objects are more likely to be located by more positive

discriminative words. ESS with branch-and-bound search [25] are proposed to re-

duce the cost in searching subwindow by finding bounds of subwindow scores.

6.3 Model

The proposed Efficient Maximum Appearance Search (EMAS) approach proceeds

through four stages to perform large-scale object detection as shown in Fig. 6.2.

During the first stage, we extract multiple complementary features; such as HOG,

color moments, etc., for an image, these features are then used to encode the image

with a pointwise feature representation during the second stage. In the third stage,

we obtain the object confidence maps using a combination of appearance detection

models and global context models to look for specific objects within a global context.

Finally, the object confidence values are combined to find the highly confident object

locations for each object category using maximum subarray search. In the following

subsections, we explain in more detail the unique points of our approach, namely,

the use of probabilistic prediction over a point ensemble, and the representation,

model learning and model inference of the EMAS approach. We also extend our

model into multi-class categories setting which enables a multi-class object context.

Our system can easily adopt multiple feature fusing to boost the performance.

122



6.3.1 Probabilistic Prediction over Point Ensemble

Similar to Bag-of-Words like models, where the probabilistic prediction is conducted

over the word ensemble contained by the inference body, the EMAS approach model

also estimates the object probabilities using the point ensemble contained within an

image area. In particular, let P (X) =
∏n
i=1 p(xi). The binary discriminative model

is used for the figure-ground detection for each object category, which try to obtain

the discriminative probabilities as:

P (X|l = 1)

P (X|l = −1)
=

n∏
i=1

p(xi|l = 1)

p(xi|l = −1)
, (6.1)

where l = 1 denotes the foreground condition and l = −1 denotes the background

condition. Using the linear discriminative models, e.g. SVM, the logarithm binary

discriminative probability can be expressed approximately as:

log(
p(xi|l = 1)

p(xi|l = −1)
) = wTφ(xi), (6.2)

where w is the linear weighting vector and φ(x) denotes the feature expression for

a single image point x. Therefore, Eqn. 6.1 can be formulated into the logarithm

form as:

log(
P (X|l = 1)

P (X|l = −1)
) =

n∑
i=1

wTφ(xi), (6.3)

namely the log-likelyhood of an image area to be an object foreground depends on

the sum of the pointwise inference in this area.

6.3.2 Representation: Pointwise Fisher Vector

The performance of the EMAS framework relies heavily on the design of pointwise

featrure representation. In this work, we choose to extend the Fisher Vector (FV)

feature coding method [14] to derive Pointwise Fisher Vector (PFV) coding. Similar

to Fisher Vector coding method, the PFV coding uses a Gaussian mixture models
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(GMMs) Uλ(x) =
∑K

k=1 πkuk(x) trained on local features of a large image set using

Maximum Likelihood (ML) estimation to describe image content. The parameters

of the trained GMMs are denoted as λ = {πk, µk,Σk, k = 1, · · · ,K}, where {π, µ,Σ}

are the prior probability, mean vector and diagonal covariance matrix of Gaussian

mixture respectively.

For a local feature xi extracted from an image, the soft assignments of the

descriptor xi to the kth Gaussian components γik is computed by γik = πkuk(xi)∑K
k=1 πkuk(xi)

.

The PFV for xi is denoted as φ(xi) = {ui1, vi1, · · · , uiK , viK} while uik and vik is

defined as follows:

uik =
1
√
πk
γik

xi − µk
σk

, vik =
1√
2πk

γik[
(xi − µk)2

σ2k
− 1]. (6.4)

where σk is the square root of the diagonal values of Σk. The representation φ(I, y)

of image area y can also be generated by merging φ(xi), i.e. φ(I, y) =
∑N

i=1 φ(xi).

To summarize, we provide a brief analysis of the relationship between FV and PFV

coding:

1. PFV extends Fisher Vector Coding [14] to the local feature point level. At

each point, the local feature is mapped to GMMs with K Gaussians. The

gradient vector with respect to the mean and standard deviation parameters

serves as an enriched representation for this local feature. The pointwise rep-

resentation can also be flexibly merged back to the Fisher Vector global image

representation as aforementioned. Compared with VQ, PFV could provide

much rich local representation. For VQ, each local feature is mapped to a

codebook index while in PFV, xi is mapped to each GMMs and the gradient

vectors enable the local model learning.

2. The pointwise representation φ(xi) is sparse since each feature point only has

few non-zero GMMs component assignment values γik. It means that the
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model only needs to be applied to these non-zero components in the inference

stage thereby making it very efficient. A statistic from SUN09 shows that each

local feature is assigned, on average, to 3.5 GMMs components.

6.3.3 Model Learning

In the training procedure, we assume a series of training samples for one category

with bounding boxes window {y1, y2, ..., ynI} and corresponding labels {l1, l2, ..., lnI}.

A max-margin formulation is used to learn the linear discriminative model w for each

object figure-ground classification. In detail, we formulate the objective function as

following:

w = arg min
w,ξ

1

2
||w||2 + C

nI∑
i=1

ξi (6.5)

s.t. liw
T (

1

Zi

∑
m∈yi

φ(xim)) > 1− ξi

ξi ≥ 0,∀li ∈ {1,−1},

where φ(xm) is the mth pointwise feature in the image area y and we use the

ground truth object area as the positive training samples for l = 1 and use image

areas which have less than 0.4 overlap ratio to the ground truth object areas as the

negatve samples for l = −1. Normalization factor Zi is applied to the sum of the

pointwise features in order to fit to the SVM optimization. Hard negative mining is

done for 3 rounds to enhance the discriminative capability of the model.
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6.3.4 Model Inference

The goal of the EMAS inference step is to find the image area with maximum

probability of containing the object,

ŷ = arg max
y

log(
P (X, y|l = 1)

P (X, y|l = −1)
) (6.6)

= arg max
y

n∑
m=1

wTφ(xm)

= arg max
y
f(I, y, w)

where φ(xm) is the mth pointwise feature in the image area y. We denote an

appearance-based detection model as w = {wu1 , wv1 , · · · , wuK , wvK} while wuk , wvk cor-

respond to the weights for coding vector uik, vik respectively.

To apply the model on a given image area y in image I, we need to compute its

inner product with the global representation of area y, denoted as φ(I, y). We show

the model scoring function can be generated with the PFV representations φ(xi) as

follows,

f(I, y, w) =
N∑
i=1

K∑
k=1

[(wuk )Tuik + (wvk)T vik], (6.7)

Namely, the scoring of an image area can be substituted by computing score sum of

the feature points within the area.

To apply model w on the whole image I and detect high-scored areas, we first ex-

tract and encode dense and regularly sampled PFVs– φ(xij), where {i ∈ [1, Ny], j ∈

[1, Nx]}, Nx and Ny are the sampling point numbers in the width and height direc-

tion and Nx×Ny = N is the total PFV number. Then by computing inner product

to all PFVs with the model w, we can produce a rectangle score map MI , where

MI(i, j) = wTφ(xij). In this work, we only consider locating object in rectangle

areas y = [t, b, l, r] denoted by the top, bottom, left and right coordinate of the

rectangle. Consequently the object detection task is converted to the following op-
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timization problem regarding the scoring function f(I, y, w) in Equation 6.7. This

optimization problem is called 2D maximum subarray sum search:

ŷ = arg max
y∈Y

f(I, y, w) (6.8)

f(I, y, w) =
b∑
i=t

r∑
j=l

MI(i, j),

where Y is the rectangle window set within image I. This problem has a number

of efficient solutions [110, 28] as compared to simple exhaustive search which has a

complexity of O(N2). We adopt the method in [110, 112], which decomposes the

search in one dimension to construct efficient dynamic programming problems and

has the complexity of O(N1.5). In our experiment, the solution from [110] takes

about several milliseconds to search for one confidence map, and the total subarray

search for the 107 object categories of SUN09 [80] dataset costs less than one second

on one images. Therefore, the computation cost in this subarray search is not a

bottleneck of our proposed framework.

6.3.5 Contextual Detection

In this work, we propose a natural way to embed global contextual detection into our

detection framework. As demonstrated in [19, 78], the object detection performance

can be greatly enhanced using the knowledge of global context information in a

multi-class setting. The global context is normally the probability values describing

how likely the image contains certain object categories, which can provide a reference

to the detection results. In our contextual detection, we obtain such probability

values from global image classifications. We use the normalized Fisher Vector of the

whole image (which can be easily produced from the PFVs) as features. Suppose,

there are nc class in the training dataset, we define the context feature for image I as

φctx(I) = {d1, c1, · · · , cnc}, where ci are the object existence probability predicted by
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the ith global classifier. Then, the contextual scoring function is defined as follows,

f(I, y, w) = wTφ(I, y) + wTctxφctx(I), (6.9)

It is worth noting that the contextual detection has several good properties: (1)

Stability in the multi-class setting. Normally each context component can depict

one attribute of the image, and the weight of the each attribute for detecting cer-

tain object can be learned from the training samples. Predictions using additional

contextual information is more stable and accurate in problems with large number

of object categories and clear object relations. (2) Highly efficient. Defining the

global context as the union of classifier outputs is the most efficient way for most

recognition frameworks since it requires little additional computation [19, 78]. In

our work, the global context can be obtained immediately after running the global

image classification.

6.3.6 Multi-Feature Fusing and Spatial Layout

To effectively model the object appearance, multiple features are often used due to

their complementary nature, e.g. HOG or SIFT focus for modeling the local shape,

Color Moment for modeling local color statistics, and LBP for modeling the local

texture pattern. In the EMAS framework, it is easy to fuse multiple features to

boost the detection accuracy as well as the effectiveness of the global classification

model. We perform independent coding for each kind of local feature. During the

training stage, multiple Fisher Vectors are concatenated and fed into the classifier

learning. In the testing stage, multiple features are combined into one confidence

map which is then searched efficiently.

We also consider addition of spatial constraints, such as Spatial Pyramid Match-

ing (SPM), into our approach, which will certainly improve the detection accuracy.

SPM can be easily added by applying more spatially-structured local models and the
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maximum subarray search with more complex optimization algorithm. However, at

this stage, we concentrate on how to improve the performance with low added-on

cost and SPM will bring additional computation cost.

6.4 Efficiency Analysis

The whole detection process contains three steps, i.e. local feature extraction, PFV

encoding, model inference. Here we would like to discuss the detailed efficiency

analysis of the last two steps.

PFV encoding includes two parts: soft assignment calculation and the pointwise

encoding. The soft assignment has O(KND) complexity, where N is the number of

feature points, K is the number of Gaussians in the GMMs and D is the local feature

dimension. The pointwise encoding takes O(E(γth)ND), where E(γth) represents the

average number of GMMs assignments with higher probability than threshold γth

for each feature point. In our experiments, we set γth = 0.01 and obtain E = 3.5

on the training image set of SUN09 without losing the performance. Hence the

overall computation complexity for PFV coding is near O(KND) which is equal

to the prevalently used Vector Quantization (VQ). For a single computation PFV

computes exponential values and products and hence may take more time than

square distance of VQ. However, the number of Gaussianse K in PFV is only about

hundreds which is much smaller than the codebook size in VQ (from thousands to

millions) with similar performance. After all, PFV is highly efficient considering

both speed and performance.

The computation in the model inference contains three parts: pointwise confi-

dence mapping, maximum subwindow search and contextual detection. For nc class,

the complexity of pointwise confidence mapping is O(ncE(γ)ND). It equals to nc

times inner product of the sparse PSV coding vector. And the maximum subwin-

dow search we adopt has the complexity of O(N1.5) as aforementioned. Finally,
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Table 6.1: Average running time(s) for 107 classes detection on SUN09.

Total Fea Extract PSV Encoding
Model Inference

Conf MaxSearch Context Det

4.7 0.4 0.7 2.6 0.8 0.2

compared to the other two parts, the contextual detection cost is trivial since it is

only O(2ncKD) complexity.

To be more clear, we demonstrate an example computation cost for EMAS in

a large scale detection task. The task is performed on SUN09 [80] dataset which

includes 107 classes. As shown in Tab. 6.1, the total cost for 107 classes detection is

about 4.7 seconds on a Xeon 2.67GHZ (single core mode). For one object detector,

per category model inference cost is around 0.03 seconds and 3.6 seconds totally for

107 categories. Namely the additional cost for one more detection model is only

about 30ms. It proves that the proposed EMAS has high scalability in the number

of object categories.

6.5 Experiments

6.5.1 Datasets and Metric

We evaluate our proposed EMAS framework on two popular datasets, i.e. ImageNet

ILSVRC 2012 [34] and SUN09 [80]. ImageNet ILSVRC 2012 is a subset of ImageNet

containing 1000 categories and 1.2 million images. In these 1.2 million images,

more than 544K images are labeled with object bounding boxes. The validation

and test data for this competition consists of 150,000 photographs, collected from

flickr and other search engines, hand labeled with the presence or absence of 1000

object categories. A random subset of 50,000 of the images with labels is released

as validation data included in the development kit along with a list of the 1000

categories. Our main result is conducted on this validation set since the organizer
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didn’t release the test set annotation after the challenge. The evaluation metric is

top5 error rate defined by the ILSVRC organizer.

We also use the SUN 09 dataset introduced in [80] for object detection evalua-

tion of 107 object categories, which contains 4,367 training images and 4,317 testing

images. SUN 09 [80] has been annotated using LabelMe[33]. The author also an-

notated an additional set of 26,000 objects using Amazon Mechanical Turk to have

enough training samples for the baseline detectors [19]. These detectors span from

regions (e.g., road, sky, buildings) to well defined objects (e.g., car, sofa, refrigera-

tor, sink, bowl, bed) and highly deformable objects (e.g., river, towel, curtain). The

employed evaluation metric is Average Precision (AP) and mean of AP (mAP).

6.5.2 Implementation Details

We first normalize the image with the longest edge to 500 pixels. We extract two

kinds of low-level features for all the experiments. The first one is dense SIFT feature

from VL-Feat [51] using multiple scales setting (spatial bins are set as 4, 6, 8, 10) with

6 pixel step. The second one is the local color comment(CM) proposed in [14]. These

two features show great complementary effect in the task of object classification [14].

Each SIFT and CM feature is reduced to 60D for noise removal. The number of

mixtures in the GMMs model in PSV coding is set to 128 for SUN dataset and

256 for ILSVRC dataset. We sample 500,000 descriptors from the training images

of ILSVRC and perform EM to obtain the GMMs. For all experiments, we only

output the maximum subwindow for one image per class at testing stage, namely we

use a precision-preferred detector. Multiple detections can be obtained by iteratively

performing the EMAS on one image. All the experiments are conducted on a Xeon

Server with 32GB memory using single core mode.

For model learning, we fix the parameter C of SVM as 1 for all experiments.

The hard training constraint is mined with the same way of inference steps except

that we restrict the number of output windows to 30 for one image with a further
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Figure 6.3: Rough cost comparison cost in a multi-class setting.

Non-Maximum Suppression step. The total training process usually takes about

half an hour for one class.

6.5.3 Efficiency Comparison

Here, we compare the rough running cost of EMAS with three object detection

models in a multi-class setting: 1) Multiple kernel learning for object detection

(MKL) [24] using three-stage linear and non-linear detection, 2) Deformable Part

Model [19] 3) Cascade DPM [107].

We first perform the full 1000 categories detection on ILSVRC 2012. The average

running for one image is 58.4 seconds including 1.9 seconds for feature extraction and

feature encoding, 56.5 seconds for 1000 categories model inference. So the added-on

cost for each category is 56ms. For CasDPM and DPM, the feature pyramid for

both method often takes 375ms, and needs 500ms, 5s respectively for model inference

(rough estimate, changes for different setting). The cost for MKL reported in [24] is

67 seconds for one image. We can see the cost simulation for different approaches in

Fig. 6.3 in a multi-class setting. It can be observed that our EMAS is not the fastest

in the setting of few categories due to the feature encoding step cost. But it shows
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Table 6.2: Object classification and detection results on ILSVRC 2012.

XRCE/INRIA Oxford DPM Oxford Mix ISI CasDPM EMAS

GMMs size 256 1024 1024 256 256
Multi-Fea+SPM 2 fea 2 fea 2 fea 4 fea+SPM 2 fea

errorcls 0.334 0.269 0.269 0.261 0.326

errordet n.a. 0.529 0.500 0.536 0.554

accdet n.a. 0.644 0.684 0.628 0.662

at least one order of magnitude faster when the number of categories increases.

6.5.4 Performance Evaluation

Large Scale Object Detection on ILSVRC2012:

ILSVRC2012 is a large challenging dataset including 1000 object categories. We

first perform the classification task to obtain the object context. For each category,

we train a one-vs-all classifier using an implementation of stochastic dual-form SVM

solver [113]. The top 5 error ratio (errorcls) using two features is 0.326 which is very

close to the public result 0.334 from XRCE/INRIA in the challenge with similar

setting. The result using single dense SIFT feature is 0.380. The complementary

effect from CM improves the overall performance. It is worth noting that our per-

formance can be further boosted with large GMM for FV. e.g. Oxford gets 0.269

when sets the size as 1024 which is 4 times larger than our implementation. We

train our detection using the same SVM solver. The initialization of the detection

model is trained using the object feature and a large amount of negative images. 3

round of hard sample mining is utilized.

For detection, we compare our results with the challenging entries 1: (1)Oxford DPM

is the result from DPM detection over baseline classification scores. (2)Oxford Mix

used the detection result from DPM and retrain the foreground model with compli-

cated classification model which also is the best result from Oxford. (3) ISI CasDPM

1www.image-net.org/challenges/LSVRC/2012/results.html
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is the result using cascade object detection with deformable part models, restrict-

ing the sizes of bounding boxes. We show the comparison results on ILSVRC2012

dataset in Tab 6.2. Our detection result errordet reaches 0.554 top 5 error rate

which is comparable to the DPM and CasDPM while the single feature result us-

ing SIFT only is 0.582. Moreover, it is worth noting that the detection result of

ILSVRC2012 heavily relies on the performance of classification. Usually, detec-

tion will be performed to the top ranked image with high classification confidence,

i.e. a combination of two steps: first classifier the right categories and then per-

form the localization. Thus the error rate can be approximately interpreted as

errordet = 1 − (1 − errorcls) ∗ accdet where the accdet shows the real detection ac-

curacy for each detection model. We show the accdet in Tab. 6.2. It can be seen

that our localization ability of our detection model is also comparable to the state-

of-the-art model.

Object Detection on PASCAL VOC2007:

The detection results on VOC 2007 are listed on Table 6.3. MPI ESS [25, 114] is the

Efficient Subwindow Search entry participating VOC 2007. It extracted dense grid

SURF [115] feature and salient points from the image. A BoW model with 3,000

codebook is constructed. Subsequently, all feature points in train and test images

are represented by their coordinates in the image and the ID of the corresponding

codebook entry. UOCTTI [18] is the winner of PASCAL VOC2007 using the initial

version of the Part Model which was further enhanced in [19].

We first report the EMAS results on the 20 object categories and compare with

the previous appearance-based model MPI ESS. Our raw PFV-based detection per-

forms at the mAP of 16.3%, which is already much higher than 10.1% of MPI ESS.

It does demonstrate that the PFV encoding can well represent the local feature

and has much less quantization error than the VQ encoding used in MPI ESS.

Our final EMAS with context refinement further improve the performance to the
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Table 6.3: Object Detection results (AP in %) on VOC 2007.

plane bike bird boat bottle bus car cat chair cow
UOCTTI 2007 [18] 20.6 36.9 9.3 9.4 21.4 23.2 34.6 9.8 12.8 14.0

Part Model [19] 28.7 51.0 0.6 14.5 26.5 39.7 50.2 16.3 16.5 16.6
MPI ESS [25] 15.2 15.7 9.8 1.6 0.1 18.6 12.0 24.0 0.7 6.1

EMAS 33.1 25.2 10.6 14.9 4.5 29.0 27.6 33.8 1.5 10.1

table dog horse motor person plant sheep sofa train tv mAP

UOCTTI 2007 [18] 0.2 2.3 18.2 27.6 21.3 12.0 14.3 12.7 13.4 28.9 17.1

Part Model [19] 24.5 5.0 45.2 38.3 36.2 9.0 17.4 22.8 34.1 38.4 26.6

MPI ESS [25] 9.8 16.2 3.4 20.8 11.7 0.2 4.6 14.7 11.0 5.4 10.1

EMAS 25.9 18.6 21.8 26.9 5.6 9.1 9.2 23.0 35.0 10.1 18.8

mAP of 18.8% which is comparable to average performance of shape-based models.

Moreover, our EMAS framework outperform in 8 out of 20 categories over the Part

Model method, and the most competitive performance is on those highly deformable

categories, e.g. aeroplane, bird, cat, dog.

Multi-Label Object Detection on SUN09:

SUN09 is a very challenging datasets with rich contextual information. The con-

cerned object categories span from regions (e.g., road, sky, buildings) to well defined

objects (e.g., car, sofa, sink, bowl, bed) and highly deformable objects (e.g., river,

towel, curtain). We first trained the global object classification model. Each class

is trained independently using linear SVM. The mAP of the classifiers is about

29.6% for 107 classes on SUN09 dataset. The classification scores on the training

set is obtained by 10-fold cross validation. We perform the proposed EMAS detec-

tion model on the 107 classes and compare with the DPM. We use the results of

DPM on SUN09 released by the author of [80] which is 7.06% mAP for 107 objects.

Further [80] refines this baseline result by modeling the co-occurrence and relative

spatial relation of objects with a tree graphical model and obtain the improvement

to 8.37% mAP. Our base detector without contextual training obtains 7.26% mAP
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Table 6.4: Object detection result on Sun09(AP %).

plane bed bkcase building closet field floor grass mountain river
DPM[19] 35.1 26.3 2.3 14.4 1.1 19.8 31.3 11.0 17.2 2.9
EMAS 12.7 34.1 14.8 14.3 12.8 18.9 38.1 12.3 25.6 12.4

road sea shelves showcase sky sofa toilet tree wall water mAP

DPM[19] 33.2 28.7 2.6 0.0 55.3 11.5 22.0 10.9 14.7 1.5 17.1

EMAS 34.9 35.0 13.6 11.9 61.9 12.7 11.7 12.4 21.9 15.1 21.4

which is slightly better than the result of DPM and we obtain 8.44% mAP with

our contextual detection. Our outperformed categories are also on the highly de-

formable objects. In Section. 6.5.4, we will provide a more comprehensive analysis

on this feature of the EMAS framework.

Object Detection with Large Appearance Variance

Our appearance-based model is appealing for object detection with large variation

of appearance. Here, we show 20 classes amorphous object detection result from

SUN09 and compare with the DPM [19] in Table 6.4. These classes range from 1)

regions (e.g. sky, building, road, river) and 2) objects with large shape variation

(e.g. bed, sofa, shelves, aeroplane). The EMAS achieves better results. There are

some interesting features of EMAS revealed by some example detection shown in

Figure 5.8. The model is purely appearance-based, i.e with no shape constraint,

thus the algorithm is good at handling truncated/occluded objects (Figure 6.4, 1st

row, such as part of cars and bicycles), rare view objects (Figure 5.8, 2nd row, such

strange view of cats, sofa, motorbikes) and detecting region objects (Figure 5.8, 3rd

and 4th row, such as sky, buildings, trees, floor). But it also causes the problem

that it can not distinguish one object from a cluster of objects (e.g. a cluster of

horses, cars, cows, shown in Figure 6.4, 5th row).

We show some sample detection results from ILSVRC2012 in Fig. 6.5, the large

number of categories creates large diversity in the object categories. It is interesting
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Figure 6.4: Sample results from SUN09

to see that the proposed detector can detect the object in the 1000 categories pool.

We plot more results in the supplementary files.

6.6 Conclusion

In this chapter, we aim to do further study on the appearance-based approach with

contextual information for the large-scale object detection problem. By means of

an advanced coding scheme from a state-of-the-art large scale classification method

and a 2D maximum subarray search algorithm, this work could get comparable top

detection performance on various benchmarks but also with major computation ef-

ficiency gains. Moreover, with the “side effect” of the coding method, the proposed
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EMAS could further integrate global and object co-occurrence contextual informa-

tion into the detection model with little extra effort, which is very effective to handle

multi-class and occluded object detection. And the approach of this chapter could

also be treated as one complementary method for current shape-based methods or

even surpass them on some benchmarks.
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Figure 6.5: Sample results from ILSVRC2012
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Chapter 7

Main Results and Conclusion

This thesis focuses on the problem of visual object recognition. Following the state-

of-the-art pipeline of visual recognition (feature extraction, feature encoding, feature

pooling and model learning), several key improvements have been made through

different approaches. The key results obtained in this thesis are:

1. For the feature encoding part, a review of current popular encoding methods

was first presented. Different encoding methods were analysed in a unified

platform to evaluate the true performance. Based on the analysis, a combi-

nation coding method (SuperCoding) is proposed, namely, the combination

of FisherKernel coding and the generalized GMM mean vector coding. The

proposed SuperCoding shows excellent performance on the standard datasets

and different recognition tasks.

2. For the feature pooling part, we introduced a generalized hierarchical match-

ing (GHM) pooling method for object-central recognition. This general and

flexible scheme allows us to embed any useful side information into the visual

recognition framework. Two novel exemplar approaches for side information

generation towards object-oriented recognition are presented, i.e. object confi-

dence map and visual saliency map. Our extensive experimental results clearly
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demonstrated that the proposed GHM together with designed varieties of side

information could achieve state-of-art performance on diverse and popular vi-

sual recognition datasets.

3. For the model learning part, we proposed an iterative contextualization scheme

to mutually boost the performance of both object detection and classification

tasks. The Contextualized SVM is proposed to seamlessly integrate exter-

nal context features and subject features for general classification, and then

Context-SVM was further utilized to iteratively and mutually boost perfor-

mance of object detection and classification tasks. The proposed solution was

extensively evaluated on both PASCAL VOC 2007 and VOC 2010 datasets

and achieved the state-of-the-art performance for both tasks.

4. Furthermore, to extend our works we aimed to study the problem of large scale

object recognition. An appearance-based approach with contextual informa-

tion was proposed. By means of advanced coding and novel pooling scheme

from a state-of-the-art large scale classification method and a 2D maximum

subarray search algorithm, it was found that this work could get comparable

top detection and classification performance on various benchmarks but also

with major computation efficiency gains. Moreover, with the “side effect” of

the coding method, the proposed EMAS could further integrate global and

object co-occurrence contextual information into the detection model with lit-

tle extra effort, which is very effective for handling multi-class and occluded

object detection. And the approach of this method could also be treated as

one complementary method for current shape-based methods .

7.1 Main Results

We also conclude the quantitative results from this thesis in the following sections.
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Table 7.1: Performance improvement on PASCAL VOC 2007 dataset.

VQ (4K) Coding Coding+Pooling
Coding+Pooling

Improvement
+Context

aeroplane 68.5 79.9 76.7 84.5 16.0

bicycle 49.6 67.6 74.7 81.5 31.9

bird 39.4 50.8 53.8 65 25.6

boat 60.8 70.9 72.1 71.4 11.3

bottle 20.7 29.3 40.4 52.2 31.5

bus 48.0 67.1 71.7 76.2 28.2

car 67.9 80.9 83.6 87.2 19.3

cat 45.2 61.7 66.5 68.5 23.3

chair 47.0 48.1 52.5 63.8 16.8

cow 31.8 48.5 57.5 55.8 25.7

diningtable 35.2 52.2 62.8 65.8 30.6

dog 40.8 46.1 51.1 55.6 14.8

horse 66.4 80.7 81.4 84.8 18.4

motorbike 51.8 68.2 71.5 77 25.2

person 79.6 85.7 86.5 91.1 11.5

pottedplant 23.6 31.8 36.4 55.2 31.6

sheep 35.1 51.7 55.3 60 24.9

sofa 42.9 48.8 60.6 69.7 26.8

train 67.1 79.2 80.6 83.6 16.5

tvmonitor 46.5 55.6 57.8 77 30.5

mAP 48.4 60.2 64.7 71.3 22.9

7.1.1 Results 1: Effectiveness Improvement

We give the performance improvement results for object classification task on PAS-

CAL VOC 2007 dataset as shown in Table 7.1. We start the comparison with the

baseline of VQ coding using SIFT feature which obtain the mAP 48.4 on VOC

2007 dataset. Then using the proposed coding method (SuperCoding) improves

the result significantly to mAP 60.2. The object-central pooling further improves

the performance to mAP 64.7. Finally, the context modeling combined with other

coding and pooling methods achieves the mAP of 71.3 which is the state-of-the-art

performance.

We further conclude the performance evaluation on the recent years’ PASCAL

VOC challenges during which we obtain the winner title of object classification
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Table 7.2: Comparison with state-of-the-art performance at the PASCAL VOC
2007, 2010, 2011 Challenges.

VOC2007 VOC2010 VOC2011

Winner Ours Other’s best Ours Other’s best Ours

aeroplane 77.5 84.5 90.3 93 94.5 95.5

bicycle 63.6 81.5 77 79 82.6 81.1

bird 56.1 65 65.3 71.6 79.4 79.4

boat 71.9 71.4 75 77.8 80.7 82.5

bottle 33.1 52.2 53.7 54.3 57.8 58.2

bus 60.6 76.2 85.9 85.2 87.8 87.7

car 78 87.2 80.4 78.6 85.5 84.1

cat 58.8 68.5 74.6 78.8 83.9 83.1

chair 53.5 63.8 62.9 64.5 66.6 68.5

cow 42.6 55.8 66.2 64 74.2 72.8

diningtable 54.9 65.8 54.1 62.7 69.4 68.5

dog 45.8 55.6 66.8 69.6 75.2 76.4

horse 77.5 84.8 76.1 82 83 83.3

motorbike 64 77 81.7 84.4 88.1 87.5

person 85.9 91.1 89.9 91.6 93.5 92.8

pottedplant 36.3 55.2 41.6 48.6 56.2 56.5

sheep 44.7 60 66.3 64.9 75.5 77.7

sofa 50.6 69.7 57 59.6 64.1 67

train 79.2 83.6 85 89.4 90 91.2

tvmonitor 53.2 77 74.3 76.4 76.6 77.5

mAP 59.4 71.3 71.2 73.8 78.2 78.6

tasks for the years through 2010 to 2012. As listed in Table 7.2, we achieved the

best performance for VOC 2007 dataset. We obtained the best performance on

object classification tasks with mAP of 73.8 for year 2010 1, and the improvement

is mostly from the Context Modelling part. For year 2011 2, we obtained the best

performance on object classification tasks with mAP of 78.6 due to the sophisticated

feature coding and pooling methods.
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Figure 7.1: Computation cost in a multi-class setting.

7.1.2 Results 2: Scalability Comparison

Here, we compare the rough running cost of the proposed Efficient Maximum Ap-

pearance Search (EMAS) framework for large scale object detection problem with

three object detection models as shown in Figure 7.1: 1) Multiple kernel learning

for object detection (MKL) [24] using three-stage linear and non-linear detection,

2) Deformable Part Model [19] 3) Cascade DPM [107].

We first perform the full 1000 categories detection on ILSVRC 2012. The average

running for one image is 58.4 seconds including 1.9 seconds for feature extraction and

feature encoding, 56.5 seconds for 1000 categories model inference. So the added-on

cost for each category is 56ms. For CasDPM and DPM, the feature pyramid for

both method often takes 375ms, and needs 500ms, 5s respectively for model inference

(rough estimate, changes for different setting). The cost for MKL reported in [24] is

67 seconds for one image. We can see the cost simulation for different approaches in

Fig. 7.1 in a multi-class setting. It can be observed that our EMAS is not the fastest

in the setting of few categories due to the feature encoding step cost. But it shows

1http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2010/results/index.html
2http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2011/results/index.html
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at least one order of magnitude faster when the number of categories increases.

7.2 Conclusion

The overall system achieves in this study state-of-the-art performance considering

two key factors, i.e. effectiveness and stability. On PASCAL VOC 2007 dataset,

we promoted the recognition accuracy from 48% to 71.3% with a 48.5% relative

improvement. In the past few years, numerous methods have been proposed to

enhance the recognition rate on VOC 2007 [7, 11, 14]. However, to the best of our

knowledge our system has achieved the best result. On Imagenet ILSVRC 2012

dataset, we accelerated the speed of 1000 object classes detection at least one order

of magnitude faster than the current state-of-the-art method [19]. These two main

results are obtained due to the fact that we made improvement at each step of the

visual recognition pipeline. Compared with other works in the past few years, the

works in this thesis concentrated on the separate stages of the recognition pipeline

instead of one stage only. This makes the overall system obtain significant results.

Furthermore, the methods proposed at each stage can be easily generalized to other

similar framework. For example, we can use the SuperCoding to replace the coding

method in ScSPM [11] to improve the result.

Although the overall system achieves significant results on the standard datasets,

we notice the study has several limitations of this thesis. (1) We didnt make im-

provement over the “feature extraction” stage. The obtained results were based on

the current popular hand-designed features, e.g. SIFT, HOG, LBP, instead of using

feature learning. Despite the success of recent feature learning works, we find it

is difficult to embed this kind of techniques into the overall framework, especially

for the object detection tasks. (2) The recognition accuracy on the ILSVRC 2012

dataset is not satisfactory. The large scale object recognition problem is still on the

going and needs to be thoroughly resolved. This problem is not unique to our study
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as several groups in the world are working towards this direction. (3) This thesis

focuses on the general problems of visual object recognition. Possible modification

is needed to adapt to different application.

The built visual object recognition system has been demonstrated as practical

and effective on the benchmark datasets. However, several directions can be further

explored for visual object recognition. (1) Embed the feature learning part into the

system. Iteratively learning the feature seems promising since it can naturally gen-

erate the feature which can best represent the data. (2) Explore the deep structure

of the system. The current system can be viewed as three-layer architecture. A

deeper structure should be designed and evaluated. One possible method is to con-

struct iterative “coding-pooling” layer for the overall system. (3) One interesting

question is raised after the system: what kind of possible application can be ap-

plied? and is it time to touch the further problem of visual recognition or artificial

intelligence based on the current visual object recognition techniques, e.g. high level

inference, decision planning? These directions are worthwhile to take both research

and industry.
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