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Econornetrica, Vol. 70, No. 3 (May, 2002), 1067-1109 

BAND SPECTRAL REGRESSION WITH TRENDING DATA 

BY DEAN CORBAE, SAM OULIARIS, AND PETER C. B. PHILLIPS1 

Band spectral regression with both deterministic and stochastic trends is considered. It 
is shown that trend removal by regression in the time domain prior to band spectral regres- 
sion can lead to biased and inconsistent estimates in models with frequency dependent 
coefficients. Both semiparametric and nonparametric regression formulations are consid- 
ered, the latter including general systems of two-sided distributed lags such as those aris- 
ing in lead and lag regressions. The bias problem arises through omitted variables and is 
avoided by careful specification of the regression equation. Trend removal in the frequency 
domain is shown to be a convenient option in practice. An asymptotic theory is developed 
and the two cases of stationary data and cointegrated nonstationary data are compared. 
In the latter case, a levels and differences regression formulation is shown to be useful in 
estimating the frequency response function at nonzero as well as zero frequencies. 

KEYWORDS: Band spectral regression, deterministic and stochastic trends, discrete 
Fourier transform, distributed lag, integrated process, leads and lags regression, nonsta- 
tionary time series, two-sided spectral BN decomposition. 

1. INTRODUCTION 

HANNAN'S (1963a, b) BAND-SPECTRUM REGRESSION procedure is a useful 
regression device that has been adopted in some applied econometric work, 
notably Engle (1974), where there are latent variables that may be regarded as 
frequency dependent (like permanent and transitory income) and where there is 
reason to expect that the relationship between the variables may depend on fre- 
quency. More recently, band spectral regression has been used to estimate coin- 
tegrating relations, which describe low frequency or long run relations between 
economic variables. In particular, Phillips (1991a) showed how frequency domain 
regressions that concentrate on a band around the origin are capable of pro- 
ducing asymptotically efficient estimates of cointegrating vectors. Interestingly, 
in that case the spectral methods are used with nonstationary integrated time 
series in precisely the same way as they were originally designed for stationary 
series, on which there is now a large literature (see, inter alia, Hannan (1970 Ch. 
VII), Hannan and Thomson (1971), Hannan and Robinson (1973), and Robinson 
(1991)). Related methods were used in Choi and Phillips (1993) to construct fre- 
quency domain tests for unit roots. In all of this work, the capacity of frequency 
domain techniques to deal nonparametrically with short memory components in 

1 Our thanks go to a co-editor and three referees for helpful comments. An early draft was written 
in the summer of 1994. The first complete version of the paper was written over the period 1 January- 
1 July 1997 while Phillips was visiting the University of Auckland. Lemmas A-D are due to Phillips 
and are taken from other work to make this paper self contained. Phillips thanks the NSF for research 
support under Grant Nos. SBR 94-22922, SBR 97-30295, and SES 0092509. 
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1068 D. CORBAE, S. OULIARIS, AND P. C. B. PHILLIPS 

the data is exploited. Robinson (1991), who allowed for band dependent model 
formulations, showed how, in such semiparametric models, data based methods 
can be used to determine the smoothing parameter that plays a central role in 
the treatment of the nonparametric component. Other data based methods have 
been used directly in the study of cointegrating relations and testing problems by 
Xiao and Phillips (1998, 1999). 

To the extent that relations between variables may be band dependent, it is 
also reasonable to expect that causal relations between variables may vary accord- 
ing to frequency. Extending work by Geweke (1982), both Hosoya (1991) and 
Granger and Lin (1995) have studied causal links from this perspective and con- 
structed measures of causality that are frequency dependent. Most recently, fre- 
quency band methods have been suggested for the estimation of models with long 
memory components (e.g., Marinucci (1998), Robinson and Marinucci (1998), 
Kim and Phillips (1999)), where salient features of the variables are naturally 
evident in frequency domain formulations. 

This paper studies some properties of frequency band regression in the pres- 
ence of both deterministic and stochastic trends, a common feature in economic 
time series applications. In such cases, a seemingly minor issue relates to the 
manner of deterministic trend removal. In particular, should the deterministic 
trends be eliminated by regression in the time domain prior to the use of the 
frequency domain regression or not? Since spectral regression procedures were 
originally developed for stationary time series and since the removal of deter- 
ministic trends by least squares regression is well known to be asymptotically 
efficient under weak conditions (Grenander and Rosenblatt (1957, p. 244)), it 
may seem natural to perform the trend removal in the time domain prior to the 
use of spectral methods. Indeed, this is recommended in Hannan (1963a, p. 30; 
1970, pp. 443-444), even though the development of spectral regression there 
and in Hannan (1970, Ch. VII.4) allows for regressors like deterministic trends 
that are susceptible to a generalized harmonic analysis, satisfying the so-called 
Grenander conditions (Grenander and Rosenblatt (1957, p. 233), Hannan (1970, 
p. 77)). Theorem 11 of Hannan (1970, p. 444) confirms that such time domain 
detrending followed by spectral regression is asymptotically efficient in models 
where all the variables are trend stationary and where the model coefficients do 
not vary with frequency. 

In time domain regression, the Frisch-Waugh (1933) theorem assures invari- 
ance of the regression coefficients to prior trend removal or to the inclusion 
of trends in the regression itself. Such invariance is often taken for granted in 
empirical work. However, as will be shown here, invariance does not always 
apply for band-spectrum regression when one switches from time domain to fre- 
quency domain regressions. In particular, detrending by removing deterministic 
components in the time domain and then applying band-spectrum regression is 
not necessarily equivalent to detrending in the frequency domain and applying 
band-spectrum regression. The reason is that a band dependent spectral model 
is similar in form to a linear regression with a structural change in the coeffi- 
cient vector. So, when there are deterministic trends in the model, the original 
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BAND SPECTRAL REGRESSION 1069 

deterministic regressors also need to be augmented by regressors that are rele- 
vant to the change period (here, the frequency band where the change occurs). 
Thus, the seemingly innocuous matter of detrending can have some nontrivial 
consequences in practice. In particular, detrending in the time domain yields esti- 
mates that can be biased in finite samples, and, in the case of nonstationary data, 
inconsistent. The appropriate procedure is to take account of the augmented 
regression equation prior to detrending and this can be readily accomplished by 
including the deterministic variables explicitly in the frequency domain regres- 
sion. These issues are relevant whenever band spectral methods are applied, 
including those cases that involve cointegrating regressions. In the latter case, 
a levels and differences regression formulation is shown to be appropriate and 
useful in estimating the frequency response function at nonzero as well as zero 
frequencies. 

The present paper provides an asymptotic analysis of frequency domain 
regression with trending data for the two cases of stationary and cointegrated 
nonstationary data. We consider both semiparametric and fully nonparametric 
formulations of the regression model, in both cases allowing the model coeffi- 
cients to vary with frequency. In dealing with the nonstationary case, the paper 
introduces some new methods for obtaining a limit theory for discrete Fourier 
transforms (dft's) of integrated time series and makes extensive use of two sided 
BN decompositions, which lead to levels and differences model formulations. 
This asymptotic theory simplifies some earlier results given in Phillips (1991a) 
and shows that the dft's of an I(1) process are spatially (i.e., frequencywise) 
dependent across all the fundamental frequencies, even in the limit as the sam- 
ple size n -+ oo, due to leakage from the zero frequency. This leakage is strong 
enough to ensure that smoothed periodogram estimates of the spectrum away 
from the origin are inconsistent at all frequencies w 0 0. The techniques and 
results given here should be useful in other regression contexts where these quan- 
tities arise. Some extensions of the methods to cases of data with long range 
dependence are provided in Phillips (1999). 

Most of our notation is standard: [a] signifies the largest integer not exceeding 
a, > signifies positive definiteness when applied to matrices, a* is the complex 
conjugate transpose of the matrix a, Ilall is a matrix norm of a, a- is the Moore 
Penrose inverse of a, Pa = a(a*a)-a* is the orthogonal projector onto the range 
of a, L2[0, 1] is the space of square integrable functions on [0, 1], 1[A] is the indi- 

d d p 
cator of A, " signifies 'asymptotically distributed as' and -+ and -P are used to 
denote weak convergence of the associated probability measures and convergence 
in probability, respectively, as the sample size, n -- oo; I(1) signifies an integrated 
process of order one, BM(fU) denotes a vector Brownian motion with covariance 
matrix X, and we write integrals like f0l B(r) dr as f0 B, or simply fJB if there 
is no ambiguity over limits; MN(O, G) signifies a mixed normal distribution with 
matrix mixing variate G, N, (0, G) signifies a complex normal distribution with 
covariance matrix G, the discrete Fourier transform (dft) of {a,; t = 1, ... , n} is 
written wa(A) = (1/V) E> ateiAt, and {As = (2nrs/n): s = 0, 1, . . ., n - 1} are 
the fundamental frequencies. 
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1070 D. CORBAE, S. OULIARIS, AND P. C. B. PHILLIPS 

2. MODELS AND ESTIMATION PRELIMINARIES 

Let xt (t = 1,... , n) be an obselved time series generated by 

(1) t = 12 

where zt is a p + 1-dimensional deterministic sequence and x~ is a zero mean 
k-dimensional time series. The series xt therefore has both a deterministic 
component involving the sequence z, and a stochastic (latent) component it. In 
developing our theory it will be convenient to allow for both stationary and non- 
stationary it. Accordingly, we introduce the following two alternative assump- 
tions. The mechanism linking the observed variables xt, unobserved disturbances 
St, and a dependent variable Yt is made explicit later. 

ASSUMPTION 1: ;t = (St, Xt)' is a jointly stationary time series with Wold repre- 
sentation St = Zy 0 Cj 1,t_j where (t = iid (0, 2) with finite fourth moments and the 
coefficients C1 satisfy % j 11 Cj 11 < 0. Partitioned conformably with s, the spec- 
tral density matrix fs,(A) of St is 

f (A) = [f86(A) ?A] 

with f??(A), fx(A) > 0 VA. 

ASSUMPTION 2: it is an I(1) process satisfying zAt = Vt, initialized at t = 0 
by any Op (1) random variable. The shocks St = (Et, vt)' satisfy Assumption 1 with 
spectral density fss (A) partitioned as 

f (A) = [f66(A) f(l 

with f??(A), fvv(A) > 0 VA. 

Assumptions 1 and 2 suffice for partial sums of ;t to satisfy the functional law 
[1r] d 

n-12 Zt -+]S B(r) = BM(f2), a vector Brownian motion of dimension (k + 1) 
with covariance matrix fU = 27rf,(0) (e.g., Phillips and Solo (1992, Theorem 
3.4)). The vector process B and matrix fU can be partitioned conformably with s 
as B = (B8, B')' and 

U=[ss 0] 

where nlx > 0, so that it is a full rank vector I(1) process. In all cases, xt is taken 
to be independent of St. This amounts to a strict exogeneity assumption when we 
introduce a generating mechanism for a dependent variable Yt. The assumption 
is standard for consistent estimation in the stationary case (as in Hannan (1963a, 
b)). In the nonstationary case, it is not required for the consistent estimation of 
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BAND SPECTRAL REGRESSION 1071 

(low frequency) cointegrating regression components. However, at bands away 
from the origin, some version of incoherency between the regressors and errors 
is required for consistency and asserting incoherency enables us to examine the 
bias and inconsistency effects of detrending in such regressions, just as in the 
case of stationary xi. 

We make the following assumptions concerning the deterministic sequence zt. 
We confine our treatment to time polynomials and set z, = (1, t, . . . , tP)', the 
most common case in practice, although we anticipate that our conclusions about 
bias and inconsistency will apply more generally, for instance to trigonometric 
polynomials, after some appropriate extensions of our dft formulae in Lemma A 
and the limit results in Lemma C below. Let 6, = diag(1, n, .. ., nP), and define 
dt = 11zt. Then 

(2) d[,,[r] = Q1 Z[,11] -'u(r) = (1, r, . . ., rP)', 

uniformly in r E [0, 1]. The limit functions u(r) are linearly independent in 
L20, 1] and n-1(Z1 dtd) - fL uu' > 0. Now let Z (respectively, D) be the n x p 
observation matrix of the nonstochastic regressors zt (respectively, standardized 
regressors d,), Pz be the projector onto the range of Z, and QZ = I - Pz be the 
residual projection matrix (respectively, PD and I - PD). Clearly, Pz = PD and 
QZ = QD 

The Noniparametric Model 

The type of model we have in mind for the stochastic component of the data 
allows for the regression coefficient to vary across frequency bands. In the time 
domain, suppose a (latent) dependent variable jt is related to xt and 6t according 
to a (possibly two-sided) distributed lag 

co 

(3) = Ept-j + gt = P(L) t + gt, 
j=-co 

where the transfer function of the filter, b(w) = 1(eiw) = Z700 / 3eiij, is assumed 
to converge for all w E [-7, 7n]. Under stationarity (Assumption 1), the cross 
spectrum L,,(w) between jt and it satisfies 

(4) fy,(w) = b(o)tf<x(o), 

whose complex conjugate transpose gives the complex regression coefficient 

(5) = b(-w) = fw-X (@)f 

As argued in Hannan (1963a, b), spectral methods provide a natural mechanism 
for focusing attention on a particular frequency, or band of frequencies, and for 
performing estimation of /,B. 
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1072 D. CORBAE, S. OULIARIS, AND P. C. B. PHILLIPS 

Next, suppose that the coefficients f3j in (3) are such that /3(L) has a valid two- 
sided spectral BN decomposition (see part (b) of Lemma D in the Appendix), 
viz. 

(6) /3(L) = P(e) + ? (e-i'L)(e-i'L - 1), 

where 

ikc 
Pk eic j > o, 

/3 0L= B9Lj,Cj k=j+l 

j=-OO _ 
EPk e'ko) j < 0, 

k=-oo 

with Zy_- /j312 < *. Using (6) in (3) we have 

(7) Yt = /3(L)'it + St 

= [b(w) +/3 ,(e-'90L)(e-i'OL - 1)]ft + st, 

= b(wo)'it + (e-i6L - 1)dat + st, 

in which 5,,t = /cj(e-l'L)x. Then, setting w = A, in (7) and taking dft's at fre- 
quency A, we obtain the following frequency domain form of (3): 

(8) Wy(Aj) = b(Aj)'w,(As) + w (As) + l[eiAsAo - aAsti] 

For stationary it, da,t is also stationary and (8) can be written as 

(9) w (As) = b(Ajwa (As) + Ws(As) + Op 

giving an approximate frequency domain version of (3). 
The case of integrated it (Assumption 2) can be handled in a similar way. 

Here it is useful to apply to (3) the two-sided BN decomposition at unity (part(a) 
of Lemma D), viz. 

(10) /(L) = (1) + ?(L)(L - 1), where 
00 

E, Pk, j > O, 
/3L=0/3L,/j k=j+l 

j=-oo EPk, ij<o, 

k=-oo 

so that (3) can be interpreted as 

(11) Yt = P(l)'Xt + St - /(L)'vt = 0(1)'Xt + gt, say, 
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BAND SPECTRAL REGRESSION 1073 

which is a cointegrating equation between Yt and it with cointegrating vector 
(1, -/3(1)') and composite error St = St -/(L)'vt. Setting mt = /(L)'vt and taking 
the dft of (11), we obtain 

(12) wj(AS) = /3(1)'W (As) + W6(As) -Wa7(AS) 

(13) = b(As)'wj(As) + ws(As) - w7,(As) + [/3(1) -b(As) fw (As) 

The final two terms of (13) are important, revealing that the approximation (9) 
fails in the nonstationary case and has an error of specification that arises from 
omitted variables. 

Assuming it is valid, the spectral BN decomposition of /8(L) at frequency As is 

/3(L) = /(eiAs) + PAS (e-iAs L) (e-iAsL - 1) 

where PA is constructed as in Lemma D(b). Then 

(14) W,(As) = /(eis)fwv(As) + i ASO 
- 

s AoVAl] 

= (eiAs)fWv(As) + Op4 ) 

where VA t =/A. (e-iAsL)vt is stationary. It follows that (12) has the form 

(15) w2 (As) = /3(1)'wj(As) - 3(eiAs)ywv(As) + ws(As) + O ( 

giving an approximate frequency domain version of the cointegrated model that 
applies for all frequencies. Since vt = Axt, it is apparent from (15) that if data on 
3t and it were available, the equation could be estimated in the frequency domain 
by band spectral regression of wy(As) on wj(As) and wAj(As) for frequencies As 
centered around some frequency w. For As centered around w = 0, this procedure 
was suggested originally in Phillips (1991b) and Phillips and Loretan (1991), 
where it is called augmented frequency domain regression, although in that work 
deterministic trends were excluded. In the general case where As is centered on 
co 0 0, we can recover the spectral coefficient /,3 = b(-w) from the coefficients 
/3(1) and /3(eiAs)f - /3(eiAs)* in (15) using the fact that 

(16) b(-w) = /3(ew) = /3(1) ?).(e1w)(e-w -1) 

Causal economic relationships are often formulated as in (3) with one-sided 
relations where /3j = 0 for j < 0, but two-sided relations are not excluded. They 
are well known to occur in situations where there is feedback in both directions 
between the variables y and x. A notable recent example arises in the simplifi- 
cation of cointegrating systems to single equation formulations where two-sided 
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1074 D. CORBAE, S. OULIARIS, AND P. C. B. PHILLIPS 

dynamic regressions like (11) arise and where they have been used in regres- 
sion analysis to obtain efficient estimates of the cointegrating vector (Phillips and 
Loretan (1991), Saikonnen (1991), Stock and Watson (1993)). 

The mechanism linking the observed dependent variable yt to z, and j, (and, 
hence, it, and 6 ) is now given by 

(17) Yt =Zt 71 + Yt, 

where 5t follows (3) in the stationaiy case with (it, -,) satisfying Assumption 1, 
and (11) in the cointegrated case with (it, -t) satisfying Assumption 2. The 
observed series Yt and xt therefore have deterministic trends and stochastic com- 
ponents that are linked by a system of distributed lags with stationary errors. 
The natural statistical approach would appear to be deterministic trend removal 
by regression of (Yt, xt) on zt, followed by an analysis of the system of lagged 
dependencies between the residuals from these regressions. The latter can be 
conducted in the frequency domain where the coefficient of interest is the trans- 
fer function of the filter b(w)'. This coefficient will vaiy according to frequency 
(unless f3j = 0 for j 0 0) and can be estimated by nonparametric regression tech- 
niques. One of the aims of this paper is to examine the finite sample and asymp- 
totic performance of this natural procedure against that of a procedure that 
seeks to perform the regression analysis in the frequency domain directly on the 
observed quantities (Yt, xt, Zt) rather than on detrended data. 

A Fixed Band Regression Model 

A simple situation of interest occurs when the response function b(w) is con- 
stant, let us say on two fixed frequency bands. This case captures the essential 
features of the problem that we intend to discuss, is easy to analyze, and will be 
considered at some length here and in the asymptotic theory. It has the advan- 
tage that b(w) is real and parametric and can be estimated at parametric rates 
when the bands are of fixed positive length. This case is analogous to a regression 
model with a structural break and that analogy helps to explain why time and fre- 
quency domain detrending have different effects. The nonparametric model can 
be interpreted as a limiting case in which one of the bands shrinks to a particular 
frequency as the sample size increases. To promote the analogy with a structural 
break model we will develop a conventional regression model formulation for 
the data. 

To this end, we postulate the dual bands J,3A = [-w0, w0] and 2/fm = [-7T, 

-wo) U (wo, 7] for some given frequency w0 > 0 and define the frequency depen- 
dent coefficient vector 

(18) b((w) = PA1[w E -A] +?/AClo E A' 

where PA is a k-vector of parameters pertinent to the band XA' and PAL iS the 
corresponding k-vector of parameters pertinent to the band 2A. This formulation 
of b(w) enables us to separate low frequency (Icl < wo) from high frequency 
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BAND SPECTRAL REGRESSION 1075 

(w > wo) responses in a regression context. The coefficients fj in the Fourier 
representation, b(wo) = ZJ?? /31je"j', of (18) are 

PA d00 PAc ( ) 0, 
(19) f = b (w) e i]wdw- 

IT 
2,7T 7T ~ ~ Isin IJw(A Pc 

so that the filter in (3) is symmetric and two-sided. This is an interesting case 
where the coefficients /j decay slowly and do not satisfy the sufficient condition 

001 Ij /Il < 0 given in Lemma D for the validity of the BN decomposition of 
,8(L) = .1QQ /3Li. Nevertheless, the BN decomposition of ,8(L) is still valid in 
this case, as shown in Remark (i) following Lemma D in the Appendix. 

While data for j, can be generated by (3) and (19) by truncating the filter, an 
alternate frequency domain approach that uses (18) is possible. This mechanism 
has the advantage of revealing the impact of the shift in (18) in terms of a stan- 
dard regression model with a structural change. Like xt, the dependent variable 
Yt is assumed to have both deterministic and stochastic components. Its stochas- 
tic component 5, is generated from it and 6t by means of a triangular array 
formulation which we explain as follows. 

Let X = [x1, ... ., ]' be the n x k matrix of observations of the exogenous 
regressors it, let U be the n x n unitary matrix with (j, k) element e21ijk/h/InJ, 

and let W = E1l1 U, where 

B112 =[0 J E [ ?1 ] 

is an n x n permutation matrix that reorders the rows of U so that the last 
row becomes the first and succeeding rows are simply advanced by one position. 
Then, W*W = I, and the matrix WX has kth row given by the dft w (A,)' with 
s = k-1. 

We introduce the following matrices that are used to provide a frequency 
dependent structure to the model for Yt. Define: 

* A = n x n selector matrix that zeroes out frequencies in WX that are not 
relevant to the primary band of interest, say .1A. Then, ACW = [I - A]W extracts 
the residual frequencies over 28. Note that ACA = AAC = 0. 

T - =W*AW and Yc =W*AcW = I-IF. 

Then, for each n, y = (51,... , 5,) is generated in the frequency domain in dft 
form by the system 

(20) AWY = AWX,BA + AWs, 

(21) ACW5 = ACWX/AC + ACW., 

where 8 =(81 ,...,8). Equations (20) and (21) generate observations in the 
frequency domain that correspond to the model (8) in the nonparametric case 
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1076 D. CORBAE, S. OULIARIS, AND P. C. B. PHILLIPS 

with the final term of (8) omitted. In the stationary case, this omitted term is 
Op(n-2) as seen in (9), so the difference between the generating mechanisms 
is negligible asymptotically. In the nonstationary case, however, the omitted term 
is nonnegligible, as is apparent from (13) and (15). In consequence, the two gen- 
erating mechanisms differ in the nonstationary case and this leads to a difference 
in the asymptotic theory between the two models that will figure in our discus- 
sion in Section 5. 

Adding (20) and (21) and multiplying by W* gives 

(22) Y = T'XfA + tCX,BAC +6, 

which is the time domain generating mechanism for y. By construction, the matri- 
ces T and Tc have elements that depend on n, and it follows that {,: t = 

1 ... , n} has a triangular array structure, although we do not emphasize this by 
using an additional subscript and we will have no need of triangular array limit 
theory in our asymptotic development. 

In (22), (6k, i') satisfies Assumption 1 in the stationary case and (6t, Ax) sat- 
isfies Assumption 2 in the nonstationary case. Thus, (22) is a variable (band 
dependent) coefficient time series regression with exogenous regressors and sta- 
tionary errors under Assumption 1, and a cointegrating regression with exoge- 
nous regressors and band dependent coefficients under Assumption 2. Note that 
model (22) is semiparametric: parametric in the regression coefficients PA and 
P3AC and nonparametric in the regression errors 6. 

We now suppose that the observed series Yt has deterministic components like 
x, in (1) and is related to the unobserved component 5t by means of 

(23) y=Z7T1+5K 

Using (22) and (23), it follows that the observed data satisfy the model 

(24) Y = Z(7T1 - 172/A) + X/A + FZ2 (PA - PA') IC-tcX(A-PAC) + 8, 

or, equivalently, 

(25) Y = Z( 7T1 - FI2/AC) + IFZII2(PAC - PA) + X,BAC- X(/3AC- PA) +6, 

or 

(26) Y = 1tZ(7T1 - 172PA) + tFcZ(7Tl - I2AC) + IfXA + TCXPAc +6. 

These models extend (22) to cases where the observed data contain deterministic 
trends. Observe that the trend regressors zt now appear in the model with band 
dependent coefficients, just like the exogenous regressors xt. 

The formulations (24)-(26) make it clear that detrending the data in the time 
domain is not a simple matter of applying the projection matrix Qz, as might 
be expected immediately from (1) and (23). In fact, correct trend removal is 
accomplished by the use of the operator Qv = I - Pv, where V = [Z, TCZ] or, 
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equivalently, in view of (26) V = [TZ, TcZ]. Methods that rely on prefiltering 
by means of Qz do not fully remove the trends and this can have important 
consequences, like biased and inconsistent estimates of the regression coefficients 
PA and /AC. Of course, when A = I,, the coefficient is invariant across bands 
(PA = /, say), we have T = I, and Tc is null, so that V = Z and usual detrending 
by Qz is appropriate. In that case (26) reduces to 

y = Z(7-1-H23) +?XP+?- 

Put another way, conventional detrending by Qz implicitly assumes that there is 
no variation in the coefficient across frequency bands. If there are such variations, 
then correct detrending needs to take into account the effects of such variations 
on the trends, as in (26). Otherwise, there will be misspecification bias from 
omitted variables in the deterministic detrending. 

Fixed Band Regressions and Misspecification Bias 

A simple illustration with the Hannan (1963a) inefficient band-spectrum 
regression estimator shows the effects of such misspecification. This estimator 
can be constructed for the band MA and then has the form 

(27) PA = (X'QZTQZX)l (X'QZTQzy), 

with a corresponding formula for PAC, the estimator over the band 2A. In form- 
ing PA and PAC, the data are filtered by a trend removal regression via the projec- 
tion Qz before performing the band-spectrum regression. This procedure follows 
Hannan's (1963a, b) recommendation for dealing with deterministic trends and, 
as we have discussed in the introduction, is the conventional approach in this 
context. Using (24) and (27), we find 

(28) PA = PA + {X'QZkQZX}-{XQ07Qz P1IrcZFI2(PA -PA) 

- ItCX(PA - PAC) + s]} 

= PA - {X'Qz frQzX) {X'QZ1tQZ[VcX(PA - PA - ]I 

= PA - QZ TQZX {X QZ TQZ[ X(A-PAC) -E}, 

and the corresponding formula for f3Ac is 

(29) PAC = PAC -{X'QZICQZX}l {X'QZ1ICQZPtX(PAc -PA) - - 

It follows that 

(30) E(A IX) = PA -{X QZ IPQZX} {XQ XIQZTQZTCX(PA -PAI 

and 

E(AAC IX) = PAC - {XfQZT QZX}l{XfQz rQZT QZ'X(PAc -PA) 
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1078 D. CORBAE, S. OULIARIS, AND P. C. B. PHILLIPS 

Hence, band-spectrum regression yields biased estimates of the coefficients when 
PA # PAC and trend removal regression is conducted via the projection Qz. 

To some extent, the problem with PA is a finite sample one. In fact, for sta- 
tionary i, the bias disappears as n -> oo. But, as we shall see in Section 5, when 
it is integrated the bias in P3AC does not always disappear in the limit. 

Narrow Band Regressions 

In the nonparametric case we estimate f,3, in (5) at a particular frequency w, 
rather than over a fixed discrete band. In that case the band spectral estimator 
has the same form as (27) but the selector matrix A = A,, (respectively, T = TP) 
chooses frequencies in a shrinking band about w. We write the estimator as 

(31) ,s = (X QZ1DQZX) 1(X QZ(0QZY). 

From the form of (15) it is apparent that the narrow band regression leading 
to (31) omits the term involving the dft, w,(As), of the differences vt = Axt. So 
this narrow band regression also involves omitted variable misspecification. 

An alternate nonparametric procedure is to use an augmented narrow band 
regression in which the differences are included. To fix ideas, we detrend the 
data using Qz and then perform a band spectral regression of the form 

(32) WyZ (As) = at ?s wWAz(As) ? residual 
for frequencies As in a shrinking band around w. In equation (32) the affix '.z' on 
the subscript (e.g., in w.z(As)) signifies that the data have been detrended before 
taking dft's. This approach is analogous to the augmented spectral regression 
approach of Phillips and Loretan (1991) for estimating a cointegrating vector. 
However, the narrow band regression (32) now applies for frequencies C that 
are nonzero as well as zero and prior detrending of the data has occurred in the 
time domain. Define X = [X, AX] and 5') = (dj', a2'). Then 

(33) ad = (XKQZI(OQzX)-l (X'Qz1I(0QzY). 

In view of the relation (16), an estimate of /3P = /3(e-'(0) may be recovered from 
ad using the linear combination 

(34) s9 = Ja1,- 2(e -1)d2(0, c #0, 
Ia10, C)=0. 

The asymptotic theory for the narrow band estimates /3z and /39 is developed 
in Section 5. 

3. DFT RECURSION FORMULAE 

Here we develop some useful formulae for dft's of the deterministic sequence 
zt- The following lemma gives general recursion formulae for the quantity 
Wk(As) = 31t tkeiAst. The case for As = 0 is well known, of course, but the result 
for As :A 0 appears to be new. 
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LEMMA A: (a) For- s = 0, 

W (As) =Ltk = k+1 ( 1Bnk+?B2n k-I 

t=1 k + nk?1I -2 

(k + I) nk-2 +...+(k )B_+ I 

where Bi are the Bernoulli numbers. 
(b) For s zh 0, Wk (As) satisfies the recursion 

(35) Wk(As) = nk iA + 1 k ('I)(-)JWkl-j(As) 

with initialization 

t=1 (36) Wo(As)=EeiAst=(,sO 

Using (35), the standardized quantities Wk(As) (t)keiAst satisfy the 
recursion 

(37) Wk(As) = eiAs + iAs 1J _W ( ) (-) Wk j(As), 

and then the dft of dt is simply 

Wd(As) = 1 LdteiAst = (Wo(As), ... (As)) n t=1 

The main cases of interest are low order polynomials, where explicit expres- 
sions for the discrete Fourier transforms Wk (As) are easily obtained from 
Lemma A. Thus, when k =0, 1, 2 we have 

(38) W!L(As) = 1,, 5 

(39) W2As) = 2n1/2' s2 

nI/2 eiAs- I _ 

(n?+1) (2n?+1) 0 
f 6n3/2 s0 

(40) W2 (As) I e iA, 2 eiAs 

n'/2 eiAs -1 n3/2 (eiAs -12' 
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In case (38), it is apparent that eliminating the zero frequency will demean 
the data and leave the model unchanged for A, 7 0. Then, TcZ = 0 and so 
TQZ TC = TTc - TPZ TC = 0, and Qz = Qv. It follows that X' Qz TQzTcX = 0 
in (30) and therefore PA is unbiased in this case of simple data demeaning. 

On the other hand, when zt = (1, t) and d = (1, tln), it follows from (38) and 
(39) that 

(41) Wd (As) = dte = 
-,ne 

and the second component of wd(As) has nonzero elements for s e 0. Hence, 
TcIZ : 0 and Qz :A Qv, so that PA is biased in this case. The same applies 
for higher order trends. 

Frequencies in the band Ac satisfy I As I > o)o > 0. It therefore follows from 
Lemma A and (37) that Wk(As) = 0(nI) uniformly for AS E Ac. Hence, 

(42) wd(A5) - O(n1I1) for all A5 E AC 

and, thus, TCD = W*ACWD has elements that are of O(n-1/2). 

4. FREQUENCY DOMAIN DETRENDING 

We consider first the fixed band regression model (22) and (23). The problem 
of the omitted variable bias evident in (28) can be dealt with either in the fre- 
quency domain or in the time domain. In the time domain, one simply detrends 
using the projection operator Qv = I - Pv, where V = [TZ, TCZ], as is appar- 
ent from the form of (26). In the frequency domain, the alternative is to leave 
the detrending until the regression is performed in the frequency domain. 

To do frequency domain detrending, we simply apply the discrete Fourier 
transform operator W to (24) and then perform the band spectrum regression. 
The transformed model is 

WY = WZOT1 - H2/A) + WFCZH2(A -PAc) + WX/A 

-W1hICX (PA-}SAC ) + WS 

= WZOT1 - H2/A)+ Ac WZH2(A -PAc) + WX/A 

-AcWX(/A -PAC) + WE- 

The resulting band spectral estimator for the band 9A is equivalent to a regres- 
sion on 

(43) AWy = AWZ(71- H2/A) + AWX/A + AWE, 

since AAC = 0, and therefore this estimator has the form 

(44) /3A = (X' W*AQAWzAWX) -1 (X' W*AQAWzAWy) 

= PA + (X'W*AQAwzAWX)-1(X'W*AQAwzAW6). 
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A 

Clearly, E(/3A IX) = PA, and the estimator is unbiased. A similar result holds for 
the corresponding estimator P/A, of PAc. 

In this frequency domain approach to detrending, the so called Frisch-Waugh 
(1933) theorem clearly holds, i.e., the regression coefficient P3(A on the variable 
AWX in (43) is invariant to whether the regressor AWZ is included in the regres- 
sion or whether all the data have been previously detrended in the frequency 
domain by regression on AWZ. 

Following (32), the natural narrow band approach is to use an augmented 
regression model that includes the dft of the trend in the regression, viz. 

(45) wY (As) = a')wx (As) w,,wx (As) + ?',a w, (As) + residual, 

for frequencies As centered on C). This narrow band regression leads to the estimate 

(46) f3f = ( -l0, 
clo C)=O 

similar to (34). 

5. ASYMPTOTIC THEORY 

We derive a limit distribution theory for the detrended band spectral regres- 
sion estimates and consider what happens to the bias as n -+ oo. We start by 
introducing some notation and making the framework for the limit theory more 
precise. 

We start with the parametric case where there are the two discrete bands 
AA and IAC. Let nn = #{As E 2A} and n, = #{As E AAC} be the number of 
fundamental frequencies in the bands AA and $AC. It is convenient to subdivide 
[-T, T] into subbands Ai of equal width (say, I/J) that center on frequencies 

{w1j = ITj/J: j =-J + 1, . . ., J-1}. Let m = #(As E Aj) and suppose that Jf of 
these bands lie in 9AA It follows that n and na can be approximated by n = 2mJ 
and na = 2mJa, respectively. 

In the nonparametric case, we focus on a single frequency () and consider a 
shrinking band A,) of width r/J centered on (0. Again, we let m = #(As E X,,). 

The following condition will be useful in the development of the asymptotics 
and will be taken to hold throughout the remainder of the paper. Additional 
requirements will be stated as needed. 

ASSUMPTION 3: (a) na/n 0 and nc/n -> 1 - 0 for some fixed number 0 E 

[0,1] as n - 0oo. 
(b) m, J -oo, and J/i > Oas n-oo. 

For the bias in PA to vanish asymptotically, the deviation that depends on the 
term 

{XfQz4FQzX}l{XfQiItQiIZtCX(/(A - PAAC)} 
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in (28) needs to disappear as n -- oo. We will distinguish the two cases of sta- 
tionary and nonstationary (integrated) i, corresponding to Assumptions 1 and 2 
in the following discussion. 

5.1. The Stationary Case 

Here, the bias in PA will disappear when 

(47) (X QZ TQZX X, QZTQZ TCX Vp (47) (XQ1QXj X zPzkx 0. 

A similar requirement, obtained by interchanging T and Tc in (47), holds for 
the bias in /3Ac. We have the following result. 

THEOREM 1 (Semiparametric Case): If Xt and 6t are zero mean, stationary, 
and ergodic time series satisfying Assumption 1, and 5t is generated by (22), band 
spectral regression with detrending in the time domain or in the frequency domain 
is consistent for both PA and PAc. The common limit distribution of PA and P/A is 
given by 

n(/A -PA), n (A -PA) N(, V) 

where 

(48) Va (L fXx(w) dt) (2 f 
fxr(w))f_(W(w) 

d(D) (f f 
_() 

d@) 
A AtA 

with an analogous result for /Ac and /3c. 

In the stationary case, therefore, the bias in band spectral regression from time 
domain detrending disappears as n -> oo and there is no difference between the 
two bands AA and Ac in terms of the limit theory. It is therefore irrelevant 
whether the main focus of interest is high or low frequency regression. The form 
of the asymptotic covariance matrix Va is a band spectral version of the familiar 
sandwich formula for the robust covariance matrix in least squares regression. 
Va can be estimated by replacing the spectra in the above formula with cor- 
responding consistent estimates and averaging over the band AA. For the full 
band case where AA = [-X, T], the matrix Va is the well known formula for the 
asymptotic covariance matrix of the least squares regression estimator in a time 
series regression (c.f. Hannan (1970, p. 426)). A formula related to Va was given 
in Hannan (1963b, equ.ation (16)) for band spectral estimates in the context of 
models with measurement error. 

A similar result holds in the nonparametric case, but with a different conver- 
gence rate. 
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THEOREM 1' (Nonparametric Case): If Xt and Et are zero mean, stationary, 
and ergodic time series satisfying Assumption 1, and 5, is generated by (3), non- 
parametric band spectral regression with detrending in the time domain or in the 
frequency domain is consistent for P,, = b(-w). The common limit distribution of 
IB, and P, is given by 

m(/3-/~o),I N m(If -I3t) Nc (0, V@, 

where 

5.2. The Nonstationary Case 

Here, the distinction between low frequency regression and regression at other 
frequencies becomes important. In the band regression model (22), there are 
only two bands AA and Ac. Over AA, which includes the zero frequency, the 
estimator is known to be n-consistent when PA = PAC (see Phillips (1991a)) since 
in that case, the regression equation is a conventional cointegrating relation. 
When PA # PAc, the same result continues to hold over the band AA, as shown 
in Theorem 2 below. In this case, the bias in (28) disappears when 

(49) (XQ_rzXlXQ_>Q~rX 0. 
( n2 )( n2 ) 

Note that in (49) the moment matrices are standardized by n2, because the data 
nonstationarity is manifest in bands like AA that include the zero frequency. Over 
frequency bands like Ac that exclude the zero frequency the rate of convergence 
of the moment matrices is slower and the bias in /3AC will disappear when 

(XQzvfcQzx>-l(XQzTcQzX X) 

Our starting point in the I(1) case is to provide some limit theory for dis- 
crete Fourier transforms of I(1) and detrended I(1) processes. The following 
two lemmas do this and provide a limit theory for periodogram averages of such 
processes. The remainder of the limit theory then follows in a fairly straightfor- 
ward way from these lemmas. To make the derivations simpler we confine our 
attention here to the case of a linear trend. 

LEMMA B: Let Xt be an I(1) process satisfying Assumption 2. Then, the discrete 
Fourier transform of Xt for A, :A 0 is given by 

(51) wk (As)= 
I 

iA W(As) 
eiAs [ -1 

_ io] (51) w1A~) 
=I - eiAs , 

A~ - eiA, n112 
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Equation (51) shows that the discrete Fourier transforms of an I(1) process are 
not asymptotically independent across fundamental frequencies. Indeed, they are 
frequency-wise dependent by virtue of the component n-1/2&,, which produces a 
common leakage into all frequencies A, : 0, even in the limit as n 0. As the 
next lemma shows, this leakage is strong enough to ensure that smoothed peri- 
odogram estimates of the spectral density fx (w) = I1-e'Z -2fv (w) are inconsis- 
tent at frequencies C) E Ac. Lemma C(f) shows that the leakage is still manifest 
when the data are first detrended in the time domain. On the other hand, it is 
apparent from (41) that we can write (51) as 

(52) w. (As = jWV (As) + w t1 (As) [A, - o], 

from which it is clear that frequency domain detrending (i.e., using residuals from 
regressions of the frequency domain data on wt/ll(As) or Wd (As)) will remove the 
second term of (51) and thereby eliminate the common leakage from the low 
frequency. 

LEMMA C: Let it be an I(1) process satisfying Assumption 2 and dt = (1, tln). 
Define Xd t = - d (D'D)1(D'X) and let WXd(A) be the discrete Fourier trans- 
form of . d,t. Then, as n -> oo: 

(a) n2 LA EA wj(As)wj(As)* 4o BL A; 

(b) n3/2 EASE9A wx(As)wd(As) 4o f Bxu; 
(c) n -2 ~~d 1 

(c) n2 EAsEaA Wx.d(As)WX.d(As) gf BX.11BX,11; 

(d) n 1/2EAS Ec wi(As)wd(As)* -2 Bx (1) fc (eiAf (A)*/(1-eiA)) dA; 

(e) n1 EASE9CAxw(As)wj(As)*rfac [fxx(w)+ 1 (1/(11-eiwI2))Bx(1)BX(1)'] dw; 

(f) n1 EASEc wXd(As)wXd(As) 4 f [fXx(w)?(2r)1g(w,Bx)g(w,B)] dw; 

(g) n1~ EASEXCA wxd(AS)wd(AS)* -21 fjc g(w,) BX)fi(wt)* d@; 
(h) EASEXc wd(As)wd(As) > 1 fA f(w)f(w)* d@; 
(i) n 1 LASE~A AWd(AS)Wd(AS) -f uu; 

(j) n-2 LA E0 Wx(As)Wxd(As)* > f B x,B; 

-1/2 ~~d 1f 

(k) n2 LASEac Wx.d(As)WXd(As)* f gj B x.f1B d1 ; 

(1) n EAsE9o Wd(As)Wd(As) - f- uu'; 

(i) n312 EAsEaA wd(As)wd(As)* 4f B1 u; 
(n) (n/in) EA SEao Wd(As)Wd(As) -> f(x.)f(B)* w Cl 0; 

(o) 1nM_1 EASE9W w(As)wd(As)* 4 (e /(I - eiw))B(1)fi(w)*, w : 0; 
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where f,, (w) = 1- eiwj f - f,, (w), f1 (w) = (0, eiw/(ei0 - 1))' for C) 0, and 

B,1.(r) = B(r) -( BXu)(j uu'> u(r), 

and 

g ((),Bx)= e Bx(1) +( BXu') ( uu'> fi(w)) 

Joint convergence applies in (a)-(o). 

With this result in hand, the I(1) band regression model can be analyzed. The 
limit theory for time domain detrended band spectral regression is as follows. 

THEOREM 2: Suppose ( Xt) satisfies Assumption 2 and 5t is generated by (22). 
Then 

(53) n(/3A -/3A) - .(I BXIIB>I) 1 Bx11dB8) 

= MN (?, (j BX B) 27Tf () 

and 

d 

where 

= [/; [27fxx(w)) +g(w), B)g(w), Bx)*] d@], 
XA 

and 

(55) g = [(ig g(), Bx) f (w) do) (jo uu j uBij. 

So, when the regressors are I(1), band spectral regression is inconsistent in 
frequency bands that exclude the origin when detrending is performed in the time 
domain prior to frequency domain regression. The bias is random and is linear 
in the differential, PAC - PA, between the coefficients in the frequency bands. In 
the case of a linear trend z = t, the limit function f1(w) eiw/(eiw - 1) and then 
the bias depends on 

g(w, Bx) = ei [Bx (1)-(Io Bxr)(I r2) 
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When f.,. (w) = (1/2r) 11 - eiw 1-2 (i.e., when vt iS iid(O, 1)), a simple calculation 
reveals that the probability limit (54) of /3AC simplifies to 

[( Bxrr (gL r2 -Bx(1)] ( r2 ( Bxrr 
(56) /3Ac?+(/PA -/Ac)?[B(1- B) r)] 

(1 + [Bx ( 1)- L Bx r) ( r2 ) 

So, in this case, the bias is not dependent on the width of the band IBAC. 

The following theorem gives the corresponding results for the nonparametric 
estimators 1B, and /3w. 

THEOREM 2': Suppose ( Xt) satisfies Assumption 2 and 5, is generated by (11) 
where /3(L) and /3(L) both have valid BN decompositions. 

(a) For w = 0, 

(57) n(/30- 3) [jl B.B ] B dB8- B{ XdB' +?,A}(1)] 

where 0 = ,/3(1) and A, = E _OO E(vovJ). For (l : 0, 

(58) /3 ( d + [271S -1f, (w) - 1] (e-i)(e io-1) 

where ,/3 = /3(e-i) = b(-), 

= 2irf,x() ?g(w), Bx)g((w) Bx) 

and fxx(w) = i - ei j2fv(w)). 

(b) For w = 0, 

4 n(PO - 0) B B . IB ][| Br ,dB, 

For X :A 0, 

a(:@ - /@)-NC (?f (@)) 

REMARKS: (i) In Theorem 2'(a) it is apparent that the limit distribution of 
B3 has a second order bias term involving 

If BX., dB' +? A1 

which is nonzero except when /3(1) = 0, a circumstance that arises when the filter 
/3(L) is symmetric (see Remark (ii) following Lemma D in the Appendix) as it 
is in the case (19). In that case, the limit (57) reduces to the same mixed normal 
distribution as (53). Part (a) shows also that the estimator ,B, is inconsistent at 
all frequencies w :A 0 except when /3(e`'0) = 0. The bias in PBO and inconsistency 
in /,B are due to omitted variable misspecification in the regression. 
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(ii) Part (b) of Theorem 2' shows that the estimator ) based on the aug- 
mented regression (32) is consistent for both co = 0, and w 7 0. The same mixed 
normal distribution as (53) applies when Cl = 0. When Cl :A 0 the limit distribution 
is the same as in the stationary case given in Theorem 1'. 

The following results give the limit theory for the frequency domain detrended 
estimators in the fixed band and narrow band cases for nonstationary data. 

THEOREM 3: Under the conditions of Theorem 2 

(59) n(^f - 1) d (jiB BXB) -1| B.11 dB8) 

and 

(60) n(f A C -Ac) N(0 , [Lfxx(w)d@ 11[27L fxx(w()f d@ 1 

x [If.X.((o) d(w ) 

In fixed band regression models there is usually some advantage to be gained 
by averaging over the band and using weighted regression, as shown in Hannan's 
(1963a, b) original work. Efficient regression is based on a weighted band spec- 
tral regression that uses a preliminary regression to obtain estimates of the equa- 
tion errors and a corresponding estimate of the error spectrum, say f(wo), that 
is uniformly consistent so that sup,,, If?(w) -f?(w)I -p 0 (e.g., Hannan (1970, 
p. 488)). When such weighted regression is performed with frequency domain 
detrending, the resulting estimates have optimal properties for both the nonsta- 
tionary component and the stationary component. For PA, the limit distribution 
is the same as (59) and is optimal in the sense of Phillips (1991b). For fBAc, 

the limit distribution of the efficient estimate is normal with variance matrix 
27r[fjc fxx(wj)f__(w<)-1 dw]-1 and therefore attains the usual efficiency bound in 
time series regression (e.g., Hannan (1970, eqn. (3.4), p. 427)) adjusted here for 
band limited regression (Hannan (1963, eqn. (16))). Details are omitted and are 
available in an earlier version of the present paper. 

THEOREM 3': Under the conditions of Theorem 2', at w = 0 

n(po-f (|> Bx tB l )( B , dB) 

and for Cl :A 0 

(61) (/ - t/3) 4 
NC(0 f((O)f"(w)1)) 
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1088 D. CORBAE, S. OULIARIS, AND P. C. B. PHILLIPS 

So, PA and /0 are consistent and have the same mixed normal limit distribution 
as that of PA in (53). The limit distribution makes asymptotic inference about A 

and I3o straightforward, using conventional regression Wald tests adjusted in the 
usual fashion so that a consistent estimate of the spectrum of Et is used (based 
on regression residuals) in place of a variance estimate. 

The frequency domain detrended estimators /3f4 and /3f are also consistent, 
unlike the time detrended estimator P,c (w :A 0) in the nonstationary case. The 
limit distribution of /f 4 is the same as it is in the case of trend stationary regres- 
sors (Theorem 1) and has the same n rate. The nonparametric estimator /3t is 

m consistent and is asymptotically equivalent to the augmented regression esti- 
mator /3w. As far as the model (11) is concerned, it is therefore apparent from 
Theorems 2' and 3' that if the correct augmented regression model is used in 
estimation, it does not matter asymptotically whether detrending is done in the 
time domain or the frequency domain. 

6. CONCLUSION 

It is natural to eliminate deterministic trends in the time domain by simple least 
squares regression because the Grenander-Rosenblatt (1957, p. 244) theorem 
shows that such regression is asymptotically efficient when the time series are 
trend stationary (although this conclusion does not hold when there are stochas- 
tic as well as deterministic trends-see Phillips and Lee (1996)). In a similar way, 
it seems natural to eliminate deterministic trends in band spectral regressions by 
detrending in the time domain prior to the use of spectral methods because these 
methods were originally intended for application to stationary time series. How- 
ever, this paper shows that such time domain detrending will lead to biased coef- 
ficient estimates in models where the coefficients are frequency dependent. In 
models that have both deterministic and stochastic trends, time domain detrend- 
ing can lead to inconsistent estimates of the coefficients at frequency bands away 
from the origin. The inconsistency, which arises from omitted variable effects, 
can be substantial and has been confirmed in simulations that are not reported 
here (Corbae, Ouliaris, and Phillips (1997)). 

The bias and inconsistency arise from omitted variable misspecification and 
are managed by use of an appropriate augmented regression model. The situa- 
tion is analogous to a structural break model, but here the coefficients change 
across frequency rather than over time. An alternate approach that is suitable in 
practice is to model the data and run regressions, including detrending regres- 
sions, in the frequency domain. In effect, discrete Fourier transforms of all the 
variables in the model, including the deterministic trends, are taken and band 
regression is performed. When nonparametric estimation is being conducted, the 
same principle is employed but one uses a shrinking band that is local to a par- 
ticular frequency. In the nonstationary case, it turns out to be particularly impor- 
tant to specify the model in terms of levels and differences as in (15) leading to 
the fitted regressions (32) and (45). An estimate of the frequency response coef- 
ficient at a particular frequency is then recovered from a linear combination of 
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BAND SPECTRAL REGRESSION 1089 

the coefficients in the regression as in (34) and (46). This approach, which can 
be regarded as a frequency domain version of leads and lags dynamic regression, 
provides a convenient single equation method of estimating a long run relation- 
ship in the presence of deterministic trends and short run dynamics. 
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APPENDIX 

LEMMA D (Two Sided BN Decompositions): If C(L) = >jI_OcjLj and 2*_ IiI IIcjII <o, 

then: 

(a) C(L) = C(1) + C(L)(1 - L), where C(L) = L?_ c1Li, with 
00~~~~~~~~~j 

E Ck, j > 0, 
k=j+l 

- Ck, j < 0; 
k=-oo 

(b) C(L) = C(eiw) + Cw(e-iwL)(e-iwL-1), where Ctu (L) = ? _ JLi, with 

Cke j > 0, 
k 1k=j+1 

C keikw, 
j < 0 

k=-oo 

PROOF OF LEMMA D: The proof is along the same lines as the proof in Phillips and Solo (1992, 
Lemma 2.1) of the one sided BN decomposition. 

REMARKS: (i) The condition 

co 

(62) E IiI 2 IIci 11 < ?? 
j=-00 

is sufficient for (a) and (b) and ensures that < 0o but it is not necessary for the latter. For 
instance, the series ,8(L) = L7? fljLj, whose coefficients fj are given by (19), fails (62) but still has 
a valid BN decomposition with LJ_N /3 < oN. To see this, let c - eii./j and then fj is a constant 
times the imaginary part of c . Define S, = eIx = (eix/(eix - 1))(eilx - 1). Partial summation gives 

ei i ix 1 e i(j)x 1 
~~e e=-S? 
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It follows that 

Snl S, eix ei(i-l)x - 

n m e'i - 1]m111-1 sl )Z1- e--t 
j=/?I+l 

j(j-1) 

and letting n -- oo we have 

=, e S e' ei(1-l)x _ 

]=/+1 
j m eix - 1 j=m?+1 A(j-1) \m/ 

with a similar result for c,,. We deduce that L' I l2 < oo. Hence, p(L) = L_I j Li with f3j 
given by (19) has a valid BN decomposition with L f3- pj < 00. 

(ii) The case of a symmetric filter with cj = C_j for j 7# 0 is an important specialization, which 
includes the series with coefficients fj3 given by (19). In this case -c_, = S7, 1 = E7,, cj = 

c,, + c,,l. Then, C(1) = 7 1 (aj + Lj) + a0 = I (j - j- cj) + c 1 j= 0. If C(L) has a valid BN 
decomposition, we deduce that 

(63) C(L)=C(l)+C(L)(1-L)2, C(L)= czjLi, 
j=-co 

where 

| Ck j > 0, 
k t=j+ I 

Ci= 

Ck j<0 
k=-co 

A sufficient condition for the validity of (63) is L. _ ijij 11 < 0 or Y,00 Ijl 11cj 11 < <0 in terms 
of the original coefficients. 

PROOF OF LEMMA A: Part (a) is well known (e.g., Gradshteyn and Ryzhik (1965, formula 
0.121)). For part (b) we use partial summation to give 

A ( tkeiAst Y (tk)eiAst + (t - 1)k 
(,AeiAst) t=1 t=1 t=1 

= E |-E (' t)tki(-i }eiAst + - 1)iAs(-) (eiAs-1) 

or 
I k k1 \ 

n k I ( ki (-1 )i eiAst + 1(t-l)keiAs(t- ) (eiAs -1) 

t=1 j=1 t =1 

Using this formula in the identity 

Et tkeiAs t(eiAs -1) - nk(eiAs 1) + (t - l)keiAs(t-l) (eAs -1) 
(=1 t=1 

we get 

(itkeiAst) (eiAs-1) - k(eiAs 1) +nk - ( tk )i e 

nkeiAs +E ( )(-) (E tk eiAs ) 
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giving the recursion 

e 
iAs - eA 

k k 
Wk(AS) = n 

ik 
+ k (-1) Wk JAJ, 

which holds for s= 1. n (i.e., eiAs # 1). 
The initial condition 

ns=0, 
Wo (As) = LE iAst - | ,sO {=1 : s#=A0, 

follows by elementary calculation. For higher order trends with k = 1, 2, 3 we get 

n(n + 1) 0 

WI (AS) = eiAs 

eis -1' s#0, 

n(n+1)(2n+1) 

f 6 ' s =0, 
W2(As) = eAs [ 2 1 

es1 [7es-1 Je s0 

and 

(n(n+1)) s=0, 

W3 (AS) = eiAs 1 1 
n neiAs1 1n-3(n - 1) +6 s 

7& 
0 

L (~~eiAs1) (eiAs~~7'sO 

which lead to the expressions for Wk(As), k = 0, 1, 2, that are given in Section 2 following Lemma A. 

PROOF OF THEOREM 1: This follows standard lines and is omitted (see Corbae, Ouliaris, and 
Phillips (1997)). 

PROOF OF THEOREM 1': First, observe that 

(64) M I = {-1XQz , QX {m-X'QZ(.Qzy 

Next, from (8) and (9) we have 

1 -A (65) w,(As) = b(As)'w,(As)?+w?(AS)? + [e iAs -Asjl] 

(66) = b((o)'w (As) + w (As) ?O( 1) 

in the stationary case. We now find that 

(67) m-'X'QzT'QQzX = m- : wj(As)w(As)*+oP(l) -?P 27tf(w) 
As E93 

and using (66) we have 

(68) m-FX'Qz TI'Qzy = m-'XI "k', + op(l) 

= -1 E wj(As)wj(As)*b(-() + m-l wj(As)wj(As)* + oP(l). 
As Egi(o As E -gi (A 
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Then, from (64), (67), and (68) we have the expression 

(69) r(f30 -/3) = fm1 E w (A) w (As)*l fm-1/2 w (As)wg(As)* + op(l). 
AsE3w J As E93(o 

The family {w8(As): As E R,} are known to satisfy a central limit theorem (with limit N,(0, 27f?(w))) 

for dft's of stationary processes and are independently distributed2 as n -- oo. It follows from this 
result and (67) that 

(70) m E wj(As)wj(As) N,(0, (27)2f?(w)fx(w)), 
As EJw 

which leads to the stated limit theorem for f.. A similar argument gives the result for I3{. 

PROOF OF LEMMA B: Take dft's of the equation Ai, = v,, giving 

1I 

wj(AS) = n-1/2 E -I eiAst + WV(AS) = eiAs [wl (A) - n-/2 (e-iAsni -xo)] + w (A). 
t=1 

Then, transposing and solving yields the stated formula 

(71) w.(As) = liAs w, (As) - eiAs [i ,. 
eis 1 eiAs n 1/2 

PROOF OF LEMMA C: Par-t (a): This result may be proved as in Phillips (1991a). A new and 
substantially simpler proof uses part (e) and is as follows. 

n-2 w(As)wj(As) = w w(As) w(As)*- n-2 EwAs)wjAs)* 
AsE)j3A AsE[-7T, IT] AsE9i3 

=/>-2 Xt + O(n-1) 
t=1 

d 
I ,/n B, B,., 

where the error magnitude in the second line follows directly from part (e) below. 
Past (b): First note from (41) that wd(O)' = ( n, (n+ 1)/2n/2), so that n-2wd(0)' 2(1, 2) = 

f6= it', and 

Wd(AS) (?, I2 ii) = f, (As)', s #& 0. 

It follows that as n oo 

(72) 
^, X\ 
Wd (As 0 r11 + 0M] 

2 Hannan (1973, Theorem 3) showed that a finite collection of w8(Aj) satisfy a central limit theorem 
and are independent. Here the collection {A, E 97, } has m members and is asymptotically infinite. 
Phillips (2000, Theorem 3.2) showed that an asymptotically infinite collection of w8(Aj) satisfy a 
central limit theorem and are asymptotically independent for frequencies A, in the neighborhood of 

1+1 the origin provided the number of frequencies m = o(n-2 P) where E(ls,IP) < oo for some p > 2, 
i.e., provided the number of frequencies does not go to infinity too fast. This result can be extended 
to frequency bands away from the origin, although a proof was not given in that paper. 
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a formula that holds for both s fixed and for s oo with (s/n) 0. On the other hand, when 

As- A 0 as n -- oo we have 

(73) Wd(As) = (, ei(-i)?+( 1) = fi (A)'+?( 1). 

Write the summation over 9A as follows: 
AsEEAA 

= LE , 
]-LA-SEAC 

Then 

n 3/2( = / A ww(AS)w(d(As)*)n312 = wnw(As)wd(As)* 
Ase2j3A AsE[-T, ir] As EIAC 

= n-312 , wjAs)Wd(As)* _ 11-2 wjAs)fj(As)*. 
As E[-I, IT] As EJ3AC 

First, 

n-2 wj(As)fi(As)* =-2 , [1_eiAs w(As) -(eiAs [As)*] 
As E 93AC As E3AC 

0,O(n-1). 

Second, 

,r-3/2 E w(As)wd(As)* = 2E2i, y eiAstwd(As)* 
As[E 7r,ir] t=1 AsE[- 7r,7r] 

n--312 E&X d' = n-1 t adt 
t=1 t=1 

f B. (r)u(r)' dr. 

It follows that 

(n Awj(As)Wd(As)*) 

-* 

10 Bj(r)u(r)'dr 
As Eg3A ? 

Part (c): First, observe that 

[nr] ~ B~(r)' u(rV ([1 -1 =B,, (ri'. n A [111_] B,(/-)' -l ) u(rY 
f, f') 1 uB= 

Then 

n2 ( 3Wx'.d(As)W.,.d(As) ) BX.UB1l( 

as in part (a). 
Part (d): From Lemma B we have 

w.~(As) = i W, (As) - 1 A eiAeiAs n 1/2 

As in the proof of part (b), we have n-1/2x, Bx(1), and, if As A # 0 as n oo, 

d 1 e iA 
w.j (As ) i NJ(O, 27rf,,(A))- iA N (O, 2 rf& (0)) = Nc eiA 21 tv (A) + (?) eiA 

=N('O,2,7Tfv(A) ?f& (O) 
I 1 - eiAj12 J 
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It follows that 

n-112I wr(Aj)Wd(A)* = w1< Af(Aj* 
A, E-Ac As, 93A A A 

- \1 1 , eAs ( )Wl^(As)t,I(s, - f! A E0 C ( 1 iA) eiAs1/2eiA 

= term I + term II, say. 

Since the w,(As) are asymptotically independent NJ(O, 27&f (As)), term I -O 0. For term II, since 
o= OP(l), we have 

n- [ '?]e() f, (As)* - ", 2-_ e 
f t (A,)* A A~~~~1; 

2T (Q1) eAf,C 1( )e dA) 

so that 

(74) term II -2 (B(1)J e f ( A) dA), 

giving part (d). 
Part (e): From Lemma B we get 

nA1s wjs)jA 
)* d 

n-1 wn A)w A) 
As E JA5 As&A [c WItesAs )12s 1/2 n/ i+o 

- 21 m ,, 1eiI2 rWvkILs)Wv- kIs) + p112 il2j+0o,14), 
AIA 

-75) -x 2 (As) = w. (As)*-fs (As)* ( (1A)+ ' ( ) +'X (1) 
21J Ja <II?J e1(i I2 As'E 1 -I12eiAsI12 n'!2 

n 
1!2 

iA NCO 2gfi (A1 -AB()-()( ll)(lB 

f 
_ d() d (O, 1 dwi B (1)- , (1)', 

CI1-eiwJ2 2TJcI1-eiwJ2 

when 
As A 7& 0 as n oo. Her 

as required. In the penultimate line above, 2BTf,(wj) = (1/r) YAsE?Y. w,(As)w(As)* and f(wo) - 

f"'(w) --* 0. 
Par-t (f): Note that 

(75) wx.d(As)* =wi(As)*- Wd(As)*(tii DD) '(n-DX,,) 

1 
0,(s* 

eis[' 
_ 

o]_n /2Wd(As)*(nl-ID'D)-1(n-3/2 D/k) 
1e-iAs w~()~ e-iAs n ]I2 

d1- ei - eiA * - 

1 Nc(0, 2,7f,,,(A)) - _i B, (1)' - ~(A)*( itili) u\0iB} 

1 
- Nei N(O, 2,7f,,,,(A)) - g (A, Bx), s ay 

when As A A #0 as n -~oc. Here 

1 eiA 

This content downloaded from 137.132.123.69 on Fri, 05 Feb 2016 01:15:25 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


BAND SPECTRAL REGRESSION 1095 

and the complex normal variate NJ(O, 27f,,-f,(A)) in (75) is independent of the Brownian motion B. 
If (oj = g-j/J is the midpoint of the band .fj and oj -c o as n oo, then 

27Tf, , d(j1) 
= I E W,d(Aj)W, d(Aj)* 2 '(,,() + g(w Bj )g(w, B). 

As E93j 

= 2rf v(w)+g(w, B,)g(w, B,) 

We deduce that 

E Wx.d(As)Wxxd(A 
(A)*+oM 

ASE?2A5 Ja'IjI'J Ase9A 

- 2J L 27frx.d((O) + o( 

."c [f x((w)) + (27)'g((w), BX)g(,) Bx)*] d(, 
A 

which gives part (f). 
Part (g): Observe that 

-1/2E wx,1(As)wd (A,)* = n-1 w.,l(A,)fl (As)* +op() 
As E3Ac A, E3cA A 

(-7r g(A, Bx)f (A,)* 
As e95c 

1(7~ 
n g (As, 

B.)f1 
(As)* 

- g((w, BX)fi(w)* dw, 
*A 

as stated. 
Part (h): From (73) we have 

wd(As)wd(As) 1 > f(A)f() s Jf ()f (o)*d 
As Eg3c As E9J3cA 

as required. 
Part (i): Using part (h), we get 

11-1 Y Wd(As)Wd(As)* = i'-1 Y wdl(As)wd(As)+Op(n) 
AsE93A AsE[-7r, ir] 

= n-I d, eiAswd(As)* + OP(n-) 
t=1 AsE[- i r] 

= n 
- 
d,dt + Op (n- ') 

t=1 

j it(r)it(r)' di, 

giving the stated result. 
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Part (j): Using the representation of w,(A,) in Lemma B, the fact that Isl > J -- oo when A, e 
[-g, r] - 90, and proceeding as in part (a), we find that 

/I,-' , wjAjwj(Aj* = n w ] (ADw., (A,)* + oP(1) 
AS Eg30 -AS CE[- r, ir] As E[-r, r]-'A30 

=n-2 f W(As)Wj(As) 
AsE[- r, 

ir] 

(>iz Jj^ [wv(As)w,(As)*? j> f/2]) 

= [Ln-2 ,x]?+OP (1)4 J/;BVB'- 

Part (k): In the same way as parts (U) and (c) we find that 

,1 

E- ,W, .d(AS)WX.d(AS)* = n-2 Ex.dtX.d,t +OP(1) , B,,.IB'.I 

AS~~~~ ~ ~~~~ 0SS Y=1 ? / 

Part (1): From part (b) we have n-112wdl(O)' -O = (1, 2) = itU' and, for AS + 0 with (S/n) O~ , 

we have wdl(AS)' = (0, ( n/2TSi)[1 + o(1)]) from (72). Thus, for wo = 0, we find that 

1 1 1~~~~~~~~~~~~1 

- E wd(sw A) = -!wd (O)wd(O)'? + ( AS I(S 

AS~~~~~~~~~~2 
ii +03 AS B'.-{ n ii~~~~~~~~~~ P _ 

n ~~ 2(27T)L 524] 

Part (k): AS in part (b) we find that 

2 n-2 P ,d oB(l) 
t=1 

4,j B,.(r)u{(r)' dr, 

since 

n.X3/2 ) 
w~ 

w(AS)=OP ( 1E wS (AS)) 

Pa 
(' 

t [ WV (Ap 
- 

eb we ] 

Part (n): For wo 7W 0, using (73) we obtain 

m 1 s e93@ ( 1) s(As)m E fi (Asfi (As)* @1 

- Y W d(As)Wd(As)* - WdE)W 0 wl(s)dA) 

m m~~~~~~~~~~~~~~~~~~ 
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Part (o): For co 7& 0, using (73) we obtain 

E wJ(A)wd(AJ* = w- E w(AJ [fi(AJ) o (1) 

rn ~~~Fwv(As>eis 

XI 

d ASE&jWL 

[ 

es 1-;(A) 

]-fe(As)*+ o (1) 

1_ei, (l)i() 

Finally, joint weak convergence in (a)-(o) applies because the component elements jointly converge 
and one may apply the continuous mapping theorem in a routine fashion. In particular, Assumptions 1 
and 2 ensure that 

[tir] 

n-112E w,(A)' 
4 (B(r)', A with (A=NC(O,2,frVV(A)), 

t=1 

and where (A is independent of B(r) for all A #& 0. The required quantities in (a)-(k) are functionals 
of these elements and smoothed periodogram ordinates (like (1/m) LAEAsaj w,(As)w,(As)* for -) c) 

as in the case of part (f)) that converge in probability to constants. 

PROOF OF THEOREM 2: Note that 

P3A -f3A = X{X'QzFQzX}-{X'QZ T QZL IcX(/3A /3Ac )-]}. 

We consider the limiting behavior of n-2X'QztQzX and n-lX'QzTQzTcX. Define X'd = - 
d(D'D)-'(D'X). Since it is an I(1) process and satisfies an invariance principle when standardized 
by n-'2, we have 

(76) n-l[lr] 4 Bx (r)' - u(r)'(j uu') j uB' = Bx(r)', say. 

Write the discrete Fourier transform of i'd as wX.(As) and then from Lemma C(c) we have 

(77) n 2XIQ1fQX = n( El d(AS)wAd()) 40 

Since fo Bx, ,B. > 0 (see Phillips and Hansen (1990)), n 2X'QzTQzX has a positive definite limit 
as n -- oc. 

Next, decompose n- X' QzQTQzTCX as follows: 

(78) XQz t Qz TCCX XQzW*AWPzW*ACWX X'QDW*AWPDW*ACWX 
(78)=__ 

n n n 

X/PDW*AWPDW*AcWX XIW*AWPDW*ACWX 

n n 

- term A - term B. 

Take each of these terms in turn. Factor term A as follows and consider each factor separately. Write 

(79) ,'XPDW*AWPDW*AACWWX ( X'PD W*AWD\ (D'D )1( D' W*ACWX 

(79) = K ~~~~~nn3/2 n)K1)K 
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1098 D. CORBAE, S. OULIARIS, AND P. C. B. PHILLIPS 

The first factor is 

(80) n-l12X'PDW*AWD n-112X'D (D'D\-\DIW*AWD 
n n n n 

4 (j B~ ') (I uu') (jt 1u') = j B, 

in view of (76) and Lemma C(i). The third factor is the conjugate transpose of 

(81) n-112X'W*AcWD = n-112 E w.,(As)wd(As) 
As, EAc 

27= (Bx(y) fe f C eiA dA), 

from Lemma C(d). The limit of term A now follows by combining (81) and (80) and using joint weak 
convergence: 

(82) XIPDW*AWPDW*ACWX= n /2 XPDW*AWD (D'D (Dw*ACW(/2)) 

Next consider term B of (78). Using Lemma C, we obtain 

(83) XW*AWPDW*AC WX 

n 

1 ASE2I~A d 
I \I (sI WdDA 1( eAl(A) 

(~~~~~~ 
BX u/ Al 

' 
f uu ( 

l - , _dA Bx l )) 

Combining (82) and (83) in (78) we find3 

(84) n 'WAWQDQW*cX = oW(). 

As for the limit distribution of A, we have 

(85) n(A-/A)=j X'QzQzX }|-1 (X QZdQZe } 

-({ X Qzxff Q X |U{ (IQz3frQ-eriA(d 4BAB c)} 

From Lemma C(c) and (77) above, we have 

(86) n-2X'Qz1Q zX 4 BQ TB' = , = G 

3 By changing the probability space (on which the random sequence i, is defined), we can ensure 
that both terms tend almost surely to the same random variable (see, for example, Theorem 4, 
page 47 of Shorack and Wellner (1986)). Then, in the original space the difference of the terms tends 
in distribution to zero giving the stated result. 
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BAND SPECTRAL REGRESSION 1099 

and from (84) 

(87) (X'Qz2QzX )1( XQ0Q.cX) 

Next, 

~~~~~~~~~~~~~~~~ 
(88) X QZ QZs =-1 E W,d(AS)W8d(AS)*= - E Wx.d(AS)Wj(AS) n As E-,A nAs E93A 

-( 3 ,E wx.d(As)Wwd(As)*)(DD) 8) 

Then, using (76) and proceeding as in the proof of Lemma C(a) above, we find 

(89) n-1 W Wx.d(As)w(As)* = n-1 E Wxd(As)w(As)*-n- E Wxd(As)wj(As) 
As EfIA As E[-r, lr] AsE93AC 

= n- Ex.d, tst - oP(1) Bx1 B1,dBE. 
t=1 

Further, from Lemma C(b), (i) and Assumption 2, we obtain 

(90) 3 Wd(As)Wd(As))( D (D ') (j BX1') (j Ull') (J it dBE) =0, 

since fl BXu' = 0. Combining (88), (89), and (90), we deduce that 

(91) X'QntQ 4 10 B1 dBE. 

The limit distribution (91) is a mixture normal distribution with mixing matrix variate fl Bx,B',. 
It now follows from (86) and (91) that 

(92) j Izj2ZX } j xQZtQBs } ( BX.BLU) (j B XdBE) 

MN(0, 
2 

TfEE(0)(jo Br.U B'x. 
)) 

Using (85), (87), and (92), we deduce that 

n(A -A) A [ BX.UB1.] [j Bx dBE]v 

which gives the stated result. 
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For the limit of f3AC, we need to examine the asymptotic behavior of the bias term in (29), which 
depends on the matrix quotient (nlXIQzIcQzX)l(nlXIQzIcQzIX). Take each of these fac- 

tors in turn. First, 

XQZTCQZX X QDTPQDX -1 E WXd(AS)W,.d(AS) 
n n 

As, Es 

where WX.d (As)* = w - (A)* -Wd (As)* (n-l D'D)-1 (n-D'X) . From Lemma C(f) we have 

(93) nI E Wx.d(As)Wx.d(As) , J [fx(o ) + (27r) g(wo, B,)g(wo, B,)*] dw, 

which is a positive definite limit. Next, 

n lXIQZTCQZ4TX 

- n-lX'QzTcCPzX = n-lX'QDTCPDTX 

n- (1/2 1 wx.d(As)Wd(As) )(n-1D'D) 
I 

(n-3/2 SE Wd(AS)wi(AS)). 
A, E93c AsE!@AA 

From Lemma C(g) and (b), we obtain 

(94) n t X'QZTCQZTX - 2 f g(,),B.,)fl(,()*dc,) fJ Ull) f/ u B'. 

It follows from (93) and (94) and joint weak convergence that the asymptotic bias term for f3AC 

involves 

(J,XI-xQzITCQzX)-l(n-lX'QzTCQzTIX) 

d F 
ci [27fxx(() ?+g(o, B,)g(, Bx)*Id(w] 

LA 

x [(f g(co,Bx)fJ(co)*dc))(f uu') 
f 

uB'.] 

establishing the stated result. 

PROOF OF THEOREM 2': Part (a): From (64) and (11) we have 

(95) ,, = 3 (1) + {XI QzT. Qz "I1 {x- QZT0QZ 1. 

Since gt is a strictly stationary and ergodic sequence with mean zero and satisfies a central limit 
theorem, (n-1D'D)-1(n-1D'9) = O (n-1/2), and so 

(96) ' 
-zI(n-1Z'Z)-1(n-1Z',) = '-z5-1'(n-1D'D)-1(n-1D'g) P- . 

Then, since /3(L) has a valid BN decomposition, 

(97) n 1X'QzT.QzE = n1 E w.d(As)wg(As)* + oP(l) 
As E9w 

= n1 E Wid(As)wJ(As) -n1 E w.d(As)wV(As) f(e ) + oP(l). 
As E93w As E$Aw 
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When o = 0, we find as in (89) and Theorem 3.1 of Phillips (1991a) that 

(98) i< 3E w. 
d(Aj)w8(As)* 

4 BXc1dB, 
As cz ? 

and 

(99) 1<-' E wid(As)wv(As)* j Bx.,,dBt+ ?x, 
As c930 

where A, = >- E(vov'). We deduce that 

(100) n- 101 BxB,, dB 1 B dB'd + ,x }/(1) 

Next, as in Lemma C(c) we find that 

(101) n-2% 'QjrQ 4,j BV UB 1Y.U 

Combining (100) and (101), we obtain 

n -/3(1)) 4 [ BXBi. UI] [j Bx., dB8 - {j B],,dBd + Ax }1(1)]. 

Now consider the case where co =A 0. First we have 

m-lk'XQz1TJQzX = m- E wx(d(As)wx.d(As)*, 
As Ez3w 

and in a similar fashion to (93) we find that 

(102) m' E Wx.d(As)Wxd(AS) 27fxx(() ?+g((w, Bx)g(, Bx)* = say. 
As E0?3(0 

Next, from (15) we have 

(103) wy (As) = 3(1)'wj (As) -(e'As )'w, (As) + w8 (As) + op ( ).- 

Now 

(104) W,.d(As) = w(As)* - Wd(As)*(n- D'D)- (n- Dy), 

and, in view of the cointegrating relation (11), we have 

(105) n 2 Y[1r] *d 1(1)'Bx(r) =B(r), 

and it follows as in part (f) of Lemma C that 

(106) Wyd(AS) 
- w (A5)*-f1(As) As)* u') (U uB')/(1)+oPM(l). 

However, from the proof of Lemma C(f) we also have 

(107) Wx.d (As)* = w.(As)* f1(As)* uu') ( uBl) +oP(M). 

This content downloaded from 137.132.123.69 on Fri, 05 Feb 2016 01:15:25 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp
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We deduce from (103), (106), and (107) that 

(108) wyd(As)* - w (A,)*3(1) - f (AS)*( (iU') (I f uBl)f3(1)+w w(A,)* 

- wv(As)*f(e-iAs) + oP (1) 

= WX d(As)*/(1) -wv(Aj)*f(e-iAs) + w8(AS)* + op,(1). 

Then 

(109) n1'X'Qz'F,Qzy= n-l E W,,d(As)w,(As)* 

- in-' E Wx.d(As)w,(I(AS)/(1) 
As EJA(O 

-m-il E WX(I(As)wv(As)*f(e") + oP(l). 
A s (O 

Using (51) we find that 

(110) m-1 E wx(I(As)w,(As)* = n-I E w,(As)w,(As) + op,(1) 
As E931, As '-30 

= n<-l E 1 iA wv(As)wv(As); +op(l) 
As E,Y0 ea 

- 3 1 e eiAs 

It follows from (95), (102), (109), and (110) that 

- *d /3 (1)-1 Sj fvv(wo)/(e-i)=/)=3(1)+ I 19fvv(o)P(eiw)(e- 1). 

The true coefficient is 

/P. = b(-e) = /3(e-0) = /(1) ?/(6w)(e" - 1), 

so we have 

_o 'd ('0 + [ 2l 1 S'fvj(o) - 1]i(e-w)(e`0 -1) 

which gives the stated result since f (w)= I1-eioL2fvv(wO). 
Part (b): The estimator 3,, is derived from the augmented spectral regression (32) and the relation 

(34). In (32), y, and x, are first detrended in the time domain and then dft's are taken of the detrended 
data and differences of the detrended data. Since wj,,1(As) wv(AS) + op(1), (108) can be written as 

(111) W),.d(As)* = Wx.d(As)*/(1) - w,l ci(As)*/(e-iAs) + w8(As)* + op(1). 

First, take co = 0. In this case, the regressors wx.d(As) and WJx.d(As) in (111) are asymptotically 
orthogonal after appropriate scaling because 

(112) m-1/2n- Y wi d(As)wV(As)* = O1,(m-1/2 
As c90 

in view of (99). It then follows from (98), Lemma C(k), (112), and (111) that 

as(ieO-e(,)) rqi Bred. 

as required. 
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Now take the case wo 7& 0. From part (f) of Lemma C and (52) we have 

w,.z (A) W -d1(A = weAs 1A - 
eiAs [in, 

_ 
(n_312X'D)(,n-'D'D)' (n112/w2(As)) 

1 e(iA) 
+ W t (A -[X) ] - (iF-3/2 X'D) (n-'D'D)' (.12w/2(A5)) 

= 1- eiAs T d(j 

e v(iA) ,l (1/Wd (As)). 

Here, nl''Wd(AS)= Op(l) from (42) and 

A,,== [O, 5 _] ]- (n 312XD)(n-FD'D)- = 0,(1) 

Then (111) is 

(113) Wv.d (As)* = F (AiA) ?Al (n712wd (As))l *(1)-wv,(As)*f(e-iAs) + w(As)* + oP (1) 
/3(1)eiA, 

= R(A,) [ 1) - B(e`s)] + wd (Aj)* (nl/2A,,) + w, (As)* + o 

The augmented narrow band regression (32) around frequency wO can therefore be written as 

( 114) wWzA(A) = a,[ 1 _A +A,,(nh/2W(AS))] +a2,j[w)(AS)+oP(1)]+residual, 

which is asymptotically equivalent to the regression 

(115) W, z(As)* = w,(A,)*bl,- + (n1/2 Wd (AS))*b2 _, + residual 

with 

bl, -,,=1 1 + 52,-w' b2w-1 ,- 

In view of (113), (115), and the asymptotic orthogonality of the regressors in (115) (i.e., m77-' 
LAsE wv(As)(n1/2wd(As))* --* 0), we find that 

b p eio/3( 1 g(e6 -e)= io 

and 

1[b -,- e3'-i 
c 2 () 

We deduce that 

l, + (I,(1- e-')_2,, bl _,(1 - e- '0) , /8 

and 

giving the s d r Nt (u,lt. 

giving the stated result. 
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PROOF OF THEOREM 3: Note that 

n(- PA) = (n-X W*AQAIVZzAWX)- (llX W*AQAwZAWs) 

=(n-,X'QvtQvx)-l(,, iX QVTQVB) 

= (n-2X'QvTQvX)-'(n-',X'QvTQVs) 

= (n2'.z Qf,X-(iF1X'Qjy,z'IQ.,z 8). 

Next, 

X Q,I,ZT = X' - X P.IZT = X' t- XTZ(Z TZ) 'Z T 

='-X,'TD (D'TD) -'D'T, 

and so 

X'QpzIF kQ4,zX = (X Q4,z I) (IQI,zX) = X' XDD' T-D) 

which is 

1: wx,(AS) wr,(AS) 
As E93A 

- ( wj(As)wd(As) ( SAWd (As)wd(As*) (SA Wd(As)Wj(As)). 
AsE93A As E-91A As E9A 

Now, as in Lemma C(a), (b) and (i), we have 

2E w0As)w1(As) 
As EA 

n I( E wj (AS)Wd (AS) ) d (Bx u) 

nI E Wd(As)Wd(AS) f j Ull. 
As EA 

Thus, 

(116) n-2X'Qz QI X F f BBB' - (f Bu') (f Ul') (f fOB)= f B B' 

Next, consider the limit behavior of 

n - XV'Q frzrQ 8zo = nl [X'. -X'rD(D'rD) D'tr] 

= n-l 
- 

(w(As) w r3(As) /n-12 Sw(As)Wd(As)* 
AS EaA AS E9A 

x (n- L Wd(As)Wd(As)) (n/2 SE Wd(As)w,(As)) 
AS E93A As E33A 

As in the proof of (91), 

n-1 5 Wj(As)w,(As)* fBxdBs, 
AS E2A 
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and 

- 1/ d(A w s)A2 d B 
n1/ SWd(A,)w,(A,)*-+JfudB,. 

ASELAA 0 

Thus, 

n-lX/Q'I'ZfQ'I'Z df Br dB- (f Bul) 
(f UU') f 

udB, 
= f 

B.r dBE 

It follows that 

- >-A) (f Br,,B'.) (f BX dB) -MN(O, (f B,' 2,, (0)) 

giving the stated result for the band aA 

For the band 9V , we have 

(117) IH(I3~c-f /3A) = (n-lX'W*ACQAcwzACWX)l (nlIX W*AcQAcWZACW8) 

= (n-lX'Qcz ICQliczX)-1 (n-l112X'QPcZ1c Q'qCzS). 

As above, 

X/ QPCzTCQpCzX = (X/'QgjCZ JC)(lJCQICz-X) 

= Xlrc X- X/ rcD(D trcD)-D trcX/ 

= AsE?w w-(As) w (As)* ( w.J(As)Wd(As)*) 
AS E93C AS E93C 

x ( Wd(As)Wd(As)) (AY Wd(As)W.j(As))- 
AS E 93 AS ESCC 

From the above expression and Lemma C(d), (e), and (h) we deduce that 

(118) n-flX/QPcZrCQPcQ ZX 

d 
3L )2r1,,B()B()dl-2B() e iwfi/6) dl 

x [2' LA 1 (w)f1 ()* dw] - [2B L3A 1 (( ) 1- B ' (C di) ] 

-L [fe(i)? 2 lo 1 1e. ,Bx(1)Bx(1)]dw-21Br(1)Bx(1)'[L i f() d2w)] 

[A 2f ( d [L1 21(?A 1 _; d]. 

Next, observe that 

[EA I C{' ] [IfS(&)f1 (&))*d () 
e 

d]B. ( (? 

is the L2(sc) projection of the function eg(1-eiw)l 
onto the space spanned by fi(w). When 

the deterministic variable zt includes a linear time trend, we know from (39) that the vector f1 (w) 
includes the function e@(1 - eiw)1 as one of its components. Hence, in this case we have 

(119) [LC ew(1 - ew)lfi(w)* dw] [LAs f(w)f (w)* do] f(w) Bxe(1-e ) 

for w c s2Aj. It follows that (118) is simply f;A fXx(w) dw. 

A A~~~~~~ 
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Proceeding with the proof, the second factor of (117) decomposes as 

n- 1/2 Q,c tPc Q,cz 8 

= -l/2 E wS(AS)w,(AS) 
A, E f3Cs AsEA 

- (n 1/2 YE w.v(AS)w,,(AS) W( dws(A,)wd1(A,)*) ( W+ dws(A,)w,(A*)) 
As, E 93C A, tA A, EA C'3 

Using (119) and the independence of i, and s, we find 

1.1/2 /QiCZcQ8IICZB d 
11-l/2 Y. w, (AS)w (AS) 

AsEJ '3A 

(27R ( A 1 ei(o) )(27T jffA() 

xn- 1/2 Y f5(AS)w,(AS) 
A,E '3A 

n , / [ (As) r(2).1)L _ eAf] (w) dS ) 

A 

d 
n 1/2 Y[ 1 eiAs (A B 1 eiAof B (1) 1 d eiAs ] 

AS EC L A 

( |Cs*I f (&))j())*d&) ]tf?(AS)w,A)* 

A 

We deduce that 

V~YI3' -/3Ac) 4 (O [L,C fjw() d]2T L 7r f\t(w)f66(w) dw] [f f\ (w)dw])2 

giving the stated result. 

PROOF OF THEOREM 3': Part (a): First note that 

wx(As) = 172WZ(As) + w,,.(An) = Th w,zws(As) + wB,(Ai), 

with a similar expression for w),(AS). The regression (45) is equivalent to the following regression 
with frequency domain detrended data: 

(120) w4.d (As) = ('lco W.t.sS(As) + 5'sc^wt. 1(AY) + residual, 
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where 

Wf (A,)*~~S\1 w~(Dw(~)~ 
X.d(A,A)* = w,(A,)* - Wd(A Wd (AS) Wd(AS) W ( w(AS) w,(AS)) 

AS EAC AS E3z 

=Wi(As)* -Wd(As) ( E Wd(As)WdI(As)) Wd(As)w.SA / 
=f 

dsay, 
5 3 

=w,d(As)*, say, 

with a similar expression for wf d (As) = w! (A) and 

Wf\-.d(As) w,(A ) - w(As) ( 3 Wd(As)Wd (As) ) wd(As)w.(A)) 3,~~,d (As) w,, ~ ~ AsE(As ,Jd\SY EY. /dAwjj As S ECo As EA co 

=, (As)* + op (1).- 

For w = 0, as in the proof of Theorem 2', the regressors in (120) are asymptotically orthogonal 
because 

n-3/2 Y Wfvd(As)w,(As)* = Op(nl 1/2 
As E9EO 

Next, using Lemma C(j)-(m), we find as in (116) above that 

n-2 E Wfjd(As)wfd(As) 
* 

101 v 
As E 3O 

and as in (89) we get 

n-1 5 wid(As)w,(As)* 1 B,.,,dB,. 
As E ?o 

It follows using (15) and these two results that 

P io) 4[f BX.1B't.j [j B.,dB,]. 

Next consider the w 7& 0 case. First we simplify the regression equation (120): 

(121) Wj2.d (As) = alcow{- d (AS) ? a2z0W2.~.d (As) + residual 

= Ci.Wtd(As) + aJ,Jw,(As) + op(l)] + residual. 

Using (73) and Lemma C(n)-(o) we obtain 

(122) W d(As) = wi(As) -Wd(As) ( E Wd(As)Wd(As)) (* Wd(As)Wj(As)) 
d(As)* ~A wjAs)* 

Y"sSz 

w,(As)* e-iAs [ill - X0 

1 - e-iAs 1 - e-iAs n l/2 

1 )[n Fm 1 F i( e 1iB 
- f(W) * [ f (O) f (O) *J L Bf(w 1- 
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w, (A,)* e-iAs [j-x j0o] e-ioB 
1-eiAs 1-eiAs n1,2 - - B(1) 

= 1 (A,)* + op(1). 

So the regression (121) is asymptotically equivalent to 

(123) Wf d(AS) = [ _ ?(A, +op(M)] 1?+[w(As)+op(1)]*2 + residual. 

From (122) and (15) we deduce, as in Theorem 2', that 

1 -t - P 1e ) - i e- 

and 

It follows that 

3f = C1 -t + (1-e- e)a = P( -ew) ? /3() 

and 

Nr l [k - 
Aj T-* tN ,? 0 
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