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Abstract. We consider the problem of finding a point in a nonempty bounded convex body Γ in
the cone of symmetric positive semidefinite matrices Sm

+ . Assume that Γ is defined by a separating

oracle, which, for any given m×m symmetric matrix Ŷ , either confirms that Ŷ ∈ Γ or returns several
selected cuts, i.e., a number of symmetric matrices Ai, i = 1, . . . , p, p ≤ pmax, such that Γ is in
the polyhedron {Y ∈ Sm

+ | Ai • Y ≤ Ai • Ŷ , i = 1, . . . , p}. We present a multiple-cut analytic center
cutting plane algorithm. Starting from a trivial initial point, the algorithm generates a sequence
of positive definite matrices which are approximate analytic centers of a shrinking polytope in Sm

+ .

The algorithm terminates with a point in Γ within O(m3pmax/ε2) Newton steps (to leading order),
where ε is the maximum radius of a ball contained in Γ.
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1. Introduction. Let Sm be the set of m×m symmetric matrices, and let Sm
+

be its subset of symmetric positive semidefinite matrices. We consider the problem
of finding a point in a convex subset Γ of Sm

+ . We assume that Γ contains a full-
dimensional closed ball with radius ε > 0. The set Γ is implicitly defined by a separat-
ing oracle, which, for any givenm×m symmetric matrix Ŷ , either confirms that Ŷ ∈ Γ
or returns several cuts, i.e., a number of symmetric matrices Ai, i = 1, . . . , p, p ≤
pmax, such that Γ is in the polyhedron {Y ∈ Sm

+ | Ai • Y ≤ Ai • Ŷ , i = 1, . . . , p}. Here
pmax is the maximum number of cuts admitted in each iteration.

In a recent paper [8], we presented an analytic center cutting plane method for
the case pmax = 1, in which a single cut is added in each iteration. The method
was shown to have a worst-case complexity of O(m3/ε2) (to leading order). However,
to make a cutting plane algorithm practically efficient, adding multiple cuts is often
necessary. The purpose of this paper is to propose and analyze an analytic cutting
plane method that uses multiple cuts for solving the convex semidefinite feasibility
problem mentioned above. In admitting multiple cuts in an analytic center cutting
plane method, we face some new theoretical problems that are different from the
single-cut situation; these include (a) the problem of finding a feasible starting point
for the Newton iteration after several new cuts have been added, (b) the estimation
of the number of Newton steps needed to obtain a new approximate center through
estimating the changes in the primal-dual potential function.

Our paper extends the multiple-cut schemes of Goffin and Vial [2], Luo [5], and
Ye [10] from R

m
+ to Sm

+ . Such extensions not only broaden the applications of cutting
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plane methods but also extend several classical theoretical results for nonnegative
vectors to positive semidefinite matrices. We note that for our multiple-cut analytic
center cutting plane algorithm, the complexity analysis on the number of Newton
iterations per oracle call follows the approach in [3]. For the complexity analysis
on the number of oracle calls, we follow the approach in [10], but we simplify the
proofs of some results analogous to those in [10] by considering all the added cuts
simultaneously instead of inductively.

In this paper we will show that, starting from a trivial initial point, the multiple-
cut algorithm generates a sequence of positive definite matrices which are approximate
analytic centers of a shrinking polytope in Sm

+ . The algorithm will stop with a solu-
tion in at most O(m3pmax/ε

2) (to leading order) Newton steps. Our analysis shows
that when the problem is specialized to the space of positive semidefinite diagonal
matrices (which is equivalent to the nonnegative orthant Rm

+ ), the complexity bound
is reduced to O(m2pmax/ε

2). This complexity bound is lower than the existing bound
of O(m2p2max/ε

2) obtained in [2] and [10], where the same cuts are considered. Our
bound appears to be better than that obtained in [5]. (Note that the proof for the
bound appearing in [5] is incomplete, and, to the best of our knowledge, a provable
bound should be O(m2p2max/ε

2).) Furthermore, the analysis in [5] is carried out only
for the so-called shallow cuts, which are placed at some distance away from the cur-
rent testing point and hence may not be as efficient as our proposed algorithm, where
the cuts pass through the testing point.

We are able to obtain better complexity results than existing ones even when the
problem is specialized to R

m
+ , because in each oracle call we admit only cuts that are

sufficiently good. We shall not give the precise definition of “goodness” here but refer
the reader to section 4. Roughly speaking, based on our criteria, the admitted cuts
Ai, i = 1, . . . , p, in each oracle call are effective in reducing the size of the polytope in
the sense that each should be able to delete a sizable portion of the current polytope
that cannot be otherwise deleted by the other admitted cuts. One obvious advantage
of having such a selection criterion is that the number of cuts added in each iteration
is reduced, since only effective cuts are admitted, and this translates into savings in
the computational cost in each Newton step.

We will now introduce some notations. For matrices A, Y ∈ Sm, we define

A • Y := Tr(ATY ) =

m∑
i,j=1

AijYij ,

where “T” stands for the transpose, and “Tr” denotes the trace. We write Y 	 0 and
Y 
 0 if Y is positive definite and positive semidefinite, respectively. For Y 
 0, we
denote its symmetric square root by Y 1/2. The 2-norm of a vector x is denoted by
‖x‖, and the matrix 2-norm of a matrix A is denoted by ‖A‖. For A ∈ Sm, we write

‖A‖F := (A •A)1/2, λ(A) := (λ1(A), . . . , λm(A))T ,

where λ1(A), . . . , λm(A) are the eigenvalues of A. Note that ‖A‖F = ‖λ(A)‖ and
‖A‖ = ‖λ(A)‖∞. We will use these facts in the paper without explicitly mentioning
them. For a positive vector x ∈ R

n, we write

lnx :=
n∑

i=1

lnxi.
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We use diag(x) to denote the diagonal matrix whose diagonal is the vector x. For a
positive vector x, we will use x−1 to denote the vector obtained from x by inverting
all of its components.

Generally, we use capital letters for matrices, lower case letters for vectors, and
Greek letters for scalars. For convenience, we let m̄ = m(m+ 1)/2.

Let svec be an isometry identifying Sm with R
m̄, so thatK•L = svec(K)T svec(L),

and let smat be the inverse of svec. Given any G ∈ Sm, we let G©∗ G ∈ R
m̄×m̄ be

the unique symmetric matrix such that

(G©∗ G) svec(M) = svec(GMG) ∀ M ∈ Sm.

It is easy to see that if G is positive definite, then G©∗ G is positive definite and
(G©∗ G)1/2 = G1/2 ©∗ G1/2. If G is nonsingular, then (G©∗ G)−1 = G−1 ©∗ G−1.

Throughout, we make the following assumptions:
A1. Γ is a convex subset of Sm

+ .
A2. Γ ⊂ Ω0, where Ω0 := {Y ∈ Sm | 0 � Y � I}.
A3. Γ contains a full-dimensional ball of radius ε > 0. That is, there exists Y c ∈ Sm

such that {Y ∈ Sm : ‖Y − Y c‖F ≤ ε} ⊂ Γ.
Note that Assumption A2 is made for convenience. It can be satisfied by scaling if
the original convex set Γ̂ is bounded. That is, suppose there exists a constant γ > 0
such that for all Y ∈ Γ̂, ‖Y ‖ ≤ γ. Then the scaled set Γ = {Y/γ | Y ∈ Γ̂} satisfies
A2.

The organization of the paper is as follows. In section 2, we describe our multiple-
cut analytic center cutting plane algorithm for semidefinite feasibility problems. Sec-
tion 3 is devoted to the analysis of the computation of an approximate analytic center
for a working set. In particular, we establish the number of Newton steps required
to compute an approximate analytic center in terms of the number of cuts added. In
section 4, we establish the dual potential increment when the current working set is
changed to the next working set. Subsequently, we establish complexity results for
our multiple-cut cutting plane algorithm.

2. A multiple-cut analytic center cutting plane method. We first define
the analytic center and then propose a multiple-cut analytic center cutting plane
method at the end of this section.

Let Ai • Y ≤ ci, i = 1, . . . , nk, be all the cuts defining the kth working set Ωk.
Define

A := (svecA1, svecA2, . . . , svecAnk
), c := (c1, c2, . . . , cnk

)T .

Then the set Ωk can be represented as

Ωk = {Y ∈ Ω0 | AT svecY ≤ c}.

We define the following potential function on the set Ωk:

φk(Y ) = −
nk∑
i=1

ln(ci −Ai • Y )− ln(detY )− ln(det(I − Y )),

where “det” denotes the determinant. We let

φk(Ω) := min{φk(Y ) | Y ∈ Ω}.
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The unique minimizer of φk(Y ) over Ωk is known as the analytic center of Ωk.
It is easy to see that the analytic center of the initial working set Ω0 is I/2, where

I is the identity matrix. As a matter of fact,

φ0(Y ) = − ln(detY )− ln(det(I − Y ))

= − ln

m∏
i=1

λi(Y )− ln

m∏
i=1

λi(I − Y )

= −
m∑
i=1

ln [λi(Y )(1− λi(Y ))] .

The minimum of φ0(Y ) must satisfy λ1(Y ) = · · · = λm(Y ) = 1/2, and hence Y = I/2.
It is known [7, Proposition 5.4.5] that φk is a strongly 1-self-concordant function

on Ω and

∇φk(Y ) = svec

(
nk∑
i=1

Ai

ci −Ai • Y − Y −1 + (I − Y )−1

)
,

∇2φk(Y ) = AS−2AT + Y −1 ©∗ Y −1 + (I − Y )−1 ©∗ (I − Y )−1,

where S = diag (s) and s = c−AT svec(Y ) > 0. Strictly speaking, ∇φk(Y ) should be
the m×m matrix within the round brackets. However, we have identified the m×m
matrix with a vector in R

m̄ through the linear isometry svec. Similarly, ∇2φk(Y ) is
identified with an R

m̄ × R
m̄ matrix.

The optimality conditions for minimizing φk are

Sx = e, (e denotes the vector of ones)

Y Z = I,

(I − Y )V = I,

AT svecY + s = c,(2.1)

Ax− svecZ + svecV = 0,

I 	 Y 	 0, Z, V 	 0, s, x > 0.

With a slight abuse of language, we also call the solution (Ȳ , s̄, x̄, Z̄, V̄ ) of (2.1) the
analytic center of Ωk.

Definition 2.1. Given a point (Y, s, x, Z, V ) ∈ Sm × R
nk × R

nk × Sm × Sm,
with 0 ≺ Y ≺ I, we define

η(Y, s, x, Z, V ) =
√
‖Sx− e‖2 + ‖λ(Y Z)− e‖2 + ‖λ((I − Y )V )− e‖2.(2.2)

We call (Y, s, x, Z, V ) an η-approximate (analytic) center of Ωk if η(Y, s, x, Z, V ) ≤ η,
all the linear equalities in (2.1) are satisfied, and x, s > 0, Z, V 	 0. Obviously, a
0-approximate center is exactly the analytic center of Ω.

Definition 2.2. Given Y ∈ Sm such that 0 ≺ Y ≺ I, and s = c−A T svec(Y ) >
0, we define

δk(Y ) =
√
∇φk(Y )T [∇2φk(Y )]−1 ∇φk(Y ) .(2.3)

It was shown [8] that the following lemma holds.
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Lemma 2.3. Given Y ∈ Sm such that 0 ≺ Y ≺ I, let s = c − A T svec(Y ). We
have

δk(Y ) = η(Y, s, xY , ZY , VY )

= min{η(Y, s, x, Z, V ) : Ax− svec(Z) + svec(V ) = 0, x ∈ R
k, Z, V ∈ Sm}.(2.4)

Remark. Given Y ∈ Sm such that 0 ≺ Y ≺ I, s = c − A T svec(Y ) > 0, and
δk(Y ) < η < 1, the minimizer (xY , ZY , VY ) of (2.4) satisfies xY > 0, and ZY , VY 	 0.
For such a Y , we will call Y an η-approximate center of Ωk in the sense that the point
(Y, s, xY , ZY , VY ) is an η-approximate center.

We will now describe our algorithm.
A multiple-cut analytic center cutting plane algorithm.

Step 0. Select η ∈ (0, 1−√
3/2), and pick δ̄ ∈ (η, 1). Set k = 0. Let Ω0 be the initial

working set, and let Y0 = I/2 be the initial point.
Step 1. At the kth iteration, call the oracle to either confirm that Yk is a feasible

point of Γ or return pk matrices Ank+1, . . . , Ank+pk
∈ Sm with ‖Ank+i‖F = 1.

If Yk ∈ Γ, stop; otherwise, construct the new working set

Ωk+1 = {Y ∈ Ωk : Ank+i • Y ≤ Ank+i • Yk, i = 1, . . . , pk}.
Step 2. Find a point Ỹ in the interior of Ωk+1 (discussed in section 3).
Step 3. (Recentering) Starting with the point Y = Ỹ in Step 2, perform the dual

Newton method:
3.1. If δk+1(Y ) < η, set Yk+1 = Y , k := k + 1; go to Step 1.
3.2. Otherwise, set

Y+ = Y − ᾱ smat
(
[∇2φk+1(Y )]

−1∇φk+1(Y )
)
,

where ᾱ is determined as follows: if δk+1(Y ) ≥ δ̄, ᾱ = 1
1+δk+1(Y ) ; else,

ᾱ = 1. Set Y = Y+. Go to Step 3.1.
Note that we need the restriction η < 1−√

3/2 in order to construct the point Ỹ in
Step 2.

3. Restoration of centrality. In our cutting plane algorithm, approximate
analytic centers are found by using the dual Newton method. Our aim in this section
is to estimate the number of Newton steps required to find an approximate analytic
center for a newly constructed working set. We do so by estimating the amount of
potential value we should reduce for the new set. The mechanics are as follows. Since
the potential function is 1-self-concordant, each Newton step can reduce the potential
function by a constant amount. Thus to estimate the number of Newton steps needed
to find an approximate analytic center for a new working set, all we need is to estimate
the amount of potential value we should reduce for the new set.

To find an approximate analytic center for a new working set, we would ideally
want the Newton method to start with the preceding approximate analytic center Yk.
However, Yk is not in the interior of the new working set Ωk+1, since the new cuts
pass through this point. Thus our immediate task is to find an interior point in Ωk+1

and then use this point as the starting point for the Newton method.
Let nk be the number of cuts defining the set Ωk. Suppose that pk new cuts are

added to form the new set Ωk+1. Recall that

A := (svecA1, svecA2, . . . , svecAnk
), c := (c1, c2, . . . , cnk

)T ,

Bk := (svecAnk+1, svecAnk+2, . . . , svecAnk+pk
), d := BT

k svecYk.
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Then the sets Ωk and Ωk+1 can be written as

Ωk = {Y ∈ Ω0 | AT svecY ≤ c}, Ωk+1 = {Y ∈ Ωk | BT
k svecY ≤ d}.

Let Hk = ∇2φk(Yk) and

Mk := BT
kH

−1
k Bk.

Suppose (Yk, s
k, xk, Zk, Vk) is an η-approximate center with η < 1−√

3/2. (Note
that, by Lemma 2.3, δk(Yk) ≤ η(Yk, s

k, xk, Zk, Vk) ≤ η.) We will now construct
a point (Ỹ , s̃, x̃, Z̃, Ṽ ) that is in the interior of Ωk+1, using a procedure similar to
that in Goffin and Vial [2]. To this end, consider the following convex minimization
problem:

min pkω
TMk ω − lnω

such that ω = (ω1, . . . , ωpk
)T > 0.

Evidently, the above problem has a unique solution that is also the unique solution
to the KKT-conditions:

Mk ω = ξ,(3.1a)

2pk ωi ξi = 1, ωi, ξi > 0, i = 1, . . . , pk.(3.1b)

Let (ω̃, ξ̃) be an approximate solution of the above KKT-conditions, where (3.1a) is
satisfied exactly and max{|2pkω̃i ξ̃i − 1| : i = 1, . . . , pk} ≤ 1/2. Note that, in this
case,

ω̃TMk ω̃ ≤ 3

4
.(3.2)

Note that to find such a pair (ω̃, ξ̃), we can apply Newton’s method to (3.1a) and
(3.1b), where the computational work for each Newton iteration is O(p3k). In general,
this constitutes only a very small fraction of the total computational work involved in
finding an approximate analytic center for Ωk+1. In order not to lengthen the paper
unnecessarily, we shall not establish the complexity of the Newton method for finding
(ω̃, ξ̃) in this paper. Interested readers can refer to [3] for such results.

Let Uk = I − Yk and

∆Y = −smat(H−1
k Bkω̃), ∆s = −AT svec∆Y,(3.3)

∆x = S−2
k A T svec∆Y, ∆Z = −Y −1

k (∆Y )Y −1
k , ∆V = U−1

k (∆Y )U−1
k .(3.4)

Define

Ỹ = Yk +∆Y, s̃ =

(
sk +∆s

ξ̃

)
,(3.5)

x̃ =

(
xk +∆x
ω̃

)
, Z̃ = Zk +∆Z, Ṽ = Vk +∆V.(3.6)

We refer the reader to [3] for an illuminating discussion on the motivation for con-
sidering the optimization problem (3.1a)–(3.1b) in constructing the strictly interior
point of Ωk+1 above.
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It is readily shown that the following result holds:

‖S−1
k A T svec(∆Y )‖2 + ‖Y −1/2

k (∆Y )Y
−1/2
k ‖2

F + ‖U−1/2
k (∆Y )U

−1/2
k ‖2

F

= svec(∆Y )THk svec(∆Y ) = ω̃TMkω̃ ≤ 3

4
.(3.7)

Lemma 3.1. For any vector q = (q1, . . . , qn)
T with ‖q‖ < 1, the following in-

equality holds:

− ln(e− q) ≤ eT q +
‖q‖2

2(1− ‖q‖) .

Proof. For this proof, we refer to [11].
Lemma 3.2. Suppose (Yk, s

k, xk, Zk, Vk) is an η-approximate center with η < 1.
Then the following inequalities hold:

‖X−1
k ∆x‖ ≤ 1

1− η ‖S
−1
k ∆s‖,

‖Z−1/2
k (∆Z)Z

−1/2
k ‖F ≤ 1

1− η ‖Y
−1/2
k (∆Y )Y

−1/2
k ‖F ,

‖V −1/2
k (∆V )V

−1/2
k ‖F ≤ 1

1− η ‖U
−1/2
k (∆Y )U

−1/2
k ‖F ,

where Xk = diag(xk).
Proof. We shall omit the proof of the first inequality, as it is easy. Now we proceed

with the proof of the second one. We have

‖Z−1/2
k (∆Z)Z

−1/2
k ‖2

F =

m∑
i=1

λi

(
Z

−1/2
k Y

−1/2
k (Y

−1/2
k ∆Y Y

−1/2
k )Y

−1/2
k Z

−1/2
k

)2

=

m∑
i=1

θ2i λi

(
Y

−1/2
k ∆Y Y

−1/2
k

)2

≤
(

max
1≤i≤m

θ2i

)
‖Y −1/2

k ∆Y Y
−1/2
k ‖2

F ,

where we have used a theorem of Ostrowski [4, p. 225] in the second equality above,
and the θi’s are scalars such that

λmin(Z
−1/2
k Y −1

k Z
−1/2
k ) ≤ θi ≤ λmax(Z

−1/2
k Y −1

k Z
−1/2
k ).

Noting that λmax(Z
−1/2
k Y −1

k Z
−1/2
k ) ≤ 1/(1−η), we have proved the required inequal-

ity. The last inequality in the lemma can be proved similarly.
Theorem 3.3. Suppose (Yk, s

k, xk, Zk, Vk) is an η-approximate center with η <
1 − √

3/2. Then the point (Ỹ , s̃, x̃, Z̃, Ṽ ) constructed in (3.5)–(3.6) satisfies the last
three conditions in (2.1).

Proof. First, we show that s̃ > 0 and 0 ≺ Ỹ ≺ I. We have

sk +∆s = sk −AT svec(∆Y ) = Sk
[
e− S−1

k AT svec(∆Y )
]
> 0,
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since ‖S−1
k AT svec(∆Y )‖ ≤ √

3/2 < 1 from (3.7). On the other hand, we also have

Ỹ = Y
1/2
k (I + Y

−1/2
k ∆Y Y

−1/2
k )Y

1/2
k 	 0,

since ‖Y −1/2
k ∆Y Y

−1/2
k ‖F ≤ √

3/2 < 1. That Ỹ ≺ I can be shown similarly. Further-
more, [

A T svecY

BT
k svecY

]
+ s =

[
c

d+ BT
k svec(∆Y ) + ξ̃

]
=

[
c

d

]
,

where we used the fact that, from (3.1a), BT
k svec(∆Y ) = −Mkω̃ = −ξ̃.

Next we show that x̃ > 0 and Z̃, Ṽ 	 0. We have

Z̃ = Z
1/2
k (I + Z

−1/2
k (∆Z)Z

−1/2
k )Z

1/2
k 	 0,

since, by Lemma 3.2,

‖Z−1/2
k (∆Z)Z

−1/2
k ‖F ≤ 1

(1− η)‖Y
−1/2
k (∆Y )Y

−1/2
k ‖F ≤

√
3

2(1− η) < 1.

Furthermore,

[A Bk] x̃− svecZ̃ + svecṼ

= Axk +A∆x+ Bkω̃ − svecZk − svec∆Z + svecVk + svec∆V

= A∆x+ Bkω̃ − svec∆Z + svec∆V

= AS−2
k A T svec(∆Y ) + Y −1

k ©∗ Y −1
k svec(∆Y ) + U−1

k ©∗ U−1
k svec(∆Y ) + Bkω̃

= Hksvec(∆Y ) + Bkω̃ = 0.

Up to this point, we have succeeded in finding in the interior of Ωk+1 a point Ỹ
that is derived from Yk. Our next task is to estimate the potential value of the new
point in Ωk+1.

Lemma 3.4. Suppose δk(Yk) ≤ η. Then the potential value φk+1(Ỹ ) satisfies the
following inequality:

φk+1(Ỹ ) ≤ φk(Yk) +

√
3

2
η +

3

4(2−√
3)

− ln ξ̃.(3.8)

Proof. Let Ũ = I − Ỹ and Uk = I − Yk. We have

φk+1(Ỹ ) = − ln s̃− ln(d− BT
k svec(Ỹ ))− ln(detỸ )− ln(detŨ) = φk(Ỹ )− ln ξ̃.

(3.9)

Note that we used the fact that d− BT
k svec(Ỹ ) = −BT

k svec(∆Y ) = ξ̃. Now

φk(Ỹ ) = − ln(sk +∆s)− ln det(Yk +∆Y )− ln det(Uk −∆Y )

= φk(Yk)− ln(e+ S−1
k ∆s)− ln det(I + Y

−1/2
k ∆Y Y

−1/2
k )

− ln det(I − U−1/2
k ∆Y U

−1/2
k )
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= φk(Yk)− ln(e+ S−1
k ∆s)− ln

(
e+ λ(Y

−1/2
k (∆Y )Y

−1/2
k )

)
− ln

(
e− λ(U−1/2

k (∆Y )U
−1/2
k )

)
= φk(Yk)− ln(e− q),

(3.10)

where

q =




−S−1
k ∆s

−λ(Y −1/2
k (∆Y )Y

−1/2
k )

λ(U
−1/2
k (∆Y )U

−1/2
k )


 .(3.11)

Note that eT q = ∇φk(Yk)T svec∆Y and ‖q‖2 = svec(∆Y )THk svec(∆Y ) ≤ 3/4.
By applying Lemma 3.1 to (3.10), we have

φk(Ỹ )− φk(Yk) ≤ eT q + ‖q‖2

2(1− ‖q‖)

= ∇φk(Yk)T svec∆Y +
svec(∆Y )THk svec(∆Y )

(2−√
3)

≤ δk(Yk)
√
ω̃TMkω̃ +

ω̃TMkω̃

(2−√
3)

≤
√
3

2
η +

3

4(2−√
3)
.(3.12)

Note that in the next to last inequality above, we used the Cauchy inequality to derive
the result: ∇φk(Yk)T svec(∆Y ) ≤ δk(Yk)

√
ω̃TMkω̃.

Substituting the result in (3.12) into (3.9), we prove the lemma.
From Lemma 3.4, we see that the upper bound for the dual potential value

φk+1(Ỹ ) contains the term − ln ξ̃. If we were to consider the dual potential value
alone, then finding an upper bound for − ln ξ̃ would be necessary. But we have
found that finding a tight upper bound for this term is difficult. As a result, we
have decided to consider the primal-dual potential value, for which finding an up-
per bound for − ln ξ̃ is not necessary. To this end, let us define the primal potential
function associated with Ωk. For any ψk(x, Z, V ) ∈ R

nk
++ × Sm

++ × Sm
++ that satisfies

Ax− svec(Z) + svec(V ) = 0, the primal potential of (x, Z, V ) is defined by

ψk(x, V, Z) = cTx+ I • V − lnx− ln detZ − ln detV.(3.13)

The primal-dual potential function associated with Ωk is

Λk(Y, x, Z, V ) = φk(Y ) + ψk(x, Z, V ).

We should emphasize that the primal-dual potential function is introduced solely for
the purpose of estimating the potential value of (Ỹ , s̃, x̃, Z̃, Ṽ ). It is not needed in our
cutting plane algorithm described in section 2.

Now we shall proceed to establish an analogue of Lemma 3.4 for the primal
potential function. Before doing that, we need the following lemma.
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Lemma 3.5. For the directions (∆x,∆Z,∆V ) given in (3.4), the following in-
equality holds:

∣∣cT∆x− eTX−1
k ∆x− Z−1

k •∆Z − V −1
k •∆V + I •∆V + dT ω̃

∣∣ ≤ η

1− η

√
3

2
.

(3.14)

Proof. Noting that d = BT
k svec(Yk) and Hksvec(∆Y ) = −Bkω̃, we have

dT ω̃ = −svec(Yk)T
(A∆x+ svec[Y −1

k (∆Y )Y −1
k ] + svec[U−1

k (∆Y )U−1
k ]
)
.

Let Xk = diag(xk) and Sk = diag(sk). Then∣∣cT∆x+ dT ω̃ − eTX−1
k ∆x− Z−1

k •∆Z − V −1
k •∆V + I •∆V ∣∣

=
∣∣eT (Sk −X−1

k )∆x + (Z−1
k − Yk) • (Y −1

k ∆Y Y −1
k ) + (Uk − V −1

k ) • (U−1
k ∆Y U−1

k )
∣∣

=
∣∣(e−X−1

k (sk)−1)TS−1
k ∆s

∣∣ + ∣∣(Y −1/2
k Z−1

k Y
−1/2
k − I) • (Y −1/2

k ∆Y Y
−1/2
k )

∣∣
+
∣∣(I − U−1/2

k V −1
k U

−1/2
k ) • (U−1/2

k ∆Y U
−1/2
k )

∣∣
≤ ‖e−X−1

k (sk)−1‖ ‖S−1
k ∆s‖ + ‖Y −1/2

k Z−1
k Y

−1/2
k − I‖F ‖Y −1/2

k ∆Y Y
−1/2
k ‖F

+ ‖U−1/2
k V −1

k U
−1/2
k − I‖F ‖U−1/2

k ∆Y U
−1/2
k ‖F

≤
(
‖e−X−1

k (sk)−1‖2 + ‖Y −1/2
k Z−1

k Y
−1/2
k − I‖2

F + ‖U−1/2
k V −1

k U
−1/2
k − I‖2

F

)1/2

×
(
‖S−1

k ∆s‖2 + ‖Y −1/2
k ∆Y Y

−1/2
k ‖2

F + ‖U−1/2
k ∆Y U

−1/2
k ‖2

F

)1/2

≤ η (Y −1
k , (sk)−1, (xk)−1, Z−1

k , V −1
k

) (
svec(∆Y )THksvec(∆Y )

)1/2
≤ η

1− η

√
3

2
.

Note that, in the last inequality above, we used (3.7) and the fact that

η(Y −1, (s)−1, (x)−1, Z−1, V −1) ≤ η

1− η .

Lemma 3.6. For the point (x̃, Z̃, Ṽ ) constructed in (3.6), the following inequality
holds:

ψk+1(x̃, Z̃, Ṽ ) ≤ ψk(x
k, Zk, Vk) +

3

4(1− η)(2− 2η −√
3)

+
η

1− η

√
3

2
− ln ω̃.(3.15)

Proof. We have

ψk+1(x̃, Z̃, Ṽ ) = c
Txk + cT∆x− lnxk − ln(e+X−1

k ∆x)− ln detZk

− ln det(I + Z
−1/2
k (∆Z)Z

−1/2
k )− ln detVk

− ln det(I + V
−1/2
k (∆V )V

−1/2
k ) + I • Vk + I •∆V + dT ω̃ − ln ω̃

= ψk(x
k, Zk, Vk) + c

T∆x+ I •∆V + dT ω̃ − ln ω̃ − ln(e+ p),(3.16)
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where

p =




X−1
k ∆x

λ(Z
−1/2
k (∆Z)Z

−1/2
k )

λ(V
−1/2
k (∆V )V

−1/2
k )


 .

Note that eT p = eTX−1
k ∆x+ Z−1

k •∆Z + V −1
k •∆V , and by Lemma 3.2,

‖p‖2 = ‖X−1
k ∆x‖2 + ‖Z−1/2

k (∆Z)Z
−1/2
k ‖2

F + ‖V −1/2
k (∆V )V

−1/2
k ‖2

F

≤ 1

(1− η)2
(
‖S−1

k ∆s‖2 + ‖Y −1/2
k (∆Y )Y

−1/2
k ‖2

F + ‖U−1/2
k (∆Y )U

−1/2
k ‖2

F

)

=
1

(1− η)2 svec(∆Y )
THk svec(∆Y ) ≤ 1

(1− η)2
3

4
.(3.17)

By Lemma 3.1 and (3.17), we get from (3.16),

ψk+1(x̃, Z̃, Ṽ ) ≤ ψk(x
k, Zk, Vk) + c

T∆x+ I •∆V + dT ω̃ − ln ω̃ − eT p+ ‖p‖2

2(1− ‖p‖)

≤ ψk(x
k, Zk, Vk) + c

T∆x+ I •∆V + dT ω̃ − ln ω̃ − eT p+ 3

4(1− η)(2− 2η −√
3)
.

By applying Lemma 3.5 and (3.7), we prove the lemma.
The next lemma is an analogue of Lemma 3.4 for the primal-dual potential func-

tion.
Lemma 3.7. Suppose η(Yk, s

k, xk, Zk, Vk) is an η-approximate center with η <
1−√

3/2. Then

Λk+1(Ỹ , x̃, Z̃, Ṽ ) ≤ Λk(Yk, x
k, Zk, Vk) + β(η) + pk

(
3

4
+ ln 2pk

)
,

where

β(η) = η

√
3

2
+

3

4(2−√
3)

+
η

1− η

√
3

2
+

3

4(1− η)(2− 2η −√
3)
.(3.18)

Proof. Combining the results in Lemmas 3.4 and 3.6, we have

Λk+1(Ỹ , x̃, Z̃, Ṽ ) ≤ Λk(Yk, x
k, Zk, Vk) + β(η)− ln ω̃ξ̃.(3.19)

Note that

− ln ω̃ξ̃ = pk ln 2pk +

pk∑
i=1

− ln
(
1− (1− 2pkω̃iξ̃i)

)

≤ pk ln 2pk +

pk∑
i=1

[
(1− 2pkω̃iξ̃i) +

|1− 2pkω̃iξ̃i|2
2(1− |1− 2pkω̃iξ̃i|)

]

≤ pk ln 2pk +
3

4
pk.(3.20)
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By substituting (3.20) into (3.19), the lemma is proved.
With Lemma 3.7, we can finally establish an explicitly known upper bound for

the primal-dual potential value Λk+1(Ỹ , x̃, Z̃, Ṽ ).
Theorem 3.8. Suppose that (Ȳk+1, x̄

k+1, Z̄k+1, V̄k+1) is the analytic center of
Ωk+1, and (Ỹ , x̃, Z̃, Ṽ ) is the point constructed in (3.5)–(3.6). Then

Λk+1(Ỹ , x̃, Z̃, Ṽ )− Λk+1(Ȳk+1, x̄
k+1, Z̄k+1, V̄k+1) ≤ pk

(
ln 2pk − 1

4

)
+ β(η) +

2η2

1− η2
,

(3.21)

where β(η) is the constant given in (3.18).
Proof. Suppose that (Yk, s

k, xk, Zk, Vk) is an η-approximate center of Ωk with
η < 1−√

3/2. We have

Λk+1(Ỹ , x̃, Z̃, Ṽ )− Λk+1(Ȳk+1, x̄
k+1, Z̄k+1, V̄k+1)

= Λk+1(Ỹ , x̃, Z̃, Ṽ )− Λk(Yk, x
k, Zk, Vk) + Λk(Ȳk, x̄

k, Z̄k, V̄k)

− Λk+1(Ȳk+1, x̄
k+1, Z̄k+1, V̄k+1)

+ Λk(Yk, xk, Zk, Vk)− Λk(Ȳk, x̄
k, Z̄k, V̄k).(3.22)

It is readily shown that

Λk(Ȳk, x̄
k, Z̄k, V̄k)− Λk+1(Ȳk+1, x̄

k+1, Z̄k+1, V̄k+1)

= (nk + 2m)− (nk + pk + 2m) = −pk.(3.23)

Next we need to get an upper bound for the term Λk(Yk, x
k, Zk, Vk)−Λk(Ȳk, x̄

k, Z̄k, V̄k)
in (3.22). By following the proof of Lemma 2.1 in [1] and using the quadratic conver-
gence result in [8], it is readily shown that

φk(Yk) ≤ φk(Ȳk) +
η2

1− η2
.(3.24)

Similarly, it can be shown that

ψk(x
k, Zk, Vk) ≤ ψk(x̄

k, Z̄k, V̄k) +
η2

1− η2
.(3.25)

Combining (3.24) and (3.25), we get

Λk(Yk, x
k, Zk, Vk)− Λk(Ȳk, x̄

k, Z̄k, V̄k) ≤ 2η2

1− η2
.(3.26)

By putting the results of Lemma 3.7, (3.23), and (3.26) into (3.22), the theorem is
proved.

With the estimate of Λk+1(Ỹ , x̃, Z̃, Ṽ ) in Theorem 3.8, we are now ready to es-
timate the number of dual Newton steps required to find an approximate analytic
center for Ωk+1 by using the point Ỹ as the initial point.

Theorem 3.9. Given an η-approximate center Yk of Ωk, with η < 1−√
3/2, the

total number of dual Newton steps required to find an η-approximate center Yk+1 of
Ωk+1 is

O (pk ln pk) ,
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where the constant O(1) is independent of k.
Proof. By Theorem 2.2.3 in [7], each dual Newton step reduces Λk+1 by a positive

constant γ = δ̄ − ln(1 + δ̄), as long as a point Ŷ with δk+1(Ŷ ) < δ̄ < 1 is not yet
found, while keeping the primal iterate fixed. Now, starting at (Ỹ , s̃, x̃, Z̃, Ṽ ), the
total value of Λk+1 which needs to be reduced is not more than Λk+1(Ỹ , x̃, Z̃, Ṽ ) −
Λk+1(Ȳ , x̄, Z̄, V̄ ); thus Theorem 3.8 implies that at most

1

γ

[
pk

(
ln pk + ln 2− 1

4

)
+ β(η) +

2η2

1− η2

]

Newton steps are required to reach a point Ŷ with δk+1(Ŷ ) ≤ δ̄. From Ŷ onwards, by
Lemma 4.3 in [8], quadratic convergence can be achieved, and thus it needs at most
ln(ln(δ̄/η)) additional full Newton steps to find a point Yk+1 satisfying δk+1(Yk+1) ≤ η.
(We can choose, for example, δ̄ = 0.9 and η = 0.1; then ln(ln(δ̄/η)) ≤ 4.)

4. Potential changes and complexity. Recall that Ωk = {Y ∈ Ω0 | AT svecY
≤ c}. Suppose that Yk is an η-approximate analytic center of Ωk with η < 1−√

3/2.
Let

Bk = (svecAnk+1, . . . , svecAnk+pk
), d = BT

k svec(Yk).

Then

Ωk+1 = {Y ∈ Ωk | BT
k svecY ≤ d}.

Let Ȳk and Ȳk+1 be the analytic centers of Ωk and Ωk+1, respectively. Let

r̄k =
√
λmax(BT

k H̄
−1
k Bk),(4.1)

where H̄k = ∇2φ(Ȳk).
In this section, we estimate the amount that the dual potential will increase when

the working set changes from Ωk to Ωk+1. To this end, we first establish a lemma
that is an extension of a result in [10].

Lemma 4.1. Suppose that n, p are positive integers and v is a positive n-vector
with eT v = n. Then for any positive constant η the following inequality holds:

(‖v − e‖+ η)p
n∏

i=1

vi ≤ pp+1θp,

where θ is a positive constant no greater than 1.3 + η.
Proof. We need to consider only the case in which n ≥ 2, as the inequality holds

trivially when n = 1. Consider the maximization problem

max f(v) := ‖v − e‖p
n∏

i=1

αi

such that eT v = n.

It is shown in [10] that the maximizer v has the form

v1 = γ, v2 = · · · = vn =
n− γ
n− 1

, where γ > 1,
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and

f(v) ≤
(

n

n− 1

)p/2

(p+ 1)p+1 exp

(−p(p+ 2)

p+ 1

)
.

Thus

(‖v − e‖+ η)p
n∏

i=1

vi =

(
‖v − e‖

n∏
i=1

v
1/p
i + η

n∏
i=1

v
1/p
i

)p

≤

(‖v − e‖p n∏

i=1

vi

)1/p

+ η



p

,
(
since

∏n
i=1 vi ≤ ( e

T v
n )n = 1

)

≤
[(

n

n− 1

)1/2

(p+ 1)(p+1)/p exp

(−(p+ 2)

p+ 1

)
+ η

]p

≤ pp+1θp,

where

θ = max
n≥2,p≥1

{(
n

n− 1

)1/2(
1 +

1

p

)1+1/p

exp

( −1

p+ 1
− 1

)
+
η

p
p−1/p

}
≤ 1.3+η.

Lemma 4.2. Suppose Yk is an approximate analytic center of Ωk with δk(Yk) ≤
η < 1−√

3/2. Then

φk+1(Ωk+1) ≥ φk(Ωk)− pk
2

ln(pk r̄
2
k θ

2)− ln pk,(4.2)

where θ is a constant depending only on η.
Proof. For simplicity, we will drop the subscripts k and k + 1 in our notations in

this proof and denote, for example, Ωk and Ωk+1 by Ω and Ω+, respectively.
Let Ū = I − Ȳ , Ū+ = I − Ȳ+, and

s̄+ = c−AT svec(Ȳ+), s̄ = c−AT svec(Ȳ ), t̄ = d− BT svec(Ȳ+).

Let

Ḡ = [AS̄−1, −Ȳ −1/2 ©∗ Ȳ −1/2, Ū−1/2 ©∗ Ū−1/2].

Note that H̄ = ḠḠT .
First, we establish an upper bound for ln

∏p
j=1 t̄j . We have

t̄ = BT (svecY − svecȲ+) = BT H̄−1 Ḡ
(
ḠT svecY − ḠT svecȲ+

)
= (ḠT H̄−1B)T (ḠT svec(Y − Ȳ )− ḠT svec(Ȳ+ − Ȳ )) .

Thus

‖t̄‖ ≤ ‖ḠT H̄−1B‖ (‖ḠT svec(Y − Ȳ )‖+ ‖ḠT svec(Ȳ+ − Ȳ )‖) .
By part (iii) of Theorem 2.2.2 in [7], we have

‖ḠT svec(Y − Ȳ )‖ = η(x̄, s, Y, Z̄, V̄ ) ≤ 1− [1− 3δ(Y )]1/3

[1− 3δ(Y )]1/3
≤ 3δ(Y ) ≤ 3η.
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Thus

‖t̄‖ ≤ r̄ (3η + ‖ḠT svec(Ȳ+ − Ȳ )‖) .
Hence

ln

p∏
j=1

t̄j =
p

2


1

p

p∑
j=1

ln t̄2j


 ≤ p

2
ln

(∑p
j=1 t̄

2
j

p

)
=

p

2
ln ‖t̄‖2 − p

2
ln p

≤ p ln (3η + ‖ḠT svec(Ȳ+ − Ȳ )‖)+ p ln r̄ − p

2
ln p,(4.3)

and the desired upper bound is established.
Now observe that

φ+(Ω+)− φ(Ω) = − ln

p∏
j=1

t̄j − ln

(
n∏

i=1

s̄+i
s̄i

detȲ+

detȲ

detŪ+

detŪ

)
.

Using the bound in (4.3), we have

φ(Ω+)− φ(Ω) ≥ p

2
ln p− p ln r̄ − ln

(
3η + ‖ḠT svec(Ȳ+ − Ȳ )‖)p n∏

i=1

s̄+i
s̄i

detȲ+

detȲ

detŪ+

detŪ
.

(4.4)

The inequality (4.2) follows, once we have shown that

(
3η + ‖ḠT svec(Ȳ+ − Ȳ )‖)p n∏

i=1

s̄+i
s̄i

detȲ+

detȲ

detŪ+

detŪ
≤ pp+1 θp.(4.5)

Note that

‖ḠT svec(Ȳ+ − Ȳ )‖2

= svec(Ȳ+ − Ȳ )T [AS̄−2AT + Ȳ −1 ©∗ Ȳ −1 + Ū−1 ©∗ Ū−1
]
svec(Ȳ+ − Ȳ )

= (s̄− s̄+)T S̄−2(s̄− s̄+) + svec(Ȳ+ − Ȳ )T (Ȳ −1 ©∗ Ȳ −1)svec(Ȳ+ − Ȳ )
+ svec(Ū − Ū+)

T (Ū−1 ©∗ Ū−1)svec(Ū − Ū+)

=

∥∥∥∥∥∥

 e− S̄−1s̄+

e− λ(Ȳ −1/2Ȳ+Ȳ
−1/2)

e− λ(Ū−1/2Ū+Ū
−1/2)



∥∥∥∥∥∥

2

,

and, by using (2.1), we have

eT S̄−1s̄+ + eTλ(Ȳ −1/2Ȳ+Ȳ
−1/2) + eTλ(Ū−1/2Ū+Ū

−1/2)

= x̄T (c−AT svecȲ+) + Z̄ • Ȳ+ + V̄ • Ū+

= x̄T c+ V̄ • I
= x̄T (c−AT svecȲ ) + Z̄ • Ȳ + V̄ • Ū
= x̄T s̄+ Z̄ • Ȳ + V̄ • Ū
= n+ 2m.
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By Lemma 4.1, (4.5) is proved.
The complexity analysis is based on the following idea. For the sequence of

working sets Ωk, we can establish upper and lower bounds on φ(Ωk). The upper
bound is approximately nk ln ε

−1, which is a consequence of the assumption that Γ
contains a ball of radius ε and the fact that Ωk is defined by nk cuts. The lower
bound is obtained by estimating −∑k−1

i=0 pi ln r̄i, which is a consequence of Lemma
4.2. A sophisticated estimation of r̄k gives rise to a lower bound that is proportional
to nk ln(nk/m

3). The algorithm must terminate before the lower and upper bounds
conflict with each other.

We first establish an upper bound for φk(Ωk).
Lemma 4.3. Let Ωk ⊃ Γ be defined by nk linear inequalities and the positive

semidefinite constraint. Suppose Assumptions A1–A3 hold. Then

φk(Ωk) ≤ −(nk + 2m) ln ε.

Proof. Assumptions A1–A3 imply that there exists a point Y c ∈ Γ such that
(i) all eigenvalues of Y c and I − Y c are greater than or equal to ε;
(ii) for any A ∈ Sm with ‖A‖F = 1 and α ∈ R, if Γ ⊂ {Y | A • Y ≤ α}, then

α−A • Y c ≥ ε.
We will briefly describe how to prove λ(Yc) ≥ εe, before continuing with the proof

of the lemma. Suppose that λj is an eigenvalue of Yc, and vj is a corresponding unit

eigenvector. Consider the matrix Ŷc := Yc − λjvjvTj . Since this matrix has a zero
eigenvalue, it lies on the boundary of Ω0, and by Assumption A3, we have

ε ≤ ‖Ŷc − Yc‖F = ‖λjvjvTj ‖F = λj‖vj‖2 = λj .

The fact that λ(Yc) ≤ (1− ε)e can be proved similarly.
Now we continue with the proof of the lemma. Since Γ ⊂ Ωk,

φk(Ωk) ≤ φk(Y
c) = −

nk∑
i=1

ln(ci −Ai • Y c)− ln detY c − ln det(I − Y c).

Noting that ‖Ai‖F = 1, ci −Ai • Y c ≥ ε, and

detY c =

m∏
i=1

λi(Y
c) ≥ εm, det(I − Y c) =

m∏
i=1

λi(I − Y c) ≥ εm,

we have the desired inequality.
Now we turn to finding a lower bound for φk(Ωk). By Lemma 4.2, we have

φk(Ωk) ≥ φ0(Ω0)−
k−1∑
i=0

pi ln r̄i − 1

2

k−1∑
i=0

pi ln pi −
k−1∑
i=0

pi ln θ −
k−1∑
i=0

ln pi.(4.6)

Obviously, we need to estimate r̄i for each i. We first seek to bound H̄−1
i by D−1

i ,
where Di is defined as follows. Let D0 = 8I, where I is the identity matrix of order
m̄× m̄. For i = 1, 2, . . . , let

Di = D0 +
1

m

i−1∑
j=0

BjBT
j ,
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where Bj = [svecAnj+1, . . . , svecAnj+pj
].

Lemma 4.4. Let Ani+j (with ‖Ani+j‖F = 1), j = 1, . . . , pi, be the cuts gener-
ated from the approximate analytic center Yi ∈ Ωi, i = 0, . . . , k − 1. Let cni+j =
svec(Ani+j)

T svec(Yi), j = 1, . . . , pi, i = 1, . . . , k. For any point Y ∈ Ωk, let
s = c−AT svecY , where

A = [B0 B1 · · · Bk−1] , c =




BT
0 svec(Y0)

...

BT
k−1svec(Yk−1)


 .

Then

sni+j ≤ √
m ∀ j = 1, . . . , pi, i = 1, . . . , k, ∇2φk(Y ) 
 Dk.

In particular, H̄k = ∇2φk(Ȳk) 
 Dk.
Proof. We first estimate sni+j . We have

sni+j = cni+j − svec(Ani+j)
T svec(Y ) = (svecAni+j)

T (svecYi − svecY )

≤ ‖svecAni+j‖ ‖svecYi−1 − svecY ‖
= ‖svecYi − svecY ‖ = ‖Yi − Y ‖F

=


 m∑
j=1

λ2
j (Yi − Y )




1/2

≤ √
m .(4.7)

The last inequality holds because, by Assumption A2,

I 
 Yi 
 Yi − Y 
 −Y 
 −I,

implying that e ≥ λ(Yi − Y ) ≥ −e.
Next, let U = I − Y and Si = diag(sni+1, . . . , sni+pi). Then

∇2φk(Y ) = Y
−1 ©∗ Y −1 + U−1 ©∗ U−1 +AS−2AT

= Y −1 ©∗ Y −1 + U−1 ©∗ U−1 +

k−1∑
i=0

Bi S
−2
i BT

i(4.8)


 8I +
1

m

k−1∑
i=0

Bi BT
i = Dk.

Note that in deriving (4.8) we used the fact that Si �
√
mIpi

for each i, and that

Y −1 ©∗ Y −1 + U−1 ©∗ U−1 
 8I.

In our complexity analysis, we will make the following assumptions:
A4. pmax ≤ m, where pmax = max{pi | i = 0, 1, . . .}.
A5. Let M̄i = BT

i H̄
−1
i Bi. There exists a fixed constant τ ≥ 1 such that, for each

i = 0, 1, . . . ,

λmax(M̄i) ≤ τ
Tr(M̄i)

pi
.
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Assumption A4 is made for technical reasons. It is used in the proof of Lemma 4.5.
Such an assumption also appeared in the papers [3] and [10]. Note that Assumption
A4 can be relaxed to pmax ≤ O(m). But, for simplicity, we fix the constant at 1.

Note that Assumption A5 holds trivially with τ = pmax. For the special case in
which a single cut is used in each iteration, it holds with τ = 1. Thus by fixing τ at an
intermediate value between 1 and pmax, we admit only cuts that are sufficiently good
in the sense that the matrix M̄i cannot have too many small eigenvalues. Of course,
one may not want to fix τ at the extreme value 1, since then the criterion is likely to
reject most of the cuts unless there are many mutually orthogonal (with respect to
H̄−1

i ) cuts.
The main advantage of having Assumption A5 is that in each oracle call we have

an objective criterion to select only cuts that are useful from among a possibly large
number of ineffective cuts. In this way, the number of cuts added in each iteration
will not be unnecessarily large, and hence the computational time in each iteration
will not grow as rapidly as in the case where the cuts are admitted unchecked. The
choice of τ in practice would depend on the problem at hand. It should dynamically be
adjusted as information on the quality of the cuts is obtained as the cutting algorithm
progresses. If the choice of τ is too stringent and many good cuts are rejected, then
we can progressively increase its value so that more good cuts are selected.

However, without a priori information on the quality of the cuts, we propose to
choose τ to be a small constant, say 5, based on the following empirical observation.
We conducted numerical experiments on random matrices of the form V TV , where
V ∈ R

m̄×p, for p = 1, . . . ,m, and m = 10, 20, . . . , 260. The elements of V are drawn
independently from the standard normal distribution. We computed the ratio between
the largest eigenvalue of V TV and Tr(V TV )/p for each V , and found that these ratios
are less than 2 for all of the 3510 cases tested.

Now let us continue with our complexity analysis. Let

w2
i = Tr(BT

i D
−1
i Bi).

Since

pi r̄
2
i ≤ τ Tr(BT

i H̄
−1
i Bi) ≤ τ Tr(BT

i D
−1
i Bi) = τw2

i ,

we have

k−1∑
i=0

pi r̄
2
i ≤ τ

k−1∑
i=0

w2
i .(4.9)

Next, we establish an upper bound for the right-hand side of the above inequality. Its
proof is modeled after that of [10, Lemma 3.5]. However, we have simplified the proof
by considering all the cuts simultaneously instead of handling them one by one as in
[10].

Lemma 4.5.

k−1∑
i=0

w2
i ≤ 9mm̄

8
ln
(
1 +

nk
8mm̄

)
.

Proof. From the equation

detDi+1 = detDi

pi∏
j=1

[
1 +

1

m
λj(BT

i D
−1
i Bi)

]
,
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we have

ln detDi+1 − ln detDi =

pi∑
j=1

ln

[
1 +

1

m
λj(B T

i D
−1
i B i)

]

≥ 8

9m

pi∑
j=1

λj(B T
i D

−1
i B i) =

8

9m
w2

i ,(4.10)

where we used the fact that λmax(BT
i D

−1
i Bi) ≤ λmax(BT

i Bi)/8 = ‖Bi‖2
F /8 = pi/8, and

the inequality ln(1 + x) ≥ 8x/9 for 0 ≤ x ≤ 1/8. We also made use of Assumption
A4, which yields that pi ≤ m.

From (4.10), it follows immediately that

ln detDk − ln detD0 ≥ 8

9m

k−1∑
i=0

w2
i .(4.11)

However,

1

m̄
ln detDk ≤ ln

Tr(Dk)

m̄
= ln

1

m̄

[
Tr(D0) +

1

m

k−1∑
i=0

Tr(B iB T
i )

]

= ln
1

m̄

[
8m̄+

1

m

k−1∑
i=0

pi

]
= ln

(
8 +

nk
mm̄

)
,

implying that

ln detDk − ln detD0 ≤ m̄ ln
(
1 +

nk
8mm̄

)
.(4.12)

Combining (4.11) and (4.12), the lemma is proved.
With the above lemma, we can now formally state a lower bound for φk(Ωk).
Lemma 4.6. Suppose that Assumptions A1–A5 hold. Then

φk(Ωk) ≥ − 1

2
(2m+ nk) ln

[
4m+ 9τ mm̄ ln(1 + nk

8mm̄ )

8(2m+ nk)

]

− 1

2

k−1∑
i=0

pi ln pi − nk ln θ −
k−1∑
i=0

ln pi,

where θ is the constant that appeared in (4.2).
Proof. The proof is similar to that of Theorem 10 in [10], after using (4.9) and

Lemma 4.5.
We will next estimate the number of oracle calls required to find a feasible point

of Γ.
Lemma 4.7. Suppose that Assumptions A1–A5 hold. Then the analytic center

cutting plane method stops with a feasible point before k violates the following inequal-
ity:

ε2

pmaxmm̄
≤ 4/m̄+ 9τ ln(1 + nk

8mm̄ )

8(2m+ nk)
exp

(
2nk ln θ + 2

∑k−1
i=0 ln pi

nk + 2m

)
.(4.13)
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Proof. From Lemmas 4.3 and 4.6, we have

−(2m+ nk) ln ε ≥ −1

2
(2m+ nk) ln

[
4m+ 9τmm̄ ln(1 + nk

8mm̄ )

8(2m+ nk)

]

−1

2

k−1∑
i=0

pi ln pi − nk ln θ −
k−1∑
i=0

ln pi.

Thus, the algorithm must terminate before k violates the above inequality; i.e., the
algorithm must terminate before k violates the following inequality:

ε2

mm̄
≤ 4/m̄+ 9τ ln(1 + nk

8mm̄ )

8(2m+ nk)
exp

(∑k−1
i=0 pi ln pi + 2nk ln θ + 2

∑k−1
i=0 ln pi

2m+ nk

)
.

(4.14)

Since
∑k−1

i=0 pi ln pi ≤ ∑k−1
i=0 pi ln pmax = nk ln pmax, the algorithm must terminate

before k violates the inequality in the lemma.
Theorem 4.8. Suppose that Assumptions A1–A5 hold. Then the analytic center

cutting plane method terminates in at most O∗(m3τ pmax ln pmax/ε
2) Newton steps,

where the notation O∗ means that lower order terms are ignored. The total number
of cuts added is not more than O∗(m3τ pmax/ε

2).
Proof. Ignoring lower order terms (assuming k � m) and by the assumption that

τ is a constant independent of pmax, the above lemma implies that the algorithm stops
as soon as k satisfies

nk
τ ln(nk/m3)

≥ O
(
m3pmax

ε2

)
.

For large k, lnnk is negligible compared to nk; hence the algorithm requires at most

nk = O∗
(
m3τ pmax

ε2

)

cuts. By Theorem 3.9, the total number of Newton steps is

O

(
k∑

i=1

pi ln pi

)
≤ O(nk ln pmax) = O

∗
(
m3τ pmax ln pmax

ε2

)
.

The theorem is proved.
For feasibility problems in R

m
+ , m̄ should be replaced by m in Lemma 4.7. Thus

the complexity bound is O(m2τ pmax ln pmax/ε
2) for the number of required Newton

steps. This bound is better than the bounds obtained in [2], [5], and [10].
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