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Abstract. In this paper, we consider the Lagrangian-dual problem of a class of convex opti-
mization problems. We first discuss the semismoothness of the Lagrangian-dual function ϕ. This
property is then used to investigate the second-order properties of the Moreau–Yosida regularization
η of the function ϕ, e.g., the semismoothness of the gradient g of the regularized function η. We show
that ϕ and g are piecewise C2 and semismooth, respectively, for certain instances of the optimiza-
tion problem. We establish a relationship between the original problem and the Fenchel conjugate
of the regularization of the corresponding Lagrangian dual problem. We also find some instances of
the optimization problem whose Lagrangian-dual function ϕ is not piecewise smooth. However, its
regularized function still possesses nice second-order properties. Finally, we provide an alternative
way to study the semismoothness of the gradient under the structure of the epigraph of the dual
function.
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1. Introduction. Consider the following convex program:

min
x∈Rn

f(x)

s.t. Ax = a,

fi(x) ≤ 0, i ∈ Î = {1, 2, . . . , θ},

(1)

where f, fi, i = 1, 2, . . . , θ, are smooth and convex on R
n, and where A ∈ R

m×n with
rank(A) = m and 0 < m < n.

It is known that many practical problems can be converted to problem (1) above.
For instance, some recently studied multistage stochastic programming models can
be formulated as (1). See [19, Chapter 1] for the detailed modeling in this regard.

Let F := {x ∈ R
n : fi(x) ≤ 0, i ∈ Î}. In many circumstances, particularly

in multistage stochastic programming, f and F are separable, while the constraint
Ax = a is nonseparable. Thus, we seek to relax the constraint Ax = a using the
Lagrangian dual of problem (1) as follows:

min{ϕ(v) | v ∈ R
m},(2)
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where

ϕ(v) = sup{−f(x) + vT (Ax− a) | x ∈ F}.(3)

In these circumstances, the subproblem in (3) is separable, and then is solvable
through the well-developed parallel algorithms. This makes the evaluation of ϕ much
easier in general. However, an obstacle in solving problem (2) is that the function ϕ
is nondifferentiable. To overcome this and noticing that the underlying function ϕ is
convex on R

m, we then use the well-known regularization of Moreau [14] and Yosida
[23] to convert (2) into a smooth problem as follows:

min{η(v) | v ∈ R
m},(4)

where η is the Moreau–Yosida regularization of ϕ as defined below,

η(v) = min
w∈Rm

{
ϕ(w) +

1

2
||w − v||2M

}
, v ∈ R

m,(5)

M is a symmetric positive definite m×m matrix, and ‖v‖2
M = vTMv for any v ∈ R

m.
It is well known that the set of minimizers of problem (4) is exactly the set of

minimizers of (2). It can be shown that η is continuously differentiable and that
its gradient g = ∇η is globally Lipschitz continuous with modulus ||M ||. For the
properties of the Moreau–Yosida regularization, the reader is referred to [8, 7]. For
the problem discussed in the present paper, there are some advantages of using the
Moreau–Yosida regularization, as given next.

Fukushima and Qi [7] have shown that superlinear convergence can be guaranteed
by using approximate solutions of the problem (5) to construct search directions for
minimizing η. While finding an exact solution for a nonsmooth function ϕ is difficult,
the computation of an approximate solution is relatively easier. We can, e.g., consider
a parameterized function ϕ(w, μ), where ϕ(w, μ) → ϕ(w) as μ → 0 and ϕ(w, μ) is
smooth for any μ > 0 as in the case of the barrier function method. This method
was utilized for solving multistage stochastic nonlinear problems recently in [24], in
which the underlying stochastic problem was formulated as problem (1). For any
prescribed accuracy, we can now choose an appropriate μ > 0 such that the minimizer
of ϕ(w, μ) + (1/2)‖w − v‖2

M is a desirable approximate solution to (5).
It is interesting that both the parameterized function ϕ(·, μ) and the regular-

ized function η (without parameter) are used to smooth the nonsmooth function ϕ.
However, they function in different ways and have different properties: the former
is successful in global convergence, while the latter can speed up local convergence.
Incorporating the parameterizations into the Moreau–Yosida regularization can be a
way to combine advantages in both approaches.

Besides the parameterizations mentioned above, there are many other methods
for computing approximate minimizers of ϕ. Each of these methods can be incorpo-
rated into the Moreau–Yosida regularization, giving rise to an enhanced method for
minimizing the nonsmooth function ϕ. Hence establishing the theoretical framework
of the Moreau–Yosida regularization can benefit a variety of algorithms.

For the problem under consideration, one of the most important properties about
the Moreau–Yosida regularization is the semismoothness of the gradient of the regular-
ized function, which has played a key role in establishing the superlinear convergence
of the generalized Newton method for nonsmooth convex problems by combining the
Moreau–Yosida regularization scheme in (5) [7].
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The concept of semismooth functions, an important subclass of Lipschitz func-
tions, was first introduced by Mifflin [12]. In order to study the superlinear conver-
gence of Newton method for solving nondifferentiable equations, Qi and Sun [16] ex-
tended the definition of semismoothness to vector-valued functions. After the work of
Qi and Sun, semismoothness was extensively used to establish superlinear/quadratic
convergence of Newton’s method for solving the convex best interpolation problem
[4, 5], nondifferentiable equations in which the underlying functions are slant differ-
entiable functions [1], and complementarity problems and variational inequalities [6],
for instance.

In this paper, we will focus on a special case of semismooth functions, piecewise
Ck functions, which is a large class of locally Lipschitz continuous functions, found
in most practical problems [20, 17]. In the past few years, many people have studied
the piecewise smoothness of nonsmooth functions and designed algorithms based on
Newton’s method for solving the associated nonsmooth equations or nonlinear opti-
mization problems. For example, the analysis was mainly focused on the concept of
piecewise Ck functions in [10, 13, 21], where the authors have considered properties
of g for some specific classes of ϕ. Specifically, Sun and Han [21] showed the semis-
moothness of g if ϕ is the maximum of several twice continuously differentiable convex
functions under a constant rank constraint qualification (CRCQ). Later, Meng and
Hao [10] derived the same result for the case of unconstrained problem (1) with the
objective function f being a piecewise C2 function under a weaker sequential constant
rank constraint qualification. In [13], Mifflin, Qi, and Sun investigated the case where
ϕ is piecewise C2 which is a generalization of the maximum of convex C2 functions
under a so-called affine independence preserving constraint qualification (AIPCQ).

Having motivated the importance of the notions of semismoothness and the
Moreau–Yosida regularization in nonsmooth analysis, in this paper we will investi-
gate properties of the Lagrangian-dual function ϕ and the gradient of its Moreau–
Yosida regularization η. Further, studying the properties of Lagrangian-dual function
ϕ has its own interest as well; see [22] and the references therein, for instance. Since
piecewise smooth functions as a special class of semismooth functions possess more
enjoyable properties than semismooth functions [12, 16, 17, 20], we will concentrate on
the study of piecewise smoothness of ϕ and the gradient g of the regularized function
η in the context. We have adopted two different methods in analyzing properties of
g. In terms of the first method, the main tool used in this study is based on Propo-
sition 1 (see section 2), which was established by Mifflin, Qi, and Sun [13] using the
notion of piecewise smoothness. We will first study the piecewise smoothness of ϕ.
This property will then be used to show the semismoothness of g. For the problem
with the linear objective function f(x) = cTx, we can show that the function ϕ is
piecewise C2 and satisfies AIPCQ, and thus g is semismooth by Proposition 1 if all
fi’s are affine functions or all ∇2fi’s are positive definite. We also present an exam-
ple whose region F is defined by a linear constraint and a strictly convex constraint.
In this example, the function ϕ is, surprisingly, not piecewise C2, and, equally sur-
prisingly, the gradient g of the regularization of ϕ is still semismooth. For general
convex objective functions f and constraint functions fj , it is completely unknown
how smooth ϕ and g should be. This issue is considered by analyzing some special
cases where the objective function possesses a positive definite Hessian. The second
method is mainly based on the metric projection operator under the structure of the
epigraph of the Lagrangian-dual function. Using the projection mapping, the study of
the properties of g is equivalently converted to the study of the properties of solutions
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to a system of nonsmooth equations. The analysis is basically based on the framework
established by Meng, Sun, and Zhao [11] recently. The results obtained complement
and enrich the framework of piecewise smooth functions [20, 17] and also enhance the
recent results on the Moreau–Yosida regularization [11].

Another topic of interest is the study of the duality of the original problem (1).
It is well known that the duality theory is a fundamental issue in optimization both
theoretically and numerically. For problem (1) with a linear objective, we derive
an interesting result regarding the original problem and the Fenchel conjugate of
Moreau–Yosida regularization of its Lagrangian-dual function, characterizing a rela-
tionship between the conjugate and the Lagrangian-dual. This provides a new way to
look at the Lagrangian-dual and the Moreau–Yosida regularization. We believe that
the established results complement the dual theory in optimization, particularly the
theory of Magnanti [9] to some extent.

The rest of the paper is organized as follows. In section 2, basic definitions and
properties are collected. The analysis of problems with the linear objective functions
covers the next two sections. Section 3 investigates the piecewise smoothness of the
function ϕ. Section 4 studies the semismoothness of the gradient g and the conjugate
of the Moreau–Yosida regularization. Illustrative examples are presented in sections 3
and 4. Section 5 discusses the case of general convex objective functions. Section 6
concludes.

2. Preliminaries. In this section, we briefly recall some concepts, such as semis-
moothness, piecewise smoothness, and AIPCQ, which will be used in the rest of this
paper.

It is known that the regularized function η is a continuously differentiable convex
function defined on R

m, even though ϕ may be nondifferentiable. The gradient of η
at v (see [8]) is

g(v) ≡ ∇η(v) = M(v − p(v)), v ∈ R
m,(6)

where p(v) represents the unique solution of the minimization problem in (5). In
order to use Newton method or modified Newton’s methods for solving (4), it is
important to study the Hessian of η, i.e., the Jacobian of g. Note that, in general,
g may not be differentiable. To extend the definition of Jacobian to certain classes
of nonsmooth functions, Qi and Sun [16] introduced the definition of semismoothness
[12] for vector-valued functions. See [16] for details.

A remarkable feature of semismoothness is that superlinear or quadratic con-
vergence of a generalized Newton method for solving nonsmooth equations can be
obtained under the assumption of semismoothness. See [7, 15, 16] for the relevant
discussions. Note that in general a direct verification of semismoothness is difficult.
Some equivalent definitions of semismooth functions and further studies on semis-
moothness can be found in [11, 15] and the references therein. As for the underlying
Lagrangian dual function ϕ, it has a special feature; i.e., ϕ is piecewise smooth. We
shall make use of this special feature to investigate the semismoothness of g in the
subsequent analysis. We now give a definition of piecewise smooth functions below,
which is slightly different from the one given in [20].

Definition 1. A continuous function ψ : R
n → R

l is said to be a piecewise Ck

function on a set D ⊆ R
n if there exist a finite index set I = {1, . . . , q}, closed sets

D1, . . . , Dq, open sets U1, . . . , Uq (or relatively open with respect to the affine hull of
D), and functions ψ1, . . . , ψq such that

(i) D ⊆ ∪q
j=1Dj and Dj ⊆ Uj for each j ∈ I,
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(ii) ψj ∈ Ck(Uj) for each j ∈ I,
(iii) ψ(u) = ψj(u) for any u ∈ D ∩Dj and each j ∈ I.

We refer to {(Dj , Uj , ψj)}j∈I as a representation of ψ.
Remark 1. If the closure of D is contained by every Uj , then Definition 1 can

simply be stated as follows. A continuous function ψ is a piecewise Ck function on
the set D ⊆ R

n if there exists a finite set of functions ψj ∈ Ck(Uj) for j = 1, . . . , q
such that for any u ∈ D, ψ(u) ∈ {ψ1(u), . . . , ψq(u)}.

Note that for the Moreau–Yosida regularization of a piecewise smooth function to
be smooth, the pieces ψj must be joined together properly. Mifflin, Qi, and Sun [13]
introduced the following constraint qualification—AIPCQ. For any u ∈ D, we write

I(u) = {i ∈ I : u ∈ Di}.

Definition 2. The AIPCQ is said to hold for a piecewise smooth function ψ at
u if for every subset K ⊆ I(u) for which there exists a sequence {uk} with {uk} → u,
K ⊆ I(uk), and the vectors {(

∇ψi(u
k)

1

)
: i ∈ K

}
(7)

being linearly independent, it follows that the vectors{(
∇ψi(u)

1

)
: i ∈ K

}
(8)

are linearly independent.
Remark 2. The set I(u) defined in this paper and the corresponding set in [13],

denoted by I ′(u), are slightly different. In [13], they define

I ′(u) = {j ∈ I : ψj(u) = ψ(u)}.

Since u ∈ Dj implies ψj(u) = ψ(u), we have I(u) ⊆ I ′(u). For u ∈ Uj \Dj , ψj(u) can
be set to any value (as long as ψj ∈ Ck(Uj)); hence we can assume, without loss of
generality, that ψj(u) �= ψ(u) for all u ∈ Uj \Dj . Under this assumption,

I(u) = I ′(u) ∀u ∈ D.

By virtue of the AIPCQ, Mifflin, Qi, and Sun [13] derived the following result,
which will be used in the analysis of this paper.

Proposition 1. Suppose that the convex function ϕ is piecewise C2 on R
m and

that the AIPCQ holds at the proximal point p(v) for a given v ∈ R
m. Then there

exists an open neighborhood N (v) about v such that the gradient g of the function η,
the Moreau–Yosida regularization of ϕ, is piecewise C1 (smooth) on N (v). Hence g
is semismooth at v.

3. Piecewise smoothness of ϕ. In this section, we will study the piecewise
smoothness of the Lagrangian-dual function ϕ for the case f(x) = cTx in (3), which
is defined by

ϕ(v) = sup{−cTx + vT (Ax− a) | x ∈ F}.(9)

The piecewise smoothness is an important characteristic of the Lagrangian-dual
function ϕ. The investigation of this characteristic is helpful to optimization methods
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which use the Lagrangian dual. Hence the results in this section are significant in
their own right. In the next section, the piecewise smoothness of ϕ will then be used
to prove the semismoothness of the gradient of the Moreau–Yosida regularization.
Denote

Ω := {u = AT v − c : v ∈ R
m}.

Clearly, Ω is an m-dimensional affine set in R
n since rank(A) = m. We make the

following assumptions throughout the paper.
Assumption 1. c �∈ {AT s : s ∈ R

m}.
Assumption 2. fi ∈ C2(Rn) for all i ∈ Î.
Assumption 3. F �= ∅ and Ω ∩ Fb �= ∅.
Here, Fb denotes the barrier cone of the convex set F defined by

Fb = {y ∈ R
n | ∃ β ∈ R such that yTx ≤ β ∀ x ∈ F}.

Remark 3. If c = AT s for some s ∈ R
m, then Ax = a implies cTx = sTAx = sTa.

This means that any feasible solution of (1) is an optimal solution. Assumption 1
should rule out this degenerate case. Assumption 1 can also be written as 0 /∈ Ω.
Assumption 2 is a natural assumption of smoothness. The motivation of Assumption 3
is to guarantee the properness of the function ϕ, as shown by Lemma 1 below.

Define ζ, the support function of F in R
n, as follows

ζ(u) = δ∗(u | F) := sup{〈u, x〉 | x ∈ F}, u ∈ R
n.(10)

Then the Lagrangian-dual function ϕ defined in (9) can be rewritten as

ϕ(v) = ζ(AT v − c) − aT v.(11)

We now define some notation which will be used in the paper.
(i) Q is said to be a facet of F if there exists an index subset IQ ⊂ Î such that

Q = {x ∈ F : fi(x) = 0, ∀i ∈ IQ}. IQ is referred to as the index set of the facet Q.
(ii) For a convex function h : R

s → R̄ = R ∪ {+∞}, the domain of h, denoted by
domh, is defined by domh := {z ∈ R

s : h(z) < +∞}.
Lemma 1. The Lagrangian-dual function ϕ is a proper convex function on R

m if
and only if Assumption 3 holds. One also has

domϕ = {v ∈ R
m | AT v − c ∈ Fb}.

Proof. It is evident that ϕ(v) can never be −∞ if F �= ∅, and if F = ∅, then
ϕ ≡ −∞.

By (11), we have

domϕ = {v ∈ R
m | AT v − c ∈ domζ}.

Hence, domϕ �= ∅ if and only if Ω ∩ domζ �= ∅. Since ζ is the support function of F ,
it is easy to see that

domζ = Fb.

Therefore, the second condition in Assumption 3 is a necessary and sufficient condition
for domϕ �= ∅.
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Proposition 2. If ζ is piecewise C2 on a set D ⊆ R
n \ {0}, then ϕ is piecewise

C2 on the set E := {v : AT v − c ∈ D} ⊆ R
m under Assumption 1.

Proof. Since ζ is piecewise C2, there exist closed sets Di, open sets Ui, and
functions ζi ∈ C2(Ui), i ∈ l, where l is a finite index set, which satisfy Definition 1.
Let

ϕi(v) := ζi(A
T v − c) − aT v, Ei := {v : AT v − c ∈ Di}, Vi := {v : AT v − c ∈ Ui}.

Then it is evident that ϕi ∈ C2(Vi), Ei is closed, and Vi is open. Furthermore,
ϕi(i ∈ l) satisfy (i)–(iii) in Definition 1. Hence ϕ is a piecewise C2 function.

Proposition 3. Suppose that fi is an affine function on R
n for every i ∈ Î. Then

the function ϕ defined in (9) is a piecewise C2 function on its domain. Especially, ϕ
is piecewise affine on its domain.

Proof. By Proposition 2, it suffices to show that ζ is piecewise C2 on Ω ∩ domζ.
According to the remark after Definition 1, it suffices to show that there exist twice
continuously differentiable functions ζj on R

n(= Uj), j ∈ Ĵ a finite index set, such
that for any u ∈ Ω∩ domζ

ζ(u) ∈ {ζj(u) : j ∈ Ĵ}.(12)

It is known that the polyhedral F can be represented by its vertices {x1, . . . , xp} and
extreme rays {r1, . . . , rq} in the form

F =

{
x =

p∑
i=1

αixi +

q∑
i=1

λiri : αi ≥ 0,

p∑
i=1

αi = 1, λi ≥ 0

}
.

Define

F̄ =

{
x =

p∑
i=1

αixi +

q∑
i=1

λiri : αi ≥ 0,

p∑
i=1

αi = 1, 0 ≤ λi ≤ 1

}
.

We claim that, for any u ∈ domζ, sup{uTx : x ∈ F} = sup{uTx : x ∈ F̄}.
Assume by contradiction that there exist a u ∈ domζ and a x̄ ∈ F \ F̄ such that
uT x̄ > sup{uTx : x ∈ F̄}. Denote J := {i : λi > 1}, where the λi’s are the coefficients
in the representation of x̄. Let x̂ ∈ F̄ be defined by the same representation of x̄ except
for changing the λi, i ∈ J , to 1. Then x̄− x̂ =

∑
i∈J(λi − 1)ri. Since x̂ ∈ F̄ , we have

uT x̂ < uT x̄, i.e., ∑
i∈J

(λi − 1)uT ri > 0.

Thus there exists at least an ī ∈ J with uT rī > 0. For any fixed x0 ∈ F and any λ ≥ 0,
x0 + λrī ∈ F . Thus ζ(u) ≥ uTx0 + λuT rī → +∞ as λ → +∞, which contradicts the
fact u ∈ domζ. This shows that for any u ∈ domζ

ζ(u) = sup{uTx | x ∈ F̄}.

Note that F̄ is a bounded polytope. Without loss of generality, let {x̄1, . . . , x̄k}
be all vertices of F̄ , and define ζj(u) = x̄T

j u. Then ζj ∈ C2(Rn) (here Uj = R
n). For

any u ∈ Ω ∩ domζ, because u �= 0 by Assumption 1, the set of maximizers of ζ(u)
must contain at least a vertex, say x̄j , of F̄ . It follows that

ζ(u) = x̄T
j u = ζj(u),
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which shows (12). Thus, ζ(u) is piecewise C2 on its domain. Evidently, ζ(u) is also
piecewise affine on its domain, and so is ϕ.

Next, we consider the case where all ∇2fi (i ∈ Î) are positive definite. Our
analysis will proceed as follows. For each facet Q (of any dimension) of F , we will
define an open set U and a C2 function on U . Roughly speaking, we first define a
mapping from x-space to an open set in u-space (actually the mapping is defined on
enlarged spaces), prove that this mapping is bijective, and then use the inverse of this
mapping to define a function on the open set in u-space. For any facet Q of F with
the index set IQ, we define

W :=

⎧⎨
⎩(x, λ) ∈ R

n × R
|IQ| : fi(x) = 0, i ∈ IQ,

∑
i∈IQ

λi∇2fi(x) � 0

⎫⎬
⎭ ,(13)

where B � 0 means that the matrix B is symmetric positive definite,

U :=

⎧⎨
⎩u =

∑
i∈IQ

λi∇fi(x) ∈ R
n : (x, λ) ∈ W

⎫⎬
⎭ .(14)

Note that for (x, λ) ∈ W , x is not required to be in Q. Actually, x need not be in F .
Without loss of generality, let IQ = {1, . . . , k}. Denote f̃ = (f1, . . . , fk)

T , and define
a mapping Γ : R

n × R
k → R

n+k by

Γ(x, λ) :=

( ∑k
i=1 λi∇fi(x)

f̃(x)

)
.(15)

Note that the Karush–Kuhn–Tucker (KKT) conditions for problem (10) can be
written as

Γ(x, λ) = (u; 0).

The following lemma plays a fundamental role in our analysis.
Lemma 2. Let W, U be defined by (13), (14), respectively. Suppose that for

any x ∈ R
n all ∇2fi(x) (i ∈ IQ) are positive definite and {∇fi(x)}i∈IQ are linearly

independent. Then (i) U is an open set in R
n; and (ii) there exists a continuously

differentiable bijective mapping ξ = (ξx, ξλ) : U → W such that for all u ∈ U ,
Γ(ξx(u), ξλ(u)) = (u; 0); i.e., ξ is the inverse mapping of Γ restricted on U .

Proof. (i) For any (x̄, λ̄) ∈ W , let (ū; v̄) = Γ(x̄, λ̄). Then ū =
∑k

j=1 λ̄j∇fj(x̄)
and v̄ = 0. In the following, we seek to show that ū is an interior point of U . Let
us denote ∇f̃ := (∇f1, . . . ,∇fk) ∈ R

n×k. Then, ∇f̃(x) has full column rank, i.e.,
rank(∇f̃(x)) = k, by assumption. By the continuity of ∇2fi, i ∈ Î, there exists a

neighborhood of (x̄, λ̄), denoted by Nx, such that
∑k

i=1 λi∇2fi(x) � 0 for all (x, λ) ∈
Nx. Thus, the Jacobian of Γ,

∇Γ(x, λ) =

( ∑k
i=1 λi∇2fi(x) ∇f̃(x)

∇f̃(x)T 0

)
,

is nonsingular on Nx. By the inverse function theorem, there exists a neighborhood
of (ū, v̄), denoted by Nu, such that there exists an inverse mapping Ψ of Γ defined on
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Nu, and for any (u, v) ∈ Nu, Ψ(u, v) ∈ Nx and Γ(Ψ(u, v)) = (u; v). In particular, for
any (u, v) ∈ Nu with v = v̄ = 0, (x, λ) = Ψ(u, 0) satisfies

u =

k∑
i=1

λi∇fi(x), f̃(x) = 0,

k∑
i=1

λi∇2fi(x) � 0.(16)

This implies (x, λ) ∈ W and thus u ∈ U for all (u, 0) ∈ Nu. Since U0 := {u : (u, 0) ∈
Nu} is an open set in R

n, and ū ∈ U0 ⊂ U , ū is an interior point of U . Thus U is
open.

(ii) Since the Jacobian ∇Γ(x, λ) is nonsingular and continuous on the entire set
W and since Γ maps W onto U × {0}, the inverse mapping Ψ of Γ defined in (i) is a
continuously differentiable bijective mapping from U×{0} onto W . Define a mapping
ξ : U → W by ξ(u) = Ψ(u, 0). Then ξ is continuously differentiable and bijective, and
Γ(ξ(u)) = (u; 0).

As a consequence of Lemma 2, we obtain the following result.
Lemma 3. Let ζQ(u) = uT ξx(u), where ξx is defined in Lemma 2. Then ζQ ∈

C2(U), and for any u ∈ U

∇ζQ(u) = ξx(u).(17)

Proof. From Lemma 2 and the first equation of Γ(ξ(u)) = (u; 0), it follows that

u =
∑
i∈IQ

ξλi
(u)∇fi(ξx(u)).

Thus,

∇ζQ(u) = ξx(u) + ∇ξx(u)u

= ξx(u) + ∇ξx(u)
∑

i∈IQ
ξλi(u)∇fi(ξx(u))

= ξx(u) +
∑

i∈IQ
ξλi

(u)∇ξx(u)∇fi(ξx(u)).

According to the second equation in Γ(ξ(u)) = (u; 0), we have fi(ξx(u)) = 0 for all
u ∈ U and i ∈ IQ. Differentiating these functions, we obtain ∇ξx(u)∇fi(ξx(u)) = 0
for all i ∈ IQ. Hence, ∑

i∈IQ

ξλi(u)∇ξx(u)∇fi(ξx(u)) = 0.

Thus, it follows that

∇ζQ(u) = ξx(u).

By Lemma 2, ξx(u) is continuously differentiable on U . Therefore, ζQ is twice contin-
uously differentiable on U .

The following proposition is one of the main results in this paper, showing the
piecewise smoothness of the function ϕ.

Proposition 4. For ϕ defined by (9), suppose that, for all i ∈ Î, ∇2fi(x) are
positive definite, and for any facet Q of F with the index set IQ, {∇fi(x)}i∈IQ are
linearly independent. Then ϕ is piecewise C2 on its domain.

Proof. Let us first consider the function ζ defined by (10) on the set D, where
D = Ω ∩ domζ. Let {Q1, . . . , Qq} be the set of all facets of F . Let Wi, Ui, and ξi be
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defined in (13), (14), and Lemma 2 for the facet Qi = {x ∈ F : fl(x) = 0, l ∈ Ii}.
Define

Di := Ω ∩
{
u =

∑
l∈Ii

λl∇fl(x) : x ∈ Qi, λl ≥ 0

}
,(18)

which is evidently a closed set. By Lemma 2, Ui is open. Define ζi(u) := uT ξix(u).
In what follows, we show that (i), (ii), and (iii) in Definition 1 hold.

(i) For any u ∈ riD, by [18, Theorem 23.4 and Corollary 23.5.3], there exists an
optimal solution x∗ to problem (10), which together with a Lagrangian multiplier λ̄∗

satisfies the KKT conditions:

u =
∑θ

i=1 λ̄
∗
i∇fi(x

∗),

λ̄∗
i ≥ 0,

fi(x
∗) ≤ 0,

λ̄∗
i fi(x

∗) = 0, i = 1, 2, . . . , θ.

(19)

Because u �= 0 by Assumption 1, x∗ must lie on some facets of F . Let Qj = {x ∈
F : fi(x) = 0, i ∈ Ij } be the smallest facet at x∗. By “smallest” we mean that for
any i �∈ Ij , fi(x

∗) �= 0. Then λ̄∗
i = 0 for all i �∈ Ij . Let λ∗ denote the subvector

of λ̄∗ consisting of components in Ij . Then u =
∑

i∈Ij
λ∗
i∇fi(x

∗), which together

with λ∗ ≥ 0 and x∗ ∈ Qj implies u ∈ Dj . This shows that riD ⊆ ∪q
i=1Di. Thereby,

D ⊆ ∪q
i=1Di since each Di is closed.

For any u ∈ Dj , let x̄ ∈ Qj and λ̄ ≥ 0 represent u as in (18). λ̄ �= 0, since u �= 0
by Assumption 1. This implies that

∑
i∈Ij

λ̄i∇2fi(x̄) � 0, since all ∇2fi are positive

definite. Thus (x̄, λ̄) ∈ Wj and u ∈ Uj . This shows Dj ⊆ Uj .
(ii) By Lemma 3, ζi ∈ C2(Ui) for i = 1, . . . , q.
(iii) For any u ∈ D ∩Dj , let x̄ ∈ Qj and λ̄ ≥ 0 represent u as in (18). Let λ̄∗ be

defined by λ̄∗
i = λ̄i for i ∈ Ij and λ̄∗

i = 0 for i �∈ Ij . Then (x̄, λ̄∗) satisfies the KKT
conditions (19). Thus ζ(u) = uT x̄. On the other hand, the second part of (i) shows
that (x̄, λ̄) ∈ Wj . Using the relation in (18), we have (u; 0) = Γj(x̄, λ̄), where Γj is the
mapping defined in (15). Since ξj is the inverse of Γj restricted on Uj , ξj(u) = (x̄, λ̄).
By definition, we have

ζj(u) = uT ξjx(u) = uT x̄.

Thus ζ(u) = ζj(u) for any u ∈ D ∩Dj .
The above shows that ζ is piecewise C2 on D(= Ω ∩ domζ). By virtue of Propo-

sition 2, ϕ is piecewise C2 on its domain.
Remark 4. In Propositions 3 and 4 we conclude that ϕ is piecewise C2 convex

under the assumption that the constraints for F are either all linear or all have
positive definite Hessian matrices. A natural question arises: Can ϕ be piecewise C2

for more general F? The following example considers an F which is defined by a
linear constraint and a strictly convex constraint with a positive definite Hessian, and
gives a negative answer to the above question.

Example 1. Let

ϕ(v) = sup{−cTx + vT (Ax− a) | x ∈ F},
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where

A =

(
1 0 0
0 1 0

)
, c = (0, 0,−1)T , a = (0, 0)T ,

and

F = {x ∈ R
3 : x2

1 + x2
2 + x2

3 − 1 ≤ 0, x3 ≤ 0}.

Since F is bounded, Fb = R
3 and domϕ = R

2. One can verify that Assumptions 1,
2, and 3 are satisfied. It is easy to see that

ϕ(v) = sup{(v1, v2, 1)Tx | x ∈ F},

and that the maximizer is x = (v1/‖v‖, v2/‖v‖, 0)T if v �= 0 and is any point on
F ∩ {(x1, x2, x3) | x3 = 0} if v = 0. It follows that

ϕ(v) =
√
v2
1 + v2

2 .

Obviously, ϕ is smooth at any point v �= 0. So for any nonzero v ∈ R
2, the gradient

and the Hessian of ϕ can be written as

∇ϕ(v) =

(
v1/

√
v2
1 + v2

2

v2/
√
v2
1 + v2

2

)
,

∇2ϕ(v) =

(
v2
2/(v

2
1 + v2

2)3/2 −v1v2/(v
2
1 + v2

2)3/2

−v1v2/(v
2
1 + v2

2)3/2 v2
1/(v

2
1 + v2

2)3/2

)
.

It is evident that ∇2ϕ(v) is unbounded as v → 0 (v �= 0), (either ∂2ϕ(v)
∂v2

1
→ ∞ if

|v1| ≤ |v2|, or ∂2ϕ(v)
∂v2

2
→ ∞ if |v1| ≥ |v2|).

To show ϕ is not piecewise C2 on its domain R
2, let (Ej , Vj , ϕj) be any piece

representing ϕ in a neighborhood of v = 0, namely, 0 ∈ Ej ⊂ Vj and ϕj is a function
on Vj satisfying ϕj(v) = ϕ(v) for all v ∈ Ej . Since ∇2ϕj(v) = ∇2ϕ(v) wherever ϕ is
twice differentiable, we have ∇2ϕj(v) → ∞ as v → 0 (Ej � v �= 0). Since the origin
is an interior point of Vj , ϕj �∈ C2(Vj). Therefore, ϕ is not a piecewise C2 function
on its domain.

4. Semismoothness of the gradient of η and its conjugate. In this section,
we will study the semismoothness of the gradient of the Moreau–Yosida regulariza-
tion of ϕ as discussed in section 3, where f(x) = cTx. We will also investigate the
properties of the conjugate of η and explore its relations with the original problem.

4.1. Semismoothness of the gradient of η. Our study on the semismooth-
ness of g is based on the theory established by Mifflin, Qi, and Sun [13]. In their paper,
they assume that ϕ is piecewise C2 convex on the whole space R

m, i.e., domϕ = R
m.

We follow this assumption in this section. By Lemma 1, domϕ = R
m if and only

if Ω ⊂ Fb. Therefore, we make the following assumption in this section to replace
Assumption 3.

Assumption 4. F �= ∅ and Ω ⊂ Fb.
To show the semismoothness of g, we shall first show that ϕ defined in (3) satisfies

AIPCQ in the following two cases: (i) all fi are affine, and (ii) all fi possess positive
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definite Hessian matrices. Suppose that ϕ(v) is a piecewise smooth function with the
representation {(Ei, Vi, ϕi)}i∈I . For any v ∈ R

m, define

I(v) := {i ∈ I : v ∈ Ei}.

Lemma 4. Suppose for every i ∈ Î that fi is an affine function on R
n. Then

for the piecewise affine function ϕ(v) defined by (9), the AIPCQ holds at every v on
R

m.
Proof. Suppose that ϕ is represented by {ϕi}i∈I , where ϕi(v) = βT

i v − αi. For
any w ∈ R

m and any index set K ⊆ I(w),{(
∇ϕi(w)

1

)
: i ∈ K

}
=

{(
βi

1

)
: i ∈ K

}

is a set of constant vectors. Therefore the AIPCQ holds at any v ∈ R
m.

Now we consider the case that the set F is defined by all convex functions fj
with positive definite Hessian matrices. In the proof of Proposition 4, we have defined
a representation {(Dj , Uj , ζj)}j∈I of ζ. This representation induces a representation
{(Ej , Vj , ϕj)}j∈I of ϕ as defined in the proof of Proposition 2; we will use these
notations below.

Because the value of ϕj(v), v ∈ Vj \ Ej , does not affect the representation of ϕ,
it therefore can be set to any value. For simplicity, in what follows, we assume that

ϕj(v) �= ϕ(v) ∀j ∈ I, v ∈ Vj \ Ej(20)

(see also Remark 2).
Lemma 5. Suppose that the conditions of Proposition 4 are satisfied. Let {(Ej ,

Vj , ϕj)}j∈I be a representation of ϕ. Then, for any v ∈ domϕ and any i, j ∈ I,
∇ϕi(v) = ∇ϕj(v) if ϕi(v) = ϕj(v) = ϕ(v).

Proof. It suffices to show that for any u ∈ Ω ∩ domζ and any i, j ∈ I, ∇ζi(u) =
∇ζj(u) if ζi(u) = ζj(u) = ζ(u), where {(Dj , Uj , ζj)}j∈I is the corresponding repre-
sentation of ζ. Let u ∈ Ui and ξi : Ui → Wi be defined as in Lemma 2. If we
can show that ζi(u) = ζ(u) implies that ξix(u) is indeed the unique maximizer x∗ of
problem (9) for the given u, then the fact ∇ζi(u) = ξix(u) (Lemma 3) leads readily
to ∇ζi(u) = x∗ = ∇ζj(u), provided that ζi(u) = ζj(u) = ζ(u).

Now, if ζi(u) = ζ(u), then (20) (applying to ζ) and u ∈ Ui imply u ∈ Di. By
definition of (18), x = ξix(u) ∈ Qi ⊂ F ; i.e., ξix(u) is a feasible solution of problem
(9). So, uT ξix(u) = ζi(u) = ζ(u) implies that ξix(u) is a unique optimal solution x∗

of problem (9) for a given u.
The above lemma actually holds true for ϕ with domϕ �= R

m. This lemma will
be used to prove Lemma 6. In addition to it, we obtain a property of the function ϕ
as a by-product, namely, ϕ is indeed differentiable on the relative interior of domϕ,
because the subdifferential ∂ϕ(v) at any point v ∈ ri(domϕ) is a singleton.

Lemma 6. Suppose that the conditions of Proposition 4 are satisfied. Then, for
the piecewise C2 function ϕ, the AIPCQ holds at each v ∈ R

m.
Proof. Let v ∈ R

m and K ⊆ I(v). If |K| = 1, the vectors in the set in (8) are
evidently linearly independent (actually, the set is a singleton). So the conditions for
AIPCQ are satisfied. If |K| ≥ 2, then for any w �= v with K ⊆ I(w) and for any
i �= j ∈ K, ϕi(w) = ϕj(w) = ϕ(w) implies that ∇ϕi(w) = ∇ϕj(w) by Lemma 5.
Thus the set of vectors in (7) can never be linearly independent. This means that the
conditions for AIPCQ hold automatically.
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From the piecewise C2 smoothness of ϕ shown in section 3 and the qualification
AIPCQ verified in this section, we have the semismoothness of g, as stated below.

Proposition 5. Let ϕ be defined by (9). Suppose that Assumptions 1, 2, and 4
are satisfied. Suppose that fi, i ∈ Î, are either all affine or all possess positive definite
Hessian matrices. In the latter case suppose that for any facet Q of F with the index
set IQ, {∇fi(x)}i∈IQ are linearly independent. Then the gradient g(v)(= ∇η(v)) of
the Moreau–Yosida regularization η is piecewise smooth, and thereby semismooth, on
R

m.
Proof. The proof follows directly from Propositions 1, 3, and 4, and Lemmas 4

and 6.
Remark 5. The above proposition shows that g is semismooth if constraints defin-

ing F either are all linear or all possess positive definite Hessian matrices. In Exam-
ple 1 of section 3, we found that, for some simple mixed constraints, the Lagrangian-
dual function ϕ is not piecewise C2. Actually, the second-order derivatives of ϕ tend
to infinity at some point. Since the semismoothness of g is closely related to the piece-
wise C2 smoothness of ϕ, we might expect that for this example g is not semismooth
either. However, the gradient g of the Moreau–Yosida regularization of this function
ϕ is semismooth, as shown below.

Example 2 (Example 1 (continued)). It is known that ϕ(v) =
√

v2
1 + v2

2 . For
convenience in description we set M = I, so we have

η(v) = min

{√
w2

1 + w2
2 +

1

2
‖w − v‖2 | w ∈ R

2

}
.

It is easy to verify that, for ‖v‖ ≤ 1,

η(v) = (v2
1 + v2

2)/2, p(v) = (0, 0)T ,

and for ‖v‖ ≥ 1,

η(v) =
√

v2
1 + v2

2 − 1/2, p(v) = (1 − 1/‖v‖)v.

Let V̂1 = {v ∈ R
2 : ‖v‖ ≤ 1} and V̂2 = {v ∈ R

2 : ‖v‖ ≥ 1}. By (6), it suffices to study
the semismoothness of p. For v ∈ intV̂1, the Jacobian of p is

J(p(v)) =

(
0 0
0 0

)
,(21)

and for v ∈ intV̂2,

J(p(v)) =

(
1 − v2

2/‖v‖3 v1v2/‖v‖3

v1v2/‖v‖3 1 − v2
1/‖v‖3

)
.(22)

From the Jacobian of p above, we can see that p is smooth on the interior of V̂i

(i = 1, 2). Thus we need only to investigate the semismoothness of p on the region
where the two sets meet, namely, {v ∈ R

2 : ‖v‖ = 1}. Let v̄ = (v̄1, v̄2)
T be any

point on this region; we will show that p is semismooth at v̄. By the definition of
semismoothness [16], it suffices to show that

lim
h′→h,t→0+

{V h′ : V ∈ ∂p(v̄ + th′)}(23)
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exists for any h ∈ R
2. Let S1(v̄) = {h ∈ R

2 : hT v̄ < 0}, S2(v̄) = {h ∈ R
2 : hT v̄ > 0},

S3(v̄) = {h ∈ R
2 : hT v̄ = 0}. Write v′ = v̄+th′. Then ‖v′‖2 = ‖v̄‖2+2tv̄Th′+t2‖h′‖2.

If h ∈ S1(v̄) or h ∈ S2(v̄), then for any sufficiently small t > 0 and h′ close to h,
v′ ∈ intV̂1 or v′ ∈ intV̂2. It is evident that the limit in (23) exists.

If h ∈ S3(v̄), then for any sufficiently small t > 0 and h′ close to h there are the
following three cases: if ‖v′‖ < 1, we have

lim
h′→h,t→0+

V h′ = lim
h′→h,t→0+

(
0 0
0 0

)(
h′

1

h′
2

)
=

(
0
0

)
.(24)

If ‖v′‖ > 1, we have

lim
h′→h,t→0+

V h′ = lim
h′→h,t→0+

(
1 − v′2

2
/‖v′‖3 v′1v

′
2/‖v′‖3

v′1v
′
2/‖v′‖3 1 − v′1

2
/‖v′‖3

)(
h′

1

h′
2

)

= lim
h′→h,t→0+

(
(1 − v′2

2
/‖v′‖3)h′

1 + (v′1v
′
2/‖v′‖3)h′

2

(v′1v
′
2/‖v′‖3)h′

1 + (1 − v′1
2
/‖v′‖3)h′

2

)
.(25)

Since

limh′→h,t→0+[(1 − v′2
2
/‖v′‖3)h′

1 + (v′1v
′
2/‖v′‖3)h′

2]

= (1 − v̄2
2/‖v̄‖3)h1 + (v̄1v̄2/‖v̄‖3)h2 = (1 − v̄2

2)h1 + v̄1v̄2h2

= v̄2
1h1 + v̄1v̄2h2 = v̄1(h1v̄1 + h2v̄2) = 0,

and similarly, limh′→h,t→0+[(v′1v
′
2/‖v′‖3)h′

1 +(1−v′1
2
/‖v′‖3)h′

2] = 0, by (24), we have

lim
h′→h,t→0+

V h′ = (0, 0)T .(26)

Hence, V h′ tends to the same limit in these two cases by (24) and (26).
If ‖v′‖ = 1, by the definition of the generalized Jacobian, V is a convex combi-

nation of the Jacobians in (21) and (22) (with v replaced by v′). Thus, V h′ tends to
the same limit, namely 0, as the above two cases.

Thereby, the limit in (23) exists if h ∈ S3(v̄). The above shows that p is semi-
smooth on R

2. Therefore, g is semismooth on R
2 as well.

4.2. Conjugate of the Moreau–Yosida regularization. In this subsection,
we investigate the relationship between the original problem with the linear objective
and the Fenchel conjugate of Moreau–Yosida regularization of its Lagrangian-dual
function.

First, recall the notion of Fenchel conjugate. Let φ be a real-valued convex func-
tion on R

l. The Fenchel conjugate, denoted by φ∗, of φ is defined by (see [18])

φ∗(x) := sup{〈x∗, x〉 − φ(x) | x∗ ∈ R
l} ∀x ∈ R

l.

Note that η, the Moreau–Yosida regularization of ϕ defined in (9), can be rewritten
as

η(v) = (π1�π2)(v) := inf{π1(v − w) + π2(w) : w ∈ R
m}, v ∈ R

m,(27)

where “�” denotes the infimal convolution operation [18], π1(v) := 1
2
‖v‖2

M , π2(v) :=
ϕ(v), as defined in (9). Evidently, both π1 and π2 are proper convex functions; then
by [18, Theorem 5.4], η is a convex function.
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Using the conjugate operator, it is not hard to derive that

π∗
1(v) = 1

2
‖v‖2

M−1 ∀ v ∈ R
m.

Hence, we have domπ∗
1 = R

m. Thereby, it follows from [8, Corollary 2.1.3] that

η∗(v) = π∗
1(v) + π∗

2(v) ∀ v ∈ R
m.

Next, we study the conjugate of π2. To ease notation, we define a mapping
A : R

m → R
n by

A(v) = AT v − c.

Then we have

δ∗(AT v − c | F) = ζ ◦ A(v), v ∈ R
m,

where ζ is defined in (10). Since domζ = Fb, so ζ ◦ A is a closed convex function on
R

m under Assumption 3. Thus, by [18, Theorem 16.3], it follows that

(ζ ◦ A)∗(v) = cl inf
x∈Rn

{ζ∗(x) − 〈−c, x〉 | Ax = v}.

Since F is closed, we then have

(ζ ◦ A)∗(v) = cl inf
x∈Rn

{(δ∗(x | F))∗ + 〈c, x〉 | Ax = v}

= cl inf
x∈Rn

{δ(x | F) + 〈c, x〉 | Ax = v}

= cl inf{〈c, x〉 | Ax = v, x ∈ F}.

On the other hand, by definition of conjugate, we have

π∗
2(v) = sup{〈v + a, v′〉 − sup{〈AT v′ − c, x〉 | x ∈ F} | v′ ∈ domπ2}

= sup{〈v + a, v′ − ζ ◦ A(v′)〉 | v′ ∈ domπ2}

= sup{〈v + a, v′ − ζ ◦ A(v′)〉 | v′ ∈ dom(ζ ◦ A)}

= (ζ ◦ A)∗(v + a).

Thus, we obtain the conjugate of π2 as follows:

π∗
2(v) = cl inf{〈c, x〉 | Ax = v + a, x ∈ F}.

We now derive an interesting result on the conjugate of Moreau–Yosida regular-
ization of the Lagrangian-dual function as follows.

Proposition 6. Assume Ω ∩ Fb �= ∅. Then, for any v ∈ R
m,

cl inf{〈c, x〉 | Ax− a = v, x ∈ F}

= η∗(v) − 1
2
‖v‖2

M−1 .

From Proposition 6, we can see that the optimal value function of the underlying
parametric optimization problem can be represented by the conjugate function of
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the regularized dual function of the (unperturbed) original problem, together with a
quadratic function in terms of the perturbation parameter v. Note that the expression
is taken under the closure and infimal operations on the set of objective values due to
the fact that the minimum of the set of objective values of the corresponding feasible
points might not exist in general.

Next we investigate under which situations these two operations can be replaced
by the usual minimization operator so as to simplify the analysis on conventional min-
imization problems. We need the following assumption in the rest of this subsection.

Assumption 5. Ω ∩ riFb �= ∅.
Note that under Assumption 5 and by virtue of [8, Theorem 2.2.3], we have

(ζ ◦ A)∗(v) = min{〈c, x〉 | Ax = v, x ∈ F} ∀ v ∈ dom(ζ ◦ A)∗.

Let (Pv) denote the perturbed problem

min
x∈Rn

〈c, x〉

s.t. Ax− a = v,

x ∈ F ,

where v serves as the perturbation parameter. We refer to the original problem
(1) where the objective function is taken as an affine function, denoted by (P0), to
the unperturbed problem. We denote the optimal value function of (Pv) by fval(v).
Accordingly, fval(0) denotes the optimal value of the original problem (1) or (P0).

Then, we derive the following result immediately by virtue of Proposition 6.
Proposition 7. Suppose that Assumption 5 holds. Then

fval(v) = η∗(v) − 1
2
‖v‖2

M−1

for any v ∈ dom(ζ ◦ A)∗ − a.
Note that the above result enhances Proposition 6. It provides a new and interest-

ing characteristic of convex conjugates in perturbation analysis. Note that the result
is valid only if the parameter v belongs to the set dom(ζ ◦ A)∗ − a. Also, this result
has a potential role in studying sensitivity analysis and some stochastic programs,
both theoretically and numerically.

The next immediate question is about the nonemptiness of the domain of (ζ ◦A)∗.
Consider the case when the original problem (P0) is bounded below; by definition, it
follows that

(ζ ◦ A)∗(a)

= min{〈c, x〉 | Ax = a, x ∈ F} < ∞.

Thus, a ∈ dom(ζ ◦A)∗. This implies that dom(ζ ◦A)∗ is nonempty, and so is dom(ζ ◦
A)∗ − a.

Before ending this section, we derive the following result based on the above
arguments.

Proposition 8. Suppose that the original problem, namely,

min
x∈Rn

〈c, x〉

s.t. Ax = a,

fi(x) ≤ 0, i ∈ Î = {1, . . . , θ},
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is bounded below. Then, dom(h ◦ A)∗ �= ∅ and a ∈ dom(h ◦ A)∗.
Furthermore, let {vk} be a sequence in dom(h ◦ A)∗ − a satisfying vk → 0 as

k → ∞; then

lim
vk→0

η∗(vk) = lim
vk→0

(
fval(v

k) + 1
2
‖vk‖2

M−1

)
= fval(0) = min{〈c, x〉 | Ax− a = 0, x ∈ F}.

Remark 6. Note that Assumption 4 used in section 4.1 is obviously stronger
than Assumption 5. In other words, the former implies the latter, but not vice versa.
Hence, the results obtained in Propositions 6–8 will be valid under Assumption 4. In
Proposition 8, we assume that problem (P0) is bounded below. This assumption is
natural and reasonable in optimization. Proposition 8 tells us that the optimal value
of the unperturbed optimization problem (the original problem) can be achieved by
solving a sequence of the conjugates which corresponds to the perturbed problems,
in which affine equality constraints are perturbed on the right-hand side, and setting
the perturbation parameters driven to zero. This result helps us to better understand
the conjugate and Lagrange dual, and it might serve to study multistage stochastic
nonlinear convex programs.

Also, this kind of perturbation problem is closely related to the perturbation
problems discussed in [3]. In [9], Magnanti showed the equivalence between Fenchel
dual and Lagrangian dual problems where the convex conjugate was employed. We
believe that the results established in this subsection complement his theory to some
extent. In addition, note that η is originally obtained from the Moreau–Yosida regu-
larization by relaxing the original problem using the Lagrangian dual. Its conjugate
η∗, as shown in Propositions 6–8, is related to the parametric (or perturbed) prob-
lem of the original problem. From this observation, we see that the perturbation
analysis and Lagrangian dual are closely linked under the conjugate operation and
Moreau–Yosida regularization. Besides the usual optimization methods, it also pro-
vides another possible option for solving some optimization problems, i.e., by solving
the induced conjugate.

5. General convex objectives functions. In this section, we investigate the
piecewise smoothness and semismoothness of the Lagrangian-dual function ϕ and the
gradient g for the case of the general convex objective functions in (1). We will also
provide an alternative way to study the semismoothness of the gradient g based on
the structure of the epigraph of ϕ.

5.1. Convex objective functions with positive definite Hessian. We now
discuss the case for the general convex objective functions in (1). Consider the fol-
lowing Lagrangian-dual function ϕ in (3):

ϕ(v) = sup{−f(x) + vT (Ax− a) | x ∈ F}.

When analyzing the piecewise smoothness of ϕ in section 3, we frequently use the
fact that the optimal solutions of problem (9) lie on the boundary (or facets) of the
set F . This fact is guaranteed by Assumption 1, namely u = AT v − c �= 0, for the
linear objective function f(x) = cTx. For nonlinear objective functions, Assumption 1
cannot be made. Thus, multiple optimal solutions of problem (3) may appear in the
interior of F , and the piecewise C2 smoothness of ϕ may probably be destroyed. This
conjecture is confirmed by the following example where ∇2ϕ is unbounded in some
area, and thus ϕ is not piecewise C2.
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Example 3. Let

f(x) =

{
0 if ρ ≤ 1,

(ρ− 1)4 if ρ > 1,

where x ∈ R
2 and ρ =

√
x2

1 + x2
2, and let

A =
(

1 1
)
, a = 0, F = {x ∈ R

2 : x2
1 + x2

2 ≤ 4}.

Obviously, f(x) is convex and twice continuously differentiable on R
2. After some

manipulations we obtain

ϕ(v) =
√

2|v| + (3/4)|v|4/3

for v in a neighborhood of zero, namely N = {v ∈ R : |v| < 2
√

2}. Since F is
bounded, the effective domain of ϕ is the whole space R. On R \ N , the function ϕ
has a different form. For our purpose, the investigation of ϕ within N suffices. Thus
we do not elaborate ϕ outside N . For any 0 �= v ∈ N , the first- and second-order
derivatives of ϕ are

ϕ′(v) =
√

2 sign(v) + v1/3, ϕ′′(v) = (1/3)v−2/3.

Now for any nonzero v → 0, we have ϕ′′(v) → ∞. Using the same arguments as in
Example 1, we can see that ϕ cannot be piecewise C2 in the neighborhood N .

This example shows that we cannot extend the results in sections 3 and 4 to
problems with arbitrary convex objective functions. However, if the objective function
f(x) possesses a positive definite Hessian, we can obtain results similar to those in
sections 3 and 4. Also, in this case, the constraints need not be strictly convex.

Proposition 9. Let ϕ be defined by (3), where f and fi, i ∈ Î, are C2 convex
functions on R

n. Suppose that the Hessian of f is positive definite, and for any facet Q
of F with the index set IQ and for any x ∈ Q, {∇fi(x)}i∈IQ are linearly independent.
Suppose also that F is nonempty and bounded. Then the Lagrangian-dual function ϕ
is piecewise C2, and the gradient g of the Moreau–Yosida regularization η is piecewise
smooth, and thereby semismooth, on R

m.
Proof. Similar to the analysis in section 3, we shall construct a piece corresponding

to each facet of F . There is one major difference we should highlight. For the
problem with a nonlinear objective function, maximizers of the problem (3) can lie
on the boundary as well as in the interior of F , while in the case of linear objective
functions, Assumption 1 prohibits interior maximizers. Thus, in the present case, an
additional piece corresponding to the interior of F is needed.

Here we define the function ζ slightly differently from the approach in (10):

ζ(u) = sup{uTx− f(x) | x ∈ F}.(28)

Then ϕ(v) = ζ(AT v) − aT v. For each facet Q (on the boundary) of F , we still
construct a piece by a slightly different definition:

W :=

⎧⎨
⎩(x, λ) ∈ R

n × R
|IQ| : fi(x) = 0, i ∈ IQ, ∇2f(x) +

∑
i∈IQ

λi∇2fi(x) � 0

⎫⎬
⎭ ,

U :=

⎧⎨
⎩u = ∇f(x) +

∑
i∈IQ

λi∇fi(x) ∈ R
n : (x, λ) ∈ W

⎫⎬
⎭ ,
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and

Γ(x, λ) :=

(
∇f(x) +

∑
i∈IQ

λi∇fi(x)

f̃(x)

)
.

Then the result of Lemma 2 can be analogously proved, and a piece can be constructed.
In addition, a piece corresponding the interior of F will be constructed as follows.

Since ∇2f(x) � 0, for any u ∈ R
n,

∇f(x) = u

has a unique solution, denoted by ξ0x(u). In other words, ξ0x(u) is the unique maxi-
mizer of the unconstrained problem

max
x∈Rn

{uTx− f(x)}.

Now, this piece is defined by U0 = R
n, ζ0(u) = uT ξ0x(u)−f(ξ0x(u)), and D0 = clDint,

where Dint = {u | ξ0x(u) ∈ intF}. For any u ∈ Dint, since the unique maximizer
ξ0x(u) of the objective function uTx − f(x) is in the interior of the set F , ξ0x(u) is
the optimal solution to the constrained problem (28), too. Thus

ζ(u) = uT ξ0x(u) − f(ξ0x(u)) = ζ0(u).(29)

Since ζ and ζ0 are continuous, thus ζ(u) = ζ0(u) also holds for all u ∈ D0. It is also
easy to verify that

∇ζ0(u) = ξ0x(u) ∀u ∈ U0.(30)

Now an analogue of the proof of Proposition 4 is valid to prove the piecewise-C2

smoothness of ζ with the representation {(D0, U0, ζ0), (D1, U1, ζ2), . . . , (Dq, Uq, ζq)}.
(The only difference is that now the nonnegative vector λ̄ need not be nonzero since
u �= 0 is not assumed. Still, ∇2f(x) +

∑
λ̄i∇2fi(x) � 0 because ∇2f(x) � 0. This

implies that the Jacobian of Γ is invertible.) Therefore, ϕ is piecewise C2 on its
domain.

The proof of the piecewise smoothness of g follows from Lemmas 5 and 6 and
Proposition 5. The proofs of Lemmas 5 and 6 do not directly rely on Assumption 1,
and thus they can be extended without changing to the representation {(E0, V0, ϕ0),
(E1, V1, ϕ1), . . . , (Eq, Vq, ϕq)} of the Lagrangian-dual function ϕ of the present prob-
lem.

5.2. Piecewise smoothness under the structure of the epigraph. In this
subsection, we investigate the piecewise smoothness and the semismoothness of g
using a different approach. In the analysis we will employ the piecewise smoothness
or the semismoothness of the metric projection mapping under the structure of the
epigraph of the underlying function. Our analysis is based on the framework of [11].

Recently, Meng, Sun, and Zhao [11] investigated the Moreau–Yosida regulariza-
tion of a lower semicontinuous convex function, γ : Z → R ∪ {+∞}, and derived
the semismoothness of the solution to the Moreau–Yosida regularization under the
structure of the epigraph of γ. Here, Z is a finite dimensional vector space equipped
with a scalar product, and the Moreau–Yosida regularization of γ is defined in the
form of

γ̂ε(u) := min
{
γ(z) + ε

2 〈u− z, u− z〉
}

s.t. z ∈ Z,
(31)
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where ε is a positive number. Let Υ be the epigraph of γ; i.e., Υ := epi(γ) = {(u, t) ∈
Z × R | t ≥ γ(u)}. Noticing that Υ is a closed convex set, problem (31) then can be
written as

min
{

1
ε t + 1

2 〈u− z, u− z〉
}

s.t. (z, t) ∈ Υ.
(32)

For any closed convex set D of Z and z ∈ Z, let ΠD(z) denote the metric projection
of z onto D, namely,

ΠD(z) := argmin
{

1
2
‖d− z‖2 | d ∈ D

}
.

Let (z(u), t(u)) be the unique optimal solution of (32), where t(u) := γ(z(u)). Define
the mapping H by

H(z, t, u) :=

(
z
t

)
− ΠΥ(G(z, t, u)),

where G(z, t, u) := (uT t− 1/ε)T . Then, it follows from [11] that

H(z(u), t(u), u) = 0, G(z(u), t(u), u) /∈ Υ ∀ u ∈ Z.

The following proposition is taken from [11, Theorem 4].
Proposition 10. For u0 ∈ Z, let z0 := z(u0) and t0 := γ(z(u0)). Then,

(z(·), t(·)) is semismooth at u0 if ΠΥ(G(z0, t0, u0))z ∈ int(domγ) and ΠΥ(·) is semis-
mooth at G(z0, t0, u0).

Here we consider the case where M = λI in the Moreau–Yosida regularization
as defined in (5), where I is the identity matrix of R

m×m and λ > 0. For v ∈ R
m,

let w(v) denote the unique solution of (5), s(v) := ϕ(w(v)), and epi(ϕ) denote the
epigraph of ϕ. Evidently, (w(v), s(v)) is the unique solution of

min
{

1
λs + 1

2
〈v − w, v − w〉

}
s.t. (w, s) ∈ epi(ϕ),

which is a reformulation of (5). Note that

g(v) = ∇η(v) = λ(v − w(v)).

Hence to study the semismoothness of g, we need only to study the properties of w(·).
Set

Φ(w, s, v) :=

(
w
s

)
−
(

w − v

1/λ

)
=

(
v

s− 1/λ

)
.

According to Proposition 10 and following the arguments as in [11], we then have the
following result.

Proposition 11. For v̄ ∈ R
m, let w̄ := w(v̄), s̄ := ϕ(w(v̄)). Suppose that

Πepi(ϕ)(Φ(w̄, s̄, v̄))w ∈ int(domϕ) and Πepi(ϕ)(·) is semismooth at Φ(w̄, s̄, v̄). Then
(w(·), s(·)) is semismooth at v̄. Thereby, g is semismooth at v̄.

Furthermore, if ϕ is finite valued everywhere and Πepi(ϕ)(·) is semismooth on
R

m × R, then g is semismooth on R
m.
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Similar to the mapping H above, we define a mapping Ξ corresponding to the
regularization (5),

Ξ(w, s, v) :=

(
w
s

)
− Πepi(ϕ)(Φ(w, s, v)).

Thus, for any v ∈ R
m

Ξ(w(v), s(v), v) = 0.(33)

We now obtain the following result concerning the piecewise smoothness of g.
Proposition 12. Let v̄ ∈ R

m. Suppose that (i) Πepi(ϕ)(Φ(w̄, s̄, v̄))w ∈ int(domϕ),

and (ii) Πepi(ϕ)(·) is piecewise Ck on a neighborhood N1 of (v̄, ϕ(w(v̄))− 1/λ), where

w̄ = w(v̄) and s̄ = ϕ(w(v̄)). Then, (w(·), s(·)) is piecewise Ck on a neighborhood
N2 of v̄. Thereby, g is piecewise Ck on N2. In particular, g is semismooth on a
neighborhood of v̄.

Proof. Define a mapping ℵ : R
m × R × R

m → R
m × R × R

m by

ℵ(w, s, v) =

(
Ξ(w, s, v)

v − v̄

)
.

By assumption, since Πepi(ϕ)(·) is piecewise Ck on N1, it is easy to see that ℵ(·)
is piecewise Ck on some neighborhood of (w̄, s̄, v̄), and

ℵ(w̄, s̄, v̄) = 0.(34)

Next, we show that every matrix in ∂ℵ(w̄, s̄, v̄) is nonsingular [2]. To do so, it is
not hard to see that we only need to show the nonsingularity of π(w,s)∂Ξ(w̄, s̄, v̄). For
any V ∈ π(w,s)∂Ξ(w̄, s̄, v̄), it follows that there exists W ∈ ∂Πepi(ϕ)(Φ(w̄, s̄, v̄)) such
that

V = Im+1 −W

(
Im+1 −

[
Im 0

0 0

])
,

where W is a convex combination of some finitely many matrices in ∂BΠepi(ϕ)(Φ(w̄,
s̄, v̄)). Suppose Wi ∈ ∂BΠepi(ϕ)(Φ(w̄, s̄, v̄)) and λi ≥ 0, i = 1, . . . , ν, satisfying∑ν

i=1 λi = 1, such that W =
∑ν

i=1 λiWi, where each Wi is in the form of Wi =

[ Ui αi

αT
i βi

] with Ui ∈ R
m×m, αi ∈ R

m, and βi ≥ 0. Thus,

W =

[ ∑ν
i=1 λiUi

∑ν
i=1 λiαi∑ν

i=1 λiα
T
i

∑ν
i=1 λiβi

]
.

To ease the notation, we write W = [ U α

αT β
]. Then, by [11, Proposition 3], there

exists �i ∈ (0, 1), i = 1, . . . , ν, such that

0 ≤ βi ≤ �i < 1 ∀ i.

Hence,

0 ≤ β < 1.(35)
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Then, we have

V = Im+1 −
[

U α

αT β

](
Im+1 −

[
Im 0

0 0

])

= Im+1 −
[

U α

αT β

] [
0 0
0 1

]

= Im+1 −
[

0 α
0 β

]
=

[
Im −α

0 1 − β

]
.

This together with (35) implies that detV = 1− β > 0 for any V ∈ π(w,s)∂Ξ(w̄, s̄, v̄).
So, Ξ(w, s, v) is coherently oriented with respect to w and s at (w̄, s̄, v̄) [17, 20].
Thereby, π(w,s)∂Ξ(w̄, s̄, v̄) is nonsingular, and so is ∂ℵ(w̄, s̄, v̄). Then, by [15, The-
orem 6], ℵ is a locally Lipschitz homeomorphism near (w̄, s̄, v̄), and sgn detV =
ind(ℵ, (w̄, s̄, v̄)) = ±1 for any V ∈ ∂Bℵ(w̄, s̄, v̄). Further, noticing that ℵ(·) is co-
herently oriented at (w̄, s̄, v̄) and is piecewise Ck on a neighborhood of (w̄, s̄, v̄), then
by [17, Theorem 5], it follows that ℵ is a PCk-homeomorphism near (w̄, s̄, v̄). Thus,
the desired results follow immediately. This completes the proof.

Remark 7. The condition Πepi(ϕ)(Φ(w̄, s̄, v̄))w ∈ int(domϕ) in Proposition 12
holds automatically if ϕ is finite valued everywhere. The obtained results complement
and enrich the framework of piecewise smooth functions [20, 17], and also enhance
the recent results on the Moreau–Yosida regularization [11].

6. Conclusion. The Lagrangian dual is widely used for large-scale problems.
A significant feature of the Lagrangian-dual function ϕ is the piecewise smoothness,
which is studied in this paper and employed in the analysis of the Moreau–Yosida reg-
ularization of ϕ. We investigate the semismoothness of the gradient g of the Moreau–
Yosida regularization of ϕ, which plays a key role in the superlinear or quadratic con-
vergence analysis of generalized Newton methods for solving nonsmooth equations. As
to problem (1) with the linear objective function, we show that the Lagrangian-dual
function ϕ is piecewise C2 and the gradient g is piecewise smooth and thereby semis-
mooth if the inequality constraints in (1) either are all affine or all possess positive
definite Hessian matrices. An example with an affine constraint and a strictly convex
constraint is constructed. We find that the Lagrangian-dual function of this problem
is not piecewise C2, and that the gradient g of its Moreau–Yosida regularization is
still semismooth. However, whether or not g is semismooth for general mixed affine
and strictly convex constraints is still left unanswered. We also investigate problem
(1) with a convex objective function. We show with an example that ϕ may not be
piecewise C2 for the problem with a general convex objective function. For problem
(1) with an objective function which possesses a positive definite Hessian, ϕ and g
can again be shown to be piecewise C2 and semismooth, respectively. We have also
provided an alternative way to study the semismoothness/piecewise smoothness of g
under the structure of the epigraph of the Lagrangian dual function using the projec-
tion operator. For problem (1) with a linear objective, we have also established an
interesting result characterizing the relations between the original problem and the
Fenchel conjugate of the regularization of the Lagrangian dual problem. For future
research, we will examine under which conditions the projection mapping over the
epigraph of the Lagrangian-dual function ϕ is piecewise smooth or semismooth.
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