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SECOND-ORDER SUFFICIENT CONDITIONS
FOR ERROR BOUNDS IN BANACH SPACES∗

YIRAN HE† AND JIE SUN‡

Abstract. Recently, Huang and Ng presented second-order sufficient conditions for error bounds
of continuous and Gâteaux differentiable functions in Banach spaces. Wu and Ye dropped the
assumption of Huang and Ng on Gâteaux differentiability but required the space to be a Hilbert
space. We carry on this research in two directions. First we extend Wu and Ye’s result to some
non-Hilbert spaces; second, same as Huang and Ng, we work on Banach spaces but provide different
second-order sufficient conditions that may allow the function to be non-Gâteaux differentiable.

Key words. error bound, Hölder smooth subdifferential, proximal subdifferential, nonsmooth
analysis

AMS subject classifications. 46B20, 49J52, 90C26, 90C31

DOI. 10.1137/040621661

1. Introduction. We consider error bounds for lower semicontinuous functions
in Banach spaces. Let f be a proper lower semicontinuous function on a Banach space
X. Our goal is to study conditions that guarantee the existence of positive constants
γ and m such that

distm(x, S) ≤ γf(x)+ for all x ∈ X,(1.1)

where S := f−1(−∞, 0] and f(x)+ := max{f(x), 0}. We call (1.1) an error bound of
order m. If (1.1) holds for m = 1, then the error bound is of Lipschitz type, which
has been much discussed in the literature; see [7, 10, 11, 12, 13, 14, 15] and the book
[5]. If the function f is convex, then there exist many equivalent characterizations
for error bounds in terms of the first-order directional derivative or first-order sub-
differential of function f . However, if the function is not convex, one usually gives
only sufficient conditions in terms of various first-order generalized subdifferentials or
first-order generalized directional derivatives [7, 8, 12, 14].

The first-order conditions used in the nonconvex case require that the generalized
subdifferentials of f for all x �∈ S are bounded away from zero. Specifically, let ∂ be
a certain generalized subdifferential of f and let

P (α) := {x ∈ X : x �∈ S, ∂f(x) ∩B(0, α) �= ∅},

where B(x, α) denotes a closed ball centered at x with radius α. In order to establish
error bounds for nonconvex functions, it is usually assumed that P (α) is empty for
some α > 0; in other words, there exists a positive scalar α such that ‖ξ‖ ≥ α for
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all ξ ∈ ∂f(X \ S). This assumption is quite restrictive. One naturally asks whether
there are certain conditions for error bound to hold, provided that

P (α) �= ∅ for every α > 0.(1.2)

If f is sufficiently smooth such that ∂f(x) is a singleton and equals the derivative
f ′(x) of f for every x �∈ S, then (1.2) is equivalent to the existence of a sequence {xn}
in X \ S satisfying that limn→∞ f ′(xn) = 0.

Recently, some researchers have considered second-order sufficient conditions for
error bounds of lower semicontinuous functions. Huang and Ng [7] proved that if f is
Gâteaux differentiable and continuous in a Banach space, then an error bound of Lip-
schitz type holds under an assumption on certain second-order directional derivatives.
Wu and Ye [15] removed this assumption and established a similar result. However,
their result requires the space to be a Hilbert space. In this paper we present results
that extend Wu and Ye’s result to non-Hilbert spaces and results that extend Huang
and Ng’s work to possibly non-Gâteaux differentiable functions in Banach spaces.

2. Smoothness and subdifferentials. Let X be a Banach space. B(x, r) and
Br(x) denote the closed and the open ball centered at x with radius r > 0, respectively.

Definition 2.1 (see [9]). The modulus of smoothness ρX(τ), τ > 0, of X is
defined as

ρX(τ) := sup{(‖x + y‖ + ‖x− y‖)/2 − 1 : x, y ∈ X, ‖x‖ = 1, ‖y‖ = τ}.

X is said to be uniformly smooth if limτ→0+ ρX(τ)/τ = 0. A uniformly smooth
Banach space is said to have modulus of smoothness of power p if for some s > 0,

ρX(τ) ≤ sτp for all τ ≥ 0.(2.1)

Consider the example of X = Lp (p > 1). For τ ≥ 0,

ρLp
(τ) ≤

{
τp/p, p ∈ (1, 2),

(p− 1)τ2/2, p ∈ [2,∞).

Thus, Lp is uniformly smooth for p > 1 and has modulus of smoothness of power p
for p ∈ (1, 2) and of power 2 for p ≥ 2. Let

Jp(x) := {ξ ∈ X∗ : 〈ξ, x〉 = ‖ξ‖ ‖x‖ , ‖ξ‖ = ‖x‖p−1}.

It is known that every uniformly smooth Banach space is reflexive, and if X is a
reflexive Banach space, then Jp(x) is the subdifferential of the convex function x �→
‖x‖p /p. That is, ξ ∈ Jp(x) if and only if

‖y‖p /p− ‖x‖p /p ≥ 〈ξ, y − x〉 for all y ∈ X.

In general, Jp(x) is not necessarily a singleton; however, X is uniformly smooth if and
only if Jp(x) is single valued and uniformly continuous on bounded sets [4].

Lemma 2.2. Let X be a uniformly smooth Banach space, x, y ∈ X, and m > 1.
Then

‖y‖m − ‖x‖m ≥ m 〈Jm(x), y − x〉 .

Proof. This is obvious from the definition of subdifferential inequality of convex
functions.
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Lemma 2.3. Let X be a uniformly smooth Banach space and x, y ∈ X. If X
has modulus of smoothness of power m for some m > 1, then there exists a constant
L > 0 such that

〈Jm(x) − Jm(y), x− y〉 ≤ L ‖x− y‖m for all x, y ∈ X.(2.2)

Proof. See Theorem 2 and Remarks 4 and 5 in [16].
Let f : X → R ∪ {∞} be a proper lower semicontinuous function with

dom f := {x ∈ X : f(x) < ∞} �= ∅.

Let us recall several well-known subdifferentials. Let x ∈ dom f .
• The Hölder-smooth subdifferential of order p > 1 of f at x is defined as (see

[2])

∂HS
p f(x) :=

{
ξ ∈ X∗ : lim inf

‖v‖→0

f(x + v) − f(x) − 〈ξ, v〉
‖v‖p > −∞

}
.

When p = 2, ∂HS
p f(x) is just the Lipschitz-smooth subdifferential ∂LSf(x) of

f at x [1]:

∂LSf(x) :=

{
ξ ∈ X∗ : lim inf

‖v‖→0

f(x + v) − f(x) − 〈ξ, v〉
‖v‖2 > −∞

}
.(2.3)

When X is a Hilbert space and p = 2, ∂HS
p f(x) coincides with the proximal

subdifferential ∂P f(x) [3]. Note that ξ ∈ ∂P f(x) if and only if there exist
η > 0 and σ > 0 such that

f(x + v) − f(x) ≥ 〈ξ, v〉 − σ ‖v‖2
for all v ∈ B(0, η).

• The Fréchet subdifferential of f at x is the set

∂F f(x) :=

{
ξ ∈ X∗ : lim inf

‖v‖→0

f(x + v) − f(x) − 〈ξ, v〉
‖v‖ ≥ 0

}
.

• The Clarke–Rockafellar subdifferential of f at x is the set

∂CRf(x) :=

{
ξ ∈ X∗ : 〈ξ, v〉 ≤ sup

ε>0
lim sup
y→fx t↓0

inf
u∈Bε(v)

f(y + tu) − f(y)

t
, ∀v ∈ X

}
,

where y →f x means y → x and f(y) → f(x); when f is locally Lipschitz
at x, the Clarke–Rockafellar subdifferential coincides with the Clarke sub-
differential

∂Cf(x) :=

{
ξ ∈ X∗ : 〈ξ, v〉 ≤ lim sup

(y,t)→(x,0+)

f(y + tv) − f(y)

t
,∀v ∈ X

}
.

• The Hadamard subdifferential of f at x is the set

∂Hf (x) :=

{
ξ ∈ X∗ : 〈ξ, v〉 ≤ lim inf

(u,t)→(v,0+)

f (x + tu) − f (x)

t
, ∀v ∈ X

}
.

When f is locally Lipschitz at x, the Hadamard subdifferential coincides with
the Gâteaux subdifferential

∂Gf (x) :=

{
ξ ∈ X∗ : 〈ξ, v〉 ≤ lim inf

t→0+

f (x + tv) − f (x)

t
,∀v ∈ X

}
.
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It is straightforward to verify that for p > 1,

∂HS
p f(x) ⊂ ∂F f(x) ⊂ ∂Hf(x) ⊂ ∂CRf(x).(2.4)

Proposition 2.4. Let g be a continuous function on a Banach space X. Sup-
pose that ∂HS

p g(x) and ∂HS
p (−g)(x) are both nonempty. Then ∂HS

p g(x) is equal to

−∂HS
p (−g)(x) and ∂HS

p g(x) is a singleton.

Proof. Let ξ ∈ ∂HS
p g(x) and x∗ ∈ ∂HS

p (−g)(x). From the definition of the Hölder-
smooth subdifferential, there exist σ > 0 and η > 0 such that for all v ∈ B(0, η),

g(x + v) − g(x) ≥ 〈ξ, v〉 − (σ/2) ‖v‖p ,
−g(x + v) + g(x) ≥ 〈x∗, v〉 − (σ/2) ‖v‖p .

Adding these two expressions together, we have

〈ξ + x∗, v〉 ≤ σ ‖v‖p for all v ∈ B(0, η),

which implies that ξ + x∗ = 0 as p > 1. Since ξ ∈ ∂HS
p g(x) and x∗ ∈ ∂HS

p (−g)(x) are

arbitrary, ∂HS
p g(x) is equal to −∂HS

p (−g)(x) and is a singleton.

Proposition 2.5. The subdifferential ∂HS
p has the following properties:

(P1) ∂HS
p f(x) coincides with the subdifferential in the sense of convex analysis

whenever f is convex;
(P2) 0 ∈ ∂HS

p f(x) whenever x ∈ dom f is a local minimum of f ;

(P3) ∂HS
p (f + g)(x) ⊂ ∂HS

p f(x) + ∂HS
p g(x) whenever g is a continuous function

with the property that ∂HS
p g(x) and ∂HS

p (−g)(x) are both nonempty.
Proof. (P1) Let g be a convex function and x ∈ dom g. Just observe that for a

convex function the Clarke–Rockafellar subdifferential and the usual (Fenchel) sub-
differential in convex analysis coincide for lower semicontinuous functions and that
the Fenchel subdifferential is obviously contained in ∂HS

p g(x). The conclusion follows
immediately from (2.4).

(P2) It is obvious from the definition of ∂HS
p .

(P3) Note that

∂HS
p f(x) = ∂HS

p (f + g − g)(x) ⊃ ∂HS
p (f + g)(x) + ∂HS

p (−g)(x),(2.5)

where the inclusion relation is from the definition of the Hölder-smooth subdifferential.
Since g is continuous and ∂HS

p g(x) and ∂HS
p (−g)(x) are both nonempty, by virtue

of Proposition 2.4, ∂HS
p (−g)(x) is a singleton and ∂HS

p (−g)(x) = −∂HS
p g(x). This

together with (2.5) yield the conclusion.
Proposition 2.6. If X is a uniformly smooth Banach space which has mod-

ulus of smoothness of power p for some p > 1 and x �= 0, then the Hölder-smooth
subdifferential of order p of the functions ‖x‖p /p and −‖x‖p /p are nonempty and
∂HS
p (−‖·‖p /p)(x) = −Jp(x).

Proof. Since X is uniformly smooth, the function ‖·‖ and hence the convex
function ‖·‖p /p are Fréchet differentiable at x. Therefore ∂HS

p (‖·‖)(x) is nonempty

by Proposition 2.5. Now we prove that ∂HS
p (−‖·‖p /p)(x) is nonempty. Since Jp(x)

is the subdifferential of ‖x‖p /p in the sense of convex analysis, for v �= 0,

−‖x + v‖p /p + ‖x‖p /p− 〈−Jp(x), v〉
‖v‖p ≥ 〈Jp(x) − Jp(x + v), v〉

‖v‖p ≥ −L,

where the last inequality follows from Lemma 2.3 and L is the constant that appeared
in Lemma 2.3. This proves that −Jp(x) belongs to ∂HS

p (−‖·‖p /p)(x) by the definition
of the Hölder-smooth subdifferential.
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3. Error bounds in smooth Banach spaces. The following result generalizes
the second-order sufficient condition for error bounds established in [15] from the
Hilbert space to smooth Banach spaces.

Theorem 3.1. Let X be a uniformly smooth Banach space which has modulus
of smoothness of power m for some m > 1, and let f : X → R ∪ {∞} be a proper
lower semicontinuous function. Suppose that there exists δ > 0 such that for all
x ∈ f−1(0,∞),

lim inf
‖u‖→1,t↓0

f(x + tu) − f(x) − t 〈ξ, u〉
tm

< −δ for each ξ ∈ ∂HS
m f(x).(3.1)

Then

distm(x, S) ≤ (mL/δ) f(x)+ for all x ∈ X,(3.2)

where L is the constant that appeared in (2.2).
Proof. Write γ for mL/δ. Suppose that the conclusion does not hold: there exists

some u with f(u) > 0 such that

distm(u, S) > γ f(u).

Then we can find t > 1 such that distm(u, S) > tγ f(u), and hence

f(u) = f(u)+ < inf
x∈X

f(x)+ + γ−1c,(3.3)

where c := tγ f(u). Applying the Borwein–Preiss smooth variational principle [2], we
obtain the existence of some v ∈ X such that

‖u− v‖ < m
√
c and(3.4)

f(v)+ + γ−1Δm(v) ≤ f(x)+ + γ−1Δm(x) for all x ∈ X,(3.5)

where Δm(x) :=
∑∞

k=1 μk ‖x− vk‖m for some sequence {vk} converging to v and
some sequence {μk} satisfying μk > 0 and

∑∞
k=1 μk = 1.

It follows from (3.4) and the choice of u that v �∈ S. Hence v is a global mini-
mizer of the function f(x) + γ−1Δm(x) and hence a global minimizer of the function
γm−1f(x) +m−1Δm(x) over the open set X \ S. In view of the definition of Hölder-
smooth subdifferential ∂HS

m , it follows that

0 ∈ ∂HS
m (γm−1f + m−1Δm)(v).(3.6)

Clearly m−1Δm(x) is a real valued continuous convex function. Hence ∂HS
m (m−1Δm)(v)

coincides with the subdifferential in the sense of convex analysis by Proposition 2.5
and so is nonempty. Since the space X is uniformly smooth, it follows that for
every x, Jm(x − vk) is a singleton for each k and the sequence {Jm(x − vk)}∞k=1

is bounded. Thus, m−1Δm(x) is Fréchet differentiable with its Fréchet derivative
(m−1Δm)′(x) =

∑∞
k=1 μkJm(x− vk). Since ∂HS

m (m−1Δm)(v) is nonempty, it follows
that

∂HS
m (m−1Δm)(v) =

{
(m−1Δm)′(v)

}
.(3.7)

We claim that ∂HS
m (−m−1Δm)(v) contains −(m−1Δm)′(v) and hence is nonempty.

This together with (3.6), Propositions 2.4 and 2.5, and (3.7) yields that

ξ := −mγ−1
∞∑
k=1

μkJm(v − vk) ∈ ∂HS
m f(v).(3.8)
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Indeed,

lim inf
h→0

(−m−1Δm)(v + h) − (−m−1Δm)(v) −
〈
(−m−1Δm)′(v), h

〉
‖h‖m

= lim inf
h→0

〈
(−m−1Δm)′(v + θ(h)h), h

〉
−
〈
(−m−1Δm)′(v), h

〉
‖h‖m (0 < θ(h) < 1)

= lim inf
h→0

∑∞
k=1 μk 〈Jm(v − vk) − Jm(v + θ(h)h− vk), h〉

‖h‖m

≥ lim inf
h→0

−Lθ(h)m−1 ≥ −L > −∞,

where the first equality is from the mean value theorem and the first inequality fol-
lows from Lemma 2.3 and the facts of μk > 0 and

∑∞
k=1 μk = 1. In view of the

definition of Hölder-smooth subdifferential ∂HS
m , it follows that −(m−1Δm)′(v) ∈

∂HS
m (−m−1Δm)(v).

By (3.8) and the assumption (3.1), there exist sequences tn → 0+ and ‖un‖ → 1
such that

lim
n→∞

f(v + tnun) − f(v) − tn 〈ξ, un〉
tmn

< −δ = −mLγ−1.(3.9)

Since X \ S is an open set as f is lower semicontinuous, we have f(v + tnun) > 0 for
sufficiently large n. It follows from (3.5) that

f(v + tnun) − f(v) − tn 〈ξ, un〉
tmn

=
f(v + tnun) − f(v) + mγ−1tn

∑∞
k=1 μk 〈Jm(v − vk), un〉

tmn

≥
∑∞

k=1 μk {‖v − vk‖m − ‖v + tnun − vk‖m} + m
∑∞

k=1 μk 〈Jm(v − vk), tnun〉
γtmn

≥ mγ−1t−m
n

∞∑
k=1

μk 〈Jm(v − vk) − Jm(v + tnun − vk), tnun〉

≥ −mLγ−1 ‖un‖m → −mLγ−1 = −δ ( as n → ∞),

where the second inequality follows from Lemma 2.2 and the third inequality follows
from Lemma 2.3. This contradicts (3.9).

In view of the assumption (3.1), it is straightforward to see that if the ∂HS
p f(x)

is replaced by a larger set such as ∂F f(x), ∂Hf(x), or ∂CRf(x) (see (2.4)), then
the condition becomes more stringent. In other words, our requirement on the sub-
differential is fairly weak.

Corollary 3.2. Let X be a uniformly smooth Banach space which has modulus
of smoothness of power 2, and let f : X → R∪{∞} be a proper lower semicontinuous
function. If there exists δ > 0 such that for all x ∈ f−1(0,∞) and all ξ ∈ ∂LSf(x),

lim inf
‖u‖→1,t↓0

f(x + tu) − f(x) − t 〈ξ, u〉
t2

< −δ,

then

dist2(x, S) ≤ (2L/δ) f(x)+ for all x ∈ X.
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Proof. Since p = 2, the Hölder subdifferential ∂HS
p coincides with the Lipschitz-

smooth subdifferential ∂LS . The conclusion thus follows immediately from Theo-
rem 3.1.

Remark 3.1. Since all Hilbert spaces are uniformly smooth with modulus of
smoothness of power 2 (see [9]) and since when X is a Hilbert space ∂LSf(x) coincides
with the proximal subdifferential ∂P f(x), Corollary 3.2 generalizes Theorem 3.1 in
[15] for its ε = ∞. Moreover, there exist Banach spaces, say Lp(μ) for p ≥ 2, which
are uniformly smooth with modulus of smoothness of power 2 but are not Hilbert
spaces [9]. Therefore Corollary 3.2 is applicable to a broader class of spaces than [15,
Theorem 3.1]. The same as what was done in [15], our results can also be verified for
general ε > 0. We omit the details for brevity.

From the argument of Theorem 3.1, it can be seen that one can replace the Hölder
smooth subdifferential ∂HS

m of f by some other classes of subdifferentials. Let us define
an abstract subdifferential in the following.

Definition 3.3 (see [1]). An abstract subdifferential, denoted by ∂, is any
operator that associates a subset ∂f(x) ⊂ X∗ to a lower semicontinuous function
f : X → R ∪ {∞} and a point x ∈ X, satisfying the following properties:

(P1) ∂f(x) coincides with the subdifferential in the sense of convex analysis when-
ever f is convex;

(P2) 0 ∈ ∂f(x) whenever x ∈ dom f is a local minimum of f ;
(P3) ∂(f + g)(x) ⊂ ∂f(x) + ∂g(x) whenever g is a real valued convex continuous

function which satisfies ∂g(x) and ∂(−g)(x) are both nonempty.
Paper [1] provides various classes of subdifferentials satisfying the above properties

(P1)–(P3)—for example, the Hadamard subdifferential, the Gâteaux subdifferential,
the Fréchet subdifferential, and the Clarke–Rockafellar subdifferential.

For p > 1, we denote by Γp all the functions of the form

Γ(x) :=
1

p

∞∑
k=1

μk ‖x− uk‖p for all x ∈ X,(3.10)

where {uk} is any convergent sequence in X and {μk} is any sequence of nonnegative
scalars satisfying

∑∞
k=1 μk = 1. Clearly, each function in Γp is a real valued continuous

convex function.
Theorem 3.4. Let X be a uniformly smooth Banach space which has modulus

of smoothness of power m > 1 and let f : X → R ∪ {∞} be a proper lower semi-
continuous function. Let ∂ be an abstract subdifferential satisfying properties (P1)–
(P3) in Definition 3.3 and an additional property:

(P4) ∂(−Γ)(x) is nonempty for each Γ ∈ Γm.
If there exists δ > 0 such that for all x ∈ f−1(0,∞) and all ξ ∈ ∂f(x),

lim inf
‖u‖→1,t↓0

f(x + tu) − f(x) − t 〈ξ, u〉
tm

< −δ,

then

distm(x, S) ≤ (mL/δ) f(x)+ for all x ∈ X.

Proof. After checking the proof of Theorem 3.1, we know the key role played by
the subdifferential is the part from (3.6) to (3.8). Since each Γ(x) is a continuous real
valued convex function, ∂Γ(x) is nonempty. In view of the property (P4) and (P3),
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one can establish (3.8) in a similar way. The remaining proof is similar to the proof
of Theorem 3.1.

The above theorems establish m-order error bounds for lower semicontinuous
functions in certain classes of Banach spaces. As a corollary of Theorem 3.1, we give
an error bound of order one whose proof is similar to that of Theorem 3.3 in [15].
Recall that S is the set f−1(−∞, 0], and define

P (α) := {x ∈ X \ S : ∂HS
m f(x) ∩B(0, α) �= ∅} for α > 0.(3.11)

Theorem 3.5. Let X be a uniformly smooth Banach space which has modulus of
smoothness of power m for some m > 1 and let f : X → R ∪ {∞} be a proper lower
semicontinuous function. Suppose that the following two conditions hold.

(i) P (α) ⊂ f−1(β,∞) for some α > 0 and some β > 0.
(ii) There exists δ > 0 such that for all x ∈ f−1(β,∞) and all ξ ∈ ∂HS

m f(x),

lim inf
‖u‖→1,t↓0

f(x + tu) − f(x) − t 〈ξ, u〉
tm

< −δ.

Then there exists c > 0 such that

dist(x, S) ≤ c f(x)+ for all x ∈ X.

4. Error bounds in general Banach spaces. In the last section, we have
established second-order sufficient conditions for error bounds of lower semicontinuous
functions in smooth Banach spaces. In what follows we will provide different second-
order sufficient conditions for error bounds in general Banach spaces. The result
of this section generalizes that in [7], which gives second-order sufficient conditions
for error bounds in general Banach spaces but requires the function to be Gâteaux
differentiable. Our results show that the assumption of Gâteaux differentiability can
be removed. Before that, we need to define second-order directional derivative. Let
X be a Banach space and f : X → R ∪ {∞} be a proper lower semicontinuous
function. For x, u, v ∈ X, we define respectively Hadamard directional derivative and
a second-order directional derivative:

f ′
−(x;u) := lim inf

v→u, t↓0

f(x + tv) − f(x)

t
;

d2
−f(x;u, v) := lim inf

t→0+

f(x + tu + t2v) − f(x) − tf ′(x)u

t2

whenever f is Gâteaux differentiable.

It can be seen that if f is Gâteaux differentiable at x with f ′(x) being the Gâteaux
derivative, then f ′

−(x;u) ≤ f ′(x)u for every u; the equality holds if in addition f is
locally Lipschitz at x. If f is twice continuously differentiable, then

d2
−f(x;u, 0) = (1/2)∇2f(x)(u, u),

where ∇2f(x) denotes the second-order derivative of f at x.
For ε > 0, we define a set

D(ε) :=
{
x ∈ X : x �∈ S and inf‖u‖=1 f

′
−(x;u) ≥ −ε

}
.

If f is Gâteaux differentiable on X, then

D(ε) ⊂ {x ∈ X : x �∈ S and ‖f ′(x)‖ ≤ ε} =: D(ε),
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where the set D(ε) is introduced and used in [7] for studying second-order sufficient
conditions for continuous and Gâteaux differentiable functions to have error bounds.

The following lemma [12, Lemma 2.3] is a straightforward consequence of Theorem
2(ii) in [6].

Lemma 4.1. Let X be a Banach space and f : X → R ∪ {∞} be a proper lower
semicontinuous function. If there exists γ > 0 such that for every x ∈ f−1(0,∞) there
is y ∈ f−1[0,∞) such that

f(x) − f(y) ≥ γ ‖x− y‖ > 0,

then dist(x, S) ≤ γ−1f(x)+ for all x ∈ X.
Theorem 4.2. Let f : X → R be a continuous function. Suppose that there exist

positive scalars r, ρ, and δ such that the following conditions hold:
(i) D(ρ) ⊂ f−1(r,∞);

(ii) lim supt→0+ supx∈D(ρ) inf‖u‖=1
f(x+tu)−f(x)+tf ′

−(x;−u)

t2 < −δ.

Then there exists γ > 0 such that dist(x, S) ≤ γ−1f(x)+ for all x ∈ X.
Proof. We need to consider only those points x not in S. In view of the assumption

(ii), there exists β ∈ (0, 1/2] such that for every t ∈ (0, β) and every x ∈ D(ρ), a unit
vector u (dependent on t and x) exists and satisfies that

f(x + tu) − f(x) + tf ′
−(x;−u)

t2
< −δ.(4.1)

Take ε = min{ρ, βδ/4} and γ = min{r, ε/2}.
Let x ∈ D(ε) be such that dist(x, S) ≥ 1. Put λ = β/2. It follows that x+λu �∈ S

for any unit vector u. Since ε ≤ ρ, x ∈ D(ε) ⊂ D(ρ), it follows from (4.1) that there
exists a unit vector uλ such that

f(x + λuλ) − f(x) + λf ′
−(x;−uλ) < −λ2δ.

In view of the definition of D(ε), x ∈ D(ε) implies that f ′
−(x;−uλ) ≥ −ε. Therefore,

f(x) − f(x + λuλ) ≥ λ2δ − λε ≥ γλ = γ ‖x− (x + λuλ)‖ .

For x ∈ D(ε) and dist(x, S) < 1, there exists y ∈ S such that ‖x− y‖ < 1.
Since f is continuous, y can be chosen to satisfy f(y) = 0. Since x ∈ D(ε) and
D(ε) ⊂ f−1(r,∞), one has f(x) > r. It follows that

f(x) − f(y) ≥ r > r ‖x− y‖ ≥ γ ‖x− y‖ > 0.

For x �∈ D(ε), we have f ′
−(x;u) < −ε for some unit vector u. It follows that

there exist a sequence of positive scalars {tn} converging to zero and a sequence {un}
converging to u such that for sufficiently large n,

f(x + tnun) − f(x) < −εtn.

Since γ < ε and ‖un‖ → 1, γ ‖un‖ < ε for large enough n. This implies that

f(x) − f(x + tnun) > εtn ≥ γtn ‖un‖ = γ ‖x− (x + tnun)‖

for sufficiently large n.
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Thus, we have shown that for each x �∈ S, there exists y ∈ f−1[0,∞) such
that f(x) − f(y) ≥ γ ‖x− y‖. Then, by applying Lemma 4.1, we obtain the desired
conclusion.

Huang and Ng [7] considered error bounds in general Banach spaces for a func-
tion which is Gâteaux differentiable and continuous. Besides the assumption (i) of
Theorem 4.2, [7] requires another condition: There exist β > 0 and δ > 0 such that
for all x ∈ D(ρ),

inf
‖u‖=1

sup
t∈[0,β)

d2
−f(x + tu;u, 0) < −δ.(4.2)

Because f is Gâteaux differentiable and continuous, f ′
−(x;−u) ≤ −f ′(x)u. It follows

from [7, Theorem 3.1] that the condition (4.2) implies the existence of β > 0 and
δ > 0 such that for all x ∈ D(ρ),

inf
‖u‖=1

sup
t∈(0,β)

f(x + tu) − f(x) + tf ′
−(x;−u)

t2
< −δ.(4.3)

Note that our assumption (ii) in Theorem 4.2 is that there exist β > 0 and δ > 0 such
that for all x ∈ D(ρ),

sup
t∈(0,β)

inf
‖u‖=1

f(x + tu) − f(x) + tf ′
−(x;−u)

t2
< −δ.(4.4)

Since D(ρ) ⊂ D(ρ), it is straightforward that (4.3) and hence (4.2) imply (4.4).
The latter is a restatement of our assumption (ii), which is therefore less restrictive
than the assumption (4.2) as our assumption (ii) also allows f to be non-Gâteaux
differentiable.
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