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Abstract

With the exponential growth of video data on the Internet, there is

a compelling need for effective video search. Compared to text docu-

ments, the mixed multimedia contents carried in videos are harder for

computers to understand, due to the well-known “semantic gap” be-

tween the computational low-level features and high-level semantics.

To better describe video content, a new video search paradigm named

“Semantic Video Search” that utilizes primitive concepts like “car”,

“sky” etc. has been introduced to facilitate video search. Given a

user’s query, semantic video search returns search results by fusing

the individual results from related primitive concepts. This fusion

strategy works well for simple queries such as “car”, “people and an-

imal”, “snow mountain” etc.. However, it is usually ineffective for

complex queries like “one person getting out of a vehicle”, as they

carry semantics far more complex and different from simply aggregat-

ing the meanings of their constituent primitive concepts.

To address the complex query learning problem, this thesis proposes a

three-step approach to semantic video search: concept detection, au-

tomatic semantic video search, and interactive semantic video search.

In concept detection, our method proposes a higher-level semantic

descriptor named “concept bundles”, which integrates multiple prim-

itive concepts as well as the relationship between the concepts, such as

“(police, fighting, protestor)”, “(lion, hunting, zebra)” etc., to model

the visual representation of the complex semantics. As compared to

simple aggregation of the meanings of primitive concepts, concept

bundles also model the relationship between primitive concepts, thus

they are better in explaining complex queries. In automatic semantic



video search, we propose an optimal concept selection strategy to map

a query to related primitive concepts and concept bundles by consider-

ing their classifier performance and semantic relatedness with respect

to the query. This trade-off strategy is effective to search for complex

queries as compared to those strategies that only consider one criteria

such as the classifier performance or semantic relatedness. In inter-

active semantic video search, to overcome the sparse relevant sample

problem for complex queries, we propose to utilize a third class of

video samples named “related samples”, in parallel with relevant and

irrelevant samples. By mining the visual and temporal relationship

between related and relevant samples, our algorithm could accelerate

performance improvement of the interactive video search.

To demonstrate the advantages and utilities of our methods, exten-

sive experiments were conducted for each method on two large scale

video datasets: a standard academic “TRECVID” video dataset, and

a real-world “YouTube” video dataset. We compared each proposed

method with state-of-arts methods, as well as offer insights into indi-

vidual result. The results demonstrate the superiority of our proposed

methods as compared to the state-of-arts methods.

In addition, we apply and extend our proposed approaches to a novel

video search task named “Memory Recall based Video Search” (MRVS),

where a user aims to find the desired video or video segments based

on his/her memory. In this task, our system integrates text-based,

content-based, and semantic video search approaches to seek the de-

sired video or video segments based on users’ memory input. Be-

sides employing the proposed complex query learning approaches such

as concept bundle, related samples etc., we also introduce new ap-

proaches such as visual query suggestion, sequence-based reranking

etc. into our system to enhance the search performance for MRVS.

In the experiments, we simulate the real case that a user seeks for

the desired video or video segments based on his/her memory recall.

The experimental results demonstrate that our system is effective for



MRVS.

Overall, this thesis has taken a major step towards complex query

search problem. The significant performance improvement indicates

that our approaches can be applied to current video search engines

to further enhance the video search performance. In addition, our

proposed methods provide new research directions such as memory

recall based video search.
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Chapter 1

Introduction

1.1 Background to Semantic Video Search

Recent years have introduced a flourish in user generated contents (UGCs),

thanks to the significant advances in mobile device and mobile networking tech-

nologies that facilitate the publishing and sharing of contents. In particular, the

number of user uploaded videos is increasing at an exponential rate in recent

years. According to the statistics from Intel, there are about 30 hours of videos

uploaded and 1.3 million video viewers in an internet minute in YouTube [You12],

a popular video sharing website. Over the entire Internet, the number of user

generated videos is even larger. There are two main reasons for this trend. First,

since the mid-1990s, the production and storage of new content as well as the

digitization of existing content have become progressively easier and cheaper.

Second, video content is more intuitive and efficient than text in expressing situ-

ations and physical ideas. As a result, both the number and the volume of user

generated videos are growing rapidly.

As an important information carrier, the wealth of videos on the Internet

offers a rich resource for users to seek the desired information. For example,

a couple would like to find videos about “cooking” to teach themselves how to

cook, while a reporter may wish to find interesting video clips about “Iraq war”

to support his/her news reports. To meet this demand, modern video search

engines such as Google, YouTube and Yahoo! etc have became very popular due

1



to their ability to help users locate the desired videos according to their queries.

However, most of these video search engines provide video search services based

only on the textual metadata associated with videos. This “Text-based Video

Search” paradigm ([SC96]) may fail when the associated text is absent, incom-

plete, or unreliable with respect to video semantics. Moreover, a user may want

to find just a particular segment inside a video ([KR08]). For example, a lawyer

evaluating copyright infringement, or an athlete assessing her performance dur-

ing the training sessions might be more interested only in specific video segments.

Text-based video search engines are difficult to serve these needs.

To complement text-based video search, a new video search paradigm named

“Semantic Video Search” [SW09] has emerged in recent years. In this approach,

a user’s query is first mapped to a few related concepts, and a ranked list of video

segments is then generated by fusing the individual search results from related

concept classifiers. For example, the query “car on the road” is mapped to the

related concepts “car”, “road”, and “vehicle” etc, and then a ranked list of video

segments is returned by fusing the results from these concept classifiers. Com-

pared to text-based video search, semantic video search requires the automatic

detection of concepts in videos and does not need any text annotations associ-

ated with videos, thus it saves the labeling cost. Moreover, semantic video search

is able to provide search results on video segment level, which complements the

inadequacy of text-based video search aforementioned. However, this approach

is highly depended on the accuracy of concept classifiers, which are generally not

of sufficient accuracy for many concepts and queries.

Currently, a great deal of research efforts have been devoted to semantic

video search that focus on three aspects: concept detection, automatic semantic

video search and interactive semantic video search. In particular, the developed

techniques include context-based concept fusion [SN03] and multi-label learning

[QHR+07] in concept detection, ontology based [WWLZ08] and data-driven based

[JNC09] concept selection methods in automatic semantic video search, adaptive

feedback [LZN+08] and concept-segment based feedback [WWLZ08] in interac-

tive semantic video search. Based on these technologies, semantic video search

system has achieved some success in providing good search results according to

users’ queries. As argued in [HYea07], the current semantic video search could
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achieve comparable performance as compared to standard text-based video search

when several thousand of classifiers with modest performance are available.

1.2 Motivation

Although lots of research efforts have been devoted to semantic video search

and have achieved some successes, they mainly focus on simple queries such as

“soccer”, “car in the road”, “snow mountain” and so on. The reason for good

performance is that a simple query can be well matched to one or more con-

cepts in semantic video search. However, in real world, users often issue complex

queries such as “police fighting protester”, “car running in the street at night”

and so on. For such complex queries, the performance of semantic video search is

usually not satisfactory. This is because a complex query tends to involve com-

plex relationship such as “running” “fighting” and so on. between the concepts

in the query, while the simple fusion strategy is usually unable to capture such

relationships. Thus, it is an urgent task to improve video search performance for

complex query in semantic video search.

Recently, researchers have proposed a variety of approaches to enhance per-

formance of semantic video search in a few aspects such as enhancing concept

classifier performance, accurately mapping a query to related concepts, and cal-

culating good fusion weights etc. However, very few research work have attempted

to exploit the relationships between concepts in a complex query. This thesis aims

to bridge this gap. In addition, we apply and extend the proposed approaches

to a real world video search task named “Memory Recall based Video Search”

to further verity the effectiveness of our proposed approaches. This application

demonstrates that the proposed complex query learning approaches work well in

a simulated situation and have promising potential to be incorporated into the

real world applications.

1.3 The Basic Components and Notations

Given a user’s query which may be textual words and/or image samples, Fig-

ure 1.1 shows the video search process in which the search system returns the
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Figure 1.1: The framework of semantic video search system

search results by automatic and interactive semantic video search based on a set

of concept classifiers. Generally, the semantic video search is composed of three

main parts: Concept Detection [SWG+06a; YCKH07; NS06; JYNH10] which

provides a set of concept classifiers to support semantic video search, Automatic

Semantic Video Search [CHJ+06; WNJ08] that generates an initial video search

results based on users’ queries and concept classifiers, and Interactive Semantic

Video Search [PACG08; ZNCC09] that involves users’ interaction to further refine

the search results.

1.3.1 Concept Detection

Concept detection aims to provide a set of concept classifiers to support semantic

video search. Figure 1.2 demonstrates the concept detection in two stages: train-

ing stage and testing stage. In the training stage, a set of concept classifiers fk are

learned for each pre-defined concept Ck based on its training samples {xi, yi}Ni=1,

where N is the number of the training samples. Here, xi is a feature vector ex-

tracted from a keyframe, which is a representative frame in a video shot. yi is the

label of xi and yi = 1 if the sample xi contains the concept Ck, −1 otherwise. In

the testing stage, each testing sample is fed to the learned concept classifiers to
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generate confidence scores with respect to all the pre-defined concepts. Generally,

there are four main steps in concept detection: Video Segmentation, Labeling,

Feature Extraction, and Classifier Learning. Here, we elaborate the four steps as

below:

Figure 1.2: An example to illustrate the process of concept detection

• Video Segmentation: Video segmentation aims to partition a video into

a sequence of video shots. Here, the widely used video segment is the video

shot, which is defined in [Han02] as: “a series of interrelated consecutive

frames taken contiguously by a single camera shooting and representing a

continuous action in time and space”. For ease of analysis and computation,

a segmented video shot is often represented by a single frame, the so-called

“keyframe” [GKS00]. Typically, the central frame of a shot is taken as the

keyframe, but many more advanced methods exist such as [BMM99].

• Labeling: Based on the extracted video shots in the training set, hu-

man users are asked to manually label these shots with respect to each

pre-defined semantic concept. For example, if a video shot contains the

concepts “car” and “road”, then the user should give these two labels to
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the shot. To ensure the quality of labeling result, each shot is usually given

to several users to label. The final labeling result is generated according to

the majority voting scheme.

• Feature Extraction: The goal of feature extraction is to derive a compact,

yet descriptive representation of the pattern of interest. Typical features to

describe a video include text features, audio features, visual features, and

their combinations. Since the dominant information in a video is encapsu-

lated in the visual stream, the most common feature is visual feature and it

is widely used in many concept detection methods [SWG+06a][YCKH07].

For simplicity, I only focus on visual feature to perform the concept detec-

tion task in this study.

• Classifier Learning: Given a set of concepts, classifier learning aims to

learn a classifier fk for each concept Ck based on the given training samples

{xi, yi}Ni=1. Basic classifier learning approaches include Supervised Learn-

ing, such as SVM [CB98], and Semi-supervised Learning such as Graph-

based learning [Bis06]. More advanced classifier learning approaches are

surveyed in [SW09]. Based on the learned classifier fk, for each testing

sample, the classifier outputs a confidence score to represent the probabil-

ity of this sample containing the concepts Ck.

1.3.2 Automatic Semantic Video Search

Given a set of concept classifiers {fk}Kk=1, automatic semantic video search returns

an initial result list based on user’s queries. Figure 1.3 shows an example. The

text query “car at night street” is first mapped to related concepts “car”, “night”

and “street” by Concept Selection, then the search results are generated by Result

Fusion.

• Concept Selection: Given a query, concept selection is used to find an

appropriate set of concepts to interpret the meanings of query. The widely

used concept selection approaches rely on the textual similarity between the

query and the concept name [CHJ+06; WLLZ07]. For example, the query

“car at night street” is textually similar to the concepts “car”, “night” and
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Figure 1.3: An example to illustrate the process of automatic semantic video
search

“street”, and thus it is mapped to these three concepts. More advanced

approaches could explore conceptual correlation to find potentially related

concepts [NHT+07]. For example, the query “rabbit” could be mapped

to the concept “animal” by using ontology, which models “the-kind-of”

relationship between the two concepts.

• Result Fusion: Based on the selected related concepts, result fusion in-

tegrates search results from these selected concept classifiers. The most

popular fusion approach linearly combines search results from these con-

cept classifiers, where the fusion weights are determined according to the

importance of each selected concept with respect to the query. For exam-

ple, the query “person in kitchen” is mapped to two concepts: “person”

and “kitchen”. Apparently, the concept “kitchen” is more important than

“person” since person is too common in videos. Thus, the fusion weight

of “kitchen” should be much larger than that of “person”. To determine

the concept importance, the most popular approach is to employ informa-

tion retrieval technique to measure text-matching score between concept

names and queries [CHJ+06]. The other approaches determine the concept

importance according to both text-matching and visual-matching scores

[WLLZ07]. More advanced approaches can be found in [SW09].
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1.3.3 Interactive Semantic Video Search

Figure 1.4: An example to illustrate the process of interactive semantic video
search

The initial search results from automatic semantic video search may be un-

satisfactory. As a result, interactive semantic video search utilizes the interaction

between user and system to further refine the search results. Figure 1.4 illustrates

the process of the typical interactive search system consisting of two serial steps:

Labeling which asks a user to label the search results as relevant or irrelevant, and

Result Updating which refines search results based on the new labeled samples.

These two steps are repeated until the user is satisfied with the search results.

• Labeling: Given a sample list returned by the search system, the user

is allowed to label each result sample. Generally, there are two kinds of

samples: relevant sample which means that the sample satisfies the query,

and irrelevant sample which indicates that the sample does not meet the

query.

• Result Updating: Based on the new labeled samples, result updating aims

to update the search model for a better search result. Generally, the labeled

samples especially relevant samples can provide useful information, such

as visual information, temporal information, to refine the search results.

Specifically, in semantic video search, these labeled samples can be used

to adjust the fusion weights to achieve a better fusion result [TRSR09;

HLRYC06].
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1.4 Complex Query Learning in Semantic Video

Search

1.4.1 Definition

In this thesis, we divide queries in semantic video search into two categories:

• Simple Query: This category of queries contains one or more co-occurring

semantic concepts without specific relationships between the concepts. Ex-

amples of this category are “car”, “car on the road”, “snow mountain” and

so on.

• Complex Query: This category of queries contains at least two semantic

concepts with a specific relationships between them. Examples of this cat-

egory are: “police fighting protestor”, ” motorcycle racing at night street”,

“a couple dancing in the wedding” and so on.

While typical fusion strategies in semantic video search can well interpret the

meaning of a simple query, it is difficult to reveal and model the relationships

between the concepts in a complex query. In this thesis, we aim to tackle the

complex query learning problem in semantic video search. In addition, this thesis

ignores some extremely complex queries, such as “Find the video shot with a

black frame titled ”CONOCER Y VIVIR””, “Find the video shots with a man

speaking Spanish” etc, which are usually out of the capability of semantic video

search. This is because these queries may need extra techniques such as ASR,

OCR etc. to reveal the textual information in videos.

1.4.2 Challenges

There are several challenges for learning complex queries in semantic video search:

• First, a complex query carries semantics that are more complex than and

different from simply aggregating the meanings of their constituent primi-

tive concepts. Thus the simple aggregation strategies that can only model

semantic concept co-occurrence are unable to capture the specific relation-

ships and interactions between the concepts in a complex query.
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• Second, it is well known that the output of concept classifiers in concept

detection can be unreliable. Therefore, given a complex query, errors from

multiple related concept classifiers may affect the fusion result for the se-

mantic video search. For example, for the query “bird on a tree”, the search

results are generated by fusing the individual results from the ranking lists of

concepts “bird” and “tree”. An incorrect result from the classifier for“bird”

may have a high confidence score and will thus rank high in the fusion result

if the semantic video search simply combines the search results from both

classifiers.

• Third, a complex query usually has sparser relevant samples as compared

to that of simple queries. This sparse relevant sample problem will severely

limit the performance improvement in interactive video search since a user

may only have few or no relevant samples to label in the interactive search

process.

1.4.3 Overview of the Proposed Approach

To tackle the problems discussed above, in this thesis, we propose three ap-

proaches for concept detection, automatic semantic video search, and interactive

semantic video search. We briefly summarize the approaches as follows:

• Concept Bundle Learning: We propose a higher-level semantic descrip-

tor named “concept bundle”, which is a composite semantic concept inte-

grating multiple primitive concepts as well as the relationships between the

concepts, such as (“lion”, “hunting”, “zebra”), (“lady”, “laughing”, “inter-

view”) and so on. Compared to primitive concept, concept bundle carries

more complex semantic meanings, and thus it is expected to better meet the

video search requirement in a finer granularity. To effectively learn concept

bundle, the approach first selects the informative concept bundles, which

are measured according to two criteria: users’ interest to select those con-

cept bundles frequently used in users’ queries, and co-occurrence to select

the concept bundles whose constituent primitive concepts tend to co-occur

in videos. We use a weight to balance these two criteria. We then learn a
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robust classifier for each selected concept bundle under the framework of

SVM based multi-task learning.

• Bundle-based Automatic Semantic Video Search: Based on the

learned classifiers of concept bundles and primitive concepts, the automatic

semantic video search needs to select a proper set of concept bundles and

primitive concepts to interpret the users’ query. For example, the query

“person dancing in the wedding” could be directly mapped to the concept

bundle (“person”, “dance”, “wedding”). To accurately select the approx-

imate concepts, we propose a selection strategy that maps the query to

related primitive concepts and concept bundles by considering their classi-

fier performance and semantic relatedness with respect to the query. We

implement the selection strategy by using a greedy algorithm to save compu-

tational cost. The final search results are generated by fusing the individual

results from these selected primitive concepts and concept bundles.

• Related Sample based Interactive Semantic Video Search: To over-

come the sparse relevant sample problem for complex query in interactive

video search, we propose a new sample class named “Related Samples”.

Related samples refer to those video segments that are partially relevant

to the query but do not satisfy the entire search criterion. For example,

the related samples of the query “car at night street” are the samples that

contain the individual concepts “car”, “night”, or “street” rather than the

scene of “car at night street”. Generally, related samples are mostly visu-

ally similar and temporal neighboring to relevant samples. Moreover, there

are much more related samples than relevant ones in the search process.

Based the labeled relevant, related and irrelevant samples, we develop a

visual-based ranking model, a temporal-based ranking model, as well as an

adaptive fusion method to update search results.

To illustrate the advantages of our proposed approaches above, we compare

our approaches with the state-of-art methods in three aspects: concept detection,

automatic semantic video search, and interactive semantic video search. The key

difference between our approaches and that of the existing state-of-art methods

are illustrated in Table 1.1.
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Table 1.1: The illustration of the differences between our approaches and the
existing methods on concept detection, automatic semantic video search, and
interactive semantic video search

The existing work Our approaches
1: Focus on learning prim-
itive concept [YCKH07;
MZLea08; CHJ+06].

1:Focus on learning concept
bundle.

Concept
Detection

2: Utilize the relation-
ship between primitive con-
cepts to enhance perfor-
mance [NKH02; WTS04;
QHR+07].

2: Explore the relationship
between concept bundle and
its primitive concepts to ef-
fectively learn classifiers.

3: Primitive concepts can-
not capture complex query
well.

3: Concept bundle is se-
mantically closer to complex
query.

1: A query is mapped to
primitive concepts.

1: A query is mapped into
primitive concepts and con-
cept bundles.

Automatic
Semantic
Video
Search

2: The errors in the fusion
result may come from multi-
ple related primitive concept
classifiers.

2: The errors in the fusion
result may only come from a
related concept bundle.

3: The concept selection
relies on the concept im-
portance [CHJ+06], or both
concept importance and
classifier performance with
a manual balancing weight
[NZKC06].

3: An optimization algo-
rithm is devised for concept
selection by balancing con-
cept importance and classi-
fier performance.

Interactive
Semantic

1: Work on relevant and ir-
relevant samples only.

1: Work on relevant, related
and irrelevant samples.

Video
Search

2: May suffer from the
sparse relevant sample prob-
lem for complex query.

2: Alleviate the sparse rele-
vant sample problem by la-
beling related samples.
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Finally, we summarize the contributions of our approaches as follows:

• In chapter 4, we moved a step ahead by proposing a high-level semantic

descriptor named “Concept Bundle” to interpret complex query more pre-

cisely. The proposed concept bundle selection criterion could effectively

find some useful concept bundles so as to reduce the number of concept

bundles to be learned. Moreover, the proposed multi-task SVM algorithm

can well learn the classifiers for the concept bundles, which could achieve

at least 10% improvement in performance as compared to the state-of-art

approaches.

• In chapter 5, we developed a concept selection strategy to map a query

into related primitive concepts and concept bundles. The greedy algorithm

is used to implement this strategy to save the computational cost. In the

experiments, we discover that the use of concept bundle is effective to en-

hance the search performance, and the use of our concept selection strategy

could achieve better search performance as compared to the state-of-art

approaches in TRECVID 2008 search task.

• In chapter 6, we proposed the idea of related samples to overcome the sparse

relevant sample problem for interactive video search with complex query.

We employ incremental learning technique to ensure near real-time inter-

active video search. The experimental results demonstrated that the use

of related samples are effective to enhance the interactive search perfor-

mance for complex queries, and our proposed approach achieves at least

90% performance improvement as compared to the state-of-art approaches.

1.5 Application: Memory Recall based Video

Search

To further validate the effectiveness of the proposed complex query learning ap-

proaches in semantic video search, we apply and extend the proposed approaches

to a real world video search task named “Memory Recall based Video Search”

(MRVS). In this task, a user wishes to find a desired video or video segments

13



that he/she has seen before based on his/her memory recall. A user may input a

combination of text description, visual examples and/or concepts to demonstrate

the scene in his/her memory. The text description is used to express the textual

information about the desired video, while the visual and concept queries are used

to depict the visual scenes in his/her memory on the desired video segments. To

this end, we develop a multi-modality based video search system to find the de-

sired video or video segments for users. We choose to apply our complex query

learning approaches in MRVS task for two reasons: First, in MRVS task, visual

scenes in a user’s memory usually carry more complex semantic and concept in-

formation as compared to the pure text-based complex queries. Therefore, our

proposed concept bundles are naturally more effective in this task; Second, the

desired video or video segments are unique for each query in MRVS task, which

leads to the problem of extremely sparse relevant sample. Our proposed interac-

tive video search technique is able to handle this sparse relevant sample problem

with the proposed use of related samples.

1.6 Outline

The rest of this thesis is organized as follows:

Chapter 2 describes works related to this thesis. We first review related work

in semantic video search from concept detection techniques, automatic semantic

video search and interactive video search. Next, we briefly introduce related work

on the other video search approaches including text-based video search, content-

based video search, and multi-modality based video search.

Chapter 3 gives an overview of the datasets to be used in this thesis.

Chapter 4 presents the concept bundle learning approach, which is composed

of two parts: the informative concept bundle selection, which selects informative

concept bundle based on its frequency on the suggested queries by Web video

search engine and the concept co-occurrence in the tags of Web videos, and the

classifier learning algorithm, which jointly learns all the classifiers of a concept

bundle and its primitive concepts by an SVM based multi-task learning.

Chapter 5 introduces the bundle-based automatic semantic video search ap-

proach. In this approach, we focus on selecting related primitive concepts and
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concept bundles to interpret a user’s query. An optimization algorithm is devised

to map a query to related primitive concepts and concept bundles by considering

their classifier performance and semantic relatedness with respect to the query.

Chapter 6 elaborates related sample based interactive semantic video search.

A new sample class named “related sample” is proposed to overcome the sparse

relevant sample problem. To effectively explore the labeled relevant, related and

irrelevant samples, we propose a visual-based ranking model and a temporal-

based ranking model. Moreover, an adaptive fusion method is devised to further

boost the search performance.

Chapter 7 applies and extends our proposed approaches to a “Memory recall

based Video Search” task, where a multi-modality based video search system is

employed to search for the specific scenes according to a user’s memory.

Finally, Chapter 8 draws conclusions of our thesis and proposes future work.
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Chapter 2

Literature Review

In this chapter, we mainly review related work in semantic video search which is

more related to this thesis. After that, we briefly introduce other video search

approaches including text-based video search, content-based video search and

multi-modality based video search.

2.1 Semantic Video Search

We introduce semantic video search from its three steps: concept detection, au-

tomatic semantic video search and interactive semantic video search.

2.1.1 Concept Detection

Early researches aimed to yield a variety of dedicated methods exploiting sim-

ple handcrafted decision rules to map restricted sets of low-level visual features,

such as color, texture, or shapes, to a single high-level concept. Typical meth-

ods are news anchor person in [ZTSG95], sunsets in [SC97], indoor and outdoor

in [SP98]. However, such dedicated approaches are limited when many concepts

are needed to be detected for semantic video search. As an adequate alterna-

tive for dedicated methods, generic approaches for large-scale concept detection

have emerged [ABC+03; NH01; SWG+06b]. For example, the MediaMill-101

in [SWG+06a] utilized a corpus of 101 concepts for semantic video search, while

Columbia374 in [YCKH07] and VIREO-374 in [JYNH10] leveraged a larger set
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of 374 concept classifiers for video search. These 374 concepts are a subset of

LSCOM, which is a concept ontology for multimedia search consisting of more

than 2000 concepts [NS06].

The generic concept detection approaches typically comprise three steps: video

segmentation, feature extraction and classifier learning. Video segmentation di-

vides a video sequence into a set of segments. The most natural candidate for this

segment is called “video shot” [DSP91; GKS00]. For each extracted video seg-

ment, feature extraction algorithms aim to extract various features, such as text

feature [MRS09], visual feature [GBSG01; GS99] and audio feature [Lu01]. In this

work, we use visual features like color [GBSG01; GS99], texture [JF91; MM96],

and shape [LLE00; VH01] due to their popularity and effectiveness. Based on

the extracted features, classifier learning aims to learn a robust concept classifier

for each semantic concept. The classical classifier learning approaches include

supervised learning [JYNH10; SWG+06a; TLea08] and semi-supervised learning

[WHHea09; JCJL08]. The most representative algorithms for these two learn-

ing schemes are support vector machine (SVM) [CB98] and graph-based learning

[Zhu05]. Next, we will provide more details in these two approaches as well as

the classical variants of applying the two methods on concept detection task.

2.1.1.1 Supervised Learning

Suppose that there is a classifier Y = f(X) + ε, where X is the observed input

values, and Y is the output values by the classifier, supervised learning attempts

to learn f by observed samples through a learning algorithm. One observes the

system under study assembles a training set of observations τ = (xi, yi), i =

1, ..., N , where N is the number of training samples. The observed input values

to the system xi are fed into a learning algorithm, which produces outputs f(xi)

in response to the inputs. Generally, the learning algorithms attempt to make

f bridge the difference between the generated value f(xi) and the true value

yi. However, this usually leads to the over-fitting problem [JDM00], where the

learned classifiers only have a good performance on training set instead of testing

set. As a result, the typical supervised algorithms add a generalization term to

avoid the over-fitting problem.
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Next, we first introduce the classic supervised learning algorithm Support

Vector Machine [CB98], then we review the related work on fusion strategies

which could improve the classification result. Finally, more advanced supervised

learning approaches designed for concept detection are introduced.

Support Vector Machine

In concept detection, Support Vector Machine (SVM) [CB98] is the most

popular supervised learning algorithm. It learns a decision hyperplane to separate

an n-dimensional feature space into two different classes: one class representing

the concept to be detected and one class representing all other concepts, or more

formally yi = ±1. A hyperplane is considered optimal when the distance to the

closest training examples is maximized for both classes. This distance is called

the margin. To learn the optimal hyperplane, the objective function of SVM

contains two parts: a generalization part to avoid the over-fitting problem, and

a penalty part to reduce the training errors, which is expressed as follows:

min 1
2
||w||2 + C

N∑
i=1

ξi

s.t. yi(wxi + b) ≥ 1− ξi i = 1 . . . N

(2.1)

where f = wxi + b is the hyperplane function, C is a parameter that allows to

balance training error and model complexity, and ξi is a slack variables that are

introduced when data is not perfectly separable. One notable advantage of SVM

is the introduction of kernel function, as it can map the distance between feature

vectors into a higher dimensional space in which the hyperplane separator and

its support vectors are obtained.

Once an SVM-based concept classifier is learned, it is necessary to transfer the

output of the classifier into a comparable, normalized score so that the concept

detection is able to integrate results from multiple information sources (such as

visual, text and audio) by different learning models. The most common normal-

ization, which is also used in the search models in this thesis, is the use of a

probabilistic measure for the class membership. In [Pla00], the authors proposed

that the posterior probability of the concept occurrence Ck follows a sigmoid func-

tion of the output score f(xi) of the sample xi. This proposition is widely used

among researchers. The discriminative model of Platt’s posterior probability is

18



defined as:

P (Ck|xi) =
1

1+exp(Af(xi)+B)
(2.2)

where the parameters A and B of the sigmoid function are fitted to the confidence

scores of the training collection.

Figure 2.1: General scheme for feature fusion. Output of included features is com-
bined into a common feature representation before a concept classifier is learned.

Fusion

For each visual concept, classifier learning algorithm could generate multi-

ple classifiers based on a variety of features. Thus, a natural question is how

to build a general classifier for each visual concept. A typical solution for this

problem is to employ fusion strategy which can be divided into two categories:

“Feature Fusion” [TLea03; SvGGea06] which first concatenates all kinds of fea-

tures as a feature vector before learning a classifier, and “Classifier Fusion”

[LH02; YCKH07; KHDM98] which individually learns classifiers based on each

kind of feature and then fuses the results from individual classifiers.

• Feature Fusion: This approach concatenates all kinds of features as a fea-

ture vector which is then fed to a classifier learning algorithm to generate

a final classifier (see Figure 2.1). For example, Tseng et al. [TLea03] ex-

tracted a varied number of visual features, including color histograms, edge

orientation histograms, wavelet textures, and motion vector histograms at
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both globe and local level. They then simply concatenated all the feature

vectors as an aggregated one to learn a concept classifier for each visual

concept by SVM. Snoek et al. [SvGGea06] covered more visual features at

global, local and keypoint levels to perform concept detection. Besides ex-

ploring visual features, some researches [SWH06; HBCea03] import textual

features, auditory features, or a combination of both to further enhance the

accuracy of concept detection. Although the way of feature fusion is simple

and only needs one time learning phrase, it also suffers from the following

problems: 1. The concatenation of features will significantly increase the

classifier training time; 2. Combining features in an effective way might be

problematic, as features often have different layout schemes and numerical

ranges. Therefore, in most cases, researchers tend to employ classifier fusion

in concept detection.

• Classifier Fusion: This approach separately utilizes individual features

to train multiple classifiers, which are then combined to generate the fi-

nal concept detection result (see Figure 2.2). For example, Columbia374

in [YCKH07] individually learned classifiers based on three kinds of visual

features (edged direction histogram, Gabor, and grid color moment), and

the final concept detection result was generated by averaging the scores

from these classifiers. The authors in [LH02] proposed to learn two classi-

fiers by SVM based on visual and textual features respectively. The final

concept detection result was generated by averaging results from both clas-

sifiers. Besides average fusion, Tseng et al. [TLea03] employed the other

five combination operators: (1) minimum, (2) maximum, (3) product, (4)

inverse entropy, and (5) inverse variance. In their approach, one of these

combination operators was selected to generate fusion result in term of its

performance on a validation dataset. The fusion approaches discussed above

do not consider the correlation between concept classifiers. As a result, Wu

et al. [WCCS04] proposed an optimal multimodal fusion approach. For each

concept, the approach first generated several classifiers based on one kind

of feature. Then all the training samples were passed to the classifiers to

generate a confidence matrix, where the (i, j) element represents the proba-
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bility of the sample i satisfying the concept based on the feature j. Finally,

this matrix was taken as a new feature matrix to retrain a super-classifier

for the concept. This optimal fusion considers the relationship between

classifiers, thus obtains a better fusion result. Strat et al. [SBB+12] argued

that fusing similar classifiers for a concept is useless, thus they proposed

a hierarchical classifier later fusion approach. This approach started with

classifier clustering stage, continued with an intra-cluster fusion, and ended

with an inter-cluster fusion. Compared to feature fusion strategy, classifier

fusion is more efficient and accurate [KHDM98]. Moreover, it is flexible

for users to increase efficiency by using simple classifiers for relatively easy

concepts, and using more advanced schemes, covering more features and

classifiers, for difficult concepts.

Figure 2.2: General scheme for classifier fusion. Output of feature extraction is
used to learn separate probabilities for a single concept. After combination a final
probability is obtained for the concept.

Advanced Approaches

The traditional approaches individually and independently learn concept clas-

sifier without considering conceptual correlations. Recently, researchers discov-

ered that the conceptual correlations could be explored to enhance the perfor-

mance in concept detection. For example, once we detect a shot with a certain

probability to contain the concept “car”, while it is also detected to contain the
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concept “road” with a certain probability, we might need to increase probabili-

ties of containing both “car” and “road”. To explore conceptual correlations, one

well-known approach is to refine the detection results of the individual classifiers

with a Context Based Concept Fusion (CBCF) strategy. For example, Wu et

al. [WTS04] used an ontology-based multi-classification learning for video con-

cept detection. Each concept was first independently modeled by a classifier, and

then a predefined ontology hierarchy was investigated to improve the detection

accuracy of the individual classifiers. Smith et al. [SN03] presented a two-step

Discriminative Model Fusion (DMF) approach. The approach first constructed

model vectors based on detection scores of individual classifiers. Then an SVM

classifier was trained to refine the detection results of the individual classifiers.

Although the CBCF strategy could enhance the performance, it also suffers from

the error propagation problem. This is because the output of the individual clas-

sifiers can be unreliable and therefore their detection errors can propagate to

the second fusion step. To solve this problem, Qi et al. [QHR+07] proposed a

Correlative Multi-label (CML) framework. In this approach, concept classifiers

and concept correlations are simultaneously considered in a single step to avoid

the error propagation problem. The experimental results demonstrated that this

approach achieved better performance than the CBCF approaches.

Besides exploring conceptual correlations, researchers also investigate large-

scale video concept detection. For example, Borth et al. [BUB12] proposed

how to expand concept vocabularies with trending topics. Their approach first

utilize other media like Wikipedia or Twitter to find new interesting topics arising

in media and society. Then SVM was employed to learn the classifiers for the

new concepts. Geng et al. [GLT+12] proposed the parallel lasso to effectively

build robust concept classifiers on large-scale datasets, where Lasso [Tib96] is

a sparse learning method designed to tackle high-dimensional feature space by

simultaneously performing the sparse feature selection and the model learning.

The authors also proposed Parallel lasso to leverage distributed computing to

speed up the process of concept classifier learning.
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2.1.1.2 Semi-Supervised Learning

In concept detection, the high performance of supervised learning needs a large

number of labeled samples, which is limited especially for a large-scale data col-

lection. As a result, researchers turned attention to semi-supervised learning

[CZC06]. By leveraging unlabeled data with certain assumptions, semi-supervised

learning methods are expected to build more accurate models than those that

can be achieved by purely supervised learning methods. Many different semi-

supervised learning algorithms, such as self-training, co-training [CZC06], and

graph-based methods [Zhu05], have been proposed. Among those approaches,

graph-based approach is most popular in concept detection. Next, we first intro-

duce graph-based semi-supervised approach, and then review advanced work by

utilizing semi-supervised learning for concept detection.

Graph-based Semi-Supervised Learning

Graph-based semi-supervised learning [Zhu05] performs classification by con-

structing a graph, where the vertices are labeled and unlabeled samples and the

edges reflect the similarities between sample pairs. Let W be an affinity matrix

with Wij indicates the similarity between the i-th and j-th sample. Given two

samples xi and xj, the similarityWij is often estimated based on a distance metric

d(., .) and a positive radius parameter σ, i.e.,

Wij = exp(−d(xi,xj)

σ
) (2.3)

The matrix W is symmetric. Then a regularization framework is formulated as

follows [Zhu05]:

f ∗ = argminf

{∑
i,j

Wij| fi√
Dii
− fj√

Djj
|2 + µ

∑
i

|fi − yi|2
}

(2.4)

where Dii =
∑

j Wij, and fi can be regarded as relevance score of xi. We can

classify xi according to the sign of fi (positive if fi > 0 and negative otherwise).

A noteworthy issue here it how to set yi. In a binary classification problem, yi is

set to 1 if xi is labeled as positive, −1 if xi is labeled as negative, and 0 if xi is

unlabeled.

Let L = D−1/2(D −W)D−1/2, which is usually named as normalized graph
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Laplacian. Eq. (2.4) then has a closed-form solution as

f =
(
I+ 1

µ
L
)−1

Y (2.5)

where Y = [y1, y2, . . .] is the initial confidence value set by a user, or predictions

by a computer vision model. Alternatively, we can solve the problem sequentially.

Applying the update

ft+1 =
1

1+µ
(I− L)ft +

µ
1+µ

Y (2.6)

iteratively results in convergence at f .

Advanced Approaches

In concept detection task, the semi-supervised learning algorithms aim to im-

prove classification accuracy by leveraging both labeled and unlabeled training

data. For example, Wang et al. [WHSea06] applied graph model into concept

detection based on kernel density estimation approaches. In this approach, each

sample (graph node) was represented as a concatenated feature vector from two

sources: a color feature vector and an edge feature vector, and then a single

graph model was learned for each concept. However, it is noted that feature

fusion approach is not effective in concept detection task. Therefore, researchers

move their attentions towards classifier fusion approaches. For example, Tong

et al. [THL+05] proposed a method to deal with two modalities (text modality

and visual modality) in graph-based semi-supervised learning scheme. In their

approach, they independently learned a graph model based on each kind of modal-

ity, and the final results were generated by fusing the results from both graphs.

Wang et al. [WHHea09] extended this method to an arbitrary number of graphs,

where they focused on how to determine optimal fusion weights.

The independent concept detection approaches above do not consider the

inter-concept relationship [WHSea06; THL+05]. In fact, concepts usually do not

occur in isolation (e.g., smoke and explosion). Therefore, more research atten-

tions have been paid to improve annotation accuracy by learning from seman-

tic context. For example, Weng et al. [WC08] utilized contextual correlation

and temporal dependencies to improve detection accuracy. In their approach,
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they first learned inter-concept correlation and inter-shot dependencies from the

training samples. Then they fused the detection results via minimization of the

graphical model’s potential function, which simultaneously encodes compatibil-

ity to classifier’s prediction, contextual compatibility and temporal compatibility

among nodes. However, in this approach, the learning of contextual correlation is

conducted in an offline manner based on training data, resulting in the classical

overfitting problem. As a result, Jiang et al. [JWCN09] proposed domain adap-

tive semantic diffusion to construct an undirected and weighted graph, namely

semantic graph, to model the concept affinities. The graph was applied to refine

concept annotation results using a function level diffusion process, which simulta-

neously optimizes the annotation results and adapt the geometry of the semantic

graph according to the test data distribution. Alternatively, Weng et al. [WC12]

utilized pseudo relevance feedback [YHJ03] to assign unseen testing data pseudo

labels based on the initial detection scores. Their approach assumes that a sub-

stantial number of top-returned shots from the imperfect detectors are positive

and others are negative. Thus, significant patterns found within these temporary

labels will likely improve performance.

Although the above approaches achieved some success in enhancing the accu-

racy of concept detection, they are limited to a small, and fixed concept vocabu-

lary. Recently, researchers began to perform concept detection by exploring online

media databases such as YouTube, Flickr. For example, Moxley et al. [MMM98]

proposed an approach to automatically annotate multimedia documents based

on mining similar documents from online media databases. In their approach,

a graph reinforcement method driven by a particular modality (e.g., visual) was

used to determine the contribution of a similar document to the annotation tar-

get. Then the graph supplies possible annotations of a different modality (e.g.,

text) that can be mined for annotations of the target.

2.1.1.3 Summary

We summarize related work on concept detection in Table 2.1. Despite the effec-

tiveness of existing works in modeling a single semantic concept, they can not be

directly adopted for learning a concept bundle classifier, which integrates multiple
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Table 2.1: A summary of the existing related work on concept detection
independently learn concept
classifier

learn concept classifier by ex-
ploring conceptual correlation

Supervised
Learning

[YCKH07], [TLea03],
[SvGGea06]

[WTS04], [SN03], [QHR+07]

Semi-
supervised
Learning

[WHSea06], [THL+05],
[WHHea09]

[WC08], [JWCN09]

semantic concepts and the relationship between the concepts. In particular, the

supervised learning methods [JYNH10] suffered from the sparse relevant sample

problem, since the relevant samples of concept bundles are usually scare. The

semi-supervised learning approaches [WHHea09] explored unlabeled samples to

overcome the insufficient training sample problem, but they neglected the rela-

tions between the primitive concepts in a bundle. These relations are usually

useful in learning the concept bundles. Multi-label learning methods [QHR+07]

jointly learned the primitive concepts by exploiting inter-concept relations. How-

ever, they focus on boosting the performance for primitive concepts instead of

concept bundles.

In Chapter 4, we develop an effective approach for learning concept bundles.

Our approach is based on the framework of multi-task learning [AZ05; EP04],

which has been applied in wide areas such as object categorization [YY10], multi-

device indoor localization [ZPYP08] etc. The basic idea of multi-task learning is

to infer an important common structure by simultaneously exploiting the training

data from the multiple classifiers which share the common structure. Compared

to the previous approaches [AZ05; EP04], our proposed multi-task learning al-

gorithm learns the important common structure (the classifier of the concept

bundle) by exploiting the training samples not only from the multiple classifiers

(the primitive concept classifiers), but also from the training samples from the

common structure.
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2.1.2 Automatic Semantic Video Search

In this section, we review related work in automatic semantic video search in-

cluding research efforts on Concept Selection (Section 2.1.2.1), and Result Fusion

(Section 2.1.2.2).

2.1.2.1 Concept Selection

For a given query, concept selection aims to select a set of related concepts to

interpret a user’s query. According to the query category, we divide the con-

cept selection approaches into two categories: Text-based Concept Selection, and

Image-based Concept Selection. Next, we review related work based on this di-

vision.

Text-based Concept Selection

• Term Matching Based Methods: Given a text query, an intuitive con-

cept selection approach relies on exact text matching between query and

concept name. For example, Chang et al. [CHJ+06] proposed a method to

select the concepts which are directly mentioned in the query. One shortage

of this method is that it ignores many useful concepts that are not directly

matched but semantically similar to the query. Furthermore, this approach

does not include a component to estimate concept importance.

• Rule Based Methods: Term matching based methods cannot capture

some implicit correlations between concept and query. For example, the

query “president” is difficult to be mapped to the concept “person”. As

a result, researchers proposed rule based method, which requires users to

manually build rules to map a query into related concepts. For example,

Natsev et al. [NHT+07] proposed a rule based method which statically

maps query terms to concepts using rules. Compared to term matching

based methods, rule based method can find some implicit related concepts

according to the rules. However, this approach requires users to know all

the concepts in advance. Moreover, the production of rules needs enormous

manual cost.
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• Ontology Based Methods: As the rule based methods put heavy burden

on users, it is natural for researchers to develop automatic approaches to

conduct concept selection. One of the choices relies on ontology such as the

WordNet [Fel98], to find useful concepts (see [HAH07; HNN06; SHHe07]).

In this approach, WordNet provides a graph to connect all the concepts, and

a specific query is mapped to related concepts according to the semantic

distance between the query and each concept. There are many semantic

distance functions proposed (see [HAH07]). For example, Wu et al. [WP94]

defined the semantic distance between two concepts Ci and Cj as follows:

WUP (ci, Cj) =
2D(pij)

L(Ci,Cj)2D(pij)
(2.7)

where pij is the common ancestor of the two concepts, D(.) is the depth in

the WordNet hierarchy and L(.) is the length of the path between the two

concepts.

• Data-driven Based Methods: One drawback of ontology based meth-

ods is that they only capture the semantic links between concepts. In many

cases, the co-occurrence between concepts could be employed in concept

selection task. For example, the query “car” can be mapped to the con-

cept “road” since they co-occur with a high probability. To capture the co-

occurrence relationship between concepts, researchers proposed data-driven

based methods. In this category of approaches, each semantic concept is

associated with a concept description from external text source, and the

concept selection is performed by measuring the similarity between the

query and concept descriptions. For example, Snoek et al. [SHHe07] used

the vector space model from [SWY75] to rank concepts for a text query,

where a concept description is a short text words of a concept. Hauff et

al. [HAH07] also used text retrieval but with a collection of longer con-

cept descriptions which comes from two sources: Wikipedia articles to cap-

ture the co-occurrence information between concepts, and WordNet to find

the semantic links between concepts. Neo et al. [NZKC06] expanded the

query words using internet news articles for better interpretation of query

semantics. The expanded query words are then used for classifier selec-
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tion, either by direct text matching or the ontology-based selection. One

advantage of this approach is that it considers both semantic relatedness

and co-occurrence between concepts. To measure the co-occurrence more

accurately, Jiang et al. [JNC09] employed Flickr context to reflect the co-

occurrence statistics of words in image context rather than textual corpus.

They proposed to estimate query-concept similarity by exploiting the con-

text information associated with Flickr images.

Image-based Concept Selection Concept selection can also be done by using

visual queries like images. In some cases, image-based concept selection approach

is a valuable strategy since it can mine some useful concepts which are not able

to be obtained by the text-based concept selection approaches. These useful

concepts may be data-adaptive, and thus they are not able to be found by the

text-based concept selection approaches. For example, in [LWLZ07], the query

“Helicopters in flight” can be mapped to the concept “Mosques” by image-based

concept selection approach since the concepts “helicopters” and “mosques” have

a high co-occurrence in the training dataset.

Given an image query q, image-based concept selection first calculates the

probability P (Ck|q) for each concept Ck. Here, P (Ck|q) represents the probability
of the concept Ck occurs in the query image q. Then the top concepts with the

highest probabilities are usually selected [SN03]. However, as argued in [SHHe07],

selecting the most confident concepts may suffer from the following problems: 1.

The most confident concepts are often the least informative ones such as the

concepts “person”, “outdoor”; 2. The noisy concepts may be introduced. For

example, if a user presents an example image where “President Obama” is shown

in the desert, the concept “desert” can have a high probability. However, the

concept “desert” is not the intention of the user. Hence, it is better to avoid

frequently occurring but non-discriminative concepts and favor less frequent but

more discriminative concepts. To achieve this goal, Li et al. [LWLZ07] proposed a

modified tf-idf method named “c-tf-idf” to estimate relevance between the query

and high-level concepts. This method treats each concept as “visual term” and
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each image or key frame as “visual document”. The c-tf-idf formula is defined as:

c− tf − idf(c, d) = freq(c, d)log(
N

freq(c)
), c ∈ C (2.8)

where C is the concept set, N is the size of corpus, c and d are visual term and

visual document respectively, freq(c, d) ≈ P (c|d) is the occurrence frequency of c

in d, freq(c) =
∑

d freq(c|d) represents the occurrence frequency of c in the cor-

pus. The tf term represents the relevance between a query and a concept, and the

idf term measures the popularity of that concept. That means this method selects

those relevant and informative concepts for a given query. Alternatively, Natsev

et al. [NHT+07] formulated concept detector selection as a discriminative learn-

ing problem. Their algorithm mapped the query images to the space spanned by

concept detector probabilities. Subsequently, they used support vector machines

to learn which concept detectors were most relevant.

2.1.2.2 Result Fusion

Based on the selected concepts, result fusion aims to generate search results by

integrating the individual results from these selected concept classifiers. The most

popular result fusion approach is linear fusion as shown in Eq. (2.9):

r(Si) =
K∑
k=1

wkfk(xi) (2.9)

where fk(xi) is the output score of the shot xi by the concept classifier of Ck, K

is the number of the selected concepts, and wk is the weight of Ck with respect

to the query.

One challenging problem in linear fusion is to determine the fusion weights.

Many methods have been proposed to explore how to weight different related

concepts. The simplest approach is to set equal weights for the selected concepts,

which is widely employed in term matching and rule based concept selection meth-

ods [CHJ+06]. However, this average strategy is not reasonable as the selected

concepts have different importance to the query. As a result, researchers proposed

to determine concept weights according to the importance between concept and
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query. For example, Haubold et al. [HNN06] calculated the concept weights ac-

cording to the semantic closeness between concept and query by WordNet. Snoek

et al. [SHHe07] determined the concept weights according to the returned scores

by using vector space model between query and concepts. Hauff et al. [HAH07]

also used text retrieval technique to calculate concept weights, but considered

both semantic closeness and co-occurrence. Besides estimating weights accord-

ing to text-matching score, Wang et al. [WLLZ07] measured the weights by a

linear combination of two scores: text-matching score and visual-matching score.

Not only consider the matching scores between concept and query, Neo et al.

[NZKC06] argued that concept weight could also be related to the performance

of the selected concept classifiers since the use of concept classifier with low per-

formance will introduce noisy results. In their approach, concept weights are

set to the product of the classifier accuracy and the similarity between query

and concept. Thus the concepts with poor classification performances will be

assigned lower weights to avoid noisy results. The above approaches use linear

fusion strategy, alternatively, Wang et al. [WWL+08] proposed a query repre-

sentation approach to capture the concept structure of the query. They gave

an example to explain their concept structure as follows: The complex query is

“multiple people in formation”, and the most salient combination is made up of

“Demonstration Or Protest”, “Crowd”, and “Military”. The other combination

is made up of “Soldiers”, “Crowd”, and “Military”. This paper proposed a two-

level fusion method to solve related concepts combination problem: the bottom

level is an AND logic to make sure the selected samples satisfying multiple con-

cepts at the same time, and the upper level uses an OR logic to return the final

result from any combination group. Compared to linear fusion, this approach

could well capture query structure.

2.1.2.3 Summary

A summary of related work on automatic semantic video search is provided in

Table 2.2. Compared to the existing work which selects primitive concepts, in

chapter 5, our concept selection approach aims to select primitive concepts and

concept bundles to interpret a user’s query. Moreover, an optimization algorithm
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Table 2.2: A summary of the existing related work on automatic semantic video
search from concept selection and result fusion

Linear Fusion Non-linear Fusion
mean weights weights

according
to concept
importance

weights by
considering
classifier
accuracy

Term
Matching
Based
Methods

[CHJ+06]

Rule
Based
Methods

[NHT+07]

Ontology
Based
Methods

[HAH07;
HNN06;
SHHe07]

Data-
driven
Based
Methods

[HAH07;
SHHe07;
JNC09]

[NZKC06], Our
approach

[WWL+08]

Image-
based
Method

[LWLZ07;
SN03]

is devised to perform concept selection by considering semantic closeness and

classifier performance between selected bundles and query.

2.1.3 Interactive Semantic Video Search

To further improve search performance, interactive video search [SvdSdR+08;

TTR12], which takes users’ interaction into consideration, has been proposed. In

this section, we review related work for interactive video search from two aspects:

Search Technologies and Users’ Interface.
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2.1.3.1 Search Technologies

The typical interactive search technology is Relevance feedback(RF) [RHOM98]

which comprises two steps: (a) the search engine presents the search results

and requires users to label them as relevant or irrelevant samples; and (b) the

search engine uses the labeled samples to update the search model to improve

the search results. To accelerate performance improvement, Active Learning

[TC01; HJL06; ZWZ+12], which selects the most informative samples and aims

to improve the performance with the least sample size, attracts much attention

currently. Active learning attempts to not only optimize the model, but also

compute which elements from the unlabeled data pool are the most informative

ones. Many typical active learning algorithms have been proposed and found to

be effective such as the most ambiguous approach [TC01], angle-diversity [Bri03],

error reduction [NA01], and concept-dependent active learning [GCL04] etc.

In the area of video search, Chen et al. [CCHW05] provided two sample

selection strategies for users to label: the first one selects the most uncertain

samples that are near the SVM hyperplane, and the second simply provides the

returned results to users. Goh et al. [GCL04] argued that the active learning faces

“scarcity” and “concept isolation” problem in video search task. Here, “scarcity”

refers to the rare relevant sample problem in dataset, and “concept isolation”

means that the relevant samples are hard to be separated from the irrelevant

ones. To solve these two problems, they proposed concept-dependent active-

learning (CDAL). This method first selects relevant candidates by keywords to

alleviate the scarcity problem. It then employs multiple sampling strategies to

select the informative samples from these candidates. Besides employing a single

strategy, Luan et al. [LZN+08] argued that different feedback strategies should

be adopted at different situations. Therefore, they proposed an adaptive multiple

feedback strategies including Recall-driven RF, Precision-driven RF and Locality-

driven RF. Those RF strategies will be automatically adopted in search system

in terms of an adaptive feedback selection model.

For semantic video search, Christel et al. [CH07] explored concept selec-

tion strategies for interactive video search, where they evaluated the performance

change of interactive video search under different numbers of selected concepts.
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Instead of investigating performance change with respect to the number of se-

lected concepts, Wang et al. [WWLZ08] proposed a feedback strategy at a finer

level named “concept-segment”, which is defined as a divided district on a prob-

ability interval output by a concept classifier. For example, a concept segment

may contain all the image samples whose probability values are between 0.1 and

0.2 by the concept classifier. They believed that a good concept-segment is use-

ful for performance improvement. For example, the query “basketball” would

be mapped to the high level concept “sports”. However, the top-ranked video

shots from the concept “sports” may be about the topic of “soccer“, while the

video shots about “basketball” are hidden in the middle of the “sports” ranking

list. Besides investigating the concept selection strategy, researchers also aim to

develop effective result updating algorithms in interactive video search process.

For example, Pickens et al. [PACG08] represented each video shot as a concept

vector where each element represents the presence probability of a concept in

this shot. The video shots with a small distance to the relevant shots and large

distance to the irrelevant ones were finally returned to the users. Toharia et al.

[TRSR09] refined the search results based on concept weight updating during

interactive process. In particular, the weights were updated in two ways: man-

ual setting via an interface and automatic adjustment according to the labeled

samples. Hauptmann et al. [HLRYC06] transformed concept weight updating to

a maximum posteriori probability estimation problem, where the weights were

determined by two criteria: minimizing their variation to the previous weights,

and maximizing the occurrence likelihood of the labeled samples.

2.1.3.2 User Interface

Besides search technologies, user interface design is also a key factor in interactive

video search. A general video search interface displays results in a grid by showing

video or video segments one by one. However, this illustration loses some useful

information between video shots, such as temporal and content relationship. On

the other hand, these information is quite useful for users to find relevant samples

in the interactive search process. For example, when a user sees a video shot

with “person eating”, it is naturally for him to browse the temporal neighboring
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Figure 2.3: Cluster-temporal browsing interface ([ROS04]).

Figure 2.4: The ForkBrowser of the MediaMill semantic video search engine
([dRSW08]).
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Figure 2.5: The interface of VisionGo system ([LZN+08]).

Table 2.3: A summary of the existing related work on interactive video search
Sample Selection Strategy Result Updating Algorithm

Selecting the most uncertain and the
most relevant samples [CCHW05]
concept-dependent active learning to
solve the “scarcity” and “concept isola-
tion” problem [GCL04]
Recall-driven RF, Precision-driven RF
and Locality-driven RF with adaptive se-
lection [LZN+08]

adjust the weights on different “concept-
segments” [WWLZ08]
adjust concept weights according to
manual setting and the calculation on la-
beled samples [TRSR09]
adjust concept weights by a maximum
posteriori probability estimation on la-
beled samples [HLRYC06]
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samples for the video shots about the topic “kitchen”. As a result, researches

aim to display multi-model nature of videos on user interface. For example,

Rautiainen et al. [ROS04] displayed results model and temporal model in a grid

on the interface as shown in Figure 2.3, where the vertical dimension displays the

results of content-based retrieval, and the horizontal dimension shows temporal

shots. The CrossBrowser presented in [SWKS07] also displayed results in two

dimensions: results dimension and temporal dimension, but they do not use a

grid in their interface, while Rooij et al. [dRSW07; dRSW08] extended their work

by adding more dimensions in the interface including dimensions for visually

similar shots, temporal neighboring shots and results ranking list as is shown

in Figure 2.4. This visualization allows users to flexibly select a dimension to

find relevant samples according to their experience. Besides designing a good

visualization, researchers also aim to enhance labeling speed in the interactive

search process. For example, Luan et al. [LZN+08] developed a friendly video

search interface named “VisionGo”. In their system (see Figure. 2.5), user used

keyboard to label search results, which has been proved to be more efficient as

compared to mouse based labeling.

2.1.3.3 Summary

In this thesis, we focus on developing search technologies for interactive semantic

video search, the existing work is summarized from search technology as Table 2.3

shows. Compared to these existing work, in chapter 6, our approach utilizes a

new sample class named “related sample” to enhance the interactive semantic

video search. Moreover, our approach integrates visual information, temporal

information and concept information of the labeled samples to update search

results with optimal fusion weights.

2.2 Text-based Video Search

The widely used commercial video search engines such as Google, Bing, YouTube

etc. perform video search by exploiting the text annotations associated with the

videos. Given a text query, the “Text-based video search” approaches [SC96;
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AACea05; CHJ+06] return videos or sometimes video segments by measuring the

text similarity between the query and their associated text annotations. For ex-

ample, Amir et al. utilized the ASR documents to return the video shot results

[AACea05], while Chua et al. returned video shot results by exploring both ASR

and OCR documents [CNZea06]. Compared to the other video search approaches,

the text-based video search are the most widely used video search approach be-

cause of its good performance. However, when the text annotations associated

with videos are incomplete or inexact, this approach is usually ineffective.

2.3 Content-based Video Search

To complement the text-based video search, “Content-based video search” ap-

proaches (CBVR) [GN08; HXLZ11] utilize the low-level visual features such as

color, shape, texture etc. to find the relevant videos or video shots based on

users’ queries. For example, Snoek et al. extracted various visual features includ-

ing color, texture, SIFT etc. for each video shot, and transformed the features as

a codeword vector. They then used the kernel-based learning algorithm [CB98]

to return relevant video shots by learning a classifier based on the codeword vec-

tors from the query image and pseudo-negative samples [SvdSdR+08]. Sivic et

al. extracted face features from an example shot and matched the extracted fea-

tures with the stored face features. Then, shots containing the queried face were

retrieved [SEZ05]. Besides exploring visual feature, more advanced approaches

consider temporal features [WZP00] and spatio-temporal features [YHC04] etc.

to enhance the search performance. Although the state-of-art approaches have

improved search performance, the performance is still unsatisfactory because of

the semantic gap problem [HYea07].

2.4 Multi-modality based Video Search

In the real case, the performance gain of using a single video search approach

is usually limited, and thus researchers tend to develop multi-modality based

video search systems [CHEea06; KNC05; CHJ+06] that integrate several video

search approaches. For example, Kennedy et al. proposed to linearly combine
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the search results from text-based and content-based video search approaches

[KNC05]. To learn good fusion weights, this approach clustered training queries

into different query classes according to search performances. The fusion weights

were determined according to the query class of a given query. Chang et al.

integrated the search results from text-based, content-based and semantic video

search approaches, where they employed the query-class-dependent fusion weights

to achieve a high search performance [CHJ+06]. Compared to a single video

search approach, multi-modality based video search is more effective in the real-

world video search applications.

2.5 Summary

In this thesis, we focus on complex query learning problem in semantic video

search. We propose new approaches to enhance the search performance for com-

plex queries in concept detection, automatic semantic video search and interactive

semantic video search (see chapter 4, 5, 6). Compared to the existing approaches,

the proposed approaches could better tackle the complex query learning prob-

lem. To further illustrate the effectiveness of the new approaches, in chapter

7, we apply these approaches in a multi-modality based video search system to

tackle a real-world video search task named “Memory Recall based Video Search”

(MRVS).
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Chapter 3

Overview of Dataset

We evaluate our proposed approaches on two video datasets: the first is the

academic video dataset named “TRECVID” dataset, and the second is the Web

video dataset called “YouTube” dataset.

3.1 TRECVIDVID Dataset

The TRECVID datasets [TRE08] are provided by the National Institute of Stan-

dards and Technology (NIST). In this thesis, we select two TRECVID datasets:

TRECVID 2008 dataset (called “TV08” for short), and TRECVID 2010 dataset

(called “TV10” for short), to evaluate the search performance of our approaches.

3.1.1 TRECVID 2008 Dataset

The “TV08” dataset consists of three parts (see Table 3.1): a training set that

contains 110 videos with 18,120 keyframes from the TRECVID 2007 develop-

ment dataset, a validation set that contains 109 videos with 18,142 keyframes

from the TRECVID 2007 testing dataset, and a testing set that contains 219

videos with 35,766 keyframes from the TRECVID 2008 testing dataset. To rep-

resent each keyframe, we extracted three visual features: 166-dimensional color

histogram, 100-dimensional edge distribution histogram and 96-dimensional tex-

ture cooccurrence. They are concatenated into a 362-dimensional feature vector.

In semantic video search, we selected the 374 concept classifiers in [YCKH07] to
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Table 3.1: The summary of “TV08” dataset
# of video/keyframe # of video/keyframe # of video/keyframe
in the training set in the validation set in the testing set

110/18,120 109/18,142 219/35,766

Table 3.2: The summary of “TV10” dataset
# of video/keyframe # of video/keyframe # of video/keyframe
in the training set in the validation set in the testing set
2,673/100,132 500/19,553 8,471/144,988

perform search on the 48 queries, where the ground truth files were provided by

the TRECVID 2008 official dataset.

3.1.2 TRECVID 2010 Dataset

We divided the “TV10” dataset into three parts (see Table 3.2): a training set that

contains 2,673 videos with 100,132 keyframes, a validation set that contains 500

videos with 19,553 keyframes, and a testing dataset that contains 8,471 videos

with 144,988 keyframes. Each keyframe is represented by two kinds of visual

features: 166-dimensional color histogram and 100-dimensional edge distribution

histogram. They are concatenated into a 266-dimensional feature vector.

We employed the 130 primitive concepts provided by the TRECVID 2010

and the corresponding concept classifiers were downloaded from [YCKH07]. For

automatic video search, we evaluated the search performance on the 298 queries

(the queries 8 and 11 were removed officially since they are asked twice) from the

TRECVID 2010 KIS task. We evaluated the search performance of interactive

video search on the queries 1-24. In this task, a query consists of three parts: a

text query, visual queries, and concept queries (see Figure 7.1). The text parts

of the 298 queries are provided officially, while the visual and concept queries

were provided by 10 users based on their recalls on certain desired videos. We

provided a system for users to input a query. The process of generating the visual

and concept queries is as follows. We first asked each user to view the relevant

video of a query. After 12 hours, the user was asked to search for the same

video again by providing visual and concept queries based on his/her memory
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Table 3.3: The 41 primitive concepts selected from popular video tags in “YT10”
dataset

astronaut baby basketball beach
car cat children cooking
crash dance fighting fire
flood horse house hunting

interview kitchen lady laughing
lion moon land motorcycle mouse
office person police protester
race riding river sea

singing soccer street telephone
television tree vehicle wedding
zebra

recall. The user can input one, two, or at most three visual and concept queries.

For convenience, we implemented the initial system that allows for a maximum

of three visual and concept queries. After the user had input an initial visual

queries, the system suggested 10 potential visual queries, and the user might

select one of the suggested visual queries to replace the original one.

3.2 YouTube Dataset

To evaluate the search performance in the real world, we conducted experiments

on the real-world YouTube video datasets. We constructed three YouTube video

datasets in 2010, 2011 and 2012 respectively (called “YT10”, “YT11” and “YT12”

for short). In each year, we expanded the dataset including the number of prim-

itive concepts and that of videos and keyframes.

3.2.1 YouTube 2010 Dataset

To construct “YT10” dataset, we first selected 41 representative primitive con-

cepts from the popular tags in YouTube (see Table 3.3). These concepts cover a

wide variety of semantics, including entertainment, arts, communication, sports,

and animal etc. We then submitted each concept to YouTube and collected the

related queries suggested by the search engine. From the suggested queries, we
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Table 3.4: The 20 queries on “YT10” dataset
ID Query ID Query
1 Astronauts carrying 11 Lady on the beach

out moon landing with sea visible
2 A person is cooking in kitchen 12 Lions hunting zebras
3 A person is riding a horse 13 Motorcycles racing at night
4 Baby is laughing 14 Persons dancing in the wedding
5 Cars crashing in a race 15 Persons fighting in street
6 Cat and mouse 16 Persons interviewing in street
7 Children are 17 Persons playing

singing basketball in street
8 House in flood 18 Police fighting protester
9 Lady laughing in an interview 19 Soccer fighting
10 Lady make a telephone 20 Vehicle

call in office fires

Table 3.5: The summary of “YT10” dataset
# of video/keyframe # of video/keyframe # of video/keyframe
in the training set in the validation set in the testing set

2,002/90,000 990/50,000 357/18,000

selected 20 complex queries as listed in Table 3.4. Finally, we submitted each

concept as a query to YouTube video search engine and downloaded the top 80

returned videos. To ensure that each query has some relevant videos, we also sub-

mitted each query to YouTube and downloaded about 10 relevant videos. This

gives rise to a total of 3,420 videos. After removing the duplicates, we obtained a

total of 3,349 videos. For each video, we extracted keyframes and obtained a total

of around 158,000 keyframes. This dataset is randomly separated into a training

subset containing 2,002 videos with about 90,000 keyframes, a validation subset

containing 990 videos with about 50,000 keyframes, and a testing subset includ-

ing 357 videos with about 18,000 keyframes. For each keyframe, we extracted

three visual features: 166-dimensional color histogram, 100-dimensional edge dis-

tribution histogram and 96-dimensional texture cooccurrence. They were con-

catenated into a 362-dimensional feature vector. We summarize “YT10” dataset

in Table 3.5.

To obtain the ground truth files for the primitive concepts and queries, we
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conducted a manual labeling procedure. Specifically, each keyframe is labeled

as a relevant or irrelevant sample with respect to the 41 primitive concepts and

the 20 queries. We invited five subjects to manually label the keyframes. Each

keyframe is labeled by at least three subjects, and the ground truth is established

through majority voting.

3.2.2 YouTube 2011 Dataset

In 2011, we constructed “YT11” dataset by collecting videos from YouTube web-

site. 70 concepts were manually selected from the popular YouTube tags (see

Table 3.6). The popularity of these concepts on YouTube implies they are rep-

resentative of user interest. These concepts cover a variety of domains, includ-

ing entertainment (“singing”), scene (“lake”), sports (“basketball”), and animal

(“horse”) etc. We submitted each concept to YouTube search engine and collected

the suggested queries. We then selected 40 complex queries for the experiments

(see Table 3.7). To construct the video dataset, we issued each concept as a query

to YouTube and collected about the top 100 videos. Furthermore, to ensure that

each query has relevant videos, we submitted each query to YouTube and down-

loaded about 10 relevant videos. As a result, we collected 7, 662 videos in total.

After keyframe extraction, 314, 775 keyframes were obtained. We randomly di-

vided these videos into three parts: a training set containing 3, 370 videos and

134, 613 keyframes, a validation set containing 500 videos and 24, 155 keyframes,

and a testing set consisting of 3, 792 videos and 156, 007 keyframes. To repre-

sent the content of each keyframe, we extracted three kinds of visual features:

the 166-dimensional color moment, the 100-dimensional edge distribution his-

togram, and the 96-dimensional texture co-occurrence features, which are widely

used and proved to be effective in previous researches [TLea08; CTH+09]. We

normalized each dimension of all features, and concatenated them into a single

362-dimensional feature vector. We summarize “YT11” dataset in Table 3.8.

To obtain the ground truth files of each keyframe on the 70 primitive concepts

and the 40 queries, we invited ten subjects to manually label the keyframes. Each

keyframe is labeled by at least three subjects, and the ground truth is established

through majority voting.
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Table 3.6: The 70 concepts and their numbers of relevant samples in the training
and validation sets of “YT11” dataset

Concept Name Concept Name
(# of relevant videos/keyframes) (# of relevant videos/keyframes)

airplane flying (17/154) astronaut (14/224)
baby (22/258) basketball (63/1805)
beach (24/481) bear (41/841)
bird (20/319) blackboard (15/221)
bus (12/162) camel (17/355)
car (57/1268) cat (44/510)
chair (7/345) children (14/280)

cityscape (17/272) classroom (19/585)
computer (7/51) cooking (57/1822)
crash (7/27) dance (13/329)

demonstration or protest (44/634) desert (15/204)
doorway (2/6) female human face closeup (7/100)

fighting (58/1550) fire (18/118)
flood (29/563) hand (5/59)
horse (31/449) house (18/179)

hunting (41/493) interview (38/734)
kiss (15/77) kitchen (34/948)

lady (35/1377) lake (14/244)
laughing (39/310) lion (33/647)

moon landing (19/310) motorcycle (44/1183)
mouse (5/15) night (5/18)
office (49/1252) person (61/2245)

person eating (8/117) person playing a musical
instrument (15/81)

person riding a bicycle (24/157) police (27/229)
protester (16/412) race (21/914)
riding (22/536) river (13/101)

santa clause (24/368) sea (33/649)
ship (34/421) singing (12/154)

soccer (57/1782) solar eclipse (2/5)
soldier (18/308) street (29/652)

swimming (48/692) tank (9/252)
telephone (22/232) television (4/69)

traffic intersection (26/140) tree (38/736)
vehicle (51/1442) wedding (53/1485)
writing (3/82) zebra (18/166)

45



Table 3.7: The 40 queries and their numbers of relevant samples in the testing
set of “YT11” dataset

ID Query (# of relevant videos/keyframes)

1 A bear in a river (11/36)

2 A bird in a tree (17/149)

3 A lady singing (46/650)

4 A lake with trees visible (12/58)

5 A person cooking in kitchen (67/928)

6 A person riding a horse (30/241)

7 A person talking with a telephone in office (32/148)

8 A person writing on blackboard (11/53)

9 A tank with soldiers on it (4/20)

10 Airplane flying (11/146)

11 Astronauts carrying out moon landing (23/146)

12 Baby laughing (17/70)

13 Bus crash (13/71)

14 Camels walking in desert (9/63)

15 Cars crashing in a race (20/191)

16 Cat and mouse (15/74)

17 Chair dance (11/151)

18 Children watching TV (10/27)

19 Classroom fight (8/33)

20 Crazy traffic intersection (17/96)

21 Hand dance (7/134)

22 House in flood (41/427)

24 Motorcycles racing at night (4/26)

23 Lions hunting zebras (8/34)

25 People seeing solar eclipse (5/40)

26 Persons dancing in the wedding (15/261)

27 Person eating (10/167)

28 Persons fighting in a street (20/364)

29 Persons in office with computer visible (34/331)

30 Persons interviewing in street (10/119)

31 Persons kissing in beach (6/16)

32 Person playing a musical instrument (17/179)

33 Persons swimming in sea (18/201)

34 Person riding a bicycle (16/111)

35 Polices fighting protesters (16/159)

36 Santa Claus and children (10/110)

37 Ship crash (6/32)

38 Soccer fighting (17/121)

39 Vehicle fires (12/148)

40 Woman playing basketball (15/216)
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Table 3.8: The summary of “YT11” dataset
# of video/keyframe # of video/keyframe # of video/keyframe
in the training set in the validation set in the testing set
3,370/134,613 500/24,155 3,792/156,007

Table 3.9: The summary of “YT12” dataset
# of video/keyframe # of video/keyframe # of video/keyframe
in the training set in the validation set in the testing set
4,325/312,032 725/51,130 2,166/146,963

3.2.3 YouTube 2012 Dataset

In 2012, we constructed another dataset named the “YT12” dataset from YouTube

web site. To build this dataset, we first selected the 130 primitive concepts from

TRECVID 2010 concept detection task [TRE]. We then submitted each concept

name as a query to YouTube video search engine and downloaded the videos on

the first three pages of search results (about 20/page) together with their titles

and tags information (text descriptions). After removing duplicate videos, we

obtained 7,216 videos (about 1,000 hours in total). We randomly divided the

videos into three sets: a training set that contains 60% videos (4,325 videos with

312,032 keyframes), a validation set that contains 10% videos (725 videos and

51,130 keyframes), and a testing set that contains the remaining videos (2,166

videos with 146,963 keyframes). For each keyframe, we used two kinds of visual

features: 166-dimensional color histogram and 100-dimensional edge distribution

histogram. They are concatenated into a 266-dimensional feature vector. We

summarize “YT12” dataset in Table 3.9.

On this dataset, 50 queries (see the text part of the queries in Table 3.10)

were generated with the helps of the 10 users. The process is as follows. We

first randomly provided each user with 20 videos from the “YT12” dataset and

the user selected an interesting video to view. After a duration of one day (one

week, two weeks, two months), the user was asked to find the same video by

providing a text query and a sequence of visual and concept queries based on

his/her memory recall (see Figure 7.1). Following this process, we generated 20

queries with a duration of one day, 10 queries with a duration of one week, 10
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queries with a duration of two weeks, and 10 queries with a duration of two

months.

Table 3.10: The 50 queries on “YT12” dataset

Index Text Duration

1 a girl wearing a black coat and talking about her work 1 day

2 a man is speaking with a black 1 day

hat and sitting on a brown chair

3 a blue sky where a white point like ufo is moving 1 day

4 a cartoon video where a man are complaining 1 day

about hard working without payment

5 the song about riding bicycle where sky, cloudy are visible 1 day

6 a news video, where a woman is interviewed to 1 day

talk about dream ride in the front of a school

7 the white and black video of 1 day

several boys in a band is singing

8 a demonstration where a crowd of people 1 day

are against off the education cut

9 two men are fishing in a boat 1 day

10 a man in a boat talk about getting a car into a boat 1 day

11 the video about car racing 1 day

12 the TV videos talking about wetpaint 1 day

13 A women tells us how to do gym 1 day

14 old woman and young man are dancing 1 day

beside a sea, and a band are singing

15 a woman is painting a city view on a blank paper 1 day

16 several students getting out of a school bus, and then 1 day

two boys sitting before computer and playing games

17 the TV video named movie night to introduce movies 1 day

18 a computer is starting up in a small monitor 1 day

19 a corporate leader talking of sustainability 1 day

20 the video introducing a red car toy 1 day
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Continue from Table 3.10

Index Text Duration

21 a video about bus traffic in city, persons 1 week

are interviewed about bus traffic, they select

to take subway instead of bus in rush hour

22 the video talking about asian military training project 1 week

23 a sunrise view, ricefield with flowers, paddy visible 1 week

24 a man going towards a crowd of cows, he is lying 1 week

on the ground and these cows are watching him

25 the advertisement where a cow appears 1 week

in a sea scene, a woman eating yogurt

26 a beach view, a crowd of people, person swimming 1 week

27 a man and woman talking about flight design for sport 1 week

28 people speaking about building 1 week

collapse by terrorist attacks

29 a demonstration in Iran, where a crowd 1 week

of people are burning and walking

in street, the president is speaking

30 an orange desert view where sky, cloudy are visible 1 week

31 two dogs are sitting on a sofa, then a woman 2 weeks

is coming to play the hair of the white dog

32 an ambulance car is running on the road, and 2 weeks

the title ”passage ambulance” in the final screen

33 the video to illustrate several kinds of 2 weeks

cars, including police car, Fire engines cars

34 a girl inside the bus is bouncing from 2 weeks

the seat with laughing from the others

35 a car is burning, and firemen are wiping out the fire 2 weeks

36 campus news cast with a girl reading a book behind desk 2 weeks

37 how to use a computer software to create a chair 2 weeks

38 a golf coach indoor is teaching about how to play golf 2 weeks

39 a big dog come out from a room 2 weeks

49



Continue from Table 3.10

Index Text Duration

40 a knife inserting a man’s head with blood visible, two 2 weeks

man behind him dancing with music in background

41 young demonstrators in street, holding a sign and 2 months

shouting, polices are trailing on the motorcycles

42 a crane is slowly raised his arm 2 months

43 a music is playing with Lyrics displaying 2 months

in the middle of the screen by big font

44 a man beside a screen displaying a car race 2 months

45 a 3D software to design different poses of persons 2 months

46 Buju banton with many pictures are displaying, 2 months

a music is playing in background

47 toy boat in water swimming controlled by the people 2 months

48 two women displaying how to 2 months

change clincher tire of a bicycle in road

49 boys and girls are dancing in the beach 2 months

and singing about beach blanket bingo

50 a woman is playing a game of shooting 2 months
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Chapter 4

Concept Bundle Learning

4.1 Introduction

In semantic video search, the fusion strategy transforms the query semantics into

a set of primitive concepts and performs the retrieval by aggregating the search

results from different concepts. This approach works well for queries that could be

well matched with one or more primitive concepts. However, simple aggregation

of results from primitive concepts may fail for video search with complex queries,

such as “police fighting protester”, “persons fighting in the soccer match” etc..

This is because they carry semantics that are more complex than and different

from simply aggregating the meanings of their constituent primitive concepts.

To interpret complex queries well, in this chapter, we move one-step beyond

primitive concepts and propose a higher-level semantic descriptor named “con-

cept bundle”. A concept bundle is defined as a composite semantic concept that

integrates multiple primitive concepts as well as the relationships between the

concepts, such as (“lion”, “hunting”, “zebra”) and (“lady”, “laughing”, “inter-

view”) etc.. Carrying higher-level semantics, concept bundle is expected to deliver

more precise descriptions of video contents, and thus better meet the video search

requirement in a finer granularity.

However, there are two challenges in learning concept bundles:

1. It is intractable to learn all the possible concept bundles for the practically

unconstrained set of queries. Hence it is important to select informative
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concept bundles to learn.

2. Compared to primitive concepts, the relevant samples for concept bundles

are usually scarce. This poses difficulty in deriving robust concept bundle

classifiers.

To address these problems, the approach first automatically selects informa-

tive concept bundles, with each bundle comprising two or more primitive con-

cepts. We define the informative concept bundles as those frequently used in

users’ queries and whose constituent primitive concepts tend to co-occur in videos.

Thus, the informativeness of a concept bundle can be measured based on its fre-

quency on the suggested queries by Web video search engine and the concept

co-occurrence in the tags of Web videos. Second, we learn a robust classifier for

each selected concept bundle under the framework of SVM based multi-task learn-

ing. Our premise is that since the “concept bundle” is an intersection among its

primitive concepts both in terms of semantics and data exemplars, the primitive

concept classifiers share a common part in the decision space, which character-

izes the firing region of the “concept bundle”. We thus formulate each primitive

concept classifier as a linear combination of two parts: a private classifier for this

primitive concept and a communal classifier for the concept bundle. The concept

bundle classifier (i.e., the communal classifier) can be obtained by jointly learn-

ing the primitive concept classifiers based on the training samples from both the

primitive concepts and the concept bundle. We expect the training samples of

the constituent primitive concepts to model the individual concepts that appear

in the concept bundle, while that of the concept bundle to model the relationship

between the concepts.

We evaluate the proposed approaches on two video datasets: TRECVID 2008

and YouTube 2010 datasets. Compared to the state-of-the-art methods, the

MAPs by our concept bundle learning approach achieve at least 19% and 29%

improvements on TRECVID 2008 and YouTube 2010 datasets respectively.
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4.2 Learning Concept Bundle

In this section, we first propose an approach to select informative concept bundles

in Section 4.2.1, then we elaborate our concept bundle learning algorithm in

Section 4.2.2.

4.2.1 Informative Concept Bundle Selection

Given a concept corpus {Ck}Kk=1 containing K primitive concepts, it is intractable

to learn all the 2K−K−1 possible concept bundles. In this research, we propose

to learn the informative concept bundles, which are selected according to two

criteria: users’ interest and co-occurrence of the involved primitive concepts in

video data. The users’ interest of a concept bundle can be measured based on

the occurrence frequency of this bundle in users’ queries, while the co-occurrence

of the involved primitive concepts can be inferred from the tags of Web videos.

We use external sources from YouTube to help calculate the informativeness of

concept bundle. For each individual concept Ck, we submit it to YouTube video

search engine as a query and collect the queries suggested by the search engine.

These suggested queries are normally related to the concept. We also download

the tags of the top ranked videos in the search results. As a result, we obtain a

set of suggested queries and a set of tag files, where each tag file records the tags

contained in a specific video. Based on these metadata, the informativeness of

the concept bundle (C1, C2, · · · , CM) is defined as

I(C1, · · · , CM) = αNq(C1,...CM )
M∑

m=1
Nq(Cm)

+ (1− α)Nt(C1,...CM )
M∑

m=1
Nt(Cm)

(4.1)

whereNq(C1, ...CM) is the number of queries containing the bundle (C1, C2, · · · , CM),

Nt(C1, ...CM) is the number of tag files that include (C1, C2, · · · , CM), and α is

a balance weight. The first term represents users’ interest on the concept bundle

(C1, C2, · · · , CM) which is measured by its normalized frequency in the suggested

queries. The second term measures the co-occurrence of these M concepts in

video tags. We combines these two terms with a weight α to measure the in-

formativeness. The value of the informativeness is between [0,1], and the larger
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value of I(C1, · · · , CM) means the concept bundle is more informative.

Based on the above measurement, we select the informative bundles whose

informativeness exceeds a certain threshold. However, it is computationally heavy

to compute the informativeness for all the possible concept bundles. Here we

adopt a dynamic programming approach to compute the informativeness in a

bottom-up approach. We sequentially compute the informativeness of concept

pairs, triples, quadruples, and so on. For any concept m-tuple (C1, C2, · · · , Cm),

if its informativeness is less than a threshold, then we can discard any (m + 1)-

tuple that covers (C1, C2, · · · , Cm) since its informativeness will certainly be less

than the threshold. This can be proved as follows:

∵ Nq(C1, ...CM) ≥ Nq(C1, ...CM , CM+1),
M∑

m=1

Nq(Cm) <
M+1∑
m=1

Nq(Cm)

⇒ Nq(C1,...CM )
M∑

m=1
Nq(Cm)

> Nq(C1,...CM ,CM+1)
M+1∑
m=1

Nq(Cm)

,

Nt(C1, ...CM) ≥ Nt(C1, ...CM , CM+1),
M∑

m=1

Nt(Cm) <
M+1∑
m=1

Nt(Cm)

⇒ Nt(C1,...CM )
M∑

m=1
Nt(Cm)

> Nt(C1,...CM ,CM+1)
M+1∑
m=1

Nt(Cm)

∴ I(C1, · · · , CM) > I(C1, · · · , CM+1)

(4.2)

The time complexity of this algorithm is O(2KM), where K is the size of

the pre-built concept corpus, and M (1 < M ≤ K) is a variable to depict the

number of concepts in a concept bundle. Generally, we can tune the value of

threshold to reduce the computational time. A larger value for threshold will

stop the algorithm earlier.

4.2.2 Learning Concept Bundle Classifier

4.2.2.1 Concept Utility Estimation

Intuitively, the M concepts in the concept bundle (C1, C2, · · · , CM) may have

different utilities for learning the concept bundle classifier. Take the concept

bundle (“children”, “sitting”, “classroom”) as an example. While most of the

relevant samples in the primitive concept “classroom” may be relevant to the

concept bundle, and it may not be true for concepts “children” and “sitting”.
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Thus, the classifier of the concept “classroom” should have a larger contribution

to the concept bundle as compared to the other concepts. Here, we estimate the

concept utilities in advance of learning the concept bundle.

For each concept Cm in the concept bundle (C1, C2, · · · , CM), we collect the

tags of the videos retrieved by Cm in Section 4.2.1 to form a tag document.

As a result, we obtain M tag documents for the M concepts. We then regard

(C1, C2, · · · , CM) as a term and compute its term frequency and inverse docu-

ment frequency (tf-idf ) [MRS09] scores with respect to all the M documents.

These M tf-idf scores are then normalized as {βm}Mm=1 (0 ≤ βm ≤ 1) which

reflect the importance of the M primitive concepts with respect to the concept

bundle. The larger value of βm indicates the concept Cm is more important in

the (C1, C2, · · · , CM).

4.2.2.2 Classification Algorithm

Given a concept bundle (C1, C2, ...CM), we denote Dm = {xm
i , y

m
i }Nm

i=1, DO =

{xO
i , y

O
i }

NO
i=1 as the training samples of the primitive concept Cm (1 ≤ m ≤ M)

and the concept bundle respectively. Nm, NO are the numbers of samples in Dm

and DO respectively; xm
i ,x

O
i ∈ Rd are the d-dimensional feature vectors of the

i-th samples; and ymi , y
O
i ∈ {1,−1} are binary labels indicating xm

i , x
O
i to be a

relevant or irrelevant sample. Our goal is to learn a classifier f(x) for the concept

bundle (C1, C2, ...CM) based on the training samples {Dm}Mm=1

∪
DO.

Since the concept bundle (C1, C2, ...CM) is an intersection among its M prim-

itive concepts in terms of both semantic and data exemplars, we assume that

the concept classifiers {fm(x)}Mm=1 of the M primitive concepts usually share a

common area in the decision space, which characterizes the regions of the concept

bundle. We thus formulate each fm(x) as a combination of two parts: a private

classifier and a communal classifier. The communal classifier is actually the con-

cept bundle classifier f(x), which is shared among all its constituent primitive

concepts. Here, we formulate each classifier as:

f(x) = wϕ(x)

fm(x) = wmϕ(x) + βmwϕ(x)
(4.3)
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where w and {wm}Mm=1 are model parameters; ϕ(·) is the feature map function

projecting the original feature x into the transformed space; and βm is the weight

parameter described in Section 4.2.2.1 that indicates the utility of the m-th prim-

itive concept in learning the concept bundle classifier f(x).

Aforementioned, learning concept bundles suffers from the sparse relevant

sample problem. Here, we consider two cases: (a) there is no relevant sample for

a given concept bundle (the training data for the concept bundle is unavailable);

and (b) the training data for the concept bundle is available. For the sake of

simplicity, we only introduce the formulation for case (b), and the corresponding

algorithm for case (a) is actually the unsupervised counterpart, which can be

inferred by deleting the terms related to the samples in DO. We derive f(x) by

jointly learning the concept classifiers {fm(x)}Mm=1 as:

min
{wm}Mm=1,w

λM
2
||w||2 + 1

2

M∑
m=1

||wm||2 + C(
M∑

m=1

Nm∑
i=1

ξmi +
NO∑
i=1

ξi)

s.t. ymi (wmϕ(x
m
i ) + βmwϕ(xm

i )) ≥ 1− ξmi

yOj wϕ(xO
j ) ≥ 1− ξj, ξmi , ξi ≥ 0

m = 1, 2, ....M i = 1, 2, ....Nm j = 1, 2, ...NO

(4.4)

where the first and second terms are the two regularization terms to prevent

“overfitting”, and the third term is the penalty on the training errors. λ and C

are the tradeoff parameters, and ξmi is the slack variable. The objective function

in Eq. (4.4) can be rewritten as the following (primal) Lagrangian function:

LP = λM
2
||w||2 + 1

2

M∑
m=1

||wm||2 + C(
M∑

m=1

Nm∑
i=1

ξmi +
NO∑
i=1

ξi)

−
M∑

m=1

Nm∑
i=1

αm
i (y

m
i (wmϕ(x

m
i ) + βmwϕ(xm

i ))− (1− ξmi ))

−
NO∑
i=1

αi(y
O
i wϕ(xO

i )− (1− ξi))−
NO∑
i=1

µiξi −
M∑

m=1

Nm∑
i=1

µm
i ξ

m
i

(4.5)

where µm
i , µi > 0, αm

i , αi ≥ 0 are the Lagrange multipliers. We minimize the

Lagrangian function by setting its derivative with respect to w, wm, ξ
m
i and ξi
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to zero respectively. This results in:

wm =
Nm∑
i=1

αm
i y

m
i ϕ(x

m
i )

w =

{ M∑
m=1

βmwm

λM
for case (a)

M∑
m=1

βmwm+
NO∑
i=1

αiyiϕ(x
O
i )

λM
for case (b)

αm
i = C − µm

i , αi = C − µi

(4.6)

In Eq. (4.6), wm is a linear combination of the training samples (xm
i , y

m
i )

Nm
i=1 which

is the same as the expression in the typical SVM approach. In the unsupervised

learning algorithm for case (a), w is a linear combination of the training samples

of the M primitive concepts. This expression of w is similar with the expression

of the Combine Weighted fusion [AHO07]. However, the primitive concept clas-

sifiers here are jointly learned rather than independently learned as in [AHO07].

Additionally, the primitive concepts with large βm will contribute significantly

to the concept bundle classifier w. In the supervise learning for case (b), the

expression of w consists of the classifiers of the primitive concepts as well as the

training samples from the concept bundle. Substituting Eq. (4.6) into its La-

grangian function, we get the Lagrange dual objective function expressed in a

matrix form as:

L(A) = argmax
A

[−ATPA+ 1A] (4.7)

where

A =
[
α1
1 ... α1

N1
... αM

1 ... αM
NM

α1 ... αN

]T
1 =

[
1 1 1 ... 1 1 1

]

P =


1
2 (

β2
1

λM + 1)κ11 ... 1
2λM β1βMκ1M

1
2λM β1κ1O

... ... ... ...
1

2λM βMβ1κM1 ... 1
2 (

β2
M

λM + 1)κMM
1

2λM βMκMO

1
2λM β1κO1 ... 1

2λM βMκOM
1

2λM κOO


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κij =


yi1K(xi

1,x
j
1)y

j
1 ... yi1K(xi

1,x
j
Nj

)yjNj

yi2K(xi
2,x

j
1)y

j
1 ... yi2K(xi

2,x
j
Nj

)yjNj

... ... ...

yiNi
K(xi

Ni
,xj

1)y
j
1 ... yiNi

K(xi
Ni
,xj

Nj
)yjNj


where K(, ) is a kernel function and κij represents the kernel matrix of the train-

ing samples from the concept i and j. The optimization problem expressed in

Eq. (4.7) can be solved using SMO algorithm [BLJ04]. The time complexity to

solve Eq. (4.7) is O(N3), where N is the total number of all the training samples

from primitive concepts and concept bundles.

4.3 Experimental Results

We conducted experiments on two video datasets. The first one is “TV08” dataset

(see section 3.1.1), and the other one is “YT10” dataset (see section 3.2.1). On

these two datasets, we used the training sets to train the classifiers of the concept

bundles, and used the testing sets to test the performance of the learned concept

bundle classifiers.

Based on the primitive concepts, we selected informative concept bundles ac-

cording to their informativenesses measured in Eq. (7.5). We conducted this

selection on the 374 primitive concepts of “TV08” dataset and 41 primitive con-

cepts of “YT10” dataset. In calculating the informativeness of a concept bundle,

we set the weight α in Eq. (7.5) to 0.5 to equally emphasize the co-occurrence

of primitive concepts and users’ interest on this concept bundle. For informative

concept bundle selection, we set the threshold as the average informativeness of

all the bundle candidates. In particular, the threshold is set to 0.25 for “TV08”

dataset and 0.2 for “YT10” dataset. As a result, we obtained 40 concept bundles

on “TV08” dataset (see Table 4.1), and 38 concepts bundles on “YT10” dataset

(see Table 4.2).

From Tables 4.1 and 4.2, it is evident that some concept bundles are quite

useful to model complex query, such as (“street”, “nighttime”) for query “a street

scene at night” and (“computer”, “office”) for query “one or more people at a ta-

ble or desk with a computer visible” on “TV08” dataset. However, some concept
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Table 4.1: The 40 informative concept bundles on “TV08” dataset (The concept
bundles in bold are evaluated in our experiment)

1 classroom,room 21 meeting,room
2 glasses,sunglasses 22 building,cityscape
3 basketball,stadium 23 office,person
4 airplane,sky 24 airplane,military
5 hand,handshaking 25 dance,street
6 bathroom,room 26 bird,sky
7 building,sky 27 house,room
8 athlete,sports 28 bus,driver
9 police,protester 29 car,police
10 bridge,waterway 30 nighttime,street
11 street,vehicle 31 face,hand
12 crowd,outdoor 32 mountain,snow
13 outdoor,sport 33 animal,person
14 swimmer,swimming 34 computer,office
15 animal,dog 35 landscape,sky
16 flower,vegetation 36 dining room,food
17 clouds,sky 37 computer or television

screens,person
18 car,vehicle 38 desert,landscape
19 airplane,airport 39 mountain,sky
20 ship,waterway 40 car,desert
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bundles are not very useful. For example, (“animal”, “dog”), (“car”, “vehicle”)

etc, are actually equivalent to primitive concepts since they are synonym or hy-

ponym conveying similar semantics. Such concept bundles can be easily identified

by Wordnet [Fel98]. Thus, we employed Wordnet to filter out such concept bun-

dles. After that, we selected a subset of concept bundles in Tables 4.1 and 4.2

to evaluate since the labeling of ground truth is labor-intensive. These selected

concept bundles are those that will be used in our search task. For example,

in Table 4.1, the third concept bundle (“basketball”, “stadium”) is not selected

since it is not related to any “TV08”’s queries. As a result, we selected 13 con-

cept bundles (in bold font) in Table 4.1 and 22 concept bundles (in bold font) in

Table 4.2.

On “TV08” dataset, we directly used Columbia374 primitive concept classi-

fiers, while on “YT10” dataset we trained the primitive concept classifiers using

the Support Vector Machine (SVM). In the SVM algorithm, we used the empiri-

cally successful Gaussian kernel exp(−γ||xi − xj||2) as the kernel function where

γ is the scaling parameter. A fivefold cross-validation process was conducted on

the training set to determine the parameters.

As described in Section 4.2.2.2, we have considered two cases in our classifica-

tion algorithm: Unsupervised Learning (UL) without using the training samples

for the concept bundles and Supervised Learning (SL) by using the training sam-

ples. Although all the concept bundles have training samples in our datasets, we

still trained two kinds of the classifiers by the UL and SL approaches for each se-

lected concept bundle in order to make a complete comparison with the following

four existing methods:

• Support Vector Machine (SVM): This approach directly builds an SVM

classifier for each concept bundle based on its training samples without using

the primitive concepts. The Gaussian kernel is adopted and the parameters

are estimated through a fivefold cross-validation process.

• Concept Fusion (CF) [AHO07]: This approach generates the detection re-

sult of a concept bundle by fusing the individual results from its primitive

concept classifiers. Here we adopt the Combine Weighted fusion operation,

and the fusion weight of each primitive concept is equal to its utility value
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Table 4.2: The 38 informative concept bundles on “YT10” dataset (The concept
bundles in bold are evaluated in our experiment)

1 lady,telephone 20 horse,race
2 baby,laughing 21 motorcycle,ride
3 car,race 22 person,television
4 fighting,street 23 lady,office
5 dance,wedding 24 baby,dance
6 race,river 25 cat,fighting
7 crash,motorcycle 26 car,race,river
8 police,protester 27 fire,vehicle
9 dance,street 28 children,singing
10 horse,riding 29 interview,lady
11 motorcycle,race 30 crash,vehicle
12 race,street 31 motorcycle,street
13 car,race,crash 32 astronaut,moon land
14 kitchen,sea 33 interview,protest
15 lion,hunting,zebra 34 cooking,kitchen
16 cat,mouse 35 fighting,soccer
17 dance,lady 36 basketball,street
18 house,tree 37 beach,sea
19 car,police 38 flood,river
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Figure 4.1: The performance on 13 concept bundles of “TV08” dataset as mea-
sured by AP@1000
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Figure 4.2: The performance on 22 concept bundles of “YT10” dataset as mea-
sured by AP@1000

with respect to the concept bundle.

• Multi-label Learning Approach (CML) [QHR+07]: For each concept bundle,

this approach jointly learns its involved primitive concepts on their training

data, and outputs the predicted probabilities on all the primitive concepts

for each testing sample. We then generates the detection result of the

concept bundle using the CF approach.

• Multi-Task Learning Approach (MTL) [AZ05]: This approach takes each

involved primitive concept of a concept bundle as a learning task, and jointly

learns these tasks with a shared parameter part. In the implementation,

we adopt the modified Huber loss function as suggested in [AZ05], and

solve the optimization problem by the stochastic gradient descent method.

After obtaining the results of the involved primitive concepts of a concept

bundle, it generates the detection result of the concept bundle using the CF

approach.

The performance is measured by the widely used non-interpolated Average Preci-

sion (AP) [TRE08]. We averaged the APs over all the concept bundles to obtain

the Mean Average Precision (MAP) as a measure of the overall performance.
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Figures 4.1 and 4.2 illustrate the performance of our UL and SL methods

as compared to that of CF, SVM, CML and MTL approaches. The following

observations are obtained:

• The best performance is achieved by the SL approach with a MAP of 0.069

on “TV08” dataset and 0.053 on “YT10” dataset. As compared to the

results of many concept detection techniques which could achieve the MAP

of above 0.1 for the primitive concepts, the performance of concept bundle

learning is much lower. This is because the relevant samples of concept

bundle are much fewer than that of the primitive concepts.

• The SVM approach achieves a MAP of 0.058 on “TV08” dataset and 0.041

on “YT10” dataset. Compared to the SVM approach, the improvement

by the SL approach is about 19.0% and 29.3% on “TV08” and “YT10”

datasets respectively. This improvement re-affirms our view that jointly

learning the concept bundles and their primitive concepts can overcome

the sparse relevant sample problem, and thus be able to achieve better

performance.

• The UL approach only has a MAP of 0.043 on “TV08” and 0.036 on “YT10”

dataset, with a corresponding 25.0% and 11.8% performance degradation

as compared to the SVM approach. This is because our UL approach is

unsupervised and does not require the training samples of concept bundles.

• The other approaches CF, MTL, CML all have a poorer performance as

compared to UL, SVM and SL approaches. This is because CF, MTL, CML

approaches focus on learning the individual primitive concepts instead of

concept bundle, and the results of the concept bundle are actually generated

by the fusion operation. As discussed before, simply aggregating primitive

concepts cannot interpret the concept bundle well.

To evaluate the effectiveness of concept utility in our UL and SL approach,

Figure 4.3 shows the performance comparison of the UL and SL approaches by

using our utility weights or simply adopting mean weights (β = 1
m

in Eq.(4.3)).

We can see that using utility weights leads to better performance. This demon-

strates that the concept utility could correctly estimate the degree of relatedness
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(b) “YT10” Dataset

Figure 4.3: The effectiveness of concept utility in UL and SL

of primitive concepts with respect to the concept bundle. Taking the concept

bundle (“person”, “office”) on “TV08” dataset as example, the utilities for the

primitive concepts “person” and “office” are 0.13 and 0.87 respectively. This en-

ables the concept bundle (“person”, “office”) to achieve an AP of 0.069 by the SL

approach, instead of an AP of 0.035 by the SL approach using the mean weights.

4.4 Conclusion

In this chapter, we proposed to learn a higher-level semantic descriptor named

“concept bundle” to facilitate video search for complex queries. A concept bundle

is defined as a composite semantic concept that integrates multiple primitive

concepts. To ensure the informativeness of concept bundles, we devised a selection

process based on concept bundle frequency in the suggested queries by Web video

search engine and the concept co-occurrence in the tags of Web videos. We then

proposed a multi-task SVM algorithm to build the concept bundle classifier by

jointly learning its involved primitive concept classifiers. The experiments were

conducted on “TV08” and “YT10” datasets and demonstrated that our multi-

task SVM algorithm achieved promising performance as compared to the state-

of-the-art approaches in modeling concept bundles.

The proposed concept bundle provides a solid support for learning complex

query in semantic video search. In the next chapter, we will introduce an au-
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tomatic semantic video search approach for complex queries by using concept

bundles.
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Chapter 5

Bundle-based Automatic

Semantic Video Search

5.1 Introduction

In Chapter 4, we propose a higher-level semantic descriptor named “concept

bundle”. Carrying higher-level semantics, concept bundle is expected to deliver

more precise descriptions of video contents, and thus better meet the video search

requirement in a finer granularity. For example, in Figure 5.1, the complex query

“persons dancing in the wedding” can be better answered by using the concept

bundle (“dance”, “wedding”) than the typical semantic video search approach

which uses only the primitive concepts.

However, to achieve a good search performance for complex query, we need to

select a proper set of concept bundles to interpret the users’ query in addition to

primitive concepts. In this chapter, we propose an concept selection strategy to

map the query to related primitive concepts and concept bundles by considering

their classifier performance and semantic relatedness with respect to the query.

The final search results are generated by fusing the individual results from these

selected primitive concepts and concept bundles.

We evaluate the proposed approaches on two video datasets: TRECVID 2008

and YouTube 2010 datasets. Compared to the state-of-the-art methods, the use

of concept bundles can characterize the complex queries well and improve the
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Figure 5.1: Illustration of the search procedure in the traditional semantic video
search (part (a)) and our search approach (part (b)) for the complex query “per-
sons dancing in the wedding”. In our search approach, the selected concept
bundle (“dance”, “wedding”) is semantically closer to the query. We list the top
10 retrieved video shots by these two approaches, where the rank lists are ordered
from left to right and top to bottom (positive samples are marked in red boxes).

search performance by at least 37.5% and 52% on TRECVID 2008 and YouTube

2010 datasets respectively.

5.2 Bundle-based Video Search

Given a query Q, the typical semantic video search approach first maps this

query into related primitive concepts before computing the relevance of each

video entry with respect to the query. In our search model, we map the query

into related primitive concepts and concept bundles. For the sake of simplicity,

we use the word “bundle” to imply both a primitive concept and a combined

semantic concept (concept bundle) in this section.
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5.2.1 Mapping Query to Bundles

5.2.1.1 Formulation

Based on the pre-built bundle corpus S = {C1, ...,CK}, we need to select related

bundles {C1, ...,CL} (L < K) for each query Q. Our selection approach selects

related bundles (denoted as a set sub(S)) from S according to two criterions: (1)

sub(S) should preferably contain the bundles with high semantic relatedness with

respect to query Q; and (2) sub(S) should introduce as little errors as possible.

We make a tradeoff between these two criterions by a weight parameter C, and

the formulation is expressed as:

arg min
sub(S)

C ∗ (1− Sem(sub(S))) + (1− C) ∗ Er(sub(S)) (5.1)

where Sem(sub(S)) measures the semantic relatedness of the bundles in sub(S)

with respect to the query Q, and Er(sub(S)) is the errors produced by the clas-

sifiers of the bundles in sub(S).

5.2.1.2 Semantic Relatedness Estimation

Different concepts have different semantic relatedness to query Q, and this se-

mantic relatedness can be estimated by the text matching score [CHJ+06]. In

our approach, we use the tf-idf score between the query and concept to represent

this text matching score. For each query Q, we first generate a parse tree [MS99]

by using OpenNLP 1. We then select the nouns and verbs from the parse tree

as the salient words since they are found to be more important than articles,

adjectives or adverbs [WMC09]. Finally we take these selected salient words as

a term and compute its tf-idf scores with respect to the K video tag documents

of the bundles in S, where each tag document is a collection of the video tag files

downloaded from YouTube website. We normalize all the tf-idf scores in S as the

bundle utilities {βi}|S|i=1. The semantic relatedness of sub(S) is defined as the sum

of the bundle utilities in sub(S):

Sem(sub(S)) =
∑

si∈sub(S)
βi (5.2)

1http://incubator.apache.org/opennlp/
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5.2.1.3 Error Estimation

The performances of the pre-built bundle classifiers are quite different, and we

want to select relevant classifiers that introduce as little errors as possible. Let

Er(sub(S)) be the misclassification probability of a sample x by the classifiers in

sub(S), which we express as:

Er(sub(S)) =
∑
y

P (ŷ ̸= y|x)P (y) (5.3)

where P (y) is the prior probability of sample x with label y, and P (ŷ ̸= y|x)
is the misclassification probability of sample x (ŷ is the predicted label). In our

problem, we define two labels: y ∈ {1,−1}, where y = 1 means that x is a

positive sample for query Q, and y = −1 otherwise. Based on these two labels,

we transform Eq. (5.3) into Eq. (5.4) as:

Er(sub(S)) = P (ŷ = −1|x, y = 1)P (y = 1)

+ P (ŷ = 1|x, y = −1)P (y = −1)
(5.4)

Let yb ∈ Y = {1,−1}L denote the L dimensional label vector of a sample

x with respect to the bundles of sub(S), where L is the number of bundles in

sub(S). A sample is positive if it satisfies all the bundles in sub(S), or negative

even if it is just irrelevant to one bundle in sub(S). Thus, the label of a positive

sample is yb = {1}L, and that of a negative sample is yb ∈ Y/{1}L. As a result,

we express the probabilities P (ŷ = −1|x, y = 1) and P (ŷ = 1|x, y = −1) as:

P (ŷ = −1|x, y = 1) = 1−
L∏
i

P (ŷbi = 1|x, ybi = 1)

P (ŷ = 1|x, y = −1) = max
yb∈Y/{1}L

L∏
i

P (ŷbi = 1|x, ybi )
(5.5)

where ybi is the i-th label of yb, and ŷbi is the predicted label by the i-th bundle

classifier in sub(S). In Eq.(5.5), for a positive sample, its every individual label

ybi is 1, thus P (ŷ = −1|x, y = 1) can be directly calculated; For a negative

sample, since its individual label ybi is uncertain, we set P (ŷ = 1|x, y = −1)
to be the maximum misclassification probability among all the possible label
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assignments(yb ∈ Y/{1}L).
To estimate the unknown probabilities in Eqs. (5.4) and (5.5), we resort to a

validation dataset. We estimate the conditional probabilities P (ŷbi = 1|x, ybi = 1)

and P (ŷbi = 1|x, ybi = −1) to be the proportion of positive (negative) samples

of the i-th bundle being classified as positive on the validation set. While for

the prior probabilities P (y = 1) or P (y = −1), we estimate them to be the

proportion of positive(negative) samples over the total number of all samples on

the validation set.

5.2.1.4 Implementation

In our approach, we employ an optimization function to select a set of related

bundles to interpret a query. However, the computation cost will be high if we try

all the possible sets (the time complexity is O(2K)). Here, we develop a greedy

algorithm to speed up the selection procedure. We first select a bundle from S

with the minimal value of Eq. (5.1), and then incrementally add a bundle that

maximally reduces the value of Eq. (5.1). This incremental process is stopped

when the value of Eq. (5.1) cannot be further reduced by the remaining bundles.

In our implementation, the sub-bundles of an selected bundle will no longer be

evaluated and selected by the algorithm. The rationale is that a bundle is seman-

tically closer to the query than its sub-bundles. By using the greedy algorithm,

the time complexity is reduced to O(K|sub(S)|)). We summarize the process of

mapping-query-to-bundles in Algorithm 1.

5.2.2 Fusion

Different from the typical video search approach that fuses the results from related

primitive concepts, our approach generates the final results by fusing the indi-

vidual results from the related bundles. Given a selected bundle set sub(S), with

each bundle has a classifier f l, we compute the relevance score of each keyframe

with respect to the complex query as

Score(x) =

|sub(S)|∑
l=1

βl
1

1 + e−f l(x)
(5.6)
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Algorithm 1 Mapping-query-to-bundles

1: Input: The query Q, the pre-built bundle corpus S = {Ck}Kk=1, the weight param-
eter C

2: Output: the related bundle set sub(S)
3: Process:
4: {βk}Kk=1←−Semantic Relatedness Estimation(Q, S)
5: sub(S) = ∅
6: while there exists an unselected bundle si in S such that the value of Eq. (5.1)

can be reduced do
7: argmin

si
C ∗ (1− Sem(sub(S) ∪ si)) + (1− C) ∗ Er(sub(S) ∪ si)

8: sub(S) = sub(S) ∪ si
9: end while
10: return sub(S).

where βl is the utility value of the l-th bundle. The calculation of βl is described

in Section 5.2.1.2. Finally, we use the relevance scores of all the keyframes to

rank the final search results.

5.3 Experimental Results

The experiments were conducted two video datasets: the “TV08” dataset (see

section 3.1.1), and the “YT10” dataset (see section 3.2.1).

By using the concept bundle learning approach in Chapter 4, we have built 13

concept bundles on “TV08” dataset and 22 concept bundles on “YT10” dataset

(see the bold font in Table 4.1, 4.2). Based on these concept bundles as well

as the primitive concepts (the concept Columbia374 on “TV08” dataset and 41

primitive concepts on “YT10” dataset), we evaluate the search performance of

our bundle-based video search approach on the testing sets of these two datasets.

We conducted experiments on all the 48 queries on “TV08” dataset and 20

queries on “YT10” dataset. In our experiments, we employed the SL algorithm

in chapter 4 to train the classifiers for concept bundles. The weight parameter C

in Eq.(5.1) was set to 0.8 due to its best performance as shown in Table 5.2. The

probabilities in section 5.2.1.3 were obtained through evaluating the classification

results of the classifiers on the validation datasets.
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Figure 5.2: The detailed performance of the selected 11 queries on “TV08” dataset
as measured by inferred AP@1000, where the rectangle is the best performance
achieved by the official submissions on “TV08” search task, star and triangle are
the performance achieved by our search approach using and not using concept
bundles respectively

In the first experiment, we evaluated the effectiveness of concept bundles in the

overall search performance. We compared the search performance on two cases

by: (1) mapping the query to related primitive concepts and concept bundles

(using the concept bundles); and (2) mapping the query to only related primitive

concepts (without using the concept bundles). Here, the search without concept

bundles is performed using the same approach as in Section 5.2, but the concept

bundles are not involved. Table 5.1 shows the comparison of search performance.

On “TV08” dataset, we adopted the Inferred Average Precision (Inferred AP)

as provided by TRECVID [TRE08] to evaluate the performance of each query

and the overall performance is measured by the Inferred Mean Average Precision

(Inferred MAP). The overall results demonstrate that, by using concept bundles,

our search algorithm can improve the Inferred MAP on “TV08” dataset from

0.04 to 0.055 and the MAP on “YT10” dataset from 0.025 to 0.038. The relative

improvements are 37.5% and 54.7%, respectively. These improvements are sub-

stantial in the context of video search, which is an extremely difficult task due

to the high diversity of video content [SW09]. Here, statistical significance test

72



0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

A
ve

ra
g

e 
p

re
ci

si
o

n

Figure 5.3: The detailed performance of the 20 queries on “YT10” dataset as
measured by AP@1000, where the star and triangle are the performance achieved
by our search approach using and not using concept bundles respectively

Table 5.1: The comparison of video search performance by using or not using
concept bundles as measured by inferred MAP@1000 (“TV08”) or MAP@1000
(“YT10”)

using concept bundles not using concept bundles

“TV08” 0.055 0.040
“YT10” 0.038 0.025

is not performed to examine the results. The reason is that significance test is

normally ineffective in evaluating video search systems due to the high variance

among the query topics [HL05].

Figures 5.2 and 5.3 show the detailed performance of our search algorithm

on each query by using and not using the concept bundles. Actually, not all

the queries could be mapped to concept bundles. On “TV08” dataset, only 11

queries could be mapped to concept bundles in our experiments, while the remain-

ing queries are modeled using only primitive concepts and could only achieve the

same performance as the approach without using the concept bundles. Here, we

only list the comparison results on these 11 queries. In Figure 5.2, on “TV08”

dataset, our search approach using concept bundles outperforms that without us-
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Table 5.2: The video search performance by using different weights C in Eq. (5.1)
C=0 C=0.2 C=0.4 C=0.6 C=0.8 C=1

“TV08” 0.031 0.031 0.031 0.038 0.055 0.052
“YT10” 0.026 0.026 0.026 0.030 0.038 0.035

ing concept bundles on all the 11 queries. Among these queries, the performances

of 5 queries (224, 225, 226, 247, 259) have substantially better performance as

compared to the TRECVID official results. On “YT10” dataset, our search ap-

proach using the concept bundles performs better on 17 queries, and worse on

3 queries as compared to that without using the concept bundles. After analyz-

ing these three queries (7, 8, 20), we find the search performance degradation is

caused by the poor performance of the concept bundle classifiers (28, 38, 27 in

Figure 4.2) used for these three queries.

Furthermore, we evaluated the performance variation with different weights C

(see Eq. (5.1)). Table 5.2 shows the search results under different weights C. The

best performance is achieved when C = 0.8. The smaller value of C will lead to a

rapid performance degradation, and the larger value of C will slightly reduce the

search performance. This result demonstrates that the semantic relatedness is

more important than the classifier performance in concept selection. When C <

0.4, the concept selection results are dominated by selecting the high performance

concepts, and thus the search performance is stable.

Finally, Table 5.3 lists the performance comparison between our search ap-

proach and the two state-of-the-art approaches [WN08; JNC09] on “TV08” dataset.

In [WN08], a multi-level fusion framework is developed by considering the seman-

tics, observability, reliability and diversity for classifier selection, while in [JNC09]

the Flickr context is analyzed and used for classifier selection. In our approach,

we utilize concept bundles to help learn the complex queries, and as a result

we could achieve a substantial improvement. Figure 5.4 further compares our

results with the official submissions on “TV08” dataset. Among all the 82 sub-

missions, our approach, using only concept based query process, ranks third,

while the top two TRECVID official submissions adopted a combination of con-

cept and image/video examples matching. For example, the best performing

system [TRE08] contains three modalities: text matching, semantic search, and
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Figure 5.4: Inferred MAP comparison with the top-20 (out of 82) official submis-
sions of the automatic video search task in TRECVID 2008

Table 5.3: The search performance comparison between our search approach and
the state-of-the-art approaches on “TV08” dataset

Wei et al. Jiang et al. Our approach
[WN08] [JNC09]

TV08 0.042 0.050 0.055

image/video example matching.

5.4 Conclusion

In this chapter, we proposed an optimization function to map complex queries

to concept bundles and primitive concepts. The mapping algorithm considers

the semantic relatedness and the classifier performance. To improve the effi-

ciency, we employed a greedy algorithm to approximately implement our ap-

proach. The experiments were conducted on “TV08” and “YT10” datasets. The

results demonstrate that the concept bundles could characterize complex queries

well and achieve promising search performance as compared to the state-of-the-art

approaches.

The performance of the automatic semantic video search approaches is still
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unsatisfactory. In the next chapter, we will introduce our interactive semantic

video search approach to further enhance the search performance for complex

queries.
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Chapter 6

Related Sample based Interactive

Semantic Video Search

6.1 Introduction

In chapter 5, the performance of the automatic semantic video search is still

unsatisfactory especially for complex query. To improve search performance, we

employ interactive semantic video search, which incorporates user in the search

loop and has shown promising performance recently [SW09]. In interactive search

process, the user is asked to label the retrieval list returned by the system. Based

on user’s annotation of relevant and irrelevant video segments, the system then

performs relevance feedback to refine the search model for better retrieval results.

By performing a few iterations, the retrieval is expected to return more and more

relevant video segments. Generally, to ensure a quality interactive search, a

reasonable amount of relevant samples are required to be annotated in the first

few iterations. However, this may not be possible for complex queries, in which

the relevant samples are usually rare or not ranked on the top of the result list.

This insufficiency of relevant samples renders most relevance feedback techniques

ineffective in interactive semantic video search.

To enhance the interactive search for complex queries, we propose to utilize

a third class of video samples, i.e. “related samples”, parallelling with relevant

and irrelevant samples. Related samples refer to those video segments that are
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Figure 6.1: Exemplar related samples for the query “car at night street”

partially relevant to the query but do not satisfy the entire search criterion. As

illustrated in Figure 6.1, the related samples of the query “car at night street” are

the samples that contain the individual concepts “car”, “night”, or “street” rather

than the scene of “car at night street”. Compared to relevant samples which may

be rare, related samples are usually more plentiful and easier to find in the search

results. The advantages of exploring related samples are two-fold: First, the

related and relevant video segments usually share similar visual content in part

due to their semantic connection, so that the related samples are beneficial to the

modeling of relevant samples. Second, since video content is temporally dynamic

and continuous, the occurrence of related video segments is an indicator of the

presence of relevant ones in the neighboring clips. Based on these motivations,

in this chapter, we develop a visual-based ranking model that simultaneously

exploits the visual information of relevant, related, and irrelevant samples and

a temporal-based ranking model to utilize the temporal relationship between

related and relevant samples. The search results are generated by fusing the

results from these two models. Moreover, we develop an adaptive fusion method

that optimizes the fusion weight based on user’s labeling in each iteration of

relevance feedback. The resultant optimal fusion can further boost the search

performance.

We evaluate the proposed approach on two real-world video collections: TRECVID

2008 dataset, and YouTube 2011 dataset. The experimental results on both
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Figure 6.2: The framework of interactive semantic video search.

datasets demonstrate that our approach can achieve competitive search perfor-

mance as compared to the state-of-the-art methods.

The main contributions of our approach can be summarized as follows:

• We propose to explore “related samples” to enhance interactive semantic

video search.

• We develop a visual-based and a temporal-based ranking model to exploit

the related samples, in parallel with the relevant and irrelevant samples.

• We develop an adaptive fusion strategy to optimally explore the two pro-

posed ranking models.

6.2 Framework

Given a query Q, our target is to retrieve as many relevant video shots as possible,

via a few feedback iterations. As aforementioned, a video shot is often represented

by its keyframe [GKS00]. Let X = {x1,x2, . . . ,xN} denote a set of N keyframes,

where xi ∈ Rd is the d-dimensional feature vector of keyframe i. In each iteration t
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of interactive search, the search system presents users with the top Nt keyframes

Lt = {xi}Nt
i=1 to label, and each keyframe is labeled as relevant, irrelevant or

related. We use Yt = {yi}Nt
i=1 to denote the labels of these keyframes, where

yi = 1 indicates xi is a relevant sample, and yi = −1 means xi is an irrelevant

sample. For a related sample, we set yi as its value of relatedness strength which

refers to the relatedness degree of xi with respect to the query. The estimation

of relatedness strength will be introduced in next section.

Given a concept set C, we pre-build concept classifiers {fk}|C|k=1. For each

concept Ck in C, we issue the concept name to Flickr website as a query and

construct a tag document Tk by collecting the tags from the top 100 returned

images. These tag documents {Tk}|C|k=1 are then indexed by Lucene [Luc], a widely

used text search approach.

When a query is input, as Figure 6.2 shows, our interactive search system

works as follows:

1. The system builds the concept bundle classifiers according to the approach

discussed in chapter 4, and performs the automatic semantic video search

based on the approach described in chapter 5.

2. At iteration t of interactive search, users label the top Nt samples as rele-

vant, related or irrelevant samples. This gives rise to a labeled sample set

{Lt,Yt}.

3. The system updates concept weights {dtk}Kk=1, estimates relatedness strength

of related samples and learns a visual-based ranking model f t.

4. The system learns a temporal-based ranking model gt.

5. The system generates search results by fusing the individual results from

the visual-based ranking model and the temporal-based ranking model.

6. Repeat from step 2) until the user is satisfied with the search results.
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6.3 Approach

In this section, we first introduce related samples, and then elaborate the visual-

based and temporal-based ranking models, as well as the adaptive fusion method.

6.3.1 Related Sample

The “related samples” refer to those video shots that are relevant to part of the

query rather than the entire query. Here, we allow users to flexibly decide the

condition of “part of the query”. For example, in the query “a street scene at

night”, the related samples are those satisfying the concept “street” or “night”.

Another example is the query “one or more ships or boats in the water”, the

related samples are those containing “boat”, “ship” or “water”.

The advantage of using related samples is in two-fold. First, the related

samples are usually visually similar with the relevant ones. This is so because

the related samples tend to share visual contents with the relevant ones in part.

Figure 6.3 (a) illustrates the visual similarities between the relevant and related

samples of the query “one or more people with one or more horses”. Second,

videos carry temporally dynamic and continuous contents. The occurrence of

a related sample could be an indicator for the presence of relevant samples in

neighboring shots. As Figure 6.3 (b) shows, the related and relevant samples of

the query “just one person getting out of or getting into a vehicle” are temporally

neighboring.

6.3.2 Visual-based Ranking Model

6.3.2.1 Formulation

In iteration t, we aim at learning a visual-based ranking function f t(x) from the

labeled samples {Lt,Yt}. We here employ the incremental learning technique to

speed up the learning process. The ranking function is formulated as a combina-

tion of three parts: (a) the ensemble of concept classifiers {fk(x)}Kk=1 related to

the query; (b) the accumulation of “local ranking function” {∆f l(x)}t−1
l=1 learned

in the previous iterations; and (c) the to-be-learned “local ranking function”
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Figure 6.3: Illustration the relationship between relevant (green rectangle) and
related (yellow rectangle) samples. In subfigure (a), the relevant and related sam-
ples are visually similar where the numbers on the edges represent the similarities
measured by cosine distance on Color Correlogram feature. In subfigure (b), the
relevant and related samples are temporally neighboring in a video.
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∆f t(x).

f t(x) = ηt
K∑
k=1

dtkfk(x) +
1

t− 1

t−1∑
l=1

βt
l∆f l(x) + ∆f t(x) (6.1)

where {dtk}Kk=1 are the weights of concept classifiers in iteration t; {βt
l}t−1

l=1 are the

weights of the previous local ranking functions; and ηt is a trade-off parameter

which balances the concept classifiers and the local ranking functions. Based on

above formulation, we can update the visual-based ranking function efficiently.

In each iteration t, only the new labeled samples are required to learn the lo-

cal ranking function ∆f t(x), and the labeled samples in the previous iterations

are utilized through the local ranking functions {∆f l(x)}t−1
l=1, which are already

learned in the previous iterations.

We formulate each local ranking function as a linear discriminant function

based on “kernel trick”: {∆f l(x) = wT
l ϕ(x)}tl=1, where {wl}tl=1 are model pa-

rameters and ϕ(·) is a mapping function that maps the samples from the original

space into a higher or even infinite dimensional space. As a result, f t(x) can be

expressed as

f t(x) = ηt
K∑
k=1

dtkfk(x) +
1

t− 1

t−1∑
l=1

βt
lw

T
l ϕ(x) +wT

t ϕ(x) (6.2)

Next we update the concept weights {dtk}Kk=1, estimate the relatedness strength

of related samples, and learn the ranking function f t(x),

6.3.2.2 Concept Weight Updating

The initial concept weights {d0k}Kk=1 are obtained according to the text matching

scores between the concepts and the query (see Section 6.2). However, text-

based weights may not well characterize the utilities of the concept classifiers. To

derive optimal ensemble of concept classifiers, we propose to optimize concept

weights {dtk}Kk=1 from users’ feedbacks in iteration t. Given a labeled sample set

L = Lp∪Lr∪Ln where Lp,Lr,Ln are relevant, related and irrelevant sample sets,

our basic idea is that the concept weights should make the fusion score of each

relevant sample as large as possible, while ensure that of each irrelevant sample

as small as possible. For each related sample, its fusion score is expected to be
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Figure 6.4: Illustration of samples with different relatedness strengths.

between the average scores of relevant and irrelevant samples. Moreover, to avoid

drastic fluctuation on concept weights, we make the new weight dtk as stable as

possible (i.e., approaching to the old weight dt−1
k ). The new weights {dtk}Kk=1 are

optimized as follows:

argmin
dt

1
2
||dt − dt−1||2 + C(||Ip − fpd

t||2 + ||fndt||2

+||frdt − 1
|Lp|I

T
p fpd

tIr||2 + ||frdt − 1
|Ln|I

T
n fnd

tIr||2)
s.t. ITkd

t = 1, 0 ≤ dtk ≤ 1, k = 1, 2...K

(6.3)

where dt = [dt1, d
t
2, . . . , d

t
K ]

T , dt−1 = [dt−1
1 , dt−1

2 , . . . , dt−1
K ]T ; Ip, Ir, In are column

vectors with all the elements 1, the corresponding element numbers in them are

|Lp|, |Lr|, |Ln| respectively; fp is a |Lp|×K matrix, and the i-th row, j-th column

element fp(i, j) = fj(xi), the confidence score of the i-th relevant sample in Lp

containing the concept j; Similarly, fr, fn are |Lr| × K and |Ln| × K matrixes

respectively. The first regularization term ||dt − dt−1||2 is employed to avoid the

drastic fluctuation of the weights, the second (third) term makes the fusion score

of each relevant (irrelevant) sample approach to 1 (0), and the last two terms are

used to make the fusion score of each related sample between the average scores

of relevant and irrelevant samples. C is a trade-off parameter. The constraint is

used to normalize the new learned weight vector dt. This optimization problem

in Eq. (6.3) can be solved using SMO algorithm [BLJ04].
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6.3.2.3 Relatedness Strength Estimation

For a related sample xi, the relatedness strength ri refers to the relatedness degree

of xi with respect to the query Q. For example, in Figure 6.4, the third sample

is more related to the query “car at night street” than the second one, since it

contains both concepts “car” and “street”, while the second one only satisfies

“street”. It is impractical to ask users to label the relatedness strength, since

it puts heavy burden on users. Here, we define multiple relatedness strength

levels, and automatically infer the strength level of each related sample. The

basic idea is that the relatedness strength of each related sample is reflected by

its fusion score from related concepts. A sample that has a large fusion score is

usually highly related to the query, and vice versa. Algorithm 2 describes the

process of relatedness strength estimation. For each related sample xi, the fusion

score S(xi) is computed based on related concept classifiers (see step 5). With

this score, the relatedness strength ri of xi is calculated as in step 6. In step 7,

we obtain the relatedness strength interval [Rk, Rk+1] for xi, as well as set the

corresponding boundaries as Li = Rk and Ui = Rk+1. The time complexity of

algorithm 2 is O(K|Lr|).

Algorithm 2 The Relatedness Strength Estimation Algorithm

1: Input: The related sample set Lr; the concept weights {dtk}Kk=1; the concept confi-
dence scores {fk(xi)}Kk=1 (xi ∈ Lr); and Nr pre-defined relatedness strength inter-
vals {[R0,R1], [R1,R2], · · · , [RNr−1,RNr ]}, where R0 = −1 and RNr = 0.

2: Output: The relatedness boundary set of related samples B={(Li, Ui)}|Lr|
i=1 .

3: Process:
4: for i=1 to |Lr| do

5: Compute S(xi) =
K∑
k=1

dtkfk(xi);

6: Compute ri = S(xi)− 1;
7: Set Li = Rk, Ui = Rk+1, if Rk < ri < Rk+1, 0 ≤ k ≤ Nr − 1;
8: end for
9: return B={(Li, Ui)}|Lr|

i=1

6.3.2.4 Visual-based Ranking Model Learning

As compared to the typical ranking model learned on relevant and irrelevant

samples, our ranking model simultaneously exploits relevant, related, and irrel-
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Figure 6.5: The hyperplane refinement inspired by related samples

evant samples. As shown in Figure 6.5, the related samples are located within

the margin area between the hyperplane and irrelevant samples. Our basic idea

is that (1) the related samples are not fully relevant to the query but closer to

the classification hyperplane compared to the irrelevant samples; and (2) the re-

lated samples with larger relatedness strengths are closer to the hyperplane, and

vice versa. Consequently, we derive the ranking function f t(x) by solving the

following optimization problem:

min
wt,ηt,β

t

1
2
||wt||2 + C

∑Nt

i=1(ξi + ζi) +
1
2
(ηt − ηt−1)2 + 1

2
||βt − βt−1||2

s.t. f t(xi) ≥ 1− ξi if yi == 1

f t(xi) ≤ −1 + ζi if yi == −1

Li − ξi ≤ f t(xi) ≤ Ui + ζi if − 1 < yi < 1

ξi, ζi ≥ 0, i = 1, 2, . . . , Nt

(6.4)

where βt = [βt
1, β

t
2, . . . , β

t
t−2, β

t
t−1]

T , βt−1 = [βt−1
1 , βt−1

2 , . . . , βt−1
t−2 , 1]

T , βt
l is the

weight for the l-th local ranking function in iteration t, ξi and ζi are slack vari-

ables, and C is the balance weight. The first term is a regularization term, which

controls the model complexity. The second term is a hinge loss function, which

measures the prediction error on training samples. The last two regularization

terms are utilized to avoid dramatic fluctuation of parameters in successive feed-

back iterations. For related samples, those with strong relatedness strengths (i.e.,
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large Ui and Li) will have large output scores by the ranking function, and vice

versa. ηt is the weight for the concept fusion term. The large value of ηt reflects

the high utility of the concept fusion method to find relevant samples. Therefore,

we determine the initial value η0 according to the number of relevant samples

contained in the search results of automatic search. We adopt a linear function

η0 = 1 + |Lp|
|L0| to calculate η0, where L0 is the labeled sample set after automatic

search, and Lp is the labeled relevant sample set.

To simplify the constraints in Eq. (6.4), we set the boundary Li = 1, Ui = +∞
for a relevant sample, and Li = −∞, Ui = −1 for an irrelevant sample. Thus,

Eq. (6.4) can be re-written as follows:

min
wt,ηt,β

t

1
2
||wt||2 + C

∑Nt

i=1(ξi + ζi) +
1
2
(ηt − ηt−1)2 + 1

2
||βt − βt−1||2

s.t. f t(xi) ≥ Li − ξi if yi > −1

f t(xi) ≤ Ui + ζi if yi < 1

ξi, ζi ≥ 0, i = 1, 2, . . . , Nt

(6.5)

The corresponding (primal) Lagrangian function is obtained as:

LP = 1
2
||wt||2 + C

∑Nt

i=1(ξi + ζi) +
1
2
(ηt − ηt−1)2 + 1

2
||βt − βt−1||2 −

Nt∑
i=1

µi(ξi + ζi)

−
Nt∑
i=1

αi(f
t(xi)− Li + ζi) +

Nt∑
i=1

α
′
i(f

t(xi)− Ui − ξi)

(6.6)

where µi ≥ 0, αi, α
′
i ≥ 0 are Lagrange multipliers. We minimize LP by setting its

derivative with respect to wt, η
t, βt

l , ξi, ζi to zero, which results in:

wt =
Nt∑
i=1

αiϕ(xi)−
Nt∑
i=1

α
′
iϕ(xi)

ηt = ηt−1 +
Nt∑
i=1

αi

∑K
k=1 d

t
kfk(xi)−

Nt∑
i=1

α
′
i

∑K
k=1 d

t
kfk(xi)

βt
l = βt−1

l +
Nt∑
i=1

αiw
T
l ϕ(xi)−

Nt∑
i=1

α
′
iw

T
l ϕ(xi)

ξi = C − µi − αi

ζi = C − µi + α
′
i

(6.7)
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Substituting Eq. (6.7) into Eq. (6.6), we get the Lagrange dual function which is

expressed in matrix form as:

W (αi, α
′

i) = arg max
A1,A2

[−1

2
[A1A2]

TZ[A1A2] +PT
1A1 −PT

2A2] (6.8)

s.t. ITNt
(A1 −A2) = 0

where A1 = [α1, α2, . . . , αNt ]
T ,A2 = [α

′
1, α

′
2, . . . , α

′
Nt
]T , 0 ≤ αi, α

′
i ≤ C

P1 = [p11, p21, . . . , pNt1]
T ,P2 = [p12, p22, . . . , pNt2]

T

pi1 = Li − ηt−1
K∑
k=1

dtkfk(xi)− 1
t−1

t−1∑
l=1

βt−1
l wT

l ϕ(xi)

pi2 = Ui − ηt−1
K∑
k=1

dtkfk(xi)− 1
t−1

t−1∑
l=1

βt−1
l wT

l ϕ(xi)

Z =

[
S −S
−S S

]
S = (sij)

Nt
i,j=1, sij = κ(xi,xj) +

K∑
k=1

dtkfk(xi)
K∑
k=1

dtkfk(xj) +
1

t−1

t−1∑
l=1

wT
l ϕ(xi)w

T
l ϕ(xj)

Compared to the solution of the typical SVM, Eq. (6.8) involves new coeffi-

cients
K∑
k=1

dtkfk(xi)
K∑
k=1

dtkfk(xj) and
t−1∑
l=1

wT
l ϕ(xi)w

T
l ϕ(xj) into the quadratic vari-

ables sij. This indicates that our ranking function is optimized by simultaneously

taking advantages of the kernel matrix, the related concept classifiers, as well as

the local ranking functions learned in the previous iterations. By solving Eq. (6.8),

we obtain the model parameters {αi, α
′
i}Nt

i=1, which are in turn used to compute

wt, η
t, and {βt

l}t−1
l=1 according to Eq. (6.7). Finally, the visual-based ranking func-

tion f t(x) is obtained according to Eq. (6.1). Given a test sample xi, we compute

its relevance score rtv(xi) by the sigmod function:

rtv(xi) =
1

1 + e−f t(xi)
(6.9)

6.3.3 Temporal-based Ranking Model
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Aforementioned, the relevant and related samples are usually temporally cor-

related. That is to say, the occurrence of a related or relevant sample usually

implies the appearance of other relevant samples nearby in a video. To explore

such temporal relationship, we here learn a temporal-based ranking model based

graph-based semi-supervised learning technique [Zhu05].

In iteration t, we denote X = {Lt,Ut} as a set of N samples, where the

l samples in Lt are labeled, and the remaining samples in Ut are unlabeled.

We use zL = {z1, z2, . . . , zl} to represent the relevant probability of the labeled

samples, where zi = 1 for a relevant sample, zi = 0 for an irrelevant sample,

and zi =
K∑
k=1

dtkfk(xi) for a related sample. An undirected graph G = (V,E) is

constructed to model the temporal relationship between samples. The vertex set

V corresponds to the N samples in X, and the edge set E is weighted by a N ×N

pairwise similarity matrix W = {Wij}Ni,j where Wij is measured as

Wij = exp(−dis(I(xi),I(xj))
2

σ2 ) (6.10)

where I(xi) is the position of a sample in a video, dis(., .) is the L1 distance, and

σ is the scaling parameter which is empirically set in experiments. When xi and

xj are in a same video, dis(I(xi), I(xj)) is equal to the number of interval shots

between them, otherwise, dis(I(xi), I(xj)) is infinite (Wij=0). Based on graph

G, we next infer the relevance scores of unlabeled samples.

According to the theory of graph-based semi-supervised learning [Zhu05], a

real-valued function f is defined to determine the relevance scores of unlabeled

samples. It can be learned as follows:

f ∗ = argminf

∑
i,j

Wij

Dii
(fi − fj)

2

s.t. fi ≡ zi (1 ≤ i ≤ l)
(6.11)

where Dii =
∑
j

Wij. Let P = D−1W, and vector f = [fTL , f
T
U ]

T denote the

relevance score of all the samples. Eq. (6.11) can be transformed to its matrix

form as:
f∗ = argminf{fT (I−P)f}

s.t. fL ≡ zL
(6.12)
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Split the matrix P after the l−th row and l−th column, we have

P =

[
PLL PLU

PUL PUU

]
(6.13)

Substitute the P in Eq. (6.12) with Eq. (6.13), substitute the f with [fTL , f
T
U ]

T , and

solve the resultant equations, we can obtain the temporal-based ranking function

gt as:

gt : fU = (I−PUU)
−1PULzL (6.14)

6.3.4 Adaptive Result Fusion

Based on the visual-based ranking model f t and temporal-based ranking model

gt learned in each iteration t, the relevance score r(xi) of sample xi is generated

by fusing its scores from f t and gt:

r(xi) = λtgt(xi) + (1− λt)rtv(xi) (6.15)

where λt ∈ [0, 1] is a balance weight in iteration t.

In order to optimally explore these two ranking models, we next propose an

adaptive fusion method to automatically optimize the weight λt in each iteration.

The basic idea is that λt should make the relevance scores of relevant samples

as large as possible, and make that of irrelevant samples as small as possible.

Meanwhile, λt is expected to approach the previous value λt−1. We optimize λt

as:

argmin
λt

1

2
(λt − λt−1)2 +

Cp

|Lt
p|

∑
xi∈Lt

p

(r(xi)− 1)2 +
Cn

|Lt
n|

∑
xi∈Lt

n

r2(xi) (6.16)

where Lt
p, L

t
n are the labeled relevant and irrelevant sample sets in iteration t

respectively, and Cp, Cn are trade-off weights. By setting the derivation of the
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objective function with respect to λt to zero, we get the optimal solution as:

λt = 1
z
[λt−1 + 2Cn

Lt
n

∑
xi∈Lt

n

(gt(xi)r
t
v(xi) + (rtv(xi))

2)

+ 2Cp

Lt
p

∑
xi∈Lt

p

(gt(xi)r
t
v(xi) + (rtv(xi))

2 + gt(xi) + rtv(xi))]

where :

z = 1 + 2Cp

Lt
p

∑
xi∈Lt

p

(gt(xi) + rtv(xi))
2 + 2Cn

Lt
n

∑
xi∈Lt

n

(gt(xi) + rtv(xi))
2

(6.17)

As a result, the final search results are generated by sorting the video shots

according to the relevance scores in Eq. (6.15) in a descending order.

6.4 Experiments

6.4.1 Experimental Settings

We conducted experiments on two video datasets. The first dataset is the “TV08”

dataset (see section 3.1.1), and the second one is the “YT11” dataset (see sec-

tion 3.2.2). On “TV08” dataset, we employed Comlubia374 [YCKH07] as the

primitive concept classifiers. On “YT11” dataset, the 70 concept classifiers were

built using the standard Support Vector Machine (SVM) with Gaussian RBF

kernel. To build the concept bundle classifiers on both datasets, we employed

the SL approach in chapter 4. The parameters in SVM and SL were determined

through a five-cross validation process.

To evaluate the search performance, we conducted video search on 48 queries

from “TV08” dataset and 40 queries from “YT11” dataset. Given a text query,

our search system first employs the automatic semantic video search approach

in chapter 5 to return the initial search results. In each iteration of interactive

search, user is asked to label the top 100 video shots as relevant, related, or

irrelevant. Then the system updates the concept weights, learns visual-based

and temporal-based ranking models. Finally, the search results are generated

according to Eq. (6.15). In total, 20 feedback iterations were conducted for each

query. Some parameters in our approach are set empirically. In particular, we set

C = 100 in updating concept weights, C = 100, γ = 1(RBF kernel parameter) in
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(b) “YT11” Dataset

Figure 6.6: The performance comparison in each iteration between two ap-
proaches using RL or CL measured by MAP@1000

learning the visual-based ranking function, and σ = 5 in learning the temporal-

based ranking function. In the adaptive result fusion, the initial weight λ0 in

Eq. (6.15) is set as 0.5. The weight will be adjusted in each iteration according

to Eq. (6.17), where the tradeoff parameters Cp = Cn = 100.

Average Precision (AP), which corresponds to the area under a non-interpolated

recall/precision curve, was used as the performance metric. For each query, we

compute the AP of the top 1, 000 search results. We then averaged the APs

over all the queries, resulting in the mean average precision (MAP), which is the

overall evaluation metric.

6.4.2 Evaluations

6.4.2.1 Evaluation on the Effectiveness of Related Samples

In this experiment, we investigate the utility of related samples in interactive

video search. We compare two labeling strategies: Related Labeling (RL) and

Conventional Labeling (CL). In RL, users are asked to label samples as relevant,

irrelevant or related, while in CL users are asked to label samples as relevant

or irrelevant. Based on user feedbacks, we employ two approaches to refine the

search results, including the approaches proposed in our previous work [YZZ+10]

and this work.

Figure 6.6 shows the performance comparison results. We can see that RL

outperforms CL on both datasets, for both previous or current approaches. The

performance improvement by RL is more significant on “YT11” dataset than that
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Figure 6.7: The performance of each query in the last iteration on “TV08” dataset
measured by AP@1000

on “TV08” dataset. The main reason is that the relevant samples in “YT11”

dataset are more sparse than those in “TV08” dataset, and the exploration of re-

lated samples can well boost search performance especially when relevant samples

are sparse.

Figure 6.7 shows the APs of the 48 queries in the last iteration on “TV08”

dataset. Working with our approach, RL performs better than CL on 27 queries,

worse on 11 queries and the same on 10 queries. Figure 6.8 illustrates the APs

of the 40 queries in the last iteration on “YT11” dataset. Compared to CL with

our approach, RL with our approach performs better on 20 queries, worse on 13

queries, and the same on 7 queries.

To further analyze the utility of related samples on different queries as pre-

sented in Table 6.1 and Table 6.2, we illustrate some query attributes as well as

the performance comparison. The query attributes include:

• # of related samples: the number of related samples labeled in the search

process for a query;

• Query Type: a query is simple (S) or complex (C);

• Motion: the motion event in a query;
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Table 6.1: Illustration of the query attributes on “TV08” dataset, where “RL vs.
CL” means RL or CL performs better on a given query
Query # of Query Motion RL Query # of Query Motion RL

Related vs. Related vs.
ID Samples Type CL ID Samples Type CL

221 14 C open RL 245 8 C watch RL
222 136 C sit CL 246 28 C RL
223 37 C RL 247 245 C RL
224 198 C move RL 248 431 C RL
225 0 S same 249 0 S same
226 633 C RL 250 55 C RL
227 46 C RL 251 15 C talk RL
228 153 C write CL 252 32 C ride RL

type
229 213 C RL 253 8 C walk CL
230 205 C pass RL 254 0 C talk same
231 0 S same 255 13 C get into RL
232 4 C walk RL 256 181 C sing RL

play
233 0 C same 257 255 C RL
234 144 C move RL 258 131 C sit CL
235 84 C talk RL 259 372 C RL
236 894 C break CL 260 0 S same
237 341 C talk RL 261 165 C RL
238 33 C push RL 262 24 C CL
239 142 C stand CL 263 233 C RL

play
240 3 C same 264 277 C CL
241 5 C CL 265 99 C talk RL
242 456 C sit RL 266 366 C sit CL
243 0 C look same 267 0 C zoom same
244 130 C approach CL 268 0 C same
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Figure 6.8: The performance of each query in the last iteration on “YT11” dataset
measured by AP@1000

From the results in Table 6.1 and 6.2, we can derive the following observations:

1. The exploration of related samples can boost the search performance for

most complex queries.

2. When few related samples are labeled for a query (e.g. the query 225, 240 in

Table 6.1 and query 8, 12 in Table 6.2), RL achieves the same performance

as compared to CL.

3. The related samples are ineffective in some complex queries containing mo-

tion event such as the query 228, 236, 239 (Table 6.1), and the query 3,

18, 31 (Table 6.2). This is because some motion events, such as “playing”,

“singing”, and “writing” etc, are difficult to be modeled by the ranking

functions.

The related samples may fail to find relevant samples sometimes. For example,

on “TV08” dataset, for the query 266 “more than 3 people sitting at a table”,

user usually labels the related samples as those satisfying “3 or fewer people

sitting at a table” (the query 222). Since the related and relevant samples occur

mutually, the appearance of related samples actually indicates the nearby samples
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Figure 6.9: The performance comparison in each iteration between our weight
updating approach and the fix weight approach measured by MAP@1000

are irrelevant to the query. In such case, the temporal-based ranking function fails

to predict the presence of relevant samples. The other example is the query 264

“one or more colored photographs”, the related samples refer to those black and

white photographs. In such case, the related and relevant samples have different

visual features, and thus the visual features of related samples could decrease the

search performance. In summary, the related samples are useful to find relevant

samples when they are visually similar or temporally neighboring to the relevant

samples.

6.4.2.2 Evaluation on Adaptive Result Fusion

This experiment investigates the effectiveness of the proposed adaptive result fu-

sion method in Section 6.3.4. We set the initial weight λ0 to 0.5, and adjust

the value of λt in each iteration t according to Eq. (6.17). We compare this

fusion approach to the typical fixed weighting fusion strategy, where the weight

λt is fixed as 0.4 because this value achieves the best performance. The per-

formance comparison is provided in Figure 6.9. We can see that the proposed

adaptive fusion method performs better than the fixed weighting strategy. In par-

ticular, It obtains about 7% MAP improvement on “TV08” dataset and 14.4%

MAP improvement on “YT11” dataset in the last iteration. The main reason

is that the adaptive fusion approach optimizes the fusion weight based on user

feedbacks and thus can optimally explore the visual-based and temporal-based

ranking functions.
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Table 6.2: Illustration of the query attributes on “YT11” dataset, where “RL vs.
CL” means RL or CL performs better on a given query
Query # of Query Motion RL Query # of Query Motion RL

Related vs. Related vs.
ID Samples Type CL ID Samples Type CL

1 77 C CL 21 235 C dance RL
2 106 C RL 22 136 C CL
3 156 C sing CL 23 323 C hunt RL
4 65 C RL 24 131 C race RL
5 615 C cook RL 25 42 C see RL
6 163 C ride RL 26 309 C dance same
7 49 C talk RL 27 0 eat same
8 5 C write same 28 112 C fight RL
9 15 C CL 29 345 C RL
10 59 C fly RL 30 412 C interview RL
11 34 C land CL 31 154 C kiss CL
12 8 C laugh same 32 0 play same
13 34 C crash RL 33 373 C swim CL
14 198 C walk RL 34 67 C ride RL
15 765 C crash CL 35 143 C fight RL
16 11 C same 36 79 C RL
17 76 C dance CL 37 274 C crash CL
18 45 C watch CL 38 551 C fight CL
19 168 C fight RL 39 354 C RL
20 35 C same 40 254 C playing CL
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Figure 6.10: The performance comparison in each iteration between our approach
and the-state-of-art methods measured by MAP@1000

6.4.2.3 Comparison to the-state-of-art Methods

To demonstrate the effectiveness of our approach, we compare it against the

following the-state-of-art methods:

• Support Vector Machine (SVM): In each iteration, we build an SVM classi-

fier based on relevant and irrelevant samples. Gaussian RBF kernel is used

in SVM and the parameters are set empirically (C = 100, γ = 1). This

classifier is then used to predict the presence of the query in the unlabeled

keyframes. The search results are generated according to the prediction

scores.

• Concept Fusion Method (CF) [HLRYC06]: In each iteration, the search

results are generated by fusing the individual results from related con-

cepts. The initial concept weights are set according to the text matching

scores [CHJ+06]. These weights are adjusted according to the approach in

[HLRYC06], where a maximum posteriori probability estimation is used.

• Our Previous Approach [YZZ+10]: In each iteration, the approach first

updates concept weights, then learns a visual-based ranking model based

on relevant, related and irrelevant samples. The search results are generated

by ordering the samples according to their relevance scores from the ranking

models.
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Figure 6.10 illustrates the performance comparison between our approach and

the above three methods on two datasets. We can see that our approach performs

the best among all the methods. It achieves a MAP of 0.41 on “TV08” dataset

and 0.238 on “YT11” dataset in the last iteration. Compared to CF, SVM and

our previous approach, our approach achieves a 159%, 120% and 96% perfor-

mance improvement respectively on “TV08” dataset in the last iteration, while

the corresponding improvements on “YT11” dataset are 526%, 205% and 167%

respectively. The improvements over SVM and CF demonstrate that the related

samples are beneficial to interactive video search. As aforementioned, the advan-

tages of exploring related samples are two-fold: First, the related and relevant

video segments usually share similar visual content in part due to their semantic

connection, so that the related samples are beneficial to the modeling of relevant

samples. Second, since video content is temporally dynamic and continuous, the

occurrence of related video segments is an indicator for the presence of relevant

ones in the neighboring clips. Compared to our previous approach in [YZZ+10]

that exploits the visual information of related samples by the visual-based rank-

ing model, the approach in this work further leverages the temporal relationship

between the related and relevant samples by the proposed temporal-based rank-

ing model. Through optimally exploring the visual-based and temporal-based

ranking models by the adaptive fusion method, our approach achieves better

performance than the previous method [YZZ+10].

6.5 Conclusion

In this chapter, we proposed to exploit “related samples” to enhance interactive

semantic video search with complex queries. The “related samples” are defined

as those samples that are relevant to part of the query rather than the entire

query. A visual-based ranking model and a temporal-based ranking model have

been developed to leverage related samples for video search. The search results

are generated by fusing the results from these two models. An adaptive fusion

method has been proposed to optimally explore these two models. Extensive

experiments were conducted on two datasets: TRECVID 2008 and YouTube

2011 datasets. The experimental results have demonstrated the effectiveness of
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the proposed approach.
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Chapter 7

Application: Memory Recall

based Video Search

7.1 Introduction

In our lifetime, we have seen and shot lots of photos and videos that record

valuable and interesting events, places and people etc in our life. From time to

time, we may want to seek a video or video segments that we have recorded or seen

before for various reasons. For example, a couple may want to view their wedding

video along with shots of specific friends and memorable events happened during

the wedding. A girl may want to download a cartoon video she has seen in her

friend’s home from web. In such cases, it would be nice to provide a video search

system that is able to find the desired video or video segments based on the user’s

memory recall. We call this “Memory Recall based Video Search” (MRVS).

To facilitate video search, the existing video search approaches focus on ex-

ploiting textual features, visual features, or semantic concepts based on users’

queries. Although the state-of-art approaches have achieved some successes, they

are usually ineffective when users specify a complex, inaccurate and/or incom-

plete query. In MRVS task, inaccurate or incomplete queries are common since

people’s memory recalls are usually vague, especially when the desired scenes to

be recalled occurred a long time ago. This vagueness makes the state-of-art video

search approaches ineffective for MRVS tasks.
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Recently, a new video search task named “Known-item Search” (KIS) has

emerged in TRECVID 2010 [TRE]. It aims to find a desired video that has been

seen or known before by a user. In this task, a user inputs a text description of the

search task, and the system returns a ranked list of results with the expectation

that the correct match is ranked as high as possible. Although research on KIS

task is just beginning, researchers have discovered that text-based video search

is the only effective mean to tackle this problem [CWZea10; CYNea10]. MRVS

is similar to KIS but with one big difference: MRVS deals more with users’

personal media depositories where metadata and text descriptions are sparse,

and visual matching of the desired content is often the primary mode of search.

Hence the text-based techniques developed in KIS and earlier multimedia question

answering approaches [NWZ+11] will not be effective. In particular, there are four

challenges when applying the text-based video search approaches to MRVS tasks.

First, the text words associated with the desired video are often incomplete and

vague. Second, a user may remember only fragments of visual contents instead of

stories or the actual conversations in the desired video, hence they are not able

to provide an accurate text query. Third, many of the visual scenes are hard to

describe using text. Fourth, users sometimes only want to find the desired video

segments inside a long video, while the text-based approach is unable to support

this because of the absence of text annotations at the video segment level. Hence,

in MRVS task, users will need to issue various models of queries to recall his/her

memory of a desired video.

To tackle these challenges, we design a video search system that integrates

text-based, content-based and semantic video search approaches. To recall the

desired video or video segments, a user may input a text query, a sequence of

visual queries and concept queries, or a combination of all (see Figure 7.1). A text

query is used to express the story or conversation appearing in the desired video,

while a sequence of visual queries and concept queries is employed to represent

some fragments of the desired video segments. In particular, since the users’

visual memory is usually vague, the visual query can at best be expressed in the

form of a visual sketch, while the corresponding concept query contains the list

of objects/items that might appear in that visual query. In addition, we organize

the visual queries and concept queries according to their temporal order in the
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Figure 7.1: The framework of our video search system for the MRVS task

sequence. To help users in better specifying their queries, we further incorporate

several functions in our system. First, for each visual query, we employ a visual

query suggestion model to automatically suggest potential visual examples to help

users refresh their memory. The users can then select one of the suggested visual

examples to describe their desired contents more precisely. The selected visual

examples are then used to compute the content-based relevance scores based on

a color matching scheme. Second, in the color matching scheme, we build a

color similarity matrix to allow for inexact color matching due to the fact that

the users are unlikely to remember the exact colors in the desired scene. Third,

for each concept query, we use the bundle-based semantic video search approach

[YZZ+11a] to calculate semantic relevance scores as this approach works well for

complex semantic concept inputs. Fourth, we fuse the content-based and semantic

relevance scores for each video segment, and employ a reranking algorithm to

generate a sequence-based relevance score by exploiting the temporal relationship

among the visual and concept queries. Finally, the generated sequence-based

relevance score is linearly combined with the text-based relevance score to return

search results.
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Furthermore, considering the fact that the query is incomplete and inexact,

and there are few relevant answers, it is likely that the initial search result list

may not contain the desired video. To further help the users, we incorporate the

interactive video search technique for MRVS task. It consists of two serial steps:

users’ labeling and result updating. In the first step, as the users are unlikely

to find any relevant sample1, the system thus permits the users to label related

and irrelevant samples. Related samples [YZZ+11b] are defined as those that

are visually similar or semantically close to the relevant result. In the second

updating step, we develop a visual query updating approach to modify the initial

visual queries as well as a concept weight updating approach to adjust the concept

weights. The newly generated visual queries and concept weights are then fed

to the automatic video search approach to generate the new search results. We

summarize our contributions as follows:

• To help users in better refreshing their memory of a desired video, we de-

velop a visual query suggestion module to provide better visual queries,

as well as a color matching scheme that allows for inexact color matching

between visual queries and the desired video segments.

• We develop an algorithm to rerank the search results by exploring the tem-

poral relationship between visual and concept queries.

• As there is often one or few relevant answers, we develop a relevance feed-

back scheme that allows users to label related and irrelevant samples. By

exploiting visual and semantic similarity between related and relevant sam-

ples, we develop algorithms to update visual query and concept weights to

refine the search results in interactive video search.

To the best of our knowledge, this is the first work that explores video search

based on users’ memory recalls. We conduct large-scale experiments on two video

datasets: TRECVID 2010 and YouTube 2012 datasets. The experimental results

demonstrate the effectiveness of our system for MRVS tasks.

1There is only one relevant sample for each query and the search process ends once the
relevant sample is presented
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7.2 Overview

7.2.1 Framework

Figure 7.1 shows the framework of the system, which consists of four parts:

Query Input, Automatic Video Search, Result Visualization and Interactive Video

Search. In the query input stage, a user inputs a text query Qt, a sequence of

visual and concept queries Qs = {Qh
v , Q

h
c}Hh=1, or a combination of all, based on

his/her recall on the desired video. An example is shown in Figure 7.1 (see Query

Input Part), where three visual queries and the corresponding concept queries

are provided by users to describe the three video segments in users’ memory.

Based on the queries, the automatic video search generates the search results by

fusing the individual results from the text-based video search and the sequence-

based video search. To effectively present the search results, the system adopts a

bundle-based visualization approach. Each bundle corresponds to a video result

including several video segments, where the i-th segment is the search result with

respect to the i-th visual and concept queries. During interactive video search,

a user first labels the result samples as related or irrelevant. The system then

refines the visual queries and adjusts the concept weights, which are fed to the

automatic video search to generate the search results for the next iteration.

7.2.2 Visual Query Suggestion

Our system allows a user to draw a visual query Qh
v on a sketchpad. However,

the drawn visual query Qh
v is inexact since the users’ memories are usually vague.

Therefore, it is desirable to automatically suggest potential visual queries based

on user’s rough drawing. To this end, we propose a visual query suggestion

approach to tackle this problem. As Figure 7.2 shows, when a user finishes

drawing a visual query Qh
v , the system automatically suggests several potential

visual query candidates. The user can then replace Qh
v with any one of the

suggested candidates if he/she thinks that the selected one is visually closer to

the desired scene in the memory.

To find potential visual query candidates for Qh
v , we calculate a visual simi-

larity S(Qh
v = Km

i |Qt,Qs) between Qh
v and each video keyframe Km

i of the video
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Figure 7.2: An example to illustrate visual query suggestion, where the purple
rectangled visual query is selected by user to replace the drawing one.

vm under the existing query inputs Qt,Qs below:

S(Qh
v = Km

i |Qt,Qs) = rv(Q
h
v , K

m
i )rt(Qt, dm)rs(Qs/{Qh

v , Q
h
c},Ks/K

m
i ) (7.1)

where Qt is the existing text query, Qs is the existing sequence of visual and

concept queries, dm is the text description associated with vm, Ks/K
m
i represents

a keyframe sequence including neighbors of Km
i without Km

i , and Qs/{Qh
v , Q

h
c}

is the sequence of visual and concept queries without {Qh
v , Q

h
c}. rv(Qh

v , K
m
i ) cal-

culates a content-based relevance score betweenQh
v andKm

i (Eq. (7.2)); rt(Qt, dm)

calculates a text-based relevance score (Section 7.3.1); and rs(Qs/{Qh
v , Q

h
c},Ks/K

m
i )

is a sequence-based relevance score (Eq. (7.7)). The details of these calculations

are elaborated in the next section.

According to Eq. (7.1), we obtain the top K keyframes, which are the po-

tential visual query candidates for the initial visual query Qh
v . For each of these

candidates, we only display its corresponding drawing area with respect to Qh
v (

Figure 7.2). By selecting one of these candidates, a user can replace Qh
v with the

selected one to reduce the errors in the initial visual query specification.
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7.3 Automatic Video Search

7.3.1 Text-based Video Search

Given a text query Qt, the text-based video search computes the relevance scores

between Qt and each video. LetD = {d1, d2, . . . , dM} denote the text descriptions
associated with the videos. The system employs the term frequency and inverse

document frequency weighting scheme (tf-idf ) [MRS09] to compute the text-

based relevance scores rt(Qt, dm), which is widely used as a weighting factor in

information retrieval and text mining.

7.3.2 Sequence-based Video Search

Besides textual terms, a user may remember certain visual scenes in the desired

video or video segments. We thus prompt the user to input a visual query Qh
v

to describe some glimpses of visual content in the desired scene, and a concept

query Qh
c to specify the semantic concepts appearing in that scene. All the

recalled visual scenes are organized as a sequence Qs = {Qh
v , Q

h
c}Hh=1, where the

notation h indicates the temporal order. Based on the sequence Qs, the Sequence-

based Video Search consists of three steps: Content-based Video Search, Semantic

Video Search, and Sequence-based Reranking.

7.3.2.1 Content-based Video Search

Given a visual query Qh
v and a keyframe Km

i , the content-based video search

estimates a relevance score by measuring their color-spatial similarity. Here, we

only use colors and their rough locations instead of other visual features such

as shape, texture etc. The reason is that the user is usually unable to exactly

draw shapes, textures of semantic objects, while he/she can better recall color

compositions of visual scenes. We divide each visual query Qh
v and each keyframe

Km
i into 25 image blocks {BQh

v
j }25j=1, {B

Km
i

j }25j=1, where each block is represented

as a 256-dimension (16H × 4S × 4V ) feature vector by HSV color model [Fai05],

which is a more intuitive and perceptually linear color space as compared to

RGB model. The relevance score rv(Q
h
v , K

m
i ) between Qh

v and Km
i is equal to the
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weighted sum of the relevance scores from the corresponding blocks as follows:

rv(Q
h
v , K

m
i ) =

25∑
j=1

w(B
Qh

v
j )rv(B

Qh
v

j , B
Km

i
j ) (7.2)

where rv(B
Qh

v
j , B

Km
i

j ) is the relevance score between B
Qh

v
j and B

Km
i

j , and w(B
Qh

v
j )

is the weight of the block B
Qh

v
j . A block with a higher weight means that it is

more important in the measurement. Here, we postulate that the importance of

a block B
Qh

v
j is proportional to the area size painted in this block, thus we set

w(B
Qh

v
j ) as the proportion of the painted area in B

Qh
v

j to that in Qh
v as follows:

w(B
Qh

v
j ) =

f(B
Qh
v

j )T 1

25∑
j
′
=1

f(B
Qh
v

j
′ )T1

(7.3)

where f(B
Qh

v
j ) is a 255-dimension feature vector (excluding the one dimension

which is the background color in the sketchpad), and 1 denotes a vector with all

of its elements equal to one.

To calculate rv(B
Qh

v
j , B

Km
i

j ) between two blocks, one challenge is to overcome

the inexact color matching problem. It is very likely that a user may use a similar

color instead of the exact one in the desired scene to draw the visual query Qh
v . To

tackle this problem, we employ a perceptually linear color space HSV in which the

computational difference between two colors is proportional to human perceptual

difference between colors [Fai05]. Let a and b be two colors, and (ha, sa, va),

(hb, sb, vb) be their HSV values respectively, the color similarity Sa,b between a

and b can be calculated 1 as follows:

Sa,b = 1− 1/
√
5[(va − vb)

2 + (sa cosha − sb coshb)
2 + (sa sinha − sb sinhb)

2]

(7.4)

In this way, we build a color similarity matrix S to account for the slight variations

in color specification by the users. The relevance score rv(B
Qh

v
j , B

Km
i

j ) is computed

1http://www.ee.columbia.edu/ln/dvmm/researchProjects/MultimediaIndexing/VisualSEEk/acmmm96/
node8.html#eqcoldist
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by measuring the color similarity as follows:

rv(B
Qh

v
j , B

Km
i

j ) =
f(B

Qh
v

j )TSf(B
Km

i
j )√

f(B
Qh
v

j )TSf(B
Qh
v

j )f(B
Km

i
j )TSf(B

Km
i

j )
(7.5)

where the numerator calculates the color similarity by considering the correlation

between different colors, and the denominator is a normalization term.

7.3.2.2 Semantic Video Search

Besides sketching a visual query, it is also convenient for a user to specify the

semantic concepts appearing in the desired visual scene to form a concept query

Qh
c . One advantage of concept query is that it can add semantic information in

the query input, which complements the inadequacy of visual query since it is

difficult for the user to draw semantic objects.

To calculate the semantic relevance scores rc(Q
h
c , K

m
i ) between Qh

c and each

keyframeKm
i , we employ the bundle-based semantic video search approach [YZZ+11a].

This approach utilizes a high-level concept descriptor named “Concept Bundle”,

that integrates multiple primitive concepts and the relationship between that, to

perform semantic video search. Because a recalled visual scene usually contains

multiple semantic concepts, a concept bundle can better interpret the concept

query Qh
c as compared to just the primitive concepts in MRVS task. The pro-

cess of the semantic video search is as follows: We first define a set of primitive

concepts and build the corresponding concept classifiers. We then select a set

of informative concept bundles based on the primitive concepts, and build the

corresponding concept bundle classifiers. Finally, for each concept query Qh
c , we

calculate its semantic relevance scores rc(Q
h
c , K

m
i ) with respect to each keyframe

Km
i . The details of the process can be found in [YZZ+11a].

7.3.2.3 Sequence-based Reranking

For each visual query Qh
v and concept query Qh

c , the approaches estimate a

content-based relevance score rv(Q
h
v , K

m
i ) and a semantic relevance score rc(Q

h
c , K

m
i ).

The relevance score rb({Qh
v , Q

h
c}, Km

i ) between {Qh
v , Q

h
c} and the keyframe Km

i is
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calculated by linearly fusing the scores rv(Q
h
v , K

m
i ) and rc(Q

h
c , K

m
i ) as follows:

rb({Qh
v , Q

h
c}, Km

i ) = α ∗ rv(Qh
v , K

m
i ) + (1− α) ∗ rc(Qh

c , K
m
i ) (7.6)

where α is a weight. We set it to 0.5 to assign equal weights to the content-based

and semantic video search results.

In real cases, some users may remember several visual scenes and are able

to specify the temporal order among them. Thus temporal relationship can be

explored to increase the search performance. Here, we propose a reranking algo-

rithm to explore temporal relationship.

Given the sequence Qs = {Qh
v , Q

h
c}Hh=1, where {Qh

v , Q
h
c} occurs before {Qh+1

v , Qh+1
c },

the sequence-based reranking algorithm aims to find a subset of keyframes from a

continuous keyframe sequence Ks = {Km
1 , . . . , Km

W} to optimally match Qs. Here,

W is the window size which we set it as the number of keyframes in a video in

experiments. We transform the calculation of the sequence-based relevance score

rs(Qs,Ks) to select an optimal subset with H keyframes from Ks to best match

the H queries in Qs. Meanwhile, this matching should be consistent in temporal

order. Here, the optimal subset means that it can maximize rs(Qs,Ks) among all

choices. The formula is as follows:

rs(Qs,Ks) = max
i1,i2,...,iH

H∏
h=1

rb({Qh
v , Q

h
c}, Km

ih
)

s.t. 1 ≤ i1 < i2 < . . . < iH ≤ W

(7.7)

A direct and exact solution to this problem has an extremely high computa-

tional cost, which is O(WH). This time cost is too high to conduct online video

search. To reduce the computational cost, we propose an approximate greedy

algorithm to solve Eq. (7.7). As Algorithm 1 shows, for each {Qh
v , Q

h
c}, the algo-

rithm first finds a keyframe Km
ih

from the sequence Ks that maximizes the value

of rb({Qh
v , Q

h
c}, Km

ih
) (line 4-6). It then checks the temporal order between any

two keyframes Km
ih

and Km
ih′
. If the temporal order is wrong (line 9), the algo-

rithm reselects one keyframe to satisfy the temporal order constraint as well as to

maximize the relevance score rb({Qh
v , Q

h
c}, Km

ih
)rb({Qh′

v , Q
h′
c }, Km

ih′
) (line 10). The

approximate algorithm reduces the computational cost to O(H2W ).
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Algorithm 3 Sequence-based Reranking Algorithm

1: Input: The keyframe sequence Ks = {Km
ih
}Wih=1, the sequence Qs = {Qh

v , Q
h
c }Hh=1,

the relevance scores {rb({Qh
v , Q

h
c },Km

ih
)}h=H,ih=W

h=1,ih=1 (W ≥ H)
2: Output: the keyframe subset {Km

i1
,Km

i2
, . . . ,Km

iH
}, the relevance score rs(Qs,Ks)

3: Process:
4: for h = 1 to H do
5: ih = arg max

1≤ih′≤W
rb({Qh

v , Q
h
c },Km

ih′
)

6: end for
7: for h = 1 to H − 1 do
8: for h′ = h+ 1 to H do
9: if ih ≥ ih′ then
10: Change ih or ih′ to satisfy ih < ih′ as well as maximize the value

rb({Qh
v , Q

h
c },Km

ih
)rb({Qh′

v , Qh′
c },Km

ih′
)

11: end if
12: end for
13: end for
14: rs(Qs,Ks) = rb({Q1

v, Q
1
c},Km

i1
)rb({Q2

v, Q
2
c},Km

i2
) . . . rb({QH

v , QH
c },Km

iH
)

15: return {Km
i1
,Km

i2
, . . . ,Km

iH
}, rs(Qs,Ks)

7.3.3 Visualization

Based on the results from the text-based video search and the sequence-based

video search, the final search results are generated according to the fusion scores

from these two parts, where the fusion weights are set empirically in our experi-

ments.

To effectively present the search results to users, the system employs a bundle-

based visualization approach as shown in Figure 7.1. Here, a bundle contains H

keyframes in a video, where each keyframe matches one of {Qh
v , Q

h
c}Hh=1. The H

keyframes in a bundle could be returned by Algorithm 1.

Our bundle-based visualization approach is a trade-off between the video-

based and keyframe-based visualization approaches, which list videos or keyframes

one by one in the interface. One advantage of this visualization is that the system

can simultaneously present video results as well as several interesting and impres-

sive keyframes. Moreover, these keyframes can be labeled in the interactive video

search to further refine the search results.
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Figure 7.3: An example to illustrate related samples in MRVS task

7.4 Interactive Video Search

The interactive video search consists of two steps: 1) User’ labeling; and 2) Result

updating.

7.4.1 Labeling

In the traditional interactive video search, a user labels samples as relevant and

irrelevant. However, in MRVS task, there is likely to be only one or few relevant

answers for each query, which means that the possibility of finding a relevant

sample is rare and it will end the search in most cases. Therefore, users hardly

have opportunities to label relevant samples during the search process, which

makes the interactive video search ineffective. Thus, we resort to related samples,

which are more frequently seen in the interactive search results.

To tackle this problem, we allow users to label related and irrelevant samples.

In MRVS task, we define related samples as those that are either visually similar or

semantically close to the relevant samples [YZZ+11b]. Some examples of related

samples are illustrated in Figure 7.3.

To determine whether a related sample is visually similar or semantically close

to the relevant sample, the system first calculates a content-based relevance score

between the related sample and the corresponding visual query. If this score

is larger than a threshold, then this related sample is visually similar with the
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relevant sample. Otherwise, it is deemed to be semantically close to the relevant

sample. We use the visually similar related samples to update the visual queries,

and the semantically similar related samples to update the concept weights.

7.4.2 Result Updating

Based on the labeled related and irrelevant samples, the result updating approach

refines the search results from two aspects: modifying the visual queries, and

adjusting the concept weights. The updated visual queries and concept weights

are then fed to the automatic video search to generate new search results in the

next iteration.

7.4.2.1 Adjusting the Visual Queries

The initial visual queries may be inexact, thus we need to adjust the visual queries

in the interactive search process. Given a sequence of visual queries {Qh
v}Hh=1, this

step aims to map the visual queries into the new ones {Ihv }Hh=1 based on the labeled

related and irrelevant samples. Let Xh (1 ≤ h ≤ H) be the labeled sample set

with respect to Qh
v . For each sample xh

i ∈ Xh, it can be a related sample or

an irrelevant one. Our basic idea is that the new visual query Ihv should be

dissimilar to the irrelevant samples in Xh, and similar to the related samples in

Xh. Meanwhile, we should penalize the visual difference between Ihv and Qh
v . We

express this idea in an optimization framework as follows:

min
f(B

Ihv
j )

C1

R

R∑
r=1

||f(BIhv
j )− f(B

xh
r

j )||2 − 1
N

N∑
n=1

||f(BIhv
j )− f(B

xh
n

j )||2

+C2 ∗ (f(BIhv
j )− f(B

Qh
v

j ))TS(f(B
Ihv
j )− f(B

Qh
v

j ))

s.t. f(B
Ihv
j )T1 ≤ 1, fd(B

Ihv
j ) ≥ 0, d = 1, 2, . . . , 255

(7.8)

where xh
r , x

h
n are related and irrelevant samples, R, N are the number of xh

r , x
h
n

in Xh respectively, S is the color similarity matrix, fd(B
Ihf
j ) is the value of the

feature vector f(B
Ihf
j ) on dimension d, and C1, C2 are the weights. The first term

in Eq. (7.8) makes the new visual query similar to the related samples. We always

set C1 > 1 to alleviate the imbalance problem between the related and irrelevant
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samples. The second term ensures that the new visual query is dissimilar to

the irrelevant samples. The third term is a penalty term on visual difference

between Qh
v and Ihv . We choose this penalty term since it satisfies the following

two conditions: First, if Qh
v = Ihv , the penalty cost is zero. Second, during the

mapping from Qh
v to Ihv , the more similar color it is mapped to, the lower cost it

will generate.

The optimization problem in Eq. (7.8) is an inequality constrained minimiza-

tion problem. It is easy to prove that this problem is a constrained convex

optimization problem, and has a global solution. We employ the Augmented

Lagrangian Method [Hes69] to solve this problem.

7.4.2.2 Adjusting the Concept Weights

For each concept query Qh
c , semantic video search calculates a semantic relevance

score with respect to each keyframe candidate. In this approach, we determine a

concept weight according to the classifier performance of the concept and the se-

mantic relatedness between the concept and the query based on the text-matching

scores [YZZ+11a]. This computation is not accurate because of the following two

reasons: First, the evaluation of classifier performance is inaccurate. Second, the

text-matching scores based on external text source cannot accurately reflect the

concept distribution in the video dataset. Therefore, we need to adaptively adjust

the concept weights in the interactive search process.

We propose an optimization algorithm to update the concept weights. Let the

concept query Qh
c be mapped to K related concepts {Ck}Kk=1, where dt−1

k is the

concept weight of Ck in iteration t− 1. In iteration t, the optimization algorithm

aims to adjust dt−1
k to dtk based on the labeled related and irrelevant sample set

Lr,Ln. Our basic idea is that the concept weights should make the semantic

relevance score of each related sample as large as possible, while ensuring that

of each irrelevant sample to be as small as possible. Moreover, to avoid drastic

fluctuation on concept weights, we make the new weight dtk as stable as possible.

The new weights {dtk}Kk=1 are optimized as follows:

argmin
dt

1
2
||dt − dt−1||2 + C(||Ir −Rrd

t||2 + ||Rnd
t||2)

s.t. ITkd
t = 1, 0 ≤ dtk ≤ 1, k = 1, 2...K

(7.9)
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where dt = [dt1, d
t
2, . . . , d

t
K ]

T , dt−1 = [dt−1
1 , dt−1

2 , . . . , dt−1
K ]T ; Ir, Ik are column vec-

tors with r, k elements equal to 1; C is a trade-off parameter; Rr is a |Lr| ×K

matrix, and the i-th row, j-th column element is the semantic relevance score of

the i-th related sample xi in Lr containing the concept Cj. Similarly, Rn is a

|Ln| ×K matrix. The first regularization term ||dt−dt−1||2 is employed to avoid

the drastic fluctuation of the weights, the second (third) term makes the semantic

relevance score of each related (irrelevant) sample approach to 1 (0). The con-

straint is used to normalize the weight vector dt. This optimization problem in

Eq. (7.9) can be solved using SMO algorithm [BLJ04].

7.5 Experiments

7.5.1 Experimental Settings

We conducted experiments on two video datasets. The first one is the “TV10”

dataset (see section 3.1.2), and the other one is “YT12” dataset(see section 3.2.3).

To perform semantic video search, we built the classifiers of the 130 primitive

concepts and the 40 informative concept bundles (see Table 7.1) selected by the

approach as described in [YZZ+11a] on both datasets. In particular, we directly

downloaded the 130 primitive concept classifiers from the CU-VIREO374 website1

for “TV10” dataset, and trained that by using the LibSVM algorithm2 for “YT12”

dataset. We then trained the classifiers of the 40 concept bundles by using the

multi-task SVM algorithm in chapter 4 for both datasets. All the parameters in

the algorithms were set through the fivefold cross-validation process.

7.5.2 Experimental Results

7.5.2.1 Evaluation on Automatic Video Search

We perform automatic video search on the 298 queries from “TV10” dataset and

50 queries from “YT12” dataset. In particular, we set the fusion weight α = 0.5

in Eq.(7.6) to give equal weights to the results from content-based and semantic

1http://www.ee.columbia.edu/ln/dvmm/CU-VIREO374/
2http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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Table 7.1: The 40 informative concept bundles selected based on the 130 primitive
concepts from TRECVID 2010 concept detection task, where we filtered the re-
sults by using WordNet to avoid the “the-kind-of” and ”the-part-of” relationship
between two primitive concepts in a concept bundle.
1 swimming,waterscape waterfront 21 computer or television screens,office

2 road,car 22 helicopter hovering,sky

3 boat ship,waterscape waterfront 23 walking,shopping mall

4 crowd,outdoor 24 landscape,mountain

5 plant,mountain 25 motorcycle,nighttime,racing

6 highway,car 26 celebrity entertainment,teenagers

7 airplane,military 27 celebrity entertainment,teenagers,singing

8 building,cityscape 28 demonstration or protest,explosion Fire

9 crowd,demonstration or protest 29 mountain,flower

10 beach,sky 30 conference room,meeting

11 cityscape,sky 31 natural disaster,waterscape waterfront

12 car,road,racing 32 sports,stadium

13 kitchen,female person 33 snow,mountain

14 beach,swimming 34 computer or television screens,office,meeting

15 bicycles,road 35 people marching,demonstration or protest

16 car,explosion fire 36 weather,reportor

17 desert,sky 37 helicopter hovering,military

18 telephones,office 38 bridges,boat ship

19 building,sky 39 flag,military

20 motorcycle,nighttime 40 singing,celebrity entertainment
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Figure 7.4: The performance comparison among the three approaches measured
by MAP@100

video search approaches. The balancing weights for text-based video search and

sequence-based video search was set to 0.3 and 0.7 respectively based on the

performance evaluation on the 122 training queries from the TRECVID 2010

KIS task.

The search performance was measured by the Average Precision (AP). For

each query, we measured the AP on the top 100 search results. All the AP values

are averaged to obtain the Mean Average Precision (MAP) as a measure of the

overall performance.

Experiment 1: This experiment evaluates the effectiveness of the visual

and concept queries as well as that of the visual query suggestion approach. We

compare the following three approaches: (1) Text-based Video Search (TVS)

which returns search results based only on text queries; (2) Text-based Video

Search + Sequence-based Video Search (TVS+SVS) which returns search re-

sults based on text queries and a sequence of visual and concept queries; and

(3) Text-based Video Search + Sequence-based Video Search + Visual Query

Suggestion (TVS+SVS+VQS) which further involves the visual query suggestion

approach to provide better visual queries. Figure 7.4 shows the comparison re-

sult. On “TV10” dataset, the MAPs of the three approaches are 0.412, 0.457,

and 0.518 respectively, while that for the “YT12” dataset are 0.229, 0.277, and

0.375 respectively. Compared to the pure text-based video search, TVS+SVS
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approach achieves a 10.9% improvement on “TV10” dataset, and 21.0% improve-

ment on “YT12” dataset. This verifies that the visual and concept queries are

useful in MRVS tasks. Moreover, the visual query suggestion further enhances

the search performance, with 13.3% and 35.4% improvements on “TV10” and

“YT12” datasets, respectively. This shows that the visual query suggestion can

further improve the search performance by providing better visual queries.

Figure 7.5 shows the number of queries that achieve the best performance

by the three approaches (TVS, TVS+SVS, TVS+SVS+VQS) on the two video

datasets. There are 203 queries on “TV10” dataset and 35 queries on “YT12”

dataset that the system could find the right answers by using one of the three

approaches. For the remaining queries, the system does not return the right

answer within the top 100 search results. From the results, we observe that TVS

performs best on 4 queries of “TV10” dataset and 0 query of “YT12” dataset,

while TVS+SVS achieves the best performance on 23 queries of “TV10” dataset

and 5 queries of “YT12” dataset. This result again shows that the introduction

of visual and concept queries improves the search performance on most queries.

However, it may worsen the performance of some queries because user may input

incorrect visual and concept queries based on his/her vague memory. Finally, the

use of visual query suggestion could achieve the best performance on 38 queries

of “TV10” dataset and 8 queries of “YT12” dataset.

Figure 7.6 shows the automatic search results by these three approaches on

Query 8. TVS does not return the right answer in the top 9 search results, while

TVS+SVS that utilizes the visual and concept queries is able to find the right

video but at a low rank of 8. By using visual query suggestion, TVS+SVS+VQS

is able to return the right video in the top rank of the result list.

Experiment 2: This experiment evaluates the effectiveness of the Sequence-

based Video Search in details based on its three subcomponents: Content-based

Video Search, Semantic Video Search and Sequence-based Reranking algorithm.

We present the performance comparison results in Table 7.2, and present the

detailed explanation as follows:

• In content-based video search, we evaluate the effectiveness of the use of

color similarity matrix S. Table 7.2 shows that the MAP by using S is

0.518 and 0.375 on “TV10” and “YT12” datasets, respectively. This per-
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Figure 7.5: The illustration of the number of queries best performed by the three
approaches

Figure 7.6: An example to compare the automatic search results from the TVS,
TVS+SVS, and TVS+SVS+VQS approaches. We list the top 9 retrieved video
results by these three approaches on Query 8 in the Table 3.10, where the rank
lists are ordered from left to right and top to bottom (relevant samples are marked
in red boxes). Each video result is represented by three inside video shots cor-
responding to the three visual and concept queries except for the TVS approach
where the three video shots in a video result are randomly selected.
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Table 7.2: Illustration of the effectiveness of SVS from the aspects of using color
similarity matrix (S) in content-based video search, concept bundle (CB) and
classifier performance (CP) in semantic video search, and temporal order (TO)
in sequence-based reranking algorithm. “+”/“-” preceding the aspects (S, CB,
CP & TO) mean the overall method incorporates or not incorporates any of these
aspect. The performance is measured in terms of MAP@100.
Dataset Content-based Semantic Video Search Sequence-based

Video Search Reranking
Name +S −S +CB,+CP +CB,-CP -CB,+CP -CB,-CP +TO -TO

TV10 0.518 0.467 0.518 0.495 0.483 0.466 0.549 0.516

YT12 0.375 0.342 0.375 0.348 0.341 0.325 0.448 0.418

formance is better than that from the approach without using S, where

the corresponding MAP is 0.467 and 0.342 respectively. The reason is that

general users cannot exactly draw the colors in the video segment, and thus

it is helpful to bridge the color difference by using S.

• In semantic video search, we demonstrate the usefulness of concept bundles

and concept selection strategy. We evaluate the semantic video search un-

der four settings, where +CB/-CB means the search is performed based on

both concept bundle and primitive concepts or only primitive concepts; and

+CP/-CP means the concept selection strategy considers/ignores classifier

performance. As can be observed, the use of concept bundles can enhance

the search performance, and the incorporation of classifier performance dur-

ing concept selection is also effective for performance improvement.

• In sequence-based reranking algorithm, we aim to validate the effective-

ness of exploiting the temporal order between visual and concept queries.

We performed the search under two settings: the sequence-based rerank-

ing algorithm that considers/ignores the temporal order (+TO/-TO). We

implement -TO algorithm according to Eq. (7.7) by deleting the temporal

order constraint. Since a user may input only one visual and concept query

where temporal order is not applicable, we exclude those queries and only

show the results for queries containing more than one visual and concept

queries. This gives rise to 149 queries on “TV10” dataset and 36 queries

on “YT12” dataset. By exploiting the temporal order, the sequence-based

120



0 2 4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

0.5

Run

M
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

TVS+SVS+VQS

Figure 7.7: MAP comparison with the top-20 official submissions in TRECVID
2010 known-item search task

reranking algorithm achieves 6.4% and 7.2% performance gains on “TV10”

and “YT12” datasets respectively. This result clearly demonstrates the

effectiveness of exploiting the temporal order in improving the search per-

formance.

Finally, Figure 7.7 compares our search results to the official submissions on

“TV10” dataset in Trecvid 2010 KIS task. It shows that our approach performs

the best among all the submissions.

7.5.2.2 Evaluation on Interactive Video Search

We conducted the interactive video search for MRVS tasks on 24 queries (the

query 1-24) from “TV10” dataset, and 50 queries from “YT12” dataset. Given a

text query as well as a sequence of visual and concept queries, the automatic video

search (TVS+SVS+VQS) returns the top 100 search results, and the user (who

has previously viewed the desired video with respect to this query) can optionally

label the returned samples as related or irrelevant. Based on the labeled samples,

the system updates the visual queries and the concept weights, which are then

fed to the automatic video search to generate the new search results in the next

iteration. In the experiments, we empirically set C1 = 3 and C2 = 1 in Eq. (7.8)

for visual query updating, and C = 100 in Eq. (6.3) for concept weights updating.

To record search results, in each two minutes of interactive search, we asked the
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Figure 7.8: The comparison of video search performance by using or not using
visual query and concept weight updating algorithms

user whether he/she had found the right answer or not. If the right answer is

found, we recorded the AP for the query as 1, otherwise 0. We averaged all the

APs as Mean Average Precision (MAP) to record the overall performance.

In the first experiment, we illustrate the effectiveness of the visual query and

concept weight updating algorithms. We performed the interactive search on two

settings: (1) we do not update the visual queries; and (2) we do not adjust the

concept weights. The results are shown in Figure 7.8. First, the rectangle line

indicates that the interactive video search is effective for MRVS tasks, where the

MAPs are 0.958 and 1 respectively on “TV10” and “YT12” datasets after 10

minutes of interactive search, which means our system is able to find the answers

for all of the queries except one in less than 10 minutes. We checked the failed

query and found that the failure was due to incomplete text description associated

with the right video and the incorrect visual and concept queries. Second, when

visual queries are not updated, the search performance drops significantly, by 13%

and 10% on “TV10” and “YT12” datasets respectively. This result shows that

the visual query updating is able to correctly modify the features of visual queries

to achieve a better performance. Third, when the system does not adjust concept

weights, the search performance drops by 8.6% and 6% on “TV10” and “YT12”

datasets respectively, which indicates that the concept weight updating algorithm
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Figure 7.9: The comparison of video search performance by using or not using
related samples.

is able to adjust the initial concept weights well to accelerate the performance

improvement.

In the second experiment, we conducted the experiment to validate the effec-

tiveness of using related and irrelevant samples. In this experiment, users were

asked to perform the interactive search under three labeling schemes: (1) label

both related and irrelevant samples, (2) label only irrelevant samples, and (3)

label only related samples. The comparison results are shown in Figure 7.9. In

Scheme (1), the MAPs are 0.958 and 1 on “TV10” and “YT12” datasets respec-

tively after 10 minutes of interactive search. The corresponding values are 0.833,

0.88 respectively for Scheme (2), and 0.875, 0.92 respectively for Scheme (3). This

result demonstrates that both related and irrelevant samples are useful to find

the desired videos for users in interactive video search. The main reason is that

the related samples are visually similar or semantically close to the relevant ones,

while the irrelevant samples can be used to exclude irrelevant visual features and

semantic concepts.
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7.6 Conclusion

Memory recall based video search simulates a real world video search situation

where a user wishes to find a desired video or video segments that he/she has

seen before. In this paper, we developed a video search system that integrates

text-based, content-based and semantic video search approaches for MRVS tasks.

Given the approximate/incomplete recalls of the desired videos, we developed sev-

eral innovative approaches to boost the performance of automatic video search.

In particular, we developed a visual query suggestion module to help users re-

fresh memory by suggesting better visual queries, proposed the use of a color

similarity matrix to allow for inexact color matching, and proposed a reranking

algorithm to exploit the temporal orders between visual and concept queries. To

cater to the fact that there is often one or few relevant results, the system en-

courages users to perform relevance feedback by labeling related and irrelevant

samples. In relevance feedback, we developed optimization algorithms to update

the visual queries and concepts weights to refine the search results. We conducted

experiments on two video datasets: TRECVID 2010 and YouTube 2012. The ex-

perimental results demonstrated the effectiveness of our system for MRVS tasks.

In the future, we will incorporate situational context and other features such as

motion vectors recalled by users to further enhance the search performance.
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Chapter 8

Conclusions

In this chapter, we summarize our achievements in complex query learning. Also,

a few potential research areas will be presented.

8.1 Summary of Research

This dissertation aims to enhance search performance for complex queries in se-

mantic video search. We developed comprehensive methods for concept detection,

automatic semantic video search, and interactive semantic video search. In ad-

dition, we applied and extended the proposed approaches in a real-world video

search task named “Memory Recall based Video Search”. Below, we summarize

the contributions and findings of our work.

8.1.1 Concept Bundle Learning

In semantic video search, the simple aggregation of primitive concepts is un-

able to capture the relationship between the primitive concepts in a complex

query. Therefore, in chapter 4, we moved a step ahead by proposing a high-level

semantic descriptor named “Concept Bundle”. Concept bundle is a composite

concept that integrates multiple primitive concepts as well as the relationships

between the concepts, such as (“lion”, “hunting”, “zebra”), (“police”, “fighting”,

“protestor”) etc.. Compared to the simple aggregation of primitive concepts,

concept bundle is semantically closer to the meaning of complex query since it

125



contains both primitive concepts and the relationships between them. To build

the classifiers of concept bundles, we first proposed an approach to automatically

select informative concept bundle by measuring its frequency on the suggested

queries by Web video search engine and the concept co-occurrence in the tags of

Web videos. We then developed a multi-task SVM algorithm to effectively learn

the classifiers for concept bundles. In particular, our multi-task SVM algorithm

learns a concept bundle classifier based on both the training samples from its

constituent primitive concepts and that from the concept bundle. The training

samples of the constituent primitive concepts are used to model the individual

concepts that appearing in the concept bundle, while that of the concept bundle

is used to model the relationship between the concepts appearing in the con-

cept bundle. We conducted experiments on “TV08” and “YT10” datasets. The

results demonstrated that the proposed approaches could effectively select infor-

mative concept bundles, and achieve better performance to learn concept bundle

classifiers as compared to the state-of-art methods.

8.1.2 Bundle-based Automatic Semantic Video Search

Given the primitive concepts and concept bundles, in chapter 5, we developed

an optimization algorithm to map a query to related primitive concepts and con-

cept bundles. To effectively perform concept selection, our algorithm considers

two criteria: 1) semantic relatedness between the selected concepts and query;

and 2) classifier performance of the selected concepts. Given a complex query,

the concept selection algorithm prefers related concept bundles as compared to

related primitive concepts incase when their respective classifiers have similar

performance. This is because related concept bundles are semantically closer to

the complex query. On the other hand, when the classifier of a primitive concept

or concept bundle is poor, the algorithm would discard it to avoid noisy results.

Based on these two criteria, we employed a greedy algorithm to approximately

implement the optimization selection with the aim of saving the computational

cost. The experiments were conducted on “TV08” and “YT10” datasets. The

results showed that these two criteria can affect the search performance. In addi-

tion, as compared to the state-of-art approaches, the proposed concept selection
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strategy achieved promising search performance.

8.1.3 Related Sample based Interactive Semantic Video

Search

To further enhance the search performance, we incorporated interactive video

search for complex queries. One challenging problem for complex queries in in-

teractive video search is the sparse relevant sample problem, where a user may not

be able to find sufficient relevant samples to label during the interactive process.

Without sufficient relevant samples, the search performance is usually limited. To

tackle this problem, we proposed a new sample class named “Related Sample”.

Related samples refer to those video segments that are partially relevant to the

query but do not satisfy the entire search criterion. Compared to relevant sam-

ples which may be rare, related samples are usually more plentiful and easier to

find in the search results. The advantages of exploring related samples are two-

fold: First, the related and relevant video segments usually share similar visual

content in part due to their semantic connection, so that the related samples are

beneficial to the modeling of relevant samples. Second, since video content is tem-

porally dynamic and continuous, the occurrence of related video segments is an

indicator for the presence of relevant ones in the neighboring clips. By exploring

the visual and temporal attributes based on the labeled samples, we developed a

visual-based ranking model and a temporal-based ranking model. Moreover, an

adaptive fusion approach was used to learn the optimal fusion weight to generate

the search results. We conducted experiments on “TV08” and “YT11” datasets.

The experimental results demonstrated the related samples are effective to en-

hance search performance for complex queries in interactive video search.

8.1.4 Application: Memory Recall based Video Search

In Chapter 7, we applied and extended the proposed approaches in a novel video

search task named “Memory Recall based Video Search” (MRVS). Memory re-

call based video search simulates a real-world video search situation that a user
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wishes to find a desired video or video segments that he/she has been seen before.

In our system, a user can input a text query, a sequence of visual and concept

queries, or a combination of all based on his/her memory recall. Here, the text

query is used to describe the textual information of the desired video; While the

sequence of visual and concept queries is employed to depict the visual scenes in

the desired video segments, where we organize them according to the temporal

order. Based on the queries, the system returns the search results by integrating

the results from text-based, content-based and semantic video search approaches.

Specifically, since the visual queries are usually inaccurate based on a user’s vague

memory, we proposed a visual query suggestion approach to automatically sug-

gest better visual queries, as well as a color similarity matrix to measure the color

similarity between different colors. In semantic video search, we employed the

proposed approaches on concept bundles to accurately interpret a user’s query.

Moreover, we proposed a sequence-based reranking algorithm to refine the search

results from the content-based and semantic video search approaches by exploring

the temporal order between the visual and concept queries. We further utilize the

related sample approach in the interactive video search framework to overcome

the extremely sparse relevant sample problem for MRVS task. By utilizing the vi-

sual similarity and semantical similarity between related and relevant samples, we

proposed a visual query updating algorithm to modify the rough visual queries,

as well as a concept weight updating algorithm to adjust the concept weights in

semantic video search. These updated visual queries and concept weights are used

to refine the search results by the automatic video search approach. We simulated

the real-world video search situation based on users’ memory recall in the exper-

iments. The experiments were conducted on two video datasets: “TV10” and

“YT12” datasets. The experimental results demonstrated our system is effective

for MRVS.

8.2 Future Work

There are several limitations and potential extensions in the areas of research

presented in this thesis.
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• First, we developed a multi-task SVM algorithm to learn the classifier of a

concept bundle based on the training samples from its constituent primi-

tive concepts and the concept bundle. This approach assumes that all the

training samples from the primitive concepts can help to model the seman-

tic contributions of the primitive concepts in the concept bundle. However,

given a relevant sample of a certain primitive concept, only a part of re-

gions of the sample are useful to model the target concept bundle. Thus,

effectively identifying related regions in the training samples may be useful

to further enhance the classifier performance for concept bundle.

• Second, since the number of the pre-built concept bundles is limited, it does

not ensure that all the issued complex queries in the real case are able to

be mapped to the related concept bundles by the bundle-based semantic

video search. In such case, the search performance may be unsatisfactory.

Therefore, how to expand the concept bundle set to meet the demands of

complex query search in the real world is an important direction to explore.

• Third, we proposed “Related Sample” to overcome the sparse relevant sam-

ple problem for complex queries in the interactive video search. By utilizing

the visual similarity between related and relevant samples, we proposed a

visual-based ranking model. However, given a related sample, only parts

of the sample may be visually similar to the relevant samples. Therefore,

extracting useful regions from the related samples may be more effective to

finding relevant samples.

• Fourth, the related and relevant samples are visually dissimilar sometimes.

For example, a user selects the related samples which satisfy the condition

“one or more colored photographs”, and the query is “one or more black

and white photographs”. In such case, the visual features of related and

relevant samples are completely different. Thus, the use of the visual-based

ranking model may degrade the search performance. In future, it is better

to develop an approach to automatically identify the effectiveness of visual

features in related samples.
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8.3 Publications

We list the publications for this research as follows:

1. Jin Yuan, Zheng-Jun Zha, Zheng Dong Zhao, Xiang Dong Zhou and Tat-

Seng Chua, “Utilizing Related Samples to Learn Complex Queries in Inter-

active Concept-based Video Search”, Proc. of ACM Int. Conf. on Image

and Video Retrieval, full paper (Oral), 2010.

2. Jin Yuan, Zheng-Jun Zha, Yan-Tao Zheng, Meng Wang, Xiang Dong

Zhou and Tat-Seng Chua, “Learning Concept Bundles for Video Search

with Complex Queries”, Proc. of ACM Int. Conf. on Multimedia, full

paper(Oral), 2011.

3. Jin Yuan, Zheng-Jun Zha, Yan-Tao Zheng, Meng Wang, Xiang Dong

Zhou, and Tat-Seng Chua, “Utilizing Related Samples to Enhance Inter-

active Concept-Based Video Search”, IEEE Transactions on Multimedia,

volume 13, page 1343 - 1355, 2011.

4. Jin Yuan, Huanbo Luan, Dejun Hou, Han Zhang, Yan-Tao Zheng, Zheng-

Jun Zha, and Tat-Seng Chua, “Video Browser ShowDown by NUS”, Proc.

of ACM Int. Conf. on Multimedia Modeling, 2012.
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