
DESIGN AND PERFORMANCE

EVALUATION OF ENERGY-AWARE

DVS-BASED SCHEDULING STRATEGIES

FOR HARD REAL-TIME EMBEDDED

MULTIPROCESSOR SYSTEMS

GOH LEE KEE

(B.Eng.(Hons.), NUS,

M.Eng., NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL AND

COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48670256?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I hereby declare that this thesis is my original work and it has been written by me

in its entirety. I have duly acknowledged all the sources of information which have

been used in the thesis.

This thesis has also not been submitted for any degree in any university previously.

Goh Lee Kee

13 August 2012

ii

Acknowledgements

I would like to thank my supervisor, Dr. Bharadwaj Veeravalli, for all the advices,

suggestions and recommendations he has given me during the course of my research.

I would also like to thank him for the patience and understanding that he has shown

for the delays in my research progress due to my work commitments.

I would also like to show my appreciation to my employer, Institute for Infocomm

Research (I2R), and Agency for Science, Technology and Research (A*STAR), for

their support in allowing me to pursue my Ph.D. degree on a part-time basis.

Last but not least, my thanks goes out to all my friends and colleagues working

in the project under the Embedded & Hybrid Systems II (EHS-II) initiative of

A*STAR, without which this dissertation would not have materialized. Specifically,

I would like to thank Dr. Sivakumar Viswanathan for his guidance and feedback

in the project, as well as Dr. Liu Yanhong and Mr. Sivanesan Kailash Prabhu for

their help and cooperation during the course of the project.

iii

Contents

Declaration ii

Acknowledgements iii

Summary vii

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Scope of Research Work . 4

1.2 Research Contributions . 4

1.3 Organization of thesis . 7

2 Preliminaries 8

2.1 Power Model . 8

2.2 Multiprocessor Systems with a Single Energy Source 10

2.2.1 System Model . 10

iv

Contents v

2.2.2 Task Model . 11

2.2.3 Problem Formulation . 12

2.3 Multiprocessor Systems with Distributed Energy Sources 13

2.3.1 System Model . 13

2.3.2 Task Model . 14

2.3.3 Problem Formulation . 15

3 Literature Review 17

3.1 Heuristic Approach to Energy-aware Multiprocessor Scheduling . . 17

3.2 Multiprocessor Systems with a Single Energy Source 21

3.3 Multiprocessor Systems with Distributed Energy Sources 27

4 Static Energy-aware Scheduling Strategies for Systems with Single

Energy Source 29

4.1 Design of Energy Gradient-based Multiprocessor Scheduling

(EGMS) . 30

4.2 Design of EGMS with Intra-task Voltage Scaling (EGMSIV) 39

4.3 Adaptation of EGMS/EGMSIV for TM or TSVS only 42

4.4 Performance of EGMS and EGMSIV 43

4.4.1 Energy Optimization without Task Mapping 43

4.4.2 Energy Optimization with Task Mapping 46

5 Dynamic Energy-aware Scheduling Strategies for Systems with

Single Energy Source 56

5.1 Design of Potential Slack for Dynamic Scheduling Considerations

(PSDSC) . 57

5.1.1 Description of PSDSC . 57

5.1.2 Illustrative Example for PSDSC 61

5.1.3 Performance of PSDSC . 65

Contents vi

5.2 Design of Average-based Aggressive Dynamic Scheduling (AADS) . 68

5.2.1 Description of AADS . 68

5.2.2 Illustrative Example for AADS 73

5.2.3 Performance of AADS . 75

6 Energy-aware Scheduling Strategies for Systems with Distributed

Energy Sources 80

6.1 Design of Energy-Balanced Task Scheduling (EBTS) 81

6.1.1 Description of EBTS . 81

6.1.2 Illustrative Example for EBTS 85

6.2 Design of EBTS using Dual Schedule (EBTS-DS) 87

6.2.1 Description of EBTS-DS . 87

6.2.2 Illustrative Example for EBTS-DS 89

6.3 Performance of EBTS and EBTS-DS 91

6.3.1 WSN with Heterogeneous Sensor Nodes 91

6.3.2 WSN with Homogeneous Sensor Nodes 95

7 Conclusion 100

Bibliography 105

Summary

Hard real-time applications have strict deadline requirements. Violation of these

deadline requirements usually results in catastrophic failure of the system and

cannot be tolerated. At the same time, when these applications are implemented

on portable embedded devices, efficient energy management is essential to ensure

a long operating lifetime of the system. This thesis evaluates the various energy-

aware static scheduling strategies in the literature and proposes an efficient, energy

gradient-based approach to generate these schedules by considering task mapping,

task scheduling and voltage scaling in an integrated way. In addition, the thesis

also proposes a few strategies to reduce the energy consumption further during

runtime when the tasks do not require their worst-case execution cycles to com-

plete. Last but not least, the thesis addresses the scenario where each processing

vii

Summary viii

element has its own energy source. In this case, traditional methods of minimiz-

ing the total energy consumption do not necessary increase the system lifetime.

A method is proposed to balance the energy consumption among the processing

elements to improve the lifetime of the system. All the proposed strategies are

compared against existing strategies in the literature through extensive simulation

experiments to evaluate their performances.

List of Tables

4.1 Scheduling strategies compared in the simulation study for energy

optimization with task mapping . 48

4.2 Normalized energy consumption achieved for mapping optimization

using real-life applications used in [59] 53

4.3 Normalized optimization time required for mapping optimization

using real-life applications used in [59] 53

5.1 Worst-case execution times of the tasks on different processing ele-

ments and at different voltage levels 64

5.2 Worst-case energy consumptions of the tasks on different processing

elements and at different voltage levels 64

6.1 Time and energy cost of each task at different voltage levels 86

6.2 Steps to illustrate how tasks are assigned to sensor nodes using the

EBTS algorithm . 87

6.3 Steps to illustrate how voltage levels are assigned using the EBTS

algorithm . 87

ix

List of Tables x

6.4 Steps to illustrate the use of 2 consecutive schedules to improve the

lifetime further . 90

List of Figures

3.1 Typical flow for solving energy-aware scheduling problem for depen-

dent tasks . 22

4.1 Notations used in EGMS algorithm 32

4.2 Voltage Scaling using LP formulation 40

4.3 Deadline miss rate when using ASG-VTS, EGMS-TSVS and EGMSIV-

TSVS for task scheduling and voltage scaling based on a given map-

ping of tasks to processors . 46

4.4 Average energy savings by ASG-VTS, EGMS-TSVS and EGMSIV-

TSVS for task scheduling and voltage scaling based on a given map-

ping of tasks to processors . 46

4.5 Geometric mean of the normalized optimization time required by

ASG-VTS, EGMS-TSVS and EGMSIV-TSVS for task scheduling

and voltage scaling based on a given mapping of tasks to processors 47

4.6 Deadline miss rate by the various algorithms for mapping optimization 50

4.7 Average normalized energy consumption by the various algorithms

for mapping optimization with 95% confidence intervals 50

xi

List of Figures xii

4.8 Geometric mean of the normalized optimization time required by the

various algorithms for mapping optimization with 95% confidence

interval . 51

4.9 Average normalized energy consumption as the number of tasks in-

creases . 55

5.1 Directed acyclic graph representing the periodic hard real-time ap-

plication used in the example . 63

5.2 Runtime schedules when all tasks require their WCETs to com-

plete their execution and use the dynamic greedy slack reclamation

scheme to lower the energy consumption during runtime 65

5.3 Runtime schedules when all tasks require their ACETs to com-

plete their execution and use the dynamic greedy slack reclamation

scheme to lower the energy consumption during runtime 65

5.4 Average normalized energy consumption over 1000 execution in-

stances using EGMS, EGMSIV, EGMS-PSDSC, EGMSIV-PSDSC,

NGA and NGA-PSDSC with varying Γ 67

5.5 Runtime schedules when all tasks require their ACETs to complete

their execution and use the AADS algorithm to lower the energy

consumption during runtime . 74

5.6 Runtime schedules immediately after all tasks switch to their WCETs

to complete their execution and use the AADS algorithm to lower

the energy consumption during runtime 75

5.7 Average normalized energy consumption over 1000 execution in-

stances when dynamic greedy slack reclamation and AADS are ap-

plied to EGMSIV and EGMSIV-PSDSC with varying Γ 76

List of Figures xiii

5.8 Average normalized energy consumption over 1000 execution in-

stances when dynamic greedy slack reclamation and AADS are ap-

plied to NGA and NGA-PSDSC with varying Γ 76

5.9 Average normalized energy consumption over 1000 execution in-

stances with varying T . 78

6.1 Example of a task graph. 86

6.2 Schedules generated using EBTS-DS. 90

6.3 Performance of EBTS and EBTS-DS for WSN consisting of hetero-

geneous nodes (10 sensor nodes, 8 voltage levels, 4 channels, 100

tasks, u = 0.5). The values for the lifetime improvement are cal-

culated as the improvement over the baseline case when EBTS is

used without DVS. The vertical bars show the confidence intervals

at 95% confidence level. 94

6.4 Miss rate of EBTS with varying values of u for WSN consisting of

heterogeneous nodes (10 sensor nodes, 8 voltage levels, 4 channels,

100 tasks, CCR = 0). 96

6.5 Lifetime improvement of 3-phase heuristic, EBTS and EBTS-DS for

WSN consisting of homogeneous nodes (10 sensor nodes, 8 voltage

levels, 4 channels, 100 tasks, u = 0.5). These values are calculated as

the improvement over the baseline case when the 3-phase heuristic

is used without DVS. The vertical bars show the confidence intervals

at 95% confidence level. 97

6.6 Miss rate of 3-phase heuristic and EBTS with varying values of u for

WSN consisting of homogeneous nodes (10 sensor nodes, 8 voltage

levels, 4 channels, 100 tasks, CCR = 0). 98

Chapter 1
Introduction

As the demand for high-performance embedded systems increases, we observe an in-

creasing number of systems incorporating multiple homogeneous or heterogeneous

processing units on their platforms. An example of one such system is the software-

defined radio (SDR) where it may consist of a general-purpose processor (GPP) for

control, as well as a digital signal processor (DSP) and/or a field-programmable

array (FPGA) for signal processing. There are also processors currently in the

market that contain homogeneous or heterogeneous cores, such as the OMAP pro-

cessors [1] by Texas Instruments. With the use of multiple processing elements in

embedded systems, it is a challenge to efficiently manage the energy consumption

of these systems in order to maximize their battery life. Modern day processors

utilize dynamic voltage scaling (DVS) [33, 34, 44–47, 49, 50, 54, 63] to reduce the

energy consumption. This technique lowers the supply voltage and operational

1

2

frequency during runtime at the expense of a longer execution time. By carefully

scheduling the tasks to execute at different voltage levels, an optimized schedule

with minimum energy consumption can be obtained without compromising the

performance.

Hard real-time applications have strict deadline requirements and any deadline

misses may lead to total system failures. For example, a nuclear control and mon-

itoring system needs to respond to meltdown conditions in a timely manner to

prevent catastrophic impacts. An airbag control system on a vehicle needs to in-

flate the airbag rapidly upon a vehicle collision to minimize the impact suffered

by the passengers. In the medical and healthcare industry [6, 11], there are also

applications that not only require hard real-time performance, but also low energy

consumption as well. For example, an implantable pacemaker [37] needs to moni-

tor and regulate the patient’s heat beat and at the same time, it needs to consume

as little energy as possible to prolong its battery life and reduce the occurrence of

battery replacements. A wearable defibrillator [14, 51] runs on batteries and con-

tinuously monitors the patient’s heart. When the patient suffers a cardiac arrest,

the wearable defibrillator automatically sends a treatment shock to restore normal

heart rhythm. A wearable fall pre-impact detection system [7, 17, 19, 20] for the

elderly uses signals from accelerometers and gyroscopes worn on the body of the

elderly to detect the onset of a fall. When the system detects a fall, it needs to

3

quickly inflate a hip cushion to prevent hip-related fractures.

In order to guarantee that the deadline constraints will not be violated while min-

imizing the total energy consumption on a multiprocessor system, static energy-

aware scheduling algorithms are usually used to generate static, energy-optimized

schedules in advance. These static scheduling algorithms usually use the worst-case

execution times (WCETs) of the tasks to try to map the tasks to the processing

elements and schedule them in such a way so that the total energy consumption is

minimized. In this way, the deadline constraints will still be met in the worst-case

scenario while the energy consumption is minimized as much as possible. During

runtime, tasks may not require their WCETs to complete, resulting in slacks be-

ing generated. A slack is defined as the period of time that is unused by a task

when it completes its execution earlier than in the worst-case scenario. To reduce

the energy consumption further, dynamic scheduling algorithms are then employed

during runtime to reclaim these unused slacks and use them to reduce the execu-

tion speeds and energy consumption of subsequent tasks while ensuring that the

deadline constraints are still met.

1.1 Scope of Research Work 4

1.1 Scope of Research Work

In this thesis, we shall look into the design of fast and efficient static and dynamic

energy-aware scheduling algorithms for maximizing the lifetime of an embedded

multiprocessor system using DVS-based techniques. Specifically, we design our al-

gorithms to cater for both homogeneous and heterogeneous multiprocessor systems.

Our design will focus on scheduling dependent tasks with precedence relationships

as represented by a task precedence graph. A task precedence graph is a directed,

acyclic graph (DAG) where nodes represent tasks and edges between the nodes

represent the communication between the tasks. The directions on the edges rep-

resent the order in which the tasks must be executed while the weights on the edges

represent the time required to communicate a result from one task to another if

they are placed on different processors. Besides maximizing the lifetime of the

system, the scheduling algorithms are also designed to ensure that the deadlines of

the tasks are not violated. We design different algorithms for the scenario where

the multiprocessor cores share the same energy source, as well as for the scenario

where each core has its own energy source.

1.2 Research Contributions

The research contributions for this thesis are as follows:

1. We propose the Energy Gradient-based Multiprocessor Scheduling (EGMS)

1.2 Research Contributions 5

algorithm [16, 22] for scheduling task precedence graphs in an embedded mul-

tiprocessor system having processing elements with DVS capabilities and

sharing a single energy source. Unlike most static energy-aware scheduling

algorithms that consider task ordering and voltage scaling separately from

task mapping, our algorithms consider them in an integrated way. EGMS

uses the concept of energy gradient to select tasks to be mapped onto new

processors and voltage levels. We extend EGMS by introducing intratask

voltage scaling using a Linear Programming (LP) formulation. The result-

ing algorithm, EGMS with Intra-task Voltage scaling (EGMSIV), is able to

reduce the total energy consumption further.

2. We propose a method to improve the performance of static energy-aware

scheduling algorithms using Potential Slack for Dynamic Scheduling Con-

siderations (PSDSC). By applying PSDSC to static energy-aware scheduling

algorithms, the generated static schedules will take into consideration the dy-

namic reclamation of unused slacks during runtime and try to optimize the

average energy consumption of the application. We use the concept of poten-

tial slack to estimate the dynamic execution speeds and energy consumption

of the tasks so that the average energy consumption can be minimized. At

the same time, we ensure that all the tasks will still be able to meet their

1.2 Research Contributions 6

deadline requirements even if they require their WCETs to execute. In ad-

dition, we also propose the Average-based Aggressive Dynamic Scheduling

(AADS) algorithm that tries to aggressively lower the execution speeds of

the tasks during runtime to reduce the energy consumption further.

3. We propose the Energy-Balanced Task Scheduling (EBTS) algorithm [18]

which is a static scheduling algorithm for a multiprocessor system where

each processing element has its own energy source. Specifically, we consider

scheduling the tasks onto a cluster of heterogeneous sensor nodes connected

by a single-hop wireless network so as to maximize the lifetime of the sensor

network. In our algorithm, we assign the tasks to the sensor nodes so as

to minimize the energy consumption of the tasks on each sensor node while

keeping the energy consumption as balanced as possible. We also extend the

algorithm to generate a second schedule. The algorithm, EBTS with Dual

Schedule (EBTS-DS), improves the lifetime of the network further when the

second generated schedule is used together with the original schedule.

Through rigorous simulations, the performance of all the proposed algorithms are

compared to existing approaches presented in the literature. The results demon-

strate that the proposed algorithms are capable of obtaining more energy-efficient

schedules.

1.3 Organization of thesis 7

1.3 Organization of thesis

The thesis is organized as follows:

1. Chapter 1: The current chapter that defines the scope and summarizes the

contributions of the research work that has been conducted.

2. Chapter 2: The chapter introduces the energy and power model used in this

thesis. The task and system models will also be described in this chapter.

3. Chapter 3: Related work on energy-aware scheduling will be presented in

this chapter.

4. Chapter 4: A thorough description of the proposed EGMS and EGMSIV

algorithms for generating energy-efficient static schedules will be presented

in this chapter.

5. Chapter 5: The proposed PSDSC and AADS algorithms for generating dy-

namic energy-efficient schedules will be presented in this chapter.

6. Chapter 6: The chapter describes the EBTS and EBTS-DS algorithms for

scheduling processing nodes with individual energy sources.

7. Chapter 7: This chapter presents the conclusion of the thesis.

Chapter 2
Preliminaries

In this chapter, the basic power, task and system models shall be described.

2.1 Power Model

The total power consumed in a digital CMOS circuit [69] consists of three portions

and is given by (2.1), where Pdyn denotes the dynamic power consumption, Pstatic

the static power consumption and Psc the short-circuit power consumption.

Ptotal = Pdyn + Pstatic + Psc (2.1)

8

2.1 Power Model 9

The dynamic power dissipation Pdyn is given by (2.2), where Cef denotes the ef-

fective load capacitance, Vdd the supply voltage and f the processor frequency.

Reducing Vdd lowers the power consumption but increases the circuit delay. This

circuit delay is given by (2.3), where TD denotes the circuit delay, k a proportion-

ality constant, VT the threshold voltage and α the velocity saturation index. VT

and α are properties of the CMOS circuit and are constant for a particular circuit.

Most literatures [44, 46, 49, 52, 54, 63] use the value α = 2. The time taken to exe-

cute the task is given by (2.4), where t denotes the execution time of the task and

nc the number of execution cycles required to execute the task. The total dynamic

energy dissipation is therefore given by (2.5).

Pdyn = Cef · V 2
dd · f (2.2)

TD = k
Vdd

(Vdd − VT)α
(2.3)

t =
nc

f
(2.4)

Edyn = Cef · V 2
dd · nc (2.5)

From the above equations, we see that when there is a reduction in the supply

voltage, the dynamic energy savings increase quadratically. DVS exploits this

feature to reduce the dynamic energy consumption of the processor at the expense

of longer execution times for the tasks.

2.2 Multiprocessor Systems with a Single Energy Source 10

The static power dissipation Pstatic is given by (2.6), where Isubn denotes the sub-

threshold leakage current, Vbs the body bias voltage and Ij the reverse bias junction

current.

Pstatic = Vdd · Isubn + |Vbs| · Ij (2.6)

From the equation above, we observe that when the supply voltage is reduced, the

static power consumption is also reduced. However, at very low voltage levels, the

execution times for the tasks will be so long that the static energy consumption

will start to increase instead.

The short-circuit power is only consumed during signal transitions and is generally

negligible in practice [48].

2.2 Multiprocessor Systems with a Single En-

ergy Source

2.2.1 System Model

The system consists of a set of Np heterogeneous processors, {PE1, PE2, . . . ,

PENp}, connected to a single bus. Each processor is equipped with DVS func-

tionality. The available discrete voltage levels of PEj are given by V (j, k), k =

1, 2, · · · , N(j), where N(j) denotes the total number of discrete voltage levels of

2.2 Multiprocessor Systems with a Single Energy Source 11

PEj. Without loss of generality, we let N(1) = N(2) = ... = N(Np) = Nv for sim-

plicity. The power consumption and processor frequency of PEj at voltage level

V (j, k) are given by P (j, k), and f(j, k) respectively. The power consumption of

the bus is denoted by Pb.

2.2.2 Task Model

We consider a hard real-time application that is run periodically. Let P be the

period of the application. An instance of the application will be activated at time

iP and it must be completed before the next instance is activated at time (i+1)P ,

where i = 0, 1, 2, . . . (i.e. the deadline d is equal to P for every execution in-

stance of the application). The application is represented by a directed acyclic

graph (DAG) which consists of a set of Nt dependent tasks {T1, T2, . . . , TNt} that

are related by some precedence constraints. If a task Ti and its predecessor Tp

are executed on different processing elements, a communication time of C(p, i) is

incurred. The worst-case and average-case number of execution cycles (WCEC

and ACEC respectively) required to run Ti to completion is given by cwc
i and caci

respectively. On the other hand, the worst-case and average-case time taken to

execute Ti vary depending on the processor voltage levels. Suppose Ti is executed

on PEj at the voltage level V (j, k), the worst-case execution time and energy con-

sumption needed to execute Ti in this case are denoted by twc(i, j, k) and ewc(i, j, k)

2.2 Multiprocessor Systems with a Single Energy Source 12

respectively, where

twc(i, j, k) =
cwc
i

f(j, k)
(2.7)

Similarly, the corresponding average-case execution time and energy consumption

of Ti are denoted by tac(i, j, k) and eac(i, j, k) respectively, where

tac(i, j, k) =
caci

f(j, k)
(2.8)

Finally, we define Γi as the ratio of ACEC to WCEC of Ti:

Γi =
caci
cwc
i

(2.9)

2.2.3 Problem Formulation

For multiprocessor systems with single energy source, our objective is to find a

static schedule for the tasks in the task precedence graph on the heterogeneous

processors at particular voltage levels such that the total energy consumption is

minimized while the task precedence constraints are observed and all the tasks

meet their deadline requirements. Therefore, we seek to minimize the total energy

2.3 Multiprocessor Systems with Distributed Energy Sources 13

consumption E of the system:

E = Pb · tc +
Nt∑
i=1

Np∑
j=1

Nv∑
k=1

(x(i, j, k) · ewc(i, j, k)) (2.10)

where tc denotes the total duration of time for which the bus is used to transfer

data. For the scenario without intra-task voltage scaling, we define x(i, j, k) as

follows:

x(i, j, k) =

1 if Ti is scheduled on PEj at

the voltage level V (j, k)

0 otherwise

(2.11)

On the other hand, when intra-task voltage scaling is used, x(i, j, k) will denote

the fraction of Ti that is scheduled on PEj at the voltage level V (j, k).

2.3 Multiprocessor Systems with Distributed En-

ergy Sources

2.3.1 System Model

We consider a WSN that consists of a set of Np heterogeneous sensor nodes with

DVS functionality, {PE1, PE2, . . . , PENp}, connected by a single-hop wireless

network with K communication channels. The computational speed of PEi at

voltage level Vj are given by Sij. The time cost and energy consumption for

2.3 Multiprocessor Systems with Distributed Energy Sources 14

transmitting one unit of data between two sensor nodes PEi and PEj is denoted

by τij and ξij respectively. It is assumed that the time and energy cost of wireless

transmission is the same at both the sender and the receiver and no techniques such

as modulation scaling [58] are used for energy-latency tradeoffs of communication

activities. It is also assumed that negligible power is consumed by the sensor nodes

and the radios when they are idle.

2.3.2 Task Model

We consider an application that is run periodically in the sensor network with

period P . The application is represented by a DAG G = (T,E), which consists

of a set of Nt dependent tasks {T1, T2, . . . , TNt} connected by a set of ϱ edges

{E1, E2, . . . , Eϱ}. Each edge Ei from Tj to Tk has a weight Ci, which represents

the number of units of data to be transmitted from Tj to Tk. The source tasks in G

(i.e. tasks with no incoming edges) are used for measuring or collecting data from

the environment and so they have to be assigned to different sensor nodes. The

time and energy cost of executing Ti on PEj at the voltage level Vk are denoted by

tijk and ϵijk respectively. Let θ(Ti) denotes the sensor node to which Ti is assigned.

The energy consumption of PEi in one period of the application πi is given by:

πi =
Nt∑
j=1

Nv∑
k=1

(xjk · ϵjik) +
ϱ∑

j=1

(yj · Cj · ξθ(Ta)θ(Tb)) (2.12)

2.3 Multiprocessor Systems with Distributed Energy Sources 15

where Ta and Tb are connected by the edge Ej and xjk and yj are defined as follows:

xjk =

1 if Tj is scheduled on PEi at

the voltage level Vk

0 otherwise

(2.13)

yj =

1 if either Ta or Tb (but not

both) is scheduled on PEi

0 otherwise

(2.14)

2.3.3 Problem Formulation

Unlike multiprocessors systems with single energy source, minimizing the total

energy consumption of the WSN does not necessarily increases the lifetime of the

system. Let Ri be the remaining energy of PEi. We define the norm-energy ηi

[33] of PEi as its energy consumption in one period normalized by its remaining

energy:

ηi =
πi

Ri

(2.15)

The lifetime of the whole sensor network L is therefore determined by the sensor

2.3 Multiprocessor Systems with Distributed Energy Sources 16

node with the largest norm-energy. Hence, our objective is to maximize L:

L = ⌊ 1

maxi(ηi)
⌋ (2.16)

Chapter 3
Literature Review

In this chapter, some of the most recent and commonly used energy-aware schedul-

ing strategies and their workings will be described in a brief style for the purpose

of continuity. For a more detailed analysis of these strategies, the reader may refer

to their respective references.

3.1 Heuristic Approach to Energy-aware Multi-

processor Scheduling

In this thesis, our objective is to schedule a task precedence graph on a hetero-

geneous multiprocessor system while maximizing the lifetime of the system using

DVS techniques and ensuring the deadline constraints are met. The problem is

17

3.1 Heuristic Approach to Energy-aware Multiprocessor Scheduling 18

formulated in a way such that it also covers energy-aware scheduling on both homo-

geneous multiprocessor systems and uniprocessor systems. The problem of energy-

aware scheduling on homogeneous multiprocessor systems [4, 8, 12, 24, 28, 35] is a

subset of energy-aware scheduling on heterogeneous multiprocessor systems in

which each task requires the same amount of computation time to execute on

all the processors. The problem of energy-aware scheduling for uniprocessor sys-

tems [29, 30, 38, 41, 55, 56] is a subset of energy-aware scheduling on homogeneous

multiprocessor systems in which the number of processors is one. The problem

of energy-aware scheduling in heterogeneous multiprocessor systems is NP-hard

[53, 77]. As such, it requires a computation time that is of the order of at least

superpolynomial to the input size. When the uncertain execution times are con-

sidered during runtime, the problem becomes even harder. Due to the nature of

NP-hard problems, it is impractical to obtain an optimal solution even for moder-

ately sized problem. Instead, heuristic algorithms are usually used to solve these

types of problems. While there is no proof that heuristic algorithms always pro-

duce good results, most heuristic algorithms are able to obtain reasonably good

solutions in many cases using a much shorter computation time [27, 66, 75].

Metaheuristic approaches [10, 15, 43] is a class of heuristic algorithms that uses

memory and learning to fine-tune candidate solutions in search of the best so-

lution. Some popular metaheuristic approaches include tabu search [71, 72, 74],

3.1 Heuristic Approach to Energy-aware Multiprocessor Scheduling 19

simulated annealing [42, 76], particle swarm optimization [13, 65] and genetic algo-

rithms [67, 70, 73]. Tabu search and simulated annealing are single solution-based

search heuristics. This type of approach focus on modifying and improving a single

candidate solution using local search strategies. For example, in simulated anneal-

ing, a single candidate solution is used to search for better candidate solutions

among its neighbourhood using the idea of physical annealing of solids to attain

minimum internal energy states. In each iteration of the algorithm, the current

candidate solution has a certain probability of being replaced by one of its neigh-

bouring candidate solution, which may not necessarily be better than the current

candidate solution. This ensure that the search will not be trapped in a local opti-

mal. The process terminates after a certain number of iterations has been reached.

In tabu search, the immediate neighbours of a candidate solution is checked in the

hope of finding a better solution. A memory structure is maintained to store recent

visited solutions within the search space and prevent the algorithm from visiting

these solution again.

On the other hand, particle swarm optimization and genetic algorithms use a

population-based approach to maintain and improve multiple candidate solutions,

using the characteristics of the population to guide the search. In particle swarm

optimization, a population of candidate solutions is spread over the search space.

These candidate solutions are referred to as particles. Each particle moves around

3.1 Heuristic Approach to Energy-aware Multiprocessor Scheduling 20

in the search space based on a simple function of its position and velocity. Each

particle’s movement is guided by both its local best known position as well as the

best known positions discovered by other particles. As a result, the particles are

expected to swarm toward the best solutions. In a genetic algorithm, a population

of candidate solutions evolves towards better solutions during the process of evolu-

tion. Candidate solutions are usually represented as a string or an array. A fitness

function is defined to evaluate the quality of the candidate solution. The genetic al-

gorithm starts with a randomly generated population of candidate solutions. These

candidate solutions are then evaluated using the defined fitness function. Next, a

new population of candidate solutions are generated from the current population

using the principles of genetic crossover and mutation [5, 25, 68]. In crossover, a

pair of of parent strings is selected from the current population with the probability

of selection being an increasing function of fitness. With some crossover probabil-

ity, the pair is crossed over at randomly chosen point to form two new strings.

Next, the two new candidate solutions are mutated at random points with some

mutation probability. The newly generated population of candidate solutions then

replaces the current population. This process of fitness evaluation, crossover and

mutation is then repeated iteratively, until the process does not find any better

candidate solutions after a number of iterations.

3.2 Multiprocessor Systems with a Single Energy Source 21

3.2 Multiprocessor Systems with a Single En-

ergy Source

Most multiprocessor systems have a single energy source from which each process-

ing element draws its power. In order to maximize the lifetime of such a multi-

processor system, the total energy consumption of the system must be minimized.

The most common way to solve this problem is to divide it into two sub-problems.

In the first sub-problem, the tasks are mapped to the processing elements and

the mapping is usually improved iteratively based on the feasibility and energy

consumption of the generated schedule. This is known as the task mapping (TM)

sub-problem. In the second sub-problem, it is assumed that the mapping of tasks

to processing elements is known and the tasks are scheduled/ordered and assigned

to various voltage levels so as to minimize the total energy consumption. We shall

define this as the task scheduling and voltage scaling (TSVS) sub-problem. Fig-

ure 3.1 shows the typical flow in solving this energy-aware scheduling problem.

The TSVS sub-problem is highlighted by the shaded rectangle.

There are some papers [34, 50, 54] that assume that the task ordering is known and

focus only on voltage scaling. In [54], Schmitz et al. propose a heuristic that is

based on energy gradient and takes into account the power variations among the

tasks. While this approach is suitable for heterogeneous multiprocessor systems its

3.2 Multiprocessor Systems with a Single Energy Source 22

Figure 3.1: Typical flow for solving energy-aware scheduling problem for dependent
tasks

performance is dependent on the granularity of the time quantum used in the ap-

proach. As the size of the time quantum decreases, more energy is reduced but the

computation time also increases. There are a few studies that use the integer linear

programming approach. Zhang et al. [50] formulate the voltage scaling problem as

an integer linear programming (ILP) problem for a fixed task ordering and without

considering communication time and energy. Andrei et al. [34] use a mixed inte-

ger linear programming (MILP) method to solve the combined problem of voltage

scaling and adaptive body biasing assuming a known task ordering. However, for

both approaches, the long runtime of the optimal formulation makes it impractical

to be used within a task mapping and scheduling algorithm. Yanhong et al. [21]

propose a scheduling algorithm with low computational complexity using a critical

path track and update scheme to update the scaling factor of each critical path

3.2 Multiprocessor Systems with a Single Energy Source 23

and distribute the slack over the tasks. The low computational complexity of the

algorithm makes it suitable to be used within a task mapping and scheduling al-

gorithm.

There are also many papers [23, 36, 39, 60, 61] that focus solely on the TSVS sub-

problem. Gruian et al. [60] use a list scheduling heuristic with a priority function

based on the average energy consumption. Whenever an infeasible schedule is

found, the priorities of the tasks are dynamically increased and the tasks are re-

scheduled. However, the average energy and priority function used in the algorithm

is calculated based on the assumption that the energy consumption and computa-

tion time of a task is the same on all the processors. Therefore, it is not suitable

for scheduling tasks on heterogeneous multiprocessor systems. Luo et al. [61] try

to minimize the energy consumption by evenly distributing the slack among the

tasks. While this approach is suitable for homogeneous multiprocessor systems, it

is not optimized for heterogeneous multiprocessor systems due to the variation of

the power consumption across different processing elements. In [39], Gorjiara et al.

propose a fast heuristic by randomly slowing down some of the high-power tasks.

Tasks with higher power consumption have higher probabilities of being slowed

down. More recently, the authors propose another stochastic-based scheduling al-

gorithm [23, 36] that is faster and more energy-efficient. In this approach, they

randomly slow down or speed up the tasks based on their energy gradient and

3.2 Multiprocessor Systems with a Single Energy Source 24

execution delays. Tasks with higher energy gradients and lower execution delays

are assigned higher probabilities of being slowed down. Due to the random slowing

down or speeding up of the tasks, this algorithm is able to avoid being trapped

in local minima and therefore it is able to find better solutions more easily. The

nature of the algorithm allows it to be used for heterogeneous multiprocessor sys-

tems. In addition, the low computation time of the algorithm makes it suitable for

use within a task mapping algorithm.

There are not many literature that considers task mapping, task ordering and volt-

age scaling at the same time. Leung et al. [40] formulate the whole problem of

task mapping, task ordering and voltage scaling as a mixed integer non-linear pro-

gramming (MINLP) problem with continuous voltage levels. However, since their

runtime is very long, they propose a divide-and-conquer approach to speed up the

optimization process at the expense of losing the optimality of their solution. In

[52], Schmitz et al. propose a strategy that also considers task mapping, task order-

ing and voltage scaling. In their strategy, they use a list scheduling heuristic where

the priorities of the tasks are generated using a genetic algorithm (GA) and voltage

scaling of the tasks is done using [54]. This is then nested inside another GA that

is used to determine the optimal mapping of the tasks to the processing elements.

The genetic algorithms used in this approach allow the user to search through a

larger exploration space and avoid local minima, resulting in good solutions being

3.2 Multiprocessor Systems with a Single Energy Source 25

found. Although this approach is able to obtain good solutions compared to other

approaches such as [40], the optimization time is still relatively high due to the

nested nature of the GA algorithms.

During runtime, tasks may not require their WCETs to complete, resulting in slacks

being generated. Dynamic energy-aware scheduling algorithms are then used dur-

ing runtime to reclaim the slacks and reduce the total energy consumption further.

Yang et al. [57] propose a two-phase strategy for runtime scheduling on multipro-

cessor system. In this strategy, the tasks are grouped into clusters called thread

frame. The runtime scheduling options are set during the design-time phase. Dur-

ing the runtime phase, the scheduler just chooses the suitable scheduling option.

Although the runtime complexity of this approach is low, by grouping the tasks

into thread frames, the amount of energy reduction may be limited. Zhu et al.

[44] propose the concept of slack sharing among the processors for homogeneous

systems. They later extend the concept to applications that are modelled using

AND/OR graphs [49]. Mishra et al. [46] propose a greedy approach in which the

whole slack that is generated by a task will be reclaimed by its immediate successor

tasks to reduce their energy consumption. While this approach is simple, it ensures

that the deadlines of the tasks will be met while the constant order complexity of

the algorithm means that the runtime scheduling overhead is minimal. Kang et

3.2 Multiprocessor Systems with a Single Energy Source 26

al. [9] propose to apply static slack allocation schemes during runtime to a sub-

set of tasks in order to derive a more energy-efficient schedule while requiring less

runtime overhead when compared to applying the static schemes to all the tasks

during runtime. While this approach is able to dynamically derive a more energy-

efficient schedule, it does not guarantee that the deadlines of the task will be met.

Therefore it is not suitable for runtime scheduling of hard real-time applications.

From the literature, it is observed that most of the researchers focus their research

on solving a subset of the problem that we are aiming to solve. Most apply DVS

to uniprocessor or homogeneous multiprocessor systems to generate energy effi-

cient schedules. Furthermore, their research are also usually focused on the TSVS

sub-problem or the voltage scaling problem, assuming that the task mapping is

known. The few literature that addresses task mapping, task ordering and voltage

scaling for heterogeneous multiprocessor systems requires a high optimization time

in order to achieve a reasonably good solution. This thesis tries to minimize the

energy consumption in a heterogeneous multiprocessor system by considering task

mapping, task ordering and voltage scaling in an integrated way. In doing so, we

are able to generate energy-efficient schedules using much less optimization time.

3.3 Multiprocessor Systems with Distributed Energy Sources 27

3.3 Multiprocessor Systems with Distributed En-

ergy Sources

In tightly coupled battery-operated multiprocessor systems where processors share

the same energy source, minimizing the total energy consumption of the system

also maximize its lifetime. However, the same cannot be said for some systems in

which each processor has its own energy source. An example is a wireless sensor

network (WSN). In this type of system, minimizing the total energy consumption

may not necessarily maximize the lifetime of the system. If many of the tasks

are allocated to a single processor, the energy source of that processor is going to

drain much faster than the other processors, resulting in a shorter system lifetime

as a whole. In order to maximize the lifetime of the system, the tasks have to be

allocated in a balanced way according to the available energy capacities of each

processor.

To address this problem, Yu et al. [33] proposed a 3-phase heuristic approach for

task mapping, task ordering and voltage scaling in a WSN. In the first phase, the

tasks are grouped into clusters by eliminating communications with high execution

times. Next, the clusters are assigned to the sensor nodes in a way such that the

norm-energies of the sensor nodes are balanced. Here, the norm-energy is defined

as the total energy consumption of the tasks scheduled on a node normalized by the

3.3 Multiprocessor Systems with Distributed Energy Sources 28

remaining energy of that node. In the last phase, the voltage levels of the tasks are

adjusted to reduce the energy consumption further. However, the 3-phase heuristic

approach is only applicable to a WSN with homogeneous sensor nodes.

The thesis proposes a new heuristic scheduling algorithm that is that can be ap-

plied to heterogeneous sensor nodes. The algorithm tries to minimize the energy

consumption of the tasks on each sensor node while keeping the energy consump-

tion as balanced as possible among the sensor nodes. In doing so, we are able

to achieve a much longer lifetime of the WSN while the deadline miss rate of the

generated schedules are also much lower.

Chapter 4
Static Energy-aware Scheduling Strategies

for Systems with Single Energy Source

Since hard real-time applications have strict deadline requirements, in order to

guarantee that the deadline constraints are not violated, static energy-aware schedul-

ing algorithms are usually used to generate static energy optimized schedules in

advance. These algorithms use the WCETs of the task so that the deadline con-

straints will still be met in the worst-case scenario. In this chapter, we present a few

static energy-aware scheduling strategies for multiprocessor systems. First, an en-

ergy gradient-based multiprocessor scheduling algorithm will be described. The al-

gorithm, referred to as Energy Gradient-based Multiprocessor Scheduling (EGMS),

is designed to schedule task precedence graphs under deadline constraints. The sec-

ond algorithm, EGMS with Intra-task Voltage Scaling (EGMSIV), extends EGMS

29

4.1 Design of Energy Gradient-based Multiprocessor Scheduling
(EGMS) 30

and utilizes a Linear Programming (LP) method for intra-task voltage scaling. We

then present an adaptation of the proposed EGMS/EGMSIV algorithms for TM or

TSVS only. Lastly, the performance of EGMS and EGMSIV are evaluated through

rigorous simulation experiments.

4.1 Design of Energy Gradient-based Multi-

processor Scheduling (EGMS)

In energy-aware scheduling of task precedence graphs on heterogeneous embedded

multiprocessor platforms, there are three main factors that affect the quality of

the solution obtained: the mapping of tasks onto processors, the ordering of the

tasks and the selection of the voltage levels of the processors. Most literature

[23, 36, 39, 60, 61] considers the ordering of tasks and voltage scaling in an inte-

grated approach for the TSVS sub-problem. However, the mapping of tasks to

processors is usually considered separately. During task mapping optimization,

the TSVS algorithm that is used has to be invoked repeatedly to obtain the best

feasible and energy-efficient schedule for every task mapping that is generated in

the process, regardless of the quality of the task mapping. In addition, only the

final schedule that is generated by the TSVS for each task mapping is considered

during this optimization process. However, the TSVS process itself may also be

4.1 Design of Energy Gradient-based Multiprocessor Scheduling
(EGMS) 31

useful in guiding the task mapping optimization process towards a more energy-

efficient schedule at a faster rate. This is one of the main factors that is considered

in the design of the EGMS algorithm.

The EGMS algorithm takes into consideration task mapping, task ordering and

voltage scaling in an integrated manner. A schedule is first generated based on an

initial task mapping. In each optimization step, a task is re-mapped to a new pro-

cessor and/or voltage level such that the total energy consumption of the schedule

is reduced as much as possible while the slack is decreased as little as possible. In

this way, the task mapping as well as the task scheduling and voltage scaling are

optimized at the same time based on the current partially optimized schedule. In

doing so, it is hoped that an optimized energy-efficient schedule can be derived in

a shorter time.

Figure 4.1 defines some notations that would be used in the description of the

EGMS algorithm. We define the makespan of a schedule as the period of time

required to completely process all the tasks.

The pseudo-code of the EGMS algorithm is presented in Algorithm 1. An initial

schedule is first generated by assigning tasks to the processors that can complete

their execution in the shortest amount of time at the highest voltage level (lines

4.1 Design of Energy Gradient-based Multiprocessor Scheduling
(EGMS) 32

Notations used in EGMS

Mp(i) : Processor to which Ti is currently mapped, 1 ≤ i ≤ Nt

Mv(i) : Voltage level to which Ti is currently mapped, 1 ≤ i ≤ Nt

e : Energy consumption of the current schedule
ms : Makespan of the current schedule
Mpbest

(i) : Processor to which Ti is mapped in the best schedule generated
so far, 1 ≤ i ≤ Nt

Mvbest(i) : Voltage level to which Ti is mapped in the best schedule gener-
ated so far, 1 ≤ i ≤ Nt

ebest : Minimum energy consumption of the best schedule generated so
far

msbest : Makespan of the best schedule generated so far
numIter : Number of successive iterations without significant improvement
Tselected : Task selected to be re-mapped
Pselected : Processor to which Tselected is mapped
Vselected : Voltage level to which Tselected is mapped
eselected : Total energy consumption when Tselected is re-mapped
msselected : Makespan of schedule when Tselected is re-mapped
prselected : Priority calculated when Tselected is re-mapped to Pselected at

voltage Vselected

Figure 4.1: Notations used in EGMS algorithm

2-5). The tasks are then scheduled using the Critical Path-based Task Ordering

(CPTO) algorithm (line 6). In each iteration of the while loop (lines 8-31), a task

is selected to be re-mapped to a new processor and/or a new voltage level such

that the total energy consumption is reduced and no deadlines are violated by

using the SelectRemapTask() algorithm (line 9). If such a task can be found,

the current schedule is updated (lines 10-14). This process continues until no tasks

can be re-mapped without violating the deadlines. When this happens, the energy

consumption of the schedule cannot be reduced further. If the current schedule is

feasible and has a lower energy consumption than the best schedule obtained so

far, the best schedule is updated with the current schedule (lines 18-26). However,

4.1 Design of Energy Gradient-based Multiprocessor Scheduling
(EGMS) 33

this best schedule may not be the global optimum schedule. In order to obtain a

better solution, 50% of the tasks in the current schedule are randomly reassigned

to other processors at the highest voltage levels to generate a new initial schedule

(lines 28-29). The whole process of task re-mapping is then repeated starting from

the new initial mapping until there is no significant improvement in the energy

consumption (> 1%) of n successive schedules. Here, n is a user-defined parameter

that determines the terminating condition of the algorithm. It shall be noted that

by reassigning the tasks and applying the algorithm repeatedly, the total energy

consumption is lowered further at the expense of an increase in optimization time.

We shall now give the complexity of the EGMS algorithm. Let CCPTO and CSEL be

the complexities of CPTO() and SelectRemapTask() respectively. (The com-

plexities of these two algorithms shall be shown later.) Lines 2 to 5 execute in

O(Nt ·Np) time. In the while loop, the steps from lines 9 to 14 are repeated until

the current schedule cannot be optimized further. Let η be the average number

of times these steps are repeated. When the current schedule cannot be opti-

mized further, the steps from lines 15 to 30 are executed to generate a new initial

schedule before repeating the steps from lines 9 to 14 again. The steps from lines

15 to 30 are repeated O(n) times. The complexity of the while loop is therefore

given by O(n(η · CSEL + Nt + CCPTO)). Hence, the total complexity of EGMS is

O(Nt ·Np +CCPTO + n(η ·CSEL +Nt +CCPTO)). It shall be shown later that this

4.1 Design of Energy Gradient-based Multiprocessor Scheduling
(EGMS) 34

Algorithm 1 : EGMS()
1: ebest ←∞
2: for all Ti do /∗ Assign tasks to fastest processors ∗/
3: Mp(i)← Fastest-executing processor for Ti

4: Mv(i)← Maximum voltage level
5: end for
6: CPTO(Mp,Mv, e,ms) /∗ Schedule tasks based on initial processor and voltage

mapping ∗/
7: numIter ← 0
8: while numIter < n do
9: Tselected = SelectRemapTask(Pselected, Vselected, eselected, msselected) /∗ Find a task

to be re-mapped ∗/
10: if Tselected ̸= −1 then /∗ Task to be re-mapped is found, update current mapping ∗/
11: Mp(Tselected)← Pselected

12: Mv(Tselected)← Vselected

13: e← eselected
14: ms ← msselected

15: else /∗ No tasks can be re-mapped without violating deadline ∗/
16: numIter ++
17: if feasible schedule found then
18: if e < ebest then /∗ Better schedule is found, update the best schedule found so

far ∗/
19: if e

ebest
< 0.99 then /∗ Improvement > 1% ∗/

20: numIter ← 0
21: end if
22: ebest ← e
23: msbest ← ms

24: Mpbest
←Mp

25: Mvbest ←Mv

26: end if
27: end if
28: Randomly assign 50% of tasks to other processors at maximum voltage level
29: CPTO(Mp,Mv, e,ms)
30: end if
31: end while

complexity is dominated by CSEL and so it can be given as O(n · η · CSEL).

Algorithm 2 shows the CPTO() algorithm that is use to generate a schedule. Based

on the given processor and voltage level mapping, all the communication edges be-

tween two tasks that are mapped on different processors are first replaced using

tasks where the execution time is equal to the communication time (line 3). For

4.1 Design of Energy Gradient-based Multiprocessor Scheduling
(EGMS) 35

each task, the length of the critical path from that task is calculated and its start

and end times are initialized (lines 4-8). The tasks are then scheduled based on

their critical paths (lines 9-26). Tasks with longer critical paths have higher priori-

ties and are scheduled first. The makespan and energy consumption of the schedule

are also calculated in the process. The complexity of CPTO() is given as follows:

Let Na be the total number of computational and communication tasks and Nsucc

be the average number of successors of a task. Let us assume that the tasks are

already in topological order. For line 4-8, the lengths of all the critical paths can

be calculated in O(Na · Nsucc) time. A fibonacci heap is used to implement the

priority queue Q. Therefore insertion into Q (line 9) is O(1) and removal from Q

(line 11) is O(logNa) amortized time. Line 24 requires O(Nsucc) time for execu-

tion. The while loop is executed Na times. Thus, the total complexity of CPTO()

is O(Na ·Nsucc +Na · (logNa +Nsucc)) = O(Na · (logNa +Nsucc)).

Algorithm 3 shows the SelectRemapTask() algorithm that is used to select the

best task to be re-mapped, as well as the processor and voltage level it should be

re-mapped to. In this algorithm, we consider the cases when Ti is re-mapped to

processor Pj at voltage level V (j, k) for all i,j and k. For each < Ti, Pj, V (j, k) >

triplet, CPTO() is invoked to obtain the energy consumption e′ and makespan m′
s

of the new schedule generated by the re-mapping (lines 7-11). The priority pr is

then calculated if this new schedule is feasible and has a lower energy consumption

4.1 Design of Energy Gradient-based Multiprocessor Scheduling
(EGMS) 36

Algorithm 2 : CPTO(Mp,Mv, e,ms)
1: e← 0
2: ms ← 0
3: Replace the communication between any 2 tasks that are scheduled on different processors

with a task, where the execution time is the communication time
4: for all Tj do /∗ Both computational and communication tasks ∗/
5: Calculate lcp(j) /∗ Length of critical path starting from Tj ∗/
6: tstart(j)← 0 /∗ Initialize start time of Tj to 0 ∗/
7: tend(j)← 0 /∗ Initialize end time of Tj to 0 ∗/
8: end for
9: Insert tasks with no incoming edges into priority queueQ, where tasks are sorted in decreasing

values of lcp
10: while Q is not empty do
11: Remove Tj from front of Q. /∗ Get task with largest critical path length ∗/
12: if Tj is communication task then
13: e← e+Communication energy
14: tstart(j)← Earliest time communication bus is free
15: tend(j)← tstart(j)+ Communication time
16: else /∗ Tj is computational task ∗/
17: e← e+ ewc(j,Mp(j),Mv(j))
18: tstart(j)← Earliest time PEMp(j) is free
19: tend(j)← tstart(j) + twc(j,Mp(j),Mv(j))
20: end if
21: if tend(j) > ms then
22: ms ← tend(j)
23: end if
24: Remove Tj and all outgoing edges from task graph
25: Insert tasks with no incoming edges into priority queue Q
26: end while

than the current schedule:

pr =

e−e′

m′
s−ms

if m′
s > ms

w × (e− e′) if m′
s ≤ ms

(4.1)

Here, two cases are considered. In the first case, the new schedule has a lower

energy consumption but a longer makespan. Here, the concept of energy gradient

4.1 Design of Energy Gradient-based Multiprocessor Scheduling
(EGMS) 37

is used to calculate the priority so that schedules that give the largest reduction

in energy consumption with the least increase in makespan will be assigned higher

priorities. Most of the schedules will be in this case. In the second case, the new

schedule has both a lower energy consumption and a shorter makespan. In this

case, higher priorities are assigned to schedules that result in larger reduction of

energy consumption. An arbitrary large constant w is used in the calculation of

the priority so as to assign higher priorities to these schedules compared to the

schedules in the first case. This is because schedules that reduce both the energy

consumption and the makespan are much more preferred than those in the first

case.

It shall be noted that there is no need to invoke CPTO() and calculate the priori-

ties for all < Ti, Pj, V (j, k) > triplets. For a task that is re-mapped to a particular

processor, the highest voltage level l can be obtained such that the total energy con-

sumption is lower than the current consumption for all voltages ≤ l (line 5). This

step takes O(logNv) time. Therefore there is no need to consider the schedules for

voltages greater than l in the inner-most k-loop (lines 6-25). In addition, whenever

an infeasible schedule is generated for a particular voltage level, there is no need

to consider the lower voltage levels as well (lines 22-23). As the schedule becomes

more optimized, the number of feasible voltage levels that can be mapped to also

decreases. Although the overall worst-case complexity of SelectRemapTask()

4.1 Design of Energy Gradient-based Multiprocessor Scheduling
(EGMS) 38

Algorithm 3 :
SelectRemapTask(Pselected, Vselected, eselected,msselected)
1: Tselected ← −1
2: prselected ← −∞
3: for i← 1 to Nt do
4: for j ← 1 to Np do
5: Select the highest voltage l such that the total energy consumption is reduced
6: for k ← l to 1 do /∗ No need to consider voltage levels higher than l ∗/
7: curProc←Mp(i), Mp(i)← j /∗ Re-map Ti to PEj at V (j, k) ∗/
8: curV oltage←Mv(i), Mv(i)← k
9: CPTO(Mp,Mv, e

′,m′
s) /∗ Obtain schedule based on new mapping ∗/

10: Mp(i)← curProc /∗ Revert back to original mapping ∗/
11: Mv(i)← curV oltage
12: if m′

s ≤ d then /∗ Schedule is feasible ∗/
13: Calculate priority pr using Eq.(4.1)
14: if pr > prselected then /∗ Highest priority found so far ∗/
15: prselected ← pr
16: Tselected ← i
17: Pselected ← j
18: Vselected ← k
19: eselected ← e′

20: msselected ← m′
s

21: end if
22: else /∗ Deadline violated, no need to consider lower voltage levels ∗/
23: break
24: end if
25: end for
26: end for
27: end for
28: return Tselected

is O(Nt · Np · (logNv + Nv · CCPTO)) = O(Nt · Np · Nv · CCPTO), the average-case

complexity is usually much smaller.

4.2 Design of EGMS with Intra-task Voltage Scaling (EGMSIV) 39

4.2 Design of EGMS with Intra-task Voltage Scal-

ing (EGMSIV)

The EGMS algorithm is extended to scenarios where intra-task voltage scaling

shall be used. In intra-task voltage scaling, a fraction of a task can be executed at

a particular voltage level while the rest of the task is executed at another voltage

level on the same processor. It is assumed that there is negligible overhead involved

when a processor changes its voltage level.

In order to introduce intra-task voltage scaling in the algorithm, the following issue

needs to be addressed. Given the processor mapping and ordering of each task,

how should the voltage levels be assigned to the tasks so that the total energy

consumption is minimized and all tasks meet their deadline requirements?

This can be formulated into a Linear Programming (LP) problem in the following

way. Let Mp(i) be the given processor mapping of each task Ti. For any two tasks

that are connected by an edge in the task precedence graph and are scheduled on

different processors, a communication task Cj with communication time tc(j) is

required to transfer data between the two processors. Let Nc be the total number

of such communication tasks to be scheduled on the bus. Let y(i,Mp(i), k) denote

the fraction of Ti that executes on the given processor Mp(i) at the voltage level

4.2 Design of EGMS with Intra-task Voltage Scaling (EGMSIV) 40

V (Mp(i), k). Let t
Ti
s and tTi

e denote the start and end times of the execution of Ti.

In addition, the start and end times of the execution of Cj are denoted using t
Cj
s

and t
Cj
e respectively. The voltage scaling problem is then formulated as shown in

Figure 4.2.

LP Formulation for Voltage Scaling Problem

Minimize
E =

∑Nt

i=1

∑Nv

k=1(y(i,Mp(i), k)·ewc(i,Mp(i), k)) +Pb·
∑Nc

j=1(t
Cj
e −tCj

s)

Subjected to

1) Fraction of Ti assigned to V (Mp(i), k) ≤ 1):
0 ≤ y(i,Mp(i), k) ≤ 1,
for i = 1, 2, · · · , Nt; k = 1, 2, · · · , Nv

2) Fractions of Ti must add up to exactly one:∑Nv

k=1 y(i,Mp(i), k) = 1,
for i = 1, 2, · · · , Nt

3) End time of Ti = Start time of Ti + Execution time of Ti:

tTi
e = tTi

s +
∑Nv

k=1(y(i,Mp(i), k) · twc(i,Mp(i), k)) ≤ d,
for i = 1, 2, · · · , Nt

4) End time of Cj = Start time of Cj + Communication time of Cj :

t
Cj
e = t

Cj
s + tc(j) ≤ d,

for j = 1, 2, · · · , Nc

5) Tasks scheduled on the same processor must not overlap:
tTi
s ≥ tTa

e ,
for i = 1, 2, · · · , Nt, where Ta and Ti are scheduled on the same processor and Ti is
the next task to be executed after Ta.

6) Communications scheduled on the bus must not overlap:

t
Cj
s ≥ tCb

e ,
for j = 1, 2, · · · , Nc, where Cb and Cj are scheduled on the bus and Cj is the next
edge to be scheduled after Cb.

7) Precedence constraints are observed:

tTi
s ≥ t

Cp
e , t

Cp
s ≥ t

Tq
e ,

for i = 1, 2, · · · , Nt, where Tq and Ti are scheduled on different processors, Cp is the
communication task between them, and Ti is the immediate successor of Tq.

Figure 4.2: Voltage Scaling using LP formulation

4.2 Design of EGMS with Intra-task Voltage Scaling (EGMSIV) 41

This LP formulation of the voltage scaling problem can be solved optimally in

polynomial time using currently available LP solvers if the formulation is feasible.

The solution to this problem will give the optimized energy consumption, the

fraction of tasks to be scheduled on each voltage level, the start and end times of

the tasks on the processors that they are mapped to, as well as the start and end

times of the communication tasks on the bus. However, it should be noted that

the optimality of this solution applies only to the given processor mapping and

ordering of the tasks.

With this LP formulation of the voltage scaling problem, the EGMS algorithm can

be extended to introduce intra-task voltage scaling in the following way. When the

current schedule is feasible and cannot be optimized further (line 17 of EGMS()),

the processor mapping and task ordering of the current schedule is based on the

assumption that no intra-task voltage scaling is used. In order to obtain the energy

consumption for the case with intra-task voltage scaling, the LP formulation is

applied based on the same processor mapping and ordering of the tasks as the

current schedule. This additional step of applying the LP formulation is inserted

between lines 17 and 18 of the EGMS algorithm. Since the current schedule is

feasible, the LP formulation is also feasible. As such, the final schedule will reflect

the minimized energy consumption obtainable using the algorithm for scheduling

the tasks with intra-task voltage scaling. In addition, the EGMS algorithm is

4.3 Adaptation of EGMS/EGMSIV for TM or TSVS only 42

employed repeatedly until there is no significant improvement in the solution after

n successive iterations. Hence, one needs to apply this formulation O(n) times to

avoid the solution being trapped in local minima.

4.3 Adaptation of EGMS/EGMSIV for TM or

TSVS only

While EGMS and EGMSIV consider task mapping, task ordering and voltage

scheduling in an integrated way, they can be modified to address the TM as well

as the TSVS sub-problems separately. A brief description of the changes required

to modify them is shown below.

1) EGMS for Task Mapping Only (EGMS-TM)

To use EGMS for task mapping only, the CPTO() algorithm (lines 6 and

29 of EGMS(), line 9 of SelectRemapTask()) shall be replaced with any

TSVS algorithms that the user desires. In addition, since the voltage scaling

is done by the TSVS algorithms, there is no need to consider the voltage

level mapping. Therefore, lines 4, 12 and 25 from EGMS(), as well as lines 5,

8, 11 and 18 from SelectRemapTask() shall be removed. In addition, in

SelectRemapTask(), there is no need to consider the inner-most k-loop.

Instead, the steps inside the k-loop should be moved to the outer j-loop.

4.4 Performance of EGMS and EGMSIV 43

2) EGMS/EGMSIV for Task Scheduling and Voltage Scaling Only (EGMS-

TSVS/EGMSIV-TSVS)

To use EGMS/EGMS-IV for task scheduling and voltage scaling only, it is

assumed that the task mapping is already given. Since no task mapping is

required, lines 3, 11 and 24 from EGMS() as well as lines 5, 7, 10 and 17 from

SelectRemapTask() can be removed. The j-loop in SelectRemapTask()

is also removed. In addition, since fast TSVS algorithms are often required,

the steps in the k-loop (lines 8-21) shall be applied for the next lower voltage

level only.

4.4 Performance of EGMS and EGMSIV

4.4.1 Energy Optimization without Task Mapping

Let us consider the TSVS sub-problem where the mapping of tasks to processors

is assumed to be given. The EGMS-TSVS and EGMSIV-TSVS algorithms will

be compared with ASG-VTS [23, 36]. As described in Section 3.2, ASG-VTS is

an ultra-fast algorithm that produces energy-efficient schedules without intra-task

voltage scaling. An on-line version of the DVS tool that uses ASG-VTS is available

at [3]. The algorithms are implemented using C++ in a Cygwin environment on

a Pentium-IV/3.2GHz/2GB RAM PC running Windows XP. 1000 task graphs

comprising a maximum of 100 tasks are generated using TGFF [64]. The lp solve

4.4 Performance of EGMS and EGMSIV 44

[2] library are used for solving the LP formulation of the voltage scaling problem

in the EGMSIV-TSVS algorithm. The time required to execute the tasks on the

processors at the highest voltage level were defined in an expected time to compute

(ETC) matrix which was generated using the method described in [62]. The ETC

matrix is generated for high task as well as high machine heterogeneity (Vtask =

0.5, Vmach = 0.5) condition. It is assumed that each processor has four voltage

levels at 0.9V, 1.7V, 2.5V and 3.3V. The mean task execution time (µtask) was

set as 10 and the mean power consumption of each processor at maximum voltage

level (µpower) was set as 100. The maximum power ratings for the processors

were randomly generated using a gamma distribution with α and β parameters

calculated as follows:

α =
1

V 2
mach

(4.2)

β =
µpower

α
(4.3)

Figure 4.3 shows the deadline miss rate achieved by the ASG-VTS, EGMS-TSVS

and EGMSIV-TSVS algorithms. Out of the 1000 task graphs, ASG-VTS is unable

to find a feasible schedule for 5.3% of the task graphs while EGMS-TSVS and

EGMSIV-TSVS are unable to find a feasible for 5.0% and 4.8% of the task graphs

4.4 Performance of EGMS and EGMSIV 45

respectively. We compare the performance of the three algorithms using the re-

maining 945 task graphs where feasible solutions can be found for all 3 algorithms.

We normalized the optimization time by the values obtained using ASG-VTS for

comparison purposes. Figure 4.4 shows the average energy savings achieved by

the 3 algorithms while Figure 4.5 show the geometric mean of the normalized op-

timization time required by the 3 algorithms to obtain a feasible schedule. It is

observed that the geometric mean of the normalized optimization time of EGMS-

TSVS and EGMSIV-TSVS is about 3 to 4 times that of ASG-VTS. This is because

EGMS-TSVS and EGMSIV-TSVS search through a larger exploration space than

ASG-VTS, resulting in a longer optimization time. However, because EGMS-TSVS

and EGMSIV-TSVS search through a larger exploration space, they are able to

perform better than ASG-VTS in terms of energy minimization. On the average,

there is an improvement of about 21% in terms of the amount of energy saved

when EGMS-TSVS is compared to ASG-VTS. The EGMSIV-TSVS performs even

better, obtaining an improvement of about 36% compared to ASG-VTS as a result

of using intra-task voltage scaling.

4.4 Performance of EGMS and EGMSIV 46

Figure 4.3: Deadline miss rate when using ASG-VTS, EGMS-TSVS and EGMSIV-
TSVS for task scheduling and voltage scaling based on a given mapping of tasks
to processors

Figure 4.4: Average energy savings by ASG-VTS, EGMS-TSVS and EGMSIV-
TSVS for task scheduling and voltage scaling based on a given mapping of tasks
to processors

4.4.2 Energy Optimization with Task Mapping

For energy optimization with task mapping, task ordering and voltage scaling, the

EGMS and EGMSIV algorithms are compared to the nested GA approach [52]

4.4 Performance of EGMS and EGMSIV 47

Figure 4.5: Geometric mean of the normalized optimization time required by ASG-
VTS, EGMS-TSVS and EGMSIV-TSVS for task scheduling and voltage scaling
based on a given mapping of tasks to processors

since it is able to generate energy-efficient schedule while considering task map-

ping, task ordering and voltage scaling at the same time. In the nested GA ap-

proach, a GA-based task scheduling algorithm EE-GLSA is nested within another

GA-based task mapping algorithm EE-GMA in order to obtain the best processor

mapping, task ordering and voltage level mapping. Due to the high runtime of the

nested GA approach, we also try to replace the inner GA-based task scheduling

algorithm EE-GLSA with the ASG-VTS algorithm [23, 36]. In addition, we also in-

sert the ASG-VTS algorithm into the EGMS-TM algorithm for evaluation. These

approaches are denoted as EE-GMA(ASG-VTS) and EGMS-TM(ASG-VTS) re-

spectively. The communication delays are uniformly distributed between 1 and 5

while the power consumption of the communication bus is set at 10. The EGMS-

TSVS and EGMSIV-TSVS algorithms are also inserted into EE-GMA and the

results are compared. These approaches are denoted as EE-GMA(EGMS-TSVS)

4.4 Performance of EGMS and EGMSIV 48

Table 4.1: Scheduling strategies compared in the simulation study for energy op-
timization with task mapping

Strategy
Task Mapping Task Scheduling & Intra-task
Algorithm Voltage Scaling Algorithm Voltage Scaling

EE-GMA(ASG-VTS) EE-GMA ASG-VTS No
EE-GMA(EGMS-TSVS) EE-GMA EGMS-TSVS No
EGMS-TM(ASG-VTS) EGMS-TM ASG-VTS No

EGMS EGMS-TM EGMS-TSVS No
Nested GA EE-GMA EE-GLSA Yes

EE-GMA(EGMSIV-TSVS) EE-GMA EGMSIV-TSVS Yes
EGMSIV EGMS-TM EGMSIV-TSVS Yes

and EE-GMA(EGMSIV-TSVS) respectively. A summary of the features of the

various approaches used in the simulation is shown in Table 4.1.

In the nested GA approach [52], the area penalty is omitted in the calculation of

the fitness function in EE-GMA, since processor area is not a constraint in the

analysis. Hence, the fitness function used in the experiment is given by:

Fs = E ·
(

1 +
∑Ns

i=1
(max(0,tie−d))2

d2

)
(4.4)

where tie is the end time of the sink task Ti and Ns is the total number of sink tasks.

Here, the sink tasks refer to those tasks in the task precedence graph that have no

successors. The inner EE-GLSA algorithm terminates when there is no improved

solution (improvement > 1%) being produced for 10 successive generations. The

outer EE-GMA algorithm terminates when there is no improvement in the solution

for 25 successive generations. In addition, just as in [52], the calculation of the

energy consumption obtained using the nested GA approach assumes the use of

4.4 Performance of EGMS and EGMSIV 49

intra-task voltage scaling. The EE-GMA algorithm that is used in combination

of other TSVS algorithms also terminates when there is no improvement in the

solution for 25 successive generations. For the EGMS-TM algorithm, n is set to

25 as well.

We randomly generate 1000 task graphs consisting of between 10 to 100 tasks

and obtain the energy consumption and optimization time required by the vari-

ous approaches. For the EGMS and EGMSIV algorithms, we consider the cases

when n is 1, 100 and 500 respectively. For the purpose of comparison, the energy

consumption and the optimization time obtained using the various methods are

normalized by those obtained using the nested GA approach. Out of the 1000 task

graphs, there are 869 tasks graphs in which feasible schedules can be found for

all the approaches. Figure 4.6 shows the deadline miss rates that are achieved by

the various approaches. We observe that the nested GA approach has the highest

rate of deadline misses at 12.2% while EGMS and EGMSIV have the lowest rate

of deadline misses at between 3.7% to 7.2%. We also observe that when n increase

from 1 to 100 for EGMS and EGMSIV, the miss rate decreases. This is due to the

larger exploration space that is being searched when n increases.

Figure 4.7 and 4.8 show the average normalized energy consumption and the geo-

metric mean of the normalized optimization time required by the various algorithms

4.4 Performance of EGMS and EGMSIV 50

for the remaining 869 task graphs. The 95% confidence intervals are also shown

in the figures. The first 5 algorithms in the figures use intra-task voltage scaling

while the last 6 algorithms do not employ intra-task voltage scaling.

Figure 4.6: Deadline miss rate by the various algorithms for mapping optimization

Figure 4.7: Average normalized energy consumption by the various algorithms for
mapping optimization with 95% confidence intervals

For the first 5 algorithms that use intra-task voltage scaling, it can be observed

that when the EE-GLSA algorithm in the nested GA approach is replaced with

4.4 Performance of EGMS and EGMSIV 51

Figure 4.8: Geometric mean of the normalized optimization time required by the
various algorithms for mapping optimization with 95% confidence interval

the EGMSIV-TSVS algorithm, the energy consumption can be reduced further.

The EGMSIV algorithm performs even better. Compared to the nested GA ap-

proach, the EGMSIV algorithm is able to reduce the energy consumption by 7% to

10% when n increases from 1 to 500. Among the remaining 6 algorithms that do

not consider intra-task voltage scaling, EE-GMA(ASG-VTS) consumes the most

energy, followed by EGMS-TM(ASG-VTS), EE-GMA(EGMS-TSVS), EGMS(1),

EGMS(100) and EGMS(500). It is observed that when either the EE-GMA or

ASG-VTS algorithms in EE-GMS(ASG-VTS) are replaced by the EGMS-TM or

EGMS-TSVS algorithms respectively, the energy consumption can be reduced fur-

ther. However, the EGMS algorithm is able to obtain an even better performance.

Compared to EE-GMA(ASG-VTS), EGMS reduces the energy consumption by 4%

to 9% when n increases from 1 to 500.

4.4 Performance of EGMS and EGMSIV 52

Next, let us look at the optimization time required by the various algorithms to

derive a feasible schedule. Nested GA requires between 5 and 20695 seconds to

derive a feasible schedule while EE-GMA(ASG-VTS) requires between 1 and 86

seconds. EGMS-TM(ASG-VTS) requires between 1 and 55 seconds while EE-

GMA(EGMS-TSVS) and EE-GMA(EGMSIV-TSVS) require up to 398 and 916

seconds for optimization respectively. The best optimization times are achieved by

the EGMS and EGMSIV algorithms. Both EGMS and EGMSIV take about 0.006

to 3.1 seconds, 0.2 to 4.7 seconds and 1 to 27 seconds for optimization when n = 1,

n = 100 and n = 500 respectively. Compared to nested GA and EE-GMA(ASG-

VTS), there is a reduction of 99% and 67% in the geometric mean of the normalized

optimization time respectively even when n = 500. From these results, it can be

observed that when the number of iterations is increased, both EGMS and EGM-

SIV are able to obtain feasible schedules with lower energy consumption at the

expense of a longer optimization time. However, this optimization time is still

shorter than those required by both nested GA and EE-GMA(ASG-VTS).

In addition to the hypothetical task graphs generated using TGFF [64], the de-

signed algorithms are also applied to some task graphs corresponding to real-

life examples. The experiment is repeated using the set of task graphs used by

Bambha et al. [59]. The set of task graphs consists of 2 differently implemented

fast Fourier transforms (fft1, fft3), a Karplus-strong music synthesis algorithm

4.4 Performance of EGMS and EGMSIV 53

Table 4.2: Normalized energy consumption achieved for mapping optimization
using real-life applications used in [59]

Task
Graph

Normalized Energy Consumption
Without Intra-task Voltage Scaling With Intra-task Voltage Scaling

EE-GMA EE-GMA EGMS-TM
EGMS(500) Nested GA

EE-GMA
EGMSIV(500)

(ASG-VTS) (EGMS-TSVS) (ASG-VTS) (EGMSIV-TSVS)

fft1 1.073 0.992 1.052 0.885 1.000 0.900 0.792
fft3 1.207 1.051 1.192 0.989 1.000 1.017 0.957

karp10 1.081 0.946 1.031 0.894 1.000 0.900 0.873
qmf4 1.034 1.043 1.015 1.014 1.000 0.980 0.968
meas 1.029 1.029 1.029 1.029 1.000 0.999 0.999

Table 4.3: Normalized optimization time required for mapping optimization using
real-life applications used in [59]

Task
Graph

Normalized Optimization Time
Without Intra-task Voltage Scaling With Intra-task Voltage Scaling

EE-GMA EE-GMA EGMS-TM
EGMS(500) Nested GA

EE-GMA
EGMSIV(500)

(ASG-VTS) (EGMS-TSVS) (ASG-VTS) (EGMSIV-TSVS)

fft1 0.00403 0.01502 0.01546 0.00953 1.000 0.02954 0.01099
fft3 0.00025 0.00123 0.00081 0.00077 1.000 0.00111 0.00081

karp10 0.00036 0.00213 0.00144 0.00323 1.000 0.00296 0.00355
qmf4 0.1485 0.01086 0.02495 0.02242 1.000 0.05413 0.02675
meas 0.00396 0.00892 0.00188 0.00978 1.000 001390 0.01527

(karp10), a quadrature mirror filter bank (qmf4), and a measurement application

(meas). These applications are run on multiprocessor platforms consisting of iden-

tical processors. The normalized energy consumption and normalized optimization

time of the various algorithms are shown in Table 4.2 and 4.3. Again, the EGMS

and EGMSIV algorithms achieve the best results in terms of energy minimization.

In terms of optimization time, EE-GMA(ASG-VTS) achieves the best results for

all the task graphs except for qmf4. However, the schedules generated by EE-

GMA(ASG-VTS) consume about 11% more energy. From the results, it can be

observed that although the algorithms are designed for heterogeneous multiproces-

sors, they can be used for homogeneous multiprocessors as well.

4.4 Performance of EGMS and EGMSIV 54

Lastly, the performance of the algorithms are evaluated when the number of tasks

and processors increases. We randomly generated 1000 task graphs containing be-

tween 10 to 50 tasks each and obtained their average normalized energy consump-

tion. The results are shown in Figure 4.9 for the cases when 3 and 6 processors

are used respectively. From the figures, it is observed that when the number of

tasks increases, the designed algorithms perform better. When 3 processors are

used, both EGMSIV(500) and EE-GMA(EGMSIV-TSVS) have the best perfor-

mance, followed by EE-GMA(EGMS-TSVS), EGMS(500), EE-GMA(ASG-VTS)

and nested GA. EGMS-TM(ASG-VTS) does not perform well for smaller task

graphs. However, it performs better than EE-GMA(ASG-VTS) when the num-

ber of task is large. When the number of processors is increased from 3 to 6,

the EGMS and EGMSIV algorithms outperform the other algorithms, especially

when the number of tasks is large. From these results, it is observed that when

the number of tasks and processors increases, the search space becomes exponen-

tially larger and therefore the EE-GMA genetic algorithm used in nested GA and

EE-GMA(ASG-VTS) is unable to converge fast enough before the terminating

condition is met. This is also the reason why EE-GMA(ASG-VTS) outperforms

EGMS-TM(ASG-VTS) for smaller task graphs but not larger ones. However, when

EE-GMA is used with the EGMS-TSVS and EGMSIV-TSVS algorithms, it is able

to converge to better solutions faster. On the other hand, the EGMS and EGM-

SIV algorithms obtain the best performance as they are able to converge to very

4.4 Performance of EGMS and EGMSIV 55

good solutions by considering task mapping, task ordering and voltage scaling in

an integrated way.

(a) 3 processors

(b) 6 processors

Figure 4.9: Average normalized energy consumption as the number of tasks in-
creases

Chapter 5
Dynamic Energy-aware Scheduling

Strategies for Systems with Single Energy

Source

Static energy-aware scheduling algorithms use the WCETs of the tasks to gener-

ate energy efficient schedules without violating the deadline constraints. However,

tasks may not require their WCETs to complete during runtime, resulting in the

generation of slacks. Dynamic energy-aware scheduling algorithms are then em-

ployed during runtime to reclaim these slacks so as to reduce the energy consump-

tion further. In this chapter, we describe two strategies to improve the runtime

performance of the applications in terms of energy minimization. First, we pro-

posed a method to improve the performance of static energy-aware scheduling

56

5.1 Design of Potential Slack for Dynamic Scheduling Considerations
(PSDSC) 57

algorithms during runtime using Potential Slack for Dynamic Scheduling Con-

siderations (PSDSC). Next, we present our Average-based Aggressive Dynamic

Scheduling (AADS) algorithm that can be employed during runtime in order to

minimize the overall average energy consumption.

5.1 Design of Potential Slack for Dynamic Schedul-

ing Considerations (PSDSC)

5.1.1 Description of PSDSC

Most static energy-aware scheduling algorithms use the WCETs of the tasks in or-

der to generate the static schedules. These schedules are energy-efficient if all the

tasks require their WCETs to execute. When tasks do not require their WCETs

to complete their execution most of the time, the average energy consumption may

not be optimized. To generate a static schedule that is energy-efficient in the aver-

age case, we can simply replace the WCETs of the tasks with their ACETs in the

static scheduling algorithms. However, the deadline requirements may not be met

should the tasks’ execution times be larger than their ACETs during runtime.

In order to rectify this, we propose the PSDSC method which can be incorporated

5.1 Design of Potential Slack for Dynamic Scheduling Considerations
(PSDSC) 58

into various static energy-aware scheduling algorithms to improve their perfor-

mance. During the generation of the static schedule, our proposed PSDSC takes

into consideration the usage of a greedy slack reclamation scheme during runtime

and tries to minimize the overall average energy consumption by using the concept

of potential slack to estimate the dynamic execution speeds and energy consump-

tion of the tasks. The greedy slack reclamation scheme [46] is a simple dynamic

scheduling scheme where all the slack generated by a task during runtime is con-

sumed by its immediate successor tasks to lower their execution speeds further. Let

us first introduce the concept of potential slack that will be used in this proposed

method. The potential slack psi of a task Ti is defined as follows:

psi =

0

if Ti has no precedents

minTp∈pred(Ti)[(1− Γp)× (psp + twc(p, j, k))]

otherwise

(5.1)

where Tp is a precedent task of Ti, Γp is the ratio of ACEC to WCEC of Tp and

twc(p, j, k) is the WCET of Tp when it is assigned to PEj at voltage level V (j, k).

It should be noted that the ACEC and WCEC of a task are constant, but its

ACET and WCET will vary depending on the speed at which the task is executed,

as indicated in (2.7) and (2.8). The potential slack psi gives an estimate of the

5.1 Design of Potential Slack for Dynamic Scheduling Considerations
(PSDSC) 59

potential amount of slack that Ti may receive from its precedent tasks based on

their current processor and voltage assignments.

Next, we define the potential speed reduction factor of Ti when it is mapped to

PEj at the voltage level V (j, k) as follows:

psrf(i, j, k) =
twc(i, j, k)

min(twc(i, j, 1), psi + twc(i, j, k))
(5.2)

The potential speed reduction factor psrf(i, j, k) gives an estimate of the factor by

which the speed of PEj may be reduced if Ti is assigned to it at voltage level V (j, k).

This factor is calculated based on the potential amount of slack that Ti may receive

from its precedent tasks and is limited by the lowest voltage level V (j, 1) at which

Ti can be executed on PEj. Based on the potential speed reduction factor, the

potential energy reduction factor of Ti when it is mapped to PEj at the voltage

level V (j, k) can be calculated:

perf(i, j, k) = (
Vpsrf(i,j,k)

V (j, k)
)2 × Γi (5.3)

where Vpsrf(i,j,k) is the voltage of PEj at a speed that is a fraction psrf(i, j, k) of

the speed at voltage level V (j, k). The average-case energy consumption needed

5.1 Design of Potential Slack for Dynamic Scheduling Considerations
(PSDSC) 60

to execute Ti on PEj at voltage level V (j, k) is therefore given as follows:

eac(i, j, k) = perf(i, j, k)× ewc(i, j, k) (5.4)

In order to apply the PSDSC method to the various static energy-aware scheduling

algorithms, we need to incorporate the calculation of the potential slack and the

average-case energy consumption into the algorithms. In each scheduling step,

we calculate the average-case energy consumption eac(i, j, k) of each task based

on the current processor and voltage mapping of their precedent tasks and use

these values to calculate the total average-case energy consumption. By doing

this, we try to minimize the overall average energy consumption in the objective

function. However, when calculating the start and end times of the tasks, we use

their original worst-case execution times. This ensures that the generated static

schedule is still feasible and meets the deadline requirements even if all the tasks

require their WCETs to execute.

5.1 Design of Potential Slack for Dynamic Scheduling Considerations
(PSDSC) 61

5.1.2 Illustrative Example for PSDSC

The exact steps of applying PSDSC differ depending on the static energy-aware

scheduling algorithm into which it is to be incorporated. As an example to il-

lustrate the workings of PSDSC, we shall incorporate the use of PSDSC into the

EGMS algorithm. In our modified EGMS-PSDSC algorithm, the potential slacks

of the tasks can be calculated during the task ordering step using the CPTO algo-

rithm. Algorithm 4 shows the pseudo-code of the modified CPTO algorithm. In

line 5, the critical paths lcp(j) are calculated based on the ACETs of the tasks.

Whenever a computational task is scheduled based on its critical path (lines 17-

21), we calculate the potential slack and the average-case energy consumption of

the task based on the current processor and voltage mapping of its precedent tasks

using (5.1)-(5.4). This average-case energy consumption is then used in the calcu-

lation of the total energy consumption e of the current schedule. However, we do

not use the ACET of the task in the calculation of the makespan ms of the current

schedule. Instead, we use the task’s WCET in the calculation of ms. This helps

to determine if the current schedule will still meet its deadline requirements in the

worst-case scenario.

It should be noted that the potential slack and average-case energy consumption

of a task varies according to the processor and voltage mapping of its precedent

tasks. Therefore in the EGMS-PSDSC algorithm, before each iteration to re-map

5.1 Design of Potential Slack for Dynamic Scheduling Considerations
(PSDSC) 62

Algorithm 4 : CPTO(Mp,Mv, e,ms) Modified for PSDSC
1: e← 0
2: ms ← 0
3: Replace the communication between any 2 tasks that are scheduled on different processors

with a task, where the execution time is the communication time
4: for all Tj do /∗ Both computational and communication tasks ∗/
5: Calculate lcp(j) /∗ Length of critical path starting from Tj using

tac(j,Mp(j),Mv(j)) ∗/
6: tstart(j)← 0 /∗ Initialize start time of Tj to 0 ∗/
7: tend(j)← 0 /∗ Initialize end time of Tj to 0 ∗/
8: end for
9: Insert tasks with no incoming edges into priority queueQ, where tasks are sorted in decreasing

values of lcp
10: while Q is not empty do
11: Remove Tj from front of Q. /∗ Get task with largest critical path length ∗/
12: if Tj is communication task then
13: e← e+Communication energy
14: tstart(j)← Earliest time communication bus is free
15: tend(j)← tstart(j)+ Communication time
16: else /∗ Tj is computational task ∗/
17: Calculate psj , psrf(j,Mp(j),Mv(j)) and perf(j,Mp(j),Mv(j))
18: Calculate eac(j,Mp(j),Mv(j)) based on perf(j,Mp(j),Mv(j))
19: e← e+ eac(j,Mp(j),Mv(j))
20: tstart(j)← Earliest time PEMp(j) is free
21: tend(j)← tstart(j) + twc(j,Mp(j),Mv(j))
22: end if
23: if tend(j) > ms then
24: ms ← tend(j)
25: end if
26: Remove Tj and all outgoing edges from task graph
27: Insert tasks with no incoming edges into priority queue Q
28: end while

a task to a new processor and/or a new voltage level, the average-case energy con-

sumption of each task eac(i, j, k) has to be updated for all processing elements and

at all voltage levels based on the current schedule obtained so far. This updated

values of eac(i, j, k) are then used in the calculation of the energy gradient used by

the EGMS-PSDSC algorithm to select the task to be re-mapped.

5.1 Design of Potential Slack for Dynamic Scheduling Considerations
(PSDSC) 63

The same modifications can also be applied to the EGMSIV algorithm using PS-

DSC (EGMSIV-PSDSC) for intra-task voltage scaling.

To illustrate the performance improvement that can be achieved by the modified

EGMS-PSDSC/EGMSIV-PSDSC algorithms, let us consider a periodic hard real-

time application represented by a task graph as shown by Figure 5.1. The edges

between two tasks represents the communication times required between them if

they are mapped onto different processing elements. The period of the applica-

tion is set at 50. Communication power is set at 1. For illustration purpose, we

assume that the task graph is to be mapped to a system with two homogeneous

processing elements. Each processing element supports four execution speeds at

0.25fmax, 0.5fmax, 0.75fmax and fmax, where fmax is the highest execution speed

supported by the processing element. The worst-case execution times and energy

consumptions of the tasks are shown in Tables 5.1 and 5.2 respectively. Let Γi, be

0.5 for all the tasks.

Figure 5.1: Directed acyclic graph representing the periodic hard real-time appli-
cation used in the example

5.1 Design of Potential Slack for Dynamic Scheduling Considerations
(PSDSC) 64

Table 5.1: Worst-case execution times of the tasks on different processing elements
and at different voltage levels

Worst-Case Execution Times

Task
PE0 PE1

V0 V1 V2 V3 V0 V1 V2 V3

T0 40 20 13.3 10 40 20 13.3 10
T1 40 20 13.3 10 40 20 13.3 10
T2 40 20 13.3 10 40 20 13.3 10
T3 40 20 13.3 10 40 20 13.3 10

Table 5.2: Worst-case energy consumptions of the tasks on different processing
elements and at different voltage levels

Worst-Case Energy Consumptions

Task
PE0 PE1

V0 V1 V2 V3 V0 V1 V2 V3

T0 0.63 2.5 5.63 10 0.63 2.5 5.63 10
T1 0.63 2.5 5.63 10 0.63 2.5 5.63 10
T2 0.63 2.5 5.63 10 0.63 2.5 5.63 10
T3 0.63 2.5 5.63 10 0.63 2.5 5.63 10

We generate two different static schedules using EGMSIV and EGMSIV-PSDSC.

Figure 5.2 shows the static schedules that are generated using the two algorithms.

We observe that if all the tasks require their WCETs to execute, EGMSIV generates

a more energy-efficient schedule with 22% lower energy consumption as compared

to the schedule generated by EGMSIV-PSDSC. However, if the tasks execute at

their ACETs, slacks are generated during runtime. For both algorithms, we use the

greedy slack reclamation scheme [46] during runtime to dynamically lower the exe-

cution speeds of the tasks in order to achieve more energy savings. In this scheme,

when a task does not require its WCET to complete its execution, all its unused

time will be passed to its immediate successor tasks so that they can further lower

their execution speeds. Figure 5.3 shows the runtime schedules when the tasks

execute at their ACETs. We observe that in this case, the schedule generated

5.1 Design of Potential Slack for Dynamic Scheduling Considerations
(PSDSC) 65

Figure 5.2: Runtime schedules when all tasks require their WCETs to complete
their execution and use the dynamic greedy slack reclamation scheme to lower the
energy consumption during runtime

Figure 5.3: Runtime schedules when all tasks require their ACETs to complete
their execution and use the dynamic greedy slack reclamation scheme to lower the
energy consumption during runtime

by EGMSIV-PSDSC is more energy-efficient with 35% lower energy consumption

compared to that generated by EGMSIV.

5.1.3 Performance of PSDSC

Next, we evaluate the performance of our proposed PSDSC method. PSDSC can

be incorporated into various static energy-aware scheduling algorithms. First, we

5.1 Design of Potential Slack for Dynamic Scheduling Considerations
(PSDSC) 66

shall evaluate the performance of the EGMS, EGMSIV and the nested GA (NGA)

algorithms with and without incorporating our proposed PSDSC. The PSDSC

method is incorporated into the nested GA algorithm by taking into considera-

tion the use of potential slacks of the tasks during the calculation of the objective

function. We set the user-defined parameter n = 500 as the terminating condition

for the EGMS and EGMSIV algorithms when generating the static schedules. For

the nested GA algorithm, we configure the inner EE-GLSA algorithm to terminate

when there is no improved solution being produced for 10 successive generations

while the outer EE-GMA algorithm terminates when there is no improvement after

25 successive generations.

We randomly generated task graphs comprising between 10 to 50 tasks using TGFF

[64] running on 2 to 4 processors. In this experiment, we vary Γ, the ratio of ACEC

to WCEC of the tasks in the task graph. For each task Ti, we normalized the actual

number of execution cycles to its WCEC and randomly generate the normalized

actual number of execution cycles using a Gaussian distribution with a mean of

Γ and a variance of 0.1 for 1000 execution instances of the application. During

runtime, all the algorithms use the dynamic greedy slack reclamation scheme [46]

to further reduce the execution speeds of the tasks.

Figure 5.4 shows the average energy consumption over 1000 execution instances of

5.1 Design of Potential Slack for Dynamic Scheduling Considerations
(PSDSC) 67

Figure 5.4: Average normalized energy consumption over 1000 execution in-
stances using EGMS, EGMSIV, EGMS-PSDSC, EGMSIV-PSDSC, NGA and
NGA-PSDSC with varying Γ

the application using the EGMS, EGMSIV and NGA algorithms with and without

incorporating our proposed PSDSC. The values of energy consumption are normal-

ized to that obtained when the static EGMS schedule is used without any dynamic

slack reclamation during runtime. We observe that at Γ = 0.2, EGMS-PSDSC,

EGMSIV-PSDSC and NGA-PSDSC consume 21.4%, 26.8% and 22.5% less energy

when compared to EGMS, EGMSIV and NGA respectively. EGMSIV-PSDSC and

NGA-PSDSC are able to achieve better improvement than EGMS-PSDSC as they

consider intra-task voltage scaling to reduce the energy consumption further. We

also observe that at Γ ≤ 0.4, the normalized energy consumption due to EGMS,

EGMSIV and NGA remains relatively constant, indicating that most of the tasks

are already scheduled at the minimum possible voltage levels. As a result, the

5.2 Design of Average-based Aggressive Dynamic Scheduling (AADS) 68

dynamic greedy slack reclamation scheme is unable to further reduce the energy

consumption of the task graphs. On the other hand, EGMS-PSDSC, EGMSIV-

PSDSC and NGA-PSDSC are able to further reduce the energy consumption of

the task graphs at low values of Γ by using different processor mappings and task

orderings that take into consideration the use of dynamic greedy slack reclamation

during runtime. As the value of Γ increases, the difference in normalized energy

consumption between EGMS and EGMS-PSDSC gradually becomes smaller. The

same observation can also be seen between the normalized energy consumption of

EGMSIV and EGMSIV-PSDSC, as well as that of NGA and NGA-PSDSC. This

is due to the fact that as Γ approaches 1, there is less dynamic slack that can be

reclaimed. As a result, the performances of EGMS-PSDSC, EGMSIV-PSDSC and

NGA-PSDSC gradually approach those of EGMS, EGMSIV and NGA respectively.

5.2 Design of Average-based Aggressive Dynamic

Scheduling (AADS)

5.2.1 Description of AADS

In the dynamic greedy slack reclamation scheme, all the slack that is generated

by a task is used by its immediate successor tasks in the task graph to lower their

execution speeds and energy consumptions. As we progress down the task graph,

5.2 Design of Average-based Aggressive Dynamic Scheduling (AADS) 69

the amount of slack gets accumulated and when all the tasks have finished their

execution, there may still be a significant amount of slack that remains unused.

For example, in the two schedules shown in Figure 5.3, there are still 10 units of

unused slack after the last task T3 completes its execution.

In order to reclaim the slack more effectively, we propose the AADS dynamic

scheduling algorithm. In this algorithm, we aggressively run the tasks near the

root nodes of the task graph at lower speeds so that less slack will be generated and

passed on to the successor tasks. In order to illustrate our proposed algorithm more

clearly, let us first assume that the voltage and frequency levels of the processing

elements are continuous. We obtain the expected start and end times (stac,avgi and

etac,avgi respectively) at which the task Ti is to be executed if it requires its ACEC

instead of WCEC to complete. Then,

fac,avg
i =

caci
(etac,avgi − stac,avgi)

(5.5)

where fac,avg
i is the expected frequency at which Ti executes assuming that it re-

quires its ACEC to complete. The values of stac,avgi and etac,avgi can be obtained

using the predetermined task mapping and ordering of the static schedule and re-

placing the worst-case execution times and energy consumptions of the tasks with

their corresponding average-case values. Note that fac,avg
i represents the frequency

5.2 Design of Average-based Aggressive Dynamic Scheduling (AADS) 70

at which Ti should execute if it requires exactly its ACEC to run. However during

the actual runtime, Ti may require fewer or more execution cycles to complete. In

the worst-case, it will require its WCEC to complete. If Ti requires more than its

ACEC to complete, we can either execute the extra cycles at the same frequency

fac,avg
i or at the maximum frequency of the processing element fmax

i . Executing

the extra cycles at fac,avg
i allows Ti to have a lower energy consumption, but has a

greater impact on the successor tasks down the task graph as they need to execute

at a higher speed (and thus consume more energy) to meet the deadlines. Alter-

natively, we can execute the extra cycles at fmax
i . This may increase the energy

consumption of Ti, but will have less impact on the successor tasks, allowing them

to execute at a lower speed. Let us execute the extra cycles at fmax
i . Therefore,

the potential maximum end time of Ti may be calculated as:

etac,max
i = etac,avgi +

(cwc
i − caci)

fmax
i

(5.6)

This end time must not be larger than the end time generated by the ALAP (As

Late As Possible) schedule in order to guarantee that the deadline constraints are

met:

etac,max
i ≤ etALAP

i (5.7)

5.2 Design of Average-based Aggressive Dynamic Scheduling (AADS) 71

Therefore, we can execute the task Ti at two different frequencies. For the first caci

cycles, Ti executes at the frequency fdyn
i :

fdyn
i = min

(
caci

min(etac,avgi , etdyni)− stac,avgi

, fmax
i

)
(5.8)

where

etdyni = etALAP
i − (cwc

i − caci)

fmax
i

(5.9)

For the next (cwc
i − caci) cycles, Ti executes at f

max
i .

The ACEC of a task is the long term average number of execution cycles required

to complete the task. During runtime, the task may require less than its ACEC

to complete for a period of time, and then switch to its WCEC for execution for

the subsequent period of time. To optimize the energy consumption further and

adapt to the changing operating environment, we replaced the long term ACEC of

Ti with a moving average ηi,t instead during runtime:

ηi,t = max(
1

nw

t−1∑
j=t−nw

cactuali,j , cactuali,t−1) (5.10)

5.2 Design of Average-based Aggressive Dynamic Scheduling (AADS) 72

where nw is the size of the moving window, t represents the t-th execution instance

of the application and cactuali,j is the actual number of execution cycles required to

run Ti to completion during the j-th execution instance of the application. ηi,t uses

the average number of execution cycles for the previous nw execution instances of

the application to adapt to the changing executing environment. At the same

time, if there is a sudden sharp increase in the number of execution cycles in

the previous execution instance, the algorithm will quickly adapt to this sharp

increase to reduce the occurrence of the tasks running at the maximum speeds

of the processing elements. Therefore during the t-th execution instance of the

application, the frequency at which to execute the first ηi,t cycles of Ti can now be

calculated as:

fdyn
i,t = min

 ηi,t

min(etac,avgi , etdyni)− stdyni,t

, fmax
i

 (5.11)

where stdyni,t is the actual start time of Ti during the t-th execution instance of the

application. Ti will then execute the next (cwc
i − ηi,t) cycles at f

max
i .

In practical scenarios where the available execution speeds of the processing el-

ements are discrete, we can execute the first portion of the task on PEj at two

consecutive speeds f(j, k) and f(j, k + 1) such that f(j, k) ≤ fdyn
i,t ≤ f(j, k + 1),

as described in [63]. In this case, we execute the task Ti on PEj at the following

5.2 Design of Average-based Aggressive Dynamic Scheduling (AADS) 73

frequencies:

f(j, k) for ⌊f(j,k)·(f(j,k+1)−fdyn
i,t)

fdyn
i,t ·(f(j,k+1)−f(j,k))

· ηi,t⌋ cycles

f(j, k + 1) for the next ⌈f(j,k+1)·(fdyn
i,t −f(j,k))

fdyn
i,t ·(f(j,k+1)−f(j,k))

· ηi,t⌉

cycles

f(j,Nv) for the remaining cwc
i − ηi,t cycles

(5.12)

5.2.2 Illustrative Example for AADS

To illustrate the workings of the AADS algorithm, let us consider the example in

Section 5.1.2. Suppose the tasks in the task graph have been requiring their ACECs

to complete for the previous nw execution instances. In this case, ηi,t = caci for

each task Ti. Instead of using the dynamic greedy slack reclamation, we apply our

AADS algorithm during runtime to the static schedules generated by EGMSIV and

EGMSIV-PSDSC. The resulting runtime schedules are shown in Figure 5.5. From

the runtime schedules, we observe that the AADS algorithm tries to aggressively

lower the execution speeds of the tasks in order to reduce the amount of slack that

will be generated and passed to the successor tasks. Compared to the dynamic

greedy slack reclamation scheme, AADS consumes 16% less energy when used

with the static schedule generated by EGMSIV and 27% less energy when used

5.2 Design of Average-based Aggressive Dynamic Scheduling (AADS) 74

Figure 5.5: Runtime schedules when all tasks require their ACETs to complete
their execution and use the AADS algorithm to lower the energy consumption
during runtime

with the static schedule generated by EGMSIV-PSDSC.

The schedule shown in Figure 5.5 is based on the ideal case when all the tasks

require their ACETs to complete. Now, let us assume that starting from the next

instance of execution, the tasks now require their WCETs to complete. During

the next instance of execution, ηi,t is still c
ac
i and the resulting runtime schedules

are shown in Figure 5.6. We can observe that ηi,t underestimates the number of

execution cycles of the tasks, resulting in significant portions of the tasks being

executed at fmax
i . This increases the energy consumption substantially and results

in more energy consumed when compared to the schedules in Figure 5.2.

However, our AADS algorithm tries to adapt quickly to the changing conditions.

In subsequent instances of execution, ηi,t will be updated to cwc
i and the resulting

5.2 Design of Average-based Aggressive Dynamic Scheduling (AADS) 75

Figure 5.6: Runtime schedules immediately after all tasks switch to their WCETs
to complete their execution and use the AADS algorithm to lower the energy
consumption during runtime

schedules will now become the same as those shown in Figure 5.2.

5.2.3 Performance of AADS

Next, we shall evaluate the performance of our AADS algorithm. We compare

our algorithm with the dynamic greedy slack reclamation scheme when applied to

the static schedules generated by EGMSIV, EGMSIV-PSDSC, NGA and NGA-

PSDSC. Just as in the previous set of simulation experiments, we use randomly

generated task graphs consisting of 10 to 50 tasks and run the experiment over 1000

execution instances at varying values of Γ. Figures 5.7 and 5.8 show the average

normalized energy consumption over 1000 execution instances of the application.

We observe that at Γ = 0.3, AADS is able to achieve an average of 6.1% and 4.5%

more energy saving compared to the dynamic greedy slack reclamation scheme

5.2 Design of Average-based Aggressive Dynamic Scheduling (AADS) 76

Figure 5.7: Average normalized energy consumption over 1000 execution instances
when dynamic greedy slack reclamation and AADS are applied to EGMSIV and
EGMSIV-PSDSC with varying Γ

Figure 5.8: Average normalized energy consumption over 1000 execution instances
when dynamic greedy slack reclamation and AADS are applied to NGA and NGA-
PSDSC with varying Γ

when they are applied to the static schedules generated by EGMSIV and NGA

respectively. However when Γ = 0.2, the improvement is only about 2.4% and

5.2 Design of Average-based Aggressive Dynamic Scheduling (AADS) 77

1.0% respectively. This is due to the fact that at Γ = 0.2, most of the tasks will

be scheduled at the minimum possible voltage levels during runtime and there-

fore there is little difference in the average energy consumed when either AADS

or dynamic greedy slack reclamation is used. For Γ ≥ 0.3, the difference in av-

erage energy consumption between AADS and dynamic greedy slack reclamation

becomes smaller when Γ increases as there is less dynamic slack that can be re-

claimed. On the other hand, we observe that the performance of AADS is similar

to that of dynamic greedy slack reclamation when applied to the static schedules

generated by EGMSIV-PSDSC and NGA-PSDSC, with improvements of less than

2%. This is because EGMSIV-PSDSC and NGA-PSDSC take into consideration

the workings of the dynamic greedy slack reclamation scheme when generating the

static schedules and therefore the mapping and ordering of the tasks are optimized

for dynamic greedy slack reclamation. As a result, the performance of the dynamic

greedy slack reclamation scheme is almost as good as AADS.

Lastly, we shall examine the effect of the rate of changing execution cycles of the

tasks on the performance of our AADS algorithm. We generate the actual execu-

tion cycles of the tasks such that 75% of the time the tasks execute at 20% of their

WCECs while the remaining 25% of the time the tasks execute at their WCECs.

In this case, Γ = 0.4. We define T as the number of execution instances before the

actual execution cycles of the tasks increase from 20% to 100% of their WCECs

5.2 Design of Average-based Aggressive Dynamic Scheduling (AADS) 78

Figure 5.9: Average normalized energy consumption over 1000 execution instances
with varying T

and vice versa. We vary the values of T and obtain the average normalized energy

consumption over 1000 execution instances when AADS and dynamic greedy slack

reclamation are applied to EGMSIV and EGMSIV-PSDSC. The results are shown

in Figure 5.9.

We observe that for high values of T , the AADS outperforms the dynamic greedy

slack reclamation scheme by 5.2% and 1.7% when applied to EGMSIV and EGMSIV-

PSDSC respectively. However, at low values of T , the dynamic greedy slack recla-

mation performs better. The main reason is that at low values of T , the rate of

change of the execution cycles of the tasks is high. As we observe in our illustra-

tive example in Section 5.2.2, whenever there is a sudden sharp increase to the

execution cycles of the tasks, the AADS algorithm significantly underestimates

5.2 Design of Average-based Aggressive Dynamic Scheduling (AADS) 79

the average execution cycles of the tasks in the next execution instance of the task

graph. This results in a very unoptimized schedule in this execution instance be-

fore the AADS algorithm adjusts to the change in subsequent execution instances.

When the rate of change of the execution cycles increases, the overall ACECs of

the tasks remain unchanged, but the occurrence of the unoptimized runtime sched-

ules increases. This results in an increase in the average energy consumption of

the tasks. From the results of this experiment, we conclude that although AADS

consumes less energy than dynamic greedy slack reclamation in general, it cannot

be used for applications in which the tasks undergo sharp increase in the execution

cycles at a fast rate.

Chapter 6
Energy-aware Scheduling Strategies for

Systems with Distributed Energy Sources

Unlike multiprocessor systems with a single energy source, minimizing the total

energy consumption does not necessary improve the lifetime of systems with dis-

tributed energy sources. One such system is the WSN. In this chapter, we present

the Energy-Balanced Task Scheduling (EBTS) algorithm to address this problem.

We also describe the EBTS with Dual Schedule (EBTS-DS) algorithm which ex-

tends the EBTS algorithm by generating a second static schedule that compliments

the original schedule to increase the lifetime of the system further. Rigorous simu-

lation experiments are then conducted to evaluate the performance of our proposed

algorithms.

80

6.1 Design of Energy-Balanced Task Scheduling (EBTS) 81

6.1 Design of Energy-Balanced Task Scheduling

(EBTS)

6.1.1 Description of EBTS

Today, WSNs are used in a wide variety of applications such as health monitoring,

target tracking and surveillance. These applications often require each sensor node

to sense and collect information from the surrounding environment, process the

information collected, and communicate the results to other sensor nodes in the

network. Based on the collective information gathered from several sensor nodes,

a decision can then be made to determine the action to be taken.

In many WSNs, the sensors are individually operated by battery. Efficient energy

management is required to prolong the lifetime of such sensor networks. While

there are many energy-aware scheduling algorithms in the literature for both ho-

mogeneous [31, 32, 44–46, 49] and heterogeneous [39, 47, 52, 54, 60, 61] multiproces-

sor systems, these algorithms are designed mainly for tightly coupled systems and

are not suitable for wireless sensor networks. These algorithms try to minimize the

overall total energy consumption of the system in order to maximize its lifetime.

This works for tightly coupled system since the processors in the system share the

same energy source. However, for wireless sensor network, minimizing the total

6.1 Design of Energy-Balanced Task Scheduling (EBTS) 82

energy consumption does not necessarily maximize the lifetime of the network.

For example, if many tasks are assigned to a single node, the battery on this node

will be drained at a rate much faster than other nodes. As a result, the lifetime

of the network is completely determined by the lifetime of this single node even

when other nodes have an abundance of remaining energy. Therefore, in order to

maximize the lifetime of a WSN, we should try to distribute the tasks among the

sensor nodes in such a way that the energy consumption on each sensor node is as

balanced as possible.

We consider a WSN with the properties as described in Section 2.3. The pseu-

docode for the algorithm can be seen in Algorithm 5. In Step 1, the average

computational time of each task over all the sensor nodes and the average com-

munication time of each edge over all pairs of sensor nodes are first calculated.

Next, the upper rank ranku, as defined in [26], is calculated recursively using the

following equation:

ranku(Ti) = ti + max
Tj∈succ(Ti)

(τθ(Ti)θ(Tj) + ranku(Tj)) (6.1)

where ti is the average computational time of Ti over all the sensor nodes, τθ(Ti)θ(Tj)

is the average communication time of the edge from Ti to Tj over all sensor node

pairs and succ(Ti) denotes the immediate successors of Ti.

6.1 Design of Energy-Balanced Task Scheduling (EBTS) 83

In Step 2, the tasks are assigned in descending order of upper rank. For each task,

the priority is calculated assuming that the task is assigned to each sensor node.

The task is then assigned to the sensor node that gives the lowest priority value,

provided that its finish time when assigned to this sensor node does not exceed a

threshold value σ(Ti).

σ(Ti) =
P

ms

· f ′
i (6.2)

where ms is the makespan of the schedule generated by a general list scheduling

algorithm and f ′
i is the finish time of Ti using the list scheduling algorithm. If the

threshold is exceeded, the task will be assigned to the sensor node that gives the

earliest finish time. A threshold is imposed to the finish time to reduce the prob-

ability of many tasks being assigned to the same sensor node as this may result in

deadlines to be missed.

In Step 3, the sensor node with the largest norm-energy is first identified. Among

the tasks that are assigned to this sensor node, the one that has the largest energy

reduction when assigned to the next voltage level without violating the deadline

constraints is selected. If no such tasks exists, the sensor node is removed per-

manently from the priority queue and does not need to be considered further.

Otherwise, the new norm-energy of the sensor node is updated accordingly and

the node is reinserted back into the priority queue. The process continues until no

6.1 Design of Energy-Balanced Task Scheduling (EBTS) 84

Algorithm 5 EBTS
1: Step 1: Calculate Upper Rank
2: Assign computation time of tasks with the mean values over all sensor nodes. Assign com-

munication time of edges with mean values overall all pairs of sensor nodes.

3: Compute the upper rank of all the tasks by traversing the DAG upwards, starting from the
sink tasks.

4:
5: Step 2: Assign Tasks to Sensor Nodes
6: Sort the tasks in non-increasing order of upper rank.

7: while there are unscheduled tasks do
8: Select the first task Ti from the sorted list.

9: for each sensor node PEj in the system do
10: Assume that Ti is allocated to PEj .

11: Compute the norm-energy ηk for all sensor nodes where k = 1, 2, · · ·Np.

12: Compute the finish time fj of Ti.

13: Calculate the priority function prj = α ·max(ηk) + (1 − α) ·
∑

ηk, where α ∈ [0, 1] is a
user-defined parmeter. If Ti is a source task and another source task is already assigned
to PEj , Set prj =∞.

14: end for

15: Assign Ti to the sensor node with the least value of prj , provided that the finish time fj
of this assignment is less than or equal to the threshold σ(Ti).

16: If no such sensor node exists, assign Ti to the sensor node that gives the smallest value of
fj .

17: end while
18:
19: Step 3: Assign Voltage Levels
20: Insert the sensor nodes into a priority queue Q sorted in non-increasing order of norm-energy.

21: while Q is not empty do
22: Remove the first sensor node PEj from Q.

23: Sort the tasks assigned to this sensor node in non-increasing order of the difference in
energy consumption when their voltage is lowered by one level.

24: for each task Ti in the sorted list do
25: Lower voltage of Ti to the next lower voltage level.

26: if deadline is not exceeded then
27: Update the schedule.

28: Insert this sensor node back into Q with the updated value of norm-energy. Break out
of for loop.

29: end if
30: end for
31: end while

tasks can be executed at a lower voltage level without exceeding the deadline.

6.1 Design of Energy-Balanced Task Scheduling (EBTS) 85

6.1.2 Illustrative Example for EBTS

We shall use the same illustrative example used in [33] to illustrate the workings

of our algorithm and compare it to the 3-phase heuristic. Figure 6.1 shows the

precedence relationships among the various tasks in the application task graph.

These tasks are to be assigned to a WSN consisting of three homogeneous nodes.

The time and energy costs of executing the tasks at different voltage levels are

shown in Table 6.1. Each sensor node has an energy capacity of 1000.

In Step 1, we calculate the upper rank of each task. The result is shown in the last

column of Table 6.1. Next, we arrange the tasks in descending order of upper rank.

For each task, we calculate the priority function of each sensor node assuming that

the task is assigned to that node. We use the value α = 0.5 in this example. We

then allocate the task to the sensor node with the lowest priority value. Table 6.2

shows the various steps involved in assigning the tasks to the sensor nodes.

Lastly, we shall apply voltage scaling to the tasks to further reduce the energy

consumption. We select the sensor node with the largest value of norm-energy.

Among the tasks assigned to this node, we choose one which will result in the

largest reduction in energy consumption when it is assigned to the next lower

voltage level without exceeding the deadline. This process of selecting the sensor

node and task is then repeated until no tasks can be assigned to a lower voltage

6.1 Design of Energy-Balanced Task Scheduling (EBTS) 86

Task
Time Cost Energy Cost

Upper Rank
Vh Vl Vh Vl

T1 10 33 20 6 130
T2 60 199 120 36 90
T3 10 33 20 6 80
T4 10 33 20 6 95
T5 20 66 40 12 75
T6 10 33 20 6 45
T7 10 33 20 6 10

Table 6.1: Time and energy cost of each task at different voltage levels

level without exceeding the deadline. The steps are shown in Table 6.3. The final

schedule is shown in Figure 6.2(a). From the example, we obtain a maximum

norm-energy of 0.081 among the sensor nodes, which corresponds to a lifetime of

12 cycles. Compared to the 3-phase heuristic which gives a maximum norm-energy

of 0.1 (corresponding to a lifetime of 10 cycles), our algorithm is able to provide

an improvement of 20% in the lifetime of the sensor network.

Figure 6.1: Example of a task graph.

6.2 Design of EBTS using Dual Schedule (EBTS-DS) 87

Step
Selected Sensor Node in

Priority
Selected Norm-energy

Task Consideration Sensor Node after Assignment

1 T1

PE1 40/1000
PE1

20/1000
PE2 40/1000 0/1000
PE3 40/1000 0/1000

2 T4

PE1 ∞
PE2

20/1000
PE2 60/1000 20/1000
PE3 60/1000 0/1000

3 T2

PE1 300/1000
PE1

140/1000
PE2 390/1000 20/1000
PE3 370/1000 0/1000

4 T3

PE1 340/1000
PE2

145/1000
PE2 335/1000 45/1000
PE3 335/1000 0/1000

5 T5

PE1 ∞
PE3

145/1000
PE2 ∞ 45/1000
PE3 375/1000 40/1000

6 T6

PE1 640/1000
PE2

145/1000
PE2 415/1000 75/1000
PE3 525/1000 50/1000

7 T7

PE1 530/1000
PE2

165/1000
PE2 495/1000 115/1000
PE3 545/1000 50/1000

Table 6.2: Steps to illustrate how tasks are assigned to sensor nodes using the
EBTS algorithm

Step
Selected Selected Makespan after Norm-energy after

Sensor Node Task Voltage Scaling Voltage Scaling

0 - - 100
PE1: 165/1000
PE2: 115/1000
PE3: 50/1000

1 PE1 T2 239
PE1: 81/1000
PE2: 115/1000
PE3: 50/1000

2 PE2 T3 239
PE1: 81/1000
PE2: 101/1000
PE3: 50/1000

3 PE2 T4 239
PE1: 81/1000
PE2: 87/1000
PE3: 50/1000

4 PE2 T6 239
PE1: 81/1000
PE2: 73/1000
PE3: 50/1000

5 PE3 T5 239
PE1: 81/1000
PE2: 73/1000
PE3: 22/1000

Table 6.3: Steps to illustrate how voltage levels are assigned using the EBTS
algorithm

6.2 Design of EBTS using Dual Schedule (EBTS-

DS)

6.2.1 Description of EBTS-DS

Although the EBTS algorithm tries to improve the lifetime of the sensor network

by balancing the energy consumption among the sensor nodes, it is often very

6.2 Design of EBTS using Dual Schedule (EBTS-DS) 88

difficult to obtain a perfectly energy-balanced schedule in practice. As a result,

when the batteries of some sensor nodes are depleted, there is still a significant

amount of remaining energy in other sensor nodes. If the tasks can be reassigned

from a sensor node that is low in remaining energy to one that is high in remaining

energy in an effective way, the lifetime of the network can be increased further. In

view of this, we propose to use two static schedules for executing the tasks instead

of a single schedule. The aim is to use a second schedule that compliments the

first one such that the lifetime of the network can be increased by the combined

use of both schedules compared to using each schedule individually. The EBTS-DS

algorithm is shown in Algorithm 6.

In EBTS-DS, a schedule is first generated using the EBTS algorithm. This will

be the first schedule S1st. Next, a series of candidate schedules are generated.

Each candidate schedule is generated in the following way. We assume that S1st

has been run for j
10

of its lifetime, where j = 1, 2, · · · , 9. The remaining energy

of each sensor node in the network is then calculated. Based on the remaining

energy, the non-source tasks are rescheduled using the EBTS algorithm to obtain

a new schedule. Since the source tasks are usually used to collect measurements

from the environment, they are assigned to specific sensor nodes and cannot be

reassigned. A linear program formulation is then used to calculate the maximum

possible lifetime that can be obtained using both the first schedule and the current

6.2 Design of EBTS using Dual Schedule (EBTS-DS) 89

Algorithm 6 EBTS-DS
1: Run the EBTS algorithm to obtain an initial schedule S and the energy consumption per

cycle πi of all sensor nodes, ∀i = 1, 2, · · · , Np.

2: Calculate the expected lifetime L using Equation 2.16

3: Set the first schedule S1st ← S, the energy consumption per cycle π1st
i ← πi and the remaining

energy capacity R1st
i ← Ri, ∀i = 1, 2, · · · , Np.

4: Set δ ← ⌊ L
10⌋.

5: for j ← 1 to 9 do
6: Set Ri ← (R1st

i − j × δ × π1st
i), ∀i = 1, 2, · · · , Np.

7: Run the EBTS algorithm to schedule the non-source tasks using these values of Ri as the
remaining energies of the sensor nodes. Update S and πi using the new schedule.

8: if S is feasible then
9: Solve the following linear program:
10: • Maximize C1 + C2

11: • Subjected to C1 × π1st
i + C2 × πi ≤ R1st

i , ∀i = 1, 2, · · · , Np.

12: if (⌊C1⌋+ ⌊C2⌋) > L then
13: Update L← (⌊C1⌋+ ⌊C2⌋).
14: Update ζ1st ← ⌊C1⌋ and ζ2nd ← ⌊C2⌋, where ζ1st and ζ2nd are the number of cycles

to run S1st and S2nd respectively.

15: Update S2nd ← S, π2nd
i ← πi and R2nd

i ← Ri, ∀i = 1, 2, · · · , Np.
16: end if
17: end if
18: end for
19: if S2nd is found then
20: Use S1st for ζ1st cycles followed by S2nd for ζ2nd cycles.
21: else
22: Use S1st for the entire lifetime of the sensor network.
23: end if

candidate schedule. Lastly, the candidate schedule that maximizes the network

lifetime if it is used together with the first schedule is chosen.

6.2.2 Illustrative Example for EBTS-DS

Using the same example as in the previous section, we shall show how a second

schedule can be used to improve the lifetime of the sensor network further. In the

first step of EBTS-DS, we obtain the first schedule as illustrated in the previous

section using our EBTS algorithm. As we have shown in Figure 6.2(a), this schedule

6.2 Design of EBTS using Dual Schedule (EBTS-DS) 90

(a) Schedule 1 (b) Schedule 2

Figure 6.2: Schedules generated using EBTS-DS.

Step Schedule
Task Energy No. of Cycles Remaining

Assignment Consumption Consumed Energy

0 - - - -
PE1: 1000
PE2: 1000
PE3: 1000

1 1
PE1: T1, T2 PE1: 81

11
PE1: 109

PE2: T4, T3, T6, T7 PE2: 73 PE2: 197
PE3: T5 PE3: 22 PE3: 758

2 2
PE1: T1 PE1: 41

2
PE1: 27

PE2: T4, T3 PE2: 82 PE2: 33
PE3: T5, T2, T6, T7 PE3: 239 PE3: 280

Table 6.4: Steps to illustrate the use of 2 consecutive schedules to improve the
lifetime further

gives a lifetime of 12 cycles. Next, we generate a series of schedules and choose

the schedule that maximizes the lifetime of the network when used together with

the first schedule. This will be the second schedule. This schedule, as shown in

Figure 6.2(b), gives a lifetime of only 4 cycles if used by itself. However, if we

combine the two schedules in the way as shown in Table 6.4, we are able to obtain

a lifetime of 13 cycles, which is an 8% improvement compared to using only the

first schedule.

6.3 Performance of EBTS and EBTS-DS 91

6.3 Performance of EBTS and EBTS-DS

6.3.1 WSN with Heterogeneous Sensor Nodes

First, we apply the algorithms to a WSN with heterogeneous nodes and compare

their performance to the baseline case when EBTS is used without applying DVS.

The maximum in-degree and out-degree of each task is set at 5. The number of

source tasks in each task graph is equal to the number of sensor nodes used in the

experiment. The average computation time and energy consumption of each task

over all the sensor nodes at the maximum speed were randomly generated using

a gamma distribution with a mean of 2msec and 4mJ respectively. The computa-

tion time and energy consumption of the task on each individual sensor node were

then randomly generated using another gamma distribution with the mean equal

to the average values generated earlier. It is assumed that all the tasks executed

at their WCET for every periodic cycle of the application. It is also assumed that

the minimum computational speed is 1
Nv

of the maximum computational speed

and all other levels of computational speed are uniformly distributed between the

minimum and maximum speed.

The time and energy cost of transmitting one bit of data are set to be 10 µsec and

1 µJ respectively. The number of bits of data to be transmitted between 2 tasks

with precedence constraints was uniformly distributed between 200CCR(1± 0.2),

6.3 Performance of EBTS and EBTS-DS 92

where CCR represents the communication to computation ratio. The period of

the application P was generated using the same method as described in [33] in

the following way. For each task, its distance is defined as the number of edges

in the longest path from any of the source tasks to that task. The tasks are then

divided into layers according to their distance. Assuming that all the tasks in

the same layer are executed in parallel, the estimated computation time required

for each layer is tl⌈nl

m
⌉, where nl is the number of tasks in that layer and tl de-

notes the average computational time of the tasks in the layer. In addition, the

expected number of communication activities initiated by any task is estimated to

be (dout − 1) where dout is the out-degree of the task. The total communication

time required for each layer is therefore estimated as tl · CCR⌈ q
K
⌉ where q is the

sum of the expected number of communication activities initiated by the tasks in

that layer. P is then calculated as the sum of computation and communication

time of all the layers divided by u, where u is the utilization of the sensor network.

Lastly, the remaining energy at each sensor node is uniformly generated between

(1± 0.2)× 106mJ.

The simulation experiments are conducted for a wireless sensor network consisting

of 10 sensor nodes, 8 voltage levels, 4 channels, 100 tasks (with 10 source tasks),

CCR between 2 and 20, and u between 0 and 1. All the data in the experiment

are obtained by averaging the values obtained using 1000 different task graphs.

6.3 Performance of EBTS and EBTS-DS 93

We first set CCR to be 4, u to be 0.5 and varied the value of α from 0 to 1.

The results are shown in Figure 6.3(a). It is observed that when α = 0, both the

EBTS and EBTS-DS algorithms tried to minimize the total energy consumption

of the sensor network without considering the maximum norm-energy of each sen-

sor node. Therefore the average lifetime of the sensor network obtained using the

designed algorithms are shorter. On the other hand, when α is around 0.4 to 0.6,

the average lifetimes reach the maximum values before decreasing slightly when α

increases further. This is because when α is around 0.4 to 0.6, the designed algo-

rithms take into consideration the maximum norm-energy while trying to minimize

the total energy consumption at the same time. As a result, the sensor nodes have

more remaining energy and the algorithms are therefore able to generate better

schedules. At α = 0.5, there is about 195% improvement in the lifetime when

EBTS is used with DVS, compared to the baseline case of using EBTS without

DVS. When the EBTS-DS algorithm is used to generate a second schedule, the

lifetime improvement increases to 287%. The value α = 0.5 shall be used in the

subsequent experiments.

Next, CCR is varied between 2 to 20. The lifetime improvement of the designed

algorithms for different values of CCR is shown in Figure 6.3(b). Here, the life-

time improvement is defined as (
Lalg

Lbase
− 1), where Lalg is the lifetime of the WSN

when a particular algorithm is used and Lbase is the lifetime of the WSN in the

6.3 Performance of EBTS and EBTS-DS 94

(a) Average lifetime with varying α and CCR = 4

(b) Lifetime improvement with varying CCR and α = 0.5

Figure 6.3: Performance of EBTS and EBTS-DS for WSN consisting of heteroge-
neous nodes (10 sensor nodes, 8 voltage levels, 4 channels, 100 tasks, u = 0.5).
The values for the lifetime improvement are calculated as the improvement over
the baseline case when EBTS is used without DVS. The vertical bars show the
confidence intervals at 95% confidence level.

6.3 Performance of EBTS and EBTS-DS 95

baseline case when the EBTS algorithm is used without DVS. When CCR = 2,

the EBTS algorithm is able to obtain a lifetime improvement of about 220% while

the EBTS-DS achieves a lifetime improvement of 301%. However, as CCR in-

creases, this improvement decreases. At CCR = 20, the lifetime improvements

that could be achieved using EBTS and EBTS-DS decrease to about 136% and

213% respectively. This is because as CCR increases, the communication energy

becomes more significant when compared to the computational energy. Therefore,

the lifetime improvement obtained by reducing the computational energy using

DVS becomes more limited as a result.

Lastly, the utilization u of the sensor network is varied and the rate at which dead-

lines are missed is observed. Figure 6.4 shows the simulation results. It is observed

that the designed algorithm provides a very low miss rate. Even when u = 1, only

26% of the application task graphs missed their deadlines.

6.3.2 WSN with Homogeneous Sensor Nodes

The designed algorithms are also compared with the 3-phase heuristic [33] for

WSNs with homogeneous nodes. The task graphs and parameters are generated in

the same way as in the previous experiment, except that the computational time

and energy consumption for each task does not vary across different sensor nodes.

The performance of the algorithms are compared to the baseline case when the

6.3 Performance of EBTS and EBTS-DS 96

Figure 6.4: Miss rate of EBTS with varying values of u for WSN consisting of
heterogeneous nodes (10 sensor nodes, 8 voltage levels, 4 channels, 100 tasks, CCR
= 0).

3-phase heuristic is used without applying DVS.

Figure 6.5(a) shows the results when α is varied from 0 to 1. Similar results are

observed as in the previous experiment. When α = 0, the lifetime improvements of

EBTS and EBTS-DS are only 15% and 154% respectively compared to 190% im-

provement obtained using the 3-phase heuristic. On the other hand, when α = 1,

lifetime improvement of EBTS and EBTS-DS are 257% and 362% respectively.

The best performance is obtained when α = 0.5. At this value of α, the lifetime

improvement of EBTS and EBTS-DS are 269% and 381% respectively. Even when

the EBTS algorithm is used without DVS, there is an improvement of 25% at

α = 0.5 compared to the baseline case of using the 3-phase heuristic without DVS.

6.3 Performance of EBTS and EBTS-DS 97

(a) Lifetime improvement with varying α and CCR = 4

(b) Lifetime improvement with varying CCR and α = 0.5

Figure 6.5: Lifetime improvement of 3-phase heuristic, EBTS and EBTS-DS for
WSN consisting of homogeneous nodes (10 sensor nodes, 8 voltage levels, 4 chan-
nels, 100 tasks, u = 0.5). These values are calculated as the improvement over the
baseline case when the 3-phase heuristic is used without DVS. The vertical bars
show the confidence intervals at 95% confidence level.

6.3 Performance of EBTS and EBTS-DS 98

Next, the performance of the algorithms with respect to varying values of CCR is

studied. The results are shown in Figure 6.5(b). The lifetime improvement is cal-

culated by comparing the lifetime generated by the algorithms to the baseline case

where the 3-phase heuristic is used without DVS. When CCR = 2, the EBTS and

EBTS-DS algorithms obtain lifetime improvements of 331% and 461% respectively

while the 3-phase heuristic obtains an improvement of only 168%. However, as

CCR increases, the improvement of EBTS and EBTS-DS over the 3-phase heuris-

tic decreases. At CCR = 20, EBTS and EBTS-DS achieve lifetime improvements

of about 104% and 167% respectively compared to 60% achieved by the 3-phase

heuristic.

Figure 6.6: Miss rate of 3-phase heuristic and EBTS with varying values of u
for WSN consisting of homogeneous nodes (10 sensor nodes, 8 voltage levels, 4
channels, 100 tasks, CCR = 0).

6.3 Performance of EBTS and EBTS-DS 99

Lastly, the deadline miss rates of the EBTS algorithm and the 3-phase heuristic

are studied for homogeneous WSNs. The results are shown in Figure 6.6. It is

observed that the EBTS algorithm provides a lower deadline miss rate compared

to the 3-phase heuristic, especially at higher values of u. At u = 1, the miss rate

of the EBTS algorithm is 51% while the miss rate for the 3-phase heuristic is as

high as 96%. From these experiments, it can be concluded that although the EBTS

and EBTS-DS algorithms are designed for WSNs with heterogeneous sensor nodes,

they can be used for homogeneous sensor nodes as well.

Chapter 7
Conclusion

As the demand for performance and functionality of portable embedded systems

increases over the year, many applications are commonly implemented on platforms

comprising of multiple homogeneous or heterogeneous processing cores. As many

of these systems operate using a battery source, energy management is essential

to extend the operational lifetime of the system. For hard real-time applications,

there are also deadline requirements that must be strictly adhered to, otherwise it

may result in a catastrophic failure of the system.

This thesis addresses the problem of scheduling a hard real-time application con-

sisting of tasks with precedence constraints onto a multiprocessor system where

the processing cores have DVS capabilities and can be either homogeneous or het-

erogeneous. The objective is to derive an energy-efficient schedule that maximizes

the lifetime of the system while ensuring that all the deadline requirements of the

100

101

application are met. The thesis looks at this problem in various aspects and pro-

poses a few energy-aware scheduling algorithms to address the problem.

Most portable systems operates on a single battery source. In order to maximize

the lifetime of such systems, the total energy consumption should be minimized. In

order to guarantee that the deadlines requirements are met, static energy-aware al-

gorithms are usually used to generate static schedules in advance using the WCETs

of the tasks. We proposed the EGMS algorithm to generate an energy-efficient

static schedule that meets the deadline requirements. Unlike most scheduling al-

gorithms in the literature that consider TM or TSVS separately, EGMS consider

them in an integrated way to derive a low-energy schedule using the concept of

energy gradient. EGMS does not consider intra-task voltage scaling and is useful

for scheduling tasks in situations where intra-task voltage scaling cannot be used

due to its high overhead. In EGMSIV, we extended our EGMS algorithm to intro-

duce intra-task voltage scaling by using an LP formulation for the voltage scaling

problem. We also describe modifications that can be made to EGMS/EGMSIV

so that they can be used for task mapping (EGMS-TM) or task scheduling and

voltage scaling (EGMS-TSVS/EGMSIV-TSVS) separately.

As the static energy-aware scheduling algorithms use the WCETs of the tasks to

generate energy-efficient schedules, these schedules are optimized provided that the

102

tasks execute at their WCETs most of the time during runtime. This may not be

applicable to applications where the tasks only require their WCETs to complete

occasionally. In this case, the average energy consumption of the tasks may not be

optimized. We proposed the PSDSC method which tries to estimate the potential

amount of slack that a task may receive from its precedent tasks in the scheduling

step. Based on the amount of potential slack, we can estimate the speed at which

the task is expected to execute during runtime and how much energy it consumes.

By using these estimated values, our PSDSC method tries to generate a schedule

that optimizes the average energy consumption while still guaranteeing that the

deadline requirements are not violated even in the worst-case scenario. In addition

to PSDSC, we also proposed an aggressive dynamic scheduling algorithm to be

used during runtime. In AADS, we aggressively lower the execution speeds of the

tasks during runtime based on the average of their actual number of execution cy-

cles in the previous execution instances of the application. In doing so, we reduce

the amount of slack that will be generated and passed on to successor tasks.

While most multiprocessor systems operate using a single battery source, there are

systems where each processing element has its own energy source. The WSN is one

such example. To address this, we have proposed the EBTS algorithm for assigning

tasks with precedence constraints to a single-hop WSN consisting of heterogeneous

nodes. Our objective is to maximize the lifetime of the WSN by assigning the

103

tasks in a balanced way such that the lifetime of the sensor node which consumes

the most energy is maximized. We also proposed the EBTS-DS algorithm, which

generates a second schedule that is used to extend the lifetime of the WSN further

when it is used together with the original schedule.

Finally we evaluated the performance of all our proposed algorithms with existing

strategies in the literature through extensive simulation experiments. We observed

improvements in maximizing the lifetime of the multiprocessor systems while en-

suring that the deadlines of the application are strictly met.

From the research that is conducted in this thesis, we find that task mapping

plays an important part in improving the lifetime of the multiprocessor system.

In addition, we find that the conventional way of iteratively solving the TM and

TSVS sub-problems separately usually requires much more iterations to guide the

optimization to a reasonably good solution. By considering task mapping, task

ordering and voltage scaling together in each scheduling step, the optimization

process is usually faster as many redundant steps can be excluded.

While we formuate the problem with the assumption that the deadline of the tasks

in the task graph is equal to its period, it is relatively straight forward to extend

our proposed algorithms to cases where the deadlines of the tasks in the task graph

104

are different and may be earlier than the period of the task graph. This can be

done by making some minor changes in the algorithms. In EGMS and EGMSIV,

during the calculation of the lengths of the critical paths in the CPTO sub-routine,

if a task has a deadline that is earlier than the period, we have to add the difference

between the deadline and the period to the lengths of critical paths that contain

this task. Similarly for EBTS and EBTS-DS, if a task has a deadline that is earlier

than the period, the difference between the deadline and the period can be added

to the calculation of the upper rank of that task. In this way, this task and its

precedent tasks will have a higher priority of being scheduled first in order to meet

the deadline constraint.

Bibliography

[1] URL http://www.ti.com/omap/.

[2] URL http://sourceforge.net/projects/lpsolve/.

[3] URL http://cecs02.cecs.uci.edu/DVS/.

[4] Dawei Li and Jie Wu, “Scheduling on Homogeneous DVFS Multiprocessor

Platforms,” Energy-aware Scheduling on Multiprocessor Platforms, Springer-

Briefs in Computer Science, pp. 13-40, 2013.

[5] B.R. Rajakumar and A. George, “A new adaptive mutation technique for

genetic algorithm,” Proceedings of IEEE International Conference on Com-

putational Intelligence & Computing Research, pp. 1-7, December 2012.

105

Bibliography 106

[6] Shyamal Patel, Hyung Park, Paolo Bonato, Leighton Chan, and Mary

Rodgers, “A review of wearable sensors and systems with application in reha-

bilitation,” Journal of Neuroengineering and Rehabilitation, 9:21, April 2012.

[7] H. Gjoreski, M. Lustrek, and M. Gams, “Accelerometer Placement for Posture

Recognition and Fall Detection,” Proceedings of 7th International Conference

on Intelligent Environments, pp. 47-54, July 2011.

[8] Ziliang Zong, Adam Manzanares, Xiaojun Ruan, and Xiao Qin, “EAD and

PEBD: Two Energy-Aware Duplication Scheduling Algorithms for Parallel

Tasks on Homogeneous Clusters,” IEEE Transactions on Computers, vol. 60,

no. 3, pp. 360-374, March 2011.

[9] Jaeyeon Kang and Sanjay Ranka, “Dynamic Slack Allocation Algorithms for

Energy Minimization on Parallel Machines,” Journal of Parallel and Dis-

tributed Computing, vol. 70, no. 5, pp. 417430, 2010.

[10] Xin-She Yang, Nature-Inspired Metaheuristic Algorithms (Second Edition, Lu-

niver Press, UK, 2010.

[11] Hande Alemdar and Cem Ersoy, “Wireless sensor networks for healthcare: A

survey,” Computer Networks, vol. 54, issue 15, pp. 2688-2710, October 2010.

Bibliography 107

[12] Jian-Jia Chen and Lothar Thiele, “Energy-Efficient Scheduling on Homoge-

neous Multiprocessor Platforms,” Proceedings of the 25th ACM Symposium

on Applied Computing, pp. 542-549, March 2010.

[13] El-Ghazali Talbi, Metaheuristics: From Design to Implementation, Wiley,

2009.

[14] Byron K. Lee and Jeffery E. Olgin, “Role of Wearable and Automatic External

Defibillators in Improving Survival in Patients at Risk for Sudden Cardiac

Death,” Current Treatment Options in Cardiovascular Medicine, vol. 11, issue

5, pp. 360-365, October 2009.

[15] Leonora Bianchi, Marco Dorigo, Luca Maria Gambardella, and Walter J. Gut-

jahr, “A survey on metaheuristics for stochastic combinatorial optimization,”

Natural Computing, vol. 8, issue 2, pp. 239-287, June 2009.

[16] Lee Kee Goh, Bharadwaj Veeravalli, and Sivakumar Viswanathan, “Design of

Fast and Efficient Energy-Aware Gradient-Based Scheduling Algorithms for

Heterogeneous Embedded Multiprocessor Systems,” IEEE Trans. Parallel and

Distributed Systems, vol. 20, no. 1, pp. 1-12, January 2009.

[17] M.N. Nyan, Francis E.H. Tay, and E. Murugasu, “A wearable system for

pre-impact fall detection,” Journal of Biomechanics, vol. 41, issue 16, pp.

3475-3481, December 2008.

Bibliography 108

[18] Lee Kee Goh and Bharadwaj Veeravalli, “An Energy-Balanced Task Schedul-

ing Heuristic for Heterogeneous Wireless Sensor Networks,” Proceedings of

International Conference on High Performance Computing, Lecture Notes in

Computer Science 5374, pp. 257-268, 2008.

[19] Myo Naing Nyan, Francis Eng Hock Tay, Lee Kee Goh, Bharadwaj Veeravalli,

Dagang Guo, Lin Xu, and K.L. Yap, “Low-Energy Scheduling Algorithms for

Wearable Fall Pre-Impact Detection System,” Proceedings of International

Symposium on Bio- and Medical Informatics and Cybernetics, pp. 172-178,

2008.

[20] A. K. Bourke and G. M. Lyons, “A threshold-based fall-detection algorithm

using a bi-axial gyroscope sensor,” Medical Engineering & Physics, vol. 30,

issue 1, pp. 84-90, January 2008.

[21] Yanhong Liu, Bharadwaj Veeravalli, and Sivakumar Viswanathan, “Novel

Critical-Path based Low-Energy Scheduling Algorithms for Heterogeneous

Multiprocessor Real-Time Embedded Systems,” Proceedings of International

Conference on Parallel and Distributed Systems, vol. 1, pp. 1-8, December

2007.

[22] Lee Kee Goh, Bharadwaj Veeravalli, and Sivakumar Viswanathan, “An

Energy-Aware Gradient-Based Scheduling Heuristic for Heterogeneous Mul-

tiprocessor Embedded Systems,” Proceedings of International Conference on

Bibliography 109

High Performance Computing, Lecture Notes in Computer Science 4873, pp.

331-341, 2007.

[23] Bita Gorjiara, Nader Bagherzadeh, and Pai Chou, “Ultra-Fast and Efficient

Algorithm for Energy Optimization by Gradient-based Stochastic Voltage and

Task Scheduling,” ACM Transactions on Design Automation of Electronic

Systems, vol. 12, no. 4, Article 39, September 2007.

[24] Changjiu Xian, Yung-Hsiang Lu, and Zhiyuan Li, “Energy-Aware Scheduling

for Real-Time Multiprocessor Systems with Uncertain Task Execution Time,”

Proceedings of the 44th Annual Design Automation Conference, pp. 664-669,

June 2007.

[25] Jun Zhang, H.S.-H. Chung, and Wai-Lun Lo, “Clustering-Based Adaptive

Crossover and Mutation Probabilities for Genetic Algorithms,” IEEE Trans-

actions on Evolutionary Computation, vol. 11, no. 3, pp. 326-335, June 2007.

[26] Sanjeev Baskiyar and Kiran Kumar Palli, “Low Power Scheduling of DAGs

to Minimize Finish Times,” Proceedings of International Conference on High

Performance Computing, Lecture Notes in Computer Science 4297, pp. 353-

362, 2006.

[27] Ioannis Milis, “Approximating a Class of Classification Problems,” Efficient

Approximation and Online Algorithms, Lecture Notes in Computer Science,

Bibliography 110

vol. 3484, pp. 213-249, 2006.

[28] Jian-Jia Chen and Tei-Wei Kuo, “Energy-Efficient Scheduling of Periodic

Real-Time Tasks over Homogeneous Multiprocessors,” Proceedings of the 2nd

International Workshop on Power-Aware Real-Time Computing, pp. 30-35,

September 2005.

[29] R. Rao and S. Vrudlhula, “Energy optimal speed control of devices with dis-

crete speed sets,” Proceedings of the 42nd Design Automation Conference, pp.

901-904, June 2005.

[30] Yan Zhang, Zhijian Lu, J. Lach, K. Skadron, and M.R. Stan, “Optimal pro-

crastinating voltage scheduling for hard real-time systems,” Proceedings of the

42nd Design Automation Conference, pp. 905-908, June 2005.

[31] Jian-Jun Han and Qing-Hua Li, “Dynamic Power-Aware Scheduling Algo-

rithms for Real-Time Task Sets with Fault-Tolerance in Parallel and Dis-

tributed Computing Environment,” Proceedings of 19th International Parallel

and Distributed Processing Symposium, April 2005.

[32] Tarek A. AlEnawy and Hakan Aydin, “Energy-Aware Task Allocation for Rate

Monotonic Scheduling,” Proceedings of 11th IEEE Real-Time and Embedded

Technology and Applications Symposium, pp. 213-223, March 2005.

Bibliography 111

[33] Yang Yu and Viktor K. Prasanna, “Energy-Balanced Task Allocation for Col-

laborative Processing in Wireless Sensor Networks,” Mobile Networks and Ap-

plications, vol. 10, pp. 115-131, 2005.

[34] Alexandru Andrei, Marcus T. Schmitz, Petru Eles, Zebo Peng, and Bashir M.

Al-Hashimi, “Overhead-Conscious Voltage Selection for Dynamic and Leakage

Energy Reduction of Time-Constrained Systems,” IEE Proceedings - Comput-

ers and Digital Techniques, vol. 152, issue 1, pp. 28-38, January 2005.

[35] James H. Anderson and Sanjoy K. Baruah, “Energy-Efficient Synthesis of

Periodic Task Systems upon Identical Multiprocessor Platforms,” Proceedings

of the 24th International Conference on Distributed Computing Systems, pp.

428-435, 2004.

[36] Bita Gorjiara, Nader Bagherzadeh, and Pai Chou, “An Efficient Voltage Scal-

ing Algorithm for Complex SoCs with Few Number of Voltage Modes,” Pro-

ceedings of 2004 International Symposium on Low Power Electronics and De-

sign, pp. 381-386, 2004.

[37] L.S.Y .Wong, S. Hossain, A. Ta, J. Edvinsson, D.H. Rivas, and H. Naas, “A

very low-power CMOS mixed-signal IC for implantable pacemaker applica-

tions,” IEEE Journal of Solid-State Circuits, vol. 39, issue 12, pp. 2446-2456,

December 2004.

Bibliography 112

[38] Vishnu Swaminathan and Krishnendu Chakrabarty, “Network Flow Tech-

niques for Dynamic Voltage Scaling in Hard Real-Time Systems,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 23, no. 10, pp. 1385-1398, October 2004.

[39] Bita Gorjiara, Pai Chou, Nader Bagherzadeh, Mehrdad Reshadi, and David

Jensen, “Fast and Efficient Voltage Scheduling by Evolutionary Slack Distribu-

tion,” Proceedings of Asia and South Pacific Design Automation Conference,

pp. 659-662, January 2004.

[40] Lap-Fai Leung, Chi-Ying Tsui, and Wing-Hung Ki, “Minimizing Energy Con-

sumption of Multiple-Processors-Core Systems with Simultaneous Task Allo-

cation, Scheduling and Voltage Assignment,” Proceedings of Asia and South

Pacific Design Automation Conference, pp. 647-652, January 2004.

[41] Wanghong Yuan and Klara Nahrstedt, “Energy-Efficient Soft Real-Time CPU

Scheduling for Mobile Multimedia Systems,” Proceedings of the 19th ACM

Symposium on Operating Systems Principles, pp. 149-163 , December 2003.

[42] Juan de Vicente, Juan Lanchares, and Román Hermida, “Placement by ther-

modynamic simulated annealing,” Physics Letters A, vol. 317, issue 5-6, pp.

415-423, October 2003.

Bibliography 113

[43] Christian Blum and Andrea Roli, “Metaheuristics in combinatorial optimiza-

tion: Overview and conceptual comparison,” ACM Computing Surveys, vol.

35, issue 3, pp. 268-308, September 2003.

[44] Dakai Zhu, Rami G. Melhem, and Bruce R. Childers, “Scheduling with Dy-

namic Voltage/Speed Adjustment Using Slack Reclamation in Multiprocessor

Real-Time Systems,” IEEE Trans. Parallel and Distributed Systems, vol. 14,

no. 7, pp. 686-700, July 2003.

[45] Hakan Aydin and Qi Yang, “Energy-Aware Partitioning for Multiproces-

sor Real-Time Systems,” Proceedings of 17th International Parallel and Dis-

tributed Processing Symposium, April 2003.

[46] Ramesh Mishra, Namrata Rastogi, Dakai Zhu, Daniel Mossé, and Rami G.

Melhem, “Energy Aware Scheduling for Distributed Real-Time Systems,” Pro-

ceedings of 17th International Parallel and Distributed Processing Symposium,

April 2003.

[47] Yang Yu and Viktor K. Prasanna, “Power-Aware Resource Allocation for

Independent Tasks in Heterogeneous Real-Time Systems,” Proceedings of 9th

International Conference on Parallel and Distributed Systems, pp. 341-348,

December 2002.

Bibliography 114

[48] Steven M. Martin, Krisztian Flautner, Trevor Mudge, and David Blaauw,

“Combined Dynamic Voltage Scaling and Adaptive Body Biasing for Lower

Power Microprocessors under Dynamic Workloads,” Proceedings of Interna-

tional Conference on Computer Aided Design, pp. 721-725, 2002.

[49] Dakai Zhu, Nevine AbouGhazaleh, Daniel Mossé, and Rami G. Melhem,

“Power Aware Scheduling for AND/OR Graphs in Multi-Processor Real-Time

Systems,” Proceedings of 31st International Conference on Parallel Process-

ing, pp. 593-601, August 2002.

[50] Yumin Zhang, Xiaobo Hu, and Danny Z. Chen, “Task Scheduling and Voltage

Selection for Energy Minimization,” Proceedings of 39th Design Automation

Conference, pp. 183-188, June 2002.

[51] Roseanne Schott, “Wearable Defibrillator,” Journal of Cardiovascular Nurs-

ing, vol. 16, issue 3, pp. 44-52, April 2002.

[52] Marcus T. Schmitz, Bashir M. Al-Hashimi, and Petru Eles, “Energy-Efficient

Mapping and Scheduling for DVS Enabled Distributed Embedded Systems,”

Proceedings of 2002 Design, Automation and Test in Europe Conference and

Exposition, pp. 514-521, March 2002.

[53] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Al-

gorithms (Second Edition), MIT Press and McGraw-Hill, 2001.

Bibliography 115

[54] Marcus T. Schmitz and Bashir M. Al-Hashimi, “Considering Power Variations

of DVS Processing Elements for Energy Minimisation in Distributed Systems,”

Proceedings of International Symposium on Systems Synthesis, pp. 250-255,

October 2001.

[55] Hakan Aydin, Rami G. Melhem, Daniel Mossé, Pedro Mej́ıa-Alvarez, “Deter-

mining Optimal Processor Speeds for Periodic Real-Time Tasks with Differ-

ent Power Characteristics,” Proceedings of the 13th EuroMicro Conference on

Real-Time Systems, pp. 225-232, June 2001.

[56] Padmanabhan Pillai and Kang G. Shin, “Real-Time Dynamic Voltage Scaling

for Low-Power Embedded Operating Systems,” Proceedings of the 18th ACM

Symposium on Operating Systems Principles, pp. 89-102, 2001.

[57] P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet, D. Verkest,

and R. Lauwereins, “Energy-aware Runtime Scheduling for Embedded-

Multiprocessor SOCs,” IEEE Design & Test of Computers, vol. 18, no. 5,

pp. 4658, 2001.

[58] Curt Schurgers, Olivier Aberthorne, and Mani B. Srivastava, “Modulation

Scaling for Energy-aware Communication Systems,” Proceedings of Interna-

tional Symposium on Low Power Electronics and Design, pp. 96-99, 2001.

Bibliography 116

[59] Neal K. Bhamba, Shuvra S. Bhattacharyya, Jürgen Teich, and Eckart Zit-

zler, “Hybrid Global/Local Search Strategies for Dynamic Voltage Scaling in

Embedded Multiprocassors,” Proceedings of 9th International Symposium on

Hardware/Software Co-Design, pp. 243-248, April 2001.

[60] Flavius Gruian and Krzysztof Kuchcinski, “LEneS: Task Scheduling for Low-

Energy Systems Using Variable Supply Voltage Processors,” Proceedings of

Asia and South Pacific Design Automation Conference, pp. 449-455, January

2001.

[61] Jiong Luo and Niraj K. Jha, “Power-conscious Joint Scheduling of Periodic

Task Graphs and Aperiodic Tasks in Distributed Real-time Embedded Sys-

tems,” Proceedings of International Conference on Computer-Aided Design,

pp. 357-364, November 2000.

[62] Shoukat Ali, Howard Jay Siegel, Muthucumaru Maheswaran, Debra A. Hens-

gen, and Sahra Ali, “Task Execution Time Modeling for Heterogeneous Com-

puting Systems,” Proceedings of 9th Heterogeneous Computing Workshop, pp.

185-199, May 2000.

[63] Tohru Ishihara and Hiroto Yasuura, “Voltage Scheduling Problem for Dynam-

ically Variable Voltage Processors,” Proceedings of 1998 International Sympo-

sium on Low Power Electronics and Design, pp. 197-202, August 1998.

Bibliography 117

[64] Robert P. Dick, David L. Rhodes, and Wayne Wolf, “TGFF: Task Graphs

for Free,” Proceedings of 6th International Workshop on Hardware/Software

Codesign, pp. 97-101, March 1998.

[65] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” Proceedings of

IEEE International Conference on Neural Networks, vol. 4, pp. 1942-1948,

November 1995.

[66] Sanjeev Arora, David Karger, and Marek Karpinski, “Polynomial time ap-

proximation schemes for dense instances of NP-hard problems,” Proceedings

of the 27th Annual ACM Symposium on Theory of Computing, pp. 284-293,

1995.

[67] A.E. Eiben, P-E. Raué, and Zs. Ruttkay, “Genetic algorithms with multi-

parent recombination,” Proceedings of the International Conference on Evolu-

tionary Computation, The Third Conference on Parallel Problem Solving from

Nature, pp. 78-87, October 1994.

[68] M. Srinivas, and L.M. Patnaik, “Adaptive probabilities of crossover and mu-

tation in genetic algorithms,” IEEE Transactions on Systems, Man and Cy-

bernetics, vol. 24, no. 4, pp. 656-667, April 1994.

[69] Anantha P. Chandrakasan, Samuel Sheng, and Robert W. Brodersen, “Low-

Power CMOS Digital Design,” IEEE Journal of Solid-State Circuits, vol. 27,

Bibliography 118

no. 4, pp. 473-484, April 1992.

[70] John H. Holland, Adaptation in Natural and Artificial Systems, MIT Press,

Cambridge, MA, USA, 1992.

[71] Fred Glover, “Tabu Search - Part II,” ORSA Journal on Computing, vol. 2,

no. 1, pp. 4-32, 1990.

[72] Fred Glover, “Tabu Search - Part I,” ORSA Journal on Computing, vol. 1,

no. 3, pp. 190-206, 1989.

[73] David E. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning, Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA,

1989.

[74] Fred Glover, “Future Paths for Integer Programming and Links to Artificial

Intelligence,” Computers and Operations Research, vol. 13, issue 5, pp. 533-

549, May 1986.

[75] Judea Pearl, Heuristics: Intelligent Search Strategies for Computer Problem

Solving, Addison-Wesley, 1984.

[76] S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, “Optimization by Simulated

Annealing,” Science, vol. 220, no. 4598, pp. 671-680, May 1983.

Bibliography 119

[77] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to

the theory of NP-Completeness, W. H. Freeman and Company, San Francisco,

CA, 1979.

