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Summary 

Transforming growth factor-β (TGF-β) is a key cytokine in liver fibrosis. It 

induces the activation of hepatic stellate cells (HSCs) leading to its expression of 

excessive extra-cellular matrix (ECM). TGF-β is expressed in its latent form and it 

needs to be activated to be functional. Previous studies have modeled a network of 

TGF-β activation in liver fibrosis regarding two major players, plasmin and 

Thrombospondin-1 (TSP1). TGF-β regulates cellular responses mainly through the 

Smad signaling pathway. In this network model of TGF-β activation, two species 

were regulated by TGF-β through Smad signaling, but this model treated the Smad 

pathway as a black box.  

We then first aimed to study the Smad signaling pathway using computational 

modeling. In this work, we used tightly coupled model analysis and experiments to 

systematically study the negative regulatory mechanisms in this pathway. 

Superisingly, we found no combinations of known mechanisms could explain the 

dynamics of phosphorylated R-Smad, the output species of this pathway. We then 

sought to find alternative mechanisms. Finally we concluded with a model with 

PPM1A, the phosphatase upregulated by TGF-β. This model was validated by our 

experiments and could explain all observations of phosphorylated R-Smad. 

After we had the updated model of downstream Smad pathway, we could 

possibly integrate it with the previous upstream network of TGF-β activation. This 

was not a simple integration as we noticed that the two species regulated by TGF-β 

signaling in the upstream network should be averaged responses from a population 
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of cells. An efficient algorithm to simulate the population behavior could be useful 

for our integration of two networks. We then developed two efficient algorithms to 

approximate cell population behavior and applied one of them, Population ODE to 

the integration of two networks. The integrated model maintained the bistable 

behavior and our algorithms could also be applied to other systems in which cell-

population behavior needs to be considered. 

Finally, we moved one step further from the population-level model to study 

the bistable switch of the TGF-β activation network in space. As we know that 

fibrotic regions often distribute unevenly in liver fibrosis. How the fibrotic regions 

and normal regions of liver tissue could affect each other remained a question. It is 

difficult to study the spatial dynamics using biologcial experiments but 

computational modeling could provide some hints. Our modeling assumed diffusion 

of molecules in space. This diffusion effect could cause a traveling wave of species 

steady states in space. Based on our simulations and experimental test, we could 

infer that normal liver tissue has the capability of switching the state of its 

neighbouring fibrotic tissue. Our simulations also predicted that this switching 

could be slowed down because of excessive ECM accumulation. This could be an 

explanation to how liver fibrosis is induced by chronic injury. 
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1 Chapter 1: Introduction 

The discovery of DNA and central dogma of molecular biology back in 1950s 

exploded biological studies. Basic molecular biological tools such as PCR and 

western blotting were developed afterwards promoting the studies of individual 

genes and proteins. Most of biological phenotypes are based on the functions of 

genes and proteins, and these functions are performed mainly by networks of 

protein-protein interactions and gene regulations. All the genes and proteins are 

connected in some way to form a complex system that works like a machine, but a 

much more complicated one than what human beings can build. Lead by the 

human genome project in the early 2000s and functional genomics, a large amount 

of data about genes and proteins were generated. Newly developed techniques such 

as microarray, RNAi, and immunofluorescence imaging allow high-throughput, 

more efficient and more accurate measurement of biological systems. With 

increasing efforts made in biological research and accumulating knowledge and data 

from biological studies, pieces in a large biological system, such as a signaling 

pathway were connected. This led us to look at biological systems from a 

systematic view, putting all genes or proteins that have interactions together. Then, 

systems biology emerges as a new type of approach in biological science. 

Systems biology, a concept have been widely used since 2000s, focuses on the 

study of biological systems as a whole, considering all species involved in a system 

and the interactions between species. This concept is somehow opposite to 

traditional molecular biological studies, in which elements or factors were taken 
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apart and often a single element or factor was emphasized to have the most 

important effect to a certain biological phenomenon. However, after more and more 

of these factors have been discovered, it is now a common sense that a biological 

phenomenon is often affected by multiple factors. High complexity is a nature of 

biological systems. The more components in the systems we discover, the more 

complex we realize they are. Therefore, without knowing how these components 

interact with each other to form and manipulate the system, we cannot fully 

understand the system. If we think the traditional molecular biology type of 

approach to be a top-down approach that breaks up each component in a system to 

study its role, systems biology type of approach is a bottom-up approach that 

integrates the components discovered or identified by the top-down approach. This 

bottom-up approach is necessary because the final goal of all biological research is 

to either change a biological system from outside, or maintain a system in the 

presence of outside changes. When any change or perturbation is applied to a 

biological system, the system itself will behave as a whole and we need to 

understand its behavior from a systematic point of view. 

The systems biology approach often utilizes computational models to integrate 

the biological data. There are various ways of building models for biological 

systems (Different modeling methods will be introduced in Chapter 2: Background 

and Related Work), but there is a general discipline of systems biology modeling.  

Modeling in systems biology generally goes through a cyclic process of theory, 

modeling, model-driven hypothesis, experimental validation, refinement of theory 

and models (Alberghina and Westerhoff, 2005). In most cases, the available 
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biological data is much less than the data required to build an enough complete or 

accurate model. Therefore, models of a biological system is also usually updated 

and refined step by step and from study to study. Computational modeling has 

been applied to a variety of biological systems and predicts systematic behaviors 

that are non-intuitive from just examining a single part of the system. 

Computational modeling has also been used to study the activation of a key 

cytokine, TGF-β in liver fibrosis. It has also been shown that the activation of 

TGF-β exhibits a bistable behavior in liver fibrosis.  This is an initiative work to 

study the systematic behavior of TGF-β in liver fibrosis. However, some aspects of 

this model of TGF-β activation could be improved. In the following section, we 

introduce why and how we planned to contribute to the modeling of TGF-β related 

network in liver fibrosis.  

1.1 Context and Motivations 

Liver fibrosis is a disease affecting hundreds of millions of patients globally. The 

end stage of liver fibrosis, cirrhosis, may further lead to liver failure and liver 

cancer, causing millions of death worldwide every year. Major causes of liver 

fibrosis include chronic viral hepatitis, alcohol abuse (Iredale, 2007). Liver fibrosis 

is a would-healing process which is potentially reversible. It has been found in 

many studies that after removing the source of liver injury, liver fibrosis is 

regressed spontaneously (Hammel et al., 2001, Benyon and Iredale, 2000). However, 

some sources of liver injury are sustained and hard to be removed or stopped, such 

as viral hepatitis. Thus, therapies of liver fibrosis have focused on both removal of 
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liver injury and targeting liver fibrosis regression. In order to target liver fibrosis 

regression, understanding of the mechanisms of liver fibrosis progression and 

regression is important. 

 During liver fibrosis progression, a major change of the liver tissue is the 

accumulation of excessive extracellular matrix (ECM) (Arthur, 1997). Hepatic 

stellate cells (HSCs) are the primary source of the ECM (Bataller and Brenner, 

2005, Friedman, 2003). HSCs are quiescent in normal liver but activated in fibrotic 

liver. In its quiescent state, ECM production and degradation is balanced, while in 

its activated state, excessive ECM proteins are produced. The activation of HSCs is 

primary in liver fibrosis progression and understanding of its activation process is 

crucial in finding targets to block this process and further block fibrosis progression 

(Kinnman et al., 2001, Iredale et al., 1998). 

TGF-β is one of the key cytokine that can induce the activation of HSCs 

(Gressner and Weiskirchen, 2006, Gressner et al., 2002). Several studies have 

targeted TGF-β related signaling and regulations as therapies for liver fibrosis 

(Kondou et al., 2003, Currier et al., 2003, Salgado et al., 2000). TGF-β is expressed 

in its latent form (latent TGF-β), enclosed by the latency-associated protein (LAP) 

(Annes et al., 2003). Many activator and activation process can release active TGF-

β from LAP. These activators and activation process could form a complex network 

that regulates TGF-β. Active TGF-β then binds to receptors on the cell surface and 

induces Smad signaling cascade inside the cell to regulate gene expression (Shi and 

Massague, 2003, Attisano and Wrana, 2002, Massague and Wotton, 2000). Smad 

signaling is tightly controlled by downstream regulations. 
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This thesis was first motivated by lack of understanding of downstream Smad 

signaling regulations. Therefore, we initiated our study from systematic analysis of 

Smad signaling pathway. Different negative regulatory mechanisms in Smad 

pathway have been studied biologically and individually built into computational 

models. However, the roles of these mechanisms in regulating Smad signaling have 

not been compared. We used computational models to analyze each mechanism and 

combination of mechanisms. Model-based predictions and experimental validations 

provided us new insights into Smad pathway negative regulations. This part is a 

cellular level study of TGF-β in liver fibrosis. 

Secondly, previous work has shown that the activation of TGF-β in liver 

fibrosis may exhibit a bistable behavior (Venkatraman et al., 2012), meaning that 

the TGF-β concentration may stay at two different steady states. The two steady 

state of TGF-β could switch back and forth by external perturbations to the system 

of TGF-β regulation. This network of TGF-β upstream activation consists of many 

reactions in the ECM and assumes cells are identical to each other. It is known 

that cell-to-cell variability is common in many types of cell populations. Cell-to-cell 

variability may affect the bistable behavior of the system. We therefore wanted to 

integrate our downstream Smad signaling model with the upstream TGF-β 

activation network and to see if the bistability could be affected by cell-to-cell 

variability. Simulating a population of cells is a computationally expensive task. To 

achieve our goal, we developed efficient algorithms for simulating signaling pathway 

in a population of cells. This part is a cell-population level study of TGF-β in liver 

fibrosis. 
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Last but not least, fibrotic tissue in liver fibrosis does not distribute evenly in 

space. As Venkatraman’s model shows bistability of TGF-β activation, two steady 

states of TGF-β levels may also be present in different region of liver tissue. We 

therefore wanted to study how two steady states of TGF-β regulation network 

would affect each other in space. By assuming simple diffusion/transportation effect 

of molecules in the ECM, we were able to simulate the behavior of bistable system 

in space. This part is a tissue level study of TGF-β in liver fibrosis. 

 

1.2 Our Approaches and Contributions 

As mentioned, we use systems biology methods to study the TGF-β related 

regulations at three different levels: cellular level, cell-population level and tissue 

level. Since different levels of regulation have distinct behaviors, we use different 

approaches for different levels of study. 

For cellular level of TGF-β regulation, we studied the TGF-β signaling pathway 

within the cells. We used ODEs to build computational models to study different 

mechanisms of downstream regulation in TGF-β signaling pathway. The ODE 

models were based on mass action law of chemical reactions and they were able to 

simulate the time variant of reaction species concentrations. This approach allowed 

us to observe and analyze the dynamics of each step in this pathway. Besides using 

ODE as the modeling approach, we utilize parameter estimation to fit our model to 

experimental data and to closely look at the relationship between different 

regulatory mechanisms in TGF-β signaling pathway and the dynamics of the signal 
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transduction. ODE modeling allowed us to analyze detailed dynamics such as 

timing of different events. With this analysis, we found that there needs to be at 

least one “fast-mode” mechanism and one “slow-mode” mechanism to explain the 

dynamics of TGF-β signaling. However, modeling analysis combined with 

experimental measurements suggested that known mechanisms were not sufficient 

to explain the observed dynamics. This could not be discovered without ODE 

modeling. We then utilized the models to help us find possible alternatives. Model 

prediction and experimental validation showed that PPM1A, the phosphatase was 

upregulated in the presence of TGF-β. Our study showed that system level of 

analysis was able to refine some qualitative knowledge in biological discoveries and 

gain insights beyond a collection of biological information. 

For the cell-population level of TGF-β regulation, we wanted to integrate the 

models of upstream network of TGF-β activation and the downstream Smad 

pathway. Since the upstream network is in the ECM, the molecules regulated by 

Smad signaling in this network should be the average response of a population of 

cells. Thus, what we really needed was to integrate the upstream network and a 

population of Smad pathway. There is a naïve way of simulating cell population 

behavior, which is called Monte Carlo simulation. It simply takes random samples 

of the parameters of a system and then simulates all samples to approximate the 

population behavior. However, this method is often time consuming as the 

biological system is often complex and the sample size needs to be large. In the case 

of integrating two networks of TGF-β regulation, this type of sampling-based could 

not synchronize the species existing in both networks. Therefore, we first developed 
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an algorithm, Population ODE, which was more efficient than Monte Carlo 

simulation and not sampling-based. This approach approximated the population 

behavior by a new ODE system derived from single-cell ODE model. Because it is 

still an ODE system, it is easy to integrate a population of Smad pathways with 

the upstream network using this approach. This is a good approach and we wanted 

to extend its application. We found it works well in some well known pathway 

models. However, this algorithm did not approximate bistable system well. We 

then moved on to develop the second algorithm called Sample Reduction method, 

which is based on Monte Carlo simulation, however with significantly reduced the 

sample size. This method is a sampling type of method so that it can be applied to 

all types of systems. Sample reduction was tested in this method in apoptosis 

pathway, a well-known bistable system. The results showed that it significantly 

reduced sample size compared to Monte Carlo simulation. 

For the tissue level of TGF-β regulation, we built a spatial model of TGF-β 

upstream regulations. In this study, we integrated the effect of diffusion of 

molecules and the reactions of molecules to have a reaction-diffusion system, and 

we discretized the space so that we can use ODE system to simulate the effect of 

diffusion. As the TGF-β upstream regulations have a bistable behavior, this 

particular reaction-diffusion system showed a wave of bistable switch in space. This 

kind of behavior has been proven analytically in the field of physics but has not 

been shown in biological systems. Our simulation also showed that the ECM 

accumulation in liver fibrosis would slow down the wave and then prevent the 

fibrotic steady state from switching to normal steady state. This could be an 
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explanation to the phenomenon that chronic injury could cause continuous ECM 

accumulation but liver may regress back to normal if injury is terminated. This is 

one of the pioneer studies of tissue level modeling. Although the lack of 

quantitative information and complexity of the system allows us to only take one 

spatial property, diffusion, into consideration, we have already shown that the 

spatial information is important for biological systems. With new tools and data 

available, further models for biological systems may be able to include more and 

more components and aspects of an organism, and help us understand biological 

systems, the most complex system, better. 

1.3 Overview 

The following contents of this thesis are organized in this way: 

A single chapter (Chapter 2) introducing background information followed by 

three chapters (Chapter 3,4 and 5) of three studies at cellular level, cell-population 

level and tissue level of liver fibrosis. Finally we conclude this thesis in Chapter 6. 
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2  Chapter 2: Background and Related Work 

2.1 Approaches for Modeling Biological Systems 

Modeling is one primary task in systems biology. A variety of modeling 

approaches are applied to model different types of systems, including molecular 

systems (such as protein structure and molecule-molecule binding) (Kelley and 

Sternberg, 2009), cellular systems (such as genetic networks, metabolic systems and 

signaling pathways) (Barabasi and Oltvai, 2004, Weiss et al., 2003), and higher-

level systems (such as brain model, virtual liver and model of immune system) 

(Numminen et al., 2005). As different types of biological systems contain 

completely different information and require completely different ways of analysis, 

modeling approach for molecular, cellular and physiological systems have almost no 

overlaps. Here, we introduce the major approaches for modeling cellular systems as 

our models were built for cellular systems. 

Although there are also subtypes of cellular systems, they share some common. 

Firstly, the structure of a cellular system is often like a network, consisting of 

species and their interactions. These species can be small molecules (i.e. in 

metabolic systems), proteins (i.e. enzymes in metabolic systems and proteins in 

signaling pathways), or genes (i.e. genetic network). The interactions between two 

species can be as simple as a chemical reaction or as complex as a multiple-step 

regulation. Secondly, the network of a cellular system is often dynamic, meaning 

that the states of species may change as a result of their interactions. The dynamics 
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of a cellular system can be as abstract as order of interactions (i.e. genetic network) 

or as detailed as continuous time-evolution of the states of species. The states of 

species can also have different levels of precisions (a boolean value, a discrete state 

number, or a value of its concentration). Thus, the main task of modeling cellular 

systems becomes modeling the structure and dynamics of the system. Because of 

that, many modeling approaches for cellular systems can be applied to all subtypes 

of cellular systems (metabolic systems, signaling pathways, genetic networks, etc.) 

and other approaches can be applied to a subset of all subtypes. These different 

approaches have their own advantages and disadvantages. Here, we introduce some 

representative approaches in modeling cellular systems. In addition, we will explain 

more details about the approach we use in this thesis. 

2.1.1 Boolean Network 

In Boolean network, species were modeled as Boolean values, which has only 

two states: ON and OFF. A Boolean network can be defined as a directional graph 

(Figure 2.1A), in which each node represents a species and each edge represents a 

regulation process (such as activation and inhibition). In addition, a rule for each 

node is defined to determine the result of all regulations applied to that node. As 

species have only two states, a rule can be simply defined by a set of logic gates 

(Figure 2.1B). A Boolean network can be simulated synchronously (all states are 

updated in one time step) and asynchronously (one or some states are updated in 

one time step). The advantage of Boolean network is that it can be used to model 

large-scale networks, as it requires less information of the states of species. The 
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disadvantage of it is that the results it can provide have also less information and 

they are not quantitative.  

 

Figure 2.1 A Boolean network example of cell cycle gene regulation (Shmulevich et al., 2002). (A) 
A diagram of the regulation network showing the species as ellipses and regulations as lines (with 
arrow head: activation; with flat head: inhibition). The black dots explicitly show the rules 
applied to cdk2 and Rb. (B) The logic diagram of the network describing the rules applied to 
cdk2 and Rb. 

 

One of the major applications of Boolean network in biological models is 

modeling genetic network. The biological basis for this application is that genes 

often have switch-like behavior, which means the expression of a gene is often 

turned on and off in its regulations. This switch-like behavior allows us to ignore 

some quantitative details of the state of a gene, and being qualitative makes 

modeling of large-scale network possible. With the efforts of Human Genome 

Project and functional genomics, numerous data for gene regulations are available 

and most of them are qualitative data. Thus, Boolean network takes advantage of 

large qualitative dataset and helps us to analyze large-scale genetic networks. 

2.1.2 Bayesian Network 

Bayesian network is widely used to build statistical models. It is also applied to 

biological systems to represent and inference the causal relationship among species. 

A B
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A Bayesian network can be described as a directed acyclic graph (DAG, a graph 

with no loops). The nodes in the graph represent the species and the edges in the 

graph represent the relationship/dependencies between species. Each species has no 

states but a probability of certain state (high/medium/low, on/off) and this 

probability is dependent on other species. Thus, we have a joint probability 

distribution (JPD) for all species in a Bayesian network. The 

relationship/dependencies between species are encoded by a conditional probability 

table (CPD). Through this CPD, we are able to infer the JPD of all species. 

Simulation of a classical Bayesian network is a one-step event. Therefore this 

method simulates static behaviors of the network. Derivatives of Bayesian network 

such as Dynamic Bayesian Network (DBN) can simulate dynamical changes of 

probabilities and can have loops in the network model. Bayesian network takes 

consideration of the uncertainties of biological observations and can be applied for 

inference of unknown causal relationship between species. 

2.1.3 Petri Nets 

A Petri net is a directed bipartite graph, in which there are two types of nodes, 

representing places and transitions (Figure 2.2). Classical Petri nets represent the 

states of a species as tokens in a place. The number of tokens represents the level of 

species. A transition connects different places and it can consume and produce 

tokens. When a transition fires, a token is consumed in any input places of this 

transition and a token is produced in any output places of this transition. As a 

result of that, the token moves from one place to another and the states of species 

change because of firings of transitions. The classical Petri nets are time-free (firing 
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transitions does not take time), deterministic and discrete (or semi-quantitative). 

But there are some extensions of Petri nets which make Petri nets more powerful of 

modeling biological systems. Stochastic Petri Nets (SPN) fires transitions in a 

stochastic way associating probabilistically distributed firing rates. Continuous 

Petri Nets (CPN) use continuous values (not tokens) for species states and have a 

continuous firing rate for each transition. These extensions allow Petri nets to 

model systems at different abstraction levels and to meet requirements of biological 

experiments with different accuracies and precisions. 

 

Figure 2.2 A diagram of a Petri net. Circles represent places (P1 and P2). Black rectangles 
represent transitions (T1 and T2). Black dots represent tokens. Arrows represent the direction for 
the movement of tokens. 

2.1.4 Ordinary Differential Equations (ODEs) 

Ordinary Differential Equation (ODE) models describe the time-derivative of 

the states of species as a function of time and the states (Equation (2.1)). The 

states in ODEs are continuous values (i.e. concentration of species). 

 
dx
dt

= F(t,x)  (2.1) 

The biological/biochemical basis of ODE models is the law of mass action. 

Associating the event of molecule collision and reaction, the law of mass action 

describes the rate of an elementary reaction (a reaction with a single mechanistic 
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step) is proportional to the concentrations of reactants. For example, the rate of 

the reaction A + B k⎯→⎯ C  is k[A][B] , in which [A]  and [B]  represent 

concentrations of species A and B, and k  is a rate constant determined by the 

natural properties of this reaction (i.e. the affinity of A and B, the pH, the 

temperature, etc.). As ODE models have strong theoretical basis, ODE is an ideal 

framework for modeling metabolic systems and signaling pathways, consisting of 

chemical reactions or biochemical reactions (i.e. enzymatic reactions and protein-

protein binding). ODE models are also powerful in analyzing the dynamics of a 

system since the species concentrations are continuous in time. Another advantage 

of ODE models is that some reaction rates measured in previous biochemical 

studies can be directly used in ODE models. Although many rates were measured 

in vitro, they can still be considered as a good approximation of the rates in vivo. 

Sometimes, theoretically ideal methods are not best practically. ODE models have 

a significant drawback that they often require large amounts of quantitative data. 

We all know that biological studies often lack quantitative data. In biological 

studies, it is also difficult to generate large amounts of quantitative data with high 

accuracy. This makes building ODE models difficult, but with more biological 

systems studied in detail and more high throughput and quantitative measurements 

developed, ODE models will become more and more powerful.  

In this thesis, we built our models using ODEs because we need to study 

detailed dynamical behaviors and also some special behavior like bistable behavior. 

ODE models are the best choices for our purpose of study. We also use a special 

mathematical form of the ODE models using Kronecker products. This makes not 
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only the simulation and analysis more efficient, but also the analytical derivations 

possible. This form of ODEs was used in a toolbox KroneckerBio (Toettcher et al., 

2011) and we briefly introduce this formalism in the following section. 

2.1.4.1 Formalism of ODE models in KroneckerBio 

As biological studies usually focus on mechanistic steps of a process, most 

known reactions in a signaling pathway are elementary reactions. There are overall 

four types of elementary reactions shown as below, 

 

 

kprod⎯ →⎯⎯ A (rate = kprod =
d[A]
dt

)

A kdeg⎯ →⎯ (rate = kdeg[A]= − d[A]
dt

)
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(2.2) 

According to the law of mass action, all the rates of these reactions can be 

mathematically represented with zero-order, linear and quadratic form of equations. 

Therefore, instead of having ODE for each species individually, KroneckerBio 

express the ODEs as a quadratic system as follow, 

 
dx
dt

= A1x + A2x⊗ x + k  (2.3) 

 In Equation (2.3), x  is a vector of all species concentrations and x⊗ x  is the 

Kronecker product of two x  (shown below in Equation (2.4)). A1  and A2  are 

parametric matrices and k  is a parametric vector. A1 , A2  and k  contains all the 

rate constants. 
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The benefit of using this mathematical form in Matlab is that stiff ODE solvers 

in Matlab take advantage of the Jacobian matrix to facilitate the simulation. Many 

of the biological systems are stiff and this form of ODEs has an explicit form of the 

Jacobian matrix. In addition, as the connectivity of biological systems is very low, 

the matrices in both Equation (2.3) and its Jacobian matrix are very sparse. 

Matlab has algorithms to deal with operations of sparse matrices efficiently. 

 

2.2 Liver Fibrosis and TGF-β Homeostasis 

2.2.1 Pathology of Liver Fibrosis 

Liver fibrosis is a wound-healing response caused by repeated injury of the 

hepatic parenchyma (Bataller and Brenner, 2005, Hernandez-Gea and Friedman, 

2011). The types of liver injury include ethanol abuse, virus infection, cholestasis, 

metabolic syndrome etc. Liver injury causes damage of liver parenchyma and a 

series of inflammatory responses. Both the damaged parenchymal cells and immune 

cells such as T cell and Kupffer cell can secrete several fibrogenic cytokines, 

including TGF-β1, PDGF (Platelet-Derived Growth Factor), IL-6 (Interleukin-6) 

etc. (Bataller and Brenner, 2005). These cytokines can induce the activation of 
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hepatic stellate cells (HSCs) and other source of myo-fibroblasts. Activated HSCs 

and myo-fibroblasts are the major source of the excessive extra-cellular matrix 

(ECM). They can also secrete some cytokines such as TGF-β1 to activate other 

cells. During liver fibrosis progression, liver parenchyma is often repeatedly injured. 

The process of injury, inflammation and fibrogenic cell activation described above 

keeps happening. As a result of the repeated injury, the injured area of parenchyma 

is replaced by accumulated ECM (Arthur, 1997). In liver fibrosis, not only the 

quantity, but also the quality of ECM is changed (Eng and Friedman, 2000). In 

most cases, acute injury is transient and reversible (Benyon and Iredale, 2000). 

However, when insults are sustained, there will be chronic inflammation as well as 

scar formation. If the insults are not controlled, liver fibrosis will progress to 

cirrhosis, an end stage of liver fibrosis and then leading to high mortality. Cirrhosis 

is not only characterized by large amount of ECM or large area of scar formation, 

but also a structural change of liver parenchyma and vasculature (Desmet and 

Roskams, 2004). At late stage of fibrosis or cirrhosis, bridging fibrotic scar is 

formed and that is called fibrotic septa (Vanheule et al., 2008). The fibrotic septa 

are where most ECM is accumulated and it may connect portal tracts and central 

veins (Sherman et al., 1990). Within the septa, there is usually a wide blood vessel 

called fibrotic shunt (Vollmar et al., 1998). During fibrosis progression, most 

sinusoids (small blood vessels bypass the liver parenchyma) will become thinner 

and the fibrotic shunt is where most blood flow through. This kind of distortion of 

vascular architecture can result in decreased liver function and liver regeneration. It 
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also leads to the development of portal hypertension, one major pathological 

phenotype in liver fibrosis. 

2.2.2 Cellular Responses in Liver Fibrosis 

In liver parenchyma, four major cell types are found: hepatocytes, sinusoidal 

endothelial cells, hepatic stellate cells (HSCs) and Kupffer cells. Hepatocytes 

comprise about 65% of liver mass. They are the cells that perform the metabolic 

function of liver. Sinusoidal endothelial cells form the sinusoid (microvascular 

structure in liver). These cells have small pores called fenestrae (about 200nm in 

diameter in normal liver) to allow efficient molecule exchange between hepatocytes 

and blood. HSCs reside in the space of Disse, the space between the layer of 

hepatocytes and sinusoidal endothelial cells. In normal liver, HSCs maintain the 

basal membrane-like matrix in the space of Disse, which is important for the 

differentiated function of parenchymal cells. Kupffer cells are specialized 

macrophages in the liver. They locate at the wall of sinusoids and do not circulate 

in the blood stream. 

As we mentioned, liver fibrosis is initiated by liver injury. When liver suffers 

from injury, parenchymal cells like hepatocytes are damaged by the insults, such as 

viral infection and toxin. In fibrotic liver, sinusoidal endothelial cells close their 

fenestrae (defenestration) (Friedman, 2003). This can lead to changes of molecule 

exchange between parenchymal cells and blood, and also changes of local blood 

pressure. HSCs are in their quiescent state in normal liver and their secretion of 

ECM is limited. During fibrosis progression, HSCs become myo-fibroblast-like 

(activated state) and express excessive ECM (Friedman, 2000, Gressner and 
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Weiskirchen, 2006). Activated HSCs are also proliferative. Activation of HSCs is 

the major cause of excessive ECM and scar formation in liver fibrosis (other types 

of myo-fibroblasts in liver were also found such as, portal fibroblasts, bone marrow-

derived cells and cells from EMT) (Hernandez-Gea and Friedman, 2011). The 

earliest activation of HSCs is associated with inflammation and paracrine 

stimulation by their neighboring cells, including damaged hepatocytes, injured bile 

duct cells and Kupffer cells (Iredale, 2007). Kupffer cells can stimulate HSC 

activation by secretion of cytokines such as TGF-β1 (Transforming Growth Factor-

β1, an isoform of TGF-β) and PDGF (Platelet-Derived Growth Factor) (Iredale, 

2007). 

2.2.3 TGF-β Activation in Liver Fibrosis 

Many cytokines are involved in liver fibrosis. Liver fibrosis is accompanied by 

repeated or chronic liver injury. The earliest response after injury is inflammation. 

Therefore, in liver fibrosis, inflammatory cytokines such as IL-6 (Interleukin-6), 

IFN-γ (Interferon-γ), TNF-α (Tumor Necrosis Factor-α) are secreted from Kupffer 

cells, hepatocytes as well as some immune cells in the blood (Friedman, 2000). 

These inflammatory cytokines can initiate the activation of myo-fibroblasts (mainly 

HSCs). After the inflammatory phase of fibrosis, there will be a fibrogenic phase 

when the activated myo-fibroblasts/HSCs reconstruct the ECM. Growth factors 

such as TGF-β1 and PDGF play important roles not only in the inflammatory but 

also the fibrogenic phase of liver fibrosis. TGF-β1 is a key cytokine that induces the 

activation of HSCs and other types of myo-fibroblasts in liver (i.e. portal fibroblasts 

and EMT of hepatocytes) (Zeisberg et al., 2007). Initial HSC activation is 
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stimulated by TGF-β1 via paracrine signals from Kupffer cells and injured 

hepatocytes. After HSCs are activated, there is an autocrine signal of TGF-β1 to 

maintain the activation states of HSCs (Gressner and Weiskirchen, 2006, Gressner 

et al., 2002). Activated HSCs are also proliferative. This is mainly due to the 

stimulation of PDGF (Kinnman et al., 2001). Proliferation of HSCs is also initiated 

by paracrine signal of PDGF and maintained by autocrine signal of PDGF 

(Bataller and Brenner, 2005). 

TGF-β1 plays crucial role in liver fibrosis as it initiates and maintains the 

activation of HSCs, the major fibrogenic cells in liver fibrosis. Therefore, many 

studies have focused on TGF-β1 related signaling and tried to discover drug targets 

for liver fibrosis therapies (Salgado et al., 2000, Currier et al., 2003, Kondou et al., 

2003). TGF-β1 binds to specific receptors on the cell surface and activates the 

Smad signaling cascade to regulate gene expression (Wrana and Attisano, 2000). 

Moreover, TGF-β1 is secreted in its latent form and needs to be activated so it can 

stimulate Smad downstream signaling (Annes et al., 2003). Thus, not only the 

downstream Smad signaling, but also the upstream activation of TGF-β1 is 

important for TGF-β1 regulations. Latent TGF-β1 is a protein complex in which 

TGF-β1 dimer binds to a latency-associated peptide (LAP) and LAP further 

associates with the latent-TGF-β1 binding protein (LTBP) (Annes et al., 2003). 

There are several ways that TGF-β1 can be released from LAP and become active, 

including high temperature, low pH, ROS, integrin, proteases (such as plasmin) 

(Lyons et al., 1990, Dallas et al., 2002), and thrombospondin-1 (TSP1) (Murphy-

Ullrich and Poczatek, 2000, Daniel et al., 2004, Schultz-Cherry et al., 1994). Among 
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these activation conditions or activators, plasmin and TSP1 is highly related to 

hepatocytes and HSCs, respectively. In addition, plasmin is regulated by TGF-β1 

signaling and TSP1 is a part of TGF-β1 autocrine of HSCs. 

2.2.4 The Network of TGF-β Activation in the ECM 

Previous work has studied a network of TGF-β activation including two 

activators, plasmin and TSP1; interplay between these two activators; and two 

feedback loops that active TGF-β regulates plasmin and TSP1 (Venkatraman et al., 

2012). Figure 2.3 shows the major players in the network. As we mentioned earlier, 

plasmin and TSP1 could both activate TGF-β from its latent form. These two 

activators of TGF-β have a mutual antagonism that plasmin could cleave TSP1 

slowly (Anonick et al., 1993) and TSP1 could inhibit plasmin by tight binding to 

its activation site (Anonick et al., 1993, Hogg et al., 1992). More interestingly, 

TGF-β could regulate plasmin by inducing the production of plasminogen activator 

inhibitor type 1 (PAI1) (Kutz et al., 2006) and PAI1 inhibits the urokinase 

pathway for plasmin activation (Vassalli et al., 1991, Venkatraman et al., 2010). 

TGF-β could also regulate TSP1 by inducing HSC activation. 
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Figure 2.3 Upstream network of TGF-β activation (Venkatraman et al., 2012). Plasmin (PLS) 
and Thrombospondin-1 (TSP1) can both activate TGF-β. They also have mutual antagonism. 
Plasmin is activated from plasminogen through a positive feedback regulation of urokinase-typed 
plasminogen activator (UPA). TGF-β regulates plasmin activation by inducing the production of 
PAI1 through Smad signaling pathway. It also regulates TSP1 production through Smad 
signaling and hepatic stellate cell (HSC) activation. The Smad signaling pathway was modeled as 
a black box in (Venkatraman et al., 2012). 

 

As shown in Figure 2.3, Smad signaling pathway was modeled as black box in 

(Venkatraman et al., 2012). We then initiate our series of studies from a systematic 

analysis of Smad signaling pathway. 
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3  Chapter 3: Systematic Analysis of Negative 

Regulatory Mechanisms in TGF-β Signaling 

Pathway 

3.1 Introduction 

Transforming Growth Factor-β (TGF-β) regulates cell migration and cell fate 

and TGF-β signaling is a target of pharmaceutical research (Yingling et al., 2004) 

for treatment of metastatic cancer and fibrotic diseases. Signal transduction from 

extracellular TGF-β to the cell nucleus through the Smad pathway is well 

documented (Massague, 1998, Shi and Massague, 2003, Attisano and Wrana, 2002, 

Bassing et al., 1994, Schmierer and Hill, 2005, Massague and Wotton, 2000). The 

TGF-β ligand binds sequentially to two heterogeneous receptors (TGF-β receptor 

type II and type I) on the cell membrane to form a ligand-receptor complex 

(Massague, 1998). The type II receptor is a constitutively active kinase, recruited 

by TGF-β to the type I receptor (Bassing et al., 1994). The type I receptor is 

activated by the type II receptor and then phosphorylates the R-Smads (Smad2 

and Smad3) at two C-terminal serine residues. Upon phosphorylation, R-Smads 

form a homomeric complex or a heteromeric complex with Co-Smad (Smad4) (Shi 

and Massague, 2003, Schmierer and Hill, 2005). The key outcome of the Smad 

cascade is accumulation of phosphorylated R-smad (phospho-R-Smad) in the 

nucleus, causing widespread effects on gene regulation (Massague et al., 2000, 

Massague and Wotton, 2000).  
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Recent work by Zi et al. showed that cells respond differently to phospho-R-

smad, depending on the temporal dynamics of Smad signaling (Zi et al., 2011). 

They found that early (45min) phospho-R-Smad levels, and early gene expression, 

had a gradual, graded dependence on the dose of TGF-β. In contrast, later (24hr) 

phospho-R-Smad levels controlled a distinct set of genes with ultrasensitive, 

sigmoidal dependence on the dose of TGF-β. These functional effects demonstrate 

the importance of understanding the dynamics of the Smad system.  

Smad signaling is known to decrease spontaneously after TGF-β stimulation 

(Figure 3.1A), and this self-limiting behavior is a major determinant of Smad 

dynamics. Self-limiting behavior may arise from ligand-induced receptor inhibition 

(Afrakhte et al., 1998, Itoh et al., 1998, Ebisawa et al., 2001, Hayashi et al., 1997, 

Kavsak et al., 2000, Zhang et al., 2012, Eichhorn et al., 2012), phospho-R-Smad 

dephosphorylation (Lin et al., 2006), phospho-R-Smad degradation (Lo and 

Massague, 1999, Lin et al., 2000, Alarcon et al., 2009, Inui et al., 2011, Aggarwal 

and Massague, 2012), or other mechanisms. Extensive experimental evidence 

documents multiple individual mechanisms, but the relative roles and combined 

effects are not well understood. Dynamic measurements (time-series immuno-blots) 

are available from many previous studies, and this wealth of information provides 

an opportunity for systems-level modeling to integrate information about dynamics 

and to integrate mechanisms of negative regulation, toward a better understanding 

of the Smad system behavior. 

Previous computational models of TGF-β/Smad signaling have contributed 

important biological insights, but they have only simulated some selected 
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mechanisms of negative regulation. Villar et al. built a model of TGF-β receptor 

trafficking dynamics, including ligand-induced receptor degradation, which was able 

to simulate some key dynamic effects such as the peak and decay of phospho-R-

Smad levels (Vilar et al., 2006). Models by Klipp and co-workers extended the work 

of Villar et al. to include Smad phosphorylation and nuclear translocation (Klipp 

and Zi, 2007), and to include transient versus sustained Smad signaling (Zi et al., 

2011), but these models simplified the negative regulation processes, giving a strong 

role to receptor degradation. The model by Schmierer et al. provided important 

insights into the short-term dynamics of Smad nucleo-cytoplasmic shuttling 

(Schmierer et al., 2008), but the only mechanism of negative regulation in this 

model was dephosphorylation. Other modeling studies have focused on robustness 

and in silico perturbation analysis (Melke et al., 2006, Chung et al., 2009). 

Mathematical models have yielded important insights, but they have not 

represented TGF-β/Smad negative regulation with enough detail for analyzing the 

contributions of different mechanisms, nor for evaluating alternative hypotheses. 

In this work, we develop a series of computational models representing 

individual and combinations of mechanisms of R-Smad negative regulation. 

Comparisons between models and existing datasets first reveals negative regulations 

on two different time scales. Based on the time scale, we classified negative 

regulatory mechansims into fast- and slow- mode mechanisms. Our modeling also 

shows that at least one fast-mode and one slow-mode mechanisms is required for a 

model to fit phospho-R-Smad dynamics after short- and long-exposure to TGF-β. 

R-Smad Dephosphorylation has been shown to have fast and strong negative 
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regulation effect in the literature and is confirmed in our analysis to be a fast-mode 

mechanism. Although Receptor Degradation and P-R-Smad Degradation are shown 

to be slow-mode mechanisms in our analysis, they are falsified by our modeling and 

experiments. Thus, current understanding of slow-mode negative regulation in 

TGF-β remains unclear, and we seek to find a slow-mode mechanism which could 

explain phospho-R-Smad dynamics. 

One of our key findings is a novel negative feedback effect, in which the 

phosphatase PPM1A is rapidly upregulated after TGF-β stimulation, in 

conjunction with declining levels of phospho-R-Smad. We further explore possible 

mechanisms of PPM1A upregulation via theoretical models of PPM1A 

sequestration. Another contribution of our work is an explanation for a previous 

controversy about R-Smad degradation (Lin et al., 2006, Lo and Massague, 1999, 

Lin et al., 2000, Alarcon et al., 2009). 
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Figure 3.1 The Smad signaling pathway. (A) P-Smad2 dynamics from literature. Curves show the 
quantified western blot measurements of P-Smad2 from Lin et al. (Lin et al., 2006) (blue) and 
Massague et al. (Lo and Massague, 1999) (green) after TGF-β stimulation. (B) Pathway diagram 
of Smad signaling (using template from BioCarta). The dashed arrows indicate those reactions 
which are modeled in black box. The red arrows indicate the negative regulatory mechanisms: (1) 
PPM1A dephosphorylating phospho-R-Smad; (2) Smurf2 induced proteasome degradation of 
phospho-R-Smad; (3) I-Smad induced receptor inhibition; (4) PPM1A upregulation by Smad 
signaling. 

 

3.2 Materials and Methods 

3.2.1 Model Specifications 

3.2.1.1 Model Structure 

The reactions in our TGF-β signaling pathway model can be grouped into three 

sections: trafficking, Smad nucleocytoplasmic shuttling, and negative regulatory 

mechanisms. Our assumptions of the receptor trafficking followed those in (Klipp 

and Zi, 2007). For Smad nucleocytoplasmic shuttling, we followed (Schmierer et al., 

2008). The only difference in Smad nucleocytoplasmic shuttling between (Klipp and 

Zi, 2007) and (Schmierer et al., 2008) is that in (Schmierer et al., 2008), R-Smads 

can form a homogeneric complex. It has been shown that R-Smads can form 

complex with themsevles (Clarke et al., 2009). Although the stoichiometry is not 

clear, we follow the simplest assumption in (Schmierer et al., 2008) that R-Smads 

can form homogeneric and heterogeneric complexes at the same rate. For the 

negative regulatory mechanisms, we tested many possibilities based on literature 

findings and also our hypotheses (such as PPM1A upregulation). Different 

mechansims are listed in Table 3.1. Here we describe each of them in details. All 

species names are listed in Table 8.1. All rate constants are listed in Table 8.2. 
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1) R-Smad Dephosphorylation was modeled as a single reaction in which 

nuclear phospho-R-Smad was dephosphorylated to R-Smad. The rate of 

dephosphorylation was proportional to the concentration of phospho-R-

Smad (Reaction 33, Table 8.3). 

2) Receptor Degradation was modeled according to (Klipp and Zi, 2007) as a 

black box in which the degradation rate of the ligand-receptor complex 

was proportional to the concentration of the Smad complex in the nucleus 

(Reaction 31-32, Table 8.3). 

3) P-R-Smad Degradation was modeled as a single reaction in which nuclear 

phospho-R-Smad was degraded at a rate proportional to its concentration 

(Reaction 34, Table 8.3), assuming that Smurf2 would be unchanged in 

TGF-β signaling. 

4) Endogenous Synthesis and Degradation of R-Smad was modeled by 

incorporating (a) constant production of cytoplasmic R-Smad (Reaction 35, 

Table 8.3) and (b) degradation of total R-Smad, proportional to the total 

R-Smad concentration (Reaction 35-39, Table 8.3), but independent of 

Smurf2-induced degradation. 

5) Receptor Inhibition was modeled such that I-Smad could induce 

degradation, inhibition, and dephosphorylation of the ligand-receptor 

complex. Firstly, I-Smad (Smad7) was produced at a rate proportional to 

the concentration of Smad complex in the nucleus (Reaction 40-41, Table 

8.3) and had a turnover rate proportional to its concentration (Reaction 42, 

Table 8.3). Then I-Smad could either associate with ligand receptor 
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complex (LRC) in the caveolae (LRCCave, Reaction 44, Table 8.3) or could 

associate with LRC in the early endosome (LRCEE, Reaction 45, Table 8.3). 

After association of the LRC with I-Smad, the complex could either be 

dephosphorylated (Reaction 46-47, Table 8.3) or degraded (Reaction 48-49, 

Table 8.3).  

6) PPM1A Upregulation assumed that the Smad complex in the nucleus was 

responsible for inducing PPM1A production. That is, the rate of induced 

production was proportional to the concentraion of Smad complex in the 

nucleus (Reaction 56-57, Table 8.3). To simulate basal (unstimulated) 

levels, PPM1A was also synthesized at a constant rate (Reaction 52, Table 

8.3). All sources of PPM1A, unless bound, were degraded endogenously at 

a rate proportional to PPM1A concentration (Reaction 52, Table 8.3). 

Another assumption concerns the kinetics of PPM1A activity. Prior 

models with constant PPM1A levels used a one-step approximation for the 

kinetics of the dephosphorylation of phospho-R-Smad by PPM1A, but the 

models with explicit regulation of PPM1A employed a two-step model of 

catalysis (Reaction 58-61, Table 8.3) with reversible 

association/dissociation followed by irreversible catalysis. 

7) PPM1A Stabilization assumed that PTEN could associate with phospho-

R-Smad (Reaction 66, Table 8.3) and this binary complex could further 

associate with PPM1A to form a ternary complex pSmad:PTEN:PPM1A 

(Reaction 67, Table 8.3). The ternary complex could dissociate in the 

manner it was formed, or could alternatively release the phospho-R-Smad 
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alone and the PTEN-PPM1A as a binary complex (Reaction 68, Table 8.3). 

The PTEN-PPM1A complex was assumed to evade degradation while the 

unbound PPM1A would degrade (Reaction 53-54, Table 8.3). PPM1A was 

synthesized in the cytoplasm (Reaction 53, Table 8.3) and was imported 

into the nucleus at a high rate (Reaction 55, Table 8.3) so that PPM1A 

was predominantly in the nucleus. When PTEN bound to PPM1A, 

PPM1A phosphatase activity was assumed to be unchanged (Reaction 62-

65, Table 8.3). We allowed the rate of PTEN-PPM1A imported into the 

nucleus to differ from the rate of import for unbound PPM1A, and the 

actual rates were estimated numerically (Reaction 71, Table 8.3). PTEN in 

the nucleus could be exported back into the cytoplasm (Reaction 72, Table 

8.3). 

 

3.2.1.2 Model Parameters 

3.2.1.2.1 Rate Constants 

The list of rate constants is shown in Table 8.2. We have retained the values of 

the experimentally derived parameters cited by (Klipp and Zi, 2007). We have also 

retained previous rates for the type I and the type II receptors and the recycling 

rate of the ligand-receptor complex in the caveolae, which had been strongly 

constrained by qualitative information. For the other rate constants that were 

estimated by (Klipp and Zi, 2007), we have re-estimated these parameters again in 

the context of our model. In particular, the rate constants for Smad 
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nucleocytoplasmic shuttling were modified to fit our model calibration and the new 

findings in (Schmierer et al., 2008). First of all, the concentrations of species in the 

nucleus are represented as their relative concentrations in the cytoplasm. For 

example, if the absolute concentration of Smad2 in the nucleus is [Smad2nuc ]
abs

, we 

use the relative concentration [Smad2nuc ]
rel = [Smad2nuc ]

abs ⋅ (Vnuc /Vcyt )  instead of 

[Smad2nuc ]
abs

 in our model to simulate the concentrations in two compartments. For 

example, the ODEs of Smad2 using absolute concentrations are: 

d[Smad2cyt ]

dt
= −kimpSmad 2 [Smad2cyt ]+ kexpSmad 2 [Smad2nuc ]

abs ⋅
Vnuc

Vcyt

− kfSmad 2 [Smad2cyt ][LRCEE ]
 

d[Smad2nuc ]
abs

dt
= kimpSmad 2 [Smad2cyt ] ⋅

Vcyt

Vnuc

− kexpSmad 2 [Smad2nuc ]
abs + kdephpSmad 2 [ pSmad2nuc ]

abs

 

After substituting [Smad2nuc ]
abs

 with [Smad2nuc ]
rel ⋅ (Vcyt /Vnuc ) : 

d[Smad2cyt ]

dt
= −kimpSmad 2 [Smad2cyt ]+ kexpSmad 2 [Smad2nuc ]

rel − kfSmad 2 [Smad2cyt ][LRCEE ]
 

d[Smad2nuc ]
rel

dt
= kimpSmad 2 [Smad2cyt ]− kexpSmad 2 [Smad2nuc ]

rel + kdephrel

pSmad 2 [ pSmad2nuc ]
rel

 

where 

kdephrel

pSmad 2 = kdephpSmad 2 ⋅
Vcyt

Vnuc

= 3 ⋅ kdephpSmad 2

 

The export rates computed in (Schmierer and Hill, 2005) are identical to our 

kexpSmad 2 and kexpSmad 4 . However, the import in (Schmierer and Hill, 2005) are 

actually kim ′pSmad 2 = kimpSmad 2 ⋅ (Vcyt /Vnuc )  and kim ′pSmad 4 = kimpSmad 4 ⋅ (Vcyt /Vnuc ) . So our 

import rates are kimpSmad 2 = kim ′pSmad 2 ⋅ (Vnuc /Vcyt ) = 0.0027 / 3 = 0.0009s
−1 = 0.054min−1

 and 
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kimpSmad 4 = kim ′pSmad 4 ⋅ (Vnuc /Vcyt ) = 0.0027 / 3 = 0.0009s
−1 = 0.054min−1

. Note that the rates 

of the reactions in the nucleus (e.g. kdephpSmad 2 ) are substituted because the 

concentrations of the reactants are relative. But all these rates are estimated so we 

do not need to substitute any values of them. 

Secondly, it was found that the import rate of Smads complex is higher than 

the monomeric Smad2 (Schmierer et al., 2008). Therefore, we set the import and 

export rate of Smads complex according to (Schmierer et al., 2008). 

3.2.1.2.2 Initial Concentrations 

The initial concentrations of all species were set to their equilibrium points in 

unstimulated cells. The initial concentrations of the receptors followed those in 

(Klipp and Zi, 2007), as the rate constants for receptor trafficking were kept the 

same as those in (Klipp and Zi, 2007). For Smad2 and Smad4, we can derive their 

equilibrium concentrations based on their shuttling rates and total amount. At 

steady state, 

[Smad2cyt ]

[Smad2nuc ]
rel

=
kexpSmad 2
kimpSmad 2

=
0.348min−1

0.054min−1
= 6.444

[Smad2cyt ]+ [Smad2nuc ]
rel = [Smad2 total ]

rel

⎧

⎨
⎪⎪

⎩
⎪
⎪  

[Smad4 cyt ]

[Smad4 nuc ]
rel

=
kexpSmad 2
kimpSmad 2

=
0.054min−1

0.054min−1
= 1.000

[Smad4 cyt ]+ [Smad4 nuc ]
rel = [Smad4 total ]

rel

⎧

⎨
⎪⎪

⎩
⎪
⎪  

The relative concentrations of total Smad2 and total Smad4 in HaCaT cells are 

571.43nM and 1333.33nM (Zi et al., 2011, Klipp and Zi, 2007). We then calculated 
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the steady state concentrations in unstimulated cells as the initial concentrations 

showing in Table 8.1. 

3.2.1.3 Model Simulation and Parameter Estimation 

The model simulation and parameter estimation were performed using 

KroneckerBio toolbox in Matlab. The KroneckerBio toolbox basically calls the 

ode15s function in Matlab to solve the system of ODE equations and the fmincon 

function in Matlab to estimate parameters. Multiple initial guesses were generated 

randomly in order to achieve a more global optimum in parameter estimations. 

Sum of squared errors were used as the objective function to optimize the model to 

experimental data. 

The parameters from literature were validated by simulating the exact 

published models. Our parameter estimation method was also applied to published 

models and the modeling fitting results were highly similar to that in the literature. 

The parameters related to each mechanism are listed in Table 8.4. The 

parameters of the best-fit of each model are listed Table 8.5. 

3.2.2 Biological Essays 

3.2.2.1 HaCaT cell culture and TGF-β treatment 

HaCaT cells (from Cell Lines Service) were cultured following the protocol 

provided by the manufacturer. DMEM culture medium with 10% FBS was used to 

culture the cells. DMEM culture medium without FBS was used during treatment 

of TGF-β as the serum contains TGF-β. 

3.2.2.2 ELISA for phosphorylated Smad2 and total Smad2 
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ELISA kits (from Cell Signaling) were used to quantify phosphorylated Smad2 

and total Smad2. Whole cell lysates were collected using attached cell lysis buffer 

and following the cell lysis protocol in the kits. Sample dilutions for phosphorylated 

Smad2 and total Smad2 are 1 time and 100 times respectively. Serial dilutions of 

one sample were measured to check the linear range of the readouts.  

3.2.2.3 Western blot for total type I receptor and PPM1A  

Whole cell lysates were collected using RIPA buffer from HaCaT cells for 

western blots. Antibodies against the type I receptor (Santa Cruz) and PPM1A 

(Abcam) were used following manufacturers’ instructions. Primary antibody 

dilutions of 1:7500 and 1:250 were used for the type I receptor and PPM1A 

respectively. The quantification of the band intensities was preformed using ImageJ. 

3.3 Results 

We constructed a series of computational models (Table 3.1) examining 

negative regulatory mechanisms in TGF-β/Smad signaling.  All models share a 

common skeleton (Figure 3.1B) of Smad signaling, including TGF-β receptor 

trafficking and Smad nucleo-cytoplasmic shuttling, based on previous models (Vilar 

et al., 2006, Klipp and Zi, 2007, Schmierer et al., 2008).  Molecular interactions 

were modeled using ordinary differential equations (ODEs) for mass action kinetics, 

and the system of ODEs was simulated using KroneckerBio (Toettcher et al., 2011) 

in Matlab (Mathworks, Natick, MA). Model specifications, parameter estimation, 

and other computational methods are specified in Section 3.2 Materials and 
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Methods. The HaCaT cell line was used in the biological assays. Experimental 

methods are also specified in Section 3.2 Materials and Methods. 

3.3.1 Modeling the Negative Regulatory Mechanisms 

Negative regulatory mechanisms were simulated to obtain the dynamics of their 

effects and to estimate their potential contributions to the down-regulation of 

phospho-R-Smad (0.5-24hr). The negative regulatory mechanisms, illustrated in 

Figure 3.1B, include three previously published mechanisms and a fourth 

hypothesized mechanism that we developed during the analysis of the models. The 

focus of our initial modeling was the three previously reported mechanisms of 

negative regulation: 

(1) Receptor Inhibition. Smad complexes can induce the production of I-

Smad (Smad7) (Afrakhte et al., 1998, Itoh et al., 1998). There are three ways I-

Smad can inhibit the ligand-receptor complex: (1a) It can block the activation site 

of the receptor kinase; (1b) I-Smad can recruit E3-ligases to target the ligand-

receptor complex for degradation (Receptor Degradation) (Kavsak et al., 2000); 

and (1c) I-Smad can recruit PP1c to dephosphorylate the type I receptor kinase 

(Shi et al., 2004). We modeled the expression of I-Smad as a black box in which the 

rate of I-Smad production was proportional to the concentration of the Smad 

complex in the nucleus. Mechanism (1b) of I-Smad action (Receptor Degradation) 

was simulated in models 2, 3, and 5.  All types of “receptor inhibition,” (1a), (1b), 

and (1c), were simulated in model 8.  
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(2) P-R-Smad Degradation. R-Smad can be phosphorylated at its tail region 

or its linker region. We use the term phospho-R-Smad to refer to tail region 

phosphorylation, which is more important for gene regulatory function (Alarcon et 

al., 2009).  Phosphorylation of nuclear R-Smad at its linker region  causes Smurf2 

to target R-Smad for proteasome-dependent degradation (Alarcon et al., 2009).  

Assuming Smurf2 concentration to be constant, and assuming linker-region 

phosphorylation to be proportional to tail-region phosphorylation (Alarcon et al., 

2009), we simulate the rate of R-Smad degradation to be proportional to the 

concentration of nuclear R-Smad. 

(3) R-Smad Dephosphorylation. Phospho-R-Smad in the nucleus is 

dephosphorylated specifically by PPM1A, a member of the PP2c family (Lin et al., 

2006).  The rate of dephosphorylation is modeled to be proportional to the 

concentration of phospho-R-Smad in the nucleus. 
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Table 3.1 Models with different negative regulatory mechanisms and the name of each mechanism. 
Each row represents one model. The + sign indicates that a mechanism is included in a model, 
and - indicates a mechanism NOT included. 

Model  1 2 3 4 5 6 7 8 9 10 11 

R-Smad Dephosphorylation + + - - + + + + + + + 

Receptor Degradation - + + - + - - - - - - 

P-R-Smad Degradation - - - + + + + - - - + 
Endogenous Synthesis and 

Degrdation of R-Smad - - - - - - + - - - + 

Receptor Inhibition - - - - - - - + - - - 
PPM1A Upregulation by 

Expression - - - - - - - - + - - 

PPM1A Stablization - - - - - - - - - + + 

 

3.3.2 Negative Regulation Occurs at Multiple Time Scales 

R-Smad dynamics depend on the duration of TGF-β stimulation. When TGF-β 

is administered in excess (2ng/ml) (Bakin et al., 2000, Goumans et al., 2002) for 

24hrs, phospho-R-Smad peaks at about 1hr and then decays for 24hrs (Lin et al., 

2006). When TGF-β is administered for 30min and then removed (by washing 

following by receptor inhibition with the compound SB-431542), phospho-R-Smad 

is eliminated within 4hrs (Lin et al., 2006, Schmierer et al., 2008). Both short-

exposure and long-exposure TGF-β treatment datasets (Figure 3.2) were utilized 

when building the models of negative regulation (Table 3.1, Table 8.4).  
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Figure 3.2 Model fitting results with different combinations of known negative regulatory 
mechanisms. (A-E) Phospho-R-Smad simulations were fitted to long-exposure and short-exposure 
P-Smad2 experimental data from Lin et al. (Lin et al., 2006). In the long-exposure experiment, 
HaCaT cells were treated with TGF-β for 24hr (blue dots). In the short-exposure experiment, 
HaCaT cells were treated with TGF-β for 30min, then TGF-β was washed out and SB-431542 
was added to inhibit the receptors (red dots). All P-Smad2 measurements used total cell lysate. 
The model simulations (solid red and blue curves) were fitted to the two sets of data 
simultaneously. Negative regulatory mechanisms in each model are as follows: (A) Model 1: R-
SMAD DEPHOSPHORYLATION; (B) Model 2: R-SMAD DEPHOSPHORYLATION and RECEPTOR 

DEGRADATION; (C) Model 3: RECEPTOR DEGRADATION; (D) Model 4: P-R-SMAD DEGRADATION; 
(E) Model 5: R-SMAD DEPHOSPHORYLATION, RECEPTOR DEGRADATION and P-R-SMAD 

DEGRADATION. The reactions of each model are listed in the Supporting Information. (F-H) 
Predictions of the best-fit model (Model 5) in MG132 pre-treated cells. Simulation of MG132 
treatment was performed by turning off the Smurf2-induced P-R-SMAD DEGRADATION (setting 
kdegpSmad2=0) in Model 5. (F) Comparison of the model prediction and experimental data from 
Lin et al. (Lin et al., 2006) in the short-exposure experiment. (G) Model prediction in the long-
exposure experiment. The green shaded area shows the cumulative difference between +MG132 
and -MG132. (H) A variety of models were fitted to the short-exposure and long-exposure 
experiments, and the cumulative difference in phospho-R-Smad2 between +MG132 and -MG132 
was computed for each case. A histogram plots the cumulative differences seen in the short-
exposure experiment (red) and the long-exposure experiment (blue). 
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Our first simulations studied the kinetics of three previously modeled 

mechanisms. The three mechanisms have conceptual similarities, but we were 

curious whether they would have different kinetic implications for the system. 

Multiple models, with different combinations of these mechanisms, were fitted to 

the long-exposure and short-exposure datasets described above.  

Model 1, with R-Smad Dephosphorylation, was able to recapitulate the short-

exposure TGF-β treatment experiment, as dephosphorylation is a fast process. This 

dephosphorylation model could turn off the signal once the stimulus was cut off 

(Figure 3.2A red curve), but it reached a steady state at about 1hr and was not 

able to recapitulate the extended 24hr decline of phospho-R-Smad in long-exposure 

TGF-β treatment (Figure 3.2A blue curve). Thus we describe R-Smad 

Dephosphorylation as a “fast-mode” mechanism. To explain the decline during long-

exposure experiments, a complementary “slow-mode” might be provided by 

cumulative processes such as degradation effects. Model 2 combines Receptor 

Degradation and R-Smad Dephosphorylation. It succeeded in recapitulating the 

short-exposure TGF-β treatment very well, and it had moderately good agreement 

with the long-exposure dataset (Figure 3.2B). As a control, we modeled Receptor 

Degradation alone (Model 3), but it could not provide an early decline in the short-

exposure experiment (Figure 3.2C). Thus, Receptor Degradation serves as a slow-

mode mechanism as it was able to explain the gradual decline of phospho-R-Smad 

in the long-exposure experiment but not the steep deline of phospho-R-Smad in the 

short-exposure experiment. A model with P-R-Smad Degradation alone (Model 4) 

achieved significant negative regulation for the long-exposure case (Figure 3.2D), 
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because P-R-Smad Degradation would persist for many hours. However, fitted 

Model 4 had difficulty explaining both the short-exposure and long-exposure 

datasets simultaneously, in keeping with previous experimental evidence, showing 

that P-R-Smad Degradation is not responsible for fast-mode effects in short-

exposure conditions (Lin et al., 2006). No single mechanism of negative regulation 

was able to explain pSmad2 behavior. We infer that the experimentally observed 

levels of phospho-R-Smad arise from a combination of fast-mode and slow-mode 

mechanisms (or from higher-order combinations of effects).  

Many models have omitted P-R-Smad Degradation from simulations (Vilar et 

al., 2006, Klipp and Zi, 2007, Schmierer et al., 2008, Zi et al., 2011), perhaps 

because this mechanism was found to be insignificant in the experiments of Lin et 

al. (Lin et al., 2006). Noting that the Lin experiments used short-exposure 

conditions, we ask whether P-R-Smad Degradation, a slow-mode mechanism, might 

have greater significance during the negative regulation induced by long-exposure 

treatments. Model 5 incorporated R-Smad Dephosphorylation, Receptor 

Degradation, and P-R-Smad Degradation (Figure 3.2E). P-R-Smad Degradation 

was significant in this model (Figure 3.2F-H) when its effects were measured after 

more than 1hr of TGF-β treatment. As yet, we have no basis for knowing which 

type of slow-mode degradation would be most important in R-Smad signaling. 
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3.3.3 New Experimental Data Supports P-R-Smad Degradation Rather 

Than Receptor Degradation 

We next tried to assess the relative impact of two slow-mode mechanisms, 

Receptor Degradation and P-R-Smad Degradation, on the dynamics of phospho-R-

Smad in long-exposure TGF-β treatment. The rate constant for Receptor 

Degradation and the rate constant for P-R-Smad Degradation were varied in silico 

(Figure 3.3A), showing that many ratios were equally good at fitting the observed 

dynamics. Several of the successful models exhibited a strong decline in T1R, the 

type I receptor (Figure 3.3B). Moreover, the degree of T1R decline is correlated 

with the rate of Receptor Degradation and the rate of P-R-Smad Degradation 

(Figure 3.3C). Thus, to quantify the relative contribution of Receptor Degradation 

and P-R-Smad Degradation in HaCaT cells, we measured T1R experimentally at 9 

time points (from 15min to 24hr) after TGF-β stimulation (with n=3 replications 

and significance determined by student t-test). Surprisingly, there was no 

significant loss of T1R in experiments (Figure 3.3D-E), even at late time points, 

indicating that Receptor Degradation is very weak in HaCaT cells (phospho-R-

Smad time series concentrations were measured as positive control, Figure 3.3C). A 

weak role for Receptor Degradation has also been suggested by the experimental 

work of Clarke et al. (Clarke et al., 2009). Note that the set of models (Figure 3.3A) 

capable of explaining the dynamics of phospho-R-Smad decline all exhibited a 

negative correlation between the degree of Receptor Degradation and the degree of 

P-R-Smad Degradation (Figure 3.3F), suggesting that these two mechanisms would 

be balanced alternatives. In light of our experimental finding that Receptor 
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Degradation is a very weak effect, we next turned to P-R-Smad Degradation as the 

alternative slow-mode mechanism to explain the long-term decline of phospho-R-

Smad. 

 

Figure 3.3 Predictions and validations of receptor degradation. (A) Different rates of I-Smad-
induced receptor degradation (klid = 10-6 ~10-2) were applied to Model 5, and the rate of Smurf-
induced P-R-Smad Degradation (kdegpSmad2) was fitted to the short-exposure experimental 
data (red dots) and the long-exposure experimental data (blue dots). All the other parameters 
were kept the same as those in Model 5 (B) Different Receptor Degradation rates led to different 
levels of the type I receptor (T1R). Green curves were generated from all models in panel (A) 
with klid = 10-6 ~10-2 and kdegpSmad2 estimated. (C) In the fitted models in panel (A), the 
T1R level has negative correlation with the Receptor Degradation rate (klid) but positive 
correlation with the P-R-Smad Degradation rate (kdegpSmad2). (D) Quantified data from 3 
replicates of the western blot in (E). There is no significant loss of the T1R comparing the first 
and last data points (P>0.05). (E) Western blot of the T1R from whole cell lysates of HaCaT 
cells treated with TGF-β for 24hrs (representative of 3 replicates). (F) In the fitted models in 
panel (A), the rates of Receptor Degradation (klid) and P-R-Smad Degradation (kdegpSmad2) 
have negative correlation.  
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3.3.4 P-R-Smad Degradation Is Not Sufficient to Cause the Peak and 

Decay of Phosphorylated R-Smad 

A model with R-Smad Dephosphorylation and P-R-Smad Degradation (Model 6, 

without Receptor Degradation) provided an excellent fit to both the long-exposure 

and short-exposure treatment data (Figure 3.4A). However, an unavoidable 

consequence of this model was dramatic decline of total R-Smad (Figure 3.4B). 

Previous experiments in HaCaT cells failed to observe a large fold-change of total 

R-Smad (Lin et al., 2006) but the amount of decline was not quantified. To clarify 

this potential conflict, we repeated the experimental measurement of total R-Smad 

levels after TGF-β treatment, using ELISA assays, a more quantitative method. 

Measurements of total R-Smad at 7 time points during 24hrs of TGF-β treatment 

showed no significant decrease of total R-Smad (Figure 3.4B-C). There is an 

apparent conflict between the constant level of total R-Smad (observed 

experimentally) and the significant degradation of R-Smad induced by TGF-β 

(according to Model 6). Note also that we see a plateau of phospho-R-Smad levels 

after 8 hrs (Figure 3.4C), but this is a minor discrepancy from the continuing 

decline seen by Lin et al. (Lin et al., 2006). The question of degradation becomes 

still more complex if degradation occurs in the presence of Endogenous 

Synthesis and Degradation of R-Smad, meaning the basal process of R-Smad 

turnover without TGF-β stimulation. We therefore expanded the model to include 

Endogenous Synthesis and Degradation of R-Smad (Model 7). If endogenous R-

Smad is synthesized in an unphosphorylated form, and targeted by Smurf2 for 

degradation only in its phosphorylated form, then can P-R-Smad Degradation 
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explain the decline of phospho-R-Smad despite the constant levels of total R-Smad? 

However, Model 7 diverged strongly from the observed dynamics of phospho-R-

Smad, when constrained to maintain a constant level of total R-Smad (Figure 

3.4D). 

Hence, our modeling analysis and experimental validation shows that current 

understanding of slow-mode negative regulation is not sufficient to explain 

phsopho-R-Smad dynamics. There might be some other mechanism that causes the 

peak and decline of phospho-R-Smad after the long-exposure of TGF-β. 

 

Figure 3.4 Simulations and experiments for P-R-Smad Degradation. (A) Model 6 with P-R-Smad 
Degradation and R-Smad Dephosphorylation (but no Receptor Degradation) was fitted to both 
the short-exposure (red) and long-exposure (blue) experimental data. (B) Model 6 predicted 
significant loss of total R-Smad (green curve), while ELISA measurements showed insignificant 
change (P>0.05, comparing the first and last data points) in total R-Smad concentration (green 
dots). (C) ELISA measurements of phospho-R-Smad are consistent with previous measurements 
performed by Western blot (Lin et al., 2006). Cell lysates were from the same samples as panel B. 
(D) Model 7 was fitted to the phospho-R-Smad data while constraining the total R-Smad level to 
be constant. Fitting used parameters vSmad2 = 5.7143 nMs-1 for R-Smad production, and 
kdegSmad2 = 0.01 s-1 for R-Smad degradation. 
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3.3.5 Sensitivity Analysis of All Species to Two Degradation 

Mechanisms 

Sensitivity analysis of Model 5 to perturbations in degradation rates revealed 

that T1R and total R-Smad are highly sensitive to changes in Receptor 

Degradation and P-R-Smad Degradation, respectively. Thus, our choices of T1R 

and total R-Smad measurements are sensitive to the mechanisms that we tested. 

We performed sensitivity analysis on the parameters of Model 7 to determine 

which proteins levels would most sensitively reflect the behavior of degradation 

mechanisms in the model. We computed the local sensitivities of all species to the 

Receptor Degradation and P-R-Smad Degradation mechanisms. This was done by 

perturbing the parameters related to these mechanisms individually, and computing 

the effect of the perturbations on the protein levels. The parameters were perturbed 

by a spectrum of relative changes (from 10-4 to 102) with the expectation that 

changes within 10-fold would be most relevant. The sensitivities (Figure 3.5) 

indicate that the total type I receptor and total R-Smad levels have higher 

sensitivity than other proteins did, to the Receptor Degradation and P-R-Smad 

Degradation mechanisms, respectively. This confirms our choice of total T1R levels 

and total R-Smad levels for testing our hypotheses about receptor degradation and 

P-R-Smad degradation. 

Different species are sensitive to different reactions or parameters in the model. 

This sensitivity analysis can also be applied to other species at other part of the 

signaling pathway. When we want to study certain mechanism or certain reaction 

in the pathway, it is often important to understand its sensitivity.  
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Figure 3.5 Sensitivity analysis heat map (Model 7). (A) The sensitivity of the P-R-Smad 
Degradation rate to each species with relative perturbations of the rate from 10-4 to 102. (B) The 
sensitivity of the receptor degradation rate to each species with relative perturbations of the rate 
from 10-4 to 102. 
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Figure S3: Sensitivity analysis heat map (Model 7). (A) The sensitivity of the P-R-SMAD DEGRADATION rate to each species with 
relative perturbations of the rate from 10-4 to 102. (B) The sensitivity of the receptor degradation rate to each species with relative 
perturbations of the rate from 10-4 to 102. 
!
S1.4 Transient and Sustained Signaling in the TGF-β Signaling Pathway 

Our model with PPM1A upregulation (Model 11) is also capable of producing the same dose-response 
behavior in short-term and long-term signals as shown by Klipp et al. {Zi, 2011 #78}. The phospho-R-
Smad concentration at 45 min increased when the dose of TGF-� did (Fig. S4A). But if the dose of 
TGF-� were high enough, the phospho-R-Smad concentration would be saturated at 45 min. The 
concentration of phospho-R-Smad did not remain elevated at 24 hr after TGF-β treatment unless the TGF-
β dose exceeds a certain threshold (Fig. S4B). This shows an ultrasensitive signaling response to TGF-β 
dose. We speculate that the saturation of the signal is mainly due to saturated TGF-β receptor, since R-
Smad was not saturated (only 30% of the R-Smads were phosphorylated). If the receptors were saturated, 
then the dose of TGF- β only affects the duration, but not the intensity of the signal in the long-term (Fig. 

T1Rsurf
T1Rcave
T1Ree

T2Rsurf
pT2Rsurf
T2Rcave
T2Rcave
T2Ree
pT2Ree

LRCsurf
LRCcave
LRCee

Smad2cyt
pSmad2cyt
pSmad2nuc
Smad2nuc

Smad4cyt
Smad4nuc

Smad2:Smad4cyt
Smad2:Smad2cyt
Smad2:Smad4nuc
Smad2:Smad2nuc

TGF-β

T1R:T2R
LRC:Smad2

10-4 10-3 10-2 10-1 100 101 102
0

0.1

0.2

0.3

0.4

0.5

0.6
Total T1R 

Relative Perturbation of klid 
(The Rate of RECEPTOR DEGRADATION) 

B 



 

 49 

3.3.6 Extended I-Smad-Mediated Receptor Inhibitions 

Our models (Model 1-7) were not capable of explaining experimental 

observations including the peak and decay of phospho-R-Smad, using only the three 

known negative regulatory mechanisms (Receptor Degradation, R-Smad 

Dephosphorylation and P-R-Smad Degradation). The loss of type I receptor caused 

by Receptor Degradation led us to degradation-independent I-Smad-mediated 

Receptor Inhibition mechanisms. One possible mechanism we considered for 

negative regulation of phospho-R-Smad is dephosphorylation of the receptor-ligand 

complex induced by I-Smad, which can recruit phosphatases in addition to E3-

ligases (Shi et al., 2004). Dephosphorylation would inhibit the kinase activity of the 

type I receptor without affecting its concentration. The other mechanism is that I-

Smad could bind to and block the active site of the type I receptor. Our model of 

Smad activation, adopted from previously published models, includes localization 

effects with caveolae and endosomes, which have distinct roles in receptor 

endocytosis. Because I-Smad co-localizes with caveolae (Di Guglielmo et al., 2003), 

we wanted to find a model fitting to the phospho-R-Smad data, in which I-Smad 

mainly associates with the ligand-receptor complex in caveolae, and in which the 

type I receptor is minimally lost. Figure 3.6 summarizes the results we got by 

extending the Receptor Inhibition mechanisms to include not only Receptor 

Degradation, but also Receptor Dephosphorylation and I-Smad Antagonism. As 

indicated by the red box, models were not capable of maintaining the observed 

concentrations of total T1R, while the I-Smad was co-localize with caveolae. We 
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were unable to construct an I-Smad-induced receptor inhibition mechanism that 

could explain the dynamics of phospho-R-Smad. 

 

 

Figure 3.6 Fitted models with extended receptor inhibition mechanism (Model 8). Each blue 
point represents a single model. The x-axis is the type I receptor (T1R) level simulated at 24hr. 
The y-axis is the ratio of I-Smad-bound ligand-receptor complex in the early endosome and 
caveolae. We rescaled the axes to better visualize the majorities of the data points (upper left 
sub-figure). Models in the red box region should be able to explain both the type I receptor level 
and localization of I-Smad. However, no fitted model falls in the red box. 
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3.3.7 The Rate of Receptor Internalization Does Not Affect the Peak 

and Decline of phospho-R-Smad When TGF-β is Saturating 

Receptor internalization has multiple effects on TGF-β/Smad signaling. 

Internalization is a part of signal transduction because internalization promotes 

association of the receptor kinase with its substrate R-Smad in the cytoplasm. At 

the same time, receptor internalization is also a negative regulatory mechanism as 

it reduces the availability of receptors on the cell surface. In other systems such as 

EGFR pathway, receptor internalization has been shown to cause down-regulation 

of downstream signals (Schoeberl et al., 2002). Thus we studied how receptor 

internalization could have a negative regulatory effect in our system. We first 

tested if varying the internalization rates in Model 1 could cause a peak and decline 

of phospho-R-Smad. The Adaptation Index was calculated as in Equation (3.1) to 

indicate the existence of a peak and decline. When a model has Adaptation 

Index=0, that means it has failed to show any decline of phospho-R-Smad. 

 Adaptation Index = [pSmad2]max − [pSmad2]t=24h

[pSmad2]t=24h

 (3.1) 

As shown in Figure 3.7A (blue curve), the Adaptation Index remained zero, 

even when the rate of internalization for the ligand-receptor complex (LRC) was 

changed by a factor of 10-3 to 103. This is mainly due to early reached steady state 

of LRC when TGF-β dose is saturating (data not shown). Although the 

internalization rate could not induce Model 1 to exhibit a peak and decline of 

phospho-R-Smad, there may be other conditions in which internalization rates 

would play an important role. To find such conditions, we did perturbation analysis 

of all rate constants in Model 1 to see if any other parameters combined with the 
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internalization rates could affect the Adaptation Index. We found that the 

Adaptation Index was most significantly increased when we decreased the 

production rate of T1R and increased the production rate of T2R (Figure 3.7C-D). 

It seems that decreasing the production rate of T1R and increasing the production 

rate of T2R by 10 fold in Model 1 would enhance the role of receptor 

internalization in the regulation of phospho-R-Smad. Indeed, inhibiting the 

internalization rates of LRC significantly blunted the peak of phospho-R-Smad 

(Figure 3.7B) and the internalization rates of LRC were positively correlated with 

the Adaptation Index (red curve, Figure 3.7A). However, in this scenario (low 

production of T1R and high production of T2R), the saturating dose of TGF-β was 

shifted significantly higher (Figure 3.7E-F). As shown in Figure 3.7F, 2ng/ml of 

TGF-β was no longer a saturating dose in this scenario. In contrast, we already 

know that 2ng/ml of TGF-β does saturate Smad signaling (Klipp and Zi, 2007, Zi 

et al., 2011). The scenario with low production of T1R and high production of T2R 

is not realistic for our system where 2ng/ml of TGF-β is a saturating dose, but at 

lower doses, receptor internalization could affect the peak and decline of phospho-

R-Smad.   

In summary, we have failed to identify any internalization parameters that 

could affect the Adaptation Index for phospho-R-Smad negative regulation, when 

TGF-β is saturating. In our system, we find receptor internalization does not 

contribute to explaining the peak and decline of phospho-R-Smad. As a result, we 

do not vary the parameters for receptor internalization in our analysis of negative 

regulatory mechanisms. 
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Figure 3.7 Analysis of receptor internalization in Model 1. (A) Perturbation analysis of the rate 
of ligand-receptor complex (LRC) internalization. Log Parameter Perturbation is the log ratio of 
perturbed LRC internalization rate (the rate for internalizing early endosome and caveolae were 
changed with the same ratio) to its original value. Blue curve shows the result of perturbation 
analysis in Model 1, while red curve shows the result of perturbation analysis after changing the 
production rates of T1R (10-fold decrease) and T2R (10-fold increase) in Model 1. (B) Inhibition 
of LRC internalization in Model 1 after changing the production rates of T1R (10-fold decrease) 
and T2R (10-fold increase). Curves change from blue to red as LRC internalization rate decreases 
from 1 to 10-3 in log scale. (C) Adaptation Index change (x-axis) with 10-fold increase of each 
parameter. (D) Adaptation Index change (x-axis) with 10-fold decrease of each parameter. (E) 
Dose response at 45min. (F) Dose response at 45min. In panel E and F, blue curve shows dose 
response in Model 1, while red curve shows dose response in Model 1 after changing the 
production rates of T1R (10-fold decrease) and T2R (10-fold increase) in Model 1. 

  

3.3.8 PPM1A Is Upregulated After Treatment with TGF-β 

After exhausting the most widely-accepted mechanisms of Smad negative 

regulation, we proceeded to examine less obvious alternatives. We then 

systematically examined possible influences at each step along the Smad pathway, 

seeking quantitative consistency with the observed peak and decline of phospho-R-

Smad. One scenario that could not be rejected on kinetic grounds was upregulation 

of PPM1A, the phosphatase targeting phospho-R-Smad. If PPM1A were to be 

upregulated by TGF-β signaling, this could affect the temporal decay of phospho-R-

Smad. Model 9 permits the nuclear Smad complex to induce upregulation of 

PPM1A which in turn improved the fit of the model to the phospho-R-Smad data 

(Figure 3.8A), without changing the levels of T1R or total R-Smad (Figure 3.8B-C).  

To test this model, we performed Western blots of the PPM1A protein after 

TGF-β treatment. HaCaT cells were treated with 2ng/ml of TGF-β and measured 

after 0.25, 0.5, 1, 2, 4, or 8hr. We found that the intensity of the PPM1A western 

blot band increased 2.4-fold after 1 hour of TGF-β treatment (p<0.05, Figure 3.8D-
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E). To the best of our knowledge, this is the first study to report that TGF-β 

causes upregulation of the PPM1A phosphatase. 

 

 

Figure 3.8 Predictions and validation of PPM1A UPREGULATION: (A) Model 9, in which PPM1A 
is upregulated by Smad complex in the nucleus, was fitted to the long-exposure and the short-
exposure phospho-R-Smad experimental data. (B) Model 9 predicted unchanged T1R levels 
(green curve), in agreement with our experimental results (green dots). (C) Model 9 predicted 
unchanged total R-Smad levels (green curve), in agreement with our experimental results (green 
dots). (D) Model 9 predicted PPM1A upregulation under long-exposure of TGF-β (green curve). 
Our experimental validation showed significant upregulation of PPM1A (green dots, 
quantification from 3 Western blots, P<0.05 comparing the untreated data point and the 1hr 
data point). (E) Western blot of PPM1A in HaCaT cells with 2ng/ml TGF-β treatment, 
representative of 3 replicates. 
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3.3.9 Model-based Prediction of The Mechanism of PPM1A 

Upregulation 

The time series measurements in Figure 3.8D showed a rapid increase of 

PPM1A protein levels, with steady state achieved by about 1hr. In contrast, the 

behavioral effect we were hoping to explain, the gradual down-regulation of 

phospho-R-Smad, lasts for at least 4hrs. The idealized Model 9 predicted PPM1A 

upregulation at 4hr and not 1hr (Figure 3.8E). Does the early upregulation of 

PPM1A fail to explain the extended down-regulation of phospho-R-Smad? We next 

built a hypothetical model, inspired by known PPM1A interactions, attempting to 

harmonize the observed effects. 

Previous work does not indicate how PPM1A might be upregulated by TGF-β, 

but the speed of the effect suggests post-translational regulation (such as enhanced 

stability) or post-transcriptional regulation. PTEN has been shown in fibroblasts to 

associate with PPM1A and to protect PPM1A from proteasomal degradation (Bu 

et al., 2008). In the fibroblast context, TGF-β caused decreased levels of PPM1A, 

and caused dissociation of PTEN from phospho-R-Smad. It is possible that in our 

HaCaT system (keratinocytes), TGF-β could cause the opposite effect, upregulation 

of PPM1A, but also by regulating the association with PTEN. In HaCaT cells, 

TGF-β was reported to cause increased association between PTEN and phospho-

R-Smad (Hjelmeland et al., 2005), not the dissociation observed in fibroblasts. We 

therefore propose model 10 (specific to HaCaT cells), in which TGF-β would induce 

stabilization of PPM1A by PTEN. In this model, we halted degradation of PPM1A 

whenever it was associated with PTEN, but PTEN was not allowed to form a 
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complex directly with PPM1A, (i.e., in the absence of TGF-β stimulation). Rather, 

a ternary complex of pSmad2:PTEN:PPM1A could form, and a PTEN:PPM1A 

complex could be released from the ternary complex. This recapitulates the 

observation that PTEN-Smad2 association is dependent on TGF-β stimulation 

(Hjelmeland et al., 2005). In this model, we required the upregulation of PPM1A 

protein to match the fast kinetics observed, but we also wanted the increased 

phosphatase activity against phospho-R-Smad to match the observed phospho-R-

Smad dynamics. We do not know whether PPM1A activity, conformation, or 

localization would be changed by binding to PTEN. It is possible that PTEN-

PPM1A association could cause some transient sequestration of PPM1A activity, 

which might delay the functional impact of PPM1A upregulation. In Model 10, we 

assumed that unbound PPM1A is rapidly imported into the nucleus, but PPM1A 

bound to PTEN has slow import into the nucleus. Because phospho-R-Smad 

accumulates in the nucleus, delayed nuclear import of PPM1A during PTEN-

mediated stabilization would delay the functional impact of PPM1A activity, 

relative to the total PPM1A levels. Complete reaction equations and parameters 

appear in the Supporting Information. Model 10 successfully recapitulated the 

experimentally observed dynamics of phospho-R-Smad (Figure 3.9A); the fast 

kinetics of PPM1A upregulation (Figure 3.9B); and the unchanged levels of T1R 

and total R-Smad (Figure 3.9C-D). 
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Figure 3.9 Model-based predictions of the mechanism of PPM1A UPREGULATION: (A) Model 10, 
in which PPM1A is stabilized by PTEN, was fitted to the long-exposure and the short-exposure 
phospho-R-Smad experimental data. (B) Model 10 predicted early PPM1A upregulation (within 
1hr) under long-exposure treatments with TGF-β (green curve). This is in agreement with our 
experimental measurements of PPM1A (greed dots). (C) Model 10 predicted unchanged T1R 
levels (green curve), in agreement with our experimental results (green dots). (D) Model 10 
predicted unchanged total R-Smad levels (green curve), in agreement with our experimental 
results (green dots).  
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3.3.10 The Role of P-R-Smad Degradation in the Context of PPM1A 

Stabilization 

Model 10 is the first model in our series that is consistent with all the 

experimental data (including our own) for the impact of TGF-β on HaCaT cells. As 

shown in Figure 3.4, P-R-Smad Degradation could not by itself explain the long-

term decline of phospho-R-Smad. We now examine the role of P-R-Smad 

Degradation in the context of Model 10 where PPM1A Stabilization is partially 

responsible for the Smad negative regulation. Previous studies assessed P-R-Smad 

Degradation using MG132 to inhibit proteasomal degradation, but with conflicting 

conclusions: Massague et al. saw a strong effect implying an important role for 

degradation (Lo and Massague, 1999, Alarcon et al., 2009), while Lin et al. found 

negligible effects of MG132 (Lin et al., 2006). Both protocols measured long-term 

behavior of pSmad2, but the Lin protocol triggered pSmad2 using a 30min exposure 

to TGF-β, while the Massague protocol used a 6h exposure. To examine this 

apparent conflict, we extended Model 10, adding Endogenous Synthesis and 

Degradation of R-Smad, and adding P-R-Smad Degradation, to obtain Model 11. 

Like Model 10, Model 11 shows a good fit to phospho-R-Smad dynamics (Figure 

3.10A) and unchanged levels of total R-Smad (Figure 3.10B). Simulations of Model 

11 with MG132 inhibition of proteasomal degradation show that MG132 would 

have minimal impact on Smad signaling, when triggered by brief exposure to TGF-

β (Figure 3.10C). In surprising contrast, MG132 would have a strong impact on 

Smad signaling, when pSmad2 is triggered by longer exposures to TGF-β (Figure 

3.10D). Figure 3.10E compares the P-Smad2 Change calculated from Figure 3.10C 
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(red curve) and Figure 3.10D (blue curve) with experimental data from Lin et al. 

(Lin et al., 2006) (red dots) and Alarcon et al. (Alarcon et al., 2009) (blue dots). 

The P-Smad2 Change was calculated as Equation (3.2). Model 11 thus provides 

mathematical support that the Lin observations and the Massague observations can 

occur in the same system. Finally, Model 11 demonstrates that PPM1A 

Stabilization, and P-R-Smad Degradation are consistent with, and sufficient to 

explain, the negative regulation and degradation nuances of the Smad signaling 

system. 

 P-Smad2 Changet=ti =
[pSmad2total

−MG132 ]t=ti − [pSmad2total
+MG132 ]t=ti

[pSmad2total
−MG132 ]max

 (3.2) 
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Figure 3.10 Combination of PP1MA Stabilization, P-R-Smad Degradation, R-Smad Endogenous 
Synthesis and Degradation: (A) Model 11, combining PP1MA Stabilization, P-R-Smad 
Degradation, R-Smad Endogenous Synthesis and Degradation, was fitted to the long-exposure 
and the short-exposure phospho-R-Smad experimental data. (B) Model 11 predicted unchanged 
total R-Smad levels (green curve), in agreement with our experimental results (green dots). (C) 
Red solid curve shows simulation of Model 11 with short-exposure (30min) of TGF-β, while the 
yellow dotted curve shows the same simulation except with MG132 pre-treatment. MG132 was 
simulated as turning off P-R-Smad Degardation (kdegpSmad2=0). (D) The blue solid curve shows 
simulation of Model 11 with long-exposure (8hr) of TGF-β, and the green dotted curve shows the 
same simulated except with MG132 pre-treatment. (E) The relative change in P-Smad2 levels 
after MG132 treatment, calculated from Eq. 1 and simulations of Model 11. The P-Smad2 change 
simulated using Model 11 in both short-exposure (30min, red curve) and long-exposure (8hr, blue 
curve) simulations was compared with the P-Smad2 change in the experimental results of Lin et 
al. (Lin et al., 2006) (30min-exposure, red dots) and Alarcon et al. (Alarcon et al., 2009) (6hr-
exposure, blue dots). Data points from Alarcon et al. (Alarcon et al., 2009) were quantified from 
one published image. The discrepancy between our simulations and Alarcon et al for the 7hr 
measurement may be partially explained by MG132-independent differences. Their -MG132 
control decreases much faster than that from Lin et al. (Lin et al., 2006) and from our 
experiments.  
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3.3.11 Transient and Sustained Signaling in the TGF-β Signaling 

Pathway 

Our model with final model (Model 11) is also capable of producing the same 

dose-response behavior in short-term and long-term signals as shown by Klipp et al. 

(Zi et al., 2011). The phospho-R-Smad concentration at 45 min increased when the 

dose of TGF-β did (Figure 3.11A). But if the dose of TGF-β were high enough, the 

phospho-R-Smad concentration would be saturated at 45 min. The concentration of 

phospho-R-Smad did not remain elevated at 24 hr after TGF-β treatment unless 

the TGF-β dose exceeds a certain threshold (Figure 3.11B). This shows an 

ultrasensitive signaling response to TGF-β dose. We speculate that the saturation 

of the signal is mainly due to saturated TGF-β receptor, since R-Smad was not 

saturated (only 30% of the R-Smads were phosphorylated). If the receptors were 

saturated, then the dose of TGF- β only affects the duration, but not the intensity 

of the signal in the long-term (Figure 3.11C). This suggests that the reason for the 

decay of phosphorylated R-Smad with saturating TGF-β dose is down-stream 

regulatory mechanisms, but not the consumption of TGF-β. 
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Figure 3.11 TGF-β dose response. (A) Simulated P-Smad2 levels at 45min under different doses 
of TGF-β treatment. (B) Simulated P-Smad2 levels at 24hr under different doses of TGF-β 
treatment. (C) Simulations of the P-Smad2 dynamics with different doses of TGF-β. The color of 
the curve turns from blue to red as TGF-β dose increases (0.025, 0.0625, 0.125, 0.25, 0.5, 1, 
2ng/ml). 

 

3.4 Discussion 

Several negative regulatory mechanisms in the Smad signaling pathway have 

been identified and individually studied (Afrakhte et al., 1998, Itoh et al., 1998, 

Kavsak et al., 2000, Lin et al., 2006, Lo and Massague, 1999, Alarcon et al., 2009, 

Shi et al., 2004, Nakao et al., 1997). We focused our modeling and experiments on 

these specific mechanisms with published evidence. R-Smad Dephosphorylation by 

PPM1A is widely recognized to be a strong form of negative regulation, having 

significant fast-mode impact, but the relative importance of other mechanisms, 

compared with R-Smad Dephosphorylation, was not clear. We found that multiple 

combinations of fast-mode and slow-mode mechanisms could match the phospho-R-
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Smad data moderately well, but these combinations (e.g., Models 2,5, and 6) could 

only recapitulate phospho-R-Smad dynamics at the expense of very strong, 

cumulative degradation; as much as 90% decrease of T1R at 24hr (Figure 3.3B), or 

90% decrease in total R-Smad at 24hr (Figure 3.4B). Our experimental 

measurements in HaCaT found that total T1R protein levels did not decline 

significantly (Figure 3.3D) nor did total R-Smad (Figure 3.4B). This contrasts with 

previous work in 293T and COS-1 cells (Kavsak et al., 2000, Eichhorn et al., 2012). 

In (Kavsak et al., 2000), 293T cells were transfected with I-Smad which was able to 

induce significant receptor degradation. The significant degradation seen in 

(Kavsak et al., 2000) may be due to the effects of transfection (Clarke et al., 2009) 

or may be due to cell line differences. Although most dynamic models of signal 

transduction represent an amalgam of findings from multiple cell lines, our model 

(and the previous models we rely on) are specific to the HaCaT cell line. Thus a 

discrepancy with (Kavsak et al., 2000) is not necessarily a flaw of our model. 

In light of our experimental measurement that TGF-β treatment does not cause 

any significant drop in R-Smad levels or T1R levels, we conclude that degradation 

effects, if they occur in HaCaT, must be counterbalanced by endogenous synthesis. 

Model 7 simulated a balance of synthesis and degradation (Endogenous Synthesis 

and Degradation of R-Smad) such that phospho-R-Smad was degraded while 

unphosphorylated Smad was synthesized; this model was not able to induce the 

observed long-term decay of phospho-R-Smad. We conclude that degradation of R-

Smad or T1R, with or without endogenous synthesis, is not sufficient to explain the 
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slow-mode of Smad negative regulation in HaCaT cells. Degradation with synthesis 

remains a plausible effect but it must occur alongside other mechanisms.  

After simulating all the previously published mechanisms of negative regulation, 

including Receptor Inhibition (See Model 8, Section 3.3.6)(Afrakhte et al., 1998, 

Itoh et al., 1998, Ebisawa et al., 2001, Hayashi et al., 1997, Kavsak et al., 2000), R-

Smad Dephosphorylation (Lin et al., 2006), and P-R-Smad Degradation (Lo and 

Massague, 1999, Alarcon et al., 2009, Lin et al., 2000), no model could explain the 

“slow-mode” of phospho-R-Smad decline after long exposures to TGF-β, unless they 

violated the observations of other experiments. In silico exploration of hypothetical 

mechanisms led us to question whether PPM1A levels could change during Smad 

pathway activation (Model 9).  

We then tested the model-inspired question, whether PPM1A is upregulated by 

TGF-β. PPM1A western blots showed 2.4-fold increase in PPM1A protein levels 

(Fig. 5D-E), suggesting a negative feedback effect, in which TGF-β upregulates 

PPM1A to control the levels of phospho-R-Smad. In Model 10 we studied how this 

novel finding might relate to the negative regulation of phospho-R-Smad. Not 

knowing the exact mechanism for TGF-β to cause upregulation of PPM1A, we 

simulated combinations of individual effects, many taken from reports in other 

contexts, to provide a theoretical model of PPM1A stabilization. PPM1A is known 

to be stabilized by PTEN (Bu et al., 2008). If TGF-β can promote PTEN-PPM1A 

interaction in HaCaT, that might explain the observed increase in PPM1A as a 

stabilization effect. Another consideration is that TGF-β can induce association 

between PTEN and R-Smad (Hjelmeland et al., 2005). The detailed interactions or 
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competitions among PTEN, R-Smad and PPM1A are not known, but we assumed 

that TGF-β would induce PTEN-PPM1A interaction and PPM1A stabilization 

through phosphorylation of R-Smad. A model simulating this assumption alone was 

not consistent with observations, so in Model 10 we further hypothesized that 

PTEN-mediated stabilization would temporarily sequester PPM1A, for example 

through decreased nuclear import of the PTEN-PPM1A complex. There are many 

plausible ways that PTEN-induced stabilization of PPM1A could sequester or delay 

PPM1A enzymatic activity, such as conformational change or post-translational 

modification. Our model shows one simplistic mechanism namely PPM1A 

Stabilization, with delayed nuclear import, was sufficient to reconcile the early 

upregulation of PPM1A total protein with later PPM1A effects on phospho-R-

Smad. Our theoretical model could be useful for the design of experiments to 

determine how the upregulation actually occurs. Future work should test whether 

PPM1A is stabilized and/or sequestered by PTEN after TGF-β treatment in 

HaCaT, as illustrated in Models 10-11. Pull-down experiments could be applied to 

study the association among phospho-R-Smad, PPM1A and PTEN. The order of 

binding reaction might be complex and ternary complex may exist. Our model 

would recommend testing for PPM1A-PTEN binding at 30min-1hr to catch their 

peak interaction, but testing for increased PPM1A activity at 4hr, significantly 

later than the upregulation. 

Our model and experimental validation suggested that PPM1A upregulation 

could be important to explain the peak and decline of phospho-R-Smad in long 

exposure to TGF-β. However, negative regulation of TGF-β pathway could be a 
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complex process and other mechanism may also be involved. Further study may 

also consider other effects such as scaffold proteins. Scaffold proteins can facilitate 

the association between receptor kinase and R-Smads. If scaffold proteins are down 

regulated or their activities are blocked under TGF-β treatment, phospho-R-Smad 

level might reduce. 

Careful examination of a broader set of previous work reveals some effects that 

appear to be discrepancies. The steepness of phospho-R-Smad decline in HaCaT 

appears to differ between the experiments of Massague and colleagues in (Lo and 

Massague, 1999, Alarcon et al., 2009) (green curve in Figure 3.1A) versus the 

experiments of Lin et al. (Lin et al., 2006) (blue curve), which are similar to our 

results (Figure 3.4C) and similar to the results of (Zi et al., 2011). One possible 

explanation is a difference in the effective concentrations of TGF-β. TGF-β has a 

very short half-life, and the dissolving conditions, such as carrier protein 

concentration, can alter the effective concentration of TGF-β. Previous authors did 

not report how their TGF-β was dissolved, but we found that dissolving TGF-β 

without carrier protein led to a steeper decline of phospho-R-Smad, similar to 

Massague et al. (Lo and Massague, 1999, Alarcon et al., 2009) (data not shown). 

We believe this discrepancy in slope is a technicality of the experiments and not 

fundamental to the pathway analysis.  

Recent work has shown the importance of TGF-β depletion as a determinant of 

Smad signaling kinetics, for cells treated with low doses of TGF-β (10pM and 25pM) 

(Clarke et al., 2009). Our work did not emphasize low-dose contexts, but our 

models are consistent with observed TGF-β depletion behaviors. Figure 3.11 shows 
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simulations of Model 11 with low-dose TGF-β treatments. Smad signaling was 

indeed dominated by TGF-β scarcity. When the Smad system was externally 

limited by TGF-β availability, self-limiting mechanisms and negative regulatory 

effects were not apparent. Negative self-regulation of the Smad system was strongly 

apparent in treatments with 2ng/ml (80pM) of TGF-β, which is the dose studied in 

most previous experimental and computational studies of Smad dynamics.  

After successfully predicting PPM1A upregulation and achieving recapitulation 

of all available datasets, our final contribution was to address an existing 

controversy about the role of proteasomal degradation in Smad signaling. We 

discovered that an apparent conflict about the role of degradation was in fact a 

mutually consistent set of trajectories that can both emerge from a single model. 

Degradation is intuitively understood to be a cumulative effect seen in long-term 

observations, but in this case the duration of observation was irrelevant, and the 

crucial variable for degradation was the duration of the TGF-β stimulus. MG132 

(an inhibitor of proteasomal degradation) had negligible effect on pSmad levels (at 

1,2,4,6 hr), in a system triggered with 30min exposure to TGF-β, but MG132 had a 

significant effect on pSmad levels (at 1,2,4,6 hr), in a system triggered with long 

exposure to TGF-β. In other words, the importance of degradation in Smad 

signaling depended not on the timepoint at which p-Smad2 was measured, but 

rather on the duration with which the Smad system had been induced. The 

consistence between the two experiments can be rationalized in retrospect because 

degradation depends on the “area under the curve,” which is large in systems with 

prolonged stimulus, and very small in systems with short stimulus. However, the 
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consistency between Lin et al. and Massague et al. was not apparent prior to 

modeling, and mathematical inference of kinetic implications is dramatically 

different from the interpretations provided by the previous authors.  

Our modeling provides a consistent, quantitative, and fine-grained integration 

of available information about the negative regulation of phospho-R-Smad, both 

from published literature and from our experiments. Our integration of modeling 

with experiments showed that published mechanisms such as Receptor Degradation 

have a minor effect, and led us to discover upregulation of PPM1A. Modeling can 

make additional predictions (e.g., future experiments should test for peak 

perturbation of PPM1A binding and activity.) Also modeling has provided a new 

and non-obvious interpretation for the effects of MG132 treatment. When 

interpreting the biological meaning of observed kinetics, informal intuition can 

unwittingly lead to flawed conclusions. Our updated model of Smad signaling may 

in the future be useful to other researchers interpreting data, designing experiments, 

or strategizing therapeutic perturbations. The field of biochemistry has a long 

history of using kinetics to gain insight into mechanism. Likewise our work has 

studied kinetic as our concrete contribution, but the larger outcome is to shed light 

on mechanisms. 

Our final model of TGF-β pathway made some improvement to current state-

of-art of TGF-β pathway modeling. Thus, it is better to integrate our model of 

TGF-β pathway Venkatraman’s upstream model of TGF-β activation, as the 

upstream model treated TGF-β signaling pathway as a black box. This integration 

is useful to study the important factors to the bistable behavior in the whole 
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system. For example, integrating the upstream and downstream networks could 

help to discover combination of drug targets in both upstream and downstream 

networks which could cause synergistic effect.  

As we mentioned earlier in the introduction (Chapter 1), the upstream network 

takes the averaged response from Smad pathway in a population of cells. Cell-to-

cell variability may also be an important factor affecting the bistable behavior of 

the system. It is better to integrate an upstream network with a population of 

downstream networks. However, to simulate such a network is time-consuming. 

Therefore, we sought to develop efficient algorithms to simulate or approximate 

network behaviors from a population of cells. Assuming molecules are mixed fast 

enough in the upstream network, we can integrate the upstream network and the 

output of a population of downstream networks. 
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4  Chapter 4: Approximating Cell-population 

Behavior of Signaling Pathways Based on Single-

cell Models 

4.1 Introduction 

Cell-to-cell variability and heterogeneity has been paid more and more 

attention in study of signaling pathways and other cell behaviors. This trend 

emerged mainly because of advanced single-cell based techniques for biological 

studies developed and applied in the past decade, such as imaging and flow 

cytometry. The earlier studies of signaling pathways assume homogeneity of 

monoclonal cell populations. However, single-cell based methods show significant 

cell-to-cell viability in a variety of signaling pathways including EGFR pathway, 

NFκB pathway (Lee and Covert, 2010), TRAIL-induced apoptosis pathway (Tay et 

al., 2010, Spencer et al., 2009a). 

Although the difference between single-cell and cell-population behaviors has 

been shown, most systems biology studies of signaling pathways are still based on 

bulk experiments because most of the knowledge and data is available in bulk 

experiments. Thus, systems biologists often need to compare single-cell based model 

to cell-population based experiments. In order to do this, Monte Carlo simulation 

could be used in the way that simulation results from multiple models representing 

multiple cells are averaged to get the cell-population simulation. However, Monte 

Carlo simulation usually needs a large number of simulations to converge to the 
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averaged results. This is very time-consuming to just simulate the cell-population 

behaviors and it is not possible to estimate parameters because one parameter 

estimation procedure often takes thousands of simulations. Therefore, it would be 

very useful if we can simulate cell-population behaviors using single-cell models 

faster. If the simulation is fast enough, we may even estimate parameters of both 

single-cell models and cell-to-cell variability by comparing simulated cell-population 

behaviors to bulk experimental data. 

In this study, we developed two approaches to approximate cell-population 

simulation using single-cell models, assuming the initial concentrations of all species 

vary from cell to cell. In the first approach, we derived Population ODE that 

approximates the means of concentrations of all species. This approach needs only 

one simulation. It is significantly faster than Monte Carlo simulation which needs 

thousands of simulations. But in some biological systems, such as bistable systems, 

Population ODE does not approximate the population behavior well enough. We 

then developed our second approach. The second approach, Sample Reduction, is 

by significantly reducing the dimension of sampling space and further reduces the 

number of samples required. This approach is a sampling-based approach, similar 

to Monte Carlo simulation. However, our approach significantly reduces the sample 

size and facilitates the simulation of population behavior. 
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4.2 Materials and Methods 

4.2.1 Construction of Population ODE 

The Population ODE requires the A1  and A2  matrices and the k  vector from 

single-cell models. We used KroneckerBio toolbox (Toettcher et al., 2011) in 

Matlab to build the models and KroneckerBio toolbox generated the A1  and A2  

matrices and the k  vector we need. These matrices and vector were then built into 

the Matlab ode files and the function ode15s in Matlab was used to simulate the 

Population ODE.  

4.2.2 Initial Distribution of Species Concentrations and Monte Carlo 

Simulation 

In all the cases we studied, we assumed the initial distribution of species 

concentration as a Gaussian distribution with expected value of its original initial 

concentration and with standard deviation of 20% of its original initial 

concentration. The variation of species with non-zero initial concentration was 

considered. The initial concentrations of the other species were kept 0. In Monte 

Carlo simulation, we randomly sampled the species with non-zero initial 

concentration individually as we assumed that they were independent at time 0. 

In Monte Carlo simulation, it is possible that random sampling from a Gaussian 

distribution will generate negative values for initial concentrations. As this chance 

is low based on our assumption, we simply ignored those samples with negative 

initial concentrations. 
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4.2.3 Sample Reduction in the Case of Apoptosis Pathway 

The sensitivity matrix was calculated at 20 different time points in this case. 

The time points were chosen according to 
dy
dt

, in which y  was the output species 

(activated caspase 3). The time steps were set to satisfy the condition below so that 

the larger 
dy
dt

 was, the smaller the time step. 

 
 
T1

dy
dt t=T1

⎛

⎝⎜
⎞

⎠⎟
= T2

dy
dt t=T2

⎛

⎝⎜
⎞

⎠⎟
== Tn

dy
dt t=Tn

⎛

⎝⎜
⎞

⎠⎟
, (n = 20)  (4.1) 

4.2.4 Integration of Upstream Network of TGF-β Activation and 

Downstream Smad Signaling 

To integrate these two networks, we need to break up two black-box reactions 

in Venkatraman’s model, in which TSP1 production rate and PAI1 production rate 

are respectively kp1[TGFβ ] and kp2[TGFβ ] . Then we modeled these two black 

boxes explicitly with Smad signaling pathway. Thus, the production rates of TSP1 

and PAI1 should be proportional to Smad complexes in the nucleus as these 

complexes are the species regulating gene expressions. We therefore set the 

production rates of TSP1 and PAI1 to be kp1([Smad24nuc ]+ [Smad22nuc ])  and 

kp2([Smad24nuc ]+ [Smad22nuc ]) . Since TGF-β already existed in both networks, 

we simply merged TGF-β in both networks to a single species. Hence, we have 

integrated the upstream network of TGF-β activation and downstream Smad 

signaling. Note that the parameters kp1 and kp2 should not have the sample value 

as in Venkatraman’s model because the concentrations of TGF-β and Smad 

complexes are different. 
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4.3 Results 

Cell-to-cell variability may be caused by variations of different factors, such as 

different concentrations of molecules, mutations of molecules, and different 

responses to environmental change. Correspondingly, there are different ways we 

can introduce different types of variations to the ODE system which models cellular 

behaviors. In the ODE system, variations can come from initial concentrations, 

reaction rate constants, and time varying input functions. Variation in initial 

concentrations can represent different concentrations of molecules in different cells. 

Variation in rate constants can reflect mutations of molecules, for example. 

Stochastic time varying input function is a more general way to model cell-to-cell 

variability than the previous two. This can be used to model variation sources 

which are not modeled by the ODE system. Different ways of modeling variations 

need different simulation strategies. Here, we develop simulation strategies for one 

type of variations which is the variation in initial concentration of molecules. In 

this case, we assume that the different cells have only different initial 

concentrations in the ODE system. Any other part of the ODE system, including 

rate constants, network structure, is assumed to be the same among different cells. 

4.3.1 Propagating Population ODE System Based on Single-Cell ODE 

Model 

In Chapter 2 (Section 2.1.4), we have introduced ODE model for Mass Action 

Kinetics. Mass Action Kinetics can be applied to describe the rate of most 

biochemical reactions. We have also showed how the ODEs of any type of Mass 

Action Kinetics can be written in a form of Kronecker product (Section 2.1.4.1, 
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repeated as in Equation (4.2)). This Kronecker product form of ODEs below is the 

basis for our mathematical derivation of the Population ODEs. 

 
dx
dt

= A1x + A2x⊗ x + k  (4.2) 

4.3.1.1 Derived ODEs for the population mean requires the value of the 

covariance matrix 

Simulation of cell-population result can be easily achieved by Monte-Carlo 

simulation. But it is time consuming because it needs to simulate multiple samples 

of single-cell ODE systems. To facilitate the population, we want to derive a 

Population ODE model based on the single-cell ODE system, and this population 

ODE system determines the time-evolution of the population mean of each species 

concentration. With this population ODE system, we are able to simulate the 

population mean of each species concentration without sampling. To achieve that, 

we denote each species concentration as xi = µi +δ i , where µi  denotes the 

expected value (population mean) of all xi , and δ i  is a variable representing the 

variation of species concentration among different cells. To write concentrations of 

all species together, we have the vector form x = µ + δ . Here, both x(t)  and δ (t)  

are functions of t  and random variables varying among different cells. In other 

words, we want to derive 
dµ
dt

 based on 
dx
dt

 using the substitution x = µ + δ . 

Taking expected value of both sides of Equation (4.2), we have, 
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E dx
dt

⎛
⎝⎜

⎞
⎠⎟ = A

1E(x)+ A2E(x⊗ x)+ k

= A1µ + A2E[(µ + δ )⊗ (µ + δ )]+ k
= A1µ + A2[µ⊗ µ + E(δ ⊗δ )]+ k

 (4.3) 

Note that 

 

 

E(δ ⊗δ ) = vec
δ1δ1  δ nδ1
  

δ1δ n  δ nδ n

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= vec(CT )  (4.4) 

  

Thus, 

 
dµ
dt

= E dx
dt

⎛
⎝⎜

⎞
⎠⎟ = A

1µ + A2µ⊗ µ + A2vec(CT )+ k  (4.5) 

Here, vec(CT )  denotes the vec operation of the transpose of the covariance 

matrix C . Note that the time-evolution of µ(t)  depends on not only itself but also 

the covariance matrix. Equation (4.5) is also a proof to the concept that the 

behavior of a population of cells is different from that of a single cell. The 

covariance matrix C  also evolves with time. Therefore, in order to compute C  

which is required for computing 
dµ
dt

, we further derive ODEs for vec(CT ) . 

4.3.1.2 Approximating time-evolution of the covariance matrix by ignoring 

the third moment 

Taking expected value of δ ⊗δ , we have 

 
E[vec(CT )]= E(δ ⊗δ )

= E[(x − µ )⊗ (x − µ )]
= E[x⊗ x]− µ⊗ µ

 (4.6) 
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Therefore 

 
dvec(CT )

dt
= E dx⊗ x

dt
⎛
⎝⎜

⎞
⎠⎟ −

dµ⊗ µ
dt

 (4.7) 

Then we derive the two terms on the right hands side of Equation (4.7) 

separately. For the first term, 

 
d(x⊗ x)

dt
= x⊗ dx

dt
+ dx
dt

⊗ x

= x⊗ (A1x + A2x⊗ x + k)+ (A1x + A2x⊗ x + k)⊗ x
 (4.8) 

Applying the rule (A⊗ B)(C⊗ D) = (AC)⊗ (BD)  and taking expected value 

on both sides of Equation (4.8), we have 

 

dE(x⊗ x)
dt

= (A1⊗ I + I⊗ A1)E(x⊗ x)

+(A2⊗ I + I⊗ A2)E(x⊗ x⊗ x)
+µ⊗ k + k⊗ µ

 (4.9) 

The term E(x⊗ x)  can be expressed by µ  and vec(CT )  as in Equation (4.6). 

Then we need to express E(x⊗ x⊗ x)  by µ  and vec(CT )  as well. To simplify 

the derivation, we derive E(δ ⊗δ ⊗δ )  instead. 

 

E(δ ⊗δ ⊗δ ) = E[(x − µ )⊗ (x − µ )⊗ (x − µ )]
= E(x⊗ x⊗ x)+ 2µ⊗ µ⊗ µ
−E(x⊗ x⊗ µ )− E(x⊗ µ⊗ x)− E(µ⊗ x⊗ x)
= E(x⊗ x⊗ x)− µ⊗ µ⊗ µ
−vec(CT )⊗ µ − E(δ ⊗ µ⊗δ )− µ⊗ vec(CT )

 (4.10) 

Note that 
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E(δ ⊗ µ⊗δ ) = E

δ1µ1δ


δ1µnδ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
1



δ nµ1δ


δ nµnδ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
n

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

= E vec
δ1µ1δ  δ nµ1δ
  

δ1µnδ  δ nµnδ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= E vec µ⊗ δ1δ  δ nδ( )⎡
⎣⎢

⎤
⎦⎥{ }

= vec(µ⊗CT )

 (4.11) 

Thus, from Equation (4.6) and Equation (4.10), we have  

 

E(x⊗ x) = µ⊗ µ + vec(CT )
E(x⊗ x⊗ x) = µ⊗ µ⊗ µ

+µ⊗ vec(CT )+ vec(CT )⊗ µ + vec(µ⊗CT )
+E(δ ⊗δ ⊗δ )

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 (4.12) 

Substituting with Equation (4.12), we can write Equation (4.9) as 

 

dE(x⊗ x)
dt

= (A1⊗ I + I⊗ A1)[µ⊗ µ + vec(CT )]

+(A2⊗ I + I⊗ A2)[µ⊗ µ⊗ µ
+µ⊗ vec(CT )+ vec(CT )⊗ µ + vec(µ⊗CT )
+E(δ ⊗δ ⊗δ )]
+µ⊗ k + k⊗ µ

 (4.13) 

Hence, we have derived the first term on the right hand side of Equation (4.7). 

Then we need to derive the second term. 

 
dµ⊗ µ
dt

= µ⊗ dµ
dt

+ dµ
dt

⊗ µ  (4.14) 
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Substituting 
dµ
dt

 using Equation (4.5) and applying the rule 

(A⊗ B)(C⊗ D) = (AC)⊗ (BD) , we have 

 

dµ⊗ µ
dt

= (A1⊗ I + I⊗ A1)(µ⊗ µ )

+(A2⊗ I + I⊗ A2)(µ⊗ µ⊗ µ )
+(A2⊗ I )[vec(CT )⊗ µ ]+ (I⊗ A2)[µ⊗ vec(CT )]
+µ⊗ k + k⊗ µ

 (4.15) 

With the first term derived in Equation (4.13) and second term derived in 

Equation (4.15), we have fully derived Equation (4.7) for the time-evolution of the 

covariance matrix as 

 

dvec(CT )
dt

= E dx⊗ x
dt

⎛
⎝⎜

⎞
⎠⎟ −

dµ⊗ µ
dt

= (A1⊗ I + I⊗ A1)vec(CT )
+(A2⊗ I )[µ⊗ vec(CT )+ vec(µ⊗CT )]
+(I⊗ A2)[vec(C)⊗ µ + vec(µ⊗CT )]
+(A2⊗ I + I⊗ A2)E(δ ⊗δ ⊗δ )

 (4.16) 

Note that the variables in ODE for vec(CT )  include only µ  and vec(CT )  

except E(δ ⊗δ ⊗δ ) . The term E(δ ⊗δ ⊗δ )  has the same coefficent matrix as 

µ⊗ vec(CT ) , vec(CT )⊗ µ  and vec(µ⊗CT ) . As E(δ ⊗δ ⊗δ )  is significantly 

smaller than µ⊗ vec(CT ) , vec(C)⊗ µ  and vec(µ⊗CT )  in most cases, we 

ignore the third moment term E(δ ⊗δ ⊗δ )  to approximate 
dvec(CT )

dt
. By 

ignoring the third moment, 
dµ
dt

 and 
dvec(CT )

dt
 as a combined ODE system can be 

sloved. Thus, the time-evolution of the population mean of each species can be 

approximated by the new population ODE system as in Equation (4.17).  
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dµ
dt

= A1µ + A2µ⊗ µ + A2vec(CT )

dvec(CT )
dt

= (A1⊗ I + I⊗ A1)vec(CT )

+(A2⊗ I )[µ⊗ vec(CT )+ vec(µ⊗CT )]
+(I⊗ A2)[vec(CT )⊗ µ + vec(µ⊗CT )]

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 (4.17) 

This population ODE system provides us a faster way to estimate the 

population mean than the Monte-Carlo method. With the population ODE, we 

only need to simulate a larger system (n2+n number of species, n is the number of 

species in the original system) once to estimate the population mean µ(t) . This 

population ODE system also estimates the covariance matrix as a function of time 

CT (t) . It not only makes the simulation more efficient, but also allows us to apply 

methods for ODEs such as parameter estimation and sensitivity analysis for the 

population behavior.  

4.3.1.3 Derivation of the Jacobian matrix of the population ODEs 

The Jacobian matrix of the population ODEs has an analytic solution. So we 

can derive the Jacobian matrix explicitly to allow faster ODE simulation. 

The population ODEs in Equation (4.17) can be written in 2 blocks. 

 F(t,x) =
Fµ
FC

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

dµ
dt

dvec(CT )
dt

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

, x =
µ

vec(CT )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 (4.18) 

Therefore, the Jacobian matrix can also be writtien in 4 blocks as in Equation 

(4.19), and each block can be derived individually. 
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∂F(t,x)

∂x
=

∂Fµ
∂µ n×n

∂Fµ
∂vec(CT )n×n2

∂FC
∂µ n2×n

∂FC
∂vec(CT )n2×n2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
(n2+n)×(n2+n)

 (4.19) 

Each block in the Jacobian matrix is derived as below. For detailed derivation, 

please refer to the Appendix. 

 
∂Fµ
∂µ

= A1 + A2(µ⊗ I + I⊗ µ )  (4.20) 

 
∂Fµ

∂vec(CT )
= A2  (4.21) 

 
∂FC
∂µ

= (A2⊗ I )[I⊗ vec(CT )+ E(δ ⊗ I⊗δ )]

+(I⊗ A2)[E(δ ⊗ I⊗δ )+ vec(CT )⊗ I ]
 (4.22) 

 

∂FC
∂vec(CT )

= (A1⊗ I + I⊗ A1)

+(A2⊗ I )(µ⊗ I⊗ I + I⊗ µ⊗ I )
+(I⊗ A2)(I⊗ µ⊗ I + I⊗ I⊗ µ )

 (4.23) 

Please note that some matrices in the four equations above are even larger than 

the Jacobian matrix itself. For example, the size of A2⊗ I  is n2 × n3 . This would 

take a lot of memory if we compute the Jacobian matrix based on the above four 

equations. Since we only need the result of the Jacobian matrix but not the 

intermeidate terms such as A2⊗ I , we tried to faciliate calculation of each block 

of the Jacobian matrix. Actually, after we looked into the details of the Kronecker 

product and matrix product opertations in Equation (4.22) and (4.23), we found 

that these equations can be simplified in terms of matrix operations. Simplifications 
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of Equation (4.22) and (4.23) are shown below. Please refer to the detailed 

derivation in the Appendix. 

For Equation (4.22), we need to write A2  as a block matrix 

 

 

A2 = B1  Bn( )
n×n2

, Bk =
A21,(k−1)n+1  A21,kn
  

A2n,(k−1)n+1  A2n,kn

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
n×n

 (4.24) 

and to write C* = C +CT as a block matrix as well 

 

 

C* = c1  cn( )
n×n

, ci =
C*1,1

C*1,n

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
n×1

 (4.25) 

Then, we can write Equation (4.22) as 

 
∂FC
∂µ

= T1 + [A2vec(C)]⊗ I +T 3  (4.26) 

where the k-th column of T1  is  

 

 

 T1:,k = vec(C
TBT

k )  (4.27) 

 

and the k-th row of T3  is 

 T3k ,: = A
2(ck ⊗ I )  (4.28) 

For Equation (4.23), after simplification, we found that it can be calculated 

using 
∂Fµ
∂µ

, which we have evaluated in Equation (4.20).  
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∂FC

∂vec(CT )
=
∂Fµ
∂µ

⊗ I + I⊗
∂Fµ
∂µ

 (4.29) 

Hence, we have simplified the calculation of the Jacobian matrix. The largest 

matrix required for the calculation of the Jacobian matrix has size n × n2 , smaller 

than n2 × n3  before simplification. Some unnecessary calculations are also avoided 

such as that in Equation (4.23). We can use the result of (4.20) to make the 

calculation of Equation (4.23) almost trivial as derived in Equation (4.29). 

4.3.2 Case Study Using Population ODE System 

After derivation of the population ODE system, we wanted to test the performance 

of this approximation approach in both speed and accuracy. Since we did not know 

the truth of cell-population dynamics, we compared our simulation results using 

population ODEs to the results from Monte-Carlo simulation with large sample size. 

The convergence plot for Monte-Carlo simulation was plotted to show the sample 

size we selected  

4.3.2.1 Applying Population ODE to EGFR Pathway 

EGFR (Epidermal Growth Factor Receptor) pathway is one of the most 

studied signaling pathways both biologically and computationally as its important 

function in regulating cell division, motility and apoptosis (Citri and Yarden, 2006). 

Because of the importance and extensive investigation, the studies of EGFR 

pathway have also been most widely transferred to biomedical research (Citri and 

Yarden, 2006). Besides its classical role in the history of signaling pathway studies, 
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cell-to-cell variability has also been found in EGFR pathway. Thus, we chose 

EGFR pathway to be our first attempt of the Population ODE. 

There are dozens of models about EGFR pathway published. The earliest 

models studied ligand-receptor binding and receptor trafficking (Wiley and 

Cunningham, 1981). Then, Kholodenko et al. built the first model including the 

early target proteins in the signaling cascade, such as Grb2, Shc and SOS 

(Kholodenko et al., 1999). Schoeberl et al. added more downstream events such as 

Ras-dependent MAPK cascade based on Kholodenko’s model (Schoeberl et al., 

2002). These two models then served as platforms for more complex EGFR 

pathway models. Recent models include a model expanding the EGF receptor to 

ErbB receptor family (Chen et al., 2009), a model focusing on the ligand-specific 

control of the dynamics of ErbB network (Nakakuki et al., 2010), and models which 

have crosstalk with other pathways (Sivakumar et al., 2011). As the recent models 

become very large and sometimes case-specific, we chose to apply the Population 

ODE to Schoeberl’s model (Schoeberl et al., 2002), which serves as a backbone for 

most of the later models. 

Schoeberl’s model has 29 species and 10 species out of 29 have non-zero initial 

concentrations. We assume that the EGF ligand outside the cell has no cell-to-cell 

variability. As we do not know the distribution of the concentration of the other 9 

species in a population of cells, we assume the concentration of the other 9 species 

are normally distributed with the variance of 20% of its initial concentration. This 

assumption allows significant variations among different cells and also keeps only 

about 0.000003% concentration to be negative, which we can simply ignore. With 
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such assumption, we can first do a Monte-Carlo simulation to approximate the 

population mean over time and also check the rate of convergence using this 

method. 

Sampled single cell simulations are plotted (Figure 4.1A). The variation among 

different cells could be very large. There are many different criteria to check the 

convergence of Monte Carlo simulation and the choice of the criterion is often 

context dependent. In our case, we plotted the standard error of mean (SEM) of 

the area under the Monte Carlo simulation trajectory (Figure 4.1B). The standard 

error of mean was calculated using bootstrap with 1000 sampling. As shown in 

Figure 4.1B, the SEM decreases with increasing sample size in Monte Carlo 

simulation. This means that when the sample size becomes larger, the population 

mean computed using Monte Carlo simulation is less variable. However, we cannot 

increase the sample size to infinity. To check if the Monte Carlo simulation is 

converged in our case, we used the criterion that the slope of the SEM curve was 

less than 10-6. Because the SEM curve is fluctuating, we compute the slope at a 

specific sample size with smoothing as in Equation (4.30). In Equation (4.30), N is 

the sample size of a Monte Carlo simulation, k is the step size when we increase the 

sample size, and x is the index of the point where the slope is calculated. We 

highlighted the first converged point in Figure 4.1B with a red circle. Later on, we 

use this converged Monte Carlo simulation as a reference of the population 

simulation (also in Figure 4.1A). 

 slopeN=kx =

1
10

SEMN=i
i=k (x−10)

k (x−1)

∑ − SEMN=kx

k
 (4.30) 
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Then, we compare the converged Monte Carlo simulation with the single cell 

simulation in Figure 4.1C. The single cell simulation was simulated using the initial 

concentrations as the expected value of the initial concentrations from a population 

of cells. Figure 4.1C shows a significant difference between the single cell and cell 

population dynamics. Can our Population ODE approximate the cell population 

behavior better? We then plotted the converged Monte Carlo simulation together 

with the Population ODE simulation in Figure 4.1D. Although the Population 

ODE did not match the Monte Carlo simulation perfectly, it did improve 

significantly from the single cell simulation. 

 

Figure 4.1 Applying Population ODE to EGFR Pathway. (A) 10 random samples of single cell 
simulation (blue curves) versus converged Monte Carlo simulation (red curve). (B) Convergence 
of Monte Carlo simulation. (C) Single cell simulation with initial concentrations equal to their 
expected values (green curve) versus converged Monte Carlo simulation (red curve). (D) 
Simulation of Population ODE (blue curve) versus Monte Carlo simulation (red curve). 
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4.3.2.2 Applying Population ODE to NFκB Pathway 

NFκB (Nuclear Factor κ -light-chain-enhancer of activated B cells) is a family of 

transcription factors which regulate a variety of genes involved in cell division, 

apoptosis and inflammation (Hoffmann, 2002). Because of its importance in innate 

immune response, it is considered a potential drug target for chronic inflammatory 

diseases (Hoffmann, 2002). Dynamic response is important for drug development 

and systems biology tools such as computational modeling have been used to study 

NFκB pathway (Nelson, 2004). This pathway was found to have an identical 

behavior, which is dampened oscillation. It was also found that the oscillation is 

greatly affected by the cell-to-cell variability (Lee and Covert, 2010). Single-cell 

measurements and modeling of the variations among different cells were used to fill 

in the gap of cell-to-cell variability in NFκB pathway (Ashall et al., 2009, Lee et al., 

2009). Thus, we find this is a good case for us to apply the Population ODE to see 

if it can approximate the population behavior of an oscillating system. 

The first computational model for studying NFκB pathway was built to study 

the response of this pathway to TNF-α ligand (Hoffmann, 2002). The following 

work has added new components (Nelson, 2004) based on Hoffmann’s Model and 

has also modeled the response to other ligand (Lee et al., 2009). Furthermore, 

computational modeling studies have also investigated single-cell dynamics in 

NFκB pathway. Nelson et al. first attempted to use single-cell time-lapse imaging 

combined with single-cell model to analyze the parameters that affect the 

oscillation of NFκB localization (Nelson, 2004). Later models were not only 

compared with single-cell experimental data but also utilized stochastic methods to 
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simulate population behaviors (Lee et al., 2009). These models showed significant 

heterogeneity among a population of cells. A more recent model of NFκB pathway 

emphasized the difference between single-cell and cell-population dynamics based 

on both experimental and computational results (Ashall et al., 2009). 

Models of NFκB pathway exhibit many successful examples of computational 

methods in studying the dynamics of signaling pathways. There are also extensive 

experimental results confirming that the difference between single-cell and cell-

population behaviors is significant. The importance of both computational modeling 

and cell-to-cell variability leads us to apply our Population ODE to this pathway. 

Unfortunately, many recent models of NFκB pathway did not use Mass Action 

Kinetics to model all reactions. Thus, we apply our Population ODE to the basis of 

NFκB pathway models (Hoffmann, 2002), in which all reactions are ruled by the 

Mass Action Kinetics. 

Sampled single cell simulations are plotted (Figure 4.2A). Although individual 

cells are still oscillating at later time points, their phase becomes different. 

Therefore, averaged molecule oscillation is much more dampened than the molecule 

oscillation in a single cell. As shown by (Hoffmann, 2002), some parameter could 

affect the duration of oscillation. Thus, comparing single cell dynamics to cell 

population measurements could lead to incorrect estimation of certain parameter. 

In the case of NFκB pathway, we use the same criterion as that used in EGFR 

pathway to identify the converged Monte Carlo simulation (Figure 4.2B). 

Comparison between the single cell simulation and converged Monte Carlo 

simulation shows a significant difference of behavior (Figure 4.2C), especially the 
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magnitude of oscillations at later time points. This can be considered as a 

qualitative difference and it is important to have a population model which can be 

compared to population behavior. Our Population ODE also approximates the 

population dynamics better than single cell simulation (Figure 4.2D). 

 

Figure 4.2 Applying Population ODE to NFκB Pathway. (A) 10 random samples of single cell 
simulation (blue curves) versus converged Monte Carlo simulation (red curve). (B) Convergence 
of Monte Carlo simulation. (C) Single cell simulation with initial concentrations equal to their 
expected values (green curve) versus converged Monte Carlo simulation (red curve). (D) 
Simulation of Population ODE (blue curve) versus Monte Carlo simulation (red curve). 

 

4.3.2.3 Applying Population ODE to Intrinsic Apoptosis Pathway 

Apoptosis is an important process in developmental biology. Researchers also 

try to take advantage of triggering the apoptosis signal to kill disease related cells 

such as cancer cells. Therefore, better understanding of the mechanism of apoptosis 

would lead us to better drug for developmental disease or cancer. 
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Apoptosis pathway is one of the earliest pathways that were found to have 

different behaviors between single cell and cell population. One of the reasons is 

that the outcome of this pathway is cell death. It is often found in a population of 

cells that a portion of cells went apoptosis after triggering apoptosis pathway. This 

leads researchers to use single cell data for apoptosis pathway studies and to 

unravel the cell-to-cell variability. Spencer et al. have studied non-genetic origins of 

cell-to-cell variability in TRAIL-induced apoptosis (Spencer et al., 2009b). They 

claim "naturally occurring differences in the levels of states of proteins regulating 

receptor-mediated apoptosis are the primary causes of cell-to-cell variability in the 

timing and probability of death in human cell lines". This supports our assumption 

of different initial concentrations in the way that different initial concentrations 

could be one of the most important factors of cell-to-cell variability.  

Mathematical models have also been built to understand how analog extrinsic 

signals (concentration of stimulus) could lead to digital cell decisions (live or die) 

(Albeck et al., 2008). Here we chose to apply our Population ODE to Eissing's 

model (Eissing, 2004). This model has the main backbone of the caspase cascade in 

apoptosis pathway and it exhibits a typical bistable behavior, which is often seen in 

biological network. Thus, it could be a representative of a class of pathways that 

are bistable. These bistable systems are also often much more non-linear than other 

types of systems. We also want to test our Population ODE method in more 

extreme cases such as the bistable apoptosis pathway. 

Sampled single-cell simulations are shown in Figure 4.3A. In bistable system, 

we usually observe a “switch-like” behavior, which means the species concentration 
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switch from one steady state to the other within a very short time. As in Figure 

4.3A, different initial concentrations led to different time of switching but not the 

final steady state of activated caspase 3. Figure 4.3A also shows the population 

mean of activated caspase 3 from Monte Carlo simulation. This population 

behavior is dramatically different from any of the single-cell behaviors. We also did 

convergence study of Monte Carlo simulation (Figure 4.3B). Figure 4.3C shows the 

difference between single-cell and Monte Carlo simulations. This shows bistable 

systems are extreme cases in which bulk experiments can hardly be used to build 

single-cell models. 

However, our Population ODE does not predict the population behavior 

accurately enough in this particular case Figure 4.3D. This leads us to develop 

another method (Sample Reduction) to simulate the population behavior more 

efficiently. We will discuss our Sample Reduction method in the next section. 
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Figure 4.3 Applying Population ODE to Intrinsic Apoptosis Pathway. (A) 10 random samples of 
single cell simulation (blue curves) versus converged Monte Carlo simulation (red curve). (B) 
Convergence of Monte Carlo simulation. (C) Single cell simulation with initial concentrations 
equal to their expected values (green curve) versus converged Monte Carlo simulation (red curve). 
(D) Simulation of Population ODE (blue curve) versus Monte Carlo simulation (red curve). 

 

4.3.3 Sample Reduction Based on Singular Value Decomposition of the 

Special Sensitivity Matrix 

4.3.3.1 Singular Value Decomposition (SVD) of the Special Sensitivity Matrix 

to Reduce Sampling Space 

As shown in the previous section, Population ODE does not work well in some 

cases, such as bistable systems. Other types of complex systems besides mono-

stable, oscillatory, and bistable systems could also exist even if we have not 

discovered any. We therefore seek to develop more general methods to facilitate the 

simulation of population behavior. 

The dimension of biological systems is often large. This makes the sampling 

space of the initial concentrations large and the sample density decreases 

exponentially as the dimension of the sampling space increases. Moreover, in 

biological systems we often have very few outputs to focus. If we consider the 

initial concentrations as the input, the system then has a very large input space 

and a very small output space (one dimension in most cases as we can simulate one 

output at a time). Although Monte-Carlo method implicitly projects the input 

space to the output space without the knowledge of their relationship, we might be 

able to improve the simulation efficiency by analyzing the relationship between the 

input space and output space. To analyze this relationship is a possible task 
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because the relationship between the input space and output space in embedded in 

the ODE system. 

In our study, we utilized the sensitivity of all initial concentrations to the 

output species concentration at different time points. The sensitivity matrix S  was 

calculated as in Equation (4.31). This sensitivity matrix provides us the 

information of how the change in the initial concentrations would affect the output 

dynamics. Then, by taking the Singular Value Decomposition (SVD) of this 

particular sensitivity matrix, we could get the most important directions in the 

sampling space of initial concentrations that affects the output. 

 

 

S =
dy
dx t=0


dy
dx t=ti


dy
dx t=tn

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

dy
dx t=ti

=

dy
dx1 t=ti



dy
dxn t=ti

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

 (4.31) 

 

 

S =UΣV = u1 u2  un⎡
⎣

⎤
⎦

σ 1 0  0
0 σ 2  0
   
0 0  σ n

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

vT1
vT2

vTn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= σ iuivi
T

i=1

n

∑

 (4.32) 

The SVD of the sensitivity matrix S  is shown in Equation (4.32). One of the 

most important applications of SVD is matrix approximation. We approximate the 

sensitivity matrix S  by ignoring small singular value and their associated singular 

vectors. We chose to keep the large singular values of which the summation is 
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larger than 90% of the summation of all singular values. In such a case, the 

approximated sensitivity matrix  S  is written as that in Equation (4.33), in which 

l  is the number of large singular values we keep. 

 
 
S = σ iuivi

T

i=1

l

∑  (4.33) 

Then, we approximate the difference of the output  Δy
  to be 

 
 
Δy = SΔx0 = σ i

i=1

l

∑ uivi
TΔx0 = σ i

i=1

l

∑ uiΔx0′ (Δx0′ = vi
TΔx0 )  (4.34) 

We can infer from Equation (4.34) that the difference of output value is 

approximately due to the difference of Δx0′ . Note that the dimension of Δx0  is 

n ×1  and the dimension of Δx0′  is l ×1. We then can interpret Δx0′  as variations 

of initial concentrations in a reduced space (l-dimension), which spanned by 

orthogonal vectors  v1,v2,,vl . When we observe a single output, l  is usually 

much smaller than n . Thus, we can reduce the sampling space of initial 

concentrations from n-dimension to l-dimension and approximate the variations of 

the output. However, random sampling in the reduced sampling space does not 

reduce the sample size significantly. As the reduced space often has extremely small 

dimension (less than 3), we try to use orthogonal sampling in the reduced sampling 

space. 

4.3.3.2 Orthogonal Sampling in the Reduced Space of Initial Concentrations 

In typical orthogonal sampling, the sampling space is divided into equally 

probable subspaces. Then all subspaces are sampled once and the population mean 

is estimated by the sample average. In our case, we used a slightly different 
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orthogonal sampling strategy. We divided the sampling space into subspaces with 

equal sizes (not equal probabilities) and then the population mean equals a 

weighted sum of the samples in all subspaces. The weight for each sample is equal 

to the cumulative probability of the subspace it is sampled from. This modified 

orthogonal sampling covers the sampling space evenly. In bistable systems, the 

larger the variations of initial concentrations are, the larger the difference between 

single cell and cell population is. Therefore, it is better to make all subspaces have 

similar variations of initial concentrations when we use only one sample to 

represent a subspace in orthogonal sampling. This is done by making the sizes of 

subspaces identical. 

As the reduced sampling space is spanned by orthogonal vectors ( v1,v2,,vl ), 

the cumulative probability in a hypercube subspace can be calculated as below in 

Equation (4.35). We previously assumed the initial concentrations of all species 

follow a multivariate Gaussian distribution with expected value µ0  and covariance 

matrix C0 . We also assumed that each species is independent of others. Thus, the 

initial covariance matrix C0  has only non-zero values on its diagonal. Assuming the 

starting and end points of a hypercube in direction vi  are pi  and pi′ , the 

cumulative probability in such a hypercube is 

 Phypercube = Fmvncdf ( ′p , ′µ0, ′C0 )− Fmvncdf (p, ′µ0, ′C0 )   (4.35) 

in which 

 

 

p =
p1

pl

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
, ′p =

′p1

′pl

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 (4.36) 
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and ′µ0  and ′C0  are projected expected values and covariance matrix in the 

reduced space calculated as 

 

 

′µ0 =
vT1

vl
T

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥l×n

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
µ0 =

v1 i µ0


vl i µ0
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⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
l×1

′C0 =
vT1

vl
T

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

C0 v1  vl⎡
⎣

⎤
⎦

 (4.37) 

Note that the projected covariance matrix ′C0  has non-zero off-diagonal 

elements. Therefore, projected/linear combinations of initial concentrations are not 

independent any more. 

With the cumulative probability of each subspace, we are able to estimate the 

population mean of the output by a weighted sum of all samples as 

 y(t) = Phypercube(i )yhypercube(i )(t)
i=1

Nsub

∑  (4.38) 

The weights are the cumulative probabilities Phypercube(i )  of subspaces and the 

number of subspace Nsub  is pre-defined. One sample is taken from the center of a 

subspace as the representative of the subspace (Figure 4.4). 
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Figure 4.4 Orthogonal Sampling. The whole sampling space is divided into subspaces with 
uniform size (blue cuboid). The number of grid spaces in all directions are N1=2, N2=3, and 
N3=4. One sample (center of the subspace, red sphere) is taken from one subspace. 

 

Hypercubes of subspaces are sliced by grid lines in the reduced space (Figure 

4.4). Since different directions in the reduced space have different significance 

according to their corresponding singular values, the number of grid spaces on each 

direction is determined by the corresponding singular value. We set the relationship 

between number of grid spaces and singluar value to be 

 
 

N1
σ 1

= N2

σ 2

== Nl

σ l

 (4.39) 

Obviously, the total number of subspaces Nsub = Ni
i=1

l

∏ . Therefore, when Nsub  

is defined,  N1,…,Nl  can be solved. Sometimes the ratio between two singular 

values can be large but Nsub  is not large. In such cases, some Ni  may be smaller 
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than 1 and we simply ignore those directions and further reduce the dimension of 

the sampling space. 

4.3.4 Case Study Using Sample Reduction 

4.3.4.1 Applying Sample Reduction to Intrinsic Apoptosis Pathway 

As shown in Section 4.3.2.3 (Figure 4.3D), Population ODEs failed to 

approximate the mean of activated caspase 3. We then apply our Sample Reduction 

method to this case. Firstly, we need to compute the special sensitivity matrix and 

its singular value decompostion (SVD) described above. We used 20 time points for 

the special sensitivity matrix and the singular values of this matrix is shown in 

Figure 4.5A. There were 5 species with non-zero initial concentrations in this 

pathway. All the 5 orthogonal vectors ( v1,…,v5 ) computed from SVD spanned the 

whole sampling spaces of initial concentrations. According to their corresponding 

singular values, the first orthogonal vector pointed the most important direction in 

the sampling space. Since the first singular value was already more than 90% of the 

sum of all singular values, we reduce the sampling space to a 1-dimentional reduced 

space, spanned by v1 . Orthogonal sampling described in Section 4.3.3.2 was used 

and the averaged concentration of activated caspase 3 ( y(t) ). To compare Sample 

Reduction and Monte Carlo simulation, we computed the normalized integrated 

squared error (ISE) using both methods to our reference (converged Monte Carlo 

simulation, yref (t) ). The ISE is defined as in Equation (4.40) and solved 

numerically. As orthorgonal sampling is not random, the ISE using Sample 

Reduction is deterministic. However, Monte Carlo simulation uses random sampling. 



 

 100 

To have a better approximation of the ISE, we again used bootstrap sampling 

(bootstrap sample size Ns=1000) to calculate the convergence of averge ISE in 

Monte Carlo simulation. 

 ISEnorm =
[y(t)− yref (t)]

2 dt
0

T

∫

yref (t)
2 dt

0

T

∫
 (4.40) 

As shown in Figure 4.5B, when we increaed the sample size, the ISE decreased 

much faster using our Sample Reduction method than using Monte Carlo 

simulation. Therefore, much smaller sample size was required in Sample Reduction 

to achieve the same accuracy. Note that the ISE is larger in Sample Reduction than 

that in Monte Carlo simulation when the sample size is larger than a threshold. 

This is because we lost information of the sampling space when we reduce its 

dimension and there is a limit of reducing ISE in Sample Reduction by increasing 

the sample size (the limit can be greater than 0). However, smaller limit can be 

achieved by increasing the dimension of the reduced space. 

As biological measurements often have large variations, 10% normalized ISE 

should be acceptable as a good approximation to the population mean. We 

therefore compared the results with 10% normalized ISE from Sample Reduction 

and Monte Carlo simulation to the reference. As shown in Figure 4.5C, Sample 

Reduction approximated the population mean as good as Monte Carlo simulation 

(both 10% normalized ISE), but Sample Reduction required much less sample size 

(N=18) than Monte Carlo simulation (N=82). Another advantage of Sample 

Reduction method is that it converges much faster than Monte Carlo simulation 
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and there is no fluctuation of the approximation because orthogonal sampling is not 

random. Figure 4.5D shows a smooth curve from Sample Reduction and a fluctuant 

curve from Monte Carlo simulation with the same sample size (N=200). The 

deterministic nature of our Sample Reduction method can also faciliate all types of 

model analysis by avoiding further sampling and averaging. 

 

Figure 4.5 Applying sample reduction to intrinsic apoptosis pathway. (A) The singular values 
from largest to smallest. The red text indicates that the first singular value is 99.98% of the sum 
of all singular values. (B) Normalized ISE calculated as in Equation (4.40) using Monte Carlo 
simulation (red curve) and Sample Reduction (blue curve). (C) Monte Carlo simulation (green 
curve) and Sample Reduction (blue curve) with 10% normalized ISE were compared to the 
reference (red curve). (D) Monte Carlo simulation (green curve) and Sample Reduction (blue 
curve) using the same sample size (N=200) were compared to the reference (red curve). 

 

4.3.5 Case Study of TGF-β Network 

As mentioned in Chapter 2 (Section 2.2.4), previous work has studied an 

upstream network of TGF-β (Venkatraman et al., 2012). This network mainly 

consists of two TGF-β activators: plasmin and TSP1, and the urokinase system for 
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plasmin activation. Note that TGF-β regulates PAI1 and TSP1 by inducing their 

gene expression through Smad signaling pathway (Figure 2.3). In Venkatraman’s 

model, the Smad signaling pathway was built as a black box of a single reaction. 

All species in this network present in the ECM and all reactions take place in the 

ECM except the Smad signaling. Thus, all species are secreted by a number of cells 

and their concentrations are averaged from a population of cells. Similar to what 

we have seen in previous examples of other signaling pathways, TGF-β may also 

induce different responses of Smad signaling in different cells. The averaged 

dynamics of PAI1 and TSP1 may be different from the dynamics of these proteins 

secreted by a single cell. Previous work used a black box for the Smad pathway and 

assumed all cells are identical. Since the Smad pathway exists in both feedback 

loops in this network, it is critical for the bistable behavior of the whole system. 

Therefore, we wanted to study whether the cell-to-cell variability will affect the 

bistable behavior of this network.  

To achieve our goal, we need to integrate our Smad pathway model (Model 11, 

Section 3.3.10) into the upstream network of TGF-β activation as a replacement of 

the original black box. We also considered cell-to-cell variability of the outcome of 

Smad signaling pathway. This actually makes the integration of two systems very 

difficult as the species in the upstream network are already averaged from a 

population of cells. Thus, it is an integration of a population level network in the 

ECM and a population of single cell models inside cells. More importantly, PAI1 

and TSP1 are mixed quickly (roughly at each time step of simulation) from 

secretion of different cells. Although this task may cause a lot of problems for the 
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sampling based methods such as Monte Carlo simulation, it is ideal to use our 

Population ODE since the outcome of the Population ODE is averaged dynamics of 

a population of cells. Thus, the upstream network of TGF-β activation and the 

Population ODE of Smad signaling pathway can be integrated as a whole ODE 

system and we analyze this system as the same as other ODE systems. As we have 

seen in Chapter 3, Smad signaling did not show a bistable behavior. We believe the 

Population ODE can well approximate its population dynamics. 

As same as the previous examples, we assumed that the cell-to-cell variability 

was only due to different initial concentrations of species. The detailed settings of 

the integration are described in the Materials and Methods (Section 4.2). In the 

integrated model, there were two parameters kp1 and kp2 of which the meaning 

had been changed. They previously represented the production rates of TSP1 and 

PAI1 induced directly by TGF-β in (Venkatraman et al., 2012). In the integrated 

system, TSP1 and PAI1 expression was not induced by TGF-β but Smad complex 

in the nucleus, which is the output species of Smad signaling pathway. Therefore, 

the values of kp1 and kp2 were different in the integrated model. Then, we did the 

“going-up and coming-down” simulation as in (Venkatraman et al., 2012) regarding 

the kp1 and kp2 parameters. The “going-up and coming-down” simulation was done 

by initiating the system at a mono-stable steady state (i.e. low value of a certain 

parameter) and then increasing the parameter and simulate the steady state of 

TGF-β to get the going-up curve (blue curves, Figure 4.6A-B) until the system 

becomes mono-stable again. After that, the parameter was decreased and steady 

state of TGF-β was simulated. As shown in Figure 4.6, there was a range of kp1 
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and a range of kp2 at which the going-up and coming-down curves did not overlap. 

Within these ranges, the system had two steady states even if the parameters (kp1 

and kp2) were fixed. This means that the integrated system could also be bistable 

within certain ranges of kp1 and kp2.  

 

Figure 4.6 Going-up and coming-down simulation of integrated pathway of TGF-β activation and 
Smad signaling. (A) Simulations with increasing kp1 from 0 to 0.05 (blue dots) and decreasing 
kp1 from 0.05 to 0 (red dots). (B) Simulations with increasing kp2 from 0 to 0.1 (blue dots) and 
decreasing kp2 from 0.1 to 0 (red dots). 

4.4 Discussion 

In this study, we developed two methods to facilitate model simulation of the 

dynamical behavior of a population of cells. The first method was a new ODE 

system, Population ODE, derived from ODE models of single cell. The Population 

ODE could well approximate the expected value of species concentration in a 

population of cell in most cases. We have tested Population ODE in some well-

known signaling pathways including EGFR pathway and NFκB pathway and 

Population ODE can well approximate the population behavior with a single 

simulation. Because Population ODE failed to approximate the cell-population 

behavior in bistable system, we developed our second method, Sample Reduction. 

Sample Reduction is a sampling-based method, similar to Monte Carlo simulation. 

� ���� ���
 ���� ��� ��� ����

������

������
�����
������

����	
����	�
����	�

����		

������ �
���������!�

�����������

��
��
#�
��
��

�"
���
��
��

� ���� ���� ���	 ���
 ����

������

�����
������
������

����	
����	�
����	�

����		

������!�
���������"�

�����������

��
��

$�
� 

��
�#

�� 
� 

��

A B



 

 105 

However, through significantly reduction of the sampling space, we were able to 

significantly reduce the sample size required, which makes the simulation much 

faster.  

Cell-to-cell variability is a common phenomenon in many types of cells. Since 

typical computational modeling of signaling pathway simulates single-cell behavior 

while most biological experiments measures species from a population of cells, there 

is often a discrepancy between computational models and bulk experiments. Monte 

Carlo simulation can simulate cell-population behavior but it is often time 

consuming. Therefore, developing algorithms for fast simulation of population 

behavior can be beneficial for most computational modeling studies, not only our 

study of TGF-β networks. Our methods are not only faster than Monte Carlo 

simulation. Population ODE also has capability of using all kinds of analysis which 

can be applied to typical ODE models. The case of integrating TGF-β upstream 

network and downstream signaling shows the advantage of using Population ODE. 

Because we wanted to integrate a network outside the cell and a population of 

pathways inside cells, it is ideal to have a system as a whole to represent a 

population of cells. Population ODE can serve the purpose because it is still an 

ODE system. It may also be useful in other cases because the methods we use for 

ODE system can be directly applied to Population ODE as an analysis of the 

population behavior. In an integrated TGF-β networks, perturbation analysis or 

sensitivity analysis could be applied to both the upstream species and downstream 

species in the same system. The integrated model of TGF-β networks is a better 

tool to predict combination of drug targets. Synergistic effect is often seen in a 
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bistable system. A combination of upstream target and downstream target may 

exist and the integrated model has the capability of finding this kind of 

combination.  

  In the case of integrating TGF-β networks, we have seen that the bistable 

behavior still maintained even if we considered cell-to-cell variability. This bistable 

behavior was compared to a co-culture experiments in which hepatocytes and 

hepatic stellate cells (HSCs) were uniformly seeded in the culture dish 

(Venkatraman et al., 2012). In this case, although cells express TSP1 (in HSCs) 

and PAI1 (in both hepatocytes and HSCs) differently, the secretion was transient 

and the molecules were mixed in the culture medium quickly before they reach any 

steady state. However, in in vivo situation of liver fibrosis, the fibrotic regions do 

not distribute evenly. Therefore, two steady states of TGF-β may exist at different 

regions of liver tissue. The concentrations of molecules may not be affected mainly 

by the mixing effect but mainly by the stability of steady states. This spatial 

property of liver fibrosis led us to move one step further to a tissue-level model to 

study the spatial dynamics of a bistable system. 
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5  Chapter 5: Diffusion Model of TGF-β Activation 

Network 

5.1 Introduction 

Liver fibrosis is a wound-healing response caused by injury of liver parenchyma. 

Different types of liver injury could lead to different patterns of pathogenesis in 

liver fibrosis (Hernandez-Gea and Friedman, 2011). For example, chronic hepatitis 

C causes fibrotic septa connecting portal tracts and central vein; and biliary fibrosis 

has the pattern of portal-portal fibrotic septa. Among these different patterns, 

there is a common phenomenon that fibrotic region does not distribute uniformly in 

liver tissue. It is often seen that part of the tissue becomes fibrotic with 

accumulation of ECM and large number of hepatic stellate cells (HSCs) (Cassiman 

et al., 2002, Knittel et al., 1999). The fibrotic region is surrounded by normal tissue 

with hepatocytes as the dominant cell type and less ECM. 

Previously we have briefly introduced Venkatraman’s bistable model of TGF-β 

activation (Venkatraman et al., 2012). The two steady states of this model are 

related to normal and fibrotic states in liver tissue. Here we introduce the two 

states in more detail. Figure 5.1 shows the TGF-β activation network in 

Venkatraman’s model. The two major players: plasmin and TSP1 are expressed 

mainly in hepatocytes (red cells) and activated HSCs (blue cell) respectively. In 

normal liver tissue, hepatocytes are dominant and also the negative feedback in this 

network (left part of the diagram in Figure 5.1). On the other hand, in fibrotic 

tissue, hepatocytes are damaged and activated HSCs are much more than that in 
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normal tissue. Therefore the positive feedback (right part of the diagram in Figure 

5.1) is dominant in fibrotic tissue. It was shown in Venkatraman’s model that one 

steady state of the system had high levels of TGF-β and TSP1 and low level of 

plasmin. This is consistent with the fibrotic state in liver when the positive 

feedback is dominant. The other steady state shown in Venkatraman’s model has 

low levels of TGF-β and TSP1 and high level of plasmin. This can be explained by 

the dominance of the negative feedback in normal state in liver because plasmin 

can inhibit TSP1 irreversibly to break the positive feedback loop. The reason why 

TGF-β is relatively low when the negative feedback is dominant is that plasmin is a 

relatively weak activator of TGF-β comparing to TSP1. In summary, TGF-β-low 

and TGF-β-high steady state in this network can be respectively related to normal 

state and fibrotic state of liver tissue. 

 

Figure 5.1 The schematic diagram of TGF-β activation network in liver fibrosis. The red cells 
represent hepatocytes and the blue cell represents activated HSCs (fibroblast-like). 
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High level of TGF-β in the fibrotic state may induce more activation of HSCs 

and then more ECM secretion. It has been predicted and experimentally validated 

that plasmin, a representative species of the normal state, has potential to switch 

fibrotic state to normal state (Venkatraman et al., 2012). Based on Venkatraman’s 

model, we believe that the regression of liver fibrosis might be led by switching of 

fibrotic state to normal state. As we mentioned, fibrotic tissue is often surrounded 

by normal tissue. We thought that computational modeling could help us initiate 

studies of the spatial effect between normal tissue and fibrotic tissue. The molecule 

exchange between normal and fibrotic tissue could affect the steady state of 

molecules and further affect the state of the cells and even tissue. On the other 

hand, the accumulation of ECM in liver fibrosis could block the molecule exchange. 

We therefore asked how the two steady states in TGF-β activation network would 

affect each other and whether the accumulation of ECM could affect the 

reversibility of liver fibrosis. 

In this study, we built our so-called diffusion model on top of Venkatraman’s 

model of TGF-β activation network to allow species in this network to diffuse in 

space. The diffusion process in this model was simulated by a finite-element 

approximation. Instead of using partial differential equations (PDE), we discretized 

the space into small blocks/regions (Figure 5.2) and the diffusion of species between 

adjacent blocks was modeled by mass action reactions and ODEs. ODE modeling of 

the diffusion process allowed us to easily integrate the model of TGF-β activation 

network with diffusion, and to easily simulate the diffusion model. 
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Our diffusion model predicted a solution of a traveling wave in space. The wave 

propagated because one steady state affected the other steady state nearby and 

made it to switch. The model also predicted that the wave direction was always 

from TGF-β-low (normal) state to TGF-β-high (fibrotic) state. This prediction is 

similar to liver fibrosis regression and was also shown to be highly robust. We also 

experimentally confirmed that the central species of the normal state, plasmin 

could be blocked from reducing TGF-β activation by the low diffusion rate. Finally, 

we showed that our model not only predicted the direction of the wave, but also 

could serve as a platform to compute the wave speed. 

 

Figure 5.2 Graphical representation of the diffusion model. The whole space was discretized into 
small blocks and the model of TGF-β activation network (Venkatraman et al., 2012) was 
included in every block. Different color represents different concentration of species. 
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5.2 Materials and Methods 

5.2.1 Simulation of the Diffusion Model 

The diffusion process in our diffusion model was approximated by discretization 

of space and mass action reactions. As shown in Figure 5.3, a species P could have 

different concentrations in different regions of the space. We modeled the diffusion 

of species P as a set of reactions in Equation (5.1). 

 

Figure 5.3 Mass action reaction as an approximation of the diffusion of a species. 

 

 
 
P0

kdiff

kdiff
   P1

kdiff

kdiff
  

kdiff

kdiff
   Pn  (5.1) 

Here the diffusion rate (kdiff) depends on the size of the discretized space and 

its relationship to the diffusion coefficient (D) in physics can be expressed as in 

Equation (5.2). In this equation, D is defined to have the unit of cm2/s. Thus, we 

defined the length of a region as l  (assuming discretization is the same and uniform 

in all dimensions) to have the unit of cm. Then kdiff has the unit of s-1.  

 kdiff = D
l2

 (5.2) 
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Then, we were able to build the diffusion model as a whole ODE model. 

Assuming the species concentrations in a region i is a vector xi , we express the 

species concentrations in all regions in the whole space as a long vector as below. 

 

 

x =
x1

xn

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 (5.3) 

Because the local reactions are the same in all regions and the diffusion 

reactions are all first order, the whole diffusion model could be written as in 

Equation (5.4). The function F(t,xi )  is the same for all regions. The term Dx  

represents the diffusion reactions and note the matrix D  is different from the 

diffusion coefficient, D, which is a scalar. 

 

 

dx
dt

=
F(t,x1)


F(t,xn )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+ Dx  (5.4) 

The diffusion model could be large depending on the number of regions. 

Fortunately, the diffusion system has an explicit form of the Jacobian matrix so we 

can simulate the system efficiently. The Jacobian matrix of the whole system is as 

in Equation (5.5). Simulation was done using Matlab ODE solver ode15s.  

 

 

J =

∂F(t,x1)
∂x1

0 0

0  0

0 0 ∂F(t,xn )
∂xn

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

+ D  (5.5) 
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5.2.2 Stochastic Simulation of ECM Accumulation 

In this simulation, we assumed two stochastic events of ECM production and 

degradation. The rates of these two events were determined by TGF-β level as in 

Equation (5.6) below. The parameter kECM determined how fast ECM was regulated 

by TGF-β. We also set an upper bound ([ECM]max) and a lower bound ([ECM]min) 

for ECM to avoid negative or extremely high amount of ECM. [TGFβ]low was the 

low steady state of TGF-β. This made the production rate and degradation rate 

balanced when TGF-β was at its low steady state (normal state). 

 
Rprod = kECM [TGFβ ]([ECM ]max − [ECM ])

Rdeg = kECM [TGFβ ]low ([ECM ]− [ECM ]min )

⎧
⎨
⎪

⎩⎪
 (5.6) 

We simulated these two stochastic reactions using binomial τ -leap algorithm 

(Chatterjee et al., 2005). The amount of ECM was initated from 1 at all regions in 

space. After the amount of ECM was changed, we divided the diffusion rates (kdiff) 

for two adjacent regions by the averaged ECM in these two regions. The diffusion 

model was continuously simulated and only kidff in the diffusion model needs to be 

updated after each time step of stochastic simulation. As we set the kECM to be 

much smaller than the reaction rates, the change of ECM was much slower than 

changes of all other species and the time step of stochastic simulation is large 

enough for the effect of diffusion to be stablized.  

5.2.3 Cell Culture Experiments 

T6 cell line was cultured for 3 days in 1ml of DMEM culture medium with 10% 

FBS to make sure the cells were activated (T6 cells undergo self-activation on hard 
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surface such as plastic). In the groups without collagen, cell culture insert was not 

used and plasmin was added directly into the well. In those groups with collagen, 

collagen solution was coated on the PET membrane of culture inserts and was 

incubated overnight at 37°C. After that, plasmin was diluted in 500ul of DMEM 

medium and the solution was added into the culture insert. In such cases, the 

concentration of plasmin was calculated as the total amount of plasmin added 

divided by the total volume of medium in the well and the insert (1.5ml). 

 

5.3 Results 

5.3.1 Diffusion Effect of Bistable System Shows a Traveling Wave in 

Space 

It has been proven mathematically that diffusion effect of simple bistable 

system exhibits a wave propagation behavior in space (Bates et al., 2006). It is also 

known from the theoretical study that the wave speed is related to the diffusion 

coefficient D. However, the direction of the traveling wave is often non-obvious in 

complex systems like TGF-β activation network, as it depends on the parameters of 

the system. We simulated our diffusion model to first confirm the traveling wave 

behavior and secondly to see the direction of the wave if it exists. 

We did multiple simulations of the diffusion model in one-dimensional space 

with different diffusion rates (kdiff, please see the relationship between kdiff and the 

diffusion coefficient D in Material and Methods, Section 5.2.1). In each simulation, 

diffusion rate was the same for all species for simplification. Representative 
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simulation results are shown in Figure 5.4. In these simulations, we initiated the 

system with 1 region at TGF-β-low (normal) steady state and other 99 regions at 

TGF-β-high (fibrotic) steady state. As shown in Figure 5.4A, there was an obvious 

traveling wave from normal state to fibrotic state. After we decreased the diffusion 

rate, the traveling wave still existed but the wave speed was slower (Figure 5.4B). 

We also decreased the diffusion rate to extremely low values. For better 

visualization, we initiated the system with half normal and half fibrotic states in 

this case. The traveling wave completely disappeared when the diffusion rate was 

too low (actually lower than a threshold, data not shown) even though we simulate 

the system for very long time (i.e. 1010s, Figure 5.4C). This disappearance of the 

traveling wave was an artifact of the discretization. We will show the relationship 

between the wave speed and the diffusion rate (kdiff) as well as the diffusion 

coefficient (D), and theoretical existence of traveling wave at low diffusion rate. 
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Figure 5.4 Traveling waves in the diffusion model of TGF-β activation network. Simulation of 
TGF-β concentration in space was plotted at 10 different time points. The color in the curves 
indicates the concentration of TGF-β (red: high concentration; blue: low concentration). (A) 
Simulation of 1D diffusion with the diffusion rate kdiff=10. The model was simulated from 0 to 
100s. (B) Simulation of 1D diffusion with the diffusion rate kdiff=0.1. The model was simulated 
from 0 to 100s. (C) Simulation of 1D diffusion with the diffusion rate kdiff=10-7. The model was 
simulated from 0 to 1010s. 

 

Note that the traveling wave was always directed from TGF-β-low (normal) 

steady state to TGF-β-high (fibrotic) steady state. Superisingly, this directional 

effect between normal and fibrotic regions is similar to liver fibrosis regression in 

vivo because fibrosis regresses spontaneously if there is no outside perturbations (i.e. 

liver injury) to the system. However, this direction was only a prediction of the 

model and it could be affected by the parameters in the local TGF-β activation 

network and different diffusion rates of different species. Although it is difficult to 
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prove the direction from normal to fibrotic tissue experimentally, we can at least 

analyze how robust this prediction is. 

5.3.2 Robustness Analysis of the Traveling Wave Direction 

In the robustness analysis, we initiated the diffusion model with half normal 

state and half fibrotic state in space. After perturbing parameters such as diffusion 

rates and rate constants, we simulated the system to see the direction of the 

traveling wave. It was possible that some combinations of parameters could result 

in no traveling wave (artifact of discretization) or even making the system mono-

stable. We therefore categorized the simulation results with different parameters to 

four categories: 1) traveling wave from normal state to fibrotic state; 2) traveling 

wave from fibrotic state to normal state; 3) no traveling wave; 4) mono-stable 

system (Figure 5.5). It is possible that different species could have different 

diffusion rates in the ECM because of their molecular weights, charge and different 

affinities to ECM proteins. Therefore, we randomly varied diffusion rates in the 

range of 10-2 to 102 for different species. Each polygon in the polar plot in Figure 

5.5A shows a combination of different diffusion rates for all species and the color of 

the polygon indicates the category of simulation results (listed on the top of the 

figure). All polygons are blue in this case suggested that the wave direction from 

normal state to fibrotic state is highly robust to diffusion rate as well as the 

differences of diffusion rates among species. The rate constants in local systems 

could also affect the wave direction. We then varied all rate constants randomly 

with less than 20% perturbation for each rate constants. We chose the range 20% 

based on previous robustness analysis that about 80% of the models were still 
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bistable with 20% perturbation of each rate constants (Venkatraman et al., 2012). 

As shown in Figure 5.5B, most of the models showed traveling wave from normal 

to fibrotic state. This suggested that the wave direction from normal to fibrotic 

state was also highly robust to the change of reaction rates in local systems. We 

can also infer that this traveling wave direction depends more on the structure of 

TGF-β activation network (biologically validated) but less on the kinetic rates. 

 

Figure 5.5 Robustness analysis of traveling wave direction. Top of the figure shows 4 categories of 
the simulation results with color labels. (A) The log of 18 diffusion rates (kdiff) for 18 species was 
plotted on the polar plot along 18 different angles. The radius represents the log of each kdiff. A 
combination of 18 diffusion rates was connected to a ploygon and the color labels the category of 
simulation results. (B) The normalized values of 28 rate constants was plotted on the polar plot 
along 28 different angles. The radius represents the normalized value of each rate constant. A 
combination of 28 rate constants was connected to a ploygon and the color labels the category of 
simulation results. 

5.3.3 Wave Speed, Diffusion Rate and Diffusion Coefficient 

Our diffusion model could predict the direction of traveling wave and our 

analysis showed that the wave from normal state to fibrotic state was robust. This 

diffusion model is also capable of predicting the speed of the wave. The wave speed 
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highly depends on the diffusion rates of different species, and also the reaction rates. 

Although these rates were not validated and our prediction of wave speed could be 

inaccurate, our model can still be used to compare relative change of speed at 

different conditions. We also show that our model simulation could be a platform 

for computing the wave speed when measurements of certain rates are available. 

 We again simulated the diffusion model in one-dimensional space for 

computing of the wave speed. As we have shown that the direction of the wave was 

only from normal state to fibrotic state, we initiated the system with 5 region at 

normal state (TGF-β low) and 95 other regions at fibrotic state (TGF-β high). We 

have also shown that too small kdiff could cause no wave propagation in simulation 

(artifact of discretization). Thus, we set kdiff to be large enough to have traveling 

wave in simulation. To compute the speed of the wave, we snapshot the wave front 

position at a frame rate of 100s (Figure 5.6A). The wave front position and time 

showed a clear linear relationship (Figure 5.6B). This means that the wave speed 

was a constant when it propagated through the space and we could easily compute 

the wave speed as the slope of the straight line in Figure 5.6B. Note that the wave 

speed we calculated has the unit of region/s. 
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Figure 5.6 Computing the speed of the traveling wave based on simulations. (A) Wave front at 
three time frames (ti-1, ti and ti+1). The exact position of the wave front was computed as the 
position having TGF-β concentration closest to the mean of two steady-state concentrations of 
TGF-β. (B) The wave front position at 11 time frames (red circles) and the linear curve-fit to the 
red circles (blue line). (C) The wave speed calculated with different kdiff (10-3 to 10-1) versus the 
reciprocal of the length of the subspace (red circle). The blue line is the linear curve-fit to the red 
circles. (D) The relationship between the wave speed and diffusion coefficient. 

 

Then we wanted to examine the relationship between kdiff and the wave speed. 

We varied kdiff (from 10-3 to 10-1) and computed the wave speed for each kdiff 

using the method we described above. What does the relationship between kdiff and 

the wave speed (region/s) mean? According to the relationship between the 

diffusion rate (kdiff) and diffusion coefficient (D) in the Materials and Methods 

(Section 5.2.1), the change of the diffusion rate (kdiff) in the diffusion model could 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x 10−9

0

1

2

3

4

5

6

7

8

9 x 10−6

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0.004

0.006

0.008

0.01

0.012

0.014

0.016
7*

)�
ȕ�
&
RQ
FH
QW
UD
WLR
Q

/RFDWLRQ

:
DY
H�
)U
RQ
W�3

RV
LWL
RQ

7LPH�V

0 10 20 30 40 50 60 70 80 90 100
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

:
DY
H�
6
SH
HG
��U
HJ
LR
Q�
V�

��OHQJWK�

:
DY
H�
6
SH
HG
��F
P
�V
�

'LIIXVLRQ�&RHIILFLHQW��D, FP2�V�

A B

& D

WL�� WL WL��



 

 121 

mean either the change of the diffusion coefficient (D) or the change of the length (l) 

of the subspace, or even both. Then, is the wave speed dependent on kdiff or D? To 

answer this question, we set the diffusion coefficient D=10-5cm2/s, which is 

approximately the coefficient of proteins diffusing in water. With the kdiff values 

we set for model simulation (10-3 to 10-1), we can calculate the length of the 

subspace l = 10−5

kdiff
(cm)  according to Equation (5.2). Then we plotted the wave 

speed (region/s) versus 
1
l

. Figure 5.6C shows a linear relationship between wave 

speed (region/s) and 
1
l

. This means that the real wave speed (cm2/s), which equals 

the wave speed (region/s) times the length of subspace/region l, is a constant. 

Therefore, we confirmed that the wave speed was only affected by the diffusion 

coefficient D when the rate constants were fixed. The slope of the straight line in 

Figure 5.6C is actually the real wave speed (cm2/s). We then plotted the 

relationship between the real wave speed and the diffusion coefficient D Figure 

5.6D. The wave speed increases when the diffusion coefficient increases. 

5.3.4 Plasmin Could be Blocked From Inhibiting TGF-β Activation by 

Low Diffusion Coefficient 

Our model predicted that low diffusion coefficient could cause slow wave 

propagation, meaning that normal state switched its adjacent fibrotic state more 

slowly. When normal state switched its adjacent fibrotic state, plasmin played a 

central role because it could break the positive feedback loop of TSP1 and then 

inhibit TGF-β activation. We therefore wanted to experimentally test whether the 
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inhibition of TGF-β activation could be blocked by low diffusion coefficient. We 

used a cell culture system with cell culture inserts to do the test. As shown in 

Figure 5.7A, we cultured T6 cell line (rat HSCs) at the bottom of the well. Then 

we added plasmin into the system either directly in the well or in the culture insert 

with a layer of collagen gel slowing the diffusion of plasmin from top chamber to 

the bottom chamber. Plasmin has a short half life in culture medium so its 

inhibition effect decreases significantly after certain time. We measured active 

TGF-β after 2hr treatment of plasmin because the inhibition effect was maximized 

at 2hr (data not shown). Figure 5.7B shows the ELISA measurement of active 

TGF-β in our culture system. In the control group without plasmin treatment, T6 

cells express high level of active TGF-β. Active TGF-β level was significantly 

reduced with high level of plasmin (500ng/ml). However, this reduction of TGF-β 

was significantly blocked by a thick layer of collagen (500ul in 6-well plate). This 

experiment confirmed that low diffusion coefficient (or excessive ECM) could block 

the effect of plasmin inhibiting TGF-β activation. 

 

Figure 5.7 Plasmin could inhibit TGF-β activation but the inhibition could be blocked by low 
diffusion coefficient (thick collagen). (A) The experimental design using cell culture insert. T6 
cells were cultured at the bottom (cell layer). The cell culture insert has a porous PET membrane 
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at its bottom. Collagen gel was coated on the PET membrane. Plasmin was added either into the 
culture insert or directly into the culture medium. (B) ELISA measurement of active TGF-β in 
the culture medium (mean of 3 biological replicates). Different concentration of plasmin were 
added (low: 200ng/ml; high: 500ng/ml). Different amount of collagen was coated in the culture 
insert for 6-well plate (low: 200ul; high: 500ul). The asterisk indicates significant changes between 
groups (p<0.05, t-test was used). 

 

5.3.5 Stochastic Simulation of ECM Accumulation Under Chronic 

Injury 

Based on the fact that plasmin could be blocked by excessive ECM, it is 

possible that the excessive ECM localized in the fibrotic tissue could block plasmin 

from its adjacent normal tissue and then slow down the switch of fibrotic state to 

normal state (a sign of fibrosis regression). It is known that high level of TGF-β 

could induce activation of HSCs and secretion of ECM proteins . We then wanted 

to simulate the effect of TGF-β-high steady state on slow accumulation of ECM. 

We did not know how exactly ECM proteins were regulated by TGF-β steady 

states and we simply simulated this as two stochastic events: ECM production and 

degradation. The firing rates of these events depended on TGF-β levels. After firing 

a event of ECM production or degradation, the amount of ECM in a certain region 

in space was changed, we then changed the diffusion rates according to the amount 

of ECM. The detailed setup and simulation method of this stochastic model are 

described in the Materials and Methods (Section 5.2.2).  

After setting up the model, we initiated the model with all normal steady states 

in the whole space. Then, we introduced repeated injury, represented by sudden 

increase of TGF-β, to simulate liver fibrosis caused by chronic injury. The 

simulation result is shown in an attached movie file (Movie_5.1.mov). We can see 
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from the movie that at early stage, fibrotic state could be recovered back to normal. 

However, when ECM slowly accumulated, the wave speed (speed of regression) 

becomes slower and it was more and more difficult for the normal regions to switch 

the state of the fibrotic regions. Interestingly, this simulation result is similar to 

liver fibrosis progression in vivo. In most cases, with mild acute injury, fiborsis 

could regress after the injury is removed, while fibrosis progresses when the injury 

is chronic. 

 

5.4 Discussion 

In this study, we built a diffusion model of TGF-β activation network. This 

model simulated how two steady states of a bistable system would affect each other 

in space. The simulation results first showed a traveling wave from normal state to 

fibrotic state. We further confirmed by computational analysis that this direction of 

wave was robust. Our model could also predict the speed of the traveling wave and 

it showed a positive correlation between diffusion coefficient D and wave speed. 

Our experiment of plasmin treated HSCs suggested that plasmin could be blocked 

from inhibiting TGF-β activation by low diffusion. Since plasmin was a major 

player in the wave from normal state to fibrotic state, our experimental result was 

consistent with the prediction that low diffusion coefficient was correlated to low 

wave speed. Based on the experimental test and model prediction, we further added 

stochastic change of ECM into our diffusion model. With this model, we were able 

to simulate the effect of repeated injury causing accumulation of ECM and slowing 
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down the speed of regression. This predicted behavior is consistent with the 

observations in liver fibrosis. 

This work is an initiation of studying spatial effect in liver fibrosis and other 

biological processes. Observation of dynamic changes of molecules or cells in vivo is 

still a challenging task in biological studies. However, computational modeling can 

handle the spatial dynamics quite well. In our study, we predicted a traveling wave 

of a bistable system in space. We also predicted that the wave speed could be 

significantly affected by the amount of extracellular matrix. It would be good if 

future studies validated our model predictions. Validating the traveling wave is a 

challenging task. First of all, bistable behavior in the extracellular matrix is 

difficult to measure. This is mostly because the molecules are not as concentrated 

as those in cells. Reporter genes or reporter cells may be used in the system as an 

indicator of the TGF-β level in the extracellular matrix, for example. Secondly, 

observing dynamical change in the extracellular matrix is also difficult. To validate 

the traveling wave, future work might still need to measure steady state changes in 

two chamber of culture systems. Perturbation can also be applied to the system to 

see if certain perturbation can change the direction of the traveling wave. This 

could further support the existence of traveling wave. Tissue imaging can also be 

used to study the effect of diffusion in liver fibrosis. Fluorescence-labeled proteins 

can be observed in tissue slice and its location can be easily determined from the 

images. The disadvantage of tissue imaging is that we cannot observe dynamic 

changes of the concentration of localization of molecules from tissue slice, but 

studies using tissue imaging is more relevant to liver fibrosis than cell culture 



 

 126 

studies. Our modeling could also be used to generate interesting predictions which 

can be tested by more static measurements such as imaging of fixed tissue samples. 

Taking our study as an example, our final perdition of the repeated injury suggests 

that ECM accumulation in the fibrotic region could block the anti-fibrotic effect in 

its neighbor. Not only the effect from the normal tissue, but also the treatments 

outside the fibrotic region could be blocked. Therefore, treatments targeting the 

fibrotic region should be more efficient and might be even necessary.   
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6  Chapter 6: Conclusion 

In this thesis, we used computational and systematic analysis to study TGF-β 

related regulations in liver fibrosis at three levels: cellular level, cell population level 

and tissue level. 

We first studied TGF-β signaling pathway within cells. In this part of study, 

tightly coupled computational analysis and experiments suggested that current 

knowledge of negative regulations in this pathway could not explain the dynamics 

of phospho-R-Smad. We then sought alternative mechanisms extensively using 

computational analysis. We ruled out many possible mechanisms and we found that 

PPM1A upregulation could not be ruled out by our modeling studies. With the 

support of biological experiments, we finally concluded with a model which could 

explain all measured data from both literature and our experiments. This final 

model was also capable of explaining a contradiction in the literature. This level of 

understanding of the negative regulations in TGF-β signaling pathway could not be 

achieved from only a biological point of view. Computational modeling and systems 

biology approach gained us further insights into observed phenomenon and led us 

to discover novel mechanism. 

Motivated by previous study of TGF-β activation network in the ECM and the 

fact that cell-to-cell variability is common in many types of cells, we wanted to 

integrate our TGF-β signaling pathway within cells with the TGF-β activation 

network outside the cell. The integration would obviously affected by the cell-to-

cell variability and we wanted to simulate a population of cells in a faster way. We 
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then focused on developing two algorithms to efficiently approximate the species 

concentrations in a population of cells based on single-cell models. We tested the 

performance of our algorithms in some well-known pathway models and applied one 

of our algorithm, Population ODE to the problem of integrating TGF-β activation 

network and intracellular signaling pathway. Population ODE was used to 

approximate a population of intracellular pathways and the Population ODE (not 

the model for intracellular pathway) was integrated with the TGF-β activation 

network outside the cells. Population ODE is ideal for this integration because it is 

not sampling based. Our algorithms also have potentials to be applied to other 

systems when cell-to-cell variability needs to be considered. 

Inspired by the simulation of a population of cells in liver fibrosis and the fact 

that fibrotic tissue is often distributed unevenly in liver fibrosis, we moved one step 

further from a population of uniformly distributed cells to spatially localized 

different states of tissue. The bistability of the TGF-β activation network is a good 

representation of two states of tissue in liver fibrosis, normal state and fibrotic state. 

It is difficult to observe in vivo how fibrotic tissue and normal tissue could affect 

each other in space. However, our in silico simulations could generate meaningful 

predictions. Our model simulations predicted a robust behavior that normal state 

could switch its adjacent fibrotic state and formed a traveling wave of regression. 

The speed of the wave could be reduced by excessive ECM. The effect of plasmin 

on inhibiting TGF-β activation was confirmed experimentally to be blocked by low 

diffusion. Our model was also capable to predicting the effect of repeated injury in 

liver fibrosis. This prediction is consistent with the fact that only repeated injury 
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could cause continuous accumulation of ECM. This prediction also suggested that 

treatments targeting fibrotic region might be more efficient. 

6.1 Future Work 

With the understanding of TGF-β regulations in liver fibrosis at multiple levels 

and multiple scales, we have improved the models and systematic studies of TGF-β 

and its regulations in liver fibrosis. 

One of the future perspectives could be experimental validation of detaild 

mechanism of PPM1A upregulation. Our model analysis suggested how PPM1A 

could be upregulated by stabilization, but how each step of interaction happens 

need to be validated by more biological studies. This could be a new biological 

project and it could be guided by our current model. 

Another future work could be improvement of our algorithms of approximating 

cell-population behavior. There is still some room for improvement such as reducing 

time steps in Population ODE simulation and better choice of the sensitivity 

matrix in Sample Reduction. It would be also great if these algorithms could be 

integrated into parameter estimation methods. Then single-cell models could be 

fitted to bulk experiment without the assumption that cells are identical. Applying 

our algorithms to other kinds of analysis such as bifurcation analysis could also be 

interesting. 

A simple assumption of diffusion could possibly explain the progression of 

chronic liver disease. The diffusion model may open a new door to the field of liver 

fibrosis or even other biological systems. Both computational and biological studies 
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could consider more about the spatial behaviors. For example, late stage of liver 

fibrosis, cirrhosis is characterized by destruction of blood vessels in liver tissue. It is 

generally considered that cirrhosis is hard to be reversed. How the spatial change of 

liver tissue could result in irreversibility remains a question. Studies focusing on the 

spatial properties may help us answer this kind of questions. 
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8.1.1 Appendix Tables of Smad Pathway Models 

  



 

 141 

Table 8.1 Initial Concentrations (I.C.) in nM. Nuclear species have been expressed relative to the 
concentrations in cytoplasm. 

 

  

Species Name Species Description I.C. Reference 
TGF-β The TGF-β ligand 80 (Klipp 2007) 
T1RSurf The type I receptor on the cell surface 0.237 (Klipp 2007) 
T1RCave The type I receptor in the caveolae 2.092 (Klipp 2007) 
T1REE The type I receptor in the early endosome 2.06 (Klipp 2007) 
T2RSurf The type II receptor on the cell surface 0.202 (Klipp 2007) 
T2RCave The type II receptor in the caveolae 1.778 (Klipp 2007) 
T2REE The type II receptor in the early endosome 1.148 (Klipp 2007) 
pT2RSurf Ligand-bound type II receptor on the cell surface 0  
pT2RCave Ligand-bound type II receptor in the caveolae 0  
pT2REE Ligand-bound type II receptor in the early endosome 0  
LRCSurf The ligand-receptor complex on the cell surface 0  
LRCCave The ligand-receptor complex in the caveolae 0  
LRCEE The ligand-receptor complex in the early endosome 0  
T1R:T2R The T1R-T2R complex released from LRC 0  
RI The receptor inhibitor SB-431542 600 (Schmierer 2008) 
LRCEE:RI The complex of the receptor inhibitor and LRC 0  
LRC:Smad2 The complex of Smad2 and LRC 0  
Smad2Cyt Smad2 in the cytoplasm 494.67 (Klipp 2007) 
Smad2Nuc Smad2 in the nucleus 76.76 (Klipp 2007) 
pSmad2Cyt Phosphorylated Smad2 in the cytoplasm 0  
pSmad2Nuc Phosphorylated Smad2 in the nucleus 0  
Smad4Cyt Smad4 in the cytoplasm 666.65 (Klipp 2007) 
Smad4Nuc Smad4 in the nucleus 666.65 (Klipp 2007) 
Smad2:Smad4Cyt The complex of Smad2 and Smad4 in the cytoplasm 0  
Smad2:Smad4Nuc The complex of Smad2 and Smad4 in the nucleus 0  
Smad2:Smad2Cyt The homo-dimer of Smad2 in the cytoplasm 0  
Smad2:Smad2Nuc The homo-dimer of Smad2 in the nucleus 0  
Smad7 Smad7 0  
dephLRCCave Dephosphorylated LRC in the caveolae 0  
dephLRCEE Dephosphorylated LRC in the early endosome 0  
LRCCave:Smad7 The complex of Smad7 and LRC in the caveolae 0  
LRCEE:Smad7 The complex of Smad7 and LRC in the early endosome 0  
PPM1ACyt PPM1A in the cytoplasm 1  
PPM1ANuc PPM1A in the nucleus 100  

PTENCyt PTEN in the cytoplasm estimate
d 

 

PTENNuc PTEN in the nucleus 0  
pSmad2:PPM1ACyt The complex of pSmad2 and PPM1A in the cytoplasm 0  
pSmad2:PPM1A:PTENCyt The complex of pSmad2 and PPM1A:PTEN in the cytoplasm  0  
pSmad2:PTENCyt The complex of pSmad2 and PTEN in the cytoplasm 0  
pSmad2:PTEN:PPM1ACyt The complex of pSmad2:PTEN and PPM1A in the cytoplasm 0  

PPM1A:PTENCyt 
The PPM1A-PTEN complex released from 
pSmad2:PTEN:PPM1A in the cytoplasm 0  

pSmad2:PPM1ANuc The complex of pSmad2 and PPM1A in the nucleus 0  
pSmad2:PPM1A:PTENNuc The complex of pSmad2 and PPM1A:PTEN in the nucleus  0  

PPM1A:PTENCyt 
The PPM1A-PTEN complex released from 
pSmad2:PTEN:PPM1A in the nucleus 0  

!
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Table 8.2 Rate Constants 

 

 

 

!

Rate Constant Name Values Reference 
vT1R 0.0103 (Klipp 2007) 
vT2R 0.02869 (Klipp 2007) 
kiEE 0.33 (Klipp 2007) 
krEE 0.033 (Klipp 2007) 
kiCave 0.33 (Klipp 2007) 
krCave 0.03742 (Klipp 2007) 
kdegT1R 0.005 (Klipp 2007) 
kdegT2R 0.025 (Klipp 2007) 
kcd 0.005 (Klipp 2007) 
kLRC1 estimated  
kLRC2 estimated  
krReceptor 10000  
kfSmad2 estimated 

 
krSmad2 estimated  
kfSmadsComplex estimated  
krSmadsComplex estimated  
kimpSmad2 0.054 (Schmierer 2008) 
kexpSmad2 0.348 (Schmierer 2008) 
kimpSmad4 0.054 (Schmierer 2008) 
kexpSmad4 0.054 (Schmierer 2008) 
kimpSmadsComplex 0.27 (Schmierer 2008) 
klid estimated  
kdephpSmad2 estimated  
kdegpSmad2 estimated  
vSmad2 estimated 

 
kdegSmad2 estimated  
kSmad7 estimated  
kfSmad7Cave estimated  
kbSmad7Cave estimated 

 
kfSmad7EE estimated  
kbSmad7EE estimated  
kdephLRC:Smad7 estimated  
kdegLRC:Smad7 estimated 

 
vPPM1A estimated  
kdegPPM1A estimated  
kfPPM1A estimated  
kbPPM1A estimated 

 
krPPM1A estimated  
kdephPPM1A estimated  
kfPP estimated  
kbPP estimated 

 
krPP estimated  
kfPTEN estimated  
kbPTEN estimated  
kimpPPM1A estimated  
kimpPP estimated  
kexpPP estimated  
kexpPTEN estimated  
kfRI 100 (Schmierer 2008) 
kbRI 684 (Schmierer 2008) 
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Table 8.3 Reactions Table: All reactions in Model 1-11 with rate constants labeled. (Continued 
on the next page) 

 

  

 Reaction Models 
1 vT 1R⎯ →⎯⎯ T1RSurf ! All 

2 vT 2R⎯ →⎯⎯ T 2RSurf ! All 

3 
 
T1RSurf

kiEE
krEE
   T1REE ! All 

4 
 
T1RSurf

kiCave
krCave
   T1RCave ! All 

5 
 
T 2RSurf

kiEE
krEE
   T 2REE ! All 

6 
 
T 2RSurf

kiCave
krCave
   T 2RCave ! All 

7 
 
pT 2RSurf

kiEE
krEE
   pT 2REE ! All 

8 
 
pT 2RSurf

kiCave
krCave
   pT 2RCave ! All 

9 T1REE
kdegT 1R⎯ →⎯⎯ ! All 

10 T 2REE
kdegT 2R⎯ →⎯⎯ ! All 

11 pT 2REE
kdegT 2R⎯ →⎯⎯ ! All 

12 TGFβ +T 2RSurf
kLRC1⎯ →⎯⎯ pT 2RSurf ! All 

13 pT 2RSurf +T1RSurf
kLRC2⎯ →⎯⎯ LRCSurf ! All 

14 LRCSurf
kiEE⎯ →⎯ LRCEE ! All 

15 LRCEE
krEE⎯ →⎯⎯ T1R :T 2R +TGFβ ! All 

16 LRCSurf
kiCave⎯ →⎯⎯ LRCCave ! All 

17 LRCCave
krCave⎯ →⎯⎯ T1R :T 2R +TGFβ ! All 

18 T1R :T 2R krR⎯ →⎯ T1RSurf +T 2RSurf ! All 

19 LRCEE
kcd⎯ →⎯ ! All 

20 LRCEE + Smad2Cyt
kfSmad2⎯ →⎯⎯ LRC :Smad2 ! All 

21 LRC :Smad2 krSmad2⎯ →⎯⎯⎯ LRCEE + pSmad2Cyt ! All 

22 pSmad2Cyt + Smad4Cyt
kfSmadsComplex⎯ →⎯⎯⎯⎯ Smad2 :Smad4Cyt ! All 

23 pSmad2Cyt + pSmad2Cyt
kfSmadsComplex⎯ →⎯⎯⎯⎯ Smad2 :Smad2Cyt ! All 

24 
 
pSmad2Nuc + Smad4Nuc

kfSmadsComplex

krSmadsComplex
   Smad2 :Smad4Nuc ! All 

25 
 
pSmad2Nuc + pSmad2Nuc

kfSmadsComplex

krSmadsComplex
   Smad2 :Smad2Nuc ! All 

26 
 
Smad2Cyt

kimpSmad 2
kexpSmad 2

   Smad2Nuc ! All 

27 
 
pSmad2Cyt

kimpSmad 2
kexpSmad 2

   pSmad2Nuc ! All 

28 
 
Smad4Cyt

kimpSmad 4
kexpSmad 4

   Smad4Nuc ! All 

29 Smad2 :Smad4Cyt
kimpSmadsComplex⎯ →⎯⎯⎯⎯ Smad2 :Smad4Nuc ! All 

30 Smad2 :Smad2Cyt
kimpSmadsComplex⎯ →⎯⎯⎯⎯ Smad2 :Smad2Nuc ! All 

!
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31 LRCCave + Smad2 :Smad4Nuc
klid⎯ →⎯ ! Model(2,3,5) 

32 LRCCave + Smad2 :Smad2Nuc
klid⎯ →⎯ ! Model(2,3,5) 

33 pSmad2Nuc
kdephpSmad 2⎯ →⎯⎯⎯ Smad2Nuc ! Model(1,2,5,6

,7,8) 

34 pSmad2Nuc
kdegpSmad 2⎯ →⎯⎯⎯ ! Model(4,5,6,7

,11) 

35 
 

vSmad 2
kdegSmad 2
   Smad2Cyt ! Model(7,11) 

36 Smad2Cyt
kdegSmad 2⎯ →⎯⎯⎯ ! Model(7,11) 

37 Smad2Nuc
kdegSmad 2⎯ →⎯⎯⎯ ! Model(7,11) 

38 pSmad2Cyt
kdegSmad 2⎯ →⎯⎯⎯ ! Model(7,11) 

39 pSmad2Nuc
kdegSmad 2⎯ →⎯⎯⎯ ! Model(7,11) 

40 Smad2 :Smad4Nuc
kSmad 7⎯ →⎯⎯ Smad2 :Smad4Nuc + Smad7 ! Model(8) 

41 Smad2 :Smad2Nuc
kSmad 7⎯ →⎯⎯ Smad2 :Smad2Nuc + Smad7 ! Model(8) 

42 Smad7 kcd⎯ →⎯ ! Model(8) 

43 LRCEE :Smad7
kcd⎯ →⎯ ! Model(8) 

44 
 
LRCCave + Smad7

kfSmad 7Cave
krSmad 7Cave

   LRCCave :Smad7 ! Model(8) 

45 
 
LRCEE + Smad7

kfSmad 7EE
krSmad 7EE
   LRCEE :Smad7 ! Model(8) 

46 LRCCave :Smad7
kdephLRC:Smad 7⎯ →⎯⎯⎯⎯ dephLRCCave + Smad7 ! Model(8) 

47 LRCEE :Smad7
kdephLRC:Smad 7⎯ →⎯⎯⎯⎯ dephLRCEE + Smad7 ! Model(8) 

48 LRCCave :Smad7
kdegLRC:Smad 7⎯ →⎯⎯⎯⎯ ! Model(8) 

49 LRCEE :Smad7
kdegLRC:Smad 7⎯ →⎯⎯⎯⎯ ! Model(8) 

50 dephLRCCave
krCave⎯ →⎯⎯ T1R :T 2R +TGFβ ! Model(8) 

51 dephLRCEE
krEE⎯ →⎯⎯ T1R :T 2R +TGFβ ! Model(8) 

52 
 

vPPM 1A
kdegPPM 1A
   PPM1ANuc ! Model(9) 

53 
 

vPPM 1A
kdegPPM 1A
   PPM1ACyt ! Model(10,11) 

54 PPM1ANuc
kdegPPM 1A⎯ →⎯⎯⎯ ! Model(10,11) 

55 PPM1ACyt
kimpPPM 1A⎯ →⎯⎯⎯ PPM1ANuc ! Model(10,11) 

56 Smad2 :Smad4Nuc
kPPM1A⎯ →⎯⎯⎯ Smad2 :Smad4Nuc + PPM1ANuc ! Model(9) 

57 Smad2 :Smad2Nuc
kPPM1A⎯ →⎯⎯⎯ Smad2 :Smad2Nuc + PPM1ANuc ! Model(9) 

58 
 pSmad2Nuc + PPM1ANuc

kfPPM1A

kbPPM1A
   pSmad2 :PPM1ANuc ! Model(9,10,1

1) 

59 pSmad2 :PPM1ANuc
kdephPPM 1A⎯ →⎯⎯⎯ Smad2Nuc + PPM1ANuc ! Model(9,10,1

1) 

60 
 pSmad2Cyt + PPM1ACyt

kfPPM1A

kbPPM1A
   pSmad2 :PPM1ACyt ! Model(10,11) 

61 pSmad2 :PPM1ACyt
kdephPPM 1A⎯ →⎯⎯⎯ Smad2Cyt + PPM1ACyt ! Model(10,11) 

62 
 pSmad2Nuc + PTEN :PPM1ANuc

kfPPM1A

kbPPM1A
   pSmad2 :PTEN :PPM1ANuc ! Model(10,11) 

63 pSmad2 :PTEN :PPM1ANuc
kdephPPM 1A⎯ →⎯⎯⎯ Smad2Nuc + PTEN :PPM1ANuc ! Model(10,11) 

64 
 pSmad2Cyt + PTEN :PPM1ACyt

kfPPM1A

kbPPM1A
   pSmad2 :PTEN :PPM1ACyt ! Model(10,11) 
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65 pSmad2 :PTEN :PPM1ACyt
kdephPPM 1A⎯ →⎯⎯⎯ Smad2Cyt + PTEN :PPM1ACyt ! Model(10,11) 

66 
 pSmad2Cyt + PTENCyt

kfPTEN

kbTEN
   pSmad2 :PTENCyt ! Model(10,11) 

67 
 pSmad2 :PTENCyt + PPM1ACyt

kfPP

kbPP
   pSmad2 :PTEN :PPM1ACyt ! Model(10,11) 

68 pSmad2 :PTEN :PPM1ACyt
krPP⎯ →⎯⎯ pSmad2Cyt + PTEN :PPM1ACyt ! Model(10,11) 

69 PTEN :PPM1ACyt
krPPM1A⎯ →⎯⎯⎯ PTENCyt + PPM1ACyt ! Model(10,11) 

70 PTEN :PPM1ANuc
krPPM1A⎯ →⎯⎯⎯ PTENNuc + PPM1ANuc ! Model(10,11) 

71 
 
PTEN :PPM1ACyt

kimpPP
kexpPP

   PTEN :PPM1ANuc ! Model(10,11) 

72 PTENNuc
kexpPTEN⎯ →⎯⎯⎯ PTENCyt ! Model(10,11) 

73 
 LRCEE + RI

kfRI

kbRI
   LRCEE :RI ! All 

!
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Table 8.4 Table of Negative Regulatory Mechanisms and Their Related Rate Constants 

 

  

 R-SMAD 
DEPHOSPHORYLATION 

RECEPTOR 
DEGRADATION 

P-R-SMAD 
DEGRADATION 

ENDOGENOUS SYNTHESIS AND 
DEGRDATION OF R-SMAD 

RECEPTOR 
INHIBITIONs 

PPM1A 
UPREGULATION 

PPM1A 
STABLIZATION 

kdephpSmad2 estimated 0 0 0 0 0 0 
kdegpSmad2 0 0 estimated estimated 0 0 0 
vSmad2 0 0 0 5.7143 nMmin-1 0 0 0 

kdegSmad2 0 0 0 0.01 min-1 0 0 0 
klid 0 estimated 0 0 0 0 0 

kSmad7 0 0 0 0 estimated 0 0 
kfSmad7cave 0 0 0 0 estimated 0 0 
kbSmad7cave 0 0 0 0 estimated 0 0 

kfSmad7ee 0 0 0 0 estimated 0 0 
kbSmad7ee 0 0 0 0 estimated 0 0 
kdephLRC 0 0 0 0 estimated 0 0 
kdegLRC 0 0 0 0 estimated 0 0 
vPPM1A 0 0 0 0 0 estimated estimated 

kdegPPM1A 0 0 0 0 0 estimated estimated 
kdephPPM1A 0 0 0 0 0 estimated estimated 
kPPM1A 0 0 0 0 0 estimated 0 
kfPPM1A 0 0 0 0 0 0 estimated 
kbPPM1A 0 0 0 0 0 0 estimated 

krPPM1A 0 0 0 0 0 0 estimated 
kfPP 0 0 0 0 0 0 estimated 
kbPP 0 0 0 0 0 0 estimated 
kfPTEN 0 0 0 0 0 0 estimated 
kbPTEN 0 0 0 0 0 0 estimated 

kimpPPM1A 0 0 0 0 0 0 estimated 
kimpPP 0 0 0 0 0 0 estimated 
kexpPP 0 0 0 0 0 0 estimated 
kexpPTEN 0 0 0 0 0 0 estimated 

!
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Table 8.5 Table of Estimated Parameters in Model 1-11. Model 8 is excluded from this table 
because multiple fitted models (with different parameters) were selected from the structure of 
Model 8. The underlined values have been manually tuned. All the others were estimated 
numerically with MATLAB fmincon optimization. The last parameter (for PTEN) is an initial 
concentration. All the other parameters are rate constants. 

 

 

  

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 9 Model 10 Model 11 

kLRC1 (nM
-1min-1) 213.3 862.4 125.5 219.9 23.56 2388 34.11 0.9068 10.33 45.07 

kLRC2 (nM
-1min-1) 3459 1218 4706 62.49 10.63 0.1182 1025 0.04956 0.7638 0.02404 

kfSmad2 (nM-1min-1) 0.03958 0.02400 7.395e-4 0.1599 0.03533 0.6500 0.01185 0.9100 0.07978 1.873 
krSmad2 (nM-1min-1) 2.443e5 35.22 2299 1332 7479 2.036e5 99.44 8183 317.8 4.543e3 

kfSmadsComplex (nM-1min-1) 0.4670 5.871e-3 1.001e-3 2.586e-5 2.452e-4 3.122e-4 0.01329 1.074 0.1555 0.2867 

krSmadsComplex (nM-1min-1) 0.2858 0.2927 0.1605 2.297e-3 0.03971 0.05235 0.1560 4.194 3.095 1.720 
kdephpSmad2 (min

-1) 999.6 0.3706 0 0 3.145 11.06 9.676 0 0 0 
kdegpSmad2 (min

-1) 0 0 0 0.6789 0.3058 0.9444 3.163 0 0 0.4516 
vSmad2 (nMmin

-1) 0 0 0 0  0 0 5.714 0 0 5.714 
kdegSmad2 (min

-1) 0 0 0 0 0 0 0.01000 0 0 0.01000 

klid (nM-1min-1) 0 0.01371 8.250e-3 0 5.231e-4 0 0 0 0 0 
vPPM1A (nMmin

-1) 0 0 0 0 0 0 0 0.1000 7.000 7.000 
kdegPPM1A (min

-1) 0 0 0 0 0 0 0 0.01000 0.07000 0.07000 
kdephPPM1A (min

-1) 0 0 0 0 0 0 0 0.3980 16.01 1.502 
kPPM1A (min-1) 0 0 0 0 0 0 0 1.178e-3 0 0 

kfPPM1A (nM-1min-1) 0 0 0 0 0 0 0 45.63 7.153e-3 0.2117 
kbPPM1A (min-1) 0 0 0 0 0 0 0 7.354 1.088 6.500 
krPPM1A (min-1) 0 0 0 0 0 0 0 0 1.137e-8 1.604e-7 
kfPP (nM-1min-1) 0 0 0 0 0 0 0 0 66.60 2.422 
kbPP (min-1) 0 0 0 0 0 0 0 0 5.457e-8 7.366e-8 

krPP (min-1) 0 0 0 0 0 0 0 0 0.08566 0.4037 
kfPTEN (nM-1min-1) 0 0 0 0 0 0 0 0 104.3 20.48 
kbPTEN (min-1) 0 0 0 0 0 0 0 0 5.506e-7 6.788e-7 
kimpPPM1A (min

-1) 0 0 0 0 0 0 0 0 7.000 0.01406 
kimpPP (min

-1) 0 0 0 0 0 0 0 0 2.861e-3 1.978e-3 

kexpPP (min
-1) 0 0 0 0 0 0 0 0 2.180e-7 1.145e-7 

kexpPTEN (min
-1) 0 0 0 0 0 0 0 0 0.5330 0.03268 

PTENCyt (nM) 0 0 0 0 0 0 0 0 180.3 174.9 

!
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8.2 Appendix for Chapter 4 

8.2.1 Derivation of the Jacobian Matrix of the Population ODE 

8.2.1.1 Derivation of Each Block in the Jacobian Matrix 

The Jacobian Matrix of the Population ODE can be divided into four blocks as 

shown in Equation (4.19) and the result of the derivation of all blocks are shown in 

Equation (4.20) to (4.23). Here we show how these equations are derived. 

One rule that we applied for our derivation is chain rule for the differentiation 

of the kronecker product of two vectors. 

 
∂a⊗ b
∂c

= a⊗ ∂b
∂c

+ ∂a
∂c

⊗ b  (8.1) 

For Equation (4.20), we differentiate Fµ  with respect to µ  

 

∂Fµ
∂µ

= ∂[A1µ + A2µ⊗ µ + A2vec(CT )]
∂µ

= A1 + A2(µ⊗ ∂µ
∂µ

+ ∂µ
∂µ

⊗ µ )

= A1 + A2(µ⊗ I + I⊗ µ )

 (8.2) 

For Equation (4.21), we differentiate Fµ  with respect to vec(CT )  

 
∂Fµ

∂vec(CT )
= ∂[A1µ + A2µ⊗ µ + A2vec(CT )]

∂vec(CT )
= A2

 (8.3) 

For Equation (4.22), we differentiate FC  with respect to µ  
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∂FC
∂µ

= ∂[(A1⊗ I + I⊗ A1)vec(CT )]
∂µ

+ ∂{(A2⊗ I )[µ⊗ vec(CT )+ vec(µ⊗CT )]}
∂µ

+ ∂{(I⊗ A2)[vec(C)⊗ µ + vec(µ⊗CT )]}
∂µ

 (8.4) 

Please note that 

 

∂vec(µ⊗CT )
∂µ

= ∂E(δ ⊗ µ⊗δ )
∂µ

= E δ ⊗ µ⊗ ∂δ
∂µ

+ ∂δ ⊗ µ
∂µ

⊗δ
⎛

⎝
⎜

⎞

⎠
⎟

= E δ ⊗ ∂µ
∂µ

+ ∂δ
∂µ

⊗ µ
⎛

⎝
⎜

⎞

⎠
⎟ ⊗δ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= E(δ ⊗ I⊗δ )

 (8.5) 

Therefore, we have 

 

∂FC
∂µ

= (A2⊗ I ) ∂µ⊗ vec(CT )
∂µ

+ E(δ ⊗ Ι ⊗δ )
⎡

⎣
⎢

⎤

⎦
⎥

+(I⊗ A2) ∂vec(CT )⊗ µ
∂µ

+ E(δ ⊗ Ι ⊗δ )
⎡

⎣
⎢

⎤

⎦
⎥

= (A2⊗ I ) µ⊗ ∂vec(CT )
∂µ

+ ∂µ
∂µ

⊗ vec(CT )+ E(δ ⊗ Ι ⊗δ )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+(I⊗ A2) vec(CT )⊗ ∂µ
∂µ

+ ∂vec(CT )
∂µ

⊗ µ + E(δ ⊗ Ι ⊗δ )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= (A2⊗ I ) I⊗ vec(CT )+ E(δ ⊗ Ι ⊗δ )⎡⎣ ⎤⎦
+(I⊗ A2) vec(CT )⊗ I + E(δ ⊗ Ι ⊗δ )⎡⎣ ⎤⎦

 (8.6) 

For Equation (4.23), we differentiate FC  with respect to vec(CT )  
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∂FC
∂vec(CT )

= ∂[(A1⊗ I + I⊗ A1)vec(CT )]
∂vec(CT )

+ ∂{(A2⊗ I )[µ⊗ vec(CT )+ vec(µ⊗CT )]}
∂vec(CT )

+ ∂{(I⊗ A2)[vec(CT )⊗ µ + vec(µ⊗CT )]}
∂vec(CT )

 (8.7) 

Applying the chain rule in Equation (8.1), we have 

 

∂µ⊗ vec(CT )
∂vec(CT )

= µ⊗ I 2
n2×n2

= µ⊗ I⊗ I

∂vec(CT )⊗ µ
∂vec(CT )

= I 2
n2×n2

⊗ µ = I⊗ I⊗ µ

⎧

⎨
⎪⎪

⎩
⎪
⎪

 (8.8) 

To derive 
∂vec(µ⊗CT )
∂vec(CT )

, we denote CT  as in its column vectors 

 

 

CT = c1  cn( )
n×n

, ci =
E(δ iδ1)


E(δ iδ n )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
n×1

 (8.9) 

Then applying the chain rule in Equation (8.1), we have 

 

 

∂vec(µCT )
∂vec(CT )

= ∂
µ⊗ c1


µ⊗ cn

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
/ ∂vec(CT )

=

∂µ⊗ c1
∂c1

0 0

0  0

0 0 ∂µ⊗ cn
∂cn

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

=
µ⊗ I 0 0
0  0
0 0 µ⊗ I

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

= I⊗ µ⊗ I

 (8.10) 
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Substituting the derivatives in Equation (8.7) using Equation (8.8) and (8.10), 

we have Equation (4.23) derived as 

 

∂FC
∂vec(CT )

= (A1⊗ I + I⊗ A1)

+(A2⊗ I )(µ⊗ I⊗ I + I⊗ µ⊗ I )
+(I⊗ A2)(I⊗ µ⊗ I + I⊗ I⊗ µ )

 (8.11) 

8.2.1.2 Simplification of Equation (4.22) 

Equation (4.22) can be separated into four terms as below, and we simplify each 

term individually. 

 

∂FC
∂µ

= T1 +T 2 +T3 +T 4

T 1 = (A2⊗ I )[I⊗ vec(CT )]
T 2 = (A2⊗ I )E(δ ⊗ I⊗δ )
T3 = (I⊗ A2)E(δ ⊗ I⊗δ )
T 4 = (I⊗ A2)[vec(CT )⊗ I ]

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 (8.12) 

For simplification of these four terms, we need to write A2  as a block matrix 

 

 

A2 = B1  Bn( )
n×n2

, Bk =
A21,(k−1)n+1  A21,kn
  

A2n,(k−1)n+1  A2n,kn

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
n×n

 (8.13) 

and to write CT  as a block matrix (same as that in Equation (8.9)) 

 

 

CT = c1  cn( )
n×n

, ci =
E(δ iδ1)


E(δ iδ n )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
n×1

 (8.14) 

Please note that 
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E(δ ⊗ I⊗δ ) =
E[δ1(I⊗δ )]


E[δ n (I⊗δ )]

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

I⊗E(δ1δ )


I⊗E(δ nδ )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

I⊗ c1


I⊗ cn

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 (8.15) 

Then we can simplify the first term T1  as 

 

 

T1 = (A2⊗ I )[I⊗ vec(CT )]

= B1⊗ I  Bn ⊗ I( )
vec(CT ) 0 0
0  0
0 0 vec(CT )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= (B1⊗ I )vec(C
T )  (Bn ⊗ I )vec(C

T )⎡
⎣

⎤
⎦

 (8.16) 

Applying the rule vec(AB) = (BT ⊗ I )A , we have 

 
 
T1 = vec(CTB1

T )  vec(CTBn
T )⎡

⎣
⎤
⎦  (8.17) 

We can simplify the second term T 2  as 

 

 

T 2 = (A2⊗ I )E(δ ⊗ I⊗δ )

= B1⊗ I  Bn ⊗ I( )
I⊗ c1


I⊗ cn

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

= (Bk ⊗ I )(I⊗ ck )
k=1

n

∑

 (8.18) 

Applying the rule (A⊗ B)(C⊗ D) = (AC)⊗ (BD) , we have 

 T 2 = Bk ⊗ ck
k=1

n

∑  (8.19) 

We can simplify the third term T3  as 
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T3 = (I⊗ A2)E(δ ⊗ I⊗δ )

=
A2 0 0
0  0
0 0 A2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

I⊗ c1


I⊗ cn

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
A2(I⊗ c1)


A2(I⊗ c1)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 (8.20) 

The k-th row in T3  is 

 

 

T3k ,: = A
2(I⊗ ck )

= B1  Bn( )
ck 0 0
0  0
0 0 ck

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

= B1ck  Bnck( )

 (8.21) 

We can simplify the fourth term T 4  as  

 

 

T 4 = (I⊗ A2)[vec(CT )⊗ I ]

=
A2 0 0
0  0
0 0 A2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

c1⊗ I


cn ⊗ I

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
A2(c1⊗ I )


A2(cn ⊗ I )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 (8.22) 

Thus, all four terms of 
∂FC
∂µ

 have been simplified for computation. The largest 

matrix needed for computation has the size of n3 , which is much smaller than that 

without simplification ( n5 ). 

8.2.1.3 Simplification of Equation (4.23) 
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Applying the rule (A⊗ B)(C⊗ D) = (AC)⊗ (BD) , and because kronecker 

product is bilinear, the Equation (4.23) can be written as 

 

∂FC
∂vec(CT )

= (A1⊗ I + I⊗ A1)

+(A2⊗ I )(µ⊗ I⊗ I + I⊗ µ⊗ I )
+(I⊗ A2)(I⊗ µ⊗ I + I⊗ I⊗ µ )
= (A1⊗ I + I⊗ A1)
+[A2(µ⊗ I + I⊗ µ )]⊗ I
+I⊗[A2(µ⊗ I + I⊗ µ )]
= [A1 + A2(µ⊗ I + I⊗ µ )]⊗ I
+I⊗[A1 + A2(µ⊗ I + I⊗ µ )]

=
∂Fµ
∂µ

⊗ I + I⊗
∂Fµ
∂µ

 (8.23) 

This simplification allow us to use the previous calculated matrix 
∂Fµ
∂µ

 and it 

has only the size of n2  which is much smaller than that without simplification 

( n5 ). 
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