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Summary

Gradient domain image processing is a type of image manipulation that
directly processes the derivatives of an image (i.e. gradient) instead of
its pixel values. This involves a two step procedure where the image
gradients are first processed in a task-specific manner based on the de-
sired enhancement, followed by a reconstruction step that estimates the
new pixels values from the modified gradient field. Since its adoption
nearly a decade ago, there has been several successful examples of us-
ing gradient domain processing for image enhancement tasks ranging
from texture transfer, gradient boosting to saliency sharpening and data
fusion. This dissertation continues this trend of gradient domain image
enhancement and offers three contributions in this area.

Our first contribution is focused on enhancing images of old and dam-
aged documents. Specifically, we show how gradient domain process-
ing can be used to effectively combine information from visible and
non-visible spectral bands to significantly improve the visual quality
of old documents suffering from age-related effects such as ink-bleed,
corrosion, and decay.

Our second contribution proposes a new method to reduce notice-
able compression artifacts that arises from tone-adjustment. Tone-
adjustment is a fundamental image editing operation that can signif-
icantly enhance image quality but can also boost undesirable compres-
sion artifacts that are otherwise not noticeable in the original image. In
particular, we propose a novel method to detect and correct compres-
sion errors in the gradient domain. We show that this gradient domain
strategy that can produce more compelling results than those obtained
with existing methods.



Our third contribution targets the reconstruction step of gradient do-
main processing. In particular, we present a color-aware regularization
method that can avoid color shift artifacts that often occur in exist-
ing gradient domain reconstruction methods. Key to this work is a
novel regularization technique which uses an anisotropic Mahalanobis
distance for restricting to the image’s color distribution while apply-
ing gradient domain processing. The effectiveness of this regulariza-
tion method is illustrated using three common image enhancement ap-
proaches including gradient transfer, gradient boosting and saliency
sharpening.

These collective contributions help to advance the state-of-the-art in
image enhancement techniques within a gradient domain context.
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Chapter 1

Introduction

1.1 Motivation

Not long after the invention of photography over one hundred years ago, pho-

tographers started to use photo editing (or photo retouching) techniques to alter

printed photographs or undeveloped negatives with the purpose of enhancing

their visual appearance. Early photo editing techniques were quite limited and

were only possible within a small crowd of professionals who were equipped with

specific domain knowledge and film processing hardware and chemicals. This sit-

uation has changed significantly since personal computer and digital photography

technologies were invented. Digital photography is now popular and inexpensive

and digital photo is accessible to most people.

From a computer scientist’s point of view, photo editing is only a part of our

interest. In a more general sense, we concentrate on developing image processing

techniques that enhance or extend the capabilities of digital photography. Over the

years, image filters have been widely used by researchers of the computer vision

community in many image processing pipelines such as image sharpening [72],

1



Chapter 1. Introduction

image denoising [39], pseudo-relighting [80], and so on. Image filters developed in

the last few decades usually directly manipulate pixel values in the spatial domain

(a.k.a. color domain or 0th-order domain), or modify frequencies in the frequency

domain [74, 62, 87]. However, a particular form of spatial domain filtering, which is

referred to as gradient domain (a.k.a. 1st-order domain) filtering or gradient domain

image processing, has recently become the new cornerstone of numerous image

processing algorithms [24, 59, 45, 54, 9].

Attneave’s [4] and Barten’s [7] studies on human visual system show that our

visual system perceives local contrast (correlated to image gradients) instead of

absolute pixel intensities. Motivated by this observation, more and more gradient

domain image processing methods have been developed. These methods manipu-

late pixel differences (e.g. 1st-order image gradients) in addition to pixel intensities

in order to better resemble the way how humans perceive images and achieve

some enhancement effects that are difficult to be done in spatial domain, such as

reflection removal [1], shadow removal [25], drag-and-drop pasting [31], etc.

The major difference between the traditional image processing pipeline and

gradient domain image processing pipeline is illustrated in Figure 1.1. Assume

we need to enhance the contrast level of an input image. Using traditional image

processing technique, input pixel values are directly modified by applying a specific

tone curve to the input image. However, gradient domain processing introduces

changes to the 1st-order image gradients – scaling (i.e. boosting) the input gradient

field to enhance the contrast. After the gradient has been modified, a reconstruction

step is applied that estimates the pixel values from the modified gradient field. As

such, gradient domain image processing usually involves a two step procedure:

1) the image gradients are first manipulated/modified in a task-specific manner

2
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Figure 1.1: An example using a contrast enhancement task to illustrate the differ-
ence between the traditional image processing pipeline, shown in (A), and gradient
domain image processing pipeline shown in (B).

to obtain the desired gradient field, and 2) a reconstruction step is carried out to

estimate the new pixel values from the modified gradient field.

Within the past decade, gradient domain processing has been successfully ap-

plied for image enhancement tasks including texture transfer, gradient boosting

and saliency sharpening. This dissertation continues the trend of gradient domain

image enhancement and explores three unsolved problems in this area: visual

enhancement of old documents, compression artifact reduction and color-aware

regularization. The first two problems are related to the first step (task-specific gra-

dient manipulation) of the gradient domain processing procedure, while the last

3
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(a) (b) (c)

Figure 1.2: An example of the visual enhancement of old documents: (a) original
RGB image; (b) 850nm NIR band image; (c) enhanced result.

problem can be considered as an issue of the reconstruction step. These problems

are briefly introduced in the following section.

1.2 Problems to Be Solved

Visual enhancement of old documents Archives and other related institutions

such as libraries and museums serve as the custodial record keepers of our collec-

tive memories. One important role of these institutions is the management and

preservation of historically significant documents. These very old documents of-

ten suffer from various kinds of deterioration including paper yellowing effect,

ink bleed and corrosion, biological and physical damage, etc. For example, Fig-

ure 1.2(a) shows a cropped region of a line drawing that suffers from the low

contrast issue caused by ink corrosion.

In recent years, some libraries and archives (e.g. our collaborator, the Nationaal

Archief of the Netherlands) start to use the hyperspectral imaging (HSI) technique

to image their collected documents and drawings. HSI can capture a densely

sampled spectral response of a document over a broad spectrum including invisible

4
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spectra such as ultra-violet (UV) and near-infrared (NIR). An advantage of HSI is

that the invisible spectral bands (especially NIR bands) usually provide less artifacts

or more details for the document being imaged. Figure 1.2(b) shows the 850nm

NIR band image of the same region as Figure 1.2(a), which exhibits more details

on the sailing boats.

Our goal is to design a visual enhancement framework for degraded histori-

cal documents based on the gradient domain fusion of normal RGB images and

hyperspectral images. We mainly focus on how to fuse gradients of the invisible

spectra, most notably NIR bands, with the normal RGB image to visually enhance

the appearance of historical documents. As shown in Figure 1.2(c), after transfer-

ring the gradients of the NIR band into the RGB image, we can greatly improve

the legibility of this line drawing. Using a similar idea, we also demonstrate how

to improve the visual quality of text-based document corrupted with undesired

artifacts such as ink-bleed, ink-corrosion, and foxing. Chapter 3 provides more

detailed discussion and experimental results of this work.

Compression artifact reduction The JPEG compression standard is a commonly

used lossy compression format for digital images. The degree of compression can be

adjusted as a trade-off between storage size and image quality. When the degree of

compression goes higher, some distinct artifacts start to appear in the compressed

image, including blocking artifact (generally in homogeneous regions like the sky

or walls), color distortion, staircase noise along curving edges, and ringing artifact.

In the last few decades, the computer vision community has made some excellent

progress in analyzing and reducing compression artifacts for heavily compressed

images. Some representative works can be found in [84, 81, 55, 29, 37, 3, 2, 47, 69,

26, 86, 23], however, we try to deal with this problem from a different point of view.

5
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(a)

(b) (c)

Figure 1.3: An example of compression artifact removal: (a) original JPEG image
with good quality; (b) histogram equalized result of (a), suffering from blocking
and color distortion artifacts; (c) restored result of (b).

In fact, with the popularization of modern mass storage devices, we usually

do not compress JPEG images a lot in order to keep good image quality, but this

does not mean compression artifacts have disappeared, actually they just have

been well-hidden. Figure 1.3(a) shows a JPEG image with fairly good quality

(above medium) that has no visible artifact. However, when we modify this image

6
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using a histogram equalization (or other applicable tone-adjustment operations)

to enhance its contrast level, blocking and color distortion artifacts immediately

become apparent as shown in Figure 1.3(b). This means that tone-adjustment

not only enhances the image contrast, but also boosts undesirable compression

artifacts that are otherwise not noticeable in the original image. This is because

schemes such as JPEG optimize their compression in a scene dependent manner.

As such, low-contrast images exhibit few perceivable artifacts even for relatively

high-compression factors. After tone-adjustment, however, subtle artifacts are

magnified. While there exists numerous approaches aimed at reducing compres-

sion artifacts (typically called “deblocking”), they are generic in nature and tend

to blur the image. Our goal is to propose a new method, with the help of gradient

domain enhancement, to restore the appearance of tone-adjusted JPEG images that

suffer from blocking artifacts. The term “tone-adjusted JPEG image” stands for the

image that is enhanced (e.g. increasing contrast) by applying a pre-defined tone

curve. A restored example can be found in Figure 1.3(c). More details and results

of this work will be discussed in Chapter 4.

Color-aware regularization Reconstructing the final enhanced image from the

composite (or modified, in general) gradient field is a crucial step in the gradient

domain image enhancement pipeline. This can be usually done by using a suitable

optimization approach (e.g. constructing and regularizing a bi-objective function

with suitable data/color constraints and smoothness/gradient constraints). Accord-

ing to the study of Omer [56] in 2004, colors of objects in natural images typically

follow distinct distributions (forming elongated clusters) in the RGB space. How-

ever, the conventional regularization method that uses L2 norm to formulate the

data/color constraint is blind to these color distributions, which may cause undesir-
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(a) (b) (c)

Figure 1.4: An example of our color-aware regularization applied to an image that
has had its gradient boosted for a better contrast level: (a) original RGB image;
(b) gradient boosting result of conventional regularization method; (c) gradient
boosting result of our color-aware regularization method. Note the subtle color-
shifting exhibited in (b).

able colors appearing in the final reconstructed image (see Figure 1.4(b), the color

in the center region of the flower on the left changes from yellow to green). This is

known as the color shift problem.

As a follow-up study of gradient domain image enhancement, we aim to pro-

pose a color-aware regularization method by using an anisotropic Mahalanobis

distance to control the output colors to better fit original input color distributions,

so as to avoid the color shift artifact in the reconstruction step. An example of our

method’s result is shown in Figure 1.4(c). More details and results of this work will

be discussed in Chapter 5.

1.3 Contributions

In this dissertation, three research works amounting to three major contributions

have been proposed to advance the state-of-the-art image enhancement techniques
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within a gradient domain context and have offered three major contributions in

this area. Two of them target new applications of gradient domain processing and

the other one contributes on how to improve the reconstruction step of gradient

domain processing.

Visual enhancement of old documents We propose a visual enhancement frame-

work for degraded historical documents based on gradient domain fusion. The

key of our framework is to take the desired “good” gradients (with more details or

less artifacts) from hyperspectral images of the document, and fuse them into the

normal RGB image by reconstructing a new image from the composited gradient

field. For both text-based documents corrupted with various kinds of artifacts and

drawing-based documents with low contrast regions, our framework can effec-

tively enhance their visual quality and legibility. This work has been published in

Pattern Recognition’2011 [35]. In addition, our enhancement framework has been

integrated as part of a comprehensive hyperspectral image visualization tool used

by the Nationaal Archief of the Netherlands. In this visualization tool, the user can

interactively select the NIR band to provide the desired gradients. This work has

been published in IEEE Visualization’2010 [36].

Compression artifact reduction We present a new method to reduce the block-

ing artifact that arises from tone-adjustment when applied to JPEG images. Our

approach first introduces a simple detection step based on the histogram of ori-

ented gradients (HoG) to find the regions in the tone-adjusted image that exhibit

noticeable blocking artifacts. Then we use a dictionary learning method to replace

gradients in corrupted regions using a training set of images to which we have ap-

plied the same compression and tone-adjustment too. Finally, we obtain the new

image using gradient-domain reconstruction technique from its enhanced gradient

9
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field. Our proposed method can produce compelling results that are superior to

those obtained with existing deblocking methods.

Color-aware regularization We introduce a color-aware regularization method

for use with gradient domain image enhancement to avoid color shift artifact that

is very likely to arise in the reconstruction phase. We formulate the color-aware

regularization as an anisotropic Mahalanobis distance [20] which can be expressed

as a linear system, so that it can be easily incorporated into the existing optimiza-

tion frameworks. Our color-aware regularization is simple, easy to implement,

and does not introduce significant computational overhead. We demonstrate the

effectiveness of this regularization method on a variety of inputs using three se-

lected applications, including gradient transfer, gradient boosting and saliency

sharpening. This work has been published in ACCV’2012 [17].

1.4 Outline

The rest of this dissertation is organized as follows. Chapter 2 provides some back-

ground information on gradient domain image processing techniques. Chapter 3

describes the visual enhancement framework for degraded historical documents.

Chapter 4 presents the compression artifact reduction method that is tailored specif-

ically for tone adjustment. In Chapter 5, we propose the color-aware regularization

method for general gradient domain image processing methods. Finally, Chapter 6

concludes the dissertation along with a short discussion on possible future research

directions.
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Chapter 2

Background

Gradient domain processing has been adopted by researchers during recent years

to achieve various image processing tasks. As discussed in the last chapter, gradient

domain image processing generally involves two steps: 1) task-specific gradient

manipulation based on the targeted enhancement task, and 2) a reconstruction

phase to obtain the new pixel values from the modified gradient field. This chapter

gives some brief background information on these two steps by reviewing several

representative gradient domain processing approaches.

2.1 Task-specific Gradient Manipulation

The first step of gradient domain processing is to obtain the desired gradient field

according to the given specific task. In this section, we mainly review how the

existing gradient domain approaches manipulate image gradients to achieve this

goal. Gradient domain manipulation can be generally grouped into two categories:

per pixel manipulation and corresponding gradients manipulation in two images.
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Figure 2.1: An overall workflow of HDR compression method.

2.1.1 Per pixel manipulation

Per pixel manipulation is mostly used by image processing algorithms that take

single image as input, and can be done in the following manners:

• Set to zero (shadow removal, texture de-emphasis)

• Non-linear operations (HDR compression, local illumination change)

• Poisson matting

We select the HDR compression application as the representative work to briefly

review its gradient manipulation operation/technique, since we also manipulate

gradients in a similar way for the saliency sharpening application which will be

discussed in Chapter 5.
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HDR compression Fattal et al. proposed a high dynamic range (HDR) compression

method [24] to render HDR images on conventional low dynamic range (LDR)

displays. Their approach manipulates the gradient field of the luminance image

by attenuating the magnitudes of HDR image gradients by a factor of Φ(x, y)

at each pixel. The key idea is to progressively attenuate the HDR gradients by

shrinking gradients of large magnitude more than small ones. An overall workflow

of their HDR compression method is shown in Figure 2.1. The HDR image L is

first obtained from a series of photographs taken under different exposures. The

gradient attenuation factors (darker shades indicate smaller scale factors and strong

attenuation) are computed and then multiplied with the gradients of the logarithm

of HDR image L to compress the HDR radiance map in the gradient domain.

Finally, the LDR image can be reconstructed from the attenuated gradient map.

2.1.2 Corresponding gradients manipulation in two images

Corresponding gradients manipulation is usually used by image processing ap-

proaches that take two (or more) images as input, and can be done in the following

manners:

• Binary choose or copying operation (Poisson image editing, seamless cloning)

• Max operator (day/night image fusion, visible/NIR image fusion)

• Projection tensors (reflection removal)

• Vector operations (flash/no-flash image combination)

We select two representative applications from the above list, Poisson image editing

and day/night image fusion, and review their gradient manipulation manners as

follows.
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Figure 2.2: Seamless cloning examples using Poisson image editing.

Poisson image editing Poisson image editing (PIE) [59] is a seamless cloning

method that can seamlessly blend a region of interest (ROI) from the source image

onto the target image. The gradient manipulation operation/technique performed

by PIE is just a simple copy-and-paste operation. The gradients of the ROI from the

source image are copied and then pasted to an appropriate position in the gradient

field of target image. To achieve the seamless cloning effect, a hard boundary

constraint is enforced to make the boundary color of the pasted ROI agree with that

of the target image. Finally, the cloning result is reconstructed from the composite

gradient field by solving a Poisson equation. Two examples of seamless cloning

using PIE is shown in Figure 2.2. A similar copy-and-paste gradient manipulation

operation/technique is used for the gradient transfer application which will be

discussed in Chapter 5.

Day/night image fusion Raskar et al. proposed a gradient domain image fusion

method [63] to automatically combine images of a scene captured under day-time

and night-time for context enhancement purpose. An overall workflow of this
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Figure 2.3: An overall workflow of day/night image fusion method.

approach is shown in Figure 2.3. First, the gradient fields of day-time and night-

time images are computed in both x and y directions. The next step is to find the

locally-important areas, which are considered as regions of high variance in the

night-time image. This can be done by simply thresholding the gradient field of

the night-time image to keep large scale gradients. With the importance image

W, a new composite gradient field can be easily constructed. For those white

pixels in W, their gradients are taken from the gradient field of the night-time

image, and gradients of the rest pixels are taken from the gradient field of the day-

time image. Lastly, the final result is reconstructed by integrating the composite

gradient field. Such kind of gradient manipulation operation/technique (with

certain importance/saliency masks) is also adopted by our visual enhancement
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framework (Chapter 3) and compression artifact reduction method (Chapter 4).

2.2 Reconstruction from Modified Gradient Field

Another crucial procedure of gradient domain processing is to estimate the new

pixel values from the composite/modified gradient field obtained in the last stage,

which is usually referred to as the reconstruction phase. In this section, we intro-

duce two common strategies that are widely used to reconstruct the new image

from its gradient field.

2.2.1 Poisson equation

Early gradient domain processing approaches [24, 59, 31, 63, 54] were formulated

using the Poisson equation. Taking the Poisson image editing method as example,

we discuss how to use the Poisson equation to formulate gradient domain prob-

lems. Given the target gradient field G, we look for an image I with gradient field

closest to G in the least squares sense. More formally, the final result I can be solved

by minimizing the following equation:

F (∇I,G) = ‖∇I − G‖2 =
(
∂I
∂x
− Gx

)2

+

(
∂I
∂y
− Gy

)2

, (2.1)

where∇. = [ ∂.∂x ,
∂.
∂y ] is the gradient (partial derivative) operator. To minimize Eq. 2.1,

I must satisfy the associated Euler-Lagrange equation:

∂F
∂I
− d

dx
∂F
∂Ix
− d

dy
∂F
∂Iy
= 0, (2.2)
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after substituting F in Eq. 2.2 we can get:

2
(
∂2I
∂x2 −

∂Gx

∂x

)
+ 2

(
∂2I
∂y2 −

∂Gy

∂y

)
= 0, (2.3)

from Eq. 2.3 we can obtain the final Poisson equation:

∇2I = div(Gx,Gy) =
∂Gx

∂x
+
∂Gy

∂y
, (2.4)

where ∇2. =
∂2.
∂x2 +

∂2.
∂y2 is the Laplacian operator and div is the divergence operator.

In order to enforce the boundary color of the pasted ROI to agree with the color

of target image, a hard boundary constraint is needed. The Dirichlet boundary

condition has been adopted by the Poisson image editing method:

I(x, y) = I0(x, y),∀(x, y) ∈ ∂Ω, (2.5)

where I0 is the target image and ∂Ω is the boundary of pasted ROI. To obtain the

final reconstructed image I, we solve the Poisson equation Eq. 2.4, subject to the

boundary condition in Eq. 2.5. Eq. 2.4 and Eq. 2.5 can be expressed as a large sparse

linear system and solved by many numerical methods such as direct solvers, multi-

grid, preconditioned conjugate gradients, etc. These numerical methods are out

of the scope of this dissertation. Readers may refer to related literatures for more

details if interested.

2.2.2 Optimization scheme with L2 norm regularization

While generally sufficient for most gradient domain processing approaches, the

Poisson equation formulation can, from time to time, exhibit very noticeable color
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shifts inside the processed region. This is because only the color of boundary pix-

els in the processed region has been constrained against certain color constraints

(e.g. the Dirichlet boundary condition). Recent gradient domain processing ap-

proaches [9, 85, 40, 82, 79, 67] impose color constraints over the entire 0th order

domain (color domain) of the solution. This is typically done using an L2 norm reg-

ularization on one or more of the 0th order color channels. This solution results in a

bi-objective function that tries to manipulate the image gradients while minimizing

the Euclidean error (i.e. L2) between the original and output 0th order domains,

which can be considered as an optimization scheme with L2 norm regularization.

Taking the gradient transfer application as example, we review the conven-

tional optimization framework based on an L2 regularization term. The purpose

of gradient transfer is to transform gradients from the NIR image g (source image,

with more desired details) to the RGB image f (target image) while preserving the

original look-and-feel of the RGB image ( f and g are precisely aligned). That is, we

seek a new image u whose colors (from one or more color channels) are as close

as possible to f , and at the same time, has gradients that are as close as possible

to g. More formally, the final result u is generated by minimizing the following

bi-objective cost function

E(u) =
∑
p∈u

(λEd(p) + Es(p)), (2.6)

where p is the pixel index of image u; Ed is the 0th order color constraint term and

Es is the 1st order gradient constraint term; λ is used for the balance between Ed

and Es. These two terms are defined as:

Ed(p) = (up − fp)2 (2.7)
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and

Es(p) =
(∂u
∂x
− c · ∂g

∂x

)2

p
+

(∂u
∂y
− c · ∂g

∂y

)2

p
, (2.8)

where ∂
∂x and ∂

∂y denote the partial derivative operators in x- and y-direction; c is a

scaling factor used to control the strength of target gradient field.

Using vector and matrix notation we may rewrite Eq. 2.6 as:

E(u) = λEd(u) + Es(u) = λ(u − f)T(u − f)

+ (Gxu − c · Gxg)T(Gxu − c · Gxg)

+ (Gyu − c · Gyg)T(Gyu − c · Gyg), (2.9)

where Gx and Gy are 1st order forward differentiation operators. Here u, f, and

g are all single channel images represented by column vectors (for RGB image,

we can minimize Eq. 2.9 respectively for each color channel). Minimizing Eq. 2.9

amounts to taking its derivative, setting it to zero, and solving for vector u that is

uniquely defined as the solution of the following linear system:

(λI + GT
x Gx + GT

yGy)u = λf + c · (GT
x Gxg + GT

yGyg). (2.10)

To solve this linear system, many numerical methods can be used. In this

dissertation, we adopt the conjugate gradient method [6] to iteratively solve Eq. 2.10

and obtain the reconstructed output image u. Note that for this specific gradient

transfer task, our target gradient field is exactly the gradient field of the NIR image

g, so we can simply use its gradients Gxg and Gyg as the gradient constraint in

Eq. 2.9. However, for other gradient domain processing approaches, the task-

specific target gradient field may vary from case to case. We can replace the target
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gradient field Gxg and Gyg with more general notations TGx and TGy in Eq.2.9.

TGx and TGy may be any appropriate gradient field (e.g. combined gradient field

from two or more images) depending on the requirement of the specific task.

2.3 Summary

This chapter provided background on several gradient manipulation tasks (HDR

compression, Poisson image editing, and day/night image fusion) and described

how the gradient was manipulated in a task-specific manner for each task. In ad-

dition, we also provided background on two conventional reconstruction methods

(Poisson and an optimization scheme) that are used to estimate new pixel values

from the gradient field. As the first step of gradient-domain processing is task

specific, Chapters 3 and 4 will introduce additional related works specific to the

gradient domain image enhancement addressed in those topics. Chapter 5 will di-

rectly work on the bi-objective function of the optimization framework presented

in Section 2.2.2.
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Visual Enhancement of Documents

using Gradient Domain Fusion

In this chapter, we describe a visual enhancement framework for old documents

that suffer from various kinds of artifacts based on gradient domain fusion tech-

nique. The key idea is to replace the gradients in degraded regions with the desired

“good” gradients (with less artifacts or more details) so as to compose an enhanced

gradient field, and then reconstruct the final image from gradients using an opti-

mization scheme. These “good” gradients are provided by hyperspectral images of

the document, especially the NIR images. We start the introduction of this chapter

with some background knowledge of hyperspectral imaging.

3.1 Introduction

Hyperspectral imaging (HSI) captures a densely sampled spectral response of

a scene object over a broad spectrum including invisible spectra such as ultra-

violet (UV) and near-infrared (NIR). Hyperspectral imaging has been employed
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in various scientific disciplines to provide valuable data for fields such as astron-

omy [46, 13], earth science and remote sensing [51, 19], biological and medical

data [68, 65], and computer vision [58]. With the advances in technology and cost

reductions, hyperspectral imaging of historical art works and documents can now

be used in national libraries and archives [57, 14].

One advantage of HSI in document imaging over the standard 3-channel imag-

ing (i.e. RGB) is that HSI provides a detailed quantitative measurement of the

document spectral response. Traditional RGB imaging, on the other hand, contains

only a subset of the information available by combining the response of all visible

electro-magnetic (EM) radiation into three bands. This makes HSI more suitable

for tasks that require accurate quantitative measurement such as conservation, de-

tecting damage, and the analysis of the original features (like ink and pigments)

and the changes over time (due to ageing or light exposure) in a document. In ad-

dition, hyperspectral imaging provides measurements in the invisible spectrums

(NIR, UV) which further enrich the available details and enable richer analysis and

enhancement of the data. Measurements in the invisible spectral bands provide

more useful information about the document being imaged by sometimes seeing

more details than the visible range and by sometimes seeing less artifacts than the

visible range. This is demonstrated by two examples in Figure 3.1. For the first

example, the NIR band at 900nm (Figure 3.1 (b)) provides more salient gradient

details than the document in the visible band at 500nm (Figure 3.1 (a)). Conversely,

for the second example, the NIR band at 800nm (Figure 3.1 (d)) is better for guiding

enhancement than the 450nm visible band (Figure 3.1 (c)) since artifacts such as

ink-bleed and ink-corrosion are less prevalent.

The goal of this work is to take advantage of hyperspectral images of historical
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(a) 500 nm (b) 900 nm

(c) 450 nm (d) 800 nm

Figure 3.1: Hyperspectral imaging provides measurements in invisible spectral
ranges which helps to improve data analysis. In the first example, the image in the
NIR band (b) captures more details of the image content which is barely seen in
the visible band (a). In the second example, the NIR image (d) is useful because it
does not exhibit as many undesired artifacts as the visible bands (c).

documents to visually enhance the document’s content by exploiting additional

information provided by the NIR bands. The visual enhancement in this work is

applied to the RGB image of the hyperspectral data as the RGB image is the most

natural visualization of the data. In this work, we are interested in two tasks. For the

text-based documents that are corrupted with artifacts such as ink-bleed, corrosion,

and foxing, we use the invisible bands which capture much less artifacts than the

visible bands to clean up the artifacts in the documents while preserving the look

and feel of the original document. For drawing-based documents that contain low

contrast regions, we use NIR bands which capture more details than the visible

bands to enhance the contrast in the documents. The data are enhanced in the
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gradient domain which has been shown to be effective for many computer vision

tasks such as image editing [59], contrast adjustment [24], image stitching [45], and

intrinsic image computation [78]. The key components of our algorithm include

detecting regions that can be enhanced by the additional NIR spectral images,

composing the enhanced gradient map from NIR images, and reconstructing the

final image from gradients using an optimization scheme.

This work is a part of an ongoing collaborative effort with the Nationaal Archief

of the Netherlands (NAN), one of Europe’s leading research archives, and Art

Innovation, a manufacturer of hyperspectral imaging hardware designed for his-

torical documents. The documents presented in this chapter, which are indicative

of the type of artifacts common to historical documents, are imaged at NAN using

the SEPIA Quantitative Hyper-Spectral Imager (QHSI) device developed by Art

Innovation [38]. The device performs hyperspectral imaging by capturing a very

narrow spectral band of EM radiation one at a time by placing a bandpass filter in

front of the light source to block out all but a selected band of the EM spectrum. A

monochromatic camera is then used to capture the amount of light that is reflected

by the document at that selected band. The filter is changed for each image, thus

capturing different parts of EM spectrum to build up the HSI (Figure 3.2).

The QHSI device captures images at different wavelength bands from 365 nm

(UV) to 1100 nm (near infrared (NIR)) with the step size of 10nm in most cases

except the bands in 300nm’s and 1000nm’s. The images have the resolution of

4 mega pixels (2048×2048) for a physical surface area of 125 mm × 125 mm and

are captured at 16 bit per pixel. Such high-resolution (approximately 256 pixels

per mm2) provides a reliable spatial measurement suitable for even thin lines of

handwriting and printed text.
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Figure 3.2: Hyperspectral imaging process. At each scan, a monochrome camera
measures the reflected light from the document surface. The document reflects a
very narrow band of EM radiation due to the bandpass filter positioned in front of
the light source (500nm in this example). This process is repeated using 70 different
bandpass filters to build the HSI.

The remainder of the chapter is organized as follows: we begin by reviewing the

related work in Section 3.2. In Section 3.3, we introduce our algorithm for visually

enhancing old documents using the hyperspectral data. We show experimental

results in Section 3.4 and summarize our enhancement framework in Section 3.5.

3.2 Related Work

Existing approaches that are most relevant to our work are the image fusion tech-

niques. There are several different categories in image fusion. Image fusion plays

a vital role in remote sensing where the goal is to fuse different types of images

from satellites or aircrafts to provide an increased visual saliency of the area being

imaged. The types of imagery provided cover different portions of the electro-

magnetic spectrum at different spatial, temporal, and spectral resolution [12]. In

25



Chapter 3. Visual Enhancement of Documents using Gradient Domain Fusion

many cases, the focus of fusion techniques in remote sensing is to assist with the

interpretation of the data by simple false-coloring. A comprehensive review of

image fusion in remote sensing is offered in [61].

In computer vision and graphics, image fusion of flash/no-flash photographs

has gained interest to assist in imaging in dark environments. In [21] and [60], flash

images were used to significantly enhance the details and reduce noise in ambient

images. Both of these approaches use joint-bilateral filters to decompose images

into detail and base layers, and reconstruct the image by combining the large scale

of the ambient image and the details of the flash image. In [1], a gradient projection

scheme for flash/no-flash image fusion was introduced with the goal of removing

the flash artifacts. In related work, an image fusion technique for combining images

captured under different illuminations for context enhancement was introduced in

[63].

The closest work to ours is the multispectral image fusion methods introduced

in [8, 88, 40]. In [8], a video taken in a low light environment is enhanced by fusing

the visible-spectrum video with the video simultaneously captured with an infrared

sensor. This work introduced a modified bilateral filter suited for multispectral

imagery to essentially decompose the images to low frequency contents and details.

In [88], low contrast photographs were enhanced with NIR images by incorporating

texture information from NIR. They applied wavelet decomposition to decompose

the image into low frequency and high frequency details similar to other methods.

The details of the NIR image were transferred by histogram matching. An extension

of flash/no-flash techniques to multispectral imaging was introduced in [40]. In

their work, a prototype of camera and flash that uses infrared and ultra-violet also

was presented. They exploit the correlations between images at different spectral
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bands to reduce noise and add fine details in the ambient image.

Our work can be viewed as the extension of the multispectral image fusion

to hyperspectral image fusion1. In multispectral image fusion methods [8, 88,

40], images consist of three visible-spectrum images (RGB) and one extra image

that integrates information in NIR (an extra UV image is included in [40]). In

contrast, we deal with much more images densely sampled over a broad range

of spectrums. Each hyperspectral image example shown in this chapter contains

70 spectral images sampled from 365nm to 1100nm. This brings more challenges

and advantages to the fusion problem since there is significantly more information

available. Hence, one of the main contributions of this work is to present methods

to detect regions in the visible-spectrum images that can be enhanced by using the

information from NIR images and to extract a single map containing information

to be fused from all the NIR images.

3.3 HSI Document Enhancement Algorithm

As mentioned earlier, there are two types of enhancements that are targeted in

this work. With text documents, our algorithm aims to remove the undesired

artifacts, notably ink-bleed, ink-corrosion, and foxing (age related spots). The final

results are enhanced documents that still maintain the look of the original with the

undesired artifacts significantly reduced. For this task, the images in the invisible

range provide the source for the background of the enhanced image since invisible

range images are much less affected by the corrosive artifacts. For the second

task pertaining the documents with line drawings and having low contrast due

1The distinction between multispectral vs. hyperspectral is typically related to the number of
bands as well as the manner in which the data is collected. We refer to our data as hyperspectral as
it provides a densely sampled (10nm intervals) spectral response from a single sensor.
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to ink-corrosion, our algorithm increases the contrast and adds image details not

present in the visible range. For this task, the invisible range images are sources of

foreground ink with salient gradient details.

While the data can be enhanced by modifying each spectral band image in the

visible spectrum and then constructing an RGB image, we chose to enhance the RGB

image of the hyperspectral data in order to reduce computation2. The enhancement

is performed in the gradient domain and both tasks follow similar procedures. In

the first step, pixels are segmented into two groups: a group that should remain the

same (group A) and a group that needs to be enhanced (group B). A new gradient

map is then composed by combining gradients from different spectral band images.

For the pixels in the group A, the gradients remain unchanged. For the pixels in

the group B, the gradients are replaced by the gradients from the invisible band

images that suit the purpose of the task. Finally, output images are reconstructed

from the gradient maps by an optimization scheme.

The following notations will be used throughout the chapter. The term Iλ

indicates the image of the data at a spectrum with wavelength λ, x indicates a pixel

location, and sx is the spectral response of the point x:

sx = [Iλ1(x), Iλ2(x), · · · , Iλm(x)]T.

In the following, we describe our algorithm starting with the details from com-

positing gradient maps to reconstructing images from gradients.

2Note that there is no RGB image in the HSI data. The RGB image must be computed by applying
synthetic lighting and integrating the visible spectral response.
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(a) (b) (c) (d)

Figure 3.3: Gradient map construction for text documents: (a) input image and an
user mark-up, (b) similarity map S, (c) gradients for foreground∇Ii and background
∇Iλ, (d) gradient composite G.

3.3.1 Gradient map composite for artifact removal

Figure 3.3 summarizes the algorithm for composing a composite gradient map for

the artifact removal tasks in text documents. The first step is to segment the input

into foreground (texts) and background. In our system, we employ a simple user-

assisted strategy where the user needs to only provide a mark-up on a small area

that belongs to the foreground (highlighted using yellow color in the red box in

Figure 3.3 (a)). After the segmentation, the mean spectrum of the foreground pixels

(p̄) is computed, then a similarity map S for all the pixels is computed (Figure 3.3

(b)):

S(x) = 1 −
∥∥∥p̄ − sx

∥∥∥2

m
, (3.1)

where m is the number of spectral samples. After applying thresholding, we get a

binary mask M which has 1’s only in the foreground region. To composite a new

gradient map (G) for the enhancement, we use the gradient of the original image

(∇Ii) for the foreground and the gradient of an image from the invisible range (∇Iλ,

700 < λ <= 1100) for the background. The band with the smallest variation in the
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(a) image at 500nm (b) image at 900nm (c) spectral plots

Figure 3.4: We detect regions where the local contrast is much higher in the NIR
bands than the visible bands to apply enhancement using the NIR bands.

background region is chosen for the Iλ. Hence, the gradient map G is generated as

follows :

G =M ◦ ∇Ii + (1 −M) ◦ ∇Iλ. (3.2)

The operator ◦ is the Hadamard product (the entry-wise product of two matrices).

This procedure is applied individually to each of the RGB channel of the input

image.

3.3.2 Gradient map composite for contrast enhancement

For the contrast enhancement task, the procedure is similar to the procedure for the

artifact removal, but can be performed automatically. The first step is to determine

which regions can be enhanced by using the additional information from the NIR

bands. To do this, we use the observation that the local contrast of regions that can

be enhanced with additional spectral bands is much higher in the NIR bands than

the local contrast in the visible bands. In Figure 3.4 (a), the local contrast inside the

drawings of the ships is extremely low in the visible bands (for example, points p1

and p2). The local contrast inside these regions greatly increases in the NIR bands
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(a) (b) (c) (d)

Figure 3.5: Gradient map composition for enhancement : (a) saliency map S (Eq.3),
(b) binary mask M, (c) original gradient map ∇Ii, (d) new gradient composite G.

as can be seen in Figure 3.4 (b), (c). In contrast, the local contrasts remain constant

throughout the spectrum in some other regions in the data (points p3 and p4). It is

unnecessary to enhance these regions with additional bands and risk amplifying

the sensor noise. Using the insight explained above, we compute a saliency map

(S, Figure 3.5 (a)) as follows :

S(x) =
1

m′
∑
λ∈NIR

max
y∈N(x)

∣∣∣Iλ(x) − Iλ(y)
∣∣∣ − max

y∈N(x)

∣∣∣Ii(x) − Ii(y)
∣∣∣ , (3.3)

where Ii is the input image, N(x) refers to the neighbors of x, and m′ is the number

of spectral bands in the NIR. We tried different neighborhood sizes (3, 5, 7, 9, 11)

and found that 7 × 7 gives relatively good results. Hence, in this work, we use the

size of 7 × 7 for the neighborhood.

After thresholding the saliency map S with a morphological operation to in-

crease its size slightly, we again obtain a binary mask M as the previous task

(Figure 3.5 (b)). The foreground mask M has 1’s only in the region where the en-

hancement is necessary. A new gradient map G for the enhancement is computed

as follows :

G =M ◦ G′ + (1 −M) ◦ ∇Ii. (3.4)
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Determining the new gradient G′ in Eq. 3.4 is the key to enhancing the details

in the original image. One option for computing G′ is to select a band in NIR with

high contrast similar to choosing a band with lowest variation as the background

in Sec. 3.3.1. This may not be the best choice since we have observed that different

regions in the image have higher contrast in different NIR bands. Hence one

suitable option for computing G′ is to integrate information from all available NIR

bands and choose different bands to provide the strongest gradients for each pixel

in these regions. To maintain spatial consistency in this gradient assignment we

formulate the problem as a Markov Random Field (MRF) where each pixel x is

assigned a label lx ∈ NIR. To solve the MRF, the following energy is minimized in

order to find optimal pixel labels :

E = Ed + ωEs, (3.5)

where Ed is the data-cost energy reflecting the likelihood of assigning a label to each

pixel, Es is the smoothness energy representing the cost of assigning different labels

to adjacent pixels, and ω is the weight that controls the strength of the smoothness

term. The data cost Ed is computed as follows :

Ed(lx = λ) = − |∇Iλ(x)| , λ ∈ NIR . (3.6)

We enforce smoothness on adjacent pixels (p, q) with the following smoothness

cost :

Es(lp, lq) =
∣∣∣lp − lq

∣∣∣ . (3.7)

Our MRF is optimized using the Middlebury MRF library [70] with the graph-cuts

solver [10]. After the labeling is complete, the gradient map G′ is constructed as
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follows :

G′(x) = ∇Ilx(x). (3.8)

3.3.3 Image reconstruction from a gradient map

We now have to reconstruct an image from the gradient map computed in Eq. 3.2

or Eq. 3.4 (refer to Section 2.2.2 in Chapter 2 for background information on the

reconstruction stage). The goal is to reconstruct an image R in which the intensities

are close to the input image Ii and the gradients are close to the computed gradient

map G. We use the following cost function for the reconstruction which is similar

to the one used in [40]:

argmin
R

∑
x

[
γ(R(x) − Ii(x))2 +

∣∣∣∇xR(x) − βGx(x)
∣∣∣α + ∣∣∣∇yR(x) − βGy(x)

∣∣∣α] , (3.9)

The first term in Eq. 3.9 forces R to be close to the input image Ii under an �2 norm.

The second and the third term make the gradients of the reconstructed image R

to be close to the gradient map G under a sparse norm (α ≤ 1) where sub-indices

x,y refer to the gradient directions. Using the sparse norm on the gradient terms

encourages the edge structures in R to align spatially with those in G in contrast

to the �2 norm where ∇R will be matched closely with G [40]. The parameter γ

controls the balance between the effect of the first term and the gradient terms. The

parameter β controls the strength of the gradient composite on the final image.

To optimize Eq. 3.9, we modified the fast optimization scheme used for image

deconvolution recently introduced in [41]. With this optimization scheme, we

were able to process our reconstruction in 20 seconds per channel, a significant

improvement over the suggested solver in [44, 40] which required 8 minutes per
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(a) (b) (c)

Figure 3.6: (a) The original RGB image is visually enhanced by reducing the foxing
artifact. (b) With the hyperspectral data, the enhanced image preserves the tex-
ture and the look of the original image. (c) Image reconstructed by replacing the
background with the mean value does not look natural.

channel.

3.4 Experiments

The first set of experiments target the removal of artifacts on the documents. The

document in the first example (Figure 3.6) is visually corrupted with foxing. The

result of our enhancement algorithm is shown in Figure 3.6 (b). The foxing artifact is

greatly reduced in the enhanced image while the texture and the look of the original

image is preserved. The ability to preserve the look and feel is one significant

advantage offered by having the additional gradients in the NIR information. In

related document processing work [66, 71, 30, 52], the output of the artifact removal

is a binary image with a uniform color background and a color for the foreground.

While the binarization enhances the ability to interpret the data, the texture and

the look of the original document is completely lost. This is shown in Figure 3.6

34



Chapter 3. Visual Enhancement of Documents using Gradient Domain Fusion

(a) (b) (c)

Figure 3.7: (a) The original RGB image is visually enhanced by removing the
ink-bleed artifact. (b) With the hyperspectral data, the enhanced image preserves
the texture and the look of the original image. Note that the watermark (blue
rectangle) and the fold lines (red rectangle) on the image are preserved. (c) Image
reconstructed by replacing the background with the mean value completely loses
the look of the original document.

(a) (b) (c)

Figure 3.8: (a) The original document contains severe ink-bleed and corrosion
artifacts. (b) The artifacts are reduced and the image is visually enhanced with our
algorithm. A close views of selected regions are shown in (c).
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(c) where the background is filled with the mean RGB of the background in the

original image with a Gaussian noise (to simulate the paper texture). As can be

seen, this looks unnatural compared with the HSI enhancement.

Another example of artifact removal is shown in Figure 3.7. In this example,

a document is corrupted with mild ink-bleed. Using our method, the ink-bleed

artifact is removed while the textures and the lines in the original image are pre-

served. Note that the watermark in the original image is also preserved in our

reconstruction. While thresholding could be used to remove the ink-bleed for this

input, replacing the background with the mean RGB completely loses the feel and

important features such as lines and the watermark of the document (Figure 3.7

(c)). The document in Figure 3.8 (a) is significantly more affected by ink bleed

and corrosion. The artifacts are greatly reduced using algorithm as can be seen in

Figure 3.8 (b). Some artifacts can be still seen in this example because the spectrum

of the pixels with strong ink-bleeds have the same spectral properties as the fore-

ground text. Additional user assistance such as in [52] could be used for further

enhancement of the document in this case.

Next, we show results on the contrast enhancement of documents with line

drawings. Figure 3.9(a) shows a part of early map of Syracuse drawn circa 1700.

Due to corrosion, contrast in some parts of the map decreased resulting in the loss

of details (see close-up view in Figure 3.9(a)). We first test contrast enhancement by

using just one NIR band as the source for the gradient map as the artifact removal

examples. Figure 3.9 (b),(c),(d) show enhancement results using NIR images at

750nm, 850nm, and 950nm respectively. Since images at different wavelength

show different contrast in different regions, one image is not enough to yield

enhancement in all areas. For example, while the house region is enhanced well
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(a) original image in RGB (b) image enhanced with 750nm

(c) image enhanced with 850nm (d) image enhanced with 950nm

Figure 3.9: Original image with low contrast in some parts (RGB, (a)) is enhanced
using images in NIR range. Using just one NIR band does not give satisfactory
results since one band does not capture the best contrast for all regions. Hence a
scheme for integrating information from all NIR bands is necessary.

in Fig 3.9 (b), the details of the textures on the ships are still not apparent in this

image. While the details of the ships are recovered with the image at 850nm (Fig 3.9

(c)), the area with the house is blurred due to low gradients in this region at this

wavelength. Both areas are washed out at 950nm, but this image provides the most

clear view of the hole in one of the ships (see the closed-up view in Fig 3.9 (d)).

Hence, the best strategy for enhancing contrast in documents with line drawings

would be to integrate information from all available NIR bands as we proposed in
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(a) (b)

Figure 3.10: (a) The enhancement result using our algorithm. The contrast is greatly
enhanced and the details on the ships and on the houses is now recovered. (b)
Close-up views of the original RGB image (top), our enhancement result (middle),
and histogram equalization result (bottom).

Sec. 3.3.2.

Figure 3.10 shows the result of our contrast enhancement. Details lost in the

original RGB image are recovered and all regions are equally enhanced in contrast

to the results from using just one band (Figure 3.9). Figure 3.11 shows some of the

labeling results by our MRF framework. As can be seen from the labeling map,

information from different bands are integrated. For example, lower NIR band

images were used to provide strong boundaries of the ships, mid NIR band images

were used to provide details inside the ships, and the highest NIR band image

was used to distinguish the hole in one of the ships. Our enhancement result is

compared with the enhancement using local histogram equalization in Figure 3.10.
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(a)

(b) (c) (d)

Figure 3.11: Labels for the gradient map composite: (a) labeling of pixels indicates
which band image (nm) to use to get gradients, (b) image at 720nm, (c) image at
880nm, (d) image at 1000nm.

While the contrast is enhanced and the details are revealed by applying histogram

equalization locally to each region, the noise is also amplified and the original color

is lost in the process. We also applied global histogram equalization to the whole

image which did not give a satisfactory result.

3.5 Summary

We have described how to take advantage of hyperspectral imaging, most notably

using images in near-infrared to assist in the visual enhancement of old documents.
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Specifically, we demonstrated how to improve the visual quality of text-based

documents corrupted with artifacts such as ink-bleed, ink-corrosion, and foxing, by

using the invisible bands to help remove these undesired artifacts. For documents

with line drawings that suffer from low contrast, we use the invisible bands to

provide more details to enhance legibility. The key components of our framework

included detecting regions that can be enhanced by NIR range images, compositing

the enhanced gradient map from NIR images, and reconstructing the final image

from gradients using an optimization scheme.

Since our visual enhancement framework is subjective in nature, it’s quite hard

to find an appropriate quantitative metric to measure the improvement of results.

However, the feedback from our collaborators at the NAN has been highly positive.

Our algorithms have been integrated as part of a comprehensive HSI visualization

tool used by the NAN. In particular, they state that this algorithm can be used to pro-

duce results that augment physical exhibitions, where a printout of the enhanced

version produced by our algorithm is displayed near the original document. The

ability to maintain the look and feel of the original document was especially lauded,

as previous attempts by themselves was done with less success in Photoshop.
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Chapter 4

Reducing Compression Artifacts

Arising from Tone Adjustments

In this chapter, we introduce a new gradient domain based compression artifact

reduction method that is tailored specifically for tone-adjustment. As far as we

are aware this is the first approach to consider removing compression artifacts that

arise due to the application of image enhancement. As discussed in Chapter 1, such

gradient domain processing is task specific. In this chapter we describe how we

implement our method through a combination of several state-of-the-art techniques

including dictionary and example-based learning and corrupted regions detection.

The experimental results show that the proposed method can effectively suppress

the compression artifact.

4.1 Introduction

One of the most common image-editing task is simple tone adjustment that is

used to modify the contrast of an image. This is performed by either manually
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specifying or selecting a pre-defined tone-curve T, or via histogram equalization

which computes T based on the input image’s histogram. While tone-adjustment

can help bring out details in an image, it can also amplify noises and artifacts due

to compression.

This is a real problem because the vast majority of image are compressed,

most often using JPEG compression. The JPEG compression scheme breaks an

input image into 8 × 8 pixel blocks and applies a discrete cosine transformation

(DCT) to each block individually. To reduce storage space the DCT coefficients

are quantized at various levels – more quantization gives higher compression but

lowers image quality (for more details see [77]). JPEG assigns a quality factor,

QX, to link the amount of quantization with subjective quality, e.g. Q100-Q85 are

considered high-quality images, while Q85-75 are mid-quality, and so on. Because

of the 8 × 8 processing strategy used in JPEG, lower-quality images often exhibit a

characteristic blocking effect.

Early JPEG compression methods used fixed quantization tables for different

quality settings, however, most JPEG schemes now use what is referred to as

optimized JPEG where quantization tables are customized based on the image’s

content [76]. This allows relatively high compression rates, e.g. Q75, with little

noticeable visual artifacts. However, when post-processing techniques like tone-

mapping or histogram equalization are applied, the blocking effects become more

prominently visible as shown in Figure 4.1-(A), since the tone-adjustment operation

also amplifies the sharp edges of blocking artifacts.

To address this issue, we introduce a new method to reduce the blocking artifacts

that arise from tone-adjustment. Our approach first determines regions in the tone-

adjusted image that exhibit prominent blocking artifacts based on the histogram

42



Chapter 4. Reducing Compression Artifacts Arising from Tone Adjustments
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Figure 4.1: (A) Example of noticeable artifacts appearing after tone-mapping. The
insets show some selected patches in various regions and their underlying gradient.
The characteristic blocking artifact is distinctive in the gradient image. (B) Shows a
comparison of our result and the one obtained by state-of-the-art deblocking [26].
Also shown is the ground-truth. Note that our method produces image gradient
that better resembles the ground-truth. (Please see the electronic version for better
visualization.)
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of oriented gradients (HoG). Next, we use a learning-based method to replace

the image gradient in these corrupted regions using a training-set of images to

which we have applied the same compression and tone-adjustment too. The final

deblocked image is then estimated using gradient-domain reconstruction with the

new gradients. As shown in Figure 4.1-(B), this approach can produce compelling

results that are better than standard deblocking algorithms. The details of our

algorithm as well as comparisons with other methods are discussed in the following

sections.

4.2 Related Work

Image artifact/blocking has long been recognized in the image processing com-

munity [42, 84]. However, this image enhancement problem remains unsolved

and an active area [18, 83, 33, 28, 32]. Varied approaches have been used which

can broadly be categorized in four general classes. The first is based on global

compensation (spectral or otherwise) for the local blocking effects [48, 50, 34]. The

second is based on block level or localized identification of artifact and application

of local filter [15, 26, 42, 49, 50, 53]. The third is based on projection onto convex

sets. Finally, the fourth are dictionary/prior learning based identification and com-

pensation of artifacts [18, 33, 22, 69]. Such methods often use sparse and/or kernel

based representations and perform apriori learning of the dictionary entries and the

corresponding compensators.

Most of these methods target at improving the value of quality assessment

metrics like reducing mean square error (MSE) or an energy/entropy function [69],

or increasing peak signal to noise ratio (PSNR), PSNR-B [83] (PSNR with blocking
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effects), or structural similarity (SSIM) index. In addition, some of the methods

create a blocking artifact mask (succinctly called blocking mask) in order to identify

and represent the regions with blocking artifacts [50, 48].

Our proposed approach also uses dictionary learning. However, in our ap-

proach we are able to dynamically change the dictionary such that it is learnt

specifically for a given tone-curve and compression quality. We also introduce a

simple detection step based on HoG to find regions that exhibit blocking artifacts.

In Section 4.4, we show that our method is able to improve the visual quality of

the image in comparison with other two representative works (they have made

their code available on-line), one local filtering based approach [26] and one prior

learning based approach [69], even though the quality assessment metrics of our

method may not be the best.

4.3 Proposed Method

Figure 4.2 shows a high-level overview of our method. An input image Ic with

compression quality QX (e.g. Q1 – Q100) is modified by a tone-mapping function

T resulting in a new image Ic
T. Here, c denotes the image as being compressed and

T is the tone-mapping function which is either user-supplied or computed from a

method such as histogram equalization. Our goal is to reduce the blocking artifacts

in Ic
T. Our method builds a dictionary from a small set of uncompressed training

images that have been compressed and tone-mapped using the same compression

quality QX, and tone-mapping function T. We also build a mask of where blocking

artifacts exist in Ic
T based on the HoG feature. A new gradient field is computed

using the dictionary and regions of the original Ic
T based on the mask. Our restored

45



Chapter 4. Reducing Compression Artifacts Arising from Tone Adjustments
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Figure 4.2: A high-level overview of our proposed method. A dictionary is learned
from uncompressed and compressed training images which have undergone the
same tone-mapping curve as input image. A simple HoG analysis is applied
to detect regions with artifacts. Gradients from the learned dictionary are then
transferred to replace the gradients in regions with artifacts. A result image is
reconstructed from these new gradients to reduce compression artifacts.

image, Îc
T is obtained from a gradient-domain reconstruction using the new gradient

and tone-mapped image Ic
T. Details are given in the following sections.

4.3.1 Dictionary Construction

We describe here how to construct the dictionary used in our approach. As shown

in the bottom-left part of Figure 4.2, our method uses a set of uncompressed training

images (35 in total), Au
i , where u denotes that the image is uncompressed, i.e. high-

quality. JPEG compression with quality factor QX is applied to the images by

extracting the compression tables directly from the input image Ic. This gives us a

set of compressed images Ac
i . The same tone-mapping function T is also applied

to the compressed and uncompressed training images resulting in Au
T and Ac

T,

where the subscript i has been omitted for clarity. Since our approach works in the
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Random selection of 9 x 9 
blocks from training dataset

Collection of patches

Compressed

Uncompressed

PCA and 
eigen vector 
truncation

Coefficient 
computation

Dictionary

Figure 4.3: This figure shows a diagram of how to construct the dictionary. Image
patches are mean-shifted so that the training dataset contains only high frequency
structures. We apply PCA to select the top 50K image patches as our learnt dictio-
nary.

gradient domain, our training data is in the form of ∇Au
T and ∇Ac

T.

Figure 4.3 provides an accompanying diagram of how to construct the dictio-

nary. To reduce the training data to a compact dictionary we randomly select a

large number, M, of 9 × 9 blocks denoted as Bi from ∇Ac
T. These blocks are mean

shifted such that each block has zero mean B̃. The patches vectorized B̄ compact

data matrix D is formed:

D = B̂B̂T; B̂ =
[

B̄1 B̄2 · · · B̄M

]
(4.1)

The PCA vectors of D, v̄e, are computed, where the corresponding eigen values
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λe are arranged in descending order, i.e. λe > λe+1 [27]. The PCA bases are robust

and represent the patches well for large value of M, such that the random sampling

ensures that all possible features and their relative occurrence is captured well in

the collection of patches. The top E PCA vectors v̄e, e = 1 to E are selected and the

PCA coefficients of each patch B̄ is computed such as:

aT
C = v̄e · B̄. (4.2)

We then select the top 50K patches from ∇AU
T and ∇AC

T based on the PCA

coefficient magnitude of the ∇AC
T corresponding aT

C. We denote these patches as

Bc
i and Bu

i respectively. Our approach is applied in the YCbCr space and thus

six dictionaries are created, one for each channel and in each gradient direction.

The reason for using YCbCr color space is to avoid the color shifting problem that

usually occurs when processing images in the color dependent RGB space. We tried

several commonly-used color independent spaces like HSV, LAB, YIQ, YCbCr, etc.,

and found that some of them gave quite similar results. Taking into consideration

that JPEG compression is performed in the YCbCr space, we maintain consistency

with the JPEG compression pipeline and use the YCbCr color space.

4.3.2 Synthesizing New Gradient

The learnt dictionary is used to synthesize a new gradient field ∇Ic∗
T to replace

the gradient of our tone-mapped compressed image. Our approach is fashioned

after learning-based super-resolution methods (see [27]). A schematic overview is

provided in Figure 4.4. The gradient of our tone-mapped image ∇IC
T is divided into

9 × 9 overlapping patches, denoted as Px. For each input patch, we first search the
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Each test 
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Figure 4.4: This figure shows a diagram of how to synthesize the new gradient
field using the learnt dictionary. For each 9 × 9 patch, we find the top 20 closest
matches from dictionary to infer the new gradients. A MRF is used to select the
optimal matches based on structural similarity and neighboring connectivity.

dictionary to find the 20 closest matches as candidates, then we try to infer a new

gradient patch by finding the most suitable gradient patch BC
i in the 20 candidates,

and using its corresponding artifact-free gradient patch, BU
i , to replace the gradient

in Px.

To ensure structural similarity, a smoothness prior is imposed. This procedure

can be formulated as labeling a Markov Random Field (MRF) with 20 labels (we

set the number of labels to 20 by taking into consider both system performance and
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running time) in the form:

∇Ic∗
T = argminx

∑
Ed +

∑
x,y

Es, (4.3)

where the data cost, Ed of assigning patch Bi to patch Px defined as Ed(x) = ||Px−Bc
i ||2

and the smoothness cost, Es between two overlapping patch assignments is defined

as Es(x, y) = ||Oij(Bu
i ) − Oji(Bu

j )||2, where Oij(Bu
i ) and Oji(Bu

j ) are the overlapping

regions of the uncompressed patches assigned at neighbouring locations x and y.

We estimate the optimal solution to equation 4.3 using graph-cuts [11]. This

gives us an index for each patch Px to a patch in the dictionary Bu
i . The new gradient,

∇Ic∗
T , is then formed using Bu

i with the overlapped regions being the average over

the adjacent patches.

4.3.3 Error Mask

Although the new gradient field helps to find gradient with less blocking artifacts,

it may not be able to capture the high resolution features (features with large spatial

frequency) very well because of the smoothing performed in the overlap region

between the test patches. To this end, we try to estimate the regions in the image

that exhibit the most blocking artifacts. We observed that the HoG [16] feature

can be used as a good predictor of blocking artifacts. The HoG is computed as a

histogram of oriented gradients in a 9 × 9 window about each pixel and binned

into 9 directions. We took several example patches for different tone-curves and

compression factors and labeled regions as those exhibiting noticeable blocking

artifacts and without noticeable artifacts. The mean HoG for both regions was

estimated as shown in Figure 4.5-(B). The HoG for blocking artifacts has distinct
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(A) Example patches for training (B) Plot of mean HoG feature

(C) Probability map (D) Final smoothed mask
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Figure 4.5: (A) some training patches with/without blocking artifacts; (B) the mean
response of two types of HoG features: blocking or no blocking; (C) shows the
probability of each pixel being the blocking error; (D) shows the final smoothed
mask.

peaks at angles 0, π/2, π, 3π/2 (since blocking artifacts consist of horizontal and

vertical edges), while the HoG in other regions is relatively flat.

To estimate the error mask M, we simply compare the HoG on our image Ic
T

to the mean blocking artifact HoG feature. A simple threshold t on HoG map is

used to get a blocking artifact mask M, which has value 1 for the pixels with HoG

distance less than t (i.e. the pixels should be corrected) and zero otherwise. The
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map is smoothed slightly with a Gaussian filter. The new gradient field is adjusted

based on this error map such that gradient in the regions not considered erroneous

are not changed. This can be expressed as: ∇Ic+
T =M∇Ic∗

T + (1 −M)∇Ic
T.

4.3.4 Image Reconstruction

To reconstruct the final corrected image Îc
T, we apply a gradient-domain reconstruc-

tion, which regularizes the solution against the original tone-mapped input while

imposing the new estimated gradient. The formulation can be expressed as:

argminÎc
T
(||Îc

T − Ic
T|| + ||∇Îc

T − ∇Ic+
T ||). (4.4)

This is a typical optimization problem and can be solved using the solver pro-

posed by Krishnan et al. in their fast Fourier transform based deconvolution

approach [41].

4.4 Results

In Figure 4.6 to 4.9, we present the results for four sample images with quality level

Q70 and Q75, since these two quality levels are most appropriate for the situation

we are dealing with: blocking artifacts are hard to notice before tone-adjustment,

but become clearly noticeable after the tone-curve is applied. These figures present

the uncompressed tone-mapped image (ground-truth), compressed tone-mapped

image (test phase input), results of prior learning based method [69] (referred to

as PLB), local filtering based method [26] (referred to as LFB), and the proposed

method. In particular, the tone-curve used here is a pre-defined one as shown in

Figure 4.2. Note that the compressed tone-mapped image Ic
T is saved using lossless
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Ground-truth Compressed PLB [69] LFB [26] Proposed

Figure 4.6: Sample 1 with quality Q75. From top to bottom: intensity image, insets
of intensity image, difference map against the ground-truth, gradient image, insets
of gradient image. Please see the electronic version for better visualization.

PNG instead of JPEG format to avoid introducing further compression artifact,

while both PLB and LFB require the quantization table as an input to assist in

estimating the blocking artifact. Hence, we extract the quantization table out of

the compressed JPEG image Ic and pass it to these two approaches as the necessary

input.

For each sample, we respectively show 1) the intensity image, 2) two rectangular

insets (one with significant blocking effect and the other one with rich texture), 3)

the difference map between the ground-truth and each other image, 4) the gradient

map, and 5) the insets of gradient map. It is seen in the gradient insets of Figure 4.6

to 4.9, that significant bocking effect is present in homogeneous regions (e.g. the

sky) of the input image. PLB fails to remove the blocking effect and the severe

artifact can be directly identified on both the result image and its gradient map.
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Ground-truth Compressed PLB [69] LFB [26] Proposed

Figure 4.7: Sample 2 with quality Q70. From top to bottom: intensity image, insets
of intensity image, difference map against the ground-truth, gradient image, insets
of gradient image. Please see the electronic version for better visualization.

While LFB can visually ameliorate or diffuse the blocking effect, it does not solve

the blocking issue completely. From the gradient maps, we can clearly see many

artificial seams. Further more, both PLB and LFB tend to blur the input image so

that some rich texture regions (refer to the bottom right inset) are partly smoothed

out. In contrast, the proposed method can completely remove the blocking effect

and result into a random gradient patch like the ground truth but differing in

magnitude and the actual distribution. The observed deviation from the ground

truth is not unexpected since the finer details of the patch present in the high

spatial frequency components of the uncompressed images are lost completely

after compression and even the dictionary based approach cannot exactly mimic

the lost information. On the other hand, the proposed method does not introduce

blurry effect to rich texture regions due to the usage of error mask.
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Ground-truth Compressed PLB [69] LFB [26] Proposed

Figure 4.8: Sample 3 with quality Q75. From top to bottom: intensity image, insets
of intensity image, difference map against the ground-truth, gradient image, insets
of gradient image. Please see the electronic version for better visualization.

In stead of synthesizing the new gradient using the learnt dictionary as dis-

cussed in Section 4.3.3, we can also simply use the gradient map of compressed

image Ic to compose the new target gradient map with the same error mask, since

the blocking artifact is relatively unnoticeable (but still exists) in Ic before any tone-

adjustment. We refer to this manner as the simple method. The visual quality of

this method’s results is in between LFB and the proposed method. We also did two

“pre-correction” experiments using PLB and LFB. That is, instead of deblocking Ic
T,

we can firstly deblock Ic and then apply the specific tone-curve to the deblocked

result. We find that the pre-correction results are worse than results of the post-

correction manner. They are smoothed out a lot, resulting in the distinct loss of fine

details.

In addition to the qualitative comparison, the quantitative comparison is also
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Ground-truth Compressed PLB [69] LFB [26] Proposed

Figure 4.9: Sample 4 with quality Q70. From top to bottom: intensity image, insets
of intensity image, difference map against the ground-truth, gradient image, insets
of gradient image. Please see the electronic version for better visualization.

presented in Table 4.1. We select three commonly used quality assessment metrics,

PSNR/MSE/SSIM, to evaluate the results of PLB, LFB, the simple method, and the

proposed method. From Table 1 we can see that the quality assessment metrics of

our method may not the best but comparable with other methods. However, the

visual quality of our results is clearly better than other methods. The purpose of

showing this quantitative comparison is to state that quality assessment metrics

are not always reliable when they are used for ranking the image’s visual quality.

Lastly, we performed a simple user study on user’s preference of the results

generated by 6 different methods (PLB, PLB-pre, LFB, LFB-pre, the simple method,

and the proposed method). Thirty participants with average age around 27 were

involved and not trained before the experiment. For each participant, we randomly

select 7 examples and show our result against one of the other 5 results side by
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Metrics Fig. 4.6 Fig. 4.7 Fig. 4.8 Fig. 4.9
PS

N
R

PLB 36.0883 33.6842 31.9571 33.0604

LFB 36.5471 33.7465 32.1644 32.9419
Simple 35.8764 32.9835 31.7029 32.5842

Proposed 35.3928 32.7774 31.6734 32.4192

M
SE

PLB 16.0050 27.8397 41.4349 32.1395

LFB 14.4004 27.4430 39.5044 33.0285
Simple 16.8049 32.7135 43.9326 35.8638

Proposed 18.7845 34.3039 44.2321 37.2526

SS
IM

PLB 0.9794 0.9738 0.9666 0.9657
LFB 0.9859 0.9760 0.9750 0.9682

Simple 0.9838 0.9686 0.9721 0.9661
Proposed 0.9830 0.9702 0.9724 0.9660

Table 4.1: Quantitative evaluation of PLB [69], LFB [26], the simple method and the
proposed method.

side. That means the participant needs to do 35 comparisons in total and decide

which image (left side or right side) is visually better based on two criteria: 1) less

blocking artifacts in homogeneous regions and 2) less blurry effect in rich texture

regions. The order of examples, methods that we are comparing against, and the

image’s left and right positions are totally random. Lastly, we count the number

of all user’s choices for each method (total number is 30 × 35 = 1050) and plot the

result in Figure 4.10. Note that we divide the count value of our method by 5 since

our result appears 5 times more than other methods. The statistical result shows

that our proposed method is preferred by most of users.

4.5 Conclusion

This chapter presents an approach to correct the blocking artifacts that appear in

compressed images and become visibly annoying after tone-mapping operation.
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Figure 4.10: Participants preferred results of 6 different methods. The statistical
result shows that our proposed method is preferred by most of users. Total number
of choices made by users is 1050 = 19 + 17 + 40 + 35 + 58 + 176.2 × 5.

The method combines the strengths of several state-of-the-art techniques like dic-

tionary, example learning, forming blocking artifact mask, and reconstructing the

output image by optimizing an energy function. Each of the steps plays a cru-

cial role in enhancing the performance of the proposed method. As a result, the

proposed method is significantly more effective in suppressing blocking artifacts

and providing more user-pleasing images in comparison to other recent methods.

The performance of the method is demonstrated using qualitative and quantitative

tools as well as using an extensive user study.
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Chapter 5

Color-aware Regularization for

Gradient Domain Manipulation

As discussed in Chapter 1, gradient domain manipulation techniques require a

reconstruction step to compute the final pixel values from the modified gradient

field. This reconstruction can sometimes lead to undesirable colors in the final

result. In this chapter, we present a color-aware regularization method for use

with gradient domain image manipulation to avoid color shift artifacts. The key

idea is to use an anisotropic Mahalanobis distance to control output colors to better

fit original distributions. Our approach is simple, easy to implement, and does

not introduce significant computational overhead. The effectiveness of our color-

aware regularization is evaluated on three gradient domain tasks, gradient transfer,

gradient boosting, and saliency sharpening.

Before the detailed discussion of our method, we would like to precisely define

the color shift problem by taking gradient boosting as an example. Gradient

boosting is used to enhance the contrast of an image (i.e. make a flat image more

vivid or colorful), but “color shift” occurs if a new hue that doesn’t exist in the
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input image shows up in the output image. For example, the flower center in

Figure 5.2(C) changes from yellow to green (a completely new hue), resulting in

the color shift problem; however, the petal changes from light purple to dark

purple, which is not the color shift problem.

5.1 Motivation and Related Work

Gradient domain manipulation is the cornerstone of many image processing algo-

rithms from image editing to texture transfer to image fusion. For an overview of

gradient domain algorithms and applications we refer readers to [9]. As the name

implies, gradient domain algorithms do not operate in the 0th order domain (i.e.

color domain), but instead impose changes to the 1st order derivatives of the input

image, i.e. the image gradient. When left unchecked, gradient domain processing

can result in noticeable color shifts in the 0th domain output image. To ameliorate

color-shifting artifacts, most gradient domain approaches impose an additional 0th

order constraint either at the boundary of the processed region (early approaches,

e.g. Poisson image editing [59]), or over the entire region (recent approaches,

e.g. [9, 85, 40, 82, 79, 67]). Readers may refer to Section 2.2 in Chapter 2 for more

information on these two regularization strategies.

Since imposing 0th order constraints over the entire processed region could

have more control on the output color, most recent gradient domain processing

approaches adopt this regularization strategy. This work also targets this regu-

larization strategy which can be applied in one of two manners, either by 1) first

converting the input space (presumably RGB) to a new color space (e.g. YUV or

LAB) that separates the luminance and chrominance components and processing
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Figure 5.1: Solution spaces (denoted by the dotted line) of the marked pixel using
different 0th domain regularization methods.

only the luminance channel (we refer to this manner as Y-ch method in the rest of

this chapter); or by 2) applying the L2 regularization to all three channels separately

(we refer to this manner as RGB method). When only one channel is processed,

the regularization effectively constrains the output solution so that each pixel is

restricted to a 1-D space (Figure 5.1(B)). Although this approach does not shift the

chromacity, it can produce outputs that appear flat and less vivid. This can be

seen in Figure 5.2(B). When all three channels are processed, the per pixel solution

space is constrained to lie within the sphere about its original value as shown in

Figure 5.1(C). This conventional regularization is applied irrespective to how the

scene colors are distributed in the original input. As a result, satisfying the regu-

larization constraint may also introduce colors that are quite different than those
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A B C D

Input image Y-ch method RGB method Our color aware method

Figure 5.2: This figure compares conventional 0th domain regularization applied
to an image that has had its gradient boosted. A) Input image. B) Result using L2

regularization over the Y channel only. C) Result using L2 regularization over all
three channels of the RGB input. D) Our color-aware regularization result. Note
the flat output colors exhibited by Y-ch method in B, and the subtle color-shifting
exhibited by RGB method in C.

in the original image. This can be seen in Figure 5.2(C) where the solution of the

gradient boosting has resulted in noticeable color shifts.

Our work is motivated by the observation that objects’ RGB colors in natural

images follow unique distributions. For example, in Figure 5.1(A), the pixel marked

in cyan is plotted with all other pixels belonging to the same object. It is easy to

see that the pixel belongs to a distinct color distribution in the RGB space. Such

unique distributions have been observed by Omer and Werman [56], who showed

that colors in natural images tend to form elongated clusters (referred to as lines)

in the RGB space. Our color-aware approach constrains the solution space to more

tightly follow the original distribution in order to avoid color shifting as shown in

Figure 5.1(D) and Figure 5.2(D).

Contribution Our contribution is the introduction of a regularization term that

more faithfully follows the distribution of colors in the input image. Our approach

applies a simple segmentation to the input image to assign each pixel to a color dis-

tribution represented as a Gaussian mixture model (GMM). Based on these GMMs
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we can formulate the color-aware regularization using anisotropic Mahalanobis

distances [20], which allow the problem to be expressed as a linear system. This

color-aware regularization constrains the output solution to better fit the original

input color distributions thereby avoiding color shifts. Our approach can be eas-

ily incorporated into existing gradient-domain formulations. We demonstrate the

effectiveness of this regularization on a variety of inputs for three selected applica-

tions, gradient transfer, gradient boosting and saliency sharpening. We compare

our results with conventional L2 regularization approaches (Y-ch method and RGB

method) as used by [9, 85, 40, 82, 79, 67].

5.2 Color-aware Regularization Framework

5.2.1 Overview

An overview of our framework is shown in Figure 5.3. Each pixel is first assigned

to a color distribution via segmentation. We found that a simple superpixel seg-

mentation [64] followed by k-means clustering [20] is enough to find the underlying

color distributions. These individual color distributions are then fit with a series of

3D Gaussian distributions in the RGB color space. The input to our algorithm is an

image where each pixel is assigned to a single distribution represented by a series

of Gaussians, i.e. G1,G2, . . . ,Gm.

A bi-objective function is then used to transfer the new gradients to the input

while regularizing each output pixel to lie within a minimum distance from one

of the Gaussian distributions used to model its associated color distribution. This

regularization is formulated as an optimization problem similar to the work of [9,

85, 40, 82, 79, 67].

63



Chapter 5. Color-aware Regularization for Gradient Domain Manipulation

1
2

Region 1 Region 2

Gx Gy

B

R G

B

R G

G1

G2

G3

G4 G1

G2

G3

G4

Figure 5.3: The overall workflow of our color-aware regularization framework.

5.2.2 Conventional optimization framework

A detailed review of conventional optimization framework has been presented in

Section 2.2.2 in Chapter 2. Here we just briefly present some important equations

again. Assume we transform the gradients of image g to the target image f while

still preserving the original look-and-feel of the target image. That is, we look for

a new image u that minimizes the following bi-objective function:

E(u) =
∑
p∈u

(λEd(p) + Es(p)), (5.1)

Ed(p) = (up − fp)2, (5.2)

Es(p) =
(∂u
∂x
− c · ∂g

∂x

)2

p
+

(∂u
∂y
− c · ∂g

∂y

)2

p
, (5.3)

where p is the pixel index; λ is used for the balance between Ed and Es; ∂∂x and ∂
∂y

denote the partial derivative operators in x- and y-direction; c is a scaling factor to

control the strength of the target gradient field.
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5.2.3 Color-aware regularization term

As shown in Figure 5.1, the solution space of each pixel in the resulting image u is

constrained either to lie on a 1-D solution space if only a single channel is processed

(Y-ch method), or to lie within a sphere centered at each pixel if applied to all three

channels (RGB method). Since the Euclidean distance is blind to the inherent

correlation among variables, neither of these methods is able to take into account

the color distribution information of the input image f . This can lead to flattened

colors or noticeable color shifts in the output image. To solve this problem, we

change the conventional L2 regularization to an anisotropic Mahalanobis distance

that more tightly fits the original color distribution. By using the Mahalanobis

distance, 0th domain solutions along the shorter axis of each pixel’s associated

Gaussian model are penalized. This forces the solution to move along the longer

axis, thus constraining the solution to lie closer to the original color distribution.

Single Gaussian Model We first consider the case where we can model a color

distribution using a single Gaussian distribution. We define our color-aware 0th

order regularization term as:

Emdd(p) = (
up − 
fp)TS−1
p (
up − 
fp), (5.4)

where p is the pixel index; both 
up and 
fp are the RGB pixel values represented by 3D

column vectors; Sp is a 3×3 covariance matrix of the Gaussian that pixel p is assigned

to. The term Emdd is the squared Mahalanobis distance, which is a dissimilarity

measure between the two vectors 
up and 
fp. The benefit of the Mahalanobis distance

is that, unlike the Euclidean distance, it considers the correlation of data elements

in the vector, in our case the RGB values of the pixels.
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Combining Eq. 5.3 and Eq. 5.4 using matrix notation we can write our quadratic

form bi-objective cost function as

E(u) = λEmdd(u) + Es(u)

= λ(u − f )TΣ(u − f )

+ (Gxu − c · Gxg)T(Gxu − c · Gxg)

+ (Gyu − c · Gyg)T(Gyu − c · Gyg), (5.5)

where u, f and g are RGB images reshaped into the column vector form (e.g.

[R1G1B1 . . .RNGNBN]T); Σ is a 3N×3N (N is the number of pixels) block-diagonal

matrix containing the 3×3 inverse covariance matrices of Gaussian models that

each pixel is assigned to; the matrices Gx and Gy are discrete forward differentiation

operators. Note that gradient constraint g does not necessarily form a 3-channel

image since we may transfer gradients of a grayscale image to a color image (see

Section 5.3). In that case, image g is extended to an RGB image by copying itself

three times. Minimizing Eq. 5.5 amounts to taking its derivative, setting it to zero,

and solving for vector u that is uniquely defined as the solution of the linear system:

(λΣ + GT
x Gx + GT

yGy)u = λΣ f + c · (GT
x Gxg + GT

yGyg). (5.6)

To solve this linear system, we use the conjugate gradient (CG) method [6] that

is also used by [43] and [9]. Note that further improvement can be made to the 1st

order term Es(u) in Eq. 5.5 since the L2 norm is known to be sensitive to noise and

may result in haloing artifacts in the output image. To solve this problem, we add

two spatial-varying weights to Es(u) using the same weighting scheme presented
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in [9]:

wx(p) =
(∣∣∣∣∂ f
∂x
− ∂g
∂x

∣∣∣∣
p
+ 1

)−α
(5.7)

wy(p) =
(∣∣∣∣∂ f
∂y
− ∂g
∂y

∣∣∣∣
p
+ 1

)−α
(5.8)

where the parameter α (typically 1.2 ≤ α ≤ 3) determines the sensitivity of Es(u)

to noise. By using this per-pixel weighting scheme halo artifacts are effectively

reduced.

Multiple Gaussian Models Instead of using a single Gaussian model per color

distribution, we use several Gaussian models to represent each color distribution

more precisely. As shown in Figure 5.3, each pixel is first assigned to a color

distribution (region) via segmentation. Each color distribution is represented by

a series of 3D Gaussian models G1,G2, . . . ,Gm and each pixel is initially assigned

to its nearest Gaussian model Gi via Eq. 5.4. All pixels in the same region (color

distribution) share the same set of Gaussian models and can be reassigned to any

Gaussian models within this set when iteratively solving the output image. We

integrate this reassignment scheme with the conjugate gradient algorithm and

show that it can further decrease the objective cost function (see Figure 5.4).

Assume that we divide the input image into k color distributions and each

distribution is represented by m 3D Gaussian models, resulting in k × m Gaussian

models in total; Gi, j is the jth Gaussian model of the ith color distribution (1 ≤ i ≤
k; 1 ≤ j ≤ m) and Si, j is the covariance matrix of Gi, j. The expression ‖A‖F denotes

the Frobenius norm of matrix A. We now outline the overall algorithm of our

reassignment approach as shown in Algorithm 1.

Convergence Analysis Without using the spatially-varying weights on the 1st

67



Chapter 5. Color-aware Regularization for Gradient Domain Manipulation

Algorithm 1 Gaussian model reassignment
Require: input image f and g, initial assignment map of all pixels ASG (a ma-

trix), maximum number of reassignment operations T, number of CG solver
iterations t, small tolerance ε > 0

1: u = f
2: for reselect = 1 to T do
3: u = conjugate gradient solver( f , g,u,ASG, t); ASG old = ASG;
4: for i = 1 to k do
5: for all p ∈ Region(i) do

6: j0 = argmin
j∈[1,m]

(
up − 
fp)TS−1
i, j (
up − 
fp)

7: reassign p to the Gaussian model Gi, j0 (one element of ASG is updated)
8: end for
9: end for

10: if ‖ASG − ASG old‖F < ε then
11: break
12: end if
13: end for
14: return the output image u

order constraint term, minimizing the conventional bi-objective cost function re-

viewed in Section 5.2.2 is known to be a convex problem. Our color-aware opti-

mization framework (using single Gaussian model) differs from the conventional

formulation by only introducing a block-diagonal matrix Σ on both sides of the

linear system Au = b (see Eq. 5.6). We know that the covariance matrix Σ is

positive-semidefinite. As a result, introducing the matrix Σ does not violate the

convex property of this optimization problem and a global optimal solution can be

achieved.

When using multiple Gaussian models and the reassignment scheme, the con-

vex property remains intact. As shown in Algorithm 1, the reassignment scheme

is actually a combination of several independent conjugate gradient solving pro-

cedures. After each reassignment step is done, the cost value is guaranteed to be
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Figure 5.4: Comparison of cost values (with spatial-varying weights applied) when
using single Gaussian model (blue dashed line) and multiple Gaussian models (red
solid line). For multiple Gaussian models, the reassignment operation is carried
out every 50 iterations (t = 50 in CG solver).

decreased (or at least remain unchanged) by reassigning each pixel to the Gaus-

sian model whose covariance matrix can minimize the 0th order term Emdd while

keeping the 1st order term Es unchanged.

However, the optimization problem is no longer convex once the spatial-varying

weights are used. In this case, the global optimum solution may not be attainable,

but we can still use conjugate gradient method to find an approximate solution.

In practice, we find our framework works well to minimize Eq. 5.5 within 250

iterations (see Section 5.3.1). Two plots of the cost values during conjugate gradient

iterations are shown in Figure 5.4. As we can see, with the help of multiple Gaussian

models and the reassignment scheme, the cost value has been further decreased

compared to the result achieved by the single Gaussian model. Note that the cost

values are shown in log scale.
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5.3 Experiments

We compare the results obtained by our color-aware regularization against those

obtained using a conventional optimization framework [9, 85, 40, 82, 79, 67] based

on L2 0th order regularization in the two manners previously discussed (i.e Y-ch

method and RGB method). The fast deconvolution algorithm presented by [41]

is used to perform the conventional optimization. Comparisons are conducted

on three selected tasks including gradient transfer, gradient boosting and saliency

sharpening. Before carrying out experiments we briefly explain the parameters we

used for these tasks.

5.3.1 Experiment setups

For all the three methods, the gradient scaling factor c is set to 1.0 in gradient

transfer task and 2.0 or 3.0 in gradient boosting/saliency sharpening tasks. To keep

the comparisons fair, we adjust the balancing factor λ for each method to make

sure that a comparable amount of gradient has been transferred or boosted for each

example (see quantitative comparison in Section 5.3.3).

For our color-aware regularization method, we use over segmentation algo-

rithm followed by k-means clustering to detect underlying color distributions of an

image and k is chosen between 10 and 15 range (see Section 5.3.3 for detail expla-

nation). The number of Gaussian models used to represent each color distribution

is fixed to m = 5. We restrict the number of Gaussian reassignment operations

within 5 times (T = 5) and set 50 iterations for the CG solver (t = 50). With the

above settings, the running time for an 800×600 image is around 3 minutes (Matlab

implementation on an Intel Core 2 Duo 2.8GHz computer). We note that using
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more than 5 Gaussian models does not significantly improve the results.

5.3.2 Image gradient manipulation tasks

Gradient transfer The first two examples demonstrate gradient transfer of the gra-

dients from a near-infrared (NIR) image to an ordinary RGB image. Such gradient

transfer has been demonstrated to improve some forms of photography [40, 88]

since NIR often contains more details that cannot be seen in the visible spectrum.

In the first example, we show an example of an outdoor scene of a castle where the

clouds and other textures are notably stronger in the NIR image. Two input images

(NIR and RGB) are shown in Figure 5.5(A-a) and Figure 5.5(A-b). Figure 5.5(A-

c) shows the result generated by the Y-ch method. While the desired gradients

(clouds) are transferred, the color of the green plants below the castle change to

cyan. Figure 5.5(A-d) shows the result produced by the RGB method. Note that

the red color of the plants and rocks changes to green. Our result is shown in

Figure 5.5(A-e). The colors of both the red rocks and green plants are preserved

well. Another example is shown in the second row of Figure 5.5. Note that the

color of the nebula (highlighted by a green dashed box) changes significantly in Fig-

ure 5.5(B-c) and the color of the stars (highlighted by a red dashed box) is washed

out in Figure 5.5(B-d). Our method achieves a better result in Figure 5.5(B-e) with

colors that are more similar to the input RGB image.

Gradient boosting The second example targets gradient boosting that is aimed

to enhance image contrast. In Figure 5.6, column (a) shows original input images;

column (b) shows the scaled gradient magnitudes after boosting (rendered as a hot

map for better visualization); column (c), (d) and (e) are the results generated by the

three different methods. We can see that when using the RGB method (column (d)
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A

B

(a) NIR image (b) RGB image (c) Y-ch method result (e) Our color aware method(d) RGB method

Figure 5.5: Examples of gradient transfer: (a) input NIR image; (b) input RGB
image; (c) result using L2 regularization over the Y channel only; (d) result using
L2 regularization over R/G/B channels; (e) our color-aware regularization result.
Regions with color-shifting problem have been highlighted in red and green dashed
boxes.

A

(a) Original image (c) Y-ch method (e) Our color aware method

B

C

(b) Scaled gradient map (d) RGB method

Figure 5.6: Examples of gradient boosting: (a) input RGB image; (b) scaled gradient
map providing target gradients; (c) result using L2 regularization over the Y channel
only; (d) result using L2 regularization over R/G/B channels; (e) our color-aware
regularization result. Regions with color-shifting problem have been highlighted
in green dashed boxes.
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A

(a) Original image (c) Y-ch method (e) Our color aware method

B

C

(b) Saliency map (d) RGB method

Figure 5.7: Examples of saliency sharpening: (a) input RGB image; (b) saliency
map of the input image; (c) result using L2 regularization over the Y channel
only; (d) result using L2 regularization over R/G/B channels; (e) our color-aware
regularization result. Regions with color-shifting problem have been highlighted
in red and blue dashed boxes.

in Figure 5.6), the results suffer from noticeable color-shifting in some regions. For

instance, the color of the wall and Krishna’s legs in example A becomes yellowish;

the color of the woman’s clothing in example B changes from brown to blue; the

color of the valley in example C also shifts to blue. Although color shifts less

noticeable when using the Y-ch method (column (c) in Figure 5.6), the overall color

of these images seems to be flattened and less vivid. Our results (column (e) in

Figure 5.6) show the images with boosted contrast and without color shifts. In

addition, our results are more vivid and colorful compared to the Y-ch method.

Saliency sharpening Saliency sharpening is similar to gradient boosting applica-
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tion. The only difference is that the gradient boosting globally enhances gradients

by a factor c, while saliency sharpening strengthens gradients in a spatially varying

manner based on the image saliency map. We adopted the gradient attenuation

function proposed in [24] to generate a grayscale saliency map M (brighter regions

indicate larger scale factors and stronger boosting). In this case, the global scale

factor c in Eq. 5.5 will be replaced by (1+ c ·M). As shown in Figure 5.7, our method

produces results visually more appealing compared to the other two methods.

Note the visible color-shifting on the wall behind the tiger (Figure 5.7(A-d)), the

cloud above the rock (Figure 5.7(B-d)) and the sunflower (Figure 5.7(C-d)). Again,

results from the Y-ch method (column (c) in Figure 5.7) appear flat, similar to the

examples in gradient boosting application. However, our results (column (e) in

Figure 5.7) successfully preserve the original color of input images after saliency

sharpening process.

5.3.3 Evaluation and analysis

In order to show how our color-aware regularization method preserves the original

color distribution more faithfully than the other two methods, we plot the original

color distribution of a selected region in the input image and compare it with color

distributions of the same region in three output images. In Figure 5.8, column (a)

shows the input image and its color-coded segmentation map; column (b) plots the

color distribution (data points are randomly sub-sampled for better visualization)

of the selected region in the RGB space; column (c), (d) and (e) plot different results

generated by the Y-ch method, the RGB method and our method respectively.

The plots show that the color distribution of our output image (selected regions)

preserves the original distribution much more faithfully than the other two in terms
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A

B

(c) Y-ch method (d) RGB method (e) Our color aware mehtod�������	�
������������
(a) Input RGB image and 
������	��
����
����

Figure 5.8: Distributions of the solutions using different 0th domain regulariza-
tion methods: (a) input RGB image and its segmentation map; (b) original color
distribution of the selected region (highlighted in green solid boxes); (c) resulting
distribution using L2 regularization over the Y channel only; (d) resulting distribu-
tion using L2 regularization over R/G/B channels; (e) our color-aware regularization
distribution. Note that our distribution better maintains the shape and trend of the
original.

of shape and trend.

Other than YUV and RGB spaces, we also compared our method with tradi-

tional L2 regularization applied on other commonly-used color spaces. Similar to

the Y-ch method, we convert the input image into YIQ/HSV color space and reg-

ularize the luminance/brightness channel only. As shown in Figure 5.9(b, c), the

results are similar to that of the Y-ch method and also suffer from flattened colors

due to the limitation that the output pixels are restricted to a 1-D space (refer to

Figure 5.1(B)). Similar to the RGB method, we convert the input image into LAB

color space and regularize three channels separately. Using LAB color space we
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(a) Original image (b) YIQ space (c) HSV space (d) LAB space (e) Our method

Figure 5.9: Comparison of other color spaces: (a) input RGB images; (b), (c) gradient
boosted results using L2 regularization over the luminance or brightness channel
of YIQ/HSV color spaces; (d) result of L2 regularization over all channels of LAB
color space; (e) our color-aware regularization result.

get the result (Figure 5.9(d)) that also appears flat and less colorful compared to

our result (Figure 5.9(e)).

We also want to examine the amount of gradient effectively transferred by each

method. To do so, we compare the average per-pixel Euclidean distance of the

gradient maps of three output images with the constrained gradient map. Table 5.1

lists the amount of gradient transferred for each example. Note that all methods

transfer a comparable amount of gradient. This verifies that 1) our approach is

able to transfer gradient as effective as the other methods; and 2) the results shown

are fairly compared because they have each transferred approximately the same

amount of gradient.

Our color distributions are determined by over-segmentation followed by k-

means clustering, resulting in k distributions, each of which is further decomposed

into GMMs. To determine the sensitivity of our results to the choice of k, we

performed experiments with k ranging from 5 to 40. We found the results do not

vary too much for values of k greater than 15 (see accompanying supplemental
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Table 5.1: This table shows the overall amount of gradient transferred by each
method (average L2 difference between output and input gradients) is similar for
all example images shown in Figure 5.5(A, B), Figure 5.6(A, B, C) and Figure 5.7(A,
B, C).

Methods Figure 5.5 Figure 5.6 Figure 5.7
A B A B C A B C

Y-ch method 0.0040 0.0047 0.0369 0.0148 0.0899 0.0849 0.1344 0.0518
RGB method 0.0041 0.0036 0.0372 0.0123 0.0591 0.0757 0.1244 0.0467
Our method 0.0044 0.0046 0.0340 0.0113 0.0533 0.0747 0.1182 0.0453

materials). As a result, we advocate using the range between 10 and 15.

Lastly, since our approach is subjective in nature, we performed a simple user

study on user’s preference of the results on 14 examples (3 for gradient transfer, 7

for gradient boosting and 4 for saliency sharpening). Twenty participants (average

age around 25) were asked to choose their preferred results out of the outputs of the

three different methods. Participants were not trained before the experiment, but

over half of them had experience with image editing software such as Photoshop.

Our user study showed that 18 participants preferred our results for the gradient

transfer application, and 15 participants preferred our results for the gradient

boosting application. For saliency sharpening application, 16 participants preferred

the results produced by our color-aware regularization method. Figure 5.10 shows

a graph of these results.

5.4 Summary

We have presented a straight-forward approach to perform 0th domain regulariza-

tion in a manner that more faithfully follows the original input color distribution.

This results in gradient transfer that avoids color shifting while still producing
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Figure 5.10: Participants preferred results of three different methods.

vivid results. While our approach requires an initial segmentation to determine

the distinct color distributions in the image, we found that the segmentation stage is

not a crucial issue and any basic over segmentation algorithm (e.g. watershed [75]

or superpixel [64]) gave good results. More sophisticated segmentation algorithm

like Ridge-based Distribution Analysis [73] were tried but generated similar results.

We also note that our approach is not significantly slower than conventional tech-

niques and can be easily incorporated into existing image gradient manipulation

methods.
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Conclusion

This chapter concludes the dissertation by giving a short assessment of the works

presented in previous chapters, including the visual enhancement framework for

historical documents, the compression artifact reduction method tailored for tone-

adjustment operation, and the color-aware regularization approach for use with

gradient domain image manipulation. Limitations and possible future research

directions for each work are also discussed.

6.1 Assessment

This dissertation explored gradient domain solutions for two image processing

tasks. The general idea behind these works is to firstly manipulate the gradient

field of the input image for the sake of enhancing visual appearance or reducing

artifacts, and then reconstruct the final image from the modified gradient field.

These works are respectively summarized as follows.

We presented a visual enhancement framework for historical documents based

on gradient domain fusion technique in Chapter 3. The goal of this work was
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to enhance the legibility of drawing-based documents and the visual quality of

text-based documents corrupted with ink-bleed/corrosion/foxing artifacts. The en-

hancement was done in the gradient domain by selecting desired gradients (with

more details or less artifacts) from different NIR spectral images and compositing

the enhanced gradient field, from which the final image was reconstructed. The

experimental results showed that our enhancement framework can significantly

improve the visual quality of degraded old documents. The feedback from our

collaborators at the Nationaal Archief of the Netherlands (NAN) was highly en-

couraging. In addition, our framework was integrated as a part of a comprehensive

hyperspectral image visualization tool used by NAN.

In Chapter 4, we introduced a new compression artifact reduction method by

combining the strengths of several state-of-the-art techniques. We built a gradient

dictionary from a small set of uncompressed training images that had been com-

pressed and tone-mapped using the same compression quality and tone-mapping

function as those of the input image. With the help of the error mask that indicates

corrupted regions in the input image, we used a learning-based method to replace

the gradients of those regions by artifact-free gradients retrieved from the gradient

dictionary. Finally, we estimated the new image using gradient domain reconstruc-

tion with the new composited gradient map. Experimental results and the user

study showed that our method can significantly suppress blocking artifacts and

provide more user-pleasing results in comparison with other existing methods.

In Chapter 5, we proposed a straight-forward color-aware regularization method

to avoid the color shift problem that usually occurs in the reconstruction phase of

many gradient domain image manipulation methods. Motivated by the observa-

tion that objects’ RGB colors in natural images often follow unique distributions
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in the RGB space, our approach was designed to perform the regularization in

a manner that more faithfully follows the original input color distribution when

reconstructing the final output image. This was achieved by using an anisotropic

Mahalanobis distance as the regularization term in the objective function. Our

color-aware regularization is simple, easy to implement, and does not introduce sig-

nificant computational overhead compared to conventional regularization method.

The effectiveness of our method was shown by various input images tested on three

gradient domain tasks: gradient transfer, gradient boosting, and saliency sharpen-

ing.

6.2 Limitations

In this section, we provide a discussion on limitations for each work presented in

this dissertation. They are summarized as follows:

Visual enhancement of old documents One limitation of this work is the accuracy

of segmenting the document artifacts from the foreground ink that is less sensitive

to thresholding. In some cases such as in Figure 3.8, spectrums of strong ink-

bleed and corrosion are very similar to the foreground spectrum, which makes the

segmentation results rely greatly on the thresholding. Since choosing an optimal

threshold is often challenging, some of the foreground texts may be removed while

removing the document artifacts as can be seen in Figure 3.8(c).

Compression artifact reduction In our experimental analysis, we found that the

blocking artifact appears not only in the luminance channel, but also in the chromi-

nance components. Thus, we have to build six dictionaries, one for each channel

and in each gradient direction. This leads to a large computational overhead when
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synthesizing the new gradient field (e.g searching for 20 candidate patches when

computing data-costs for the MRF). Another issue is the selection of training im-

ages, since the quality of training set may greatly affect the final result. In our

experience, a good training set should consist of images that have homogeneous

regions (e.g. sky, walls) and rich texture regions. Currently, we used 33 natural

images (landscape/portrait, indoor/outdoor images) and two images of Macbeth

color chart (with the purpose of providing more color variations), which generated

sufficiently good results in our experiment.

Color-aware regularization This work is motivated by the observation that col-

ors of objects in natural images typically follow distinct distributions in the RGB

space. As such, we assume that the images we are processing contain reason-

able color distributions that could be represented by several 3D Gaussian models

(i.e. the elongated clusters). For input images with rather flat colors (or grayscale

images), our method may not produce satisfying results, since we may not find

enough color distributions to formulate our color-aware regularization term and

our method is reduced to the conventional L2 regularization (using identity matrix

as the covariance matrix Σ).

6.3 Future Work

In this section, we discuss several future research directions for the three contribu-

tions presented in this dissertation. They are summarized as follows:

Visual enhancement of old documents As discussed in the previous section,

the segmentation may affect the enhancement result for some difficult cases. To

further improve the enhancement result, we can employ a more sophisticated
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user assistance approach as in [52] in the future work. Additionally, we can also

consider extracting several spectral bands that are more powerful in distinguishing

the foreground rather than using the entire HSI spectrums. This allows us to use

only a few bands for similarity analysis, as prior research in the archival domain

has established that certain bands are more suitable for various tasks and materials

being observed. This selective band strategy can also be used to amplify desired

artifacts, such as tears and rips, and for managing future data collection in which

only the useful bands may need to be captured.

Compression artifact reduction Given the fact that this work has a large compu-

tational overhead, one future task is to speed up the whole processing procedure

by using more effective searching and MRF labeling algorithms. In addition, in

our current MRF labeling algorithm, we select only gradient patches that match

well with neighbors in an overlap region (2-pixel overlapping) to compose smooth

boundaries. However, this approach still has boundary artifacts in some cases. To

further improve the composed boundary, we can refine the MRF labeling algorithm

by selecting the best seam (refer to seam carving [5]) through the boundary region

of neighboring patches to remove most artifacts. We can also consider using image

matching techniques to select good training images in order to further improve the

performance as well as reducing the size of the dictionary needed to perform this

task.

Color-aware regularization Currently we demonstrate our color-aware regular-

ization on three gradient domain tasks. A natural extension of this work is to

explore more applications of our method and build a comprehensive optimization

framework for exploring gradient domain solutions for image and even video pro-

cessing problems. In addition, the running time of our method is quite limited by
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the iterative conjugate gradient solver. A fast GPU implementation may greatly

reduce the running time and even make it possible for real-time video processing.

At last, in some cases, the color distribution of the input image may be very compli-

cated and hard to be modelled by simple 3D Gaussian models. We can consider to

find a better way to model the color distributions instead of just Gaussian clusters.
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