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Summary 
 

Optimal Computing Budget Allocation (OCBA) considers the problem how to get a best 

result based on the simulation output under a computing budget constraint. It is not only an 

efficient ranking and selection procedure for simulation problems with finite candidate solutions 

but also an attractive concept of resource allocation under stochastic environment. In this thesis, 

the framework of optimal computing budget allocation is studied in detail and improved from 

both theoretical aspect and practical aspect. From the perspective of problem setting, we extend 

OCBA to optimal subset selection problem and optimization problem with correlation between 

designs. From the perspective of OCBA application, we firstly explore the efficient way to use 

OCBA framework to help random search algorithms solving the simulation optimization 

problems with large solution space. The computing budget allocation models are built for a 

popular search algorithm Particle Swarm Optimization (PSO). Two asymptotic allocation rules 

PSOs_OCBA and PSOe_OCBA are specifically developed for two versions of PSO to improve 

their efficiency on tackling simulation optimization problems. The application of OCBA 

framework into complex decision making problems beyond simulation is also studied. We use 

the decision making technique Analytic Hierarchy Process (AHP) as an example. The resource 

allocation problem for AHP is modelled from the perspective of OCBA framework. One specific 

approximated optimal allocation rule AHP_OCBA is derived for it to demonstrate the efficiency 

improvement on decision making techniques by applying OCBA. The research work of this 

thesis may provide a more general and more efficient computing allocation scheme for 

optimization problems. 
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Chapter 1 Introduction 

In real industry, there exist various optimization problems in these complex systems with many 

decision variables and certain level of uncertainty such as the electronic circuit design problem in 

manufacturing industry, the portfolio selection problem in financial investment, and the spare 

parts inventory planning for airlines in service industry. Two main difficulties to solve these 

optimization problems are the evaluation of the performance of these complex systems (e.g. the 

logistics system of spare parts for airlines) and the searching of optimal solutions (e.g. the best 

inventory configuration of spare parts for airlines) for these optimization problems. Most of these 

complex systems cannot be modeled analytically, Even if analytical models can be built, 

analytical solutions are often unavailable due to the complexities of the real-world problems and 

the uncertainties involved. Therefore, simulation has been applied as a useful tool for evaluating 

the performance of such complex systems. Because of the black-box character of simulation, 

some traditional optimization methods such as linear programming cannot be applied to. So 

some new optimization approaches need to be developed for finding the best solution in 

simulation environment. Simulation optimization is the process of finding the best values of 

some decision variables for a system where the performance is evaluated based on the output of a 

simulation model of this system (Ólafsson and Kim, 2002). 

    Various techniques for simulation optimization have been developed. Most of these methods 

pay their main attention to the searching mechanism of finding a better solution for the system 

based on the system performance under current solutions and finally finding the optimal solution. 

However, using simulation to evaluate system performance under each solution needs time and 

the run time will be quite consuming when the system evaluated is very complicated. Therefore, 
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we need to consider not only the quality of the final solutions we obtain but also the cost we take 

to get these final solutions. Compared with the study on searching mechanisms, very few studies 

have included the computing efficiency (cost) as one more concern of simulation optimization 

methods. This chapter will provide a brief overview of the current techniques for simulation 

optimization and more attention will be given to the introduction of computing efficiency in 

simulation optimization. 

1.1 Overview of simulation optimization methods 

Different problem settings own different simulation optimization techniques. Taking the nature 

of the feasible region, the set containing all candidate solutions represented by decision variables, 

to be the primary distinguishing factor, simulation optimization methods can be classified into 

two main categories: method with continuous decision variables and method with discrete 

decision variables. 

Most methods for simulation optimization with continuous decision variables use the gradient 

information as a guidance to determine the direction to move. A most popular one among them is 

stochastic approximation (SA) (Robbins and Monro, 1951), which have the similar methodology 

of the steepest descent gradient search in nonlinear optimization. Besides the gradient based 

search methods, there are also several alternatives such as sample path method (Gurkan et al., 

1994) that fix one sample path and change the problem to deterministic, and Response surface 

methodology (RSM) (Box and Wilson, 1951) aiming to study the functional relationship 

between input variables and output variables. 

For the simulation optimization problems with discrete decision variables, ranking and 

selection (R&S) and multiple comparison procedures (MCP) are developed for the case that the 

feasible region contains just a few of alternatives. These procedures evaluate the performance of 
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every alternative and select the best from them. When the number of candidate solutions is very 

large or uncountable, it is impossible to simulate each alternative. In this situation, random 

search approach or metaheuristics (e.g. genetic algorithms (GA), simulated annealing, tabu 

search) are usually employed to intelligently decide the moving path going to local optimal or 

global optimal solutions. Because of the capability to tackle problems with large solution spaces, 

random search and metaheuristics sometimes can also be applied to the continuous problems. 

1.2 Computing cost for simulation optimization 

The computing cost of simulation optimization methods is made up by two parts. One is the total 

number of solutions visited before the method finds the optimal solution. For most simulation 

optimization methods mentioned above except the approaches belonging to R&S or MCP, the 

total number of visited solutions is determined by search mechanism which decides where the 

candidate solution(s) should move so that the optimal solution can be gradually found. The 

literatures related to simulation optimization also mainly focus on search mechanism. Although 

it does help simulation optimization approaches reduce, intentionally or unintentionally, the total 

number of visited solutions, the main objective for search mechanism is still to find the local 

optimal or global solutions. Computing cost is not the concern for most literature. 

    The other part for computing cost is the time spent on simulating all visited solutions. Due to 

the stochastic environment, each selected solution in simulation optimization methods should be 

repeatedly evaluated and the performance of each solution is determined based on simulation 

output. The accuracy of the estimation depends on the number of simulation runs. The more we 

run simulation for one solution, the more accurate the estimation of that solution’s performance 

will be. Since it is impossible to run simulation infinite times to get the 100% correct estimation, 

the determination of the number of simulation replications for each solution is the other question 
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that each simulation optimization approaches need to tackle with. The simplest way is giving 

each visited solution the same number of simulation replications, which is also most approaches 

currently do. However, considering from the perspective of computing cost saving, this simplest 

way may be not the most efficient way. Intuitively, if we are already confident that one solution 

is very bad after a few times of simulation, it is no need to continue running it and more 

computing effort should be given to the more important solutions. The study on this part is still 

very limited. 

    Although they cannot reduce the number of visited solutions and need to simulate all 

candidate solutions, some methods belonging to R&S or MCP do consider the computing cost 

about simulation time for simulation optimization problems.  The key idea for R&S or MCP 

approaches is the determination of number of simulation times for each solution such that the 

good solution(s) can be found with high probability. One of effective R&S approaches is the 

optimal computing budget allocation (OCBA) procedure developed in Chen et al. (2000) which 

aims at obtaining an effective allocation rule such that the probability of correctly selecting the 

best alternative from a finite number of solutions can be maximized under a limited computing 

budget constraint. Since computing cost is an important criterion for simulation optimization 

problems because of the increasing complexity of systems in real industry and OCBA is an 

efficient R&S approach, it is worthwhile to do more extension work on OCBA to further study 

the computing efficiency for simulation optimization problems. A detailed literature review 

about R&S approaches and OCBA will be provided in Part 2. 

1.3 Objectives and Significance of the Study 

The main aim of this study is to extend the OCBA to more general problems and improve the 

theoretical framework of OCBA. The specific objectives of this research are as follows: 
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• Extend the OCBA to the optimal subset selection problem and derive an allocation rule 

for this more general problem by using OCBA framework and KKT conditions. 

• Model the computing budget allocation problem for the optimal subset selection problem 

with correlated sampling among designs by maximizing the convergence rate of incorrect 

selection probability based on the large deviation theory. 

• Develop an OCBA framework for improving the efficiency of the random search 

algorithms when they are used to tackle simulation optimization problem. In particularly, we use 

Particle Swarm Optimization (PSO) to demonstrate how this framework works, and also the 

improvement by employing this framework. 

• Apply OCBA framework beyond the simulation problem. We aim to show OCBA can be 

used to improve the efficiency of decision making techniques such as Analytic Hierarchy 

Process (AHP) by exploring the best resource allocation scheme for AHP from the perspective of 

OCBA framework. 

The results of this study may have a significant impact on the further study of OCBA. In 

theoretical aspect, it may provide a more general allocation rule and more rational modeling 

framework. In practical aspect, this study may provide clearer guidelines for the application of 

OCBA in simulation optimization problems by integrating searching algorithms and the 

application into decision making problems which is beyond the area of simulation optimization.  

It is understood that OCBA framework is built based on some assumptions. Like previous 

research work on OCBA, some common assumptions are made in this study to make the problem 

tractable. Firstly, the allocation rule was derived under the assumption of asymptotic 

environment. We also assumed that the performance of each design is the normally distributed. 
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1.4 Organization 

This thesis contains 7 chapters. The rest of this thesis is organized as follows. In chapter 2, 

literatures related to this research are reviewed. Chapter 3 studies the problem of maximizing the 

probability of correctly selecting the top-m designs out of k designs under a computing budget 

constraint. The problem is modeled from the perspective of large deviation theory and extended 

for the situation with correlated sampling in chapter 4. In chapter 5, we explore the OCBA 

framework to improve the efficiency of random search algorithms in solving simulation 

optimization problems by taking PSO as an example. Chapter 6 considers the extension of 

OCBA concept to the decision making technique AHP to efficiently tackle complex decision 

making problems which is beyond the area of simulation optimization. Chapter 7 concludes the 

whole thesis. 
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Chapter 2. Literature Review 

In this section, we review the literatures relevant to Ranking and Selection (R&S), especially the 

work about the optimal computing budget allocation (OCBA). Section 2.1 provides a brief 

literature review on R&S procedures which focus on simulation optimization problems 

containing just a few alternate solutions. In section 2.2, we specifically review OCBA, a popular 

R&S approach, and its following development. This is followed by the review addressing the 

application of OCBA into real industry and searching algorithms in section 2.3. Section 2.4 

summarizes the specific research gaps which motivates our study in the following chapters. 

2.1 Ranking and Selection (R&S) 

When the number of alternative solutions is fixed, the simulation optimization problem reduces 

to a statistical selection problem called as Ranking and Selection. There are a vast number of 

literatures in this area (Bechhofer et al., 1995; Goldsman and Nelson 1998; Kim and Nelson, 

2003; Kim and Nelson, 2006; Kim and Nelson, 2007; Chick and Inoue, 2001ab; Branke et al., 

2007). 

    Ranking and Selection is originally developed for statistics. Conway (1963) compared it with 

analysis of variance (ANOVA) and suggested that R&S was a more proper approach used in the 

analysis of experimental data. It goes one step further than ANOVA because it can always 

provide decision makers the information of the best alternatives no matter the null hypothesis is 

rejected or not. 

The aim of R&S procedures is to determine the number of simulation replications in selecting 

the best design or the optimal subset from a discrete number of alternative solutions. It can be 

usually classified into two types based on different fulfilled criteria. The first type is to guarantee 

a desired probability of correct selection, in which a correct selection means the best alternative 
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is selected in the experiments. A traditional work in this group is a conservative two-stage 

procedure, also called Dudewicz-Dalal procedure proposed in Dudewicz and Dalal (1975).  

Rinott (1978) then built some inequalities as the lower bound of the probability of correct 

selection to improve the two-stage procedure. This updated procedure runs equal replications on 

each alternative at the first stage, and then allocates additional replications to each alternative in 

the second stage based on the variance of each design’s performance obtained at the first stage. 

Kim and Nelson (2001) and Nelson et al. (2001) proposed the fully-sequential procedures in 

which one simulation replication was sampled for each alternative until it was eliminated by the 

screening criteria. In their procedures, the difference of two alternatives’ performances is 

assumed to be indifferent if it is smaller than a specified parameter. Therefore, they are called as 

Indifference-zone (IZ) procedures. Another popular type for R&S procedures is to maximize the 

probability of correct selection (PCS) given a computing budget named as Optimal Computing 

Budget Allocation (OCBA). A detailed review for OCBA is in section 2.2. 

In the above literatures of this section, most of them are developed from the frequentist 

perspective. There are also some other R&S procedures developed from the Bayesian 

perspective, such as Chick and Inoue (2001a) and Chick et al. (2010) which chose the expected 

value of information instead of the probability of correct selection (PCS) as the measure of 

selection quality.  

2.2 Optimal computing budget allocation (OCBA) 

The optimal computing budget allocation (OCBA) framework proposed by Chen et al. (2000) is 

a popular R&S procedure which aims to find an efficient way to determine the number of 

replications allocated to each alternative solution, such that the correctness of selection can be 

maximized under limited computing budget. The correctness of selection is usual measured by 
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the probability of correct selection which is the probability that the alternative(s) we select are 

the true best alternative(s). 

Traditional R&S procedures allocate the replications based on the variance only such as 

Dudewicz and Dalal (1975) and Rinott (1978). The larger the variance the more replications are 

allocated. However, for some alternatives with high variances but far away from the mean of the 

best alternative’s performance, it is unnecessary to give them many replications because it is a 

waste of computing resources. Intuitively, to ensure a high probability of correctly selecting the 

desired optimal alternatives, a larger portion of the computing budget should be allocated to 

those alternatives that are critical in identifying the ordinal relationship with the best alternative. 

For example, for the alternatives whose performances are very close to the performance of the 

best alternative, we may need to give them more computing budget to guarantee the estimation 

accuracy of their performances because it has a high chance to wrongly them as the best. Based 

on this original idea, Chen et al. (1996) proposed a gradient approach using the information from 

both the sample mean and variance of designs’ performance. Further, Chen et al. (1997) 

simplified the gradient approach into a greedy heuristics by developing another simple way of 

estimating the complicated gradient information. However, these budget allocation rules are still 

not necessarily optimal. Hence, Chen et al. (2000) introduced the concept of mathematical 

optimization into computing budget allocation problem and finished the fundamental 

development work for the asymptotic OCBA framework which shows better performance than 

many other R&S procedures. 

OCBA formulates the R&S problem as an optimization model, whose objective is maximizing 

PCS, constraint is the computing budget and decision variables are the number of replications 

given to each alternative. Therefore, the two key issues for OCBA are 1) the formulation of PCS, 
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and 2) the way to solve the non-linear optimization problem. For evaluation of probability of 

correct selection, there is usually no mathematically closed form expression and a proper lower 

bound of it is used instead as the objective. The Karush-Kuhn-Tucker (KKT) conditions can then 

be applied to the formulation and the optimality conditions can be derived under the asymptotic 

environment assumption.  

The fundamental OCBA framework is proposed for selecting the best alternative for R&S 

problems with just one objective and without any constraints. Because of its property of high 

computing efficiency, OCBA are extended to more complicated problems. For the problem also 

considering feasibility of the designs, the OCBA model is formulated and an efficient allocation 

rule, OCBA-CO, is derived (Pujowidianto et al. 2009). For the problem with designs evaluated 

with multiple objectives, the concept of Pareto optimality is employed to obtain good allocation 

rules (Lee et al., 2004; Chen and Lee, 2009; Lee et al., 2010). For the problem selecting the 

optimal subset instead of one best alternative solution, Chen et al. (2008) applied a boundary c 

separating the optimal subset from the remaining designs and developed a procedure named 

OCBAm. Besides, the extension considering the correlation between alternatives is discussed in 

Fu et al. (2004, 2007). Glynn and Juneja (2004) addressed the problem whose performance 

measure is not normally distributed. Morrice et al. (2008, 2009) extended OCBA concept into 

regression to deal with transient mean which was a function of other variable such as time. These 

OCBA procedures perform better than other compared R&S procedures in the related numerical 

testing. Branke et al. (2007) also show that OCBA and EVI approach are the two top performers 

among the selection procedures. 
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2.3 The application of OCBA 

Because of their good performance to obtain a high confidence level under certain computing 

budget constraint, OCBA procedures show great potential in improving simulation efficiency for 

tackling real industry problems and simulation optimization problems. Therefore, the application 

of OCBA procedures is studied by many researchers. 

    For the simulation optimization problems given a fixed set of alternatives, OCBA can be 

directly applied to select the optimal one among all these solutions. As many problems in real 

industry are large scaled, without an analytical structure of the problem, and with high 

uncertainties, OCBA provides an effective way to solve these difficult operation problems, such 

as the combinatorial optimization problems which include machine clustering problems (Chen et 

al., 1999), electronic circuit design problems (Chen et al., 2003), and semiconductor wafer fab 

scheduling problems (Hsieh et al., 2001; Hsieh et al. 2007). In Chen and He (2005), the authors 

applied OCBA to a design problem in US air traffic management due to the high complexity of 

this system. For multi-objective problems, Lee et al. (2005) employed MOCBA to optimally 

select the non-dominated set of inventory policies for the differentiated service inventory 

problem and an aircraft spare parts inventory problem. In these papers, although certain changes 

to OCBA are made according to different problems, its main idea is still retained. All numerical 

results in these papers show that OCBA can save a lot of computing cost compared with the 

traditional ordinal optimization methods. 

    For the simulation optimization problems with enormous size or continuous solution space, 

the application of OCBA is indirect by integrating it with search algorithms. Some frameworks 

about how to integrate OCBA with search algorithms have been developed. We can classify 

these papers based on the different search algorithms integrated with OCBA. For the integration 
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with Nested Partition (NP), Shi et al. (1999) showed its application in discrete resource 

allocation. Shi and Chen (2000) then gave a more detailed hybrid NP algorithm and prove its 

global optimal convergence. For the integration with evolutionary algorithms, Lee et al. (2008) 

discussed the integration of MOCBA with MOEA. In Lee et al. (2009), GA is integrated with 

MOCBA to deal with the computing budget allocations for Data Envelopment Analysis. The 

integration of OCBA with Coordinate Pattern Search for simulation optimization problems with 

continuous solution space is considered in Romero et al. (2006). Chen et al. (2008) showed 

numerical examples on the performance of the algorithm combining OCBA-m with Cross-

Entropy (CE). The theoretical part about the integration of OCBA with CE is then further 

analyzed in He et al. (2010). The numerical result in these papers demonstrates the significant 

improvements gained by integrating OCBA with search algorithms. 

2.4 Summary of research gaps 

The OCBA procedures derived or applied in the above reviewed papers show high superiority 

over other ranking and selection procedures. Therefore, OCBA framework is a valuable research 

area worthy to be studied. Although Chen et al. (2000) already provided a solid fundamental 

framework of OCBA, the current research on OCBA still has much room to improve. 

• From the aspect of problem setting, most of the studies on OCBA still focus on selecting 

the best solution. In real industry problems and searching algorithms, the selection of more than 

one solution is also a popular problem, but the research on this aspect is very little except Chen 

et al. (2008). 

• From the aspect of problem assumption, it is observed that most allocation rules for 

computing budget allocation are developed under the assumption that each simulation replication 

for any solutions is independent to each other. However, the technique common random number 
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is usually used in simulation for real industry problem to reduce the variance. Although Fu et al. 

(2004, 2007) considered correlation between alternative solutions, the discussion is still for 

selecting one best solution. The optimal subset selection problem under correlation has not been 

studied. 

• From the application perspective, OCBA framework is mainly for finding the best 

solution(s) given a finite set of design alternatives. Therefore, one obvious limitation for OCBA 

is that it is only useful for optimization problems with small number of candidate solutions. The 

large scale problem or problems with continuous feasible region are out of its capacity. There are 

already some researches on combing OCBA with search algorithms to circumvent this limitation. 

Most related work directly apply OCBA procedures into search algorithms but ignore the fact 

that different search algorithms requires different information. Therefore, this kind of 

combination between OCBA and search algorithms will have limitation and might not be able to 

produce the best possible efficiency improvement.  

    Based on the literature review and research gaps, this study aims to extend OCBA to more 

general problems, even problems beyond the domain of simulation optimization, and improve 

the theoretical framework of OCBA. 
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Chapter 3 Asymptotic Simulation Budget Allocation for Optimal 

Subset Selection 

In this chapter, we consider the problem of selecting the optimal subset of top-m (m can be one) 

solutions out of k alternatives, where the performance of each alternative is estimated using 

stochastic simulation. The goal is to determine the best allocation of simulation replications 

among the various alternatives in order to maximize the probability of correctly selecting all top-

m solutions.  Section 3.1 introduces the optimal subset selection problem and specifies the 

significance of this chapter’s study. In section 3.2, we introduce the general computing budget 

allocation model for the optimal subset selection problem and we propose a new approximated 

probability of correctly selecting the top-m alternatives in section 3.3. Section 3.4 derives an 

asymptotically optimal simulation allocation rule, OCBAm+, to maximize this approximated 

probability. Section 3.5 proposes a sequential algorithm to implement OCBAm+. A framework 

for the asymptotic convergence rate analysis of the probability of correct selection for the 

optimal subset selection problem is developed in section 3.6, in which the efficiencies of several 

allocation procedures including OCBAm+ are also compared according to their convergence 

rates. In section 3.7, we show a series of numerical experiments to support our theoretical claims. 

Section 3.6 concludes the whole chapter. 

3.1 Introduction 

Most procedures in ranking and selection are developed for identifying the best alternative. 

Typically these are two-stage or sequential procedures that ultimately return a single choice as 

the estimated optimum, e.g., Branke, Chick and Schmidt (2007), Chen et al. (1997, 2000), Chick 

and Inoue (2001ab), Fu et al. (2007), and Kim and Nelson (2006).  
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However, sometimes, the return of one best alternative by computer model seems insufficient 

for decision makers. “All models are wrong” because they are the abstraction of real systems. 

Therefore, instead of unconditionally trusting the result provided by computer models, decision 

makers sometimes may prefer to have several good alternatives provided by computer instead of 

one and make the final selection by considering some conditions neglected by computer model, 

such as some qualitative criteria and political feasibility. This guarantees that the final decision 

can be not only best in the criteria considered within the model but also applicable and still quite 

good in real system. Hence, the optimal subset selection provides decision makers a more 

flexible and people oriented way to support decision making by computer information.  

In addition, the optimization problems in practice are usually with large solution space, such 

as the product design problems, operation scheduling problems and vehicle routing problems. 

For these large scaled combinatorial optimization problems, it is a useful way to reduce 

computing cost by screening the solution space with a rough model and evaluating the remaining 

alternatives in the subset with an accurate model. This also falls under the optimal subset 

selection problem. 

The development of ranking and selection procedures for selecting the m best alternatives is 

not only applicable to the multiple alternatives selection problems in real industry but also 

beneficial to some recent developments in simulation optimization that require the selection of 

an “elite” subset of good candidate solutions in each iteration of the algorithm. Examples of 

these include the cross entropy method (CE, see Rubinstein and Kroese 2004), the model 

reference adaptive search method (Hu, Fu and Marcus 2007ab), genetic algorithms (Holland 

1975), and more generally, evolutionary population-based algorithms that require the selection of 

an “elite” population in the evolutionary process (see Fu, Hu and Marcus 2006). The reason for 
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this requirement is that this entire subset is used to update the subsequent population or sampling 

distribution that drives the search for additional candidates. A subset with poor performing 

solutions will result in an update that leads the search onto a possibly misleading direction. The 

overall efficiency of these types of simulation optimization algorithms highly depends on how 

efficiently we simulate the candidates and correctly select the top-m alternatives.  

    Although the optimal subset selection problem is a meaningful problem worthy of study, not 

much work had been done to address the optimal subset selection problem until Koenig and Law 

(1985) developed a two-stage procedure for selecting all the m best alternatives (see also Section 

10.4 of Law 2007 for an extensive presentation of the problem and procedure). This procedure 

was developed based on a least favorable configuration and only the information of variances is 

used to determine the simulation replications’ allocation, resulting in very conservative results. It 

also has a higher computational cost than necessary, since the computing budget is allocated 

mostly to alternatives with large variances. 

    Intuitively, to ensure a high probability of correct selection, a large portion of the computing 

budget should be allocated to those alternatives that are critical to the process of identifying the 

top-m solutions, rather than to alternatives with large variances, as Koenig and Law (1985) does. 

A key consequence is the use of both the means and variances in the allocation procedure. 

Following the notion of the Optimal Computing Budget Allocation (OCBA) approach (Chen and 

Yücesan, 2005), Schmidt, Branke and Chick (2006) proposed a procedure ( )*
*EAOCBA

δ
α  

specifically for evolutionary algorithms to help them efficiently solve simulation optimization 

problems. However, this procedure is only applicable to optimization problems using 

evolutionary algorithms. More importantly, this procedure is still a feasible procedure to 
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guarantee certain level of the probability of correct selection instead of maximizing the 

probability. Subsequently, Chen et al. (2008) maximized a simple heuristic approximation of the 

correct selection probability and developed a procedure called OCBAm for general optimal 

subset selection problems. It has been shown empirically that OCBAm is more efficient than 

traditional approaches such as Koenig and Law (1985). It should be noted, however, that the 

probability of correct selection in OCBAm is approximated by employing a constant which 

separates the optimal subset from the remaining alternatives. The performance of the procedure 

highly depends on the determination of this constant. One proposed way is to obtain the value of 

this constant by using a heuristic in each iteration of the sequential OCBAm algorithm, which 

increases the complexity of implementing the procedure.  

In this chapter, we take a different approach to develop a better procedure, called OCBAm+, 

in which the determination of the constant required in OCBAm is no longer necessary, resulting 

in a more efficient and robust performance. More importantly, we improve the process of 

deriving OCBAm and propose a more rigorous theoretical derivation process for computing 

budget allocation problems. Furthermore, a framework to analyze the asymptotic convergence 

rate of the probability of correctly selecting the top-m alternatives is developed in this chapter. 

Generally speaking, most research work uses a numerical result as an empirical measure to 

evaluate different algorithms. The framework of convergence rate proposed in this chapter 

provides a theoretical measure to comparing these algorithms. Based on this framework, we 

show that OCBAm+ has a higher convergence rate than OCBAm and other procedures under 

some conditions. Numerical testing supports this convergence rate analysis and shows the 

superiority of OCBAm+ over other procedures even in various general cases. 
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3.2 Formulation for optimal subset selection problem 

In this section, we make a problem statement. We consider a finite number of alternatives, i=1, 

2, …,k, each with an unknown objective value iµ ∈ , and we want to select top-m alternatives 

with the lowest objective values, that is finding the set 

( ) ( ) { }{ }max min ,  , 1,..., ,  and i jj Si S
S i i j k S mµ µ

∉∈
= < ∈ = . 

In stochastic environment, the simulation result for each alternative’s performance is a random 

variable. We assume iµ  is its expectation, which is estimated by sample mean, iX , through 

simulation and a finite value 2
is ++∈  as its variance, which is estimated by sample variance. Let 

( )1 2, ,..., kα α α α= , in which 
1

1
k

i
i
α

=

=∑  and 0iα ≥  for all i=1,…,k, denote the proportion of the total 

computing budget T given to each alternative. In general, the alternatives whose estimated 

objective values are smaller than the mth smallest are selected as the estimated solution of the set 

S. Then, the problem we study is what value of ( )1 2, ,..., kα α α α=  maximizes the probability that 

the selection based on estimators are the true optimal subset S. 

    For research convenience, let i denote the index of ith smallest objective value, that is 1µ < 2µ <

< kµ . Let ( ) ( ) ( )1 2 kx x x< < <  be the ordering of sample mean values of all alternatives. So the 

selected subset mS  will be ( ) ( ) ( ){ }1 , 2 , , m , while the true optimal subset is { }1,2, , m . Thus, the 

event of correct selection is ( ) ( ) ( ){ } { }{ }1 , 2 , , 1, 2, ,m m=   and the probability of correct selection 

can be formulated as 

                                                         { } { }{ }1,2, ,mP CS P S m≡ =  .                                                 (3.1) 
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    We assume the performance of each alternative is mutually independent, and the performance 

of each alternative in each replication is also independent of each other. In addition, the 

alternatives’ performances are assumed to be normally distributed. For the non-normal 

distribution case, we can use a batch-means method so that the original subset selection problem 

with non-normal distribution can be approximated by the one with normal distribution. 

Following the concept of the Optimal Computing Budget Allocation, the optimal subset selection 

problem can be modeled as follows. 

                                                    

{ }
1 2, , ,

1

max

   . .      

              0,     1, 2, , .

kN N N

k

i
i

i

P CS

s t N T

N for i k

…

=

=

≥ = …

∑                                                   (3.2) 

in which i iN Tα= . 

3.3 The approximated probability of correct selection    

In the model (3.2), we face the modeling challenge of how to formulate the probability of correct 

selection ( { }P CS ). For general parameter settings, there is no closed-form formula for { }P CS . 

Although { }P CS  can be estimated via Monte Carlo simulation by using the sample mean to 

approximate each alternative’s true mean, the computing cost will be very high. Thus, to 

simplify the calculation of { }P CS  and eliminate the need for extra Monte Carlo simulation, 

researchers often use lower bounds of { }P CS to approximate its true value, which are called the 

Approximated Probability of Correct Selection (APCS).  

    In Koening and Law (1985), the authors employ the least favorable configuration concept to 

formulate APCS, which results in the very conservative performance of the two-stage allocation 
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rule. In Chen et al. (2008), a better APCS, denoted by APCSm shown below, is established by 

using a constant, c, to separate the optimal subset from other alternatives. 

m m

ji

i S j Si i j j

x cc x
APCSm

N Ns s∈ ∉

   −−  ≡ Φ Φ       
∏ ∏ . 

The value of c is determined based on some simple heuristic. The quality of APCSm  is highly 

sensitive to the value of c. If we choose a different c, APCSm  and the allocation rule developed 

based on it will also be different. Moreover, it is required that the value of c lies between ( )mx and 

( )1mx + . If the performances of these two alternatives are very close to each other, it will be difficult 

to choose c. To avoid these limitations, we develop a more robust APCS that does not require the 

determination of a constant value. 

    Our idea is to utilize the performances of alternatives as the subset boundaries. The correct 

selection event { }{ }1,2, ,mS m=   means the sample means from alternative 1 to alternative m are 

not greater than the sample means of other alternatives, i.e. { } { }1 2 1 2max , , , min , , ,m m m kx x x x x x+ +≤  . 

So the probability in (3.1) is equivalent to 

                            { } ( ),  for 1, 2, ,  and 1, 2, ,i j
i j

P CS P X X i m j m m k
  = ≤ = = + + 
  

 


.                      (3.3) 

Alternatives whose means are less than the mean of alternative m (or m+1) should be contained 

in the optimal subset while alternatives whose means are greater than the mean of alternative m 

(or m+1) should be out of the optimal subset. Hence, among all random variables in the formula 

of { }P CS  in (3.3), we choose the sample mean of alternative m and the sample mean of 
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alternative m+1, i.e., mX  and 1mX + , as thresholds to establish our new lower bound of { }P CS , 

APCSm+, which is given by Lemma 3.1. 

    Lemma 3.1. The probability of correct subset selection can be bounded as follows. 

         
{ } { } { } { } { }

( )

1

1 1
1 1 1 2

1 2

max(1 ,1 )

           max , .

m k m k

i m m j i m m j
i j m i j m

P CS P X X P X X P X X P X X

APCSm APCSm APCSm

−

+ +
= = + = = +

≥ − ≥ − ≥ − ≥ − ≥

≡ ≡ +

∑ ∑ ∑ ∑
         (3.4) 

    Proof. See Appendix A. 

    The interpretation for the bounds in Lemma 3.1 is as follows. If 1APCSm  goes to one, both 

{ }
1

1

m

i m
i

P X X
−

=

≥∑  and  { }
1

k

m j
j m

P X X
= +

≥∑  go to zero. In this case, the selected subset mS  is exactly the 

optimal subset and { }P CS  also goes to one. For the case of 2APCSm , we have a similar 

conclusion. Therefore, 1APCSm  and 2APCSm  are two lower bounds of { }P CS . To make our lower 

bound tighter, we choose the higher one between 1APCSm  and 2APCSm  as our new approximated 

probability of correct selection APCSm+. As APCSm+ goes to one, the true probability of correct 

selection also goes to one. 

3.4 Derivation of the allocation rule OCBAm+ 

Using APCSm +  given by Lemma 3.1, we approximate the original optimal subset selection 

model (3.2) by the following model and derive a new computing budget allocation rule, 

OCBAm+. 
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{ } { }

{ } { }
1 2

1

, , , 1 1

1 1
1 2

1

max max(1 ,

                                      1 )

   . .      

              0,     1, 2, , .

k

m k

i m m jN N N i j m

m k

i m m j
i j m

k

i
i

i

APCSm P X X P X X

P X X P X X

s t N T

N for i k

−

… = = +

+ +
= = +

=

+ = − ≥ − ≥

− ≥ − ≥

=

≥ = …

∑ ∑

∑ ∑

∑

                             (3.5) 

    Similar to several other researches in the literature (e.g., Chen et al. 2000, Glynn and Juneja 

2004), we consider an asymptotic condition, i.e., T →∞ , when deriving the optimal allocation 

rule, and solve the above problem (3.5) by solving the following two sub-problems separately. 

1. Sub-problem 1 

                                   

{ } { }
1 2

1

1, , , 1 1

1

max 1

   . .      1

              0,    for 1, 2, , .

k

m k

i m m j
i j m

k

i
i

i

APCSm P X X P X X

s t

i k

α α α

α

α

−

… = = +

=

= − ≥ − ≥

=

≥ =

∑ ∑

∑


                                   (3.6) 

2. Sub-problem 2 

                                 

{ } { }
1 2

2 1 1, , , 1 2

1

max 1

   . .      1

              0,    for 1, 2, , .

k

m k

i m m j
i j m

k

i
i

i

APCSm P X X P X X

s t

i k

α α α

α

α

+ +… = = +

=

= − ≥ − ≥

=

≥ =

∑ ∑

∑


                                (3.7) 

    Lemma 3.2. There exist *
1T  and *

2T  such that sub-problem 1 is convex with respect to the 

vector ( ){ }1 2, , , kα α α α=  (>0) when *
1T T>  and, sub-problem 2 is convex with respect to the 

vector α >0 when *
2T T> . 

    Proof. See Appendix B in which the values of *
1T  and *

2T  are also defined. 
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    Because of the convexity of these two sub-problems, the solutions obtained from the 

Lagrangian method under the asymptotic framework are asymptotically global optimal allocation 

rules for these two sub-problems. Let 1F  and 2F  be the Lagrangian functions of sub-problem 1 

and sub-problem 2 respectively. Then, we have 

                       { } { }
1

1
1 1 1 1

1 1
m k k k

i m m j i i i
i j m i i

F P X X P X X λ α ν α
−

= = + = =

 
= − ≥ − ≥ − − − 

 
∑ ∑ ∑ ∑ , and                          (3.8) 

                       { } { }2 1 1
1 2 1 1

1 1
m k k k

i m m j i i i
i j m i i

F P X X P X X λ α ν α+ +
= = + = =

 = − ≥ − ≥ − − − 
 

∑ ∑ ∑ ∑ .                            (3.9) 

By Karush-Kuhn-Tucker (KKT) conditions, the allocation rules satisfy the equations in the 

following lemma will be optimal for sub-problem 1 and sub-problem 2. 

    Lemma 3.3. (a) The allocation rule ( )*1 *1 *1 *1
1 2, ,..., kα α α α=  is asymptotically optimal for sub-

problem 1 if it satisfies the following conditions: 

(i) 
2

2

k
i

m m
i m i

α
α s

s≠

= ∑ ; 

(ii) ( ) ( )22

2 2 2 2
y mx m

x x m m y y m m

µ µµ µ
s α s α s α s α

−−
=

+ +
, ,x y m≠  

(iii) 
1

1
k

i
i
α

=

=∑ ; 

(iiii) 0iα > . 

    (b) The allocation rule ( )*2 *2 *2 *2
1 2, ,..., kα α α α=  is asymptotically optimal for sub-problem 2 if it 

satisfies the following conditions: 
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(i) 
2

1 1 2
1

k
i

m m
i m i

α
α s

s+ +
≠ +

= ∑ ; 

(ii) ( ) ( )22
11

2 2 2 2
1 1 1 1

y mx m

x x m m y y m m

µ µµ µ
s α s α s α s α

++

+ + + +

−−
=

+ +
, , 1x y m≠ +  

(iii) 
1

1
k

i
i
α

=

=∑ ; 

(iiii) 0iα > . 

    Proof. See Appendix C. 

    Based on lemma 3.3, the values of optimal solutions for problem 3.6 and 3.7 can be solved by 

nonlinear programming (NLP) solvers. We can give the values of parameters to NLP as input 

and obtain the values of optimal solution, but we cannot find the explicit formula that link the 

solution with parameter. In addition, once we have a new value setting of parameters, we need to 

run NLP again. It is a little bit time-consuming. Therefore, we can make some reasonable 

assumptions such that some closed-form allocation rule can be derived and implemented as a 

good allocation rule (no guarantee of optimality) into some algorithms. We assume 

*1 *1,  m i i mα α>> ∀ ≠  for sub-problem 1 and *2 *2
1 ,  1m i i mα α+ >> ∀ ≠ +  for sub-problem 2. This 

assumption can be justified by the following Proposition 3.1.  

    Proposition 3.1. Under the asymptotic environment, T →∞ , if the means of alternatives 

satisfy that 1µ < 2µ << kµ  and the variances are all strictly positive and bounded, we have  

( ) ( ) ( )*1 *1 *1 *1lim 0,  1 ,   i m i mk
k i mα α α α

→∞
= = Ο ∀ ≠  and  
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( ) ( ) ( )*2 *2 *2 *2
1 1lim 0,  1 ,   1j m j mk

k j mα α α α+ +→∞
= = Ο ∀ ≠ + . 

    Proof. See Appendix D. 

   Based on the above assumption, we can simplify the conditions in lemma 3.3 and get 

approximated optimal solutions for these two sub-problems in closed-form as follows. 

    Lemma 3.4. (a) As T →∞ , 1APCSm  in sub-problem 1 can be asymptotically maximized when 

                 
*1

*1

*1

1

i
i k

i
i

β
α

β
=

=

∑ , in which ( )

2
*1

2 ,  i
i

i m

i m
s

β
µ µ

= ∀ ≠
−

 and ( )2*1
*1

2

k
i

m m
i m i

β
β s

s≠

= ∑ .                  (3.10) 

    (b) As T →∞ , 2APCSm  in sub-problem 2 can be asymptotically maximized when 

             
*2

*2

*2

1

i
i k

i
i

β
α

β
=

=

∑ , in which ( )

2
*2

2
1

,  1i
i

i m

i m
s

β
µ µ +

= ∀ ≠ +
−

 and ( )2*2
*2

1 1 2
1

k
i

m m
i m i

β
β s

s+ +
≠ +

= ∑ .          (3.11) 

    Theorem 3.1. Let ( )*1 *1 *1 *1
1 2, , , kα α α α≡   and  ( )*2 *2 *2 *2

1 2, , , kα α α α≡   be the rule given by Lemma 

3.4.  As T →∞ , the asymptotically optimal solution rule for problem (3.5), named as OCBAm+, 

is  

( ) ( ) ( )
( ) ( )

*1 *1 *2
1 2* * * *

1 2 *2 *1 *2
1 2

       if  
, , ,

       if  
k

APCSm APCSm

APCSm APCSm

α α α
α α α α

α α α

 ≥≡ = 
<

 . 

    Proof. For the objective in problem (3.5), we have  

1 2 1 2 1 2
1 2, , , , , , , , ,

max max( max , max )
k k kN N N N N N N N N

APCSm APCSm APCSm
… … …

+ = . 
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Lemma 3.3 shows that 
1 2

1, , ,
max

kN N N
APCSm

…  and 
1 2

2, , ,
max

kN N N
APCSm

…  are equal to ( )*1
1APCSm α and 

( )*2
2APCSm α  respectively when T →∞ . Therefore, under the asymptotic limit, APCSm +  is 

maximized when the allocation rule is OCBAm+ shown in Theorem 3.1.                                    □ 

    Remark 3.1. To directly apply Theorem 3.1, we need to calculate the values of ( )*1
1APCSm α  

and ( )*2
2APCSm α  to determine whether α*1 or α*2 should be applied. When the means and the 

variances of alternative m and alternative (m+1) do not have very huge difference, by making 

some mild approximations, we can simplify the conditions, ( ) ( )*1 *2
1 2APCSm APCSmα α≥  and

( )*1
1APCSm α  < ( )*2

2APCSm α  to ( )2 1m mµ µ+ +− ≤ ( )1m mµ µ −− and ( )2 1m mµ µ+ +− > ( )1m mµ µ −−  respectively 

(see Appendix E for illustration). Obviously, these simplified conditions are much easier to 

calculate than the original conditions. 

    Based on Theorem 3.1, we have the following corollary when m equals one. 

    Corollary 3.1.  When m equals one and the variances of all alternatives are equal, the 

allocation rule OCBAm+ will be as follows. 

                                                        x

y

α
α  = 

2

x x

y y

s δ
s δ

 
  
 

,   , 1x y ≠                                                    (3.12) 

                                                             
2

1 1 2
1

k
i

i i

α
α s

s≠

= ∑ ,                                                              (3.13) 

in which 1x x iδ µ µ= −  for all 1x ≠ .  

    Proof. See Appendix F. 
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    Corollary 3.1 shows that OCBAm+ can reduce to OCBA1 in Chen et al. (2000) when m 

equals one in equal variance case. The corollary also shows us that OCBAm+ is more general 

than OCBAm, because, on the other hand, OCBAm does not directly reduce to OCBA1 as 

OCBAm+ does. This can be a potential advantage for OCBAm+ because it is has been shown 

that OCBA1 is superior to OCBAm in numerical testing when m equals one.  

3.5 Sequential allocation procedure for OCBAm+ 

The allocation rule in Theorem 3.1 depends on the function of distributions. A sequential 

heuristic procedure is provided here to apply the allocation rules. In the procedure, each solution 

is initially simulated with n0 replications in the first stage. The allocation proportion vector 

( )1 2, , , kα α α α≡   can be estimated by the sample mean and sample variance of each solution. 

Based on the updated ( )1 2, , , kα α α α≡  , the algorithm will decide which alternative can get one 

more replication in this iteration following the rule that alternative i (i=1,2,…,k) can get this 

replication with probability iα . At each iteration, the algorithm just allocates one replication and 

each alternative i have the probability iα  to obtain this replication. Based on the rule, additional 

replications are allocated to individual solution one by one based on the value of 

( )1 2, , , kα α α α≡   which is updated by sample means and sample variances at each iteration. 

Algorithm  OCBAm+ Procedure 

INTIALIZE Let n equal to 0n k ; Set 1 2 0
n n n

kN N N n= = = =  and 
1

k
n n

i
i

T N
=

= ∑ ; Perform 0n  

replications for all alternatives. Calculate sample mean and sample variance of 

each alternative. 

LOOP WHILE nT T<  DO 
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 ALLOCATE Calculate the value of ( )1 2, , ,n n n n
kα α α α≡   according to (3.10) 

and (3.11) based on different situations; Generate a replicate ns  

from the p.m.f ( )1 2, , ,n n n n
kα α α α≡  .  

 SIMULATE Set 1 1n n
s sN N+ = + , 1 ,n n

i i nN N i s+ = ≠  and 1 1

1

k
n n

i
i

T N+ +

=

= ∑ ; Perform 

additional one replication of alternative ns ; Set n=n+1; 

 UPDATE Calculate sample mean of each alternative to estimate its true 

mean. 

END OF LOOP 

OUTPUT Select the alternatives whose performances’ means are less than the (m+1)th 

smallest sample mean into the optimal subset and end the procedure. 

    In the sequential algorithm, although we use sample mean and sample variance to estimate the 

true mean and variance, the impact of these approximations will decay asymptotically. 

    Theorem 3.2. As T →∞ , *
n
iN

T
α→  almost surely. 

    Proof. See Appendix G. 

3.6 Asymptotic convergence rate analysis on allocation rules 

In this section, we present a theoretical framework to analyze the asymptotic convergence rate of 

the correct selection probability for the optimal subset selection problem. We also utilize this 

framework to estimate and compare the efficiency of different simulation allocation rules. 
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3.6.1 The framework for asymptotic convergence rate analysis on allocation rules 

Denote P{IS} as the probability of incorrect selection, i.e., { } { }1P IS P CS= − . As T increases, 

P{CS} increases and P{IS} decreases. Let 1S  denote the set { }1,2, , m and 2S  denote the set 

{ }1, 2, ,m m k+ +  . Then the probability of incorrect selection can be expressed as 

                                              { } { }
21

max ( ) min ( )i i j jj Si S
P IS P X T X Tα α

∈∈
= ≥ .                                           (3.14) 

    If αi > 0 for all i, { }P IS  goes to zero as T → ∞. Based on large deviation theory (cf. Dembo 

and Zeitouni 1992, Szechtman and Yücesan 2008), P{IS} in (3.14) can be bounded by 

{ } { } { }
1 2 1 2

1 2, ,
max ( ) ( ) max ( ) ( )i i j j i i j ji S j S i S j S

P X T X T P IS S S P X T X Tα α α α
∈ ∈ ∈ ∈

≥ ≤ ≤ × ≥ . 

As T increases, the convergence rate of { }P IS  approaches the convergence rate of

{ }
1 2,

max i ji S j S
P X X

∈ ∈
≥ .  

    For any given 1i S∈  and 2j S∈ , there exists a rate function ijG  such that 

                                                { } ( )1lim log ( ) ( ) ,i i j j ij i jT
P X T X T G

T
α α α α

→∞
≥ = − ,                                (3.15) 

so we have 

{ }( ) ( )
1 21 2 ,,

1lim log max ( ) ( ) min ,i i j j ij i jT i S j Si S j S
P X T X T G

T
α α α α

→∞ ∈ ∈∈ ∈
≥ = − . 

Thus,  

{ } ( )
1 2,

1lim log min ,ij i jT i S j S
P IS G

T
α α

→∞ ∈ ∈
= − . 
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This means that { }P IS  will decay exponentially with increasing T at a rate given by 

( )
1 2,

min ,ij i ji S j S
G α α

∈ ∈
− , and ( )

1 2,
min ,ij i ji S j S

G α α
∈ ∈  can be considered as the convergence rate of { }P CS .   

    According to Glynn and Juneja (2004), we have  

( ) ( ) ( )( ), infij i j i i j jx
G I x I xα α α α= + , 

in which ( )iI x  and ( )jI x  are the Fenchel-Legendre transform of the log-moment function of 

random variables iX  and jX . For a normal distributed random variable iX ~ ( )2,i iN µ s ,  

( ) ( )2

22
i

i
i

x
I x

µ
s
−

= . 

Calculating the derivative of the function ( ) ( )( )i i j jI x I xα α+  with respect to x  and letting the 

derivative equal to zero, we can get the expression of the optimal x  to minimize this function. 

Substituting this optimal x  into ( ) ( )( )i i j jI x I xα α+ , we obtain 

( ) ( ) ( )( ) ( )
( )

2

2 2
, inf

2
i j

ij i j i i j jx
i i j j

G I x I x
µ µ

α α α α
s α s α

−
= + =

+
. 

The convergence rate for an allocation rule is 

( ) ( )
( )1 2 1 2

2

2 2, ,
min , min

2
i j

ij i ji S j S i S j S
i i j j

G
µ µ

α α
s α s α∈ ∈ ∈ ∈

−
=

+
. 

3.6.2 Asymptotic convergence rates for different allocation rules 

Note that the convergence rate depends on not only the budget allocation α but also the problem 

itself (i.e., µ and s under the normality assumption). Therefore, it will be generally difficult to 
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get a closed-form expression for the convergence rate obtained by allocation rules. In this 

situation, we can estimate it numerically by repeatedly running experiment under large 

computing budget and estimating the convergence rate by the original formula (3.15). However, 

in some conditions, it is possible to know the expression and compare allocation rules based on 

their convergence rates. In this sub-section, we compare the convergence rate for OCBAm+ with 

the rates for OCBAm and the equal allocation rule (EA) under some conditions to theoretically 

show the superiority of OCBAm+ over OCBAm and EA. 

    Consider a simple case where the variances of all alternatives are equal ( 2 2 2 2
1 2 ks s s s= = = = ). 

Given the equal allocation rule, i.e., ( )1 2, , ,E E E
kα α α , where 1E

i kα =  for 1, 2, ,i k=  , we have 

( ) ( )2

2,
4
i jE E

ij i jG
k

µ µ
α α

s

−
=  for 1i S∈  and 2j S∈ . 

Among these ( ),E E
ij i jG α α , the ( ) ( )11 ,E E

m mm mG α α ++  is always the minimum, because 1m mµ µ +−  is the 

smallest one among i jµ µ−  for all 1i S∈  and 2j S∈ . Therefore, the convergence rate for EA is 

( ) ( ) ( ) ( )
1 2

2
1

11 2,
min , ,

4
m mE E

ij i j m mm mi S j S
G G

k
µ µ

α α α α
s

+
++∈ ∈

−
= = . 

    Similarly we can also obtain the asymptotic convergence rates for OCBAm and OCBAm+, 

also in the equal variance case. 

    Lemma 3.5. Suppose ( )1 2, , , kα α α and ( )1 2, , ,L L L
kα α α  are the computing proportions 

allocated to all alternatives by OCBAm and OCBAm+ respectively. Then, if all alternatives have 

the same variance, i.e., 2 2 2 2
1 2 ks s s s= = = = , we have the following result. 

    (a)  The asymptotic convergence rate for OCBAm is  
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( ) ( ) ( ) ( )( ){ }
( )
( )

( )
( )

1 2
11 1 1,

2 2
1 1

2 2
1 1

min , min , , ,

                           min ,
2 1 1 2 1 1

ij i j mk m k m mi S j S

m k m

m k m

G G Gα α α α α α

µ µ µ µ
s α α s α α

+ +∈ ∈

+

+

=

 − − =  
+ +  

; 

    (b)  The asymptotic convergence rate for OCBAm+ is  

( ) ( ) ( ) ( )
( )1 2

2
1

11 2,
1

min , ,
2 1 1

m mL L
ij i j m mm m L Li S j S

m m

G G
µ µ

α α α α
s α α

+
++∈ ∈

+

−
= =

+
. 

    Proof. See Appendix H. 

    Lemma 3.5 enables us to perform further convergence rate analysis and comparison, and leads 

to the following two theorems. 

    Theorem 3.3. The asymptotic convergence rate for OCBAm+ is greater than the asymptotic 

convergence rate for the equal allocation rule (EA), when the variances of all alternatives are 

equal ( 2 2 2 2
1 2 ks s s s= = = = ) and ( ) ( )1 2 1 1min ,m m m m m mµ µ µ µ µ µ+ + + −− ≤ − − . 

    Proof. See Appendix I. 

    Theorem 3.4. If the means of all alternatives form an arithmetical progression, and the 

variances of all alternatives are equal, i.e. 1 ,  for 1, 2, , 1i i d i kµ µ+ − = = −  and 2 2 2 2
1 2 ks s s s= = = = , 

the asymptotic convergence rate for OCBAm+ is no less than OCBAm when m=1, or 

2 and 5m k m≥ ≥ + . 

    Proof. See Appendix J. 

    It can also be proved the asymptotic convergence rate of OCBAm is greater than EA’s under 

the same condition in Theorem 3.3. Therefore, OCBAm+ has the highest convergence rate and 
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OCBAm has the second highest convergence rate among EA, OCBAm and OCBAm+, if all 

alternatives have similar variances and their ranked means are similar to an arithmetical 

progression. 

3.7 Numerical experiments 

In this section, we conduct some numerical experiments to test the performance of OCBAm+ 

compared with OCBAm and EA. We use P{CS} as the empirical performance measure and the 

asymptotic convergence rate as the theoretical performance measure. P{CS} is estimated by the 

fraction of times the procedure successfully finds all the true top-m alternatives out of 10,000 

independent experiments. Following the guidelines in Chen et al. (2008), we set 0n  equals to 20 

in all numerical experiments. 

3.7.1 The Base Experiment 

We want to select top-5 solutions from 50 alternatives, with distribution N(i , 102) for alternative 

i = 1, 2, …, 50. The performances of EA, OCBAm and OCBAm+ with an increasing computing 

budget T is shown in figure 3.1. Table 3.1.a displays the speed-up factors of OCBAm over EA 

and OCBAm+ over EA. The speed-up factor of OCBAm(OCBAm+) over EA equals to the 

average computing replications needed for EA to attain 90% P{CS} divided by the average 

computing replications needed for OCBAm(OCBAm+) to attain 90% P{CS}. Table 3.1.b shows 

the theoretical convergence rates of P{CS} for these three allocation rules.  
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Figure 3. 1 Performance comparison of P{CS} in the Base Experiment. 

 
 

Table 3.1. a The speed-up factor with different values of P{CS} in the Base Experiment. 

Probability of correct 
selection, P{CS} 

Speedup factor of 
OCBAm over EA 

Speedup factor of 
OCBAm+ over EA 

90% 2.24 3.33 

95% 2.78 5.30 

99% 3.12 7.21 
 
 

Table 3. 1. b Theoretical convergence rates in the Base Experiment. 
Rule EA OCBAm OCBAm+ 

Convergence Rate 0.50×10-4 5.30×10-4 6.59×10-4 
   

From figure 3.1 and table 3.1.a, we can see that the performance of OCBAm+ is the best and 

the performance of OCBAm is the second best among these three allocation rules. Moreover, the 

superiority of OCBAm+ over OCBAm and EA is significant. This experiment result is consistent 

with the theoretical comparison given in table 3.1.b.  
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3.7.2 Variants of the Base Experiment  

We make some parameter changes in the Base Experiment, and build some different scenarios, 

whose parameter settings are shown in table 3.2. 

Table 3. 2 Parameter settings for different scenarios. 
Scenarios m k Distribution of alternative i 
Base Experiment 5 50 N(i , 102) 
1 small size subset 2 50 N(i , 102) 
2 small scale problem  5 10 N(i , 102) 
3 monotone decreasing variance 5 50 N(i, ((51-i)/4)2) 
4 monotone increasing variance 5 50 N(i,((i+10)/2)2) 
5 convex decreasing means 5 50 N( 50 50 50 i− × − , 102) 
6 concave decreasing means 5 50 N( ( )( )2

50 50 / 50i− − , 102) 
7 randomly generated means 5 50 N(rand(0,50), 102) 

 

    For every scenario in table 3.2, we run experiments and get the average total simulation 

replications needed for each allocation rule to make the probability of correct selection 90%. 

Based on these numbers of replications, we compute the speedup factor of OCBAm over EA and 

the speedup factor of OCBAm+ over EA in each scenario, which are given in table 3.3.a. Table 

3.3.b shows the theoretical convergence rates of the three allocation rule under different 

scenarios. 

      Tables 3.3.a and 3.3.b show that OCBAm+ is the best performer among the three compared 

methods. Specifically, in Scenario 1 in which the value of m decreases from five to two, both the 

speedup factors and convergence rates of OCBAm and OCBAm+ become higher while the 

convergence rate of EA is still same. This indicates that OCBAm+ and OCBA can save more 

computing cost than EA as the size of optimal subset becomes higher. When the number of 

alternatives decreases in Scenario 2, the speedup factor of OCBAm+ lowers because a smaller 
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alternative space allows the OCBAm+ algorithm less flexibility in allocating the computing 

budget.     

Table 3.3. a Average Computing budget required for reaching 90% P{CS} 

Scenarios 

T for reaching 90% PCS Speed-up factor 

of OCBAm 

over EA 

Speed-up factor 

of OCBAm+ 

over EA 
EA OCBAm OCBAm+ 

Base 17500 7800 5250 2.24 3.33 

Scenario 1 17300 6150 4500 2.81 3.84 

Scenario 2 4100 4050 2350 1.01 1.74 

Scenario 3 21200 11750 6100 1.80 3.48 

Scenario 4 10000 4650 3500 2.15 2.86 

Scenario 5 60000 55500 16500 1.08 3.64 

Scenario 6 5450 2950 2350 1.85 2.32 

Scenario 7 140000 78500 22800 1.78 6.14 

 

Table 3.3. b Theoretical convergence rates in different scenarios. 

Scenarios Convergence rate 
of EA 

Convergence rate 
of OCBAm 

Convergence rate 
of OCBAm+ 

Base Experiment 0.50×10-4 5.30×10-4 6.59×10-4 
Scenario 1 0.50×10-4 5.46×10-4 7.26×10-4 
Scenario 2 2.50×10-4 6.44×10-4 6.83×10-4 
Scenario 3 3.86×10-5 4.13×10-4 5.24×10-4 
Scenario 4 8.32×10-5 8.40×10-4 0.0010 
Scenario 5 1.40×10-5 1.48×10-4 1.86×10-4 
Scenario 6 1.58×10-4 0.0017 0.0021 

 

    Scenario 3 and Scenario 4 consider the different settings about alternatives variances. From 

table 3.3.a and table 3.3.b, we can see OCBAm+ is still the best one among these three allocation 
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rules, regardless of variance increasing or decreasing. This indicates that the performance of 

OCBAm+ is quite robust to the changes of alternatives’ variances.  

    Scenario 5, Scenario 6 and the Base Experiment are different settings about alternatives where 

the means for alternatives are convex, concave and linear functions with respect to the indices of 

alternatives. From table 3.3.b, in these three scenarios, convergence rates become lower in the 

convex case and higher in the concave case, relative to the linear case. This is because the means 

of alternatives within or near the optimal subset are closer to each other in the convex case than 

in the linear and concave cases. Thus, compared with the linear case, more computing budget is 

needed for the convex case to identify the alternatives belonging to the optimal subset, and less 

computing budget is needed for the concave case, which coincides with the result in table 3.3.a. 

    In scenario 7, the mean of each alternative sets to be a random number following the uniform 

distribution from 0 to 50. The performance is close to the performance in the base experiment, 

except it requires much more replications. In the tested scenarios with different settings of means 

(scenario 5, 6 and 7), OCBAm+ is always a better choice than OCBAm and EA. 

From the numerical experiments in subsection 3.7.1 and 3.7.2, we can observe that both 

OCBAm+ and OCBAm are better than EA. Furthermore, OCBAm+ is the best allocation rule 

among these three allocation rules, not only in the linear mean and equal variance case, which 

has been shown in Theorem 3.3 and Theorem 3.4 from the perspective of the asymptotic 

convergence rate analysis, but also in some nonlinear mean situations and unequal variance 

situation such as scenario 3 to scenario 7. The superiority of OCBAm+ over OCBAm and EA is 

quite robust with the mean and variance settings of alternatives. 
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3.7.3 Numerical Results for Simulation Optimization 

In this subsection, the OCBAm+ algorithm is tested under the simulation optimization setting, in 

which OCBAm+ is integrated with optimization methods, Cross-Entropy (CE) and Genetic 

Algorithm (GA). We apply OCBAm+ to allocate simulation runs to each solution at each 

iteration to select an elite subset which is used to generate new populations. The resulting 

performance is compared with the same optimization method using OCBAm and EA. We use the 

average true optimal function value obtained at each iteration over 200 independent experiments 

as a measurement of effectiveness. 

The result is compared with algorithm combining CE and GA with OCBAm and EA. We use 

2D Griewank function  

( ) ( )
2 2

2

1 1

1 cos 1
4 i i

i i
f X x x i

= =

= − +∑ ∏
 

and 2D Rosenbrock function  

( ) ( ) ( )2 22
2 1 1100 1f X x x x= − + −

 

as two testing functions. Both of these two functions have the optimal function value 0. The 

standard deviation of noise, set as 1, is added on these two functions. The searching result is 

shown by the following figure 3.2 and figure 3.3. 



 

39 
 

Figure 3. 2 Performance of CE and GA combining with allocation rules for 2D Griewank function. 

 

  

Figure 3. 3 Performance of CE and GA combining with allocation rules for Rosenbrock function. 

 

    From figure 3.2 and figure 3.3 we see that it is faster for the simulation optimization 

algorithms to obtain the global optimal value by integrating OCBAm+ compared with 

integrating OCBAm and EA. This implies that OCBAm+ enhances the efficiency of searching 

algorithms to find the best value of optimization problems when compared with OCBAm and EA 

for these two functions. 

3.8 Conclusions and comments 

Under the Optimal Computing Budget Allocation framework, we derived an improved allocation 

rule, OCBAm+, for optimal subset selection problems. Moreover, we presented a framework for 

asymptotic convergence rate analysis for optimal subset selection problems. This provided us 
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with a theoretical tool for comparing different allocation rules besides traditional empirical 

testing. By numerical experiments, OCBAm+ seems to be the most efficient procedure for the 

optimal subset selection problem and its performance is quite good under many parameter 

settings.  

    However, the derivation for the allocation rule OCBAm+ is based on the assumption that the 

performance of each alternative in each replication is independent of each other. As the 

performance of each alternative sometimes are correlated such as the simulation with common 

random number, it is necessary for us to extend our study into the situation with correlation as 

described in the next chapter.  
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Chapter 4 Efficient computing budget allocation for optimal subset selection 

with correlated sampling 

In this chapter, we generalize our work in chapter 3 into the problem with correlated sampling. 

Section 4.1 briefly introduces the problem and reviews the related literatures about R&S 

problems considering correlation. In section 4.2, we model the problem from the view of large 

deviation theory. Different allocation rules for different simplified cases are derived in section 

4.3 and we test the performance of derived allocation rule in section 4.4. Section 4.5 concludes 

the whole chapter. 

4.1 Introduction 

In general, when we run simulation or design experiments, each replication of simulation or each 

trial is usually independent to each other. For the solutions or designs that with high variance, the 

total number of simulation replications or trials maybe very large to guarantee certain accuracy 

of estimation. Because the positive correlation can reduce the variance of the difference between 

two random variables, the correlation sometimes is introduced into simulation or design of 

experiments (DOE) to reduce the required number of simulation replications or trials. One 

popular technique is the one called common random numbers (CRN) which induces a positive 

correlation between the outputs of each system (Law and Kelton 2000, Banks et al. 2000). 

Because CRN provides more information during the comparisons between two systems without 

any computing cost of simulation, we apply it into simulation and study the ranking and selection 

problem with correlated sampling. 

There are already some ranking and selection procedures developed for the best design 

selection problem incorporating common random numbers, such as Clark and Yang (1986), 
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Nelson and Matejcik (1995), and Kim and Nelson (2001) all of which developed procedures 

based on the least favorable configuration (LFC), a common assumption for indifference zone 

procedures. However, this assumption will induce the high conservative property of the 

procedures because it cannot efficiently use the information of mean. Chick and Inoue (2001b) 

then considered the problem from the Bayesian framework and presented a two-stage procedure 

by using the value of information of measure which is further extended in Qu et al. (2012) by 

creating an optimal approximation of conjugacy and deriving a value of information procedure to 

capture the unknown correlation structures. Fu et al. (2007) studied the best design selection 

problem in the presence of correlated sampling under the OCBA framework proposed in Chen et 

al. (2000). The literature for the optimal subset selection problem under correlated sampling is 

little now. Since correlation usually exists in many real optimization problems and the optimal 

subset selection problem is worthy to be studied as shown in Chapter 3, we aim to extend the 

work in Chapter 3 to the more general situation considering correlation to fill this research gap.  

In Fu et al. (2007), the study is for the best design selection and the allocation rule is derived 

based on the general OCBA framework that maximizes the probability of correct selection. 

Because of the presence of correlation, the derivation becomes more complex such as calculating 

the eigen-value of a matrix related to covariance. The value of information procedures in Chick 

and Inoue (2001) and Qu et al. (2012) from the Bayesian perspective is also not easily to 

implement. In this chapter, we want to not only extend the best design selection to the optimal 

subset selection under correlated sampling but also study the optimal computing budget 

allocation problem from the perspective of large deviation theory to simplify the complex 

derivation work induced by correlation. 
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4.2 Problem formulation from the perspective of large deviation theory 

In this chapter, all notations have the same meaning with the definition in Chapter 3. The only 

difference is that we relax the assumption that the performance of each alternative in each 

replication is independent of each other and consider the correlated sampling here. We consider 

the optimal subset selection problem in the presence of correlated sampling case. Let ijX  denote 

the jth simulation replication value of alternative i. We assume that �𝑋𝑖𝑗, 𝑖 = 1, … ,𝑘, 𝑗 = 1, … ,𝑁𝑖� 

has a joint normal distribution, and 

( ) 0,     if 
cov ,

,    if is jt
ij

s t
X X

c s t
≠

=  =
 

in which 𝑐𝑖𝑗 > 0 to reduce the variance of the difference between two random variables. 

    Our aim is still to find the optimal allocation rule *α  such that the probability of correctly 

selecting m best solutions can be maximized under the total computing budget constraint. Thus, 

the problem can be formulated as follows. 

( )1 2, ,...,

1

max     { }

. .        1

            0

k

m

i
i

i

P CS

s t

α α α

α

α
=

=

≥

∑  

    The goal maximizing the probability of correct selection is equivalent to minimize the 

probability of false selection, which goes to zero as T → ∞ if αi > 0 for all i. For different 

allocation schemes of computing budget, the probability of incorrect selection approaches to zero 

with different speeds. Considering the computing efficiency, an allocation is preferred if it makes 

the probability of false selection converge to zero faster. It is therefore possible to use the 

convergence rate of the probability of false selection going to zero as a measure of the quality of 
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allocation rules, which falls in the research area of large deviations theory. In chapter 3, we use 

large deviation theory to do analysis on the convergence rate of P{IS}. As a matter of fact, large 

deviation theory not only is a useful theory in the convergence rate analysis, but can also be used 

to derive the allocation rule for subset selection problem. The OCBA problems can be modeled 

from the large deviations perspective as below, where the objective is to find an allocation that 

can maximize the convergence rate of the probability of incorrect selection P{IS} going to zero. 

                                                  

( )1 2, ,...,

1

max   Convergence rate of P{I }

    . .         1

                  0

k

k

i
i

i

S

s t

α α α

α

α
=

=

≥

∑                                                  (4.1) 

    In model (4.1), the event incorrect selection means that the subset we selected based on 

sample means is not { }1,2, ,m . This event happens if the sample mean value of any designs from 

1 to m is larger than the sample mean value of any designs from m+1 to k. So the probability of 

incorrect selection can be formulated as below. 

{ } ( ),  for i 1,2, ,  and j 1, 2, ,i j
i j

P IS P X X m m m k
  = ≥ = = + + 
  

 



. 

As we discussed in chapter 3, the asymptotic convergence rate of P{IS} have the following 

expression. 

{ } ( )
1 2,

1lim log min ,ij i jT i S j S
P IS G

T
α α

→∞ ∈ ∈
= − . 

This means that P{IS} will decay exponentially with increasing T at a rate given by 

( )
1 2,

min ,ij i ji S j S
G α α

∈ ∈
− . The convergence rate of P{IS} is represented by the slowest convergence rate 

among the many pair wise comparisons which could cause a false selection event. Therefore, 
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model (4.1) can be transformed as the following expression from the perspective of large 

deviation theory. 

                                                              
( )

1

max      

. .     ,

         1

         0.

ij i j

k

i
i

i

z

s t G zα α

α

α
=

≥

=

≥

∑
                                                       (4.2) 

    Being different from the general OCBA model such as (3.5), the computing budget allocation 

model built from the perspective of large deviation theory avoids the approximation on the 

probability of correct selection. In addition, this formulation also simplifies the derivation work. 

If we build the OCBA model to maximize 𝑃{CS}, we need to develop the correlation matrix for 

designs’ sample means and need to do the matrix calculation. It will be very complex. Fu et al. 

(2007) show the difficulty to get the allocation rule in general case even for the one best design 

selection problem. 

4.3 Derivation of the allocation rules 

In general, the expression of ( ),ij i jG α α   is difficult to be attained. Under the assumption of 

normal distribution, we can express it as follows by large deviation theory. 

                                                 ( ) ( )

( )

2

22
,

2 2
max ,

i j
ij i j

j i ji
ij

i j i j

G
µ µ

α α
s s ss ρ

α α α α

−
=

 
 + −
  

                                     (4.3) 

in which ( )ij ij i jcρ s s=  is the correlation coefficient between alternative i and j. 

    We use Lagrangian method to derive the optimal asymptotical allocation rule for problem 

(4.2). The Lagrangian function of model (4.2) is 
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( ) ( )
1 1 1 1

1
m k k k

ij ij i i i
i j m i i

F z z G v hα λ α α
= = + = =

 = − + − + − − 
 

∑ ∑ ∑ ∑  . 

Applying KKT conditions, we can obtain the theorem below. 

Theorem 4.1. The allocation rule is asymptotically optimal for model (4.3) if it satisfies the 

following conditions: 

(a) 
1

k
ij

ij
j m i

G
vλ

α= +

∂
=

∂∑  , 1,2,...,i m∀ = ; 
1

m
ij

ij
i j

G
vλ

α=

∂
=

∂∑ , 1, 2,...,j m m k∀ = + + .  

(b) ( ) 0ij ijz Gλ − = , 1,2,...,i m∀ = ; 1, 2,...,j m m k= + +  

(c) 
1

1
k

i
i
α

=

=∑   

(d) 0iα >  1,2,...,i k∀ =   

(e) 0ijλ ≥ ,  1,2,...,i m∀ = ; 1, 2,...,j m m k= + + . 

We can find from the model and Theorem 4.1 that it is a multiple comparison problem and 

( ),ij i jG α α  is a nonlinear function of allocation rule. Thus, it is very difficult, or even impossible, 

to get a closed form expression of the optimal allocation rule from this model. Some nonlinear 

programming solvers can be applied to get the numerical values of the optimal allocation rule for 

a given parameter setting.  

However, with some assumptions and approximation made to the optimization models, we are 

able to derive the closed-form allocation rule and this rule will be easier to implement in practice. 
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In the next few subsections, we will show how these rules can be derived under different 

scenarios and assumptions. 

4.3.1 Allocation rule for two alternatives 

In the case of two alternatives, the model (4.2) can be simplified to 

                          ( )

( )

2
1 2

1 22 2
1 2 1 2

1 2 1 2

max        subject to  1,  0.
2 2

max ,

i
µ µ

α α α
s s s sρ
α α α α

−
+ = ≥

 
+ − 

 

                (4.4) 

in which ρ is the correlation coefficient between two alternatives. 

For derivation convenience, we introduce the ratio 1 2r s s=  and assume 1r ≥ . If 1 2s s< , we 

just need to change the roles of alternative 1 and alternative 2. We make an assumptions that 

there exists the optimal rule for (4.4) that satisfies 1 2α α≥ . Take the first order derivative of the 

objective in (4.4) with respect to 1α , 

( )

( )

2 2
2 1 1 2 12 2

1 2 2 2
1 2

12 22 21 1 2 1 2
12

1 2 1 2

2

2 2
max ,

d G
d

s s s ρ sµ µ
α α

α s s s sρ
α α α α

 −
− − 

 =
 

+ − 
 

. 

Let it equal zero, we can get the formula below. 

                                                                     
2

21
122

2

2r rα ρ
α

= − .                                                       (4.5) 

    Because 1 2α α≥ , the equation (4.5) exists only when 2
122 1r rρ− ≥ , that is 1 2r

r
ρ− ≥ . 

Substituting 2α  by 11 α− ,  we can get 
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( )
( )1

2

1 2

r r

r r

ρ
α

ρ

−
=

+ −
  when 1 2r

r
ρ− ≥ . 

For the situation 1 2r
r

ρ− ≤ , we have 

12
1

0d G
dα

≤ . 

Because the derivative is negative, 12G  is an decreasing function of 1α . So the maximum value of 

12G  can be obtained when 1 2α α= . Therefore, the assumption there exists the optimal rule for 

(4.4) that satisfies 1 2α α≥  is established. Based on the above analysis, we can get Lemma 4.1. 

    Lemma 4.1. The optimal allocation rule for the model (4.4) is 

(a) For 1 2 1r s s= ≥   

( )

( )
( ) ( )

1 2

2 1 1,    if 2
1 2 1 2,
1 1 1,                                              if 2
2 2

r r
r

rr r r r

r
r

ρ
ρ

ρ ρα α

ρ

 −
  − ≥
  + − + − = 
  − ≤ 
 

 

(b) For 1 2 1r s s= ≤   

( )1 2

1 1 2
1 1,    if 2

1 1 1 1, 1 2 1 2

1 1 1,                                                  if 2
2 2

r r r
r

r r r r

r
r

ρ
ρ

α α ρ ρ

ρ

  −  
   − ≥     = + − + −     

    
  − ≤  
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From Lemma 4.1, we also can conclude that the optimal allocation rule for two alternatives 

when there is no correlation (i.e. 0ρ = ) is 

1 1

2 2

α s
α s

= . 

    The allocation rule indicates that the computing budget allocation is only determined by the 

variance of each solution when the performance is independent to each other. The solution with 

higher variance should be given more simulation replications. When there exists correlated 

sampling between designs, the allocation rule depends both on the variance and covariance 

coefficient. One special thing for the correlated situation is that, if r=1, the simulation 

replications allocated to each one is always the same no matter what the value of ρ . 

4.3.2 Allocation rule for best design selection (m=1) 

When m equals one, the optimal subset selection problem reduces to the best design selection 

problem and the OCBA model (4.2) can be simplified as follows respectively. 

                                                           
( )1 1

1

max      
. .     ,

         1

         0.

i i

k

i
i

i

z
s t G zα α

α

α
=

≥

=

≥

∑
                                                          (4.6) 

From the model, we can see that alternative 1 is very important because all the other solutions 

are compared with it. So we make a reasonable assumption that there exists an optimal allocation 

rule for model (4.6) which satisfies 1 ,   1i iα α> ∀ ≠ .  

Based on Theorem 4.1, we have the lemma below for the best design selection problem. 
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    Lemma 4.2. The allocation rule for model (4.6) is asymptotically optimal if it satisfies the 

following conditions: 

(a) 1 1

2 1

1
k

i

i i i

G
G

α
α=

∂ ∂
=

∂ ∂∑  

(b) 1 1  , 1i jG G i j= ∀ ≠   

(c) 
1

1
k

i
i
α

=

=∑   

(d) 0iα >  1,2,...,i k∀ =  

    Under this assumption 1  1i iα α> ∀ ≠ , we have 

                                                   ( ) ( )21
1 1 2 2

1 1 1

1

,
22

i
i i

i i i

i

G
µ µ

α α
s s s ρ s

α α

−
=

 −
+ 

 

,                                             (4.7) 

                                                   
( )

2
2 1 1 1

1 2
11

22 2
1 1 1 1

1

2

22

i i
i

i

i i i

i

G
s s s ρµ µ

α
α s s s ρ s

α α

 −
−  ∂  =

∂  −
+ 

 

 ,                                            (4.8) 

                                                   
( )

2
2

1 2
1

22 2
1 1 1

1

22

i
i

ii

i i i i

i

G
sµ µ
α

α s s s ρ s
α α

 
−  ∂  =

∂  −
+ 

 

.                                                 (4.9) 

Substituting (4.8) and (4.9) into Lemma 4.2(a), the relationship between 1α  and others can be 

expressed by 
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2

21 1 1
1 2

2

2k
i i

i
i i

s s s ρα α
s=

−
= ∑  .                                                (4.10) 

From (4.10), we can see that the computing budget allocated to the best solution is the square 

root of the weighted sum of other solutions’ square. Hence, our assumption is established. If we 

strengthen this assumption to 1  1i iα α>> ∀ ≠ , we can also find the closed-form expression for 

relationship among other designs by Lemma 4.2(b) and (4.7), that is, 

                                       
2

x x x

y y y

α s δ
α s δ

 
=   
 

  in which 1x xδ µ µ= −  and , 1x y ≠ .                       (4.11) 

Therefore, we make the conclusion in Lemma 4.3. 

    Lemma 4.3. Assuming 1  1i iα α>> ∀ ≠ , the optimal allocation rule for the best design selection 

under correlated sampling is (4.10) and (4.11). 

Note that, when there is no correlation applied, the optimal rule we derived above can be 

directly reduced to the OCBA1 allocation rule in Chen et al. (2000). 

 

 

4.3.3 Allocation rule for the optimal subset selection (m>1) 

The model (4.2) for general optimal subset selection problem contains multiple pair-wise 

comparisons between solutions. Therefore, it is difficult to develop the closed-form allocation 

rule for it. One way to tackle this difficulty is making some approximations to simplify the 

model.  
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    Being inspired by the idea in deriving OCBAm+ in chapter 3 that employs solution m and 

m+1 as two thresholds to establish the approximated probability of correct selection, we can 

assume that ( ) ( ) ( ) ( )( )( )1 1, min , , ,ij i j mj m j ii m mG G Gα α α α α α+ +≥  , , 1i j m m∀ ≠ +  and 1,m m iα α α+ >>  

, 1i m m∀ ≠ + because the false selection probability { }1i mP X X +≥  for i m≤   and { }m jP X X≥  for 

1j m≥ +  are usually higher than other { },  for i 1,2, , 1 and j 2, ,i jP X X m m k≥ = − = +   when the 

variances of solutions do not have very obvious difference. So the computing budget allocation 

model can be transformed into 

                                         
( ) ( )

( )
11

1

max      
. .     ,  1,2,...,

          ,       1, 2,...,

          1,  0.

i mi m

mj m j

k

i i
i

z
s t G z i m

G z j m m k

α α

α α

α α

++

=

≥ ∀ =

≥ ∀ = + +

= ≥∑

                                   (4.12) 

Similarly, we can obtain the following lemma for model (4.12) based on Theorem 4.1. 

Lemma 4.4. The allocation rule is asymptotically optimal for problem (4.12) if it satisfies the 

following conditions: 

(a) 
2

1
k

mj m

j m mj j

G
G

α
α= +

∂ ∂
=

∂ ∂∑  and 
1

, 1 1

1 , 1

1
m

i m m

i i m i

G
G

α
α

−
+ +

= +

∂ ∂
=

∂ ∂∑  

(b) ( )1mj i mG G +=   1,2,...,i m∀ =  1, 2,...,j m m k∀ = + +   

(c) 
1

1
k

i
i
α

=

=∑   

(d) 0iα >  1,2,...,i k∀ =  
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By taking the partial derivative of ijG  and substituting the result into Lemma 4.4, the 

following closed-form allocation rule, named as OCBAm-cov, can be gained. 

Lemma 4.5. The following allocation rule, named as OCBAm-cov, is asymptotically optimal 

for problem (4.12). 

(a) 
2

2
2

2

2k
m m j mj

m j
j m j

s s s ρ
α α

s= +

−
= ∑  and 

21
1 1 , 1 2

1 2
1

2m
m m i i m

m i
i i

s s s ρ
α α

s

−
+ + +

+
=

−
= ∑   

(b) 
2

x x x

y y y

α s δ
α s δ

 
=   
 

 in which 1  if 1x m x x mδ µ µ+= − ≤ −  and  if 2x x m x mδ µ µ= − ≥ + .  

4.3.4 Sequential allocation procedure 

The allocation rules in Lemma 4.1, Lemma 4.3 and Lemma 4.5 are functions of the means, 

variances and covariance coefficients, which are unknown in practice. A sequential procedure is 

developed in this section to approximately estimate these parameters and implement the 

allocation rules. Each design is initially simulated with n0 replications in the first stage, and 

additional replications are allocated to individual designs incrementally from   replications to 

be allocated in each subsequent stage until the simulation budget T is exhausted. In summary, we 

have the following algorithm. 

Algorithm  OCBA Procedure for the optimal subset selection problem with correlated sampling 

INTIALIZE Let n equal to 0n k ; Set 1 2 0
n n n

kN N N n= = = =  and 
1

k
n n

i
i

T N
=

= ∑ ; Perform 0n  

replications for all alternatives. Calculate sample mean, sample variance and 

covariance of each alternative. 
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LOOP WHILE nT T<  DO 

 UPDATE Calculate sample mean of each alternative to estimate its true 

mean. 

 ALLOCATE Add ∆  replications to nT ; Calculate the new computing 

replications allocated to each design according to Lemma 4.1, 

Lemma 4.3, or Lemma 4.5 based on different situations; Get the 

value of 1 1 1
1 2, , ,n n n

kN N N+ + +
  and round them to the integers nearest 

to their values. 

 SIMULATE Set ( )1 1max ,n n n
i i iN N N+ +=  and 1 1

1

k
n n

i
i

T N+ +

=

= ∑ ; Perform additional 

1n n
i iN N+ −  replications of design i, i=1,…,k; Set n=n+1; 

END OF LOOP 

OUTPUT Select the alternatives whose performances’ means are less than the (m+1)th 

smallest sample mean into the optimal subset and end the procedure. 

    Note that sample means and sample variances are consistent estimators of means and 

variances, which means that sample means and sample variances goes the true mean and 

variance as the T goes to infinity. Consequently, the sample allocation based on the sequential 

algorithm is also a consistent estimator of the allocation rule we derived. 

4.4 Numerical Experiments 

In this section, we provide numerical results to demonstrate the effectiveness of the allocation 

rule OCBAm-cov in the previous section. The probability of correct selection P{CS} is used as 

the performance measurement of these two methods and is estimated by the fraction of times the 

procedure successfully finds all the true m-best designs. We set ∆  equals to 50 and n0 equals to 
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20 in all numerical experiment. To compare OCBAm-cov with EA, we gradually increase 𝑇 to a 

maximum of 1,000 simulation samples and report the value of P{CS}.  

    We want to select top-3 solutions from 10 alternatives, with distribution shown in table 4.1 for 

different scenarios. For each scenario, three level of covariance coefficient are tested. The value 

of P{CS} for each scenario after the total computing budget are allocated is present in table 4.2. 

Table 4. 1 Parameter settings for different scenarios. 
Scenarios Distribution of alternative i 
1 Basic experiments N(10-i , 62) 
2 convex decreasing means N(10 10 10 i− × − , 62) 
3 concave decreasing means N( ( )( )2

10 10 / 10i− − , 62) 
4 randomly generated parameters N(rand(0,10), rand(24,36)) 

 

Table 4. 2 The value of P{CS} after 1,000 replications. 

Scenarios 
ρ  =50% ρ  =70% ρ  =90% 

EA OCBAm-cov EA OCBAm-cov EA OCBAm-cov 
Scenario 1 0.825 0.921 0.856 0.960 0.992 0.999 
Scenario 2 0.762 0.845 0.841 0.923 0.947 0.971 
Scenario 3 0.863 0.957 0.914 0.982 0.998 1.000 
Scenario 4 0.713 0.782 0.827 0.905 0.912 0.945 

 

    From table 4.2, we can see the performance of OCBAm-cov is always better for EA in all the 

tested scenarios. In addition, the higher level correlation between solutions, the higher value of 

P{CS} can be attained. This shows the computing cost saving by applying common random 

number into simulation.  

4.5 Conclusions 

In this chapter, we generalize the problem of subset selection by considering correlation, and all 

the single best, subset and single best with correlation become a special case. The computing 

budget allocation model for this problem is built based on the large deviation theory. The 

objective of the model is maximizing the convergence rate of the incorrect selection probability 
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decreasing to zero instead of maximizing the probability of correct selection in general OCBA 

model. Under this framework, we derived the closed form allocation rules OCBAm-cov based on 

some mild assumptions. The numerical result shows that OCBAm-cov does help in saving the 

computing cost compared with EA. 
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Chapter 5 Particle Swarm Optimization with Optimal Computing Budget 

Allocation for Stochastic Optimization 

In this chapter, we integrate the OCBA framework into a population-based simulation 

optimization technique called particle swarm optimization (PSO) to demonstrate the way 

tackling the simulation optimization problems with continuous or enormous sized solution 

spaces by OCBA. The background is roughly reviewed in section 5.1. In section 5.2, we 

introduce the general simulation optimization problem setting and give a brief introduction to 

PSO. Section 5.3 formulates the PSOOCBA problem and proposes an optimal allocation for both 

versions of PSO. In section 5.4, we present some numerical experiments comparing the 

implementations with equal allocation, which is followed by the conclusion in section 5.5. 

5.1 Introduction 

The OCBA procedures are only suitable for simulation optimization problems whose solution 

spaces are discrete, bounded and within certain size. The reason is that every solution should be 

given before the implementation of OCBA procedures and OCBA procedures allocate every 

solution certain replications at the initial stage to get a general idea about these solutions. If the 

solution space is of enormous size, continuous, or even unbounded, the total required computing 

replications will be prohibitively high. On the other hand, many search algorithms have been 

proposed to search good solutions to tackle the simulation optimization problems with 

continuous or enormous sized solution spaces. However, these methods seldom consider the 

computing efficiency for executing them. 

In the search process, search algorithms need to repeatedly evaluate and compare candidate 

solutions to decide the next search direction. In this evaluation and comparison step, we already 

know the solutions required to be compared and the total number of candidate solutions at each 
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iteration is relatively small, so OCBA can be applied to enhance the simulation efficiency of this 

step. Therefore, the integration of OCBA and search algorithms is better than OCBA or search 

algorithm individually in dealing with difficult simulation optimization problems. We aim to do 

some contribution work about integrating OCBA with search algorithms to solve simulation 

optimization problems having huge solution space by using particle swam optimization. 

    Particle Swarm Optimization (PSO) is one of popular population-based evolutionary 

techniques for optimization problems. Inspired by the idea of swarm intelligence and the 

evolutionary computation concept, Kennedy and Eberhart (1995) developed the basic model for 

PSO and facilitated PSO’s application in optimization problems. In this version of PSO, a swarm 

is formed by certain number of particles. Each particle moves from one solution in the search 

space to another based on the location information of both the best solution that it has visited 

personally (personal best) and the best solution that is visited by any of the particles that this 

particle can communicate with (global best). To control the balance between exploration and 

exploitation, Shi and Eberhart (1998) and Clerc and Kennedy (2002) introduced the inertia 

weight and the constriction factor respectively into the update equation of velocity to improve 

the basic PSO model. These three papers build the basic framework for the canonical PSO 

(Bratton and Kennedy 2007). Because of the advantages of derivative-free, black-box methods, 

PSO has become a popular research topic and has been studied from many aspects. Many 

excellent reviews are available (see, for instance, Bratton and Kennedy 2007, Branks et al. 2007, 

2008).  

For all this development work on PSO, the main body has concentrated on optimization in 

deterministic environment. However, many realistic optimization problems are stochastic. 

Although there is little theoretical research about stochastic PSO, several numerical experiments 
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that apply PSO to real problems, such as power systems (AlRashidi and El-Hawary 2009; Valle 

et al. 2008), have been done in a stochastic environment. The primary challenge for stochastic 

problems is the stochastic nature of evaluating the fitness value. Unlike deterministic 

optimizations, “once” is not enough since the fitness function estimate is noisy in stochastic 

settings. A general way is to take more than one sample for each solution and employ the sample 

mean of the fitness value as a measure to evaluate the quality of the solution. Hence, the number 

of simulation samples taken for each solution becomes a key issue because it determines the 

accuracy of evaluation. To make the evaluation of fitness values accurate, a large number of 

samples is required, which is time consuming. On the other hand, if we relax the requirement on 

accuracy, the high noise may decrease the algorithm’s ability to identify global best and personal 

best and then sacrifice the search efficiency of PSO.  

Traditionally, a large but constant number of samples are taken for all the particles generated 

in an iteration. If we treat computing effort as a resource and particles as demanders, most 

current work on the application of PSO to stochastic problems use equal resource allocation. The 

focus of this chapter is to develop an effective way to intelligently determine the number of 

samples for all solutions such that the PSO algorithm can efficiently select the personal best and 

global best when stochastic estimation noise is present. Given the popularity of PSO in 

deterministic optimization and the efficiency of OCBA in stochastic sampling, some researchers 

have proposed the integration of PSO with OCBA for stochastic optimization problems. Pan et 

al. (2006) directly applied the OCBA allocation rule in Chen et al. (2000) to PSO and obtain 

some improvement in computational efficiency. Horng et al. (2012) also directly employed the 

OCBA in Chen et al. (2000) with PSO as a two-stage algorithm and apply it to a wafer probe 

testing problem in semiconductor manufacturing. However, the OCBA in Chen et al. (2000) is 
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designed to select the best one from certain number of alternatives. In PSO, we need to select not 

only the best one (global best) but also the personal best for each particle. Therefore, the direct 

application of OCBA in Chen et al. (2000) into PSO as shown Pan et al. (2006) and Horng et al. 

(2012) may cannot satisfy the actual requirement of PSO. Instead of directly applying the 

existing OCBA, we want to satisfy the real demand of PSO by considering the selection of both 

global best and personal best in PSO. Our aim is to derive a new computing effort allocation rule 

specifically for PSO. 

5.2 Problem Setting 

5.2.1 Basic Notations 

We introduce the following notation.  

Θ :  continuous search space. 

X : a feasible solution in Θ . 

iX : the location of the  i-th solution. 

m : number of particles in the swarm. 

( )f X : the mean fitness value of the solution of X . 

( )j Xω : the simulation noise at the j-th sample. We assume ( )j Xω  is independently and normally 

distributed with zero mean and finite variance 2
js . 

( )ˆ
jf X : the sampled fitness value of X estimated at the j-th replication, that is,

( ) ( ) ( )ˆ
j jf X f X Xω= +  and ( ) ( )ˆ

jE f X f X  =  . 

( )f X :  the sample mean after N simulation replications, ( )
1

ˆ( ) 1 ( )
N

j
j

f X N f X
=

= ∑ .  

The general optimization problem can be expressed as follows. 
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( )min
X

f X
∈Θ . 

In the stochastic problem, the mean performance of a solution, ( )f X , is estimated by the 

sample mean ( )f X . As we take more samples, ( )f X  estimates ( )f X  more accurately. While it 

is impossible to have an infinite number of samples taken in practice, we aim to investigate how 

we should allocate the finite computing budget in a more efficient way for PSO for simulation 

optimization problems. Although there are different versions of PSO, the main objective of this 

chapter is to show that the efficiency of PSO can be significantly enhanced via OCBA 

framework, rather than to identify a best PSO algorithm. 

5.2.2 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) was originally inspired by the social behavior of bird 

flocking for a food source and then was extended for solving non-linear optimization problems. 

After that, different versions of PSO improvement methods have been developed for different 

requirements. Bratton and Kennedy (2007) summarize these versions of PSO and define a 

standard PSO algorithm for providing a baseline for performance testing of improvements. 

Therefore, we employ the standard PSO as the basic version in our study. 

    One basic concept in PSO is swarm, which is formed by a certain number (suppose m) of 

particles. It can be thought that each particle “flies” through the fitness landscape finding the 

minimum of the mean fitness function. We use ( )1 2, , ,t t t t
i i i iDX x x x=  , 1,2,...,i m= , to denote the 

location of a particle i at the t-th iteration in the solution space with D dimensions. The location 

of particle i at the (t+1)-th iteration is determined by updating the velocity 

( )1 1 1 1
1 2, , ,t t t t

i i i iDV v v v+ + + +=  , which is related to the velocity t
iV , the personal best, denoted by 

( )1 2, , ,t t t t
i i i iDP p p p=  , and the global best, denoted by ( )1 2, , ,t t t t

g g g gDP p p p=  , at the t-th iteration. 
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The personal best of particle i at the t-th iteration is defined as the location of this particle’s own 

previous best performance, that is, ( )
, 1,2,...,

arg min
l
i

t l
i iX l t

P f X
=

=   and the global best is defined as the 

best solution that any particle in the swarm has found, that is, ( )
, for 1,...,t; 1,...,

arg min
l
i

t l
g iX l i m

P f X
= =

=  which is 

the same with 
, 1,...,

arg min
t
i

t t
g ip i m

P p
=

= . For each dimension d ( 1,2,...,d D= ), the standard PSO updated 

velocity and location are 

                                      ( ) ( )( )1
1 1 2 2

t t t t t t
id id id id gd idv v c p x c p xχ ε ε+ = + − + −                               (5.1) 

                                      1 1t t t
id id idx x v+ += +                                                                               (5.2) 

In (5.1), χ  is the constrictive factor to cause convergence and guarantee the particles moving 

within the range of the solution space. 1c  and 2c  are two constants to control the balance 

between convergence speed to local best and the convergence speed to global best. 1ε  and 2ε  are 

two independent uniformly distributed random numbers which add some level of randomness to 

the search in order to avoid getting stuck in local optimum. The whole algorithm of PSO for 

deterministic problems can be summarized as follows. 

Algorithm.      Particle Swarm Optimization Algorithm 

Initialization Select m solutions throughout the search space in a uniform 

random manner as the initial starting locations for m particles; 

velocity is also randomly initialized. Based on their performance, 

get the initial personal best and global best. Set t=1; 

Updating For each particle i in the swarm do  

Update position  for each 1,2,...,i m=  using (5.1) and (5.2); 

      Calculate these new particles’ fitness values ( )t
if X  ;         
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Update t
gP  and t

iP ; 

end for 

STOP If stopping criteria is satisfied, stop; otherwise set t=t+1. Else 

loop to step Updating. 

Based on the standard PSO, we introduce another version of PSO, called PSO with elite set 

method (PSOe). PSOe classifies all particles into the elite set and the non-elite set according to 

the fitness values of these particles. The elite set at t-th iteration, t
eS  (assume eS h= ), contains 

the best h particles among all m particles, 

( ) ( ){ },  ,t t t t t t t t
e i i j i e j eS X f X f X X S X S≡ ≤ ∀ ∈ ∉ . 

The personal best for each particle at t-th iteration has the following definition. 

,                           if 

arg min ,   if 
t t
j e

t t t
i i e

t
t t t ti
j i i eX S

X X S
P X X X S

∈

 ∈=  − ∉

 

For a particle within the elite set, its personal best is itself while the personal best of a particle 

outside of eS  is the particle in the eS  nearest to it. The definition of global best is the same with 

standard PSO, that is, 
, 1,...,

arg min
t
i

t t
g ip i m

P p
=

= . The updating equations and the algorithm of PSOe is the 

same as the standard PSO except for the different definition of personal best.  

Note that we do not introduce PSOe to make a direct comparison between PSOe and the 

standard PSO. Instead, our purpose is to demonstrate that efficiency can be significantly 

improved by using an optimal computing budget allocation no matter which version of PSO is 

employed. 

5.3 PSOOCBA Formulation 

Unlike deterministic problems in which a particle’s true fitness value can be calculated using one 
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single evaluation, the mean fitness value in stochastic problems is estimated via Monte Carlo 

sampling of multiple evaluations. Although the true mean value is usually unknown in a 

stochastic environment, the sample mean, an unbiased estimator, can be employed to estimate 

the mean fitness value of each particle. On each iteration, a certain number of samples will be 

allocated to particles to calculate their sample means and then determine the personal best and 

global best. If we do not have enough samples for particles, the sample mean may not be a good 

estimate of the true mean. As a result, the algorithm may select an incorrect global best and an 

incorrect personal best, which will lead all particles in wrong directions. Therefore, in applying 

PSO to stochastic problems, the correct selection of personal best and global best has significant 

impact on the performance of PSO. Because the accuracy of sample means determines the 

correctness of selecting global best and personal best, how to allocate these samples to each 

particle to improve the probability of correctly selecting personal best and global best is an 

important task for PSO in stochastic problems.  

Intuitively, the particles that have the major effect on updating the velocity and location 

should be given more samples so as to ensure all particles moves in a correct direction. Instead of 

giving each particle equal samples, as most PSO algorithms do, we develop the optimal 

computing budget allocation scheme for PSO in this part.  

For the stochastic case, a quantitative measure to evaluate the correctness of selection is the 

probability of correct selection. To ensure that PSO performs well on stochastic problems, we 

want the probability of correctly selecting global best and personal best to be as high as possible.  

The following proposed procedure tries to determine the allocation of samples that maximizes 

the probability of correctly selecting global best and personal, which is equivalent to minimizing 

the probability of incorrect selection. 
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1 ,...,
min {incorrect selection of personal best and global best}

kN N
P  subject to 1 2 .... kN N N T+ + + =  

Because different versions of PSO have different definitions of personal best and global best, 

the expressions of P{CS} (or P{IS}) are different, as are the optimal ways of allocating samples. 

In the next two sub-sections, we derive optimal allocation rules for two versions of PSO and 

propose an easy-to-implement heuristic sequential allocation procedure. 

5.3.1 Computing budget allocation for Standard PSO 

In standard PSO, the personal best of one particle is defined as the best among the solutions that 

this particle has visited, and the global best is the best among the solutions that all particles in the 

swarm have visited. Based on the updating of personal best and global best, we define three sets 

for research convenience. They are 

          ( ) ( ){ }1:t t t
A i i iS X f X f P −= < , ( ) ( ){ }1:t t t

B i i iS X f X f P −= > , and ( ) ( ){ }1:t t t
G i i gS X f X f P −= ≤ . 

In the above subsets, AS  and BS  are mutually exclusive, denoting, respectively, the set of 

particles whose personal best should be changed and the set of particles whose personal best do 

not need to be updated at t-th iteration. The subset GS  indicates whether the global best should be 

changed or not. If GS  is empty, the global best of this iteration t
gP  is the same as the last iteration 

1t
gP − . If GS  is nonempty, the best particle at this iteration should be the new global best, that is, 

t
gP = t

bX  in which t
bX  is the best particle at the t-th iteration, that is, ( ) ( )mint t

b ii b
f X f X

≠
≤ . 

To build the computing budget allocation model for the standard PSO, the expression of P{IS} 

must be derived. We discuss it case by case.  
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We first consider the situation GS = Φ . The event GS = Φ  indicates that t
gP  should be equal to 

1t
gP − . If there is any particle t

iX  , whose sample mean value is less than the sample mean value 

of 1t
gP − , t

gP  will be incorrectly updated by the particle  with minimum sample mean value 

instead of 1t
gP − . In this case, the selection of global best is incorrect. All particles in the set AS  

should update their personal best, while the particles in BS  , whose personal best is 1t
iP −  should 

not update. If the sample mean value of any particles in AS  is larger than its previous personal 

best sample mean, or the sample mean of any particles in BS  is smaller than its personal best 

sample mean, the selection of personal best is incorrect. Hence, the probability of incorrect 

selection in the situation GS = Φ  can be formulated as  

       { } ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 1 1 1{ }
A B

t t t t t t t t
i g i i j g j j

i S j S

P IS P f X f P f X f P f X f P f X f P− − − −

∈ ∈

      = ≤ ≥ ≤ ≤         
 

  

 

   (5.3) 

in which ( )f ⋅  is a random variable, denoting the sample mean fitness, and 𝑓(∙)  is a realized  

value of a sample mean from a previous iteration.  

By the (t-1)-th iteration, we have the observed values of the sample means of 1t
gP −

 
 and 1t

iP − , 

but we have no information about the mean fitness values of particles in the current iteration. 

Therefore, the key issue is to allocate computing effort to these particles to obtain information 

about their sample means. On the other hand, the accuracy of the sample means of global best 

and personal best at the (t-1)-th iteration is also important. Hence, it is also necessary to allocate 

some additional samples to 1t
gP −  and 1t

iP −  to make their sample means more accurate. However, 

the number of personal bests is usually large, so computing effort may be wasted if we allocate 

too many samples to them. Since we already have certain information about their sample means 
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and our aim is to improve computing efficiency, we do not allocate computing efforts to them at 

the t-th iteration. We use their observed sample mean values at the (t-1)-th iteration. 

While the P{IS} given by (5.3) can then be estimated using Monte Carlo simulation, Monte 

Carlo simulation is time-consuming. Since the purpose of the budget allocation is to improve 

computational efficiency, we develop an analytical approach for determining sample allocation. 

Instead of working on P{IS} directly, we investigate its asymptotic convergence rate by large 

deviation theory like the analysis in chapter 4. When T → ∞, P{IS} will converge to zero. We 

intend to find a sample allocation such that the asymptotic convergence rate of P{IS} is 

maximized. 

Let *P  be the maximum probability among the incorrect selection events. That is, 

( ) ( ){ } ( ) ( ){ } ( ) ( ){ } ( ) ( ){ }* 1 1 1 1max(max ,max ,max ,max )
A A B B

t t t t t t t t
i g i i j g j ji S i S j S j S

P P f X f P P f X f P P f X f P P f X f P− − − −

∈ ∈ ∈ ∈
= ≤ ≥ ≤ ≤   

Thus, P{IS} in (5.3) can be bounded by * *{ } 2P P IS mP≤ ≤ . Because * *{ } 2P P IS mP≤ ≤ , the 

convergence rate of P{IS}  is equal to the convergence rate of *P . Based on large deviation 

theory (Dembo and Zeitouni 1992; Szechtman and Yücesan 2008), we can obtain the rate 

functions of any element in incorrect selection events as follows. 

For t
i AX S∈ , 

( ) ( ){ } ( ) ( ) ( )( )11lim log , inft t
i g ig i g i i g gT y

P f X f P G I y I y
T

α α α α−

→∞
≤ = − = − + , 

( ) ( ){ } ( )( )1 11lim log t t t
i i i i iT

P f X f P I f P
T

α− −

→∞
≥ = − , 

and for t
j BX S∈  

( ) ( ){ } ( ) ( ) ( )( )11lim log , inft t
j g jg j g j j g gT y

P f X f P G I y I y
T

α α α α−

→∞
≤ = − = − + , 

( ) ( ){ } ( )( )1 11lim log t t t
j j j j jT

P f X f P I f P
T

α− −

→∞
≤ = − , 
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in which ( )iI y  is defined in large deviation theory as the convergence rate function of 

( ){ }t
iP f X y>  for ( )t

iy f X>  or ( ){ }t
iP f X y<  for ( )t

iy f X< . 

So we have 

{ } ( ) ( )( ) ( ) ( )( )1 1

,

1lim log min { , , , , , }.
A B

t t
ig i g i i i jg j g j j jT i S j S

P IS G I f P G I f P
T

α α α α α α− −

→∞ ∈ ∈
= −  

This means that P{IS}  will decay exponentially with increasing T at a rate given by 

( ) ( )( ) ( ) ( )( )1 1

,
min { , , , , , }

A B

t t
ig i g i i i jg j g j j ji S j S

G I f P G I f Pα α α α α α− −

∈ ∈
. 

Our computing budget allocation problem for the standard PSO is to maximize the 

convergence rate of P{IS}  as below, 

                                

( ) ( )( ) ( ) ( )( )1 1

,

1

max min { , , , , , }

. .        1

            0.

A B

t t
ig i g i i i jg j g j j ji S j S

m

i g
i

i

G I f P G I f P

s t

α α α α α α

α α

α

− −

∈ ∈

=

+ =

≥

∑                       (5.4) 

which can be equivalently rewritten as, 

( )( )
( )

( )( )
( )

1

1

1

max       . .

,    for 

  , ,    for 

,    for 

  , ,    for 

    1

         0.

t
i i i i A

ig i g i A

t
j j j j B

jg j g j B

m

i g
i

i

z s t

I f P z X S

G z X S

I f P z X S

G z X S

α

α α

α

α α

α α

α

−

−

=

≥ ∈

≥ ∈

≥ ∈

≥ ∈

+ =

≥

∑

 

In model (5.4), a closed-form expression of ( )( )1t
i iI f P −  and ( )( )1t

j jI f P −  for certain 

distributions of ( )f̂ X  is available. Because ( )( )1t
i i iI f Pα −  and ( )( )1t

j j jI f Pα −   are linear and strictly 

increasing with respect to Tα , model (5.4) is a concave optimization problem when Gig and Gjg 
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are concave and strictly increasing functions. The Karush-Kuhn-Tucker conditions can be 

applied to develop the best allocation rule as shown in the following theorem. 

Theorem 5.1. The convergence rate of P{IS} in model (5.4) can be asymptotically maximized 

if the allocation rule Tα  satisfies the following conditions: 

 (a) ( )( ) ( )1 1 1 2 2

1 ,t
i i i i g i gI f P Gα α α− = = ( )( ) ( )1 1 1 2 2

1 ,t
j j j j g j gI f P Gα α α− = ; 

(b) 2 2

2 22 2 2 2

1i g g j g g

i ji g i j g j

G G
G G

α α
α α

∂ ∂ ∂ ∂
+ =

∂ ∂ ∂ ∂∑ ∑  

(c) 
1

1
m

i g
i
α α

=

+ =∑ ; 

(d) 0iα > . 

in which  

( )( ) ( ){ }1
1 1 :  and ,t t

i A i i i ig i gi i X S I f P Gα α α−∈ ∈ ≤ ( )( ) ( ){ }1
2 2 :  and ,t t

i A i i i ig i gi i X S I f P Gα α α−∈ ∈ >  

( )( ) ( ){ }1
1 1 :  and ,t t

j B j j j jg j gj j X S I f P Gα α α−∈ ∈ ≤ ( )( ) ( ){ }1
2 2 :  and ,t t

j B j j j jg j gj j X S I f P Gα α α−∈ ∈ > . 

Proof. See Appendix K. 

By using some numerical solvers, the optimal allocation rule satisfying Theorem 5.1 can be 

found with some computational effort. To further enhance computational efficiency, we develop 

an approximate closed-form solution, which is easy to implement and also has good 

computational efficiency. Suppose the performance of each particle follows a normal distribution, 

that is, ( ) ( )( )2ˆ ~ ,i i if X N f X s . Then 

( ) ( )( )2

22
i

i
i

y f X
I y

s
−

= . 
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Based on Theorem 5.1, we can, in this case, get a closed-form optimal allocation rule under 

some mild assumptions shown in Lemma 5.1.  

Lemma 5.1. When the performance of each particle is normally distributed and 𝛼𝑔 ≫ 𝛼𝑖, the 

optimal allocation rule for the standard PSO at each iteration, called PSOs_OCBA, is 

(a)

 
1 2 1 2

: : :i i j jα α α α       

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
1 2 1 2

1 1 2 1 1 2

2 2 2 2

2 2 2 21 1 1 1
: : :i i j j

t t t t
i i i g j j j gf X f P f X f P f X f P f X f P

s s s s
− − − −

=
− − − −

 

(b) 2 2

2 22 2

2 2

2 2
i j

g g
i ji j

α α
α s

s s
= +∑ ∑ . 

Proof. See Appendix L. 

In Lemma 5.1, the samples allocated to each particle and personal best are different. For the 

particles in the current iteration, the samples allocated to them depend on the variance of fitness 

values and the differences between their mean values for personal best or global best. The one 

with the highest variance and the one closest to personal best or global best will be given more 

samples. The number of samples allocated to the global best is the square root of the sum related 

to other particles allocation. This allocation rule clearly indicates which particles are critical and 

should be allocated more samples, as well as how many they should receive in order to 

efficiently decrease the probability of incorrect selection. 

Following a similar step, we get the allocation rules for standard PSO in the case where 

GS ≠ Φ . In this case, the global best will be updated using the one with minimum sample mean 

value among current particles, denoted as particle b. The probability of incorrect selection can be 

formulated as follows.  
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{ } ( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 1

1

{

     },

A

B

t t
b g b i i i

i S

t
b j j j

j S

P IS P f X f P f X f X f X f P

f X f X f X f P

− −

∈

−

∈

   = ≥ ≥ >     
  ≥ <   



  









                (5.5) 

Similarly, the computing budget allocation problem for maximizing convergence rates when 

GS ≠ Φ  is given as follows.           

                 

( ) ( ) ( )( ) ( ) ( )( )1 1

,

1

max min { , , , , , , , }

. .        1

            0.

A B

t t
bg b g bi b i i i i bj b j j j ji S j S

m

i g
i

i

G G I f P G I f P

s t

α α α α α α α α

α α

α

− −

∈ ∈

=

+ =

≥

∑                  (5.6) 

Similarly, an asymptotically optimal solution to problem (5.6) is given in Theorem 5.2 for the 

case GS ≠ Φ . Its approximate closed-form analytic solution is offered in Lemma 1b.  

Theorem 5.2. The allocation rule ( )1 2, ,..., mα α α α=  is asymptotically optimal for model (5.6) if 

it satisfies the following conditions: 

(a) ( ) ( )( )1 1 1

1, t
bg b g i i iG I f Pα α α −= = ( ) ( )( ) ( )2 2 1 1 1 2 2

1, ,t
i b i b j j j j b j bG I f P Gα α α α α−= = ; 

(b) 2 2

2 22 2 2 2

1i b b j b bbg b

i jbg g i b i j b j

G GG
G G G

α αα
α α α

∂ ∂ ∂ ∂∂ ∂
+ + =

∂ ∂ ∂ ∂ ∂ ∂∑ ∑  

(b) 
1

1
m

i g
i
α α

=

+ =∑ ; 

(c) 0iα > . 

Lemma 5.2. When the simulation noise of each particle is normally distributed and 𝛼𝑔 ≫ 𝛼𝑖, 

the optimal allocation rule for the standard PSO at each iteration, PSOs_OCBA, is 

(a)

 

1 2 1 2
: : : :g i i j jα α α α α  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
1 2

1 1 2

2 22

2 2 21 1
: : :i ig

t t
g b i i i bf P f X f X f P f X f X

s ss
− −

=
− − −

 

( ) ( )( ) ( ) ( )( )
1 2

1 1 2

2 2

2 21
          :j j

t
j j j bf X f P f X f X

s s
−− −
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(b) 
2 2

2 22
22

2 2 2
2 2

g ji
b b

i jg i j

α ααα s
s s s

= + +∑ ∑ . 

5.3.2 Computing budget allocation for PSOe 

PSOe uses different information to update the velocity and location of each particle. In order to 

provide the best information for PSOe, the computing budget allocation will be different from 

that for the standard PSO. The primary difference of PSOe is its setting of the personal best. At 

any iteration t, particles are classified into the elite set ( ) ( ){ },  ,t t t t t t t t
e i i j i e j eS X f X f X X S X S≡ ≤ ∀ ∈ ∉  

and the non-elite set { }t t
ne i i eS X X S= ∉  based on their mean fitness values. If a particle belongs to 

the elite set, its personal best is defined as itself. Otherwise, its personal best is defined as the 

nearest particle in the eS . Note that the personal best is determined from the current iteration, not 

previous ones. Therefore, only the particle in the current iteration should be allocated the 

computing budget. 

In order to update the velocity and location of each particle correctly, we should minimize the 

probability of incorrectly selecting the global best or the personal best for each particle, which is 

formulated as below. 

                

{ } ( ) ( )( ) ( ) ( )( )
, ,

{ }
i e i b i e j ne

t t t t
b i i j

X S X X X S X S

P IS P f X f X f X f X
∈ ≠ ∈ ∈

  
= > >  

    


 

                        (5.7) 

Based on the large deviation theory, we have 

             ( ) ( ){ } ( ) ( ) ( )( )1lim log , inft t
b i bi b i b b i iT y

P f X f X G I y I y
T

α α α α
→∞

> = − = − +   for t
i eX S∈ , and 

             ( ) ( ){ } ( ) ( ) ( )( )1lim log , inft t
i j ij i j i i j jT y

P f X f X G I y I y
T

α α α α
→∞

> = − = − + for t
i eX S∈  and t

j neX S∈ . 

Thus,  
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{ } ( ) ( ){ }
,

1lim log min , , ,
e ne

bi b i ij i jT i S j S
P IS G G

T
α α α α

→∞ ∈ ∈
= − . 

The computing budget allocation model for PSOe is given as follows.  

                                               

( ) ( ){ }
,

1

max min , , ,

. .        1

            0.

e ne
bi b i ij b ii S j S

m

i
i

i

G G

s t

α α α α

α

α

∈ ∈

=

=

≥

∑                                               (5.8) 

 

In the same way, model (5.8) is equivalent to the following model: 

( )
( )

1

max      
. .      , ,    for 

           , ,    for ,

          1

         0.

t
bi b i i e

t t
ij b i i e j ne

m

i
i

i

z
s t z G X S

z G X S X S

α α

α α

α

α
=

≤ ∈

≤ ∈ ∈

=

≥

∑

 

 Similarly, the maximizing problem in model (5.8) for PSOe also has the property of 

concavity when ( ),bi b iG α α  and ( ),ij i jG α α  are concave and strictly increasing with respect to Tα . 

Applying the Karush-Kuhn Tucker conditions, we can get the conditions for the optimal 

allocation rule.  

Theorem 5.3. An allocation rule is asymptotically optimal for model (5.8) if we can find non-

negatives values for ,bi ijλ λ  and ν  for all ,t t
i e j neX S X S∈ ∈ .such that it satisfies the following 

conditions: 

(a) ( ), 0bi bi b iG zλ α α − =   ( ), 0ij ij i jG zλ α α − =  ; 

(b) For t
bX , ( ) ( )

,

,,
t t t t
i e i b j ne

bj b jbi b i
bi bj

X S X X X Sb b

GG α αα α
λ λ ν

α α∈ ≠ ∈

∂∂
+ =

∂ ∂∑ ∑  ; 
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     For ,t t t
i e i bX S X X∈ ≠ , ( ) ( ),,

t
j ne

ij i jbi b i
bi ij

X Si i

GG α αα α
λ λ ν

α α∈

∂∂
+ =

∂ ∂∑  ; 

     For t
j neX S∈ , ( ),

t
i e

ij i j
ij

X S j

G α α
λ ν

α∈

∂
=

∂∑  .  

(c) 
1

1
m

i
i
α

=

=∑ ; 

(d) 0iα > . 

Proof. See Appendix M. 

The equations in Theorem 5.3 are difficult to solve because the expression of ( )G ⋅  is unknown 

in general. Similar to Lemma 5.2, to enhance computational efficiency, we develop a closed-

form approximate analytical optimal solution under some assumptions. For ease of notation, we 

categorize particles into different subsets: 

0
eS : the set of particles belonging to eS  and are not the personal best of any particles in 

the set  neS ,  

1
eS : the set of particles belonging to eS  and are the personal best of at least one particle 

in the set  neS ,  

i
neS : the set of particles belonging to neS  who treat particle i as its personal best. 

Lemma 5.3. When the simulation noise of each particle is normally distributed, under 

assumptions: (i) 𝛼𝑏 ≫ 𝛼𝑖 ≫ 𝛼𝑗  for ,t t
i e j neX S X S∈ ∈ ; and (ii) ( ) ( )10

max min
tt
i ek e

t t
k iX SX S

f X f X
∈∈

< , an 

asymptotically optimal allocation rule for model (8), called PSOe_OCBA, is 
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(a)

 

: :k i jα α α  
( ) ( )( ) ( ) ( )( ) ( ) ( )( )

22 2

2 2 21
: : jk i

t t t t t t
b k b i i jf X f P f X f X f X f X

ss s
−

=
− − −

 

 

(b) 
0 1

22 2

2 2 2
t t t i
k e i e j ne

jk i
b b

X S X S X Sk i j

αα αα s
s s s∈ ∈ ∈

 
= + − 

 
 

∑ ∑ ∑  

in which 0t
k eX S∈ , 1t

i eX S∈  and t i
j neX S∈ . 

Proof. See Appendix N. 

    The allocation given by Lemma 5.1, 5.2 and 5.3 assumes known parameters of the 

distributions. In practice, a sequential algorithm is used to estimate these quantities using the 

updated sample values. With a set of new locations for all particles, the procedure will be applied 

to obtain the sample mean value of each particle and select the personal best and global best. A 

new set of particles can be generated using the newly obtained personal best and global best. 

Each particle is sampled n0 times in the initial stage, and additional samples are allocated 

incrementally from ∆  samples at each subsequent stage until the computing budget T  is 

exhausted. The sequential algorithm is similar with the procedure in chapter 4 except that the 

allocation rule applied is the one in Lemma 5.1, 5.2 or 5.3 depending on different situations. In 

the end, the selected personal best and global best based on particles’ sample mean values will 

update (5.1) and (5.2) in the PSO algorithms. 

5.4 Numerical Experiments 

In this section we present numerical results to demonstrate the efficiency improvement of PSO 

by using the proposed computing budget allocation scheme. The testing functions and their 

parameters are shown at table 5.1. 
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Table 5. 1 Formulas and parameter settings of the tested functions. 

Function 
name D Formula Minimal 

value Feasible range  

Sphere 10 ( ) 2

1

D

i
i

f X x
=

=∑  0 [-100,100]D 

Rosenbrock 10 ( ) ( ) ( ){ }1 2 22
1

1
100 1

D

i i i
i

f X x x x
−

+
=

= − + −∑  0 [-100,100]D 

Griewank 10 ( ) ( )2

1 1

1 cos 1
4

DD

i i
i i

f X x x i
= =

= − +∑ ∏  0 [-100,100]D 

Printer 
function 2 

( ) ( )

( )( )

2 2
1 1

1 1

22
10 1 1

1

20 sin sin sin

      log 1 2 3 cos 1

d d

i i i i i
i i

d

i i i i
i

f X ix i x x x x

i i x x x x

− +
= =

− +
=

= + − +

+ + − + − +

∑ ∑

∑
 0 [-100,100]D 

To simulate the stochastic environment, noise following a normal distribution with zero mean 

value and variance of 25  is added to these functions. The aim is to find the optimal solutions. We 

assume the number of particles in a swarm is 20 for both the standard PSO and PSOe. The size 

of elite set is 2 in PSOe. The values of 1c  and 2c  in (5.1) are set to be 2.05 based on the 

recommendation of Bratton and Kennedy (2007). The constrictive factor χ  is set to be a 

decreasing function of the iteration number, that is, 

( ) ( )2

max_ 1 2
max_ 1 2 1 2 1 2 4 1 2

iter i
iter c c c c c c

χ + −
= ⋅

+ − − − + − +
 

in which max_iter is the maximal number of iterations, set as 50. For the computing budget 

allocation algorithm, the parameter ∆  is set to be 100 and 0n  is set to be 20. The total computing 

budget in one iteration of PSO is 5000 at the first iteration and increases by 100 at the following 

iterations.  

In addition, we also test PSO and PSOe without using our computing budget allocation 

scheme. In this case, the computing budget is equally allocated to all particles. The performances 
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of equal allocation, called PSOe_EA and PSOs_EA, serve as benchmarks for comparison. The 

performances are shown in figure 5.1 to figure 5.4. 

Figure 5.1. a Result of 10 D Sphere function by PSOs_EA and PSOs_OCBA. 

 

Figure 5.1. b Result of 10 D Sphere function by PSOe_EA and PSOe_OCBA. 
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Figure 5.2. a Result of 10 D Rosenbrock function by PSOs_EA and PSOs_OCBA. 

 

Figure 5.2. b Result of 10 D Rosenbrock function by PSOe_EA and PSOe_OCBA. 

 

Figure 5.3. a Result of 10 D Griewank function by PSOs_EA and PSOs_OCBA. 
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Figure 5.3. b Result of 10 D Griewank function by PSOe_EA and PSOe_OCBA. 

 

Figure 5.4. a Result of Printer function by PSOs_EA and PSOs_OCBA. 

 

Figure 5.4. b Result of Printer function by PSOe_EA and PSOe_OCBA. 
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From the figures, we see that PSOs_OCBA performs much better than PSOs_EA, and 

PSOe_OCBA performs much better than PSOe_EA.  The PSO with our allocation scheme can 

attain better results for the same amount of computing budget. Based on these numerical 

experiments, it can be concluded that the developed computing budget allocation for PSO does 

cause PSO to converge to the optimal solution faster in the above experiments and improves the 

computational efficiency of PSO for stochastic problems, for the standard one and for PSOe. 

5.5 Conclusions 

We propose an intelligent computing budget allocation scheme to improve the efficiency of the 

PSO method when applied to stochastic optimization problems. The conditions for the 

asymptotically optimal allocation rules are derived for the standard PSO and PSOe. Under some 

assumptions we derive closed-form analytical allocation rules PSOs_OCBA and PSOe_OCBA, 

which can be easily implemented. The numerical result indicates that the new computing effort 

allocation approach for PSO is promising, resulting in substantial computational efficiency gains 

over PSO with equal allocation. 
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Chapter 6 Enhancing the Efficiency of the Analytic hierarchy Process (AHP) 

by OCBA framework 

In the previous chapters, we mainly study OCBA for the simulation optimization problems. 

From a more general perspective, if we treat the computing run as a resource, the OCBA 

framework considers the problem how to allocate the limited resources to each alternative such 

that we can get the best outcome. Therefore, the OCBA framework can also be applied to 

problems beyond the simulation optimization. In this chapter, we extend the application of 

OCBA framework from the simulation optimization problems to the choice decision problem 

beyond simulation optimization. We integrate the OCBA framework with a popular decision 

making method, the analytic hierarchy process (AHP), to demonstrate the performance 

improvement of AHP by using OCBA framework. The rest of this chapter is organized as 

follows. Section 6.1 briefly introduces the development of AHP and presents our motivation. In 

section 6.2, we build the expert resource allocation model for AHP in choice decision problem 

based on the general OCBA framework. Section 6.3 finds the optimal allocation of experts to 

each criteria in the model by using the Karush-Kuhn-Tucker (KKT) conditions and asymptotic 

analysis. Numerical experiments comparing the implementations with equal allocation and 

proportional allocation are provided in section 6.4. Section 6.5 concludes the whole chapter. 

6.1 Introduction 

The OCBA framework, as a popular ranking and selection technique, is mainly developed and 

applied to tackle simulation optimization problems. If we treat the computing budget as a budget 

of one resource, each alternative is allocated to certain resource budget and obtain the output by 

processor. By synthesize the output of each alternative, a final outcome can be attained to 

support decision making. Usually, the more budget allocated to an alternative, the higher quality 
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of output obtained by this alternative. The allocation scheme of resource will affect the quality of 

output, and hence the final outcome. Therefore, the OCBA framework can be generalized as an 

optimization model which determines the best allocation scheme to maximize a certain objective 

which is related to the quality of the outcome (Chen and Lee, 2011). From this generalized 

perspective of OCBA framework, OCBA can also be applied to problems or domains beyond 

simulation optimization.  

    The choice decision among alternatives with qualitative goals is a common problem that 

almost all organizations need to face with, such as product selection, vendor selection, policy 

decision and so on. It involves the selection of one alternative from a given set of alternatives, 

usually in a multi-criteria environment. Some techniques have been developed for the choice 

decision problems, such as ELECTRE (Roy, 1968) and Multi-Attribute Utility Theory (Keeney, 

and Raiffa, 1976). The Analytic Hierarchy process (AHP) is one of these technique and has been 

widely applied because of its technical validity and practical usefulness. In this chapter, we aim 

to do some contributions on improving the implementing efficiency of AHP by the OCBA 

framework. 

The framework of AHP is originally developed by Saaty (1977, 1980, 1986) and used to solve 

choice problems in a multi-criteria environment and other problems in evaluation, resource 

allocation, benchmarking, quality management, public policy and so on. It generally contains 

four steps: problem modeling, weights evaluation, weights aggregation and sensitivity analysis 

(Ishizaka and Labib, 2011).  

The problem modeling is the process of building the hierarchical structure of the criteria. 

Saaty and Forman (1992) summarized hierarchies in different applications. A detailed discussion 

about building the hierarchical structure of a problem is provided in Brugha (2004). For the 
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weights evaluation process, experts are consulted to build the pair-wise comparison matrix which 

is used to calculate the local priority for each alternative of each criteria. Different scales for 

comparing two alternatives are proposed such as linear (Satty, 1977), Geometric (Lootsma, 

1989), Logarithmic (Ishizaka, Balkenborg and Laplan, 2010) and so on. To compute the local 

priority, Saaty (1977) proposed to use the principal eigenvalue based on the support from the 

perturbation theory. However, this method may result the rank reversal problem. To avoid this 

shortcoming, Crawford and Williams (1985) applied the approach in minimizing the 

multiplicative error by geometric mean to obtain the local priority. There are also a lot research 

work to study the consistency check on the pair-wise comparison matrices (e.g. Peláez and 

Lamata, 2003, Crawford and Williams, 1985, Stein and Mizzi, 2007). The last step for AHP is 

aggregation which synthesize the local priorities of all criteria for each alternative in order to 

determine each alternative’s global priority. The common way for aggregation is the weighted 

additive aggregation. Another way for aggregation called the multiplicative aggregation is 

proposed in Barzilai and Lootsma (1997). A comprehensive review of the AHP and its 

application is provided by Forman and Gass (2001), while Ishizaka and Labib (2011) 

summarized the main developments of the AHP in the methodology part. All these papers focus 

on the improvement of AHP method itself. 

In the application of AHP to choice decision, experts specialized in different areas will be 

invited when the knowledge about criteria in the hierarchy are belong to very different areas. 

Moreover, to avoid the probable bias from a single expert, we also require more than one expert 

in each criteria to evaluate each alternative’s performance with respect to this criteria. These 

experts can be treated as a kind of resource and the invitation of them is a cost to implement the 

AHP. From the cost efficiency perspective, we want to make rational use of these experts to 
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make a good choice by the AHP with a low cost. Since the OCBA framework study the best 

resource allocation problem, the efficiency problem in the implementation of the AHP can be 

tackled by applying OCBA concept. 

    In this chapter, we focus on the efficiency issue of the AHP and aims to find rational number 

of experts for each criteria such that we can make a good choice from alternatives by the AHP. 

We reiterate that our main objective is not to improve the AHP methodology, but rather to 

demonstrate the AHP implementation’s efficiency improvement via a proper control of experts’ 

allocation based on OCBA framework. 

6.2 Formulation for expert allocation problem in AHP 

We consider the choice decision problem having a hierarchy with two levels, because the two-

level hierarchy is the basic unit in the hierarchy structure. For the hierarchy with more levels, we 

can treat is as a group of these unit hierarchy. In the two-level hierarchy, the first level is the 

overall objective while the second level contains multiple criteria. Assume there are h criteria in 

the second level and the weight of criteria l is given as lw , l=1,…,h. 

The choice decision problem is to select the best alternative, denoted as alternative b, from k 

candidate alternatives. To evaluate alternatives, experts are invited to give their judgments on 

each alternative. As different criteria may belong to different domains, the invited experts should 

also be specified on different domains respectively. We consider the situation that each expert 

just give the judgment on the criteria that he (she) is best at and use lN  to denote the number of 

invited experts with respect to criteria l.  Let ilnp  denote the local priority of alternative i with 

respect to the criteria l given by expert n responsible for criteria l. The local priority is a real 

value obtained by the pair-wise comparison matrix and denotes the score of this alternative in 

this criterion obtained from one expert. The high local priority means this expert think this 
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alternative is good in this criterion. Because different experts have their own evaluations on each 

alternative, the local priorities for one alternative with respect to one criteria varies expert by 

expert. So we can treat  ilnp  as a random variable following certain distribution. The average of 

these local priorities ln
1

lN

i lil
n

p p N
=

 
=  
 
∑  is used to calculate the global priority. In this paper, we 

choose the additive aggregation as the way of aggregation. So the global priority for one 

alternative is 

1

h

i l il
l

gp w p
=

=∑ , 1,...,i k=   . 

The alternative with the highest global priority is the best alternative. 

Suppose T  is the total number of experts we can afford to invite. In implementing the AHP, 

we need to make a decision on how to allocate the T number of experts to each criteria. Usually, 

the decision makers just find equal number of experts for each criteria. However, to efficiently 

use the recourse of experts, intuitively, more experts are required for the criteria with respect to 

which the alternatives’ performance is not easy to judge or the judgment incurs large subjectivity. 

And more experts are required in the criteria which has higher weight compared with other 

criteria. Therefore, we aim to tackle the expert allocation problem in the AHP to improve the 

efficiency of implementing the AHP. 

    Based on the OCBA framework, the expert allocation problem in AHP can be modeled as the 

one that we want to find the optimal way to determine the number of experts required for each 

criteria to maximizing the probability of correctly selecting the alternative with highest global 

priority (P{CS}), which is shown as follows. 
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{ }

1

max

. .   

             0;  1,2, ,

m

j
j

j

P CS

s t N T

N j m
=

=

≥ =

∑


                                            

This is equivalent to minimizing the probability of incorrectly selecting the best alternative 

(P{IS}). Similar to the discussion in chapter 4, P{IS} approaches to zero as T → ∞ if αi > 0 for 

all i. For different allocation schemes of experts, the probability of incorrect selection approaches 

to zero with different speeds. An allocation is preferred if it makes the probability of false 

selection converge to zero faster. Therefore we can use the convergence rate of the probability of 

false selection going to zero as a measure of the quality of allocation rules and model the 

problem as below. 

                                                      
1

max    Convergence rate of { }

. .        1

            0

m

i
i

i

P IS

s t α

α
=

=

≥

∑                                         (6.1) 

In the model (6.1), P{IS} means the probability of incorrect selection which happens if the 

global priority of the alternative b is smaller than the global priority of any one alternative. So 

                                                           { } ( )b i
i b

P IS P gp gp
≠

 
= ≤ 

 


.                                              (6.2) 

    Being similar to the discussion in section 3.4, P{IS} in (6.2) can be bounded by 

{ } { } ( ) { }max 1 maxb i b ii b i b
P gp gp P IS k P gp gp

≠ ≠
≤ ≤ ≤ − ≤ . 

As T increases, the convergence rate of P{IS} approaches the convergence rate of

{ }max b ii b
P gp gp

≠
≤ .  

    For any given i b≠ , there exists a rate function biG  such that 
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                                                { } ( )1lim log b i biT
P gp gp G

T
α

→∞
≤ = −



,                                 

so we have 

{ }( ) ( )1lim log max minb i biT i bi b
P gp gp G

T
α

→∞ ≠≠
≤ = −



. 

Hence,  

{ } ( )1lim log min biT i b
P IS G

T
α

→∞ ≠
= −



. 

So the convergence rate of P{IS} is ( )min bii b
G α

≠



.  

    The model (6.1) can then be transferred to 

                                                                    
1

max      
. .     

         1

         0.

bi
k

i
i

i

z
s t G z

α

α
=

≥

=

≥

∑                                                           (6.2) 

6.3 Derivation of the allocation rule AHP_OCBA 

In this section, we derive the optimal allocation rule for model (6.2).  The Lagrangian method is 

applied to derive the optimal asymptotical allocation rule. The Lagrangian function of model (6.2) 

is 

( ) ( )
1 1

1
k k k

i bi i i i
i b i i

F z z G v hα λ α α
≠ = =

 = − + − + − − 
 

∑ ∑ ∑  . 

Applying KKT conditions, we can obtain the theorem below. 
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Theorem 6.1. The allocation rule is asymptotically optimal for model (6.2) if it satisfies the 

following conditions: 

(a) 
k

bi
i

i b l

G vλ
α≠

∂
=

∂∑  1,2,...,l h∀ =  .  

(b) ( ) 0i biz Gλ − =   1,2,...,  and i k i b∀ = ≠ .  

(c) 
1

1
k

i
i
α

=

=∑   

(d) 0iα >  1,2,...,i k∀ =   

(e) 0iλ ≥  1,2,...,i k∀ = . 

In general, the expression of ( )biG α


 is difficult to be attained. Under the assumption of normal 

distribution, we can express it in closed form by large deviation theory. Assume the local 

priorities for all alternatives given by each expert for one criteria follows the multivariate normal 

distribution, that is, the vector ( )1 ,..., ,...,ln iln klnlnp p p p=


 is multivariate normally distributed with 

mean ( )1 ,..., ,...,l il kllµ µ µ µ=


 and covariance matrix lΣ  as below. 

2
1 1 1 1 1

2
1 1

2
1 1

l i l il k l kl

l i l il il ik il kl

k l kl ik il kl kl

s ρ s s ρ s s

ρ s s s ρ s s

ρ s s ρ s s s

 
 
 
 Σ =
 
 
  

 

  

  

 

 

in which ijρ  is the correlation coefficient between the local priority of alternative i and the local 

priority of alternative j. The existence of correlation is because the local priorities are calculated 
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by the pair-wise comparison matrices which are determined by doing pair-wise comparisons 

between each two alternatives. Based on the assumption of normal distribution, we have 

                                   ( )

2

1 1
2 2

2 2 2

1 1 1

2 2

h h

l bl l bi
l l

bi h h h
bl il bl il

l l bi l
l l ll l l

w w
G

w w w

µ µ
α

s s s sρ
α α α

= =

= = =

 − 
 =

 
+ − 

 

∑ ∑

∑ ∑ ∑



                           (6.3) 

From (6.3) and Theorem 6.1, it is difficult to get the optimal allocation rule for model (6.2) in 

formula. Although we can calculate it by some solver, it is also necessary to get some closed-

form formula for the optimal allocation rule in order to simplify the implementation. Hence, for 

easier implementation, we derive some good closed-form allocation rules for (6.2) under some 

cases or approximations. 

We firstly consider the special case with equal variance for each criteria and equal covariance 

coefficient. For this case, we have 2 2
il is s= 1,2,...,l h∀ =  and biρ ρ=  1,2,...,i k∀ = . The ( )biG α



 can 

be simplified as 

( ) ( )

2

1 1
2 2

2

1

2

h h

l bl l bi
l l

bi
h

b i b i
l

l l

w w
G

w

µ µ
α

s s ρs s
α

= =

=

 − 
 =

 + −
 
  

∑ ∑

∑



. 

Based on theorem 6.1, we can have the following lemma. 

Lemma 6.1. The asymptotically optimal allocation rules for model (6.2) with equal variance 

and equal covariance are given as follows: 

                                                         l l

s s

w
w

α
α

= , , 1,2,...,  and l s h l s∀ = ≠ .                                (6.4) 
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In this situation, the allocation of experts to each criteria is only related to the weight of each 

criteria. The number of experts assigned to each criterion is purely depending on the importance 

of that criterion. The higher weight, the more experts are allocated. 

For the general cases, we have the following equation based on (6.3). 

                                  
( )

2
2 2

2
1 1

2 22 2
2 2 2

1 1 1

2

2 2

h h

l bl l bi bl il bi bl il
l lbi l

h h h
l lbl il bl il

l l bi l
l l ll l l

w w
G w

w w w

µ µ s s ρ s s

α αs s s sρ
α α α

= =

= = =

 − + − ∂  = ⋅
∂  

+ − 
 

∑ ∑

∑ ∑ ∑
.                      (6.5) 

Substituting (6.5) into condition (a) in theorem 6.1, we can get the equation below. 

                             
( ) ( )

( )

2
2 2

2
1

22 2 2
2

1

2

2
2

h

i l bl bi bl il bi bl il
ll

hi bl bl il bi bl il
l

l l

w
w v

w

λ µ µ s s ρ s s

α s s ρ s s
α

=

≠

=

 − + − 
  =

 + −
 
  

∑
∑

∑
 1,2,...,l h∀ =           (6.6) 

Let ( )2 2arg max 2l bl il bi bl ili b
d s s ρ s s

≠
= + −  to denote alternative with highest variance of the 

difference between this alternative to the best alternative. To get the closed-form allocation rule, 

we ignore the less important elements in the summation part of (6.6) and approximate the 

summation part by the maximal element related to alternative  ld . Under this approximation, we 

have the lemma as below. 

Lemma 6.2. The approximated asymptotically optimal allocation rules for model (6.2), named 

as AHP_OCBA, are given as follows: 

                                       
2 2

2 2

2

2
l l l

s s s

l bl d l bd bl d ll

s s bs d s bd bs d s

w

w

s s ρ s sα
α s s ρ s s

+ −
=

+ −
, , 1,2,...,  and l s h l s∀ = ≠ .          (6.4) 
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    Lemma 6.2 indicates that the number of experts allocated to a criterion should be related to the 

importance of that criterion and the variance of the experts’ opinions on the best alternative and 

the dominant alternative with respect to that criterion. If we have a more important criterion and 

the experts have more varying opinions on the best and dominant alternatives regarding to that 

criterion, we will assign more experts to that criterion.  

    The allocation rules in lemma 6.1 and 6.2 depend on the function of distributions. In practice, 

a sequential procedure similar with the sequential procedure in chapter 4 can be applied to 

implement the allocation rule AHP_OCBA. In the end, we select the alternative with the highest 

final priority as the final decision. 

6.4 Numerical experiments 

In this section, AHP_OCBA algorithm is compared with Proportional and Equal allocation rules 

to see the efficiency improvement by integrating the OCBA concept into the AHP. In equal 

allocation rule (EA) lN T m= , and in proportional rule, l s l sN N w w= . In all numerical 

experiments, the procedure is run 10,000 independent times. We estimate P {CS} (probability of 

correct selection) by dividing the number of times we successfully find the true best alternative 

with 1,000 to represent the correct selection frequency. 

6.4.1 The Base Experiment 

We want to select the best alternative from 10 alternatives which are evaluated in terms of 10 

criteria. The local priority of alternative i with respect to criteria l following the distribution 

( )( )2/ 5, / 2N i l , i =  1, …, 10 and l =  1, …, 10. Assume there is no correlation among the local 

priorities of alternatives. The weight of the lth criteria, ( )5 105lw l= + . We want to find the 

alternative with the maximum mean. The solution 10 is the actual best alternative. The 
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performances of AHP-OCBA, proportional and uniform with an increasing T are shown in figure 

6.1.  

    From figure 6.1, we can see, P {CS} increases as T increases for all three allocation 

procedures. Figure 6.1 also shows that the performance of AHP-OCBA is the best and the 

performance of proportional is the second best among these three allocation rules.  

Figure 6. 1 Performance comparison of P{CS} in the Base Experiment. 

 

6.4.2 Variants of the Base Experiment  

To further analyze the performance of AHP-OCBA, we also make some parameter changes in 

the base experiment and build some different scenarios. The detailed parameter settings are 

shown in table 6.1. 

    For every scenario in table 6.1, we run experiments and get the average total number of 

experts needed for each allocation rule to make the probability of correct selection 90%. Based 

on these numbers of experts, we compute the speedup factor of AHP-OCBA over Uniform and 

the speedup factor of Proportional over Uniform in each scenario, which are given in table 6.2. 
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Table 6. 1 Parameter settings for different scenarios. 
Scenarios k h lw  Distribution of alternative i 

Base Experiment 10 10 ( )5 105l +  ( )( )2/ 5, / 2N i l  

Scenario 1 10 10 ( )10 155l +  ( )( )2/ 5, / 2N i l  

Scenario 2 10 10 ( )5 105l +  ( )2/ 5,N i l  

Scenario 3 5 10 ( )5 105l +  ( )( )2/ 5, / 2N i l  

Scenario 4 10 5 ( )5 40l +  ( )( )2/ 5, / 2N i l  

     

Table 6. 2 The speed-up factor to attain P{CS}=90% in different scenarios. 

Scenarios 
Speed-up factor of 

AHP-OCBA over Uniform 
Speed-up factor of 

Proportional over Uniform 
ρ=0 ρ=-20% ρ=0 ρ=-20% 

Base Experiment 1.50 1.45 1.14 1.10 
Scenario 1 1.59 1.47 1.16 1.12 
Scenario 2 1.15 1.10 1.06 1.03 
Scenario 3 1.60 1.57 1.20 1.15 
Scenario 4 1.71 1.62 1.19 1.14 

 

    Table 6.2 shows that AHP-OCBA is the best performer among the three compared methods. 

Specifically, in Scenario 1 in which the difference between the weights of criteria goes larger, 

the speedup factors become higher. When the variance of experts’ opinions increases in scenario 

2, the speedup factors becomes lower. In scenario 3 and 4, we decrease the number of 

alternatives or decrease the number of criteria, all the speedup factors increase. Compared 
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scenario 3 and scenario 4, we also can find that the number of alternatives influence the 

performance of allocation rules more than the number of criteria. 

    In summary, from the numerical experiments, we can observe that both Proportional and 

AHP-OCBA are better than Uniform. Furthermore, AHP-OCBA is the best allocation rule 

among these three allocation rules. This indicates that the efficiency of implementing the AHP 

does improved by integrating the OCBA concept. 

One thing need to note is that the numerical experiments here are still relatively rough. One 

possible way to improve is using some AHP problems in practice to test the property of local 

priorities and the correlation among them. In future research, we may use the validated problem 

settings to test the performance of AHPOCBA compared with other allocation rules. 

6.5 Conclusions 

The application of OCBA into simulation optimization has been discussed by many researchers 

while the application of OCBA into the decision making techniques is seldom studied. In this 

chapter, we integrate the concept of OCBA into AHP, a method being widely used in choice 

decision problem. The condition for the optimal allocation rule is derived. Under some 

assumptions, we manage to get the allocation rule AHP-OCBA in closed form and easily to be 

implemented. The numerical result shows AHP-OCBA are better than Proportional and Uniform 

allocation rule. The integration of OCBA concept into AHP does improve the efficiency of AHP. 

    One thing need to note that we derive the allocation rule under the asymptotic environment. 

Although Figure 6.1 shows OCBA rule still outperforms than equal allocation when the total 

number of experts is not large, we still need to study the effect of asymptotic assumption on the 

real implementation efficiency of AHP. In addition, we only consider the simplest structure of 
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hierarchy in AHP and simply assume the local priority as random variable following certain 

distribution. In future work, we need to improve it to be more suitable for more practical and 

general implementation of AHP. 
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Chapter 7 Conclusions 

This study explored the optimal computing budget allocation for simulation based optimization. 

The framework of optimal computing budget allocation was studied in detail and improved from 

both theoretical aspect and practical aspect. 

    From the perspective of problem setting, we extended OCBA to optimal subset selection 

problem which studied the problem of maximizing the probability of correctly selecting the top-

m designs out of k designs under a computing budget constraint. Under the Optimal Computing 

Budget Allocation framework, we developed a new procedure OCBAm+ which is more efficient 

and robust than currently existing procedures in the literature. We also provide a framework for 

analyzing its asymptotic convergence rate. Based on this framework, we show that our new 

procedure achieves a higher convergence rate than other procedures under certain conditions. 

Numerical testing supports our analytical analysis and shows that the new procedure is 

significantly more efficient and robust. 

    From the perspective of OCBA framework, another way for modeling computing budget 

allocation problems was proposed. Instead of using the probability of correct selection as a 

measure of selection quality, we employed the large deviation theory to formulate the computing 

budget allocation problem for the optimal subset selection to avoid the hardness in building the 

expression of probability of correct selection. More importantly, we relaxed the assumption of 

independence in most OCBA procedures and considered the correlated sampling during the 

formulation of problems. Although we can just obtain the optimal allocation rules in closed form 

under some assumptions due to the difficulty of solving the model, this modeling at least 

provides a more general model and shows positive potential in obtaining the true optimal 

allocation rules under correlated situation.  
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From the perspective of OCBA application, we integrated OCBA with the searching algorithm 

Particle Swarm Optimization (PSO), to solve complicated simulation optimization problems with 

large solution space. The conditions for the asymptotically optimal allocation rules were derived 

for both versions of PSO. Under some assumptions, we managed to obtain the allocation rules 

PSOs_OCBA and PSOe_OCBA in closed form so that algorithms can be implemented easily. 

From the numerical result, it can be concluded that PSOs_OCBA and PSOe_OCBA use much 

less computing replications than PSOs_EA and PSObw_EA in finding the optimal solutions for 

simulation optimization problems. The integration of OCBA concept into PSO can improve the 

efficiency of PSO significantly. The combination of searching mechanism, which is the main 

focus of searching algorithms, and computing efficiency, which is the advantage of OCBA, 

results in the tremendous improvement on simulation optimization approaches. In addition, the 

application of OCBA into decision making problems outside the simulation optimization area 

was also studied. The resource allocation problem in AHP was modeled from the perspective of 

OCBA framework. An asymptotically optimal allocation rule AHP_OCBA was specifically 

derived to improve the efficiency of AHP in selecting the best alternative from many candidates. 

It should help the extension work of OCBA into more general areas. 

    In our study, some common assumptions were made to make the problem tractable. Firstly, 

the allocation rules were derived under the asymptotic environment. Although the assumption 

about infinite computing budget cannot be fulfilled in practice, the numerical result showed that 

the allocation rule derived under this assumption still performs well in the numerical experiments 

with finite computing budget. The other assumption is the normally distributed observation of 

each individual design. This assumption can be partially justified by the Law of Large Numbers, 

where the batch mean can be used as a single observation. 
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Although OCBA framework has bright potential in dealing with simulation optimization 

problems, there still exist some challenges in this field.  It is observed that OCBA procedures 

evaluate the goodness of a design by its mean. However, another metric of designs’ performance 

quantile (Batur and Choobineh, 2010) may be a more proper criterion because it is flexible to 

adjust the performance metric among the downside risk, the central tendency, and upside risk. 

Hence, developing the allocation rule when the selection is based on quantile instead of mean is 

an interesting area for future research.  

    Another possible direction of future study is customizing OCBA to facilitate its integration 

with search algorithms leading to an improved efficiency in tackling simulation optimization 

problems with large solution space. It can be studied from two perspectives. In Chapter 5, we 

have shown that the integration of OCBA and search algorithms can efficient improve the 

simulation efficiency of search algorithms. So the first perspective is to consider deriving the 

specified OCBA rule for other meta-heuristic algorithms to improve the simulation efficiency of 

them. One the other hand, one shortcoming of the proposed algorithm in Chapter 5 is that it can 

do nothing on the search part about the algorithm. It is still an open challenge to develop more 

customized framework for integrating OCBA with search algorithms which can improve the 

overall simulation efficiency of searching algorithms by optimally balancing the exploration and 

exploitation. This is the other perspective of future research for improving efficiency of search 

algorithms. 
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Appendix A. Proof of Lemma 3.1 

The new lower bound can be derived as follows. 
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1

1 1
1

m k

i m m j
i j m

P X X P X X
−

= = +

− ≥ − ≥∑ ∑  and use 2APCSm  denote 

{ } { }1 1
1 2

1
m k

i m m j
i j m

P X X P X X+ +
= = +

− ≥ − ≥∑ ∑ . Based on the above inequalities, APCSm +  can be derived as 

follows.  
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{ } { } { }( )
{ } { } { } { }( )
{ } { } { } { }

( )

1

1 1
1 1 1 2

1 2

max ,

           max 1 ,1

           max(1 ,  1 )

           max , .

m k m k

i m m j i m m j
i j m i j m

P CS P A B P C D

P A P B P C P D

P X X P X X P X X P X X

APCSm APCSm APCSm

−

+ +
= = + = = +

≥

≥ − − − −

≥ − ≥ − ≥ − ≥ − ≥

= ≡ +

∑ ∑ ∑ ∑

 

 

□ 

 

Appendix B. Proof of Lemma 3.2 

Since the two sub-problems have similar structure, we only show the proof of the convexity for 

sub-problem 1. 

    If all constraints are affine and the objective is a concave function, sub-problem 1 is convex 

with respect to the vector α. 

      Since the linear constraints in (3.6) satisfy the affine requirement, we only need to show 

{ } { }
1

1 1

m k

i m m j
i j m

f P X X P X X
−

= = +

≡ ≥ + ≥∑ ∑  is convex, or specifically, each term in the summation is 

convex. Assume *α  is strictly positive. Define 

( )
{ } ( )
{ } ( )

,  if 1 1
,

,  if 1
m i

i m
i m

P X X i m
g

P X X m i k
α α

 ≤ ≤ ≤ −= 
≤ + ≤ ≤

. 

We have 

                                                      { }
2

21 ,
2

ij

ij

t

i jP X X e dt
δ

s

π

− −

−∞
≤ = ∫                                                    (B.1) 
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in which 
22

2 1 ji
ij

i jT
ss

s
α α

 
= +  

 
, and jij iδ µ µ= − . The second order partial derivatives of (B.1) with 

respect to iα  and jα  can be obtained.  

                              
( )2 2 4 2 2

2 2 5 2 4 2 3 3

, 1 1exp 3 2
222 2

i m im im i im im i

i im im i im im i

g
T T

α α δ δ s δ δ s
α s s α s s απ

 ∂    
= − − +    ∂      

, 

                              
( )2 2 4 2 2

2 2 5 2 4 2 3 3

, 1 1exp 3 2
222 2

i m im im m im im m

m im im m im im m

g
T T

α α δ δ s δ δ s
α s s α s s απ

 ∂    
= − − +    ∂      

, 

                             
( )2 2 2 2 2

2 5 2 2 2 2

, 1 1exp 3
222 2

i m im im i m im

i m im im i m im

g
T

α α δ δ s s δ
α α s s α α sπ

 ∂    
= − −    ∂ ∂      

, 

                            
( )2 ,

0i m

p q

g α α
α α

∂
=

∂ ∂
 for ,  and ,p q i p q m≠ ≠ . 

    For simplicity, let  

( )2 ,i m
im

i m

g
a

α α
α α

∂
=

∂ ∂
, 

2 4 2

2 5 2 4 2

1 1exp 3
222 2

im im i im
ii

im im i im

a
T

δ δ s δ
s s α sπ

    
= − −    

     
, 

2 2

2 3 3

1 exp 2
22 2

im im i
ii

im im i

b
T

δ δ s
s s απ

   
= −   

   
, 

2 4 2

2 5 2 4 2

1 1exp 3
222 2

im im m im
mm

im im m im

a
T

δ δ s δ
s s α sπ

    
= − −    

     
, and 

2 2

2 3 3

1 exp 2
22 2

im im m
mm

im im m

b
T

δ δ s
s s απ

   
= −   

   
. 

Therefore, 

                

( ) ( ) ( )

( )
( ) ( ) ( )

2 2 2

2
2

2

, 2

.
r

T
i m ii ii i mm mm m im i m

im im
i mm mm m ii ii i

ii iimm mm

g a b a b a

a a
a b a b

a ba b

α α α α α α α α

α α α

∇ = + + + +

   
 = + + + + − 

+   +   

            (B.2) 
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    We know that iib  and mmb  are strictly positive for every 0T > . For the term ima  in (B.2), we 

have 0ima >  when ( )2 2 26im i i m m imT T s α s α δ> = + . We can find that iia  and mma  are also strictly 

positive when imT T> . Besides, these terms also have the following relationship. 

2 2

i m
im ii

m i

a a
α s
α s
   

=    
   

, 
4 4

i m
mm ii

m i

a a
α s
α s
   

=    
   

, and 
3 2

i m
mm ii

m i

b b
α s
α s
   

=    
   

. 

 Thus, when imT T> , we can also obtain 

( )
2

1
im ii

ii
mm mm mm mm

a a
a

a b b a
= <

+ + . 

and ( )2 , 0T
i mgα α α α∇ ≥  for any 0Tα > . This means that the hessian matrix with respect to α  is 

positive semi-definite, so the function ( ),i mg α α  is convex when imT T> .Let { }*
1 max imT T i m= ≠ . 

The function f is a convex function when *
1T T> , and so sub-problem 1 is a convex problem for 

any T greater than *
1T .                                                                                                                     □ 

 

Appendix C. Proof of Lemma 3.3 

Similar with the proof of Lemma 3.2, we only show how to derive the conditions for the optimal 

allocation rule of sub-problem 1.  Assume *α  is strictly positive. The KKT conditions of sub-

problem 1 can be stated as follows by using (3.8). 

                          
2 2

1
2 3 2

1 exp 0, for 1, 2, , 1.
22 2

im im i
i

i im im i

F i m
T

δ δ s
λ ν

α s s απ
 ∂

= − − − − = = … − ∂  
                            (C.1) 

                         
2 2

1
2 3 2

1 exp 0, for 1, 2, , .
22 2

mj mj j
j

j mj mj j

F j m m k
T

δ δ s
λ ν

α s s απ

 ∂
= − − − − = = + + …  ∂  

                      (C.2) 
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22 21

1
2 2 3 2 3

1 1

1 exp exp 0.
2 22 2

m k
mj mjm im im

m
i j mm m im im mj mj

F
T

δ δs δ δ
λ ν

α α s s s sπ

−

= = +

   ∂
= − − + − − − =     ∂      

∑ ∑               (C.3)       

                         0, for 1, 2, , .i i i kν α = = …                                                                                         (C.4) 

    Since 0,   1, 2, ,i i kα > ∀ = … , it can be attained that 0,   1, 2, ,i i kν = ∀ = …  by (C.4). From (C.1) and 

(C.2), we know 

                                          
2 2

2 3 2

1 exp , for .
22 2

rmrm r

rm rm r

T r m
δδ α

λ
s s sπ

 
− − = ≠ 

 
                                          (C.5) 

    Substituting (C.5) into (C.3), we obtain 

2

2

k
r

m m
r m r

α
α s

s≠

= ∑ . 

For any ,x y m≠ , the following equation also can be derived by (C.1) and (C.2) 

3/22 2

2 22 2

3/2 2 22 2 22 2 2
exp

2

x m

ymym yx mxm x

xm x yy x mm y m

x my m y m

T
s s

δδ sα αδ α
δ s αs s ss s s

α αα α α α

       +     − =         ++    +            

. 

Considering the asymptotic limit T →∞ , we obtain 

22

2 2 2 2

ymxm

x m y m

x m y m

δδ
s s s s
α α α α

=
   

+ +       

. 

Thus, the allocation rule ( )*1 *1 *1 *1
1 2, , , kα α α α=   satisfying the following conditions is the 

asymptotically optimal allocation rule for sub-problem 1. 
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(i) 
2

2

k
i

m m
i m i

α
α s

s≠

= ∑ ; 

(ii) ( ) ( )22

2 2 2 2
y mx m

x x m m y y m m

µ µµ µ
s α s α s α s α

−−
=

+ +
, ,x y m≠ ; 

(iii) 
1

1
k

i
i
α

=

=∑ ; 

(iiii) 0iα > .                                                                                                                                   □  

 

Appendix D. Proof of Proposition 3.1 

We show the proof related to ( )*1 *1 *1 *1
1 2, , , kα α α α=  . The proof related to ( )*2 *2 *2 *2

1 2, , , kα α α α=   

will follow the same procedure. 

    Because we have 1µ < 2µ <  < kµ , there exist two constants lw  and uw  such that 

0 minl i mi m
w µ µ

≠
< < −  and max i m ui m

wµ µ
≠

− < < ∞ . For all designs’ variances, we can also find two 

constants lv  and uv  such that { }2 2 2
1 20 min , , ,l kv s s s< <   and { }2 2 2

1 2max , , , k uvs s s < < ∞ . 

    By condition (ii) at lemma 3.3(a), we have 

                      ( ) ( ) ( ) ( )2 22 2 2 22 2
i j m m j mj i m m i m

j m i m

s µ µ s µ µs µ µ s µ µ
α α α α

− −− −
+ = +  for ,i j m≠ .                    (D.1) 

Case 1. i m j mµ µ µ µ− ≤ −  

In this case, by (D.1), we have 
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( ) ( )
2 22 2

i j m j i m

i j

s µ µ s µ µ
α α

− −
≤ , 

And hence 

                                                     
( )
( )

22

2 2
j i m u u

j i i
l li j m

v w
v w

s µ µ
α α α

s µ µ

−
≤ <

−
.                                               (D.2) 

Case 2. i m j mµ µ µ µ− > −  

It can be obtained by (D.1) that 

( ) ( ) ( )( )2 22 22 2i j m m i j i j mj i m

i j m

s µ µ s µ µ µ µ µs µ µ
α α α

− − + −−
= + . 

By condition (i) at lemma 3.3(a), we have ( ) ( )maxm m i ii
α s α s> . Thus, 

( ) ( ) ( )( )2 22 2 2i j m m j i j i j mj i m

i j j

s µ µ s s µ µ µ µ µs µ µ
α α α

− − + −−
< + . 

So, we can get that 

                         
( ) ( )( )

( )
( )2 2 2 22

2 2 22

22

l

u u lj i m m j i j i j m
j i i

li j m

v w w

v w
s µ µ s s µ µ µ µ µ

α α α
s µ µ

−− + − + −
< <

−
.                     (D.3) 

Combing (D.2) and (D.3), it can be proved that there exists a constant cij>0 such that j ij icα α< , 

,i j m∀ ≠ . Let { }min min ii m
α α

≠
= . So, we can conclude that there exists a constant c>0 such that 

mini cα α< , i m∀ ≠ . 

    By condition (i) at lemma 3(a),  
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                                     ( ) ( ) ( ) ( )2
min1 1

k

l m m i i u
i m

v k vα s α s α
≠

> = > −∑ .                                    (D.4) 

    Therefore, as k →∞ , min 0α → . Because mini cα α< , it can be concluded that *1lim 0,  ik
i mα

→∞
= ≠ .  

    By (D.4) and mini cα α< , we have 

                                                       
1 1

u ui

m m l

c v c v
k v k

α
α s

< <
− −

.                                                    (D.5) 

Thus, as k →∞ , 0i mα α → , i m∀ ≠ . So we have ( )*1 *1lim 0,   i mk
i mα α

→∞
= ∀ ≠ . 

Let { }max max ii m
α α

≠
= . By (D.5), 

( )
min

2
max

1 1
1 11

l i u

u m lm l

v v c
v c vk kk v

αα
αs α

< < <
− −−

. 

As k →∞ , this yields ( ) ( )1i m kα α = Ο . So we have ( ) ( )*1 *1 1 ,   i m k i mα α = Ο ∀ ≠ .                    □  

 

Appendix E. Illustration of simplified conditions in Remark 3.1 

We know 

( ) ( )
( ) ( ){ } ( ) ( ){ }

( ) ( ){ } ( ) ( ){ }

*1 *2
1 2

1
*1 *1 *1 *1

1 1

*2 *2 *2 *2
1 1

1 2

    

1

   1

m k

i m m j
i j m

m k

i m m j
i j m

APCSm APCSm

P X X P X X

P X X P X X

α α

α α α α

α α α α

−

= = +

+ +
= = +

−

= − ≥ − ≥

 
 − − ≥ − ≥
 
 

∑ ∑

∑ ∑
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Since ( ) ( )( )2 2,i j i j i i j jX X N Tµ µ s α s α− ∼ − + , we have  

{ } ( )
2210 ji

i j i j
i j

P X X
T

ssµ µ
α α

   − ≥ = Φ − + 
  
  

. 

For the allocation rule *1α  in (3.10), let 
( ) ( )

2 2

21 2 4

k k
i i

m
i m i mi m i m

A s ss
µ µ µ µ≠ ≠

= +
− −

∑ ∑ . Then, for 1i m≤ −  

and 1j m≥ + , we can get 

{ }
( )

2

21 20 m
i m

m m i

P X X T A s
α µ µ

    − ≥ == Φ − +  −   

, 

{ }
( )

2

21 20 m
m j

m j m

P X X T A s

α µ µ

    − ≥ = Φ − +   −   

. 

    The maximal value of all { }0i mP X X− ≥  and all { }0m jP X X− ≥  is the one in which the mean of 

two random variables’ difference equals to { }1 1min ,m m m mµ µ µ µ− +− − . Besides, 

{ } { }1 1m m mP X X P X X−≥ < < ≥  and { } { }1m m m kP X X P X X+≥ > > ≥ .  

    In the same way, for the allocation rule *2α , we have the inequalities 

{ } { }1 1 1m m mP X X P X X+ +≥ < < ≥  and { } { }1 2 1m m m kP X X P X X+ + +≥ > > ≥ . And the most largest one 

among all these probabilities is the one with { }1 2 1min ,m m m mµ µ µ µ+ + +− − . 

    The difference between 1APCSm  and 2APCSm  can be approximated as follows by ignoring 

other unimportant elements and only considering the largest elements. 
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( ) ( )*1 *2
1 2

2 2
1

22 212 2
1

    

m m

m m

APCSm APCSm

T A T A
b a

α α

s s
α α

+

+

−

         ≈ Φ − + −Φ − +               

 

in which { }1 1min ,m m m ma µ µ µ µ− += − −  and { }1 2 1min ,m m m mb µ µ µ µ+ + += − − . 

    When the means and the variances of design m and design (m+1) do not have very huge 

difference, we can assume 21 22A A≈  and 2 *1 2 *2
1 1m m m ms α s α+ +≈ . In this case, if a b≥ , we have 

( ) ( )*1 *2
1 2APCSm APCSmα α≥ , and otherwise versa.                                                                         □ 

 

Appendix F. Proof of Corollary 3.1 

If we can prove ( ) ( )*2 *2
1 2APCSm APCSmα α> , corollary 3.1 can be proved because 

( ) ( )*1 *2
1 1APCSm APCSmα α≥ . 

    We have 

( ) ( ) ( ) ( ){ } ( ) ( ){ }( )*2 *2 *2 *2 *2 *2
1 2 2 1

3

k

i i
i

APCSm APCSm P X X P X Xα α α α α α
=

− = ≥ − ≥∑ . 

    In the equal variance case, the allocation rule *2α  is 

( )22*2 1 x
x B

µ µ
α

−
=  for 2x ≠ , and ( )42

2*2
2

1
k

x
x

B

µ µ

α ≠

−

=
∑  

in which ( ) ( )2 4
2 2

2 2

1 1
k k

x x
x x

B µ µ µ µ
≠ ≠

= − + −∑ ∑ . 
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    Thus, for every design i,  

( ) ( ){ }
( )

( )

*2 *2 2
2

2
2 4

2 2

11

i
i

k

i
i i

TP X X
B

µ µα α φ s

µ µ
µ µ≠

 
 
 

− ≥ = − ⋅ 
 − +  − 

∑
 

and 

( ) ( ){ }
( ) ( )

*2 *2 1
1 2 2

2 1 2

i
i

i

TP X X
B

µ µα α φ s
µ µ µ µ

 
− ≥ = − ⋅  − + − 

. 

  Because 

( )
( )

( ) ( )
2 1

2 2
2 2 1 2

2 4
2 2

1
11

i i

k
i

i
i i

µ µ µ µ

µ µ µ µ
µ µ

µ µ≠

− −
< <

− + −
− +

−
∑ , 

we have 

( ) ( ){ } ( ) ( ){ }*2 *2 *2 *2
2 1i iP X X P X Xα α α α≥ > ≥ . 

Then, the inequality ( ) ( )*2 *2
1 2APCSm APCSmα α>  can be proved.                                                   □ 

 

Appendix G. Proof of Theorem 3.2 

The limit condition T →∞  is equivalent to the iteration number in the procedure n →∞ . In the 

procedure, the vector ( )1 2, , ,n n n n
kα α α α≡   states the proportion of computing replications allocated 
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to each design based on the OCBAm+ allocation rule until the nth replication. Because 

( )1 2, , ,n n n n
kα α α α≡   is the function of sample means of designs, it is also a statistic. The sample 

value of ( )1 2, , ,n n n n
kα α α α≡   is updated iteration by iteration based on sample means. Let  

    ( )
2

2

ˆn i
i

i mX X

s
β =

−
 i m∀ ≠  and ( )2

ˆ ˆ/
k

n n
m m i i

i m
β s β s

≠

= ∑ , if ( ) ( )1 1
1 2

n nAPCSm APCSmα α− −≥ , and 

   ( )
2

2
1

ˆn i
i

i mX X

s
β

+

=
−

 1i m∀ ≠ +  and ( )2

1 1
1

ˆ ˆ/
k

n n
m m i i

i m
β s β s+ +

≠ +

= ∑ , if ( ) ( )1 1
1 2

n nAPCSm APCSmα α− −< . 

So the proportion of computing budget allocated to design i at the nth iteration in the procedure is 

1

k
n n n
i i j

j
α β β

=

= ∑ . Let 
n

n i
i n

N
T

γ = . So we have the following expression for the procedure. 

                                                      ( )1

1

n
n in n

i i

I s i
n

γ
γ γ+ = −

= +
+

,                                                      (G.1) 

in which ns  is a random variable with sample space {1,2,…k} and  P{ ns =i|i=1,2,…,k}= n
iα , and 

I(⋅) is the indicator function. We can re-write the recursion for ,i nγ  in the following way. 

                                         ( )* *
1

1 1 1

nn n
n in n i i i i

i i

I s i
n n n

αα γ α α
γ γ+ = −− −

= + + +
+ + +

.                                     (G.2) 

Because ( ) all sample values until replicate n
n iE I s i n α = =  , the sequence ( ){ }n

n iI s i α= −  is a 

martingale difference with respect to the sequence of s -algebras generated by all sample values 

generated until the replicate n. Therefore, the sequence ( ){ }n
n iI s i α= −  will be asymptotically 

negligible. 
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    We know ( )
0
1 1

n
n

∞

=

+ = ∞∑ , ( )2

0
1 1

n
n

∞

=

+ < ∞∑ , and 1n
iγ
+ <1. Based on the Theorem 5.2.1 of 

Kushner and Yin (2003), to prove *
n
iN

T
α→  almost surely in our case, we only need to show that 

*

1

n
i i

n n
α α−

< ∞
+∑  with probability one. 

For the term 
*

1

n
i i

n
α α−

+
 in (G.2), we have 

                                    
( )( )

( )

**

2

1 1 1
1 1 1

nn
i ii i

n n n

I n

n n n

α αα α − > +−
≤ +

+ + +
∑ ∑ ∑                                 (G.3) 

      We know ( )2

0
1 1

n
n

∞

=

+ < ∞∑ , so 
*

1

n
i i

n n
α α−

< ∞
+∑  almost surely can be proved if 

( )( )*

0

1 1

1

n
i i

n

I n

n

α α∞

=

− > +
< ∞

+∑  with probability one. 

    The set 
( )( )* 1 1

1

n
i i

n

I n

n

α α − > + = ∞ 
+  

∑  is the subset of 
( )( )*

0

1 1

1

n
i i

h

I h

n

α α∞

=

 − > + = ∞ 
+  


. 

Because n
iβ >0 1, ,i k∀ =   and k is a constant, we can always find a positive value c such that 

n
i cα >  n N ++∀ ∈ . In addition, the sample mean and sample variance are consistent estimators of 

its real mean and variance, so we have *n
i iα α→  as n goes to infinity. Because *n

i iα α→  almost 

surely, we have 
( )( )* 1 1

0
1

n
i i

n

I h
P

n

α α − > + = ∞ = 
+  

∑ . So 
( )( )*

0

1 1

1

n
i i

n

I n

n

α α∞

=

− > +
< ∞

+∑  w.p.1. 

Hence,  
*

1

n
i i

n n
α α−

< ∞
+∑  almost surely.  
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    Therefore, all the assumptions of Theorem 5.2.1 of Kushner and Yin (2003) satisfied. This 

results in *
n
iN

T
α→  almost surely.                                                                                                  □ 

 

Appendix H. Proof of Lemma 3.5 

Proof of Lemma 3.5(a)  

The computing budget allocated to every design by OCBAm in the equal variance situation is 

x

y

α
α  = 

2
1
1

x

y

δ
δ

 
  
 

, 

in which x x cδ µ= −  for all 1,2, ,x k=   and 1

2
m mc

µ µ ++
= . 

  Let ( )1 2
1

1k

i i

A
cµ=

=
−

∑ . Then, it follows that ( )2
1

1 1
i

i
A c

α
µ

= ⋅
−

, for 1,2, ,i k=  . Thus, 

( ) ( )
( ) ( )( )

2

2222 11

1 2, 1 ,
122

i j
ij i j

i j

G
AA c c x

x

µ µ
α α

ss µ µ

 
−  

= = ⋅ + 
 − + − + 
 

 

in which 
( )
( )

i

j

c
x

c
µ

µ
−

=
− .  

  For 0 1x< ≤ , ( ),ij i jG α α  is an increasing function of x, while ( ),ij i jG α α  is a decreasing function 

of x when 1x > . Thus, the minimum of ( ),ij i jG α α  will be at the minimum value of x for 0 1x< ≤  
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or the maximum value of x for 1x > . Since 1 2 kµ µ µ< < <  and 1

2
m mc

µ µ ++
= , it follows that 

min m

k

c
x

c
µ

µ
−

=
−  for 0 1x< ≤  and 1

1

max
m

cx
c

µ
µ +

−
=

−  for 1x > . Therefore, it is proved that 

( ) ( ) ( ) ( )( ){ }11 1 1, 1
min , min , , ,ij i j mk m k m mi m j m

G G Gα α α α α α+ +≤ ≥ +
= . 

Proof of Lemma 3.5(b) 

Suppose ( )1 2, , ,L L L
kα α α  is the computing proportions allocated to all designs by OCBAm+.  

When ( ) ( )*1 *2
1 2APCSm APCSmα α≥ , 

L
x
L
y

α
α  = 

( )
( )

2

2

1

1
i m

j m

µ µ

µ µ

−

−
, for ,x y m≠ , and ( )2L L

m i
i m

α α
≠

= ∑ ; 

and when ( ) ( )*1 *2
1 2APCSm APCSmα α≤ , 

L
x
L
y

α
α  = 

( )
( )

2
1

2

1

1

1
i m

j m

µ µ

µ µ
+

+

−

−
, for , 1x y m≠ + , and ( )2

1
1

L L
m i

i m
α α+

≠ +

= ∑ . 

So we prove Lemma 3.5(b) by classifying it into two cases. 

Case 1. ( ) ( )*1 *2
1 2APCSm APCSmα α≥  

Let ( ) ( )21 2 4

1 1
i m i mi m i m

A
µ µ µ µ≠ ≠

= +
− −

∑ ∑ . Then, we have ( )2
21

1 1L
i

i m
A

α
µ µ

= ⋅
−

, for i m≠ , and 

( )4
21

1 1L
m

i m i m
A

α
µ µ≠

=
−

∑ . 

    (1) For 1,2, , 1i m= −  and 1, ,j m k= +   
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We know that 

( ) ( )

( )

( )

22

21
1

4

1 1
11 1

1

L L
i m j mi j

L L
m m

m m

i m i m

µ µ µ µα α
α α µ µ

µ µ

+
+

≠

− + −+
=

+ + −

−
∑

. 

Because ( ) ( ) ( )2 22
i j i m j mµ µ µ µ µ µ− ≥ − + −  and 

( )4

1
1

i m i mµ µ≠ −
∑ >0, it can be proved that 

( )
( )

2

2
11

1 1
1 1

L L
i j i j

L L
m mm m

µ µ α α
α αµ µ ++

− +
≥

+−
. 

 Therefore,  

( ) ( )( 1) 1, ,   , 1L L L L
ij i j m m m mG G i m j mα α α α+ +≥ ∀ < ≥ + . 

    (2) For i m=  and 1, ,j m k= +   

( )
( )2 2

21

1 1,
2 1 1

L L
mj m j

L
m j m

G
A

α α
s µ µ α

= ⋅
 − +  

, 

( ) ( )
( )

11 2 2
21 1

1 1,
2 1 1

L L
m mm m L

m m m

G
A

α α
s µ µ α

++

+

= ⋅
 − + 

. 

Since ( ) ( )1m m j mµ µ µ µ+ − ≤ − , it can be concluded that      

( ) ( ) ( )11 , ,L L L L
m m mj m jm mG Gα α α α++ ≤ . 

Case 2. ( ) ( )*1 *2
1 2APCSm APCSmα α≤  
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The proof in case 2 is similar with case 1. Let ( ) ( )22 2 4
1 11 1

1 1
i m i mi m i m

A
µ µ µ µ≠ + ≠ ++ +

= +
− −

∑ ∑ . So, 

( )2
22 1
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µ µ +
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, for 1i m≠ + , and ( )1 4
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i m i m
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α
µ µ

+
≠ + +
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∑ . 

     (3) For 1,2, ,i m=   and 2, ,j m k= +   

    We know that 
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( )
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21
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i m j mi j
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−
∑

. 

Since ( ) ( ) ( )2 22
1 1i j i m j mµ µ µ µ µ µ+ +− ≥ − + −  and 

( )4
1 1

1
1

i m i mµ µ≠ + +−
∑ >0, it follows that 

( )
( )

2

2
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1 1
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i j i j
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m mm m

µ µ α α
α αµ µ ++

− +
≥

+−
. 

Therefore, we have 

( ) ( )( 1) 1, ,   , 1L L L L
ij i j m m m mG G i m j mα α α α+ +≥ ∀ ≤ > + . 

    (4) For 1,2, ,i m=   and 1j m= +  
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Since ( ) ( )1 1m m m iµ µ µ µ+ +− ≤ − , it can be concluded that      

                                                   ( ) ( ) ( ) ( )1 11 1, ,L L L L
m m i mm m i mG Gα α α α+ ++ +≤ .                                                  □ 

 

Appendix I. Proof of Theorem 3.3 

When all designs have a common variance, the asymptotic convergence rate obtained by 

OCBAm+ is 

    ( ) ( )

( )

( )
( )

( ) ( )

( )

( )
( )

( ) ( )

2
1 *1 *2

1 2
22

21 14

11 2
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22 14
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s µ µ
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≠
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+

+
≠ + +

 −
≥

 
+ − 

−   = 
− ≤   + −  −  

∑

∑

       (I.1) 

And the asymptotic convergence rate obtained by the equal allocation rule (EA) is 

                                                       ( ) ( ) ( )2
1

11 2,
4

m mE E
m mm mG

k
µ µ

α α
s

+
++

−
= ,                                               (I.2) 

    When m equals one, OCBAm+ will reduce to OCBA in Chen et al. (2000), which has been 

proved own the highest rate for the best design selection problem in Glynn and Juneja (2004). 

Hence, we only need to consider the situation 2 and 1m k m≥ ≥ + . 

    By (I.1) and (I.2), we only need to prove the following two inequities when 

( ) ( )1 2 1 1min ,m m m m m mµ µ µ µ µ µ+ + + −− ≤ − − . 
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( ) ( )

( )
( )

2
1 42 4

1 1 11 2m m
i m i m i m i mi m i m

kµ µ
µ µµ µ µ µ

+
≠ ≠ ≠

   
   + ⋅ − + <

   −− −   
∑ ∑ ∑ ,                     (I.3) 
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1 42 4
1 1 1 11 1

1 1 11 2m m
i m i m i m i mi m i m

kµ µ
µ µµ µ µ µ

+
≠ + ≠ + ≠ + ++ +
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   + ⋅ − + <

   −− −   
∑ ∑ ∑ . 

Because the proofs of these two inequalities are similar, we only show the proof of (I.3) here. 

    Since 1 2 1 1m m k kµ µ µ µ µ µ+ −< < < < < < <   and ( ) ( )1 2 1 1min ,m m m m m mµ µ µ µ µ µ+ + + −− ≤ − − , the 

inequalities below is true. 
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Combining (I.4) and (I.5), we can get  
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□ 



 

124 
 

 

Appendix J. Proof of Theorem 3.4 

When 1 ,  for 1, 2, , 1i i d i kµ µ+ − = = − , and all designs have a common variance, the convergence rate 

obtained by OCBAm+ is 

i) If ( ) ( )*1 *2
1 2APCSm APCSmα α≥  

                        
( ) ( )
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2 4 4
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ii) If ( ) ( )*1 *2
1 2APCSm APCSmα α≤  
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And the convergence rate obtained by OCBAm is 
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 

∑
       (J.2) 

    When m equals one, OCBAm+ goes to the OCBA. In this situation, OCBAm+ is no worse 

than OCBAm. For m greater than one, we show the proof when 4 and 6m k m≥ ≥ + . 

a) A lower bound of the convergence rate for OCBAm+ when 4m ≥ and 6k m≥ +  
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If ( ) ( )*1 *2
1 2APCSm APCSmα α≥ , the asymptotic convergence rate for OCBAm+ is (J.1). When 4m ≥  

and 6k m≥ + , it is true that 
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2 3 i m n nm i
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 × + + < < 
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∑ ∑ .                                      (J.3) 

  The right part in this inequality (J.3) is a series whose sum is Riemann’s zeta function, denoted 

as 
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For 3i m≤ − ,  
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Therefore, it is true that 
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Similarly,  
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Combining (J.5) and (J.6), an upper bound of ( )2

1
i m m i≠ −
∑  is  

                                        ( )2
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Consequently,  
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    Similarly, if ( ) ( )*1 *2
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                                               ( ) ( )
2

11 2
2

1 1,
3.972 1.6832

L L
m mm m

dG
a

α α
s++ > ⋅ ⋅

+
,                                          (J.9) 

in which 2
1 5 1 1 1 1
2 3 1 1

a
m m k m k m
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b) An upper bound of the convergence rate for OCBAm when 4m ≥ and 6k m≥ +  

    Because 4m ≥  and 6k m≥ + , there exist 1 11
2 2

k m − − ≥ 
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 and 1 7
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. So, 
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For each 2i m≤ −  , 
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    Combing inequalities (J.10) and (J.11), we have 
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. 

c) The difference between OCBAm+’s convergence rate and OCBAm’s convergence rate when

4m ≥ and 6k m≥ +  

     Because 1a b<  and 2a b< , we can get the following inequality by (J.8), (J.9), and (J.12).  
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Since 5
6

b < , it can be proved that 

( ) ( ) ( ) ( ) ( )( ){ } ( )( )
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    For the case 4m ≥ and 5k m= +  and the cases that m equals 2 and 3, the proof is easier and 

follows in similar fashion.                                                                                                              □ 

 

Appendix K. Proof for Theorem 5.1 

We firstly define four sets 

( )( ) ( ){ }1

1:  and ,t t
A i A i i i ig i gS i X S I f P Gα α α−= ∈ ≤  

( )( ) ( ){ }2

1:  and ,t t
A i A i i i ig i gS i X S I f P Gα α α−∈ > , 

( )( ) ( ){ }1

1:  and ,t t
B j B j j j jg j gS j X S I f P Gα α α−= ∈ ≤ , 

( )( ) ( ){ }2

1:  and ,t t
B j B j j j jg j gS j X S I f P Gα α α−= ∈ > . 

   Based on the definition, model (5.4) can be simplified as 
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( )( )
( )

( )( )
( )

1 1 1 1 1

1 2 2 2

1 1 1 1 1

2 2 2 2

1

1

1

max       . .

,    for 

  , ,    for 

,    for 

  , ,    for 

    1

         0.

t
i i i i A

i g i g i A

t
j j j j B

j g j g j B

m

i g
i

i

z s t

I f P z X S

G z X S

I f P z X S

G z X S

α

α α

α

α α

α α

α

−

−

=

≥ ∈

≥ ∈

≥ ∈

≥ ∈

+ =

≥

∑

                                              (K.1) 

Let  F be the Lagrangian functions of model (K.1). Then, we have 

( )( )( ) ( )( )

( )( )( ) ( )( )
1 1 1 1 2 2 2

1 1 2 2

1 1 1 1 2 2 2

1 1 2 2

1

1

1 1,...,  or 

,

          ,

                1

i A i A

j B j B

t
i i i i i i g i g

X S X S

t
j j j j j j g j g

X S X S

m

i g i i
i i m i g

F z I f P z G z

I f P z G z

λ α λ α α

λ α λ α α

ν α α γ α

−

∈ ∈

−

∈ ∈

= = =

= − − − − −

− − − −

  − + −  
  

∑ ∑

∑ ∑

∑ ∑

 

The Karush-Kuhn-Tucker conditions are 

i. The primal constraints: 

( )( )1 1 1 1 1

1 ,    for t
i i i i AI f P z X Sα − ≥ ∈        ( )2 2 2 2

, ,    for i g i g i AG z X Sα α ≥ ∈  

( )( )1 1 1 1 1

1 ,    for t
j j j j BI f P z X Sα − ≥ ∈      ( )2 2 2 2

, ,    for j g j g j BG z X Sα α ≥ ∈  

                               
1

1
m

i g
i
α α

=

+ =∑ , 0iα ≥ . 

ii. The dual constraints: 

0iλ ≥ , 0ν ≥  and 0iγ ≥  for all 1,..., ,i m g= . 

iii. Complementary slackness: 



 

130 
 

( )( )( )1 1 1 1

1 0t
i i i iI f P zλ α − − = ,   ( )( )2 2 2

, 0i i g i gG zλ α α − = , 

( )( )( )1 1 1 1

1 0t
j j j jI f P zλ α − − = ,  ( )( )2 2 2

, 0j j g j gG zλ α α − = , 

                                        
1

1 0
m

i g
i

ν α α
=

 + − = 
 
∑ , 0i iγ α = . 

iv. Gradient of Lagrangian with respect to decision variables vanishes: 

0F∇ = . 

Based on condition (iv), the following equations can be obtained. 

                                          ( )( )1 1 1

1 1 1 1

1

1

0   
t

i i i
i i i A

i

I f P
X S

α
λ ν γ

α

−∂
− + = ∀ ∈

∂
                                    (K.2) 

                                          ( )2 2

2 2 2

2

,
0   i g i g

i i i A
i

G
X S

α α
λ ν γ

α

∂
− + = ∀ ∈

∂
                                        (K.3) 

                                          ( )( )1 1 1

1 1 1 1

1

1

0   
t

j j j
j j j B

j

I f P
X S

α
λ ν γ

α

−∂
− + = ∀ ∈

∂
                                 (K.4) 

                                          ( )2 2

2 2 2 2

2

,
0   j g j g

j j j B
j

G
X S

α α
λ ν γ

α

∂
− + = ∀ ∈

∂
                                     (K.5) 

                                    
( ) ( )2 2 2 2

2 2

2 2 2 2

, ,
0 

i A j B

i g i g j g j g
i j g

X S X Sg g

G Gα α α α
λ λ ν γ

α α∈ ∈

∂ ∂
+ − + =

∂ ∂∑ ∑                   (K.6) 

    In stochastic situation, each solution has a noise and will be given no less than one sample to 

evaluate its performance. That is, 0iα > , 1,..., ,i m g∀ = . So we have 0iγ = 1,..., ,i m g∀ = .  Let 0iλ > , 

0ν >  for all 1,..., ,i m g= . Based on (iii), we have 
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( )( ) ( ) ( )( ) ( )1 1 1 2 2 1 1 1 2 2

1 1, ,t t
i i i i g i g j j j j g j gI f P G I f P Gα α α α α α− −= = = , 

and 

( )( )1 1 1

1 1 1 1

1
    i i At

i i i i

v X S
I f P

λ
α α−

= ∀ ∈
∂ ∂ ,   ( )2 2 2

2 2 2

   
,i i A

i g i g i

v X S
G

λ
α α α

= ∀ ∈
∂ ∂ , 

( )( )1 1 1

1 1 1 1

1
   j j Bt

j j j j

v X S
I f P

λ
α α−

= ∀ ∈
∂ ∂ , ( )2 2 2

2 2 2

   
,j j B

j g j g j

v X S
G

λ
α α α

= ∀ ∈
∂ ∂ . 

Substituting them into (K.6), the following equation can be obtained. 

2 2

2 22 2 2 2

1i g g j g g

i ji g i j g j

G G
G G

α α
α α

∂ ∂ ∂ ∂
+ =

∂ ∂ ∂ ∂∑ ∑  . 

Therefore, if a solution satisfies the conditions in theorem 5.1, we can find the values of iγ , iλ  

and ν  such that it also satisfies the KKT conditions. Because of the concavity of the 

maximization problem, the KKT condition is the sufficient and necessary condition for 

optimality. Therefore, the rule satisfying Theorem 5.1 is an optimal allocation rule for model 

(5.4).                                                                                                                                               □ 

 

Appendix L. Proof for Lemma 5.1 

When the performance of each particle follows a normal distribution, we can obtain the 

following equation based on large deviation theory. 

                                           ( )( ) ( ) ( )( )1 1

1 1

1

21
1

22

t
i it

i i
i

f P f X
I f P

s

−

−
−

= 1 1i AX S∀ ∈                                       (L.1) 
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                                           ( )( ) ( ) ( )( )1 1

1 1

1

21
1

22

t
j jt

j j
j

f P f X
I f P

s

−

−
−

= 1 1j BX S∀ ∈                                     (L.2) 

                                         ( ) ( ) ( )( )2

2 2

2 2

21

2 2,
t

g i
i g i g

g g i i

f P f X
G α α

s α s α

− −
=

+
2 2i AX S∀ ∈                                          (L.3) 

                                       ( ) ( ) ( )( )2

2 2

2 2

21

2 2,
t

g j
j g j g

g g j j

f P f X
G α α

s α s α

− −
=

+
2 2j BX S∀ ∈                                           (L.4) 

For 2 2i AX S∈ , 

              
( ) ( ) ( )( )

( )
22 2 2

2 2
2 2

21 2

2 22 2

, t
g ii g i g i

i ig g i i

f P f XG α α s
α αs α s α

− −∂
= ⋅

∂ +
 and 

( ) ( ) ( )( )
( )

22 2

2 2

21 2

2 22 2

, t
g ii g i g g

g gg g i i

f P f XG α α s
α αs α s α

− −∂
= ⋅

∂ +
.        ( L.5) 

For 2 2j BX S∈  

                    
( ) ( ) ( )( )

( )
22 2 2

2 2
2 2

21 2

2 22 2

, t
g jj g j g j

j jg g j j

f P f XG α α s
α αs α s α

− −∂
= ⋅

∂ +
 and 

( ) ( ) ( )( )
( )

22 2

2 2

21 2

2 22 2

, t
g jj g j g g

g gg g j j

f P f XG α α s
α αs α s α

− −∂
= ⋅

∂ +
.     (L.6) 

Substituting (L.5) and (L.6) into (b) in Theorem 5.1, 

2 22 2 2 2

2 2 2 2

2 2 2 2 1g g g g

i ji i j j

s α s α
s α s α

+ =∑ ∑ . 

Hence,  

2 2

2 22 2

2 2

2 2
i j

g g
i ji j

α α
α s

s s
= +∑ ∑ . 

Under the assumption 𝛼𝑔 ≫ 𝛼𝑖, (L.3) and (L.4) can be simplified as 
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( ) ( ) ( )( )2

2 2

2 2

21

2,
t

g i
i g i g

i i

f P f X
G α α

s α

− −
= , and  ( ) ( ) ( )( )2

2 2

2 2

21

2,
t

g j
j g j g

j j

f P f X
G α α

s α

− −
= . 

Substituting into (a) in Theorem 5.1 yields 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

1 2 1 2

1 2 1 2

1 1 2 1 1 2

2 2 2 2

2 2 2 21 1 1 1

: : :

: : :

i i j j

i i j j

t t t t
i i i g j j j gf X f P f X f P f X f P f X f P

α α α α

s s s s
− − − −

=
− − − −

 

                         □ 

 

Appendix M. Proof for Theorem 5.3 

Being similar to the proof of Theorem 5.1, let  F  be the Lagrangian functions of model (5.8). 

Then, we have 

( ) ( )
1 1,...,, ,

, , 1
t t t t t
i e i b i e j ne

m

bi bi b i ij ij i j i i i
i i mX S X X X S X S

F z G z G zλ α α λ α α ν α γ α
= =∈ ≠ ∈ ∈

  = − − − − − − −        
∑ ∑ ∑ ∑  

Hence, the Karush-Kuhn-Tucker conditions are 

i. The primal constraints: 

( ), ,    for t
bi b i i ez G X Sα α≤ ∈ , 

( ), ,    for ,t t
ij i j i e j nez G X S X Sα α≤ ∈ ∈ , 

1

1
m

i
i
α

=

=∑ , 0iα ≥ . 
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ii. The dual constraints: 

0, 0bi ijλ λ≥ ≥ , 0ν ≥  and 0iγ ≥  for all t
i eX S∈ , t

j neX S∈  . 

iii. Complementary slackness: 

( ), 0bi bi b iG zλ α α − =    ( ), 0ij ij i jG zλ α α − =   
1

1 0
m

i
i

ν α
=

 − = 
 

∑   0i iγ α =  

iv. Gradient of Lagrangian with respect to decision variables vanishes: 

0F∇ = . 

Based on condition (iv), the following equations can be obtained. 

                         ( ) ( )
,

,,
0

t t t t
i e i b j ne

bj b jbi b i
bi bj b

X S X X X Sb b b

GGF α αα α
λ λ ν γ

α α α∈ ≠ ∈

∂∂∂
= − − + − =

∂ ∂ ∂∑ ∑                              (M.1) 

                         ( ) ( ),,
0,   for  ,

t
j ne

ij i jbi b i t t t
bi ij i i e i b

X Si i i

GGF X S X X
α αα α

λ λ ν γ
α α α∈

∂∂∂
= − − + − = ∈ ≠

∂ ∂ ∂∑               (M.2) 

                         
( ),

0
t
i e

ij i j
ij j

X Sj j

GF α α
λ ν γ

α α∈

∂∂
= − + − =

∂ ∂∑ , for t
j neX S∈                                                  (M.3) 

In stochastic situation, each solution has a noise and will be given no less than one sample to 

evaluate its performance. That is, 0iα > , 1,..., ,i m g∀ = . So (M.1) to (M.3) can be simplified as 

follows. 

( ) ( )
,

,,
t t t t
i e i b j ne

bj b jbi b i
bi bj

X S X X X Sb b

GG α αα α
λ λ ν

α α∈ ≠ ∈

∂∂
+ =

∂ ∂∑ ∑  
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( ) ( ),,
t
j ne

ij i jbi b i
bi ij

X Si i

GG α αα α
λ λ ν

α α∈

∂∂
+ =

∂ ∂∑ , for , ;t t t
i e i bX S X X∈ ≠  

( ),
t
i e

ij i j
ij

X S j

G α α
λ ν

α∈

∂
=

∂∑  , for .t
j neX S∈  

Therefore, if we can find the non-negative values of ijλ  and ν  such that one allocation rule can 

satisfies the above conditions, the rule is an optimal allocation rule for model (8).                      □ 

 

Appendix N. Proof for Lemma 5.3 

Under the assumption of normality, Glynn and Juneja (2004) show that 

( ) ( ) ( )( )2

2 2, i i
ij i j

i i j j

f X f X
G α α

s α s α
−

=
+

 . 

For t
bX  , 

( )
( ) ( )( )2

2 2,
t t
b i

bi b i
b b i i

f X f X
G α α

s α s α

−
=

+
, for ,t t t

i e i bX S X X∈ ≠ . 

( ) ( ) ( )( )2

2 2,
t t
b j

bj b j
b b j j

f X f X
G α α

s α s α

−
=

+
, for t

j neX S∈ . 

Because ( ) ( ) ( ) ( )t t t t
b i b jf X f X f X f X− < −  and 𝛼𝑖 ≫ 𝛼𝑗 , we have ( ) ( ), ,bi b i bj b jG Gα α α α< . Hence, 

0bjλ =  for t
j neX S∈ . Similarly, because ( ) ( )10

max min
tt
i ek e

t t
k iX SX S

f X f X
∈∈

<   and ,k i jα α α , we have 
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( ) ( ), ,kj k j ij i jG Gα α α α> . Hence, 0kjλ =  for t
j neX S∈ . In the same way, we can get the inequality that 

( ) ( )' ' , ,j ij i ji j i
G Gα α α α>  for t i

j neX S∈  and 't i
j neX S∉ . So, 0ijλ =  for t i

j neX S∉ .  

    Based on the above analysis, the condition (b) in Theorem 5.3 can be simplified as follows. 
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0 1
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k e i e

bk b k bi b i
bk bi

X S X Sb b
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α α α α
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α α∈ ∈

∂ ∂
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∂
 for { }t i
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Substituting the expression of ijλ  in (N.4) into (N.3), for 1t
i eX S∈  
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,t i

j ne

ij i j i bi b i
bi

X S iij i j j

G G
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α α α α α
λ ν ν
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 ∂ ∂ ∂ 
=  −     ∂∂ ∂   

∑                             (N.5)      

By (N.1), (N.2) and (N.5), we have 

( )
( )

( )
( )
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( )0 1
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1 1
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ij i j ibk b k b bi b i b
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2
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2 22 2

, i jij i j i

i ii i j j

f X f XG α α s
α αs α s α

−∂
= ⋅

∂ +
 , we have 



 

137 
 

0 1

2 2 2 2 2 2

2 2 2 2 2 21 1
t t t i
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X S X S X Sk k i i j j

s α s α s α
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Therefore, 

0 1

22 2

2 2 2
t t t i
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jk i
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X S X S X Sk i j

αα αα s
s s s∈ ∈ ∈
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 
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    Condition (a) in Theorem 5.3 also can be simplified as 

( ) ( ) ( ) 0 1, , = ,   for , ,t t t i
bk b k bi b i ij i j k e i e j neG G G X S X S X Sα α α α α α= ∈ ∈ ∈ . 

Under the assumption 𝛼𝑏 ≫ 𝛼𝑖 ≫ 𝛼𝑗 for ,t t
i e j neX S X S∈ ∈  , we have the following approximation 

result. 
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Therefore,  
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22 2

2 2 2: : : : jk i
k i j

t t t t t t
b k b i i jf X f X f X f X f X f X

ss sα α α =
− − −

                       □ 
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