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Abstract

Most commercial photo browsers today have an automatic mechanism to help

users group their photos by event. This automatic event-based photo organization

has not always been available. In the early days, digital photo management was

similar to its analog counterpart where users had to manually organize their photos

into photo albums. This thesis is motivated by the same issues today, but for photos

within an event. People now are more liberal with their photo taking and have even

more photos to manage for each of their events.

To complement event-based photo organization and help users manage photos

in each event, this thesis proposes a chapter-based photo organization where

photos from each event are organized further, i.e. separated into smaller groups

according to the moments in the event. We refer to this task as event photo stream

segmentation. In this thesis, we developed a method to accomplish this exact task.

Our method is based on a hidden Markov model with parameters learned from 1)

a dataset of unlabelled, unsegmented event photo streams and 2) the event photo

stream we want to segment. Our method is unsupervised, relies on features from

temporal, camera parameters and visual information that are fast to compute. Our

approach is based on our novel observation that an event’s photo stream consists of

alternating feature types: features of the photo and features between consecutive

photos. In an experiment with over 5000 photos from 28 personal photo sets, our

method outperforms baseline methods including the state-of-the-art with p < 0.05.

This thesis also describes results from the first user study on chapter-based

photo organization. The findings reveal key insights on how people organize their

event photos. For example, users value chapter consistency more than the chrono-

logical order of the photos. The study also reveals common criteria people use

to group their events into chapters. Another novel contribution is the photo layout

study findings where we found that users value the chronological order of the chap-

ters more than maximizing screen space usage and that users like having chapter

thumbnails, but not at the expense of screen space utilization.

Finally, the work we present culminates in CHAPTRS ver. 2, a publicly avail-

able, fully-implemented chapter-based photo browser that 1) complements event-

based photo organization by working with users’ existing digital photo libraries

(iPhoto and Aperture), 2) automatically separates events into chapters, 3) presents

the photos with a user interface design and photo layout based on the user study

findings, and 4) allows easy drag-and-drop operations to fine-tune the photo ar-

rangement with any criteria.

To further research in this area, we used CHAPTRS ver. 2 to build a large public

dataset of anonymous photo features and describe how using the Mac App Store

as a distribution channel allowed us to reach a large number of participants and

their personal digital photo libraries, a feat that would be difficult to achieve with

volunteers or other conventional means.
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Chapter 1

Introduction

1.1 Background

Most personal photos are commonly associated with an event: a holiday trip, birth-

day, wedding, gathering, picnic, walk in the park, etc. This is true for photos from

both analog and digital cameras (Rodden, 1999; Rodden and Wood, 2003). With

the former, film rolls must be developed in their entirety or not at all. As such,

they are often developed whenever they become completely used and thus, pro-

duce photos from multiple events. These multi-event photos would then either all

go into storage, e.g. a shoebox, or — sometimes — be painstakingly sorted through

and placed into separate photo albums.

With digital cameras, people now have the freedom of importing their photos

whenever they want, e.g. diligently after every event without having to wait for a

full memory card. The less inclined may still import their photos as a batch, span-

ning over multiple events from one or more memory cards. Commercial photo

browsers however, make this process easier by automatically placing the photos

into separate digital photo albums, each corresponding to an event. This automatic

albuming is a common feature among many popular commercial photo browsers

1



like iPhoto1, Picasa2, and Windows Photo Gallery3. Research into automatic meth-

ods to enable such an event-based photo organization yielded many papers in

2003–2007, which we will review in Chapter 2. These automatic albuming meth-

ods are capable of producing very satisfactory results. In fact, some commercial

photo browsers like iPhoto suffice today by using a simple time interval (1-day,

8-hour, or 4-hour) for its automatic albuming, e.g. photos spanning over two days

will be grouped into two events if the 1-day time interval was selected by the user.

As compact cameras and film rolls have enabled people to acquire large photo

collections that need to be grouped into separate albums, continuing advancements

in digital photography have enabled people to freely capture every moment of their

life events, yielding hundreds of photos for a single event. Photos in such events are

as large as the analog era photo collections that needed to be grouped into albums.

Today, our digital cameras can take more than a thousand 14 megapixel photos

with every 4GB of storage. With each new version, digital cameras take even less

time to start up and to wait between shots. The Apple iPhone 4S, the most popular

camera and most popular cameraphone on Flickr4, starts up in 1.5 seconds and

waits a mere 0.7 seconds in between shots5. The advent of such easy-to-use and

portable photo capture devices with large memory stores have changed people’s

photo taking habits — people now are more liberal with their photo taking, as

compared to the previous era of film rolls and analog cameras (Kirk et al., 2006).

While today’s photo browsers automatically group imported photos into sep-

arate albums by event, the resulting albums — especially those corresponding to

holiday trips or other important life events — contain hundreds of photos span-

ning over multiple moments throughout the event. For example in Figure 1.1, in

a family trip to the zoo, photographed moments may include arriving at the zoo,

1
http://www.apple.com/ilife/iphoto

2
http://picasa.google.com

3
http://windows.microsoft.com/en-US/windows-live/

photo-gallery-get-started
4
http://www.flickr.com/cameras

5http://www.smartdevicecentral.com/article/289761_1.aspx

2
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http://www.flickr.com/cameras
http://www.smartdevicecentral.com/article/289761_1.aspx


Figure 1.1: Part of a family photo album of a trip to the zoo, shown consisting of

multiple chronological moments

at the waterfall, watching birds feed, birds in a bath, seeing lots of bird food, vis-

iting flamingos, looking at parrots, petting baby animals, picnic lunch at the park,

etc. Having all these photos grouped into a single album is appreciated, but sifting

through all these photos and not able to easily perceive and appreciate the con-

stituent moments is still cumbersome.

1.1.1 Problem Statement

In this thesis, we propose a complementary goal to event-based photo organization

we call chapter-based photo organization in which photos from a single event

are separated into smaller groups according to moments in the event.

Hypothesis: Chapter-based photo organization provides a better user experi-

ence than event-based photo organization in a photo browser for a personal digital

photo library.

To investigate our hypothesis, we developed an automatic method to achieve

this organization that outperforms all our baselines with statistical significance.

We conducted a user study to observe how people organize their event photos in

a chapter-based photo organization setting and also measured their preference in

several photo-related tasks with and without chapters to organize their event pho-

tos. In a photo layout study, we explored orthogonal photo layout aspects, e.g.

chronological ordering and screen-space utilization, to best visualize chapters of

the event. Our proposed method, photo organization study, and photo layout study

are the central topics of this thesis. Together, our work informs the development of

our publicly available chapter-based photo browser we call CHAPTRS ver. 2.

Through our investigation, this thesis presents four main contributions: the

event photo stream segmentation algorithm, the photo organization study, the photo
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layout study, and our photo browser CHAPTRS ver. 2. We elaborate on these in the

following sections.

1.2 Event Photo Stream Segmentation

We refer to the chapter-based photo organization task as event photo stream seg-

mentation, i.e. the process of finding contiguous groups of photos from an event

photo stream, each group corresponding to a photo-worthy moment in the event

(see Figure 1.2). An event photo stream is a chronological sequence of photos

from a single event.

We distinguish between an event photo stream and a photo stream, which is a

more general term that refers to a chronological sequence of photos that may span

over multiple events, consisting of many days or even months of photos. Many seg-

mentation methods have been proposed for such photo streams to produce groups

of photos where each group corresponds to an event. To distinguish between their

task and ours, we shall refer to their task as automatic albuming. For example, in

Figure 1.2, the sequence of photos referred to as “My Photos (2011 - 2012)” is a

photo stream that spans multiple events. On the other hand, the sequence of photos

referred to as “Dad’s 62nd Birthday” is an event photo stream because it is a photo

stream of one particular event.

While both tasks segment photo streams, automatic albuming methods may

not be suitable for event photo stream segmentation due to issues of data sparsity,

indistinct time gaps, and visual similarities:

1. Data sparsity — Each group of photos produced through event photo stream

segmentation has only a handful of photos as each corresponds to a photo-

worthy moment in the event. In contrast, each group produced through auto-

matic albuming corresponds to an event and has many more photos. A photo

stream of multiple events also has many more photos than an event photo

stream, which is of just one event. The increased sparsity associated with
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Figure 1.2: Event photo stream segmentation is the process of finding contiguous groups of photos from an event photo stream. In

contrast, automatic albuming is the process of grouping photos from a collection into separate events.
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event photo stream segmentation makes it harder to develop computational

models.

2. Indistinct time gaps — In a photo stream, time gap is the time difference

between the capture times of two consecutive photos. While the time gap

between two photos of different events is in hours or even days, the time gap

between photos of the same event is typically in seconds or minutes. This

time scale difference is useful to identify event boundaries for automatic

albuming. In contrast for event photo stream segmentation, the time gap be-

tween two consecutive photos belonging to different photo-worthy moments

in the event is also in seconds or minutes. Indistinct time gaps at segment

boundaries in an event photo stream makes the segment boundaries difficult

to identify using simple heuristics.

3. Visual similarities — Photos in an event are often visually similar because

they share aspects such as participants, location, and scene. With photos of

other events, however, they are often visually distinct because these aspects

are different. The visual difference between photos of different events is

useful for automatic albuming, but the visual similarities among photos of

an event make event photo stream segmentation more difficult.

To address these challenges, we propose a hidden Markov model (HMM) -

based approach that uses a combination of time, Exif6 metadata, and visual infor-

mation to determine the segment boundaries (i.e. chapter boundaries) in an event

photo stream. Parameters of the HMM are learned from 1) a set of unlabelled,

unsegmented event photo streams and 2) the event photo stream we want to seg-

ment. Our model supposes that an event photo stream is the result of a stochastic

process that generates feature vectors from a set of foreground and background

models. The foreground models generate feature vectors corresponding to seg-

ment boundaries while the background models generate feature vectors that do not.

6JEITA Exchangeable image file format for digital still cameras
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This generative model follows from our observation that photos taken in events are

often the result of several photo taking sessions — each session corresponds to

a photo-worthy moment. At such a moment, we take several photos. Then, our

camera idles until the next moment arises and invites us for another photo taking

session. In each session, photos would likely be similar in terms of visual appear-

ance, photo metadata and timing. The photographer, for example, could choose to

adjust the focal length and aperture settings to suit the scene of the moment. These

camera parameter values would be similar for photos within the same session. If

we look at photo timestamps, each session would appear to be a burst of photo

activity (Graham et al., 2002).

1.3 Photo Organization Study

While there have been several user studies on personal photography in the past

decade — which we will cover in more detail in Chapter 2 — to our knowledge

there has not been a user study for photo organization within an event, i.e. at the

chapter level.

In this study, we want to answer the following questions: How do people or-

ganize their photos in each event and how does it affect typical photo-related tasks

such as storytelling, searching and interpretation tasks? In exploring these ques-

tions, we explore our hypothesis that organizing photos in each event into chapters

provides a better user experience. Additionally, we draw contrast and similarities

with findings from previous studies done at the event level.

To facilitate this study, we developed the first version of our chapter-based

photo browser called CHAPTRS. CHAPTRS helps users organize their event photos

by automatically grouping photos in each event into smaller groups of photos we

call chapters. CHAPTRS builds upon our method for automatic event photo stream

segmentation. CHAPTRS also affords users with a drag-and-drop interface to re-

fine the chapter groupings. In Chapter 5, we describe how our work in this thesis
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culminates in CHAPTRS ver. 2 which was inspired by the findings of the user study.

By designing tasks where user behavior and performance can be observed and

measured, we were able to compile novel insights into how the participants orga-

nize their photos in each event and how the organization affects the tasks.

1.4 Photo Layout Study

The photo layout study was done in conjunction with the photo organization study

described in the previous section, in a two-week exploratory user study involving

23 college students with a total of 8096 personal photos from 92 events.

In CHAPTRS ver. 1, we presented users with four photo layouts which can be

seen in Chapter 4 in Figures 4.1, 4.2, 4.3, and 4.4. The first is our baseline, a plain

grid layout that offers no chapter-based photo organization. The other three lay-

outs present chapter-based photo organizations but each emphasizes on a different

key photo layout aspect. The bi-level layout emphasizes an overview of the event

photos afforded by presenting chapter thumbnails. The grid-stacking layout em-

phasizes the chronological order of the chapters. Lastly, the space-filling layout

maximizes screen space usage.

The three chapter-based photo layouts were chosen because they emphasize

and represent distinct key photo layout aspects. As such, they facilitated our study

to explore which key photo layout aspects are important for chapter-based photo

organization. To our knowledge, our study is the first to explore chapter-based

photo organization and its photo layouts.

1.5 CHAPTRS Photo Browser

From our method and our findings in the photo organization study and the photo

layout study, we iterated on CHAPTRS ver. 1 and developed a fully-implemented,

publicly available photo browser, which we will refer to as CHAPTRS ver. 2. Like

its previous version, it complements event-based photo organization by reading
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Figure 1.3: Screenshot of our photo browser, CHAPTRS ver. 2

existing events and albums from the user’s computer (i.e. in iPhoto and Aperture)

and automatically organizing them into chapters. The results are then presented to

the user as shown in Figure 1.3.

CHAPTRS ver. 2 provides users with an easy drag-and-drop user interface for

fine-tuning the arrangement. Photos and/or chapters can then be selected for shar-

ing to various services and social networks like Flickr, Twitter, Facebook, etc. We

will go into more details in Chapter 5.

1.6 Contributions

The three main challenges in this thesis is the development of an unsupervised

method for automatic event photo stream segmentation, the exploration of user be-

havior in chapter-based photo organization, and the study of photo layout aspects

to support effective chapter-based photo organization. In tackling these three chal-

lenges, this thesis makes four main contributions to the field of personal digital

photo libraries:
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• Unsupervised method — We developed an unsupervised method for event

photo stream segmentation, finding contiguous groups of photos from an

event photo stream, each group corresponding to a photo taking session in

the event. Our method uses a hidden Markov model with alternating ob-

servation types to embody our novel observation that event photo streams

exhibit alternating feature types (photo features and photo gap features) that

cannot be captured effectively with a single observation type. Our method

outperforms all baseline methods including the state-of-the-art with statisti-

cal significance, p < 0.05.

• Photo organization study — We conducted a user study with 23 college

students of various photography backgrounds to ascertain how they organize

photos within an event and how a chapter-based photo organization affects

photo-related tasks such as storytelling, searching, and interpretation tasks.

Our study is the first study to explore and draw insights from a chapter-based

photo organization.

• Photo layout study — In the same user study, we conducted a photo layout

study to explore a set of orthogonal features for presenting a chapter-based

photo organization: timeline visualization, screen space usage, and view hi-

erarchy. Similarly, our study is the first study to ascertain the relative impor-

tance of these layout features for chapter-based photo organization.

• CHAPTRS Photo Browser — We developed a fully-implemented publicly

available chapter-based photo browser, CHAPTRS ver. 2. With the browser,

we then built a large dataset of anonymous photo features that we are releas-

ing to the research community. We also report on our experience building

the dataset, using the Mac App Store as a distribution channel to alleviate

issues with scalability, cost and reaching a large number of potential study

participants and their personal digital libraries. Our experience and results

shows that the Mac App Store provides a fruitful and viable alternative for
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large-scale data collection especially for reaching out to personal digital li-

braries.

1.7 Thesis Outline

In the next chapter, Chapter 2, we review related work for the three main chal-

lenges of this thesis: event photo stream segmentation, user studies on personal

photography, and photo layouts in personal digital photo libraries.

In Chapter 3, we elaborate on our event photo stream segmentation method.

We start by formally defining an event photo stream and what it means to produce

its segmentation. We outline the information that we can derive from a given event

photo stream and proceed to mathematically define the task of event photo stream

segmentation. We then propose the concept of photo taking sessions which we use

as a basis for our method. We detail how we model the event photo stream using

a generative process and describe how we can use the Baum-Welch and Viterbi

algorithms of the hidden Markov model to efficiently find the segment boundaries

in our event photo stream. After our analysis of features and hidden Markov model

structures, we describe our method pipeline, evaluate its performance and discuss

the results.

In Chapter 4, we report on our user study on user behavior and photo layouts

for chapter-based photo organization. Here, we report on novel insights on how

users group their event photos into chapters. We also report statistically significant

results on how chapter-based photo organization affects three photo-related tasks:

storytelling, searching, and interpretation. Additionally, we gathered key insights

on photo layout aspects for chapter-based photo organization.

In Chapter 5, we describe version 2 of our CHAPTRS photo browser. We de-

scribe how our work and findings from the previous chapters manifest themselves

in this end-user application. In particular, we describe practical considerations in

integrating our event photo stream segmentation method in CHAPTRS ver. 2 and

11



how the user study and photo layout findings affected the user interface design.

Using CHAPTRS ver. 2, we constructed a dataset and report on our experience

in using the Mac App Store in Chapter 6. Here we discuss how using the Mac App

Store as a distribution channel allowed us to reach a large pool of potential study

participants and thus build a large dataset of anonymous photo features.

Finally, we conclude in Chapter 7 on our work on event photo stream seg-

mentation for a chapter-based photo organization, where we comment on the main

issues in this topic going forward.
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Chapter 2

Related Work

In this thesis, we identify three main areas of related work. The first is photo

stream segmentation. This thesis explores photo stream segmentation where the

photo stream consists of photos from a single event. While this problem has not

been explicitly addressed in existing literature, we review related works where the

photo stream consists of photos from a collection, comprising of multiple events.

These works seek to identify events or albums within the photo collection. In our

case, we seek to identify moments within the single event. Our research problem

can be seen as a more fine-grain and data-sparse version of the problem addressed

by these existing works.

The second area is personal photography user studies: from how people

manage their printed or digital photo collections to the entire process that people

go through from capturing to sharing of photos. To our knowledge, our user study

is the first to explore chapter-based photo organization. Lastly, we explore the area

of photo layouts in personal digital photo libraries. We identify issues addressed

in photo layouts for event-based photo organization and discuss how they apply to

a photo layout catered for chapter-based photo organization.
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2.1 Photo Stream Segmentation

To our knowledge, the closest work to ours is by Graham et al. (2002). They

posit that people tend to take photos in bursts and these bursts can be identified by

looking at time gaps that are statistical outliers and not part of any burst. Their

event photo stream segmentation method finds segments corresponding to bursts

of photo taking activity. This method was used iteratively to form a hierarchy of

segmentations, which was used to select 25 photos to summarize photos at various

temporal levels (year, month, etc) in their proposed calendar photo browser.

Other photo stream segmentation methods were devised for automatic album-

ing. Most of these methods rely on time information. The simplest method to find

segment boundaries is to check for time gaps that are greater than a fixed threshold

(e.g. average time gap). Loui and Savakis (2003) used a time scaling function and

K-means clustering with K=2 to determine this fixed threshold. Platt et al. (2003)

proposed a method where the threshold becomes adaptive, computed over a sliding

window. Some methods are similarly adaptive, although based on keen observa-

tions instead of thresholding; Zhao et al. (2006) observed that the probability of

an event ending increases as more photos are taken and as the time span increases;

Gargi (2003) observed that a long interval with no photo taking usually marks the

end of an event and that a sharp upward change in the frequency of capture usually

marks the start of a new event. Pigeau and Gelgon (2003) proposed a model-based

incremental unsupervised classification where distinct classifications are built from

both temporal and location information.

Few methods have utilized Exif metadata. Gong and Jain (2007) proposed a

segmentation method based on changes in scene brightness. Mei et al. (2006) pro-

posed a clustering approach using Exif metadata like aperture diameter, exposure

time, and focal length. Their method also used time, location and visual features

such as color histogram, and Tamura descriptor (texture). There are only few oth-

ers that have utilized visual information. Platt et al. (2003) proposed a best-first

model merging method based on color histograms. Cooper et al. (2003) proposed
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an approach based on scale-space analysis of both color and time information.

Most automatic albuming methods utilize time gap information. Because the

time gaps at event boundaries are typically much larger than the time gaps between

photos in an event, these methods work effectively to segment a photo stream

by event. For event photo stream segmentation, where segments are more fine-

grained, the segment boundaries may not be distinguishable with time information

alone. Other information based on Exif metadata and visual information should

be utilized. The data-sparsity of the task however, provides a challenge for the

selection of viable features. We will revisit this issue on features in Chapter 3.

2.2 Personal Photography User Studies

Over the past decade, there have been a number of studies on how people manage—

including organization and sharing—their personal photo collections. Rodden (1999;

2003) has studied how people manage their photo collections, printed or otherwise.

Some findings from his study include: printed photo albums are mostly classified

by event, with one album for each event. Searching a printed photo collection is

typically done for a photo album of a specific event. Even if the search was for a

specific photo, people will try to locate the album containing the photo first before

starting the search. For personal digital photo libraries, people regard the ability

to organize photos into folders as very useful and would arrange them according

to events in a chronological order. People prefer to browse their photos by event

rather than querying. Similar findings were also found by Cunningham and Ma-

soodian (2007). They conclude that browsing, rather than searching, is a more

practical tool for locating photos.

Other studies go beyond how the photos are organized. Kirk et al. (2006)

coined the term “photowork”, i.e. activities done after photo capture but before

sharing. These include reviewing, downloading, organizing, editing, sorting, as

well as filing of photos. Frohlich et al. (2002) conducted a study to establish
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requirements for photo sharing technologies. A recent article by Sandhaus and

Boll (2011) presents a good overview of research in this field of personal photo

collections, including many works that we review in this chapter.

To our knowledge, our work is the first to explore chapter-based photo or-

ganization. In Chapter 4, we report on novel insights on how users group their

event photos into chapters and how chapter-based photo organization affects photo-

related tasks such as storytelling, photo search and event photos interpretation.

2.3 Photo Layouts in Personal Digital Photo Libraries

An effective photo layout is one that presents photos in a way that supports users in

one or more photo-related tasks. Here, we review existing works on photo layouts

for personal digital photo libraries to gather the key aspects they emphasize and the

tasks they support effectively.

While there has been prior work to study layouts for event-based photo or-

ganization, the absence of prior work on photo layouts for chapter-based photo

organization, i.e. layouts to present groups of photos with all groups belonging to

the same event is notable. In event-based photo organization, the groups of photos

belong to different events. The closest work we found was by Graham et al. (2002).

They proposed a hierarchical calendar photo browser to better support search tasks

by presenting a 25 photo summary at various levels of hierarchy of the user’s photo

collection: year, month, event, and also for groups of photos within an event. The

user navigates through the view hierarchy using a tree view in the sidebar.

For event-based photo organization, the most common photo layout is a 2D

grid: photos are ordered chronologically row by row on a grid. Many photo

browsers (Kuchinsky et al., 1999; Mills et al., 2000; Drucker et al., 2004; Mei

et al., 2006) including commercial ones like Picasa and iPhoto adopt this layout to

display photos of an event. A plain grid layout is a simple layout that maximizes

use of the available screen space. Having many photos visible at once allows users
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familiar with the photos to scan them very quickly (Rodden and Wood, 2003).

Photo browsers typically display one event (one grid) at a time, but some photo

browsers relieve users from having to select individual events from the view hierar-

chy by displaying all the events at once: the grids are stacked on top of each other

in chronological order, e.g. Picasa. The layout remains uniform as the grids have

the same number of columns. With this layout, users can browse their events by

simply scrolling. To demarcate the events, each grid has a title bar on top with the

event information. Alternatively, in the timeline view of one photo browser (Mills

et al., 2000), each grid is labeled hierarchically on its left margin by month and

year. In another (Chen et al., 2006), all the photos in the collection are displayed

as one massive grid and event titles are displayed as grid elements to demarcate the

events.

Time Quilt (Huynh et al., 2005), a zoomable photo browser designed to en-

hance search tasks, also displays photos from all events at once. Its layout trades-

off screen space usage for better presentation of the chronological order of the

photos. Photos from each event are displayed in their own grid. The grids are then

displayed chronologically column by column. The number of rows and columns

of each grid follows the aspect ratio of the corresponding thumbnail of the event.

Each grid is replaced with the event thumbnail of the same size and the grid only

becomes visible when the user zooms in.

Some photo browsers do not use a grid layout. TreeBrowser (Chen et al.,

2010) is a photo browser for multiple photo collections. The collections are dis-

played chronologically at the top of the photo browser as a single scrollable row of

thumbnails. The main part of the photo browser displays events from the selected

collection as a tree of depth one. The tree root is the collection thumbnail. Each

leaf corresponds to an event in the collection and is displayed as a single row of

photos.

The works we have reviewed so far have weaved the chronological order of the

photos into two dimensions (e.g. row-by-row) to make better use of screen space.
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However, in interfaces where visualizing the timeline is more important, chrono-

logical order is commonly conveyed as a single dimension in the layout (Plaisant

et al., 1996; Fertig et al., 1996; André et al., 2007). Photo storytelling interfaces

exhibit similar linear structures in their layouts. Here, we highlight three notable

interfaces: the first two are well-cited and the third is a recent contribution to the

field. First is the story-editing environment in FotoFile (Kuchinsky et al., 1999).

Here, users can select photos from an Image Tape at the top of the photo browser

and place them into one of the row of Scraplets in the main part of the photo

browser. Each scraplet displays its photos as a single column. Balabanović et

al. (2000) developed a portable device for sharing and authoring stories. In its in-

terface, the navigation area consists of rows of photo thumbnails. Photos in the

rows are shown in groups of alternating backgrounds to distinguish separate photo

rolls. Recently, Raconteur (Chi and Lieberman, 2010) is a story editing system

that helps users assemble stories from annotated media files. The media files are

arranged in chronological order in a single row.

Some photo browsers were designed to emphasize inter-photo similarity, e.g.

in terms of visual appearance, location, or tag. These photo browsers generally

present more visually interesting and novel layouts. However, the chronological

order of the photos often suffers as a result. For example, PhotoMesa (Beder-

son, 2001) employs quantum treemaps and bubblemaps to display labelled photo

clusters in a grid layout to maximize screen space usage. More recently, Media-

Glow (Girgensohn et al., 2010) uses a spring layout algorithm to help users stack

and retrieve similar photos. PHOTOLAND (Ryu et al., 2010) presents a layout that

places photos on a 2D grid based on an inter-photo similarity measure computed

from temporal and spatial information. The result is a layout that presents photos

from an event as an island of thumbnails.

The works we have reviewed have layouts that emphasize one or more of the

following key aspects: use of view hierarchy, chronological order of event photos,

and maximization of screen space usage. In Chapter 4, we emphasize similar key
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aspects in the three layouts used in our user study.

2.4 Conclusion

In this chapter, we have reviewed work on event photo stream segmentation from

three main areas: photo stream segmentation, personal photography user studies,

and photo layouts in personal digital photo libraries. While we only discuss works

in these three areas, our work on a chapter-based photo organization has appli-

cations in other areas where such an organization is a helpful, if not necessary,

pre-processing step to their tasks.

For example, in the area of automatic photo book creation, some works (Gao

et al., 2009; Xiao et al., 2010) employ a selection process as part of the photo book

creation which could benefit from a chapter-based photo organization. Another

work describes the CeWe Color photo book software (Sandhaus et al., 2008) which

actually employs a time clustering method as part of its process.

We will elaborate on the contributions in each area (photo stream segmentation,

personal photography user studies, and photo layouts) in Chapters 3 and 4. But

first, we will formally define the task of event photo stream segmentation in the

next chapter.
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Chapter 3

Event Photo Stream

Segmentation

Given an event photo stream, we want to find groups of photos in the stream such

that each group corresponds to a photo taking session. The groups should also form

a partition over all the event photos (see Figure 3.1).

We start by formally defining an event photo stream and what it means to pro-

duce its segmentation. In the absence of semantic information, we propose the

concept of photo taking sessions as a basis for automatic event photo stream seg-

mentation.

We then describe how an event photo stream can be modelled by a generative

process and show that in this model, the segmentation solution can be efficiently

found with the Baum-Welch algorithm of a hidden Markov model (Baum et al.,

1970). We then report results from our feature and structure analysis and sub-

sequently, describe further enhancements using probability smoothing and spuri-

Figure 3.1: Photo taking sessions form a partition over the event photo stream.
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Figure 3.2: Given an event photo stream, we can derive two types of features: 1)

Photo Feature, i.e. features about the photos (f
j
i ), and 2) Photo Gap Feature, i.e.

features about the gap between consecutive photos (g
j
i ), where j is a feature index

and i is a photo or photo gap index. The extracted photo and photo gap features

from the event photo stream form a sequence of alternating feature types.

ous solution filtering techniques before concluding with the final pipeline of our

method.

3.1 Alternating Feature Types: Photo and Photo Gap

In our literature review in Chapter 2.1, most photo stream segmentation methods

rely on time information alone. Some incorporate visual features and very few use

features derived from Exif metadata. In this thesis, we organize the different fea-

tures that can be extracted from an event photo stream using the following schema:

Given a sequence of photos, for example in Figure 3.2, we can derive two types of

features1:

1. Photo Feature — i.e. feature about the photo. For example, the visual

information contained in the pixels of the photos, the camera parameters that

tell us how the photos were captured using the camera, as encoded in the

photos’ Exif metadata.

2. Photo Gap Feature — i.e. feature about the gap between consecutive pho-

tos, i.e. the difference between consecutive photo feature values. For exam-

1We evaluated both types of features for our method; See Section 3.9.
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ple, time gap, which is the time difference between capture times of consec-

utive photos.

This observation that the event photo stream features belong to two alternating

types — photo feature and photo gap feature — is novel and forms the basis of how

we formally define the problem and proposed solution to the event photo stream

segmentation task.

3.2 Problem Definition

With the features we extract from the event photo stream, we end up with a se-

quence of vectors with alternating types (see Figure 3.2). From an event photo

stream of N photos, we get a sequence of 2N − 1 vectors, of which N − 1 are

photo gap features whose locations correspond to potential segment boundaries in

the event photo stream segmentation.

We define an event photo stream segmentation X as a sequence of Boolean

variables 〈X1,X2, ...,XN−1〉 corresponding to these potential segment bound-

aries, such that Xk = 1 if there is a segment boundary between photos k and k+1,

and 0 otherwise. Given a sequence of feature vectors S, our task is to find which

gaps between consecutive photos correspond to segment boundaries and which do

not:

f(Xk|S) =



















1 if the gap between photos k and

k + 1 is a segment boundary,

0 otherwise.

(3.1)

3.3 Photo Taking Sessions

The goal of event photo stream segmentation is to find groups of photos corre-

sponding to moments in the event. In Chapter 1, we illustrate this with an example

where moments in a zoo visit event may entail: arriving at the zoo, at the waterfall,
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watching birds feed, birds in a bath, seeing lots of bird food, visiting flamingos,

looking at parrots, petting baby animals, picnic lunch at the park, etc. In the ab-

sence of semantic information however, how do we find these moments in such an

event?

When we view photos from an event, we often make inferences about how

each photo relates to its surrounding photos and how different groups of photos in

the stream fit together to capture different moments in the event. Without seman-

tic knowledge of the event, i.e. we are unfamiliar with the event, we make such

inferences based on the visual appearance and timestamp of the photos.

We refer to a group of photos found through this manual inference process as

a photo taking session, i.e. a period of time devoted to photo taking, producing

photos with similarities in visual appearance, Exif metadata, and timing. We ob-

serve that photo taking sessions correlate well with moments in the event because

whenever a photoworthy moment arises, we raise our camera, capture some photos

in succession, possibly with slight variations in camera settings. Then we wait for

the next moment to arise and repeat the process as part of another photo taking

session.

Thus, while we cannot find moments in the event photo stream using the un-

available semantic information, we can find the photo taking sessions that corre-

late with the moments. This is the basis for our event photo stream segmentation

method.

3.4 Modeling Event Photo Streams With a Generative Pro-

cess

Consider the event photo stream, E, shown in Figure 3.3. E consists of a sequence

of N photos, i.e. 〈p1, p2, ..., pN 〉. Let us assume that E consists of a sequence of M

photo taking sessions, i.e. 〈PTS1,PTS2, ...,PTSM 〉. Unlike N , M is unknown to

us.
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Figure 3.3: An event photo stream consists of a sequence of photos, each belonging

to exactly one photo taking session (PTS). From the photos, we can extract photo

features (f
j
i ) and photo gap features (g

j
i ), where j is a feature index and i is a photo

or photo gap index.

Let every photo in E belong to exactly one PTS in E, i.e. PTSk contains a

sequence of Nk photos, 1 ≤ k ≤ M , such that
∑

k Nk = N , and the set {PTSk}

forms a partition over the set of photos {pi}, 1 ≤ i ≤ N . Like M , the set {Nk}

is also unknown to us because we do not know the alignment between the photos

{pi} and photo taking sessions {PTSk}.

From the N photos, we can extract N photo feature vectors and N − 1 photo

gap feature vectors. More specifically, each PTSk — if Nk is known — would

consist of Nk photo feature vectors and Nk − 1 photo gap feature vectors. Let v

represent a feature vector of either type (photo feature or photo gap feature). Thus,

the feature vectors in PTSk form the set {vl}, |{vl}| = 2Nk − 1, 1 ≤ l ≤ N .

From our definition of a photo taking session in the previous chapter, pho-

tos belonging to the same PTS exhibit feature similarities. In our approach, we

model these similarities with a multivariate Gaussian distribution, parameterised

by a multidimensional mean µ and a diagonal covariance matrix Σ, i.e. Pk(v) =

N (v;µ,Σ). With this model, we are able to capture nuances of the feature similar-

ities in terms of the mean and covariance. This model is generative because given

these two parameters, it can generate feature vectors corresponding to the PTS:
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Figure 3.4: The event photo stream and its constituent photo taking sessions, can

be modelled as a sequence of multivariate Gaussian distributions (Pk). The feature

vectors shown consists of photo features (f
j
i ) and photo gap features (g

j
i ), where j

is a feature index and i is a photo or photo gap index.

Pk(v) = N (v;µ,Σ) =
1

√

(2π)d|Σ|
e{−

1

2
(x−µ)TΣ−1(x−µ)} (3.2)

The event photo stream E, consisting of a sequence of M photo taking ses-

sions, can then be modelled as a sequence of M multivariate Gaussian distribu-

tions: 〈P1, ..., Pk , ..., PM 〉 (see Figure 3.4).

With this framework, the problem of finding the M − 1 segment boundaries

in E is reduced to finding {Pk|∀k, 1 ≤ k ≤ M}, that would best generate the

sequence of feature vectors {vl}, |{vl}| = 2N − 1. In other words, we need to

find:

1. The alignment between the sequence of Pk and the photos in E,

i.e. {Nk|∀k, 1 ≤ k ≤ M}

2. The parameters of Pk that would best generate the feature vectors in E,

i.e. {Pk = N (v;µ,Σ)|∀k, 1 ≤ k ≤ M}

The parameters for a multivariate Gaussian distribution, Pk(v;µ,Σ) can be
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estimated with:

µ =
1

|2Nk − 1|

|2Nk−1|
∑

l

vl (3.3)

Σ =
1

|2Nk − 1|

|2Nk−1|
∑

l

(vl − µ)(vl − µ)T (3.4)

However, because we have M sets of parameters to estimate and we also need

to find the best alignment for the M probability distributions, an expectation-

maximization (EM) algorithm is required.

In the next section, we show how our problem of parameter estimation and

alignment is equivalent to the training of a hidden Markov model (HMM). As such,

we can use the Baum-Welch algorithm (Baum et al., 1970) to effectively find Nk

and Pk,∀k, 1 ≤ k ≤ M and thus find the M − 1 segment boundaries in E.

3.5 The Hidden Markov Model

A hidden Markov model (HMM) is a finite state automaton with stochastic state

transitions and observation emissions (Rabiner, 1989). An HMM assumes the pro-

cess to be Markovian2 and as such, computations with HMMs are very efficient.

Even though a simple probabilistic model, the HMM is a well-developed tool for

modeling observation sequences and has been successfully applied to tasks in do-

mains such as speech recognition (Rabiner, 1989); text segmentation and topic de-

tection (Mulbregt et al., 1998); and information extraction (Freitag and Mccallum,

1999).

3.5.1 Parameters of an HMM

Consider the HMM shown in Figure 3.5. An HMM is fully defined by the following

four parameters:

2This refers to the memoryless property of a stochastic process where the conditional probability

distribution of its next state depends only on its present state and not on the sequence of states before

it.
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Figure 3.5: A hidden Markov model (HMM) with Q states

1. Q = |Si| — the number of states in the model

2. A = {aij} — the state transition probability distribution,

where aij = P (qt+1 = Sj|qt = Si), 1 ≤ i, j ≤ Q

3. B = {bj(vt)} — the observation symbol probability distribution in state j,

where bj(vt) = P (vt|qt = Sj), 1 ≤ j ≤ Q and vt refers to the feature vector

(observation) at time t.

4. π = {πi} — the initial state distribution,

where πi = P (q1 = Si), 1 ≤ i ≤ Q

We shall use the standard compact notation λ = (A,B, π) to represent the

complete parameter set of an HMM, noting that Q can be derived from A,B, or π.

An HMM generates a sequence of observations, e.g. vectors of feature values,

i.e. at time t, the HMM would generate vt. The HMM generates the entire sequence

of observations, 〈v1, v2, ..., vT 〉, by starting at one of its states according to its prior

probability, π. In this state, an observation is generated according to the emission

probabilities of the state, i.e. bj(v1) for state Sj . The HMM then transitions to

one of its states according to its state transition probabilities, A, which depends

only on the current state3. After the transition, another observation is generated

according to the emission probabilities of the new state. The process continues

until all observations have been generated.

3This is true for a standard 1st order HMM with the Markov property.
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3.5.2 The Three Basic HMM Problems

For any given HMM, there are three basic problems with known efficient solutions.

We briefly review the three problems and their solutions here and show in the next

section how solutions to the second and third problems are what we need to perform

our parameter estimation and alignment in event photo stream segmentation.

1. Given the observation sequence O = 〈v1, v2, ..., vT 〉 and HMM λ = (A,B, π),

what is the probability of the sequence given the HMM, P (O|λ)?

2. Given the observation sequence O = 〈v1, v2, ..., vT 〉 and HMM λ = (A,B, π),

what is the most probable state sequence Q = 〈q1, q2, ..., qT 〉 to generate O?

3. Given the observation sequence O = 〈v1, v2, ..., vT 〉, how do we adjust the

model parameters λ = (A,B, π) to maximize P (O|λ)?

For the first problem, since the alignment between state and observation is

unknown, we compute the expected likelihood over all possible state sequences of

length T . We thus find P (O|λ) using the following marginalisation, which can be

computed efficiently in O(Q2T ) using the forward-backward procedure (Rabiner,

1989):

P (O|λ) =
∑

Q

P (O|Q,λ)P (Q|λ) (3.5)

=
T
∏

t=1

∑

i,j

P (vt|qt = Sj)P (qt = Sj|qt−1 = Si) (3.6)

The second problem is also known as the HMM decoding problem because

we are trying to find the best (most probable) state sequence given the observa-

tion sequence and the HMM. This can be computed efficiently using a dynamic

programming algorithm — the Viterbi algorithm (Rabiner, 1989).

The last problem is to adjust parameters of the HMM given the observation

sequence. In other words, how do we train the HMM? For this, we have an efficient
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S2 0 0.5 0.5 0

S3 0 0 0.5 0.5

S4 0 0 0 1.0

Figure 3.6: An example of a Left-Right HMM with 4 states and its corresponding

state transition matrix

expectation-maximisation algorithm called the Baum-Welch algorithm (Rabiner,

1989).

3.5.3 HMM Structures

An HMM can have a variety of structures, depending on how many states it has, Q,

and the transition matrix defined for those states, A. For example, Figures 3.6 and 3.7

show a Left-Right HMM and an Ergodic HMM respectively, along with their tran-

sition matrices.

A Left-Right HMM is an HMM where aside from self-transitions (transitions

from a state to itself), all other transitions go from left to right. This structure has

been used to model time series data where the state sequence of the generative

process follows a particular order. For example in Figure 3.6, when the process is

at State S3, it will not transition to any of the lower-numbered states. This ordering

is the reason for the name, Left-Right HMM. Variations of this structure have been

used in the speech community to model phonemes.

An Ergodic HMM is an HMM where a transition with a non-zero probability

is defined for every possible pair of states. In other words, every state is reachable
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Figure 3.7: An example of an Ergodic HMM with 4 states and its corresponding

state transition matrix
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from every other state (including itself). In Figure 3.7, we see that for 4 states, we

have
(4
2

)

+ 4 transitions. In this structure, the generative process can be at any of

the states at any point in time, but with possibly different probabilities.

In some works, the structure of the HMM is found using a randomized search

strategy based on the Markov chain Monte Carlo (MCMC) algorithm (Xie et al.,

2002). In others, the structure is hand-crafted based on domain knowledge (Freitag

and Mccallum, 1999). In our work, we have adopted the latter approach to make

the most out of our domain knowledge.

Some works have expanded on the basic HMM structure and proposed more

sophisticated models like the hierarchical HMM (Xie et al., 2002) and the coupling

of several HMMs (Brand, 1997).

3.6 HMM for Event Photo Stream Segmentation

To model an event photo stream with an HMM, consider the following semantics

for the HMM. Let the HMM states represent PTSes such that transitions between

states correspond to transitions between PTSes. In other words:

1. Q = |Si| — the number of states in the model

corresponds to the number of PTSes in the event photo stream

2. A = {aij} — the state transition probability distribution

corresponds to the PTS transition probability

3. B = {bj(vt)} — the observation symbol probability distribution in state j

corresponds to the multivariate Gaussian distribution for PTSj .

4. π = {πi} — the initial state distribution

corresponds to the initial PTS distribution

With these semantics, we can use an HMM for event photo stream segmenta-

tion as follows:
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1. Using the Baum-Welch algorithm, we train the HMM using the sequence of

feature vectors from the event photo stream as the sequence of observations.

The Baum-Welch algorithm will find the HMM parameters that will best

generate the event photo stream4.

2. Using the Viterbi algorithm, we can find the best (most probable) PTS (state)

sequence to generate the event photo stream, given the HMM parameters

found using the Baum-Welch algorithm.

3. With the best PTS sequence, we obtain the best alignment between photo and

PTS. For example, if the best PTS sequence obtained from an event photo

stream of 10 photos is 〈PTS1, PTS1, PTS1, PTS2, PTS2,

PTS3, PTS3, PTS4, PTS4, PTS5〉, then we know the alignment between

the photos and the PTSes: The first three photos belong to PTS1, the fol-

lowing two photos belong to PTS2, and so on.

4. With the best alignment, we finally obtain the location of the segment bound-

aries, i.e. the location where adjacent photos belong to different PTSes.

In this simple application of an HMM for event photo stream segmentation,

the HMM states generate feature vectors of a single type, i.e. for any two feature

vectors vl and vk generated by the HMM, ‖vl‖ = ‖vk‖ and the corresponding

elements in vl and vk are of the same feature type, e.e. if the first element in vl is

an aperture diameter value, then the first element in vk is also an aperture diameter

value. Having all the HMM states generate feature vectors of the same type is

typical of a standard HMMs.

In our case, since an event photo stream is comprised of alternating feature

vector types (see Figure 3.2), we have to coalesce each pair of photo feature vector

and photo gap feature vector into a single feature vector (see Figure 3.8). This

simplification causes several issues which we will discuss in the next section.

4The solution found is at a local maxima.
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Figure 3.8: To simplify the feature vectors for the HMM, we coalesce each pair of

photo feature vector and photo gap feature vector into a single feature vector.

3.7 Preliminary Models

We present several preliminary models in this section, neither of which is used in

our final method pipeline (to be described in Section 3.12). These models are de-

scribed here for completion and because they contribute to our understanding of

using an HMM for event photo stream segmentation, as we analyze the shortcom-

ings of each preliminary model. Together, these preliminary models illustrate the

evolution of our approach from a simple Left-Right HMM up to its final form as

an HMM with alternating observation types.

3.7.1 Left-Right HMM

We can use the Left-Right HMM (see Figure 3.6) for event photo stream segmen-

tation by following the semantics described in the previous section, i.e. we model

each PTS with a separate HMM state.

Because each PTS is modelled by a state, the HMM has as many states as there

are PTSes in the event photo stream. Each state can transition to itself, producing
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a sequence of photos of the same PTS, or to the next state, marking a transition to

the next PTS.

One disadvantage of the Left-Right HMM is that we cannot know a priori the

number of states in the HMM, Q, because it relies on the number of PTSes in the

event photo stream. This is similar to the problem of determining the number of

clusters, k, in using the k-means clustering algorithm and we can adopt similar

strategies to find Q, e.g. by finding Q that balances the complexity of the model

(number of HMM parameters) and the goodness of fit (log likelihood of the obser-

vations given the HMM).

3.7.2 Ergodic HMM

While strategies exist to determine the number of states for the Left-Right HMM,

the resulting complexity from having too many parameters — as a result of having

the number of states equal to the number of PTSes — will aggravate data sparsity

issues in training the parameters.

To resolve this issue, we can use an Ergodic HMM instead, taking advantage

of our observation that some PTSes produce photos with similar features.

With an Ergodic HMM (see Figure 3.7), each state now corresponds to a canon-

ical type of PTS, representing a group of PTSes that exhibit similar features. While

we still have to find the number of states in this Ergodic HMM, the search space is

smaller than finding the number of states in the Left-Right HMM, especially when

the event photo stream has many PTSes.

3.7.3 Boundary HMM

With the Left-Right or Ergodic HMMs, we observe that when the model transitions

from one PTS to another, the associated time gap boundary, i.e. the time gap at the

boundary between PTSes, should not be an observation of either PTSes. The time

gap boundary is merely an artefact of transitioning between PTSes. Consider the

example in Figure 3.9. Time gaps tg1, tg2, and tg3 occur in PTS1. Time gaps tg5
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indicative of the photo taking 
session in sub-event 1

tg1 tg2 tg3 tg5 tg6

sub-event 1 sub-event 2

indicative of the photo taking 
session in sub-event 2

tg4

??

Figure 3.9: While tg1, tg2, and tg3 are indicative of the PTS in sub-event 1 and

tg5 and tg6 are indicative of the PTS in sub-event 2, the time gap boundary tg4 is

indicative of neither PTS.

and tg6 occur in PTS2. The time gap boundary tg4 however, is in neither PTS. So

while tg1, tg2, and tg3 are indicative of the state corresponding to PTS1 and tg5

and tg6 are indicative of the state corresponding to PTS2, the time gap boundary

tg4 corresponds to neither PTS and is indicative of neither state. As such, when

time gaps are used to model PTSes in the Ergodic HMM, the states will incorrectly

use time gap boundaries as samples to train the multivariate Gaussian distributions.

From this observation, the Left-Right and Ergodic HMMs can not correctly

handle time gap information and a new HMM topology is needed to properly model

time gaps at sub-event boundaries (PTS transitions). We introduce a new HMM

structure, which we term a boundary HMM, that model PTS transitions as separate

HMM states. We refer to these states as boundary states and the previously defined

states as PTS states.

Note that as Figure 3.9 illustrates, this model only makes sense for photo gap

features such as time gap and not for the coalesced feature vectors described in

Figure 3.8 because we would be incorrectly aligning (attributing) photo features to

a boundary state.

To model PTS transitions, one boundary state needs to be positioned between

every pair of PTS states so that the HMM is forced to transition into the boundary

state before transitioning into the other PTS state. So for 3 PTS states, we need

6 boundary states (PTS1 → PTS2, PTS1 → PTS3, PTS2 → PTS1,
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Figure 3.10: Boundary hidden Markov model for an event photo stream

PTS2 → PTS3, PTS3 → PTS1, PTS3 → PTS2). The boundary state for

each pair of PTS states needs to be distinct because the values that can constitute

a time gap boundary depend on the distribution of the time gaps in the sub-event

before as well as sub-event after the boundary. This is akin to the sliding window

adaptive threshold methods reviewed in Chapter 2. However, to simplify the model

and to reduce the effects of data sparseness, we only used one boundary state for

each PTS state, not each pair. The structure of our boundary HMM is shown in

Figure 3.10. A PTS state can only transition into one boundary state, but a bound-

ary state can transition into any PTS state. So in effect, any PTS can transition to

any PTS. The boundary states also have self loops so that the HMM can produce

sub-events with a single photo.

3.7.4 Interweaved HMM

All three preliminary HMM models we have discussed so far have their own short-

comings. The Left-Right HMM has parameters that scale linearly with the number

of photo taking sessions which is also unknown to us. Both the Ergodic and Bound-

ary HMMs alleviates this problem but to avoid feature alignment issues (see Fig-

ure 3.11), coalesced feature vectors cannot be used and the Ergodic HMM should

only be used with photo features and the Boundary HMM with photo gap features.

36



1 2 3 4 6

1 2 3 6

sub-event 1 sub-event 2

4

Figure 3.11: Forced alignment coalesces all feature types into a single vector for

each photo, causing problems for the Ergodic HMM. The Boundary HMM suffers

from a similar issue.

The primary issue with this forced alignment is in estimating the Gaussian

parameters of the HMM states. When the time gap feature is used for the Ergodic

HMM, time gap values that correspond to sub-event boundaries (e.g. tg4 in Figure

3.11) will be aligned to the sub-events before the time gaps and erroneously used

to estimate the Gaussian parameters for those sub-events. The problem also exists

when we use context or visual features with the Boundary HMM. Feature values

corresponding to photos near to sub-event boundaries will be aligned to boundary

states instead of PTS states in the boundary HMM.

On the other hand, avoiding the forced alignment and not coalescing feature

types means that we cannot make use of all the available features, which is just as

unacceptable: when using the Boundary HMM, we cannot use context and visual

features. When using the Ergodic HMM, we cannot use time gaps. We thus need

a way to benefit from both models, but yet have each model use only the features

that its designed for. In the literature (Brand, 1997), there are several ways to

combine HMMs, depending on the type of coupling between the combined HMMs

(see Figure 3.12):

• Linked HMMs: There is coupling between the HMMs for every pair of

synchronous states. This is equivalent to a Cartesian product HMMs with a

bias probability on each joint state.
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Figure 3.12: Varieties of couplings for the different ways of combining HMMs

• Hidden Markov decision trees: There is a cascade of synchronous condi-

tional probabilities down an ordered hierarchy of HMMs. This is ideal when

there are constraints from a “master” HMM that need to be imposed down

the hierarchy.

• Coupled HMMs: The coupling between HMMs occur across time slices.

This is appropriate for processes that influence each other asymmetrically

and possibly causally.

None of the above methods are however, suitable for our case; the dependencies

between the boundary and Ergodic HMMs occur both within time slices and across

time slices. Consider the partial state trellis in Figure 3.13b. In the first time slice,

t = 1, the PTS1 state of the boundary HMM (DPTS1
) is dependent on the PTS1

state of the Ergodic HMM (EPTS1
), i.e. if the probability that the Ergodic HMM

is in PTS1 at t = 1 is high, then the probability that the boundary HMM is in

PTS1 should be higher than the probability that the boundary HMM is in any

other PTS state (i.e., PTS2, PTS3). Similarly, in the next time slice, t = 2, the

PTS1 state of the Ergodic HMM is dependent on the PTS1 state of the boundary

HMM. Dependencies for the remaining time slices follow similar reasoning.

Our combined HMM, which we term an Interweaved HMM, is shown in Figure

3.13a. In this figure, we can see that the dependencies are encoded as follows:

1. EPTS → DPTS
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a) Interweaved Boundary-and-Ergodic HMMs b) Partial state trellis example with the interweaved HMMs

Figure 3.13: The figure in (a) depicts interweaved boundary and Ergodic HMMs. The double-headed arrow is a shorthand for transitions

coming from and going to the two states. An example of using these interweaved HMMs can be seen by following the partial state trellis

shown in (b). The dashed line separates states from the boundary HMM and ones from the Ergodic HMM.
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Figure 3.14: Posterior probability of the state sequence of the Interweaved HMM

2. EPTS → DB

3. DPTS → EPTS

4. DB → EPTS

The posterior probability of the state sequence in both HMMs can thus be com-

puted according to the equation in Figure 3.14.

To efficiently solve the Interweaved HMMs (computing P (O|λ), most proba-

ble state sequence, and model learning), we implemented an algorithm similar to

the N-heads dynamic programming algorithm proposed for Coupled HMMs. This

algorithm is a deterministic O(T (CN)2) approximation for MAP state estimation

that samples the highest probability paths via expectation maximization (Brand,

1997).

With this framework, we can combine any number of HMMs together. In our

case, we chose to combine one boundary HMM and one Ergodic HMM. Alterna-

tively, we can also combine one boundary HMM and several Ergodic HMMs, one

for each context / visual feature.

In our experiments however, this HMM structure produced poor results and

most of the time, the log likelihood during parameter learning did not converge

and strayed to negative infinity instead. We suspect that the complexity of the
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HMM structure due to the number of parameters that had to be learned makes the

parameter estimation problem intractable given the data sparsity problem of our

task.

3.8 HMM with Alternating Observation Types

Here we describe the model we use in our final method pipeline. While the Inter-

weaved HMM solves the feature vector alignment problem by having one HMM

for each feature vector type, i.e. the Ergodic HMM for photo features and the

Boundary HMM for photo gap features, the model described in this section solves

the problem by modelling alternating observation types in a single HMM. This

solves the alignment issues of the Ergodic and Boundary HMMs; and since we

only have a single HMM, the parameter estimation is also much simpler and more

tractable than for the Interweaved HMM.

To find which gaps between consecutive photos correspond to segment bound-

aries, this approach takes the view that an event photo stream is the result of a

stochastic process that generates feature vectors, consisting of a set of foreground

and background models. The foreground models generate the feature vectors that

we want to find, i.e. the photo gap feature vectors corresponding to segment

boundaries. The remaining models are background models that generate the sur-

rounding feature vectors, i.e. photo feature vectors or photo gap feature vectors

that do not correspond to segment boundaries.

To generate the event photo stream, the process emits alternating photo feature

and photo gap feature vectors from the background models. At some point, the

process switches to a foreground model at a segment boundary before switching

back to a background model. This process continues until the end of the event

photo stream (see Figure 3.15).

In this process, feature vectors in each photo taking session is generated by a

pair of background models: one background model for photo features and another
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Figure 3.15: Our model views an event photo stream as the result of a stochastic

process consisting of a set of foreground and background models. In the above, the

first photo taking session consists of two photos. The time gap, tg2, corresponding

to the segment boundary between photo 2 and photo 3, is generated by the fore-

ground model, F1, of the stochastic process. The remaining models shown are the

background models, Bi.
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for photo gap features. For example in Figure 3.15, feature vectors in the photo

taking session consisting of photos 1–2 are generated by the pair B1 and B3. This

pair could generate feature vectors for other photo taking sessions in the stream.

Suppose feature vectors in the photo taking session consisting of photos 6–10 are

also generated by B1 and B3. The feature vectors in the two photo taking ses-

sions, i.e. photos 1–2 and photos 6–10, would then follow the generated feature

distributions of B1 and B3. For example, the feature distributions can be indica-

tive of photos that are taken a few seconds apart, under good lighting conditions,

at a medium distance from the participants, with a similar background view, etc.

Similarly, other photo taking sessions are generated by other pairs of background

models with their own feature distributions.

With our concept of foreground and background models, the simplest HMM

structure consists of three states: two states for the pair of background models and

one state for the foreground model. This 3-state HMM is shown in Figure 3.16a.

For two or more pairs of background models, we can use the 3-state HMM as a

basic building block to form larger HMMs. Figure 3.16b shows an HMM with two

pairs of background models: (B1, B3) and (B2, B4).

Since the event photo stream consists of alternating feature types, our HMM

has two types of states to generate each of the feature types. In Figures 3.16a and b,

only states B1 and B2 generate photo features. The remaining four states generate

photo gap features. Of these four states, F1 and F2 are the foreground models

that generate photo gap features corresponding to segment boundaries. All states

model their emissions with a single Gaussian distribution per dimension to simplify

parameter estimation. With the state transitions in this structure, the HMM will

alternatingly transition from a photo feature state to a photo gap feature state, thus

generating alternating photo and photo gap feature vectors.
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Figure 3.16: Grey HMM states generate photo features, while white HMM states

generate photo gap features. States F1 and F2 represent foreground models that

generate feature vectors corresponding to segment boundaries. States Bi represent

background models that generate the surrounding feature vectors. The HMM in (a)

has one pair of background models while the HMM in (b) has two pairs.

3.9 Feature and HMM Structure Analysis

Using our final model, the HMM with alternating observation types, we experi-

mented with a wide variety of features to model PTSes, drawn from three features

types: temporal, context, and visual.

Temporal. Like many inter-event photo organization methods discussed in

Chapter 2, we employ time gaps in our study. We believe that time gap is a very

important feature because unlike other features, time gap is not a feature of a photo,

but in between photos, making it an excellent reflection of how PTSes change from

one sub-event to another.

Context. The Exchangeable Image File Format (Exif) specifies the camera

parameters stored in the image file of a digital photo (JEITA, 2002). Some of

these parameters provide context information on how the photo was taken. For

example, focal length is related to the camera’s optical zoom and determines the

magnification at which distant objects appear in the photo; depth of field affects the

distances which objects would appear sharp in the photo and is increased with in-

creasing aperture diameter, which measures the size of the opening through which

light enters the camera. We believe that these parameters are features indicative of

PTSes. In our study, we employ three context features: focal length, aperture di-

ameter and the LogLight metric, a measure of the ambient light in an image (Sinha

and Jain, 2008), derived from the exposure time, aperture area, ISO speed rating,
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Type Name # Dims

Temporal TG Time Gap 1

Context

FL Focal Length 1

AD Aperture Diameter 1

LL LogLight 1

Visual

CH Color Histogram 8

GA Gradient Direction Autocorrelogram 16

SD SIFTdiff 1

Table 3.1: Feature Types

as well as focal length.

Visual. We evaluate three visual features in our approach. The first two are

color histogram and gradient direction autocorrelogram. According to a recent

study in similarity-based photo organization on a 2D virtual canvas (Strong and

Gong, 2009), the combination of these two features performs best at low dimen-

sions, an important criteria given our data sparseness problem. For the third visual

feature, we propose a measure of visual difference between consecutive photos

based on SIFT (Lowe, 2004) we call SIFTdiff. A single value is computed for each

pair of consecutive photos by averaging the Euclidean distances between the best

matching keypoint pairs from the two photos.

To evaluate the segmentation results, we used the error rate metric, Prerror,

proposed by Georgescul et al. (Georgescul et al., 2006). This metric improves on

WindowDiff, previously used by Naaman et al. (Naaman et al., 2004) to evaluate

their automatic albuming method. A lower Prerror indicates better agreement with

the manually segmented ground truth; a score of 0 indicates perfect agreement.

Prerror is an average of the miss and false alarm rates. As such, a method that

proposes no segment boundaries or proposes segment boundaries everywhere will

have an error rate of about 0.5.

We collected 28 event photo streams of various event types (see Table 3.2), e.g.
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Set #Photos Time span Event Source

1 301 4h 54m wedding Flickr

2 321 7h 37m wedding Flickr

3 260 6h 53m wedding Flickr

4 209 5h 50m wedding Flickr

5 94 24h 47m
celebration

C2

6 132 12h 9m

7 209 10h 22m

travel
8 135 8h 59m

9 160 6h 55m

10 188 9h 58m

11 173 16h 27m

travel12 236 15h 8m

13 125 13h 46m

14 177 13h 25m

travel15 224 11h 47m

16 105 5h 47m

17 149 1h 29m beach

18 150 2h 14m river

19 363 8h 42m concert C3

20 195 9h 18m

travel C421 117 13h 37m

22 157 14h 36m

23 162 2h 16m travel
C5

24 214 4h 5m zoo

25 162 3h 15m
wedding C6

26 131 8h 34m

27 207 10h 23m travel
C7

28 132 16h 34m travel

Mean 185.3 9h 38m – –

Median 167.5 9h 8m – –

Table 3.2: We collected 28 photo sets with a variety of event types. Note that the

calculated medians and means shows that the duration of the photo sets is fairly

long and the number of photos per set is fairly large.
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wedding, travel, cruise, concert, etc. Four event photo streams are from publicly

available Flickr photo sets5. The remaining 24 were obtained from seven volun-

teers. In total, our evaluation data set consists of 5188 photos, with an average and

median of 185 and 168 photos respectively.

For the four streams from Flickr, the photo owners were not available to anno-

tate the sets. As such, the first author manually segmented the photos to provide

ground truth. For the remaining 24, we asked the contributors — as photo owners

— to provide the ground truth. This practice is in line with many photo stream

segmentation works we reviewed in Chapter 2, which also require ground truth for

their evaluation.

To find the best feature combination, we enumerated all possible feature com-

binations from Table 3.1. For our HMM, we need to have at least one photo feature

and one photo gap feature. Thus, with five photo features, we have
∑5

i=1

(5
i

)

= 31

combinations. With two photo gap features, we have 2 combinations. Together,

they make for 62 different feature combinations for our HMM. We also enumer-

ated over a range of possible number of HMM states. Since the number of states in

our HMM is in multiples of 3, we searched in the space of {3, 6, 9, 12, 15} states.

Our experiment is conducted as follows: for each set (28), we used our HMM

with alternating observation types and iterated over all possible feature combina-

tions (62) and for each feature combination, we iterated over the range of number

of HMM states (5).

The feature combination ranking based on averaging the resulting Prerror over

the range of number of HMM states over all photo sets is shown in Table 3.3.

Here we can see that of the two photo gap features, SIFTdiff and time gap (TG),

only the latter appears in the top five feature combinations. We also note that the

LogLight feature, which is a measure of scene brightness, appears in all the top five

positions. Aperture diameter and color histogram also appears prominently. On the

other hand, the gradient direction autocorrelogram, that has the most number of

5Flickr photo set ID: 847825, 1068265, 72157601961445922, and 72157603826353321.
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dimensions amongst our list of features, i.e. 16 dimensions, occupies the bottom

half of the list. Most notably, focal length is absent from the list. On further

investigation, we found that the focal length values do not vary by much (low

standard deviation) in our dataset, making it a poor feature for our approach.

The number of HMM states ranking based on average the resulting Prerror

over all possible feature combinations and all photo sets is shown in Table 3.4.

The table shows that the best performing HMM is the one with 6 states. From this

result, we looked at the feature combinations again and looked for the best feature

combination for the HMM with 6 states. The resulting rank is shown in Table 3.5.

From this table, we conclude that our HMM should have 6 states and it should use

a feature combination that on hindsight, consists of simple features that work best

under our task constraint of data sparsity6:

1. Aperture Diameter – a photo feature measuring the size of the opening through

which light enters the camera

2. LogLight (Sinha and Jain, 2008) – a photo feature measuring the ambient

light in an image

3. Color Histogram – a photo feature measuring the color distribution in an

image, and

4. Time gap – a photo gap feature measuring the time difference between cap-

ture times of consecutive photos.

3.10 Smoothing HMM Parameters

In Section 3.6, we described how we are using the Baum-Welch and Viterbi algo-

rithms as a means to solve the alignment and parameter estimation problem we out-

lined in Section 3.4. In this approach, we train the HMM, using the Baum-Welch

6In Section 5.3, we explain how our photo browser, CHAPTRS ver. 2, handles photos with missing

features in its implementation of our event photo stream segmentation algorithm.
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Rank Feature Combination Average Prerror

1 LL, TG 0.317

2 AD,LL, TG 0.318

3 AD,LL,CH, TG 0.321

4 AD,LL,CH,GA, TG 0.322

5 LL,CH,GA, TG 0.323

Table 3.3: Ranking of feature combinations by averaging Prerror over all num-

ber of states ({3, 6, 9, 12, 15}). See Table 3.1 for the description of each feature

abbreviation.

Rank Number of HMM States Average Prerror

1 6 0.534

2 3 0.544

3 9 0.554

4 12 0.572

5 15 0.583

Table 3.4: Ranking of number of HMM states by averaging Prerror over all feature

combinations. See Table 3.1 for the description of each feature abbreviation.

Rank Feature Combination Prerror

1 AD,LL,CH, TG 0.255

2 AD,CH, TG 0.265

3 AD,LL,CH,GA, TG 0.265

4 LL,CH,GA, TG 0.268

5 AD,LL,GA, TG 0.271

Table 3.5: Ranking of feature combinations for HMM with 6 states. See Table 3.1

for the description of each feature abbreviation.
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algorithm, with the feature vectors from the given event photo stream because we

want to find the best parameters to generate these very feature vectors.

As there is only one such event photo stream, the data sparsity problem ensues.

As a generative model, an HMM typically needs to be trained with large amounts

of data. A possible alternative would be to train the PTS states individually. This

however, requires training data for each PTS state, which we also do not have be-

cause that would require collecting a large number of event photo streams, finding

their ground truth segmentation, and labelling each PTS.

To resolve this situation, we turn to smoothing as a way to alleviate data spar-

sity by interpolating (smoothing) the parameters learnt from the given event photo

stream with parameters learnt from a large number of event photo streams. Smooth-

ing essentially allows us to account for probabilities of missing observations, ob-

servations that did not occur in the given event photo stream.

In automatic speech recognition (Lee, 1989), smoothing has been used to alle-

viate data sparsity issues associated with lack of data for speaker-dependent speech

recognition. The HMM parameters are smoothed with those learnt from a speaker-

independent dataset. More recently (Freitag and Mccallum, 1999), a smoothing

method called shrinkage is also used to alleviate data sparsity issues with HMM

parameter learning.

The smoothing method we adopt is the deleted interpolation method (Jelinek

and Mercer, 1980) used in automatic speech recognition. Deleted interpolation

works similar to k-fold cross-validation where the dataset is divided into k equal-

sized portions and one portion is used to learn the smoothing coefficients (coeffi-

cients for interpolation) while the remaining k−1 portions are used as the smooth-

ing HMM parameters to be interpolated with the HMM parameters learnt from

the given event photo stream. This is repeated k times and the final smoothing

coefficients is simply an average of the k sets of coefficients.
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3.11 Filtering Spurious Solutions

So far, we have addressed the problem of data sparsity for the HMM. Another

common pitfall for HMM-based methods has to do with the parameter initializa-

tion. For learning HMM parameters, the Baum-Welch algorithm is an efficient EM

algorithm that finds a local maximum in the solution space. It does not guarantee

that this solution is the best solution. The common practice is to iterate a handful

of times and each time, initialize the parameters differently. The idea is to explore

more of the solution space and possibly find different local maximums. Since the

structure and thus the complexity of the HMM is the same, the only difference be-

tween the different iterations is the initial parameters for the HMM. So, the better

estimate for the best solution is simply the solution that corresponds to the best of

all the found local maximums.

Unfortunately, some of these solutions may be spurious solutions, i.e. they

do not provide good HMM parameters even though the log likelihood is the local

maxima (or even the best of several local maximums). This can be caused by a

variety of factors but mainly due to the HMM parameters overfitting the training

data.

To filter out spurious solutions, we check the solutions for indications of over-

fitting by looking at the state distribution, i.e. the number of times each state was

visited in the state sequence of the solution. We assumed that an acceptable solu-

tion is one where:

1. For each feature type (photo feature and photo gap feature), the number of

visits to the background states are balanced, i.e. in the HMM depicted in

Figure 3.16b,
|B1|
|B2|

≈ 1 and
|B3|
|B4|

≃ 1.

2. The pairs of background states are positively correlated, i.e.
|B1|
|B3|

= kB2

B4
,

where k is a positive real number.
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Figure 3.17: We use a separate set of event photo streams (DATASET) to alleviate

data sparsity in the event photo stream we want to segment (TARGET). All photo

streams are unlabelled and unsegmented. The four inputs are needed to perform

the Viterbi algorithm with deleted interpolation (Lee, 1989; Jelinek and Mercer,

1980).

3.12 Final Pipeline

Having gone through various aspects of our approach: features, structure, training,

smoothing, and filtering of spurious solutions, in this section we outline the entire

process.

Let us refer to the given event photo stream we want to segment as the TARGET

photo stream. This photo stream is unlabelled and unsegmented. Let us then

refer to the training data of unlabelled, unsegmented event photo streams as the

DATASET photo streams. We note that while the term “training data” typically

implies that the data is labelled, that is not the case here. We refer to this data as

training data because it is used to train the parameters of the HMM.

First (see Figure 3.17), an HMM is trained using the DATASET photo streams.

We call this the DATASET HMM. Parameters from this HMM is then used to ini-

tialize the parameters of a second HMM, the TARGETHMM, which is trained with

the TARGET photo stream. In its training, the TARGETHMM parameters converge

when they maximize the TARGET HMM’s probability of generating the TARGET

photo stream feature vectors. To determine the TARGET HMM’s state sequence in

generating the given feature vectors with maximum probability, we use the Viterbi

algorithm (Rabiner, 1989) with deleted interpolation, a smoothing technique that

finds the smoothing parameters between two distributions depending on how well-

trained each distribution is. We use deleted interpolation, as is typical in speech

recognition (Lee, 1989), to alleviate data sparsity by smoothing the parameters of

the TARGETHMM with parameters from the DATASETHMM, which was trained
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with much more data. Deleted interpolation is a slow process and the execution

time of our method is primarily spent on this step. In Section 5.3, we outline sev-

eral practical optimizations implemented by our photo browser, CHAPTRS ver. 2,

to alleviate this issue. Using the evaluation data set described in the next section,

the average execution time was reduced from 134.9 seconds to 1.9 seconds.

Finally, with the state sequence we can determine which photo gap feature vec-

tors were generated by the foreground models, and hence correspond to segment

boundaries. A more detailed description is outlined in Figure 3.18.

3.13 Evaluation and Analysis

In our evaluation, we assess the usefulness of our approach extrinsically, by mea-

suring its performance for event photo stream segmentation. We hope to answer

two primary questions:

1. Does modeling PTSes help event photo stream segmentation? This valida-

tion is the primary goal of our evaluation. Favorable results would indicate

that PTSes do correlate with moments in the event and that these PTSes can

be modeled from the consistencies within sub-events.

2. How do existing methods (including automatic albuming methods) perform

for event photo stream segmentation? In the introduction of this thesis in

Chapter 1, we argue that the task of event photo stream segmentation and

the task of automatic albuming are different, with the former being more

challenging due to issues of data sparsity, indistinct time gaps, and visual

similarities. We explore the validity of our argument by applying existing

automatic albuming methods and comparing their performance for our task.

As baselines (see Table 3.6), we have implemented the cluster tree event photo

stream segmentation algorithm (Graham et al., 2002) and five automatic albuming

algorithms from Chapter 2: fixed threshold (Platt, 2000), best-first model merg-

ing (Platt et al., 2003), adaptive threshold (Platt et al., 2003), K-means (Loui and
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Figure 3.18: Complete pipeline of our automatic event photo stream segmentation method

5
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Baseline Method Feature Used

Fixed threshold (Platt, 2000) Time gap

Adaptive threshold (Platt et al., 2003) Time gap

Cluster Tree (Graham et al., 2002) (event photo

stream segmentation)

Time gap

K-means (Loui and Savakis, 2003) Time gap

Event ending probability (Zhao et al., 2006) Time gap

Best-first model merging (Platt et al., 2003) Color histogram

Table 3.6: Baseline Methods

Savakis, 2003), and event ending probability (Zhao et al., 2006). These baselines

provide us with a variety of methods for comparison: heuristic, probabilistic, hi-

erarchical, visual-based, and the state-of-the-art event photo stream segmentation

algorithm.

For the best-first model merging baseline, we used the number of sub-events in

the ground truth as the threshold for its termination condition, a necessary parame-

ter for this method. While this gives this baseline an unfair advantage, as we shall

see later, the baseline still does not perform very well.

As the evaluation metric, we used the error rate metric, Prerror, just as we did

in Section 3.9 for our feature and HMM structure analysis. We also used the same

dataset here. Results are shown in Figure 3.19.

1. Does modeling PTSes help event photo stream segmentation? — Our

method had the lowest error rate overall. Our method (with smoothing and fil-

tering) is statistically significantly better than all the baseline methods (p < 0.05).

All versions of our method have the lowest miss rate among all methods we stud-

ied, but the highest rate of false alarms. Looking at the figure however, our method

gives the most balance between misses and false alarms. Furthermore, we believe

that for end users, having a low miss rate is more valuable than having a low false

alarm rate. To correct a false alarm is a one-step process of removing the incorrect
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Figure 3.19: Comparison between our method and the baselines, averaged over all event photo streams, in terms of miss rate, false alarm

rate, and error rate, against ground truth segmentations (smaller numbers / shorter bars are better)

5
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segment boundary. But to correct a miss, the user must first realize that there is a

miss, then figure out the position of the segment boundary.

Why does our method produce more false alarms? We believe it is produced

during the Viterbi algorithm when the HMM — with its trained parameters — in-

correctly finds that transitioning to a foreground model (e.g. transitioning from B1

to F1 in Figure 3.16b) has a higher probability than transitioning to a background

model (e.g. B3). One possible reason for the lower probability is the lack of train-

ing data for the feature vectors corresponding to the false alarms. A more likely

reason is however, the lower accuracy associated with training the HMM without

labelled data. Nonetheless, the error rate was computed by penalizing misses and

false alarms equally. In this regard, our method outperformed all the baselines.

Table 3.7 shows a more detailed description of how our method’s performance

(with smoothing and filtering) compares with the best baseline for each method, as

measured by Prerror. Our method performed better than the best baseline for 22

of the 28 photo sets in our dataset. We also show the number of photos and the

number of sub-events (as provided by the ground truth) for each set, to show that

there is no pattern related to photo set size or number of sub-events in the six sets in

which our method performed the least. Instead, we found that the low performance

of our method in these six sets are primarily caused by a mismatch between the

photo owner’s subjective segmentation preference based on the semantics of the

event and the segmentation that can be derived from the available features of the

event photo stream.

We observe cases where our method produces boundaries at locations where

the time gap is large and/or there are color differences in the adjacent photos. Nev-

ertheless, these boundaries are incorrect according to the ground truth. For exam-

ple, the lowest performing set, Set 167, actually only had 8 errors in total: 4 false

alarm errors 4 miss errors. Of the 4 false alarm errors, 2 have large time gaps (166

7We have obtained permission from the photo owners to include some of their photos in this

thesis.
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seconds and 193 seconds in the 3rd and 4th error in the figure) and color differ-

ences that caused our method to produce the incorrect sub-event boundaries (see

Figure 3.20). For the remaining 2 false alarm errors, the color differences, but not

the time gap values, caused the incorrect sub-event boundaries. For the 4 miss er-

rors, while 3 are legitimate errors, the 4th miss error is purely a matter of subjective

preference, as the time gap is only 19 seconds apart and the adjacent photos look

very similar to each other, as can be seen in Figure 3.21.

2. How do existing methods (including automatic albuming methods) perform

for event photo stream segmentation? — The best baseline is the state-of-the-

art cluster tree event photo stream segmentation algorithm. The best-first model

merging method which utilizes visual information alone did not perform well and

ranked fourth place. This was caused by a relatively high miss rate, suggesting that

visual similarities amongst the photos hinder the method from finding any segment

boundaries. The adaptive threshold method which is a simple and well-known au-

tomatic albuming method, performed worse than the simplest baseline — the fixed

threshold method — when used to segment event photo streams. Methods that rely

on heuristics such as the K-means and the event ending probability methods per-

formed the worst, finding very few segment boundaries, resulting in very high miss

rates and correspondingly high error rates.

3.14 Conclusion

To help make large event photo streams more manageable, we proposed a method

for event photo stream segmentation, i.e. the process of finding contiguous groups

of photos from an event photo stream, each of which corresponds to a photo-worthy

moment in the event (Gozali et al., 2012a). Our model leverages our observation

that photo streams exhibit alternating photo and photo gap feature types. We use

it to formulate the problem and the structure of our proposed HMM. We motivated

our final model, the HMM with alternating observation types, by describing the
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1st error:

2nd error:

3rd error:

4th error:

Figure 3.20: The 4 false alarm errors in Set 16 and its surrounding photos. The

number shown between photos correspond to time gap values (seconds). The col-

ored lines indicate sub-event membership, i.e. photos on the same line belong to

the same sub-event. The first red line shows the ground truth while the second blue

line is produced by our method. False alarm errors are circled in black.
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1st error:

2nd error:

3rd error:

4th error:

Figure 3.21: The 4 miss errors in Set 16 and its surrounding photos. The number

shown between photos correspond to time gap values (seconds). The colored lines

indicate sub-event membership, i.e. photos on the same line belong to the same

sub-event. The first red line shows the ground truth while the second blue line is

produced by our method. Miss errors are circled in black.
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Set Number of photos Number of ground truth sub-events ∆Prerror

1 301 73 0.142

2 321 77 0.014

3 260 42 0.002

4 209 68 0.003

5 94 13 -0.045

6 132 23 0.025

7 209 47 0.030

8 135 42 0.007

9 160 24 0.008

10 188 37 0.026

11 173 46 -0.035

12 236 62 0.078

13 125 26 0.066

14 177 41 0.052

15 224 50 0.013

16 105 20 -0.097

17 149 41 0.017

18 150 45 0.007

19 363 18 -0.025

20 195 40 -0.040

21 117 46 0.077

22 157 48 -0.063

23 162 20 0.061

24 214 56 0.016

25 162 40 0.007

26 131 40 0.022

27 207 44 0.012

28 132 52 0.067

Table 3.7: Comparison between our method (with smoothing and filtering) with the

best baseline for each photo set. For each set, the ∆Prerror is shown. A positive

number indicates that our method performed better.
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drawbacks of several preliminary models. We performed a thorough feature and

structure analysis to determine the best feature combination and number of HMM

states to use for our model. We then described how the HMM can be trained with-

out labelled data and how we addressed the issue of data sparsity and parameter

initialization with deleted interpolation smoothing. We also outlined how spurious

solutions can be filtered out by looking at the HMM state distributions.

In the evaluation, we showed that many existing photo stream segmentation

methods are unsuitable for our task. While our method produces more false alarms,

a deeper analysis reveals that this is primarily caused by the subjectivity of the

ground truth segmentations provided by the photo owners. Overall, our method

performed better than all baselines, including the state-of-the-art cluster tree algo-

rithm, with statistical significance.
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Chapter 4

Photo Organization Study and

Photo Layout Study

The second and third component of this thesis address the user behavior and layout

presentation for a chapter-based photo organization. For this, we conducted a user

study to explore the following three questions:

1. How do people organize their photos in each event?

2. How does chapter-based photo organization affect photo-related tasks such

as storytelling, searching, and interpretation tasks?

3. What photo layout aspects are important for chapter-based photo organiza-

tion?

In the following sections, we describe the photo layouts used for the study, the

participant demographics, photo sets used in the study, the task descriptions, and

safeguards for validity, before going into the results and discussion.

4.1 Photo Layouts Used for Study

For this study, we developed the first iteration (ver. 1) of our chapter-based photo

browser, CHAPTRS, with four layouts for displaying photos from a single event
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(see Figures 4.1, 4.2, 4.3, and 4.4). The first is our baseline, a plain grid layout

commonly used by commercial photo browsers and offers no chapter-based photo

organization. The other three layouts present chapter-based photo organizations

but each emphasizes on a different key layout aspect. As such, they facilitated our

study to explore which key aspects are important for chapter-based photo organi-

zation.

1. Plain grid layout is our baseline layout and it consists of a single grid of

row-by-row chronologically-ordered photos. No chapter information is pre-

sented in this layout.

2. Bi-level layout consists of a split view where the bottom view displays a film

strip of chronologically-ordered chapter thumbnails for selection and the top

view displays photos of the selected chapter in a grid layout, in chronological

order row-by-row.

3. Grid-stacking layout consists of chronologically-ordered vertically-stacked

grids, each corresponding to a chapter. Photos in each grid are ordered

chronologically row-by-row.

4. Space-filling layout consists of a single grid of row-by-row chronologically-

ordered event photos with an outline surrounding each span of photos that

are part of the same chapter.

CHAPTRS ver. 1 also affords users with a drag-and-drop interface to edit the

chapter groupings in the bi-level layout. By default, our event photo stream seg-

mentation algorithm automatically groups event photos into chapters so users only

need to adjust the chapter groupings instead of starting from scratch. To combine

adjacent chapters, users simply drag one chapter thumbnail onto another from the

film strip. When users have a chapter selected in the film strip, its photos are shown

in the top view. To move photos into a new chapter, users can select a span of pho-

tos at the beginning or end of the chapter and then drag the photos onto the film
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Figure 4.1: Plain grid layout
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strip. Other kinds of selections are not valid to ensure that the chronological order

of the photos in the stream is not violated.

The four layouts take inspiration from our review of existing photo layouts for

personal digital photo libraries in Chapter 2. We adapt them to organize chapters,

instead of other group types (e.g. events, similar photos). The bi-level layout takes

inspiration from photo storytelling interfaces which present the chronological order

unweaved in a single horizontal dimension, i.e. in contrast to a plain grid layout

where the chronological order of the photos are weaved row-by-row. The space-

filling layout takes inspiration from the bubblemap layout in PhotoMesa (Bederson,

2001) and maximizes screen space usage. The grid-stacking layout is similar to

how Picasa1 displays photos from all events at once with a separate grid for each

event. Screen space is still wasted but not as much as in the bi-level layout. We

now discuss each of the chapter-based layouts in more detail.

4.1.1 Bi-Level Layout

The bi-level layout consists of a split view where the bottom view provides an

overview of all photos by displaying a scrollable film strip of chapter thumbnails.

The top view displays photos from the selected chapter in a grid layout.

Chapter thumbnails are displayed in chronological order. Each thumbnail is

labelled with the timestamp of the first photo in the corresponding chapter and,

optionally labelled with a user-defined title. The film strip provides users with an

overview of all photos. It acts as an index into the event photos, allowing users to

glean over moments in the event through the chapter thumbnails without having to

sift through individual photos. The chapter groupings allow users to collapse the

timeline in a meaningful way and present chapter thumbnails in a linear structure

that effectively conveys their chronological order.
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Figure 4.2: Bi-level layout
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Figure 4.3: Grid-stacking layout
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4.1.2 Grid-Stacking Layout

The grid-stacking layout displays all photos from the event with photos of each

chapter in its own grid. Photos in each grid are ordered chronologically row-by-

row. All grids have the same number of columns and are displayed in chronological

order separated by a horizontal line and chapter title.

Compared to the bi-level layout, the grid-stacking layout makes better use of

screen space. While the grids may not be fully occupied with photos, the grids

are stacked one after another. The chronological order of the chapters are also

presented in a linear structure by stacking the grids in one dimension.

4.1.3 Space-Filling Layout

The space-filling layout displays all photos from the event in a single grid. Photos

are ordered chronologically row-by-row. In addition, an outline is drawn around

photos of the same chapter. To keep photos contiguous within each chapter out-

line, some grid elements may be left empty (see Figures 4.4 and 4.5). This layout is

similar to the bubblemap layout in PhotoMesa but maintains a row-by-row chrono-

logical order. As such, the space-filling layout is not as densely packed and may

still waste some screen space.

Of the three chapter-based layouts, the space-filling layout is the one that

wastes the least amount of screen space and displays the most number of thumb-

nails at once while still presenting the chapter groupings. These space savings

are however, at the expense of the chronological order of the chapters. Unlike the

grid-stacking layout, the chronological order of the chapters is weaved into two

dimensions row-by-row, instead of linearly top-down.

1
http://picasa.google.com
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Figure 4.4: Space-filling layout: Event photos are displayed in a grid layout, in

chronological order row-by-row, with an outline surrounding photos of the same

chapter.
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Figure 4.5: Space-filling layout: Some grid elements may be left empty in order to

keep photos contiguous within each chapter outline.
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4.2 Participant Demographics

For the study, we recruited all 23 college students that responded to our call for user

study participation. In our email, we stated that familiarity with one or more desk-

top photo browser applications was required. We also explained that they would be

required to perform three tasks with a new photo browser and answer some ques-

tions after each task. We suspect that the use of personal photos may explain the

low number of responses. Nonetheless, the 23 participants that responded come

with a variety of photography backgrounds: one participant, P4, is a professional

photographer who often participates in photography trips at public events or at

leisure. Another participant, P12, maintains an active food blog and always has a

digital camera at hand. Some are enthusiastic amateur photographers who carry

their digital cameras for social events (P1, P3, P6, P7, P9, P11, P12, P15, P17,

P18, P20). Others only carry their digital cameras during special occasions or big

events like holiday trips (P2, P5, P8, P10, P13, P14, P16, P19, P21, P22, P23).

Most participants use Windows Explorer or Windows Live Photo Gallery (P1, P4,

P6, P7, P8, P9, P10, P11, P12, P13, P18, P20, P21, P22) as their primary photo

browser. Some use Picasa (P2, P9, P14, P15, P17, P19, P23), two participants use

iPhoto (P5, P16), and one participant (P3) uses Aperture.

Following our Institutional Review Board exemption guidelines, photos were

immediately discarded at the end of each study session and all collected data was

anonymized.

4.3 Photo Sets

Participants were asked to bring four sets of personal photos, each from a different

event. While most events are associated with holiday trips, others span a variety of

event types: a public cosplay event, a college orientation camp, talks at a confer-

ence, a stage performance, visit to the museum, etc. The total number of photos in

the study is 8096 photos from 92 photo sets. We asked the participants to bring at
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least one set with more than 100 photos and at least one with 40-60 photos. This

allowed us to ask the participants to reflect on sets with many photos or few photos.

To place these sizes in context, CHAPTRS ver. 1 displays 40-60 photos in

less than two screens using the Plain grid or Space-filling layouts. So participants

would only need to scroll the user interface by a little to view all the photos. We

did not want the participants to bring photo sets with too few photos because the

storytelling task in our study inherently assumes that the photo set represents an

event worth telling and thus non-fleeting2 .

Before we imported the participant’s photo sets into CHAPTRS ver. 1, we asked

the participant to choose four different favorite photos from the set with the most

photos, using the default file explorer application for Microsoft Windows. These

photos were later used in the searching task.

After the photo sets were imported, we asked the participant to “group the

photos into chapters according to their preference and liking”. Additionally, we

randomly selected two photo sets from the participant for s/he to group into chap-

ters without help from our event photo stream segmentation algorithm, i.e. the

participant started with no initial chapter groupings. For his/her photo sets, we

asked the participant to group the photos to his/her satisfaction; the participant’s

final organization for the photo sets is used for the study tasks. This protocol al-

lowed us to analyze the effects of initializing the chapter groupings on how the

participants group their photos into chapters.

4.4 Study Tasks

Participants were asked to complete three tasks. Participants were also asked to fill

a questionnaire after each task, and another overall questionnaire after all three

tasks. All questionnaires use a standard 5-point Likert scale from 1 (strongly

2We note that the number of photos in the photo stream has no implications on the performance

of our event photo stream segmentation algorithm. Our photo browser, CHAPTRS, which implements

the algorithm can be used to automatically organize photo sets of various sizes
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disagree) to 5 (strongly agree). Finally, each study session ended with a semi-

structured interview3. The audio from the interview session was recorded for note-

taking purposes.

In our study, we focused on common photo-related tasks for users — tasks

that fit the STU (Situations, Tasks, and Users) context (Olsen, 2007). In particular,

the first two tasks have been used in the related works we reviewed in Chapter 2.

We describe each task in more detail next, followed by more details on how we

eliminated confounding variables.

Task 1: Storytelling from familiar event photos

In this task, participants were asked to tell the story of each event from their per-

sonal photo sets. We asked participants to imagine sharing about the event and its

photos, as they normally would, to their friends. We used a within-subject design

where each participant carries out the task four times, each with a different layout.

To avoid learning effect on the story told, each layout was used with a different

photo set.

Task 2: Finding a given photo from familiar event photos

In this task, participants were asked to find the favorite photos they chose at the

beginning of the study. We used a within-subject design where each participant

carries out the task four times, each for a different favorite photo and with a dif-

ferent layout. At each iteration, the target favorite photo was clearly displayed on

an adjacent external monitor. The four favorite photos were chosen from the same

photo set to make the iterations comparable. There is no learning effect between

iterations on the photo set because the participant — who also owns the photo set

— has been through the photos at least twice from the storytelling task and from

grouping the photos into chapters at the beginning of the study.

3Questionnaires and interview questions available in (Gozali et al., 2012b)
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Task 3: Interpreting unfamiliar event photos

In this task, participants were shown and asked to interpret unfamiliar event photos,

not belonging to the participants. We asked the participants: “Tell me about the

event. What do you think was happening?”. For this task, we prepared four sets of

event photos that were not used in any other part of the study. The photo sets were

titled, grouped into chapters, but chapters were left untitled. We used a within-

subject design where each participant carries out the task four times, each with

a different layout. To avoid any learning effects, each layout was used with a

different photo set. This task is the most synthetic of the three tasks in our user

study. While participants are unlikely to find themselves having to interpret event

photos without any context other than the photos themselves and the event title,

our goal was simply to create a scenario where the participants have very little

knowledge of the event, similar to how they would find themselves when faced with

an old set of event photos but not remembering any details of the event (Frohlich

et al., 2002).

4.5 Internal Validity

We chose a within-subject design, i.e. repeated measurements per participant, to

have better internal validity, as is common for user studies with few participants.

The personal nature of the photos and the length of the study per participant made

recruiting hundreds of participants impractical.

As mentioned in Section 4.4, we have tried to eliminate any learning effects.

In addition, we eliminated learning effects on the four layouts by demonstrating

CHAPTRS ver. 1, its four layouts, and all their features at the beginning of the

study, prior to any of the tasks. We prepared five sets of photos, grouped into

chapters, exclusively for this purpose. The participants were also asked to spend

five minutes to familiarize themselves with the four layouts and ask any questions.

To eliminate ordering effects from the four layouts, we balanced the user study
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for each task, i.e the order in which participants used the four layouts was system-

atically varied for each task; each participant used a different order from the other

participants for each task4. Participants were also asked to revisit all four layouts

with all photo sets when they answer each questionnaire.

4.6 How Do People Organize Their Photos in Each Event?

At the beginning of the user study, we asked participants to “group the photos into

chapters according to their preference and liking”. This allowed us to first observe

and later inquire on the criteria they used to decide the chapter groupings. We have

gathered three insights into this process:

First, users value chapter consistency more than the chronological order

of the photos. While past findings have shown that people want their photos dis-

played in chronological order (Rodden and Wood, 2003), all but one (P11) of the

participants in our study requested that they be allowed to combine non-adjacent

chapters in the timeline, effectively displaying the photos out of their chronological

order.

Almost all participants had at least one photo set where in the midst of photos

capturing one moment in the event, e.g. a performance on stage, there were a

handful of photos that did not belong, e.g. photos of the audience. Another example

is where in the midst of scenic photos of a nearby landscape, there were photos

of friends and/or family. In these cases, participants wanted to keep all but the

handful of photos in one chapter. This observation is similar to how people keep

printed photos in albums in chronological order, but with small adjustments done

for aesthetic reasons (Rodden, 1999).

By allowing the participants to create meaningful chapters as the organizational

unit for their photos, what becomes important to them is the consistency of the pho-

tos within each chapter. In explaining why they wanted certain photos taken out of

4There are 24 distinct permutations in ordering the four layouts.
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a chapter, participants said that the photos “do not belong there” (P8). This impor-

tance supercedes displaying the photos in chronological order. Some participants

mentioned that they “don’t really care” (P5) if the photos are not in chronological

order, that “sometimes [it] is not that important” (P18).

Secondly, criteria for chapters include moment, object, location, photogra-

phy type, and intention. These criteria pertain to the kind of consistency discussed

in the first point. From our study, we observed that the participants commonly

adopted one of the following five criteria for their chapters:

1. Moment — This criteria is the most common and refers to chapters that

correspond to moments in the event. Several participants refer to photo sets

whose chapters followed this criteria as being “according to time” (P11).

2. Object — Participants wished to group photos of the same object or object

type in the same chapter. For example, in a photo set of a trip to a defunct

railroad, the participant P7 wanted all photos depicting the track in its own

chapter, regardless of when the photos were taken.

3. Location — Participants also commonly organized their photos with a chap-

ter for each location, for example, in holiday photos where photos were cap-

tured from a variety of different locations (e.g. tourist spots).

4. Photography type — For example, participants wished to group photos of

their friends in the same chapter. Another example is to have a chapter for

all the scenic photos.

5. Intention — On several occasions, participants wished to have a different

chapter for photos of different groups of individuals, e.g. one chapter for

photos with friends and another chapter for photos with colleagues. Another

example is where one participant, P3, has several “silly shots” taken at very

different times during the event but would like to have them all in the same

chapter.
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Lastly, choice of criteria and granularity for segmentation are very sub-

jective. We found that deciding a criteria for the chapters is a very subjective

process. For example, in a photo set of performances on stage, the participant,

P17, separated visually similar photos into several chapters to have one chapter

for each performance. For another photo set however, the same participant wanted

to combine visually similar photos of different speakers into the same chapter to

create a summary of the event in a single chapter. Several participants noted that

they would group photos of the same location, even if taken at different times, e.g.

night and day, into the same chapter. However, they will separate portrait photos of

their friends/family into a different chapter, separate from the chapter with scenic

photos of the same location.

Participants also had different notions of granularity for their chapters. One

participant, P18, wanted to create a chapter with many photos to depict “photos

of the path [he] took from the entrance to the mountain”. Photos taken near the

path would be grouped into separate chapters. Another participant, P2, mentioned

that he would like to group his photos “by visual similarity” unless “[the photo

set] is for a big event because there will be too many chapters”. Some participants

(P7, P19, P22) disliked having a chapter with just one or two photos and would

combine the chapter with an adjacent one simply because s/he “want[s] to combine

it with something else” (P22).

While deciding the chapter grouping is a subjective process, participants agree

that “grouping [their] photos by chapter makes sense” (µ=4.3, δ=0.6). In response

to the subjectivity, more participants found it “easy to decide the correct chapter

groupings” (µ=3.7, δ=1.0). These participants said that they will know what to do

when they see the photos.

To assess how automatically grouping photos into chapters affected their final

organization by participants, at the beginning of the study we randomly selected

two photo sets from each participant for s/he to group without the help of our event

photo stream segmentation algorithm. The other two photo sets of each participant
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Initialized? Num

Photo Sets

Average

Prmiss

Average

Prfa

Average

Prerror

No 30 0.193 0.508 0.350

Yes 47 0.118 0.290 0.204

Improvement 38.7% 43.0% 41.8%

Table 4.1: Comparison between the chapter groupings by our algorithm with the

ground truth by the participants as measured by miss rate, Prmiss, false alarm rate,

Prfa, and error rate, Prerror. A smaller number indicates better agreement. One

group of photo sets were initialized by our algorithm and further organized by the

participants. The other was done by the participants without help.

were initialized with a chapter organization given by our algorithm. This allows us

to compare the chapter groupings from our algorithm with those by the participants

(as ground truth) for two kinds of photo sets: 1) photo sets that were organized

by the participants without help5, and 2) photo sets that were initialized by our

algorithm and further organized by the participants.

Some photo sets were from older generation cameras that did not embed photo

metadata6 in the image files. Since the metadata is necessary for our event photo

stream segmentation algorithm, we could not run our algorithm on these photo sets.

For this initialization analysis, we have a total of 7073 photos in 77 sets.

To perform the comparisons, we used the error rate metric, Prerror, that was

used in our evaluation in the previous chapter. Recall that a lower Prerror indicates

better agreement with the ground truth by the participants; a score of 0 indicates

perfect agreement. Prerror is an average of the miss and false alarm rates. As

such, a method that proposes no chapter boundaries or proposes chapter boundaries

everywhere will have an error rate of about 0.5.

In Chapter 37, we noted that our event photo stream segmentation algorithm

5We ran our algorithm on these photo sets but the results were neither used nor shown to the

participants.
6Exchangeable Image File Format (Exif) data
7Also in (Gozali et al., 2012a).
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has a tendency to propose more fine-grained segmentations. We can see this in

Table 4.1 where the false alarm rate, Prfa, is markedly smaller — a 43% improve-

ment from a high rate of 0.508 — for the initialized photo sets. With initialization,

participants were provided with the opportunity to explicitly agree or disagree with

our fine-grained results. The effect is that participants found meaningful chapter

boundaries among the many proposed. Without initialization, participants had to

find meaningful chapter boundaries for themselves, resulting in higher false alarm

rates for our algorithm in comparison.

While the error rate values we report in Table 4.1 were computed by penalizing

misses and false alarms equally, we found through our user study that in practice,

having a high miss rate is more detrimental to the user experience than having a

high false alarm rate. Many participants in our study mentioned that it was easier

to decide if two chapters should be combined than to decide how to split up a

chapter. For example, one participant, P11, mentioned that “its better to make it

small small so then if the user want[s] to merge then they [can] do it themselves.

Its not that difficult.” To correct a false alarm is a one-step process of combining

the two chapters. But to correct a miss, the user must first realize that there is a

miss, then figure out the best position to split the chapter.

4.7 How Does Chapter-based Photo Organization Affect

The Study Tasks?

In this section, we present quantitative and qualitative results from each task of

the study. We also present the level of statistical significance of the quantitative

results, i.e. the p-value from a two-tailed paired Student’s t-test in comparison with

the plain grid layout. While our findings have different levels of significance, we

note that most are significant at p < 0.005. We present the participants’ mean

response values from the questionnaire in Table 4.2 for easy reference. Values that

are statistically significantly in comparison with the plain grid layout are shown
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with their p-values in subscript. We elaborate on the tabulated results in the fol-

lowing subsections, but defer comparisons between the three chapter-based layouts

to Section 4.8.

Task 1: Story-telling from familiar event

photos

Participants agree that “having chapters helps present the event’s story for sets

with many photos” (µ=4.3, p < 0.001). We obtained similar results for sets with

few photos (µ=3.9, p < 0.05), but less statistically significant. When asked for

each layout specifically however, participants agree that each of the chapter-based

layouts helps present the event’s story for sets with many or few photos, all with

p < 0.005.

We also asked the participants whether having chapters helps them remember

what to say about the event. One participant, P17, said that the chapters “help

give focus” in remembering. Participants agree that “having chapters helps [them]

remember the event’s story” for sets with many or few photos (µ=4.7, µ=4.1; both

p < 0.005). When asked for each layout specifically, participants agree that each

of the chapter-based layouts helps them remember the event’s story for sets with

many photos (p < 0.001). We obtained similar results for sets with few photos,

but only the grid-stacking and space-filling layouts are statistically significant at

p < 0.001; the bi-level layout is less statistically significant at p < 0.05.

Chapters can guide users with their storytelling. In the plain grid layout where

no chapter information is presented, one participant, P23, said that s/he was “scrolling,

scrolling, scrolling” and did “not know where to stop and say something more”.

In contrast, participants use the chapter information presented in the other chapter-

based layouts to pace their story. Participants would refer to a particular chapter

and start a part of their story with, e.g. “this chapter is about...” (P18, P21, P22).

Participants also gesture around chapter outlines with their forefingers or cursors

in the space-filling layout to highlight the photos relevant to their stories at the
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Questionnaire Statement Bi-

Level

Grid-

Stacking

Space-

Filling

Plain

Grid

The layout helps present the event’s

story for sets with many photos

4.20.005 4.20.005 3.70.005 2.4

The layout helps present the event’s

story for sets with few photos

4.10.005 4.30.005 4.10.005 3.2

The layout helps them remember the

event’s story for sets with many pho-

tos

4.00.001 4.30.001 3.90.001 2.6

The layout helps them remember the

event’s story for sets with few photos

4.00.05 4.40.001 4.10.001 3.2

The layout helps to find a photo in a

set with many photos

3.60.01 4.40.001 3.70.001 2.7

The layout helps to find a photo in a

set with few photos

3.6 4.40.001 4.00.001 3.1

The layout helps to interpret photos of

an event with many photos

3.90.005 4.60.005 4.00.005 2.9

The layout helps to interpret photos of

an event with few photos

3.70.05 4.40.001 3.90.001 3.1

Table 4.2: Mean response values from the participants to various questionnaire

statements for each layout. The values follow a standard 5-point Likert scale from

1 (strongly disagree) to 5 (strongly agree). Values that are statistically significant

in comparison with the plain grid layout are shown with their p-values in subscript.
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time. One participant, P12, however, adopted a purely photo-driven storytelling

method (Balabanović et al., 2000) where s/he would double-click to maximize the

photo and subsequently use the navigation keys on the keyboard to go to the next

or previous photos.

On average, the grid-stacking layout is most preferred, followed by the bi-level,

space-filling and plain grid layouts. The difference in preference between each

of the chapter-based layouts with the plain grid layout is statistically significant

(p < 0.001).

Task 2: Find a given photo from familiar event photos

From the measured completion times, we determined the layout that allowed par-

ticipants to complete the task the fastest. On average, the space-filling layout was

the fastest (7.0s), followed by the plain grid (7.8s), grid-stacking (11.2s), and bi-

level (14.2s) layouts. The difference between the grid-stacking and bi-level layouts

(p < 0.005); and the plain grid and bi-level layouts (p < 0.05) are statistically

significant. We note that this ranking aligns closely with how well the layouts

make use of screen space, making our results consistent with past findings that

propose displaying many thumbnails at once to help users with their visual search

tasks (Rodden and Wood, 2003).

While the plain grid layout ranks second for the fastest completion time, par-

ticipants actually preferred the plain grid layout the least for this task. On average,

the most preferred layout for this task is the grid-stacking layout, followed by the

space-filling, bi-level, and plain grid layouts. The difference in preference between

each of the chapter-based layouts with the plain grid layout is statistically signifi-

cant (p < 0.001).

Note that participants were not informed on how fast they performed with each

layout. This was done so that their layout preference for this task was not affected

by the completion time rankings. The contrast between the layout preference and

the completion time rankings suggests that for the task of finding a photo within
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a familiar set, where the fastest and slowest times only differ by several seconds,

completion time does not play a major role for their preference.

One participant, P23, noted that for tasks like this, “they like to find the chapter

first”. Participants agree that “having chapters helps [them] find a photo in a set

with many photos” (µ=4.4, p < 0.001). We obtained similar results for sets with

few photos (µ=4.0, p < 0.05), but with less statistical significance. Participants

also agree that each of the chapter-based layouts helps them find a photo in a set

with many photos (p < 0.001, except the bi-level layout with p < 0.01). For

sets with few photos, only results for the grid-stacking and space-filling layouts are

with statistical significance (p < 0.001).

While the participants’ layout preference contradicts with the completion time

rankings, the behavior to find chapters first before finding the photo is similar to

past findings. The same study we quoted above (Rodden and Wood, 2003) found

that when users want to search for a particular photo, they will first attempt to

remember the event at which it was taken. In our case, we observed that partici-

pants use the chapter groupings to skip chapters that they know will not contain the

photo, and look deeper into chapters that might. This process is easiest to perform

with the grid-stacking layout, which is the most preferred layout for this task.

Task 3: Interpreting unfamiliar event photos

Participants agree that “having chapters helps [them] interpret photos of an event

with many photos” (µ=4.6, p < 0.001) as well as those with few photos (µ=4.0,

p < 0.001). When asked for each layout specifically, participants agree that each

of the chapter-based layouts helps them interpret photos of an event with many

photos (p < 0.005). For sets with few photos, only the grid-stacking and space-

filling layout are statistically significant at p < 0.001; the bi-level layout is less

statistically significant at p < 0.05.

We observed that generally, the participants fall into two groups, each with a

different approach to the task. Participants in the first group rely on gathering a

84



visual overview of all the photos to interpret the event. They would scroll up and

down fairly quickly to gather a general idea of the event. For this group, a layout

that displays many thumbnails at once is most preferred and not having chapter

information presented in the layout is not a loss. One participant, P22, disliked

the bi-level layout for this reason: “I can’t grasp what’s happening because it [dis-

plays] one chapter at a time”. Participants would give a very general interpretation

of the event and only comment for every other chapter. Participants who chose the

space-filling layout as their most preferred overall layout fall into this group (P3,

P6, P15, P16, P22).

Participants in the second group rely on chapter information to guide them

through the event photos. Some would still gather a visual overview from all the

event photos, but they would describe each chapter in chronological order: “Here

they went to... and then to...” (P5). With the plain grid layout where no chapter

information is presented, these participants are at a loss and “can’t tell if the photos

are apart or together” (P23). In contrast, the layouts with chapter groupings “look

[very|more] organized” (P4, P11, P12, P14, P18, P20). The twelve participants

who chose the grid-stacking layout as their most preferred overall layout fall into

this group (P2, P7, P8, P11, P13, P14, P17, P18, P19, P20, P21, P23).

In our categorization of participants, we found that more participants fell into

the second group. As such, the most preferred layout for this task is the grid-

stacking layout, followed by the bi-level, space-filling, plain grid layouts. The

difference in preference between each of the chapter-based layouts with the plain

grid layout is statistically significant (p < 0.001).

4.8 What Layout Aspects are Important for Chapter-based

Photo Organization?

Among the chapter-based layouts, the grid-stacking layout was the only layout that

outperformed some others with statistical significance; and it does so for each task.
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For helping to present the event’s story for sets with many photos, participants

agree more with the grid-stacking layout than with the space-filling layout (p <

0.01). For helping to find a photo in a set with many or few photos, participants

agree more with the grid-stacking layout than with the bi-level layout (p < 0.01).

For helping to interpret photos of an event with many or few photos, participants

agree more with the grid-stacking layout than with all the other layouts (p < 0.01).

Regarding the methods used by the chapter-based layouts to present the chap-

ters, participants like the grid-stacking layout (µ=4.6) statistically significantly

more (p < 0.005) than the bi-level (µ=3.9) and space-filling layouts (µ=3.6). They

liked how the layout shows the “chapter groupings each in a separate grid” (P1).

In all tasks and in overall ranking, most participants indicated the grid-stacking

layout as their top preference. All this suggests that participants value the strength

of the grid-spacing layout — a clear top-down presentation of the chronological

order of the chapters — more than the strengths of the bi-level and space-filling

layouts.

The bi-level layout features an overview of all the event photos afforded by the

film strip of chapter thumbnails. Participants like the film strip (µ=4.4, δ=0.7) as

it shows “the flow of the event” (P1). Participants also found it is easy to navi-

gate the user interface (µ=4.2, δ=0.8). On the other hand, for the statement “I do

NOT like the wasted screen space”, participants only somewhat disagree (µ=2.78,

δ=1.0). This contrast suggests that while participants like and appreciate having

the overview, they prefer not to waste much screen space imposed by the restrict-

ing view hierarchy, even if its easy to navigate.

The space-filling layout maximizes screen space usage; minimal screen space

is wasted while still presenting the chapter groupings. A number of participants

do value maximizing screen space usage more than the chronological order of the

chapters; five participants chose this layout as their most preferred layout over-

all. Most participants (12 of 23) however, prefer the grid-stacking layout. These

82 — Disagree, 3 — Neither agree nor disagree

86



participants found the space-filling layout to be “confusing” (P23).

4.9 Conclusion

In this chapter9, we have explored chapter-based photo organization and report

results — qualitative and quantitative with statistical significance — that advocates

its use for personal digital photo libraries.

We developed a photo browser, CHAPTRS ver. 1, and integrated the event

photo stream segmentation algorithm from our previous work to explore how peo-

ple organize their photos in each event. Our algorithm helps users by automatically

grouping event photos into smaller groups of chapters. We implemented a baseline

plain grid layout and three chapter-based photo organization layouts in CHAPTRS

ver. 1 to explore how chapter-based photo organization affects storytelling, search-

ing and interpretation tasks; and what photo layout aspects are important for such

tasks.

Our participants found chapter-based photo organization to be helpful in all

three tasks. Our study also revealed how the participants employed chapters in

these tasks. The grid-stacking layout was preferred the most in all three tasks

and the baseline plain grid layout was preferred the least. Among the results, the

following are our primary findings from the study:

1. Users value chapter consistency more than the chronological order of the

photos in grouping photos into chapters

2. Choice of chapter criteria and granularity for chapter groupings are very sub-

jective

3. Having low misses is more important than having low false alarms for auto-

matic event photo stream segmentation

9Also in (Gozali et al., 2012c).
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4. Users value chronological order of the chapters more than maximizing screen

space usage in photo layouts

While we discovered that the preference for criteria and granularity of our par-

ticipants were very subjective, our study also shows that our algorithm helps par-

ticipants discover chapter groupings.

With our findings on the key layout aspects, we will use the grid-stacking lay-

out and the film strip overview in the next design iteration of CHAPTRS, i.e. ver. 2,

described in the next chapter.
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Chapter 5

CHAPTRS PHOTO BROWSER

Figure 5.1 shows the main user interface of the final version of our photo browser,

CHAPTRS ver. 2. In this chapter, we describe a typical usage scenario for CHAP-

TRS ver. 2 and highlight how it works harmoniously with existing photo digital

libraries on the user’s computer, in line with our goal to complement event-based

photo organization. We also describe in detail how CHAPTRS ver. 2 embodies our

segmentation method and our findings from the user study on chapter-based photo

organization and photo layouts.

5.1 Usage Scenario

While there are different use cases for CHAPTRS ver. 2, e.g. as a quick way to

search / access / visualize your photo libraries, here we outline a basic use case

where the user starts CHAPTRS ver. 2 to browse photos (see Figure 5.2). Parts of

the use case will be explained in detail in the sections that follow.

1. User starts CHAPTRS ver. 2 (see Figure 5.3).

2. CHAPTRS ver. 2 automatically scans for existing iPhoto or Aperture photo

libraries and populates the Event Sidebar with events from these libraries

(see Figure 5.4).
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Event 
Sidebar

Chapters 
Sidebar

Grid-stacking 
photo layout

Figure 5.1: The main user interface for CHAPTRS ver. 2

2. Scans existing 

photo libraries

4. Automatic event 

photo stream 

segmentation

1. User starts 

CHAPTRS ver. 2

3. User adds photos 

into CHAPTRS ver. 2

5. User selects an 

event to display

6. User fine-tunes the 

photo arrangement

7. User shares selected 

photos and/or chapters

Figure 5.2: Example use-case diagram for CHAPTRS ver. 2
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3. The user may drag-and-drop a selection of photo files into the Event Sidebar

to add them as an event in CHAPTRS ver. 2. Users may also drag-and-drop

folders, in which case each folder is added as an event (see Figure 5.5).

4. By default, CHAPTRS ver. 2 automatically finds chapters in each event, in-

conspicuous to the user, in the background (see Figure 5.11 and Section 5.3).

5. User selects an event from the Event Sidebar and is presented with photos

from the event, grouped by chapter, in a grid-stacking layout. The Chap-

ters Sidebar on the right displays chapter thumbnails (see Figure 5.6 and

Section 5.5).

6. User performs drag-and-drop operations to arrange and fine-tune the photo

arrangement (see Figure 5.7 and Section 5.4).

7. User shares selected photos and/or chapters to his/her social networks, or

performs a drag-and-drop operation to a folder to copy the photos into the

folder, e.g. the desktop (see Figure 5.8).
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Figure 5.3: User starts CHAPTRS ver. 2.

5.2 Complementing Event-based Photo Organization

As a photo browser with a chapter-based photo organization, CHAPTRS ver. 2 was

designed to be complementary to existing event-based photo organization. CHAP-

TRS ver. 2 works amicably with any existing workflows using other applications:

1. CHAPTRS ver. 2 understands photo libraries of iPhoto and Aperture — two

popular photo management applications on Mac OS X — and displays their

events and albums in its Event Sidebar, making use of existing event bound-

aries from these libraries.

2. CHAPTRS ver. 2 supports multiple iPhoto libraries and multiple Aperture

libraries and also allows users to add photo files or folders of photos directly

into the Event Sidebar.

3. Even when photos in an event are arranged into chapters by CHAPTRS ver. 2,

the original photo files and its corresponding iPhoto / Aperture photo library,

if any, are not modified in any way.
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Figure 5.4: CHAPTRS ver. 2 automatically scans for existing iPhoto or Aperture

photo libraries and populates the Event Sidebar with events from these libraries.
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Figure 5.5: The user may drag-and-drop a selection of photo files into the Event

Sidebar to add them as an event in CHAPTRS ver. 2. Users may also drag-and-drop

folders, in which case each folder is added as an event.

94



Figure 5.6: User selects an event from the Event Sidebar and is presented with

photos from the event, grouped by chapter, in a grid-stacking layout. The Chapters

Sidebar on the right displays chapter thumbnails.
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Figure 5.7: User performs drag-and-drop operations to arrange and fine-tune the

photo arrangement.
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Figure 5.8: User shares selected photos and/or chapters to his/her social networks,

or performs a drag-and-drop operation to a folder to copy the photos into the folder,

e.g. the desktop.
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Figure 5.9: The Explore user interface in CHAPTRS ver. 2 allows user to navigate

events from all their photo libraries using a graphical overview.

In addition, CHAPTRS ver. 2 also provides event-level navigation through

searching and browsing with a customizable sort (alphabetically on event title or

by event time). Searching and browsing is further enhanced by coupling event

thumbnails with a graphical visualization of all events (see Figure 5.9). When the

user enters a query to search, the graph and the event thumbnails update to reflect

the results of the search. When there is no search query, all the events are shown.

The graph can be zoomed-in and out. When the graph’s zoom level is changed,

thumbnails corresponding to events that are outside of the zoom region are not dis-

played. When an event thumbnail is selected, its corresponding bar in the graph is

similarly selected and highlighted with the selection color.

5.3 Event Photo Stream Segmentation

We implemented our automatic event photo stream segmentation algorithm in Objective-

C and C++. In particular, we implemented our own hidden Markov model library
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with alternating observation types using the robust and fast Eigen linear algebra

C++ library1.

While there are no technical challenges in implementing our algorithm for

CHAPTRS ver. 2, there were some practical considerations.

Some events read from iPhoto or Aperture contain non-photo image files, e.g.

desktop wallpapers, screenshots, clipart images. This causes a problem for our

algorithm which requires Exif data not present in such images. Our solution is

to remove such images from the input into the algorithm. After we obtain the

chapter boundaries of the filtered event photo stream from the algorithm, we add

the non-photo images back into the event photo stream and surround each group

of non-photo images with a chapter boundary. In doing so, we are assuming that

a non-photo image is never in the same chapter as its adjacent photos and that

non-photo images is always in the same chapter as its adjacent non-photo images.

Some events, e.g. “Vacation in Barcelona” may actually be a composite event

that spans several days or even weeks, i.e. it contains smaller groups of photos each

of which can be considered as an event on its own, e.g. “First day in Barcelona”.

Our solution for such composite events is to first insert chapter boundaries in be-

tween adjacent photos with a time gap of more than 4 hours. This is similar to how

the constant threshold segmentation algorithm works. As a result, the composite

event now consists of several segments of photo streams. We then run our algo-

rithm on each segment and combine the multiple segmentation results to obtain the

final segmentation.

Another consideration has to do with execution time. In our proposed algo-

rithm, multiple runs are made to find various local maxima solutions. Subse-

quently, the results can be filtered for spurious solutions and the best of the re-

maining runs is taken as the final segmentation. To minimize execution time, we

optimized the algorithm as follows:

1. We do not recompute the HMM parameters used for smoothing. These pa-

1
http://eigen.tuxfamily.org
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Figure 5.10: The optimizations allow CHAPTRS ver. 2 to have a significant reduc-

tion in execution time with only a minor reduction in performance.

rameters takes a considerable amount of time to learn due to the size of the

dataset used for smoothing.

2. We use the same smoothing weights for any event photo stream we want

to segment. Like the first optimization, learning the smoothing parameters

takes a considerable amount of time due to the size of the dataset used for

smoothing. Unlike the first optimization however, this may result in subop-

timal segmentation results (see Figure 5.10). This reduction in performance

brings down our results to be only comparable with the best state-of-the-art

baseline discussed in Chapter 3, which scored a Prerror of 0.281.

3. Because of the previous two points, the algorithm becomes deterministic

and multiple runs yield the same solution. As such, we only need to run the

algorithm once.

We justify the difference in performance through our optimization because the

reduction in execution time is much more significant, as shown in Figure 5.10, i.e.

close to a 99% reduction from 134.9 seconds to 1.9 seconds.

We note that the time values reported in Figure 5.10 excludes the time taken to
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compute the photo features. In CHAPTRS ver. 2, to extract features from a photo

with a resolution of 3264 by 2448 pixels takes 0.1 seconds. An entire event with

200 of such photos however, takes only 13.1 seconds due to code-level multi-core

and multi-threaded optimizations. This still amounts to a considerable amount of

time depending on the number of photos in the event. In practice, CHAPTRS ver. 2

alleviates these concerns in several ways:

1. CHAPTRS ver. 2 runs the event photo stream segmentation as a background

thread. The default setting is to have the segmentation run automatically

in the background so that when the user wants to view an event, it would

already be segmented into chapters (see Figure 5.11).

2. If the user views a new event where the features have not been read yet,

CHAPTRS ver. 2 visualizes the feature extraction progress by incrementally

loading the photos for display as it processes the features. This transparency

aims to provide real-time feedback to the user. At the same time, users can be

occupied with browsing through the unsegmented but already-loaded photos

of the event.

3. CHAPTRS ver. 2 follows a strict separation between its main user interface

thread and its background worker threads to ensure a responsive user in-

terface and a good user experience, e.g. the user can switch to browsing

/ searching other events with no apparent penalty while the current event

photo stream is being segmented.

5.4 Chapter-based Photo Organization

In our user study in Chapter 4, we obtained the following insights on how people

organize their photos in each event:

1. Users value chapter consistency more than the chronological order of the

photos in grouping photos into chapters
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Figure 5.11: Dialogue window in CHAPTRS ver. 2 explaining the automatic event

photo stream segmentation, which is enabled by default to run in the background

and can be toggled with the provided checkbox

2. Criteria for chapters include moment, object, location, photography type,

and intention.

3. Choice of chapter criteria and granularity for chapter groupings are very sub-

jective

A direct implication of these findings on the design of CHAPTRS ver. 2 is

that users must be afforded with the freedom to customize the arrangement of the

photos with as much ease as possible. In a desktop environment where mouse /

trackpad use is the norm, users are already familiar with the drag-and-drop opera-

tion. CHAPTRS ver. 2 lets users perform drag-and-drop operations on the photos

and/or chapters to fine-tune their photo arrangements (see Figure 5.12).

In our findings for the second task of our user study: Find a given photo from

a familiar event photo in Section 4.7, we observed that participants used chapter

groupings to skip chapters that they know will not contain the photo, and look

deeper into chapters that might. To support this type of search behavior, we imple-
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Figure 5.12: Photos can be rearranged in the grid-stacking layout. Similarly, chap-

ters can be rearranged in the Chapter Sidebar. Dropping photos or chapters into

a chapter in the Chapter Sidebar moves the photos or chapters into the chapter.

Dropping photos into an empty space in the Chapter Sidebar creates a new chapter

with the photos.
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mented a feature that is activated when the user hovers the mouse pointer over a

chapter thumbnail. As the mouse pointer hovers over the chapter thumbnail from

left to right, the thumbnail is replaced with photos from the chapter, consecutively

from the first photo to the last.

We note that the chapter thumbnails are presented with aesthetics suggesting

that it represents a stack of photos. This design decision was done to drive the

chapter analogy further, that a chapter is a group of photos. These aesthetics were

also independently suggested by two of our user study participants.

To continue to support users seamlessly transitioning between photo-driven and

story-driven storytelling methods (Balabanović et al., 2000), as was observed in the

user study, we also implemented QuickLook support in CHAPTRS ver. 2. Quick-

Look is a Mac OS X system-wide mechanism where the user can press the spacebar

key to preview a selected item. The preview appears in a separate window above

the currently active application. CHAPTRS ver. 2 supports this preview mecha-

nism which can also be triggered by simply double-clicking on a photo. While the

preview window is visible, arrow keys will let users navigate to adjacent photos,

effectively changing the photo currently being previewed. This essentially supports

the photo-driven storytelling mechanism that we saw used by some participants in

the user study. At any time, the user can press escape to close the preview window

and resume a story-driven storytelling method or by summarizing the story, chapter

by chapter.

In the user study, participants also mentioned that they often share their photos

to Facebook or via email. Additionally, they also mentioned that only a subset

of the photos would be shared, not all the photos from an event. To support this

sharing behavior, CHAPTRS ver. 2 lets users share selected photos and / or chapters

to their social networks, or perform a drag-and-drop operation to a folder or to other

applications (e.g. into a Gmail compose window in a web browser).
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5.5 Layout

In our user study, the grid-stacking layout was the most preferred layout for chapter-

based photo organization. In addition, participants like the film strip in the bi-level

layout as it afforded an overview of all the event photos using chapter thumbnails.

However, they still prefer the bi-level layout less than the grid-stacking layout due

to the wasted screen space.

In CHAPTRS ver. 2, we kept the grid-stacking layout as the primary means of

presenting the event photos, grouped by chapter. In addition, we added a Chapters

Sidebar on the right to display chapter thumbnails, similar to the film strip from

the bi-level layout. Unlike the film strip however, the chapter thumbnails are laid

out vertically, not horizontally. This change simplifies the navigation for the user

as both the event photos and the chapter thumbnails now scroll vertically.

To further harmonize the navigation of the event photos and the chapter thumb-

nails, CHAPTRS ver. 2 synchronizes the selections of the photos and the chapter

thumbnails as follows:

1. When all the photos of a chapter is selected, the corresponding chapter

thumbnail will also be selected.

2. Similarly, when a chapter thumbnail is selected, all the photos of that chapter

will be selected.

3. Double-clicking on a chapter thumbnail will cause its corresponding event

photos to scroll into view.

This synchronization of selections further drives the association between the

chapter thumbnails and the event photos, working on top of the aesthetics of the

chapter thumbnails as a stack of photos.
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5.6 Conclusion

In this chapter, we have described CHAPTRS ver. 2, a chapter-based photo browser

that complements event-based photo organization. We outlined how we integrated

our event photo stream segmentation method into the browser and described the

practical considerations and the resulting optimizations. We also described how

findings from our user study affected the design decisions in terms of layout and

functionality.

CHAPTRS ver. 2 was built as a Mac OS X application and has been released on

the Mac App Store for free. We describe our rationale for this decision in the next

chapter as we describe our methodology for using the Mac App Store as a platform

to reach a large user base in constructing a dataset to further research in personal

digital photo libraries.
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Chapter 6

Data Collection

Researchers in personal digital photo libraries (DLs) require access to such DLs

to conduct their studies. For example, works on photo summarization (Sinha et

al., 2012), photo stream alignment (Yang et al., 2012), automatic albuming (Platt,

2000), and event photo stream segmentation (Gozali et al., 2012a) require various

features and ground truth annotations from DLs. Accessing them and acquiring

the data however, tends to be a challenging process especially when sizable data is

desired. Common methods to obtain photos, such as from volunteers or from study

participants, do not scale well to thousands of photo sets due to the remuneration

costs and the limited reach that study advertisement has in gathering interested

participants.

To collect ground truth annotations on such collected photos, even more hu-

man effort is required. For example, in automatic albuming, the ground truth

is the true grouping of photos into separate events. In some works, the authors

themselves produced the ground truth (Platt, 2000) or external annotators were

employed (Pigeau and Gelgon, 2003), which may be problematic due to unfamil-

iarity, bias, or ignorance of events that transpired in the photos. The semantics

associated with personal photos render these tasks difficult to annotate by parties

not privy with the context of the photos.

For such reasons, studies often require that the photo owners themselves pro-

107



duce the ground truth (Loui and Savakis, 2003). Data collection thus involves both

1) accessing DLs, as well as 2) acquiring the efforts of the photo owners themselves

to produce the ground truth annotations. These two issues exacerbate the difficulty

in scaling up the data collection process.

In this chapter, we propose using popular application distribution channels such

as the Mac App Store (MAS) to alleviate issues with cost and reaching potential

study participants. We use our own research needs as a case study to explore using

the MAS as a platform to acquire the needed data. To the best of our knowledge,

this is the first study to explore collecting anonymous data from personal digital

photo libraries at a large scale, i.e. our data collection application was downloaded

by over 2,500 users in 60 days.

The contributions of our study is two-fold. First, we report and discuss our

experiences with the design of the data collection application, timeline, visibility,

and cost in using the MAS in Section 6.1. Secondly, we present the large collected

data to the research community in Section 6.2, providing an in-depth analysis of a

few pertinent features.

6.1 Data Collection

The goal of our study is to explore the MAS for data collection in personal dig-

ital photo libraries. Primarily, we were motivated by its large user base: on Jan

7th, 2011, after only 24 hours of being available, the MAS had received over one

million downloads1. We hypothesize that with its large user base in multiple coun-

tries, using the MAS will increase the visibility of our study and thus yield more

collected data.

1
http://apple.com/pr/library/2011/01/07macappstore.html
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6.1.1 Design

With any data collection method, a means for the collection needs to be designed

and created. Even when the data to collect is small in scale, researchers still need

to create a way to collect the data (e.g. from the volunteers) and a way for an-

notators to provide ground truth (e.g. for parameter tuning, supervised learning,

or evaluation). When large-scale data collection is necessary, other scaling issues

arise. For example, with crowd-sourcing platforms like Amazon Mechanical Turk

(MTurk), recent works (Lee and Hu, 2012) have noted that verification questions

or a qualification task is necessary to ascertain if the annotators are suited for the

actual annotation task. Results also often have to be monitored and filtered for fake

data from cheating crowd-sourcing users (Bloodgood and Callison-Burch, 2010).

For the MAS, its Review Guidelines2 outline very specific functionality re-

quirements for any application it distributes. One of the requirements states that

applications “that are not very useful” may be rejected. As such, in the design of

our application, we needed to relegate the data collection to a secondary function.

While this seems counter-intuitive, we argue that generally, the data is collected to

ultimately serve some practical purpose for the users; this purpose is a natural fit

as the primary function of the application.

In our case, we published CHAPTRS ver. 2 in the MAS with the primary pur-

pose of helping users organize their event photo streams. At the same time, we can

use CHAPTRS ver. 2 for data collection, i.e. as a secondary function.

When CHAPTRS ver. 2 is launched for the first time, a window appears and

explains how the automatic segmentation works and then appeals to the user to

participate in the study to help improve the algorithm (Figure 6.1). Participation

is voluntary and opt-in, but we entice users by stating that a future improved al-

gorithm would be provided exclusively to participants. We also explained that the

data is anonymized and the study has been approved by our Institutional Review

2
https://developer.apple.com/appstore/mac/resources/approval/

guidelines.html
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Figure 6.1: Window inviting users to participate in a study to help improve our

algorithm

Board, as described in detail in a provided link3.

To perform the data collection, CHAPTRS ver. 2 simply checks the user settings

for study participation. If toggled true, CHAPTRS ver. 2 sends photo features to

our server as and when they are computed or when the features was found to not

have been sent yet. CHAPTRS ver. 2 also records ground truth annotations, by

maintaining a log of all user annotations, i.e. the grouping of photos within an

event into separate chapters, and sends this information to the server if the user is

a study participant.

6.1.2 Cost

Currently, there is no mechanism in the Mac Software Development Kit (SDK) to

allow MAS developers to send money to their users, and thus we opted not to re-

munerate participants monetarily. This reduces the overall cost of the study as it no

longer grows with the number of participants. At the same time, the participants are

3
http://chaptrs.com/research
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more likely to be users who are genuinely interested in helping to improve the algo-

rithm so they can benefit from the future algorithm, unlike many crowd-sourcing

users who cheat to get their monetary rewards (Bloodgood and Callison-Burch,

2010).

We made CHAPTRS ver. 2 a free application to maximize number of down-

loads. All the cost in the study is then attributed to the Mac Developer Program an-

nual fee of 99 USD. Past works with MTurk (Lee and Hu, 2012) have reported pay-

ing about 0.02 USD per annotation on top of the 60.50 USD Amazon fee and some

paid 0.10 USD per translation (Urdu into English) (Bloodgood and Callison-Burch,

2010). For data collections that involve no human judgement or annotation, e.g.

collecting Short Message Service (SMS) messages, a recent work (Chen and Kan,

2012) has reported paying at most 0.01 USD per message.

In our case, we collected features from 20,778 photo sets, comprising of 473,772

photos, of which 60 sets have ground truth segmentations, comprising of 8,107

photos. This translates to 0.0002 USD per photo or if we attribute all the cost to

the collected annotations, 0.012 USD per annotation4 .

When we consider the first 19 days of the study — the time taken by (Lee and

Hu, 2012) to collect 2,500 annotations from MTurk — we collected 5,787 photo

sets, comprising of 227,969 photos, of which 23 sets have ground truth segmen-

tations, comprising of 4,559 photos. This translates to a similar cost of 0.02 USD

per annotation, but without any other additional fees.

This illustrates another difference between our study and existing data collec-

tion methods. Because the cost of our study does not scale with the amount of data

collected, the cost per collected data (e.g. photo or annotation) decreases with the

duration of the study and with the number of concurrent studies.

4i.e. whether there are segment boundaries in the pairs of consecutive photos in a photo set
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Figure 6.2: Daily number of downloads (columns) with trendline and average rank-

ings (line) for CHAPTRS ver. 2 in the 60 days of study

6.1.3 Visibility

We define visibility as the exposure obtained by CHAPTRS ver. 2 to MAS users.

This includes both MAS users who downloaded CHAPTRS ver. 2 and those who

did not. While visibility is difficult to ascertain, we can produce a lower bound by

determining the number of MAS users who downloaded CHAPTRS ver. 2. In the

60 days that we conducted the study, the daily number of downloads can be seen

in Figure 6.2.

In the figure, the trendline that best matches the decrease in number of down-

loads over time is logarithmic: y = −24.97ln(x) + 120.97 with a coefficient of

determination, R2 = 0.71, where y and x correspond to the number of downloads

and the day number respectively. We report this trendline in hope that the research

community can find it helpful to estimate future downloads of their apps given their

initial download counts.

We note that there are two anomalous spikes in the number of downloads on

Day 12 and Day 52. Both spikes is attributed to the unusually high number of

downloads in the Japan MAS on those days (47 and 38). These high number of

downloads are caused by a snowballing effect from CHAPTRS ver. 2 taking the

number 2 and 4 positions in the top photography category in the Japan MAS. The

line graph in Figure 6.2 plots the average photography category ranking for CHAP-
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Figure 6.3: Top 25 countries with highest number of downloads

Figure 6.4: Number of updates from Day 50 to 60

TRS ver. 2 among various MAS stores. We can observe that the ranking decays

linearly with time. Figure 6.3 shows a time series plot of the top 25 countries with

the highest number of downloads. This ranking shows relative market sizes that

would be useful for planning pilot studies.

As CHAPTRS ver. 2 is a free application, one tendency is for users to down-

load and delete the application after only a brief experience. This is undesirable

especially if the data collection is meant to contribute to a longitudinal study. To

estimate the percentage of deletions, we submitted an update to the MAS. As the

MAS only notifies updates to users with the application still installed, this gives us

a good estimate. The update was released on Day 50 (see Figure 6.4). Comparing

the number of downloads in the first 49 days (2,261) and the number of updates in

the last 11 days (2,226), we can estimate that there is only at most a 1.5% deletion

rate.

113



6.1.4 Timeline

It took 19 days to collect 23 photo sets with ground truth annotations, comprising

of 4,559 photos. In the same amount of time, (Lee and Hu, 2012) collected 2,500

music mood annotations using MTurk. A work on SMS collection (Chen and Kan,

2012), which was considerably simpler as it involved no annotations from contrib-

utors, reported less success with 43 submissions (over 200 SMS per submission on

average) over 40+ days.

We note that there is some temporal overhead with using MAS as a distribution

channel. This is because applications need to undergo a review process before it

becomes available for download. The review time fluctuates over time and usually

takes 1-2 weeks5. Additional time is required for resubmission if the application is

rejected.

6.2 Dataset

While there are publicly available datasets, e.g. COREL database, there are none

that are event photos from personal photo libraries. We have previously noted

that researchers have so far made use of their own collections to conduct studies.

This poses a hurdle for new researchers. In practice, producing a public dataset

of personal photos is challenging due to the private nature of the photos and their

semantics.

We believe that a compromise is possible. The data we collected is a “blind”

dataset of personal photos because the photos themselves are not in the dataset.

Instead, only anonymized photo features and annotations are contained6 .

The dataset currently contains features that we use for our own work on event

photo stream segmentation: time gap, focal length, aperture diameter, LogLight,

and an 8-bin color histogram, but can be easily extended to collect others.

5Trend is reported at reviewtimes.shinydevelopment.com
6http://wing.comp.nus.edu.sg/˜jeprab/chaptrs_dataset/
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In the absence of the original photos, any micro or qualitative analysis that

involves accessing semantic information would not be feasible. Instead, the focus

of this dataset is the availability of data for quantitative analysis. Here we provide

some quantitative analysis of the data set, details of which are packaged with the

dataset.

Using K-means, we clustered the color distributions and searched for an op-

timal value for k, k < 9, which was found to be 6. Figure 6.5 shows the color

distributions of the cluster centroids. We observe that there is a large percentage

of black in all clusters due to the binning of dark colors to the nearest color, black.

We also observe that Cluster 2 represents the blue/cyan photos while the red/yellow

photos are represented by Cluster 3. These two clusters thus show the color distri-

bution of the “blue/cyan” photos and “red/yellow” photos in the dataset. The other

three clusters seem to represent different ratios of white to black while the ratios of

the remaining 6 colors remain fairly constant.

We also analyzed for bursts of photo taking activity (Kleinberg, 2002), i.e. a

sequence of photos (> 1) taken in succession with a certain average time gap.

In our analysis, we looked for 15 kinds of bursts, each with a different average

time gap7. Figure 6.6 shows the number of bursts found and the average number

of photos for each kind of burst. We observe that the most frequent burst has an

average time gap of 9 seconds. Also, the burst with the lowest average time gap

in our analysis has the highest average number of photos. This suggests that when

people take photos in quick succession (∼1 seconds), they do so with 4 photos on

average.

Lastly, Figure 6.7 shows a histogram of LogLight values. We have also fitted a

two-mixture Gaussian to the histogram (µ = {−4.91,−1.47}, σ = {0.74, 2.35},

λ = {0.26, 0.74}), suggesting that the LogLight values correspond to two normal

distributions, that plausibly represent day (left mixture) and night (right mixture)

7While photos taken > 1 min apart can hardly be considered a burst, we analyze such “bursts”

for completeness
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Figure 6.5: Color distributions of the six cluster centroids in the dataset

Figure 6.6: Dataset statistics of photo taking bursts

photos8.

6.3 Conclusion

There is a lack of publicly available datasets for personal photos and we believe

that the challenge lies is in the issue of privacy and in the difficulty in collecting

any sizable amount of data. In this chapter9, we have demonstrated how such a

dataset can be constructed by collecting anonymous photo features and ground

8The LogLight value is small and large for high and low ambient lights respectively
9Also in (Gozali et al., 2013).
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Figure 6.7: Histogram of LogLight values and the estimated Gaussian mixtures.

The probabilities of the mixtures have been multiplied by their mixture ratios (0.26,

0.74) to aid with the visualization.

truth annotations using an application distributed through the Mac App Store.

Aside from the review time overhead and conceptual overhead of designing the

data collection application, we have demonstrated that the MAS with its large user

base allows CHAPTRS ver. 2 to achieve high number of downloads, collects data

at a faster rate and with lower cost than the data collection experiences from some

recent works.

Ultimately, there is a self-filtering process because only genuinely interested

users would volunteer to participate in the studies. This is in contrast with other

data collection means, e.g. crowd-sourcing platforms where some users may only

be interested in the monetary remunerations.

We note that in the works that we have reviewed in this chapter, the types of

data and annotations collected are very different and thus we should not discount

the possibility of confounding variables affecting our comparisons. Nonetheless,

our experiences with CHAPTRS ver. 2 can stand on its own and shows that the

MAS provides a fruitful and viable alternative for data collection especially in

reaching out to personal digital photo libraries. In the same spirit, applications like

CHAPTRS ver. 2 can be used to collect other anonymous features from the photos

to expand on our dataset and its analysis.
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Chapter 7

Conclusion

We began this thesis with the hypothesis that a “chapter-based photo organization

provides a better user experience than event-based photo organization in a photo

browser for a personal digital photo library”. In the preceding chapters, we have

made several key findings in support of this hypothesis.

We found that for event photo stream segmentation, visual or time features

alone do not work well. In using features from an event photo stream, we made the

key observation that the feature types alternate in the event photo stream. In our

feature and structure analysis, we found that simple features and structures work

best. While the reason for this is rooted in the data sparsity of the task, using simple

features and structures also helped us to reduce the time taken for feature extraction

in our photo browser, CHAPTRS ver. 2, an important goal to ensure less waiting

time and good user experience.

In our user study, we found that users care more for how the chapters group

their event photos than for the chronological order of the photos. We found a vari-

ety of different criteria that users may employ to group event photos into chapters:

moments in the event, object, location, photography type, or by intention. The

grid-stacking layout, the most preferred photo layout in the study, supports these

findings. It displays each chapter as a grid of photos, with each chapter displayed

separately from one another. Users were less concerned with the screen space us-
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age of such a layout.

Additionally, the user study also revealed that for event photo stream segmen-

tation, having a low miss rate, i.e. the method misses a low number of segment

boundaries, is more important than having a low false alarm, i.e. the method pro-

duces a low number of false segment boundaries. If we factor this finding into

the metric we used for our evaluation, our method would further outperform the

baselines because of their tendency for high miss rates.

In constructing a dataset of anonymous photo features, we also found that using

a popular application distribution channel, the Mac App Store, allows researchers

such as ourselves to reach a large number of potential study participants and their

personal digital photo libraries. Traditionally, even a small-scale data collection

would have to be done with a lot of manual effort to publicise the study and attract

volunteers. With this methodology, datasets can be created to further research in

personal digital photo libraries.

7.1 Contributions

In supporting our hypothesis, this thesis makes the following contributions in the

field of personal digital photo libraries:

1. Event Photo Stream Segmentation — We explored and proposed an un-

supervised method for event photo stream segmentation. In doing so, we

explored and analyzed a variety of photo features and model structures. We

evaluated our method with a variety of baselines and showed how our ap-

proach outperforms all the baselines with statistical significance.

2. Chapter-based Photo Organization User Study — We conducted the first

user behavior study on chapter-based photo organization. We drew insights

from exploring fundamental issues of organization criteria and the affects on

common photo-related tasks, such as storytelling, searching, and interpreta-

tion.
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3. Chapter-based Organization Photo Layout — We conducted the first photo

layout study on chapter-based photo organization. We explored several well-

known photo layout aspects — view hierarchy, chronological order, and

screen space usage — and their effects on common photo-related tasks.

4. CHAPTRS Photo Browser — We developed a fully-implemented publicly

available chapter-based photo browser, CHAPTRS ver. 2. Our photo browser

embodies all our work and findings from the unsupervised method, the photo

organization study and photo layout study. Using CHAPTRS ver. 2, we con-

structed a dataset of anonymous photo features for the research community

and report on our experience in assembling such a large anonymous dataset

from personal digital photo libraries.

7.2 Limitations and Future Work

We recognise that this thesis has several limitations and also makes room for further

work in the area of chapter-based photo organization. First, our method for event

photo stream segmentation is only complementary to automatic albuming methods

for event-based photo organization. Our method cannot be used for automatic

albuming, i.e. to find events from a photo collection. This limitation is caused

by the nature of our generative approach and the structure of the HMM used in

our approach. While a unified solution may seem more elegant, we believe that

our current framework where our method complements existing event-based photo

organization methods is better because the framework allows less coupling between

the two levels of organization — event and chapter — so that each level can be

organized independently with different methods. In particular, chapters following

different grouping criteria can be organized by different methods. The challenge

for future work would then be to predict user organizational needs, automatically

select the appropriate methods, and present them as suggestions to the user.

Second, our approach is unsupervised and as such, does not make use of in-
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formation from available ground truth segmentations. At present, the amount of

available ground truth segmentations is still limited, even including the ones in our

dataset. Going forward, we hope more features and ground truth will be accessible

for personal digital photo libraries. With such data — as is the case in the speech

community and its usage of HMM-based solutions — supervised solutions trained

using ground truth segmentations and labelled data will be feasible. The challenge

for the research community would be to create supervised models that are seman-

tically grounded with how photographers take photos, similar to Barry’s cognitive

model (2005) of how videographers think when creating a story; they observe the

world, decide what to record, record a shot, and then reflect on its influence on the

story.

Third, existing literature on personal photography reported that users did not

find grouping photos by their visual appearance as useful at the photo collection

level. In our study on chapter-based photo organization, we found the opposite

to be true. As such, there is room for such automatic organization tools based on

visual appearance to help users group event photos into chapters. The challenge

here would be to balance the use of computationally-intensive features and the

accuracy of the resulting visual organization.

Lastly, our photo layout study has identified photo layout aspects that are im-

portant for chapter-based photo organization. We hope these findings and that from

the photo organization study will inform the design of future novel user interfaces

for chapter-based photo browsers. The challenge would be to apply these user

interfaces to both traditional and emerging use cases, e.g. accessing online digital

photo libraries (“in the cloud”) such as Apple’s iCloud Photo Stream where a user’s

online photos are presented as a single continuous stream of photos from the past

30 days.
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7.3 Towards An Automatic Personal Digital Photo Library

Our personal photos are our treasure troves. While we often find ourselves disin-

clined to invest our precious time to organize them, the memories our photos rep-

resent is truly priceless. And unlike the pixels which we can preserve for posterity

in a variety of physical media, the semantics that are associated with the photos

cannot be so easily preserved, not without effort and annotations on our part.

One ultimate goal for personal digital photo libraries is then to automate our

tasks. Central to this automation is organization, an essential pre-processing step

useful for other tasks such as annotation, summarization, and life logging. As our

knowledge in automatic photo organization grows, the other tasks can subsequently

benefit as well.
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