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Summary

The trend towards collecting large data sets driven by technology has re-

sulted in the need for fast computational approximations and more flexible

models. My thesis reflects these themes by considering very flexible re-

gression models and developing fast variational approximation methods for

fitting them.

First, we consider mixtures of heteroscedastic regression models where

the response distribution is a normal mixture, with the component means,

variances and mixing weights all varying as a function of the covariates. Fast

variational approximation methods are developed for fitting these models.

The advantages of our approach as compared to computationally intensive

Markov chain Monte Carlo (MCMC) methods are compelling, particularly

for time series data where repeated refitting for model choice and diag-

nostics is common. This basic variational approximation can be further

improved by using stochastic approximation to perturb the initial solution.

Second, we propose a novel variational greedy algorithm for fitting mix-

tures of linear mixed models, which performs parameter estimation and

model selection simultaneously, and returns a plausible number of mix-

ture components automatically. In cases of weak identifiability of model

parameters, we use hierarchical centering to reparametrize the model and

show that there is a gain in efficiency in variational algorithms similar to

that in MCMC algorithms. Related to this, we prove that the approximate

rate of convergence of variational algorithms by Gaussian approximation

is equal to that of the corresponding Gibbs sampler. This result suggests

that reparametrizations can lead to improved convergence in variational

algorithms just as in MCMC algorithms.

Third, we examine the performance of the centered, noncentered and

partially noncentered parametrizations, which have previously been used to

accelerate MCMC and expectation maximization algorithms for hierarchi-

cal models, in the context of variational Bayes for generalized linear mixed

models (GLMMs). We demonstrate how GLMMs can be fitted using non-

conjugate variational message passing and show that the partially noncen-
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Summary

tered parametrization is able to automatically determine a parametrization

close to optimal and accelerate convergence while yielding more accurate

approximations statistically. We also demonstrate how the variational lower

bound, produced as part of the computation, can be useful for model se-

lection.

Extending recently developed methods in stochastic variational infer-

ence to nonconjugate models, we develop a stochastic version of nonconju-

gate variational message passing for fitting GLMMs that is scalable to large

data sets, by optimizing the variational lower bound using stochastic natu-

ral gradient approximation. In addition, we show that diagnostics for prior-

likelihood conflict, which are very useful for Bayesian model criticism, can

be obtained from nonconjugate variational message passing automatically.

Finally, we demonstrate that for moderate-sized data sets, convergence can

be accelerated by using the stochastic version of nonconjugate variational

message passing in the initial stage of optimization before switching to the

standard version.
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Chapter 1

Introduction

Technological advances have enabled the collection of larger data sets which

presents new challenges in the development of statistical methods and com-

putational algorithms for their analysis. As data sets grow in size and com-

plexity, there is a need for (i) more flexible models to capture and describe

more accurately the relationship between responses and predictors and (ii)

fast computational approximations to maintain efficiency and relevance.

This thesis seeks to address these needs by considering some very flexible

regression models and developing fast variational approximation methods

for fitting them. We adopt a Bayesian approach to inference which allows

uncertainty in unknown model parameters to be quantified.

This chapter is organized as follows. Section 1.1 briefly reviews varia-

tional approximation methods and describes how they are useful in Bayesian

inference. Section 1.2 highlights the main contributions of this thesis and

Section 1.3 describes the notation and distributional definitions used in this

thesis.

1.1 Variational Approximation

In recent years, variational approximation has emerged as an attractive

alternative to Markov chain Monte Carlo (MCMC) and Laplace approx-

imation methods for posterior estimation in Bayesian inference. Being a

fast, deterministic and flexible technique, it requires much less computa-

tion time than MCMC methods, especially for complex models. It does not

restrict the posterior to a Gaussian form as in Laplace approximation and

the convergence is easy to monitor. However, unlike MCMC methods which

can in principle be made arbitrarily accurate by increasing the simulation

sample size, variational approximation methods are limited in how closely

they can approximate the true posterior.

1



Chapter 1. Introduction

Variational approximation methods originated in statistical physics and

have mostly been developed in the machine learning community (e.g. Jor-

dan et al., 1999; Ueda and Ghahramani, 2002; Winn and Bishop, 2005).

However, research in variational methods is currently very active in both

machine learning and statistics (e.g. Braun and McAuliffe, 2010; Ormerod

and Wand, 2012). In particular, variational Bayes computational methods

are attracting increasing interest because of their ability to scale to large

high-dimensional data (Hoffman et al., 2010; Wang et al., 2011).

1.1.1 Bayesian inference

First, let us consider how variational approximation can be applied in

Bayesian inference. Suppose we have a model where y denotes the observed

data, θ denotes the set of unknown parameters and p(θ) represents a prior

distribution placed on the unknown parameters. Bayesian inference is based

on the posterior distribution of the unknown parameters, p(θ|y), which is

often intractable. In variational approximation, we approximate p(θ|y) by

a q(θ) for which inference is more tractable. It is common to assume, for

instance, that q(θ) belongs to some parametric distribution or that q(θ)

factorizes into
∏m

i=1 qi(θi) for some partition {θ1, . . . , θm} of θ. We attempt

to make q(θ) a good approximation to p(θ|y) by minimizing the Kullback-

Leibler divergence between them. The Kullback-Leibler divergence between

q(θ) and p(θ|y) is∫
q(θ) log

q(θ)

p(θ|y)
dθ =

∫
q(θ) log

q(θ)

p(y|θ)p(θ)
dθ + log p(y), (1.1)

where p(y) =
∫
p(y|θ)p(θ) dθ is the marginal likelihood. As the Kullback-

Leibler divergence is non-negative, we have

log p(y) ≥
∫
q(θ) log

p(y|θ)p(θ)
q(θ)

dθ

= Eq{log p(y, θ)} − Eq{log q(θ)}

= L, (1.2)

where Eq denotes expectation with respect to the variational approximation

q(θ) and L is a lower bound on the log marginal likelihood. From (1.1), the

difference between the lower bound and the log marginal likelihood is the

Kullback-Leibler divergence between q(θ) and p(θ|y). Maximization of the

lower bound L is thus equivalent to minimization of the Kullback-Leibler

divergence between q(θ) and p(θ|y). The lower bound L is sometimes used

2



1.1. Variational Approximation

as an approximation to the log marginal likelihood for Bayesian model

selection purposes (see Section 1.1.3).

Variational approximations are often useful in Bayesian predictive in-

ference. Let y∗ denote a future response. Bayesian predictive inference is

based on the predictive distribution

p(y∗|y) =

∫
p(y∗|θ, y)p(θ|y) dθ. (1.3)

The first component of uncertainty in p(y∗|y) is the inherent randomness

in y∗ which would still be around if θ were known and this is captured

by p(y∗|θ, y) in the integrand. The second component of uncertainty is pa-

rameter uncertainty which is captured by p(θ|y). For large data sets, the

parameter uncertainty is small and substituting p(θ|y) with the variational

posterior q(θ) in (1.3) is an attractive means of obtaining predictive infer-

ence, provided that q(θ) gives good point estimation. Moreover, this still

accounts to some extent for parameter uncertainty.

The independence and distributional assumptions made in variational

approximations may not be realistic and it has been shown in the context of

Gaussian mixture models that factorized variational approximations have a

tendency to underestimate the posterior variance (Wang and Titterington,

2005; Bishop, 2006). However, variational approximation can often lead

to good point estimates, reasonable estimates of marginal posterior distri-

butions and excellent predictive inferences compared to other approxima-

tions, particularly in high dimensions. Blei and Jordan (2006), for instance,

showed that predictive distributions based on variational approximations

to the posterior were very similar to those obtained by MCMC for Dirichlet

process mixture models. Braun and McAuliffe (2010) reported similar find-

ings in large-scale models of discrete choice although they observed that

the variational posterior is more concentrated around the mode than the

MCMC posterior, a familiar underdispersion effect noted above.

1.1.2 Variational Bayes

The restriction that the variational approximation q(θ) factorizes as q(θ) =∏m
i=1 qi(θi) for some partition {θ1, . . . , θm} of θ, is known as “mean field”

approximation in Physics (Parisi, 1988). Approximate Bayesian inference

under this product density assumption is also known as variational Bayes

(VB). A very early instance of VB applied to mixture of regression models

(Jacobs et al., 1991; Jordan and Jacobs, 1994) was presented in Waterhouse

3



Chapter 1. Introduction

et al. (1996) and the VB framework was first proposed formally by Attias

(1999). VB has since been applied to many models in different applications

(e.g. McGrory and Titterington, 2007; Faes et al., 2011). Maximization of

the lower bound L with respect to each of q1, . . . , qm in VB leads to optimal

densities satisfying

qi(θi) ∝ exp{E−θi log p(y, θ)}, (1.4)

for each i = 1, . . . ,m, where E−θi denotes expectation with respect to the

density
∏

j 6=i qj(θj) (see, e.g. Ormerod and Wand, 2010). If conjugate priors

are used, the optimal densities qi will have the same form as the prior so

that it suffices to update the parameters of qi (Winn and Bishop, 2005).

Suppose the Bayesian model p(y, θ) is represented by a directed graph

with nodes representing the variables and arrows expressing the probabilis-

tic relationship between variables. In VB, optimization of the variational

posterior can be decomposed into local computations that involve only

neighbouring nodes. This leads to fast computational algorithms. Winn

and Bishop (2005) developed an algorithm called variational message pass-

ing that allows VB to be applied to a very general class of conjugate-

exponential models (Attias, 2000; Ghahramani and Beal, 2001) without

having to derive application-specific updates. In this algorithm, “messages”

are passed between nodes in the graph, and the posterior distribution asso-

ciated with any particular node can be updated once the node has received

messages from all of its neighbouring nodes. Knowles and Minka (2011)

proposed an algorithm called nonconjugate variational message passing to

extend variational message passing to nonconjugate models.

For computational efficiency, VB methods often rely on analytic solu-

tions to integrals and conjugacy in the posterior. This limits the type of

approximations and posteriors VB can handle. Recent developments in VB

methods seek to overcome this restriction by branching out into stochastic

optimization (e.g., Paisley et al., 2012; Salimans and Knowles, 2012). More

details are given in Section 5.1. Wand et al. (2011) developed some strate-

gies to handle models whose VB parameter updates do not admit closed

form solutions by making use of auxiliary variables, quadrature schemes

and finite mixture approximations of difficult density functions.
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1.1.3 Variational approach to Bayesian model selection

Variational methods provide an important approach to model selection and

a number of innovative automated model selection procedures that follow

a variational approach have been developed for Gaussian mixture models.

First, let us review briefly the Bayesian approach to model selection,

which is usually based traditionally on the Bayes factor. Suppose there are

k candidate models, M1, . . . ,Mk. Let p(Mj) and p(y|Mj) denote the prior

probability and marginal likelihood of model Mj respectively. Applying

Bayes’ rule, the posterior probability of model Mj is

p(Mj|y) =
p(Mj)p(y|Mj)∑k
l=1 p(Ml)p(y|Ml)

.

To compare any two models, say Mi and Mj, we consider the posterior

odds in favour of model Mi:

p(Mi|y)

p(Mj|y)
=
p(Mi)p(y|Mi)

p(Mj)p(y|Mj)
.

The ratio of the marginal likelihoods, p(y|Mi)
p(y|Mj)

, is the Bayes factor and can

be considered as the strength of evidence provided by the data in favour of

model Mi over Mj. Therefore, model comparison can be performed using

marginal likelihoods once a prior has been specified on the models. See

O’Hagan and Forster (2004) for a review of Bayes factors and alternative

methods for Bayesian model choice.

Computing marginal likelihoods for complex models is not straight-

forward (see, e.g., Frühwirth-Schnatter, 2004) and in the variational ap-

proximation literature, it is common to replace the log marginal likelihood

with the variational lower bound to obtain approximate posterior model

probabilities. Corduneanu and Bishop (2001) verified through experiments

and comparisons with cross-validation that the variational lower bound

is a good score for model selection in Gaussian mixture models. Bishop

and Svensén (2003) also considered the use of the variational lower bound

in model selection for mixture of regression models. By considering mod-

els with varying number of mixture components and multiple runs from

random starting points (as the lower bound has many local modes), they

demonstrated that the lower bound attained its maximum value when the

number of mixture components was optimal.

In mixture models, there are many equivalent modes that arise from

component relabelling. For instance, if there are k components, then there
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Chapter 1. Introduction

will be k! different modes with equivalent parameter settings. However,

variational inference tends to approximate the posterior distribution in one

of the modes and ignore others when there is multimodality (Bishop, 2006).

This failure to approximate all modes of the true posterior leads to under-

estimation of the log marginal likelihood by the lower bound. Bishop (2006)

suggests adding log k! to the lower bound when using it for model compar-

ison. See Bishop (2006) and Paquet et al. (2009) for further discussion. In

Chapter 3, we do not attempt any adjustment when using the lower bound

in the variational greedy algorithm as we find that the log k! correction

tends to be too large when k is large and modes overlap.

Another advantage of variational methods is the potential for simulta-

neous parameter estimation and model selection. Attias (1999) observed

that when mixture models are fitted using VB, competition between com-

ponents with similar parameters will result in weightings of redundant com-

ponents decreasing to zero. This component elimination property was used

by several authors to develop algorithms with automatic model selection

for Gaussian mixtures. For instance, Corduneanu and Bishop (2001) es-

timate mixing coefficients by optimizing a variational lower bound on the

log marginal likelihood, where all parameters except the mixing coefficients

are integrated out. They demonstrated that by initializing the algorithm

with a large number of components, mixture components whose weight-

ings become sufficiently small can be removed, leading to automatic model

selection. McGrory and Titterington (2007) considered a similar approach

using a different model hierarchy and extended the deviance information

criterion of Spiegelhalter et al. (2002a) to VB methods. These were used

to validate the automatic model selection in VB. On the other hand, Ueda

and Ghahramani (2002) proposed using a VB split and merge EM (expec-

tation maximization) procedure to optimize an objective function that can

perform model selection and parameter estimation for Gaussian mixtures

simultaneously. Building upon past split operations proposed previously

(see also Ghahramani and Beal, 2000), Wu et al. (2012) proposed a new

goodness-of-fit measure for evaluating mixture models and developed a split

and eliminate VB algorithm which identifies components fitted poorly using

two types of split operations. All poorly fitted components were then split at

the same time. No merge moves are required as the algorithm makes use of

the component elimination property associated with VB. Constantinopou-

los and Likas (2007) observed that in the component elimination approach

of McGrory and Titterington (2007), the number of components in the re-
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sulting mixture can be sensitive to the prior on the precision matrix. They

proposed an incremental approach where components are added to the mix-

ture following a splitting test which takes into account characteristics of the

precision matrix of the component being tested.

1.2 Contributions

In this thesis, we consider some highly flexible models, namely, mixture of

heteroscedastic regression (MHR) models, mixture of linear mixed mod-

els (MLMM) and the generalized linear mixed model (GLMM). Fast vari-

ational approximation methods are developed for fitting them. We also

investigate the use of reparametrization techniques and stochastic approx-

imation methods for improving the convergence of variational algorithms.

Chapter 2 considers the problem of regression density estimation and

the use of MHR models to flexibly estimate a response distribution smoothly

as a function of covariates. In a MHR model, the response distribution is a

normal mixture, with the component means, variances and mixture weights

all varying as a function of covariates. We develop fast variational approxi-

mation methods for inference in MHR models, where the variational lower

bound is in closed form. Our motivation is that alternative computation-

ally intensive MCMC methods are difficult to apply when it is desired

to fit models repeatedly in exploratory analysis and in cross-validation for

model choice. We also improve the basic variational approximation by using

stochastic approximation methods to perturb the initial solution so as to

attain higher accuracy. The advantages of variational methods as compared

to MCMC methods in model choice are illustrated with real examples.

In Chapter 3, we consider MLMMs which are very useful for cluster-

ing grouped data. The conventional approach to estimating MLMMs is

by likelihood maximization through the EM algorithm. A suitable number

of components is then determined by comparing different mixture models

using penalized log-likelihood criteria such as BIC (Bayesian information

criterion). Our motivation for fitting MLMMs with variational methods is

that parameter estimation and model selection can be performed simulta-

neously. We describe a variational approximation for MLMMs where the

variational lower bound is in closed form, allowing for fast evaluation and

develop a novel variational greedy algorithm for model selection and learn-

ing of the mixture components. This approach handles algorithm initializa-

tion and returns a plausible number of mixture components automatically.

In cases of weak identifiability of certain model parameters, we use hierar-
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chical centering to reparametrize the model and show empirically that there

is a gain in efficiency in variational algorithms similar to that in MCMC

algorithms. Related to this, we prove that the approximate rate of conver-

gence of variational algorithms by Gaussian approximation is equal to that

of the corresponding Gibbs sampler, which suggests that reparametriza-

tions can lead to improved convergence in variational algorithms just as in

MCMC algorithms.

We turn to GLMMs in Chapter 4. We show how GLMMs can be fitted

using nonconjugate variational message passing and demonstrate that this

algorithm is faster than MCMC methods by an order of magnitude which

is especially important in large scale applications. In addition, we examine

the effects of reparametrization techniques such as centering, noncentering

and partial noncentering in the context of VB for GLMMs. These tech-

niques have been used to accelerate convergence for hierarchical models in

MCMC and EM algorithms but are still not well studied for VB methods.

The use of different parametrizations for VB has not only computational

but also statistical implications as different parametrizations are associ-

ated with different factorized posterior approximations. We show that the

partially noncentered parametrization can adapt to the quantity of infor-

mation in the data and automatically determine a parametrization close

to optimal. Moreover, partial noncentering can accelerate convergence and

produce more accurate posterior approximations than centering or noncen-

tering. Standard model selection criteria such as AIC (Akaike information

criteria) or BIC are difficult to apply to GLMMs and we demonstrate how

the variational lower bound, a by-product of the nonconjugate variational

message passing algorithm, can be useful for model selection.

The nonconjugate variational message algorithm for GLMMs has to

iterate between updating local variational parameters associated with indi-

vidual observations and global variational parameters and becomes increas-

ingly inefficient for large data sets. In Chapter 5, we extend stochastic vari-

ational inference for conjugate-exponential models to nonconjugate models

and present a stochastic version of nonconjugate variational message pass-

ing for fitting GLMMs that is scalable to large data sets. This is achieved

by combining updates in nonconjugate variational message passing with

stochastic natural gradient optimization of the variational lower bound. In

addition, we show that diagnostics for prior-likelihood conflict, which are

very useful for model criticism, can be obtained from nonconjugate varia-

tional message passing automatically, as an alternative to simulation-based,
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computationally intensive MCMC methods. Finally, we demonstrate that

for moderate-sized data sets, convergence can be accelerated by using the

stochastic version of nonconjugate variational message passing in the initial

stage of optimization before switching to the standard version.

The materials presented in this thesis have either been published or

submitted for publication. Results in Chapter 2, Chapter 3 and Chapter 4

have been published in Nott et al. (2012), Tan and Nott (2013a) and Tan

and Nott (2013b) respectively. Results in Chapter 5 are covered in Tan and

Nott (2013c) which has been submitted for publication.

1.3 Notation

Here we introduce some notation that will apply throughout the thesis.

The determinant of a square matrix A is denoted by |A| and the trans-

pose of any matrix B is denoted by BT . We use 1d to denote the d×1 column

vector with all entries equal to 1 and Id to denote the d×d identity matrix.

Let a = [a1, a2, a3]T and b = [b1, b2, b3]T . We adopt the convention that

scalar functions such as exp(·) applied to vector arguments are evaluated

element by element. For example, exp(a) = [exp(a1), exp(a2), exp(a3)]T .

We use � to denote element by element multiplication of two vectors. For

example, a� b = [a1b1, a2b2, a3b3]. The kronecker product between any two

matrices is denoted by ⊗.

For a d × d square matrix A, we let diag(A) denote the d × 1 vector

containing the diagonal entries of A and vec(A) denotes the d2 × 1 vector

obtained by stacking the columns of A under each other, from left to right

in order. In addition, vech(A) denotes the 1
2
d(d + 1) × 1 vector obtained

from vec(A) by eliminating all supradiagonal elements of A. See Magnus

and Neudecker (1988) for more details. On the other hand, if a is a d × 1

vector, diag(a) is used to denote the d × d diagonal matrix with diagonal

entries given by the vector a.

We let N(µ,Σ) denote the normal distribution with mean µ and co-

variance matrix Σ. The Gaussian density of a random variable x with

mean µ and standard deviation σ is denoted by φ(x;µ, σ). Let Γ(·) de-

note the Gamma function given by Γ(x) =
∫∞

0
ux−1 exp(−u) du and ψ(·)

denote the digamma function given by ψ(x) = d
dx

log Γ(x) = Γ′(x)
Γ(x)

. We use

IG(α, λ) to denote the inverse gamma distribution with density function
λα

Γ(α)
x−(α+1) exp

(
−λ
x

)
defined for x > 0. We use IW (ν, S) to denote the
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inverse-Wishart distribution with density function given by{
2
νr
2 π

r(r−1)
4

r∏
l=1

Γ

(
ν + 1− l

2

)}−1

|S|
ν
2 |D|−

ν+r+1
2 exp{−1

2
tr(SD−1)},

for an r × r matrix D. The degrees of freedom is ν and S is a symmetric,

positive definite r × r scale matrix.
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Chapter 2

Regression density estimation with

variational methods and stochastic

approximation

In this chapter, we consider the problem of regression density estimation,

that is, how to model a response distribution so that it varies smoothly as

a function of the covariates. Finite mixture models provide an important

approach to regression density estimation and here we consider mixture

of heteroscedastic regression (MHR) models where the response distribu-

tion is a normal mixture, with the component means, variances and mix-

ing weights all varying with covariates. Each component is described by

a heteroscedastic linear regression model and the component weights by

a multinomial logit model. This allowance for heteroscedasticity is impor-

tant as simulations by Villani et al. (2009) showed that when models with

homoscedastic components are used to model heteroscedastic data, their

performance become worse as the number of covariates increases. There is

also a limit as to how much their performance can be improved by merely

increasing the number of mixture components. Another advantage of MHR

models is that the same level of performance can be achieved with fewer

components as was shown in Li et al. (2011) using the benchmark LIDAR

data. This makes estimating and interpreting the mixture model an easier

task. Moreover, MHR models can also be used for fitting homoscedastic

data (see Villani et al., 2009).

Fitting mixture models with MCMC methods can be computation-

ally intensive, especially when models have to be fitted repeatedly in ex-

ploratory analysis or model choice using cross-validation. We develop fast

variational approximation methods for fitting MHR models where the vari-

ational lower bound is in closed form and updates can be computed effi-
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ciently. We demonstrate the advantages of our approach as compared to

MCMC methods in model choice and evaluation. The advantages are sig-

nificant for time series data, where model refitting is common in repeated

one-step ahead prediction (Geweke and Amisano, 2010) and rolling win-

dow computations to check for model stability (Pesaran and Timmermann,

2002). Variational methods are particularly suitable for this type of refit-

ting as variational parameters obtained from a previous fit can be used

to initialize the next one. The computational speed up arising from such

“warm starts” are quantified in an example. Finally, we propose to improve

the basic variational approximation by integrating out the mixture compo-

nent indicators from the posterior and perturbing the initial solution using

stochastic approximation methods (see, e.g. Spall, 2003). Results indicate

that the stochastic approximation correction is very helpful in attaining

better accuracy and requires less computation time than MCMC methods.

This chapter is organized as follows. Section 2.1 provides some back-

ground. Section 2.2 defines MHR models and Section 2.3 describes fast

variational methods for fitting them. Section 2.4 discusses model choice

using a variational approach and Section 2.5 describes how the basic varia-

tional approximation can be improved by using a stochastic approximation

correction. Section 2.6 considers examples involving real data and Section

2.7 concludes.

Results presented in this chapter have been published in Nott et al.

(2012).

2.1 Background

MHR models extend conventional mixture of regression models by allow-

ing the component models to be heteroscedastic. In machine learning, mix-

tures of regression models are commonly referred to as mixtures of experts

(Jacobs et al., 1991; Jordan and Jacobs, 1994), in which the individual

component distributions are called experts and the mixing coefficients are

termed gating functions. Mixtures of regression models are also known as

concomitant variable mixture regression models in marketing (e.g. Wedel,

2002) or as mixtures of generalized linear models when the individual com-

ponent distributions are generalized linear models. Previously, Villani et

al. (2009) have considered MHR models where the means, variances and

mixing probabilities are modelled using spline basis function expansions

with a variable selection prior. Bayesian inference was obtained by using

MCMC methods in Villani et al. (2009).
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Mixtures of regression models are highly flexible and can be fitted using

likelihood maximization through the EM algorithm (e.g. Jordan and Ja-

cobs, 1994). Recent Bayesian approaches use MCMC methods for inference

(e.g. Peng et al., 1996; Wood et al., 2002; Geweke and Keane, 2007). A num-

ber of authors have also considered variational methods although they did

not consider heteroscedastic components (Waterhouse et al., 1996; Ueda

and Ghahramani, 2002; Bishop and Svensén, 2003). Innovative approaches

to model selection that follow from variational methods have been proposed

for mixtures of regression models as well as Gaussian mixtures and a brief

review is given in Section 1.1.3.

Jiang and Tanner (1999) study the rate at which mixtures of regression

models approximate the true density and the consistency of maximum like-

lihood estimation in the case where the response follows a one-parameter

exponential family regression model. Norets (2010) showed that a large class

of conditional densities can be approximated in the sense of the Kullback-

Leibler distance by using different types of finite smooth normal mixtures

and derived approximation error bounds. Some insights on when additional

flexibility might be most usefully employed in the mean, variance and gat-

ing functions are also provided.

Research in Bayesian nonparametric approaches to regression density

estimation relating to mixtures of regression models is currently very ac-

tive (e.g. MacEachern, 1999; De Iorio et al., 2004; Griffin and Steel, 2006;

Dunson et al., 2007). Instead of considering finite mixtures of regressions,

it is possible to place a prior such as the Dirichlet process prior on the

mixing distribution. For some common priors, the resulting model can be

considered as mixtures with an infinite number of components. This ap-

proach avoids the difficulty of determining a suitable number of mixture

components, although a finite mixture may be easier to interpret and com-

municate to scientific practitioners.

A central approach to stochastic optimization is the root-finding stochas-

tic approximation algorithm of Robbins and Monro (1951). Here we con-

sider optimization of the variational lower bound through stochastic gradi-

ent approximation (see, e.g. Spall, 2003). A similar approach was proposed

by Ji et al. (2010), but we offer several improvements, such as an improved

gradient estimate and a strategy of perturbing only the mean and scale of

an initial variational approximation. Perturbing an existing solution keeps

the dimension of optimization low which is important for a fast and stable

implementation. Ji et al. (2010) also propose using Monte Carlo samples

13



Chapter 2. Regression density estimation

to optimize upper and lower bounds on the marginal likelihood.

2.2 Mixtures of heteroscedastic regression models

Suppose that responses y1, . . . , yn are observed. For each i = 1, . . . , n, yi is

modelled by a MHR model of the form:

yi|δi, β, α ∼ N
(
xTi βδi , exp(uTi αδi)

)
,

where δi is a categorical latent variable with k categories, δi ∈ {1, . . . , k},
xi = [xi1, . . . , xip]

T and ui = [ui1, . . . , uim]T are vectors of covariates, and

βj = [βj1, . . . , βjp]
T and αj = [αj1, . . . , αjm]T , j = 1, . . . , k, are vectors

of unknown parameters. Conditional on δi = j, the response follows a

heteroscedastic linear model with mean xTi βj and log variance uTi αj. The

mixing distribution for δi is

P (δi = j|γ) = pij(γ) =
exp(γTj vi)∑k
l=1 exp(γTl vi)

, j = 1, . . . , k,

where vi = [vi1, . . . , vir]
T is a vector of covariates, γ1 is set as identically

zero for identifiability, γj = [γj1, . . . , γjr]
T , j = 2, . . . , k, are vectors of

unknown parameters and γ = [γT2 , . . . , γ
T
k ]T . With this prior, the responses

are modelled as a mixture of heteroscedastic linear regressions where the

mixture weights vary with covariates. For Bayesian inference, we specify the

following independent prior distributions on the unknown parameters: βj ∼
N(µ0

βj
,Σ0

βj
) and αj ∼ N(µ0

αj
,Σ0

αj
) for j = 1, . . . , k and γ ∼ N(µ0

γ,Σ
0
γ). Let

y = [y1, . . . , yn]T , X = [x1, . . . , xn]T , U = [u1, . . . , un]T , V = [v1, . . . , vn]T ,

δ = [δ1, . . . , δn]T , β = [βT1 , . . . β
T
k ]T , α = [αT1 , . . . α

T
k ]T and θ = {δ, β, α, γ}

denote the set of all unknown parameters. Fast variational approximation

methods for MHR models are described in the next section. Variational

inference has been considered for mixtures of regression models but not for

the case of heteroscedastic mixture components and we demonstrate that

a variational lower bound can still be computed in closed form in this case.

2.3 Variational approximation

We consider a variational approximation to the joint posterior p(θ|y) of the

form

q(θ) = q(δ)q(β)q(α)q(γ), (2.1)
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where

q(δ) =
n∏
i=1

q(δi), q(β) =
k∏
j=1

q(βj), q(α) =
k∏
j=1

q(αj) (2.2)

and q(βj) is N(µqβj ,Σ
q
βj

), q(αj) is N(µqαj ,Σ
q
αj

), q(γ) is a delta function plac-

ing point mass of 1 on µqγ, and q(δi = j) = qij for i = 1, . . . , n, j = 1, . . . , k,

with
∑k

j=1 qij = 1 for each i. Bishop (2006) noted that qij can be inter-

preted as a measure of the responsibility undertaken by component j in

explaining the ith observation. Here a parametric form is chosen for q(θ)

and we attempt to make q(θ) a good approximation to p(θ|y) by choos-

ing the variational parameters to minimize the Kullback-Leibler divergence

between q(θ) and p(θ|y). From (1.2), this is equivalent to maximizing the

variational lower bound L with respect to the variational parameters.

We note that the product forms of q(δ), q(β) and q(α) assumed in (2.2)

also arise as optimal solutions of the product restriction in (2.1) through

application of (1.4). The densities assumed for q(βj) and q(δi) are also the

optimal densities which arise through application of (1.4). The optimal

densities of q(αj) and q(γ) do not belong to recognizable densities however

and we have assumed specific parametric forms for them. In particular,

a degenerate point mass variational posterior has been assumed for γ so

that computation of the lower bound is tractable. We suggest a method for

relaxing q(γ) to be a normal distribution after first describing a variational

algorithm which uses the point mass form for q(γ).

Unlike previous developments of variational methods for mixture mod-

els with homoscedastic components (e.g. Bishop and Svensén, 2003), it is

not straightforward to derive a closed form of the variational lower bound

in the heteroscedastic case and we also have to handle optimization of

the variance parameters, µqαj and Σq
αj

, in the variational posterior. These

variance parameters cannot be optimized in closed form and we develop

computationally efficient approximate methods for dealing with them.

At the moment, we are considering only a fixed point estimate for γ.

Suppose θ−γ denotes the set of unknown parameters excluding γ. We have

p(y|γ) =
∫
p(y|θ)p(θ−γ|γ) dθ−γ and

log p(γ)p(y|γ) = log

∫
p(y|θ)p(θ) dθ−γ

= log

∫
q(θ−γ)

p(y, θ)

q(θ−γ)
dθ−γ

≥
∫
q(θ−γ) log

p(y, θ)

q(θ−γ)
dθ−γ (by Jensen’s inequality) (2.3)
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This implies that L = Eq{log p(y, θ)}−Eq{log q(θ−γ)} where Eq(·) denotes

expectation with respect to q(θ), gives a lower bound on supγ log p(γ)p(y|γ).

This lower bound can be computed in closed form (see details in Appendix

A) and is given by

L = 1
2

k∑
j=1

{
log |Σ0

βj

−1
Σq
βj
| − tr(Σ0

βj

−1
Σq
βj

)− (µqβj − µ
0
βj

)TΣ0
βj

−1
(µqβj − µ

0
βj

)

+ log |Σ0
αj

−1
Σq
αj
| − tr(Σ0

αj

−1
Σq
αj

)− (µqαj − µ
0
αj

)TΣ0
αj

−1
(µqαj − µ

0
αj

)
}

+
n∑
i=1

k∑
j=1

qij

{
log pij(µ

q
γ)− 1

2
uTi µ

q
αj
− 1

2
wij exp

(
1
2
uTi Σq

αj
ui − uTi µqαj

)
− log qij

}
− n

2
log 2π + (p+m)k

2
+ log p(µqγ), (2.4)

where wij = (yi− xTi µ
q
βj

)2 + xTi Σq
βj
xi and p(µqγ) is the prior distribution for

γ evaluated at µqγ.

The variational parameters to be optimized consist of µqβj , Σq
βj

, µqαj ,

Σq
αj

for j = 1, . . . , k, µqγ and qij for i = 1, . . . , n, j = 1, . . . , k. We optimize

the lower bound with respect to each of these sets of parameters with the

others held fixed in a gradient ascent algorithm. This leads to the iterative

scheme in Algorithm 1. The updates in steps 1 and 5 can be derived using

vector differential calculus (see, e.g. Wand, 2002) or from application of

(1.4).

Algorithm 1: Variational approximation for MHR model

Generate an initial clustering of the data. Initialize µqαj = 0 and Σq
αj

= 0

for j = 1, . . . , k and qij as 1 if the ith observation lies in cluster j and 0

otherwise for i = 1, . . . , n, j = 1, . . . , k.

Cycle:

1. For j = 1, . . . , k,

• Σq
βj
←
(

Σ0
βj

−1
+XTDjX

)−1

,

• µqβj ← Σq
βj

(
Σ0
βj

−1
µ0
βj

+XTDjy
)

,

where Dj is a n×n diagonal matrix with the ith diagonal entry given

by qij exp
(

1
2
uTi Σq

αj
ui − uTi µqαj

)
.

2. For j = 1, . . . , k, set µqαj to be the conditional mode of the lower

bound with other variational parameters fixed at current values.
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3. For j = 1, . . . , k, Σq
αj
←
(

Σ0
αj

−1
+ UTWjU

)−1

, where Wj is a n×n di-

agonal matrix with ith diagonal entry given by 1
2
qijwij exp(−uTi µqαj).

This update is performed only if it leads to a higher lower bound.

4. Set µqγ to be the conditional mode of the lower bound fixing other

variational parameters at their current values.

5. For i = 1, . . . , n, j = 1, . . . , k, qij ←
pij(µ

q
γ) exp(bij)∑k

l=1 pil(µ
q
γ) exp(bil)

, where

bil = −1
2
uTi µ

q
αl − 1

2
wij exp

(
1
2
uTi Σq

αlui − uTi µ
q
αl

)
for l = 1, . . . , k.

until the increase in L is negligible.

Consider the update of µqαj in step 2. As a function of µqαj , the lower

bound is (ignoring irrelevant additive constants)

− 1
2

n∑
i=1

qij

{
uTi µ

q
αj

+ wij exp
(

1
2
uTi Σq

αj
ui − uTi µqαj

)}
− 1

2
(µqαj − µ

0
αj

)TΣ0
αj

−1
(µqαj − µ

0
αj

).

This is the log posterior of a generalized linear model with normal prior

N(µ0
αj
,Σ0

αj
), gamma responses wij and coefficients of variation

√
2
qij

. The

log of the mean is uTi µ
q
αj
− 1

2
uTi Σq

αj
ui where −1

2
uTi Σq

αj
ui define an offset.

Although the mode has no closed form expression it can be easily found us-

ing an iteratively weighted least squares approach (McCullagh and Nelder,

1989; West, 1985) or some other numerical optimization technique.

We have used an approximation in the update of Σq
αj

in step 3 and

our motivation comes from the following. Suppose we relax the restriction

that q(αj) is a normal distribution. From (1.4), the optimal q(αj) which

maximizes the lower bound would satisfy

q(αj) ∝ exp
[
− 1

2

n∑
i=1

qij
{
uTi αj + wij exp(−uTi αj)

}
− 1

2
(αj − µ0

αj
)TΣ0

αj

−1
(αj − µ0

αj
)
]
. (2.5)

If µqαj is close to the mode, we can obtain a normal approximation to q(αj)

by taking the mean as µqαj and the covariance matrix as the negative in-

verse Hessian of the log of (2.5) at µqαj . The negative inverse Hessian at

µqαj works out to be (Σ0
αj

−1
+ UTWjZ)−1 with Wj defined as in step 3 of

Algorithm 1. Waterhouse et al. (1996) used a similar reasoning in approxi-

mating the posterior distribution of the mixing weights model parameters
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Chapter 2. Regression density estimation

for a homoscedastic mixture model. The update in step 3 is performed only

if it improves the lower bound.

For the update of µqγ in step 5, note that as a function of µqγ, the lower

bound is (ignoring irrelevant additive constants)

log p(µqγ) +
n∑
i=1

k∑
j=1

qij log pij(µ
q
γ).

This is the log posterior for a Bayesian multinomial regression with nor-

mal prior on µqγ and where the ith response is [qi1, . . . , qik]
T . In a typical

multinomial regression, only one component of this pseudo-response vector

would be 1 with the other terms 0 and although this is not the case here,

iteratively weighted least squares (or some other numerical optimization

algorithm) can be used for finding the mode.

At convergence, we suggest replacing the point estimate variational pos-

terior for γ with a normal approximation, where the mean is µqγ and the

covariance matrix Σq
γ is the negative inverse Hessian of the Bayesian multi-

nomial log posterior considered in step 4 of Algorithm 1. The justifica-

tion for this approximation is similar to our justification for the update of

Σq
αj

in step 3 of Algorithm 1. Waterhouse et al. (1996) discuss a similar

approximation which they use at every step of their iterative algorithm

while we use only a one-step approximation after first using a point esti-

mate for the posterior distribution for γ. With this normal approximation,

the variational lower bound on log p(y) is the same as (2.4), except that∑n
i=1

∑k
j=1 qij log pij(µ

q
γ) + log p(µqγ) has to be replaced with

n∑
i=1

k∑
j=1

qijEq
{

log pij(γ)
}
− 1

2
(µqγ − µ0

γ)
TΣ0

γ
−1

(µqγ − µ0
γ)

− 1
2

log |Σ0
γ| − 1

2
tr
(

Σ0
γ
−1

Σq
γ

)
+ 1

2
log |Σq

γ|+
r(k−1)

2
.

The expectation in the first term is not available in closed form and we re-

place Eq
{

log pij(γ)
}

with log pij(µ
q
γ) to obtain an estimate L∗ which might

be used as an approximation to log p(y).

The iterative scheme in Algorithm 1 guarantees convergence only to a

local mode and we suggest running the algorithm from multiple starting

points to deal with the issue of multiple modes. For the examples in Section

2.6, we consider random clusterings in the initialization where each obser-

vation is randomly and equally likely to be assigned to any of the mixture

components. For each random clustering, we would perform a “short run”,
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2.3. Variational approximation

where Algorithm 1 is terminated once the increase in the lower bound is

less than 1. From a total of 20 of these “short runs”, we select the one with

the highest attained lower bound and follow only this run to full conver-

gence. This “short runs” strategy is similar to one that is recommended for

initialization of the EM algorithm, for maximum likelihood estimation of

Gaussian mixture models, by Biernacki et al. (2003).

We also observed that sometimes, components may “fall out” during

the fitting process, in the sense that qij will go to zero for all observations

i, for some mixture component j. This phenomenon is dependent on the

initial clustering and is likely to happen when Algorithm 1 is initialized with

a larger than required number of components. McGrory and Titterington

(2007) propose using this component elimination feature to perform model

selection in the fitting of Gaussian mixtures using VB (see Section 1.1.3).

We focus on model choice using cross-validation for MHR models.

It has been observed (e.g. Qi and Jaakkola, 2006), that the convergence

of VB algorithms can be very slow when parameters are highly correlated

between the blocks used in the variational factorization. This can happen,

for instance, when two mixture components are very similar. This is a

complex problem and we do not see any easy solution. One possible solution

is to integrate out the mixture indicators and use larger blocks for the

remaining parameters in the blockwise gradient ascent. However, this will

incur a greater computational burden and require the introduction of new

approximations to the variational lower bound.

Finally, we note that as the posteriors of β, α and γ are of the same form

as their priors, it might be possible to implement Algorithm 1 sequentially

for very large data sets. For instance, the data set can be split into smaller

batches and the variational posterior approximation learnt from a previous

batch can be used as the prior for processing the next one. There may

be difficulties with the naive implementation of this idea, however, as the

learning may get stuck in a local mode corresponding to the first solution

found. We did not implement this idea for the examples in Section 2.6.

Honkela and Valpola (2003) discuss an online version of VB learning which

is based on maintaining a decaying history of previous samples so that the

system is able to forget old solutions in favour of new better ones. Sato

(2001) proposed a similar online model selection algorithm based on VB.

19



Chapter 2. Regression density estimation

2.4 Model choice

Marginal likelihood is a popular approach to Bayesian model comparison.

However, Li et al. (2010) noted that the marginal likelihood can be sen-

sitive to the prior in the context of density estimation as the prior is not

very informative. They argue that cross-validation is a better tool for as-

sessing predictive performance as dependence on the prior is reduced when

a subset of the data has been used to update the vague prior. Following

Li et al. (2010), we carry out model selection for MHR models using like-

lihood cross-validation. This approach can be computationally expensive

and we demonstrate the advantages of using variational approximation as

compared to MCMC-based methods for this purpose. In this section, we

describe briefly how model selection is carried out using cross-validation.

2.4.1 Cross-validation

In B-fold cross-validation, the data is split randomly into B roughly equal

parts, F1, . . . , FB, which serve as the test sets. The training sets, T1, . . . , TB

are constructed by leaving out F1, . . . , FB from the complete data set re-

spectively. Let yFb and yTb denote observations in Fb and Tb respectively.

One useful measure of predictive performance that can be used for model

choice is the log predictive density score (LPDS) defined as

LPDS =
1

B

B∑
b=1

log p(yFb|yTb),

where

p(yFb|yTb) =

∫
p(yFb|θ)p(θ|yTb) dθ. (2.6)

Here, we assume that yFb and yTb are conditionally independent given θ, the

set of unknown parameters. This assumption is usually not valid for time

series data and modified approaches appropriate for that case are discussed

later. For MHR models, p(yFb|θ) can be written as

p(yFb|θ) =
∏

i∈ index set ofFb

{
k∑
j=1

pij(γ)φ
(
yi; x

T
i βj, exp(uTi αj)

)}
.
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2.4. Model choice

For MCMC-based methods, the integral in (2.6) can be estimated using

samples θ1, . . . , θS from the posterior so that

p(yFb|yTb) ≈
1

S

S∑
s=1

p(yFb|θs).

In the variational approach, we replace p(θ|yTb) with the variational ap-

proximation q(θ) learned from the training set Tb, and generate θ1, . . . , θS,

randomly from q(θ) instead. We use S = 1000 for later examples.

2.4.2 Model choice in time series

In Section 2.6.2, we consider autoregressive time series models in the form of

MHR models. The cross-validation approach described above is not natural

in the time series context and we consider the approach of Geweke and

Keane (2007) and Li et al. (2010) described below. Let y≤T = (y1, . . . , yT )

denote a training set of T initial observations. Predictive performance for

the purpose of model comparison is measured using the logarithmic score

for the subsequent T ∗ observations y>T = (yT+1, . . . , yT+T ∗) defined as

LPDS =
T ∗∑
i=1

log p(yT+i|y≤T+i−1) (2.7)

and

p(yT+i|y≤T+i−1) =

∫
p(yT+i|θ, y≤T+i−1)p(θ|y≤T+i−1) dθ. (2.8)

In (2.8), p(θ|y≤T+i−1) denotes the posterior distribution for the set of un-

known parameters θ based on observed data available at time T + i − 1.

Note that (2.7) contains T ∗ terms and from (2.8), each of these terms de-

pends on a different posterior based on an increasing set of observed data.

Geweke and Keane (2007) noted that the most accurate way of computing

the LPDS is to run an MCMC sampler separately for each of the T ∗ terms

to estimate the posterior distribution required in each case. This procedure

is highly demanding computationally and may not be feasible if T ∗ is large

or if the MCMC scheme is slow to converge. While it might be possible

to reuse the MCMC samples for successive terms by using ideas from im-

portance sampling, it is difficult to carry out such ideas reliably (see, e.g.

Vehtari and Lampinen, 2002, for discussion). To reduce computation time,

Li et al. (2010) suggest approximating p(θ|y≤T+i−1) with p(θ|y≤T ) for each

of the T ∗ terms when T is large compared to T ∗. They presented some em-

pirical support for the accuracy of this approximation by comparison with
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Chapter 2. Regression density estimation

a scheme where the posterior was updated sequentially at every tenth ob-

servation in a financial time series example. Finally, the integral in (2.8) can

be estimated similarly using the Monte Carlo method described in Section

2.4.1 and we use S = 1000 for the examples in Section 2.6.2.

We note that the variational approach is very efficient for carrying out

sequential updating. Besides being faster than MCMC, variational approx-

imation can also benefit from a “warm start” since the variational param-

eters obtained from the fit at a previous time step can be used to initialize

optimization at the next time step so that the time to convergence is re-

duced. This makes variational approaches ideally suited to model choice

based on one-step ahead predictions and the LPDS for time series data.

2.5 Improving the basic approximation

It is well known that factorized variational approximations have a ten-

dency to underestimate the variance of posterior distributions (e.g. Wang

and Titterington, 2005; Bishop, 2006). Here, we propose a novel approach

to improve the accuracy of estimates obtained from variational approxi-

mation by using stochastic approximation methods to perturb the initial

solution. Ji et al. (2010) independently proposed a Monte Carlo stochas-

tic approximation for maximizing the lower bound numerically, which is

similar to our approach. However, we offer some improvements on their

implementation such as an improved gradient estimate in the stochastic

approximation procedure and the idea of perturbing only the mean and

scale of an initial variational approximation. The methods described in

this section assume that an initial variational approximation has been ob-

tained using Algorithm 1 and serve only to improve the approximations of

the posterior distributions of β, α and γ.

2.5.1 Integrating out the latent variables

In Section 2.2, the MHR model was specified using latent variables δ. These

latent variables can be integrated out of the model to give

p(yi|α, β, λ) =
k∑
j=1

pij(γ)φ
(
yi; x

T
i βj, exp(uTi αj)

)
for i = 1, . . . , n. We consider a variational approximation of the form

q(β, α, γ) = q(β)q(α)q(γ) for the remaining unknown parameters β, α and

γ, where q(β) =
∏k

j=1 q(βj) and q(α) =
∏k

j=1 q(αj). We assume that q(βj)
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2.5. Improving the basic approximation

is N(µqβj + mq
βj
, SqβjΣ

q
βj
Sqβj), q(αj) is N(µqαj + mq

αj
, SqαjΣ

q
αj
Sqαj) and q(γ) is

N(µqγ + mq
γ, S

q
γΣ

q
γS

q
γ) where µqβj , µ

q
αj

, µqγ, Σq
βj

, Σq
αj

, Σq
γ are the converged

values from Algorithm 1, mq
βj

, mq
αj

, mq
γ are vectors which serve as mean

corrections and Sqβj , S
q
αj

, Sqγ are diagonal matrices which help to adjust the

posterior variance in the initial variational approximation. As this varia-

tional approximation is of the same form as before for the parameters β,

α and γ, it might seem like the optimal choices for mq
βj

, mq
αj

, mq
γ are zero

vectors and for Sqβj , S
q
αj

, Sqγ, identity matrices. However, this is not the case

as the latent variables δ have been integrated out from the model. The op-

timization problem considered here is thus different from before, with no

independence assumptions made about the distribution of δ. We consider

the following parametrization for the mean and variance corrections:

mq
βj

= dqβj �
√

diag(Σq
βj

),

mq
αj

= dqαj �
√

diag(Σq
αj),

mq
γ = dqγ �

√
diag(Σq

γ),

Sqβj = diag(exp(vqβj)),

Sqαj = diag(exp(vqαj)),

Sqγ = diag(exp(vqγ)),

where dqβj , d
q
αj

, dqγ, v
q
βj

, vqαj and vqγ are vectors, for j = 1, . . . , k. The pa-

rameters to be adjusted in the variational approximation are thus dqβj , d
q
αj

,

dqγ, v
q
βj
vqαj and vqγ for j = 1, . . . , k. Adjusting only the means and variances

with other parameters held fixed helps to keep the optimization problem

low-dimensional, with subsequent reduction in computation time.

Integrating out the latent variables means that less restrictions have to

be imposed on the variational approximation. This can help to reduce the

Kullback-Leibler divergence between the true posterior and the variational

approximation, which leads to an improved lower bound on the log marginal

likelihood. However, integrating out the latent variables also moves us out

of the context of a tractable lower bound. Next, we describe how the root-

finding stochastic approximation algorithm (Robbins and Monro, 1951)

can be used for optimizing the lower bound with respect to parameters

in the variational approximation. The methods described in Section 2.5.2

are applicable in a general context (not limited to MHR models) and are

particularly useful when the lower bound is intractable.

2.5.2 Stochastic gradient algorithm

Let us consider again the general setting where θ denotes the set of unknown

parameters, with prior p(θ) and likelihood p(y|θ). Let q(θ|λ), assumed to

belong to some parametric family with parameters λ, be the variational
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Chapter 2. Regression density estimation

approximation of the true posterior p(θ|y). The lower bound L in (1.2)

then becomes a function of λ such that

L(λ) =

∫
q(θ|λ) log

p(θ)p(y|θ)
q(θ|λ)

dθ

and we are interested in determining the optimal λ which maximizes the

lower bound. By converting this problem into one of finding a root of the

equation g(λ) ≡ ∂
∂λ
L(λ) = 0 and supposing noisy estimates of g(λ) are

available, we can then make use of the stochastic gradient form of stochas-

tic approximation (see Spall, 2003) for root-finding. Stochastic approxima-

tion is a powerful tool for root-finding and optimization, and there is strong

theoretical support for its performance. Spall (2003) presents sufficient con-

ditions for the convergence of the stochastic approximation algorithm and

one of them requires the noisy estimates of g(λ) to be unbiased. As L(λ)

is an expectation with respect to q(θ|λ), this condition is satisfied in our

case provided it is valid to interchange the derivative ∂
∂λ

and the integral.

In particular, we have

g(λ) =

∫
log

{
p(θ)p(y|θ)
q(θ|λ)

}
∂ log q(θ|λ)

∂λ
q(θ|λ) dθ,

since ∫
∂ log q(θ|λ)

∂λ
q(θ|λ) dθ = 0.

An unbiased estimate of the gradient g(λ) can thus be computed as

ĝ(λ, θ′) =

[
log

{
p(θ′)p(y|θ′)
q(θ′|λ)

}
− c
]
∂ log q(θ′|λ)

∂λ
, (2.9)

where θ′ is generated from q(θ|λ) and c can be chosen arbitrarily. In addi-

tion, we note that

log p(y) = log
p(θ)p(y|θ)
p(θ|y)

for every θ. This suggests that if q(θ|λ) is a good approximation to p(θ|y)

(as it might be near the optimal λ), then the term[
log

{
p(θ′)p(y|θ′)
q(θ′|λ)

}
− c
]

in the gradient estimate will be nearly constant and equal to log p(y)−c, and

hence the variance of the gradient estimate will contain a factor roughly

equal to {log p(y) − c}2. This suggests that when λ is close to optimal,
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2.5. Improving the basic approximation

taking c close to log p(y) may help to reduce fluctuations in the gradient

estimates. Ji et al. (2010) considered a similar approach for optimizing the

lower bound but they use c = 1, obtained by differentiating directly under

the integral sign. From simulations we have conducted (results not shown),

choosing c = 1 is usually suboptimal as it can result in gradient estimates

with very high variance (since {log p(y) − 1}2 is large when log p(y) is

large). Ji et al. (2010) counteract variability in the gradient estimates by

using multiple simulations from q(θ|λ). In our application to MHR models,

we initialize c as L∗, the estimate of log p(y) from Algorithm 1. As the

stochastic approximation algorithm proceeds, we update c with the latest

estimate of log p(y). This is described in more detail later.

With an unbiased estimate of the gradient, we can now use the stochas-

tic gradient algorithm (Algorithm 2) for optimizing the lower bound.

Algorithm 2: Stochastic gradient approximation for MHR model

Let λ(1) be some initial estimate of λ.

For t = 1, . . . , N,

1. Simulate θ(t) ∼ q(θ|λ(t)).

2. Set λ(t+1) = λ(t) + at ĝ(λ(t), θ(t)).

Spall (2003, p. 106) presents sufficient conditions for the strong conver-

gence of the iterates {λ(t)} and one of them, regarding unbiasedness of the

gradient estimates, has been discussed earlier. Another condition requires

that the gain sequence {at} satisfy:

at → 0,
∞∑
t=0

at =∞ and
∞∑
t=0

a2
t <∞. (2.10)

This criteria gives a balance to {at} so that the gain goes to zero fast

enough to dampen out noise effects when optimal λ is close, but sufficiently

slow to avoid false convergence. The remaining two conditions place some

restrictions on the shape and magnitude of the gradients and are more

difficult to verify. In practice, these conditions (which are sufficient but

not necessary) serve more as guidelines and Spall (2003) notes that many

practical applications have produced good results even when one or more

of the conditions are not satisfied. Note that step 2 of Algorithm 2 can be

interpreted as a stochastic version of a gradient ascent algorithm update,

where step sizes decrease according to at.
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In the examples, we use a gain sequence of the form at = a/(A + It)
α,

where a, A and α are constants to be chosen. We have found it helpful

to adapt the step size at each iteration using the method of Delyon and

Juditsky (1993), which generalizes the method of Kesten (1958) to the

multivariate case. Some extensions of this idea have also been considered

in the adaptive MCMC literature (e.g. Andrieu and Thoms, 2008, p. 357).

Suppose λ can be partitioned into {λ1, . . . , λm}. We let It for λl be equal to

the number of sign changes in the gradient estimate for λl up to iteration t,

for each l = 1, . . . ,m. Intuitively, sign changes occur more frequently when

we are close to the mode so that step sizes should decrease more rapidly

when this happens.

The total number of iterations, N , is usually determined according to

some computational budget. It is also possible to use stopping criteria based

on some notion that the iterates {λ(t)} have “stabilized”. See Spall (2003)

for more discussion. An estimate of the log marginal likelihood can also be

obtained from the stochastic approximation iterates using

1

N −N0

N∑
i=N0+1

log
p(θ(i))p(y|θ(i))

q(θ(i)|λ(i))
, (2.11)

which requires negligible additional computation. HereN0 denotes the num-

ber of initial iterates to discard where we are not yet close to the optimal

solution. In our gradient estimate, there is a constant c that we have argued

should be chosen to be an estimate of the log marginal likelihood. In our

examples, we initialize c as the estimate of the log marginal likelihood from

Algorithm 1, and at iteration t > 1 of Algorithm 2, we use (2.11) as the

estimate for c with N0 = 0 and N = t− 1.

The stochastic approximation approach discussed in this section can be

used in general for learning parametric variational posteriors and Algorithm

2 is easy to implement provided q(θ|λ) is easy to simulate from.

2.5.3 Computing unbiased gradient estimates

To use Algorithm 2, we have to compute unbiased estimates of the gradi-

ents. From (2.9), we need
∂ log q(βj)

∂dqβj
,
∂ log q(αj)

∂dqαj
, ∂ log q(γ)

∂dqγ
,
∂ log q(βj)

∂vqβj
,
∂ log q(αj)

∂vqαj
and

∂ log q(γ)
∂vqγ

for j = 1, . . . , k.
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It can be shown that

∂ log q(βj)

∂dqβj
=
√

diag(Σq
βj

)� (SqβjΣ
q
βj
Sqβj)

−1(βj −mq
βj
− µqβj),

∂ log q(αj)

∂dqαj
=
√

diag(Σq
αj)� (SqαjΣ

q
αj
Sqαj)

−1(αj −mq
αj
− µqαj),

∂ log q(γ)

∂dqγ
=
√

diag(Σq
γ)� (SqγΣ

q
γS

q
γ)
−1(γ −mq

γ − µqγ),

∂ log q(βj)

∂vqβj
= diag

{
(SqβjΣ

q
βj
Sqβj)

−1(βj −mq
βj
− µqβj)(βj −m

q
βj
− µqβj)

T − I
}
,

∂ log q(αj)

∂vqαj
= diag

{
(SqαjΣ

q
αj
Sqαj)

−1(αj −mq
αj
− µqαj)(αj −m

q
αj
− µqαj)

T − I
}
,

∂ log q(γ)

∂vqγ
= diag

{
(SqγΣ

q
γS

q
γ)
−1(γ −mq

γ − µqγ)(γ −mq
γ − µqγ)T − I

}
,

for j = 1, . . . , k. We initialize dqβj , d
q
αj

, dqγ, v
q
βj
vqαj and vqγ as zero vectors in

Algorithm 2 for j = 1, . . . , k.

2.6 Examples

Algorithm 1 was initialized using the “short runs” strategy discussed in

Section 2.3 and was considered to have converged fully when the relative

increase in the lower bound L between successive iterations is less than

10−6. For the MCMC approach, we considered a random walk Metropolis-

Hastings algorithm for the MHR model with latent variables integrated out.

The proposal covariances were taken from the fit obtained using variational

approximation and parameters were updated in blocks corresponding to the

factorized variational posterior. All code was written in the R language and

run on an Intel Core i5-2500 3.30 GHz processor workstation.

2.6.1 Emulation of a rainfall-runoff model

In this example, we use MHR models to emulate a deterministic rainfall-

runoff model, which is a simplification of the Australian water balance

model (AWBM, Boughton, 2004). Our goal is to develop a computation-

ally cheap statistical surrogate for the original model for some characteristic

of the model output. Using the emulator in applications where the deter-

ministic model is expensive to run or has to be run many times (e.g. in

model calibration) allows similar results to be achieved with computation

time reduced by an order of magnitude. O’Hagan (2006) gives an overview

of statistical analysis of computer models and model emulation. In the sta-
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Model A B C D E

L∗ (variational) -803.4 -688.4 -678.5 -682.8 -729.0

LPDS (variational) -65.9 -54.5 -51.5 -52.1 -57.2

LPDS (MCMC) -65.5 -54.2 -51.2 -51.4 -57.4

Table 2.1: Rainfall-runoff data. Marginal log-likelihood estimates from vari-
ational approximation (first row), ten-fold cross-validaton LPDS estimated
by variational approximation (second row) and MCMC (third row).

tistical literature, Gaussian process models that interpolate model output

are often used to construct emulators, but it is often recommended that an

independent noise term be included in the model (Pepelyshev, 2010).

The AWBM uses time series of rainfall and evapotranspiration data to

estimate catchment streamflow and is widely used in Australia for estimat-

ing catchment water yield or design flood estimation. The model has three

parameters — the maximum storage capacity S, the base flow index BFI

and the baseflow recession factor K. We have model simulations for close

to eleven years of average monthly potential evapotranspiration and daily

rainfall data for the Barrington River catchment, located in New South

Wales, Australia∗. The model was run for 500 different values of the pa-

rameters (S,K,BFI) generated using a maximin Latin hypercube design.

We consider the AWBM streamflow response at a time of peak rainfall in-

put as the response y, and S and K as predictors. The parameter BFI is

omitted as the model output at this time is fairly insensitive to it. A small

amount of independent normal random noise with standard deviation 0.01

was added to y to avoid degeneracies in the variance model in regions of

the space where the response tends to be identically zero.

We consider fitting five models to the data. The first four are MHR

models with both predictors, S and K, in the mean and variance models.

We label these as models A, B, C and D having 2, 3, 4 and 5 mixture compo-

nents respectively. The fifth model, model E, has four mixture components

but only an intercept in the variance model and is thus homoscedastic. For

the normal prior distributions, we used µ0
βj

= 0, Σ0
βj

= 10000I, µ0
αj

= 0,

Σαj = 100I, µ0
γ = 0 and Σ0

γ = 100I, where dimensions of the mean vectors

and covariance matrices depend on the model fitted.

Table 2.1 shows the estimates of marginal log-likelihoods estimated

from variational approximation (first row) and ten-fold cross-validation

LPDS values computed using variational approximation (second row) and

MCMC (third row). We focus on model selection for MHR models using

∗We thank Lucy Marshall for supplying this data set.
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Model A B C D E

Full data variational 88 146 215 274 254

MCMC 330 473 650 825 659

Cross-validation variational 121 184 281 393 276

MCMC 2941 4409 5979 7626 5929

Table 2.2: Rainfall-runoff data. CPU times (in seconds) for full data and
cross-validation calculations using variational approximation and MCMC.

cross-validation as discussed in Section 2.4. There is very good agreement

between the LPDS estimated by variational approximation and MCMC,

and both methods indicate that model C, a mixture with 4 heteroscedas-

tic components, is adequate. The MCMC results for model D need to be

treated with some caution as there is very slow mixing in the MCMC

scheme here due to the use of too many mixture components and hence a

poorly identified model. On the other hand, one of the mixture components

was automatically eliminated when model D was fitted using variational ap-

proximation as the mixing weights for all observations went to zero for one

of the components. It is interesting to note that model C also has the high-

est estimated marginal log-likelihood. The fit of model C obtained using

variational approximation is summarized in Figure 2.1. Here, each observa-

tion has been assigned to the mixture component it is most likely to belong

to and observations for each mixture component have been plotted along

with the fitted mean and standard deviation. The different rows correspond

to different mixture components.

The CPU times taken to fit the full data set and implement ten-fold

cross-validation using both variational approximation and MCMC are shown

in Table 2.2. We note that there are some difficulties in comparing MCMC

with variational approximation in this manner as the run time of Algorithm

1 depends on the initialization and stopping rule, and the rate of conver-

gence is problem-dependent. Similarly, computation time for MCMC de-

pends on the number of simulations, length of burn-in required to achieve

convergence and the sampling algorithm — factors which are also prob-

lem specific. The MCMC algorithms were run for 10000 iterations with the

first 1000 iterations discarded as burn-in both for fitting the full data and

in the cross-validation calculations. Such short run times are only possi-

ble because our MCMC scheme uses a very good proposal based on the

fit from variational approximation. This MCMC algorithm generally mixes

rapidly and initial values were also based on the variational approximation

so that the length of burn-in is short. For cross-validation calculations us-

29



Chapter 2. Regression density estimation

0.0 0.2 0.4 0.6 0.8 1.0  0
 2

0
 4

0
 6

0
 8

0
10

0
12

0

0.0
0.2

0.4
0.6

0.8
1.0

S

K

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

0.0
0.2

0.4
0.6

0.8
1.00.0

0.2 0.40.60.81.0

0
50

10
0

S
K

S
ta

nd
ar

d 
D

ev
ia

tio
n

0.0 0.2 0.4 0.6 0.8 1.0  0
 2

0
 4

0
 6

0
 8

0
10

0
12

0

0.0
0.2

0.4
0.6

0.8
1.0

S

K

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●

●
● ●

●

●

● ●

●

●
●

●
●

●

●
●

●
●● ●

● ●

●

●
●●

● ●●
● ●●●● ●●●●

0.0
0.2

0.4
0.6

0.8
1.00.0

0.2 0.40.60.81.0

0
20

40
60

80
10

0
12

0

S
K

S
ta

nd
ar

d 
D

ev
ia

tio
n

0.0 0.2 0.4 0.6 0.8 1.0  0
 2

0
 4

0
 6

0
 8

0
10

0
12

0

0.0
0.2

0.4
0.6

0.8
1.0

S

K

y

● ●●
●● ●● ●●● ● ●●● ●●● ● ●●● ●● ● ●● ●●●● ●● ●●●●● ●●●●● ●●● ●●●● ●● ●● ●● ●●●● ●● ●● ● ●● ● ●● ●● ●●● ●●

●●● ●● ●● ● ●● ●● ●●

0.0
0.2

0.4
0.6

0.8
1.00.0 0.2 0.40.60.81.0

0
50

10
0

S
K

S
ta

nd
ar

d 
D

ev
ia

tio
n

0.0 0.2 0.4 0.6 0.8 1.0  0
 2

0
 4

0
 6

0
 8

0
10

0
12

0

0.0
0.2

0.4
0.6

0.8
1.0

S

K

y ●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

0.0
0.2

0.4
0.6

0.8
1.00.0 0.2 0.40.60.81.0

0
50

10
0

S
K

S
ta

nd
ar

d 
D

ev
ia

tio
n

Figure 2.1: Rainfall-runoff data. Fitted component means (first column)
and standard deviations (second column) for model C from variational
approximation. Different rows correspond to different mixture components.
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2.6. Examples

ing variational approximation, the “short runs” strategy was applied only

in the fitting of the first training set. For subsequent training sets, the ini-

tialization of Algorithm 1 was based on the fit from the previous training

set. Table 2.2 indicates a roughly 20 fold speed up for all models, by using

variational approximation in the cross-validation computations when using

just 10000 iterations in the MCMC sampling. This is a rather conservative

estimate of the benefits and is consistent with other comparisons in the

variational approximation literature. Furthermore, difficulties in assessing

convergence in the MCMC approach are avoided by the variational method.

We note that it is very difficult to use MCMC methods in cross-validatory

approaches to model comparison as repeated MCMC runs for model fits

to different parts of the data and for many models are very computation-

ally intensive. This example demonstrates the advantage of fast variational

approximation in inference due to its ability to fit many models for model

assessment and exploratory analysis.

For model C, we use the stochastic gradient algorithm (Algorithm 2) to

improve the basic variational approximation obtained from Algorithm 1.

We set N = 10000 in Algorithm 2. For the gain sequences, we let a = 0.4,

A = 10000, α = 0.8 for the mean adjustment parameters and α = 0.9

for the variance adjustment parameters. We are looking at just one of the

modes here and there are no issues of label switching in MCMC as the

modes corresponding to relabelling are well seperated. Computation of the

stochastic approximation correction took 166 seconds of CPU time. Fig-

ure 2.2 shows the marginal posterior distributions for the parameters in

the mixing weights model obtained using MCMC (solid lines), simple vari-

ational approximation (dashed lines) and variational approximation with

stochastic approximation correction (dot-dashed lines). The stochastic ap-

proximation correction is helpful for obtaining an improved approximation

for at least some of the parameters, with the estimated posterior marginals

from stochastic approximation generally being closer to the Monte Carlo

estimated marginals than the marginals from basic variational approxima-

tion. There is little improvement in estimation of the marginal posteriors

for the mean and variance parameters by the stochastic approximation

correction (results not shown). Similar benefits in estimation of the mixing

weights parameters have been observed in other examples that we have

considered.

To investigate the performance of ten-fold cross-validation in model

choice using a variational approach, we simulate fifty data sets from model

31



Chapter 2. Regression density estimation

4 6 8 10 12 14 16

0.
0

0.
2

0.
4

Component 2

Intercept
−35 −25 −15

0.
00

0.
05

0.
10

0.
15

Component 3

Intercept
−4 −2 0 2 4

0.
0

0.
2

0.
4

Component 4

Intercept

−50 −40 −30 −20

0.
00

0.
06

0.
12

Coefficient of S 
20 30 40 50 60

0.
00

0.
04

0.
08

Coefficient of S 
−15 −10 −5 0

0.
00

0.
10

0.
20

Coefficient of S 

−5 0 5 10

0.
0

0.
2

0.
4

Coefficient of K 
−2 0 2 4 6

0.
0

0.
2

0.
4

Coefficient of K 
0 2 4 6 8 10 12

0.
0

0.
2

0.
4

Coefficient of K 

Figure 2.2: Rainfall-runoff data. Marginal posterior distributions for pa-
rameters in the mixing weights estimated by MCMC (solid line), simple
variational approximation (dashed line) and variational approximation with
stochastic approximation correction (dot-dashed line). Columns are differ-
ent components and the first, second and third rows correspond to the
intercept and coefficients for S and K respectively.

C, using as parameters the variational posterior means obtained by using

Algorithm 1 to fit model C to the real data. For each simulated data set,

we compute ten-fold cross-validation LPDS using a variational approach

for MHR models with the number of mixture components ranging from

2 to 7. Both predictors S and K are included in the mean and variance

models. In this case, model C is regarded as the “true” model. Of the 50

simulated data sets, the true model was chosen 32 times, model D (with

one extra mixture component) was chosen 17 times and a six component

MHR model was chosen once.

2.6.2 Time series example

In this example, we use MHR models to analyze daily returns from the

S&P500 stock market index. The response yt is defined as log(pt/pt−1)

where pt is the closing S&P500 index on day t. Following Li et al. (2010),
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Number of mixture components 1 2 3 4

No sequential updating (MCMC) -477.8 -471.2 -469.0 -470.6

No sequential updating (variational) -478.0 -470.1 -470.1 -471.7

Sequential updating (variational) -477.7 -470.0 -470.1 -473.3

Table 2.3: Time series data. LPDS computed with no sequential updating
(posterior not updated after end of training period) using MCMC algorithm
(first line) and variational method (second line). LPDS computed with
sequential updating using variational method (third line).

we consider data from 4646 trading days (from 1 January 1990 to 29 May

2008) as the training set for model estimation and data from the subse-

quent 199 trading days (from 30 May 2008 to 13 March 2009) as the test

set for performing model selection. Li et al. (2010) note that the choice

of the last 199 observations in the series for validation is a difficult test

for candidate models because this period covers the recent financial crisis

where there is unusually high volatility. Previously, Villani et al. (2009)

showed that the heteroscedastic components of a smooth adaptive Gaus-

sian mixtures model were able to provide a better fit to a data set of daily

returns from the S&P500 stock market index than the smoothly mixing

regression model (with homoscedastic components) considered by Geweke

and Keane (2007). Li et al. (2010) generalized the Gaussian components

of the smooth adaptive Gaussian mixtures model (Villani et al., 2009) to

asymmetric t-densities so that skewness and excess kurtosis can be cap-

tured.

We consider as predictors, LastWeek (average of returns for last 5 trad-

ing days), LastMonth (average of returns for last 20 trading days) and

MaxMin95, defined as (1− ς)
∑∞

s=0 ς
s(log p

(h)
t−1−s− log p

(l)
t−1−s) where p

(h)
t and

p
(l)
t are the highest and lowest values of the index on day t and ς = 0.95.

These covariates were found to be significant by Li et al. (2010) in fit-

ting a one-component split-t model where the location, scale, skewness and

degrees of freedom are all functions of covariates. All covariates were stan-

dardized to lie in [−1, 1] as in Li et al. (2010). We consider MHR models

with only an intercept term in the mean model as the level of stock mar-

ket returns are generally not predictable (see Villani et al., 2009; Li et al.,

2010), but an intercept as well as the covariates LastWeek, LastMonth and

MaxMin95 in the variance model and mixing weights model. We consider

models with number of mixture components ranging from 1 to 4.

Table 2.3 shows the LPDS values computed using MCMC (first row)

and variational approximation (second row), by means of the approxima-
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Number of mixture components 1 2 3 4

Initial fit (MCMC) 504 2463 3427 4417

Initial fit (variational) 1 739 1022 1442

Initial fit + validation (variational) 250 1902 2552 4754

Table 2.4: Time series data. Rows 1–3 shows respectively the CPU times
(seconds) taken for initial fit using MCMC, initial fit using variational
approximation, and initial fit plus sequential updating for cross-validation
using variational approximation.

tion of Li et al. (2010), where the posterior is not updated after the end of

the training period. The third row shows the LPDS computed using varia-

tional approximation with sequential updating of the posterior at each time

point. Based on the largest LPDS, it seems that a two-component mixture

provides an adequate model. The CPU times (in seconds) taken to compute

the LPDS using MCMC and variational approximation are shown in Table

2.4. The first row shows the time taken to obtain an initial fit using the

MCMC algorithm. For each of the models, we run the MCMC algorithm

for 10000 iterations with the first 1000 iterations discarded as burn-in. The

second row shows the time taken to obtain an initial fit using variational

approximation and the third row shows the total time taken to compute

the LPDS values with sequential updating using variational approximation

(initial fit plus sequential updating). In this case there is a roughly 200 fold

speed up from employing the variational method as compared to MCMC

in sequential updating. Note that the total time taken to compute LPDS

with sequential updating, using the variational method (initial fit plus val-

idation) is close to the time taken to obtain just the initial fit using the

MCMC algorithm. We need to multiply the computational cost for the ini-

tial MCMC fit by approximately T ∗ = 199 to get the computational cost

for the complete computations.

Another area where MCMC methods may not be feasible for analyzing

time series data is in rolling window computations, where parameter esti-

mates for the model within different windows are examined to check for

structural breaks and model instability. We illustrate this application here

for the two component MHR model. Consider windows of size M = 500.

First, we fit the model to the first M observations. Next, we advance the

rolling window by 50 observations, that is, we refit the model to observa-

tions 51 to M + 50. We continue in this way, advancing the rolling window

by 50 observations at each step. Figure 2.3 shows the estimated lower 1%

and 5% quantiles of the predictive densities for the covariate values at times
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Figure 2.3: Time series data. Estimated 1% (dashed line) and 5% (solid
line) quantiles of predictive densities for covariate values at t = 1000 (top
left) and t = 4000 (top right) plotted against the upper edge of the rolling
window. Also shown are the estimated predictive densities for covariate
values at t = 1000 and t = 4000 (bottom left and right respectively)
estimated based on the entire training data set using MCMC (solid line)
and variational approximation (dashed line).

t = 1000 and t = 4000 versus the upper edge of the rolling window. There

is some evidence of model instability and structural change. Also shown

in Figure 2.3 are the predictive densities for the same covariates estimated

based on the entire training data using MCMC (solid lines) and variational

approximation (dashed lines). The MCMC and variational predictive den-

sities are nearly indistinguishable so that the variational approximation

provides excellent predictive inference here.

2.7 Conclusion

In this chapter, we have developed fast variational approximation meth-

ods for fitting MHR models. The benefits of the variational approach as
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compared to MCMC methods are illustrated in problems where repeated

refitting of models is required, such as in exploratory analysis and cross-

validation approaches to model choice. We have also described how the ba-

sic variational approximation can be improved by using stochastic approxi-

mation methods to perturb the initial solution. There are several promising

avenues for future research. While we have emphasized the advantages of

using a variational approach as compared to MCMC methods in model

refitting, MCMC methods and variational methods can be complementary.

For instance, variational methods can be used to provide initial values and

good proposal distributions for MCMC schemes. This may be helpful in

reducing the length of burn-in and number of simulations required. This

strategy is sometimes called variational MCMC (de Freitas et al., 2001).

The combination of variational methods with stochastic approximation has

the potential to broaden the applicability of such an approach. It might be

possible to combine variational methods or the stochastic approximation

approach of Section 2.5, with MCMC methods applied to a subset of the

data. A rough idea of the correlation structure in the posterior can be ob-

tained by running MCMC for a subset and the means and variances can

be adjusted using stochastic approximation approaches similar to those we

have described. There are many issues to be addressed in practice with

such an approach however. Another interesting extension that we have not

pursued for MHR models is to allow some of the coefficients in the compo-

nents to be shared across components. Villani et al. (2009) reported that

they have found such restrictions for the variance models to be useful in

practice.
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Variational approximation for

mixtures of linear mixed models

Mixtures of linear mixed models (MLMMs) provide a formal mathematical

framework for the clustering of grouped data, which may be correlated or

replicated, and allow for the incorporation of covariate information. They

have been applied in the clustering of gene expression profiles in microarray

analysis (e.g. Celeux et al., 2005) and electrical load series for electric utility

planning (Coke and Tsao, 2010). Here, we consider MLMMs where the

response distribution is a normal mixture, with mixture weights varying as

a function of the covariates. Cluster-specific random effects are included in

the model so that observations from the same cluster are correlated.

MLMMs can be estimated by likelihood maximization through the EM

algorithm and a suitable number of components is determined convention-

ally by comparing different mixture models using penalized log-likelihood

criteria such as BIC (e.g. Ng et al., 2006). Here, we propose fitting MLMMs

with variational methods that can perform parameter estimation and model

selection simultaneously. First, we describe a variational approximation for

MLMMs where the variational lower bound is in closed form, allowing for

fast evaluation. A novel variational greedy algorithm (VGA) is then de-

veloped for model selection and learning of the mixture components. Ini-

tialization is handled within the VGA and a plausible number of mixture

components is returned automatically at the end of the algorithm together

with the fitted model. The greedy approach developed here is not limited to

MLMMs and can be adapted to fit other mixture models using variational

methods.

In cases of weak identifiability of certain model parameters, we use hi-

erarchical centering to reparametrize the model and show empirically that

there is a gain in efficiency in variational algorithms similar to that in
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Chapter 3. Mixtures of linear mixed models

MCMC algorithms. Hierarchical centering was first proposed by Gelfand et

al. (1995) who showed that such reparametrizations of normal linear mixed

models gave improved convergence in MCMC algorithms. We consider a

case of partial centering, a second case of full centering, and derive the

corresponding variational algorithms. Related to this, we prove that the

approximate rate of convergence of VB algorithms by Gaussian approxi-

mation is equal to that of the corresponding Gibbs sampler. Previously,

Sahu and Roberts (1999) showed that the approximate rate of convergence

of the Gibbs sampler by Gaussian approximation is equal to that of the

corresponding EM algorithm and hence improvement strategies for one al-

gorithm can be used for the other. As reparametrizations using hierarchical

centering can lead to improved convergence in the Gibbs sampler, this re-

sult suggests that convergence in variational algorithms may be improved

through reparametrizations just as in MCMC algorithms.

This chapter is organized as follows. Section 3.1 provides some back-

ground. Section 3.2 introduces MLMMs and Section 3.3 describes fast vari-

ational methods for fitting them. Section 3.4 discusses reparametrization

of MLMMs through hierarchical centering. Section 3.5 describes the vari-

ational greedy algorithm. Section 3.6 contains theoretical results on the

rate of convergence of VB algorithms by Gaussian approximation. Section

3.7 considers examples involving real and simulated data and Section 3.8

concludes.

The results presented in this chapter have been published in Tan and

Nott (2013a).

3.1 Background

In microarray analysis, clustering of gene expression profiles is a valuable

exploratory tool for identifying meaningful relationships between genes. In

the model-based cluster analysis context, Luan and Li (2003) studied clus-

tering of genes in the mixture model framework using a mixed-effects model

with B-splines. Celeux et al. (2005) proposed using MLMMs to account for

data variability in repeated measurements. Both of these approaches require

the independence assumption for genes which may not hold in practice for

all pairs of genes (McLachlan et al., 2004). In contrast, Ng et al. (2006)

considered MLMMs with cluster-specific random effects which allow genes

within a cluster to be correlated. Similar models were considered by Booth

et al. (2008), who proposed a stochastic search algorithm for finding parti-

tions of the data with high posterior probability through maximization of
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an objective function. For the clustering of electrical load series, Coke and

Tsao (2010) developed random effects mixture models with antedependence

models for the non-stationary random effects.

The EM algorithm was used for the estimation of MLMMs in Luan and

Li (2003), Celeux et al. (2005) and Coke and Tsao (2010). Ng et al. (2006)

developed a program called EMMIX-WIRE (EM-based MIXture analy-

sis WIth Random Effects) for clustering correlated and replicated data.

In these articles, the optimal number of components was determined by

comparing different mixture models using BIC. The EM algorithm can be

sensitive to initialization and is commonly run from multiple starting values

to avoid convergence to local optima. Scharl et al. (2010) studied the per-

formance of different EM algorithm initialization strategies for mixtures of

regression models and Biernacki et al. (2003) compared simple initialization

strategies for Gaussian mixtures. Verbeek et al. (2003) discussed a greedy

approach to the learning of Gaussian mixtures which resolves sensitivity to

initialization and is useful in finding the optimal number of components.

We propose fitting MLMMs with variational methods using a greedy

algorithm. Previously, Ormerod and Wand (2010) have illustrated the use

of variational methods in fitting Gaussian linear mixed models. Armagan

and Dunson (2011) used variational methods to obtain sparse approximate

Bayes inference in the analysis of large longitudinal data sets using linear

mixed models. Recently, Ormerod and Wand (2012) introduced Gaussian

variational approximation for fitting generalized linear mixed models. The

variational algorithm suffers from problems of local optima as well and

initialization strategies for the EM algorithm can often be adapted for

use with the variational algorithm. For example, a “short runs” strategy

was discussed in Section 2.3, where the variational algorithm is initialized

randomly from multiple starting points, stopped prematurely, and only the

short run with the highest attained value of the variational lower bound

is followed to convergence. This is similar to a strategy recommended by

Biernacki et al. (2003) for initialization of the EM algorithm.

A key advantage of variational methods is the potential for simultaneous

parameter estimation and model selection. A number of such methods have

been developed for fitting Gaussian mixtures and a brief review is given in

Section 1.1.3. In particular, McGrory and Titterington (2007) described a

variational optimization technique where the algorithm is initialized with

a large number of components and mixture components whose weightings

become sufficiently small are dropped out as the optimization proceeds,
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Chapter 3. Mixtures of linear mixed models

leading to automatic model selection. We have attempted this component

elimination approach for some of the examples in this chapter (results not

shown) and observed some difficulties in the implementation. First, cluster-

ing results tend to be sensitive to the initialization and strategies to avoid

convergence to local optima, such as using multiple starting points are nec-

essary, which adds to the computational burden. Second, the choice of the

initial number of mixture components was observed to have an impact on

the resulting number of components and it may not be easy in some cases to

determine a suitable initial number. Finally, initializing the algorithm with

a large number of mixture components can be computationally expensive

for large data sets.

We develop a novel VGA for fitting MLMMs. Starting with one compo-

nent, the VGA adds new components to the mixture after searching for the

optimal way to split components in the current mixture. While this bottom-

up approach resolves the difficulty of estimating the upper bound of the

number of mixture components, it can become time-consuming when the

number of components is large, since a larger number of components have

to be tested to find the optimal way of splitting each one. Some measures

are introduced to keep the search time short and the component elimina-

tion property of variational approximation is used to sieve out components

which resist splitting. Greedy approaches for fitting Gaussian mixtures have

been considered for instance, by Verbeek et al. (2003) using the EM algo-

rithm and Constantinopoulos and Likas (2007) using variational methods.

3.2 Mixtures of linear mixed models

The MLMM we are considering is a generalization of that proposed by

Ng et al. (2006), where units from the same cluster share cluster-specific

random effects and are hence correlated. Unlike Ng et al. (2006), our model

can fit data where the number of observations on each unit are not equal

and we allow the mixture weights to vary with covariates between clusters.

Suppose we observe n multivariate reponses yi = [yi1, . . . , yini ]
T , i =

1, . . . , n, and N =
∑n

i=1 ni. Let the number of mixture components be k

and δi, i = 1, . . . , n, be latent variables indicating which mixture component

the ith cluster corresponds to, δi ∈ {1, . . . , k}. Conditional on δi = j,

yi = Xiβj +Wiai + Vibj + εi, (3.1)

where Xi, Wi and Vi are design matrices of dimensions ni × p, ni × s1 and
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3.2. Mixtures of linear mixed models

ni × s2 respectively, βj, j = 1, . . . , k, are p × 1 vectors of fixed effects, ai,

i = 1, . . . , n, are s1×1 vectors of random effects, bj, j = 1, . . . , k, are s2×1

vectors of random effects and εi, i = 1, . . . , n, are vectors of random errors.

We assume that the random effects ai, i = 1, . . . , n, bj, j = 1, . . . , k, and the

error vectors εi, i = 1, . . . , n, are mutually independent. The fixed effects,

the distribution of the random effects and the distribution of the error

terms are all mixture component specific. Given that δi = j, ai and bj are

distributed as N(0, σ2
aj
Is1) and N(0, σ2

bj
Is2) respectively. The error vector

εi is distributed as N (0,Σij) where Σij = blockdiag(σ2
j1Iκi1 , . . . , σ

2
jgIκig), a

block diagonal with the lth block equal to σ2
jlIκil . Here g is constant for

all i and
∑g

l=1 κil = ni for each i = 1, . . . , n. In microarray experiments

for instance, this specification provides increased flexibility as the error

variance of each mixture component is allowed to vary between different

experiments, say, by setting g to be the total number of experiments. We

assume that

P (δi = j|γ) = pij(γ) =
exp(uTi γj)∑k
l=1 exp(uTi γl)

,

where ui = [ui1, . . . , uid]
T is a vector of covariates, γ1 = 0 for identifiability,

γj = [γj1, . . . , γjd]
T are vectors of unknown parameters for j = 2, . . . , k and

γ = [γT2 , . . . , γ
T
k ]T . This model for the mixture component indicators allows

mixture weights to vary with covariates across clusters. For Bayesian infer-

ence, we assume the following priors on unknown parameters: γ ∼ N(0,Σγ),

βj ∼ N(0,Σβj), σ
2
aj
∼ IG(αaj , λaj) and σ2

bj
∼ IG(αbj , λbj) for j = 1, . . . , k,

and σ2
jl ∼ IG(αjl, λjl) for j = 1, . . . , k, l = 1, . . . , g. The hyperparam-

eters αaj , λaj , αbj , λbj , αjl, λjl, Σγ and Σβj , j = 1, . . . , k, l = 1, . . . , g,

are considered known. Let β = [βT1 , . . . , β
T
k ]T , a = [aT1 , . . . , a

T
n ]T , b =

[bT1 , . . . , b
T
k ]T , σ2

a = [σ2
a1
, . . . , σ2

ak
]T , σ2

b = [σ2
b1
, . . . , σ2

bk
]T , σ2

j = [σ2
j1, . . . , σ

2
jg]

T

for j = 1, . . . , k, σ2 = [σ2
1
T
, . . . , σ2

k
T

]T and δ = [δ1, . . . , δn]T so that θ =

{β, a, b, σ2
a, σ

2
b , σ

2, γ, δ} denotes the set of all unknown parameters in the

MLMM. We describe a variational approximation for the joint posterior

distribution p(θ|y) in the next section.

For the specification of the inverse gamma priors, we consider an ap-

proach used by Fong et al. (2010) which is based on the following lemma.

Lemma 3.1. Let u|σ2 ∼ N(0, σ2) and σ2 ∼ IG(α, λ). The marginal distri-

bution of u obtained by integrating over σ2 is a non-standardized Student’s

t distribution with location parameter 0, scale parameter
√

λ
α

and degrees

of freedom 2α.

The density of a non-standardized Student’s t with location parameter µ,
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Chapter 3. Mixtures of linear mixed models

scale parameter σ and degrees of freedom ν is given by

Γ(ν+1
2

)

Γ(ν
2
)
√
πνσ

{
1 +

1

ν

(
x− µ
σ

)2
}− ν+1

2

.

Fong et al. (2010) suggested that to choose a prior for a single random

effect u, one can give a range for u, specify the degrees of freedom ν, and

then solve for α and λ. Here we obtain a crude estimate of the random

effects in (3.1) by considering the residuals from a least squares regression

of y = [y1, . . . , yn] against X = [XT
1 , . . . , X

T
n ]T . We fix the shape parameter

α as 2, since IG(2, λ) has an infinite variance but a finite mean at λ.

This specification allows the prior to be centered on a reasonable belief

while maintaining a large prior variance (see, e.g., Finley et al., 2008). We

estimate λ by fitting a non-standardized Student’s t to the residuals with

location parameter 0 and degrees of freedom 4. This can be done in R using

the function fitdistr() from the package MASS (Venables and Ripley,

2002) to estimate the scale. For convenience, we used the same priors for

σ2
aj

and σ2
bj

for j = 1, . . . , k and σ2
jl for j = 1, . . . , k, l = 1, . . . , g.

3.3 Variational approximation

We consider a variational approximation to p(θ|y) of the form

q(θ) = q(β)q(a)q(b)q(σ2, σ2
a, σ

2
b )q(δ)q(γ). (3.2)

Application of (1.4) leads to optimal densities of the form:

q(β) =
k∏
j=1

q(βj), q(a) =
n∏
i=1

q(ai), q(b) =
k∏
j=1

q(bj), q(δ) =
n∏
i=1

q(δi)

and q(σ2, σ2
a, σ

2
b ) = q(σ2)q(σ2

a)q(σ
2
b ), where

q(σ2
a) =

k∏
j=1

q(σ2
aj

), q(σ2
b ) =

k∏
j=1

q(σ2
bj

), q(σ2) =
k∏
j=1

g∏
l=1

q(σ2
jl).

It also follows from (1.4) that q(βj) is N(µqβj ,Σ
q
βj

), q(ai) is N(µqai ,Σ
q
ai

),

q(bj) is N(µqbj ,Σ
q
bj

), q(σ2
aj

) is IG(αqaj , λ
q
aj

), q(σ2
bj

) is IG(αqbj , λ
q
bj

), q(σ2
jl) is

IG(αqjl, λ
q
jl) and q(δi = j) = qij with

∑k
j=1 qij = 1 for each i = 1, . . . , n. The

value of qij can be interpreted as a measure of the responsibility undertaken

by component j in explaining the ith observation (see Bishop, 2006). The
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3.3. Variational approximation

optimal q(γ) does not belong to any recognizable density family and we

assume that q(γ) is a delta function placing a point mass of 1 on µqγ. A

degenerate point mass has been assumed for q(γ) so that computation of

the lower bound is tractable.

We have assumed in the variational posterior that the distributions of

the fixed effects, random effects, variance parameters, latent variables, and

mixing weights model parameters are independent of each other. Similar

independence assumptions have been made in the case of the linear mixed

model by Armagan and Dunson (2011). It is also possible to consider the

fixed effects β and the random effects a and b as a single block and replace

q(β)q(a)q(b) by q(β, a, b) as in Ormerod and Wand (2010). This results in

a less restricted factorization with dependence structure between β, a and

b preserved and a higher lower bound can be achieved. However, this will

involve dealing with high dimensional sparse covariance matrices which cre-

ate a greater computational burden, although matrix inversion results can

be used for the blocked matrices to attain better computational efficiency.

We have decided to use a factorized form for faster computation and better

scalability to larger data sets (see Armagan and Dunson, 2011).

Let θ−γ denote the set of unknown parameters excluding γ. From the

argument in (2.3), L = Eq{log p(y, θ)}−Eq{log q(θ−γ)} gives a lower bound

on supγ log p(γ)p(y|γ), where Eq(·) denotes expectation with respect to

q(θ). The lower bound L can be computed in closed form, and is given by

(details in Appendix B)

L =
k∑
j=1

[
1
2

log |Σ−1
βj

Σq
βj
| − 1

2
tr(Σ−1

βj
Σq
βj

)− 1
2
µqβj

TΣ−1
βj
µqβj + 1

2
log |Σq

bj
|+ αqbj

−
αqbj
2λqbj

{
µqbj

Tµqbj + tr(Σq
bj

)
}

+ αbj log λbj − α
q
bj

log λqbj −
λajα

q
aj

λqaj
−

λbjα
q
bj

λqbj

+ αqaj + log
Γ(αqbj

)

Γ(αbj )
+

s1
∑n
i=1 qij
2

{ψ(αqaj)− log λqaj}+ ψ(αqaj)(αaj − α
q
aj

)

+ αaj log
λaj
λqaj

+ log
Γ(αqaj )

Γ(αaj )

]
+

k∑
j=1

g∑
l=1

[
αjl log

λjl
λqjl

+ log
Γ(αqjl)

Γ(αjl)
− λjlα

q
jl

λqjl

+ αqjl + ψ(αqjl)(αjl − α
q
jl) +

∑n
i=1 κilqij

2

{
ψ(αqjl)− log λqjl

}]
+ log p(µqγ)

−
n∑
i=1

k∑
j=1

qij
2

[
ξTijΣ

q
ij
−1ξij + tr(Σq

ij
−1Λij) +

αqaj
λqaj

{
µqai

Tµqai + tr(Σq
ai

)
}]

+ k(p+s2)+ns1−N log(2π)
2

+
n∑
i=1

k∑
j=1

qij log
pij(µ

q
δ)

qij
+ 1

2

n∑
i=1

log |Σq
ai
|, (3.3)
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Chapter 3. Mixtures of linear mixed models

where p(µqγ) denotes the prior distribution for γ evaluated at µqγ, ξij =

yi − Xiµ
q
βj
−Wiµ

q
ai
− Viµ

q
bj

, Λij = XiΣ
q
βj
XT
i + WiΣ

q
ai
W T
i + ViΣ

q
bj
V T
i and

Σq
ij
−1 = blockdiag

(
αqj1
λqj1
Iκi1 , . . . ,

αqjg
λqjg
Iκig

)
.

The updates of the variational parameters, µqβj , Σq
βj

, µqbj , Σq
bj

, αqaj , λ
q
aj

,

αqbj , λ
q
bj

, for j = 1, . . . , k, µqai , Σq
ai

, for i = 1, . . . , n, αqjl, λ
q
jl, for j = 1, . . . , k,

l = 1, . . . , g and qij for i = 1, . . . , n, j = 1, . . . , k, can be determined from

(1.4) and obtained using the iterative scheme in Algorithm 3. The update

for µqγ can be obtained by maximizing the variational lower bound L with

respect to µqγ. All updates are available in closed form except for µqγ.

An alternative approach for deriving the variational updates, that is

presented in Tan and Nott (2013a), is to assume parametric forms for the

factors in the variational posterior q(θ). The forms of the optimal densities

can be deduced from (1.4) and the fact that the model has conjugate priors.

The variational lower bound L can then be computed as a function of the

variational parameters and maximizing L with respect to these parameters,

say, by using methods in vector differential calculus (see Wand, 2002), gives

the required updates.

Algorithm 3: Variational approximation for MLMM

Initialize: qij for i = 1, . . . , n, j = 1, . . . , k,
αqjl
λqjl

for j = 1, . . . , k, l = 1, . . . , g,

µqai for i = 1, . . . , n and µqbj ,
αqaj
λqaj

,
αqbj
λqbj

for j = 1, . . . , k.

Cycle:

1. For j = 1, . . . , k,

• Σq
βj ← (Σ−1

βj +
∑n

i=1 qijX
T
i Σq

ij
−1Xi)

−1,

• µqβj ← Σq
βj

∑n
i=1 qijX

T
i Σq

ij
−1(yi −Wiµ

q
ai
− Viµqbj).

2. For i = 1, . . . , n,

• Σq
ai
←
{∑k

j=1 qij
αqaj
λqaj
Is1 +W T

i (
∑k

j=1 qijΣ
q
ij
−1)Wi

}−1

,

• µqai ← Σq
ai

∑k
j=1 qijW

T
i Σq

ij
−1(yi −Xiµ

q
βj
− Viµqbj).

3. For j = 1, . . . , k,

• Σq
bj
←
(
αqbj
λqbj
Is2 +

∑n
i=1 qijV

T
i Σq

ij
−1Vi

)−1

,

• µqbj ← Σq
bj

∑n
i=1 qijV

T
i Σq

ij
−1(yi −Xiµ

q
βj
−Wiµ

q
ai

).
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3.3. Variational approximation

4. Set µqγ to be the conditional mode of the lower bound, fixing other

variational parameters at their current values. As a function of µqγ, the

lower bound is the log posterior for a Bayesian multinomial regres-

sion with the ith response being (qi1, . . . , qik)
T and a normal prior on

µqγ. The usual iteratively weighted least squares algorithm (or other

numerical optimization algorithm) can be used for finding the mode.

5. For i = 1, . . . , n, j = 1, . . . , k, qij ← pij(µ
q
γ) exp(cij)∑k

l=1 pil(µ
q
γ) exp(cil)

where

cij = 1
2

g∑
l=1

κil{ψ(αqjl)− log λqjl} − 1
2
{tr(Σq

ij
−1Λij) + ξTijΣ

q
ij
−1ξij}

+ s1
2
{ψ(αqaj)− log λqaj} −

αqaj
2λqaj
{µqai

Tµqai + tr(Σq
ai

)}.

6. For j = 1, . . . , k,

• αqaj ← αaj + s1
2

∑n
i=1 qij,

• λqaj ← λaj + 1
2

∑n
i=1 qij{µqai

Tµqai + tr(Σq
ai

)}.

7. For j = 1, . . . , k,

• αqbj ← αbj + s2
2

,

• λqbj ← λbj + 1
2
{µqbj

Tµqbj + tr(Σq
bj

)}.

8. For j = 1, . . . , k, l = 1, . . . , g,

• αqjl ← αjl + 1
2

∑n
i=1 qijκil,

• λqjl ← λjl + 1
2

∑n
i=1 qij{(ξij)Tκil(ξij)κil + tr(Λij)κil},

where ((ξij)κi1 , . . . , (ξij)κig) is the partition of ξij corresponding to

(κi1, . . . , κig) and (Λij)κil is the diagonal block of Λij with rows and

columns corresponding to the position of κil within (κi1, . . . , κig).

until the increase in L is negligible.

In the examples, when Algorithm 3 is used in conjunction with the VGA

described in Section 3.5 to fit a one-component mixture, for j = 1, we set
αqaj
λqaj

=
αqbj
λqbj

= 1,
αqjl
λqjl

= 1 for l = 1, . . . , g, µqbj = 0, µqai = 0 for i = 1, . . . , n,

and qij = 1 for i = 1, . . . , n for initialization.

The form of q(γ) can be relaxed to be a normal distribution at con-

vergence using methods similar to that described in Section 2.3. Suppose
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q(γ) is not subjected to any distributional restriction, the optimal choice

for this term is given by

q(γ) ∝ exp

{
n∑
i=1

k∑
j=1

qij log pij(γ)− 1
2
γTΣ−1

γ γ

}
. (3.4)

If µqγ is close to the mode, we can get a normal approximation to q(γ) by

setting µqγ as the mean and the covariance matrix Σq
γ as the negative inverse

Hessian of the log of (3.4), which is the Bayesian multinomial log posterior

considered in step 4 of Algorithm 3. Waterhouse et al. (1996) outlined a

similar idea which they used at every step of their iterative algorithm. We

recommend using a delta function approximation first in Algorithm 3 and

then doing a one-step approximation after the algorithm has converged.

Using the normal approximation N(µqγ,Σ
q
γ) as the variational posterior for

q(γ), the variational lower bound L is the same as in (3.3) except that∑n
i=1

∑k
j=1 qij log pij(µ

q
γ) + log p(µqγ) is replaced with

n∑
i=1

k∑
j=1

qijEq {log pij(γ)}+ 1
2

log |Σ−1
γ Σq

γ|− 1
2
µqγ

TΣ−1
γ µqγ− 1

2
tr(Σ−1

γ Σq
γ)+ d(k−1)

2
.

The expectation of the first term, Eq {log pij(γ)}, is not available in closed

form and we replace it with log pij(µ
q
γ) to obtain an approximation L∗ to

log p(y). We shall later use L∗ as a model selection criterion in the VGA.

3.4 Hierarchical centering

In later examples, we encounter situations where there is weak identification

of certain model parameters and Algorithm 3 converges slowly. We apply

hierarchical centering and show empirically that there is a gain in efficiency

in variational algorithms through hierarchical centering reparametrization,

similar to that in MCMC algorithms. Some theoretical support for this

observation is given in Section 3.6.

We consider a case of partial centering in which Xi = Wi and a second

case of full centering in which Xi = Wi = Vi in (3.1). In the first case, we

introduce ηi = βj + ai conditional on δi = j so that (3.1) is reparametrized

as

yi = Xiηi + Vibj + εi

and ηi is “centered” about βj, with ηi ∼ N(βj, σ
2
aj
Ip). If we let η =

(ηT1 , . . . , η
T
n )T , then η replaces a in the set of unknown parameters θ. Replac-
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3.4. Hierarchical centering

ing q(a) in (3.2) with q(η) with other assumptions unchanged, the optimal

q(η) is
∏n

i=1 q(ηi), where q(ηi) is N(µqηi ,Σ
q
ηi

) for i = 1, . . . , n. In the second

case of full centering, we introduce ρi = νj+ai and νj = βj+bj, conditional

on δi = j so that (3.1) is reparametrized as

yi = Xiρi + εi,

with ρi “centered” about νj and νj “centered” about βj. We have ρi ∼
N(νj, σ

2
aj
Ip) and νj ∼ N(βj, σ

2
bj
Ip). If we let ρ = (ρT1 , . . . , ρ

T
n )T and ν =

(νT1 , . . . , ν
T
k )T , then ρ and ν replace a and b in the set of unknown param-

eters θ. Replacing q(a) and q(b) in (3.2) with q(ρ) and q(ν) with other

assumptions unchanged, the optimal densities for q(ρ) and q(ν) turn out

to be
∏n

i=1 q(ρi) and
∏k

j=1 q(νj) respectively, where q(ρi) is N(µqρi ,Σ
q
ρi

) for

i = 1, . . . , n and q(νj) is N(µqνj ,Σ
q
νj

) for j = 1, . . . , k.

The resulting iterative schemes for the first case with partial centering

and the second case with full centering are given in Algorithms 4 and 5

respectively. The variational posterior for γ can be relaxed to be a normal

distribution at convergence and similar adjustments, as discussed in Section

3.3, apply to the variational lower bounds for Algorithms 4 and 5.

Algorithm 4: Variational approximation for MLMM with partial centering

Initialize: qij for i = 1, . . . , n, j = 1, . . . , k,
αqjl
λqjl

for j = 1, . . . , k, l = 1, . . . , g

and µqbj , µ
q
βj

,
αqaj
λqaj

,
αqbj
λqbj

for j = 1, . . . , k.

Cycle:

1. For i = 1, . . . , n,

• Σq
ηi
←
{∑k

j=1 qij
αqaj
λqaj
Ip +XT

i (
∑k

j=1 qijΣ
q
ij
−1)Xi

}−1

,

• µqηi ← Σq
ηi

∑k
j=1 qij

{
αqaj
λqaj
µqβj +XT

i Σq
ij
−1(yi − Viµqbj)

}
.

2. For j = 1, . . . , k,

• Σq
βj
←
(

Σ−1
βj

+
αqaj
λqaj

∑n
i=1 qijIp

)−1

,

• µqβj ← Σq
βj

αqaj
λqaj

∑n
i=1 qijµ

q
ηi

.

3. For j = 1, . . . , k,

• Σq
bj
←
(
αqbj
λqbj
Is2 +

∑n
i=1 qijV

T
i Σq

ij
−1Vi

)−1

,

• µqbj ← Σq
bj

∑n
i=1 qijV

T
i Σq

ij
−1 (yi −Xiµ

q
ηi

)
.
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4. Same as step 4 in Algorithm 3.

5. For i = 1, . . . , n, j = 1, . . . , k, qij ← pij(µ
q
γ) exp(cij)∑k

l=1 pil(µ
q
γ) exp(cil)

, where

cij = −1
2

[
ωTijΣ

q
ij
−1ωij + tr

{
Σq
ij
−1(XiΣ

q
βj
XT
i + ViΣ

q
bj
V T
i )
}]

+ p
2

{
ψ(αqaj)− log λqaj

}
+

g∑
l=1

κil
2

{
ψ(αqjl)− log λqjl

}
− αqaj

2λqaj

{
(µqηi − µ

q
βj

)T (µqηi − µ
q
βj

) + tr(Σq
ηi

+ Σq
βj

)
}
.

6. For j = 1, . . . , k,

• αqaj ← αaj + p
2

∑n
i=1 qij,

• λqaj ← λaj +
∑n

i=1
qij
2
{(µqηi − µ

q
βj

)T (µqηi − µ
q
βj

) + tr(Σq
ηi

+ Σq
βj

)}.

7. Same as step 7 in Algorithm 3

8. For j = 1, . . . , k, l = 1, . . . , g,

• αqjl ← αjl + 1
2

∑n
i=1 qijκil,

• λqjl ← λjl+
∑n

i=1
qij
2

{
(ωij)

T
κil

(ωij)κil+tr(XiΣ
q
ηi
XT
i +ViΣ

q
bj
V T
i )κil

}
,

where ωij = yi −Xiµ
q
ηi
− Viµqbj .

until the increase in L is negligible.

The variational lower bound L for Algorithm 4 is the same as that in

(3.3) except that

1
2

n∑
i=1

log |Σq
ai
|−

n∑
i=1

k∑
j=1

qij
2

[
ξTijΣ

q
ij
−1ξij+tr(Σq

ij
−1Λij)+

αqaj
λqaj

{
µqai

Tµqai+tr(Σq
ai

)
}]

is replaced with

1
2

n∑
i=1

log |Σq
ηi
|+ αqaj

λqaj

{
tr(Σq

ηi
+ Σq

βj
) + (µqηi − µ

q
βj

)T (µqηi − µ
q
βj

)
}]

−
n∑
i=1

k∑
j=1

qij
2

[
ωTijΣ

q
ij
−1ωij + tr

{
Σq
ij
−1(XiΣ

q
ηi
XT
i + ViΣ

q
bj
V T
i )
}
,

where ωij = yi − Xiµ
q
ηi
− Viµ

q
bj

. For the examples in Section 3.7, when

Algorithm 4 is used in conjunction with the VGA to fit a one-component
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mixture (j = 1), we set qij = 1 for i = 1, . . . , n,
αqjl
λqjl

= 1 for l = 1, . . . , g,

αqbj
λqbj

= 1,
αqaj
λqaj

= 0.1, µqbj = 0 and µqβj = 0 for initialization.

Algorithm 5: Variational approximation for MLMM with full centering

Initialize: qij for i = 1, . . . , n, j = 1, . . . , k, µqνj , µ
q
βj

αqaj
λqaj

and
αqbj
λqbj

for j =

1, . . . , k and
αqjl
λqjl

for j = 1, . . . , k, l = 1, . . . , g.

Cycle:

1. For i = 1, . . . , n,

• Σq
ρi
←
{∑k

j=1 qij
αqaj
λqaj
Ip +XT

i (
∑k

j=1 qijΣ
q
ij
−1)Xi

}−1

,

• µqρi ← Σq
ρi

∑k
j=1 qij

(
αqaj
λqaj
µqνj +XT

i Σq
ij
−1yi

)
.

2. For j = 1, . . . , k,

• Σq
νj
←
{(

αqbj
λqbj

+
αqaj
λqaj

∑n
i=1 qij

)
Ip

}−1

,

• µqνj ← Σq
νj

(
αqbj
λqbj
µqβj +

αqaj
λqaj

∑n
i=1 qijµ

q
ρi

)
.

3. For j = 1, . . . , k,

• Σq
βj
←
(

Σ−1
βj

+
αqbj
λqbj
Ip

)−1

,

• µqβj ← Σq
βj

αqbj
λqbj
µqνj .

4. Same as step 4 in Algorithm 3.

5. For i = 1, . . . , n, j = 1, . . . , k, qij ← pij(µ
q
γ) exp(cij)∑k

l=1 pil(µ
q
γ) exp(cil)

where

cij = −1
2

{
(yi −Xiµ

q
ρi

)TΣq
ij
−1(yi −Xiµ

q
ρi

) + tr(Σq
ij
−1XiΣ

q
ρi
XT
i )
}

− αqaj
2λqaj

{
(µqρi − µ

q
νj

)T (µqρi − µ
q
νj

) + tr(Σq
ρi

+ Σq
νj

)
}

+ p
2

{
ψ(αqaj)− log λqaj

}
+

g∑
l=1

κil
2

{
ψ(αqjl)− log λqjl

}
.

6. For j = 1, . . . , k,

• αqaj ← αaj + p
2

∑n
i=1 qij,

• λqaj ← λaj + 1
2

∑n
i=1 qij

{
(µqρi − µ

q
νj

)T (µqρi − µ
q
νj

) + tr(Σq
ρi

+ Σq
νj

)
}

.
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7. For j = 1, . . . , k,

• αqbj ← αbj + p
2
,

• λqbj ← λbj + 1
2

{
(µqνj − µ

q
βj

)T (µqνj − µ
q
βj

) + tr(Σq
νj

+ Σq
βj

)
}

.

8. For j = 1, . . . , k, l = 1, . . . , g,

• αqjl ← αjl + 1
2

∑n
i=1 qijκil,

• λqjl ← λjl+
n∑
i=1

qij
2

{
(yi−Xiµ

q
ρi

)Tκil(yi−Xiµ
q
ρi

)κil+tr(XiΣ
q
ρi
XT
i )κil

}
.

until the increase in L is negligible.

The variational lower bound L for Algorithm 5 is the same as in (3.3)

except that

1
2

n∑
i=1

log |Σq
ai
|+

k∑
j=1

[
1
2

log |Σq
bj
| −

αqbj
2λqbj

{
µqbj

Tµqbj + tr(Σq
bj

)
}]

−
n∑
i=1

k∑
j=1

qij
2

[
ξTijΣ

q
ij
−1ξij + tr(Σq

ij
−1Λij) +

αqaj
λqaj

{
µqai

Tµqai + tr(Σq
ai

)
}]

is replaced with

1
2

n∑
i=1

log |Σq
ρi
| −

n∑
i=1

k∑
j=1

qij
2

αqaj
λqaj

{
tr(Σq

ρi
+ Σq

νj
) + (µqρi − µ

q
νj

)T (µqρi − µ
q
νj

)
}

−
n∑
i=1

k∑
j=1

qij
2

[
tr
{

Σq
ij
−1(XiΣ

q
ρi
XT
i )
}

+ (yi −Xiµ
q
ρi

)TΣq
ij
−1(yi −Xiµ

q
ρi

)
]

+ 1
2

k∑
j=1

[
log |Σq

νj
| −

αqbj
λqbj

{
(µqνj − µ

q
βj

)T (µqνj − µ
q
βj

) + tr(Σq
νj

+ Σq
βj

)
}]
.

For the examples in Section 3.7, when Algorithm 5 is used in conjunction

with the VGA to fit a one-component mixture (j = 1), we set qij = 1 for

i = 1, . . . , n,
αqjl
λqjl

= 10 for l = 1, . . . , g,
αqaj
λqaj

= 0.1,
αqbj
λqbj

= 0.01, µqβj = 0 and

µqνj = 0 for initialization. We note that the rate of convergence of Algorithm

5 can be sensitive to the initialization of
αqjl
λqjl

,
αqaj
λqaj

and
αqbj
λqbj

and observed that

an initialization satisfying
αqbj
λqbj

<
αqaj
λqaj

<
αqjl
λqjl

works better.

50



3.5. Variational greedy algorithm

3.5 Variational greedy algorithm

The VGA carries out model selection and parameter estimation simulta-

neously and is fully automatic. At the end of the algorithm, a plausible

number of mixture components is returned together with the fitted model.

The greedy approach described in this section is not limited to MLMMs

and can be adapted to fit other mixture models using variational methods

easily. In the description of the VGA below, “variational algorithm” refers

to either Algorithms 3, 4 or 5 depending on whether any centering (either

partial or full) is desired. Let fk denote the k-component mixture model

fitted to the data and Ck denote the set of k components that form the

mixture model fk. The greedy learning procedure is outlined below.

Variational Greedy Algorithm (VGA)

1. Fit a one-component mixture model f1 to the data using the varia-

tional algorithm.

2. Find the optimal way of splitting each of the components that form

the current mixture model fk. This is done in the following manner.

For each component cj∗ ∈ Ck, form

Aj∗ =

{
i ∈ {1, . . . , n}|j∗ = arg max

1≤j≤k
qij

}
,

where {qij|i = 1, . . . , n, j = 1, . . . , k} are the responsibilities from fk.

For each m = 1, . . . ,M ,

• randomly partition Aj∗ into two disjoint subsets Aj1∗ and Aj2∗ .

Form a (k + 1)-component mixture by splitting cj∗ into two

subcomponents, cj1∗ and cj2∗ , while keeping the remaining (k−1)

components in Ck fixed. For i ∈ Aj∗ and l ∈ {1, 2}, let qij of cjl∗

be equal to the responsibilities of cj∗ in fk if the ith observation

lies in Ajl∗ and zero otherwise. For i /∈ Aj∗ , let qij of cj1∗ be

equal to the responsibilities of cj∗ in fk and qij of cj2∗ be zero.

The rest of the variational parameters of cj1∗ and cj2∗ which are

required for initialization of the variational algorithm are set as

equal to that of cj∗ .

• Using this setting as initialization, apply a “partial” variational

algorithm to the (k + 1)-component mixture. Here, variational

parameters of components in Ck− cj∗ are not updated as we are

only interested in learning the optimal way of splitting cj∗ .
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For each component cj∗ ∈ Ck, choose the run with the highest at-

tained lower bound among M runs as that yielding the optimal way

of splitting cj∗ . Let Lj∗ denote the lower bound and f split
j∗ denote the

(k + 1)-component mixture model corresponding to the optimal way

of splitting cj∗ .

3. The components in Ck are then sorted in descending order according

to Lj∗ and then split in order, starting with the component with the

highest Lj∗ . After the lth split, the total number of components in the

mixture is k + l. Let f temp
k+l denote the mixture model obtained after l

splits. Suppose that at the (l+ 1)th split, the component in Ck being

split is cj∗ . We apply a “partial” variational algorithm again, keeping

fixed variational parameters of components awaiting to be split. For

the initialization, we let the variational parameters of cj1∗ and cj2∗

be equal to those in f split
j∗ and the variational parameters of all other

components be equal to those in f temp
k+l if l ≥ 1 and f split

j∗ if l = 0. A

split is considered successful if the estimated log marginal likelihood

L∗ increases after the split. This process of splitting components is

terminated once an unsuccessful split is encountered.

4. If the total number of successful splits in step 3 is s, then a (k + s)-

component model f temp
k+s is obtained at the end of step 3. We apply the

variational algorithm on f temp
k+s until convergence updating all varia-

tional parameters this time to obtain mixture model fk+s.

5. Repeat steps 2–4 until all splits of the current mixture model are

unsuccessful.

For the partitioning of Aj∗ in step 2, we have experimented with several

dissimilarity measures based on Euclidean distance as well as variability-

weighted similarity measures (Yeung et al., 2003) in the case of repeated

data. Generally, the VGA performed better when a random partition was

used. Methods such as k-means clustering are also difficult to apply when

there is missing data. We note that the partitioning of Aj∗ into two disjoint

subsets in step 2 serves only as an initialization to the “partial” variational

algorithm to be carried out in search of the optimal way to split component

cj∗ . Suppose an outright partitioning of the data is obtained by assigning

observation i to the j∗th component if j∗ = arg max1≤j≤k qij where {qij|i =

1, . . . , n, k = 1, . . . , k} are the responsibilities of fk. We emphasize that it is

possible for observations that have been assigned to different components

52



3.5. Variational greedy algorithm

at any particular stage to be assigned to the same component again at the

next stage of the VGA. This is due to the updating of the responsibilities

qij of all components which have been split in step 3 and that of all existing

components in step 4.

The amount of computation is greatly reduced by the use of a “par-

tial” variational algorithm as the algorithm converges quickly when the

variational parameters of all other components (except for the two sub-

components arising from the component being split) are fixed. In step 2,

we are looking for the run with the highest attained lower bound out of M

runs and it may not be computationally efficient to continue every run to

full convergence. We suggest using “short runs” in this search step. For the

examples in section 3.7, we set M as 5 and each of the M runs is terminated

when the increment in the lower bound is less than 1. For steps 1, 3 and 4,

the variational algorithm is considered to have converged when the abso-

lute relative change in the lower bound L is less than 10−5. Suppose we are

trying to split a component cj∗ into two subcomponents cj1∗ and cj2∗ . After

applying “partial” variational algorithm, the responsibilities qij of one of

the two subcomponents sometimes reduce to zero for all of i = 1, . . . , n, so

that it is effectively removed. When this happens on the attempt leading to

the highest variational lower bound among all M attempts to split cj∗ , we

suggest omitting cj∗ in future splitting tests provided the responsibilities of

cj∗ remain unchanged. This reduces the number of components we need to

test for splitting and can be very useful when the number of components

grows to a large number.

Due to the random partitions in step 2, repeated applications of the

VGA may not return the same number of mixture components. However,

empirical results indicate that the variation is relatively small compared

to the number of components returned. If the user finds certain clusters

to be very similar and suspect that the VGA may have overestimated the

number of components, some optional merge moves may be carried out as

we later demonstrate in Section 3.7. A merge move is considered successful

if the estimated log marginal likelihood increases when two components are

merged. While the VGA has been applied repeatedly in the examples for

the purpose of analysing its performance, the user need only apply it once

and may consider some merge moves if he/she finds clusters which are very

similar. If multiple applications are used, we suggest using the estimated

log marginal likelihood as a guideline to select the clustering solution. We

observed that reparametrization using hierarchical centering increases the
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Chapter 3. Mixtures of linear mixed models

efficiency of the VGA and a larger gain may be expected for mixtures with

a larger number of components. The quality of the clustering results also

seems to improve with hierarchical centering with a higher estimated log

marginal likelihood being attained.

3.6 Rate of convergence

In this section, we show that the approximate rate of convergence of the

variational algorithm by Gaussian approximation is equal to that of the

corresponding Gibbs sampler. As reparametrizations using hierarchical cen-

tering can lead to improved convergence in the Gibbs sampler, this result

lends insight into how such reparametrizations can increase the efficiency

of variational algorithms in the context of MLMMs. This is because the

joint posterior of the fixed and random effects in a linear mixed model is

Gaussian (with Gaussian priors and Gaussian random effects distributions)

when the variance parameters are known.

Let the complete data be Yaug = (Yobs, Ymis) where Yobs is the observed

data and Ymis is the missing data. Let the complete data likelihood be

p(Yaug|θ) where θ is a p × 1 vector. Let Ymis be a r × 1 vector. Suppose

the prior for θ is p(θ) ∝ 1 and the target distribution is p(θ, Ymis|Yobs) =

N (( µ1µ2 ) ,Σ), where Σ =
(

Σ11 Σ12
Σ21 Σ22

)
. Let H = Σ−1 =

(
H11 H12
H21 H22

)
. It can be

shown that

p(Ymis|θ, Yobs) = N
(
µ2 −H−1

22 H21(θ − µ1), H−1
22

)
and

p(θ|Ymis, Yobs) = N
(
µ1 −H−1

11 H12(Ymis − µ2), H−1
11

)
.

Sahu and Roberts (1999) showed that under such conditions, the rate of

convergence of the EM algorithm alternating between the two components

θ and Ymis is equal to the rate of convergence of the corresponding two-block

Gibbs sampler. This rate is given by ρ(BEM), whereBEM = H−1
11 H12H

−1
22 H21

and ρ(·) denotes the spectral radius of a matrix.

In the variational approach, we seek an approximation q(θ, Ymis) to

the true posterior p(θ, Ymis|Yobs) for which the Kullback-Leibler divergence

between q and p(θ, Ymis|Yobs) is minimized subject to the restriction that

q(θ, Ymis) can be factorized as q(θ)q(Ymis). The optimal densities are

q(Ymis) = N
(
µ2 −H−1

22 H21(µqθ − µ1), H−1
22

)
and

q(θ) = N
(
µ1 −H−1

11 H12(µqYmis
− µ2), H−1

11

)
,
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3.6. Rate of convergence

where µqθ and µqYmis
denote the mean of q(θ) and q(Ymis) respectively. Start-

ing with some initial estimate for µqθ, we can iteratively update the pa-

rameters µqθ and µqYmis
until convergence. Let µqθ

(t) and µ
q (t)
Ymis

denote the tth

iterates. It can be shown that

µ
q (t+1)
Ymis

= H−1
22 H21H

−1
11 H12 µ

q (t)
Ymis

+
(
Ir −H−1

22 H21H
−1
11 H12

)
µ2 and

µqθ
(t+1) = BEMµqθ

(t) +
(
Ip −BEM

)
µ1.

The matrix rate of convergence of an iterative algorithm for which θ(t+1) =

M(θ(t)) and θ∗ is the limit is given by DM(θ∗) where DM(θ) = (
∂Mj(θ)

∂θi
). A

measure of the actual observed rate of convergence is given by the largest

eigenvalue of DM(θ∗) (Meng, 1994). The rate of convergence of µ
q (t)
θ is

therefore ρ(BEM). Since H−1
22 H21H

−1
11 H12 and BEM share the same eigen-

values, the rate of convergence of µ
q (t)
Ymis

is also ρ(BEM). The overall rate of

convergence of the variational algorithm is thus ρ(BEM).

Suppose we impose a tougher restriction on q(θ, Ymis). For a partition

of θ into m groups such that θ = [θT1 , . . . , θ
T
m]T with θi a ri × 1 vector and∑

ri = p, we assume that q(θ, Ymis) can be factorized as
∏m

i=1 q(θi)q(Ymis).

The optimal density of q(Ymis) remains unchanged. Let µ1 = (µ11, . . . , µ1m)

and

H11 =


Λ11 Λ12 . . . Λ1m

Λ21 Λ22 . . . Λ2m

...
...

. . .
...

Λm1 Λm2 . . . Λmm

 .
be partitioned according to θ = (θ1, . . . , θm). The optimal density of q(θi)

is

N
(
µ1i − Λ−1

ii

{∑
j 6=i

Λij(µ
q
θj
− µ1j) +H12i(µ

q
Ymis
− µ2)

}
, Λ−1

ii

)
where H12i denotes the ith row of H12, for i = 1, . . . ,m. This leads to

the following iterative scheme. After initializing µqθi , i = 1, . . . ,m, we cycle

though updates:

• µqYmis
← µ2 −H−1

22 H21(µqθ − µ1),

• µqθi ← µ1i − Λ−1
ii

{∑
j 6=i Λij(µ

q
θj
− µ1j) + H12i(µ

q
Ymis
− µ2)

}
for i =

1, . . . ,m,

till convergence. Consider the (t+ 1)th iteration. For notational simplicity,

we replace (µ
q (t)
θi
− µ1i) by λ

q (t)
θi

, (µ
q (t)
θ − µ1) by λ

q (t)
θ and (µ

q (t)
Ymis
− µ2) by
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λ
q (t)
Ymis

. Since λ
q (t+1)
Ymis

= −H−1
22 H21λ

q
θ
(t), we have


Λ11 0 . . . 0

Λ21 Λ22 . . . 0
...

...
. . .

...

Λm1 Λm2 . . . Λmm



λ
q (t+1)
θ1

λ
q (t+1)
θ2

...

λ
q (t+1)
θm

+


0 Λ12 . . . Λ1m

0 0 . . . Λ2m

...
...

. . .
...

0 0 . . . 0



λ
q (t)
θ1

λ
q (t)
θ2
...

λ
q (t)
θm


= H11B

EMλqθ
(t).

Let

L =


Λ11 0 . . . 0

Λ21 Λ22 . . . 0
...

...
. . .

...

Λm1 Λm2 . . . Λmm


be the lower triangular block matrix of H11 and U = L−H11. Then

Lλqθ
(t+1) − Uλqθ

(t) = H11B
EMλqθ

(t)

⇔ λqθ
(t+1) = L−1Uλqθ

(t) + L−1(L− U)BEMλqθ
(t)

⇔ λqθ
(t+1) = [Baug + (Ip −Baug)BEM]λqθ

(t)

where Baug = L−1U . Therefore the rate of convergence of λ
q (t)
θ and hence,

that of µqθ is ρ(Baug + (Ip − Baug)BEM). As the rate of convergence of θ(t)

is defined as limt→∞
‖θ(t+1)−θ∗‖
‖θ(t)−θ∗‖ , the rate of convergence of λ

q (t)
Ymis

and hence

µ
q (t)
Ymis

is given by

lim
t→∞

∥∥∥λq (t+1)
Ymis

−λq∗Ymis

∥∥∥∥∥∥λq (t)Ymis
−λq∗Ymis

∥∥∥ = lim
t→∞

‖−H−1
22 H21λ

q
θ
(t)

+H−1
22 H21λ

q
θ
∗‖

‖−H−1
22 H21λ

q
θ
(t−1)

+H−1
22 H21λ

q
θ
∗‖

= lim
t→∞

‖λqθ(t)−λqθ∗‖
‖λqθ(t−1)−λqθ

∗‖ ,

which is equal to the rate of convergence of µ
q (t)
θ . The overall rate of conver-

gence of the variational algorithm is thus ρ(Baug + (Ip −Baug)BEM) which

is equal to the rate of convergence of the Gibbs sampler that sequentially

updates components of θ, and then block updates Ymis derived by Sahu

and Roberts (1999). Although the theory developed may not be directly

applicable to linear mixed models with unknown variance components as

well as MLMMs in general, it suggests to consider hierarchical centering

in the context of variational algorithms and examples in Section 3.7 show

that there is some gain in efficiency due to the reparametrizations.
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3.7 Examples

To illustrate the methods proposed, we apply VGA using Algorithms 3, 4

and 5 on three real data sets. We also consider a simulated data set created

by Yeung et al. (2003) where there is independent external knowledge on

which objects should cluster together. In Sections 3.7.2, 3.7.3 and 3.7.4,

we compare results obtained without applying hierarchical centering with

those obtained via either partial centering or full centering. We observed

that hierarchical centering was able to not only increase efficiency but also

produce better clustering results. In the examples below, an outright par-

titioning of the data is obtained by assigning observation i to the j∗th

component if j∗ = arg max1≤j≤k qij, where {qij|i = 1, . . . , n, j = 1, . . . , k}
are the responsibilities from the variational posterior of the mixture model.

All code was written in the R language and run on a dual processor Win-

dows PC 3GHz workstation.

3.7.1 Time course data

Using DNA microarrays and samples from yeast cultures synchronized by

three independent methods, Spellman et al. (1998) identified 800 genes that

meet an objective minimum criterion for cell cycle regulation. We consider

the 18 α-factor synchronization where the yeast cells were sampled at 7 min

intervals for 119 mins and a subset of 612 genes that have no missing gene

expression data across all 18 time points. This data set was analyzed by

Luan and Li (2003) and Ng et al. (2006) previously and is available online

at http://www.molbiolcell.org/content/9/12/3273/suppl/DC1.

Our aim is to obtain an optimal clustering of these genes using VGA.

Following Ng et al. (2006), we take n = 612, Xi to be an 18 × 2 matrix

with the (l + 1)th row (l = 0, . . . , 17) as (cos{2π(7l)/ω}, sin{2π(7l)/ω}),
where ω = 53 is the period of the cell cycle, Wi = 118, Vi = I18 and ui = 1

for i = 1, . . . , n. For the error terms, we take g = 1 and κi1 = 18 for i =

1, . . . , n, so that the error variance of each mixture component is constant

across the 18 time points. We used the following priors, γ ∼ N(0, 1000I),

βj ∼ N(0, 1000I) for j = 1, . . . , k, and IG(2, 0.25) for σ2
aj

, σ2
bj

, j = 1, . . . , k

and σ2
jl, j = 1, . . . , k, l = 1, . . . , g.

Applying VGA using Algorithm 3 ten times, we obtained a 15-component

mixture three times, a 17-component mixture five times and a 18-component

mixture twice. After applying merge moves to clusters which appear sim-

ilar, three of the 17-component mixtures were reduced to 16-component

57

http://www.molbiolcell.org/content/9/12/3273/suppl/DC1


Chapter 3. Mixtures of linear mixed models

0 40 80 120

−
2

0
2

cluster 1 (37 genes)

seq(0, 119, 7)

0 40 80 120

−
2

0
2

cluster 2 (105 genes)

seq(0, 119, 7)

co
m

p[
1,

 ]

0 40 80 120

−
2

0
2

cluster 3 (41 genes)

seq(0, 119, 7)

co
m

p[
1,

 ]

0 40 80 120

−
2

0
2

cluster 4 (20 genes)

seq(0, 119, 7)

co
m

p[
1,

 ]

0 40 80 120

−
2

0
2

cluster 5 (8 genes)

seq(0, 119, 7)

0 40 80 120

−
2

0
2

cluster 6 (64 genes)

seq(0, 119, 7)

co
m

p[
1,

 ]

0 40 80 120

−
2

0
2

cluster 7 (65 genes)

seq(0, 119, 7)

co
m

p[
1,

 ]

0 40 80 120

−
2

0
2

cluster 8 (79 genes)

seq(0, 119, 7)

co
m

p[
1,

 ]

0 40 80 120

−
2

0
2

cluster 9 (25 genes)

seq(0, 119, 7)

0 40 80 120

−
2

0
2

cluster 10 (17 genes)

seq(0, 119, 7)

co
m

p[
1,

 ]

0 40 80 120
−

2
0

2

cluster 11 (15 genes)

seq(0, 119, 7)

co
m

p[
1,

 ]

0 40 80 120

−
2

0
2

cluster 12 (49 genes)

seq(0, 119, 7)

co
m

p[
1,

 ]

0 40 80 120

−
2

0
2

cluster 13 (13 genes)

0 40 80 120

−
2

0
2

cluster 14 (37 genes)

co
m

p[
1,

 ]

0 40 80 120

−
2

0
2

cluster 15 (31 genes)

co
m

p[
1,

 ]

0 40 80 120
−

2
0

2

cluster 16 (6 genes)

co
m

p[
1,

 ]

Figure 3.1: Time course data. Clustering results obtained after applying
one merge move to a 17-component mixture produced by VGA using Algo-
rithm 3. The x-axis are the time points and y-axis are the gene expression
levels. Line in grey is the posterior mean of the fixed effects given by Xiµ

q
βj

.

mixtures and both of the 18-component mixtures were reduced to 17-

component mixtures. We report in Figure 3.1 the clustering for a 16-

component mixture, obtained after applying one merge move to a 17-

component mixture produced by VGA. For this clustering, we attempted

further merge moves such as merging cluster 13 with 14, cluster 10 with

12 and cluster 8 with 9. These merge moves did not result in any further

increase in the estimated log marginal likelihood.

While it is possible for the VGA to overestimate the number of mixture

components, the variation in the number of mixture components returned

by the VGA is relatively small and merge moves can be considered when

very similar clusters are encountered. For this data set, the number of

clusters returned by VGA was generally larger than that obtained by Ng et

al. (2006) where BIC was used for model selection and the optimal number

of clusters was reported as 12. Any interpretation of the differences in

results would need to be pursued with the help of subject matter experts.
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It may also be argued that the ability to estimate the “true model” is not a

chief concern in clustering applications where interpretability of the results

in the substantive scientific context is the primary motivation.

3.7.2 Synthetic data set

We consider a synthetic data set created by Yeung et al. (2003) which

consist of 400 data points (genes), 20 attributes (experiments), 4 repeated

measurements and 6 clusters. Clusters 1–4 are periodic sine functions each

of size 67 and clusters 5–6 are linear each of size 66. For gene i from cluster

j, the rth repeated measurement at experiment t is yitr, which is generated

randomly from a normal distribution with mean φit and standard deviation

σit. The mean φit is defined as

φit =


sin(2πt

10
− ωj) if j = 1, . . . , 4,

t
20

if j = 5,

− t
20

if j = 6,

where ωj is a random phase shift between 0 and 2π and σit represents ran-

domly sampled error from the yeast galactose data of Ideker et al. (2001).

The synthetic data set we used is shown in Figure 3.2, sorted according

to the true clusterings, and can be accessed from http://expression.

washington.edu/publications/kayee/yeunggb2003/ under the filename

“syn sine 5 mult1”.

We take n = 400, yi = (yi11, . . . , yi14, . . . , yi,20,1, . . . , yi,20,4), Xi to be a

80× 20 matrix where

Xi =


14 04 · · · 04

04 14 · · · 04

...
...

. . .
...

04 04 · · · 14


Wi = Xi and Vi = I80 for i = 1, . . . , n. For the error terms, we set g = 20

with κil = 4, i = 1, . . . , n, l = 1, . . . , g, so that the error variance of each

mixture component is allowed to vary between different experiments. We

used the following priors, γ ∼ N(0, 1000I), βj ∼ N(0, 1000I) for j =

1, . . . , k, and IG(2, 0.74) for σ2
aj

, σ2
bj

, j = 1, . . . , k and σ2
jl, j = 1, . . . , k,

l = 1, . . . , g.

Applying VGA using Algorithm 4 (with partial centering) five times, we

obtained a 6-component mixture three times and a 7-component mixture
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Figure 3.2: Expression profiles of synthetic data set sorted according to
the true clusterings. The x-axis are the experiments and y-axis are the gene
expression levels.

twice. Further merge moves were considered for the two 7-component mix-

tures but these were unsuccessful. For assessing the degree of agreement

between the clustering of the fitted model relative to the true grouping of

the 400 genes, we use the Adjusted Rand Index (ARI, Hubert and Arabie,

1985). The ARI can be used for comparing partitions with different number

of clusters, with a value between 0 and 1, and is 1 when two partitions are

in complete agreement. A higher value indicates better agreement between

the two partitions. We compute the ARI for each of the five trials, which

gave an average of 0.99. On the other hand, applying VGA using Algorithm

3 (without hierarchical centering) five times produced a 2-component mix-

ture with an ARI less than 0.01 each time. Hierarchical centering thus

produced much better clustering results in this case although it is difficult

to compare the efficiency of Algorithms 1 and 2 due to the large difference

in number of components returned.

3.7.3 Water temperature data

We consider the daily average water temperature readings during the pe-

riod 9 September 2010 - 10 August 2011 collected at a monitoring station

at Upper Peirce Reservoir, Singapore. No data were available during the

periods 23 December 2010 - 28 December 2010, 10 February 2010 - 23

February 2010 and 14 April 2011 - 10 May 2011. Readings were collected
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Figure 3.3: Clustering results for water temperature data. The x-axis is
the depth and y-axis is the water temperature.

at eleven depths from the water surface; 0.5 m, 2 m, 4 m, 6 m, 8 m, 10

m, 12 m, 14 m, 16 m, 18 m and at the bottom∗. Using data from the re-

maining 290 days, we apply the VGA to obtain a clustering of this data.

We take n = 290, ni = 11 and Xi = Wi = Vi = I11 for i = 1, . . . , n. We

set g = 11 with κil = 1 for i = 1, . . . , n, l = 1, . . . , g, so that the error

variance of each mixture component is allowed to be different at different

depths. For the mixture weights, we set ui = [1, i, i2, i3], i = 1, . . . , n, and

subsequently rescale columns 2–4 in the matrix U = [uT1 , . . . , u
T
n ]T to take

values between −1 and 1. We used the following priors, γ ∼ N(0, 1000I),

βj ∼ N(0, 10000I) for j = 1, . . . , k, and IG(2, 0.8) for σ2
aj

, σ2
bj

, j = 1, . . . , k

and σ2
jl, j = 1, . . . , k, l = 1, . . . , g.

Applying VGA using Algorithm 5 (with full centering) five times, we

obtained a 4-component model each time with similar results. The clus-

tering of a typical 4-component fitted model is shown in Figure 3.3 and

the fitted probabilities from the mixing weights model are shown in Figure

3.4. For comparison, we apply VGA with Algorithm 3 (without hierarchical

centering) five times. A 4-component mixture model was obtained on all

five attempts. The average CPU time taken to fit a 4-component model

using VGA with Algorithm 3 was 725 seconds compared to 469 seconds

by Algorithm 5. In this example, hierarchical centering reparametrization

has helped to improve the rate of convergence with the computation time

reduced by 35%. The average log marginal likelihood attained using Algo-

rithm 5 was −789, which is higher than the average of -837 obtained using

Algorithm 3.

The Upper Peirce Reservoir uses aeration devices intended to mix the

water at different depths, with the aim of controlling outbreaks of phyto-

plankton and algal scums. On days when these aeration devices are opera-

∗We thank Singapore Delft Water Alliance for supplying the water temperature data
set.
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Figure 3.4: Water temperature data. Fitted probabilities from mixing
weights model for clusters 1 to 4. The x-axis are days numbered 1 to 290
and y-axis are the probabilities.

tional, it is expected that there will be less stratification of the temperature

with depth. Accurate records of the operation of the aeration devices were

not available to us and there is some interest in seeing whether the clus-

ters divide into more or less stratified components giving some insight into

when the aeration devices were used.

3.7.4 Yeast galactose data

The yeast galactose data of Ideker et al. (2001) has four replicate hybridiza-

tions for each of 20 cDNA array experiments. We consider a subset of 205

genes previously analyzed by Yeung et al. (2003) and Ng et al. (2006) whose

expression patterns reflect four functional categories in the gene ontology

(GO) listings (Ashburner et al., 2000). Approximately 8% of the data are

missing and Yeung et al. (2003) used a k-nearest neighbour method to

impute the missing data values. Yeung et al. (2003) and Ng et al. (2006)

evaluated the performance of their clustering algorithms by how closely the

clusters compared with the four categories in the GO listings. They used

the ARI to assess the degree of agreement between their partitions and the

four functional categories.

We use this example to illustrate the way that our model can make

use of covariates in the mixing weights, unlike previous analyses of this

data set. In particular, we use the GO listings as covariates in the mixture

weights. Let ui be a vector of length d = 4 where the lth element is 1

if the functional category of gene i is l and 0 otherwise. Instead of look-

ing at the data with missing values imputed by the k-nearest neighbour

method, we consider the original data containing 8% missing values, since

our model has the capability to handle missing data. This data set can

be accessed from http://expression.washington.edu/publications/

kayee/yeunggb2003/gal205.txt. Taking n = 205 genes, let yitr denote

the rth repetition of the expression profile for gene i at experiment t,
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cluster 6 (23 genes)
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Figure 3.5: Clustering results for yeast galactose data obtained from VGA
using Algorithm 4. The x-axis are the experiments and y-axis are the
gene expression profiles. GO listings were used as covariates in the mix-
ture weights.

0 ≤ r ≤ 4, and Rit denote the number of replicate hybridizations data

available for gene i in experiment t, i = 1, . . . , 205, t = 1, . . . , 20. For each

i = 1, . . . , n, yi is a vector of ni observations where ni =
∑20

t=1Rit and

yi = (yi11, . . . , yi14, . . . , yi,20,1, . . . , yi,20,4)T , with missing observations omit-

ted. Vi is a ni × 80 matrix obtained from I80 by removing the (tr)th row if

the observation for experiment t at the rth repetition is not available. Xi

is a ni × 20 matrix,

Xi =


1Ri1 0Ri1 . . . 0Ri1
0Ri2 1Ri2 . . . 0Ri2

...
...

. . .
...

0Ri20 0Ri20 . . . 1Ri20


and Wi = Xi. For the error terms, we set g = 20 with κil = Ril, i =

1, . . . , n, l = 1, . . . , g, so that the error variance of each mixture component

is allowed to vary between different experiments. We used the following

priors, δ ∼ N(0, 1000I), βj ∼ N(0, 1000I) for j = 1, . . . , k, and IG(2, 0.12)

for σ2
aj

, σ2
bj

, j = 1, . . . , k and σ2
jl, j = 1, . . . , k, l = 1, . . . , g.

Applying VGA using Algorithm 4 (with partial centering) for five times,

we obtained a 7-component mixture on all five trials with similar results.

The clustering of a 7-component mixture with the highest estimated log

marginal likelihood among the five trials is shown in Figure 3.5. Some

merge moves such as merging cluster 1 with 2, cluster 4 with 7 or cluster 4
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Figure 3.6: Yeast galactose data. Fitted probabilities from gating function.
The x-axis are the clusters and y-axis are the probabilities.

with 6 were considered but these did not result in a higher estimated log

marginal likelihood. The same holds for the other 7-component mixtures.

The number of optimal clusters obtained using VGA is the same as that

reported in Ng et al. (2006) although there are slight differences in the clus-

terings. In particular, instead of having one cluster containing all the genes

from Category 4, we observed that two or three of the genes in Category

4 were consistently separated from the cluster containing the remaining

genes from Category 4. Fitted probabilities from the gating function are

shown in Figure 3.6. These were obtained by substituting δ with µqδ from

the variational posterior into P (δi = j) = pij =
exp(uTi δj)∑k
l=1 exp(uTi δl)

which rep-

resents the probability that observation i belongs to component j of the

mixture, conditional on the category that observation i belongs to in the

GO listings.

To investigate the impact of reparametrizing the model using hierarchi-

cal centering, we applied VGA using Algorithm 3 five times. This time, we

obtained a 6-component mixture twice and a 7-component mixture thrice.

The average estimated log marginal log likelihood attained by Algorithm

3 was 7901 which is lower than the average of 8201 attained by Algorithm

4. For fitting a 7-component model, VGA with Algorithm 3 took an aver-

age of 3418 seconds, while Algorithm 4 took an average of 1758 seconds.

While these results may not be conclusive, the gain in efficiency in using

Algorithm 4 over Algorithm 3 is clear. By using hierarchical centering, the

computation time was reduced by nearly half in this example.

3.8 Conclusion

In this chapter, we have proposed fitting MLMMs with variational methods

and developed an efficient VGA which is able to perform parameter esti-

mation and model selection simultaneously. This greedy approach handles
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initialization automatically and returns a plausible value for the number of

mixture components. The experiments we have conducted showed that the

VGA does not systematically underestimate nor overestimate the number

of mixture components. For the simulated data set considered, VGA was

able to return mixture models where the number of mixture components is

very close to the true number of components. We further showed empirically

that hierarchical centering can help to improve the rate of convergence in

variational algorithms and return better clustering results. Some theoreti-

cal support was also provided for this observation. Implementation of the

VGA is straightforward as no further derivation is required once the basic

variational algorithms are available. This greedy approach is not limited to

MLMMs and could potentially be extended to fitting other mixture models

using variational methods. The R codes for implementing the VGA using

algorithms 3, 4 and 5 and the water temperature data set are available

online as supplemental materials of Tan and Nott (2013a).
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Chapter 4

Variational inference for generalized

linear mixed models using partially

noncentered parametrizations

The effects of different parametrizations on the convergence of Bayesian

computational algorithms for hierarchical models are well explored. Tech-

niques such as centering, noncentering and partial noncentering have been

used to accelerate convergence in MCMC and EM algorithms, but are still

not well studied for VB methods. The use of different parametrizations for

VB has not only computational but also statistical implications as different

parametrizations are associated with different factorized posterior approx-

imations. Here, we examine the use of partially noncentered parametriza-

tions in the context of VB for generalized linear mixed models (GLMMs).

First, we show how to implement an algorithm developed recently in ma-

chine learning called nonconjugate variational message passing (Knowles

and Minka, 2011) for fitting GLMMs. Second, we show that the partially

noncentered parametrization is able to adapt to the quantity of informa-

tion in the data so that it is not necessary to make a choice in advance

between centering and noncentering, with the data determining automati-

cally a parametrization close to optimal. Third, we show that that in ad-

dition to accelerating convergence, partial noncentering is a good strategy

statistically for VB in terms of producing more accurate approximations

to the posterior than either centering or noncentering. Finally, we demon-

strate how the variational lower bound, which is produced as part of the

computation, can be useful for model selection. Note that the terms partial

noncentering and partially noncentered introduced in this chapter do not

have the same meaning as the term partial centering used in Chapter 3 and

should not be confused.
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4.1. Background and motivation

This chapter is organized as follows. Section 4.1 provides some back-

ground and motivation for considering partial noncentering in the VB con-

text. Section 4.2 specifies the GLMM and priors used. Section 4.3 describes

a partially noncentered parametrization for GLMMs. Section 4.4 outlines

the nonconjugate variational message passing algorithm for fitting GLMMs.

Section 4.5 discusses briefly the use of the variational lower bound for model

selection. Section 4.6 considers examples including real and simulated data

and Section 4.7 concludes.

The results presented in this chapter have been published in Tan and

Nott (2013b).

4.1 Background and motivation

GLMMs extend generalized linear models by the inclusion of random ef-

fects to account for correlation of observations in grouped data and are

of wide applicability. Estimation of GLMMs using maximum likelihood is

challenging as the integral over random effects is intractable and meth-

ods involving numerical quadrature or MCMC to approximate these in-

tegrals are computationally intensive. Various approximate methods such

as penalized quasi-likelihood (Breslow et al., 1993), Laplace approxima-

tion and its extension (Raudenbush et al., 2000) and Gaussian variational

approximation (Ormerod and Wand, 2012) have been developed. Fong et

al. (2010) considered a Bayesian approach using integrated nested Laplace

approximations. Stochastic approximation has also been used in conjunc-

tion with MCMC (Zhu et al., 2002) and the EM algorithm (Jank, 2006)

to fit GLMMs. We demonstrate how to fit GLMMs using nonconjugate

variational message passing, focusing on Poisson and logistic mixed models

and their applications in longitudinal data analysis. A brief review of VB

methods and variational message passing is given in Section 1.1.

The convergence of MCMC algorithms depends greatly on the choice

of parametrization and simple reparametrizations can often give improved

convergence. The literature on parametrization of hierarchical models in-

cluding partial noncentering techniques for accelerating MCMC algorithms

is inspired by earlier similar work for the EM algorithm (see, e.g. Meng and

van Dyk, 1997; Liu and Wu, 1999). Gelfand et al. (1995, 1996) proposed hi-

erarchical centering for normal linear mixed models and GLMMs to improve

the slow mixing in MCMC algorithms due to high correlations between

model parameters. Papaspiliopoulos et al. (2003, 2007) demonstrated that

centering and noncentering play complementary roles in boosting MCMC
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efficiency and neither are uniformly effective. They considered the partially

noncentered parametrization which is data dependent and lies on the con-

tinuum between the centered and noncentered parametrizations. Extending

this idea, Christensen et al. (2006) devised reparametrization techniques

to improve performance for Hastings-within-Gibbs algorithms for spatial

GLMMs. Yu and Meng (2011) introduced a strategy for boosting MCMC

efficiency via interweaving the centered and noncentered parametrizations

to reduce dependence between draws. Parameter-expanded VB methods

were proposed by Qi and Jaakkola (2006) to reduce coupling in updates

and speed up VB.

The idea of partial noncentering is to introduce a tuning parameter

via reparametrization of the model and then seek its optimal value for

fastest convergence. For the normal hierarchical model, Papaspiliopoulos

et al. (2003) showed that the partially noncentered parametrization has

convergence properties superior to that of the centered and noncentered

parametrizations for the Gibbs sampler. In Section 3.6, we have shown that

the rate of convergence of an algorithm based on VB is equal to that of

the corresponding Gibbs sampler when the target distribution is Gaussian.

This implies that partial noncentering will similarly outperform centering

and noncentering in the context of VB for the normal hierarchical model

and provides motivation to consider partial noncentering in the VB context.

We illustrate this idea with the following example.

4.1.1 Motivating example: linear mixed model

Consider the linear mixed model

yi = Xiβ +Xiui + εi, εi ∼ N(0, σ2I), i = 1, . . . , n, (4.1)

where yi is a vector of length ni, β is a vector of length r of fixed effects,

Xi is a ni × r matrix of covariates and ui is a vector of length r of random

effects independently distributed as N(0, D). For simplicity, we specify a

constant prior on β and assume σ2 and D are known. Let

αi = β + ui and α̃i = αi −Wiβ, i = 1, . . . , n,

where Wi is an r × r tuning matrix to be specified. Wi = 0 corresponds to

the centered and Wi = I to the noncentered parametrization. We have

yi = XiWiβ +Xiα̃i + εi and α̃i ∼ N ((I −Wi)β,D)
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4.1. Background and motivation

for each i = 1, . . . , n. This is the partially noncentered parametrization and

the set of unknown parameters is θ = {β, α̃} where α̃ = [α̃T1 , . . . , α̃
T
n ]T .

Let y = [y1, . . . , yn]T denote the observed data. Of interest is the poste-

rior distribution of θ, p(θ|y). Suppose we use VB and approximate p(θ|y)

with q(θ) = q(β)q(α̃). From (1.4), the optimal densities can be derived to

be q(β) = N(µqβ,Σ
q
β) and q(α̃) =

∏n
i=1 q(α̃i) where q(α̃i) = N(µqα̃i ,Σ

q
α̃i

).

The variational parameters µqβ, Σq
β and µqα̃i , Σq

α̃i
, i = 1, . . . , n, are inter-

dependent and can be computed using the iterative scheme in Algorithm

6.

Algorithm 6: VB for linear mixed model

Initialize µqα̃i and Σq
α̃i

for i = 1, . . . , n.

Cycle:

1. • Σq
β ←

[∑n
i=1

{
(I −Wi)

TD−1(I −Wi) + 1
σ2W

T
i X

T
i XiWi

}]−1
,

• µqβ ← Σq
β

n∑
i=1

[
1
σ2W

T
i X

T
i yi + {D−1(I −Wi)− 1

σ2X
T
i XiWi}Tµqα̃i

]
.

2. For i = 1, . . . , n,

• Σq
α̃i
←
(
D−1 + 1

σ2X
T
i Xi

)−1
,

• µqα̃i ← Σq
α̃i

[
1
σ2X

T
i yi + {D−1(I −Wi)− 1

σ2X
T
i XiWi}µqβ

]
.

until convergence.

Observe that Algorithm 6 converges in one iteration if D−1(I −Wi) =
1
σ2X

T
i XiWi for each i, that is, if

Wi = ( 1
σ2X

T
i Xi +D−1)−1D−1, for i = 1, . . . , n. (4.2)

For this specification of the tuning parameters, partial noncentering gives

more rapid convergence than centering or noncentering. Moreover, it can

be shown that the true posteriors are recovered in this partially noncen-

tered parametrization so that a better fit is achieved than in the centered

or noncentered parametrizations. This example suggests that with careful

tuning of Wi, i = 1, . . . , n, the partially noncentered parametrization can

potentially outperform the centered and noncentered parametrizations in

the VB context.
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4.2 Generalized linear mixed models

Consider clustered data where yij denotes the jth response from cluster i,

i = 1, . . . , n, j = 1, . . . , ni. Conditional on the r-dimensional random effects

ui drawn independently from N(0, D), yij is independently distributed from

some exponential family distribution with density

f(yij|ui) = exp

{
yijζij − b(ζij)

a(ϕ)
+ c(yij, ϕ)

}
, (4.3)

where ζij is the canonical parameter, ϕ is the dispersion parameter, and

a(·), b(·) and c(·) are functions specific to the family. The conditional mean

of yij, µij = E(yij|ui), is assumed to depend on the fixed and random effects

through the linear predictor

ηij = XR
ij

T
βR +XG

ij

T
βG +XR

ij

T
ui,

with g(µij) = ηij for some known link function, g(·). Here, XR
ij and Xij =[

XR
ij
T
, XG

ij
T
]T

are r×1 and p×1 vectors of covariates and β =
[
βR

T
, βG

T
]T

is a p × 1 vector of fixed effects. We have considered the above break-

down for the linear predictor to allow for centering (see Zhao et al., 2006).

For the ith cluster, let yi = [yi1, . . . , yini ]
T , XR

i = [XR
i1, . . . , X

R
ini

]T , XG
i =

[XG
i1, . . . , X

G
ini

]T , Xi = [Xi1, . . . , Xini ]
T and ηi = [ηi1, . . . , ηini ]

T . We assume

that the first column of XR
i is 1ni if XR

i is not a zero matrix.

We focus on responses from the Bernoulli and Poisson families. If yij ∼
Bernoulli(µij), then b(x) = log{1 + exp(x)}, c(x) = 0 and logit(µij) = ηij.

For Poisson responses, we allow for an offset logEij. If yij ∼ Poisson(µij),

then b(x) = exp(x), c(x) = − log(x!) and log µij = logEij + ηij. For

Bayesian inference, we specify prior distributions on the fixed effects β

and random effects covariance matrix D. The dispersion parameter is one

for responses from the Bernoulli and Poisson families so we do not consider

a prior for ϕ. We assume a diffuse prior, N(0,Σβ), for β and an indepen-

dent inverse Wishart prior, IW (ν, S), for D. Following the suggestion by

Kass and Natarajan (2006), we set ν = r and let the scale matrix S be

determined from first-stage data variability. In particular, S = rR̂ where

R̂ = c

(
1

n

n∑
i=1

XR
i

T
Mi(β̂)XR

i

)−1

, (4.4)

Mi(β̂) denotes the ni× ni diagonal generalized linear model weight matrix

70
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with diagonal elements [ϕv(µ̂ij) g
′(µ̂ij)

2]−1, v(·) is the variance function of

f(.) in (4.3) and g(·) is the link function. Here, µ̂ij = g−1(XT
ij β̂ + XR

ij
T
ûi)

where ûi is set as 0 for all i and β̂ is an estimate of the regression coefficients

from the generalized linear model obtained by pooling all data and setting

ui = 0 for all i. The value of c is an inflation factor representing the amount

by which within-cluster variability should be increased in determining R̂.

We used c = 1 for all examples in Chapters 4 and 5.

4.3 Partially noncentered parametrizations for gen-

eralized linear mixed models

We introduce the following partially noncentered parametrization for the

GLMM. The linear predictor is ηi = XR
i β

R + XG
i β

G + XR
i ui for each i =

1, . . . , n. Let

XG
i β

G = XG1
i βG1 +XG2

i βG2

= 1ni x
G1
i

T
βG1 +XG2

i βG2 ,

where βG1 is a vector of length g1 consisting of all parameters corresponding

to subject specific covariates (that is, the rows of XG1
i are all the same and

equal to the vector xG1
i say). Recall that the first column of XR

i is 1ni if

XR
i is not a zero matrix. We have

ηi = XR
i (Ciβ

RG1 + ui) +XG2
i βG2

where Ci =

[
Ir

xG1
i

T

0

]
and βRG1 =

[
βR

βG1

]
.

Let αi = Ciβ
RG1 +ui and α̃i = αi−WiCiβ

RG1 where Wi is an r×r matrix to

be specified. The proportion of Ciβ
RG1 subtracted from each αi is allowed

to vary with i as in Papaspiliopoulos et al. (2003) to reflect the varying

informativity of each response yi about the underlying αi. Wi = 0 corre-

sponds to the centered and Wi = I to the noncentered parametrization.

Finally,

ηi = XR
i (α̃i +WiCiβ

RG1) +XG2
i βG2

= Viβ +XR
i α̃i, (4.5)

where Vi = [XR
i WiCi XG2

i ]. Let W̃i =
[
(I −Wi)Ci 0r×(p−r−g1)

]
for i =

1, . . . , n. We then have α̃i ∼ N(W̃iβ, D). We refer to (4.5) as the partially
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p( D|ν, S )
S

ν

p( β
  
| Σβ 

)

p(αi | β, D )~p( yi | β, αi )
~

βΣβ

D
i = 1, ..., n

yi αi
~

Figure 4.1: Factor graph for p(y, θ) in (4.6). Filled rectangles denote factors
and circles denote variables (shaded for observed variables). Smaller filled
circles denote constants or hyperparameters. The box represents a plate
which contains variables and factors to be replicated. Number of repetitions
is indicated in lower right corner.

noncentered parametrization. Let α̃ = [α̃T1 , . . . , α̃
T
n ]T and θ = {β,D, α̃}

denote the set of unknown parameters in the GLMM. We have

p(y, θ) =

{
n∏
i=1

p(yi|β, α̃i)p(α̃i|β,D)

}
p(β|Σβ)p(D|ν, S). (4.6)

Figure 4.1 shows the factor graph for p(y, θ) where there is a node (circle)

for every variable, which is shaded in the case of observed variables and a

node (filled rectangle) for each factor in the joint distribution. Constants or

hyperparameters are denoted with smaller filled circles. Each factor node

is connected by undirected links to all of the variable nodes on which that

factor depends (see Bishop, 2006). Next, we consider specification of the

tuning parameter Wi, referring to the linear mixed model in Section 4.1.1

which is a special case of the GLMM in (4.3) with an identity link.

4.3.1 Specification of tuning parameters

It is interesting to note that for the linear mixed model in (4.1), the expres-

sion for Wi leading to optimal performance in VB and the Gibbs sampling

algorithm is exactly the same (see Papaspiliopoulos et al., 2003). Gelfand et

al. (1995) also noted the importance of Wi in assessing convergence prop-

erties of the centered parametrization. They showed that |Wi| < 1 for all

i and |Wi| is close to zero (centering is more efficient) when |D| is large.

On the other hand, |Wi| is close to 1 (noncentering works better) when

the error variance is large. Outside the Gaussian context, Papaspiliopoulos

et al. (2003) considered partial noncentering for the spatial GLMM and

specified the tuning parameters by using a quadratic expansion of the log-

likelihood to obtain an indication of the information present in yi. If we let
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` = log p(yi|β, αi) denote the log-likelihood and If = − ∂2`
∂αi∂αTi

, then Wi in

(4.2) can be expressed as

Wi =
(
If +D−1

)−1
D−1. (4.7)

We use (4.7) to extend partially noncentered parametrizations to GLMMs

and consider the specification of Wi for responses from the Bernoulli and

Poisson families.

Recall that the linear predictor ηi can be expressed as XR
i αi +XG2

i βG2 .

Let Ei = [Ei1, . . . , Eini ]
T . For Poisson responses with the log link function,

we have

` = yTi (logEi + ηi)− ET
i exp(ηi)− 1Tni log(yi!) (4.8)

and If =

ni∑
j=1

Eij exp(ηij)X
R
ijX

R
ij

T ≈
ni∑
j=1

yijX
R
ijX

R
ij

T

if we approximate the conditional mean µij with the response. For Bernoulli

responses with the logit link function, we have

` = yTi ηi − 1Tni log {1ni + exp(ηi)} (4.9)

and If =

ni∑
j=1

exp(ηij)

{1 + exp(ηij)}2
XR
ijX

R
ij

T
.

The specification of Wi depends on the random effects covariance D and for

Bernoulli responses, on the linear predictor ηi as well. Later in Algorithm

8, we initialize Wi by considering ηi = Xiβ +XR
i ui and using estimates of

D, β and ui from penalized quasi-likelihood. Subsequently, we can either

keep Wi as fixed or update them by replacing D with Sq

νq−r−1
, assuming the

variational posterior of D is IW (νq, Sq) and ηi with Viµ
q
β + XR

i µ
q
α̃i

, where

µqβ and µqα̃i are the variational posterior means of β and α̃i respectively.

This can be done at the beginning of each cycle after new estimates of µqβ,

µqα̃i , ν
q and Sq are obtained (see Algorithm 8, step 1).

4.4 Variational inference for generalized linear mixed

models

In this section, we describe how the nonconjugate variational message pass-

ing algorithm (Knowles and Minka, 2011) can be used to fit GLMMs. In

VB, the posterior distribution p(θ|y) is approximated by a q(θ) which is
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assumed to be factorized as
∏m

i=1 qi(θi) for some partition {θ1, . . . , θm} of

θ. For conjugate-exponential models, the optimal densities qi will have the

same form as the prior so that it suffices to update the parameters of qi, such

as in Algorithm 6. Variational message passing (Winn and Bishop, 2005)

is an algorithm which allows VB to be applied to conjugate-exponential

models without having to derive application-specific updates. In the case

of GLMMs where the responses are from the Bernoulli or Poisson families,

the factor p(yi|β, α̃i) of p(y, θ) in (4.6) is nonconjugate with respect to the

prior distributions over β and α̃i for each i = 1, . . . , n. Therefore, if we ap-

ply VB and assume say q(θ) = q(β)q(D)
∏n

i=1 q(α̃i), the optimal densities

for q(β) and q(α̃i) will not belong to recognizable density families.

In nonconjugate variational message passing, besides assuming that q(θ)

must factorize into
∏m

i=1 qi(θi) for some partition {θ1, . . . , θm} of θ, we im-

pose an additional restriction that each qi must belong to some exponential

family. In this way, we only have to find the parameters of each qi that

maximizes the variational lower bound L in (1.2). Suppose each qi can be

written in the form

qi(θi) = exp{λTi ti(θi)− hi(λi)},

where λi is the vector of natural parameters and ti(·) are the sufficient

statistics. We wish to maximize L with respect to the variational param-

eters λ1, . . . , λm, which are also natural parameters of q1(θ1), . . . , qm(θm)

respectively. In the following, we show that nonconjugate variational mes-

sage passing can be interpreted as fixed-point iterations where updates are

obtained from the condition that the gradient of L with respect to each λi

is zero when L is maximized.

From (1.2), the gradient of L with respect to λi is

∂L
∂λi

=
∂

∂λi
Eq{log p(y, θ)} − ∂

∂λi
Eq{log q(θ)}. (4.10)

Consider the first term in (4.10). Suppose p(y, θ) =
∏

a fa(y, θ). We have

Eq{log p(y, θ)} =
∑

a Sa where Sa = Eq{log fa(y, θ)}. Note that each Sa

is a function of the natural parameters λ1, . . . , λm. Since we have assumed

that θi is independent of all θj where j 6= i in the variational approximation

q, the only terms in
∑

a Sa which depend on λi are the factors fa connected
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to θi in the factor graph of p(y, θ). Therefore,

∂

∂λi
Eq{log p(y, θ)} =

∑
a∈N(θi)

∂Sa
∂λi

, (4.11)

where the summation is over all factors in N(θi), the neighbourhood of θi

in the factor graph. For the second term in (4.10), we have Eq{log q(θ)} =∑m
l=1 Eq{log ql(θl)} where the only term in the sum that depends on λi is

the ith term. Hence,

∂

∂λi
Eq{log q(θ)} =

∂

∂λi

{
λTi
∂hi(λi)

∂λi
− hi(λi)

}
= Vi(λi)λi. (4.12)

Here, we have used the fact that Eq{ti(θi)} = ∂hi(λi)
∂λi

and Vi(λi) = ∂2hi(λi)

∂λi∂λTi

denotes the variance-covariance matrix of t(θi). Note that Vi(λi) is symmet-

ric positive semi-definite. Putting (4.11) and (4.12) together, the gradient

of the lower bound is

∂L
∂λi

=
∑

a∈N(θi)

∂Sa
∂λi
− Vi(λi)λi (4.13)

and is zero when λi = Vi(λi)−1
∑

a∈N(θi)
∂Sa
∂λi

, provided Vi(λi) is invertible.

This condition is used as a fixed-point iteration to obtain updates to λi in

nonconjugate variational message passing (Algorithm 7).

Algorithm 7: Nonconjugate variational message passing

Initialize λi for i = 1, . . . ,m.

Cycle:

For i = 1, . . . ,m,

λi ← Vi (λi)−1
∑

a∈N(θi)

∂Sa
∂λi

(4.14)

until convergence.

The update in (4.14) can be simplified when the factor fa is conjugate

to qi(θi), that is, fa has the same functional form as qi(θi) with respect to

θi. Let θ−i = (θ1, . . . , θi−1, θi+1, . . . , θm). Suppose

fa(y, θ) = exp{ga(y, θ−i)T ti(θi)− ha(y, θ−i)}.

Then ∂Sa
∂λi

= Vi(λi)Eq{ga(y, θ−i)}, where Eq{ga(y, θ−i)} does not depend on
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λi. When every factor in the neighbourhood of θi is conjugate to qi(θi),

∂L
∂λi

= Vi(λi)
[∑

a∈N(θi)
Eq{ga(y, θ−i)} − λi

]
(4.15)

and (4.14) reduces to

λi ←
∑

a∈N(θi)

Eq{ga(y, θ−i)}. (4.16)

These are the updates in variational message passing. Nonconjugate vari-

ational message passing thus reduces to variational message passing for

conjugate factors (see also Knowles and Minka, 2011). Unlike variational

message passing however, the Kullback-Leibler divergence is not guaran-

teed to decrease at each step and sometimes convergence problems may

be encountered. Knowles and Minka (2011) suggested using damping to

fix convergence problems. We did not encounter any convergence issues for

the examples in Section 4.6. Moreover, whenever Algorithm 7 converges, it

will be to a local maximum of the lower bound as the algorithm becomes

highly unstable near any local minimum (Knowles and Minka, 2011).

4.4.1 Updates for multivariate Gaussian distribution

While the updates in Algorithm 7 are in terms of the natural parameters λi,

it might be more convenient to express ∂Sa
∂λi

in terms of the mean and covari-

ance of qi when qi is Gaussian. Knowles and Minka (2011) have considered

the univariate case and Wand (2013) derived fully simplified updates for

the multivariate case. Here, we give only a brief outline of the derivation

of the multivariate Gaussian updates. Magnus and Neudecker (1988) is a

good reference for the matrix differential calculus techniques involved in

the derivation.

Suppose qi(θi) = N(µqθi ,Σ
q
θi

) where θi is a vector of length d. We can

write qi(θi) as

exp

{
λTi

[
vech(θiθ

T
i )

θi

]
− hi(λi)

}
where λi =

[
−1

2
DT
d vec(Σq

θi

−1)

Σq
θi

−1µqθi

]

and hi(λi) = 1
2
µqθi

TΣq
θi

−1µqθi + 1
2

log |Σq
θi
| + d

2
log(2π). The matrix Dd is a

unique d2 × d
2
(d + 1) matrix that transforms vech(A) into vec(A) for any

d × d symmetric square matrix A, that is, Ddvech(A) = vec(A). Let D+
d

denote the Moore-Penrose inverse of Dd. If we let λi1 = −1
2
DT
d vec(Σq

θi

−1)

76



4.4. Variational inference

and λi2 = Σq
θi

−1µqθi ,
∂Sa
∂λi

can be expressed as

[
∂Sa
∂λi1
∂Sa
∂λi2

]
=

∂vec(Σqθi
)

∂λi1

∂µqθi
∂λi1

∂vec(Σqθi
)

∂λi2

∂µqθi
∂λi2

 ∂Sa
∂vec(Σqθi

)

∂Sa
∂µqθi

 = U(λi)

 ∂Sa
∂vec(Σqθi

)

∂Sa
∂µqθi

 ,
where

U(λi) =

[
2D+

d (Σq
θi
⊗ Σq

θi
) 2D+

d (µqθi ⊗ Σq
θi

)

0 Σq
θi

]
.

Moreover, Vi(λi) = ∂2hi(λi)

∂λi∂λTi
can be derived to be

[
2D+

d (µqθiµ
q
θi

T ⊗ Σq
θi

+ Σq
θi
⊗ µqθiµ

q
θi

T + Σq
θi
⊗ Σq

θi
)D+

d
T

2D+
d (µqθi ⊗ Σq

θi
)

{2D+
d (µqθi ⊗ Σq

θi
)}T Σq

θi

]
.

From (4.14), we have

λi ← Vi(λi)−1U(λi)
∑

a∈N(θi)

 ∂Sa
∂vec(Σqθi

)

∂Sa
∂µqθi


where Vi(λi)−1U(λi) =

[
DT
d 0

−2(µqθi
T ⊗ I)D+

d
T
DT
d I

]
.

Wand (2013) showed that the updates simplify to

Σq
θi
← −1

2

vec−1

 ∑
a∈N(θi)

∂Sa
∂vec(Σq

θi
)

−1

and

µqθi ← µqθi + Σq
θi

∑
a∈N(θi)

∂Sa
∂µqθi

. (4.17)

4.4.2 Nonconjugate variational message passing for generalized

linear mixed models

We consider a variational approximation for the GLMM of the form

q(θ) = q(β)q(D)
n∏
i=1

q(α̃i), (4.18)

where q(β) is N
(
µqβ,Σ

q
β

)
, q(D) is IW (νq, Sq), and q(α̃i) is N

(
µqα̃i ,Σ

q
α̃i

)
, all

belonging to the exponential family. Here, we approximate the posterior dis-

tributions of β and α̃i by Gaussian distributions which are often reasonable

and supported by the asymptotic normality of the posterior. Our results
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also indicate that Gaussian approximation performs reasonably well as an

approximation to the posterior in finite samples. See Gelman et al. (2004)

for further discussion as well as counterexamples. The posterior distribution

for D is approximated by an inverse Wishart which can be shown to be the

optimal density under only the VB assumption q(θ) = q(β)q(D)q(α̃). The

nonconjugate variational message passing algorithm for GLMMs is outlined

in Algorithm 8. For responses from the Poisson family,

Fij = Eijκij and Gi = Ei � κi

for i = 1, . . . , n, j = 1, . . . , ni, where κij is the jth element of κi =

exp{Viµqβ+XR
i µ

q
α̃i

+ 1
2
diag(ViΣ

q
βVi

T+XR
i Σq

α̃i
XR
i
T

)}. For Bernoulli responses,

Fij = B(2)(µqij, σ
q
ij) and Gi = B(1)(µqi , σ

q
i )

for i = 1, . . . , n, j = 1, . . . , ni, where µqij is the jth element of µqi = Viµ
q
β +

XR
i µ

q
α̃i

, σqij is the jth element of σqi =
√

diag(ViΣ
q
βV

T
i +XR

i Σq
α̃i
XR
i
T

) and

B(r)(µ, σ) =

∫ ∞
−∞

b(r)(σx+ µ) 1√
2π

exp(−x2) dx,

where b(x) = log{1 + exp(x)} and b(r)(x) denotes the rth derivative of b(·)
with respect to x. If µ and σ are vectors, say µ =

[
1
2
3

]
and σ =

[
4
5
6

]
, then

B(r)(µ, σ) =

[
B(r)(1,4)

B(r)(2,5)

B(r)(3,6)

]
.

Algorithm 8: Nonconjugate variational message passing for GLMMs

Initialize µqβ, Σq
β, Sq and µqα̃i , Σq

α̃i
, Wi for i = 1, . . . , n. Set νq = n+ ν.

Cycle:

1. Update Wi and hence Vi for i = 1, . . . , n. (Optional)

2. • Σq
β ←

(
Σ−1
β + νq

∑n
i=1 W̃

T
i S

q−1W̃i +
∑n

i=1

∑ni
j=1 FijVijV

T
ij

)−1
,

• µqβ ← µqβ + Σq
β

{
− Σ−1

β µqβ + νq
n∑
i=1

W̃ T
i S

q−1(µqα̃i − W̃iµ
q
β)

+
n∑
i=1

V T
i (yi −Gi)

}
.

3. For i = 1, . . . , n,

• Σq
α̃i
←
(
νqSq−1 +

∑ni
j=1 FijX

R
ijX

R
ij
T )−1

,

78



4.4. Variational inference

• µqα̃i ← µqα̃i + Σq
α̃i

{
− νqSq−1(µqα̃i − W̃iµ

q
β) +XR

i
T

(yi −Gi)
}

.

4. Sq ← S +
∑n

i=1

{
(µqα̃i − W̃iµ

q
β)(µqα̃i − W̃iµ

q
β)T + Σq

α̃i
+ W̃iΣ

q
βW̃

T
i

}
.

until the absolute relative change in the lower bound L is negligible.

The updates in Algorithm 8 can be obtained from the formulae in (4.16)

and (4.17). Consider the parameters νq and Sq of q(D). The factors con-

nected to D are p(D|ν, S) and p(α̃i|β,D), i = 1, . . . , n, which are all con-

jugate factors. Therefore, updates for q(D) can be obtained from (4.16)

or by setting q(D) ∝ exp{E−D log p(y, θ)} as in VB. The shape param-

eter νq can be shown to be deterministic: νq = n + ν and the update

for Sq is given in step 4 of Algorithm 8. The updates of the parame-

ters of q(β) and q(α̃i), i = 1, . . . , n, have to be computed using (4.17)

as p(yi|β, α̃i) is connected to β and α̃i is a nonconjugate factor. The fac-

tors connected to β are p(β|Σβ), p(α̃i|β,D) and p(yi|β, α̃i) for i = 1, . . . , n

(see Figure 4.1). Let Sβ = Eq{log p(β|Σβ)}, Sα̃i = Eq{log p(α̃i|β,D)} and

Syi = Eq{log p(yi|β, α̃i)} for i = 1, . . . , n, where Eq denotes expectation

with respect to q. We have

∑
a∈N(β)

∂Sa
∂vec(Σq

β)
=

∂Sβ
∂vec(Σq

β)
+

n∑
i=1

∂Sα̃i
∂vec(Σq

β)
+

n∑
i=1

∂Syi
∂vec(Σq

β)
,

∑
a∈N(β)

∂Sa
∂µqβ

=
∂Sβ
∂µqβ

+
n∑
i=1

∂Sα̃i
∂µqβ

+
n∑
i=1

∂Syi
∂µqβ

,

and the simplified updates for Σq
β and µqβ are given in step 2 of Algorithm

8. The factors connected to α̃i are p(α̃i|β,D) and p(yi|β, α̃i) for each i =

1, . . . , n (see Figure 4.1). Hence

∑
a∈N(α̃i)

∂Sa
∂vec(Σq

α̃i
)

=
∂Sα̃i

∂vec(Σq
α̃i

)
+

∂Syi
∂vec(Σq

α̃i
)

and

∑
a∈N(α̃i)

∂Sa
∂µqα̃i

=
∂Sα̃i
∂µqα̃i

+
∂Syi
∂µqα̃i

.

The simplified updates for Σq
α̃i

and µqα̃i are given in step 3 of Algorithm 8.

See Appendix C for the evaluation of Sβ, Sα̃i and Syi . All gradients can

be computed using vector differential calculus (see Magnus and Neudecker,

1988).

For responses from the Poisson family, Syi can be evaluated in closed

form. However, Syi cannot be evaluated analytically for Bernoulli responses.

Knowles and Minka (2011) discussed several alternatives in handling this
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integral. One could construct a bound on log(1+ex) such as the “quadratic”

bound (Jaakkola and Jordan, 2000) or the “tilted” bound (Saul and Jordan,

1998). We observed a negative bias in the estimates for the random effects

variances when using the “tilted bound” in Algorithm 8. This negative bias

decreases as the cluster size increases (see Rijmen and Vomlel, 2008). Hence,

we use quadrature to compute the expectation and gradients. Following

Ormerod and Wand (2012), we reduce all high-dimensional integrals to

univariate ones and evaluate these efficiently using adaptive Gauss-Hermite

quadrature (Liu and Pierce, 1994). The details are given in Appendix D.

While the updates in Algorithm 8 can be simplified if Wi = I (noncen-

tered) or 0 (centered) and are more complex in the partially noncentered

case, the reduction in efficiency is minimal. Moreover, with a good initial-

ization, it is feasible to keep Wi fixed throughout the course of running

Algorithm 8 so that no additional computation time is used in updating

Wi. We use the fit from penalized quasi-likelihood implemented via the

function glmmPQL() in the R package MASS (Venables and Ripley, 2002)

to initialize Algorithm 8. In our experiments, the lower bound computed at

the end of each cycle of updates is usually on an increasing trend although

there might be some instability at the beginning. In cases where the al-

gorithm does not converge, we found that changing the initialization can

help to alleviate the situation. Although the lower bound is not guaranteed

to increase at the end of each cycle, we continue to use it as a means of

monitoring convergence and Algorithm 8 is terminated when the absolute

relative change in the lower bound is less than 10−6. The lower bounds for

the logistic and Poisson GLMMs are presented in Appendix C.

4.5 Model selection

At the point of convergence of Algorithm 8, the lower bound on the log

marginal likelihood, log p(y), is maximized. This variational lower bound

is often tight and can be useful for model selection. In Section 4.6.5, we

demonstrate how the variational lower bound, a by-product of Algorithm

8, can be used in place of the log marginal likelihood to obtain approximate

posterior model probabilities, assuming all models considered are equally

probable. See Section 1.1.3 for a brief discussion on the role of marginal

likelihood in Bayesian model selection.

We note that standard model selection criteria such as AIC or BIC are

difficult to apply to GLMMs as it is not straightforward to determine the

degrees of freedom of a GLMM. Yu and Yau (2012) developed a condi-
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tional Akaike information criterion for GLMMs which takes into account

estimation uncertainty in variance component parameters. Overstall and

Forster (2010) considered a default strategy for Bayesian model selection

addressing issues of prior specification and computation. See also Cai and

Dunson (2008) for a review of variable selection methods for GLMMs.

4.6 Examples

We investigate the performance of Algorithm 8 using different parametriza-

tions by considering a simulation study and some real data sets. When using

partial noncentering, we can either initialize the tuning parameters, Wi for

i = 1, . . . , n, and keep them fixed or update them at the beginning of each

cycle (see Algorithm 8, step 1). Such updates are particularly useful when

a good initialization is lacking. We present results for both cases. There

may not be significant improvement in updating Wi in the examples below

as the initialization using penalized quasi-likelihood is already good.

We assess the performance of Algorithm 8 using different parametriza-

tions by using MCMC as a “gold standard”. Fitting via MCMC was per-

formed in WinBUGS (Lunn et al., 2000) through R by using R2WinBUGS

(Sturtz et al., 2005) as an interface. WinBUGS automatically implements

a Markov chain simulation for the posterior distribution after the user

specifies a model and starting values (see, e.g. Gelman et al., 2004). We

used the centered parametrization when specifying the model in WinBUGS

as this produced better mixing than the noncentered parametrization for

most of the examples considered (see also Brown and Zhou, 2010). The

MCMC algorithm was initialized similarly using the fit from penalized

quasi-likelihood. In each case, three chains were run simultaneously to as-

sess convergence, each with 50000 iterations, and the first 5000 iterations

were discarded in each chain as burn-in. A thinning factor of 10 was applied

to reduce dependence between draws. The posterior means and standard

deviations reported were based on the remaining 13500 iterations. The

computation times reported for MCMC are the times taken for updating

in WinBUGS. We used the same priors for MCMC and Algorithm 8. For

the fixed effects, we used a N(0, 1000I) prior. All code was written in the R

language and run on a dual processor Windows PC 3.30 GHz workstation.
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4.6.1 Simulated data

In this simulation study, we consider the Poisson random intercept model

yij|ui ∼ Poisson (exp(β0 + β1xij + ui))

and the logistic random intercept model

yij|ui ∼ Bernoulli

(
exp(β0 + β1xij + ui)

1 + exp(β0 + β1xij + ui)

)
,

where ui ∼ N(0, σ2). For the Poisson random intercept model, we set xij =

j − 1 for i = 1, . . . , 100, j = 1, 2, and used β0 = β1 = −0.5, σ = 0.1.

For the logistic random intercept model, we set xij = j
8

for i = 1, . . . , 50,

j = 1, . . . , 8, and used β0 = 0, β1 = 5, σ =
√

1.5. Similar settings have been

considered by Ormerod and Wand (2012). For each model, 100 data sets

were generated. No convergence issues were encountered for these simulated

data but experience with other simulated data sets (not shown) indicate

that problems may arise when the covariance matrix of the fixed effects

estimated from penalized quasi-likelihood is nearly singular or when the

standard deviation of the random effects are very close to zero. In such

cases, we can use alternative means of initialization such as estimates from

the generalized linear model obtained by setting the random effects as zero.

The expression in (4.4) can also serve as a prior guess for D (see Kass and

Natarajan, 2006). Table 4.1 reports the estimates from penalized quasi-

likelihood and the posterior means and standard deviations estimated by

Algorithm 8 (using different parametrizations) and MCMC. Results are

averaged over the 100 sets of simulated data. We have also included root

mean squared errors computed as
√

1
100

∑100
l=1(ϑ̂l − ϑ0

l )
2 for an estimate ϑ̂l

from the lth simulated data set obtained from penalized quasi-likelihood or

Algorithm 8, where ϑ0
l is the corresponding estimate from MCMC regarded

as the “gold standard”.

For the Poisson model, the posterior means of the fixed effects and ran-

dom effects estimated using the centered and noncentered parametrizations

are quite close and also close to that of MCMC. However, the posterior

standard deviations of the fixed effects are underestimated in the centered

parametrization and the noncentered parametrization does better. The av-

erage time to convergence was shorter with noncentering and a higher lower

bound was attained on average. We observed that the partially noncentered

parametrization where tuning parameters were not updated took on aver-
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PQL NCP CP
PNCP: Wi MCMC

fixed updated

Poisson

β0 −0.54 −0.63 −0.63 −0.63 −0.63 −0.64

(0.11) (0.01) (0.01) (0.01) (0.01)

sd(β0) 0.13 0.13 0.05 0.13 0.13 0.15

(0.02) (0.02) (0.10) (0.02) (0.02)

β1 −0.48 −0.49 −0.50 −0.49 −0.49 −0.48

(0.01) (<.005) (0.01) (<.005) (<.005)

sd(β1) 0.19 0.21 0.16 0.20 0.19 0.21

(0.03) (<.005) (0.05) (0.01) (0.02)

σ 0.27 0.48 0.50 0.49 0.49 0.50

(0.35) (0.02) (0.01) (0.01) (0.01)

sd(σ) — 0.03 0.04 0.03 0.03 0.11

— (0.08) (0.07) (0.08) (0.08)

Time 0.1 3.6 4.3 3.5 4.0 60.1

L — −196.0 −197.0 −196.0 −196.0 —

Logistic

β0 −0.10 −0.07 −0.07 −0.07 −0.07 −0.05

(0.06) (0.02) (0.02) (0.02) (0.02)

sd(β0) 0.32 0.33 0.17 0.30 0.30 0.38

(0.07) (0.06) (0.21) (0.09) (0.08)

β1 5.02 5.20 5.24 5.23 5.21 5.23

(0.27) (0.04) (0.02) (0.02) (0.04)

sd(β1) 0.63 0.77 0.41 0.50 0.50 0.85

(0.24) (0.09) (0.45) (0.37) (0.36)

σ 1.25 1.18 1.24 1.22 1.22 1.24

(0.16) (0.06) (0.03) (0.03) (0.04)

sd(σ) — 0.12 0.13 0.12 0.12 0.32

— (0.20) (0.20) (0.20) (0.20)

Time 0.2 3.2 3.1 2.9 3.9 146.6

L — −140.4 −141.1 −140.5 −140.5 —

Table 4.1: Results of simulation study showing initialization values from
penalized quasi-likelihood (PQL), posterior means and standard deviations
(sd) estimated by Algorithm 8 (using the noncentered (NCP), centered
(CP) and partially noncentered (PNCP) parametrizations) and MCMC,
computation times (seconds) and variational lower bounds (L), averaged
over 100 sets of simulated data. Values in () are the corresponding root
mean squared errors.
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age the least time to converge and produced a fit closer to that of the

noncentered parametrization but with improvements in the estimation of

the posterior means of the random effects. When the tuning parameters

were updated, the fit was just as good although computation time was

longer. For the logistic model, centering and noncentering have different

merits. While centering produced better estimates of the posterior means,

the posterior standard deviations of the fixed effects were underestimated.

The partially noncentered parametrization tries to adapt between the cen-

tered and noncentered parametrizations, producing better estimates of the

posterior means than noncentering and better estimates of the posterior

standard deviations than centering. When the tuning parameters were up-

dated, the results leaned more towards the noncentered parametrization

and the algorithm took longer to converge. In both cases, Algorithm 8 us-

ing the partially noncentered parametrization was faster than MCMC and

provided better estimates of the fixed effects and random effects than pe-

nalized quasi-likelihood. There are some difficulties, however, in comparing

Algorithm 8 and MCMC in this way as the time taken for Algorithm 8 to

converge depends on the initialization, stopping rule and the rate of con-

vergence also depends on the problem. Similarly, the updating time taken

for MCMC is also problem-dependent and depends on the length of burn-in

and number of sampling iterations. In addition, we observed (in simulated

data sets not shown) that posterior inferences can be sensitive to prior as-

sumptions on the variance components in Poisson models where many of

the counts are close to zero or in binary data where the cluster size is small

(see Browne and Draper, 2006; Roos and Held, 2011).

4.6.2 Epilepsy data

Here we consider the epilepsy data of Thall and Vail (1990) which has been

analyzed by many authors (e.g. Breslow et al., 1993; Ormerod and Wand,

2012). In this clinical trial, 59 epileptics were randomized to a new anti-

epileptic drug, progabide, (Trt=1) or a placebo (Trt=0). Before receiving

treatment, baseline data on the number of epileptic seizures during the

preceding 8-week period were recorded. The logarithm of 1
4

the number of

baseline seizures (Base) and the logarithm of age (Age) were treated as

covariates. Counts of epileptic seizures during the two weeks before each of

four successive clinic visits (Visit, coded as Visit1 = −0.3, Visit2 = −0.1,

Visit3 = 0.1 and Visit4 = 0.3) were recorded. A binary variable (V4=1 for

fourth visit, 0 otherwise) was also considered as a covariate.
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We consider models II and IV from Breslow et al. (1993). Model II is a

Poisson random intercept model where

log µij = β0 + βBaseBasei + βTrtTrti + βBase×TrtBasei × Trti

+ βAgeAgei + βV4V4ij + ui,

for i = 1, . . . , n, j = 1, . . . , 4 and ui ∼ N(0, σ2). Model IV is a Poisson

random intercept and slope model of the form

log µij = β0 + βBaseBasei + βTrtTrti + βBase×TrtBasei × Trti

+ βAgeAgei + βVisitVisitij + u1i + u2iVisitij,

for i = 1, . . . , n, j = 1, . . . , 4 and [ u1iu2i ] ∼ N
(

0,
[
σ2
11 σ12
σ21 σ2

22

])
. As the MCMC

chains for intercept and Age were mixing poorly, we decided to center

the covariate Age. In the analysis that follows, we assume Agei has been

replaced by Agei −mean(Age).

Table 4.2 shows the estimates of the posterior means and standard devi-

ations of the fits from MCMC and Algorithm 8 (using different parametriza-

tions), initialization values from penalized quasi-likelihood and computa-

tion times in seconds taken by different methods. All the variational meth-

ods are faster than MCMC by an order of magnitude which is especially

important in large scale applications. In the noncentered parametrization,

the standard deviations of the fixed effects were underestimated and the

centered parametrization does better in this aspect. The partially noncen-

tered parametrization produced a fit that is closer to that of the centered

parametrization and has improved upon it. In both models, the fits pro-

duced by partial noncentering are very close to that produced by MCMC

and are superior to that of the centered and noncentered parametrizations.

The lower bound attained by partial noncentering is also higher than that

of centering and noncentering, giving a tighter bound on the log marginal

likelihood. It is important to emphasize that the relevant comparison is

of the partially noncentered parametrization to the worst of the centered

and noncentered parametrizations, since in general we do not know if cen-

tering or noncentering is better without running both algorithms. Par-

tial noncentering on the other hand, automatically chooses a near optimal

parametrization. Updating of the tuning parameters helped to improve the

fit produced by partial noncentering. Figure 4.2 shows the marginal poste-

rior distributions for parameters in models II and IV estimated by MCMC
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PQL NCP CP
PNCP: Wi MCMC

fixed updated

Model II

β0 0.31 0.26 0.27 0.27 0.27 0.26

0.26 0.11 0.24 0.26 0.27 0.27

βBase 0.88 0.89 0.88 0.88 0.88 0.89

0.13 0.04 0.13 0.13 0.14 0.14

βTrt −0.91 −0.94 −0.94 −0.94 −0.94 −0.94

0.41 0.15 0.36 0.40 0.41 0.42

βBase×Trt 0.34 0.34 0.34 0.34 0.34 0.34

0.20 0.06 0.19 0.21 0.21 0.21

βAge 0.54 0.50 0.48 0.48 0.48 0.48

0.35 0.12 0.33 0.35 0.36 0.37

βV4 −0.16 −0.16 −0.16 −0.16 −0.16 −0.16

0.08 0.05 0.05 0.05 0.05 0.05

σ 0.44 0.50 0.54 0.53 0.53 0.53

— 0.05 0.05 0.05 0.05 0.06

L — −707.3 −702.0 −701.6 −701.5 —

Time 0.2 1.1 0.4 0.4 0.6 61

Model IV

β0 0.27 0.21 0.21 0.21 0.21 0.21

0.26 0.10 0.24 0.26 0.26 0.27

βBase 0.88 0.89 0.88 0.89 0.89 0.88

0.13 0.04 0.13 0.13 0.13 0.14

βTrt −0.92 −0.94 −0.93 −0.93 −0.93 −0.94

0.41 0.15 0.36 0.40 0.40 0.42

βBase×Trt 0.35 0.34 0.34 0.34 0.34 0.34

0.20 0.06 0.19 0.20 0.21 0.22

βAge 0.54 0.49 0.47 0.47 0.47 0.47

0.35 0.12 0.32 0.35 0.35 0.37

βVisit −0.28 −0.27 −0.27 −0.27 −0.27 −0.27

0.16 0.10 0.10 0.14 0.15 0.17

σ11 0.45 0.50 0.53 0.52 0.53 0.53

— 0.05 0.05 0.05 0.05 0.06

σ22 0.46 0.75 0.77 0.75 0.76 0.76

— 0.07 0.07 0.07 0.07 0.15

L — −701.4 −696.1 −695.3 −695.1 —

Time 0.5 1.5 1.3 1.2 1.4 122

Table 4.2: Epilepsy data. Results for models II and IV showing initial-
ization values from penalized quasi-likelihood (PQL), posterior means and
standard deviations (respectively given by the first and second row of each
variable) estimated by Algorithm 8 (using the noncentered (NCP), centered
(CP) and partially noncentered (PNCP) parametrizations) and MCMC,
computation times (seconds) and variational lower bounds (L).
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Figure 4.2: Epilepsy data. Marginal posterior distributions of parameters in
model II (first two rows) and model IV (last two rows) estimated by MCMC
(solid line) and Algorithm 8 using partially noncentered parametrization
where tuning parameters are updated (dashed line).

(solid line) and Algorithm 8 using the partially noncentered parametriza-

tion where tuning parameters are updated (dashed line). The variational

posterior densities of the fixed effects are very close to those obtained via

MCMC. For the variance components, there is still some underestimation

of the posterior variance.

4.6.3 Toenail data

This data set was obtained from a multicenter study comparing two com-

peting oral antifungal treatments for toenail infection (De Backer et al.,

1998). It contains information for 294 patients to be evaluated at seven

visits. Not all patients attended all seven planned visits and there were

1908 measurements in total. The patients were randomized into two treat-

ment groups, one group receiving 250 mg per day of terbinafine (Trt=1)

and the other group 200 mg per day of itraconazole (Trt=0). Visits were

planned at weeks 0, 4, 8, 12, 24, 36 and 48 but patients did not always

arrive as scheduled and the exact time in months (t) that they did attend

was recorded. The binary response variable (onycholysis) indicates the de-
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PQL NCP CP
PNCP: Wi MCMC

fixed updated

β0 −0.75 −1.41 −1.44 −1.44 −1.44 −1.65

0.25 0.17 0.29 0.35 0.32 0.44

βTrt −0.04 −0.13 −0.13 −0.13 −0.13 −0.17

0.35 0.25 0.41 0.49 0.45 0.60

βt −0.30 −0.38 −0.38 −0.38 −0.38 −0.40

0.03 0.04 0.03 0.03 0.03 0.05

βTrt×Time −0.10 −0.13 −0.13 −0.13 −0.13 −0.14

0.05 0.06 0.04 0.04 0.04 0.07

σ 2.32 3.52 3.56 3.55 3.55 4.10

— 0.15 0.15 0.15 0.15 0.39

L — −664.1 −663.1 −662.7 −662.9 —

Time 2.8 37.9 27.9 26.0 24.1 1072

Table 4.3: Toenail data. Results showing initialization values from penal-
ized quasi-likelihood (PQL), posterior means and standard deviations (re-
spectively given by the first and second row of each variable) estimated by
Algorithm 8 (using the noncentered (NCP), centered (CP) and partially
noncentered (PNCP) parametrizations) and MCMC, computation times
(seconds) and variational lower bounds (L).

gree of separation of the nail plate from the nail-bed (0 if none or mild, 1

if moderate or severe). We consider the following logistic random intercept

model,

logit(µij) = β0 + βTrtTrti + βttij + βTrt×tTrti × tij + ui,

where ui ∼ N(0, σ2) for i = 1, . . . , 294, 1 ≤ j ≤ 7.

Table 4.3 shows the posterior means and standard deviations of the

fits from MCMC and Algorithm 8 (using different parametrizations), ini-

tialization values from penalized quasi-likelihood and computation time in

seconds taken by different methods. Again, the variational methods are

faster than MCMC by an order of magnitude. In this example, centering

produced a better fit than noncentering and partial noncentering produced

a fit closer to that of the centered parametrization but improving it. Partial

noncentering also took less time to converge and attained a lower bound

higher than that of the centered and noncentered parametrizations. Again,

we emphasize that it is not easy to know beforehand which of centering or

noncentering will perform better, and a big advantage of partial noncen-

tering is the way that it automatically chooses a good parametrization. In

this example, updating the tuning parameters did not result in a better
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Figure 4.3: Toenail data. Marginal posterior distributions of parameters
estimated by MCMC (solid line) and Algorithm 8 using partially noncen-
tered parametrization where tuning parameters are not updated (dashed
line).

fit although the time to convergence is reduced. The marginal posterior

distributions estimated by MCMC (solid line) and Algorithm 8 using the

partially noncentered parametrization where tuning parameters were not

updated (dashed line) are shown in Figure 4.3. Compared with the MCMC

fit, there is still some underestimation of the variance of the fixed effects

particularly for the parameters which could not be centered. Although the

partially noncentered parametrization has improved the estimation of ran-

dom effects from the initial penalized quasi-likelihood fit, there is still some

underestimation of the mean and variance of the random effects when com-

pared to the MCMC fit.

4.6.4 Six cities data

In the previous two real data examples, centering performed better than

noncentering and partial noncentering was able to improve on the centering

results. While centering often performs better than noncentering, we use

this example to show that partial noncentering will automatically tend

towards noncentering when noncentering is preferred. We consider the six

cities data in Fitzmaurice and Laird (1993), where the binary response

variable yij indicates the wheezing status (1 if wheezing, 0 if not wheezing)

of the ith child at time-point j, i = 1, . . . , 537, j=1, 2, 3, 4. We use as

covariate the age of the child at time-point j, centered at 9 years (Age)

and consider the following random intercept and slope model

logit(µij) = β0 + βAgeAgei + u1i + u2iAgei

for i = 1, . . . , 537, j = 1, . . . , 4 and [ u1iu2i ] ∼ N
(

0,
[
σ2
11 σ12
σ21 σ2

22

])
. This model

has been considered in Overstall and Forster (2010).

Table 4.4 shows the estimates of the posterior means and standard devi-

ations of the fits from MCMC and Algorithm 8 using different parametriza-
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PQL NCP CP
PNCP: Wi MCMC

fixed updated

β0 −3.12 −3.05 −3.05 −3.05 −3.05 −3.29

0.14 0.09 0.09 0.13 0.13 0.25

βAge −0.24 −0.22 −0.21 −0.22 −0.22 −0.25

0.08 0.07 0.02 0.07 0.07 0.16

σ11 2.52 2.16 2.16 2.16 2.16 2.48

— 0.07 0.07 0.07 0.07 0.24

σ22 1.19 0.55 0.56 0.55 0.55 0.61

— 0.02 0.02 0.02 0.02 0.10

L — −833.2 −834.1 −832.8 −832.6 —

Time 3.8 114.7 125.8 110.6 120.6 1010

Table 4.4: Six cities data. Results showing initialization values from pe-
nalized quasi-likelihood (PQL), posterior means and standard deviations
(respectively given by the first and second row of each variable) estimated
by Algorithm 8 (using the noncentered (NCP), centered (CP) and par-
tially noncentered (PNCP) parametrizations) and MCMC, computation
times (seconds) and variational lower bounds (L).

tions, the values from penalized quai-likelihood used for initialization and

the computation times in seconds taken by different methods. Noncentering

performed better than centering in this case with a shorter time to conver-

gence, higher lower bound and a better estimate of the posterior standard

deviation of βAge. Partial noncentering further improved upon the results

of noncentering with an improved estimate of the posterior standard devi-

ation of β0 and faster convergence. All the variational methods are again

faster than MCMC by an order of magnitude.

4.6.5 Owl data

In this example we illustrate the use of the variational lower bound, a by-

product of Algorithm 8, for model selection. For MCMC, on the other hand,

it is not straightforward in general to get a good estimate of the marginal

likelihood based on the MCMC output. It is also not always obvious how

to apply standard model selection criteria like AIC and BIC to hierarchical

models like GLMMs.

Roulin and Bersier (2007) analyzed the begging behaviour of nestling

barn owls and looked at whether offspring beg for food at different intensi-

ties from the mother than father. They sampled n = 27 nests and counted

the number of calls made by all offspring in the absence of parents. Half of

the nests were given extra prey, and from the other half, prey were removed.
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Measurements took place on two nights, and food treatment was swapped

the second night. The number of measurements at each nest ranged from

4 to 52 with a total of 599. We use as covariates, sex of parent (Sex=1

if male, 0 if female), the time at which a parent arrived with a prey (t),

and food treatment (Trt = 1 if ‘satiated’, 0 if ‘deprived’). The number of

nestlings per nest (broodsize, E) ranged from 1 to 7.

Zuur et al. (2009) modelled the number of calls at nest i for the jth ob-

servation as a Poisson distribution with mean µij and used log transformed

broodsize as an offset with nest as a random effect. The prime aim of their

analysis was to find a sex effect and the largest model they considered was

Model 1: log(µij) = log(Eij) + β0 + βSexSexij + βTrtTrtij + βttij

+ βSex×Trt Sexij × Trtij + βSex×t Sexij × tij + ui,

where log(Eij) is an offset and ui ∼ N(0, σ2) for i = 1, . . . , 27, j = 1, . . . , ni.

At the recommendation of Zuur et al. (2009), we center t to reduce correla-

tion of t with the intercept. Henceforth, we assume tij has been replaced by

tij −mean(t). In the first stage, we consider models 1 to 4 to determine if

the two interaction terms should be retained. Models 2 to 4 are as follows:

Model 2: log(µij) = log(Eij) + β0 + βSexSexij + βTrtTrtij + βttij

+ βSex×Trt Sexij × Trtij + ui,

Model 3: log(µij) = log(Eij) + β0 + βSexSexij + βTrtTrtij + βttij

+ βSex×t Sexij × tij + ui,

Model 4: log(µij) = log(Eij) + β0 + βSexSexij + βTrtTrtij + βttij + ui.

From Table 4.5, the preferred model (with the highest lower bound) is

model 4 where both interaction terms have been dropped from model 1.

Next, we consider models 5 to 7 where the main terms sex, food treat-

ment and arrival time are each dropped in turn,

Model 5: log(µij) = log(Eij) + β0 + βTrtTrtij + βttij + ui,

Model 6: log(µij) = log(Eij) + β0 + βTrtTrtij + βSexSexij + ui,

Model 7: log(µij) = log(Eij) + β0 + βttij + βSexSexij + ui.

Table 4.5 indicates that model 5 is the preferred model where the term sex

of the parent has been dropped from model 4. Now we consider dropping

each of the terms food treatment and arrival time in turn or dropping the

random effects ui,
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NCP CP
PNCP: Wi

fixed updated

First stage:

Model 1 −2544.6(0.2) −2543.7(0.3) −2543.6(0.4) −2543.7(0.6)

Model 2 −2537.6(0.2) −2536.6(0.3) −2536.6(0.4) −2536.6(0.5)

Model 3 −2540.2(0.2) −2539.2(0.3) −2539.2(0.3) −2539.2(0.5)

Model 4 −2533.2(0.2) −2532.1(0.3) −2532.1(0.3) −2532.1(0.4)

Second stage:

Model 5 −2527.0(0.2) −2525.5(0.2) −2525.5(0.2) −2525.4(0.3)

Model 6 −2628.3(0.2) −2627.2(0.3) −2627.1(0.3) −2627.1(0.5)

Model 7 −2664.0(0.2) −2662.9(0.2) −2662.8(0.3) −2662.8(0.4)

Third stage:

Model 8 −2621.5(0.2) −2620.0(0.2) −2620.0(0.2) −2620.0(0.3)

Model 9 −2660.4(0.2) −2658.8(0.2) −2658.8(0.2) −2658.8(0.2)

Model 10 −2689.4(< 0.05)

Final stage:

Model 11 −2448.7 (1.1) −2445.7(0.4) −2445.8(0.3) −2445.6(0.4)

Table 4.5: Owl data. Variational lower bounds for models 1 to 11 and
computation time in brackets for the noncentered (NCP), centered (CP)
and partially noncentered (PNCP) parametrizations.

Model 8: log(µij) = log(Eij) + β0 + βTrtTrtij + ui,

Model 9: log(µij) = log(Eij) + β0 + βttij + ui,

Model 10: log(µij) = log(Eij) + β0 + βTrtTrtij + βttij.

Table 4.5 indicates that none of the main terms food treatment and arrival

time as well as random effects should be dropped from model 5. Finally we

consider adding a random slope for arrival time,

Model 11: log(µij) = log(Eij) + β0 + βTrtTrtij + βttij + u1i + u2itij,

where [ u1iu2i ] ∼ N
(

0,
[
σ2
11 σ12
σ21 σ2

22

])
. From Table 4.5, the optimal model is model

11. This conclusion is similar to that of Zuur et al. (2009) and is the same

regardless of which parametrization was used. It is thus sufficient to con-

sider just the partially noncentered parametrization. The computation time

taken by Algorithm 8 for each model fitting is very short and makes this a

convenient way of carrying out model selection or for narrowing down the

range of likely models. Further model comparisons can be performed using

cross-validation or other approaches.

We present the estimated posterior means and standard deviations for

the optimal model in Table 4.6. The marginal posterior distributions esti-

mated by MCMC (solid line) and Algorithm 8 using partially noncentered
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PQL NCP CP
PNCP: Wi MCMC

fixed updated

β0 0.60 0.53 0.51 0.51 0.51 0.50

0.07 0.02 0.08 0.08 0.09 0.10

βTrt -0.55 -0.57 -0.57 -0.57 -0.57 -0.57

0.08 0.03 0.03 0.03 0.03 0.04

βt -0.13 -0.15 -0.16 -0.16 -0.16 -0.16

0.03 0.01 0.04 0.04 0.04 0.05

σ11 0.24 0.44 0.46 0.45 0.46 0.47

— 0.06 0.06 0.06 0.06 0.09

σ22 0.11 0.22 0.23 0.22 0.23 0.23

— 0.03 0.03 0.03 0.03 0.05

Time 0.4 1.1 0.4 0.3 0.4 255

Table 4.6: Owl data. Results showing initialization values from penalized
quasi-likelihood (PQL), posterior means and standard deviations (respec-
tively given by the first and second row of each variable) estimated by
Algorithm 8 (using the noncentered (NCP), centered (CP) and partially
noncentered (PNCP) parametrizations, and MCMC, computation times
(seconds) and variational lower bounds (L).
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Figure 4.4: Owl data. Marginal posterior distributions for parameters in
model 11 estimated by MCMC (solid line) and Algorithm 8 using partially
noncentered parametrization where tuning parameters are updated (dashed
line).

parametrization where tuning parameters are updated (dashed line) are

shown in Figure 4.4. In this case, centering produced a better fit than non-

centering and partial noncentering produced a fit that is close to that of

centering. Updating the tuning parameters helped to improve the fit of the

partially noncentered parametrization slightly and is closest to the MCMC

fit. From the posterior density plots, there is good estimation of the pos-

terior means by Algorithm 8 using partially noncentered parametrization

with updated tuning parameters but there is still some underestimation of

the posterior variance.
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4.7 Conclusion

In this chapter, we have described a partially noncentered parametrization

for GLMMs and compared the performance of different parametrizations

using an algorithm called nonconjugate variational message passing. Focus-

ing on Poisson and logistic mixed models, we applied our methods to the

analysis of longitudinal data sets. For the logistic model, some parameter

updates were not available in closed form and we used adaptive Gauss-

Hermite quadrature to approximate the intractable integrals efficiently.

Comparing the performance of Algorithm 8 under the partially noncentered

parametrization with that of the centered and noncentered parametriza-

tions, we observed that partial noncentering automatically tends towards

the better of centering and noncentering so that it is not necessary to

choose in advance between the centered and noncentered parametrizations.

In many cases, the partially noncentered parametrization was able to im-

prove upon the fit produced by the better of centering and noncentering to

produce a fit that was closest to that of MCMC. In terms of computation

time, the partially noncentered parametrization can also provide more rapid

convergence when centering or noncentering is particularly slow. Very often,

the lower bound attained by the partially noncentered parametrization is

also higher than that of the centered and noncentered parametrizations giv-

ing a tighter lower bound to the log marginal likelihood. To some degree, the

partially noncentered parametrization also alleviates the issue of underes-

timation of the posterior variance leading to some improvement in the esti-

mation of the posterior variance particularly in the fixed effects which could

be centered. Algorithm 8 under the partially noncentered parametrization

thus offers itself as a fast, deterministic alternative to MCMC methods for

fitting GLMMs with improved estimation compared to the centered and

noncentered parametrizations. We also demonstrate that the variational

lower bound produced as part of the computation in Algorithm 8 can be

useful in model selection.
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Chapter 5

A stochastic variational framework

for fitting and diagnosing generalized

linear mixed models

In Chapter 4, we described a partially noncentered parametrization for

GLMMs and demonstrated how they can be fitted using nonconjugate vari-

ational message passing. Like other batch VB algorithms for models with

observation specific latent variables, the nonconjugate variational message

passing algorithm for GLMMs has to iterate between updating local varia-

tional parameters associated with individual observations and global varia-

tional parameters. For large data sets, this procedure becomes increasingly

inefficient as local variational parameters associated with every unit have to

be updated at every iteration. Generally, batch VB algorithms are also un-

suitable in online settings where data arrive continuously as the algorithm

can never complete one iteration. On the other hand, stochastic gradient

optimization (Robbins and Monro, 1951) uses only a random subset of the

data at each iteration to approximate the true gradient over the whole

data so that computational cost is reduced significantly for large data sets

(Bottou and Cun, 2005; Bottou and Bousquet, 2008). Hoffman et al. (2013)

developed stochastic variational inference for conjugate-exponential family

models by optimizing the VB objective function using stochastic gradient

approximation.

In this chapter, we extend stochastic variational inference for conjugate-

exponential family models to nonconjugate models and present a stochas-

tic version of nonconjugate variational message passing for fitting GLMMs

that is scalable to large data sets. This is achieved by combining updates

in nonconjugate variational message passing with stochastic natural gra-

dient optimization of the variational lower bound. One strong motivation
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for the development of stochastic gradient optimization algorithms is their

efficiency in terms of memory — because they process data in mini-batches,

analysis of data sets which are so large that they cannot fit into memory

can still be contemplated. We continue to use the partially noncentered

parametrization for GLMMs introduced in Section 4.3 and focus on Pois-

son and logistic mixed models and their applications in longitudinal data

analysis.

In addition, we show that diagnostics for prior-likelihood conflict, which

are useful for Bayesian model criticism, can be obtained from nonconjugate

variational message passing automatically, as an alternative to simulation-

based, computationally intensive MCMC methods. Intuitively, the updates

in variational message passing can be separated into “messages” coming

from above and below a node in a hierarchical model and “mixed mes-

sages” indicate conflict. Our “mixed messages” diagnostics can be shown

to approximate existing diagnostics in the statistical literature, namely, the

conflict diagnostics of Marshall and Spiegelhalter (2007).

Finally, we demonstrate that for moderate-sized data sets, convergence

can be accelerated by using the stochastic version of nonconjugate varia-

tional message passing in the initial stage of optimization before switching

to the standard version. Some insights on step size optimization with re-

spect to mini-batch sizes are provided.

This chapter is organized as follows. Section 5.1 provides some back-

ground. A stochastic version of the nonconjugate variational message pass-

ing algorithm is developed in Section 5.2. Section 5.3 describes how varia-

tional message passing facilitates automatic computation of diagnostics for

prior-likelihood conflict. Section 5.4 considers examples including real and

simulated data and Section 5.5 concludes.

The results presented in this chapter are covered in Tan and Nott

(2013c), which has been submitted for publication.

5.1 Background

Recent developments in VB methodology have branched out to stochastic

optimization, making VB a viable approach for handling large data sets.

Hoffman et al. (2010) and Wang et al. (2011) developed online VB algo-

rithms for latent Dirichlet allocation and the hierarchical Dirichlet process

respectively using stochastic natural gradient optimization of the varia-

tional lower bound. Hoffman et al. (2013) generalized these methods to de-

rive stochastic variational inference for conjugate-exponential family mod-
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els and showed that stochastic variational inference converges faster than

batch VB for large data sets. Paisley et al. (2012) proposed a stochastic op-

timization algorithm using control variates that allows direct maximization

of the variational lower bound involving intractable integrals. Similar algo-

rithms were considered by Ji et al. (2010) and Nott et al. (2012). Welling

and Teh (2011) combined stochastic gradient optimization with Langevin

dynamics for Bayesian learning from large data sets and Ahn et al. (2012)

extended this algorithm to stochastic gradient Fisher scoring. Salimans and

Knowles (2012) proposed a stochastic approximation algorithm that does

not require analytic evaluation of integrals, extending the VB approach

to any posterior that is available in closed form up to the proportionality

constant. Hierarchical extensions of the basic approach allow the method

to be made arbitrarily precise.

Model checking is an important part of statistical analyses. In the

Bayesian approach, assumptions are made about the sampling model and

prior, and prior-likelihood conflict arises when the observed data are very

unlikely under the prior model. Evans and Moshonov (2006) discussed how

to assess whether there is prior-data conflict and Scheel et al. (2011) pro-

posed a graphical diagnostic, the local critique plot, for identifying influ-

ential statistical modelling choices at the node level. See also Scheel et al.

(2011) for a review of other methods in Bayesian model criticism. Marshall

and Spiegelhalter (2007) proposed a diagnostic test for identifying diver-

gent units in hierarchical models based on measuring the conflict between

the likelihood of a parameter and its predictive prior given the remain-

ing data. A simulation-based approach was adopted and diagnostic tests

were carried out using MCMC. We show that the approach of Marshall

and Spiegelhalter (2007) can be approximated in the variational message

passing framework.

5.2 Stochastic variational inference for generalized

linear mixed models

In this section, we develop stochastic variational inference for the GLMM

specified in Section 4.2, focusing on Poisson and logistic mixed models

and using the same priors as before. We consider the partially noncentered

parametrization for GLMMs described in Section 4.3, which has been shown

to be able to automatically determine a parametrization close to optimal.

Recall that the set of unknown parameters θ in the GLMM consist of the
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fixed effects β, the random effects covariance D and the partially noncen-

tered random effects α̃i, i = 1, . . . , n. Here, β and D can be regarded as

“global” variables which are common across clusters while α̃i, i = 1, . . . , n,

can be thought of as “local” variables associated only with the individual

units. In Section 4.4, we considered a variational approximation q(θ) to the

joint posterior p(θ|y) of the form

q(θ) = q(β)q(D)
n∏
i=1

q(α̃i),

where q(β) is N
(
µqβ,Σ

q
β

)
, q(D) is IW (νq, Sq), and q(α̃i) is N

(
µqα̃i ,Σ

q
α̃i

)
,

i = 1, . . . , n. In the standard nonconjugate variational message passing

algorithm for GLMMs (Algorithm 8), we iterate between updating the local

variational parameters associated with α̃i for each unit i, i = 1, . . . , n, and

re-estimating the global variational parameters associated with β and D.

This can be inefficient for large data sets and impossible to accomplish for

streaming data or data sets which are too massive to fit into memory.

Let λβ, λD and λα̃i denote the natural parameter vectors of q(β), q(D)

and q(α̃i) respectively for i = 1, . . . , n. We have

λβ =

[
−1

2
DT
p vec(Σq

β
−1)

Σq
β
−1µqβ

]
, λD =

[
−1

2
vec(Sq)

−νq+r+1
2

]
, λα̃i =

[
−1

2
DT
r vec(Σq

α̃i

−1)

Σq
α̃i

−1µqα̃i

]
,

where Dp and Dr are defined in a similar manner as the matrix Dd in Sec-

tion 4.4.1. In the stochastic version of nonconjugate variational message

passing, we propose to randomly select a mini-batch, S, of units, of size

|S| ≥ 1 at each iteration and compute nonconjugate variational message

passing updates for λα̃i , i ∈ S repeatedly until convergence. Using these op-

timized local variational parameters, we then compute unbiased estimates

of the natural gradients of L with respect to λβ and λD and estimate λβ

and λD using stochastic gradient approximation. In other words, we use

stochastic natural gradient ascent to find a setting of the global variational

parameters that maximizes the lower bound, by considering the variational

lower bound as a function of the global variational parameters with the

local parameters optimized as a function of these global parameters. Sim-

ilar approaches have been considered by Hoffman et al. (2010) for latent

Dirichlet allocation, Wang et al. (2011) for the hierarchical Dirichlet pro-

cess and Hoffman et al. (2013) for conjugate-exponential family models in

general.

Next, we motivate and derive expressions of the natural gradient of
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the variational lower bound under the assumptions made in nonconjugate

variational message passing.

5.2.1 Natural gradient of the variational lower bound

The key idea in stochastic variational inference is to optimize L using

stochastic gradient approximation (see Spall, 2003), where the gradients

are computed based on mini-batches of data and represent unbiased esti-

mates of the true gradients over the whole data set. Let us assume that q(θ)

belongs to some parametric family with parameters λ and we write q(θ)

as q(θ|λ). Hoffman et al. (2013) argued that in the optimization of q(θ|λ),

the Euclidean metric might not be the best measure of distance between

different parameter settings of λ. This is because a large change in λ might

not be equivalent with a large change in the Kullback-Leibler divergence

between q(θ|λ) and p(θ|y), which is what we are concerned with. They pro-

posed using the natural gradient of L instead of the ordinary gradient in the

stochastic optimization as the steepest direction of ascent is given by the

natural gradient in a space where the dissimilarity between two probability

distributions is measured in terms of the symmetrized Kullback-Leibler di-

vergence (see Amari, 1998). Honkela et al. (2008) also showed that replacing

the ordinary gradient in the conjugate gradient algorithm with the natural

gradient can speed up variational learning. Therefore, we use the natural

gradient instead of the ordinary gradient in the stochastic optimization.

In nonconjugate variational message passing, we assume that q(θ|λ) is

factorized as
∏m

i=1 qi(θi|λi) for some partition {θ1, . . . , θm} of θ, and each

qi belongs to some exponential family, say,

qi(θi|λi) = exp{λTi ti(θi)− hi(λi)},

where λi is the vector of natural parameters and ti(·) are the sufficient

statistics. Then λ = {λ1, . . . , λm}. Suppose p(y, θ) =
∏

a fa(y, θ) and Sa =

Eq{log fa(y, θ)}, where Eq denotes expectation with respect to q(θ|λ). From

(4.13), the ordinary gradient of L with respect to λi is

∂L
∂λi

=
∑

a∈N(θi)

∂Sa
∂λi
− Vi(λi)λi,

where the summation is over all factors in N(θi), the neighbourhood of θi

in the factor graph of p(y, θ) and Vi(λi) denotes the variance-covariance

matrix of ti(θi). To obtain the natural gradient of L with respect to λi, we
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premultiply ∂L
∂λi

with the inverse of the Fisher information matrix for the

variational posterior qi(θi|λi) (see, e.g. Honkela et al., 2008; Hoffman et al.,

2013). The Fisher information matrix for qi(θi|λi) is given by

Eq

{
∂ log qi(θi|λi)

∂λi

(
∂ log qi(θi|λi)

∂λi

)T}

= Eq

{(
ti(θi)−

∂hi(λi)

∂λi

)(
ti(θi)−

∂hi(λi)

∂λi

)T}
= Vi(λi).

Provided Vi(λi) is invertible, the natural gradient ∇λiL is given by

∇λiL = Vi(λi)−1
∑

a∈N(θi)

∂Sa
∂λi
− λi. (5.1)

Note that the updates in nonconjugate variational message passing can be

obtained by setting the natural gradient as zero.

Suppose each factor fa in the neighbourhood of θi is conjugate to

qi(θi|λi), say,

fa(y, θ) = exp
{
ga(y, θ−i)

T ti(θi)− ha(y, θ−i)
}
,

where θ−i = (θ1, . . . , θi−1, θi+1, . . . , θm). From (4.15), the natural gradient

can be simplified as

∇λiL =
∑

a∈N(θi)

Eq{ga(y, θ−i)} − λi. (5.2)

Note that Eq{ga(y, θ−i)} does not depend on λi.

5.2.2 Stochastic nonconjugate variational message passing

Next, we present unbiased estimates of the natural gradients ∇λβL and

∇λDL obtained from a mini-batch S of randomly selected units. As be-

fore, we let Sβ = Eq{log p(β|Σβ)}, Sα̃i = Eq{log p(α̃i|β,D)} and Syi =

Eq{log p(yi|β, α̃i)} for i = 1, . . . , n. From (5.1), the natural gradient of L
with respect to λβ is

∇λβL = Vβ(λβ)−1

{
∂Sβ
∂λβ

+
n∑
i=1

(
∂Sα̃i
∂λβ

+
∂Syi
∂λβ

)}
− λβ,
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and an unbiased estimate of ∇λβL using the mini-batch S is

∇̂λβL = λ̂β − λβ, (5.3)

where

λ̂β = Vβ(λβ)−1

{
∂Sβ
∂λβ

+
n

|S|
∑
i∈S

(
∂Sα̃i
∂λβ

+
∂Syi
∂λβ

)}
.

For q(D), since the factors in the neighbourhood of D are all conjugate

factors, we have from (5.2),

∇λDL =

[
−1

2
vec(S)

−ν+r+1
2

]
+

n∑
i=1

[
−1

2
Bi

−1
2

]
− λD,

where Bi = vec
[
(µqα̃i−W̃iµ

q
β)(µqα̃i−W̃iµ

q
β)T +Σq

α̃i
+W̃iΣ

q
βW̃

T
i

]
. An unbiased

estimate of ∇λDL using mini-batch S is

∇̂λDL = λ̂D − λD, (5.4)

where

λ̂D =

[
−1

2
vec(S)

−ν+r+1
2

]
+

n

|S|
∑
i∈S

[
−1

2
Bi

−1
2

]
.

When S is the entire data set, λ̂β and λ̂D are the updates of λβ and λD in

the standard nonconjugate variational message passing algorithm.

The stochastic version of nonconjugate variational message passing for

fitting Poisson and logistic mixed models is presented in Algorithm 9. Refer

to Section 4.3 for the definitions of the tuning parameters Wi and W̃i for

i = 1, . . . , n. Note that the definitions of Fij for i = 1, . . . , n, j = 1, . . . , ni,

and Gi for i = 1, . . . , n, given in Section 4.4.2 differs according to whether a

Poisson or logistic mixed model is being fitted. In the case of logistic mixed

models, adaptive Gauss-Hermite quadrature (Liu and Pierce, 1994) is re-

quired for the evaluation of Fij and Gi. More details are given in Appendix

D.

Algorithm 9: Stochastic nonconjugate variational message passing for

GLMMs

Initialize variational parameters µqβ, Σq
β, νq, Sq, µqα̃i , Σq

α̃i
and the tuning

parameters Wi for i = 1, . . . , n.

For t = 0, 1, 2, . . .,

1. Randomly select a subset S of |S| units from the entire data set.
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2. Update local variational parameters µqα̃i and Σq
α̃i

for i ∈ S repeatedly

using the updates in nonconjugate variational message passing:

• Σq
α̃i
←
(
νqSq−1 +

∑ni
j=1 FijX

R
ijX

R
ij
T )−1

,

• µqα̃i ← µqα̃i + Σq
α̃i

{
− νqSq−1(µqα̃i − W̃iµ

q
β) +XR

i
T

(yi −Gi)
}

,

until convergence is reached.

3. Update the global variational parameters µqβ, Σq
β, νq and Sq using

• Σq
β ←

[
at
{

Σ−1
β + n

|S|
∑

i∈S
(
νqW̃ T

i S
q−1W̃i +

∑ni
j=1 FijVijV

T
ij

)}
+

(1− at)Σq
β
−1
]−1

,

• µqβ ← µqβ +atΣ
q
β

[
−Σ−1

β µqβ + n
|S|
∑

i∈S
{
νqW̃ T

i S
q−1(µqα̃i−W̃iµ

q
β)+

V T
i (yi −Gi)

}]
,

• Sq ← (1−at)Sq+at

[
S+ n

|S|
∑

i∈S
{

(µqα̃i−W̃iµ
q
β)(µqα̃i−W̃iµ

q
β)T +

Σq
α̃i

+ W̃iΣ
q
βW̃

T
i

}]
,

• νq ← (1− at)νq + at(ν + n).

The updates in step 2 of Algorithm 9 are from the nonconjugate vari-

ational message passing algorithm for GLMMs (Algorithm 8) while the

stochastic approximation updates in step 3 can be derived from

λ
(t)
β = λ

(t−1)
β + at∇̂λβL|λβ=λ

(t−1)
β

and

λ
(t)
D = λ

(t−1)
D + at∇̂λDL|λD=λ

(t−1)
D

. (5.5)

These stochastic approximation steps were introduced by Robbins and

Monro (1951) for optimizing an objective function, which in our case is

the lower bound L, with local variational parameters optimized as a func-

tion of the global ones. Hoffman et al. (2013) note that the gradient of

this function is the gradient of L with the local parameters fixed at their

optimized values (see Hoffman et al., 2013, equation (39)). The updates in

(5.5) are similar to the update in step 2 of Algorithm 2, where a stochastic

gradient approximation was also used. In this case, however, we are using

the natural gradient of the variational lower bound instead of the usual

gradient. Under certain regularity conditions (see Spall, 2003), the iterates

will converge to a local maximum of the lower bound. In particular, the

gain sequence at, t ≥ 0 should satisfy the conditions in (2.10). See Sec-

tion 2.5.2 for more discussion on the gain sequence at. Here, we consider
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step sizes of the form 1
(t+K)γ

where 0.5 < γ ≤ 1 and K ≥ 0 is a stability

constant that helps to avoid unstable behaviour in the early iterations. In

practice, choices of the step sizes can strongly influence the performance

of the algorithm (Jank, 2006). As ∇̂λβL = λ̂β − λβ and ∇̂λDL = λ̂D − λD
from (5.3) and (5.4) respectively, we have from (5.5),

λ
(t)
β = (1− at)λ(t−1)

β + atλ̂β|λβ=λ
(t−1)
β

and

λ
(t)
D = (1− at)λ(t−1)

D + atλ̂D.

This implies that the t-iterate can be interpreted as a weighted average

of the previous iterate and the nonconjugate variational message passing

update estimated from mini-batch S. In fact, standard nonconjugate vari-

ational message passing can be recovered from Algorithm 9 if the update

for the local parameters in step 2 is performed only once and at = 1 in step

3. This shows that nonconjugate variational message passing is a type of

natural gradient method with step size 1 and other schedules are equivalent

to damping. Previously, Sato (2001) showed that the VB algorithm was a

type of natural gradient method and derived an online VB algorithm with

a model selection mechanism for Gaussian mixture models using stochastic

approximation.

Algorithm 9 is initialized using the fit to the generalized linear model

considered in Section 4.3, obtained by pooling all the data and setting the

random effects as zero. We set µqβ and Σq
β as estimates of the regression

coefficients and their covariances respectively from the generalized linear

model, νq = r, Sq = S, µqα̃i = W̃iµ
q
β and Σq

α̃i
= R̂, where R̂ is as defined

in (4.4). The tuning parameters {Wi} were initialized by setting D = R̂

and ηi = Xiµ
q
β for each i = 1, . . . , n. Kass and Natarajan (2006) gave a

justification of R̂ being a reasonable guess for D in the absence of any

other prior knowledge. Care should be taken in initializing the variational

parameters as the nonconjugate variational message passing updates in

step 2 are not guaranteed to converge. We used the initialization suggested

above in all our examples and did not experience any convergence issues.

The mean parameters of α̃i were used to test for convergence in step 2 and

we stop when
‖µqα̃i

(t)−µqα̃i
(t−1)‖

‖µqα̃i
(t)‖ < 0.01 where ‖ · ‖ represents the Euclidean

norm.
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5.2.3 Switching from stochastic to standard version

Determining an appropriate stopping criterion for a stochastic approxi-

mation algorithm can be very challenging. Some commonly used stopping

criteria include stopping when the relative change in parameter values or

objective function is sufficiently small or when the gradient of the objec-

tive function is sufficiently close to zero (Spall, 2003). Such criteria do not

provide any guarantees of the terminal iterate being close to the optimum,

however, and may be satisfied by random chance. Booth et al. (1999) rec-

ommend applying such rules for several consecutive iterations to minimize

chances of a premature stop. However, Jank (2006) gave an illustrative ex-

ample to show that even this may not be enough of a safeguard. Moreover,

stochastic approximation can become excruciatingly slow in later iterations

due to the small step sizes.

Through our experimentations with moderate-sized data sets, we ob-

serve that gains made by Algorithm 9 are usually largest in the first few

iterations. However, beyond a certain point, it can become slower than the

standard version if the step sizes are too small or the iterates simply bounce

around if the step sizes are still too big. We therefore suggest switching to

the standard version when the stochastic version shows signs of slowing

down. Using the lower bound both as a switching and stopping criterion,

we propose switching from stochastic to standard nonconjugate variational

message passing when the relative increase in the lower bound is less than

10−3 and terminating standard nonconjugate variational message passing

when the absolute relative change in the lower bound is less than 10−6. For

large data sets or streaming data, it might be more practical to terminate

Algorithm 9 beyond a certain period of available runtime.

For the examples in Section 5.4, the mini-batches in step 1 of Algorithm

9 were chosen by random-partitioning of the data set and the mini-batch

sizes considered were such that different batches differ in size by at most

one when n is not divisible by |S|. For greater efficiency, the lower bound

is computed only after a complete sweep has been made through the data

set. We replace t by sw + m
M

in the step size where sw indicates the number

of sweeps that has been made through the data, M denotes the number

of partitions of the data and 0 ≤ m ≤ M − 1 denotes the number of

batches that has been analysed. It is possible to include an update of the

tuning parameters Wi after each complete sweep. However, preliminary

investigation did not suggest significant improvement in results when Wi is

updated and hence, for the examples in Section 5.4, we did not update Wi
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beyond the initialization.

5.3 Automatic diagnostics of prior-likelihood conflict

as a by-product of variational message passing

Marshall and Spiegelhalter (2007) investigated a diagnostic test for iden-

tifying units that do not appear to be drawn from assumed underlying

distributions based on measuring the conflict between likelihood of a pa-

rameter and its predictive prior given the remaining data. A simulation-

based approach was adopted and tests were performed using MCMC. Here,

we show that the approach of Marshall and Spiegelhalter (2007) can be ap-

proximated in the variational message passing framework and that varia-

tional message passing facilitates an automatic computation of diagnostics

for prior-likelihood conflict, very useful for Bayesian model criticism. We

focus on nonconjugate variational message passing for GLMMs.

First, we review briefly the diagnostic test proposed by Marshall and

Spiegelhalter (2007). In the context of GLMMs with a partially noncen-

tered parametrization, the parameter of interest for identifying divergent

units is α̃i, i = 1, . . . , n. For α̃i, Marshall and Spiegelhalter (2007) suggest

generating a predictive prior replicate α̃rep
i ∼ p(α̃i|y−i) where y−i denotes

the observed data y with unit i left out and

p(α̃i|y−i) =

∫
p(α̃i|β,D)p(β,D|y−i) dβdD. (5.6)

In the simulation approach, βrep, Drep would be generated from p(β,D|y−i)
using MCMC followed by simulation of α̃rep

i |βrep, Drep. This is compared

with a likelihood replicate α̃fix
i ∼ p(α̃i|yi) generated using only data from

the unit yi being tested and a non-informative prior, p(α̃i), for α̃i since

p(α̃i|yi) ∝ p(yi|α̃i)p(α̃i). These prior and likelihood replications represent

two independent sources of evidence about α̃i and conflict between them

suggests discrepancies in the model. The above discussion ignores nuisance

parameters. In our case, we need to regard β as a nuisance parameter. As

p(α̃i|yi) ∝ p(α̃i)
∫
p(yi|β, α̃i)p(β|α̃i) dβ and β is not estimable from individ-

ual unit i, Marshall and Spiegelhalter (2007)[p. 420] recommend generating

α̃fix
i from f(αi|y) where

f(αi|y) ∝ p(α̃i)

∫
p(yi|α̃i, β)p(β|y−i) dβ.
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Note that the two replications α̃rep
i and α̃fix

i are no longer entirely in-

dependent as y−i will slightly influence α̃fix
i through β. To compare the

prior and likelihood replicates, Marshall and Spiegelhalter (2007) consid-

ered α̃diff
i = α̃rep

i − α̃fix
i and calculated a conflict p-value

pLi,con = P (α̃diff
i ≤ 0|y)

as the proportion of times simulated values of α̃diff
i are less than or equal

to zero for scalar α̃i. Depending on the context, the upper tail area pUi,con =

1 − pLi,con or the 2-sided p-value 2 × min(pLi,con, p
U
i,con) may be of interest

instead. If α̃diff
i is not a scalar, E(α̃diff

i |y)TCov(α̃diff
i |y)−1E(α̃diff

i |y) can be

used as a standardized discrepancy measure. An alternative to this cross-

validatory approach is to simulate α̃rep
i |βrep, Drep using βrep, Drep generated

from p(β,D|y) without leaving out yi. This introduces only mild conser-

vatism as yi influences α̃rep
i through β and D (Marshall and Spiegelhalter,

2007).

From (4.14), the nonconjugate variational message passing update for

λα̃i is given by

Vα̃i(λα̃i)−1

(
∂Sα̃i
∂λα̃i

+
∂Syi
∂λα̃i

)
=

[
−νq

2
DT
r vec(Sq−1)

νqSq−1W̃iµ
q
β

]
+

[
−1

2
DT
r vec(

∑ni
j=1 FijX

R
ijX

R
ij
T

)

(
∑ni

j=1 FijX
R
ijX

R
ij
T

)µqα̃i +XR
i
T

(yi −Gi)

]
.

The first term can be considered as a message from the prior p(α̃i|β,D)

and the second term a message from the likelihood of unit yi, p(yi|α̃i, β).

We argue below that the first message from the prior can be interpreted as

natural parameter of a Gaussian approximation to p(α̃i|y−i) while the sec-

ond message from the likelihood can be interpreted as natural parameter of

a Gaussian approximation to f(α̃i|y). Let Σlik = (
∑ni

j=1 FijX
R
ijX

R
ij
T

)−1 and

µlik = µqα̃i +ΣlikX
R
i
T

(yi−Gi). This would imply that α̃rep
i ∼ N(W̃iµ

q
β,

1
νq
Sq)

and α̃fix
i ∼ N(µlik,Σlik) so that α̃diff

i ∼ N(W̃iµ
q
β − µlik,

1
νq
Sq + Σlik), as-

suming α̃rep
i and α̃fix

i are considered independent. Since these messages are

computed in the nonconjugate variational message passing algorithm, con-

flict p-values can be calculated easily at convergence for identification of

divergent units.

For moderate to large data sets, the difference between p(β,D|y−i) and

p(β,D|y) is small and we approximate p(β,D|y−i) in (5.6) by the varia-
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tional posterior q(β)q(D). This combined with Jensen’s inequality gives

log p(α̃i|y−i) ≈ logE−α̃i{p(α̃i|β,D)}

≥ E−α̃i{log p(α̃i|β,D)}.

Approximating p(α̃i|y−i) by exp[E−α̃i{log p(α̃i|β,D)}], we then have α̃rep
i ∼

N(W̃iµ
q
β,

1
νq
Sq). On the other hand, the total message gives us the natural

parameter of q(α̃i) which is an approximation of p(α̃i|y). If we think of

p(α̃i|y−i) as the “prior” to be updated when yi becomes available, we have

p(α̃i|y) ∝ p(α̃i|y−i)p(yi|α̃i, y−i),

which implies that
p(α̃i|y)

p(α̃i|y−i)
∝ p(yi|α̃i, y−i).

Interpreting the first message as a Gaussian approximation to p(α̃i|y−i)
and the sum of the two messages as a Gaussian approximation to p(α̃i|y),

the ratio of these two normal distributions gives an approximation (up to

a proportionality constant) of p(yi|α̃i, y−i). As a function of α̃i, the ratio of

the two normal distributions is proportional to

exp{−1
2
(α̃i − µqα̃i)

TΣq
α̃i

−1(α̃i − µqα̃i)}
exp{−1

2
(α̃i − W̃iµ

q
β)TνqSq−1(α̃i − W̃iµ

q
β)}

,

which gives a normal distribution with natural parameters[
−1

2
DT
r vec(Σq

α̃i

−1 − νqSq−1)

Σq
α̃i

−1µqα̃i − ν
qSq−1W̃iµ

q
β

]
=

[
−1

2
DT
r vec(Σ−1

lik )

Σ−1
lik µlik

]
,

precisely that given by the second message. As

p(yi|α̃i, y−i) =

∫
p(yi|β, α̃i)p(β|α̃i, y−i) dβ

and p(β|α̃i, y−i) is close to p(β|y−i) when the number of clusters is large,

the second message can be considered as giving the natural parameter of a

Gaussian approximation to f(α̃i|y) if we assume a uniform prior for p(α̃i).

Finally, even though α̃rep
i and α̃fix

i are not entirely independent, for large

data sets, the dependence between α̃rep
i and α̃fix

i will be increasingly weak

as the number of clusters increases.

For large data sets, automatic computation of diagnostics for prior-

likelihood conflict can be an attractive alternative to the simulation-based
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approach using MCMC methods. While the approximations made in our

derivation are crude, the diagnostics can be computed automatically in

the nonconjugate variational message passing algorithm and is a handy

screening tool. Clusters flagged as divergent can be studied more closely

and possibly conflict p-values recomputed by Monte Carlo. The arguments

above generalize to detecting conflict for other parameters of the model

also.

5.4 Examples

In Section 5.4.1, we use the Bristol infirmary inquiry data to compare

the conflict p-values computed using the nonconjugate variational message

passing algorithm with those obtained using the cross-validatory approach

of Marshall and Spiegelhalter (2007). In Sections 5.4.2 and 5.4.3, we ap-

ply the stochastic version of nonconjugate variational message passing to

a real data set and a simulated data set respectively, in the initial stage

of optimization before switching to the standard version. In all the ex-

amples, the partially noncentered parametrization was used and we con-

sider a N(0, 1000) prior for β. We also experimented with various set-

tings of K and γ. The Muscatine coronary risk factor study data set

and the skin cancer prevention study data set can be found at http:

//www.biostat.harvard.edu/~fitzmaur/ala2e/. All code was written

in the R language and run on a dual processor Windows PC 3.30 GHz

workstation.

5.4.1 Bristol infirmary inquiry data

In 1998, a public inquiry was set up to look into the management of children

receiving complex cardiac surgical services at the Bristol Royal Infirmary

from 1984 to 1995. The outcomes of paediatric cardiac surgical services

at Bristol, UK, relative to other specialist centres was a key issue. We

consider a subset of the data presented to the Inquiry recorded by Hospital

Episode Statistics on the mortality rates in open surgeries for 12 hospitals

including Bristol (hospital 1), for children under 1 year old, from 1991 to

1995. This data can be found in Marshall and Spiegelhalter (2007) Table 1.

Spiegelhalter et al. (2002a) and Marshall and Spiegelhalter (2007) modelled

this data using a logistic GLMM. Although the number of clusters is small

in this example whereas our methodology is motivated by applications to

large data sets, this example is interesting as a benchmark data set in
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the literature for calculating prior-likelihood conflict diagnostics from the

nonconjugate variational message passing algorithm.

Let Yi =
∑ni

j=1 yij represent the number of deaths at hospital i, i =

1, . . . , 12. We have yij ∼ Bernoulli(πi) where yij = 1 if patient j at hospital

i died and 0 otherwise. Let

logit(πi) = β + ui where ui ∼ N(0, D).

To assess the accuracy of the approximate conflict p-values obtained from

the standard nonconjugate variational message passing algorithm, we use

the cross-validatory conflict p-values obtained using the simulation-based

approach of Marshall and Spiegelhalter (2007) as a “gold-standard” and

compute these for comparison. In the cross-validatory approach, each hospi-

tal i is removed in turn from the analysis, and the parameters βrep, Drep|y−i
are generated using MCMC followed by a simulated πrep

i |βrep, Drep. Assum-

ing a Jeffrey’s prior for πi, a πfix
i is then simulated from Beta(Yi + 0.5, ni−

Yi + 0.5). Excess mortality is of concern and the upper-tail area is used

as a 1-sided p-value so that pi,con = P (πrep
i ≥ πfix

i ). 100 000 simulations

were used in calculating the cross-validatory conflict p-values. Fitting via

MCMC was performed in WinBUGS (Lunn et al., 2000) through R by us-

ing R2WinBUGS (Sturtz et al., 2005) as an interface. Two chains were run

simultaneously to assess convergence, each with 51,000 iterations, and the

first 1000 iterations were discarded in each chain as burn-in. The MCMC

algorithm was initialized using the fit from penalized quasi-likelihood and

the same priors were used in MCMC and nonconjugate variational message

passing. The total time taken for updating in WinBUGS is 372 seconds

while non-conjugate variational message passing took 6 seconds in CPU

time. There are some difficulties in comparing nonconjugate variational

message passing and MCMC in this way as the time taken for the vari-

ational algorithm to converge depends on the initialization, stopping rule

and the rate of convergence is problem-dependent. The updating time for

MCMC is also problem-dependent and depends on the length of burn-in

and number of sampling iterations.

The cross-validatory conflict p-values computed using MCMC (pCV
i,con)

and conflict p-values estimated using nonconjugate variational message

passing (pNCVMP
i,con ) for all hospitals are shown in Figure 5.1. The plot in

Figure 5.1 indicates very good agreement between the two sets of p-values.

To reflect the importance of good agreement at the extremes, Marshall and
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hospital pCV
i,con pNCVMP

i,con

1 0.001 0.004

2 0.438 0.448

3 0.935 0.934

4 0.126 0.131

5 0.297 0.305

6 0.721 0.730

7 0.737 0.751

8 0.663 0.672

9 0.437 0.450

10 0.375 0.386

11 0.764 0.771

12 0.718 0.733
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Figure 5.1: Bristol infirmary inquiry data. Cross-validatory conflict p-values
(pCV
i,con) and approximate conflict p-values from nonconjugate variational

message passing (pNCVMP
i,con ).

Spiegelhalter (2007) computed the relative agreement between p-values as∣∣∣∣∣Φ−1(pCV
i,con)− Φ−1(pNCVMP

i,con )

Φ−1(pNCVMP
i,con )

∣∣∣∣∣× 100%,

where Φ−1 denotes the inverse cumulative distribution function of the stan-

dard normal. The relative error between pCV
i,con and pNCVMP

i,con is 9% which is

close to the relative error of 7% between cross-validatory and full data

conflict p-values reported in Marshall and Spiegelhalter (2007). For mod-

erate to large data sets, the variational message passing approach will be

an extremely attractive alternative to computationally intensive MCMC

methods for obtaining prior-likelihood conflict diagnostics.

5.4.2 Muscatine coronary risk factor study

A total of 4856 children took part in the Muscatine coronary risk factor

study (Woolson and Clarke, 1984), which was undertaken to examine the

development and persistence of risk factors for coronary disease in children.

Over the period 1977–1981, weight and height data were collected bienni-

ally from five cohorts of children, aged 5–7, 7–9, 9–11, 11–13 and 13–15

at the beginning of the study. The data is incomplete with less than 40%

of the children surveyed on all three occasions. In previous analyses, some

authors treated this data as potentially missing not at random (e.g. Zhou et

al., 2010) while others assumed the data are missing at random (Fitzmau-
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rice et al., 1994; Kenward and Molenberghs, 1998). We assume the data

are missing at random and focus on computational comparisons between

standard and stochastic nonconjugate variational message passing. The bi-

nary response, yij, is an indicator of whether the ith child is obese at the

jth occasion. For the ith child, we consider the covariates, genderi = 1 if

female, 0 if male and ageij = midpoint of age cohort at jth occasion −12.

Fitzmaurice et al. (2004) modelled the marginal probability of obesity as a

logistic function of gender and linear and quadratic age. We consider the

following logistic random intercept model,

logit(µij) = β0 + β1genderi + β2ageij + β3age2
ij + ui,

where ui ∼ N(0, σ2) for i = 1, . . . , 4856, 1 ≤ j ≤ 3. The standard noncon-

jugate variational message passing algorithm took 345 seconds to converge

for this moderately large data set. The performance of stochastic noncon-

jugate variational message passing was investigated using different mini-

batch sizes and various parameter settings for the step sizes. We considered

|S| ∈ {1, 50, 99, 242} where the mini-batch sizes were chosen to correspond

to the online setting and approximately 1%, 2% and 5% of n = 4856. We

let the stability constant K take values 0, 1 and 5 and γ be 0.5, 0.75 or

1. In the online setting |S| = 1, we considered larger stability constants,

K ∈ {250, 500, 1000}. For each mini-batch size and parameter setting for

the step-size, we perform five runs of the stochastic nonconjugate varia-

tional message passing switching to the standard version each time the

relative increment in the lower bound after a complete sweep through the

data is less than 10−3. The average time taken for the algorithm to con-

verge in each case is shown in Figure 5.2. The solid lines, dashed lines and

dot-dashed lines correspond to γ = 1, 0.75 and 0.5 respectively. The best

parameter settings and average time to convergence for each mini-batch

size are summarized in Table 5.1.

From these results, we observed that as the mini-batch size increases,

smaller values of γ and K, that is, a slower rate of decrease in step-size and

|S| 1 50 99 242
K 250 1 0 0
γ 1 1 0.75 0.5

time 233 133 116 149

Table 5.1: Coronary risk factor study. Best parameter settings and average
time to convergence (in seconds) for different mini-batch sizes.
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Figure 5.2: Coronary risk factor study. Plot of average time to convergence
against the stability constant K for different mini-batch sizes. The solid,
dashed and dot-dashed lines correspond to γ = 1, 0.75 and 0.5 respectively.

larger step-sizes lead to faster convergence. However, a significantly larger

stability constant and smaller step sizes are required in the online setting to

prevent unstable behaviour in the early iterations. The mini-batch size of

50 (approximately 1% of n) performed well across a wide range of step-sizes

with the average time to convergence ranging from 133 to 167 seconds. The

shortest average time to convergence is 116 seconds for the mini-batch of

size 99 with K = 0 and γ = 0.75. This is a third of the computation time

required to perform standard nonconjugate variational message passing.

Figure 5.3 tracks the average lower bound attained at the end of each

sweep through the data for the different batch sizes corresponding to the

best parameter settings listed in Table 5.1. Only the first ten sweeps are

shown. This figure shows that with appropriately chosen step-sizes, the

stochastic version of nonconjugate variational message passing is able to

make much bigger gains than the standard version particularly in the first

few sweeps. Thus, even for moderate-sized data sets, significant gains can

be made by making use of stochastic nonconjugate variational message

passing in the initial stage of optimization.

5.4.3 Skin cancer prevention study

In a clinical trial conducted to test the effectiveness of beta-carotene in

preventing non-melanoma skin cancer (Greenberg et al., 1989), 1805 high

risk patients were randomly assigned to receive either a placebo or 50 mg of

beta-carotene per day for five years. Subjects were biopsied once a year to

ascertain the number of new skin cancers since the last examination. The

response yij is a count of the number of new skin cancers in year j for the

ith subject. Covariate information for the ith subject include agei, the age
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Figure 5.3: Coronary risk factor study. Plot of average lower bound against
number of sweeps through entire data set for different batch sizes under
the best parameter settings.

in years at the beginning of the study, genderi = 1 if male and 0 if female,

exposurei, a count of the number of previous skin cancers, skini = 1 if skin

has burns and 0 otherwise, treatmenti = 1 if the ith subject receives beta-

carotene and 0 if placebo and yearij, the year of follow-up. We consider

n = 1683 subjects with complete covariate information. Using conditional

Akaike information to perform model selection, Donohue et al. (2011) fitted

different Poisson GLMMs to this data and arrived at the model

log(µij) = β0 + β1agei + β2skini + β3genderi + β4exposurei + ui,

where ui ∼ N(0, σ2) for i = 1, . . . , 1683, 1 ≤ j ≤ 5. The treatment and year

effects did not prove to be significant in their analyses. Using this model,

we investigate the performance of standard and stochastic nonconjugate

variational message passing algorithms. As this data set is small, prelimi-

nary investigation shows that the time to convergence of the standard and

stochastic nonconjugate variational message passing algorithms are close

and stochastic nonconjugate variational message passing did not provide

significant gains over the standard version. We thus simulated a data set

comprising of n = 1683× 6 = 10098 subjects by using the posterior means

of the unknown parameters from the standard nonconjugate variational

message passing fit to the original data set. Thus, we replicate the design

matrices for each cluster 6 times. For this simulated data, standard non-

conjugate variational message passing took 118 seconds to converge.

We considered mini-batch sizes corresponding to the online setting and
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Figure 5.4: Skin cancer study. Plot of average time to convergence against
the stability constant K for different mini-batch sizes. The solid, dashed
and dot-dashed lines correspond to γ = 1, 0.75 and 0.5 respectively.

approximately 1%, 2% and 5% of n = 10098, that is, |S| ∈ {1, 100, 198, 504}.
We let γ be 0.5, 0.75 or 1 and the stability constant K take values 0, 1

and 5 for |S| ∈ {100, 198, 504} and values 250, 500, 1000 for |S| = 1. For

each mini-batch size and parameter setting for the step-size, we did five

runs of the stochastic nonconjugate variational message passing, switch-

ing to standard nonconjugate variational message passing each time the

relative increment in the lower bound after a complete sweep through the

data is less than 10−3. The average time taken for the algorithm to con-

verge in each case is shown in Figure 5.4. The solid lines, dashed lines and

dot-dashed lines correspond to γ = 1, 0.75 and 0.5 respectively. The best

parameter settings and average time to convergence for each mini-batch

size are summarized in Table 5.2.

As in the example in Section 5.4.2, larger stability constants are pre-

ferred when |S| = 1. For this simulated data, a higher rate of decrease

in step-size is desirable with γ = 1 yielding the best performance across

different mini-batch sizes. Larger batch sizes also seem to lead to faster

convergence. Figure 5.5 compares the rate of convergence of standard and

stochastic nonconjugate variational message passing for one of the runs

where |S| = 504, K = 0 and γ = 1. The variational lower bound L is

−23617.3 at convergence and we have plotted log(−23617−L) against time.

|S| 1 100 198 504
K 250 1 1 0
γ 1 1 1 1

time 187 65 61 59

Table 5.2: Skin cancer study. Best parameter settings and average time to
convergence (in seconds) for different mini-batch sizes.
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Figure 5.5: Plot of log(−23617−L) against time for the mini-batch of size
504, K = 0 and γ = 1.

Stochastic nonconjugate variational message passing took just 7 sweeps to

converge in 59 seconds while the standard version took 22 sweeps and con-

verged in 118 seconds. This represents a reduction in computation time by

a factor of 2.

5.5 Conclusion

In this chapter, we have extended stochastic variational inference to non-

conjugate models and derived a stochastic version of the nonconjugate vari-

ational message passing algorithm, scalable to large data sets. The data sets

that we have considered were only of moderate size. Nevertheless, by apply-

ing the stochastic version of the nonconjugate variational message passing

algorithm in the first few iterations, the time to convergence for these data

sets can be reduced by half or more. The stochastic version seems com-

putationally preferable once the number of clusters is more than several

thousand. We would imagine the gain to be bigger for larger data sets and

more work remains to be done in that aspect. Experimentation with various

settings of K and γ suggest that γ close to 1 and a large stability constant

K is preferred in the online setting while mini-batches larger in size perform

better with larger step-sizes. Comparison of the conflict p-values obtained

from the nonconjugate variational message passing algorithm with those

computed using the approach of Marshall and Spiegelhalter (2007) suggest

very good agreement. For large data sets, the variational message passing

approach will be an extremely attractive alternative to computationally

intensive MCMC methods in obtaining prior-likelihood diagnostics.
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Conclusions and future work

This thesis has developed fast variational algorithms for the fitting of some

very flexible models, namely, the MHR model, the MLMM and the GLMM.

In the case of the MHR model and the GLMM, the advantages of using

variational approximation methods as compared to MCMC methods are

illustrated in model fitting and model choice. We show that variational ap-

proximation provides good point estimates and excellent predictive infer-

ence with computation time reduced by as much as an order of magnitude.

The MHR model extends mixture of regression models by allowing the

mixture components to be heteroscedastic. However, the variance parame-

ters in the model cannot be optimized in closed form and we have developed

an approximate method for dealing with these parameters that is computa-

tionally efficient. For the MLMM, we have developed a variational greedy

algorithm which is fully automated and capable of performing parameter

estimation and model selection at the same time. This greedy approach

avoids some of the difficulties associated with the EM algorithm such as

dependency on initialization and overfitting. The nonconjugate variational

message passing algorithm (Knowles and Minka, 2011) extends variational

message passing to nonconjugate models and has greatly expanded the

scope of models which can be fitted using VB. Closed form updates are

now possible even for models without conjugate priors, such as the Poisson

GLMM. We have extended the applications of nonconjugate variational

message passing to the multivariate case and demonstrated how it can be

used to fit Poisson and logistic models with very good results.

We have shown empirically that reparametrization of the MLMM us-

ing hierarchical centering, in cases where there is weak identifiability of

certain model parameters, can lead to improved convergence in the vari-

ational algorithm, both in terms of reduced computation time as well as

better clustering results. Some theoretical support was provided for this
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observation. In addition, we have investigated the performance of differ-

ent parametrizations such as the centered, noncentered and partially non-

centered parametrizations in the context of variational approximations for

GLMMs. Partially noncentered parametrizations were found to be able to

adapt to the quantity of information in the data and determine automat-

ically a parametrization close to optimal. Very often, partial noncentering

was also able to accelerate convergence and produce more accurate pos-

terior approximations than centering or noncentering. These favourable

properties suggest using the partially noncentered parametrization as the

default parametrization since it is not possible to tell in advance which of

centering or noncentering performs better without using both.

Finally, we have explored how stochastic approximation can be com-

bined with variational methods to improve the accuracy of the posterior

approximations or to make variational inference a viable approach for large

data sets. For the MHR model, we have proposed using stochastic gradient

approximation to optimize the variational lower bound after first integrat-

ing out the latent mixture components indicators. An improved gradient

estimate was proposed and the idea of perturbing existing means and vari-

ances helped to keep the optimization low-dimensional. The idea of stochas-

tic gradient approximation was revisited when we developed the stochastic

version of nonconjugate variational message passing. By using unbiased gra-

dient estimates computed from mini-batches of data, the variational lower

bound can be optimized as a function of the global variables using stochas-

tic gradient approximation, provided the local variational parameters have

been optimized as a function of these global parameters. This idea allows

nonconjugate variational message passing to be applied to very large data

sets as data can now be processed in mini-batches. While we have only

applied this methodology to data sets of moderate sizes, the results are

encouraging, suggesting that greater gains in computational efficiency can

be expected for larger data sets.

We discuss below some possible extensions of our work and future re-

search directions.

Partially noncentered parametrizations. The amount of centering is

controlled by the tuning matrix Wi. While we have attempted to infer the

form of Wi from the simple linear mixed model, it might be helpful to in-

vestigate in greater depth how Wi can be specified for optimal performance

as well as to perform some analysis about its properties. The parameter

expanded VB method of Qi and Jaakkola (2006) is in some ways very sim-
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ilar to partially noncentered parametrizations and a deeper understanding

of the relationship between these two methods might generate new ideas in

speeding up variational algorithms. Papaspiliopoulos et al. (2007) discussed

reparametrization techniques for constructing effective MCMC algorithms

for a wide range of models such as spatial GLMMs, diffusion stochastic

volatility models and hidden Markov models. It would be interesting to

investigate the performance of partially noncentered parametrizations for

such models in the context of variational approximations.

Nonconjugate variational message passing. For the MHR model, we

have developed an approximate method for dealing with the variance pa-

rameters in the model which cannot be optimized in closed form. Since a

normal distribution has been assumed for the variance parameters, it might

be possible to optimize these parameters using nonconjugate variational

message passing. We have demonstrated that nonconjugate variational mes-

sage passing is a type of natural gradient method and the combination of

stochastic gradient approximation with nonconjugate variational message

passing opens up many possibilities. Further study on the optimization of

the step size sequence or the development of adaptive step size sequence

may be helpful in bringing about greater speed ups in the algorithm.

Stochastic approximations. Recent development in VB methodology

have branched out to stochastic optimization which has enabled limita-

tions in VB such as the reliance on analytic solutions to integrals and

conjugacy in the posterior to be overcome, making VB a viable approach

for handling large data sets (e.g. Hoffman et al., 2013). The ideas developed

here can be extended to other models. For the logistic mixed model, there

remains significant underestimation of the random effects standard devia-

tion when it is fitted using nonconjugate variational message passing. This

could be due to the assumed factorized posterior. Salimans and Knowles

(2012) discussed how such independence assumptions can be relaxed using

stochastic approximation as well as the use of mixture of standard distri-

butions as the approximating variational marginal posteriors. Application

of these methods to logistic mixed models might help to improve the ap-

proximations of the posterior distributions of the random effects standard

deviations. It would also be interesting to explore using stochastic approx-

imation methods to construct online VB algorithms in applications where

model estimation needs to be performed as data accumulates, for instance,

in the modelling of infectious diseases where control strategies need to adapt

quickly to the progress of an epidemic Jewell et al. (2009).
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Appendix A

Derivation of variational lower

bound for Algorithm 1

From (2.3), the variational lower bound on supγ log p(γ)p(y|γ) can be writ-

ten as

Eq{log p(y, θ)} − Eq{log q(θ−γ)}, (A.1)

where Eq(·) denotes expectation with respect to the variational approxima-

tion q. To evaluate the lower bound, we use the two lemmas below which

we state without proof.

Lemma A.1. Suppose p1(x) = N(µ1,Σ1) and p2(x) = N(µ2,Σ2) where x

is a p-dimensional vector, then
∫
p2(x) log p1(x) dx = −p

2
log(2π)−1

2
log |Σ1|−

1
2
(µ2 − µ1)TΣ−1

1 (µ2 − µ1)− 1
2
tr(Σ−1

1 Σ2).

Lemma A.2. Suppose p(τ) = N(µ,Σ). Then

(a)
∫

(y − xT τ)2p(τ) dτ = (y − xTµ)2 + xTΣx,

(b)
∫

exp(−xT τ)p(τ) dτ = exp(1
2
xTΣx− xTµ).

Consider the first term in (A.1). Write zij = I(δi = j) where I(·) denotes

the indicator function. We have

log p(y, θ) =
n∑
i=1

k∑
j=1

zij
{

log p(yi|δi = j, βj, αj) + log pij(γ)
}

+
k∑
j=1

{
log p(βj) + log p(αj)

}
+ log p(γ).
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Appendix A. Lower bound for Algorithm 1

Taking expectations with respect to q, we have

Eq
{

log p(y, θ)
}

=
n∑
i=1

k∑
j=1

qij

{
− 1

2
log(2π)− 1

2
wij exp

(
1
2
uTi Σq

αj
ui − uTi µqαj

)
− 1

2
uTi µ

q
αj + log pij(µ

q
γ)
}

+
k∑
j=1

{
− p

2
log 2π − 1

2
log |Σ0

βj|

− 1
2
tr(Σ0

βj
−1

Σq
βj)− 1

2
(µqβj − µ

0
βj)

TΣ0
βj
−1

(µqβj − µ
0
βj)

− m
2

log 2π − 1
2
(µqαj − µ0

αj)
TΣ0

αj
−1

(µqαj − µ0
αj)

− 1
2

log |Σ0
αj| − 1

2
tr(Σ0

αj
−1

Σq
αj)
}

+ log p(µqγ), (A.2)

where wij = (yi−xTi µ
q
βj

)2+xTi Σq
βj
xi and p(µqγ) denotes the prior distribution

for γ evaluated at µqγ. In evaluating the expectation for the likelihood term,

we have used the independence of βj and αj in the variational posterior.

Turning to the second term in (A.1), we have

Eq{log q(θ−γ)} =
k∑
j=1

[
Eq{log q(βj)}+ Eq{log q(αj)}

]
+

n∑
i=1

k∑
j=1

qij log qij

=
k∑
j=1

(
− p

2
log 2π − 1

2
log |Σq

βj| −
p
2
− q

2
log 2π − 1

2
log |Σq

αj|

− m
2

)
+

n∑
i=1

k∑
j=1

qij log qij, (A.3)

and putting (A.2) and (A.3) together gives the lower bound in (2.4).
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Appendix B

Derivation of variational lower

bound for Algorithm 3

The variational lower bound is given by L = Eq{log p(y, θ)}−Eq{log q(θ−γ)}.
Consider the first term, Eq{log p(y, θ)}. Let zij = I(δi = j) where I(·) de-

notes the indicator function. We have

log p(y, θ) =
n∑
i=1

k∑
j=1

zij

{
log p(yi|δi = j, βj, ai, bj,Σij) + log p(ai|σ2

aj
)

+ log pij(γ)
}

+
k∑
j=1

{
log p(βj) + log p(bj|σ2

bj
) + log p(σ2

aj
)

+ log p(σ2
bj

) +

g∑
l=1

log p(σ2
jl)
}

+ log p(δ).
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Appendix B. Lower bound for Algorithm 3

Taking expectations with respect to q, we have

Eq{log p(y, θ)} =
n∑
i=1

k∑
j=1

qij

[
− ni

2
log(2π)−

g∑
l=1

κil
2

{
log λqjl − ψ(αqjl)

}
− 1

2
ξTijΣ

q
ij
−1ξij − 1

2
tr(Σq

ij
−1Λij)− s1

2

{
log λqaj − ψ(αqaj)

}
− s1

2
log(2π)− αqaj

2λqaj

{
µqai

Tµqai + tr(Σq
ai

)
}

+ log pij(µ
q
γ)
]

+
k∑
j=1

[
− p

2
log(2π)− 1

2

{
µqβj

TΣ−1
βj
µqβj + tr(Σ−1

βj
Σq
βj

)
}

− 1
2

log |Σβj | − s2
2

log(2π)− s2
2

{
log λqbj − ψ(αqbj)

}
−

αqbj
2λqbj

{
µqbj

Tµqbj + tr(Σq
bj

)
}

+ αaj log λaj − log Γ(αaj)

− (αaj + 1)
{

log λqaj − ψ(αqaj)
}
− λajα

q
aj

λqaj
+ αbj log λbj

− log Γ(αbj)−
λbjα

q
bj

λqbj
− (αbj+ 1)

{
log λqbj − ψ(αqbj)

}]
+

k∑
j=1

g∑
l=1

[
αjl log λjl − (αjl + 1)

{
log λqjl − ψ(αqjl)

}
− log Γ(αjl)−

λjlα
q
jl

λqjl

]
+ log p(µqγ).

Here p(µqγ) denotes the prior distribution for γ evaluated at µqγ, ξij = yi −
Xiµ

q
βj
−Wiµ

q
ai
− Viµqbj , Σq

ij
−1 = blockdiag

(
αqj1
λqj1
Iκi1 , . . . ,

αqjg
λqjg
Iκig

)
and Λij =

XiΣ
q
βj
XT
i +WiΣ

q
ai
W T
i + ViΣ

q
bj
V T
i .
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For the second term, Eq{log q(θ−γ)}, we have

Eq{log q(θ−γ)} =
k∑
j=1

[
Eq{log q(βj)}+ Eq{log q(bj)}+ Eq{log q(σ2

bj
)}

+ Eqlog q(σ2
aj

)
]

+
n∑
i=1

{
Eq{log q(ai)}+ Eq{log q(δi)}

}
+

k∑
j=1

g∑
l=1

Eq{log q(σ2
jl)}

=
k∑
j=1

[
− p

2
log(2π)− p

2
− 1

2
log |Σq

βj
| − s2

2
log(2π)− s2

2

− 1
2

log |Σq
bj
|+ (αqbj + 1)ψ(αqbj)− log λqbj − log Γ(αqbj)

− αqbj + (αqaj + 1)ψ(αqaj)− log λqaj − log Γ(αqaj)− α
q
aj

]
+

n∑
i=1

[
− s1

2
log(2π)− s1

2
− 1

2
log |Σq

ai
|+

k∑
j=1

qij log qij

]
+

k∑
j=1

g∑
l=1

{
(αqjl + 1)ψ(αqjl)− log λqjl − log Γ(αqjl)− α

q
jl

}
.

Putting the expressions for Eq{log p(y, θ)} and Eq{log q(θ−γ)} together

gives the lower bound for Algorithm 3 in (3.3).
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Appendix C

Derivation of variational lower

bound for Algorithm 8

From (1.2), (4.6) and (4.18), the variational lower bound for Algorithm 8

is given by

L =
n∑
i=1

Syi +
n∑
i=1

Sα̃i + Sβ + Eq{log p(D|ν, S)} − Eq{log q(β)}

−
n∑
i

Eq{log q(α̃i)} − Eq{log q(D)}.

To evaluate the terms in the lower bound, we use Lemma A.1 and Lemma

C.1 stated below:

Lemma C.1. Suppose p(D) = IW (ν, S) where D is a symmetric, positive

definite r × r matrix, then
∫
p(D) log |D| dD = log |S| −

∑r
l=1 ψ

(
ν−l+1

2

)
−

r log 2 and
∫
p(D)D−1 dD = νS−1.

Using these two lemmas, we can compute most of the terms in the lower

bound:

Sβ =
∫
q(β) log p(β|Σβ) dβ

= −p
2

log(2π)− 1
2

log |Σβ| − 1
2
µqβ

TΣ−1
β µqβ − 1

2
tr(Σ−1

β Σq
β),

Sα̃i =
∫
q(β)q(D)q(α̃i) log p(α̃i|β,D) dβ dD dα̃i

= − r
2

log(2π)− 1
2

{
log |Sq| −

∑r
l=1 ψ

(
νq−l+1

2

)
− r log 2

}
−νq

2

[
(µqα̃i − W̃iµ

q
β)TSq−1(µqα̃i − W̃iµ

q
β) + tr{Sq−1(Σq

α̃i
+ W̃iΣ

q
βW̃

T
i )}
]
,

Eq{log p(D|ν, S)} =
∫
q(D) log p(D|ν, S) dD

= −νq

2
tr(Sq−1S)− r(r−1)

4
log(π)−

∑r
l=1 log Γ

(
ν+1−l

2

)
−ν+r+1

2

{
log |Sq| −

∑r
l=1 ψ

(
νq−l+1

2

)
− r log 2

}
+ν

2
log |S| − νr

2
log 2,
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Eq{log q(β)} =
∫
q(β) log q(β) dβ

= −p
2

log(2π)− 1
2

log |Σq
β| −

p
2
,

Eq{log q(α̃i)} =
∫
q(α̃i) log q(α̃i) dα̃i

= − r
2

log(2π)− 1
2

log |Σq
α̃i
| − r

2
,

Eq{log q(D)} =
∫
q(D) log q(D) dD

= −νqr
2

log 2− r(r−1)
4

log π−
∑r

l=1 log Γ
(
νq+1−l

2

)
+ νq

2
log |Sq|

−νq+r+1
2

{
log |Sq| −

∑r
l=1 ψ

(
νq−l+1

2

)
− r log 2

}
− νqr

2
.

The only term left to evaluate is

Syi =

∫
q(β)q(α̃i) log p(yi|β, α̃i) dβ dα̃i.

For Poisson responses with the log link function [see (4.8)],

Syi = yTi {log(Ei) + Viµ
q
β +XR

i µ
q
α̃i
} − ET

i κi − 1Tni log(yi!),

where κi = exp{Viµqβ + XR
i µ

q
α̃i

+ 1
2
diag(ViΣ

q
βVi

T + XR
i Σq

α̃i
XR
i
T

)}. As for

Bernoulli responses with the logit link function [see (4.9)], recall that

B(r)(µ, σ) =

∫ ∞
−∞

b(r)(σx+ µ)φ(x; 0, 1) dx,

where b(r)(x) denotes the rth derivative of b(x) = log{1 + exp(x)} with

respect to x. Therefore, we have

Eq
[

log{1 + exp(V T
ij β +XR

ij

T
α̃i)}

]
= Eq{b(V T

ij β +XR
ij

T
α̃i)}

=

∫ ∞
−∞

b(σqijx+ µqij)φ(x; 0, 1) dx

= B(0)(µqij, σ
q
ij),

where µqij = V T
ij µ

q
β + XR

ij
T
µqα̃i , σ

q
ij =

√
V T
ij Σq

βVij +XR
ij
T

Σq
α̃i
XR
ij for each

i = 1, . . . , n, j = 1, . . . , ni. Hence,

Syi = yTi (Viµ
q
β +XR

i µ
q
α̃i

)−
ni∑
j=1

B(0)(µqij, σ
q
ij),

where B(0)(µqij, σ
q
ij) is evaluated using adaptive Gauss-Hermite quadrature
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Appendix C. Lower bound for Algorithm 8

(see Appendix D). The variational lower bound is thus given by

L =
n∑
i=1

Syi + 1
2

n∑
i=1

log |Σq
α̃i
|+ 1

2
log |Σ−1

β Σq
β| − 1

2
tr(Σ−1

β Σq
β)− 1

2
µqβ

TΣ−1
β µqβ

− νq

2
log |Sq|+ ν

2
log |S| −

r∑
l=1

log Γ
(
νq+1−l

2

)
+

r∑
l=1

log Γ
(
ν+1−l

2

)
+ p+nr

2
+ nr

2
log 2.

Note that this expression is valid only after each of the parameter updates

has been made in Algorithm 8.
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Appendix D

Gauss-Hermite quadrature

To evaluate the variational lower bound and gradients in Algorithm 8 for

the logistic mixed model, we compute B(r)(µqij, σ
q
ij) for each i = 1, . . . , n,

j = 1, . . . , ni and r = 0, 1, 2 using adaptive Gauss-Hermite quadrature (Liu

and Pierce, 1994). Ormerod and Wand (2012) has considered a similar ap-

proach. In Gauss-Hermite quadrature, integrals of the form
∫∞
−∞ f(x)e−x

2
dx

are approximated by
∑m

k=1wkf(xk) where m is the number of quadrature

points, the nodes xk are zeros of the mth order Hermite polynomial and wk

are suitably corresponding weights. This approximation is exact for poly-

nomials of degree 2m− 1 or less. For low-order quadrature to be effective,

some transformation is usually required so that the integrand is sampled in

a suitable range. Following the procedure recommended by Liu and Pierce

(1994), we rewrite B(r)(µqij, σ
q
ij) as

∫ ∞
−∞

b(r)(σqijx+ µqij)φ(x; 0, 1)

φ(x; µ̂qij, σ̂
q
ij)

φ(x; µ̂qij, σ̂
q
ij)dx

=
√

2σ̂qij

∫ ∞
−∞

[
exp(x2)b(r){σqij(µ̂

q
ij +
√

2σ̂qijx}+ µqij)φ(µ̂qij +
√

2σ̂qijx; 0, 1)
]

· exp(−x2) dx,

which can be approximated using Gauss-Hermite quadrature by

√
2σ̂qij

m∑
k=1

wk exp(x2
k)b

(r){σqij(µ̂
q
ij +
√

2σ̂qijxk) + µqij}φ(µ̂qij +
√

2σ̂qijxk; 0, 1).

For the integrand to be sampled in an appropriate region, we take µ̂qij to

be the mode of the integrand and σ̂qij to be the standard deviation of the
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Appendix D. Gauss-Hermite quadrature

normal density approximating the integrand at the mode, so that

µ̂qij = arg max
x

{
b(r)(σqijx+ µqij)φ(x; 0, 1)

}
,

σ̂qij =

[
− d2

dx2
log
{
b(r)(σqijx+ µqij)φ(x; 0, 1)

} ∣∣∣∣
x=µ̂qij

]− 1
2

,

for j = 1, . . . , ni and i = 1, . . . , n. For computational efficiency, we eval-

uate µ̂qij and σ̂qij, i = 1, . . . , n, j = 1, . . . , ni, for the case r = 1 only

once in each cycle of updates and use these values for r = 0, 2. No sig-

nificant loss of accuracy was observed in doing this. We implement adap-

tive Gauss-Hermite quadrature in R using the R package fastGHQuad

(Blocker, 2011). The quadrature nodes and weights can be obtained via

the function gaussHermiteData() and the function aghQuad() ap-

proximates integrals using the method of Liu and Pierce (1994). We used

10 quadrature points in all the examples.
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