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Summary 
 Recent developments in the rapidly emerging discipline of micro-

electro-mechanical systems (MEMS) have shown special promise in sensors, 

actuators, and micro-optical systems. In fact, optics is an ideal application 

domain for MEMS technology as photons have no mass and are easier to be 

actuated compared with other microscale objects. In conjunction with properly 

designed mirrors, lenses and gratings, various micro-optical systems driven by 

microactuators can be made to perform many different functions of light 

manipulations such as reflection, beam steering, filtering, and collimating, etc.  

 In this thesis, various MEMS mirror designs for two-dimensional (2-D) 

scanning and variable optical attenuator (VOA) applications are explored. 

Four unique designs based on piezoelectric and hybrid actuation mechanisms 

have been conceptualized. With the focus on the development of novel 

actuation mechanisms to drive the MEMS mirrors, characterization of these 

designs have been made from the perspective of the aforementioned 

applications. 

 Two designs of piezoelectric driven MEMS scanners using mechanical 

supporting beam integrated with 1×10 PZT actuators are designed, fabricated 

and characterized. Through this design variation, the performances of these 

PZT MEMS scanners are investigated by using different actuation 

mechanisms to produce 2-D scanning patterns for both the devices. In the case 

of VOA application, an attenuation range of 40 dB was achieved at 1Vdc, 

which is among the lowest operating voltage to be reported in the literature so 

far for MEMS-based VOA.   
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 To further improve the scanning performance and reduce the number 

of PZT actuators, a S-shaped actuator design was investigated. For the same ac 

driving voltage, the optical deflection angle achieved by this S-shaped actuator 

design is demonstrated to be larger than that of the 1×10 PZT actuator design. 

2-D scanning images were also successfully demonstrated by superimposing 

two ac signals into one signal to be used to excite the PZT actuator and drive 

MEMS mirror.  

 Besides piezoelectric driven MEMS mirror, hybrid driven CMOS 

compatible MEMS mirror based on electrothermal and electromagnetic 

actuation mechanisms are also examined for 2-D scanning and VOA 

applications. Various Lissajous scanning patterns were demonstrated at low 

power condition, making the proposed hybrid actuation design approach 

suitable for mobile 2-D raster scanning applications powered by batteries with 

limited capacity. For the case of VOA application, three types of attenuation 

mechanisms based on electromagnetic, electrothermal and hybrid actuations 

were explored and studied. This unique design of using both electrothermal 

and electromagnetic actuators simultaneously to achieve attenuation is the first 

demonstration of such hybrid driven CMOS compatible MEMS VOA device. 
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Chapter 1  
Introduction 
1.1 Optical MEMS 

 Micro-electro-mechanical systems (MEMS) technology has 

demonstrated great promise in opening new frontiers in the applications of 

sensors and actuators. Mechanical sensing and actuation mechanisms are now 

integrated with electronics on a silicon substrate through the various micro-

fabrication technologies available today. This has brought forth rapid progress 

in various industries such as telecommunication, biomedical and military 

defense. Components fabricated with the emerging technologies of MEMS are 

being incorporated rapidly into numerous applications. These MEMS 

applications include inertial MEMS such as accelerometers and gyroscopes in 

automobile and consumer electronics, thermoelectric and vibration-based 

energy harvesters in implantable biomedical devices and wireless sensor nodes, 

respectively.  

 In the optical MEMS regime, microstructures such as micromirrors, 

microlens and gratings are driven to move or deform by actuators so that 

unique functions such as light manipulation can be achieved. Cornerstones for 

the success of optical MEMS technology include actuator technology, optics 

design and development of movable or tunable micromechanical elements 

such as rigid reflective mirror [1], deformable reflective mirror [2, 3], shutters 

[4, 5], gratings [6], waveguides [7], and microlens [8, 9] . MEMS and optics 

make a perfect match as MEMS devices have dimensions and actuation 
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distances comparable to the wavelength of light. In addition, optical MEMS 

have long been a goal of forward-thinking electronics innovators, with big 

companies such as IBM and Intel having reported significant successes in 

using the traditional CMOS toolkit to micromachine optical interconnects and 

structures [10, 11]. As these companies and other research laboratories around 

the world pursue on a "computing with light" paradigm, the look for optical 

MEMS to serve as connection between arithmetic-logic units on the same chip 

will ensue in the near future.  

1.2 Applications of MEMS mirror 

 With a number of advantage, including small size, light weight and fast 

speed compared to conventional bulky scanners, optical MEMS mirrors have 

been drawing attention for a wide range of applications such as displays [12, 

13], optical communications [14-16], microspectroscopy [17] and optical 

coherence tomography [18-20].  

1.2.1 Projection Display 

 In the field of projection display application, the most successful 

MEMS-based commercial product is probably the Digital Micromirror Device 

(DMD), which utilize the Digital Light Processing (DLP) technology 

developed proprietary by Texas Instrument in the early 1990s [21, 22].  As 

shown in Fig. 1-1(a), the DMD consists of a semiconductor-based array of 

fast, effective micron-meter size mechanical mirrors to redirect light from 

LEDs or lasers into raster patterns that create visible displays. Each 

micromirror corresponds to an image pixel and the pixel brightness can be 
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controlled by switching between two tilt states. First generation DMD device 

with pixel pitch of 17µm, 0.7µm gap and ±10° rotation has given way to 

10.8µm pitch, 0.7µm gap and ±12° rotation in their current latest 1080p 

resolution product. Greater rotation can accommodate higher numerical 

aperture, while smaller pixel pitch shrinks the chip area, offering cost benefit 

to microdisplay and optical systems.   

 Besides using MEMS mirror which are reflective-type devices, 

diffractive-type devices in the form of gratings have also been reported for 

scanning purposes. In 1994, Solgaard et al. from Stanford University 

developed the grating light valve (GLV), providing an alternative MEMS-

based technology for implementation in commercial projectors [23, 24]. The 

key idea behind GLV technology is the use of movable ribbons to modulate 

the phase of light so that it can be regarded as a MEMS tunable phase grating. 

As shown in Fig. 1-1(b), each pixel consists of three movable and three fixed 

ribbon strips, with each pair of movable and fixed ribbons being responsible 

for the intensity of red, green or blue color. As such, the color of a pixel on the 

screen is determined by the amount of red, blue and green light being 

diffracted and incident collectively on the pixel as 1st order light.        

In recent years, optical MEMS devices have also formed a circle of 

growing interest, with the development of handheld picoprojectors based on 

scanning mirror technology becoming an intriguing killer applications in 

consumable electronics, IT and amusement business [12, 13]. Traditional 

high-resolution mirror array approach developed for digital projector remains 

too large to be adapted into a portable device. In order to display a much 
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bigger multimedia in the forms of images, movies or presentations on an 

ordinary surface e.g. a wall or a table, MEMS-based scanner technology can 

be incorporated into these portable gadgets that allow people to share these 

multimedia much more easily and spontaneously [25, 26]. 

 

Fig.  1-1. Schematic illustration of the (a) DMD, consisting of micromirrors, springs, hinges, 
yokes and CMOS substrate [21, 22], and (b) GLV, where the color of each pixel is determined 
by the relative position of the three movable and fixed ribbons [23, 24]. 

 

 

Fig.  1-2. (a) A SHOWWX+ laser picoprojector developed by Microvision Inc. in 2010, 
projecting a presentation from a media player onto a wall [26]. (b) A DLP-based picoprojector 
being integrated into a commercial smartphone, Samsung Galaxy Beam GT-I8530.  [25]. 

  

1.2.2 Variable Optical Attenuator 

 Besides projection display applications, optical MEMS have also been 

an enabling tool for numerous cutting-edge devices in optical 

communications. With the increasing demand for higher bandwidth and speed 
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in telecommunications, better fiber optics network is required for smooth and 

high transmission rates in the range of tens to hundreds gigabit per second 

(Gbps). As shown in Fig. 1-3, the development of dense wavelength division 

multiplexing (DWDM) technology has allowed multiple multiplexed optical 

signals to be transmitted on a single optical fiber through the use of different 

laser light wavelengths to carry different signals. With DWDM technology, 

telecommunications companies are now able to expand the capacity of the 

network without laying more optical fibers. In the late 90s and early 2000, 

significant progress in the optical MEMS technology, alongside with the 

development of DWDM systems, has been made in the telecommunication 

industry. Enormous investments have been made on optical MEMS 

technology as it has been recognized to be an indispensable technology meant 

to fulfill the missing link that can help connect other existing technologies to 

form an all-optical communication network. Many crucial MEMS-based 

components such as variable optical attenuator (VOA) [27], optical switch 

[28-30] and tunable laser [31] for telecommunication applications have been 

demonstrated and commercialized.  

 Among these optical communication applications, VOA and its array 

are crucial components for enabling the advanced optical network. Currently, 

VOAs are adopted to groom power levels across the DWDM spectrum, which 

help minimize crosstalk and maintain the desired signal noise ratio. In the case 

of MEMS technology, such MEMS VOA devices offer physical features like 

transparency (bit rate and protocol independent), tunability, scalability, low 

electrical operation power consumption, and small form factor. In addition, 

these MEMS VOAs deploy the free space light attenuation configuration and 
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demonstrate their prevalence advantages over other solutions in terms of 

device features, wavelength independence, transparency etc. This allows them 

to reduce incoming light intensity in an analog control manner regardless of 

the difference in wavelength and protocol.   

 

Fig.  1-3. Schematic diagram illustrating the various optical components in a DWDM-based 
optical communication network.  

 

1.3 Actuation Schemes 

 Recent developments in the rapidly emerging discipline of MEMS 

have shown immense promise in actuators and micro-optical systems [32]. In 

conjunction with properly designed mirrors, lenses and gratings, various 

micro-optical systems driven by microactuators can provide many unique 

functions in light manipulations such as reflection, beam steering, filtering, 

focusing, collimating, and diffracting, etc. In the next few sections, the four 

major actuation schemes, i.e. electrothermal, electrostatic, piezoelectric and 

electromagnetic, for in-plane or out-of-plane movement are introduced. Each 
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actuation schemes have their inherent advantages and disadvanatages, while 

their design feasibilities are often limited to the fabrication method used.   

1.3.1 Electrothermal actuation 

 Electrothermal actuation makes use of the difference in thermal 

expansion of materials to achieve mechanical actuation. The thermal 

expansion of a solid material is characterized by the coefficient of thermal 

expansion (CTE), αT, and it has a unit of strain per change in temperature (K-

1). With a small temperature change of ΔT, the introduced mechanical strain is 

defined as the product, αT • ΔT. One of the basic actuator structures for 

thermal actuation, as shown in Fig. 1-4(a), is a electrothermal bimorph which 

consists of a cantilever with two different material layers [33-36]. The 

actuation relies on the difference in linear expansion coefficients of two 

materials, with one layer expanding by a larger amount compared to the other. 

This results in stress at the interface of these two layers, leading to bending of 

the cantilever. The elevated temperature can be created by heating up the 

cantilever when a bias current flows through an embedded resistor in the 

cantilever, i.e. Joule heating effect.  

In addition to out-of-plane actuation, there are also other applications 

that demand in-plane displacement which will involve designs that are 

different from the above-mentioned bimorph actuator. For example, in-plane 

actuation is made possible by designing a single material, U-shaped 

electrothermal actuator consisting of two arms of uneven widths [37]. As 

shown in Fig. 1-4(b), when an electrical current is applied from one anchor to 

the other, the arm with the larger electrical resistance heats up more. This 
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results in higher temperature and larger volume expansion in the thinner arm, 

i.e. so called hot arm. The other thicker arm is relatively cold and is referred as 

cold arm. Eventually, the U-shaped thermal actuator will deflect laterally 

towards the cold arm side due to asymmetrical thermal expansion when the 

actuator is dc biased. Other variations of the classical single hot-cold arms 

design have also surfaced, with some research groups focusing on two hot 

arms and one cold arm design [38-40], and one group having integrated a 

piezoresistive lateral displacement sensor embedded into the actuator [41]. 

Other designs for in-plane electrothermal actuators, such as V-shaped chevron 

beam actuators illustrated in Fig. 1-4(c), have also been reported [42-44].  

 

Fig.  1-4. Schematic diagram of (a) out-of-plane bimorph actuator showing its displacement in 
response to Joule heating when biased [34], (b) in-plane U-shaped actuator design, which 
deploys hot-cold arms of different widths [37], and (c) in-plane V-shaped chevron beam 
actuator which buckles in the direction of tip when a current flows through it [42].    

 Compared to other actuation schemes, electrothermal actuator can 

achieve large forces (~100µN) and static displacement (~100µm) at relatively  

low voltages (~5V) [32]. However, it requires a large amount of thermal 

energy for their energy and therefore consumes substantial electrical energy 

(~1W). In addition, it has a slower response and ac operation of thermal 

actuator is generally limited to frequency response of less than 1 kHz. This is 

due to the time constant associated with heat transfer. High temperature and 
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complicated thermal management are further drawbacks of thermal actuation. 

For example, the upper practical limit for temperature in polysilicon and 

single-crystal-silicon based electrothermal actuator is approximately 600°C 

and 800°C respectively, above which material property changes such as 

localized plastic yielding and material grain growth become an issue.   

1.3.2 Electrostatic actuation 

 In electrostatic actuation, a typical configuration usually consists of a 

movable electrode connected to suspended mechanical springs while a fixed 

electrode is anchored onto the substrate. When a voltage is applied to the 

capacitive electrodes, the electrostatic attractive force actuates the movable 

electrode to the stationary electrode, causing the area of overlap and the 

capacitance between the two electrodes to increase. As a result, the spring 

suspending the movable electrode is deformed. Thus, the force balance 

between the spring restoring force and the electrostatic force determines the 

displacement of the movable electrode.  

 There are two major types of electrodes that are commonly used for 

electrostatic actuation: parallel plate [45, 46] and interdigitated combs, as 

illustrated in Fig. 1-5. In the lateral and vertical comb actuation setups, the 

force is independent on the displacement, unlike the parallel plate actuator 

setup. In addition, the force is inversely proportional to the gap distance, hence 

making the force generated to be much smaller than that of parallel plate 

actuator. This can be compensated by having more fingers and applying a 

higher voltage. There are currently four categories of comb drive designs: 

lateral combs [4, 47], rotary combs [6, 48, 49], staggered vertical combs 
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(SVC) [50-55], and angular vertical combs (AVC) [56-61]. In a SVC actuator 

shown in Fig. 1-5(c), it requires a vertical offset between the moving combs 

and the fixed combs for out-of-plane rotation. In order to create the vertical 

offset between the two sets of combs, various fabrication techniques such as 

wafer bonding [50-52], integration of polysilicon and surface micromachining 

[53], double-side alignment lithography on a SOI wafer [54, 55] have been 

used. In the case of AVC illustrated in Fig. 1-5(d), the movable combs are 

often fabricated in the same layer as the fixed fingers and then tilted upward 

by various post-fabrication methods such as plastic deformation [56, 57], 

residual stress [58], reflow of PR [59], and manual assembly [60, 61].  

 

Fig.  1-5. Schematic diagram illustrating the various types of electrostatic actuators commonly 
adopted in literature. They are (a) out-of-plane parallel plate actuator [45], (b) in-plane rotary 
combs [49], (c) out-of-plane staggered vertical combs [59], and (d) out-of-plane angular 
vertical combs [59].   

 In general, parallel plate and comb actuators are the available designs 

that may be used in bulk micromachined optical MEMS devices, while 

polysilicon-based comb actuators are often used in surface micromachined 
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structures. Briefing speaking, parallel plate actuation can provide large force 

(~50μN) with small displacement (~5μm), but the force is highly nonlinear 

and instable within the displacement range. On the other hand, interdigitated 

comb actuation provides a moderate level of force (~10μN) with resonable 

displacement (~30μm). Compared with other forms of actuation mechanisms, 

electrostatic actuation offers fast response time (~1ms) with negligible power 

consumption and can be easily integrated with electronic control. However, it 

faces many challenging issues such as low mechanical stability due to pull-in, 

non-linearity, and a very high actuation voltage (~50V). 

1.3.3 Piezoelectric actuation 

 

Fig.  1-6. Schematic diagram illustrating the change in perovskite crystal structure (a) before, 
and (b) after voltage is applied across it.  

 Piezoelectric effect is understood as the linear electromechanical 

interaction between the mechanical and the electrical state in a crystalline 

material. An applied dc voltage across the electrodes of a piezoelectric 

material will result in a net strain that is proportional to the magnitude of the 

electric field. A lack of center of symmetry in piezoelectric crystal means that 

a net movement of positive and negative ions with respect to each other as a 

result of stress will produce an electric dipole as shown in Fig. 1-6. Adding up 
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these individual dipoles over the entire crystal gives a net polarization and an 

effective field within the material. Conversely, a mechanical defomation of the 

crystal is produced when an electric field is applied, which make this 

phenomenon extremely useful in driving optical MEMS devices [62, 63].   

 In general, piezoelectric effect is often described in terms of 

piezoelectric charge coefficient, dij, which relates the static voltage or electric 

field in the i direction to displacement of applied force in the j direction. When 

a piezoelectric material is deposited on top of a microstructure, e.g. a Si 

cantilever, the axes 1 and 3 are defined as longitudinal and normal direction of 

the cantilever, respectively. The piezoelectric charge coefficients are given as 

d33 when both voltage and force are along the vertical axis (axis 3), while d31 

when voltage is along the vertical axis but the force generated is along the 

longitudinal axis (axis 1). The piezoelectric charge coefficient, which is the 

proportionality constant between strain and electric field, indicates that a 

higher value of it would be highly desirable for actuation purposes.   

Most of the piezoelectric materials have perovskite crystal structure 

and they include quartz (SiO2), lithium niobate (LiNbO3), aluminium nitride 

(AlN), zinc oxide (ZnO) and lead zirconate titanate (PZT), while the most well 

known polymer based piezoelectric material is polyvinylidene fluoride 

(PVDF). Among these materials, PZT has the largest piezoelectric charge 

coefficients (d31 and d33) as shown in Table 1-1 [64]. Due to its excellent 

piezoelectric properties, PZT has often been used in numerous optical MEMS 

applications such as adaptive optics [65, 66], optical communication [67, 68], 
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and beam scanning [69-71]. However, unlike AlN, PZT is not CMOS 

compatible, hence making mass production by CMOS foundries impossible.    

Table 1-1. Piezoelectric coefficient of selected piezoelectric materials [64]. 

Material Piezoelectric coefficients 
Barium titanate d33 = 85.6 pm/V; d31 = 34.5 pm/V 

Aluminum nitride d33 = 4.5 pm/V 

Zinc oxide d33 = 12.4 pm/V 

Lead zirconate titanate d33 = 360 pm/V; d31 = 180 pm/V 

Polyvinylidene fluoride d31 = 20 pm/V; d33 = 30 pm/V 

 

1.3.4 Electromagnetic actuation 

 Lorentz force is generated when a current-carrying element is placed 

within a magnetic field and it occurs in a direction equivalent to the cross 

product of the current and magnetic field. Although Lorentz force actuation 

may be applied to MEMS devices in a number of ways, the prevailing 

approach is to have metal coils integrated on a micromirror and actuated by an 

ac current at resonance when the mirror is placed near a permanent magnet 

[72-77]. Fig. 1-7(a) shows a three-axis actuated micromirrror developed by 

Cho et al., where actuation coils made of gold are electroplated on the mirror 

plate and cantilever actuators [76]. Another approach, as shown in Fig. 1.7(b), 

is to integrate a permanent magnet (hard ferromagnet) or a permalloy layer 

(soft ferromagnet) on a movable mirror while a Lorentz force is introduced 

through the interaction between magnetic layer and surrounding ac magnetic 

field of an external solenoid [78-82]. The availability of permanent magnetic 

materials that are compatible with MEMS processing is limited and this brings 
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necessary process development effort. Thus, it is common for the magnetic 

field to be generated externally, while the discrete and movable 

electromagnetic actuators often comprise metal coils.  

 Similar to electrostatic actuation, electromagnetic actuation provides 

moderate switching speed (~10ms) and low power consumption (~100mW) 

but the assembly of permanent external magnets and coils make it extremely 

challenging. Fabricating ferroelectric materials can also be challenging, as 

these thin films may not be compatible with the standard CMOS processes. 

 

Fig.  1-7. (a) A SEM photo showing the electroplated gold electromagnetic coils on the mirror 
plate and actuated by ac current at resonance in the presence of permanent magnet [76]. (b) A 
schematic diagram illustrating a permanent magnetic film integrated on the mirror plate and 
actuated by the surrounding ac magnetic field [79].  

 

1.4 Actuation Mechanisms 
 Actuation mechanisms, compared to actuation schemes, often 

encompass a wider field of considerations such as mechanical structure design, 

placement of optics, biasing configurations etc. Details of the various types of 

actuation mechanisms, in relation to 2-D scanning and VOA applications, will 

be discussed in this section.  
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1.4.1 MEMS Scanners 

 A wide variety of actuation mechanisms for MEMS scanners have 

been reported in literature, with many of them deploying the two frames 

design for 2-D actuation [55, 74, 81, 83-89]. For example, in the work 

reported by Jain et al., bi-directional 2-D scanning was performed by 

fabricating two sets of large vertical displacement thermal actuators on 

separate frames [83]. The orthogonal orientation of the two sets of actuators 

results in two perpendicular axes of rotation for the mirror. By biasing both 

sets of electrothermal actuators with ac voltages simultaneously, Lissajous 

figures were obtained. Yalcinkaya et al. also reported a state-of-the-art MEMS 

scanner for high resolution displays driven by electromagnetic coils, with full 

optical deflection angles of 65° and 53° achieved for slow (60 Hz, sawtooth) 

and fast (21.3 kHz, sinusoid) scanning, respectively [74]. A similar gimbaled 

MEMS scanner electroplated with ferromagnetic film, as shown in Fig. 1-8(a), 

was later demonstrated by Tang et al. in 2010. This feat was later replicated by 

Chu et al., where their electrostatic driven MEMS scanner in Fig. 1-8(b) was 

able to achieve slow and fast scanning at 162 Hz, 14° and 40 kHz, 11.5° 

respectively in vacuum condition [55].  

 In the regime of piezoelectric driven MEMS scanners, the research 

group of Prof. Toshiyoshi from University of Tokyo first demonstrated, in 

2005, a double-gimbal MEMS scanner design which composed of two 

orthogonal pairs of unimorph PZT actuators as shown in Fig. 1.8(c) [69]. The 

scanner performed large optical deflection angles of 23° (4.3 kHz for X-scan) 

and 52° (90.3 Hz for Y-scan) at driving voltages of 10-20 Vac with a 5V dc 
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offset. This effort was followed up in 2007 with a newly developed PZT-

meandering actuator that allows angular displacement in a cascaded 

meandering actuator to be accumulated, as shown in Fig. 1.8(d) [88]. The 

scanner delivered large static mechanical angle of ±5.6° and ±8.6° for the 

inner and outer axes, respectively. In the same year, they also demonstrated 

another MEMS scanner design, as shown in Fig. 1.8(e), obtaining wide range 

2-D scan by combining resonant motion for the fast horizontal axis (11.2 kHz, 

39° optical deflection angle) and quasi-static operation for the vertical axis 

(DC ~60 Hz, 29° optical deflection angle). operating at 40 Vpp [89].        

 Apart from the above-mentioned MEMS scanners that deploy 

gimbaled designs to allow physical decoupling of the two scanning axes, 

gimbal-less MEMS scanners are also common designs that have been reported 

in literature [90-95]. Such gimbal-less MEMS mirror designs have 3 degree-

of-freedom actuations, including rotations around two axes in the mirror plane, 

and out-of-plane piston actuation. To overcome mirror plate shift and rotation 

shift problems, Jia et al. designed folded dual S-shaped bimorph actuators as 

shown in Fig. 1-8(f) to drive the mirror [92]. This MEMS scanner was 

recently implemented into a miniature optical coherence tomography probe 

where high resolution 3-D tissue images were obtained [93]. Such tip-tilt-

piston MEMS scanner was also demonstrated by Zhu et al. on a folded, three-

segment piezoelectric actuator design as shown in Fig. 1.8 (g) [95].    
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Fig.  1-8. SEM photos of MEMS scanners based on gimbaled, two frame designs driven by (a)  
electromagnetic [81], (b) staggered vertical electrostatic comb actuators [55], (c)-(e) 
piezoelectric PZT actuators [69, 89, 96], and (f)-(g) gimbal-less designs driven by folded dual 
S-shaped electrothermal bimorph [92] and piezoelectric unimorph actuator [95], respectively. 
(h) Optical microscope photo of a piezoelectric MEMS scanner for high resolution 1-D 
scanning [71].   
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Fig.  1-9. Photos of simple 2-D MEMS mirror designs driven by (a) a L-shaped thermal 
bimorph cantilever actuator [97], and (b) external coil exciting a mirror plate electroplated 
with permalloy [98].  

 Besides gimbaled and gimbal-less MEMS mirror designs, 

straightforward and compact MEMS mirror designs have also been reported. 

For example, Schweizer et al. developed a L-shaped thermal bimorph 

cantilever actuated mirror as shown in Fig. 1-9(a), allowing orthogonal 

angular motion and 2-D scanning to be made possible through a single 

cantilever actuator [97]. Another similar mirror design illustrated in Fig. 1-9(b) 

was made by Isikman et al., where magnetic permalloy NiFe was 

electrodeposited on a mirror plate supported by a straight, narrow cantilever 

beam [98]. This actuation configuration allows for 2-D scanning by using a 

single external actuation coil. 

 The approach of using two single-axis MEMS mirrors to achieve 2-D 

scanning has also gathered popularity in recent years as the design of the 

actuation mechanism for the fast and slow scanning axis can now be 

decoupled, hence allowing the fast scanning MEMS mirror to achieve much 

better performance in terms of scan rate and optical deflection angle. For 

example, Arslan et al. have successfully demonstrated a torsional comb-driven 

1-D MEMS scanner that is able to achieve a 76° total optical deflection angle 
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at 21.8 kHz, 196 Vpp [99]. Similarly, Isamoto et al. have also reported an 

electrostatic 1-D MEMS mirror scanning at 69.7 kHz, with optical deflection 

angle of 6.5° [100]. More recently, as shown in Fig. 1.8(h), Baran et al. 

developed a resonant 1-D piezoelectric MEMS scanner that operates at 40 kHz, 

24 V peak voltage, giving an optical deflection angle of 38.5° [71]. These 

above-mentioned works demonstrate the feasibility of utilizing mechanical 

mode amplification to achieve enhanced performance. However, without 

proper design consideration, these fast scanning devices will suffer from high 

dynamic mirror deformation. 

1.4.2 MEMS Variable Optical Attenuators 

 
Fig.  1-10. Schematic diagrams illustrating the attenuation principle for various types of 
MEMS VOAs designs such as (a) shutter type [101], (b) planar reflective type [102], and (c) 
3-D reflective type [103]. 

 The first MEMS-based VOAs were demonstrated by two different 

groups from Lucent Technology. In 1998, Ford and Walker developed a 
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MEMS VOA using a surface-micromachined silicon nitride suspended 

membrane with λ/4 optical thickness above a silicon substrate with a fixed 

3λ/4 spacing. Voltage applied to electrodes on top of the membrane creates an 

electrostatic force and pulls the membrane closer to the substrate such that the 

intensity of reflective light is controlled accordingly [104]. Later in 1999, 

Barber et al. developed a MEMS VOA using a surface-micromachined poly-

Si micromirror arranged between ends of two fibers and aligned along the 

same axis [101]. As illustrated in Fig. 1-10(a), the micromirror functions as a 

shutter and can move in out-of-plane direction with a given bias due to 

electrostatic force. The attenuation of this MEMS VOA is determined as a 

function of the position of micromirror, i.e., the percentage of blocked light.

 In addition to the shutter type MEMS VOAs [4, 101, 105-107], there 

are two more categories of reflective-type MEMS VOAs: planar reflective 

type and 3-D reflective type. In planar reflective type MEMS VOA shown in 

Fig. 1-10(b), attenuation is achieved due to the change in coupling efficiency 

between the input and output fiber when the mirror is actuated. The two 

commonly adopted designs in these planar type MEMS VOA include using 

single reflective [49, 102, 108-110] and retro-reflective mirrors [48, 111-113]. 

With proper design of actuators, a well-optimized DRIE process and 

appropriate selection of lens fibers, single-reflective-type VOAs performance 

are superior to that of shutter-type VOAs. General speaking, attenuation 

scheme based on microshutter design offers the benefits of low insertion loss 

(IL) and large attenuation range due to the close proximity between the input 

and output optical fibers. However, it also results in a large polarization 

dependent loss (PDL) and a strong back reflection due to diffraction and the 
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coaxial assembly, respectively. On the other hand, the planar reflective type 

attenuation mechanism offers low PDL and low wavelength dependent loss 

(WDL), but suffers from high IL due to a certain amount of separation needed 

for fiber assembly. Combining optics and a reflective mirror to be assembled 

in a 3-D configuration, as depicted in Fig. 1-10(c), is also a key approach of 

making MEMS VOA devices [68, 103, 114, 115]. In conjunction with large 

micro-optics such as dual-core collimators, such 3-D reflective type VOA 

device can also gain excellent data of return loss, PDL and WDL under 

reasonable driving voltage.  

 Besides having two fixed optical fibers optically coupled using MEMS 

actuators as exemplified by shutter and reflective type MEMS VOAs, research 

on MEMS VOAs where the optical coupling between a fixed and an initially 

aligned movable fiber is changed through the use of a microactuator to push 

the movable fiber are also made [116-118]. Such optical attenuation method 

requires no additional microoptical elements in the optical path, hence does 

not introduce PDL and WDL. Unamuno et al. first demonstrated an alignment 

and fixing method for optical fiber based on electrothermal chevron MEMS 

actuator and curing of adhesive, respectively [117]. This fiber alignment 

method was further improved by them a year later with a vernier latching 

mechanism, which allows the VOA device to retain the desired attenuation 

state without provision of electrical power [118]. Optical power coupled 

between the two single mode fibers varied from 3.72 dBm to -44dBm, during 

which the VOA latched in 30 stable positions.  
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 1.5 Objectives of Thesis 

 This thesis aims to explore various kinds of interesting MEMS mirror 

designs for 2-D scanning and VOA applications. A wide variety of MEMS 

scanners based on various actuation schemes have been reported in literature 

and summarized in section 1.4.1, with most of them deploying either the two 

frames or/and multi-actuators designs for 2-D actuation. One of the aims in 

this thesis, therefore, is to explore other kinds of actuation mechanisms that 

have not been reported previously and integrate them with silicon 

micromirrors for 2-D scanning illustration. In the case of VOA applications, 

limited research efforts have been made in 3-D reflective type MEMS VOAs 

in contrast to the research activities devices that have been widely reported in 

planar shutter and reflective type MEMS VOA. Thus, in this thesis, new 3-D 

reflective type MEMS VOAs assembled with optics in a free space 

configuration and driven by novel actuation mechanisms will also be explored.        

  With these objectives in mind, four MEMS mirror designs, which are 

capable of moving in six degree of freedom, have been conceptualized, and 

fabricated successfully. With the focus on the development of unique 

actuation mechanisms to drive the MEMS mirror, characterization of the 

aforementioned designs are made from the application perspective. To reach 

these goals, the following research tasks are endeavored. 

1. To demonstrate novel MEMS scanners designs based on either 

piezoelectric or hybrid actuation scheme. The fabricated MEMS 

mirrors seek to exhibit Lissajous scanning patterns, hence illustrating 

their capabilities for proof-of-concept 2-D scanning applications.    
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2. To develop low voltage driven 3-D reflective type MEMS VOAs based 

on either piezoelectric or hybrid actuation schemes and incorporate 

novel actuation mechanism that involves combination of rotational and 

translational effects to achieve optical attenuation. These new MEMS 

VOA designs aim to follow up and strengthen our group’s previous 

successful work in early 2009 where data of a 1-V PZT-driven MEMS 

VOA were reported for the first time in literature [68].   

1.6 Thesis organization 
 This thesis summarizes the various works on MEMS mirrors for VOA 

and 2-D scanning applications that were undertaken during the course of my 

candidature. The content of each chapter in the thesis is as follows:    

 Chapter 2 presents two MEMS scanner designs, i.e. designs A and B, 

driven by 1×10 array of piezoelectric PZT beam actuators for 2-D scanning 

applications. In design A, there are ten PZT beam actuators that are 

electrically connected in series, with a mirror plate at the end of the actuators. 

In design B, the dimensions of the device remain the same while the ten PZT 

beam actuators are electrically isolated instead. Lissajous scanning patterns 

were obtained by, for example, exciting half of the 1x10 actuators at bending 

mode while exciting the remaining actuators at torsional mode for design A. In 

the case of design B, the actuation mechanism to elicit 2-D scanning is 

different from that of design A.            

 Chapter 3 discusses on the experimental data obtained for VOA 

application based on design B in Chapter 2. A dual core fiber collimator was 

aligned perpendicularly to the mirror in a three-dimensional light attenuation 
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arrangement. The attenuation curves under DC bias for different operation 

modes were also investigated. 

 Chapter 4 provides the third MEMS scanner design i.e., design C, 

which offers better scanning performance at lower actuation voltage. Instead 

of using a 1×10 array of PZT actuators to drive the mirror, a single S-shaped 

PZT actuator is deployed. Various Lissajous scanning patterns were 

demonstrated by superimposing two ac sinusoidal electrical signals of 

different frequencies into one signal to be used to actuate the mirror.  

  Chapter 5 presents a novel hybrid CMOS compatible MEMS scanner 

based on hybrid actuation mechanism. Both electrothermal and 

electromagnetic actuations have been integrated in the same device for slow 

and fast scanning, respectively. Many Lissajous patterns were demonstrated at 

low power condition, making our proposed actuation design approach suitable 

for mobile 2-D raster scanning applications powered by batteries with limited 

capacity.  

 Chapter 6 further investigates the use of the hybrid-driven MEMS 

mirrors for VOA application mentioned in Chapter 5. Three types of 

attenuation mechanisms based on electromagnetic, electhrothermal and hybrid 

actuations were explored and studied. Our unique design of using both 

electrothermal and electromagnetic actuators simultaneously to achieve 

attenuation is the first demonstration of such a hybrid driven CMOS 

compatible MEMS VOA device.  

  Finally, the main contributions of this thesis and suggestions for future 

work are summarized in Chapter 7.  
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Chapter 2  

MEMS Scanners Driven by 1×10 
PZT Beam Actuators  
2.1 Introduction 

 MEMS scanners are fundamental components in many optoelectronics 

applications such as display, microspectroscopy and biomedical imaging. One 

of the key factors that has contributed to the remarkable MEMS commercial 

success is the development of Si-based micromachining technology and 

CMOS MEMS [119]. The integration of micromechanical parts and CMOS 

circuits has facilitated mass production of MEMS devices in CMOS foundries 

due to their high production yield and low fabrication cost. However, limited 

material selection in CMOS MEMS and CMOS compatible processes restrict 

the Si-based actuators to be mainly electrothermal, electrostatic or 

electromagnetic [58, 120, 121].  

 Actuators deploying piezoelectric PZT (PbZrXTi1-XO3) films are also 

attractive alternatives to Si-based actuators because of its potential to offer 

higher output force at lower voltage compared to the other actuators [122-124]. 

In this chapter, two designs of piezoelectric driven MEMS scanners using 

mechanical supporting beam integrated with 1x10 PZT actuator array are 

explored and characterized. In the first design, i.e. design A, there are ten PZT 

beam actuators that are electrically connected in series, with a mirror plate at 

the end of the actuators. In the second design, i.e. design B, the dimensions of 

the device are identical with design A, except that the ten PZT beam actuators 
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are electrically isolated instead. Through this design variation, we aim to 

investigate the performance of the PZT MEMS scanners by using different 

actuation mechanisms to elicit 2-D scanning for both the devices. Although 

electrothermal bimorph beam actuators have been well characterized in terms 

of their capability to generate large deflection in bending mode [33, 83, 120], 

no design of torsional mirror driven by beam actuators has been reported for 

piezoelectric actuation mechanism yet. As such, our unique piezoelectric beam 

actuator design is the first demonstration of large torsion mirror using PZT 

beam actuators. 

2.2 Design and Modeling  

 Schematic diagrams of the piezoelectric MEMS scanners demonstrated 

in this chapter are shown in Fig. 2-1. In both designs, there are ten patterned 

PZT thin film actuators arranged in parallel along the longitudinal direction of 

the scanners. A silicon cantilever beam, derived from the Si device layer of a 

silicon-on-insulator (SOI) wafer, remains beneath the ten PZT actuators so as 

to provide mechanical support. In design A shown in Fig. 2-1(a), the PZT 

actuators are electrically connected in series, with the bottom electrode of each 

actuator connected to the top electrode of the adjacent actuator. However, in 

design B shown in Fig. 2-1(b), the electrical connections of the ten PZT 

actuators are separated from one another.  

 The equivalent electrical circuits of the 1×10 PZT actuators for both 

designs A and B are shown in Fig. 2-2(a) and 2-2(b), respectively. Each 

actuator consists of one top and bottom electrode sandwiching a PZT thin film 

of 3 μm thickness, i.e. a capacitive structure. In design A, the 1×10 PZT 
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actuators are ten serial connected capacitors labelled 1-10, with their 

corresponding bond pads labelled a-k. On the other hand, in the case of design 

B, the electrical connections of the top and bottom electrodes for each actuator 

are separated from one another. The dimensions of the scanners for both 

designs are summarized in Table 2-1. 

 

Fig.  2-1. Schematic diagram of the MEMS scanners driven by 1×10 PZT beam actuators for 
(a) design A, and (b) design B, respectively. In design A, the electrical connections of the PZT 
beam actuators are connected in series, i.e., the top electrode of one PZT actuator is 
electrically connected to the bottom electrode of the adjacent actuator. In design B, the 
electrical connections of the ten PZT actuators are separated. The inset shows an illustration of 
torsional mode, where the mirror twists about the y-axis.       

 

Fig.  2-2. Equivalent circuit of the 1×10 PZT beam actuators labelled 1-10, and their 
corresponding bond pads for (a) design A, and (b) design B, respectively.  
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Table 2-1. Dimensions of the MEMS scanners for both designs. 

PZT actuators Si cantilever Si mirror plate 

3 mm long × 0.24mm 
wide × 3 µm thick 

3 mm long × 5 mm 
wide × 5 µm thick 

5 mm long × 5 mm wide 
× 0.4 mm thick 

 

 In design A, the MEMS scanner is designed to drive in three modes: 

bending, torsional and mixed (or combinational). As shown in Fig. 2-1(a), 

bending mode occurs when an ac driving voltage corresponding to the 

resonant frequency for bending mode is applied to the actuators 

simultaneously. The displacement introduced by the bent actuators under bias 

causes the mirror to undergo translational and rotational movement about the 

x-axis, hence achieving horizontal scanning effect when a laser is shone on the 

mirror surface. In torsional mode, an ac driving voltage corresponding to the 

resonant frequency for torsional mode is applied to the actuators, causing the 

mirror to twist about the y-axis. To obtain a 2-D scan, i.e. mixed mode, the ten 

actuators can be biased such that both bending and torsional modes happen 

simultaneously, causing the mirror plate to rotate about the x- and y-axis at the 

same time. This can be done by biasing half of the PZT actuators at resonant 

frequency corresponding to bending mode, while the other half of them at 

resonant frequency corresponding to torsional mode. 

 In the case of design B, the MEMS scanner can also operate in the 

three modes mentioned previously. Similar to design A, bending mode occurs 

when an ac driving voltage is applied simultaneously to the actuators in design 

B. However, in torsional mode operation, design B with the separated 

electrical connections can, instead, achieve torsional scanning based on the 

difference in the ac biasing voltage applied individually to the ten PZT 
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actuators. For example, design B can achieve twisting about the y-axis by 

biasing actuators 1-5 in such a way that they bend downwards while actuators 

6-10 are biased to bend upwards in the opposite direction at resonant condition. 

This difference in bending directions for the two sets of actuators causes the 

mirror to twist about the y-axis, achieving vertical scanning effect when ac 

voltages of varying amplitude are applied to the ten actuators. This actuation 

mechanism differs from that of design A in torsional mode. As such, besides 

depending on the resonance phenomenon for torsional scanning, the difference 

in the direction of actuator displacement due to 180° phase difference in the 

applied bias also helps to magnify the torsional scanning of the mirror. To 

obtain a 2-D scan with design B, the ten actuators are biased such that both 

bending and torsional modes happen simultaneously. Details of the biasing 

configuration and actuation mechanisms for both designs A and B will be 

described later in the chapter.     

 Modal analysis by finite element software, ABAQUS, was done to 

explore the different mode shapes of the MEMS scanners at different 

harmonic frequencies. A model based on the dimensions of the scanner was 

built in the software. The model was assumed to be made entirely of silicon as 

it has been calculated that silicon contributes 99.3% of the mass of the MEMS 

scanner, as compared with PZT which only contributes 0.6%. The input 

parameters and values in bracket for silicon is Poisson ratio (0.28), mass 

density (2330 kg/m3) and Young's modulus (167 GPa) [125, 126]. A 

homogenous solid with isotropic elasticity was chosen. An encastre boundary 

condition was implemented on the fixed end of the silicon cantilever. 

Simulation results from Fig. 2-3 have demonstrated that our 1×10 actuator 
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array design is able to have multiple resonant modes with all six degrees of 

freedom in three-dimensional space. The 1st and 2nd bending modes were 

obtained at 6Hz and 33Hz, respectively, while the 1st and 2nd torsional modes 

were obtained at 121Hz and 204Hz, respectively. 

 

Fig.  2-3. Modal analysis of the MEMS scanner using finite element software ABAQUS. (a) 
1st bending mode at 6Hz. (b) 2nd bending mode at 33Hz. (c) 1st torsional mode at 121Hz. (d) 
2nd torsional mode at 204Hz. 

 

2.3 Device Microfabrication 

 Fig. 2-4 shows the microfabrication process flow of the MEMS 

scanners. A SOI wafer with 5-μm thick Si device layer, 1-μm-thick buried 

oxide (BOX) and 725-μm-thick Si handle layer was used as the starting 

material for the device. A thermal oxide layer of 0.37 μm was formed from the 

Si device layer surface. Pt/Ti layers were deposited by sputtering to form the 

bottom electrodes, followed by deposition of 3 μm PZT thin film by sol-gel 

process. The PZT film deposited has a (100)-orientated columnar structure, 

which helps to maximize the dielectric constant and electrical properties of the 

PZT film [127]. Finally, the top electrode was formed from multilayered  
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Fig.  2-4. Microfabrication process flow for making the devices. 

 

Fig.  2-5. Magnified photos showing the packaged MEMS scanners for (a) design A, and (b) 
design B, respectively. 
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deposition of Ti/Pt by sputtering. The deposited films were then pyrolyzed at 

200-470°C for five minutes and crystallized by rapid thermal annealing at 

700°C for two minutes. Pt was used due to its high stability in the processing 

temperature range. In Fig. 2-4(b), the top and bottom multilayered electrodes 

were etched away by Ar ion while the PZT thin film were wet-etched away 

using a mixture of HNO3, HF and HCl. In Fig. 2-4(c), a 0.8-μm-thick oxide 

layer was deposited by RF-magnetron sputtering to serve as insulation. 

Contact holes etching were done by reactive ion etching (RIE) with CHF3 gas. 

In Fig. 2-4(d), Pt wire of 1 μm with Ti adhesion was deposited by RF-

magnetron sputtering and later etched by Ar ion. In Fig. 2-4(e), the thermal 

oxide, structural Si and BOX were etched by RIE using CHF3 gas (SiO2) and 

SF6 gas (Si) to open the area of cantilever and mirror. Finally, in Fig. 3(f), the 

silicon substrate and BOX were etched from the backside to release the mirror 

and the cantilever. A thick Si plate of 400 μm remained beneath the mirror to 

maintain the rigidity and flatness of the mirror. 

 After the fabrication process, the MEMS scanners for both designs 

were bonded onto different metal packages and the bond pads were connected 

by gold wire to the metal pins of the packages as shown in Fig. 2-5(a) and 2-

5(b), respectively. Fig. 2-6 shows the optical microscope photos for the 

various structures of both designs. Fig. 2-6(a) illustrates the serial connection 

of the PZT actuators in design A, where the top electrode of a PZT actuator is 

connected to the bottom electrode of the adjacent actuator, while Fig. 2-6(b) 

depicts the bond pads being connected to the bottom electrodes of their 

respective actuators. In Fig. 2-6(c), the PZT actuators are electrically isolated 

from one another for design B, while the bond pads are connected to either the 
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top or bottom electrode of the actuators as shown in Fig. 2-6(d). Fig. 2-6(e) 

and 2-6(f) show the 1×10 PZT actuators fabricated in parallel on top of a Si 

cantilever and the Si mirror surface, respectively. 

 

Fig.  2-6. Optical microscopes photos of (a) PZT actuators connected in series for design A, 
where the top electrode of a PZT actuator is connected to the bottom electrode of the adjacent 
actuator, (b) bond pads connected to the bottom electrodes of their respective actuators for 
design A, (c) PZT actuators that are electrically isolated from one another for design B, (d) 
bond pads connected to either the top or bottom electrode of the actuators for design B, (e) 
PZT actuators fabricated in parallel on top of a Si cantilever, and (f) Si mirror surface. 

2.4 Experimental Setup 

 The schematic diagram of the experimental setup used to characterize 

the MEMS scanners is illustrated in Fig. 2-7. A He/Ne red laser source of 

wavelength 632.8nm is used. The incident light from the laser source located 
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at the left hand side of Fig. 2-7 is reflected by the mirror and propagates 

toward the screen on the right side with an optical deflection angle (ODA) of 

2θ, where θ denotes the mechanical deflection angle. The screen is placed and 

fixed perpendicularly to the reflected light when the mirror is initially 

unbiased. When the actuators are driven in ac mode, a mechanical deflection 

angle of ±θ is introduced to the mirror. The resulted reflected light will be 

deviated from the original light path with an angle of ±2θ and the light spot on 

the screen will be shifted by a distance ±L. The value of θ can then be derived 

from the measured L and the known distance H, where H is the distance of the 

screen from the mirror. To enhance the piezoelectric characteristic of the 

actuators, poling treatment was done prior to the experiment at room 

temperature. A dc voltage of 25V, which is equivalent to a polarization 

electric field of 83kV/cm, was applied to each of the PZT actuators for 5 

minutes, with the poling direction from the bottom electrode to top electrode. 

This allows the electric dipoles in the PZT film to be aligned in the same 

direction. 

  

Fig.  2-7. Schematic drawing of the experimental setup for measuring the mirror deflection 
angle when the MEMS scanners are driven under ac actuation voltages. 
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2.5  Results and Discussion 

2.5.1 Bending mode operation 

 

Fig.  2-8. Biasing configuration during bending mode operation for (a) design A, where an ac 
voltage of, for example, 10Vpp, was applied to the ten serially connected PZT actuators, and 
(b) design B, where an ac voltage of, for example, 10Vpp, was applied to the ten PZT actuators 
individually. 

 In the bending mode operation of the PZT MEMS scanners, sinusoidal 

ac voltages were applied according to the biasing configurations shown in Fig. 

2-8(a) and 2-8(b) for designs A and B, respectively. In design A, an ac voltage 

was applied to bond pad "a" using a function generator (Agilent 33120A 

function waveform generator), while bond pad "k" was grounded. This results 

in the voltage applied by the function generator to be divided equally among 

the ten serially connected PZT actuators. In the case of design B, ac voltages 

were applied individually and simultaneously to all the bottom electrodes of 

the actuators, while the top electrodes were all grounded.  
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Fig.  2-9. Frequency response during bending mode operation for (a) Design A, where 10Vpp 
was applied to the ten serially connected PZT actuators, and (b) Design B, where 5Vpp was 
applied simultaneously to all the ten actuators individually. The inset shows an example of a 
horizontal scanning trajectory obtained for design A.   

 

Fig.  2-10. AC response during bending mode operation for designs A and B. In design A, ac 
voltages at 34 Hz were applied to the ten PZT actuators, while in design B, ac voltages at 30 
Hz were applied to the ten PZT actuators individually.  
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 The frequency response spectra for both designs A and B are shown in 

Fig. 2-9. The voltages applied to both MEMS scanners were kept constant, 

while frequency sweeps from 1 Hz to 1 kHz were used to excite both of them. 

In design A, 10 Vpp was applied to the ten serially connected actuators, i.e. 1 

Vpp across each actuator, while in design B, 5 Vpp was applied simultaneously 

to the ten individually connected actuators. A red He/Ne laser was shone on 

the mirror surface, forming a horizontal scan line trajectory on the screen, as 

illustrated in the inset of Fig. 2-9. ODAs at different frequencies of the ac 

signal were calculated using the horizontal scanned beam length and the 

distance between the micromirrors and the screen. Major ODA peaks of ±1.5° 

and ±3.8° were obtained at 34 Hz and 30 Hz for design A and B, respectively. 

These experimental resonant frequencies obtained correspond closely to the 

eigenfrequency of 33 Hz simulated by ABAQUS. In addition, the Q-factors 

for designs A and B were derived to be 6 and 5, respectively. The low Q-

factors are mainly caused by the large mass inertia of the mirror plates in both 

designs. 

 Fig. 2-10 shows the ac response during bending mode for both designs. 

In design A, ac voltages from 1 Vpp to 10 Vpp at 34 Hz were applied to the ten 

PZT actuators, while in design B, ac voltages at 30 Hz were applied 

individually to all the ten PZT actuators. When the MEMS scanners were 

biased at their respective resonant frequency, the ODA increased rather 

linearly with increasing ac voltage, with the ODA for design B reaching 

saturation for voltages above 8 Vpp. ODAs of ±1.5° and ±8°  were obtained 

when ac voltages of 10 Vpp were applied to design A and B, respectively. For 

the same applied voltage, a higher ODA was obtained for design B compared 
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to design A. This is due to the difference in the electrical connections of the 

two designs, where the ten actuators in design A shared the voltage applied by 

the function generator, while this same voltage applied by the function 

generator was uniform across all the ten actuators for design B. This resulted 

in a higher voltage applied across each of the PZT actuators in design B 

compared to design A, even though the voltage output from the function 

generator were the same for both designs. This gave rise to larger 

displacements for the ten electrically isolated PZT actuators and, hence larger 

ODA for design B. 

2.5.2 Torsional mode operation 

 Fig. 2-11(a) and 2-11(b) illustrate the bias configurations needed for 

torsional mode operation in both designs A and B, respectively. The bias 

configurations for bending and torsional mode operations in design A are 

identical, while a more complex bias configuration for torsional mode is 

adopted in design B. As shown in Fig. 2-11(c), a potential divider was 

implemented to split the ac output of the function generator into five equal 

potential at the potential nodes between each resistors. The potential divider 

was realized using five equal resistors of resistance 20Ω connected in series 

with one another. For the set of actuators 1-5, the bottom electrodes for these 

actuators were connected to the various potential nodes while the top 

electrodes of these actuators are grounded. The reverse setup was made for the 

set of actuators 6-10, i.e. the bottom electrodes for these actuators were 

grounded while the top electrodes were connected to the various potential 

nodes. As a result, each actuator will have different ac bias amplitude, as  
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Fig.  2-11. Biasing configuration during torsional mode operation for (a) design A, where an 
ac voltage of, for example, 10Vpp, was applied to the ten serially connected PZT actuators, and 
(b) design B, where an ac voltage of, for example, 10Vpp, was applied to PZT actuators 1 and 
10, while the rest of the actuators were biased at gradually lower Vpp values. For actuators 1-5, 
the biases were applied to the bottom electrodes, while the top electrodes were grounded. In 
the case of actuators 6-10, the biases were applied to the top electrodes, while the bottom 
electrodes were grounded. (c) Schematic diagram showing the implementation of the potential 
divider circuit for design B, where the ac output of the function generator is split into five 
equal electric potentials. 

evident from Fig. 2-11(b). Such a biasing configuration for design B will 

cause the largest and the smallest actuator displacements to be introduced at 

the mirror edges and center, respectively. More importantly, the generated 
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displacements for these two sets of actuators are toward opposite directions, 

resulting in torsional movement of the mirror plate. 

 Fig. 2-12 shows the frequency response obtained for both designs A 

and B during torsional mode operation. The ac voltage output applied to both 

the MEMS scanners from the function generator were kept constant, while 

frequency sweeps from 1 Hz to 1 kHz were used to excite both of them. In 

design A, 10 Vpp was applied to the ten serially connected actuators, i.e. 1 Vpp 

across each actuator, while in design B, 5 Vpp was applied to the first and tenth 

actuators, with the rest of the actuators being biased at gradual decreasing 

values. A red He/Ne laser was shone on the mirror surface, forming a vertical 

scan line trajectory on the screen, as illustrated in the inset of Fig. 2-12. Major 

ODA peaks of ±0.5° and ±4.1° were obtained at 198 Hz and 89 Hz for designs 

A and B, respectively. These experimental resonant frequencies obtained 

correspond closely to the eigenfrequencies of 204 Hz and 121 Hz simulated by 

ABAQUS. In addition, the Q-factors for devices A and B were derived to be 

66 and 8, respectively. 

 Fig. 2-13 shows the ac response during torsional mode operation for 

both designs. In design A, ac voltages from 1 Vpp to 10 Vpp at 198 Hz were 

applied, while in design B, ac voltages at 89 Hz were applied to the bias 

configurations described earlier in Fig. 2-11. When the MEMS scanners were 

biased at their respective resonant frequency, the ODA increased with 

increasing ac voltage, with the ODA for design B reaching saturation at 5 Vpp. 

ODAs of ±4.5° and ± 0.5° were obtained when ac voltages of 10 Vpp were 

applied to design A and B, respectively. For the same output voltage from the 
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function generator, a higher ODA was obtained for design B compared to 

design A. This is due to the difference in the electrical connections of the two 

designs, where the ten actuators in design A shared the voltage applied by the 

function generator, while this same voltage applied by the function generator 

 

Fig.  2-12. Frequency response during torsional mode operation for (a) Design A, where 
10Vpp was applied to the ten serially connected PZT actuators, and (b) Design B, where 5Vpp 
was applied to the first and tenth actuator. The inset shows an example of a vertical scanning 
trajectory obtained for design A obtained.   

 

Fig.  2-13. AC response during torsional mode operation for designs A and B. In design A, ac 
voltages at 198 Hz were applied to the ten PZT actuators, while in design B, ac voltages of 
different values at 89 Hz were applied to the PZT actuators.  
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was gradually decreased using a potential divider in design B. This resulted in 

a higher voltage applied across each of the PZT actuators in design B 

compared to design A, even though the voltage output from the function 

generator were the same for both designs. More importantly, besides 

depending on the resonance phenomenon for torsional scanning (in the case of 

design A), the difference in the direction of actuator displacement due to the 

180° phase difference in the applied bias also helps to magnify the torsional 

scanning of the mirror in design B. 

2.5.3 Mixed mode operation 

 In mixed (or combinational) mode operation, bending and torsional 

actuations happen simultaneously to produce 2-D scanning pattern. Two 

function generators are needed to bias separately the two different sets of 

actuators responsible for bending and torsional mode, respectively. Fig. 2-

14(a) and 2-14(b) illustrate the biasing configurations during mixed mode 

operation for designs A and B, respectively, while Fig. 2-14(c) shows the 

external electrical circuit required for mixed mode operation in design B. To 

elicit 2-D scanning in design A, actuators 1-5 were excited at resonant 

frequency corresponding to torsional mode (198 Hz), while actuators 6-10 

were excited at resonant frequency corresponding to bending mode (34 Hz). In 

the case of design B, sinusoidal ac voltage of 30 Hz from the first function 

generator, VB, was applied simultaneously to all the top electrodes of the 

actuators 4-7, while the bottom electrodes of these actuators were grounded. 

The ac output of 89 Hz from the second function generator, VT, was split by a 

potential divider into three equal potential at the potential nodes between each 

resistor. For the set of actuators 1-3, the top electrodes for these actuators were  



Chapter 2: MEMS Scanners Driven by 1x10 PZT Beam Actuators  
 

43 
 

 

Fig.  2-14. Biasing configuration during mixed mode operation for (a) design A, where an ac 
voltage of, for example, 3Vpp, at 34 Hz was applied to the PZT actuators 1-5 for bending 
mode, while 3Vpp, at 198 Hz, was applied to the PZT actuators  6-10 for torsional mode, and 
(b) design B, where an ac voltage of, for example, 3Vpp, at 89 Hz was applied to PZT 
actuators 1-3 and 8-10 for torsional mode, while 3Vpp, at 30 Hz was applied to the PZT 
actuators 4-7 for bending mode. For actuators 1-3, the biases were applied to the bottom 
electrodes, while the top electrodes were grounded. In the case of actuators 8-10, the biases 
were applied to the top electrodes, while the bottom electrodes were grounded. (c) Schematic 
diagram showing the external electrical circuit required for mixed mode operation for design 
B. 
 

connected to the various potential nodes while the bottom electrodes of these 

actuators were grounded. The reverse setup was made for the set of actuators 

8-10. As a result, the generated displacement for the actuators 1-3 and 8-10 
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were toward opposite directions, resulting in torsional rotation of the mirror 

plate. 

 Fig. 2-15(a) and 2-15(b) show the ac responses for designs A and B, 

respectively. In design A, ODAs of approximately ±3° and ±0.5° were 

obtained when a 10 Vpp bias were applied to actuators 6-10 and 1-5 for 

bending mode and torsional mode actuations, respectively. For the same Vpp, 

the ODA derived from bending actuation during mixed mode operation was 

greater than that during bending mode operation. This is due to the voltage 

output from the function generator being shared among ten actuators during 

bending mode operation, while in mixed mode operation, the same voltage 

output was shared among five actuators only. This resulted in each actuator 

during mixed mode operation receiving a greater voltage bias compared to the 

actuators during bending mode operation, hence producing a larger deflection 

angle.  

 Fig. 2-15(b) shows the measured ODA obtained for design B during 

mixed mode operation under various ac voltages applied to the two sets of 

actuators 4-7 and 1-3, 8-10 operating in bending and torsional actuations, 

respectively. An ODA of ±2.2° was obtained when a 10 Vpp bias was applied 

to actuators 4-7 for bending mode actuation. This value obtained is much 

smaller when compared to that of ±8° obtained when all ten actuators were 

biased at 10 Vpp. This decrease in ODA is expected as the number of actuators 

involved in actuating the mirror is lowered from ten to four. In torsional 

actuation, an ODA of ±1.5° was obtained when 10 Vpp was applied by the 

second function generator. 
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Fig.  2-15. AC response during mixed mode operation for (a) design A and, (b) design B.  

 Two-dimensional scanning patterns based on both designs were 

demonstrated during mixed mode operation by adopting the bias configuration 

shown in Fig. 2-14. Fig. 2-16(a) shows the Lissajous scanning pattern obtained 

from design A during resonance mixed mode operation, with actuators 6-10 

biased at 6 Vpp, 34 Hz and actuators 1-5 biased at 10 Vpp, 198 Hz. Fig. 3-11(b) 
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shows another Lissajous pattern obtained from design B, with actuators 4-7 

biased at 6 Vpp, 34 Hz and actuators 1-5 biased at 10 Vpp, 198 Hz.  

 

Fig.  2-16. Lissajous scan patterns obtained during mixed mode operation for (a) design A 
and, (b) design B
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Table 2-2 Comparison of designs A and B 

. Design A Design B 
Design Actuators are electrically connected in series Actuators are not electrically connected.  

Bending 
mode 

Actuation 
Mechanism 

Bias the actuators at 34Hz. The bias on each 
actuator is equal and is a fraction of the Vpp 
supplied by function generator as the actuators 
are electrically connected in series  

Bias the actuators individually at 30Hz and Vpp. The 
bias on each actuator is Vpp. 

Performance Actuators 1-10: ±1.5°, with 1Vpp bias on each 
actuator 

Actuators 1-10: ±1°, with 1Vpp bias on each actuator 

Torsional 
mode 

Actuation 
Mechanism 

  
Performance Actuators 1-10: ±0.5°, with 1Vpp bias on each 

actuator 
Actuators 1-10: ±0.5°, when 1Vpp is supplied by 
function generator 

Mixed 
mode 

Actuation 
Mechanism 
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2.6 Summary 

 Two designs of piezoelectric driven MEMS scanners using mechanical 

supporting beam integrated with 1×10 individually biased PZT actuators have 

been successfully designed, fabricated and characterized. 3 modes of scanning 

operations have been investigated: bending, torsional and mixed. Table 3 

summarizes and compares the bias configurations and performance during the 

three operation modes for both designs. In bending mode, the performance of 

both designs are similar to each other when the all the ten actuators are biased 

at the same voltage. In the case of torsional mode, the difference in the 

direction of actuator displacement due to the 180° phase difference in the 

applied bias for design B helps to magnify the torsional scanning of the mirror 

compared to design A. Finally, in mixed mode operation, clear Lissajous 

patterns were obtained successfully. As evident from the raster scanning 

patterns, crosstalk between the bending and torsional actuations was observed 

to be more significant in design B compared to design A. Nevertheless, these 

images demonstrate the potential of both MEMS scanners for low-frequency 

2-D scanning applications. 

 Besides 2-D scanning application, the fabricated piezoelectric driven 

MEMS mirror (design B) will also be investigated further for VOA 

application. This shall be duly discussed in Chapter 3.  
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Chapter 3  
A PZT Driven MEMS VOA Using 
Attenuation Mechanism With 
Combination of Rotational and 
Translational Effects  
 

3.1 Introduction 

 MEMS technology has been an enabling tool for numerous 

telecommunication components in modern optical network systems based on 

dense-wavelength-division-multiplexing technology (DWDM). The 

phenomenal growth of the internet in the past decade has led to 

telecommunication companies making huge investments in these optical 

MEMS devices, which include variable optical attenuator (VOA), where it is 

commonly adopted to groom power levels across the DWDM spectrum.  

 Most of the designs of MEMS VOAs reported in the literature adopted 

attenuation mechanisms that can be generally classified into three categories: 

shutter-type [101, 105-107, 128, 129], planar reflective-type [102, 108-113] 

and three-dimensional (3-D) reflective-type [68, 103, 114, 115]. With the aim 

of reducing driving voltage, various Si-based electrothermal actuators have 

been developed for VOA applications. Driving voltage as low as 3 Vdc had 

been reported by using an array of electrothermal actuator driven surface 

micromachined pop-up mirror [129]. In recent years, a large vertical Si mirror 

(500 µm × 1200 µm) driven by a metal coil type electromagnetic actuator had 
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also been reported to achieve 40 dB dynamic range under 0.5 Vdc [128]. All 

these aforementioned research efforts adopted the planar light attenuation 

mechanism, i.e. the light path is parallel to the substrate surface.  

 From the literature review above, it can be seen that limited research 

effort has been made in 3-D reflective type MEMS VOAs in contrast to the 

reported activities in planar MEMS VOAs. Isamoto et al. demonstrated one of 

the few published 3-D MEMS VOA, in which an electrostatic parallel plate 

actuator was deployed to drive a tilting micromirror and the derived 

performance was outstanding as only 4.5 Vdc was needed to achieve 0.3° 

rotational angle and 40 dB attenuation range [103]. Achieving a low voltage 

driven micromirror in a 3-D light attenuation configuration is the main 

objective of our research attempt in the development of novel actuation 

mechanism for VOA application. Thus, in this chapter, we explore a MEMS 

VOA driven by a piezoelectric beam actuator integrated with 1×10 PZT 

actuator array. The device to be investigated for dc-operated VOA application 

in this chapter is the same as that of design B in chapter 2 where it has already 

been investigated for ac-operated 2-D scanning application. Design B is 

favoured over design A for VOA application as the electrical connections to 

each of the actuators are separated, hence allows for individual biasing 

condition. By addressing different bias voltages to the individual PZT 

actuator, we achieve translational mode and rotational mode simultaneously. 

The attenuation efficiency of these two modes is investigated, while mixed 

mode is reported as well. 
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3.2 Design and Modeling 

 

Fig.  3-1. Schematic drawing of the piezoelectric MEMS VOA with dual core collimator 
arranged in a 3-D configuration such that the light beam focuses on the far edge center of the 
mirror plate. Bending mode occurs when all the ten actuators are biased simultaneously at 
same voltage. Torsional mode occurs where a set of five actuators bends in one direction 
while the other set of five actuators bends in the opposite direction. 

 A schematic diagram of the piezoelectric PZT MEMS VOA 

demonstrated in this chapter is shown in Fig. 3-1. The dimensions of the 

device have been summarized in table 2-1 of chapter 2. Ten patterned PZT 

thin film actuators are arranged in parallel along one of the sides of the Si 

mirror, in other words, the longitudinal direction of the actuators. The 

electrical connections to the actuators are separated from one another, with 

individual bond pads connected to the top and bottom electrodes of the 

actuators. The novelty of our VOA design lies in the mirror capability to move 

with six degree of freedom for enabling 3-D attenuation scheme. Bending 

mode is elicited when all the actuators are biased simultaneously at the same 
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dc voltage. As a result, the mirror undergoes translational and rotational 

movement along the x-axis due to the displacement introduced by the bent 

actuators under bias. Torsional mode is induced when, for example, actuators 

1-5 are biased in such a way that they bend up while actuators 6-10 are biased 

in an opposite way and bend in the opposite direction, i.e., bending downward. 

The difference in bending directions for the two sets of actuators causes the 

mirror to rotate along the y-axis. 

 

Fig.  3-2. Schematic diagram illustrating the side profile of the dc-biased PZT actuator during 
bend mode operation, with experimental vertical displacement of δactuator, mechanical rotation 
angle of θB,mirror and radius of curvature, r. 

 Fig. 3-2 is used to derive the relationship between the experimental 

displacement of the dc-biased actuator and the mechanical rotation angle of 

the mirror plate, θB,mirror. From Fig. 3-2, equation (3.1) can be derived as: 

δactuator = r − rcosθB,mirror     (3.1) 
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where δactuator is the displacement of the dc-biased actuator tip, r is the radius 

of curvature and θB,mirror is the mechanical rotation angle of the mirror plate. 

Assuming θB,mirror is small, by small angle approximation,  

𝑐𝑜𝑠θB,mirror = 1 − 1
2
𝜃𝐵,𝑚𝑖𝑟𝑟𝑜𝑟
2   (3.2) 

       𝑟 =  𝐿𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟
𝜃𝐵,𝑚𝑖𝑟𝑟𝑜𝑟

     (3.3) 

Substituting equations (3.2) and (3.3) into (3.1), 

     𝛿𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟 = 𝐿𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟𝜃𝐵,𝑚𝑖𝑟𝑟𝑜𝑟
2

   (3.4) 

Making θB,mirror the subject, equation (3.4) becomes, 

       θB,mirror =  2δactuator
Lactuator

   (3.5) 

 To further understand the attenuation mechanism better, schematic 

diagrams illustrated in Fig. 3-3 and Fig. 3-4 are used to illustrate the two 

modes of attenuation operation, i.e. bending and torsional modes. Fig. 3-3 

shows the side profile of the mirror and the dual core collimator during 

bending mode operation. In Fig. 3-3(a), when the actuators are not biased, the 

normal of the mirror surface is aligned perfectly with the light beam, coupling 

all the light from the input fiber to the output fiber. When the mirror translates 

and rotates due to a dc voltage applied simultaneously to the ten actuators as 

shown in Fig. 3-3(b), a portion of the laser beam no longer couples into the 

output fiber, resulting in attenuation. In Fig. 3-3(c), both rotational and 

translational displacements are observed when the actuators are biased. Based 

on Fig. 3-3(c), an analytical model relating the displacement of the actuators 
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Fig.  3-3 Schematic diagrams showing the attenuation mechanism for bending mode: (a) 
configuration refers to the initial state of insertion loss. All of the laser beam from the input 
fiber is coupled back into output fiber when the actuators are not biased, i.e., mirror surface 
remains normal to laser beam; (b) a portion of the laser beam from input fiber deviates from 
the optimized reflection light path when the actuators are biased, i.e., mirror undergoes 
rotational and translational motion (c) mirror is rotated by an angle, θB,mirror, and the laser 
beam is displaced by a distance, δB,laser. 

 

Fig.  3-4. Schematic diagrams showing attenuation mechanism for torsional mode: (a) all of 
the light beam from the input fiber is coupled back into output fiber when the actuators are not 
biased. It is the initial state of insertion loss; (b) configuration refers to the attenuation state 
where a portion of the laser beam from input fiber is not coupled back to the output fiber due 
to that actuators 1-5 and actuators 6-10 being oppositely biased, i.e. mirror undergoes 
rotational motion (c) mirror is rotated by an angle, θT,mirror, and the laser beam is displaced by 
a distance, δT,laser. 

to the displacement of the laser beam from its original position can be built. 

The mechanical rotation angle of the mirror plate, θB,mirror, is related to the 

displacement of the laser beam from its original position, δB,mirror, by equations 

(3.5)-(3.7), 

θB,mirror =  2δactuator
Lactuator

      (3.5) 

B =  Lmirror− Rdot sizecos(θB,mirror)    (3.6) 

δB,laser =  �D − Bsin�θB,mirror��tan�2θB,mirror�   (3.7) 
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where Lactuator is the length of the actuator (3 mm), δactuator is the displacement 

of the actuator tip, Lmirror is the length of the mirror plate (5 mm), Rdot size is the 

radius of the circular laser beam spot (350 μm), D is the working distance of 

the dual core collimator (1 mm). With the above mentioned equations (3.5)-

(3.7), we are able to calculate the theoretical displacement of the laser beam 

from its original position using the experimental data collected for the 

displacement of the dc-biased actuator tip measured under the optical 

microscope. 

 Similar analysis is done to investigate the attenuation mechanism 

during torsional mode operation. Fig. 3-4 shows the front profile of the mirror 

and the dual core fibers with collimator. In Fig. 3-4(a) where the actuators are 

initially unbiased, laser from the input fiber is coupled perfectly into the 

output fiber. However, in Fig. 3-4(b), the actuators 1-5 and 6-10 are oppositely 

biased, hence introducing opposite displacements for the two sets of actuators. 

As a result, the mirror undergoes torsional rotation, reflecting a portion of the 

laser beam away from its original position. Fig. 3-4(c) shows a simplified 

diagram of the laser beam being reflected by the rotated mirror. The torsional 

rotation angle of the mirror, θT,mirror, is related to the displacement of the laser 

beam from its original position by equations (3.8)-(3.10): 

θT,mirror =  tan−1 �2δT,mirror
Lmirror

�    (3.8) 

θ =  tan−1 �A
D
�      (3.9) 

δT,laser = D tan�θ + 2θT,miror� −  A  (3.10) 
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where δT,mirror is the displacement of the mirror edges observed under optical 

microscope, Lmirror is the length of the mirror plate (5mm), A is the half 

distance between the input and output fiber (125µm), D is the working 

distance of the dual core collimator (1mm). These equations (3.8)-(3.10) allow 

us to derive the displacement of the laser beam from its original position using 

the experimental δT,mirror obtained during torsional mode. 

 To evaluate the quality of the fabricated piezoelectric actuators, a 

model is necessary in order to compute the piezoelectric constant, d31, of the 

PZT thin film. The following equations (3.11)-(3.14) are used to find the value 

of d31 [130]: 

δ�ixed−free actuator =  3AB
K

Lactuator2 V d31     (3.11) 

A = SsiSPZT (SPZTtSi + SSitPZT)              (3.12) 

B = 𝑡𝑆𝑖(𝑡𝑆𝑖+ 𝑡𝑃𝑍𝑇)
𝑆𝑃𝑍𝑇𝑡𝑆𝑖+ 𝑆𝑆𝑖𝑡𝑃𝑍𝑇

                 (3.13) 

K = (Ssi)2(tPZT)4 + 4SsiSPZTtSi(tPZT)3 + 6SsiSPZT(tSi)2(tPZT)2 +  

4SSiSPZT(tSi)3(tPZT) + (SPZT)2(tSi)4                 (3.14) 

where δfixed-free actuator is the displacement of the fixed-free actuator tip observed 

under the optical microscope, Lactuator is the length of the actuator (3mm), V is 

the applied voltage, Ssi and SPZT are the respective compliances of the strutural 

Si layer (6.0x10-12 Pa-1) and PZT thin film (1.43x10-11 Pa-1), tSi and tPZT are the 

respective thicknesses of the strutural silicon (5µm) and PZT film (3µm). 

From equation (3.11), it can be interpreted that the value of d31 can be derived 

from the gradient of a δfixed free actuator-V plot.  
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3.3 Device Microfabrication  

 

Fig.  3-5. Close-up photo showing the packaged PZT MEMS VOA with a gold-coated 
surface. 

 Fig. 3-5 shows the MEMS VOA device bonded onto a dual inline 

package (DIP) and the bond pads were connected to the metal pins of the DIP 

using gold bond wires. The fabrication process for the VOA device is identical 

to that described previously in Section 3 of Chapter 2. A thin film of gold was 

sputtered on the mirror surface using a shadow mask. This is necessary, as 

silicon is transparent to 1550nm radiation. 

 To enhance the piezoelectric characteristics, poling treatment was 

conducted on the PZT thin film actuators at 25 Vdc for 10 minutes at room 

temperature. In order to derive the value of transverse piezoelectric constant, 

d31, the ten actuators were biased simultaneously at the same dc driving 

voltage while the displacement of the ten actuator tips are observed under the 

optical microscope. Prior to doing the experiment, the mirror plate of a spare 

VOA sample was broken off deliberately as the displacement of the actuator 
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tip in equation (3.11) is only valid for fixed-free piezoelectric actuator. The 

measured displacements of ten actuators were averaged. This was repeated for 

various dc voltages and the results were plotted in Fig. 3-6. A linear fit for the 

experimental data was also plotted, and as discussed in the previous section, 

the value of d31 can be derived from the gradient of the linear fit plotted. Using 

Fig. 3-6 and equation (3.11), the transverse piezoelectric constant d31 is 

estimated to be 136 pmV-1. 

 

Fig.  3-6. Measured average displacement of  fixed-free actuator tips versus dc driving voltage 
applied to the top electrodes of all ten actuators. 

 

3.4 Experimental Setup  

 The schematic drawing of the measurement setup for MEMS VOA 

characterization is illustrated in Fig. 3-7. The dual fiber with collimator were 

made from standard 250µm Corning SMF-28 fibers with a core and total 

diameter (inclusive of core, cladding, coating) of 8.2 µm and 250 µm, 
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respectively. The fiber cores were separated by a distance of 250 µm, 

surrounded by glass and metal tubes, with a GRIN lens fitted in front of the 

fibers. The dual fiber with collimator was placed about 1mm (working 

distance) away from the mirror surface, while the device was mounted on a 

multi-axial x-y-z-θy-θz movable stage. Light from the 1550 nm laser source 

(Thorlabs Benchtop Laser Source S3FC1550) was launched via one fiber, i.e. 

input fiber through the collimator to the edge of the mirror furthest away from 

the actuator array, where the translational and rotational motion induced by the 

biased actuators were the biggest. This will allow for maximum attenuation at 

the lowest possible dc voltage. The reflected light was collected by the same 

collimator to the power meter (Newport dual-channel power meter 2832c) via 

the output fiber. Equations (5.11) and (5.12), along with the readings recorded 

on the power meter, were used to calculate the attenuation introduced by the 

biased device: 

  𝑃𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 𝑏𝑒𝑎𝑚 =  10
� 𝑥10�

1000
     (3.15) 

𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 = 10log �𝑃𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 𝑏𝑒𝑎𝑚

𝑃𝑙𝑖𝑔ℎ𝑡 𝑠𝑜𝑢𝑟𝑐𝑒
�  (3.16) 

where x is the power meter reading in dBm, Preflected beam is the power of the 

reflected beam collected by the power meter, and Plight source is the power of the 

laser source (2 mW). The collimated beam diameter had been characterized to 

be 700 µm ± 25 µm. The whole setup was established on an anti-vibration 

optical table to prevent disturbance from ambient vibration.    

 For the insertion loss measurement, the relative positions of the 

collimator and mirror were adjusted such that coupling loss is optimized or 
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minimized. In order to do so, red laser of 632.8 nm was first used as the light 

source. The red laser beam was shone through the collimator onto the far edge 

of the mirror plate. Subsequently, the x-y-z stage was adjusted to centralize the 

red laser spot onto the far edge of the mirror.  The 1550 nm laser source was 

then fed into the input fiber after the coarse alignment step was confirmed. In 

the fine alignment adjustment, the position of the mirror relative to the 

collimator was fine-tuned by moving and tilting the x-y-z-θy-θz stages such 

that minimum loss is reached, i.e., insertion loss. The θy and θz adjustment 

knobs enable the tilting of the stage with respect to the y- and z-axis, 

respectively. The measured initial insertion loss in this setup is typically about 

2~3 dB. This value is about 1~2 dB higher than commercially available VOA 

products. This is mainly attributable to the surface roughness and warpage of 

the mirror. Further optimization of the mirror fabrication and microstructures 

may reduce the insertion loss to be less than 1 dB. 

 

Fig.  3-7. Schematic drawing of the measurement setup for 3-D MEMS VOA characterization 
carried out on an anti-vibration optical bench. The stage is capable of moving in X-Y-Z 
directions and tilting along X-Y(θz) and Y-Z(θx)  planes as well. 
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3.5 Results and Discussion  

3.5.1 Bending mode operation 

 In the operation of the PZT MEMS VOA, various dc voltages are 

applied to the ten actuators to actuate the mirror. As a result, the reflected light 

deviates from the optimized light path corresponding to minimum insertion 

loss. The intensity of the reflected laser that is coupled back to the output fiber 

reduces, resulting in greater attenuation with increasing driving voltage. Based 

on the experimental setup in Fig. 3-7, the measured attenuation curve versus 

various dc voltages applied simultaneously to the ten actuators during bending 

mode operation is shown in Fig. 3-8(a). As discussed earlier, bending mode is 

elicited when all the top electrodes of the actuators are biased simultaneously 

at the same dc voltage while all the bottom electrodes are grounded. From Fig. 

3-8(a), an attenuation range of 40 dB was achieved when 1 Vdc was applied to 

the ten actuators. A 40 dB dynamic range is sufficient with regards to most of 

the commercial applications. As such, this means that the PZT MEMS VOA 

developed in this study will require only a dc operating voltage of 1 V. 

 In Fig. 3-8(b), the displacement of the actuator tip (indicated 

previously in Fig. 3-1), δactuator, were observed under the optical microscope, 

averaged and repeated for various dc voltages. The data obtained were plotted 

and shown in the bottom right (red) curve of Fig. 3-8(b). An average actuator 

tip displacement of 32 μm was obtained when the ten actuators were biased at 

1 Vdc. This displacement, as accordance to equation (3.5), gave rise to a 

calculated mechanical rotation angle, θB,mirror, of 1.2o. Electrothermal bimorph 

actuator has been known as a solution for large displacement under low drive 
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Fig.  3-8. Experimental data for bending mode. (a) Measured attenuation curve versus dc 
voltage applied simultaneously to the top electrodes of the ten actuators while the bottom 
electrodes are grounded. (b) Bottom right (red) curve shows measured average displacement 
of actuator tip, δactuator, versus dc voltage applied simultaneously to the top electrodes of ten 
actuators. Top left (blue) curve shows the displacement of laser beam, δB,laser, versus dc 
voltage. The displacement of laser beam, δB,laser, is calculated using equations (3.5)-(3.7) and 
the values of δactuator obtained from the red curve. 
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voltage. This is exemplified by Jain et al. whose work have achieved 1o mirror 

rotation angle, when 1 Vdc was applied to the electrothermal beam actuator 

[33]. In comparison, our experimental data have demonstrated that 

piezoelectric actuator can perform as good as thermal bimorph actuator in 

applications based on dc operation. 

 The upper left (blue) curve in Fig. 3-8(b) shows the displacement of 

laser beam, δB,laser from its original position corresponding to minimum 

insertion loss. Values for the laser beam displacements were derived by 

substituting the values obtained for actuator tip displacements at various dc 

biases into equations (3.5)-(3.7). From the upper left curve in Fig. 3-8(b), it is 

observed that the displacement of the laser beam, δB,laser, was approximately 

35 μm at a driving voltage of 1 Vdc, i.e. a 35 μm laser beam displacement will 

result in an 40 dB attenuation of the laser beam. 

3.5.2 Torsional mode operation 

 Fig. 3-9(a) and 3-9(b) show the two biasing configurations to induce 

torsional mode operation. A potential divider is implemented to split the dc 

power supply into four equal potential at the potential nodes between each 

resistors. For the set of actuators 1-5 in Fig. 3-9(a), the top electrodes for these 

actuators are connected to different potential nodes while the bottom 

electrodes are grounded.  The reverse setup is made for the set of actuators 6-

10, i.e., the top electrodes are grounded while the bottom electrodes of these 

actuators are connected to various potential nodes. On the other hand, for the 

set of actuators 1-5 in Fig. 3-9(b), the top electrodes for these actuators are 

grounded while the bottom electrodes are connected to different potential 
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Fig.  3-9. Schematic drawing illustrating the electrical connections of the top and bottom 
electrodes of each actuator to the dc power supply in (a) bias case A, and (b) bias case B. (c) A 
look-up table showing the individual dc bias driving each actuator under bias case A and B for 
a given dc power supply voltage. 

nodes. In the case of actuators 6-10, the top electrodes are connected to the 

various potential nodes while the bottom electrodes are grounded. As such, 

each of the actuators in both cases A and B will be biased at different values, 

as evident from the look-up table in Fig. 3-9(c). This results in largest and zero 

actuator displacement to be introduced at the mirror edges and center, 

respectively. More importantly, the generated displacements for the two sets 
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of actuators are towards opposite direction, resulting in torsional rotation of 

the mirror. 

 Fig. 3-10 shows the experimental data obtained during torsional mode 

operation. Fig. 3-10(a) shows the measured attenuation curve versus dc 

voltage of the power supply. Both bias cases A and B were investigated. An 

attenuation range of 40 dB was achieved at bias of 1.9 Vdc and 1.7 Vdc for 

cases A and B, respectively. Although the mirror and actuators are arranged in 

symmetric layout, there was still much difficulty in aligning the laser beam to 

be along the far edge center of the mirror. This accounts mainly for the 

discrepancy between these two measured curves for different bias cases. In 

addition, the dimensions of the ten actuators may not be exactly the same due 

to lithography inaccuracy and deviation in fabrication process. Thus, under the 

same dc voltages, the actuators in both bias cases may not perform the same 

displacement, hence partially contributing to the discrepancy between the 2 

curves in Fig. 3-10(a). 

 In Fig. 3-10(b), the device was characterized based on biasing case A, 

while the absolute value for the displacements of the two opposite edges of the 

mirror, δT,mirror, were measured, averaged, and repeated for different dc driving 

voltage of power supply. The results were tabulated and plotted as the upper-

left (red) curve in Fig. 3-10(b). The bottom-right (blue) curve for laser beam 

displacement, δT,Laser, was derived by substituting the mirror edge 

displacement, δT,mirror, obtained under the optical microscope into equations 

(3.8)-(3.10). From the bottom-right curve in Fig. 3-10(b), it can be observed 

that at a power supply of 1.9 Vdc, an approximate laser beam displacement of  
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Fig.  3-10. Experimental data for torsional mode. (a) Measured attenuation curves versus dc 
driving voltage of the power supply for both bias cases A and B. (b) Top left (red) curve 
shows measured average displacement of mirror edges, δmirror, versus dc driving voltage of 
power supply. Bottom right (blue) curve shows the displacement of laser beam, δT,laser, versus 
dc voltage of power supply. Both curves were obtained using bias case A. The displacement 
of laser beam, δT,laser, is calculated using equations (3.8)-(3.10) and the values of δmirror 
obtained from the red curve. 
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33 µm from its original position was retrieved. This means that a 33 µm laser 

beam displacement is needed for 40 dB attenuation of laser beam in torsional 

mode. This value obtained during torsional mode operation (33 µm) is very 

close to that derived during bending mode operation (35 µm). 

 By comparing the two modes of attenuation operation, bending mode 

operation is deemed to be more effective in optical attenuation compared to 

torsional mode operation. This is evident from the experimental results as only 

1 Vdc is required to obtain 40 dB attenuation range during bending mode 

whereas, in torsional mode operation, 1.8 Vdc is needed to achieve the same 

amount of attenuation. In additional to rotational movement, translational 

motion is also being introduced to the micromirror during the bending mode 

operation, which results in greater displacement of the reflection point on the 

micromirror. In the case of torsional mode operation, the torsional or twisting 

motion of the actuator array would not induce any displacement of the 

reflection point, hence requiring a higher driving voltage to achieve the same 

amount of attenuation range.  

3.5.3 Mixed mode operation 

 In mixed mode operation, two dc power supplies are required to bias 

the 2 sets of cantilevers 1-5 and 6-10 separately. Both bending and torsional 

mode phenomenon are observed when the dc biases on both sets of cantilevers 

are not equivalent. Various voltage combinations were applied to the two sets 

of cantilevers and an attenuation characteristic topography was derived and 

shown in Fig. 3-11,. When a constant voltage of 1.2 Vdc was applied to 

actuators 1-5, the attenuation changed from 41dB to 47dB as the voltage 
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applied to actuators 6-10 increased from 0 Vdc to 2 Vdc. For the reverse case, 

i.e. a voltage of 1.2 Vdc was applied to actuators 6-10, the attenuation changes 

from 27dB to 50dB as the voltage applied to actuators 1-5 increased from 0 

Vdc to 2 Vdc. This difference in attenuation characteristic between the two sets 

of actuators may be attributed to lithography inaccuracy and deviation in 

fabrication process. 

 

Fig.  3-11. Measured attenuation value as a function of dc bias applied to the 2 sets of 
actuators 1-5 and 6-10. 

 As such, with mixed mode operation, an additional degree of freedom 

in attenuation control can be attained. More specifically, any deviation of 

attenuation-DC bias characteristic among various PZT MEMS VOA devices 

due to fabrication process and assembly steps could be compensated by 

changing different driving voltages combination to the two sets of actuators. 
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3.6 Summary  

 In this chapter, a novel piezoelectric driven MEMS VOA using 

mechanical supporting cantilever beam integrated with multiple actuators was 

explored and characterized in a 3-D attenuation configuration using a dual 

core collimator. 3 modes of attenuation operation mode have been 

investigated: bending, torsional and mixed. Torsional attenuation based on the 

difference in the dc voltages applied to the piezoelectric actuators on a silicon 

cantilever beam was the first to be demonstrated in literature. This actuation 

mechanism differs greatly from those actuation mechanisms of mirror in 

torsional mode, i.e. the mirror rotation is generated against to torsion spring or 

torsion bar. Although thermal bimorph beam actuator has been well-

characterized in terms of their capability to generate large deflection, i.e. in 

bending mode, no design in torsional mirror using beam actuator has been 

reported. Instead of using thermal bimorph beam actuator, our unique design 

of piezoelectric cantilever beam actuator is the first demonstration of large 

torsion mirror using beam actuator.  

 In addition, bending mode operation has been concluded to be more 

effective in optical attenuation compared to torsional mode operation. In the 

case of mixed mode operation, it offers greater flexibility in attenuation 

control, which helps to compensate for any difference in performance among 

the different MEMS VOAs that may arise due to fabrication process and 

assembly steps. Last but not least, the assimilation of PZT displacement 

sensing with PZT attenuation mechanism is a possible research direction that 

our device can head towards. This allows the detected signals received from 
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the displacement sensor to be used as feedback control reference. An 

instrument-level piezoelectric MEMS VOA with electronic feedback control 

circuits can hence be developed.    

 To improve the current 1×10 beam actuator design in terms of better 

scanning performance and reduced number of PZT actuators, a single S-

shaped actuator design integrated with a silicon micromirror will be further 

proposed and investigated for 2-D MEMS scanner application in the next 

chapter.  
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Chapter 4  
A MEMS Scanner Based on 
Dynamic Mixed Mode Excitation 
of a S-shaped PZT Actuator  
4.1 Introduction 

 In the MEMS scanner regime, parameters such as large mirror size (~ 

1 mm2), large deflection angle and low driving voltage are in strong demand. 

Besides the difference in actuation schemes, a wide variety of actuation 

mechanisms for MEMS scanners have also been reported in literature, with 

most of them deploying either the two frames or/and multi-actuators design 

for 2-D actuation. Nevertheless, straightforward and compact MEMS scanner 

designs, such as the L-shaped thermal bimorph cantilever actuated mirror 

developed by Schweizer et al., have also been reported [97].  

 In addition to the conventional straight or L-shaped cantilever actuator, 

electromagnetic and electrothermal driven MEMS scanners adopting 

meandering multi-actuators design have also been demonstrated [75, 131]. 

Actuator designed in meandering style offers several advantages over straight 

cantilever design. These advantages include a smaller footprint and a larger 

optical deflection angle due to its lower mechanical stiffness. Piezoelectric 

actuator made of a number of bars of PZT electrically connected in parallel 

and mechanically connected together in series in a meandering configuration 

was first conceptualized by Robbins et al. in 1991 [132-134]. Such 
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meandering PZT actuator design was not incorporated for MEMS scanner 

application till the works done by Tani et al. in 2005, where multiple 

meandering actuators were adopted in both the inner and outer scanning 

frames [88, 89]. However, there are still limited research effort being spend on 

a simple MEMS scanner design that makes use of only a single actuator to 

achieve 2-D scanning effect, as compared to those reported activities in two 

frames, multi-actuators driven mirror. Thus, in this chapter, the development 

work of a proof-of-concept MEMS scanner actuated by a S-shaped PZT 

actuator is reported. By addressing two excitation signals of different 

frequencies to the S-shaped PZT actuator, translational (bending mode) and 

rotational (torsional mode) motions operating at resonance condition can be 

obtained. 2-D scanning can thus be achieved by superimposing the two ac 

signals into one signal to be used to excite the PZT actuator and drive the 

micromirror. In contrast to our previous research attempts in chapter 2 where a 

1×10 array of PZT actuators design is demonstrated for 2-D scanning 

applications, the S-shaped actuator design investigated in this chapter 

demonstrates improvement in terms of better scanning performance and 

reduced number of PZT actuators and bonding pads. 

4.2 Design & Modeling 

 A schematic diagram of the MEMS scanner to be investigated in this 

chapter is shown in Fig. 4-1(a). The detailed dimensions of the device are 

given in Fig. 4-1(b) and summarized in Table 4-1. The mirror plate is driven 

by a S-shaped PZT actuator, which is capable of 6 degrees of freedom of 

movement. The main composition of the actuator consists of a top electrode  
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Fig. 4-1. (a) Schematic drawing of the MEMS scanner actuated by single S-shaped PZT 
actuator. Bending and torsional modes occur when the device is excited at the respective 
resonant frequencies. (b) Top view of the MEMS scanner and the respective dimensions of the 
structures. 

layer (Pt/Ti), a piezoelectric PZT thin film and a bottom electrode layer 

(Pt/Ti). The top and bottom electrodes are individually connected to their bond 

pads. A proof mass is left beneath the mirror to maintain the rigidity and 

flatness of the reflecting surface during motion. Bending mode occurs in both  
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static and dynamic actuations. When an ac or dc bias is applied to the actuator, 

it bends and causes the mirror to undergo translational and rotational 

movement along the y-axis. Torsional mode is induced only during dynamic 

actuation, when ac resonant frequency corresponding to rotational motion 

along x-axis is used to excite the device. 

Table 4-1. Dimensions of MEMS scanner driven by S-shaped PZT actuator. 

Chip Si mirror plate S-shaped PZT actuator 

5.2 mm x 4.2 
mm 

1.65 mm long x 2 
mm wide x 0.4 mm 
thick 

Longitudinal (x-direction): 1.6 mm 

Transverse (y-direction): 3.6 mm 

Thickness (z-direction): 9.2 µm 

Total length: 5.2 mm 

 

 

Fig. 4-2. Finite element modal analysis for the two different mirror designs using finite 
element simulation software ABAQUS. The 1st design being simulated is a micromirror 
driven by a S-shaped actuator design during (a) bending mode operation, where 
eigenfrequency at 34.9 Hz and a maximum normalized Z-displacement of 1 was obtained, and 
(b) torsional mode operation, where eigenfrequency of 72.1 Hz and a maximum normalized Z-
displacement of 0.9 was obtained. The 2nd design being simulated is a micromirror driven by 
straight cantilever actuator design during (c) bending mode operation, where eigenfrequency 
of 35.3 Hz and a maximum normalized Z-displacement of 1 was obtained, and (d) torsional 
mode operation, where eigenfrequency of 128 Hz and a maximum normalized Z-displacement 
of 0.36 was obtained.  
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 To better understand the operation modes, finite element analysis was 

done using the software ABAQUS. As shown in Fig. 4-2, two actuator designs 

were simulated: S-shaped and straight beam actuator design. In order to make 

a fair comparison between the two designs, the actuators simulated in both 

designs have the same thickness (9.2 μm), width (0.2mm), longitudinal length 

(1.6mm) and mirror plate dimensions. Fig. 4-2(a) and 4-2(b) show the S-

shaped actuator design during bending and torsional mode, respectively, while 

Fig. 4-2(c) and 4-2(d) show the two operation modes for the straight beam 

actuator design. During bending mode operation simulated in Fig. 4-2(a) and 

4-2(c), both designs show very similar results in terms of eigenfrequency and 

maximum Z-displacement. Eigenfrequencies of 34.9 Hz and 35.3 Hz were 

obtained for the S-shaped and straight actuator beam designs, respectively, 

while both designs also obtained the same maximum normalized out-of-plane 

Z-displacement of 1.  

 However, in the simulated torsional mode operation shown in Fig. 4-

2(b) and 4-2(d), the results obtained for both designs were significantly 

different. Eigenfrequencies of 72.1 Hz and 128 Hz were obtained for S-shaped 

and straight actuator beam designs, respectively. In addition, the maximum 

normalized Z-displacement obtained in the S-shaped design was 0.9, which is 

larger compared to the straight beam design of 0.3. This may be explained by 

using the equation for torsional spring constant (Kθx) along x-axis for a 

serpentine or meandering spring, which is given by [135]:   

Kθx = �2(N+2)
EI

Ly +  2(N+1)
GJ

Lx�
−1

  (4.1) 
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where N is the number of folds, E is the Young’s modulus, I is the moment of 

inertia with respect to the x-axis, G is the shear modulus, J is the cross-section 

torsion factor of the spring element parallel to the x-axis, Lx is the length of 

the spring element parallel to x-axis, Ly is the length of the spring element 

parallel to y-axis. By analyzing equation (4.1), it can be recognized that the 

first term is contributed by the bending stiffness of the spring elements (of 

length Ly) parallel to the y-axis, while the second term is contributed by the 

torsional stiffness of the elements (of length Lx) parallel to the x-axis. Thus 

from equation (4.1), with additional spring elements parallel to the y-axis, the 

torsional spring constant for a S-shaped actuator is lowered compared to a 

straight beam actuator with no spring elements parallel to the y-axis. This 

causes the mechanical stiffness of the S-shaped actuator to be lower compared 

to the straight one, hence explaining why the simulated eigenfrequency to be 

lower (72.1Hz compared with 128Hz) and Z-displacement (0.9 compared with 

0.3) to be larger for the S-shaped actuator design. As such, the simulation 

proves that in general, adopting a S-shaped actuator design is better than a 

straight one in terms of larger deflection angle due to the smaller torsional 

stiffness. However, the tradeoff is that the resonant frequency for a S-shaped 

actuator design during torsional mode will be lowered.    

4.3 Device Microfabrication 

 The process flow, as shown in Fig. 4-3, and the fabrication steps 

needed to make the MEMS scanner is similar to that described previously in 

section 3 of chapter 2. A total of seven photo-lithography masks were used, 

while the device was assembled onto a dual inline package (DIP) after the 
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fabrication process. As shown in Fig. 4-4, a spacer chip of 1200 μm thickness 

was bonded between the device and DIP. The spacer chip helps to elevate the 

device from the base of the DIP, hence avoiding hindrance to the movement of 

the mirror plate during actuation. The bonds pads were connected by gold 

bond wires to the metal pins of the DIP. Fig. 4-5(a) and 4-5(b) show optical 

microscope images of the S-shaped PZT actuator and the two bond pads with 

their bond wires, respectively. 

 

Fig.  4-3. Microfabrication process flow for making the S-shaped PZT actuator and the 
micromirror. 

 The process flow, as shown in Fig. 4-3, and the fabrication steps 

needed to make the MEMS scanner is similar to that described previously in 

section 3 of chapter 2. A total of seven photo-lithography masks were used, 
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while the device was assembled onto a dual inline package (DIP) after the 

fabrication process. As shown in Fig. 4-4, a spacer chip of 1200 μm thickness 

was bonded between the device and DIP. The spacer chip helps to elevate the 

device from the base of the DIP, hence avoiding hindrance to the movement of 

the mirror plate during actuation. The bonds pads were connected by gold 

bond wires to the metal pins of the DIP. Fig. 4-5(a) and 4-5(b) show optical 

microscope images of the S-shaped PZT actuator and the two bond pads with 

their bond wires, respectively.     

 

Fig.  4-4. Close-up photo showing the packaged MEMS mirror on a dual in-line package 
(DIP). The bond wires connect the bond pads on the device to the external pins of the DIP. 
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Fig.  4-5. Optical microscope images of (a) S-shaped PZT actuator with a portion of the mirror 
plate, and (b) two bond pads and their respective bond wires to the DIP. 

 

4.4 Results and Discussion 

 Prior to characterization, poling treatment was conducted on the PZT 

actuator at room temperature to enhance the piezoelectric characteristics. A dc 

voltage of 20V, which is equivalent to a polarization electric field of 80kV/cm, 

was applied to the PZT actuator for 5 minutes, with the poling direction from 

the bottom electrode to top electrode. The experimental setup deployed is 

largely similar to that used previously to characterize the MEMS scanners in 

section 2.4 of chapter 2.       

4.4.1 DC Response 

 When a dc bias is applied to the S-shaped PZT actuator, it bends as 

shown in Fig. 4-2(a), introducing a vertical displacement and causing the 

micromirror to translate. As such, the laser spot will be displaced by a distance 
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on the white screen. Fig. 4-6 shows the ODA (2θ) obtained when various 

biases, up to 10 Vdc, were applied to the actuator. The top and bottom 

electrodes were connected as the driving and ground biases, respectively. At 1 

Vdc and 10 Vdc, an ODA of 0.22° and 3.35° were obtained, respectively. 

 

Fig.  4-6. Measured ODA versus DC voltage applied to S-shaped PZT actuator. 

 

4.4.2 AC Response 

 Fig. 4-7 shows the semi-log plot of ODA with respect to ac excitation 

frequency varying from 1 Hz to 500 Hz, while peak-to-peak ac voltage of 0.5 

Vpp was applied to the PZT actuator using a function generator. Two ODA 

peaks of ±3.1° and ±0.96° peaks at 27 Hz and 230 Hz, respectively, were 

observed during bending mode operation. For torsional mode operation, a 

single peak was observed at 70 Hz, with an ODA of ±0.84°. The resonant 

frequencies for bending (27 Hz) and torsional (70 Hz) modes coincide with the 
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eigenvalues, i.e., 35Hz and 72Hz, obtained from finite element modal analysis 

simulation. The measured quality factors for bending and torsional modes are 

68 and 175, respectively. 

 

Fig.  4-7. Frequency response showing a semi-log plot of measured ODA versus excitation 
frequency at 0.5 Vpp for both bending and torsional modes.  

 

Fig.  4-8. AC response for bending and torsional modes where the MEMS scanner was excited 
independently with ac signals of 27 Hz and 70 Hz, respectively. 
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 The dynamic ac response of the MEMS scanner under bending and 

torsional modes were investigated and presented in Fig. 4-8. In the biasing 

setup for bending mode operation, the actuator was excited with a 27 Hz 

signal and ac voltages up to 1 Vpp applied to it. The MEMS scanner achieved 

an ODA of ±7.26° at 1 Vpp during dynamic actuation, which is significantly 

larger when compared to the ODA of 0.22° obtained at 1 Vdc during static 

actuation. This phenomenon is due to the device attaining mechanical 

resonance, resulting in maximum energy transfer from the ac electrical 

excitation signal to the vibrating mechanical structures. For torsional mode 

operation, the biasing setup was similar to that in bending mode except that an 

ac signal with frequency of 70 Hz, instead of 27 Hz, was applied. An ODA of 

±1.18° was observed at 1 Vpp during torsional mode operation. For the same 

peak-to-peak voltage, the ODA obtained during bending mode is much larger 

than that for torsional mode. This is because in bending mode, the mirror 

undergoes translational and rotational motion along the y-axis, whereas in 

torsional mode, the mirror only rotates along the x-axis (Fig. 4-1(a)). As such, 

rotational motion of the mirror plate during torsional mode would not induce 

displacement of the reflection point as bending mode do, hence making 

bending mode more efficient in beam steering.  

 In mixed mode operation, two ac electrical signals of 27 Hz and 70 Hz, 

corresponding to the resonant frequencies of bending and torsional modes, 

respectively, were applied simultaneously to the device so as to achieve 2-D 

scanning capability. The biasing circuit to realize mixed mode operation is 

illustrated in Fig. 4-9. Two function generators, each carrying sinusoidal 
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signals with frequencies of 27 Hz and 70 Hz, respectively, were inputted into a 

summing amplifier (Motorola MC1741C). Unlike our previous approach in 

chapter 2 where two ac signals of different frequencies can be applied 

separately to two different sets of actuators to achieve 2-D scanning effect, a 

summing amplifier is needed for our current MEMS scanner design as it has 

only one PZT actuator and two bond pads available for biasing. With the 

summing amplifier, two ac signals carrying resonant frequencies 

corresponding to bending and torsional modes can now be superimposed into 

one signal, which were used to excite and drive the PZT actuator to achieve 2-

D scanning effect. The values of the resistors R1, R2 and Rf were chosen such 

that the summing amplifier has unity gain, i.e., the output voltage (Vout) of the 

summing amplifier is equivalent to the summation of the input voltages (VB 

and VT). 

 

Fig.  4-9. Schematic diagram illustrating the biasing circuit required to produce 2-D scanning 
pattern. Two sinusoidal waveforms of different frequencies were inputted into a summing 
amplifier. VB and VT denote the peak-to-peak voltage for the ac excitation signals with 
frequencies 27 Hz and 70 Hz, respectively. 
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Fig.  4-10. Waveform obtained from different voltage output. (a) Dotted (red) and solid (blue) 
curves show the respective output of the 2 function generators when both VB and VT were at 
0.5 Vpp. (b) Dotted (red) curve shows the resultant output from the summing amplifier Vout 
when VB and VT are 0.5Vpp. 
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 To better understand and prove the effect of the summing amplifier on 

the two input ac signal, a HP/Agilent 54825A Infiniium Oscilloscope was used 

to read the output signals. Fig. 4-10(a) and 4-10(b) show the signals detected 

from the output of the function generators and summing amplifier, 

respectively, when both VT and VB were at 0.5 Vpp. The red dotted curve in 

Fig. 4-10(a) shows the trace given by VB, i.e. the output of the first function 

generator with a 27 Hz and 0.5 Vpp sinusoidal waveform, while the blue solid 

curve shows the trace given by VT, i.e. the output of the second function 

generator with a 70 Hz and 0.5 Vpp sinusoidal waveform. Both the red dotted 

and blue solid curves in Fig. 4-10(a) can be represented mathematically by 

equations (4.2) and (4.3) as: 

VB =  − 0.25𝑠𝑖𝑛[𝜔𝐵(𝑡 + 𝑡1)]                               (4.2) 

VT =  − 0.25𝑠𝑖𝑛[𝜔𝑇(𝑡 + 𝑡1)]     (4.3) 

𝑉𝑜𝑢𝑡 =  −�0.25𝑠𝑖𝑛[𝜔𝐵(𝑡 + 𝑡1)] + 0.25𝑠𝑖𝑛[𝜔𝑇(𝑡 + 𝑡1)]�      (4.4) 

where ωB = 2π(27) Hz, ωT = 2π(70) Hz and t1 is the amount of time shift 

needed to match the mathematically derived sinusoidal curves with the 

oscilloscope traces.  

 In Fig. 4-10(b), the red dotted curve shows the trace detected on the 

oscilloscope from the output of the summing amplifier, i.e., Vout, when two 

sinusoidal signals of 27Hz and 70Hz are inputted into the summing amplifier. 

On the other hand, the blue solid curve shows the fitting curve derived and 

plotted based on equation (4.4). The close fitting of the blue solid curve with 

the red dotted curve in Fig. 4-12(b) confirms that the output of the summing 
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amplifier is equivalent to the fitting curve. In other words, the summing 

amplifier superimposed the two sinusoidal signals of the function generators 

represented by equations (4.2) and (4.3), and produced the resulting waveform 

that obeys well with theoretical equation (4.4). Such experimental 

confirmation is important as it ensures that the output superimposed signal 

from the summing amplifier remains controllable through the adjustment of 

the various parameters such as frequencies, VT, and VB. More importantly, it 

proves that the output signal from the summing amplifier retains the ac 

characteristics of the input signals from the function generators. This permits 

us to bias the MEMS scanner with resonant frequencies corresponding to 

bending and torsional modes simultaneously, allowing it to achieve 2-D 

scanning effect with only one PZT actuator. The major peaks in Fig. 4-10(b) 

have also been numerically labelled and by matching these major peaks with 

the corresponding peaks in Fig. 4-10(a), we can infer that these major peaks 

are largely attributed by the peaks of the blue curve (70Hz) in Fig. 4-10(a). 

 Fig. 4-11 shows the different waveforms of Vout obtained from the 

oscilloscope when various combinations of VB and VT were used. Fig 4-11(a) 

illustrates a pure sinusoidal Vout of 1 Vpp and frequency of 27 Hz when VB = 1 

Vpp, VT = 0 Vpp. As the value of VB decreases and VT increases as illustrated 

from Fig. 4-11(a) to Fig. 4-11(d), more peaks were observed in the resultant 

waveform Vout. This is due to the increased contribution from the 70 Hz signal 

from function generator 2, as a 70 Hz signal has more peaks per unit time 

when compared to the 27Hz signal from function generator 1.   
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Fig.  4-11. Screenshot capture of the waveforms obtained from a oscilloscope connected to the 
Vout terminal, with various voltage bias combinations such as (a) VB = 1Vpp, VT = 0Vpp, (b) VB 
= 0.8Vpp, VT = 0.3Vpp, (c) VB = 0.5Vpp, VT = 0.5Vpp, and (d) VB = 0.3Vpp, VT = 1Vpp. 

 Fig. 4-12 shows the 2-D Lissajous scanning patterns obtained when 

various combinations of sinusoidal VB and VT were supplied by the two 

function generators and superimposed by the summing amplifier. In Fig. 4-

12(a) and 4-12(b), straight horizontal laser trajectory lines, corresponding to 

ODAs of ±39° and ±7.2°, were obtained when 3 Vpp and 1 Vpp sinusoidal 

waveform were supplied by function generator 1, respectively. In Fig. 4-12(c) 

to 4-12(e), mixed mode occurs as both function generators were utilized, 

creating 2-D Lissajous scanning patterns on the screen. As the magnitude of 

VB decreased from 1 Vpp in Fig. 4-12(b) to 0.3 Vpp in Fig. 4-12(e), the 

horizontal trajectory length or ODA along the horizontal axis dropped from 

±7.2° to ±1.85°. Similarly, in the case for vertical scanning, as the magnitude 

of VT increased from 0 Vpp in Fig. 4-12(b) to 1 Vpp in Fig. 4-12 (e), the 

vertical ODA increased from 0° to ±1.18°.  



Chapter 4: A MEMS Scanner Based on Dynamic Mixed Mode Excitation of a 
S-shaped PZT Actuator 

 

88 
 

 

Fig.  4-12. 2-D Lissajous scanning patterns obtained when various combinations of sinusoidal 
VB and VT were supplied by the two function generators and superimposed by the summing 
amplifier, where (a) VB = 3Vpp, VT = 0Vpp, (b) VB = 1Vpp, VT = 0Vpp,  (c)VB = 0.8Vpp, VT = 
0.3Vpp , (d) VB = 0.5Vpp, VT = 0.5Vpp, and (e) VB = 0.3Vpp, VT = 1Vpp. The experimental setup 
of the scanning line obtained in (a) were slightly different from those obtained in (b)-(e) so 
that  the entire scanning line can be accommodated onto the ruler scale. 

 In addition, the values of horizontal and vertical ODA obtained during 

mixed mode operation correspond closely to the results obtained 

independently during bending and torsional mode operations, as shown in Fig. 

4-8. For example, from Fig. 4-10, ODAs of ±3.1° and ±0.8° were obtained at 

0.5Vpp for bending and torsional modes respectively. These values are almost 

identical to those obtained during mixed mode in Fig. 4-12(d), where 
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horizontal and vertical ODA of ±3° and ±0.75° were obtained. These matching 

results implies that there was minimum coupling between the vertical and 

horizontal scanning axes during mixed mode operation and the summing 

amplifier only acts as an interface to superimpose the two ac signals from the 

function generators into one to excite the device. More importantly, the 

horizontal and vertical dimensions of the 2-D Lissajous pattern can be 

independently controlled by the ac biasing signals, hence offering flexibility 

and tunability. 

4.5 Performance comparison of current 
designs with existing piezoelectric MEMS 
scanners 
 Table 4-2 compares the existing piezoelectric MEMS mirror 

performances according to the figure of merit (FOM), which is being used as a 

metric to compare the relative scanning efficiencies:  

opt Df
FOM

V
θ

=  

where θopt is the total optical deflection angle (°), D is the mirror size along the 

scan axis (mm), f is the resonant frequency (kHz), V is the root-mean-square 

drive voltage (V). Regretfully, the piezoelectric MEMS scanners (designs A 

and B) investigated in chapter 1 fared poorly, while the S-shaped actuator 

driven MEMS scanner performed moderately when compared with other 

existing piezoelectric MEMS scanners that have been reported in the literature 

in the past decade. In the piezoelectric MEMS scanners deploying gimbal  
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Table 4-2. Comparison of FOM for different  PZT MEMS scanner designs. 

Ref Unique feature 
Frequency 

(Hz) 
Mirror size  
(l × w × t) 

FOM 

Design A 
(Chapter 1) 

2-D MEMS scanner 
driven by 1x10 actuator 
electrically connected 

in series 

34 
5mm × 5mm × 

0.4mm 
0.7 

Design B 
(Chapter 2) 

2-D MEMS scanner 
driven by 1x10 actuator 

electrically separated 
30 

5mm × 5mm × 
0.4mm 

0.3 

Design C 
(Chapter 3) 

2-D MEMS scanner 
driven by S-shaped 

actuator 
27 

1.65mm × 2mm 
× 0.4mm 

1.6 

Kobayashi 
et al. [136] 

Low speed 1-D MEMS 
scanner 

30 
8mm × 2mm × 

0.005mm 
0.10 

Gilchrist et 
al. [137] 

1-D PZT cantilever 
MEMS scanner 

650 
0.6mm × 
0.84mm × 
0.03mm× 

1.6 

Chen et al. 
[87] 

2-D MEMS scanner 
with inner and outer 

frame, gimbaled design 
560 

1mm × 1mm × 
0.06mm 

6.32 

Yasuda et 
al. [69] 

2-D MEMS scanner 
with inner and outer 

frame design, gimbaled 
design 

4,300 
1mm × 2mm × 

0.02mm 
6.6 

Filhol et al. 
[138] 

1-D MEMS gimbaled 
scanner 

10,600 
0.5mm 

diameter, 
0.02mm thick 

13.5 

Baran et al. 
[71] 

State-of-the-art 1-D 
gimbaled MEMS 

scanner 
40,000 

1.4mm 
diameter, × 

0.3mm thick 
146 

 

designs demonstrated in refs. [69, 71, 87, 138], the torsion bar can be designed 

to reduce torsional stiffness without affecting the piezoelectric actuator 
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performance, and hence resulting in larger optical deflection angle. In addition, 

the small mirror plate used in these references reduces the mass inertia of the 

scanners, hence allow the resonant frequencies of these scanners to reach the 

kHz range. Both these factors, i.e. large optical angle and resonant frequency, 

explain why these existing MEMS scanners report high FOM. In the case of 

the 1-D high speed piezoelectric MEMS scanner demonstrated by Baran et al. 

in ref. [71], the exceptionally high FOM reported is due to a cascaded frame 

operating out-of-phase design, which allows the limited deflection of PZT 

actuator to be amplified to achieve large mirror rotation at resonance.        

 While such gimbaled, inner and outer frame piezoelectric MEMS 

scanners have been widely reported in the last decade which guarantee good 

performance, however, replicating such conventional designs is not the goal of 

this thesis. With one of the objectives targeting at developing proof-of-concept 

2-D MEMS scanners driven by novel actuation mechanisms, gimbal-less 

designs making use of only a single set of piezoelectric actuator/s to elicit 2-D 

scanning, hence, becomes the goal as such designs have yet to be reported. 

Although the proposed piezoelectric MEMS scanner designs in chapter 1 and 

this chapter fared inferiorly, at this moment, compared to the conventional 

ones, there are still much room for improvement through the reduction of the 

mass inertia of the mirror plate. It is also noteworthy that the performances of 

the piezoelectric 2-D MEMS scanners have improved with each development 

cycle, starting from design A in chapter two to the S-shaped actuator driven 

design in this chapter.  

 



Chapter 4: A MEMS Scanner Based on Dynamic Mixed Mode Excitation of a 
S-shaped PZT Actuator 

 

92 
 

4.6 Summary 

 In this chapter, development work on a novel piezoelectric driven 

MEMS scanner using a single S-shaped PZT actuator was explored and 

characterized. Instead of deploying a 1×10 array of PZT actuator design as 

demonstrated in chapter 2 or multiple meandering PZT actuators for inner and 

outer frames, our current unique proof-of-concept design of utilizing only one 

piezoelectric actuator has successfully demonstrated 2-D scanning by having 

two superimposed ac signals to drive the mirror simultaneously.  

 Both the DC and AC responses of the device were characterized. An 

ODA of 3.35° was achieved at 10 Vdc. Bending and torsional modes occur 

when ac electrical signals with resonant frequencies of 27 Hz and 70 Hz were 

used to excite the device, respectively. The maximum measured ODA 

obtained at 1 Vpp are ±7.26° and ±1.18°, respectively. For the same ac driving 

voltage, the ODA achieved by this S-shaped actuator design is significantly 

larger than that of the 1×10 PZT actuator design in chapter 2. In mixed mode 

operation, two ac electrical signals of 27Hz and 70Hz were applied 

simultaneously to the devices using a summing amplifier, hence enabling the 

mirror to achieve 2-D scanning capability. The device has performed 

successfully various Lissajous patterns, exhibiting flexibility and tunability 

through the adjustment of biasing voltages VB and VT. Further reduction of the 

driving voltage is possible by reducing the size and thickness of the mirror.  

 So far in this thesis, several piezoelectric actuated MEMS mirrors 

driven by novel actuation mechanisms have been investigated for 2-D scanner 
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and variable optical attenuator applications. However, the piezoelectric 

material (lead zirconate titanate) used is not CMOS compatible. Thus, 

attempts to explore CMOS compatible MEMS mirrors for 2-D scanner and 

variable optical attenuator will be made in chapters 5 and 6, respectively. The 

developed CMOS compatible MEMS mirror will allow for lower fabrication 

cost and monolithic integration with transistor circuits that enable electronic 

feedback to be made possible. 
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Chapter 5  
A MEMS Scanner Using Hybrid 
Actuation Mechanisms With Low 
Operating Voltage 
5.1 Introduction 

 Hybrid actuation mechanisms, i.e. combination of two or more of the 

four actuation schemes introduced in chapter 1, have already been 

demonstrated in various forms of MEMS devices such as RF switches [139], 

energy harvesters [140, 141] and mirrors [142, 143]. The combination of both 

electromagnetic and electrostatic actuation mechanisms in the RF MEMS 

switch design proposed in ref. [139] by Cho et al. allows them to achieve 

excellent switching characteristics at low power and voltage. Similarly, for 

both the cases of energy harvesters in ref. [140] and [141] where hybrid 

energy harvesting mechanisms were investigated, these devices demonstrated 

higher output power density when both the piezoelectric and electromagnetic 

elements were deployed.          

 In this chapter, the concept of mechanical amplification adopted in the 

design of the 1-D MEMS scanner in ref. [99] is leveraged while 2-D scanning 

using the single mirror approach is proposed. In addition, both electrothermal 

(ET) and electromagnetic (EM) actuation schemes will be integrated in our 

proof-of-concept MEMS scanner design. This approach differs greatly from 

most of the MEMS scanner designs already reported in the literature where the 

same actuation scheme is often used to drive both the orthogonal scanning 
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axes of the devices. Unlike the hybrid actuation approach taken on by Li et al. 

in ref. [142] and [143] where electrostatic comb drive actuators were used for 

the fast scanning actuation in their fabricated MEMS scanners, EM actuation 

has been chosen to drive the fast scanning axis in the mirror design proposed 

here. This is primarily due to the low actuation voltage and CMOS 

compatibility which EM actuation offers, hence allows for ease of monolithic 

integration with CMOS IC and lowers fabrication cost. The slow scanning axis 

will be driven by ET actuators as they have large static or dynamic 

displacement characteristic at low resonant condition. Such hybrid actuation 

mechanism proposed in this design allows for fast line scan driven by EM 

actuators operating at mechanical resonance condition to be produced on the 

horizontal axis, while a slower sweep, i.e. frame rate driven by ET actuators to 

be produced on the orthogonal vertical axis. As such, this unique design of 

using both ET and EM actuators, as well as mechanical amplification 

mechanism to excite 2-D raster scanning is the first demonstration of such 

hybrid-driven CMOS compatible MEMS mirror. 

5.2 Design & Modeling 
 A schematic diagram of the proposed MEMS scanner incorporating 

hybrid actuation mechanisms is shown in Fig. 5-1. There are four sets of ET 

actuators responsible for the slow scanning about the horizontal axis, i.e. x-

axis. The ET actuators are anchored to the substrate and are joined to the 

frame by C-shaped rigid hinges. EM coils are embedded in the frame, and in 

the presence of current flow and magnetic field will generate a mechanical 

torque, producing fast scanning about the horizontal axis, i.e. z-axis. The 
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mechanical energy from the EM actuation is coupled to the mirror plate 

through the T-shaped torsion bar. The details of the working principle and the 

modeling for both ET and EM actuations will ensue on in this section. 

 

Fig.  5-1. Schematic diagram of the proposed MEMS scanner incorporated with hybrid 
actuation mechanisms. The vertical and horizontal scanning motions are driven by ET and EM 
actuation mechanisms, respectively. 

5.2.1 Electrothermal Actuation 

 The design of the ET actuator is shown in Fig. 5-2(a). It consists of a 

silicon (Si) cantilever made from the device layer of a silicon-on-insulator 

(SOI) wafer and aluminum (Al) heater deposited and patterned on it. As 

shown in the inset of Fig. 2(a), the Al heater is patterned in a winding manner 

so as to increase the resistance and thermal reliability of the heater and 

actuator respectively. There are a total of 22 Al windings designed to have a 

resistance of 500 Ω. Thin layer of SiO 2, which acts as thermal insulation, is 

deposited around Al to increase the actuation efficiency. Together with the Si  
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Fig.  5-2. Schematic diagram illustrating the (a) proposed ET bimorph actuator made of Al 
and Si, with the inset showing the winding design of the Al metal layer and thin thermal 
insulating SiO2 deposited around the windings; (b) working principle of ET actuation and 
rotation about the vertical scanning axis i.e. x-axis when ET actuators 1 & 2 are biased serially 
to give a mechanical torque. 
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device layer used in the cantilever structure, the Al heater also functions as the 

other bimorph material for thermal actuation. When a current flows through 

the windings, the Al heats up and expands more than silicon, causing the 

actuator to bend downwards. To obtain the desired rotating orientation of the 

mirror, selective biasing and bending of the four sets of ET actuators can be 

made. For example, to achieve vertical scanning about x-axis as shown in Fig. 

5-2(b), actuators 1 and 2 are biased serially so that both the actuators 

experience downward displacements simultaneously, hence introducing a 

mechanical torque about x-axis. Electronic control may be utilized to phase 

lock the biasing of the actuators such that there is a 180° phase delay between 

the voltage bias for actuators 1 and 2 with 3 and 4. This will enable 

bidirectional scanning capability, hence increasing the range of scanning. 

 Prior to fabrication, optimization based on mathematical modeling is 

done to determine the effect of the thickness of Si device layer of a SOI wafer 

and Al layer on the performance of the actuator. The tip displacement of a 

typical fixed-free bimorph beam of Al and Si under a strain mismatch has 

been readily derived in equation (5.1),   

2

2 2 2 2 2 2

3 ( )( )
( ) ( ) 2 (2 3 2 )

Si Al Si Al Si Al Si Al Al Si

Al Al Al Si Si Si Si Al Si Al Si Al Al Si Al Si

w w E E t t t t TL
E W t E W t w w E E t t t t t t

α α
δ

+ − ∆
=

+ + + +
         (5.1)

 

where δ is the tip displacement of a bimorph beam, wAl  and wSi are the width 

of the Al (200 µm) and Si (200 µm) layers, respectively, EAl and ESi are the 

Young's modulus of Al (65 GPa) and Si (167 GPa), respectively, αAl and αSi 

are the coefficient of thermal expansion of Al (2.6 ×10-6 K-1) and Si (23.1 ×10-

6 K-1), respectively, L is the length of the beam (2.1 mm), ΔT is the 
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temperature change, tAl and tSi are the thickness of the Al and Si layers, 

respectively [144]. Using equation (5.1), the displacement change at tip of the 

bimorph beam actuator for different bimorph material thickness is analyzed 

and plotted in Fig. 5-3. As evident from Fig. 5-3, a thinner Si layer will give 

rise to better actuator performance. However, the tradeoff lies in the 

mechanical stability of the actuator as a thin Si cantilever breaks off from its 

anchor region easily. In view of these considerations, we started our 

fabrication using SOI wafers with 3 µm thick Si device layer for added 

mechanical stability as well as reasonable actuator performance. Besides 

investigating the influence of Si device layer thickness on the actuator 

performance, the impact of Al thickness on the actuator displacement is 

examined as well. For a Si device layer thickness of 3 µm, an optimal Al 

thickness of 2 µm yields maximum actuator performance. This leads us to use 

a thickness of 2 µm for our Al windings during the fabrication process. 

 

Fig.  5-3. Simulated plot illustrating the change in the tip displacement of a single clamped 
ETl actuator for a unit temperature change. The thickness of the Al metal layer is varied from 
0.1µm to 6µm for different Si device layer thickness of a SOI wafer. 
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Fig.  5-4. Plots of mechanical rotation angle and maximum temperature of device versus total 
dc voltage applied to actuators 1 and 2.  Results are obtained from FEM simulation using 
ANSYS. 

 Finite element method (FEM) based on the proposed ET actuator 

design is made using ANSYS simulation software. Fig. 5-4 shows the 

simulated plots of mechanical rotation angle and maximum temperature of 

device versus total dc voltage applied to actuators 1 and 2. As the dc voltage 

applied to actuators 1 and 2 increases, the mechanical rotation of the mirror 

and the maximum temperature of the actuator increases. These trends are 

expected as increase in current flow will result in greater actuator 

displacement and heating effect. More importantly, a maximum simulated 

temperature of 205 °C, which is well below the melting point of Al, is 

obtained at 10 Vdc. This signifies good device reliability within the bias range 

of 10 Vdc. The thermo-mechanical properties of the different material used in 

the ANSYS simulation are summarized in table 5-1.    
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Table 5-1. Thermo-mechanical properties of materials used for ET actuator simulation 
and modal analysis in ANSYS. 

Thin film 
materials  

Density  

(kgm-3)  

Young’s 
Modulus  

(109 Pa)  

Poisso
n ratio  

Thermal 
conductivity 
(Wm-1K-1)  

Coefficient 
of thermal 
expansion 
(10-6 K-1)  

Resistivity 

(10-3
 
Ωm)  

Al  2700  65  0.33  237  23.1  2.82 × 10-5 

SiO
2 
 2200  74  0.17  1.04  0.4  1 × 1019 

Si  2330  167  0.28  150  2.6  100  

 

 

Fig.  5-5. Simulation result by ANSYS when ET actuators 3 and 4 are biased with a total DC 
voltage of 10V. (a) Y-displacement profile of the device where the mirror rotates about the x-
axis. (b) Temperature distribution profile of the device. 

 The Y-displacement and temperature distribution profiles at 10 Vdc are 

shown in Fig. 5-5(a) and 5-5(b), respectively. In Fig. 5-5(a), a mechanical 

rotation angle of approximately 0.9° is obtained when a total voltage of 10 Vdc 

is applied to actuators 3 and 4. In addition, parasitic vertical out-of-plane 

displacement of approximately 170 µm can be noted at the center of the 

mirror. Such out-of-plane displacement may lead to off-center shift of laser 

spot. This is due to the limited capability of the four ET actuators to only 

actively actuate downwards, but not upwards as it would be needed for pure 

tilt motion without the off-center shift of laser spot. Fig. 5-5(b) shows the 



Chapter 5: A MEMS Scanner Using Hybrid Actuation Mechanisms With Low 
Operating Voltage 

 

102 
 

temperature distribution profile of the device, where the greatest rise in 

temperature occurs at the biased ET actuators 3 and 4. The unbiased actuators 

1 & 2 remains at room temperature while an uniform temperature of 

approximately 100°C is observed for the frame and mirror plate.  

5.2.2 Electromagnetic Actuation 

 

 

Fig.  5-6.  Schematic drawing illustrating the working principle of EM actuation and rotation 
about the horizontal scanning axis i.e. z-axis when a mechanical torque, in the presence of 
external magnetic field, is generated due to the current flow in the coil embedded in the frame. 
(b) Top viewing drawing illustrating the dimensions of the coils. Two turns of the EM coil are 
shown for simplicity.   
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 The horizontal scanning induced by EM actuation is based on the 

Lorentz force excitation of the MEMS mirror, which in turn is created by an 

external magnetic field and current carrying EM coils. Fig. 5-6(a) and 5-6(b) 

show the three-dimensional and top view schematic drawing of the mirror 

device in the presence of magnetic field. Two layers of EM coils, each having 

54 turns, were deposited and patterned on the frame. Both layers of coils, 

which are made of Al, run in the same clockwise direction so that the Lorentz 

forces generated in both layers are the same. A pair of permanent magnets, as 

shown in Fig. 5-6(a), is arranged such that a magnetic field along the x-

direction is formed across the device. The current direction is reversed across 

the scan axis due to the current forming a loop in the EM coils on the frame. 

This causes a change in direction of the Lorentz force across the scan axis, 

resulting in a torque normal to the external magnetic to be generated about the 

z-axis. To achieve continuous horizontal scanning operation, an AC current 

will be needed so that the Lorentz force and mechanical torque generated 

change direction according to the direction of current flow. As shown in Fig. 

5-6(b), the out-of-plane Lorentz force acting on a DC current carrying 

conductor is given as:  

                F =  ∮ 𝐼dl × B L          (5.2) 

where I is the current flowing in a closed circuit of length L and B is the 

external magnetic field. The torque generated about z-axis is approximated as 

[74]:   

                  T =  2𝑖B � (b + 2mΔl)(
N−1

m=0

a + 2mΔl)     (5.3)   
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where i is the current flowing in the EM coils, N is the number of coil turns, a 

and b are the side lengths of the most inner coil turn on the short and long 

sides of the frame respectively. The first term in the summation component of 

equation (5.3) arises from the Lorentz force generated due to the current 

carrying coils that are parallel to the z-axis while the second term arises from 

the torque induced from the Lorentz force generated in all the coils. Thus, 

from equation (5.3), it can be deduced that a greater torque is induced when 

stronger magnets, larger current are used and greater number of coil turns are 

fabricated on the device. 

5.2.3 Modal Analysis 

 

Fig.  5-7. Various mode shapes of the device derived from ANSYS simulation. (a) 2nd 
eigenmode at 87.5 Hz for vertical scanning. (b) 3rd eigenmode at 160.3 Hz for horizontal 
scanning. (c) 6th eigenmode at 3014 Hz for horizontal scanning. 

 Finite element modal analysis using ANSYS software is also made to 

investigate the frequency response and actuation behavior of our proposed 

MEMS scanner. To decrease the computational cost, the entire model was 

assumed to be made up of silicon. The values of the mechanical properties for 

silicon material required in the simulation are summarized in table 5-1. Fig. 5-

7 shows the various mode shapes of the device derived from ANSYS 

simulation. The 2nd mode shape in Fig. 5-7(a), with a calculated 
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eigenfrequency of 87.5 Hz, corresponds to the intended purpose for vertical 

slow scanning by ET actuation. Fig. 5-7(b) shows the 3rd eigenmode at 160.3 

Hz, in which the frame and the mirror move in phase and deflect by the same 

amount. Slight tilts about their respective scanning axes are observed from the 

mode shapes in both Fig. 5-7(a) and 5-7(b). However, at higher 

eigenfrequency of 3014 Hz shown in Fig. 5-7(c), there is negligible movement 

of the frame while the mirror plate oscillates along the z-axis. A thick Si 

substrate is intentionally left beneath the C-shaped hinge and frame so as to 

provide rigidity to these structures. This allows little energy to be lost due to 

structure deformation and more energy to be transferred through the T-shaped 

torsion bar to the mirror plate. Both of the derived mode shapes in Fig. 5-7(b) 

and 5-7(c) correspond to the intended purpose for horizontal fast scanning by 

EM actuation. 

5.3 Device Microfabrication 
 Fig. 8 shows the CMOS compatible microfabrication process flow of 

the MEMS scanner investigated in this chapter. An 8 inch SOI wafer with 3-

μm-thick Si device layer, 1.1-μm-thick buried oxide (BOX) layer and 725 μm 

Si handle layer was used as the starting material. First, a 0.2-μm-thick thermal 

insulating SiO2 was deposited on the frontside of the wafer by plasma 

enhanced chemical vapour deposition (PECVD) [Fig. 5-8(a)]. This was 

followed by physical vapour deposition (PVD), patterning and reactive ion 

etching (RIE) of 2-μm-thick Al at the ET actuator winding, EM coil, bond pad 

and mirror regions using Cl2 and Ar gases [Fig. 5-8(b)]. A 0.5-μm-thick SiO2, 
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which serves as thermal and electrical insulation for the ET windings and EM 

coil regions respectively, was next deposited by PECVD. Bond pad openings 

 

Fig.  5-8. Microfabrication process flow of the device 

were then formed by RIE of SiO2 using CHF3 [Fig. 5-8(c)]. A second layer of 

Al was again deposited, patterned and etched, except that the processes 

happened only at the EM coil, mirror and bond pad regions [Fig. 5-8(d)]. 

PECVD SiO2 and Si3N4, each of 0.5-µm-thick, were then deposited as 

passivating layers. Al remained as the top layer in the mirror region so as to 

enhance the reflectivity of the mirror surface. This was followed closely by 
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RIE of SiO2 and Si3N4 for contact hole opening [Fig. 5-8(e)]. The frontside 

features of the microstructures such as the mirror, ET actuators, T-shaped 

torsion bar were then defined through RIE of Si3N4, SiO2, Si device and BOX  

layers using CF4 (for Si3N4), CHF3 (for SiO2) and SF6 (for Si) respectively 

[Fig. 5-8(f)]. 

 After all the frontside wafer processes were finished, the Si handle 

layer of the SOI wafer was reduced to approximately 450 µm by undergoing 

backside grinding and polishing. Next, a thin layer of 2 µm PECVD SiO2 was 

deposited and patterned at the backside of the wafer. The photoresist used to 

pattern the oxide layer remained behind after the oxide etch so that both the 

photoresist and the oxide can function as hard mask for backside Si deep 

reactive ion etch (DRIE) during the subsequent step [Fig. 5-8(g)]. Prior to the 

DRIE process, the wafer was first diced to single mirror chip level (6mm × 

6mm) as the mirror device would become very fragile when released and any 

impact either in a wet process or due to handling can break the microstructures 

easily. The diced mirror chips were then placed on a support wafer and 

immobilized using adhesive thermal tape. The DRIE process was conducted in 

a time controlled manner as the process does not stop effectively on the buried 

oxide (BOX) layer. 400 μm of silicon handle layer was first etched away, with 

the remaining 50 μm of silicon gradually etched in many etch steps, each of 

five minutes duration. After each etch steps, the wafer was taken out and the 

backside of the wafer was checked under the optical microscope so as to 

determine whether the entire Si handle layer had been fully etched away. A 



Chapter 5: A MEMS Scanner Using Hybrid Actuation Mechanisms With Low 
Operating Voltage 

 

108 
 

450-μm-thick Si substrate was left beneath the mirror to maintain the rigidity 

and flexibility [Fig. 5-8(h)]. 

 

Fig.  5-9. Photos showing (a) an unpackaged 2-D MEMS scanner placed beside a Singapore 
five-cent coin, (b) the device packaged in a dual inline package, and (c) a close-up view 
showing the bond pads connected to the pins of the package via gold bond wires. 

 

Fig.  5-10. Optical micrographs showing the (a) C-shaped hinge connecting the ETactuators to 
the frame, (b) T-shaped torsion bar, (c) Al EM coils embedded in the frame, and (d) Al 
windings of the ET actuator. 
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 Fig. 5-9(a) shows a completed MEMS mirror device, placed beside a 

Singapore five-cent coin. As shown in Fig. 5-9(b), the device was bonded onto 

a dual inline package (DIP), with spacer chip placed beneath the device. The 

spacer chip elevates the device from the base of the DIP, hence avoiding 

hindrance to the mirror plate movement during actuation. The Al bond pads 

were connected by gold bond wires to the metal pins of the DIP. Fig. 5-10 

shows the optical micrographs for various parts of the MEMS scanner. Fig. 5-

10(a) shows the C-shaped hinge connecting the ET actuators to the frame, 

while Fig. 5-10(b) shows the T-shaped torsion bar of width 50 μm connecting 

the mirror plate to the frame. Fig. 5-10(c) and 5-10(d) show the EM Al coils 

embedded in the frame and Al windings of the ET actuator, respectively. 

There are two layers of Al EM coils, with each layer having 54 coils. Each ET 

actuator has 22 Al windings of width 3 μm. Table 5-2 summarizes the various 

dimensions of the structural parameters for the fabricated device. 

Table 5-2. Structural parameters of the fabricated MEMS scanner shown in Fig. 5-10 

Structural parameters Values 

Die size  6 mm × 6 mm 

Mirror size (l × w × t)  1.5 mm × 1 mm × 0.45 mm 

T-shaped torsion bar (w × t)  50 μm  × 5 μm 

Electrothermal actuator (l × w × t)  1850 μm  × 200 μm × 7 μm 

Electrothermal actuator winding  
(l × w × t)  

1800 μm × 3 μm  × 2 μm 

No. of windings  22 

Electromagnetic coil (w × t)  3 μm  × 2 μm 

No. of coils in each layer  54 
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Fig.  5-11. Experimental setup for the optical characterization of device. Inset shows the 
packaged device placed in between the magnets, with red laser light impinging on the mirror 
surface 

 The schematic drawing of the experimental setup is illustrated in Fig. 

5-11. The setup is largely identical to those used to characterize the MEMS 

scanners in the previous chapters. The inset of Fig. 11 shows the packaged 

device placed in between the magnetic field of a pair of Alcomax III magnets, 

with red laser light impinging on the mirror surface. The magnetic field 

strength at the center of the pair of magnets, which was measured by a Gauss 

meter, is approximately 0.15T. 

5.4 Results & Discussion 
 Several experiments have been carried out to characterize both the ET 

and EM actuators in terms of static, dynamic responses and 2-D scanning 

patterns. 
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5.4.1 Static characterization 

 

Fig. 5-12. I-V curves obtained for the EM coil, ET actuators 1 and 2 connected in series and 
ET actuators 3 and 4 connected in series. Inset shows a detailed sweep of the coil within the 
1Vdc range, obeying a linear fit of I(mA) = 1.8V (V).  

 The I-V curves of the ET windings and the EM coils are shown in Fig. 

5-12. An Agilent b1500a Semiconductor Device Analyzer was used to bias 

and obtain the I-V characteristic of the device. Both ET actuators 1 and 2 were 

connected electrically in serial for both static and dynamic characterizations. 

This also applies to ET actuators 3 and 4. As observed from Fig. 5-12, the I-V 

curves for the two sets of ET actuators are identical, with both having a 

thermal power consumption of approximately 73 mW at 10 Vdc. In the case of 

EM actuation, the magnitude of the current flow plays a more pivotal role in 

the actuation performance compared to thermal power consumption for ET 

actuation. A current of 13.3 mA was obtained when 10 Vdc was applied to the 
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EM coils. This is equivalent to a power consumption of 133 mW at 10Vdc for 

EM actuation. The inset of Fig. 5-12 shows a detailed sweep of the EM coil 

within the 1 Vdc range. In this bias range, the EM coil behaves like an ohmic 

conductor, obeying the linear fit I (mA) = 1.8V (V). The 1 Vdc bias range will 

be of interest during EM ac actuation, which will be discussed later in the 

section. 

 Fig. 5-13(a) and 5-13(b) show the static dc response for ET and EM 

actuations, respectively. The static rotation measurement was taken by 

applying a dc voltage to only one set of serially connected ET actuators, while 

leaving the other set unbiased. As shown in Fig. 5-13(a), when the ET 

actuators 1 and 2 were biased at 10 Vdc, the actuators bent down and caused 

the frame and mirror plate to rotate about the x-axis. This introduced a positive 

static ODA of 1.8°. Similarly, when ET actuators 3 and 4 were biased at 10 

Vdc, the frame and mirror rotated in the opposite direction, introducing a 

negative static ODA of 1.5°. The dc static performance for actuators 1 and 2 is 

better compared to actuators 3 and 4. This small discrepancy may be due to 

lithographic and fabrication inaccuracies. Fig. 5-13(b) shows the dc response 

for the EM actuation, where positive and negative dc voltages were applied to 

the EM coils. When a positive dc bias was applied, the current flowed in a 

clockwise direction around the coils and the frame experienced a mechanical 

torque in the presence of a magnetic field. At 10 Vdc, the mirror rotated about 

the z-axis, causing an ODA of +3.1°. In the case where negative DC bias was 

applied, the current flowing in the coil changed direction, i.e. anti-clockwise 
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direction. The mirror rotated in the opposite direction about the same axis, 

introducing an ODA of -3.3°. 

 

 

Fig.  5-13. DC response for (a) ET actuation, and (b) EM  actuation. 
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5.4.2 Dynamic characterization 

 

 
Fig.  5-14. Bode plots illustrating the frequency response for (a) ET actuation where actuators 
1 and 2 are biased in series, and (b) EM actuation. 
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 Fig. 5-14(a) and 5-14(b) show the Bode plots illustrating the frequency 

responses of ET and EM actuations respectively. A Polytec MSA-500 Laser 

Doppler Vibrometer (LDV) was used to obtain both the frequency responses 

of the device, with the measurement point being located at the top corner of 

the frame. A 1 Vac sinusoidal excitation signal was used to bias the device 

while the LDV sent a laser beam to the point of interest and measures the 

Doppler shift of the returning beam. Fig. 5-14(a) shows the Bode plot obtained 

for ET actuation, where ET actuators 1 and 2 were biased with the excitation 

signal. The inset of Fig. 5-14(a) shows the second mode shape of the mirror 

obtained from the vibration analyzer in the LDV. This mode shape 

corresponds to that required for vertical scanning and it occurs at 74 Hz, which 

is pretty close to the modal frequency of 87.5Hz obtained from the FEM 

simulation. The mechanical q-factor obtained during ET actuation at 74 Hz is 

50. The same procedure is made for EM actuation and a Bode plot, as shown 

in Fig. 5-14(b), is obtained. As shown in the inset of Fig. 5-14(b), the mode 

shapes of the mirror for third and sixth modes corresponds to that required for 

horizontal scanning. The third mode occurs at 202 Hz, while the modal 

frequency obtained from simulation is 160.3 Hz. Similarly, the sixth mode 

occurs at a higher frequency of 2926 Hz while the simulated modal frequency 

is 3014 Hz. The disparity between the experimental and simulated frequencies 

is due to the consideration of the entire model being made of silicon only 

during the ANSYS simulation while in reality, the device is made of several 

layers of thin film material in addition to single crystalline silicon. The 

mechanical quality factors obtained at 202 Hz and 2926 Hz is 40 and 488, 

respectively. The 3 dB cut-off frequency for ET actuation in Fig. 5-14(a) is 
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about 3 Hz. This slow thermal response is caused by the large thermal 

resistances introduced by the windings of the ET actuator.  

 

 

Fig.  5-15. AC response for (a) ET actuation at 74Hz for two different cases of biasing 
configurations; (b) EM actuation at 202Hz, with inset showing an example of a horizontal 
scanning trajectory line produced during EM actuation.  
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 Fig. 5-15(a) and 5-15(b) depict the ac response of the device for ET 

and EM actuations, respectively. Both the ET and EM actuators were biased 

individually with a sinusoidal ac voltage at their respective resonant 

frequencies while observing the length of the scanning trajectories produced at 

varying ac voltage. Two Agilent 33120A Function Waveform Generators were 

used to bias and excite the device for ET and EM actuations, respectively. Fig. 

5-15(a) shows the ac response for ET actuation at 74Hz for two different bias 

configurations. An ac voltage, on top of a 2 Vdc offset bias, was applied to the 

two sets of ET actuators separately. The insets of Fig. 5-15(a) show examples 

of the voltage bias waveforms at 1 Vac and 2 Vac. In the case where ET 

actuators 1 and 2 were biased, the ODA obtained at 2 Vac with 2 Vdc offset is 

+1.6° compared to +1.4° at 1 Vac with 2 Vdc offset. This is because of a larger 

peak-to-peak voltage difference for the former compared to the latter biasing 

condition, hence resulting in larger difference in the heating effect. In the case 

where ET actuators 3 and 4 are biased, the ODA obtained at 2 Vac with 2 Vdc 

offset is -1.5°. Hence, from these results, we can potentially obtain an 

approximate optical scan range of ±1.5° at 2 Vac with 2 Vdc offset when we 

bias the two sets of thermal actuators at 180° out of phase with each other. 

Such a biasing configuration would result in approximately 12 mW of thermal 

power being consumed by both sets of ET actuators. In addition, due to the 

electrical compliance of the function generator, the biasing condition for the 

ET actuators was limited to 2Vac with 2Vdc offset. The red and blue curves in 

Fig. 5-15(b) show the root mean square values of the current flowing in the 

EM coil for various ac voltages and the ac response for EM actuation at 202 

Hz, respectively. At 1 Vac bias, a root-mean-square (rms) current value of 1.26 
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mA is derived, while a dynamic ODA of ±10° is obtained from the optical 

experiment. This dynamic ODA obtained is significantly larger when 

compared to the static ODA of 0.3° obtained at 1 Vdc during static actuation. 

This phenomenon is due to the mirror attaining mechanical resonance from the 

ac electrical excitation, resulting in maximum energy transfer from the ac 

electrical signal to the vibrating mechanical structures. In addition, straight 

vertical and horizontal scanning trajectories were observed, as shown in the 

insets of Fig. 5-15(a) and Fig. 5-15(b), respectively. Hence, the tilting mode 

shapes previously observed from the simulation in Fig. 5-7(a) and 5-7(b) 

contributes minimum effect to both the vertical and horizontal scanning 

trajectories respectively.  

 
Fig.  5-16. Various Lissajous patterns generated from different combinations of ET and EM 
biasing configurations. ET actuators 1 and 2 at 2 Vdc and 2 Vac, 74 Hz are responsible for the 
horizontal scanning in all 3 patterns while the biasing conditions for the vertical scanning are 
(a) 0.1 Vac  or 0.126 mA, 202 Hz; (b) 0.2 Vac or 0.252 mA , 202Hz; (c) 2 Vac or 2.5 mA, 2926 
Hz respectively. 

 Various 2-D Lissajous patterns generated from different combinations 

of ET and EM biasing configurations are shown in Fig. 5-16. The vertical 

scanning in Fig. 5-16(a)-(c) was driven by biasing ET actuators 1 and 2 at 74 

Hz, 2 Vac with 2 Vdc offset. The horizontal scanning occurs by biasing the EM 

coils at the resonant frequencies of either 202 Hz or 2926 Hz. The horizontal 

trajectory length becomes longer as the bias applied to the EM coil increases. 

Minimum coupling was observed between the vertical and horizontal scanning 
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as the horizontal and vertical trajectories, shown in the insets of Fig. 15(a) and 

15(b). respectively, forming straight lines instead of elliptical loops. The 

distortion of the scanning image seen in Fig. 5-16(b) is caused mainly by the 

inclined laser beam incidence on the mirror and the tilted screen against the 

optical axis. Such scanning image can be easily corrected using properly 

designed projection optics. Fig. 5-16(c) illustrates the raster scanning pattern 

obtained by biasing the EM coil at 2Vac, 2926 Hz. Unfortunately, no 

significant mechanical amplification experimental result is observed as the 

horizontal trajectory length obtained in Fig. 5-16(c) is relatively smaller (±1.1°, 

2.5 mA) compared to Fig. 16(b) (±2°, 0.25 mA). This might be due to the 

thick bulk Si substrate underneath the mirror and the air damping force being 

larger at higher frequency, causing the actuation motion of the mirror plate to 

be heavily damped at 2926 Hz compared to 202Hz. Nevertheless, we are able 

to demonstrate the higher resonant mode (2.9 kHz) and its corresponding 2-D 

scanning pattern in Fig. 5-16(c). This illustrates the feasibility of using the 

hybrid actuated single mirror approach and leveraging the concept of 

mechanical amplification mechanism for 2-D scanning purposes.  

5.5 Performance comparison of current 
design with existing EM MEMS scanners 
 Table 5-3 compares the published EM actuated MEMS mirror 

performances according to the figure of merit (FOM), which is being used as a 

metric to compare the relative scanning efficiencies: 

   opt Df
FOM

I
θ

=                    (5.4)       
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Table 5-3. Comparison of FOM for different EM scanner designs. 

Ref  Unique feature   
Frequency 

(Hz) 
Current 
(mA) 

FOM 

This work  
Hybrid actuated 
MEMS scanner 

202 1.26  3.2  

Yalcinkaya et 
al. [74] 

State-of-the-art 
MEMS scanner 

21,300 140  12.1  

Ji et al. [77] 
Cu plated MEMS 

scanner 
19,100 130 1.9 

Miyajima et 
al. [72] 

MEMS scanner with 
polyimide hinges 

2,700 177 1.3 

Urey et al. 
[75]

 
 

Low cost FR4 based 
scanner  

417 250  1.2  

Yalcinkaya et 
al. [79] 

Magnetostatic NiFe 
plated MEMS scanner 

367 100 0.48 

Yalcinkaya et 
al. [78] 

Polymer based 
barcode scanner 

56.5 16 0.43 

Tang et al.  
[81] 

Torque enhanced Ni 
plated scanner 

11,149 400 0.38 

 

Fig.  5-17. Performance comparison of the various EM MEMS scanners reported in literature. 
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where θopt is the total optical deflection angle (°), D is the mirror size along the 

scan axis (mm), f is the resonant frequency (kHz), I is the rms drive current 

(mA). Fig. 5-17 shows the graphical representation for the performance 

comparison of the various EM MEMS scanners reported in literature. The 

FOM obtained during EM actuation for this work (θopt = 20°, D = 1mm, f = 

0.202 kHz and I = 1.26mA) is better than most of the EM scanners reported in 

recent years. This may be attributed to the large number of EM coils fabricated, 

resulting in extremely low driving current. To the best of my knowledge, this 

proposed design has one of the lowest operation voltage and current among 

most of the MEMS scanners driven by EM actuation. For example, the MEMS 

scanners developed by Tang et al. and  Yalcinkaya et al. in ref. [81] and [78], 

respectively, require approximately rms drive currents of 400mA and 16mA to 

reach a total optical deflection angle of 11° and 15° respectively. The 

performances of these scanners are less efficient than our obtained ODA of 

±10° at 1 Vac, 1.26 mA for EM actuation. However, this device's performance 

remains pale in comparison to the state-of-the-art EM MEMS scanner 

developed by Yalcinkaya et al. for high resolution retinal scanning display 

[74].         

5.6 Summary 
 A novel proof-of-concept CMOS compatible MEMS scanner based on 

hybrid actuation mechanisms has been proposed in this chapter and verified 

for 2-D scanning application. Both ET and EM actuations have been 

integrated in the same device for slow and fast scanning purposes, respectively. 

This makes our design essentially different from most of the 2-D scanner 
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designs already reported in the literature where the same actuation scheme is 

often used to drive both the orthogonal scanning axes of the mirror devices. 

The added advantage of a CMOS compatible fabrication process allows for 

ease of monolithic integration, hence adding new functionality to integrated 

electronics. An optical deflection angle of ±1.5° for the 74 Hz vertical scan at 

12 mW for ET actuation and ±10° for the horizontal scan frequency of 202 Hz 

at 1.26 mA, 1Vac for EM actuation were reported. The outstanding optical 

performance in terms of low operating voltage and above-par FOM obtained 

by the device during EM actuation is among the best reported in literature. 

This unique design of using hybrid actuation mechanism is the first 

demonstration of such CMOS compatible 2-D MEMS scanner, with its low 

power consumption suitable for mobile applications powered by batteries with 

limited capacity. 

 In the next chapter, i.e. chapter 6, the developed hybrid actuated 

MEMS mirror will be examined further for VOA application.  
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Chapter 6  
Study of a MEMS VOA Driven By 
Hybrid Electromagnetic and 
Electrothermal Actuation 
Mechanisms 
 

6.1 Introduction 

 One of the key approaches of making MEMS VOA devices involves 

the integration of large reflective mirrors with optics typically realized in 3-D 

free space configuration. When such tilt reflective mirrors are deployed for 3-

D optical attenuation in conjunction with large micro-optics such as dual fiber 

collimator, the resulting VOA device can gain excellent data in terms of return 

loss and wavelength dependent loss under reasonable driving voltage. 

 In recent years, 3-D reflective type MEMS VOA driven by 

piezoelectric Pb(Zr,Ti)O3 (PZT) thin film actuators have been demonstrated in 

ref. [68] and in chapter 3 of this thesis, achieving 40 dB attenuation range at 

1Vdc . However, PZT is not a CMOS compatible material. Thus, in this 

chapter, a new CMOS compatible 3-D MEMS VOA that can be driven by 

either electrothermal (ET) or electromagnetic (EM) attenuation mechanism is 

explored. In addition, by addressing voltage biases to both the ET and EM 

actuators simultaneously, i.e. hybrid attenuation mechanism, better 

performance in terms of reduced electrical power consumption and obtaining 

an additional degree of freedom in attenuation control can be achieved. The 
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approach of using hybrid attenuation differs greatly from all of the planar and 

3-D MEMS VOA designs that have already been reported in literature where 

only one type of actuation mechanism is used to drive the mirror/shutter in 

order to achieve attenuation. The attenuation efficiency for EM, ET and hybrid 

attenuation mechanism will be studied in detail in this chapter.  

6.2 Design and modeling 

 A schematic diagram of the proposed hybrid MEMS VOA is shown in 

Fig. 6-1. The device investigated in this chapter for VOA application is similar 

to that in chapter 5. There are four sets of ET actuators along the longitudinal 

sides of the mirror which are responsible for the rotation of the mirror plate 

about the x-axis. The frame is embedded with numerous turns of aluminium 

(Al) EM coils, during which a Lorentz force and rotation of the mirror about 

z-axis will be generated when a current flows in the coils in the presence of a 

permanent magnetic field. The mirror surface is deposited with Al and is 

connected to the frame by the T-shaped torsion bars. The dual fiber collimator 

is arranged in a 3-D free space configuration where the infra-red (IR) laser 

beam focuses on the center of the Al mirror surface. With both the rotation 

axes being orthogonal to each other, the micromirror is able to move with six 

degree of freedom for enabling 3-D attenuation mechanism. The insets A and 

B in Fig. 6-1 show the top view drawing illustrating the dimensions and 

layouts of the EM coils and ET windings, respectively. The numbers of turns 

of EM coils and ET windings shown in the insets have been reduced for 

simplicity purposes. The details of the attenuation principle by the two modes 

of actuation, i.e. EM and ET will ensue on in this section. 
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Fig.  6-1. Schematic diagram of the hybrid actuated MEMS VOA with dual-fiber collimator 
arranged in 3-D free space configuration such that the light beam focuses on the center of the 
aluminum mirror surface. Insets A and B show the top view drawings illustrating the 
dimensions and layout of the EM coils and ET windings, respectively. The number of EM 
coils and ET windings have been reduced for simplicity purposes. 

6.2.1 EM actuation and attenuation principle 

 

Fig.  6-2. Schematic diagrams showing the (a) EM actuation mechanism in the presence of an 
external permanent magnetic field and current flowing in the coils embedded in the frame, and 
(b) EM attenuation principle, where the laser beam is rotated and displaced by an angle θEM 
and distance δEM,laser, respectively. 
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 Fig. 6-2(a) shows the schematic diagram of the EM actuation 

mechanism in the presence of an external magnetic field and current flowing 

in the EM coils. Two layers of EM coils, made of Al, are deposited and 

patterned on the silicon (Si) frame. A pair of magnets may be arranged such 

that a uniform permanent magnetic field in the x-direction may be formed 

across the device. When the EM coils are biased and a current flows in an anti-

clockwise direction as shown in Fig. 6-2(a), a pair of equal but opposite 

Lorentz force will be generated at the coils orthogonal to the magnetic field, 

i.e. those coils running along the z-direction. This pair of Lorentz force 

introduces a magnetic torque and cause the mirror to rotate about the z-axis. 

The torque generated may be approximated as:  

             T =  2𝑖B � (b − 2mΔl)(
N−1

m=0

a − 2mΔl)                    (6.1) 

where i is the current flowing in the EM coils, B is the magnetic field strength 

of the magnet (0.15 T), N is the number of coil turns in each layer (54), a and 

b are the side lengths of the most outer coil turn on the short (2.83 mm) and 

long sides (4.55 mm) of the frame, ΔL is the pitch of the EM coils (12 µm) as 

shown in the inset of Fig. 6-1. Thus, from equation (6.1), it can be deduced 

that a greater mechanical rotation angle of the mirror is obtained when a larger 

current, stronger magnet and greater number of coil turns are fabricated on the 

device.  

 Fig. 6-2(b) shows the schematic diagram illustrating the EM 

attenuation principle, where the laser beam is rotated and displaced by an 

angle θEM and distance δEM,laser, respectively. When there is no current flowing 
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in the EM coils, the normal of the mirror surface is perfectly aligned with the 

IR laser beam, causing all the light to be coupled from the input fiber to the 

output fiber. When the mirror rotates about the z-axis due to the magnetic 

torque acting on the frame, the reflected laser beam is rotated and displaced by 

an angle θEM and distance δEM,laser, respectively. A portion of the laser beam no 

longer couples into the output fiber, resulting in attenuation. An analytical 

model relating the optical deflection angle (θEM) to the displacement of the 

reflected laser beam from its original position can be derived from Fig. 6-2(b) 

and is represented by equations (6.2) and (6.3): 

𝜃 =  𝑡𝑎𝑛−1 �
𝐴
𝐷
�                                                   (6.2) 

𝛿𝐸𝑀,𝑙𝑎𝑠𝑒𝑟 = 𝐷 tan(𝜃 + 𝜃𝐸𝑀) −  𝐴                 (6.3) 

where θEM is the optical deflection angle of the laser beam when the EM coils 

are dc biased, A is the half distance between the input and output fiber in the 

dual fiber collimator (125 µm), D is the working distance (1 mm), θ is the 

angle between the incident laser beam and normal of the mirror before 

actuation, δEM,laser is the displacement of the reflected laser from its original 

position during electromagnetic actuation. With the above-mentioned 

equations (6.2) and (6.3), the theoretical displacement of the laser beam from 

its original position (δEM,laser) can be calculated using the experimental optical 

deflection angle data (θEM) obtained by impinging a red visible laser light on 

the mirror surface. 
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6.2.2 ET actuation and attenuation principle 

 

Fig.  6-3. Schematic diagram showing the (a) ET actuation mechanism where ET actuators 1 
and 2 are biased and heated up, and (b) ET attenuation principle, where the laser beam is 
rotated and displaced by an angle θET and distance δET,laser, respectively. 

Fig. 6-3(a) shows the schematic diagram of the ET actuation mechanism 

when ET actuators 1 and 2 are biased. The ET actuator consists of a Si 

cantilever made from the device layer of a silicon-on-insulator (SOI) wafer 

and Al heater deposited and patterned on it. As shown in the inset B of Fig. 6-

1, the Al heater is patterned in a winding manner so as to increase the 

resistance and thermal reliability of the heater and actuator, respectively. 

There are a total of 14 ET windings fabricated on each of the four actuators. 

When a current flows through the windings, the Al heats up and expands more 

than Si, causing the ET actuator to bend downwards. To introduce a 

mechanical torque about the x-axis, both actuators 1 and 2 or 3 and 4 are to be 

biased serially so that either set of actuators experiences downward 

displacements simultaneously. As shown in Fig. 6-3(b), when the mirror 

undergoes rotation about the x-axis, the reflected IR laser beam is displaced by 

an angle θET and distance δET,laser, respectively. A portion of the laser beam no 
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longer couples into the output fiber, resulting in attenuation. Similar analytical 

model relating the optical deflection angle (θET) to the displacement of the 

reflected laser beam from its original position (δET,laser ) can be made from Fig. 

6-3(b) and is represented by equation (6.5):  

𝛿𝐸𝑇,𝑙𝑎𝑠𝑒𝑟 =  𝐷𝑡𝑎𝑛(𝜃𝐸𝑇)                               (6.4) 

where θET is the optical deflection angle of the laser beam when the ET 

actuators 1 and 2 are dc biased, D is the working distance (1 mm), δET,laser is 

the displacement of reflected laser from its original position during ET 

actuation. With equation (6.4), the theoretical displacement of the laser beam 

from its original position can also be calculated using the experimental optical 

deflection angle data obtained during ET actuation. 

6.3 Experimental setup 
Fig. 6-4 shows the fabricated MEMS VOA device of size 6 mm × 6mm, 

wire-bonded to a dual inline package (DIP). The fabrication process for the 

device is identical to that described previously in section 3 of chapter 5. The 

rectangular mirror is 1.5 mm × 1mm in size, with its surface deposited with 4- 

µm-thick Al. Insets A and B show the optical micrographs of the windings on 

the ET actuator and EM coils on the frame respectively. Each ET actuator has 

14 Al windings of width 5 µm, while a total of 108 turns, each of width 3 µm, 

are fabricated in the two layers of EM coils. Inset C shows a SEM micrograph 

of the device, which includes the ET actuator, C-shaped joint, frame, T-shaped 

torsion bar and micromirror. The detailed dimensions of the microstructures 

for the device are summarized in Table 6-1.     
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Fig.  6-4. A magnified photo showing the packaged MEMS VOA device. Insets A and B show 
the optical micrographs of the ET windings and EM coils respectively. Inset C shows a SEM 
micrograph of the ET actuator, C-shaped joint, frame, T-shaped torsion bar and mirror. 

 

Table 6-1. Detailed dimension of the microstructures for the hybrid MEMS VOA device.  

Structural parameters Values 

Size of the die  6 mm × 6 mm 

Mirror size (l × w × t)  1.5 mm × 1 mm × 0.45 mm 

T-shaped torsion bar (w × t)  150 μm  × 5 μm 

Electrothermal actuator (l × w × t)  1850 μm  × 200 μm × 7 μm 

Electrothermal actuator winding  
(l × w × t)  

1800 μm × 5 μm  × 2 μm 

No. of windings  14 

Electromagnetic coil (w × t)  3 μm  × 2 μm 

Total no. of electromagnetic coils  108 
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Fig.  6-5. (a) Schematic diagram of the measurement setup carried out on an anti-vibration 
optical bench. The stages are capable of moving in X-Y-Z directions and tilting along X-Y 
(θz) and Y-Z (θx) planes as well. (b) Photo illustrating the actual measurement setup which 
includes the tunable laser, power meter, two dc power supplies and stages. (c) A magnified 
photo at the DUT region, where the DUT is mounted upright in the presence of an external 
permanent magnetic field. The dual fiber collimator is adjusted to a working distance of 1mm 
away from the mirror surface. 

 

Fig.  6-6. White light interferometer measurement of the surface roughness for the aluminium 
coated mirror.  
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 The schematic diagram of the measurement setup for the VOA 

characterization is illustrated in Fig. 6-5(a). The dual fiber with collimator 

used in this chapter is the same as that used in chapter 3. The optical 

measurement setup consists of a tunable infra-red (IR) laser source integrated 

with a power meter (Agilent 8164B Lightwave Measurement System), two 

multi-axis X-Y-Z-θx-θz adjustable stages, dual fiber with collimator and two 

dc power supplies. The device was mounted on the first adjustable stage via 

the breadboard while the dual fiber with collimator was mounted on the 

second adjustable stage via a fiber holder. The dual fiber collimator was 

placed at a working distance of 1 mm away from the mirror surface. The input 

IR light from the tunable laser was launched via one fiber, i.e. input fiber of 

the dual fiber through the collimator to the center of the mirror. The reflected 

light was collected by the same collimator to the power meter via the output 

fiber of the dual fiber. Two dc power supplies were used so that the ET 

actuators and the EM coils can be biased separately. The power of the IR laser 

source used in the experiment is 4 mW. The collimated beam diameter has 

been characterized to be 700 µm ± 25 µm, which is smaller than the mirror. 

The whole measurement setup was established on an anti-vibration optical 

table to reduce the effect of ambient shock to the characterization setup. Fig. 

6-5(b) illustrates a photo of the actual measurement setup on an optical table 

while Fig. 6-5(c) shows a magnified photo of the device under test (DUT) 

region, where the DUT was mounted upright in the presence of a permanent 

magnetic field generated by a pair of Alcomax III magnets. The magnetic field 

strength at the center of the magnetic field was measured by a Gauss meter to 

be approximately 0.15 T. For the insertion loss measurement, the relative 
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position of the collimator and mirror was adjusted such that the coupling loss 

was minimized. In order to do so, red laser light of 632.8 nm was first shone 

through the collimator onto the center of the mirror. Both the stages were 

adjusted so that the red laser spot is centralized at the middle of the mirror. 

The IR tunable laser source was then fed into the input fiber after the coarse 

alignment step has been confirmed. During the fine alignment step, the 

relative position of the mirror to the collimator was adjusted by moving and 

tilting both the X-Y-Z-θx-θz stages such that minimum insertion loss was 

obtained. The measured insertion loss in this setup is about 1.8 dB, which is 

about a decibel higher than commercial VOA products. This is mainly caused 

by the surface warpage of the mirror and the inferior reflectivity of the Al 

coating compared to gold at 1550 nm.  

The surface roughness of the fabricated Al-coated mirror was measured 

by a Veeco Wyko NT3300 white light interferometer and the mirror profile is 

shown in Fig. 6-6. The average surface roughness and root mean square 

roughness are 114nm and 404nm, respectively. The roughness of the mirror 

surface causes the measured insertion loss to be a decibel higher than 

commercial available VOA products. Further optimization of the VOA 

fabrication may improve the surface roughness of the mirror and reduce the 

insertion loss to less than 1 dB. For example, a very thin layer of sacrificial 

oxide may first be deposited on top of the aluminium reflective surface so that 

any physical damage sustained during the subsequent steps is on the sacrificial 

oxide layer only. This thin layer of sacrificial oxide can then be etched away 

using vapour hydrofluoric acid once the microstructures are released from the 
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backside. To further improve the surface quality of the mirror, atomic layer 

deposition (ALD) of aluminium on the mirror plate, instead of physical vapour 

deposition, may also be considered in order to improve the surface roughness 

and uniformity of the mirror.  

6.4 Results and Discussion 

 

Fig.  6-7. Measured I-V curves for the EM coils and ET actuators, respectively. 

 The I-V curves of the EM coils and ET actuators are obtained from an 

Agilent b1500a Semiconductor Device Analyzer and shown in Fig. 6-7. A 

current of 6.6 mA was obtained when 4 Vdc was applied to the EM coils. This 

is equivalent to a power consumption of approximately 26 mW at 4 Vdc. In the 

case for ET actuation, the thermal power consumption plays a more pivotal 

role in the ET actuator performance compared to the magnitude of the current 

in EM actuation. Both ET actuators 1 and 2 were biased serially during the 



Chapter 6: Study of a MEMS VOA Driven By Hybrid Electromagnetic and 
Electrothermal Actuation Mechanisms 

 

135 
 

characterization process, while the same was also applied to ET actuators 3 

and 4. In addition, there is a slight discrepancy between the I-V curves for the 

two sets of ET actuators even though the layouts for both sets of actuators are 

the same. This may be due to the lithography inaccuracy and fabrication 

process variation. At 3 Vdc, the two sets of ET actuators 1 and 2, 3 and 4 have 

thermal power consumption of approximately 21 mW and 19 mW, 

respectively. 

 Besides the I-V characteristics of the EM coils and the ET actuators, 

several experiments were also carried out to study both the ET and EM 

attenuation in terms of static rotation angle and attenuation response under dc 

bias. 

6.4.1 Optomechanical performance for EM 
attenuation mechanism 

 Fig. 6-8(a) shows both the optical deflection angle (ODA) obtained 

experimentally and the mathematically derived laser spot displacement for 

various dc driving voltages. In the case for the experimental ODA, it is 

obtained by shining a red He/Ne laser beam onto the mirror surface and 

measuring the displacements of the red laser spot on the screen when different 

dc voltages were applied to the EM coils. As evident from Fig. 6-8(a), an 

increase in dc voltage results in a larger ODA. This is expected as an increase 

in applied voltage will result in a larger current flowing in the EM coils, 

causing a larger Lorentz force to be acting on the frame, and hence rotating the 

mirror along the z-axis to a greater extent. An experimental optical rotation 

angle of 1.1° was obtained at 4 Vdc. 



Chapter 6: Study of a MEMS VOA Driven By Hybrid Electromagnetic and 
Electrothermal Actuation Mechanisms 

 

136 
 

 

 

Fig.  6-8. (a) Experimental optical deflection angle and analytically calculated laser spot 
displacement versus dc voltage applied to the EM coil. The inset shows a schematic diagram 
of the EM attenuation mechanism, where the laser spot no longer couples perfectly from the 
input fiber into the output fiber after EM actuation. (b) Measured attenuation-bias curves for 
difference current direction in the EM coils.  
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 Fig. 6-8(a) also shows the displacement of the IR laser spot from its 

original position (δEM,laser) corresponding to minimum insertion loss at various 

dc voltages. Values for the laser spot displacements were derived using the 

experimental values of optical rotation angle (θEM) obtained in the same figure 

and substituting these values into equations (6.2) and (6.3). From Fig. 6-8(a), 

it is observed that the displacement of the laser spot, δEM,laser, is approximately 

21 μm at 4 Vdc. The inset shows the front profile of the mirror and the dual 

fiber collimator during EM attenuation. Before EM actuation when there is no 

current flowing in the coils, the normal of the mirror surface is perfectly 

aligned with the IR laser beam, hence coupling all the light from the input 

fiber to the output fiber, i.e., minimum insertion loss condition. When the 

mirror rotates due to a dc bias applied to the EM coils, the IR laser spot is 

displaced by δEM,laser, resulting in attenuation as a portion of the laser beam no 

longer couples into the output fiber. 

 Based on the VOA characterization setup shown in Fig. 6-5, the 

measured attenuation curves versus dc voltage applied to the EM coils for 

different current directions are shown in Fig. 6-8(b). The experiment was 

carried out at a fixed laser wavelength of 1550 nm as it is one of the three 

transmission windows where light attenuation and dispersion in the optical 

fiber are at the minimum during propagation. Both current directions in the 

EM coils yield almost identical attenuation characteristics, achieving a 40 dB 

dynamic attenuation at 4Vdc and electrical power consumption of 26 mW. A 

40 dB dynamic attenuation range is sufficient with regards to most of the 

commercial applications. Correlating the experimental data obtained at 4 Vdc 
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in Fig. 6-8(a) and 6-8(b), it may be interpreted that 40 dB attenuation was 

achieved when the laser spot was displaced 21 μm away from its original 

position.             

 The wavelength dependent loss (WDL) of wavelengths ranging from 

1510 nm - 1610 nm was also measured at various EM attenuation states and 

shown in Fig. 6-9. The WDL at driving voltages of 0 Vdc (1.8 dB), 1.5 Vdc (10 

dB), 2.2 Vdc (20 dB) and 2.8 Vdc (30 dB) were less than 0.06 dB, 0.31 dB, 0.39 

dB and 0.53 dB, respectively. These WDL data measured at the various 

attenuation states are of the same level with those data already reported in 

literature.  

 

Fig.  6-9. Measured wavelength dependent loss at various attenuation states for EM 
attenuation. 
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6.4.2 Optomechanical performance for ET 
attenuation mechanism 

 

Fig.  6-10. Comparison of mechanical rotation angle (θ) obtained from simulation software 
ANSYS and optical rotation angle (2θ) obtained from He/Ne red laser experiment. Inset 
shows the simulated y-profile of the device obtained from ANSYS when ET actuators 1 and 2 
were biased serially at 3Vdc. 

In the operation of the MEMS VOA based on ET attenuation 

mechanism, various dc voltages are applied to either one of the two sets of ET 

actuators 1 and 2 or 3 and 4. Fig. 6-10 compares the mechanical rotation angle 

(θ) obtained from finite element simulation software ANSYS and the optical 

rotation angle (2θ) obtained from the He/Ne red laser experiment, with ET 

actuators 1 and 2 biased at various dc voltages. The mechanical rotation angle 

derived from simulation matches closely with the optical rotation angle 

obtained from experiment as the experimental optical rotation angles (2θ) 

obtained at different DC voltages are almost twice larger than the simulated 

mechanical rotation angle (θ). The inset in Fig. 6-10 shows the simulated y-

profile of the device obtained from ANSYS when ET actuators 1 and 2 are 
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biased serially at 3 Vdc, while an experimental optical rotation angle of 1.1° is 

obtained at 3Vdc.  

 

 

Fig.  6-11. Analytically calculated and experimental data obtained for ET attenuation 
mechanism. (a) Derived IR laser spot displacement versus dc driving voltage applied serially 
to ET actuators 1 and 2. The inset shows a schematic diagram of the ET attenuation 
mechanism, where the laser spot no longer couples perfectly from the input fiber into the 
output fiber after ET actuation. (b) Measured attenuation-bias curves for different sets of ET 
actuators. 
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The displacement of the laser spot for ET attenuation for different dc 

voltages, which is represented in Fig. 6-11(a), is also analytically calculated 

from equation (6-5) based on the experimental rotation angle derived in Fig. 6-

10. The inset shows schematic diagram illustrating the side profile of the 

mirror and the dual fiber collimator during ET attenuation. When there is no 

bias applied to the ET actuators, all the light from the input fiber is coupled to 

the output fiber, i.e. minimum insertion loss condition. However, when ET 

actuators 1 and 2 are biased and heated up, they bend downwards and actuate 

the mirror during the process. As a result, the reflected light deviates from the 

optimized light path corresponding to minimum insertion loss. The coupled 

reflected light intensity towards the output fiber is reduced, resulting in 

increased attenuation with increasing DC voltages. As observed from Fig. 6-

11(a), a laser spot displacement of 19 µm was obtained at 3 Vdc.  

Fig. 6-11(b) shows the attenuation curve measured at 1550 nm when 

various dc voltages were applied to the two sets of ET actuators. ET actuators 

1 and 2 had slightly better attenuation performance compared to ET actuators 

3 and 4. This may be due to a greater amount of electrical power being 

converted to heating effect for ET actuators 1 and 2 compared to 3 and 4 at the 

same dc voltage, as evident from the I-V curves of the two sets of ET actuators 

in Fig. 6-7. Both sets of ET actuators, on average, achieved 40 dB attenuation 

range at 3Vdc, and electrical power consumption of 20 mW. Correlating the 

experimental data obtained at 3 Vdc in Fig 6-11(a) and 6-11(b), it may be 

interpreted that 40 dB attenuation was achieved when the laser spot was 
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displaced 19 μm away from its original position where minimum insertion loss 

is derived.      

 

Fig.  6-12. Measured wavelength dependent loss at various attenuation states for ET 
attenuation. 

The attenuation dependence on wavelength ranging from 1510 nm to 

1610 nm was also measured at various ET attenuation states and shown in Fig. 

6-12. The WDL at driving voltages of 0 Vdc (1.8 dB), 1.6 Vdc (10 dB), 2.1 Vdc 

(20 dB) and 2.4 Vdc (30 dB) were less than 0.06 dB, 0.50 dB, 0.59 dB and 0.63 

dB, respectively.  

Table 6-2 summarizes and compares the optomechanical performance 

obtained for both EM and ET attenuation schemes. To reach 40 dB dynamic 

attenuation range, voltages of 4 Vdc and 3 Vdc are needed, with 26 mW and 20 

mW of electrical power being consumed by ET and EM attenuation schemes, 
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respectively. Analytical calculations have demonstrated that both attenuation 

schemes result in almost identical laser spot displacement, while the optical 

rotation angle (2θ) of the red laser derived experimentally are the same at 1.1° 

for both schemes. These results obtained are similar with the data derived in 

ref. [103] by Isamoto et al. where optical attenuation of 40 dB, corresponding 

to mechanical mirror angle (θ) of 0.3°, was obtained at 5 Vdc by their 

electrostatic microtorsion VOA device. WDL at the 30 dB attenuation state for 

both attenuation schemes are also at similar values with those VOAs already 

reported in literature.            

Table 6-2. Comparison of the optomechanical performance for EM and ET attenuation 

Attenuation 
state 

40 dB  30 dB  

Performance 
parameters 

Voltage 
(V) 

Electrical 
power 

consumption 
(mW) 

Displacement 
of laser spot 

(µm) 

Optical 
deflection 
angle (°) 

WDL 
(dB) 

EM 4  26  21  1.1  0.53  

 ET 3  20  19  1.1  0.63 

 

 In light of the above comparison, we may conclude that the analytical 

models used to derive the laser spot displacement are valid as both models 

require close to 20 µm of laser beam displacement in order to reach 40 dB 

attenuation range. The validity of the experimental attenuation results obtained 

are also verified separately through the red He/Ne red laser experiment where 

the optical rotation angle required to reach 40 dB attenuation range in both 

schemes are the same. In addition, based on the optomechanical performance 

matrix, ET attenuation mechanism is better than EM attenuation mechanism as 
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it consumes less electrical power for the same attenuation state. In terms of 

driving mechanisms, attenuation mechanism based on ET actuation is 

preferred over that of EM actuation as the former does not require an external 

magnetic source, hence offers better scaling viability and compact packaging. 

Despite the inherent capability of ET actuation being limited by the heat 

transfer into and out of the actuator, this is presently not a pressing issue in the 

operation of MEMS VOA as only dc operations are involved. 

6.4.3 Optomechanical performance for hybrid 
attenuation mechanism 

 

Fig.  6-13. Measured attenuation value as a function of dc driving voltages applied to EM and 
ET actuators during hybrid actuation. 

 In hybrid attenuation mechanism, dc voltages are applied 

simultaneously to the EM and ET actuators simultaneously. As shown in Fig. 

6-13, various dc voltage combinations were applied to the two different 

actuators and an attenuation characteristic topography was derived. For 
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example, when a bias of 1.5 Vdc was applied serially to ET actuators 1 and 2, 

the attenuation changes from 8.6 dB to 49.4 dB as the voltage applied to the 

EM coils increased from 0 Vdc to 3 Vdc. For the reverse case, i.e. a voltage of 

1.5 Vdc was applied to the EM coils, the attenuation changes from 10.3 dB to 

45.8 dB as the voltage applied serially to the ET actuators 1 and 2 increased 

from 0 Vdc to 3 Vdc. Hence, from the attenuation topography, various voltage 

combinations could be made to the EM and ET actuators so as to obtain 40 dB 

attenuation range. For example, when 2 Vdc were applied to both the 

electromagetic and electrothermal actuators simultaneously, an attenuation of 

approximately 40 dB was obtained. This is equivalent to a total electrical 

power consumption of 17 mW, which is 3 mW lower than that achieved by 

electrothermal attenuation mechanism at 3 Vdc. As such, with the hybrid 

attenuation mechanism, lower electrical power consumption and an additional 

degree of freedom in attenuation control can be attained. More specifically, 

any deviation of attenuation-DC bias characteristics among the various VOA 

devices due to fabrication process and assembly steps can be compensated by 

changing the voltage combinations to the EM and ET actuators. By adopting 

ET actuation as the primary attenuation mechanism and EM attenuation for 

compensating any small deviations among the various VOA devices, smaller 

magnets of weaker magnetic field strength may be used, hence allowing room 

for miniature packaging. 

6.5 Performance comparison of current  
designs with existing MEMS VOAs 
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Table 6-3. Comparison of FOM for different MEMS VOA designs 

Actuation schemes Ref Unique feature Attenuation 
range (dB) 

DC voltage 
(V) FOM 

Piezoelectric (PZ) VOA design 
in Chapter 3 

3-D MEMS VOA driven by 
1x10 piezoelectric actuators 47 2 23.5 

 Lee et al. 
[68] 

3-D reflective type MEMS 
VOA driven by 

piezoelectric actuators 
50 1.2 41.7 

Electrostatic (ES) Hou et al. 
[110] 

In-plane shutter-type VOA 
driven by rotary ES 

actuators 
57 4.2 13.6 

 Isamoto et 
al. [103] 

3-D reflective type MEMS 
VOA driven by parallel 

plate ES actuators 
40 5 8 

 Kim et al. 
[109] 

In-plane MEMS VOA 
based on dual 45 tilted 

vertical mirror driven by 
ES comb actuator 

45 6 7.5 

 Chen et al. 
[111] 

In-plane retro-reflective 
type MEMS VOA driven 

by ES comb actuators 
50 7 7.1 

 Liu et al. 
[106] 

In-plane shutter-type 
MEMS VOA using 

micromirror drawbridge 
driven by parallel plate ES 

actuator 

45 8 5.6 

 Cai et al. 
[108] 

In-plane retro-reflective 
elliptical mirror driven by 

ES comb actuators 
44 10.7 4.1 

Electrothermal 
(ET) 

VOA design 
in Chapter 6 

(ET) 

3-D MEMS VOA driven by 
hybrid actuators 55 5 11 

 Lee et al. 
[129] 

In-plane shutter type VOA 
driven by U-shaped ET 

actuator 
37 3 12.3 

 Lee et al. 
[112] 

In-plane retro-reflective 
type MEMS VOA driven 
by H-shaped ET actuator 

50 10 5 

Electromagnetic 
(EM) 

VOA design 
in Chapter 6 

(EM) 

3-D MEMS VOA driven by 
hybrid actuators 47 5 9.4 
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 Table 6-3 compares the various existing MEMS VOA performances 

according to the figure of merit (FOM), which is being used as a metric to 

compare the relative attenuation efficiencies:  

AttenuationFOM
V

=     (6.5) 

where V is the voltage required to achieve the dynamic attenuation range. 

Voltage, instead of power consumption, has been considered for use as FOM 

due to the capacitive nature of electrostatic (ES) and piezoelectric (PZ) 

actuators, while for electrothermal (ET) and electromagnetic (EM) driven 

MEMS VOAs, voltage data are often reported in the literature. As evident 

from the table above, numerous MEMS VOAs based on in-plane reflective-

type and shutter-type designs have been widely reported, with ES actuation 

especially favoured to drive the microshutter/micromirror.  

 

Fig.  6-14. Performance comparison of various MEMS VOAs reported in literature.  
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 Fig. 6-14 summarizes the performance comparison of the various 

MEMS reported in literature (marked in red) and the 2 VOA designs (marked 

in blue) proposed in this thesis. Both the PZ and hybrid (EM & ET) VOA 

designs outperformed most of the reported electrostatic (ES) driven MEMS 

VOAs in the literature. This is generally expected as ES actuation often 

requires higher input voltage for the same actuator displacement compared 

with other actuation schemes. In the case of the MEMS VOAs proposed in this 

thesis, the piezoelectric driven MEMS VOA investigated in chapter 3 

performs much better than the hybrid driven device proposed in this chapter. 

This is because in bending mode, both rotational and translational 

displacements were introduced to the mirror plate by the PZT actuators, 

whereas in both the cases of EM and ET attenuation mechanisms for the 

hybrid driven MEMS VOA, only rotational displacement was introduced to 

the micromirror. This causes less light to be coupled from the input fiber to the 

output fiber for the former, thus explaining why the piezoelectric MEMS VOA 

proposed in chapter 3 scores a much higher FOM compared to the hybrid 

MEMS VOA proposed in this chapter.           

6.6 Summary 

A novel MEMS mirror based on hybrid actuation mechanisms is 

proposed and verified for variable optical attenuation in a 3-D free space 

configuration. Both EM and ET actuations have been integrated in the same 

device for optical attenuation purposes. This makes our design essentially 

different from most of the shutter type, planar reflective and 3-D reflective 

VOAs that have already been reported in literature where only one form of 
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actuation mechanism is used to drive the shutter or mirror. Attenuation ranges 

of 40 dB have been achieved at 4 Vdc, 26mW and 3 Vdc, 20mW by EM and ET 

attenuation schemes, respectively. Wavelength dependent loss has also been 

demonstrated to be less than 0.6 dB at all attenuation states for both 

attenuation mechanisms. ET attenuation mechanism has been concluded to 

perform better than EM attenuation as it consumes less electrical power for the 

same attenuation state and it removes the need for an external magnetic 

source. Hybrid attenuation mechanism has also been demonstrated 

successfully, allowing our device to consume even lesser electrical power and 

attain an additional degree of freedom in attenuation control. Last but not 

least, the use of CMOS compatible processes and material such as aluminium 

and silicon oxide for ET and EM actuation allow our design to be fully 

transferable to various foundry orientated CMOS-MEMS fabrication 

platforms. This allows for lower fabrication cost and monolithic integration 

with transistor circuits that enable a hybrid actuated MEMS VOA with 

electronic feedback to be developed. 
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Chapter 7  
Conclusion and Future Work 
7.1 Conclusion 

 This thesis presented various novel MEMS mirror designs and 

actuation mechanisms for 2-D scanning and VOA applications. With the focus 

on the development of novel actuation mechanisms to drive the MEMS mirror, 

characterization of the aforementioned designs have been made from the 

perspective of the aforementioned applications. 

1. Two designs of piezoelectric driven MEMS mirror using mechanical 

supporting beam integrated with 1×10 individually biased PZT 

actuators were successfully designed, fabricated and characterized for 

2-D scanning application. Although electrothermal bimorph beam 

actuators have been well characterized in terms of their capability to 

generate large deflection in bending mode, no design of torsional 

mirror driven by beam actuators has been reported for piezoelectric 

actuation mechanism yet.  In the first design, i.e. design A, the array of 

PZT actuators were electrically connected in series, while in design B, 

the PZT actuators were electrically isolated. Through this design 

variation, the performance of these PZT MEMS scanners were 

investigated and compared by using different actuation mechanisms to 

elicit 2-D scanning for both the devices. Clear Lissajous patterns were 

obtained successfully for both designs, demonstrating the potential of 

both designs for low-frequency 2-D scanning applications.  
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In the case of dc operation for VOA application, design B was 

preferred due to the separated electrical connections to each of the 

actuators, which allowed the actuators to be individually biased. By 

addressing different bias voltages to the individual PZT actuators, 

different kind of actuation mechanisms such as translational motion 

(bending mode) and rotation motion (torsional mode) have been 

successfully demonstrated. An attenuation range of 40 dB was 

achieved at 1Vdc and 1.8Vdc during bending and torsional modes, 

respectively. This low operating voltage is among the smallest to be 

reported in the literature so far for MEMS-based VOA.   

2. To further improve the scanning performance and reduce the number 

of PZT actuators and bonding pads, a S-shaped actuator design for 

MEMS scanner was developed as there are limited research effort 

being spent on a simple MEMS scanner design that makes use of only 

a single actuator to achieve 2-D scanning effect. For the same ac 

driving voltage, the ODA achieved by this S-shaped actuator design 

was demonstrated to be significantly larger than that of the 1×10 PZT 

actuator design. In addition, the superimposition of two ac excitation 

biases on a single piezoelectric actuator during dynamic mixed mode 

actuation is the first such actuation mechanism being demonstrated to 

drive a Si mirror plate. By addressing two excitation signals of 

different frequencies to the S-shaped PZT actuator, translational 

(bending mode) and rotational (torsional mode) motions operating at 

resonance condition were obtained. 2-D scanning was also successfully 
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demonstrated by superimposing the two ac signals into one combined 

signal to be used to excite the PZT actuator and drive the micromirror. 

3. Although the proposed piezoelectric MEMS scanner designs in chapter 

1 and chapter 3 fared inferiorly when compared to existing 

piezoelectric MEMS scanners in the literature, there are still much 

room for improvement through the reduction of the mass inertia of the 

mirror plate. In addition, while such gimbaled, piezoelectric MEMS 

scanners with inner and outer frame have been widely reported in the 

last decade which guarantees good performance, however, replicating 

such conventional designs is not the goal of this thesis. With one of the 

objectives of this thesis targeting at developing proof-of-concept 2-D 

MEMS scanners driven by novel actuation mechanisms, gimbal-less 

designs making use of only a single set of piezoelectric actuator/s to 

elicit 2-D scanning, hence, becomes the goal as such designs based on 

piezoelectric actuators have yet to be reported. It is also noteworthy 

that the performances of the proposed piezoelectric 2-D MEMS 

scanners have improved with each development cycle, starting from 

design A in chapter one to the S-shaped actuator driven design in 

chapter 3. 

4. Besides piezoelectric-driven MEMS scanner, hybrid actuated MEMS 

scanner based on electrothermal and electromagnetic actuations were 

integrated in the same device for slow and scanning purposes, 

respectively. Such hybrid actuation mechanism proposed in this design 

allows for fast line scan driven by electromagnetic actuators operating 

at mechanical resonance condition to be produced on the horizontal 
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axis, while a slower sweep driven by electrothermal actuators to be 

produced on the orthogonal vertical axis. Optical deflection angles of 

±1.5° for 74 Hz vertical scan at 12 mW by electrothermal actuation 

and ±10° for horizontal scan frequency of 202 Hz at 1.26 mA, 1 Vac by 

electromagnetic actuation were reported. Various Lissajous patterns 

have been demonstrated at low power biasing condition, making the 

proposed hybrid actuation design approach suitable for mobile 2-D 

raster scanning applications powered by batteries with limited 

capacity. 

For the case of VOA application, three types of attenuation 

mechanisms based on electromagnetic, electrothermal and hybrid, i.e. 

combination of electrothermal and electromagnetic, actuations were 

explored and studied. This approach of using hybrid attenuation differs 

greatly from all of the planar and 3-D MEMS VOA designs that have 

already been reported in literature where only one type of actuation 

mechanism is used to drive the mirror/shutter in order to achieve 

attenuation. An optical attenuation of 40 dB was obtained when 2 Vdc 

were applied to both the electromagnetic and electrothermal actuators 

simultaneously, while the electrical power consumption of the 

actuators was 17 mW in total. Our unique design of using both 

electrothermal and electromagnetic actuators simultaneously to achieve 

attenuation is the first demonstration of such hybrid driven CMOS 

compatible MEMS VOA device.  

5. For the 2 designs of MEMS VOAs proposed in this thesis, the 

piezoelectric driven MEMS VOA investigated in chapter 3 performs 
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much better than the hybrid driven device proposed in chapter 6. This 

is because in bending mode, both rotational and translational 

displacements were introduced to the mirror plate by the PZT 

actuators, whereas in both the cases of EM and ET attenuation 

mechanisms for the hybrid driven MEMS VOA, only rotational 

displacement was introduced to the micromirror. This causes less light 

to be coupled from the input fiber to the output fiber for the former, 

thus explaining why the piezoelectric MEMS VOA proposed in 

chapter 3 scores a much higher FOM compared to the hybrid MEMS 

VOA proposed in chapter 6. 

7.2 Future Work 

 

Fig.  7-1. Proposed system architecture to integrate proposed MEMS scanner for display 
applications.     

 Besides focusing on the development of new actuation mechanisms 

that has been undertaken in the thesis, further improvement from the 

standpoint of performance can still be done to improve the investigated 

MEMS mirror. One possible improvement is to reduce the mass inertia 

through the fabrication of a thinner mirror plate.  This is important on many 

fronts. For example, with a smaller mass inertia, a smaller voltage will be 
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needed to drive the lighter mirror plate, while achieving the same optical 

performance. More importantly, high resolution display applications such as 

picoprojectors and heads-up display, which requires operating frequency in the 

range of 10 kHz – 20 kHz may now be deemed feasible since the resonant 

frequency of a mechanical system is inversely proportional to the square root 

of the mass of the system. To overcome the issue of dynamic deformation of a 

thinner mirror plate during high frequency scan, a reinforcement rib may be 

patterned and fabricated beneath the mirror surface to provide additional 

rigidity.   

 In order to make the developed MEMS scanner into a full-fledged 

product, the next step that can possibly be undertaken in the following phase is 

to develop the system architecture as shown in Fig. 7-1. A video processing 

and control unit based on USB-interface FPGA can be used to transmit the 

data from the computer to the electronic circuit. A computer is then used to 

read and decode the information streamed to it, while the information data in 

the form of image or video will be fed to the digital control which will 

produce signals that control the red, green and blue laser diodes for a full color 

display. The modulated light will then be passed to the already developed 

MEMS scanner and projected onto a screen. Vacuum packaging of the MEMS 

scanner can be considered to reduce the effect of air damping when the 

microstructures undergo high frequency oscillation. A housing, estimated to 

be of dimensions 5 cm × 5 cm × 2 cm, may be enough to package the whole 

system. 
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 Besides using the MEMS mirror designs proposed in this thesis for 

VOA and 2-D scanning purposes, new application such as miniaturized free 

space optical laser communication among a swarm of nano-satellites is one of 

the possible direction that this research may be carried forward to as optical 

communication links offer many advantages over conventional microwave 

links. In particular, free space laser systems can provide narrow beam widths 

and high gains with much smaller hardware, unlike microwave 

communication where large antennas and high-power transmitters would have 

to be used at limited bandwidth. With MEMS mirror, high capacity laser beam 

steering can be enabled, allowing pointing within a swarm of nano-satellites in 

a dynamic constellation. On the other hand, by replacing the mirror plate with 

metamaterial or subwavelength structures such as photonic crystals, new 

application domain in the region of wavelength ranging from 10 μm – 3 mm, 

i.e. terahertz wave MEMS scanner for biological imaging or security screening 

can be conceptualized. The various actuator designs and microfabrication 

experience amassed from the works discussed in this thesis will be the 

cornerstones for the success of these proposed future works. 
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