
Adapting Plan-Based Re-Optimization of Multiway Join

Queries for Streaming Data

Fangda Wang

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

IN THE SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48670158?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c©2013

Fangda Wang

All Rights Reserved

Declaration

I hereby declare that the thesis is my original work and it has been written by me

in its entirety. I have duly acknowledged all the sources of information which have been

used in the thesis.

This thesis has also not been submitted for any degree in any university previously.

Acknowledgments

First and foremost, I would like to express my sincere thanks to my supervisors

Prof. Chan Chee Yong and Prof. Tan Kian Lee, for their inspiration, support and encour-

agement throughout my research progress. Their impressive academic achievements in

the database research areas, especially in the area of query processing and optimizing

topics attracted me to do the research work in this thesis. Without their expertise and

help, this thesis would not have been possible. More importantly, besides the scientific

ways to solve problems, their humble attitude to nearly everything will have a profound

influence on my entire life. I am fortunate to be one of their students.

I also wish to express my appreciation to my labmates in the Database Research

Lab 1, for the precious friendship. They create a comfortable and inspiring working

environment, and discussions with them broadened my horizon on research as well.

I also deeply appreciate the kindness that all professors and staff in the School

of Computing (SoC) have showered upon me. In the past two years, I have received a

lot of technical and administrative helps and I have gained many skills and knowledge

from lectures as well. I hope there are chances to make more contributions for SoC in

the future.

Last but not the least, I dedicate this work to my parents. It is their unconditional

love, tolerance, support and encouragement that accompanied me and kept me going all

through this important period.

4

Contents

List of Figures vi

List of Tables viii

Chapter 1 Introduction 1

1.1 Data-Stream Management . 1

1.2 Run-Time Re-Optimization . 4

1.3 Challenges . 5

1.4 Goals and Contributions . 8

Chapter 2 Related Work 10

2.1 Run-time Re-Optimization for Static Data 10

2.1.1 Adaptive Query Processing . 11

2.1.2 Static Query Optimization with Re-Optimization Extension . . 16

2.2 Optimization for Streaming Data . 20

2.3 Processing Joins over Streaming Data 25

2.4 Statistics Collection . 31

Chapter 3 Esper: An Event Stream Processing Engine 34

3.1 Architecture . 34

i

3.2 Data Models . 36

3.3 Storage and Query Processing . 37

3.4 Query Optimization . 41

Chapter 4 Query Optimization Framework 44

4.1 Optimization using Dynamic Programming 45

4.2 Cardinality . 45

4.2.1 Definition of Cardinality . 46

4.2.2 Estimating Cardinality Information 48

4.3 Cost Model . 52

4.3.1 Join Selectivity . 52

4.3.2 Cost Model . 54

Chapter 5 Query Re-Optimization Framework 57

5.1 Overview of Re-Optimization Process 57

5.2 Identifying Re-Optimization Conditions 60

5.2.1 Computing Validity Ranges 61

5.2.2 Determining Upper Bounds 62

5.2.3 Determining Lower Bounds 64

5.2.4 Implementation in the Plan Generating Component 66

5.2.4.1 Regeneration Path 66

5.2.4.2 Revision Path . 67

5.2.4.3 Considerations for Streams with Length-based Windows 68

5.2.5 Checking Validity Ranges . 68

5.3 Considering Arrival Rates . 70

5.3.1 Definition of Arrival Rate . 70

ii

5.3.2 A Probabilistic Model . 71

5.3.3 Checking Arrival Rates . 72

5.4 Detecting Local Optimality . 73

5.4.1 Definition of Comparable Cardinality 74

5.4.2 Combating Local Optimality 75

5.4.3 Checking Local Optimality . 76

Chapter 6 Performance Study 79

6.1 Experimental Setup . 80

6.2 Overall Performance . 83

6.2.1 Performance on Uni-Set . 83

6.2.2 Performance on pUni-Set . 86

6.2.3 Performance on Zipf-Set . 89

6.3 Effect of Window Size . 90

6.3.1 Performance on Uni-Set and pUni-Set 91

6.3.2 Performance on Zipf-Set . 94

Chapter 7 Conclusion and Future Work 96

iii

Summary

Exploiting a cost model to decide an optimal query execution plan has been

widely accepted by the database community. When the plans for running queries are

found to be sub-optimal, re-optimization techniques can be applied to generate new

plans on the fly. Because plan-based re-optimization techniques can guarantee effec-

tiveness and improve execution efficiency, they achieve success in traditional database

systems. However in data-stream management, exploiting re-optimization to improve

performance is more challenging, not only because the characteristics of streaming data

change rapidly, but also because the re-optimization overheads cannot be easily ignored.

To alleviate these problems, we propose to bridge the gap between exploiting

plan-based re-optimization techniques and reacting to the data-stream environments. We

describe a new framework to re-optimize multiway join queries over data streams. The

aim is to minimize the redundant re-optimization calls but still guarantee sub-optimal

plans are detected.

In our scheme, the re-optimizer contains a three-phase re-optimization check-

ing and two-path plan generating component. The three-phase checking component is

performed periodically to decide whether re-optimization is needed. Because query opti-

mizers heavily rely on information of cardinality and arrival rate to decide best plans, we

evaluate them at checking duration. In the first phase, we quantify arrival rate changes to

avoid redundant re-optimization. In the second phase, most recent cardinality values are

considered to identify sub-optimality. Finally, in the third phase, we explicitly exploit

useful cardinality information to detect local optimality. According to the decision made

by the checking component, the plan generating component takes different actions for

optimal and sub-optimal plans.

iv

We explored the re-optimization performance over streaming data with different

value distributions, arrival rates and window sizes, and we showed that re-optimization

could offer significant performance improvement. The experimental results also showed

that, traditional re-optimization techniques were able to provide significant performance

improvement, if properly adapted to the real-time and constantly-varying environments.

v

List of Figures

3.1 Esper’s architecture . 35

3.2 Esper’s multiple-plan-per-query strategy 39

3.3 Storage and query plan for the join in Example 3.3.2 40

3.4 Optimization process to generate stream A’s plan in Figure 3.2 42

4.1 The number of a source stream’s valid tuples in a window 47

4.2 Join selectivity Computation and Estimation 54

5.1 Re-Optimizer’s overview . 58

5.2 Intuition of computing an upper bound 62

5.3 Intuition of computing a lower bound 64

5.4 Base line distribution when computing a lower bound 65

5.5 Re-Optimization progress . 77

6.1 Runtime breakdown for 3-stream joins on Uni-Set 84

6.2 Runtime breakdown for 4-stream joins on Uni-Set 84

6.3 Runtime breakdown for 5-stream joins on Uni-Set 85

6.4 Runtime breakdown for 6-stream joins on Uni-Set 85

6.5 Runtime breakdown for 3-stream joins on pUni-Set 87

6.6 Runtime breakdown for 4-stream joins on pUni-Set 87

vi

6.7 Runtime breakdown for 5-stream joins on pUni-Set 88

6.8 Runtime breakdown for 6-stream joins on pUni-Set 88

6.9 Runtime breakdown for 6-stream joins on Zipf-Set 90

6.10 Performance of joins on Uni-Set w.r.t different window sizes 92

6.11 Performance of joins on pUni-Set w.r.t different window sizes 93

6.12 Performance of joins on Zipf-Set w.r.t different window sizes 95

vii

List of Tables

4.1 Notations frequently used in the query optimization framework 44

4.2 Symbols used in the cost model . 54

5.1 Modification on Algorithm 1 for a stream with length-based window . . 68

6.1 Attribute description of stream tuples 80

6.2 Zipf Distribution for Data Generation 81

6.3 Parameters used in experiments . 82

6.4 Performance improvement (%) between three re-optimization modes over

Uni-Set . 85

6.5 Performance improvement (%) between three re-optimization modes over

pUni-Set data . 89

6.6 Performance improvement (%) between three re-optimization modes un-

der different window sizes over Uni-Set 91

6.7 Performance improvement (%) between three re-optimization modes un-

der different window sizes over pUni-Set 91

6.8 Performance improvement (%) between three re-optimization modes un-

der different window sizes over Zipf-Set 94

viii

1

Chapter 1

Introduction

In the last few decades, traditional Database Management Systems (DBMSs) have wit-

nessed great success in dealing with stored data. However, nowadays we are embracing

an era of data-stream management : data is generated in the form of data-value sequences

at a rapid speed. Stream-based applications, such as those related with sensor networks

(Yao and Gehrke, 2003), financial transactions (Zhu and Shasha, 2002) and telecommu-

nication services (Cortes et al., 2000), need platforms to properly monitor, control and

make decisions over streaming data.

1.1 Data-Stream Management

To understand the challenge in data stream management, let us begin by considering the

following example.

Example 1.1.1 As mobile applications become increasingly prevalent, it is beneficial to

monitor user behavior for marketing and advertising purposes. Assume service providers

would like to know users’ preferred applications during a time period across a region.

2

This requirement would be translated into a query, and the query runs as long as infor-

mation about application usage can be collected. In case information like application

identities, current locations, start time and end time is provided by different data streams,

the system firstly needs to assemble (i.e., join) them to obtain comprehensive knowledge

with regard to individual users. Then, further processing, such as aggregation, is needed

to draw the final conclusions. For such a query that involves multiple source streams

and operations, it is challenging to execute it in an efficient way: From the system side,

it lacks proper estimation of incoming data, because records of users behaviors can only

be known after they are gathered during execution. From the data side, data properties

themselves are changing all the time. For example, applications in news or entertainment

category may be widely used when people are stuck in traffic on the commute while those

business related applications are popular during working hours.

From the above example, it is clear that the data-stream management is not the

same as traditional DBMSs. There are many differences distinguishing data-stream man-

agement from traditional DBMSs and we describe some important aspects as follows.

• Nature of Data: In DBMSs, data is stored and organized well on disk, for example,

tuples of the same table can be clustered according to their unique identifications

at loading moments. Moreover, it is beneficial to build auxiliary structures like in-

dexes because large-scale updates are less frequent than queries. On the contrary,

streaming data are continuous, unbounded, ordered, varying and real-time. These

data natures are unfavorable for systems to hold adequate statistics over stream-

ing data in advance. As such, statistics maintained by the systems are constantly

changing and are vulnerable to inaccuracy (if they are not updated regularly).

3

• Query Semantics: Traditional databases process one-time queries whose results

are produced only on the basis of snapshots of the underlying data at the moment

queries are submitted. However, in data stream settings, queries are continuous

(Calton et al., 1999; Chen et al., 2000), that is, once registered, queries keep run-

ning and results should be constantly delivered as long as the corresponding data

flows in. Since stream sources possibly have no time or length bounds, window

constraints (Kang, Naughton, and Viglas, 2003; Golab and Özsu, 2003) are used

to restrict processing to recent data. These subtle but important points call for

re-thinking of the evaluation of data-stream queries.

• Query Execution: In traditional databases, data is processed in memory after it

is retrieved from disks. However, responsiveness constraints in stream applica-

tions are tight such that newly-arriving tuples should be directly managed online;

besides, blocking operators that must consume the entire data to produce results

cannot be used. Sometimes when loads are too high to react to, accuracy is traded

by using approximate techniques (Tatbul et al., 2003; Babcock, Datar, and Mot-

wani, 2004). In addition, due to the long-running feature, continuous queries most

likely encounter changes of the underlying data or system conditions throughout

their lifetimes.

The above features suggest that adaptability is the most critical ingredient of a

stream processing engine, that is, systems should be prepared to adjust their obsolete de-

cisions of query execution based on how data streams and system conditions change. In

fact, this is very important as queries are long running, and the use of a sub-optimal plan

can result in not only poor query performance but waste of system resources. Clearly, it is

infeasible to simply import data into DBMSs and then operate on them there. Therefore,

4

Data Stream Management Systems (DSMSs) have been developed. In order to satisfy

data-stream applications’ needs, some DSMSs design architectures from scratch, and

then develop advanced strategies according to their own specifications (Chandrasekaran

et al., 2003; Ives, 2002). Meanwhile, there are another group of DSMSs. They take

into account the similar SQL query language and processing operators so they inherit

DBMSs’ core engine that chooses minimal-cost plans to answer queries (Rundensteiner

et al., 2004; Carney et al., 2002; Abadi et al., 2005; Chen et al., 2000). We focus on the

latter group of systems that face a main challenge of improving adaptability. Next, we

will briefly show reasons for and principle of the means of run-time re-optimization that

traditional databases proposed to handle the adaptability issue.

1.2 Run-Time Re-Optimization

Run-time re-optimization is initially proposed in traditional DBMSs. Traditional databases

exploit plan-based optimization techniques that usually depend on cost models to select

minimal-cost plans (Selinger et al., 1979) for submitted queries. At implementation level,

optimization techniques heavily rely on cardinalities, that is, the number of tuples of the

original data as well as the intermediate results, to evaluate alternative plans. However,

sometimes, accurate information of data cardinalities is not available at compile-time,

for example, systems are short of appropriate knowledge of a table when it is inserted for

the first time. So estimating necessary cardinalities, as a compromise, is used to decide

the optimal plans. Unfortunately, it is widely recognized that estimations do not always

closely match to the actual, and errors will propagate exponentially with the number of

joins or the presence of skewed and correlated data distributions (Christodoulakis, 1984;

Ioannidis and Christodoulakis, 1991). Therefore, initially-generated plans easily fail to

5

live up to their potential, and most likely, the actual execution time becomes orders of

magnitude slower than expected, leading to degraded system performance.

To guarantee efficiency, DBMSs employ run-time re-optimization, that is, plan

execution is interleaved with optimization at run-time (Kabra and DeWitt, 1998; Markl

et al., 2004; Babu, Bizarro, and Dewitt, 2005). The principle of these works is to exe-

cute plans and monitor data characterisitcs simultaneously, and invoke re-optimization

to generate best plans when currently-running plans are deemed to be sub-optimal. The

core techniques are explained as follows.

At compile-time, the optimizer chooses some characteristics, e.g., cardinalities of

base tables. For each characteristic, the optimizer computes some thresholds according to

the characteristic’s current estimation. During query execution, the correct information

of those chosen characteristics can be gathered. If an actual value violates a threshold,

then the corresponding execution plan is considered to be sub-optimal. The execution is

paused and re-optimization is invoked to generate a better plan. After that, execution is

resumed with the improved plan. Run-time re-optimization can be invoked many times

as long as violations occur.

In DBMSs, this plan-based re-optimization performs well. However, these tech-

niques are proposed to deal with stored and static data instead of streaming and time-

varying data. They are, unfortunately, not applicable in streaming environments.

1.3 Challenges

Theoretically, DBMSs and DSMSs all need run-time re-optimization for the sake of ef-

ficiency. However, due to differences in the underlying data and the processing require-

ments, challenges remain when applying existing re-optimization techniques on data

6

streams.

Challenge (1): It is not clear whether plan-based re-optimization can work

over data streams. On the one hand, DSMSs (Rundensteiner et al., 2004; Carney et

al., 2002; Abadi et al., 2005; Chen et al., 2000) that use plan-based optimizers did not

explicitly present the way they do re-optimization. On the other hand, careful consid-

eration is needed when applying re-optimization over streaming data. First of all, most

data streams exhibit fluctuating arrival rates and varying value distributions. Secondly,

in most systems, handling streaming data is I/O-free, meaning re-optimization overhead

cannot be ignored, because the gain in execution costs may not always offset the over-

head. Existing re-optimization techniques are usually triggered when some cardinality

values change. However in streaming environments, invoking re-optimization as long as

changes are detected will cause an overhead issue, because data’s time-varying feature

frequently invokes re-optimization.

Challenge (2): It is non-trivial to decide the significance of cardinality changes.

It is unsuitable to use ad hoc thresholds on cardinality changes, because the effect of car-

dinalities on query optimality is very complex. To handle this issue, existing works

(Markl et al., 2004; Babu, Bizarro, and Dewitt, 2005) pre-compute, for each cardinality,

an interval around its currently estimated value to represent the range of values for which

the current plan remains valid. Intervals can be too narrow to tolerate any variation, and

they also can be sufficiently wide such that all available variations are included. Dur-

ing execution, the actual values of the cardinality are collected by a statistics collection

component, and they are considered as significant if they go beyond their corresponding

intervals. Under this principle, sharp and big variations usually invoke re-optimization.

However most likely, redundant re-optimization occurs. We illustrate this with the fol-

lowing example.

7

Example 1.3.1 Suppose a query over streams A, B, and C has two join conditions, say,

A ./ B and B ./ C. Initially, the arrival rates of these three streams are all 100 tuples per

unit time and the optimal plan is generated according to them. During execution, it is

possible for the arrival rates to have dramatic changes simultaneously, say, 500 tuples

per unit time. In this case, if those changes are considered individually, pre-computed

intervals most likely do not cover the new values, and then re-optimization will be trig-

gered. However, if the data’s value distributions remain unchanged, the optimal plan

probably remains unchanged. From the viewpoint of effectiveness, the re-optimization

effort is wasteful.

Challenge (3): Underutilization of useful knowledge loses the opportunity

to find out better plans. Most existing works (Stillger et al., 2001; Aboulnaga et al.,

2004; Kabra and DeWitt, 1998; Markl et al., 2004; Babu, Bizarro, and Dewitt, 2005) re-

optimize a query by merely considering cardinality information that are obtained from

its own currently-running plan’s operators. The advantage is that overhead is low, but it

is well-known that the lack of probing more information inevitably makes this strategy

risk being stuck in local optimality, that is, even after re-optimization, the generated plan

is still suboptimial. An example is shown as follows.

Example 1.3.2 This example illustrates the importance of considering useful cardinali-

ties’ variations when deciding optimal plans. Suppose there are two join queries running,

and one has a condition A ./ B while the other is a star-join having A ./ B, A ./ C and A

./ D. Additionally, the star-join’s currently-running plan is (((A ./ D) ./ C) ./ B), mean-

ing A joins D first and then their intermediate results are routed to join with C, followed

by joining with B. During execution, the star-join collects cardinality information of (A

./ D), ((A ./ D) ./ C) and (((A ./ D) ./ C) ./ B) and cardinality values of A, B and C

8

still indicate that the current plan is the best. Meanwhile, the execution of the first query

obtains the cardinality of (A ./ B). It is possible that the cardinality of (A ./ B) is lower

than that of (A ./ D), meaning that (((A ./ B) ./ D) ./ C) is most likley a better plan.

Unfortunately, because A ./ B is not included in the star-join query’s execution path, it

fails to detect the sub-optimality.

1.4 Goals and Contributions

In previous sections, we talk about features of streaming data and the consequential query

processing issues. However, for different kinds of queries, these issues have different

impacts. First, handling queries that merely involve outer joins and aggregate functions

usually has nothing to do with cardinality information, because systems should scan

all the corresponding tuples to generate results. Then, for those queries having several

filtering conditions over the same stream, orderings of filtering operators need careful

arrangements, because the efficiency requirement needs low-selectivity filters to be ex-

ecuted first. However, it is easy and costless to exchange filters’ positions such that no

severe problems will be caused. Essentially, the difficulty is to deal with inner joins.

Processing joins is expensive, moreover, bad plans that execute a multiway join query

usually consume lots of extra time and storage resources, so re-optimization is consid-

erately important. Unfortunately, inner joins are involved with combinational number of

cardinalities, that is, cardinalities of source streams as well as intermediate results, and

hence, they are the most challenging to re-optimize. In this thesis, we concentrate on

adapting plan-based re-optimization of multiway join queries over streaming data.

We propose a novel re-optimization strategy for data stream systems. The strat-

egy takes into account variations between the most recent and new cardinality values

9

to continuously refine execution plans of join queries. Our contributions are listed as

follows:

• To the best of our knowledge, this work is the first to explicitly extend traditional

re-optimization approaches to data-stream management. Specifically, we proposed

a method to compute upper and lower bounds in streaming environments.

• We propose a novel re-optimization scheme that consists of a three-phase checking

component and two-path plan generating component. The checking component

determines if re-optimization is necessary. The first phase quantifies arrival rate

changes to avoid redundant re-optimization. The second phase considers cardinal-

ity changes to detect sub-optimality. The third phase exploits useful cardinality

information to alleviate local optimality.

• We implemented the optimization and re-optimization framework on an open-

source system. We explored the re-optimization performance over streaming data

with varying value distributions, arrival rates and window sizes. The experimental

results showed that, re-optimization was able to provide significant performance

improvement by up to a factor of 30%, in the real-time and constantly-varying

environments.

The organization of the following thesis is listed as follows: In Chapter 2, we

present a survey of optimization strategies proposed in DBMSs and DSMSs. And in

Chapter 3, we briefly describe the architecture of Esper, an open-source data stream

system that is used in our implementation. Chapter 4 and 5 respectively present the query

optimization framework and query re-optimization framework that we implemented on

Esper. We show experimental results in Chapter 6. Finally, conclusions are presented in

Chapter 7.

10

Chapter 2

Related Work

The essence of run-time re-optimization is to continuously check whether there are better

query plans while still executing those that are supposed to remain optimal, and then to

use better plans if they are beneficial enough to replace the currently-running ones. Re-

optimization is very critical, especially when performing a multiway join, because a sub-

optimal join ordering can result in very poor performance. In this chapter, we first discuss

related works about run-time re-optimization strategies in Section 2.1 and 2.2. Then,

Section 2.3 talks about join processing over streaming data. Finally in Section 2.4, we

briefly review methods for statistics collection that existing re-optimization approaches

use to detect current plans’ sub-optimality.

2.1 Run-time Re-Optimization for Static Data

In database community, re-optimization has been extensively studied. A great deal of

approaches has been developed, and most of them aim to identify plans to answer queries

such that the system’s efficiency can be maximized. We classify them into two categories:

1) adaptive query processing, which includes some generalized ideas that can be used in

11

traditional databases and data stream systems as well; 2) static query optimization, which

is proposed for traditional databases but has a run-time re-optimization consideration.

2.1.1 Adaptive Query Processing

In adaptive query processing, the execution of a query is interleaved with its re-optimization.

Despite being proposed for traditional databases, adaptive query processing can also be

adopted by data stream systems.

In most traditional databases, optimizers use a cost model to evaluate alternative

plans and choose least-cost ones to execute their corresponding queries. Approaches

complying with this philosophy belong to plan-based optimization category. Although

a recent literature (Babu and Bizarro, 2005) made a subdivision in terms of sources

of conditions that trigger re-optimization, these plan-based approaches share the same

principle, that is, using the most recent knowledge of data characteristics to re-compute

plan costs. For this reason, in the following discussion we talk about representative ap-

proaches together.

• ReOpt (Kabra and DeWitt, 1998) is the first work to introduce run-time re-optimization

of currently-running plans for submitted queries. When initializing plans, special

computation is prepared for materialization points, such as processes of sorting or

building hash table. Based on the reliability of knowledge on data characteristics

that the optimizer uses to evaluate plans, those materialization points are assigned

corresponding thresholds. At run-time, the actual information of data characteris-

tics is collected, and if the differences between the actual and the predicted values

exceed their thresholds, then there is a possibility that the current plan is sub-

optimal. As such, re-optimization is triggered to generate a new plan. If the new

12

plan is indeed better, it replaces the current plan, and processing continues with the

newly generated plan. To make use of the intermediate results that are already ob-

tained before re-optimization, ReOpt only allows to re-optimize unprocessed work,

that is, sub-plans that stay above those materialization points. Because material-

ization points are natural to get accurate characteristics, ReOpt has low overhead.

However an obvious disadvantage is that the benefits are strictly limited by materi-

alization positions, for example, a query plan without any materialization point or

a query plan with the only materialization point as the last step has no chance to be

re-optimized at run-time. Meanwhile, even though ReOpt expects to save execu-

tion costs by exploiting obtained intermediate results, it may need longer time on

query processing instead, because completing current materialization points may

need more time than running a totally new plan from scratch.

• POP (Markl et al., 2004) is inspired by ReOpt in the way of detecting re-optimization

timing. But it has improvements in two aspects. On the one hand, it separates the

responsibility of probing sub-optimality from materialization points by creating

a specialized operator named check. Like normal operators, check operators can

be inserted multiple times in query plan trees. As such, re-optimization has more

chances to be triggered. For example, with a check operator appended on top of

a query plan tree, the whole plan can be changed from scratch. In such a case,

results that are ready to be output can either be discarded or stored temporarily for

further processing. On the other hand, it uses a more fine-grained way to detect

sub-optimality. To measure the optimality of the current plan, every check oper-

ator is associated with a value range on the going-by tuple size. Moreover, the

range is calculated from progressive computations instead of ReOpt’s specific es-

timation. At run time, if the collected cardinalities are found to be outside of their

13

corresponding ranges, re-optimization is needed. With more careful pre-computed

ranges, POP’s performance is more accurate. However, POP still has a drawback.

During computation of each range, POP assumes all other information remains the

same, so it fails to see the big picture.

• Rio (Babu, Bizarro, and Dewitt, 2005), as a further effort, takes POP’s idea of using

ranges to measure plans’ validity. Similarly, according to each estimated value of

data cardinalities, Rio takes estimation errors into consideration and then uses an

interval to represent possibly actual values. A significant contribution of Rio is its

focus on robustness. Rio considers pairs of related data cardinalities and aims to

find a set of plans that perform well within the space of possible values of data

cardinalities. Obtaining robust plans is more complicated so that the preparation

period of optimization is longer. However, Rio reduces times of excessive re-

optimization and hence the possibility of losing previous work.

ReOpt uses single-point values as conditions, while POP and Rio extend to use

ranges or intervals. The above works share the common principle that re-optimization

is triggered when pre-computed conditions are violated. Due to their proven effective-

ness, our approach also follows the main idea. However, due to the different natures in

streaming environments, problems disscussed in Section 1.3 would occur when they are

applied.

ReOpt, POP and Rio are general approaches that launch re-optimizations without

restrictions on the run-time environment. However, some other approaches leverage par-

ticular conditions to optimize currently-running queries on the fly. We discuss them as

follows.

14

• Query scrambling (Urhan, Franklin, and Amsaleg, 1998) is a mechanism that can

reduce the execution time by taking advantage of delays in arrival of remote data.

When data of an operator is unavailable at one moment, query scrambling sched-

ules unaffected execution portions that usually would have been processed at a

later stage. If the delay is so long that unaffected portions are all already com-

pleted, then the optimizer is able to use those intermediate results to generate com-

pletely different plans. The re-optimization’s principle is that a new plan should

access delayed data as late as possible to take advantage of time wasted to wait for

delayed tuples.

• The re-optimization approach of Tukwila (Ives, 2002) is corrective query process-

ing (CQP) (Ives, Halevy, and Weld, 2004). In this strategy, the underlying data is

horizontally partitioned and CQP allows several plans, with each applied on one

partition of data, to complete the same query. The completion of these partitions is

pre-defined as the re-optimization timing, such that CQP re-estimates the current

plans’ costs based on characteristics information that are monitored from previous

execution. If newly-computed costs deviate substantially from the expected, then

re-optimization is invoked to generate new plans to process the remaining parti-

tions. From the perspective of query processing, execution and re-optimization

can be interleaved many times. This mechanism is error-free for stateless opera-

tors, but for a query with stateful operators, such as join, an extra phase is needed

to make up results that are generated from data across partitions. The goal of

CQP is to provide adaptivity without significant performance compromise, that

is, it tolerates sub-optimality of currently-running plans as long as performance is

acceptable.

15

In the current implementation, we do not have the data delay issue, so scheduling

consideration is not involved in our scheme. Besides, our streaming system does not

provide permanent storage for the underlying data, and therefore, it is non-trival for CQP

to be adapted. Query scrambling and CQP have their own emphasis on when and how to

re-optimize current plans, and we view both of them as complementary to our work.

The join operation is frequently used to integrate data from multiple tables, and

therefore, some approaches specifically concentrate on join processing. We list below

two recent methods that are developed to adaptively react to newly-collected knowledge.

The two works are adaptive reordering joins (Li et al., 2007) and adaptive pipelined join

processing (Eurviriyanukul, Fernandes, and Paton, 2006; Eurviriyanukul et al., 2010).

• Adaptive Reordering Joins (ARJ) is a method specifically proposed for indexed

nested-loop joins. This method dynamically re-orders sequences of joined tables

in two stages. Firstly, it fixes the outer-most table for a given query. Then, it

uses completion moments of processing a join’s outer input to re-compute costs of

the remaining joins. If better orderings exist, it proceeds with the changes. Sec-

ondly, for each query, when a batch of results is produced, observations from the

previous processing are used to evaluate which table should be the best choice as

the outer-most table. The outer-most table can be replaced if better options are

found. By merging reordering functionality into join operators, ARJ avoids ex-

plicit bookkeeping and routing overhead. However obviously, it needs significant

modifications of existing operators, and meanwhile it is limited to specific join

algorithms.

• Another adaptive join processing algorithm, called Adaptive Pipelined Join Pro-

cessing, was proposed to generate pipelined plans (Eurviriyanukul, Fernandes, and

16

Paton, 2006; Eurviriyanukul et al., 2010). The method of Adaptive Pipelined Join

Processing (APJP) gives the iterator-model execution engine the ability to do re-

optimization if either of the following two conditions are met: 1) a specific number

of final results have already been output and 2) updated statistics collected from

the previous execution differ more than a pre-defined number than the optimizer’s

estimation. At a high level, it holds a similar principle as Tukwila in partitioning

data into groups to process. The difference is that Adaptive Pipelined Join Pro-

cessing implements the mechanism at the physical level, that is, it exploits plans’

suspending moments to trigger re-optimization. As a consequence, it does not need

an explicit cleanup phase to handle cross-partition data.

ARJ and APJP mentioned above are proposed for pipelined joins, which naturally

match streaming settings. Compared to them, we use a different architecture that decou-

ples the re-optimization functionality from normal join operators. This choice results in

a slightly higher overhead for our approach but the advantage is that the concerns are

separated clearly and further extensions will be more convenient.

In spite of employing various techniques, all works we have mentioned till now

are originally proposed for statically stored data. However, they all gradually revise the

knowledge of the underlying data’s characteristics during execution and change the query

plans if performance is found to be unsatisfactory. Therefore, their focus on adaptivity is

the same with ours.

2.1.2 Static Query Optimization with Re-Optimization Extension

The idea of run-time re-optimization also exists in some static optimization strategies.

More precisely, several methods have considered the data characteristics’ value intervals

17

to decide query plans including least-expected-cost (LEC) (Chu, Halpern, and Seshadri,

1999), dynamic query execution plans (Graefe and Ward, 1989; Cole and Graefe, 1994),

approximate plan diagrams (D., Darera, and Haritsa, 2007; Dey et al., 2008) and para-

metric query optimization (PQO) (Hulgeri and Sudarshan, 2003; Ioannidis et al., 1997;

Bizarro, Bruno, and DeWitt, 2009; Prasad, 1999; Ganguly, 1998; Hulgeri and Sudarshan,

2002).

• LEC aims to search for robust plans that perform well in the situation where char-

acteristics cannot be estimated correctly at compile-time. LEC treats character-

istics as random variables, and within the characteristics’ space, it chooses least-

expected-cost plans to execute queries. Concretely, for each characteristic, LEC

partitions its value range and selects a single value in each partition as a repre-

sentative. Additionally, every representative value is associated with a possibil-

ity. By considering all representative values and their corresponding possibilities,

LEC generates some plan candidates and computes their expected costs. The least-

expected-cost plan is treated as robust and it is chosen as the optimizer’s decision.

LEC, however, is not very applicable for the environment that we focus on.

• The method of dynamic query execution plans targets the problem that some es-

sential information is not available at compile-time. Therefore, it postpones the

decision of picking the optimal plans at compile time to runtime. It introduces a

choose-plan operator that evaluates costs of possible plans as an interval and keep

alternative plans for run time processing. At run-time, optimal plans are chosen

from those alternatives when unknown parameters can be bounded to actual val-

ues.

18

• Picasso (Haritsa, 2010) project visualizes queries’ optimal plans over the space of

data characteristics as plan diagrams (Reddy and Haritsa, 2005). A query’s plan

diagram, showing the optimal plan when characteristic values are determined, gen-

erally contains many different plans. Therefore, the problem of plan reduction (D.,

Darera, and Haritsa, 2007) is proposed to minimize the number of optimal plans

if some constraints (e.g., degraded performance by 20%) can be accepted. Later,

the method of approximate plan diagram (Dey et al., 2008) extends this idea to

provide high-quality approximations to plan diagrams by the following steps: Ini-

tially, given the parameter space, optimization is done for points chosen by specific

algorithms, such as random or grid sampling. Then, these accurate optimization

decisions are used to estimate all the other points. To achieve this goal, there are

several algorithms that can be employed according to optimizers’ decisions, but

they all obey the same principle that plans for unknown points are the same with

(i.e., RS kNN algorithm) or similar to (i.e., GS PQO and ApproxDiffGen algo-

rithm) those of nearby points. The process ends when all points are filled with

approximately optimal plans. Essentially, the idea of plan diagram is to decide

optimal plans at compile-time, given all possible characteristic values. This is not

suitable in streaming environments. On the one hand, it is too expensive to com-

pute all situations at compile-time and maintain them at run-time. On the other

hand, due to the varying nature of streaming data, it is not easy to limit ranges of

characteristic values. Moreover, according to the above description, plan reduction

and approximate plan diagram aim to identify robust plans over a given space, and

therefore they are beyond the scope of the current focus in this thesis.

• PQO has an appealing idea that it prepares at compile-time multiple plan candi-

dates, each of which is chosen for a range of buffer sizes. At run-time, the actual

19

buffer size can be known so that the pre-determined optimal plan is chosen to run.

Given the range of possible values of buffer sizes, PQO produces the set of plan

candidates as follows: First, for each value, it initializes an optimal plan based

on randomized optimization algorithms (i.e., iterative improvement, simulated an-

nealing and two-phase optimization). Due to the nature of randomized optimiza-

tion, those initialized plans are most likely to be local minima. To alleviate this

problem, PQO enhances the basic optimization with the ability of performing side-

ways information passing. For a given buffer size value v and the corresponding

optimal plan p, PQO chooses a set of values that are numerically close to the spe-

cific value v. Then, PQO compares the optimal plan p with those plans perceived

as best choices when the buffer size value equals to anyone in the chosen set of val-

ues. If the optimal plan p has a lower cost, then nothing is changed. Otherwise, it is

regarded as a local minimum plan and replaced with the lower-cost one. PQO ter-

minates after considering all values. Considering that only the parameter of buffer

size is concerned in the original PQO method, later works (Ganguly, 1998; Prasad,

1999) proposed a solution when the optimizer deals with 2 and 3 parameters. To

generalize the original PQO idea, Hulgeri and Sudarshan (Hulgeri and Sudarshan,

2002; Hulgeri and Sudarshan, 2003) proposed heuristic solutions for the cases

when the cost functions used by the optimizer are linear or piecewise linear or even

nonlinear in the given parameters. A more recent work PPQO (Bizarro, Bruno, and

DeWitt, 2009) specifically focuses on query-dependant parameters, that is, query

predicates’ parameters that users define at run-time. When a new value of a param-

eter is submitted, PPQO consults the Parametric Plan (PP) data structure to get an

optimal or a near-optimal plan without doing real re-optimization. PP considers

the monotonicity principle of optimal regions and returns plans under some sub-

20

optimality restrictions. If such plans cannot be found, real optimization is invoked

to generate optimal plans, and those plans along with parameter values are added

into PP for further consultation.

All the mentioned static optimization strategies provide valuable viewpoints of

optimization, and they theoretically adapt to newly-observed characteristics at run-time.

However, because the search space of optimal plans is super-exponential in the number

of characteristics considered, they are too expensive to use in data-stream environments.

Besides, in order to be cost-effective, it is important for parameter values that those works

concern to cover only a small space of their own domains. This requirement cannot be

easily satisfied in data-stream environments.

2.2 Optimization for Streaming Data

In this section, we will review approaches that are especially put forward for streaming

settings, where queries are submitted only once and results are continuously delivered

to users as long as new data are streamed into the system. These queries are known as

continuous queries (CQ) and it is more critical for such queries to be re-optimized. First,

streaming data’s characteristics change dynamically so that the currently-running plans

most likely become sub-optimal. Second, these queries are long running, and hence if

a sub-optimal plan is not replaced by a more optimal one, the performance degradation

will be severe.

Many data stream systems, like StreaMon (Babu and Widom, 2004), TelegraphCQ

(Chandrasekaran et al., 2003), CAPE (Rundensteiner et al., 2004), NiagaraCQ (Chen et

al., 2000) and Borealis(Aurora) (Carney et al., 2002; Abadi et al., 2005), pay attention

21

on CQ-based adaptive query processing. Among them, StreaMon and TelegraphCQ ex-

plicitly address the adaptivity issue.

• StreaMon proposes two methods, A-Greedy (Babu et al., 2004) and A-Caching

(Babu et al., 2005). A-Greedy dynamically reorders filters, that is, projection

operators, that streaming data goes through. For each query, it obtains each fil-

ter’s selectivity by counting the number of tuples that are dropped by the filter. In

the meanwhile, it maintains a matrix indicating all filters’ selectivities in order to

choose a greedy ordering so that it takes the minimal cost for all inputs to pass.

The matrix, as a global view of all filters in a plan, allows A-Greedy to capture

correlations among them. However, the consequential drawback is the high mon-

itoring overhead. Therefore, variants of A-Greedy that carefully choose a subset

of selectivities to keep track of has also been proposed. A-Caching is an adaptive

mechanism to improve join performance in StreaMon. Since join operators drop

tuples if no match can be founded, StreaMon also treats join operators as filters and

thus arranges join orderings by the A-Greedy strategy, which unifies optimization

strategies but fails to consider materializing intermediate results to reduce execu-

tion costs. A-Caching is proposed to handle this limitation. The concrete method

is to reduce total costs by exploiting cached intermediate results. Given multiple

joins, A-Caching works iteratively. Every time, it carefully chooses candidates of

intermediate results to profile. After collecting observations for these candidates, it

runs an offline algorithm to pick up the optimal set by which most execution costs

can be saved. Because the optimization of join orderings and the determination of

materializing intermediate results are separated, it is possible that the join ordering

changes before the next iteration starts. In this case, A-Caching would remove all

contexts and re-compute candidates for further usage.

22

• TelegraphCQ, being another data stream system, has a completely different ar-

chitecture for query processing. The architecture has no conventional optimizer

or explicit execution plans; instead, it uses a Eddy (Avnur and Hellerstein, 2000)

operator to handle intermediate results’ transition. This method is regarded as

routing-based optimization, because the routing mechanism of the Eddy operator

is similar to deciding execution plans that traditional optimizers do. The Eddy op-

erator dynamically determines the orderings of necessary operators for every tuple

to go through according to their most recent selectivities. To route correctly, Eddy

associates every tuple with additional information, indicating whether its corre-

sponding operators have been gone through. This method has two shortcomings:

1) Eddy uses a ticket-based routing policy, thus each tuple merely goes through

a locally optimal path instead of the globally optimal one, and 2) Eddy operator

does optimization at the tuple level, imposing a big overhead in steady state. Even

though further work (Deshpande, 2004) has proposed to arrange an unified path

for a batch of tuples in order to reduce scheduling overhead, the routing work for

individual tuple cannot be eliminated. Moreover, in this less aggressive variant,

the scheduling period is fixed.

A-Greedy and A-Caching are able to cope with characteristic changes, but as a

re-optimization mechanism, A-Caching’s fixed re-optimization interval is not flexible

enough. Moreover, they are proposed for a specific system and therefore it is limited for

them to be applied on other systems. Compared to them, our approach, based on plan-

based optimizers, is much easier to be implemented in many data stream systems, without

modifying their existing architecture. Besides, although TelegraphCQ’s approach essen-

tially performs re-optimization, its architecture does not have a plan-based optimizer and

therefore it is beyond the scope of our focus.

23

Next, among the remaining works in the field of data-stream management, we

briefly review some representative ones that involve some form of optimization.

• Temporal constraints (i.e., responsiveness) are important when dealing with data

streams and there is a work (Hammad et al., 2003) that explicitly concerns the

scheduling issue for shared window joins. Three methods, namely Largest Win-

dow Only (LWO), Shortest Window First (SWF) and Maximum Query Through-

put (MQT), are proposed for different requirements. LWO allows newly-incoming

inputs to join with all counterpart tuples under the largest window size of shared

queries. Instead of processing new inputs one by one according to their arrival

time, SWF suspends the current processing as long as a new input needs to join tu-

ples with a smaller window size. As a combination of LWO and SWF, MQT aims

at maximizing throughput, that is, serving the maximal number of queries per unit

time.

• State-Slice (Wang et al., 2006) improves performance by sharing results of com-

mon sub-expressions. One big contribution of State-Slice is that it considers selec-

tions and joins together. For such queries, the general ways that systems interleave

selection operators with join operators are pull-up and push-down methods. The

pull-up method is to perform selections after the completion of joins while the

push-down method is to filter underlying data by selection operators as early as

possible before feeding them into join operators. State-Slice identifies that neither

methods can be optimal, given some storage and computing resource constraints.

Therefore, it separates every single stream buffer into several slices based on win-

dow sizes of queries submitted. In each slice, it is able to compute intermediate

24

results by executing selections and joins together, and route those results for differ-

ent queries. At a system level, it chains up all slices of the same stream in sequence

to guarantee system correctness. By using this finer-grained method, State-Slice

achieves either maximal memory-efficiency or CPU-efficiency goal.

• Plan migration (Zhu, Rundensteiner, and Heineman, 2004) indicates the link-up

process between a pair of current plan and new plan. Its first attempt is pause-

drain-resume approach, proposed in Aurora system(Carney et al., 2002). This

work is easy to implement but it causes errors when processing queries involving

stateful operators (such as join and aggregation), because it either misses results

or causes deadlock. To guarantee correctness, CAPE (Rundensteiner et al., 2004)

introduces two strategies, that is, moving state (MS) and parallel track (PT) in the

literature (Zhu, Rundensteiner, and Heineman, 2004). Given a new plan, MS first

suspends the current plan. Next, it finds out all pairs of intermediate results with

identical schemas between the current plan and the new plan so that correspond-

ing tuples can be transferred in the next stage. Then, it computes the remaining

intermediate results needed by the new plan. Finally, it discards the current plan

and starts the execution of the new plan. During migration, there is no output gen-

erated. Unlike MS, PT runs the current plan and the new plan simultaneously and

keeps the current plan until it cannot generate legal results any more. In the mean-

while, additional processing is added to the top-most join operator of the current

plan in order to avoid duplication. To achieve better efficiency, HybMig (Yang

et al., 2007) is proposed to combine MS and PT together. By carefully choos-

ing data to process, HybMig generates non-overlapping final results. As such, the

whole migration duration becomes shorter. Another work (Esmaili et al., 2011)

25

expands the idea of plan migration to plan modification, which adapts the current

plan to changes of either query semantics or system load. This plan modification

method exploits punctuations to control plans’ start or stop points. According to

interactions among punctuations, it also provides some variants to satisfy different

requirements of correctness. But the up-to-date techniques can only be applied to

stateless operations, for example, selection and projection.

Albeit showing significant potential for improving system performance, they are

described for specific usages, and if necessary, they can be integrated as a pre-computing

or post-computing process with our plan-based methodology.

2.3 Processing Joins over Streaming Data

Join algorithms have been specifically studied in the context of data-stream management.

Since our work focuses on re-optimizing multiway joins over streams, we next review

some relevant works on this topic.

• The operator of State Module (SteM) is proposed in the work (Madden et al.,

2002). A SteM has the access control to a stream by encapsulating a single in-

dex built on it with a particular attribute as the key. There are two scenarios that a

SteM for stream s has: One is that a singleton tuple of s comes, then it is inserted

into the SteM as well as other SteMs that build indexes on s, before the tuple is

processed. The other one is an intermediate tuple that needs to join with tuples

of s comes, then it is used to probe the index that the SteM manages. If there

is no match, the intermediate tuple is discarded. Otherwise, the SteM revises the

tuple’s state information to indicate the completion of current processing and de-

livers the newly joined intermediate result to following operators. To handle joins,

26

the system has a global operator named Eddy (Avnur and Hellerstein, 2000) that

determines the orderings of SteMs for every singleton tuple to go through. Eddy

dynamically observes processing costs of SteMs and chooses reasonable orderings.

• The operator of STAIR (Deshpande and Hellerstein, 2004) addresses a limitation,

that is, in the routing-based architecture, previous decisions may affect join order-

ings in future, even if new decisions are supposed to be applied. This problem

arises for multiway joins, because joining orderings (i.e., routing decisions) can-

not be changed, once intermediate results were generated and state information

was modified correspondingly. STAIRs’ solution is to undo the earlier work and

pre-compute necessary work when the join ordering is changed. A STAIR operator

is actually a Symmetric Hash Join (SHJ) (Wilschut and Apers, 1991) operator with

four extra interfaces. Two interfaces are insert and probe; while the former stores

a tuple, and the latter returns matching tuples inside the STAIR. The third one is

demote and it restores intermediate results by removing the portion related to a

specific stream. The last interface, named promote, joins its stored data with more

streams and retains the matches. With these four interfaces, STAIRs guarantee that

the join ordering for a tuple can be adjusted at run-time, according to most recent

statistics.

• XJoin (Urhan and Franklin, 2000) based on Symmetric Hash Join (SHJ) (Wilschut

and Apers, 1991), is a non-blocking operator to handle multiway joins. It extends

the original SHJ to use secondary storage and reactively schedules processings for

in-memory and on-disk tuples. It divides join processing into three stages: The first

stage joins memory-resident tuples, which is essentially the same as the original

SHJ does. At the second stage, disk-resident tuples from one source stream are

27

chosen to probe memory-resident tuples from the other source stream. The third

stage performs necessary matching to complement results missed by the first two

stages. During XJoin’s scheduling, the first stage is given the highest priority so

that in-memory results are processed as long as new tuples arrive. When the first

stage does not have any new tuple to process, the second stage is triggered. Since

the first stage cannot make progress, the second stage in effect hides intermittent

delays in data arrival. Finally, the third stage executes after all tuples have been

received.

• MJoin (Viglas, Naughton, and Burger, 2003) is a more generalized Symmetric

Hash Join (SHJ) (Wilschut and Apers, 1991) algorithm for multiway joins. A

MJoin operator that is assigned to process a join is completely symmetric with

respect to related streams: It builds a hash index for each stream, such that an in-

coming tuple from any source stream can be used to generate and propagate results

in a single step, without going through a multi-stage binary execution pipeline. The

sequence for a tuple to join with other streams is based on join selectivities, and

every time the most selective join of the remaining ones is chosen to be evaluated

first. For tuples from different streams, orders are not the same.

• The first work that explicitly considers multiway joins for sliding windows is the

literature (Golab and Özsu, 2003). It points out that, join algorithms are affected by

two issues: One is tuple processing strategy - while eager evaluation processes a

tuple immediately when it arrives, and lazy evaluation processes newly-incoming

tuples periodically. The other one is tuple expiration strategy - while eager ex-

piration removes old tuples whenever a new tuple comes continuously, and lazy

expiration does pruning periodically. Join algorithms are designed as follows: Ea-

28

ger Multiway Nested Loop Join (NLJ) processes tuples in the eager way. This

method can be used with either eager or lazy expiration strategy. In contrast, Lazy

Multiway NLJ uses the lazy evaluation strategy and only can be applied with lazy

expiration. Accordingly, Multiway Hash Join has both eager and lazy versions. A

Hybrid NLJ-Hash Join is also proposed in order to use available hash indexes. All

the mentioned algorithms have in common the policy that in each lookup stage on

a stream, only tuples that satisfy the timestamp requirement can be processed. The

main difference between the NLJ and Hash groups is that NLJ algorithms need to

scan entire windows but Hash algorithms only probe a bucket of tuples. Moreover,

this work proposes some heuristics to decide join orders. The main idea is to order

joins in the descending order of their selectivities so that less selective joins are ex-

ecuted later. Additionally, if one or more streams have faster arrival rates than the

others, then it tries to move forwards these fast streams’ positions in the ordering.

Among the works mentioned above, XJoin is simply a join algorithm. The way

that SteM does re-optimization actually splits the recording of state information from

the optimizer. However, both SteM and STAIR must cooperate with a routing-based

processing logic (Avnur and Hellerstein, 2000), and therefore, it cannot be compared in

the context of the thesis. The last two choose join orders by the same heuristic, which

is shown to be effective but has no guarantee of optimality. Moreover, they do not deal

with re-optimization.

There are still some works proposed with optimization purposes, although they

do not specifically target multiway joins. We briefly describe them as follows.

• Rate-based optimization for streaming data is first proposed in the work (Viglas

and Naughton, 2002). The work builds up a cost model as a funtion of streams’

29

arrival rates to estimate output rates of Select-Project-Join queries. With respect to

join methods, it considers Symmetric Hash Join and Nested Loop Join. Based on

the cost model, it discusses two optimization cases: One is local rate maximization,

that is, given a specific time point, the optimizer selects a plan to maximize the

output size. Solving this problem is straightforward: By using the cost model,

output rates of all possible plans can be obtained and the plan with maximal output

rate should be chosen. The other case is local time minimization, that is, given a

specific number of outputs, the optimizer selects a plan to minimize the execution

time. The work is implemented by a divide-and-conquer strategy with the sub-

problem of finding the fastest plan to join a specific set of streams. It is worth

pointing out that the computation can be terminated if a satisfying plan is identified

for a subset of streams.

• Rate-based Progressive Join (RPJ) (Tao et al., 2005) is proposed to maximize the

output rate by choosing orderings of processing data portions that are stored in

memory or on disk. It is essentially an advanced version of XJoin with a flexible

joining and complex flushing strategy. It includes three phases. The first one that

joins memory-resident tuples is the same as that of XJoin. The second one is

to reactively choose one disk-resident portion from one stream to process. This

portion can be joined with either a memory-resident or disk-resident portion, as

long as the output rate is estimated to be maximal. Because XJoin handles two

disk-resident portions only when no more in-memory portions await processing,

in this sense, RPJ is more flexible than XJoin. The third one is a clean-up phase

that generates missed results. The other aspect where RPJ is superior to XJoin is

that, RPJ flushes a memory-resident portion to disk based on a probalistic analysis.

30

It estimates the probabilities that the next incoming tuple belongs to each portion.

For a portion p with the smallest probability, RPJ flushes the corresponding portion

that p is supposed to be joined with. This process is repeatedly done until enough

space is released.

• Another representative work (Kang, Naughton, and Viglas, 2003) introduces a

unit-time cost model and focuses on processing a single binary join. It consid-

ers three scenarios. The first one is one stream arrives much faster than the other

and the work aims to maximize the join efficiency (i.e., execution time). In the lat-

ter two situations, the system has computing and memory restrictions respectively,

and the goal is to maximize the number of results generated. This work has some

interesting results obtained from both experimental and analytical studies. An im-

portant conclusion is that asymmetric combination of Hash Join and Nested Loop

Join for two join sides outperforms the other options in the first scenario. Besides,

in the second situation, allocating half of the computing resources to each stream

is the best choice and hash join is most suggested. In the third situation, it suggests

that the stream with the slower arrival rate should be assigned all available memory

and a hash index shoule be built on it for the other stream to probe.

Obviously, the rate-based works have a different emphasis in terms of re-optimization

direction. However, our scheme actually covers the consideration of arrival rates by com-

paring cardinality changes of source streams. Moreover, the last work mentioned above

needs to extend the cost model to full query plans so as to be incorporated into the re-

optimization routine. Finally, note that, although some of those listed works consider

memory requirements, our work that currently assumes queries and streaming data can

fit into memory, is complementary.

31

2.4 Statistics Collection

As discussed, it is obvious that the re-optimization process usually depends on most

recent statistics of the underlying data to detect sub-optimality. As such, statistics col-

lection is very important for re-optimization. Next, we discuss three groups of statistics

collection, namely exploitation-oriented, exploration-oriented and balanced approaches.

• Exploitation-oriented approaches follow the principle that collecting statistics should

be based on currently-used plans’ execution routines. DB2’s Automated statistics

collection (ASC) (Aboulnaga et al., 2004), LEO (Stillger et al., 2001), Rio (Babu,

Bizarro, and Dewitt, 2005), ReOpt (Kabra and DeWitt, 1998) and POP (Markl et

al., 2004) all belong to this group. ASC, as a component in DB2 UDB, is com-

prised of a update-delete-insert (UDI) driven and a query-feedback(QF) driven

process. The UDI-driven process monitors table activities that change statistics of

the underlying table. The QF-driven process monitors query results and populates

these information to update optimizer’s cardinality estimation. LEO also leverages

feedbacks to correct estimation errors in currently-running plans. It collects actual

information and computes an individual adjustment factor for every characteris-

tic. Moreover, based on isolated characteristics, LEO is able to identify correlation

between predicates. Similar to LEO, Rio renders feedbacks of characteristic esti-

mations that current plans need. It uses a random sampling strategy and merges this

process with regular query execution process. The objective of statistics collection

in ReOpt and POP is to verify the estimations of used characteristics. ReOpt puts

very low burden on statistics collection, because it only allows gathering knowl-

edge at materialization points (e.g., sorting or building hash table) at run-time. To

32

obtain more information, POP aggressively materializes intermediate results wher-

ever check operators are inserted. Exploitation-oriented approaches guarantee the

least overhead, but the main problem is that they fail to have accurate information

of characteristics that are absent from currently-running plans’ routines. This may

lead to a problem of local optimality, that is, some plans remain sub-optimal even

after they are re-optimized many times.

• Exploration-oriented approaches aims to alleviate the local optimality problem of

exploitation-oriented approaches so they proactively probe statistics that current

plans are unaware of. The representatives are the pay-as-you-go approach (Chaud-

huri and Ramamurthy, 2008) , exact cardinality query optimization (Chaudhuri,

Narasayya, and Ramamurthy, 2009) and Oracle’s ATO (Belknap et al., 2009). The

pay-as-you-go approach takes as input a user-defined threshold and deliberately

executes sub-optimal plans, which are transformed from optimal ones in order to

obtain missed statistics. To achieve maximized benefits, it uses a set cover al-

gorithm to greedily select characteristics. Exact cardinality query optimization

targets obtaining all exact cardinalities in order to conduct optimizer testing. Al-

though it also relies on executing query expressions and leverages feedback for fur-

ther choices, it works separately from re-optimization. Given query expressions,

it classifies them into different sets according to their own signatures, which are

actually representations of related schemas. Then, queries are generated for each

set and they are greedily chosen to run until all expressions are covered. Lastly,

chosen queries are executed to obtain exact cardinalities. ATO differentiates itself

from the other schemes by doing additional processing to reduce the uncertainty

of cardinality estimations. Precisely, ATO performs random sampling to validate

33

possible characteristics (e.g., cardinalities of base tables, selectivities of join condi-

tions) before executing queries. The collected statistics may cause the optimization

decisions to change, indexes to create and so on. Exploration-oriented approaches

also have a clear disadvantage: The overhead of acquiring the comprehension of all

statistics is prohibitively high. More importantly, all of these works are proposed

and used in traditional databases, and it is not clear whether they can be embeded

into the data-stream systems.

• Xplus (Herodotos and Shivnath, 2010) is a recent work balancing utilization of

exploitation and exploration. Its decisions on which statistic to monitor has two

phases. In the first phase, it uses a policy to choose a plan neighborhood, within

which plans are structurally similar to each other. Then, the goal of the second

phase is to pick up a plan with least cost in its corresponding neighborhood. Lastly,

after running chosen plans, gathered statistics are enough to decide optimal plans.

To keep the balance, Xplus needs to guarantee the total collection overhead is

under a specific bound, such as a user-defined bound.

Our scheme also needs to monitor the most recent statistics information. Our

statistics collection is based on the exploitation-oriented idea. Additionally, we are able

to obtain a more comprehensive view of statistics by analyzing statistics collected from

different plans. The combination of collecting and analyzing achieves a balance between

overhead and accuracy, and further improves the re-optimization performance.

34

Chapter 3

Esper: An Event Stream Processing

Engine

We implemented our scheme on Esper (Esper, 2013), an open-source software designed

for handling data streams and complex queries over them. In this chapter, we depict

essential features and components of Esper. First, we show the architecture of Esper in

Section 3.1. Then, Section 3.2 explains the data models containing the window concept

and tuple expiration issue. Next, storage management, join algorithms and execution

plan types are illustrated in Section 3.3. Finally, we introduce Esper’s original optimiza-

tion method in Section 3.4.

3.1 Architecture

In order to support streaming environments well, Esper (the free version) offers in-

memory implementation, namely, the system stores data in main memory and uses online

algorithms to manage data. In spite of being a data-stream management system, Esper

still uses the architecture and plan-based optimizer as most conventional databases do.

35

Output
Adapters

Data Stream
Adapters

Historical
Data

Access
Layer

statement	
statement	

Query

Execution Component

Plans	 Plans	
Plan

Parser

Query Optimizer

Real-Time
Data
Streams

Query Engine

Storage

Figure 3.1: Esper’s architecture

The main architecture consists of interfaces, storage and query engine. Interfaces are

primarily data stream adapters and output adapters to receive data and deliver results,

respectively. The storage management component deals with storage of original data

and their statistics. More importantly, providing the system’s core functionality, query

engine includes parser, optimizer and execution engine. As preparation units, parser

and optimizer are in charge of analyzing query semantics and deciding optimal plans,

respectively. The execution engine processes data and answers queries. The architec-

ture mentioned above is shown in Figure 3.1, where dashed lines represent flows of data

streams and solid lines represent control flows after queries are submitted.

At a high level, Esper works like a DBMS as follows: Once registered, application

queries are stored in the system. As data flows in at real-time, Esper checks whether

data properties match any stored query. If so, the data will be processed and results

will be organized and output. Otherwise, the data will be temporarily stored until their

expiration. In the following subsections, we explain how Esper deals with streaming data

36

and answers stored queries.

3.2 Data Models

A data stream that Esper accepts is a sequence of tuples that arrive at real-time in some

order. Stream tuples can be represented by a rich range of forms, such as Java objects,

XML documents and simple name value pairs. The form of an individual stream must

be registered before any arrival of its data. All data are stored in main memory.

Because data are potentially unbounded in size, data size would outgrow the

memory capacity eventually. Like many other data-stream systems (Abadi et al., 2005;

Chen et al., 2000; Chandrasekaran et al., 2003; Babu and Widom, 2004), Esper handles

this problem by using the concept of window. Windows restrict the scope of data that

the system stores and processes and they move gradually. As time goes, data that fall

beyond their corresponding windows are expired and discarded. For different streams,

windows can be different, according to users’ definition in queries’ declaration. In the

context of query processing over data streams, two most popular schemes of windows

are supported in Esper. They can be classified according to the following criteria:

• Definition of window size: A window can be defined by either time or length. A

time-based window always stores newly-incoming data for a time period, while a

length-based window only saves a specific number of the most recent tuples.

• Movement method of window: There are batch and sliding windows. A batch

window is actually a tumbling window that batches data and releases them when

a given number of tuples are collected (length-based) or a given time interval is

passed (time-based). In this sense, data from different windows of the same stream

37

do not overlap. On the contrary, a sliding window, via moving forward its end-

points, releases expired data gradually as new tuples arrive (length-based) or time

goes (time-based).

Actually, Esper supports more window schemes. For example, it provides win-

dows with computing ability, such as sorting and averaging. These kinds of windows

are Esper’s featured functionalities, so in our context, we only focus on windows that we

described above.

3.3 Storage and Query Processing

Storage and query processing in Esper are heavily tied up with each other, and therefore,

we illustrate them together.

Esper has a storage component to store all tuples required during query execution.

Additionally, simple statistics, mainly including queries’ output size and execution time,

are collected at run-time and stored in the storage component.

Esper supports continuous queries (real-time processing) and it provides a SQL-

like query language that allows filtering, join, aggregation and pattern recognition over

data streams. In the context of this thesis, we concentrate on multiway join queries.

Specifically, as discussed in Section 1.4, the set of outer join results is essentially the

Cartesian product of related data streams, so it is difficult for the re-optimizer to signifi-

cantly influence the execution performance. Therefore, to facilitate discussion, we only

focus on inner joins in the remaining thesis, unless specifically stated.

Multiway joins have two kinds of requirements on storage: On the one hand,

tuples that need to be handled can be incoming data from stream sources, and on the

38

other hand, the system needs to maintain intermediate results for further processing. We

talk about the corresponding schemes as follows:

• Indexes for Stream Sources: Every stream source requires main memory space to

store its valid tuples, the size of which depends on the maximal size of windows

on it. Specifically, for fast query processing, Esper builds indexes on streams’

attributes when parsing and analyzing query statements. Concretely, for equality

join queries, hash indexes are built on attributes shown in a query’s where clause.

For non-equal joins, the index used is a self-balancing binary search tree. Accord-

ing to the query statement, it is possible for a single stream to have more than one

indexes built on it.

• Temporary Buffer for Intermediate Results: Esper does not materialize intermedi-

ate results. In some sense, there is no explicit storage scheme for them. Interme-

diate results are temporarily stored inside the operator that produces them. Every

time an intermediate result is generated, the operator allocates a space to hold it,

and feeds it into the next operator. The next operator looks up the corresponding

tuples, and if matches are found, new intermediate results are formed. At the com-

pletion of the lookup, this intermediate result is discarded and its space is released.

In a nut shell, an intermediate result is temporarily stored in the system between

its generation and the time that the next operator completes processing it.

Based on the storage schemes, methods that Esper uses to process joins are pipelined

hash join and nested indexed (BTree-like) join. Another important aspect of join process-

ing is types of join plans. In Esper, bushy plans are not supported. In other words, Esper

only provides binary plans to answer queries.

39

A
B

C
⋈	

⋈	

B
A

C
⋈	

⋈	

C
A

B
⋈	

⋈	

i) Plan for Stream A ii) Plan for Stream B iii) Plan for Stream C

Figure 3.2: Esper’s multiple-plan-per-query strategy

Specifically, as demonstrated in Section 1.1, data streams display uneven and dy-

namic speeds. Therefore for multiway joins, the traditional one-plan-per-query strategy

leads to a latency issue that newly-incoming tuples must wait, if processing them de-

pends on the completion of processing other streams. Esper, as a stream-oriented system,

is designed to operate in the way that data are immediately processed as they arrive, no

matter which stream they come from. It uses a multiple-plan-per-query strategy that al-

lows multiple execution plans running for one join query. More concretely, given a join

query, the optimizer assigns an individual plan for each source stream. The following

example illustrates the multiple-plan-per-query strategy.

Example 3.3.1 Suppose A, B and C are source streams and over them there is a query

with two join conditions, A.id = B.id and B.id = C.id. For this query, the optimizer

would produce three execution plans, one for each source stream. Assume the plans are

those shown in Figure 3.2, and the source streams that the plans are generated for are

emphasized. Conceptually, the plans are all different because they use different source

streams’ tuples to trigger join operations. At run-time, newly-arriving tuples that belong

to different source streams will be fed into different plans. Take the middle plan in Figure

3.2 for example, a new B tuple will follow the steps of stream B’s plan to join stream A’s

tuples first, and the result, if any, is then joined with stream C’s tuples.

40

A⋈B
(Hash Join)	

B⋈C
(Hash Join)	

A B C

output
results
to user

probe

probe

intermediate
results

streaming
data

Figure 3.3: Storage and query plan for the join in Example 3.3.2

Finally, putting them together, we give an example to illustrate the storage and

query plan issue for a multiway join.

Example 3.3.2 Suppose A, B and C are source streams and over them there is a join

query with two conditions, A.a = B.b1 and C.c = B.b2. Figure 3.3 shows a plan (for

stream A) to answer the query. Tuples of data streams are represented by rectangles

with solid lines, and intermediate results temporarily retained by join operators are rep-

resented by rectangles with dashed lines. Hash indexes are built on the attribute b1 of

stream B and the attribute c of stream C. Suppose a tuple t of stream A arrives, then

the stream B is first probed. If stream B contains a tuple matching t.a, then the joined

tuple jt is generated and held by the operator A ./ B. The intermediate result jt is used to

probe stream C with jt.b2. If a matching is found, then a final result is generated and it

can be output to the user. Otherwise, if no matches are contained in stream C, then jt is

41

discarded.

3.4 Query Optimization

In this section, we first show the plan representation. Then, we illustrate how Esper’s

original re-optimizer works for a query.

Based on the discussion in the previous section, for a multiway join query, Esper

generates multiple plans, the number of which is equal to that of involved source streams.

More importantly, for every plan, only tuples of the specific source stream are able to

trigger the processing, and only intermediate results containing these tuples can probe

other streams to generate final results. Therefore, a plan actually degrades to an ordering.

We give the definition and a detailed example as follows.

Definition 3.4.1 An ordering is the processing sequence of source streams involved in a

multiway join query. For a N-way join, an ordering is represented by o0 : o1 → ... →

oi → oj... → oN−1. o0 indicates the start-up stream, to which the ordering is assigned.

And the rest represents the join sequence, where oi is the ith stream to be processed.

Note that, arrows in the ordering representations just highlight the join sequence, so it

is safe to ignore them on the purpose of simplicity. Therefore, the ordering can also be

represented as o0 : o1...oioj...oN−1.

Example 3.4.1 Consider plans shown in Figure 3.2. Stream A’s plan can be represented

as the ordering A:B→C (or A:BC), with A indicating the start-up stream and B→C

showing the join sequence. Similarly, B:A→C (or B:AC) and C:A→B (or C:AB) indicate

plans of stream B and C, respectively.

42

Joining relationships
= { AB, BC, AC}

A

B C

Plan 1 A:B->C Plan 2 A:C->B
A

B

C
⋈	

⋈	

A
C

B
⋈	

⋈	

AB AC

ABC ABC

Figure 3.4: Optimization process to generate stream A’s plan in Figure 3.2

In the rest of the thesis, the concepts of ordering and execution plan indicate

each other and are used interchangeably. Moreover, considering that execution plans are

usually illustrated with the binary tree structure, we still use this form.

At a high level, Esper uses a optimize-once scheme, that is, queries are optimized

only when they are submitted and the generated plans would be used throughout the

execution. Moreover, since an execution plan has a start-up stream, to decide a plan is

essentially to arrange a sequence of the other streams involved in the query. Therefore,

given a join query, Esper’s optimizer runs as follows: The optimizer initially identifies

the joining relationships among all data streams. After that, the following steps are done

for each source stream: First, the optimizer randomizes an ordering of all streams except

the source stream. Next, the optimizer, according to the joining relationships, checks

whether every stream in the ordering can join with at least one of previous streams. If

the checking is not passed, another ordering will be tried until the optimizer finds out a

satisfying ordering and uses it as the execution plan. A concrete example is shown as

follows.

Example 3.4.2 Consider again the Example 3.3.1 and the corresponding plans shown

in Figure 3.2. We illustrate how the optimizer produces those plans. For the query, the

43

set of joining relationships is {AB, BC and AC}, where AB and BC both come from orig-

inal join conditions and BC is derived according to transitivity. On the left side of Figure

3.4, the set is visualized as a graph, with vertices denoting the source streams and edges

denoting that joining related streams is an inner join. Generating execution plans is es-

sentially finding out an ordering for each source stream. Because the process for each

individual stream is the same, we only illustrate stream A as an example for simplicity.

For stream A, all permutations of join sequences are B→C and C→B, and their corre-

sponding plans are shown in Figure 3.4. Either of them can be chosen randomly at the

first attempt. Assume the optimizer chooses B→C and then checks the members in the se-

quence one by one: According to join relationships, B is able to join with A, meanwhile,

C can join with either A or B, so A:B→C (or A:BC) is selected as stream A’s execution

plan. The same process runs for stream B and C, and the optimizer’s final decisions are

shown in Figure 3.2.

Obviously, Esper’s optimization method is able to provide an ordering very quickly,

however, it cannot guarantee the optimality of the ordering. Moreover, Esper has no ca-

pability to perform re-optimization. Our scheme aims to overcome these two problems,

and we will discuss the detailed techniques in the following chapter.

44

Chapter 4

Query Optimization Framework

Recall that for a join query, Esper has multiple plans to answer the query, one of which

being assigned to a source stream (represented as multiple-plan-per-query strategy in

Section 3.3). An optimal plan is actually an ordering in which streams are processed

one by one (explained in Section 3.4). Moreover, the original optimizer in Esper decides

a plan by randomly choosing a join ordering according to the joining relationships of

related data streams (illustrated in Section 3.4). Obviously, this kind of implementation

cannot guarantee the quality of plans produced. In order to introduce our re-optimization

scheme, we in this chapter present our way of enhancing Esper’s original optimizer. The

modified query optimization framework includes a basic optimization method, statistics

collection issues and a cost model to perform a cost-based optimization.

We summarize in Table 4.1 notations that are frequently used in this Chapter.

Table 4.1: Notations frequently used in the query optimization framework

Symbol Description
Card(s, t) the cardinality value for s (source stream or intermediate result) at time t
Card(s) the cardinality value for expression s (source stream or intermediate result) at present
Card(s1...sn) the cardinality for intermediate result of joining streams s0 to sn
o0 : o1...oN execution plan for source stream o0 that joins streams o0 to oN

45

4.1 Optimization using Dynamic Programming

A crucial extension that we made on Esper’s original optimizer is the abilities of plan

enumeration and pruning for join queries. They are encapsulated in a dynamic program-

ming (DP) algorithm, which is used to identify the optimal plans.

The DP algorithm computes the best plan for a query incrementally, based on op-

timal plans of its plans. As shown in Algorithm 1, the recursive process is implemented

in a bottom-up fashion. For every start-up stream (see Definition 3.4.1) in a query, dy-

namic programming starts with the information of streams that need to be joined (line 2

and 3). Every time, it enumerates a new (intermediate) join ordering by appending one

more stream to the current one (line 8). Those (intermediate) join orderings are tem-

porarily stored by the optimizer, and if the optimizer observes that two orderings involve

the same set of streams, then they are compared (line 9). The worse ordering is pruned

(line 10), and the better one is saved to represent the currently-optimal plan for this set

of streams. The recursion terminates until all streams are considered. The optimal plan

is the ordering that is ultimately saved for the set containing all related streams.

The optimizer decides which join ordering is better by comparing their costs and

the joining cost largely depends on how many tuples should be processed, because the

execution is done in memory. Before introducing the cost model, we first present the

definition for the size of valid tuples.

4.2 Cardinality

The concept of cardinality is widely used in traditional databases to indicate relation size.

However, it is not explicitly proposed in streaming environments. Next, we introduce the

way that cardinalities are measured in our context.

46

Algorithm 1: Dynamic Programming to Generate an Optimal Plan
input : The number of streams N ,

the startup stream sstartup,
the set S of related source streams except sstartup

output: The optimal plan

1 Let Listn(0 < n ≤ N) store the currently-optimal (sub-)plans that contain n
different streams;

2 foreach stream s in S do
3 Put s in List1; // Initialization

4 for n← 2 to N do
5 foreach currently-optimal sub-plan opre in Listn−1 do
6 foreach stream s in S do
7 if s is not contained in opre then
8 Generate a new (sub-)plan ocrnt by appending s to opre;
9 if Listn contains a plan oopt involving all streams in ocrnt then

10 if ocrnt has a smaller cost then Replace oopt with ocrnt;
11 else put ocrnt in Listn;

12 return sstartup : Listn.getTheOnlyElement();

4.2.1 Definition of Cardinality

In data-stream management, the cardinality (i.e., the number of valid tuples) is actually

varying with respect to time, subject to the arrival rate of streaming data and the window

semantics of query processing. For example, Figure 4.1 illustrates how the number of

valid tuples in a source stream s can change in a period of time. The initial value is 0,

because no data flows into the system. As time goes, the value changes, as shown in

Figure 4.1.

Theoretically, the number of valid tuples should be a continuous function of time.

However, at the implementation level, it is prohibitively expensive to simulate every sin-

gle increment or decrement, instead, considering the total effect after a time interval (or

unit) is more cost-efficient. Therefore, we use discrete points to represent the continuous

function of the number of tuples, and it is acceptable when the time interval is small. The

47

#Tuple(s)=f(time)

0

v

t 2t 3t time

w
	 ① Value would be unchanged
if the window is length-based

 	 ② Value would fluctuate
if the window is time-based

Figure 4.1: The number of a source stream’s valid tuples in a window

concrete definition is given as below.

Definition 4.2.1 Consider a data source s that provides tuples for an operator o to

process. The source s can be an original data stream or the intermediate result generated

by the prior operator. The cardinality for s at the present time interval t, denoted as

Card(s, t), is the number of valid tuples accumulated during this interval. Concretely,

if s is an original data stream, then Card(s, t) is the number of tuples that still reside

within its window (described in Section 3.2) at the end of t. Otherwise, if s indicates an

intermediate result, Card(s, t) are the number of tuples fed into o during this period.

According to the definition, cardinalities shown in Figure 4.1 are: Card(s, t) = v

and Card(s, 2t) = w.

We note that, for a source stream, the definition has different effects with respect

to the kind of window used (discussed in Section 3.2). If the window is length-based, the

cardinality of the source stream would be fixed as the window size at steady state (1© in

Figure 4.1). On the other hand, if the window is time-based, there is no specific upper

bound on its cardinality, and the value would fluctuate according to the arrival rate (2© in

Figure 4.1).

48

As most applications, our scheme is interested in cardinalities over recent data.

Most of our discussion means the present time interval, and therefore, we omit the time

parameter in the denotation, unless specifically stated. Concretely, we use Card(s) to

represent Card(s,t) in the remaining thesis, unless specifically stated.

4.2.2 Estimating Cardinality Information

We note that, source streams’ cardinalities can be easily obtained by counting the number

of newly arriving tuples and considering the window constraints, and therefore, the only

problem is to decide the intermediate results’ cardinalities. Given a query Q and the

set of currently running plans {P1, ... , PN}, there are two cases when considering a

particular cardinality Card(s1...sn) (1 ≤ n ≤ N). In the case that joining streams s1 to

sn corresponds to a sub-plan of Pi (1 ≤ i ≤ N), the cardinality value can be collected

from the execution routine. Otherwise, the cardinality value cannot be directly obtained.

One approach of obtaining such cardinalities is to design plans that include those

cardinalities. By executing them, actual values can be acquired. Unfortunately, this

method is not suitable for streaming environments. On the one hand, it takes more com-

puting resources to execute these purposely-designed and sub-optimal plans. Even if

those plans’ results can be delivered to users, it is still costly to integrate them with

other plans to answer the query (e.g., avoiding redundant outputs). On the other hand,

the validity of cardinality values cannot last for long, due to the time-varying nature of

streaming data. Therefore, occasionally applying purposely-designed plans has no sig-

nificant effect on guaranteeing the cardinalities’ accuracy during continuous processing.

We propose an analytical method to estimate intermediate results’ cardinalities.

Moreover, it is obvious that the estimation for inner and outer joins should differ, because

the cardinality of an outer join is the Cartesian product of involved streams’ cardinalities,

49

but inner joins’ are not. To classify the intermediate results, we introduce the definition

of inner join set first.

Definition 4.2.2 Consider a set of streams S and a set of join conditions C on S. If there

is a join condition indicating that streams u and v (u, v ∈ S) are joined on an attribute,

then the join between u and v is an inner join. Given a (sub-)set T of S, we regard it

as an inner join set, if each stream w in T at least has an inner join with one stream in

T-{w}.

The following is an example on how intermediate results are classified according

to the above definition.

Example 4.2.1 Assume there is a query on a set of streams {A, B, C, D}. Suppose the

set of join conditions is {A.b = B.b, A.c = C.c, A.d = D.d}. The set {A, C, D} is an inner

join set, because A and C are joined on the common attribute c, and A and D are joined

on the common attribute d. However, the set {B, C, D} is not an inner join set, according

to our definition. Therefore, the cardinalities of ACD and BCD should be estimated in

different ways. In another case, suppose the set of join conditions is {A.id = B.id, A.id

= C.id and A.id = D.id}, then the set {B, C, D} is an inner join set. This is because i)

the join between B and C is inner join due to the transitivity of join conditions (B can be

joined with A and A can be joined with B on the common attribute id) and ii) similarly,

the join between C and D is also inner join.

Consider an intermediate result s that does not correspond to any running sub-

plan. S is the set of involved streams. We estimate its cardinality Card(s) according

to the following three cases: Firstly, if there are no join conditions declared between

streams in S, then Card(s) is simply the product of cardinality values of all related source

50

streams. Secondly, in the case where S is an inner join set according to Definition 4.2.2,

then we consider newly-collected cardinalities that contain S. Furthermore, for this kind

of cardinalities, the fewer streams it contains, the closer its value is to the actual value of

Card(s). Therefore, we classify these cardinalities according to the number of streams

involved. The heuristic is to find out the minimal value of the cardinalities with the

fewest streams. Then, the value is used as the estimation for Card(s). Finally, if a subset

T of S is an inner join set, then we estimate the cardinality of the intermediate result t

composed of streams in T by using the method of estimating inner joins. And then s’s

cardinality can be computed by considering t and streams in S - T as outer joins.

Algorithm 2 shows the technique for the above discussion. We recursively esti-

mate cardinalities with the most number of streams (line 4). Note that, the loop does not

start with N , because the cardinality that contains all source streams is the final output

and hence its value can be collected. Besides, as discussed previously, source streams’

cardinalities also can be gathered, and hence the loop ends with 2.

For each targeted cardinality (line 7), we directly estimate its value, if the first two

cases were met (from line 4 to 12). In the case that all joins are outer joins, it is straight-

forward to assign the product of single streams’ values (line 12). On the other hand, if all

joins are inner joins, the value is computed via a recursive function Min (line 9). In the

functionMin, if cardinalities that involves (n+1) streams as well as contains Set(s) can

be found, the minimal value is identified and returned. Otherwise, the function searches

cardinalities that contains more streams by calling Min(Set(s), n + 2, N, C). In the

worst case, the process terminates when the second and third parameters are equal and

the cardinality value of the query’s output is returned. Finally, for cardinalities belonging

to the third case, cardinalities are estimated by combining the inner join portion and outer

join portion together (line 20).

51

Algorithm 2: Estimating Absent Cardinalities
input : The set C of newly-gathered cardinality values about a query,

the set S of source streams,
the number of source streams N

output: The set of cardinality values that the optimizer needs

1 Let T store all cardinalities that are absent from optimal plans’ routines;
2 Let Card(s) indicate the cardinality value for intermediate result s in T ;
3 Let num indicate the number of source streams contained in a cardinality;

4 for n← N − 1 to 2 do
5 foreach cardinality Card(s) in T do
6 num← the number of source streams in s;
7 if num is equal to n then
8 if Set(s) is an inner join set then
9 Card(s) = Min(Set(s), n+ 1, N , C);

10 Put Card(s) into C;
11 else if Set(s) contains no inner joins then
12 Card(s) = Product(Set(s), S, C);
13 Put Card(s) into C;

14 for n← N − 1 to 2 do
15 foreach cardinality Card(s) in T do
16 if Card(s) has been computed then continue;
17 Identify the inner join set Subset(s);
18 Vinner = Min(Subset(s), n+ 1, N , C);
19 Vouter = Product(Set(s)− Subset(s), S, C,);
20 Card(s) = Vinner × Vouter;
21 return T ;

We give the example below to illustrate the process.

Example 4.2.2 Consider a query on streams A, B and C. The cardinalities for A, B

and C are 10, 20 and 30, respectively. The number of final output ABC is 8. Plans

are A:B→C, B:A→C and C:A→B. The absent cardinality is only BC. If {B, C} is not

an inner join set (e.g., when join conditions are A.b = B.b and A.c = C.c), then the

cardinality value is estimated as 20 × 30 = 600. Otherwise, there is a case that {B, C}

is an inner join set, for example, when join conditions are A.id = B.id and A.id = C.id.

52

In this example, the cardinality containing BC is only ABC, and hence 8 is used as the

estimation for BC.

4.3 Cost Model

Based on the discussion on cardinalities, we now present the cost model used by the op-

timizer. Intuitively, the cost model should consider the costs of inserting newly-arriving

tuples and invalidating expired tuples. However, as discussed in Section 3.3, once the

query is submitted, the kinds of indexes for streams are decided, meaning that both of

those costs are fixed. Therefore, we only consider the probing cost. As follows, we

describe analytical formulas for the join selectivity and the joining cost.

4.3.1 Join Selectivity

In our context, join plans are illustrated by left-deep trees, and the task of each join

operator (tree node) is to use the tuples of the left-side input (left child) to find matches

in the right-side input (right child). Given a binary join involving streams o0 to on, we

denote the selectivity as S(o0...on−1, on), where o0...on−1 and on respectively represent

the left and right inputs.

The join selectivity is usually defined as the ratio of the number of matched tuples,

that is, output’s cardinality, over the Cartesian product of the inputs’ cardinalities. In

terms of the selectivity evaluation, there are two cases: (i) If necessary cardinalities can

be accurately obtained by the statistics collection component, we compute the selectivity

by using these cardinalities. (ii) In the case that some of the related cardinalities cannot

be gathered, estimation is needed. Usually, join selectivities are estimated according to

columns’ distinct values. However, in our context, maintaining histograms that record

53

these information is prohibitively expensive, because update is needed when new data

arrive, and the influence revocation should be performed when the corresponding tuples

get expired. Based on the practical consideration, we assign the minimal value among

all pairwise selectivities that involve on. The selectivity in the above two cases can be

formally represented as:

S(o0...on−1, on) =

Card(o0...on)

Card(o0...on−1)× Card(on)
, case (i) (4.1)

min{S(oi, on)|0 ≤ i < n}, case (ii) (4.2)

The underlying assumptions for Equation 4.2 are independency of join conditions

and the uniform distribution of join columns’ values. As long as the assumptions hold,

Equation 4.2 provides the correct estimation. Moreover, in Equation 4.2, the pairwise

selectivity S(oi, oj) (0 ≤ i < j) also needs estimation if any cardinality of Card(oioj),

Card(oi) and Card(oj) cannot be collected and hence the selectivity cannot be com-

puted via Equation 4.1. Obviously, if oi and oj have no common attribute to be joined,

then S(oi, oj) should be 1. Otherwise, we estimate the selectivity by using estimated

cardinalities. The estimation approach has been discussed in Section 4.2.2.

We use the following example to illustrate the above discussion.

Example 4.3.1 Suppose there is a join query on streams A, B, C and D. Join conditions

are A.attr1 = B.attr1, B.attr1 = C.attr1 and D.attr2 = A.attr2. The leftmost graph

in Figure 4.2 shows the joining relationships among streams, and its edges are annotated

with the attribute name that streams join on. Moreover, running plans that correspond to

different start-up streams are shown in Figure 4.2. The statistics collection component is

able to gather cardinalities of all source streams and intermediate results in these plans.

Therefore, some selectivities can be computed using these cardinalities. For instance,

54

⋈	

⋈	

⋈	

A
B

C

D

⋈	

⋈	

⋈	

B
C

A

D

⋈	

⋈	

⋈	

C
A

B

D

⋈	

⋈	

⋈	

D
A

B

C

Plan A:B->C->D Plan B:C->A->D Plan C:A->B->D Plan D:A->B->C

A

B C

D

attr1

attr1 att
r 1

attr2

Figure 4.2: Join selectivity Computation and Estimation

S(AB, C) is assigned the value Card(AB)
Card(A)×Card(B)

. Still, there are some selectivities need

estimation, such as S(AC, D). According to Equation 4.2, it should be estimated as the

minimal value between S(A, D) and S(C, D). Due to lack of Card(CD), we need to esti-

mate S(C, D)’s value. According to the joining relationships in Figure 4.2, C and D have

no join attribute, and therefore, S(C, D) is equal to 1. Since S(A, D) is not larger than

S(C, D), S(AC, D) can further be decided as S(A, D).

4.3.2 Cost Model

Table 4.2: Symbols used in the cost model

Symbol Description
S(o0...oi, oj) the join selectivity of intermediate result o0...oi and stream oj
Num(o0...oi) the number of intermediate result produced by joining stream o0 to oi
Num(oi) the number of accessed tuples in stream oi
Inc(o0) the number of newly-incoming tuples in the start-up stream
C cost of accessing one tuple
Ch cost of accessing one tuple via hashing
Cb cost of accessing one tuple via binary searching
Boi number of hash buckets in stream oi

For a multiway join over N streams, we denote a plan candidate (i.e., ordering) as

55

o0 : o1...oN−1, with o0 indicating the start-up stream and o1...oN−1 representing the join

sequence (discussed in Section 3.4).

For the startup join operation o0 ./ o1, it is newly-incoming tuples of o0 that are

used to probe tuples in stream o1. For any other join operator o0...oi−1 ./ oi (1 < i < N),

it is the intermediate results ts of joining stream o0 to oi−1 (1 < i < N) that trigger the

task of probing tuples in stream oi. With the symbols shown in Table 4.2, the cost model

can be represented as:

Cost(o0 : o1...oN−1) = C×Num(o1)×Inc(o0)+
N−1∑
i=2

C×Num(oi)×Num(o0...oi−1)

(4.3)

The above equation captures the cost of all join operations in a plan. Amongst the used

factors, Num(o0...oi) (0 < i < N − 1), representing the number of the intermediate

result, is defined as follows:

Num(o0...oi) = S(o0...oi−1, oi)× Card(o0...oi−1)× Card(oi) (4.4)

Furthermore, as discussed in Section 3.3, a hash index or binary-search tree index would

be built on the attribute of the stream that are probed. Therefore, the C × Num(oi)

(0 < i < N) portion of every join operation in Equation 4.3 can be replaced:

C ×Num(oi) =

{
Ch × Card(oi)/Boi , via hashing (4.5)

Cb × log2Card(oi), via binary-searching (4.6)

The cost model is used in this way: The factors Card, Inc are collected statistics,

and S are derived according to the discussion in Section 4.3.1. When re-optimization

is needed, the optimizer re-evaluates plan costs by substituting the most recent values

for these factors. The results generated actually are plan costs during the previous time

interval, but we use these costs as indicators to distinguish best plans, assuming that a

plan that runs quickly in the past would show good performance for a while.

56

The cost model mainly depends on cardinalities due to the following two rea-

sons: On the one hand, cardinalities of source streams and intermediate results naturally

themselves are very important factors in plans’ execution costs. On the other hand, main-

taining statistics in data stream management is very expensive. Among all kinds of data

characteristics, cardinality is the easiest to be obtained by counting numbers of tuples

that stream by, and therefore, it is the most cost-effective.

57

Chapter 5

Query Re-Optimization Framework

In this chapter, we propose a new framework to perform run-time re-optimization for

multiway join queries over streaming data. First, we give an overview of the re-optimization

process in Section 5.1. Next, we describe the main algorithms from Section 5.2 to Section

5.4. Section 5.2 illustrates the basis algorithm that identifies re-optimization conditions,

and the way it is implemented and used at the time of plan generation and re-optimization

checking. We discuss the limitations of the basis algorithm and propose the correspond-

ing improvements in Section 5.3 and 5.4. Finally, at the end of Section 5.4, we give a

complete example to illustrate how re-optimization is performed.

5.1 Overview of Re-Optimization Process

Our scheme’s main idea is to dynamically detect and correct sub-optimal plans by com-

paring cardinality estimation used by the optimizer with actual values measured on the

fly. Figure 5.1 shows an overview of our scheme. For clarity, we distinguish between the

initialization run (i.e., the process that the optimizer performs before query execution)

and the re-optimization run.

58

Arrival	 Rates	

Validity	 Ranges	

Local	 Op6mality	

Validity	
Range	

Computa6on	

Plan	
Genera6on	

Validity	
Range	
Shi>	

yes	
All	

	 Sub-‐op6mal?	

op6mal?	

yes	 	 Bypass?	

no	

no	

no	 yes	

Re-‐op&miza&on	 	 	 	 	 	 	 	
Checking	 	

Component	

Plan	 	
Genera&ng	
Component	

Op&mizer	

Query/Current	 Plans/Cardinali6es	 New	 Plan/Validity	 Ranges	 Old	 Plan/Validity	 Ranges	

Validity	
Range	

Computa6on	

Plan	
Genera6on	

Query/Cardinali6es	

Op6mal	 Plans/Validity	 Ranges	

  Ini6aliza6on	  	 	 	 	 	 	 Re-‐op6miza6on	

	 ①
	 ②

	 ③

	 ④

	 ⑤

	 ⑥

	 ⑦

Query Execution Component

Regenera'on	 	 	 	 	 	
Path	

Revision	 	 	 	
	 	 Path	

Figure 5.1: Re-Optimizer’s overview

Given a query, the initialization run is performed only once. The optimizer gen-

erates the best plan along with validity ranges computed for its cardinalities (1© in the

Figure 5.1). The validity range, a borrowed notation from the classic re-optimization

work (Markl et al., 2004), essentially indicates a value interval of a cardinality, and it is

an important data structure used to invoke re-optimization. We will talk about the issues

of validity ranges in detail in Section 5.2.

During query execution, the re-optimization may run any number of times as

long as query sub-optimality is found. The re-optimizer includes two components: One

is a re-optimization checking component. This component has three phases, which are

indicated as rounded rectangles with arrival rates, validity ranges and local optimality,

and it checks whether re-optimization process is needed. The other one is a two-path

59

plan generating component. For sub-optimal plans, the component generates new plans

and validity ranges. For optimal ones, the existing validity ranges are revised. According

to their tasks, we call them regeneration and revison path, respectively (see Figure 5.1).

We note that the initialization process discussed in the previous paragraph is essentially

the regeneration path in the plan-generating component.

Re-optimization checking for join queries is performed periodically. For a join

query, during each period, its currently-running plans and newly-detected cardinalities

are fed into the three-phase checking component (2© in Figure 5.1). There are three

phases. In the first phase, the checking component examines arrival rates of source

streams. The less the arrival rates vary from the previous information, the more possible

the remaining checking processes are completely bypassed (3© in Figure 5.1). In the

case that further checking is bypassed, the plan-generating component revises validity

ranges and outputs the old plans to the execution engine (4© in Figure 5.1). Otherwise,

the checking component continues to do the second phase by individually comparing

the current value of a cardinality with its corresponding validity range. A plan can be

associated with many validity ranges and it is determined to be sub-optimal as long as a

cardinality value falls beyond its corresponding range. At the completion of the second

phase, if all plans are found to be sub-optimal, they are directly delivered to the plan-

generating component to generate better plans and compute new validity ranges as well

(5© and 6© in Figure 5.1). Also, it is possible that some plans are detected to become

sub-optimal while some others are not. The third phase checks whether sub-optimality

exists in those plans that are currently regarded as optimal. At the completion of the third

phase, plans that remain optimal will still be used (4© in Figure 5.1) while sub-optimal

ones will be replaced with better plans (6© in Figure 5.1).

The method associated with validity ranges is the basis of both re-optimization

60

checking and plan generating component, and therefore, we will first introduce this

method in the following section.

5.2 Identifying Re-Optimization Conditions

Optimizers are well designed to produce the optimal plans by using cost models. Al-

though cost models differ from system to system, they all heavily rely on cardinality

estimation. Generally, an optimal plan becomes sub-optimal when actual cardinality val-

ues significantly differ from the estimation. In these scenarios, a straightforward way is

to call the optimizer and generate a new plan. However, this kind of optimize-always

strategy has a clear disadvantage, that is, some re-optimization runs are wasteful because

they may generate the same plan as the one used before re-optimization. To minimize

the risk of redundant re-optimizations, some traditional DBMSs propose an alternative

way: When choosing a plan as the execution plan, the optimizer also identifies condi-

tions where the plan keeps optimality. During execution, re-optimization is invoked only

when the pre-computed conditions are violated.

As discussed in Chapter 1, data-stream management also has the re-optimization

issue. Due to the time-varying nature of streaming data, cardinalities detected at run-

time are most likely different from the optimizer’s previous information, meaning that

running plans probably become sub-optimal. In the I/O-free environment, the cost of

frequent re-optimizations is prohibitively high, and therefore, it is only acceptable to

perform re-optimization under some conditions.

61

5.2.1 Computing Validity Ranges

We follow the main idea of computing validity ranges as optimality conditions, which is

proposed by an existing and representative work Progressive Query Optimization (POP)

(Markl et al., 2004). The motivation is that, cost models heavily rely on cardinalities,

and moreover, some cardinalities can be easily monitored when executing the currently-

running plan. Therefore, regions of optimality can be characterized by value-based car-

dinalities. POP pre-computes validity ranges for those cardinalities, one for each car-

dinality. Those validity ranges indicate the conditions where the currently-chosen plan

remains optimal. At run-time, when actual cardinality values fall inside their correspond-

ing ranges, re-optimization can be avoided without hurting the quality of the optimizer’s

decisions.

A validity range is essentially a value interval limited by an upper and lower

bound. Most importantly, among the values included, a validity range must contain

the current value of the corresponding cardinality within it. Although we still use the

concept of validity range, we modified the concrete techniques. In the original work,

validity ranges are merely defined by upper bounds. However, considering that in data-

stream environment, cardinality values are time-varying, we explicitly compute the lower

bounds. Furthermore, there are two important considerations for computing validity

ranges: Firstly, our cost model, as given in Section 4.3, is monotonic with respect to all

cardinalities. Secondly, a binary join associates with two inputs and hence two cardinal-

ities, that is, when considering a particular join operation, we actually compute validity

ranges for the two cardinalities.

Technically, the computation for a validity range means determining the upper and

lower bounds. Based on considerations mentioned above, we illustrate the corresponding

methods in the following two subsections.

62

 Cardinality w.r.t opopt

Plan Cost

v
(current value)

C
os

t(O
op

t)
C

os
t(O

ca
n)

 Ocan’s cost is used
 as a touchstone

Oopt’s cost using
the current value

Oopt’s cost increase is
limited in this range

U

Values are included in the validity range

0

Figure 5.2: Intuition of computing an upper bound

5.2.2 Determining Upper Bounds

The intuition of computing the upper bound is given as follows: For a given start-up

stream, consider the top-most join operators opopt and opcan of two corresponding or-

derings Oopt and Ocan, which involve the same source streams and join conditions. Oopt

has a smaller cost under the current cardinalities. According to the monotonicity, for a

particular cardinality associated with opopt, if its value increases, then the cost of Oopt

would also increase, which is shown as the curve in Figure 5.2. Therefore, using Ocan’s

cost as a touchstone, we can bound values within the validity range until the cost of Oopt

is larger than Ocan’s for the first time. And this value is determined as the upper bound.

We illustrate this intuition in the following example.

Example 5.2.1 Consider two orderings A:B→C→D and A:B→D→C. They can be com-

pared because both of their top-most join operators generate results joining streams A,

B, C and D. Assume the cost of A:B→C→D is smaller. Its top-most join operation is

ABC ./ D and hence the associated cardinalities are ABC and D. We will separately find

upper bounds for cardinalities ABC and D, such that under them the cost of A:B→C→D

reaches that of A:B→D→C.

63

Algorithm 3: Computing the Upper Bound of a Validity Range
input : Currently optimal ordering Oopt,

a cardinality Card associated with the top-most operator in Oopt,
the current value Vopt of Card,
the current upper bound Ucur of Card’s validity range,
an ordering candidate Ocan and its cost Ccan

output: Upper bound of Card’s validity range

1 Let newDif and curDif indicate the differences between the costs of Oopt and
Ocan;

2 Let low indicate a value such that under it Oopt’s cost is still smaller than Ccan;
3 Let high indicate a value such that under it Oopt’s cost is larger than Ccan;
4 Let gradient indicate the factor when exploring a larger value;
5 low = Vopt;
6 high = Vopt × FACTOR; // FACTOR is more than 1
7 curDif = Ccan - Copt;
8 newDif = Ccan - Cost (Oopt, newV alue);

9 while newDiff > 0 do
10 gradient = (curDif - newDif) / (newV alue - curV alue);
11 low = high;
12 curDif = newDif ;
13 high += newDif / gradient + 1;
14 newDif = Ccan - Cost(Oopt, newV alue);

15 return BinarySearch(low, high, Ccan);

We show the detailed techniques of the above description in Algorithm 3. Because

our cost model is not continuous, we treat the computation as a numerical solving prob-

lem. Based on the current value (line 5), we iteratively explore a scope, within which

the upper bound would reside (from line 9 to line 14). When computing, we use the

gradient (line 10) that is derived from the current and previous loop to save exploration

times. After the while loop, the scope is defined by variables low and high. The variable

low indicates a specific value and under it, the Oopt’s cost is smaller. On the contrary,

high indicates a value such that by using it, Oopt’s cost is larger than Ocan’s. Finally,

a binary search is applied. The search returns the smallest value within the scope that

64

Cardinality
 in Osub-optimal

Plan Cost

v
(current value)

C
os

t(O
op

t)
C

os
t(O

su
b-

op
tim

al
)

 Oopt’s cost is used
as a touchstone

Osub-optmal’s cost using
the current value

L

Values are included in the validity range

0

Osub-optimal’s cost
decrease is
limited in this
range

Figure 5.3: Intuition of computing a lower bound

causes an inversion between costs of Oopt and Ocan (line 15). This returned value is the

upper bound.

5.2.3 Determining Lower Bounds

The heuristic of computing upper bounds uses larger-cost plans to limit the maximal

values that cardinalities can reach. Similarly, when we identify lower bounds, those

larger-cost plans also can be utilized to obtain the minimal cardinality values. However,

the details of deciding lower bounds are slightly different.

Given a query, if we have a best plan to execute it, then its cost can be used as the

base line of how much a sub-optimal plan costs. Therefore, as illustrated in Figure 5.3,

the cardinality values should be restricted such that the best plan remains optimal, even

if the costs of sub-optimal plans are estimated under those values. Consider the top-most

join operator of a sub-optimal plan shown in Figure 5.4. We know that the smallest cost

of joining streams s1, s2, s3 and s4 is Costopt, which is the optimal plan’s cost. We

gradually decrease cardinality s4’s values and identify a value, when using it, the current

sub-optimal plan has a smaller cost than Costopt. This value is determined as the lower

65

⋈

⋈

⋈

S1
S2 S3 S4

Cost(S1⋈S2⋈S3⋈S4) = Costopt

Cost(S1⋈S2⋈S3)

Cost(S1⋈S2)

Plan S1:S2->S3->S4

Figure 5.4: Base line distribution when computing a lower bound

bound of cardinality s4 in the optimal plan. Furthermore, this strategy can be applied

on the join sequence all the way forward, as indicated with dashed lines in Figure 5.4.

For instance, the cost of joining s1, s2, s3 and s4 can be decomposed into two parts: the

cost of s1 ./ s2 ./ s3 and the cost of s1s2s3 ./ s4. Since the latter can be computed, we

consequently know the base-line cost of the sub-plan s1 ./ s2 ./ s3. Therefore, the lower

bound of cardinality s3 would be calculated. The computation for s2 is similar.

We use a recursive program to perform the above progress over a sub-optimal

plan. In each loop, The core computation is performed via binary search as line 15 in

Algorithm 3, with parameters being 0, current value and the base-line cost. We omit the

detailed algorithm for simplicity and implementation issues will be discussed in Section

5.2.4.

This method is able to determine the lower bounds of all source streams. However,

the cardinalities of intermediate results remain. Considering the monotonicity property

of our cost model, we set all lower bounds of intermediate results to be 0, because the op-

timality of the chosen plan is enhanced, if intermediate results’ actual values are smaller

66

than the optimizer’s estimation.

5.2.4 Implementation in the Plan Generating Component

Having introduced the detailed algorithm, now we discuss how validity range compu-

tation is incorporated in our (re-)optimization framework. As discussed in Section 5.1,

validity ranges are involved with both regeneration and revision paths of the plan gener-

ating component.

5.2.4.1 Regeneration Path

The main computation discussed in the previous two subsections is implemented in the

regeneration path that generates an optimal plan as well as its corresponding validity

ranges. As mentioned in Section 5.1, the regeneration path performs at both initialization

and re-optimization time. It is natural to merge the computation into the plan enumer-

ation and pruning phases of dynamic programming (discussed in Section 4.1): Suppose

for a given query, there is an ordering Oopt which is a currently-optimal (sub-)plan for

joining a set of streams. During plan enumeration (line 8 in Algorithm 1), the optimizer

compares a candidate Ocan with Oopt. If Ocan’s cost is larger, before Ocan is pruned (line

10 in Algorithm 1), its cost is used to refine the upper and lower bounds of Oopt’s va-

lidity ranges. Otherwise, the optimal ordering should be replaced with Ocan and validity

ranges of the new optimal orderings’ cardinalities would be computed. As such, at the

completion of dynamic programming, an optimal plan is produced and validity ranges of

the associated cardinalities are also obtained.

It is worth pointing out that, even though the validity range computation and the

plan generation can be combined together as the above description, we show them sepa-

rately in Figure 5.1. This is because the combination causes a problem: If the currently-

67

optimal plan Oopt is replaced by a newly-enumerated plan Ocan that has a smaller cost,

the previous computation for Oopt is wasteful. To avoid this, we apply an efficient imple-

mentation that additionally records the smallest and second-smallest costs for executing

every set of join conditions. According to those information, we only compute validity

ranges when the optimal plan is decided.

5.2.4.2 Revision Path

Validity ranges are also involved with the revision path of the plan generating compo-

nent. This path is only invoked at run-time, when a currently-running plan is found to

be optimal after re-optimization checking. In this case, the associated cardinalities are

unchanged and hence there is no need to completely re-compute their validity ranges.

A straightforward thought is to leave the current validity ranges untouched. Theoreti-

cally, there is nothing wrong. However, because these validity ranges are not computed

for newly-detected cardinality values, violations most likely occur at the next check-

ing. Therefore, a simple heuristic we use as a compromise is to shift the validity ranges

according to the differences between their current and previous cardinality values. Con-

sider a validity range for data source s, with lb and ub indicating the lower and upper

bound, respectively. The plan keeps optimal when the cardinality value is Card(s, t-1)

and Card(s, t), respectively. According to our heuristic, the upper bound of the validity

range is moved to ub+Card(s,t)-Card(s,t-1), and similarly, the lower bound is changed to

lb+Card(s,t)-Card(s,t-1). This compensation heuristic is not proposed from the accuracy

viewpoint, instead, it aims to delay the real re-optimization to the place where it is indeed

required.

68

Table 5.1: Modification on Algorithm 1 for a stream with length-based window

Conditions Actions
ws ≤ low ws is returned as the upper bound
low < ws < high return BinarySearch(low, ws, Ccan)
high ≤ ws return BinarySearch(low, hig, Ccan)

5.2.4.3 Considerations for Streams with Length-based Windows

Previous methods are proposed for general cases, regardless of whether validity ranges

are processed for source streams or intermediate results, or whether there are window

constraints. We now show considerations and implementation, when we deal with a

cardinality of a source stream, which is restricted by a length-based window.

The size of the length-based window, denoted as ws, is naturally an upper bound.

Recall that when computing the stream’s upper bound (Algorithm 1), we explore two

values, that is, low and high, to limit the range where the upper bound would be found

(from line 9 to line 14). In this case, before feeding them into the binary search (line 15),

we perform additional checking of comparing ws with values of low and high. Corre-

sponding actions are shown in Table 5.1.

Moreover, as discussed in Section 4.2.1, an important property of the length-

based window is that the cardinality keeps unchanged in a steady state and the value

is essentially the window size. Therefore, when the stream’s cardinality reaches the

window size, its upper bound’s computation (Section 5.2.2) and shift (Section 5.2.4.2)

can be avoided as long as the current plan remains optimal.

5.2.5 Checking Validity Ranges

At run-time, re-optimization checking is performed periodically. Cardinality information

gathered during execution is fed into the checking component. Now we illustrate how

69

validity ranges are used to detect sub-optimality.

As shown in Figure 5.1, checking validity ranges is the second phase. For plans

transited into this phase, checking is only performed on those that are not ensured to be

sub-optimal. For each plan, the most recent values of their cardinalities are compared

to the corresponding validity ranges. As long as newly-changed values fall inside their

own validity ranges, the plan is still optimal. Otherwise, re-optimization is needed be-

cause violations indicate that better plans are possible. If all plans associated with the

same query are found to become sub-optimal, then the optimizer immediately generates

better plans and computes new validity ranges. Otherwise, further checking would be

performed by the next phase. An example is shown as below.

Example 5.2.2 Consider again Example 3.4.2 on Page 42. The orderings A:B→C,

B:A→C and C:A→B are selected as optimal plans for the corresponding streams. As-

sume at the beginning streams A, B and C’s cardinalities are 10, 20 and 30, respectively.

Take the plan A:B→C for stream A as an example. The associated cardinalities are B, C

and AB, and their validity ranges have been computed. Note that, A’s cardinality is also

involved in the plan, however as the start-up stream, A’s tuples are always used to probe

other streams and hence it is meaningless to compute its validity range. Furthermore,

assume the validity range for B is [0, 30]. After a period of execution, if B’s cardinality

value is detected to be larger than 30, then the re-optimization process will be invoked to

generate a better ordering for stream A and validity ranges are computed from scratch.

Otherwise, if no violation occurs, validity ranges of B, C and AB are shifted. For exam-

ple, if B’s value is 25, then the validity range is shifted to [5, 35].

In this section, sub-optimality is detected by comparing the most recent cardinal-

ity values with their corresponding validity ranges. However, there are two limitations:

70

On the one hand, the checking mechanism reduces complexity and guarantees that re-

optimization checking is completely independent with each other, but correspondingly,

it loses the big picture on how relative those value changes are. On the other hand,

considering that optimization cost is considerately high in the I/O-free environment, we

avoid exploring all possible combinations of cardinality values. Instead, when comput-

ing upper and lower bounds for a particular cardinality, we assume values of all the other

cardinalities stay unchanged. Therefore, re-optimization chances might be missed.

To alleviate the problems, we propose two efficient algorithms in the following

two sections.

5.3 Considering Arrival Rates

As shown in Example 1.3.1, the problem of redundant re-optimization might occur un-

der the validity range method discussed in the previous section. We note that, after

re-optimization, join plans are supposed to be optimal. Moreover, we assume that, data

properties, such as value distribution, would less likely have a significant change in a

short while. In this case, the less arrival rates vary from the most recent ones, the more

possible re-optimization can be bypassed.

Even though the concept of arrival rates is widely used in data-stream manage-

ment, we explicitly give the definitions of arrival rate and arrival rate vector under

re-optimization considerations in the following subsection.

5.3.1 Definition of Arrival Rate

Definition 5.3.1 Consider that In our optimization framework, cardinality information

was updated periodically and the time interval is fixed (discussed in Section 4.2). For

71

a source stream, its arrival rate is the number of newly arrived tuples since the last re-

optimization checking.

Definition 5.3.2 For a query joining N streams s1 to sN , its arrival rate vector, denoted

as V (t)
s1,...,sN , is a list of all source streams’ arrival rates at time t. Given an ordering of

source streams, V (t)
s1,...,sN can also be represented as V (t), for simplicity.

The following is an example to illustrate the two definitions.

Example 5.3.1 Suppose there is a join query on streams A, B, C and D. The most recent

and present checking are performed at time tlast and tpresent, respectively. Within the

period between tpresent and tlast, the newly arriving tuples are 10, 20, 30 and 40 for A,

B, C and D, respectively. Therefore, the arrival rates for A, B, C and D are 10, 20, 30

and 40, respectively. In this case, the arrival rate vector V (tpresent)
A,B,C,D is (10, 20, 30, 40).

5.3.2 A Probabilistic Model

As we pointed out previously, the less arrival rates vary from the most recent ones, the

more possible currently running plans stay optimal and hence re-optimization can be

bypassed. Given two arrival rate vectors V t1 and V t2 , to quantify their difference, we

define a distance function by using L1 norm:

d(V t1 , V t2) =
1

2
× ‖V̂ t1 − V̂ t2‖1

where V̂ ti = V ti/‖V ti‖1 is the normalized vector of vector V ti . Moreover, since ‖V̂ ti‖1

equals to 1, the component ‖V̂ t1 − V̂ t2‖1 falls into the range [0, 2] (‖V̂ t1 − V̂ t2‖1 ≤

‖V̂ t1 + V̂ t2‖1 = 2). Therefore, we use the factor 1
2

to normalize the value to the range [0,

1].

72

A straightforward idea is to use d(V (tlast), V (tpresent)) to decide whether re-optimization

is redundant and hence can be bypassed. We compute a probability p as follows:

p = α + (1− α)× d(V (tlast), V (tpresent)). (5.1)

Considering that a small cardinality change might be sufficiently significant to

lead to a new plan, we use a lower bound α ∈ [0, 1] in Equation 5.1. The factor α

inditates that the probability of performing re-optimization is at least α and it is a user-

defined constant. We note that, given the value of α, the smaller the probability p is,

the more similar the two most recent arrival rate vectors are, meaning that the less likely

currently running plans become sub-optimal. Therefore, we bypass re-optimization in

the probability of (1− p) at the present checking.

An example below illustrates the main idea.

Example 5.3.2 Consider a join query on streams A, B, C and D. Assume at the most

recent checking, the arrival rate vector V (tlast)
A,B,C,D is (100, 200, 300, 400). At the present

checking, the vector V (tpresent)
A,B,C,D becomes (200, 100, 300, 400). Obviously, the normal-

ized vectors V̂ (tlast)
A,B,C,D and V̂ (tpresent)

A,B,C,D are (0.1, 0.2, 0.3, 0.4) and (0.2, 0.1, 0.3, 0.4), respec-

tively. If the constant α is set to be 1/3, then according to the Equation 5.1, the probability

p is computed to be 1/3+(1−1/3)×(|0.1−0.2|+|0.2−0.1|+|0.3−0.3|+|0.4−0.4|)×1/2

= 0.4. Therefore, we bypass re-optimization in the probability of 0.6.

5.3.3 Checking Arrival Rates

In this subsection, we first depict the implementation of checking arrival rates, and then

we show the actions that the (re-)optimizer takes after the checking.

73

Given a query, we first compute the probability p according to Equation 5.1 at the

checking time. Then, in the probability of (1−p), re-optimization is bypassed. As shown

in Figure 5.1, this method is positioned at the first place of the checking component. For

a query, there are two situations after arrival rates’ difference is assessed. One is that re-

optimization is bypassed. Then, the query is directly conveyed to the process of validity

ranges shift (discussed in Section 5.2.4) in the plan generating component. After that,

execution is resumed. In the other situation where re-optimization is not bypassed, all

plans are fed into the second phase for validity range checking.

5.4 Detecting Local Optimality

As we discussed previously, re-optimization chances might be missed under the validity

range method. We handle this problem in this section.

The commonality between the methods about validity ranges and arrival rates is

that, they are based on cardinality values that are collected from the optimal plan’s exe-

cution routine to decide whether it is still optimal. This causes the problem of local op-

timality, that is, even after re-optimization, the plan that it generates is still sub-optimal.

As demonstrated in Example 1.3.2, local optimal occurs usually because the optimizer

fails to utilize available and useful information.

In Esper, for a multiway join query, the optimizer gives every source stream an

individual ordering. All these plans only uses newly-incoming tuples of its corresponding

start-up stream to trigger join processing. Due to this property, there are chances that

more combinations of source streams can be seen and hence more cardinalities can be

collected. Therefore, we intend to use these cardinalities to detect local optimality.

74

5.4.1 Definition of Comparable Cardinality

For the purpose of exploiting available cardinalities, we first introduce the definitions of

comparable cardinalities and peer plans.

Definition 5.4.1 Consider two intermediate results u and v. The set of source streams

contained in u and v are denoted as S(u) and S(v), respectively. We regard Card(u)

and Card(v) to be comparable if the following requirements are met: 1) The numbers of

elements in S(u) and S(v) are equal; 2) S(u) and S(v) are not equal, and 3) S(u) and

S(v) contain some common source stream s. In this case, Card(u) and Card(v) are

comparable w.r.t s. Note that this property is transitive, that is, if Card(u) and Card(v)

are comparable w.r.t s, and Card(w) and Card(v) are comparable w.r.t s, then Card(u)

and Card(w) are also comparable w.r.t s.

Definition 5.4.2 Recall that for a multiway join query involving N streams, Esper gen-

erates N join plans (i.e., join orderings), one for each source stream. We call these N

plans as peer plans for simplicity in the remaining thesis.

The following is an example to illustrate the above definitions.

Example 5.4.1 Consider the three plans A:B→C, B:A→C and C:A→B shown in Fig-

ure 3.2 on Page 39. They are generated to answer the same query but for different

source streams, they are peer plans under Definition 5.4.2. Moreover, Card(AB) and

Card(AC), that are intermediate results of A and C’s plans respectively, are comparable

w.r.t A, according to Definition 5.4.1.

75

5.4.2 Combating Local Optimality

To minimize the risk of being stuck in local optimality, we focus on cardinalities collected

from the startup join operators of all peer plans of the same query.

Our heuristic is based on the observation that, the fewer intermediate results the

plan must process, the quicker it runs. Furthermore, the output size of the startup join

operator forms the basis of the total number of intermediate results. Therefore, for the

plan assigned for a specific stream, if we can guarantee that its startup join operator

produces the fewest intermediate results by probing the current stream instead of any

other choice, the probability that the plan is locally optimal is very small.

Algorithm 4: Detecting Local Optimality for a Join Ordering
input : A multiway join query Q,

an associated join ordering o0 : o1...oN−1,
the set P of cardinalities collected from all plans of Q

output: Whether the plan o0 : o1...oN−1 is locally optimal

1 Let ir indicate the startup join output of the given plan and initialize it to be o0o1;

2 foreach cardinality p in P do
3 if p and ir are comparable w.r.t o0 then
4 if Card(p) < Card(ir) then
5 return Y ES;

6 return NO;

The corresponding technique is simple as shown in Algorithm 5. To enable the

comparison, we take as input the cardinality information among all peers of the same

query. This means, our heuristic allows intra-query sharing but still maintains inter-query

independency. The advantage is that it minimizes the potential influence on the system

performance, such as, the limitation on parallelism. For each plan’s startup join opera-

tion, we identify comparable cardinalities (line 3) and check whether they produce fewer

intermediate results(line 4). If the condition is satisfied, then local optimality exists.

76

5.4.3 Checking Local Optimality

The method demonstrated in the previous subsection is implemented as the third (last)

phase of the re-optimization checking component. Therefore, only if there are plans that

are suspected to be optimal, Algorithm 5 is applied. After the checking, plans would be

fed into the plan generating component. An example is shown as below.

Example 5.4.2 Consider the query mentioned in Example 3.4.2 on Page 42. The opti-

mizer assigns plans A:B→C, B:A→C and C:A→B for streams A, B and C, respectively.

Suppose stream A’s plan is not ensured to be sub-optimal. Its intermediate result is only

AB in this case. The set of cardinalities collected from all plans is {A, B, C, AB, AC,

ABC}. According to the Algorithm 3, cardinalities of AB and AC are compared. Suppose

the newly-gathered cardinality values of AB and AC are 5 and 10, it is better for A to join

with B first and hence we regard the plan is still optimal.

Putting-it-all-together: Finally, we show a comprehensive example illustrating

how the (re-)optimizer works.

Example 5.4.3 Consider Figure 5.5. Three plans A:B→C, B:A→C and C:A→B, are

running to execute the same query. At the time of re-optimization checking, the re-

optimizer takes as inputs those plans and newly-gathered cardinality information. Firstly,

plans are checked by the phase about arrival rates (Section 5.3). If re-optimization check-

ings are decided to be bypassed, no plans would be changed, but still validity ranges

would be shifted. Then, the execution is resumed with current plans. Otherwise, if there

is at least one plan is detected to be sub-optimal, all plans are fed into the second phase

about validity ranges (Section 5.2). Checking is performed as shown in Example 5.2.2.

After that, if all plans are found to become sub-optimal, then further checking is by-

passed and the re-optimizer generates better plans along with new validity ranges. Then,

77

!""#$%&'(%)*+'

,%&#-#).'(%/0*+'

123%&'4567%&#).'

,%&#-#).'
(%/0*'

82759)%62/'

:&%/'
;*/*"%62/'

,%&#-#).'
(%/0*'
<=#>'

.*+'
!&&'

'<9?@2567%&A'

2567%&A'

.*+' 'B.5%++A'

/2'

/2'

/2' .*+'

!"#$%&'()*&$+,,,,,,,,
-."/0(+1,,

-$'%$+"+2,

34*+,,
5"+"6*&+1,
-$'%$+"+2,

7%&'()"6,

C9*".D89""*/)':&%/+D8%"-#/%*+' E*F':&%/D,%&#-#).'(%/0*+' 4&-':&%/D,%&#-#).'(%/0*+'

,%&#-#).'
(%/0*'

82759)%62/'

:&%/'
;*/*"%62/'

C9*".D8%"-#/%*+'

4567%&':&%/+D,%&#-#).'(%/0*+'

!  G/#6%&#H%62/' ! ''''''(*@2567#H%62/'

'①
'②

'③

'④

'⑤

'⑥

'⑦

Query Execution Component

!"#"$"%&'($))))))
*&+,)

!"-./.($))))
))*&+,)

A B

C
⋈	

⋈	

Plan A:B->C

C A

B
⋈	

⋈	

 Plan C:A->B

B A

C
⋈	

⋈	

 Plan B:A->C

Execution

Plan	

	 ②

Figure 5.5: Re-Optimization progress

78

the execution is resumed with new plans. If at the completion of the second phase, some

plans are still not ensured to be sub-optimal, then they are checked, as shown in Example

5.4.2, by the third (last) phase of local optimality (Section 5.4). Different actions would

be taken by the plan generating component, according to the final decision on whether

the plan remains optimal.

79

Chapter 6

Performance Study

We implemented our scheme on Esper’s source code (http://esper.codehaus.org). Major

modifications were implementing techniques discussed in Chapters ?? and 5. Morevoer,

as Esper only counts the number of query output, we extended it to collect cardinality

values of source streams and intermediate results.

Our goal is to validate our re-optimization framework, compare performance of

various schemes on multiway joins and explore complexity associated with query pro-

cessing in streaming environments. To do so, the modified Esper provided three re-

optimization modes. The first was an optimize-once solution, that is, all queries were

executed via plans produced by dynamic programming and no run-time re-optimization

process was possible. The second one was the adapted mechanism that used validity

ranges to detect sub-optimality. The third mode was the framework that consisted of a

three-phase checking and two-path plan generating component. For simplicity, we de-

note them as BASE, POP ′ and CARD respectively.

80

6.1 Experimental Setup

In our experiments, source streams were generated synthetically. Each stream instance

is essentially a file containing tuples in a way they would appear if exported from a rela-

tional database. We simply viewed the files as prefixes of (potentially infinite) streams.

All data files used in our experiments contained 1 million tuples.

Table 6.1: Attribute description of stream tuples

Attribute Length Description
Identification number (ID) 8bytes Primary key
Timestamp (TS) 8bytes Necessary property of a stream tuple
Common (COM) 8bytes Common attribute for queries to be applied on
Other (OTHER) 76bytes Complementary information

The schemas of streams in our experiments were the same, as shown in Table 6.1.

Every tuple had four attributes, that is, ID, TS, COM and OTHER. The ID attribute that

uniquely defined a tuple was represented by integers. Every value of the TS attribute

was initially assigned the system time when the tuple was generated. Then, we added

a random small delay of at most 1 second to simulate network traffic. The OTHER

attribute was filled with character strings such that every tuple had a length of 100 bytes.

Most importantly, as in (Golab and Özsu, 2003), COM, represented by integers, was the

common attribute that joins were performed on.

We generated three data sets, based on different distributions of COM. In the

first set, which is indicated as Uni-Set, all source streams were generated with uniform

distribution, but different streams had different value ranges. To ensure that result sets

were not empty, we followed the principle of inclusion. For a k-stream join, we firstly

generated a stream with a value range of (0,500000] on its COM attribute. The value

ranges of the remaining streams’ COM attributes were randomly chosen from (0,500],

81

(0,1000], (0,2000], (0,10000], (0,50000] and (0,100000]. In the second set, indicated as

pUni-Set, we also used uniform distribution, but we kept all streams’ COM attributes in

the same value range of (0,500000]. Moreover, for every single stream, every 100 thou-

sand tuples, its value range was changed. Everytime, a new range was chosen randomly

from (0,1000], (0,2000], (0,10000], (0,50000] and (0,500000]. Finally on the third data

set Zipf-Set, Zipf distribution was used. We generated tuples whose value was i out of

emphN numbers with probability according to the following equation:

p(i, N) =
1
is

N∑
i=1

1
is

Options for skew factor s and value range (0,N] in the above equation are given in Table

6.2. In the cases that skew factor was 0.2 or 0.4, all streams were generated with Zipf

distribution. However, when skew factor was 0.6, we only let half of joined streams

follow Zipf distribution, and their value ranges were chosen randomly from (0,1000000]

and (0,1500000]. The other streams were generated uniformly, with value ranges chosen

randomly from (0,10000], (0,20000] and (0,50000]. When skew factor was 0.8, streams

were generated in a similar way.

Table 6.2: Zipf Distribution for Data Generation

Skew
Factor

streams
of Zipf

streams
of Uniform Value Ranges used in Zipf Value ranges used in Uniform

0.2 6 0
(0,10000], (0,20000],

(0,100000] and (0,200000] -

0.4 6 0
(0,100000], (0,200000],

(0,300000] and (0,1000000] -

0.6 3 3 (0,1000000] and (0,1500000]
(0,10000], (0,20000]

and (0,50000]

0.8 2 4 (0,10000000] and (0,20000000]
(0,5000], (0,10000]

and (0,50000]

Table 6.3 lists the experimental parameters we used. For queries, we consider

star-joins on the COM attributes. To present it more concretely, assuming S1 to S6 are

82

Table 6.3: Parameters used in experiments

Parameter Explanation
Join attribute (ATT) COM
Re-optimization checking frequency (Period Length) 1, 2 and 3 time unit
Number of streams (#) 3, 4, 5 and 6
Window Size (length-based) 5k, 10k and 15k
Value Distribution of COM Uni-Set, pUni-Set and Zipf-Set
α (used in the 1-phase checking component) 1/3

the source streams, where clauses of our experimental queries was of the form:

where S1.COM = S2.COM and S1.COM = S3.COM and

S1.COM = S4.COM and S1.COM = S5.COM and S1.COM = S6.COM

In our schemes, we periodically checked if re-optimization was needed. We called this

period length and it was defined by the number of time unit, which was the time interval

of accessing and processing 1000 tuples. Moreover, we tested the system performance

under different number of streams, length-based (also called tuple-based in some litera-

ture) window constraints.

All experiments were conducted in the following fashion: For a query involving

k (3 ≤ k ≤ 6) streams, we generated k streams by satisfying the constraints of cor-

responding experimental parameters. Moreover, to simulate general cases in streaming

environments, we did not keep constant arrival rates for source streams. For each stream,

we randomized an arrival rate periodically and then used it to control the subsequent

few input reads. Also, we did not keep constant orderings of source streams from which

tuples were fed into the system. After collecting enough tuples from all streams, we

scrambled the tuples before feeding them into the system, in order to simulate the sce-

nario that every arriving tuple came from a random source stream. We run the query and

measured the time taken to complete the execution. Moreover, we measured the time

83

taken on re-optimization checking and real re-optimization, when POP ′ and CARD

were used. For each experiment, we repeated the generation and execution procedure

10 times and reported the average time. We quantified the performance improvement,

according to the following formula:

TBASE − Tre−opt
TBASE

× 100%

where TBASE indicates the average time taken to complete the query under the mode of

BASE, and Tre−opt indicates the average time when re-optimization (POP ′ or CARD)

was used.

All experiments were conducted on a Unix-based operating system with a 2.4GHz

Intel Core 2 Duo Processor and 4 GB main memory. All algorithms are implemented in

Java.

6.2 Overall Performance

Our first set of experiments study the overall performance of the three re-optimization

modes (BASE, POP ′ and CARD) on the three data sets. We set the window size as

10K for each stream and the parameter α used in our first phase checking component as

1
3
. We varied the number of joining streams (#) and period length (PL).

6.2.1 Performance on Uni-Set

We began by executing queries (shown in Section 6.1) over data of the Uni-Set (discussed

in Section 6.1) and compared the average execution time taken by BASE, POP ′ and

CARD.

Detailed runtime breakdown are presented in Figures 6.1 to 6.4. Every bar rep-

resents the average execution time spent to complete the k-stream (3 ≤ k ≤ 6) join,

84

where dashed part represents the reoptimization overhead and solid part represents the

time taken to process tuples.

33

36

39

42

45

48

BASE

POP‘(P
L=1

)

CARD(P
L=1

)

POP’(P
L=2

)

CARD(P
L=2

)

POP‘(P
L=3

)

CARD(P
L=3

)

Av
er

ag
e

ex
ec

ut
io

n
 ti

m
e

 (s
)

Checking Re-optimizing Processing

Figure 6.1: Runtime breakdown for 3-stream joins on Uni-Set

85

90

95

100

105

110

115

BASE

POP’(P
L=1

)

CARD(P
L=1

)

POP‘(P
L=2

)

CARD(P
L=2

)

POP’(P
L=3

)

CARD(P
L=3

)

Av
er

ag
e

 e
xe

cu
tio

n
 ti

m
e

 (s
)

Checking Re-optimizing Processing

Figure 6.2: Runtime breakdown for 4-stream joins on Uni-Set

We see from Figures 6.1 to 6.4 that POP ′ and CARD significantly outperformed

BASE, and POP ′ and CARD were robust, when the period length varied from 1 to 3.

Moreover, the re-optimization costs increased as the number of streams became larger,

because more possible plans needed to be explored. However, over the Uni-Set data,

since the savings in execution time (solid bars) dominated, the re-optimization overhead

(dashed bars) became very insignificant.

Table 6.4 summarized the performance improvement with respect to tuple pro-

cessing and total execution time, when POP ′ and CARD were compared to BASE

85

120

130

140

150

160

170

180

190

BASE

POP'(P
L=1

)

CARD(P
L=1

)

POP'(P
L=2

)

CARD(P
L=2

)

POP'(P
L=3

)

CARD(P
L=3

)

Av
er

ag
e

ex
ec

ut
io

n
 ti

m
e

 (s
)

Checking Re-optimizing Processing

Figure 6.3: Runtime breakdown for 5-stream joins on Uni-Set

180

190

200

210

220

230

240

250

BASE

POP'(P
L=1

)

CARD(P
L=1

)

POP'(P
L=2

)

CARD(P
L=2

)

POP'(P
L=3

)

CARD(P
L=3

)

Av
er

ag
e

ex
ec

ut
io

n
tim

e
 (s

)

Checking Re-optimizing Processing

Figure 6.4: Runtime breakdown for 6-stream joins on Uni-Set

Table 6.4: Performance improvement (%) between three re-optimization modes over
Uni-Set

PL=1 PL=2 PL=3
POP’ CARD POP’ CARD POP’ CARD

tuple total tuple total tuple total total total tuple total tuple total
3 16.0 15.8 16.5 16.2 15.0 14.9 15.5 15.4 15.7 15.6 16.2 16.0
4 14.2 13.5 12.8 12.2 11.9 11.5 10.4 10.0 12.3 11.9 10.0 9.7
5 21.0 19.3 21.6 20.7 21.5 20.5 19.3 18.7 22.2 21.4 20.0 19.6
6 21.4 19.4 19.1 17.4 19.1 17.8 19.1 18.0 18.9 17.6 19.0 18.1

86

respectively. The notations tuple and total indicate the performance gain in terms of

tuple processing time and total execution time, respectively. We see that optimization

provided significant performance improvement by up to 21% over Uni-Set data. This

reason is given as follows. The query plans that BASE initially chose were more likely

bad orderings. Furthermore, as BASE was unable to do re-optimization, the bad plans

needed much longer time to complete the queries.

6.2.2 Performance on pUni-Set

It is worth pointing out that, Esper (i.e., BASE) is very efficient for streams with similar

properties. The first reason is that the multiple-plan-per-query strategy (discussed in

Section 3.3) decreases the chance of choosing costly plans as well as limits the effect

of costly plans. For example, if the plan assigned for stream S is inefficient, only the

processing for S’s newly arriving tuples would be influenced. Besides, since the plans

assigned for different streams are independent, there are chances that other streams’ plans

are efficient. On the other hand, for equi-joins, Esper hard coded the hash join method

(as discussed in Section 3.3), which is robust and efficient for processing data with non-

skewed distribution.

We verified the observation experimentally as follows. We purposely generated

streams such that the best and worst join plans could be identified beforehand. Therefore,

we hard coded the best and worst join plans in the optimizer and tested their execution

time, respectively. The experimental results showed no significant difference, indicating

that (re-)optimization cannot provide much performance gain in the case that underlying

streams share similar properties.

Therefore, it is expected that performance gain over data of the pUni-Set (dis-

cussed in Section 6.1) cannot be as much as it was over Uni-Set.

87

Detailed runtime breakdown are presented in Figures 6.5 to 6.8. Every bar repre-

sents the average execution time spent to complete the k-stream (3 ≤ k ≤ 6) join, where

dashed parts represent the time taken for the purpose of re-optimization and solid part

represents the time taken to process tuples. These figures show that performance was

improved when re-optimization was used.

45

46

47

48

49

50

51

52

53

BASE

POP'(P
L=1

)

CARD(P
L=1

)

POP'(P
L=2

)

CARD(P
L=2

)

POP'(P
L=3

)

CARD(P
L=3

)

Av
er

ag
e

 e
xe

cu
tio

n
 ti

m
e

 (s
)

Checking Re-optimizing Processing

Figure 6.5: Runtime breakdown for 3-stream joins on pUni-Set

310

315

320

325

330

335

340

BASE

POP'(P
L=1

)

CARD(P
L=1

)

POP'(P
L=2

)

CARD(P
L=2

)

POP'(P
L=3

)

CARD(P
L=3

)

Av
er

ag
e

 e
xe

cu
tio

n
 ti

m
e

 (s
)

Checking Re-optimizing Processing

Figure 6.6: Runtime breakdown for 4-stream joins on pUni-Set

Table 6.5 summarized the performance improvement, when POP ′ and CARD

were compared to BASE respectively, for pUni-Set data. The notations tuple and to-

tal indicate the performance gain in terms of tuple processing time and total execution

88

330

340

350

360

370

380

390

BASE

POP'(P
L=1

)

CARD(P
L=1

)

POP'(P
L=2

)

CARD(P
L=2

)

POP'(P
L=3

)

CARD(P
L=3

)

Av
er

ag
e

 e
xe

cu
tio

n
 ti

m
e

 (s
)

Checking Re-optimizing Processing

Figure 6.7: Runtime breakdown for 5-stream joins on pUni-Set

350

370

390

410

430

450

BASE

POP'(P
L=1

)

CARD(P
L=1

)

POP'(P
L=2

)

CARD(P
L=2

)

POP'(P
L=3

)

CARD(P
L=3

)

Av
er

ag
e

 e
xe

cu
tio

n
 ti

m
e

 (s
)

Checking Re-optimizing Processing

Figure 6.8: Runtime breakdown for 6-stream joins on pUni-Set

89

time, respectively. As we discussed previously, the performance gain was not as much

as that of pUni-Set, compared to Table 6.4. Moreover, we note that, re-optimization

benefit was gradually enhanced when the number of streams increased. This is because,

the more number of streams are joined, the more possible plans can be chosen by the

optimizer, and therefore the chances that BASE would choose a good plan initially be-

comes smaller.. Moreover, over the pUni-Set data, CARD improved POP ′ by about

3%, because CARD could detect and correct more sub-optimality.

Table 6.5: Performance improvement (%) between three re-optimization modes over
pUni-Set data

PL=1 PL=2 PL=3
POP’ CARD POP’ CARD POP’ CARD

tuple total tuple total tuple total total total tuple total tuple total
3 2.8 2.6 6.4 5.8 3.6 3.5 7.3 7.0 4.6 4.5 6.0 5.9
4 3.5 3.4 6.1 6.0 1.9 1.8 4.9 4.8 2.5 2.5 4.8 4.8
5 8.8 8.4 10.4 10.0 8.8 8.6 10.1 9.8 9.7 9.5 10.5 10.3
6 10.2 9.3 10.7 9.7 11.6 10.9 11.9 11.3 9.9 9.3 11.0 10.3

6.2.3 Performance on Zipf-Set

In this set of experiments, we only tested performances over 6-stream joins over skewed

data. Figure 6.9 shows runtime breakdown ofBASE, POP ′ andCARD. Every bar rep-

resents the average execution time, where grey bars represents the time taken to process

tuples and bars of other colors represent the time taken for the purpose of re-optimization

and solid part. Moreover, performance improvements of execution time were shown on

top of bars of POP ′ and CARD.

From Figure 6.9, we only see around 5% performance improvement when skew

factor was 0.2, 0.4 and 0.6. This is because the value ranges we chose to generate data

did not produce tuples whose COM values occur many times, where BASE’s hash join

90

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

1100	

BA
SE
	

PO
P'(
PL
=1
)	

CA
RD
(P
L=
1)
	

BA
SE
	

PO
P'(
PL
=1
)	

CA
RD
(P
L=
1)
	

BA
SE
	

PO
P'(
PL
=1
)	

CA
RD
(P
L=
1)
	

BA
SE
	

PO
P'(
PL
=1
)	

CA
RD
(P
L=
1)
	

Checking	 Re-‐op8mizing	 Processing	

Skew	 Factor	 =	 0.2	 Skew	 Factor	 =	 0.6	 Skew	 Factor	 =	 0.4	 Skew	 Factor	 =	 0.8	

A
ve
ra
ge
	 E
xe
cu
D
on

	 T
im

e	
(s
)	

3.4%	 	 	 	 	 2.0%	
	 	 6.2%	 	 	 	 	 3.7%	 4.2%	 	 	 	 	 	 7.3%	

	 35.3%	 	 	 29.4%	

Figure 6.9: Runtime breakdown for 6-stream joins on Zipf-Set

method was very efficient. However, when skew factor was 0.8, equal values dramat-

ically increased according to the features of Zipf distribution. In this case, POP ′ and

CARD were able to choose suitable streams to join first, leading to performance im-

provements by up to 35%.

6.3 Effect of Window Size

Window semantics, as constraints on tuples that would be processed, is an indispensable

parameter while dealing with data streams. In this experiment set, we varied the window

sizes imposed on streams. Window sizes were changed from a small size (i.e, 5000) to

a medium one (i.e, 10000), and a larger size (i.e., 15000), in order to test their impact

on join processing and re-optimization. We used re-optimization modes with a period

length of 1 time unit as representatives.

91

6.3.1 Performance on Uni-Set and pUni-Set

On Uni-Set and pUni-Set data, we varied the number of streams from 3 to 6. The exper-

imental results are shown in Figures 6.10 and 6.11, respectively. Moreover, we summa-

rized the performance improvement when POP ′ and CARD are compared with BASE

in Tables 6.6 and 6.7.

Table 6.6: Performance improvement (%) between three re-optimization modes under
different window sizes over Uni-Set

Window Size 3-stream 4-stream 5-stream 6-stream
POP’ CARD POP’ CARD POP’ CARD POP’ CARD

5k 12.6 12.0 13.0 17.1 10.7 13.27 7.7 10.3
10k 15.6 16.0 13.6 12.2 19.3 20.7 19.4 17.4
15k 16.0 15.4 16.8 21.9 21.1 20.6 21.7 19.7

Table 6.7: Performance improvement (%) between three re-optimization modes under
different window sizes over pUni-Set

Window Size 3-stream 4-stream 5-stream 6-stream
POP’ CARD POP’ CARD POP’ CARD POP’ CARD

5k -0.01 2.0 0.9 3.6 7.1 5.8 6.5 7.0
10k 2.6 5.8 3.4 6.0 8.4 10.0 9.3 9.6
15k 2.5 6.1 6.1 9.7 19.1 30.0 18.9 30.1

We see from Tables 6.6 and 6.7 that re-optimization’s benefit was steadily en-

hanced as window sizes became larger. This is because that under larger window sizes,

bad join orderings (i.e., plans) would do more work on generating unnecessary inter-

mediate results, but re-optimization schemes (POP ′ and CARD) were able to detect

and hence avoid such sub-optimality efficiently. More importantly, when window sizes

were 15000, CARD outperformed POP ′ by 11%, because more sub-optimality could

be detected.

Over Uni-Set data, POP ′ and CARD showed significant performance improve-

ment by up to 30% in comparison to BASE. However, over pUni-Set data, we note

92

37

40

43

46

49

52

5k 10k 15k

Av
er

ag
e

 e
xe

cu
tio

n
 ti

m
e

 (s
)

window size

BASE POP'(PL=1) CARD(PL=1)

(a) 3-stream

60

80

100

120

140

160

180

200

220

5k 10k 15k
Av

er
ag

e
 e

xe
cu

tio
n

 ti
m

e
 (s

)

window size

BASE POP'(PL=1) CARD(PL=1)

(b) 4-stream

80

140

200

260

320

380

440

5k 10k 15k

Av
er

ag
e

 e
xe

cu
tio

n
 ti

m
e

 (s
)

window size

BASE POP'(PL=1) CARD(PL=1)

(c) 5-stream

90

170

250

330

410

490

570

650

5k 10k 15k

Av
er

ag
e

 e
xe

cu
tio

n
 ti

m
e

 (s
)

window size

BASE POP(PL=1) CARD(PL=1)

(d) 6-stream

Figure 6.10: Performance of joins on Uni-Set w.r.t different window sizes

93

40

45

50

55

60

65

5k 10k 15k

Av
er

ag
e

 e
xe

cu
tio

n
 ti

m
e

 (s
)

window size

BASE POP(PL=1) CARD(PL=1)

(a) 3-stream

0

200

400

600

800

1000

1200

5k 10k 15k
Av

er
ag

e
 e

xe
cu

tio
n

 ti
m

e
 (s

)

window size

BASE POP(PL=1) CARD(PL=1)

(b) 4-stream

0

200

400

600

800

1000

1200

1400

1600

1800

5k 10k 15k

Av
er

ag
e

 e
xe

cu
tio

n
 ti

m
e

 (s
)

window size

BASE POP(PL=1) CARD(PL=1)

(c) 5-stream

0

400

800

1200

1600

2000

5k 10k 15k

Av
er

ag
e

 e
xe

cu
tio

n
 ti

m
e

(s
)

window size

BASE POP(PL=1) CARD(PL=1)

(d) 6-stream

Figure 6.11: Performance of joins on pUni-Set w.r.t different window sizes

94

that the 3-stream join performance of POP ′ was worse than that of BASE, when win-

dow size was 5000, because that the re-optimization benefit was overshadowed by the

re-optimization costs. This verified that in data-stream management, re-optimization

overhead, compromised of checking and re-optimizing costs, cannot be ignored as in tra-

ditional DBMSs. Therefore, re-optimization should be used carefully, especially when

the number of joining streams are few and the window sizes are small.

6.3.2 Performance on Zipf-Set

We tested 6-stream joins over Zipf-Set with different skew factors. The experimental

results are shown in Figure 6.12. Moreover, we summarized the performance improve-

ments when POP ′ and CARD are compared with BASE in Table 6.8.

Table 6.8: Performance improvement (%) between three re-optimization modes under
different window sizes over Zipf-Set

Window Size skew factor = 0.2 skew factor = 0.4 skew factor = 0.6 skew factor = 0.8
POP’ CARD POP’ CARD POP’ CARD POP’ CARD

5k -7.2 2.8 -12.8 -7.0 -13.6 -5.3 -7.1 0.0
10k 3.4 2.0 6.2 3.7 4.2 7.3 35.3 29.4
15k 5.8 6.3 6.1 7.0 5.3 10.3 22.7 22.8

From Table 6.8, re-optimization was able to provide performance improvements

by up to 35%. However, we see significant performance degradation when POP ′ was

used. This is because under window size of 5000, there is little room for performance

improvement, even worse, POP ′s and CARD needed more re-optimization runs over

skewed data, causing significant overhead.

95

80

160

240

320

400

480

560

640

720

800

5k 10k 15k

Av
er

ag
e

 e
xe

cu
tio

n
 ti

m
e

 (s
)

window size

BASE POP(PL=1) CARD(PL=1)

(a) skew factor = 0.2

80

280

480

680

880

1080

1280

1480

5k 10k 15k
Av

er
ag

e
 e

xe
cu

tio
n

 ti
m

e
 (s

)

window size

BASE POP(PL=1) CARD(PL=1)

(b) skew factor = 0.4

80

280

480

680

880

1080

1280

5k 10k 15k

Av
er

ag
e

 e
xe

cu
tio

n
 ti

m
e

 (s
)

window size

BASE POP(PL=1) CARD(PL=1)

(c) skew factor = 0.6

0

2000

4000

6000

8000

10000

12000

14000

16000

5k 10k 15k

Av
er

ag
e

 e
xe

cu
tio

n
 ti

m
e

 (s
)

window size

BASE POP(PL=1) CARD(PL=1)

(d) skew factor = 0.8

Figure 6.12: Performance of joins on Zipf-Set w.r.t different window sizes

96

Chapter 7

Conclusion and Future Work

Over the last few decades, the database community has largely relied on the same ar-

chitecture for query processing: statistics collection, query optimization based on these

statistics, and execution of query plans the the optimizer generates. This architecture

has achieved great success in traditional DBMSs such that data-stream management also

uses it.

In this kind of architecture, re-optimization methods play an important role in en-

suring system efficiency. However, due to different features of traditional and streaming

data, the way of performing re-optimization needs to be re-thought.

In this thesis, we propose a new re-optimization framework for multiway join

queries over streaming data. We propose a novel re-optimization scheme that consists

of a three-phase checking component and two-path plan generating component. The

checking component determines if re-optimization is necessary. The first phase quanti-

fies arrival rate changes to avoid redundant re-optimization. The second phase considers

cardinality changes to detect sub-optimality. The third phase exploits useful cardinality

information to alleviate local optimality. Additionally, we propose an analytical method

to estimate cardinality values if they cannot be collected during execution.

97

We have implemented our scheme on Esper, a commercial stream engine. We ex-

plored the re-optimization performance over streaming data with varying value distribu-

tions, arrival rates and window sizes. Our experimental study shows that re-optimization

techniques are able to provide significant performance improvement by up to 35%, in the

real-time and constantly-varying environments.

Currently, we only consider cardinality information and arrival rates to decide

whether re-optimization is needed. In future work, we plan to explore more kinds of

statistics. Moreover, our heuristic of estimating cardinality values is quite simple, and

we plan to explore how to obtain more accurate estimation, without taking too much

computing resources or hurting the system performance.

98

References

Abadi, D. J., Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack, J. H. Hwang,

W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. B.

Zdonik. 2005. The design of the borealis stream processing engine. In CIDR,

pages 277–289.

Aboulnaga, A., P. J. Haas, S. Lightstone, G. M. Lohman, V. Markl, I. Popivanov, and

V. Raman. 2004. Automated statistics collection in db2 udb. In VLDB, pages

1146–1157.

Avnur, R. and J. Hellerstein. 2000. Eddies: Continuously adaptive query processing. In

SIGMOD Conference, pages 261–272.

Babcock, B., M. Datar, and R. Motwani. 2004. Load shedding for aggregation queries

over data streams. In ICDE Conference, pages 350–361.

Babu, A. and P. Bizarro. 2005. Adaptive query processing in the looking glass. In CIDR

Conference, pages 238–249.

Babu, S., P. Bizarro, and D. Dewitt. 2005. Proactive re-optimization. In SIGMOD

Conference, pages 107–118.

Babu, S., R. Motwani, K. Munagala, I. Nishizawa, and J. Widom. 2004. Adaptive

ordering of pipelined stream filters. In SIGMOD Conference, pages 407–418.

Babu, S., K. Munagala, J. Widom, and R. Motwani. 2005. Adaptive caching for contin-

uous queries. In ICDE Conference, pages 118–129.

Babu, S. and J. Widom. 2004. Streamon: an adaptive engine for stream query process-

ing. In SIGMOD Conference, pages 931–932.

Belknap, P., B. Dageville, K. Dias, and K. Yagoub. 2009. Self-tuning for sql perfor-

mance in oracle database 11g. In ICDE Conference, pages 1694–1700.

99

Bizarro, P., N. Bruno, and D. J. DeWitt. 2009. Progressive parametric query optimiza-

tion. IEEE Trans. Knowl. Data Eng., 21(4):582–594.

Calton, Ling Liu, Ling Liu, Calton Pu, and Wei Tang. 1999. Continual queries for

internet-scale event-driven information delivery. IEEE Trans. Knowl. Data Eng.,

11:610–628.

Carney, D., U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stone-

braker, N. Tatbul, and S. B. Zdonik. 2002. Monitoring streams - a new class of

data management applications. In VLDB, pages 215–226.

Chandrasekaran, S., O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein,

W. Hong, S. Krishnamurthy, S. Madden, F. Reiss, and M. A. Shah. 2003. Tele-

graphcq: Continuous dataflow processing. In SIGMOD Conference, page 668.

Chaudhuri, S., V. R. Narasayya, and R. Ramamurthy. 2009. Exact cardinality query

optimization for optimizer testing. PVLDB, 2(1):994–1005.

Chaudhuri, S. and V. Narasayyaand R. Ramamurthy. 2008. A pay-as-you-go framework

for query execution feedback. In VLDB Conference, pages 1141–1152.

Chen, J. J., D. DeWitt, F. Tian, and Y. Wang. 2000. Niagaracq: a scalable continuous

query system for internet databases. In SIGMOD Conference, pages 379–390.

Christodoulakis, S. 1984. Implications of certain assumptions in database performance

evaluation. TODS, 9(2):163–186.

Chu, F., J. Y. Halpern, and Praveen Seshadri. 1999. Least expected cost query optimiza-

tion: An exercise in utility. In PODS Conference, pages 138–147.

Cole, R. L. and G. Graefe. 1994. Optimization of dynamic query evaluation plans. In

SIGMOD Conference, pages 150–160.

100

Cortes, C., K. Fisher, D. Pregibon, A. Rogers, and F. Smith. 2000. Hancock: A language

for extracting signatures from data streams. In SIGMOD Conference, pages 9–17.

D., H., P. N. Darera, and J. R. Haritsa. 2007. On the production of anorexic plan dia-

grams. In VLDB Conference, pages 1081–1092.

Deshpande, A. and J. M. Hellerstein. 2004. Lifting the burden of history from adaptive

query processing. In VLDB Conference, pages 948–959.

Deshpande, Amol. 2004. An initial study of overheads of eddies. SIGMOD Record,

33(1):44–49.

Dey, A., S. Bhaumik, Harish D., and J. R. Haritsa. 2008. Efficiently approximating

query optimizer plan diagrams. PVLDB, 1(2):1325–1336.

Esmaili, K. S., T. Sanamrad, P. M. Fischer, and N. Tatbul. 2011. Changing flights in mid-

air: a model for safely modifying continuous queries. In SIGMOD Conference,

pages 613–624.

Esper. 2013. Esper. /urlhttp://esper.codehaus.org.

Eurviriyanukul, K., A. A. A. Fernandes, and N. W. Paton. 2006. A foundation for the

replacement of pipelined physical join operators in adaptive query processing. In

EDBT Conference, pages 589–600.

Eurviriyanukul, K., N. W. Paton, A. A. A. Fernandes, and S. J. Lynden. 2010. Adaptive

join processing in pipelined plans. In EDBT Conference, pages 183–194.

Ganguly, S. 1998. Design and analysis of parametric query optimization algorithms. In

VLDB Conference, pages 228–238.

Golab, L. and M. T. Özsu. 2003. Processing sliding window multi-joins in continuous

queries over data streams. In VLDB Conference, pages 500–511.

101

Graefe, G. and K. Ward. 1989. Dynamic query evaluation plans. In SIGMOD Confer-

ence, pages 358–366.

Hammad, M. A., M. J. Franklin, W. G. Aref, and A. K. Elmagarmid. 2003. Scheduling

for shared window joins over data streams. In VLDB, pages 297–308.

Haritsa, J. R. 2010. The picasso database query optimizer visualizer. PVLDB,

3(2):1517–1520.

Herodotos, Herodotou and Babu Shivnath. 2010. Xplus: a sql-tuning-aware query opti-

mizer. PVLDB, 3(1):1149–1160.

Hulgeri, A. and S. Sudarshan. 2002. Parametric query optimization for linear and piece-

wise linear cost functions. In VLDB Conference, pages 167–178.

Hulgeri, A. and S. Sudarshan. 2003. Anipqo: Almost non-intrusive parametric query

optimization for nonlinear cost functions. In SIGMOD Conference, pages 766–

777.

Ioannidis, Y. and S. Christodoulakis. 1991. On the propagation of errors in the size of

join results. In SIGMOD Conference, pages 268–277.

Ioannidis, Y. E., R. T. Ng, K. Shim, and T. K. Sellis. 1997. Parametric query optimiza-

tion. In VLDB Conference, pages 132–151.

Ives, Z. G. 2002. Efficient Query Processing for Data Integration. Ph.D. thesis, The

University of Washington.

Ives, Z. G., A. Y. Halevy, and D. S. Weld. 2004. Adapting to source properties in

processing data integration queries. In SIGMOD Conference, pages 395–406.

Kabra, N. and D. DeWitt. 1998. Efficient mid-query re-optimization of sub-optimal

query execution plans. In SIGMOD Conference, pages 106–117.

102

Kang, J., J. F. Naughton, and S. Viglas. 2003. Evaluating window joins over unbounded

streams. In ICDE Conference, pages 341–352.

Li, Q., M. Shao, V. Markl, K. S. Beyer, L. S. Colby, and G. M. Lohman. 2007. Adap-

tively reordering joins during query execution. In ICDE Conference, pages 26–

35.

Madden, S., M. A. Shah, J. M. Hellerstein, and V. Raman. 2002. Continuously adaptive

continuous queries over streams. In SIGMOD Conference, pages 49–60.

Markl, V., V. Raman, D. Simmen, G. Lohman, and H. Pirahesh. 2004. Robust query pro-

cessing through progressive optimization. In SIGMOD Conference, pages 659–

670.

Prasad, V. G. V. 1999. Parametric query optimization: a geometric approach. Technical

report.

Reddy, N. and J. Haritsa. 2005. Analyzing plan diagrams of database query optimizers.

In VLDB Conference, pages 1228–1240.

Rundensteiner, E. A., L. P. Ding, T. M. Sutherland, Y. L. Zhu, B. Pielech, and N. Mehta.

2004. Cape: Continuous query engine with heterogeneous-grained adaptivity. In

VLDB Conference, pages 1353–1356.

Selinger, P. G., M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. 1979.

Access path selection in a relational database management system. In SIGMOD

Conference, pages 23–34.

Stillger, M., G. M. Lohman, V. Markl, and M. Kandil. 2001. Leo - db2’s learning

optimizer. In VLDB Conference, pages 19–28.

Tao, Y., M. L. Yiu, D. Papadias, M. Hadjieleftheriou, and N. Mamoulis. 2005. Rpj: Pro-

103

ducing fast join results on streams through rate-based optimization. In SIGMOD

Conference, pages 371–382.

Tatbul, N., U. Çetintemel, S. B. Zdonik, M. Cherniack, and M. Stonebraker. 2003. Load

shedding in a data stream manager. In VLDB Conference, pages 309–320.

Urhan, T. and M. J. Franklin. 2000. Xjoin: a reactively-scheduled pipelined join opera-

tor. IEEE Data Eng. Bull., 23(2):27–33.

Urhan, T., M. J. Franklin, and L. Amsaleg. 1998. Cost-based query scrambling for initial

delays. In SIGMOD Conference, pages 130–141.

Viglas, S. and J. F. Naughton. 2002. Rate-based query optimization for streaming infor-

mation sources. In SIGMOD Conference, pages 37–48.

Viglas, S., J. F. Naughton, and J. Burger. 2003. Maximizing the output rate of multi-way

join queries over streaming information sources. In VLDB Conference, pages

285–296.

Wang, S., E. A. Rundensteiner, S. Ganguly, and S. Bhatnagar. 2006. State-slice: New

paradigm of multi-query optimization of window-based stream queries. In VLDB

Conference, pages 619–630.

Wilschut, A. and P. Apers. 1991. Dataflow query execution in a parallel main-memory

environment. In International Conference on Parallel and Distributed Informa-

tion System, pages 68–77.

Yang, Y., J. Krämer, D. Papadias, and B. Seeger. 2007. Hybmig: A hybrid approach to

dynamic plan migration for continuous queries. IEEE Trans. Knowl. Data Eng.,

19(3):398–411.

Yao, Y. and J. Gehrke. 2003. Query processing in sensor networks. In CIDR Conference,

pages 233–244.

104

Zhu, Y. and D. Shasha. 2002. Statstream: Statistical monitoring of thousands of data

streams in real time. In VLDB Conference, pages 358–369.

Zhu, Y. L., E. A. Rundensteiner, and G. T. Heineman. 2004. Dynamic plan migration for

continuous queries over data streams. In SIGMOD Conference, pages 431–442.

