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Summary 
 

The major challenge to implement the immersed boundary method (IBM) for 

compressible inviscid flows is that the velocity on the boundary is unknown 

and the needs to enforce boundary conditions for other flow variables 

associated with compressible flows. Moreover, the presence of shock waves 

adds to the challenges in implementation. In this thesis, a novel flux 

correction-based immersed boundary method (FC-IBM), a local domain-free 

discretization (LDFD) method and a local DFD-based immersed boundary 

method (LDFD-IBM) were proposed and implemented to simulate 

compressible inviscid flows in a Cartesian grid-based adaptive Euler solver.  

For the first time, we are able to implement the widely adopted IBM concept 

for incompressible flows to solve compressible inviscid flows.  

 

The FC-IBM was proposed based on the notion that a wall boundary shall 

satisfy the conditions of no-penetration, zero mass flux and zero energy flux. 

The method is implemented through velocity correction to enforce the no-

penetration condition and flux correction to enforce the zero flux condition. 

The advantage of the method is that it avoids the tedious process to compute 

the boundary curvature and to identify whether the cells are in fluid domain or 

solid domain. This makes the method unique and simple in implementation. 

 

The LDFD method was proposed with the concept that the wall boundary 

condition can be enforced by correcting the flow information on the solid cells 

(DFD cells) next to the boundary in X direction and Y direction directly for 

2D flows. Because the DFD cells near the boundary can be identified easily in 
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X and Y directions, the method is simple to implement. The LDFD-IBM was 

proposed to make the implementation simpler by avoiding the need to identify 

the solid DFD cells and fluid DFD cells. 

 

The proposed methods, FC-IBM, LDFD and LDFD-IBM, have been 

integrated with a 2D adaptive Euler solver developed based on the finite-

volume discretization on Cartesian grids. The validation and test results for the 

adaptive solver demonstrated that it is accurate, efficient and robust in 

simulating compressible flows with weak or strong shock waves. The ghost-

cell method was implemented and benchmarked against the adaptive solver. 

The three proposed methods have been validated comprehensively by 

simulating subsonic, transonic, supersonic and hypersonic 2D flows with 

various irregular boundaries. The results obtained from the validation and 

numerical tests demonstrated that the new methods to be accurate and efficient. 

However, numerical viscosity caused by the implementation of FC-IBM and 

LDFD-IBM is noted and needs to be further studied. 

 

The FC-IBM and LDFD method were integrated into the 3D adaptive Euler 

solver and have been validated and benchmarked primarily with supersonic 

flows over bluff body wall boundaries and 3D space vehicle consisting of 

curved body and wings. The validation results and the benchmark 

performance demonstrated to certain extent the viability of the solver and the 

proposed methods for compressible inviscid flows. The present Euler solver 

was also extended to solve steady-state and unsteady-state laminar viscous 

flows with minor effort. 
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Chapter 1 Introduction 

 
Computational fluid dynamics (CFD) is a numerical analysis tool commonly 

employed in many industrial areas not only for research & development 

purposes but also for advanced design and optimization. The wide availability 

of commercial CFD software tools and highly regarded open-sourced CFD 

solvers are the evidence for its applications. Body-fitted grids are generally 

used in almost all such software largely because they are conformed to the 

boundary surfaces and thus the boundary conditions can be implemented 

directly. Depending on the type of mesh cell for grids, the structure and the 

connections among mesh cells for grids, body-fitted grids can be generated 

either as structured or unstructured grids.  

 

Structured grid-based body-fitted solvers that dominated CFD modeling in the 

early years are less popular due to their application limitations for irregular 

and complex domains. The unique advantage of structured grids is that they 

can be indexed and retrieved directly via (i, j, k), which makes the coding for 

the solver simple. However, it is difficult, or sometimes not possible, to 

generate structured grids in irregular and complex domains. To overcome this 

difficulty, unstructured grid-based body-fitted solvers were introduced and 

became the most popular solver technique in CFD modeling for most 

tools/solvers available in the market. The unstructured grid approach 

demonstrates good flexibility in CFD modeling with irregular boundary 

geometries in complex domains through using various types of mesh cells and 

ability to align directly the grid nodes or mesh points on the complex 
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boundaries. However, the development of CFD solvers based on the 

unstructured grids is relatively difficult and demanding because it is difficult 

to directly solve the flow governing equations which are in partial differential 

equation (PDE) form on such grids. Coordinate transformation of unstructured 

grids is required for the discretization of the PDE-based governing equations. 

The data structures of unstructured grids are complex and less computationally 

efficient than their structured-grid counterparts. Hence, additional computing 

resources for RAM, storage space and computing time are needed for 

unstructured grid-based solvers. Despite the flexibility and advantages in 

modeling irregular and complex domains for CFD analyses, it is difficult to 

use unstructured body-fitted grids in the CFD analyses for problems involving 

moving boundaries. Such problems are not limited to the translation, rotation 

and mixed motion of the boundaries, but also include small deformation or 

minor change of local boundary and the variation of geometry topology for 

boundaries such as splitting and merging of solid bodies. As the grid nodes 

have to be aligned with the boundaries, dynamic re-meshing has to be carried 

out whenever there is a boundary change. This further increases the 

complexity and the computational demand in the development and coding for 

unstructured grid-based solvers for moving boundary CFD analysis.  

 

Taking the three-dimensional CFD analysis for high speed compressible flow 

over an aircraft as an example, tetrahedral unstructured grids can be generated 

in the domain around the complex aircraft geometries. However enormous 

efforts have to be spent to re-generate the grid in the entire domain when there 

is any small geometry change locally in either airfoil profile of the wing, the 
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slat and flap in expanded position, or the auxiliary fuel tanks’ adding or 

removal. 

 

Cartesian grid-based solver is an alternate for the example described above, 

besides the body-fitted structured grids and unstructured grids. Cartesian grids 

have inherently good quality and are easy for grid generation, lower 

computational storage requirements and significantly less computation per cell 

as compared to the conventional structured and unstructured grids, as 

presented by Aftosmis [1]. Cartesian grids use rectangle domain for 2D 

problems and box domain for 3D problems, and are easy to be adapted and to 

be extended to higher-order spatial schemes. The convergence performance of 

the solver is obviously better as there are no skewed or distorted mesh cells. 

The adaptive mesh-refinement (AMR) technique can be simply implemented 

on Cartesian grids to give better resolution in resolving the rapid solution 

changes. However, the major challenge in using the Cartesian grid is to take 

into account the influence of the arbitrary boundaries to the flow solution. 

Because Cartesian grids are not aligned with the solid body and its curved 

boundary surfaces, the grids will intersect with the boundaries in the vicinity 

of the boundary surfaces. Therefore to ensure the successful use of Cartesian 

grids, accurate representation of arbitrary boundaries and quick accounting the 

influence to the solution is essential and inevitable. In the following section, 

non-body-fitted grid methods in solving compressible flows based on 

Cartesian grids will be reviewed. 
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1.1 Non-body-fitted grid methods for compressible 
flows 

Cartesian grids are not fitted to the boundary or solid body. The adoption of 

Cartesian grid methods to solve compressible flows was initially implemented 

with cut-cell scheme for compressible Euler equations. The other two common 

methods proposed to model the arbitrary immersed boundary in compressible 

flow studies are ghost-cell method and grid-less (or mesh-less as named by 

some researchers) method. Figure 1.1 briefly illustrates the treatment of the 

boundary by the three methods for compressible flows. 

         

 
Figure 1.1 IBM Approaches for Compressible Flows 

 

1.1.1 Cut-cell method 

The concept of cut-cell method on Cartesian grid is to reconstruct the cells that 

intersect with the solid boundary, as illustrated in Figure 1.1 (a). The cut-cell 

approach will produce very small cells near the boundary, and this causes 

stability problem and small time step restriction for the solver [2][3][4]. In 

addition to the stability problem, special care is required for the calculation of 

the exact flux for those cut-cells.  

 

A Cartesian cell can be cut into various shapes and sizes by the boundary. By 

(a)  Cut-cell Method [4] (b)  Ghost-cell Method [9] (c)  Grid-less Method [13] 
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defining the desired shape for cut-cells and the suitable curvature slope of the 

neighbor cut-cells, Zeeuw and Powell [4] used geometry-based mesh 

refinement to construct the cut-cells. The flux calculation on the cut-cells is 

done through a linear reconstruction approach near the boundary. Coirier and 

Powell [2] proposed a cell merging method to merge the small cut-cells into 

larger neighbor parent cells to avoid the stability problems and small time step 

caused by cut-cell approach. However, this will change the original Cartesian 

cells not only in the geometries but also on the flux calculation and local 

accuracy. The small cut-cells to merge have to be identified and the merged 

cells have to be treated specially. Pember et al. [3] proposed a method that 

discretizes the fluid-body interface based on a volume-of-fluid approach. A 

correction is computed for each irregular cut-cell based on the fraction of the 

area/volume of a cell that is inside the fluid and then it is applied to maintain 

the conservation items by a variation of the algebraic redistribution algorithm. 

Nemec and Aftosmis [72], [73] used cut-cell boundaries and refinement 

interfaces to evaluate the solution accuracy by using linear solution 

reconstruction functions and trilinear/triquadratic interpolation functions for 

the solution reconstruction, similar approach to the standard shape functions 

used in the finite element method. The 3D embedded-boundary problems for 

the ONERA M6 wing, a missile and a re-entry capsule were studied for the 

performance analysis. 

 

Numerical experiments obtained using different approaches show that the cut-

cell method on Cartesian grid works for various speed of compressible flows. 

However, the implementation of cut-cell method is rather complex and 
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inconvenience using either the linear reconstruction approaches, the merging 

of small cut-cells approach, or the volume-of-fluid approach. A common issue 

is that the flux calculation for the cut-cells cannot be calculated via the similar 

simple steps for the Cartesian cells. This degrades the advantages in 

simulating the flow on Cartesian grids.  

 

1.1.2 Ghost-cell method 

To avoid the stability problem and small time step introduced by the cut-cell 

method, Forrer and Jeltsch [5] derived a new wall treatment method from the 

concept of one-dimensional wall boundary. The method treats the wall 

boundary as a symmetrical boundary and hence a mirror point of a fluid point 

is created symmetrically to the boundary. Because this mirror point is an 

artificial point, the method is commonly named as ghost-cell method (GCM), 

as illustrated in Figure 1.1 (b). Since the flow information is symmetrical 

against the boundary, the scalar quantities such as pressure, density, tangential 

velocity and energy on the mirror point are set to be the same as they are on 

the fluid point; the normal velocity vector on the mirror point is set as the 

same value as it is on the fluid point but in the opposite direction. This 

treatment satisfies the physical boundary condition, but does not satisfy the 

curvature condition on the boundary. Because the cells cut through the 

boundary are still treated as original whole cells, the method becomes simple 

in implementation.  

 

An improved ghost-cell method, the curvature corrected symmetry technique 

(CCST), as named by Dadone and Grossmann [6], [7] was proposed to 



Chapter 1   Introduction 

7 
 

consider the influence of the boundary curvature on entropy and total enthalpy 

in the normal direction of the wall boundary. Besides the no-penetration 

physical condition, the pressure and density at the mirror point are corrected 

according to the integration of the normal momentum equation and constant 

entropy relationship, as shown by equation (1.1). The transonic flows 

computed by the CCST approach show remarkable agreement with the 

numerical results obtained on body-fitted grids. The CCST approach was 

further improved by introducing the adaptive mesh-refinement to cluster finer 

meshes near the boundaries. This has greatly improved the computing 

efficiency and demonstrates good potential to solve complex flows with 

arbitrary boundaries such as transonic airfoil [8]. Jiang et al. [9] and Liu et al. 

[10] adopted the CCST ghost-cell method and successfully studied the 

shockwave interaction of the supersonic flow over a cylinder and the transonic 

flow over an airfoil, respectively.  

Pressure condition:      
2
suP

n R
ρ∂

= −
∂

. 

Density condition:      P Constγρ
= . 

(1.1)  

In general, the ghost-cell method is straightforward and simple in 

implementation. The method can be more efficient and useful when coupled 

with the AMR. However, the successful implementation and the accuracy of 

the method depend on the accurate creation of the ghost-cells, accurate 

interpolation in determining the values on the ghost-cells, and accurate 

calculation of the curvature for the boundary. In addition, in the derivation of 

the pressure condition formula, the curvature or radius (R) is assumed to be 

positive or the boundary is in convex shape. For concave shape boundary, the 
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radius (R) in equation (1.1) should be negative. This is because the normal 

pressure gradient (ძp/ძn) on the wall boundary which follows the normal 

direction of the wall boundary is now in the opposite direction of the radial 

direction of the curved boundary, as illustrated in Figure 1.2. Such difference 

is not mentioned in implementation of those ghost-cell methods. 

 

 

 

 

 

 

 

Figure 1.2 Pressure gradient on convex and concave wall boundary 

 

1.1.3 Grid-less method 

Grid-less method, or mesh-less method as illustrated in Figure 1.1 (c), is 

another approach introduced to solve compressible flows on Cartesian grids. 

The concept is to model the complex boundaries using grid-less points and the 

rest of domain using simple Cartesian grids.  The governing equations are 

solved by a grid-less solver and a Cartesian grid-based solver in the grid-less 

zone and the Cartesian grid zone, respectively. So it is a hybrid method 

consisting of a Cartesian grid-based solver and a grid-less solver. In the 

interface of grid-less zone and Cartesian grid zone, some Cartesian grids are 

included as grid-less points, hence the flow information can be exchanged 

between two zones. Luo et al. [11] proposed and implemented grid-less 

flow 

  

R flow 

  

R 

(a)  Convex wall boundary                          (b) Concave wall boundary 
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method by forming the local cloud of grid-less points from the boundary nodes, 

cut-off cells and the nearby Cartesian cells on a 3×3×3 stencil for 3D flows.  

Liang and Yang [12] adopted similar grid-less method and the local cloud of 

grid-less points were chosen from the nearest eight cells for 2D flows. Zero 

flow gradients and zero normal velocity conditions on the boundary are used 

for the interpolation. Jahangirian and Hashemi [13] presented a different 

implementation of grid-less method. In their work, adaptive Cartesian cells are 

generated in the domain but keep away from the solid boundary with a pre-

defined distance, and within this distance a cluster of grid-less points are 

generated to surround the solid boundary. So the interface of the grid-less zone 

and Cartesian grid zone is in some distance away from the boundary, as shown 

in Figure 1.1 (c). The data exchange between the two zones is thus performed 

in the interface zone away from the boundary. The benefit of the grid-less 

method is that the geometry of boundaries can be modeled directly using the 

grid-less points. However, being a hybrid solver the grid-less method requires 

extra development efforts and integration of a Cartesian grid solver and a grid-

less solver. As a result, the development of the solver becomes complex and 

the coding demands increase obviously.   

 

In summary, all the non-body-fitted grid methods, cut-cell, ghost-cell, or grid-

less, implemented on Cartesian grids can be used to simulate compressible 

flows with arbitrary wall boundary inside the Cartesian domain.  All three 

methods require the interior grids in the fluid domain and the exterior grids in 

the solid body to be known. It is noted that the cut-cell method is limited by 

the stability problem and small time step besides the special needs for flux 
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calculation on the cut-cells; the ghost-cell method requires the calculation of 

the curvature of the boundary and the mirror point of the exterior grids against 

the boundary; the grid-less method needs to integrate a grid-less scheme-based 

solver with a Cartesian grid-based solver, which requires more development 

work and demands additional computing resources and more computational 

effort. 

 

1.2 Local Domain-Free Discretization (DFD) method 

An innovative domain-free discretization (DFD) method was proposed by Shu 

and Fan [14] to solve incompressible Navier-Stokes equations in the Cartesian 

coordinate system. The method was enhanced by introducing the local DFD 

method, which is more general and simple in implementation. 

 

The unique feature of the DFD method is that it can be applied to solve 

irregular domain problems without the need of coordinate transformation 

technique, which is generally required for body-fitted solvers in irregular 

domains. The numerical experiments carried out by Shu and co-workers 

demonstrated high efficiency and accuracy of the DFD method in solving 

PDEs such as Navier-Stokes equations in arbitrary domain. Their numerical 

studies also demonstrated that a large numerical error would be introduced 

into the computation when all the points in horizontal or vertical line in 

Cartesian coordinate system were used for the discretization process; and 

accurate numerical results can be obtained by using a few local points.  

 

To eliminate the difficulties and make the DFD method be more general, Shu 
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and Wu [15] proposed and implemented the local DFD method on cylindrical 

coordinate system for incompressible flows. The concept of the local DFD 

method is that the functional values such as pressure, density and velocity at 

an exterior point can be approximated by spline function using the boundary 

point and local interior points near the boundary. In Shu and Wu’s 

implementation, two interior points and one node on the boundary were used 

to approximate the function values on the external point via a quadratic 

polynomial. The local DFD method has been successfully tested to solve the 

incompressible natural convection problem in concentric annulus between an 

inner circular cylinder and an outer square cylinder. Shu and Wu [16] 

extended the local DFD method with the use of Cartesian mesh for 

incompressible flows. The functional value at the exterior node can be 

computed by extrapolation in X direction and Y direction separately using two 

local interior points and the boundary point. To ensure unique value at the 

exterior point, the functional value computed in X direction was used for X 

derivatives calculation only. The same way was applied in Y direction. The 

adaptive stencil refinement was adopted to enhance the efficiency and 

accuracy of the results. Wu and Shu [17] further extended the local DFD 

method to solve an incompressible flow with moving boundary, represented 

by an oscillating circular cylinder in the domain. The unsteady state results 

obtained through the method are in good agreement with other numerical 

results in the literature.  

 

Zhou et al. [18] successfully applied the local DFD method to solve 

compressible flows using a finite element Galerkin method-based solver. In 
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their work, the DFD extrapolation is carried out in the normal direction to 

ensure unique functional values to be obtained at the exterior points. A linear 

extrapolation is proposed, which involves the wall point inside the fluid 

domain and one adjacent point along the normal direction. The results 

obtained for the inviscid and viscous flows around stationary and oscillating 

airfoils demonstrate that the local DFD method is accurate in solving 

compressible flows as well. However, the tedious part in the implementation is 

to construct the fictitious point in the normal direction and ensure that the 

fictitious point is inside an element fully in the interior fluid zone, despite the 

adoption of less efficient unstructured grid-based solver. Zhou and Shu [19] 

extended the similar local DFD method to a 3D finite element solver. The 

three-dimensional transonic flow over the ONERA M6 wing is solved for the 

validation of the method. The implementation becomes more complex in 3D 

solver as the construction of fictitious points in the normal direction and the 

relationship identification for tetrahedral elements are not straightforward and 

simple.  

 

1.3 Immersed Boundary Method (IBM) for 
incompressible flows 

The immersed boundary method, or IBM in short, has been adopted, 

implemented and enhanced in solving various incompressible flows on simple 

Cartesian grid-based solvers enormously in the past decades since it was first 

introduced by Peskin in 1970’s to solve the incompressible blood flow inside a 

pumping heat [20], [21]. Since the influence of wall boundary to 

incompressible flows is either through body force or velocity field, IBM will 
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work for incompressible flow solver if either one can be modeled.  

The concept of IBM is that the deformation or the displacement of the 

boundary will generate a force that tends to restore the boundary to its original 

shape or position; this restoring force on the boundary are then re-distributed 

into the surrounding nodes as body force; after that the flow field with this 

added body force is solved in the entire domain including both inside and 

outside of the immersed solid body. This is known as the virtual boundary 

force IBM. Shu and co-workers [22] proposed a new approach, known as the 

velocity correction-based IBM, in implementing the immersed boundary by 

correcting the velocity near the boundary directly to enforce the no-slip 

physical boundary condition.  

 

1.3.1 Body force correction based IBM 

In the virtual boundary force IBM, the wall boundary condition and the 

governing equation are satisfied through iterative process with the aim to seek 

zero restoring force, and in theory to enforce the no-slip boundary condition. 

Based on the IBM proposed by Peskin, various improvements were introduced 

to enhance and refine the method. Many research works and numerical 

experiments have been done in solving various incompressible flows 

involving complex and arbitrary solid boundaries. Goldstein et al. [23] 

introduced a virtual boundary method which facilitates the simulations to 

handle complex geometry in space and time as well. Lai and Peskin [24] 

enhanced the IBM by a proposed second-order immersed boundary method 

with adoption of a well-chosen Dirac delta function, which was widely 

adopted and used in the implementation of IBM in the last decade. The 
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second-order method has less numerical viscosity and is a better choice for the 

simulation of high Reynolds number flows. Linnick and Fasel [25] proposed a 

high-order modified IBM for 2D unsteady incompressible Navier-Stokes 

equations in stream function-vorticity formulation. With explicit fourth-order 

in temporal domain and fourth-order in spatial domain, the steady and 

unsteady flows past a circular cylinder and Tollmien-Schlichting waves in a 

boundary layer were validated extensively. 

 

In the past few years, IBM has been implemented in solving many complex 

2D and 3D flows with moving boundary or deformation. Deng et al. [26] 

proposed a method to scale the force on solid interface to the corresponding 

grids nearby through a linear interpolation. The treatment of the immersed 

boundary has been successfully implemented in the study of 3D complex flow 

over a giant danio fish. Sui et al. [27] proposed a hybrid immersed boundary 

and multi-block lattice Boltzmann method. The incompressible flows and 

moving boundary interactions were simulated to understand the principal of 

propulsion force generation for fish swimming. Coupled the structural analysis 

with IBM, Shi and Lim [28] simulated the fluid-structure interaction modeling 

for 3D plate and sphere deformation. Borazjani et al. [29] extended the IBM 

on the curvilinear domain and hence was able to solve the 3D pulsating blood 

flow through a heart valve. Pan and Shen [30] proposed and implemented an 

implicit pressure correction based IBM on Cartesian grids with local 

refinement. Multigrid method was also adopted to improve the convergence 

and stability, and the unsteady incompressible flow was simulated and 

validated in a 2D cylinder and 3D sphere.  Finite-element method is less favor 
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for adoption by CFD solver development due to non-conservative 

discretization sometimes [74]. While embedded-boundary method and direct 

body forcing approach was used by Vanella et al. [75] in a finite-difference 

solver for incompressible flows to enforce the boundary conditions on a 

complex moving body.  With that they demonstrated the robustness and 

accuracy for the proposed formulation.  

 

1.3.2 Velocity correction based IBM 

Shu and co-workers studied various virtual boundary force IBM applications 

and concluded that the no-slip boundary condition on the immersed wall 

boundary is not directly enforced through the iterative process in seeking the 

zero restoring force [22]. Due to numerical errors, the no-slip condition is only 

satisfied approximately when zero restoring force is achieved. This is 

demonstrated in Figure 1.3 (a) for the plot of streamlines near the boundary as 

predicted through the conventional virtual boundary force IBM [31]. Since the 

streamlines may pass through the boundary and enter into the solid body, the 

actual physics of the solid boundary is not fully satisfied. To overcome this 

problem, Shu and co-workers proposed an innovative velocity correction 

based IBM, where the no-slip boundary condition was directly enforced 

through the velocity correction at the grid points near the boundary [22], [31]-

[34]. Using the new velocity correction approach, the no-slip boundary 

condition can be enforced directly and fully satisfied. The computed 

streamlines, as shown in Figure 1.3 (b), do not pass through the boundary. 

This implies that the physics of solid wall boundary is represented accurately 

and logically. The force introduced by the solid body can be calculated from 
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the converged flow field. 

 

       

 

Figure 1.3 Streamlines obtained by IBM 

 

The velocity correction based IBM named IBVCM was proposed by Shu and 

co-workers [22]. The concept is that the boundary velocity is corrected 

directly to satisfy the no-slip boundary condition and the correction of velocity 

will be transformed into the nearby Cartesian grids linearly. The body force 

generated by the solid body is calculated by integration of momentum 

equations over a local domain enclosed the solid body. The advantage of the 

IBVCM is that the physical no-slip boundary condition is enforced directly. 

The IBVCM was validated numerically by the incompressible flow over a 2D 

circular cylinder for Reynolds number of 20, 40, 80, 100 and 150. Good 

convergence performance and robustness of the method has been 

demonstrated as compared with the conventional IBM. The method was 

applied for the study of an unsteady flow past an undulating 2D fish-like body 

by Shu et al. [33] to understand the mechanics of propulsion force generation 

for the undulatory swimming fish. The study shows that the IBVCM is an 

(a)  streamlines obtained by 
conventional IBM 

(b)  streamlines obtained by 
velocity correction IBM 

([22], [31]) 
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effective approach in capturing the flow feature for the problem with moving 

boundary. 

 

Wu and Shu [32] recently proposed an implicit velocity correction-based 

immersed boundary-lattice Boltzmann method (IB-LBM), of which the 

velocity correction at the grid points near the boundary is determined from 

enforcement of no-slip condition directly. The body force such as drag force 

and lift force can be computed directly from the obtained velocity correction 

through the relationship between the force and velocity correction. The 

performed validation work demonstrates that the method can satisfy the no-

slip boundary condition accurately and offer a great potential for practical 

application due to the ease in implementation. Wu and Shu [34] used the 

method successfully in a study of the laminar flow behind a stationary circular 

cylinder with a flapping plate. The comprehensive results demonstrate that the 

velocity correction-based IB-LBM can be easily applied to study 

incompressible flows with moving boundary easily. 

 

The major advantage introduced by the velocity correction based IBM, either 

IBVCM or IB-LBM, is that it is simple in implementation and enforces the no-

slip condition on boundaries directly and accurately for incompressible flow 

problems. The body force can be computed from the velocity correction. 

 

To summarize, various IBM approaches have been successfully implemented 

in the numerical studies of 2D and 3D incompressible viscous flows with 

stationary boundaries and moving bodies/boundaries in both steady state and 
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unsteady state. The representation of wall boundary in incompressible flows 

can be implemented through either body force correction or velocity 

correction.  

 

Unlike incompressible flows, wall boundary condition for compressible flows 

is not represented by the body force or velocity field alone. Other flow 

variables including pressure, density and temperature are affected by the wall 

boundary as well, and the values of which need to be determined on the 

boundary. For compressible inviscid flows, the velocity on the wall boundary 

is unknown and then, there is no target velocity field for the implementation of 

IBM. Moreover, the presence of shock waves in compressible flows adds to 

the challenges in the implementation. Hence the use of IBM in modeling 

immersed boundary for compressible flows on Cartesian grids is not yet found 

in the literature. 

 

Inspired by the concept of the velocity correction-based IBM that was 

proposed to represent the physic boundary condition directly in overcoming 

the limitations of the conventional body force correction-based IBM, the 

immersed boundary concept can be implemented to model immersed wall 

boundary for compressible flows if the physical boundary condition can be 

enforced. 

 

1.4 Motivation in current study 

With the achievements of IBM implementation for incompressible flow 

analyses in mind and the understanding of the advantages and limitations of 
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the various methods implemented on Cartesian grid-based solvers for 

compressible flow simulations, the objective of the current work is to develop 

simple and accurate immersed boundary methods to simulate compressible 

inviscid flows on a simple and efficient Cartesian grid-based solver. For the 

first time, we are able to implement the widely adopted IBM concept for 

incompressible flows to solve compressible inviscid flows. Numerical 

simulations for compressible inviscid flows play an important role to 

understand flow patterns, shock wave capturing and lift force prediction for 

compressible flows at high Reynolds numbers as the viscous effect of the air 

has very minor contribution. The main benefit is that the development efforts 

and the computational time can be reduced significantly from the saving of 

viscous boundary layer capturing and turbulence modeling as the viscous 

effect is ignored.  

 

In this study, a new flux correction-based immersed boundary method (FC-

IBM), a modified local DFD method (LDFD) and a local DFD based 

immersed boundary method (LDFD-IBM) are introduced and integrated with 

the Cartesian grid-based adaptive Euler solver for CFD analyses of 

compressible inviscid flows. The validation and results for various test 

problems show that FC-IBM and LDFD-IBM are simpler in implementation, 

while LDFD is more accurate and robust.  

 

The Cartesian grid-based adaptive Euler solver is developed using the finite 

volume method. The AMR technique is adopted and implemented in the 

solver to refine the mesh near the boundary and high flow-gradient regions to 
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improve the resolution for boundary representation and solution accuracy in 

particular for shock wave capture, respectively. The ghost-cell method in 

representing the wall boundary is implemented and validated in the current 

adaptive solver.  

 

1.5 Outline of the Thesis 

Chapter 2 describes the governing equations and the development of the finite 

volume method based Euler solver in 2D. The flux is obtained via the HLLC 

scheme on the cell interface. Five second-order flux schemes are implemented, 

validated and compared. In the later part of the chapter, the implementation of 

tree structure AMR technique is given with the validation results and the 

analysis of performance enhancement by using AMR is presented. 

In Chapter 3, the ghost-cell method is introduced and implemented in the 

current Cartesian grid-based adaptive solver to model the immersed wall 

boundary for compressible inviscid flows. Validation and some test cases are 

presented. 

 

A new flux correction based-immersed boundary method (FC-IBM) is 

presented in Chapter 4. The methodology, implementation procedures, 

validation, test cases and discussion are given in details.  In Chapter 5, a 

modified local DFD method (LDFD) and its extension on immersed boundary 

method (LDFD-IBM) are proposed to represent the wall boundary condition.  

The concept of LDFD and LDFD-IBM for treating wall boundary in 

compressible inviscid flows is explained. The methodology, implementation 

procedures, validation, test cases and discussion are given in details. 
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Chapter 6 illustrates the development of the 3D adaptive solver. The validation 

of accuracy and adaptive performance are presented. The FC-IBM and LDFD 

will be implemented on the 3D solver and the results will be compared. 

 

Chapter 7 explains the extension of the current adaptive compressible inviscid 

flow solver into an adaptive solver for laminar viscous flow. Test cases of 

laminar viscous flow past a circular cylinder and a NACA0012 airfoil are 

presented.  

 

Conclusions and recommendation for future works are given in Chapter 8. 
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Chapter 2  
Adaptive Cartesian Grid Euler Solver  

 

The two-dimensional compressible inviscid solver is developed in this chapter 

by using finite volume method. In this framework, the adaptive solver is also 

developed and validated. The details for the development of 2D Euler solver 

and the implementation of solution adaption capability will be discussed in the 

following context. 

 

2.1 Governing equations 

Two-dimensional compressible Euler equations expressing the conservation 

laws of mass, momentum and energy are given in the following vector forms: 
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where U in the equation is the state vector of the conservative variables. F and 

G are the flux vectors. The physical variables in the above equations are 

density (ρ), velocity components (u) and (v), internal energy (E) and pressure 

(p). The pressure p is obtained using the equation of the state for ideal gas. 
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The constant γ  in the equation is the adiabatic index.  For ideal gas, γ =1.4. 

 

2.2 Finite volume discretization and HLLC scheme 

In the present work, finite volume method (FVM) is used for the development 

of the base Euler solver for compressible flows on Cartesian grid. For a finite 

control volume, the numerical discretization of the governing equation (2.1) 

by the first order time evolution scheme will be 
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here, 1+n
cU  and n

cU  are the states of the conservative variables at ( )1 thn + and 

thn  time levels; t∆  is the time step; cA is the area of the control cell; il


, if  and 

in stand for the length, the flux and the normal direction for the (i)th-interface 

of the cell. The solution U is defined on the cell center.  

 

The time step is determined by the minimum time step of all the control cells, 

and it is calculated by 

( )
min ,c

n c

At CFL
u a l

  ∆ = × 
+ ⋅  ∑

  (2.5)  

where, the denominator in the above equation is to summate the terms on all 

four interfaces of the cell. CFL is Courant-Friedrichs-Lewy number, and is set 

as CFL=0.3~0.5 in current work.  
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From equation (2.4), it is known that calculation of the flux term if  on cell 

interface is crucial for the solver. The HLLC scheme, or the Harten, Lax and 

van Leer approximate Riemann solver with the contact wave restored scheme, 

is adopted due to its good resolution for shocks, contact waves and the ability 

in preserving the positivity of density and internal energy [35]. It has been 

proved to give robust and accurate solutions for most of compressible flows 

[36], [37]. 

 

On the Cartesian grid system, the flux term if  on a cell interface can be 

expressed as following using the left and right cells of the interface 

( )






≤

≥
==

,0*

0*
,,

m
R

m
L

RLHLLC
i sf

sf
nUUff   (2.6)  

with  

( ) ( )( ),,*,* nUUsnUf LL
L

LL 
Φ−+Φ=  (2.7)  

( ) ( )( ).,*,* nUUsnUf RR
R

RR 
Φ−+Φ=  (2.8)  

 

Here n  is the edge vector yx nnn ,=


. For horizontal edges 0,1=n , for 

vertical edges 1,0=n .  The terms LS  and RS  are two intermediate signal 

speeds of HLLC scheme on the left-side and right-side of the interface, and are 

given in equations (2.9) and (2.10). The term ( )nU ,Φ  is the flux vector, 

given in equation (2.11). 

( ),~~,min aqaus LL
nL −−=  (2.9)  

( ),~~,max aqaus RR
nR ++=  (2.10)  
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In the above equations, La and Ra  are the left sound speed and the right sound 

speed; a~  and q~  are the Roe average sound speed and average velocity, 

respectively. They are determined by equation (2.12). The two intermediate 

states LU *  and RU *  in equations (2.7) and (2.8) and the signal speed of the 

contact wave ms  in equation (2.6) are given in the following equations: 
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2.3 Second-Order flux solver 

The previous section describes the first-order HLLC scheme. The flux on cell 

interfaces is calculated simply using the values of flow variables on the centers 

of two neighbor cells, or assume piecewise constant for all the flow variables 

inside each cell. To achieve more accurate solutions, in particular for cases 

when shocks, discontinuities or large gradients exist in the system, high order 

schemes are usually adopted. For finite volume method, Monotone Upstream-

centered Schemes for Conservation Laws, or MUSCL scheme in short, is a 

popular method that can provide second-order spatial accuracy. The concept is 

to replace the piecewise constant approximation of Godunov’s scheme by the 

reconstructed states. For each cell, the left and right states are obtained via 

reconstruction through the slope limiter, and then used to calculate fluxes on 

the interfaces.  

 

There are tens of common slope limiter functions for the reconstruction of the 

left and right states. The limiter function is constrained to be greater than or 

equal to zero, i.e. 0r ≥ . The parameter r represents the ratio of successive 

gradients on the solution mesh, as illustrated in Figure 2.1. It is computed via: 

1

1

.i i
i

i i

u ur
u u

−

+

−
=

−
 (2.16)  

 

The following five typical flux/slope limiter functions ( )rφ  are adopted and 

implemented in the current solver to achieve the second-order accuracy. For 

the Osher and Sweby limiters, β=1.5 is used and tested in the current solver. 
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Figure 2.1 Ratio of successive gradients on two neighbor cells 

 

Minmod: ( ) ( )max 0,min 1, .mm r rφ =     (2.17)   

Osher: ( ) ( ) ( )max 0,min , , 1 2 .os r rφ β β= ≤ ≤    (2.18)  

Sweby: 
( ) ( ) ( )
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1 2 .
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 (2.19)  
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+
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With the limiters evaluated via the flux limiter functions in equations (2.17)-

(2.21), the second-order scheme can be achieved by the new states ( ),L RU U+ −  

interpolated by: 

( )
( )

2

2.

L L
i

R R
i

U U r dh

U U r dh

φ

φ

+

−

 = + ⋅


= − ⋅
 (2.22)  

 

The flux calculation will use the new states ( ),L RU U+ −  to replace the current 

states ( ),L RU U  in equations (2.6)-(2.8). 

U 
Cell interface 

X|Y 
L R 

Lr   
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2.4 Implementation of boundary conditions 

There are three types of boundary in numerical simulations for compressible 

inviscid flows: inlet, outlet and wall. In the finite volume method, the flux 

calculation on cell interface needs to use two cells, normally named left cell 

and right cell. Hence for the implementation of boundary conditions, one 

additional cell layer is extended away from the boundary surfaces by 

mirroring the next interior cells of the boundary surfaces. Those cells are 

virtual cells, or named as ghost cells by many researchers. Although the 

governing equations are not solved on these virtual cells, the states on these 

virtual cells are updated according to the appropriate boundary condition every 

time step. 

 

For inlet boundary, the flow variables of density, velocity components, 

pressure and internal energy are set as given inlet conditions if the inflow is in 

supersonic state. When the inflow is in subsonic state, the pressure is 

extrapolated from the neighbor interior cell and the rest variables are set 

according to the given inlet condition. 

 

Next, for outlet boundary, when it is under supersonic condition, all the flow 

information can be extrapolated from the interior neighbor cells simply. When 

it is under subsonic condition, pressure will be set as the background pressure 

and the rest of variables can still be extrapolated from the interior neighbor 

cells. 

 

For inviscid flow, wall boundary condition becomes the same as reflecting 
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wall condition or same as a “symmetrical” condition. The density, pressure, 

tangent velocity and internal energy in the virtual cells are the same as those of 

the neighbor interior cell. The normal velocity is set to be negative of that on 

the neighbor interior cell. This will ensure the no-penetration wall boundary 

condition. The boundary condition for curved wall boundary is special and 

needs to be treated in different ways. The treatment of curved boundary will 

be discussed in the following Chapters 3, 4 and 5. 

 

2.5 Solution adaptive method 

The quad-tree data structure for storing of mesh cells is adopted in the current 

work for the development of the adaptive mesh refinement (AMR) solver on 

Cartesian grids. To make the adaptive process efficiently during the solution 

evolution, all the connectivity and hierarchy information of the Cartesian cells 

and cell interfaces are explicitly stored for quick retrieval and use. The current 

solver is in unstructured Cartesian grid family. In this category, the mesh 

adaption is only performed at regions where high resolution is necessary such 

as the place where shock wave is located. In this manner, high resolution of 

the problems can be achieved without exaggerative computational load. This 

advantage of adaptive solver is remarkable compared with the solver based on 

uniform mesh, in which the whole domain must be refined when high 

resolution is required. 

 

The current solver and the solution adaption process are developed by the 

object-oriented programming language C/C++. For the 2D solver, three major 

objects are defined in individual data structure and they are node, edge and 
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cell. A cell object consists of four edge objects that enclose the cell; an edge 

object consists of two node objects that are the two ends of the edge. The 

object trees of cell, edge and node are listed in Figure 2.2. The objects Tcell, 

Tedge and Tnode define the control cell, the cell interface or edge and the 

grid node, respectively. The four edges of a cell are stored in *Edges[4]; the 

neighbor cells of an edge are stored in *neighborCells[2]. Similarly, the 

childCells and parentCell are defined accordingly. The variables defined 

under the objects can be very easily indexed and accessed when needing to use 

them. New data information can be added into the object easily when needed. 

 

 

 

 

 

 

Figure 2.2 Data structure of the objects (cell, edge and node) for 2D solver 

 

For the quad-tree mesh adaption on Cartesian grids, a parent cell will be 

refined with four child cells. In this process, a maximum 12 new edges will be 

created and a maximum of 5 new nodes will be added, as illustrated in Figure 

2.3. New nodes are appended to the existing node object list, while new edges 

and new cells are inserted before their parents in the corresponding object list. 

To decide whether a cell can be refined, its adaption level and status of the 

neighbor cells must be considered to avoid duplicate creation of new edges 

and nodes. For example, if all the four neighbor cells of a cell are already 

Tcell Tedge  *Edges[4] 
double  xc,yc; 
double  p,rho,u,v,E; 
double  Area; 
double  Grad[4]; 
 int  layer, refined; 
Tcell *childCells[4]; 
 Tcell  *parentCell; 
 
 Tcell  *prev; 
 
 
Tcell  *next; 
 
 

Tedge Tnode  *Nodes[2] 
int  bctype; 
double  nx, ny; 
double  length; 
double  flux[4]; 
 Tcell *neighborCells[2]; 
 Tedge *childEdges[2]; 
 Tedge *parentEdge; 
 
 Tedge  *prev; 
 
 
Tedge  *next; 
 
 

Tnode double  x0,y0; 
 double  x1,y1; 
Tnode  *prev; 
 Tnode *next; 
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refined to a finer level, then only one new node at the cell center and four new 

edges forming the cross frame (+) inside the cell will be created. 

 

In order to ensure the smooth transition from coarse mesh region to fine mesh 

region and the accuracy of the solution, the level difference of two neighbor 

cells for an edge is restricted to one. So the shadowed refined cell marked as 

dotted-line in Figure 2.3 (c) is not allowed. As illustrated in the diagram, 

checking of refinement dependency is needed and the refinement of the 

dependent cells must be performed first before the marked cells are refined. In 

the current work, the check of refinement dependency is limited to one cell 

away from the cell marked for refinement to avoid recursion need of adaption 

for too many cells. This makes the code implementation easier and keeps the 

adaption solver efficient. The validation of the accuracy benefit and efficient 

of the solver will be presented in the following sections.  

 

 

 

 

 

 

 

Figure 2.3 Illustration of mesh refinement process  
 

Beside the refinement process discussed above, coarsening process is also 

necessary in AMR technique to reduce the number of grid used. In the 

(a)  Level 0       (b)  Level 1                   (c)  Level 2 

Marked for refine Refine dependent cells 
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coarsening process, only parent cells can be chosen for coarsening but the 

grand-parent cells will be ignored until their children cells are not marked as 

refined. In addition, it is necessary to check the adaptive status of the neighbor 

cells before the confirmation of the coarsening. In specific, if any neighbor 

cells are grand-parent cells, then the current cell will not be coarsened to 

ensure that the level difference is limited to one. Particularly, to perform 

coarsening, the 4 edges in the cross (+) position and the central node will be 

deleted from the object list. The other 8 sub-edges and 4 nodes can be deleted 

if they are not associated with the neighbor cells. All the deleted edges, nodes 

and the coarsening cells will be deleted from the corresponding object list and 

then freed from the memory to save the memory usage. 

 

As introduced previously, on an adaptive refinement grid, accurate calculation 

of edge flux is of utmost important for the solver. Great attention must be paid 

on the flux calculation especially on the adapted edges. When a cell is refined, 

the cell will become a parent cell and has its child cells; the four edges formed 

the cell will have their child edges. Flux should be calculated on the children 

edges only and then their contribution to the left and right cells are directly 

updated. It is not necessary to perform the flux calculation for the refined 

edges. As illustrated in Figure 2.4, flux calculation will be performed on edges 

AB and BC as f1 and f2, but it is no need for edge AC. The flux f1 will be 

contributed to cell[n] and cell[n+2]; the flux f2 will be contributed to cell[n+1] 

and cell[n+2]. So to cell[n+2], though the flux through its edge AC (or A’C’) 

is not directly computed, the total flux through this edge is still counted by 

edges AB and BC. 
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In the current work, flux is calculated on all the valid children edges and the 

non-refined edges as described above. After the flux on all edges is evaluated, 

solution at the next time step in the term of the state 1+n
cU  for all the non-

parent cells can be obtained via equation (2.4). For the parent cells, their new 

state will be determined by summation of the state from all four child cells. 

Having the new state 1+n
cU , the physical variables of density, pressure, 

velocity component and internal energy at the cell centers can be obtained. 

 

 

 

 

 

Figure 2.4 Flux calculation for the edges of a refined mesh cell 
 

AMR technique is useful to cluster fine meshes in the region that is critical or 

experiencing high flow gradients while use coarse mesh in the regions that has 

less variation. For compressible flows specifically, regions close to shock 

wave, rarefaction and contact wave in general have high flow gradients and 

require very high mesh resolution. Hence, adaptively locating fine mesh into 

these regions is very useful for accurate capturing of the sudden changes in 

solution such as shock waves. On the other hand, it is also essential to coarsen 

refined cells when the gradients at the cells become small. This effectively 

reduced the total number of cells used, and consequently improves the 

computational efficiency. In the current adaptive solver, the density gradient is 

chosen as the refinement indicator because it essentially conveys the flow 
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changes of rarefaction, shock and contact waves. In contrast, pressure and 

velocity gradients only reflect the flow changes in the regions of rarefaction 

and shock normally. However, these variables can also be used as the adaptive 

criterion if needed. The mesh refinement can also be chosen based on the 

location when it is needed, for example to cluster fine meshes near the critical 

geometry. 

 

In summary, the flow chart of the current adaptive solver as described above is 

given in Figure 2.5. The solution adaption part is developed as a module 

component in the solver. So it can be by-passed by giving a negative switch 

indicator. This also facilitates the ease in the debug and troubleshooting for the 

code development. Furthermore, it makes the comparison for solutions 

computed on uniform meshes and adaptive meshes very simple and easy. 
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Figure 2.5  Flow chart of the current adaptive Cartesian grid Euler solver 
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2.6 Test cases and discussion 

 
For compressible flows, shock waves and Riemann discontinuous flow 

structure are very common. These flow structures involve very high flow 

gradient and are very challenging for numerical simulation. In this section, 

results for six compressible flow problems are presented to illustrate the 

accuracy and effectiveness of the current adaptive solver. 

 

2.6.1 Sod’s shock tube problem 

The first test case is a modified Sod’s shock tube problem. The initial 

condition inside the o unit length tube is: 

3.0<x  { } { },0.1,75.0,0.1,, =LLL Puρ  

3.0>x  { } { }.1.0,0.0,125.0,, =RRR Puρ  

 
The Sod’s shock tube problem is a one-dimensional problem and the 

analytical solution is available [35]. The solution has a right shock wave, a 

right travelling contact wave and a left sonic rarefaction wave. It is solved in 

2D with the current adaptive solver in a domain of 1×0.1, and an initial 

uniform mesh of 100x10 is applied.  

 

Figure 2.6 shows the predicted solution on the initial mesh without refinement 

and 3-level adaption. The numerical results are compared to the analytical 

solution at dimensionless time t=0.2. It can be seen that among the profiles of 

density, pressure, velocity and internal energy, only density profile can reflect 

all the three waves. It authenticates the choice of density gradient as an 

adaption indicator. It can be seen from the computed profile that all the three 
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captured waves compare very well with the exact solution. The solution with 

3-level adaption matches to the exact solution much more accurately than that 

of the initial uniform mesh. The mesh distribution for 3-level adaption is 

shown in Figure 2.7. It is very clear that fine meshes are adapted to the high 

flow gradients at the three areas representing the rarefaction wave, the contact 

wave and the normal shock wave. As a result, it improves the accuracy for the 

wave capture. 
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Figure 2.6 Sod’s Shock Tube Problem: comparison of predicted solution 

between uniform no adaption mesh and 3-level adaption mesh 

 

 
Figure 2.7 Sod’s Shock Tube Problem: Mesh distribution with 3-level 

adaption  
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2.6.2 Lax shock tube problem 

The second test case is the Lax shock tube problem [35], which is very similar 

to the Sod’s shock tube problem. The initial condition of Lax shock tube 

problem is: 

4.0<x  { } { },894.460,5975.19,99924.5,, =LLL Puρ  

4.0>x  { } { }.0950.46,19633.6,99924.5,, −=RRR Puρ  

 

The Lax shock tube problem is a very severe test. The flow consists of three 

strong discontinuous travelling waves to the right. The flow is also solved in 

2D with the current adaptive solver in a domain of 1×0.1 and an initial 

uniform mesh of 100x10. 

 

Figure 2.8 shows the predicted solution on the initial mesh without refinement 

and 3-level adaption, which is compared to the analytical solution at 

dimensionless time t=0.035. Density gradient is used as the indicator for 

performing solution adaption. As shown in the figure, the adaptive solver can 

capture all the three strong travelling waves accurately, especially when 3-

level adaption is used. The mesh distribution for 3-level adaption is shown in 

Figure 2.9. This test case shows that the current adaptive solver is very robust 

to predict such strong waves. 
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Figure 2.8 Lax Shock Tube Problem: comparison of predicted solution 

between uniform no adaption mesh and 3-level adaption mesh 

 

 
Figure 2.9 Lax Shock Tube Problem: Mesh distribution with 3-level 

adaption  

 

 

2.6.3 Two-Dimensional oblique shock wave  

A two-dimensional shock wave reflecting from a rigid surface is simulated in 

this test case. The computational domain is a rectangular domain with length 

of 4 and width of 1. The initial uniform mesh of 80x20 is used. The left and 

bottom surfaces are defined as fixed inlet condition, as shown in Figure 2.10. 

The top surface is defined as wall boundary. Supersonic outflow condition is 
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defined at the right surface and all flow variables are extrapolated from the 

interior cells. The initial condition is defined using the left inlet condition. 

 

An incident shock angle of 29° towards the top wall is produced and the free 

stream Mach number M∞ is 2.9. The shock is reflected down by the top wall. 

Figure 2.11 and Figure 2.12 show the simulated density contours in the 

rectangle domain on the initial uniform mesh and the adaptive mesh. The 

comparison of the predicted density distribution with the exact solution is 

presented in Figure 2.13 at y=0.5. The results indicate that the adaptive solver 

can capture the two incident shock waves sharply and the strength of the two 

shock waves agrees with the exact solution very well. 

 

 

 

 

 

Figure 2.10 Oblique Shock Wave: Computational domain and boundary 
conditions 

 

 
Figure 2.11 Oblique Shock Wave: Mesh distribution (colored by density) 

and Density contours (1.0 to 2.65, 30 levels) on uniform mesh 80×20. 
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Figure 2.12 Oblique Shock Wave: Mesh distribution (colored by density) 
and Density contours (1.0 to 2.65, 30 levels) with 3-level adaption on initial 

Mesh 80×20. 

 

 
 

Figure 2.13 Oblique Shock Wave: Comparison of the predicted density 
profile at y=0.5 with the exact solution 

 
 

2.6.4 Double Mach reflection 

The shock wave strength involved in the previous oblique shock wave 

reflection problem is relative weak with a low pressure ratio of 2.7. The 

double Mach reflection problem is another challenging test case studied 

extensively by many researchers [36]-[39]. The problem is unique according 

to its high pressure ratio at about 116.5 and a strong normal shock wave with 

Mach number 10 passing through a 30° wedge. For the convenience of 
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construction of the computational domain, the reflecting wall or the wedge 

surface, is put on X-axis starting from X=1/6.  The computational domain is 

chosen to be a rectangle as 4×1. The boundary conditions are as described in 

Figure 2.14. To be specific, top surface is separated by point-B with the left 

side of point-B as inflow condition and the right side of Point-B as outflow 

condition. Point-B will move to the right following the shock wave on the top 

surface. Position A is aligned to the leading point of the wedge surface, and 

AB


 indicates the initial position of the shock wave. Initially a right-moving 

shock with Ma=10 is positioned at AB


. The inflow condition is defined as the 

post-shock condition. Initial uniform mesh of 120×30 is defined in the 

rectangle domain. The simulation is carried out until a dimensionless time 

t=0.20. 

 

The computed density contours and the adaptive mesh are shown in Figure 

2.15 and Figure 2.16. The main shock and the oblique wave are captured with 

the initial uniform mesh with no adaption but the detailed shock structure 

before the main shock near the wedge is smeared. The results with 3-level 

adaption are in good agreement with other Euler solvers running on finer 

meshes of 960×240 by Jun et al. [36], and 480x120 by Woodward and Colella 

[40]. The complex flow structures such as the main three-shock intersection 

and the structure of the jet formed near the reflecting wall are accurately 

captured as shown in Figure 2.16. 
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Figure 2.14 Double Mach Reflection: Computational domain and boundary 
conditions 

 

 
 

Figure 2.15 Double Mach Reflection: Mesh distribution (colored by density) 
and Density contours (1.9 to 21, 50 levels) with no adaption on initial Mesh 

120×30. 
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Figure 2.16 Double Mach Reflection: Mesh distribution (colored by density) 

and Density contours (1.9 to 21, 50 levels) with 3-level adaption on initial 
Mesh 120×30. 

 

2.6.5 Backward step problem 

The backward step problem is to study the shock wave diffraction at a sharp 

90° corner. Different shocks from 1.65 to 5.09 were investigated by Sun [38] 

and Hillier [41]. The computational domain is chosen as 4×4 with a step 

located at the left-bottom region of the square domain, as shown in Figure 

2.17. The boundary conditions to the left of the shock are set as inlet with 

post-shock conditions. The shock moves at Ma=3 to the right. Initially, a 

vertical shock is positioned just above the corner, inflow condition is set for 

the region left to the shock and outflow condition is set for the region right to 

the shock. Initial mesh is defined as 50×50, with the mesh cells inside the step 

is being cut out. 

 

The predicted density contours of the shock wave diffraction are shown in 
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Figure 2.18 and Figure 2.19. The former is obtained on initial uniform mesh 

and the latter is obtained by 3-level solution adaption. From the comparison, it 

is noticed that the computed density contours with 3-level adaption is able to 

reproduce the diffraction shock sharply and the secondary shock waves are 

also shown. In addition the vortex shock structure at (1, -0.75) is also captured 

as indicated by the arrow in Figure 2.19. The results are comparable to the 

results presented by Hillier [41]. 

 

 

 

 

 

 

 

 

Figure 2.17 Backward step problem: computational domain and boundary 
conditions 

 
Figure 2.18 Backward step problem: mesh distribution and density contours 

(0.3 to 3.7, 30 levels) with no adaption on initial mesh of 50×50. 
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Figure 2.19 Backward step problem: mesh distribution and density contours 

(0.3 to 3.7, 30 levels) with 3-level adaption on initial mesh of 50×50. 

 

2.6.6 Cylindrical shock explosion 

In the Sod’s shock tube problem, though it is solved in 2D, the characteristics 

of the problem are actually in a one dimensional case. The cylindrical 

explosion problem is like a 2D extension of the Sod’s shock tube problem. 

The computational domain is a 2×2 square with a circle region of radius R=0.4 

at the center (Figure 2.20), and inside the circle region, it is filled with high 

pressure and high density air. The surroundings of the circle are filled with air 

at low pressure and low density. The explosion of the air inside the circle 

starts at time t=0 to all directions on the 2D domain. The initial uniform mesh 

is defined as 50×50. 

 

The predicted density, pressure, velocity and internal energy distribution on 

line OA


 in Figure 2.20 at dimensionless time t=0.25 are plotted in Figure 2.21 

and compared to the exact solution [35]. The flow structure consists of a 

circular shock wave travelling away from the center, a circular contact surface 

travelling in the same direction and a circular rarefaction travelling towards 
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the center of the circle. This can be observed in the 3D plot of the wave 

surfaces for density and pressure in Figure 2.22. It can be seen that the 

predicted profiles with 3-level solution adaption closely match the exact 

solution. Moreover, the adapted mesh at the solution time t=0.25 is shown in 

Figure 2.23. 

 

  

 

 

 

  

 

Figure 2.20 Cylindrical explosion: configuration and boundary conditions 
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Figure 2.21 Cylindrical explosion: comparison of predicted solution 
between uniform mesh and 3-level adaption mesh 
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(a)  Density distribution         (b)  Pressure distribution 

 

Figure 2.22 Cylindrical explosion: density and pressure distribution at time 
t=0.25 

 

 

Figure 2.23 Cylindrical explosion: mesh distribution (colored by density) 
with 3-level adaption on initial mesh of 50×50 
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2.7 Effectiveness of the adaptive solver 

The major advantages of the adaptive solver are its effectiveness and accuracy 

improvement in critical regions. By adapting finer meshes to the regions that 

bear high flow gradients, the adaptive solver is able to resolve the significant 

changes of the flow physics. In addition, considerable amount of computing 

time can be saved since there is no need to apply fine meshes in the regions 

with low flow gradients. Table 2.1 lists the computation time for the above six 

test cases. The comparison is made between the computations on uniform finer 

meshes and adaptive meshes with the same finest mesh resolution in the 

computational domain.  

 

Test Case Initial Mesh Size 
and CPU Time Uniform Finer Mesh  Adaptive Mesh 

  dh       Time (s) h/2 h/4 h/8  1x, h/2 2x, h/4 3x, h/8 

1, Sod’s Shock Tube 1/100       5 13 101 888  9 53 340 

2, Lax Shock Tube 1/100       3 21 175 1516  12 67 446 

3, Oblique Shock 1/20         8 72 658 5614  35 216 1109 

4, Double Mach Reflection 1/30         7 67 659 5655  41 235 1555 

5, Backward Step 1/50         3 26 261 2275  15 96 714 

6, Cylindrical Explosion 1/25         1 8 76 654  6 40 297 

Table 2.1 Computational time for uniform mesh and adaptive mesh 

 

Figure 2.24 Computational time for finest meshes for six test case  



Chapter 2   Adaptive Cartesian Grid Euler Solver  

50 
 

From the table, it is observed that for the finest mesh (resolution of h/8) to all 

the six cases, the computation time required for the uniform mesh is about 2~5 

times more than that required for the adaptive mesh, as shown in Figure 2.24.  

For the mesh resolution of h/4, this drops to 2~3; and again drops to 1.3~2 for 

mesh resolution of h/2. The comparison indicates that the adaptive solver is 

more efficient for higher adaptive level. Hence, to obtain high accuracy and 

save computation time, a relative coarse initial uniform mesh coupled with a 

higher adaptive level will be more efficient and appropriate. 

 

Moreover, it is also noticed that the performance of the adaptive mesh varies 

with the problem studied. For example, the oblique shock problem 

demonstrates very good performance of the adaptive mesh for about 5 times 

faster on the resolution of h/8. It is only about 2 times faster for the cylindrical 

explosion problem. The flow structures indicate that the adaption is only 

required for two straight shocks for the oblique shock problem, but it is 

demanded for the three circular regions of shock, contact wave and rarefaction 

for the cylindrical explosion problem. And normally the rarefaction region is 

relative large in the domain. So larger regions need to be adapted for the 

cylindrical explosion problem, hence the performance will be relatively low. 

 

2.8 Improvement of solution accuracy by the second-
order schemes 

The accuracy of the second-order schemes is studied based on three test cases: 

1) Sod’s shock tube problem, 2) two-dimensional oblique shock wave, and 3) 

double Mach reflection.  
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Although the Sod’s shock tube problem is a relative simple test case, the 

presence of right shock wave, right travelling contact wave and a left sonic 

rarefaction wave make the problem a very suitable validation test case for 

accuracy study for a compressible CFD solver. In order to make fair 

comparison, the computational domain is fixed in 1×0.1 and the mesh size is 

fixed to 100×10. The second-order scheme is implemented with five flux 

limiter functions shown in the previous section. The solution for all the five 

flux limiter functions is obtained and plotted in Figure 2.25, including the 

profile for density, velocity, pressure and internal energy. The exact solution 

and the first order solution are also plotted on the same chart for comparison. 

From the comparison made in these plots, it is observed that the solution 

accuracy is improved obviously by the second-order scheme in the regions 

near the contact wave and shock wave. All the five flux limiter functions 

produce similar solution for density, velocity and pressure, except for the 

internal energy where certain level of oscillation is noticed near the contact 

wave position. By comparing the local oscillation of internal energy term, the 

flux limiter functions of Minmod and Sweby are able to produce more stable 

solution than the other three flux limiter functions of Osher, Van Leer and Van 

Albada. This verifies that using the flux limiter function does improve the 

solution accuracy, while its effect makes the solver very sensitive in the 

regions near the shock wave. 

 

To further study the impact of the flux limiter functions on the solution 

accuracy, three different values of β in the Osher limiter are tested and 

compared: 1.1, 1.5 and 1.9, in the range of 1 to 2.  The density and energy 
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profiles are plotted in Figure 2.26 with comparison to the exact solution. The 

density profile almost maintains with different β values defined in the limiter 

function. However, the internal energy profile shows obvious difference in the 

region nears the contact wave, where energy oscillation is observed as shown 

in Figure 2.25. The level of oscillation becomes stronger with larger β value 

used in the Osher flux limiter function. This indicates that the prediction of 

contact wave is very sensitive to the flux limiter function, and the proper 

choosing of the β value in the function as well.  

 

Moreover, the two-dimensional oblique shock wave problem is a suitable 2D 

test case to validate the solver. To carry out the study of accuracy 

improvement for the second-order scheme, the computational domain is fixed 

to 4×1 and the mesh size is fixed to 160×40. The density contour is plotted to 

demonstrate the improvement of the accuracy by using the second-order solver. 

As shown in Figure 2.27, the two oblique shock waves can be captured much 

sharply by the second-order solver as compared to the solution obtained by the 

first order solver. The density profile at y=0.5 plotted in Figure 2.28 shows 

that the second-order solver using all five flux limiter functions is able to 

produce similar and more accurate solution as compared to the first order 

solver. 
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Figure 2.25 Accuracy study for the Sod’s shock tube case 

 

   

Figure 2.26 Accuracy study for different β values in Osher limiter 



Chapter 2   Adaptive Cartesian Grid Euler Solver  

54 
 

 

 

Figure 2.27 Accuracy study for oblique shock wave case (density contours) 

 

Figure 2.28 Accuracy study for oblique shock wave case (density profile) 

 

The presence of extremely high pressure ratio of 116.5 and strong shock for 

the double Mach reflection problem makes it a challenging test case for 

compressible flow solver. In particular, when the second-order scheme or 

other high order schemes are used to calculate the flux on the interface of the 

cells, solution stability will become a common problem. Large amount of 

works have been done on implementation and fine-tuning of the flux limiter 

function in dealing with the second-order and high order schemes [3][5][42] 

and many of the tunings were done at the trial and error basis. In the current 

work, the solution for this test case was successfully obtained using all the flux 

(a) 
1st Order 

(b) 
2nd Order 
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limiter functions except the Van Albada limiter. The computational domain is 

fixed to 4×1 and the mesh size is fixed to 400×100. The density contour is 

plotted and compared between the solution of the first order scheme and the 

second-order scheme, as shown in Figure 2.29. From the comparison, it is 

observed that the second-order solver is able to capture the triangle shock 

structure behind the moving shock sharply and accurately. This presents the 

benefit of accuracy improvement by using the second-order scheme. 

 

 

 
Figure 2.29 Accuracy study for double Mach reflection case (density 

contours) 
 

2.9 Accuracy and convergence analysis 

The numerical solution at four different meshes is computed for the Sod’s 

shock tube problem for accuracy analysis of the current Euler solver using 

both first-order scheme and second-order scheme. The mesh spacing used for 

the analysis is 0.1, 0.05, 0.025 and 0.0125. The numerical error of density ρ is 

quantified using L2 norm on all the cells in the computational domain. 

(a) 
1st Order 

(b) 
2nd Order 
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( )2

2 .numerical exactNL Error
N

ρ ρ−
= ∑  (2.23)  

 

The subscript (numerical) and (exact) in the formula denote the numerical 

density and the exact solution. The L2 norm error versus the four different 

mesh spacing in the log scale is plotted in Figure 2.30. As the slope of the 

lines show, the accuracy of numerical results is closed to 1 and 2 for the first-

order and second-order scheme, respectively. This implies that the overall 

accuracy of the adaptive solver can achieve second-order accuracy using the 

implemented second-order scheme with limiter function. 

  

Figure 2.30 Accuracy analysis of the current solver 

 

The oblique shock wave problem is chosen for the convergence analysis of the 

current solver, as it is a steady-state problem. Numerical solution is computed 

on uniform coarse mesh 80×20 and uniform fine mesh 320×80. To benchmark 

the convergence characteristics of the adaptive solver, numerical solution is 

also computed with 2-level solution adaption through two different approaches. 

Slope≈0.9 

Slope ≈ 1.9 
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One approach (case [a]) is to enable the solution adaption from the beginning 

of iteration and the other approach (case [b]) is to start the solution adaption 

only after the solution is converged on coarse mesh. In the present study, 

steady-state solution is considered converged when the maximal residual of 

the solution is reduced below 10-6. 

 

The four different convergence tracks are plotted in Figure 2.31 as the residual 

of density versus the number of iteration of the solver. As it shows the uniform 

coarse mesh solution converges the fastest in only 1800 iterations using about 

2 seconds, while the uniform fine mesh solution takes about 6400 iterations 

and 135 seconds to converge. Usually, large time step can be used on coarse 

mesh as compared to finer mesh. Hence it takes fewer iterations of solution 

evolution in marching to the steady-state solution on coarse mesh. Apart from 

this, fine mesh implies more equations to be solved on the larger number of 

mesh cells. As a result, the computing time required for fine mesh increases 

significantly instead of linearly. The comparison of the convergence history 

between two solution adaption approaches shows no much difference. Both 

approaches take about 6500 iterations and 34~40 seconds to converge, with 

the approach [b] takes slightly less computing time to converge. This could be 

due to the fact that converged coarse mesh solution provides a better “initial 

condition” for the 2-level adaption solution, while it does not take too long to 

achieve the converged coarse mesh solution. This could be a useful approach 

for steady-state flow simulations. 
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Figure 2.31 Convergence analysis of the current solver 

 

 

 

2.10 Conclusions 

In this Chapter, an adaptive Euler solver was developed based on finite-

volume method. The HLLC scheme is used to compute the flux on cell 

interface and five second-order flux schemes were implemented and validated. 

The AMR technique is an important feature implemented on the current Euler 

solver to improve the accuracy and efficiency of the solver. 

 

The current adaptive Euler solver was validated through six 2D test cases, 

with the adaptive solutions were obtained with 3-level solution adaption. The 

present results are compared with the analytical solutions and numerical 

results in the literation. The comparisons show good agreement. The solution 

adaptive capability demonstrates remarkable performance not only in the 

solution accuracy improvement but also in the improvement of solver 

[a],  solution adaption is enabled from the beginning of iteration. 
[b],  solution adaption is enabled only after the coarse mesh 

solution is converged. 
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efficiency. Five second-order schemes were implemented and their 

performance for solution accuracy improvement was studied and presented. 

The accuracy and convergence analyses not only show that the current 

adaptive Euler solver can achieve close to second-order accuracy, but also 

demonstrate that the solution can converge efficiently using the solution 

adaption feature developed in the current solver.  

 

The current adaptive Euler solver has built a concrete foundation for the 

implementation and validation of the immersed boundary methods for 

compressible flows.  
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Chapter 3 Ghost-cell Method-based  
Adaptive Euler Solver 

 

The Cartesian grid-based adaptive solver presented in Chapter 2 demonstrates 

good capability and effectiveness in simulating compressible inviscid flows. In 

order to use the adaptive solver for various generic compressible flow 

problems, the solver needs to be extended to handle irregular wall boundary 

surfaces effectively. Such kind of wall boundary surfaces can be a domain 

boundary surfaces or wall boundary surfaces of immersed solid bodies in the 

computational domain.  

 

As discussed in the literature review in Chapter 1, there are three methods to 

represent wall boundaries on non-body-fitted Cartesian grids. Among the three 

methods, ghost-cell method is relatively less complicated to be implemented 

on Cartesian grids as the flux calculation is only performed on the mesh cell 

interfaces. There is no need to form special cut-cells or merge small cut-cells 

into neighbor parent cells as required in cut-cell method; and neither does it 

need to develop a grid-less algorithm to solve the governing equations in the 

grid-less zone as required for grid-less method. Instead, in the ghost-cell 

method, one only needs to accurately correct flow information near the wall 

boundary according to the prescribed boundary conditions. 

 

Therefore, the ghost-cell method is adopted and implemented in the current 

adaptive Euler solver. As the method has been implemented and tested by 
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many researchers, the implementation of the method in the current adaptive 

Euler solver enables the validation and performance study for compressible 

flows involving complex boundaries can be made and compared.  

 

3.1 Ghost-cell method 

The ghost-cell method was first proposed by Forrer and Jeltsch [5] and then 

improved by the curvature-correction symmetry technique (CCST) introduced 

by Dadone and Grossman [6], [7], [8]. The method is an enhancement to the 

symmetry technique to take into account the wall curvature for solid wall 

boundary conditions based on body-fitted grid. The implementation of CCST 

gives the approximation of pressure, density and normal velocity on two 

image/ghost cell centers, shown as hollow dots (-1) and (-2) in Figure 3.1.  
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Here 1n∆  and 2n∆  are the distances between cell centers ( ) ( )1 1+ → −  and 

( ) ( )2 2+ → − . The symbol ~ denotes the normal-tangent velocity components 

on the wall boundary. The tangent velocity on cell centers (-1) and (-2) is the 

same as it is on cell centers (+1) and (+2). 

 

 

Figure 3.1 Concept of ghost-cell method  

 

The CCST method can be adopted and extended to apply on the Cartesian grid. 

To make it flexible and simple to implement, the ghost-cells in the solid zone 

are searched in the local region within double mesh size from the boundary. 

For convenience, the cells near the wall boundary are named shadow-cells in 

this thesis. Moreover, the shadow-cells fallen in fluid zone are labeled as fluid 

shadow-cells, and those fallen in solid zone are named as solid shadow-cells. 
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In this context, as shown in Figure 3.2, the ghost-cells around wall point-B can 

be classified into fluid shadow-cell (in green) on one side of the boundary, and 

solid shadow-cell (in gray) on the other side of the boundary. When enforcing 

wall boundary conditions, the flow information on the solid shadow-cells are 

updated using equations (3.1) - (3.4) . Governing equations are solved on the 

fluid shadow-cells directly, so there is no additional action needed for those 

cells. 

 

However, as the fluid shadow-cells and the solid shadow-cells under this case 

may not be right in symmetrical relationship across the wall surface, the 

pressure, density and normal velocity on the solid shadow-cells cannot be 

updated directly using equations (3.1) - (3.4) . Hence the symmetrical 

relationship needs to be built first. This can be done by mirroring either solid 

shadow-cells into the fluid region, or mirroring fluid shadow-cells into the 

solid region. As the flow information on solid shadow-cells need to be updated 

based on the boundary condition and local fluid information, it will be easier 

to mirror the solid shadow-cells and update the flow information on them 

directly. To illustrate the process, as shown in Figure 3.2, for the solid 

shadow-cell (j), if 
→

jB  is normal to wall surface, the cell center (j) can be 

reflected based on normal direction n  to (j’) into the fluid region. The flow 

information on position (j’) can be obtained using local interpolation with all 

the fluid shadow-cells of wall point-B. In current study, the simple inverse 

distance method is used for the interpolation. Once this is done, using the wall 

boundary condition equations (3.1) - (3.4) , the pressure, density and velocity 

can be computed and updated for the solid shadow-cell (j). The total energy 
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will be updated using the equation of state. 

 

As mentioned above, the boundary condition is implemented through updating 

the flow information on solid shadow-cells from the fluid shadow-cells. 

Therefore, a quick and universal way to identify whether shadow-cells fall in 

fluid region or solid region is very crucial.  

 

Figure 3.2 Implementation of CCST method on Cartesian grid 

 

It can be found that boundary of a 2D immersed body is normally represented 

by many short line segments. Imagining walk along these segments from the 

head to the tail, one can always find that the fluid shadow-cells are always on 

one side and the solid shadow-cells are on the other side. Inspired by this, an 
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innovative approach is proposed by introducing a fluid reference point R in the 

computational domain and then using the relationship between the line 

segment of cell center to the fluid reference point and the wall edge to 

determine the property of the shadow-cell. As shown in Figure 3.3 (a), point A 

is located in the fluid region as RA


 does not intersect with the Wall;  points 

A’ and B’ are in the solid region as 'RA


 and 'RB


 intersect with the Wall once; 

point B is in the fluid region again as RB


 intersects with the Wall twice.  This 

is like the situation when walking from the fluid reference point R to the point 

B, it first passes the wall and goes inside the solid body and then passes the 

wall again to enter into the fluid region at point B.  In general, a point (i) will 

be in fluid region if Ri


 intersects with the Wall by an even number of times; 

and in solid region if by an odd number of times. 

 

Figure 3.3 (b) illustrates the local view and relations of the shadow-cells (i) 

and (i+1), the wall segments (j)-(j+1), and the fluid reference point R. Because 

R i→


 has no intersection point with all wall segments and ( )1R i→ +


 

intersects with the wall segment (j)-(j+1), so cell (i) is a fluid shadow-cell and 

cell (i+1) is a solid shadow-cell. 

 
Figure 3.3 Concept in determining the property of shadow-cells 
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3.2 Results and discussion 

To validate the implementation of ghost-cell method in current adaptive Euler 

solver, two well-known test cases are experimented numerically. The first test 

case is a supersonic inviscid flow over a circular cylinder at Mach number 3; 

the second test case is a transonic flow problem over a channel with a 10% 

circular bump at the bottom of the channel. The transonic flow over a 

RAE2822 airfoil and supersonic flow over 3 disks are computed to further 

demonstrate the capability and robustness of the current adaptive solver. 

 

3.2.1 Supersonic flow over a circular cylinder 

Supersonic flow over two-dimensional circular cylinder was studied 

extensively by many researchers [43], [44]. Here the supersonic flow with 

inflow of Mach 3 is simulated. The computational domain is an 8×4 rectangle 

domain on X-Y coordinate system, with a unit cylinder centered at the origin. 

Half of the cylinder is model as the flow structure upstream of the cylinder is 

more interested. The sketch of the computational domain and the location of 

the cylinder are shown in Figure 3.4 (a). The left of the domain is defined as 

Mach 3 inlet; the other three boundaries are defined as outlet boundary with 

zero flow gradients. Because the flows at the three outlets are in supersonic 

flow condition, using zero gradient extrapolation at the outlets is valid. An 

initial uniform mesh of 40×80 is defined in the rectangle domain. The half 

cylinder wall is expressed by 315 points with a resolution of about 0.01. 

 

The computed pressure profile along the central line is plotted in Figure 3.4 
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(b). The predicted shock becomes shaper and the position of the shock is very 

close to the results obtained by Qu [43] using the Lattice Boltzmann model 

and Visbal and Gaitonde [44] on a body-fitted grid. The pressure after the 

shock predicted is about 11.97 on the nose of the cylinder, and matches well to 

their prediction of 12.10. The pressure and density contours are plotted in 

Figure 3.5 (a) and (b). The contours indicate that the shock position and the 

unit circular cylinder outline are computed clearly and sharply. The 

streamlines shown in Figure 3.5 (c) demonstrate that the air flow passes the 

circular cylinder very smoothly and with no streamlines penetrating the 

cylinder surface. This implies that the no-penetration wall boundary condition 

is satisfied accurately. 

 
Figure 3.4 Mach 3 supersonic flow over a circular cylinder 
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(a) Pressure Contours                (b) Density Contours         (c) Streamlines 

Figure 3.5 Results for Mach 3 supersonic flow over a circular cylinder 

 

3.2.2 Transonic flow over a channel with bump 

This problem is the well-known Ni’s steady-state test case: a transonic flow in 

a channel with a 10% thick circular bump on the bottom (or known as GAMM 

channel). The computational domain is a rectangle of length 3 and height 1. 

The inlet is at left with a Mach number 0.675, see Figure 3.6. A shock is 

formed downstream the throat near the bottom wall. The initial mesh is 

defined as 60×20. Local meshes near the circular bump are pre-adapted by 

four levels to ensure that the circular bump wall boundary is represented with 

sufficient Cartesian cells.  

 

The computed Mach number and pressure contours by 2-level adaption based 

on density gradient in the flow field are presented in Figure 3.7 (a) and (b). 

The Mach number distribution on the lower wall of the channel computed is 
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compared with those obtained using unstructured finite volume scheme by 

Luo et al. [45] and hybrid grid-less method by Luo et al. [11]. The computed 

result obtained via the current method matches well to those results. As shown 

in the Figure 3.7 (c) for the Mach number distribution on the lower wall of the 

channel, the maximal Mach number matches very well, while the shock 

position is slightly further away downstream to the throat compared to other 

results. 

 

 

 

 

 

Figure 3.6 Transonic flow in GAMM channel with a 10% circular bump 

    

(a)  Mach number contours                                               (b)  Pressure contours 
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(c)  Mach number on the lower wall of the channel 
 

Figure 3.7 Computed Mach number and pressure in GAMM channel 
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3.2.3 Transonic flow over a RAE2822 airfoil 

Transonic flow over RAE2822 airfoil is simulated under the free stream flow 

condition at Mach = 0.729, and the angle of attack (AoA) at 2.31°. The 

computational domain is chosen at about 20 times of the chord size away from 

the airfoil. The coarse uniform Cartesian mesh at size of 1 5  is used as the 

background mesh, and the airfoil geometry is adapted by 6-level refinement or 

fine mesh size at 1 320 . The solution is adapted by 4-level refinement or mesh 

size at 1/80. 

 

As illustrated in Figure 3.2, the mirror point of the solid point or solid shadow-

cell is needed to compute against the wall boundary for each “solid point” at a 

cell center. For solid body with thin or sharp boundary shape such as airfoil’s 

trailing edge region, there are two special cases where a solid point is possible 

to have two mirror points or a “fluid point” may become a “solid point” near 

the boundary. Figure 3.8 (a) shows the case where the solid point (S) has one 

mirror point (S1) against wall boundary AC  and another mirror point (S1) 

against wall boundary BC ; and Figure 3.8 (b) shows that the fluid points (P, 

Q) become “solid point” for the wall boundary BC  and AC , respectively. For 

those special cells and “solid points”, two sets of flow values are computed 

and stored on the solid points (S, P, and Q) according to the corresponding 

boundary. The flux calculation on the cell interfaces of those cells must use 

the corresponding values separately. It is noted that the fluid points (P and Q) 

are in the interior fluid domain and their actual flow values are computed by 

solving the governing equations. 
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Figure 3.8 Special cases for ghost-cell method implementation 

 

The computed results for the transonic flow over a RAE 2822 airfoil are 

presented in Figure 3.9 by pressure contours, pressure coefficient profile on 

the airfoil surface, and the initial meshes adapted to the airfoil boundary and 

the final meshes when the solver is converged. The computed pressure 

coefficient profile (solid line) is compared with the experimental data (solid 

dot) and the numerical result obtained on C-type body-fitted grid (dash line) 

by Qu [43]. The current result is comparable to the numerical result obtained 

by Qu [43] and Tullio et al. [64]. The shock wave position matches exactly. 

The shock wave predicted on the upper surface of the airfoil is slightly 

different from the experimental data because the flow in the experiment is a 

turbulent flow in which the shock wave interacts with the boundary layer. 

Therefore, its stiffness and location are different from the numerical 

simulation. 

(a)  A solid point has 2 ghost points (b)  A fluid point may become 
       a “solid” point boundary 
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Figure 3.9 Computed results for flow over a RAE2822 airfoil (M=0.729, 
AoA=2.31°) 

 

 

3.2.4 Mach 3 flow over three disks 

This example shows that the method can be applied to problems with multiple 

immersed solid bodies. The wall boundary surfaces that form the solid bodies 

are treated separately, and the fluid shadow-cells and solid shadow-cells can 

be identified according to each wall boundary surface. The problem is a 2D 

supersonic flow (with 3M∞ = ) past three disks. The three disks are centered at 

(-1.3, -1.0), (-1.0, 0.8) and (1.3, 0.2), with radii of 0.3, 0.3, and 0.4, 

respectively. The computational domain is 8×8 with initial uniform mesh of 

50×50, see Figure 3.10. The computed density contours and the final solution 

adapted meshes are plotted in Figure 3.11. The predicted shock waves agree 

with the numerical result obtained by Sjögreen and Petersson [46]. From the 

(a)  Pressure contours (b)  Pressure coefficient profile 

(c)  Initial mesh adapted to airfoil (d)  Final mesh adapted to solution 
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solution adaptive mesh distribution in Figure 3.11, it is confirmed again that 

the current adaptive solver is very efficient in capturing shock waves for 

compressible flows. To obtain a fine mesh solution at size of 1 40 , it requires 

to solve the problem on 102,400 cells. In comparison, it only requires 36,600 

cells approximately if 3-level adaption is used in the current adaptive solver. 

The computing time for the adaptive solution is only about 1 30  of that 

required for the same resolution uniform mesh. The results of this problem 

demonstrate the robustness and efficiency of the current adaptive ghost-cell 

solver to handle compressible flow problems with multiple solid bodies.  

 

 

 

 

 

 

 

 

 

Figure 3.10 Computational domain for Mach 3 flow over 3 disks 
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Figure 3.11 Computed density contours and solution adaptive mesh for 
Mach 3 flow over 3 disks 

 

 

3.3 Conclusions 

The ghost-cell method is implemented with the current adaptive Euler solver 

to simulate compressible flows with irregular wall boundaries in this Chapter. 

The implementation of ghost-cell method is relatively simple compared to cut-

cell method and grid-less method. In the ghost-cell method, shadow cells near 

the wall boundary are identified in the region near boundary within two mesh 

spacings. Thereafter, the shadow cells are further classified as the fluid 

shadow-cells and the solid shadow-cells through the ray tracing method from a 

known reference fluid point. With the fluid/solid shallow-cells identified, the 

wall boundary condition is then enforced by correcting the flow information 

on the solid shadow-cells. To perform the correction, the mirror point of the 

center of a solid shadow-cell is computed against with the boundary in the first 

place; next the flow information at the mirror point is interpolated using the 
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flow data at the relevant fluid shadow-cells; finally the flow information is 

reflected back to the solid shadow-cell through the boundary condition 

relationship.  

 

The developed adaptive ghost-cell solver is validated by a supersonic flow 

over a circular cylinder and a transonic flow over a channel with bump. The 

computed results are in good agreement with the numerical results available in 

the literature. Moreover, transonic flow over a RAE2822 airfoil and Mach 3 

supersonic flow over 3 disks are also simulated. The results demonstrate that 

with special treatment for the solid shadow-cells near the thin sharp boundary 

surfaces, the method is able to simulate compressible inviscid flows over 2D 

airfoil accurately. Furthermore, simulation of compressible flow with multiple 

wall boundaries was performed and promising results was obtained. 

 

In summary, through the numerical experiments tested in this chapter, it can 

be seen that the ghost-cell method can provide accurate results for various 

problems. However, in the implementation of ghost-cell method, there is a 

need to identify whether the shadow-cells are in fluid zone or solid zone and to 

compute the mirror point against the boundary. Moreover, the boundary 

curvature has to be computed in order to enforce the boundary condition. 

Because of those requirements, the ghost-cell method is still complicated and 

limited to be applied for many other compressible flow problems.  
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Chapter 4 Flux Correction-Based  
Immersed Boundary Solver 

 

In the ghost-cell method implemented in the previous chapter, the wall 

boundary condition is enforced by satisfying the no-penetration condition for 

wall. The relationship between the pressure gradient and the flow curvature is 

governed by the streamline curvature theorem and constant entropy near the 

wall interface. The method is demonstrated to be able to produce quite 

accurate numerical solutions. In order to satisfy the relationship between the 

local pressure gradient and the flow curvature, the wall boundary curvature is 

required to be calculated. The solution accuracy will be affected by the 

calculated curvature which sometimes can be less accurate. In addition, it is 

mandatory to know whether a shadow cell is located in the solid domain or in 

the fluid domain during the implementation, and also to find out the 

mirror/ghost point against the wall boundary interface.   

 

The requirement of calculating the curvature of the wall boundary and 

determining the location of the shadow cells and their mirror position makes 

the implementation tedious and less convenient, besides the possible accuracy 

impact due to the inaccurate calculation of the wall boundary curvature. The 

ideal situation is that the immersed wall boundary condition can be satisfied 

without the need of calculation of wall curvature and advance determination of 

the location of the shadow cells. To achieve this objective, new approaches 

shall be introduced to implement the wall boundary condition.  
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There are four conservative variables in 2D Euler equation and five original 

flow variables. The equation system is closed with the equation of state for air. 

To implement the wall boundary condition, four variables have to be updated 

according to the role or the effect of the boundary and the last variable can be 

simply determined by the equation of state. The wall boundary condition is 

treated as reflection wall in most Euler compressible flow solvers. The 

commonly adopted method in enforcing the boundary condition is through the 

manipulation of velocity field (or the two velocity components for 2D flows), 

pressure, density and temperature/energy at the cells opposite the boundary, 

which is the same as that used for body-fitted solver and the ghost-cell method 

presented in Chapter 3.  

 

As discussed, this approach is not simple and tedious to be implemented in 

Cartesian grid solver. It will be simple and efficient if the boundary condition 

can be enforced in the similar manner as that in the IBM approaches that have 

been successfully implemented and applied for incompressible viscous flows. 

In those IBM approaches, the implementation is carried out by correcting the 

flow field on the cells in the vicinity of the boundary without the need to know 

if they are fallen in fluid domain or solid domain. The target is to satisfy the 

no-slip boundary condition either directly or indirectly. The no-slip boundary 

condition means that the velocity on the boundary is known, no matter 

whether the boundary is stationary or moving. For compressible inviscid flow, 

the boundary condition on wall becomes no-penetration which means that no 

fluid should flow across the boundary but fluid can flow freely along the 

boundary. So the velocity on the boundary is unknown and it changes 
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according to flow conditions. This is the challenge to adopt and implement the 

concept of traditional IBM approaches for incompressible flows in a 

compressible inviscid flow solver. Besides the no-penetration condition which 

only governs the velocity field, other boundary conditions that govern pressure, 

density and temperature for compressible fluid must be satisfied as well. This 

contributes more challenges for the implementation. 

 

From the viewpoint of fluid dynamics for compressible inviscid flows, the 

behavior of a wall boundary is to prevent fluid from entering the wall 

boundary interface, which is known as the no-penetration condition. An ideal 

and adiabatic wall boundary also functions as an interface with zero mass flux 

and zero energy flux. Therefore, if no-penetration condition and zero fluxes’ 

condition on the wall boundary can be enforced, the influence of wall 

boundary to the fluid domain is fully counted as the velocity, density and 

temperature that are related to the three conditions are satisfied. The pressure 

of the fluid can be determined by the equation of state. 

 

4.1 Flux correction-based Immersed Boundary Method 

In this chapter, a novel flux correction-based immersed boundary method, 

named in short form as FC-IBM, is proposed to enforce the wall boundary 

conditions on the current Cartesian grid-based adaptive Euler solver. The 

velocity field is corrected based on no-penetration condition. 

 

The implicit velocity correction-based immersed boundary method, or IVC-

IBM as named by the authors, was proposed by Shu and his co-workers [22], 
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[33] to solve the incompressible flow around a cylinder and a swimming fish. 

Unlike the conventional IBM where the effect of rigid body or wall boundaries 

on the surrounding flow is modeled through a forcing term calculated in 

advance and then formulated to correct for the surrounding velocity field, the 

authors proposed an innovative implicit velocity correction-based IBM, where 

the velocity is corrected via enforcing the physical boundary condition. Their 

results demonstrate that the IVC-IBM produces more reasonable results that 

can accurately satisfy the physical boundary conditions on the wall boundary 

surfaces for the incompressible viscos flows. 

 

Inspiring by their work on modeling no-slip wall boundary for the 

incompressible viscous flows, the IVC-IBM is adopted and modified in order 

to model the no-penetration wall boundary condition for compressible inviscid 

flows. Although the velocity on the no-penetration wall is not known and 

varies according to the flow conditions, the no-penetration condition implies 

that the normal velocity on the boundary must be zero, or 0nV = . However, as 

the normal velocity computed from the Cartesian cells may not be zero, hence 

the goal for velocity correction is to enforce this condition by correcting the 

velocity at the nearby Cartesian cells. Similarly, the zero mass flux and zero 

energy flux will be enforced on the boundary. 

 

4.1.1 Velocity correction 

For no-penetration wall boundary, the velocity boundary condition on the wall 

point-B as illustrated in Figure 4.1 is that the normal velocity should be zero, 

i.e. 0nV = . So the purpose of the velocity correction is to satisfy this condition. 
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To achieve this goal, the normal velocity on the boundary needs to be 

computed from the nearby cells. For convenience, two-dimensional situation 

is considered here for illustration. Let ,x yn n  denote the normal direction 

on the wall point-B, and then ,y xn n−  will be the tangent direction, see 

Figure 4.1. 

 

 

Figure 4.1 Illustration of velocity correction using IBM 
 

To start the velocity correction, the shadow cells around the wall point-B 

within double mesh size in both X and Y directions are identified. The shadow 

cells here indicate the cells that affect and determine the flow information on 

wall boundary. The continuous delta function jiD ,  which was proposed by 

Peskin [21] is used to interpolate the velocity on the boundary from the nearby 

shadow cells. The delta function jiD ,  is given by 

( ) ( )[ ]






>

≤+
=

.2,0

,2,2cos1
4
1

r

rr
r

π
δ  (4.1)   

( ) ( ) ( ), .i j i B i B i BD x X x x h y y hδ δ− = − × −        (4.2)   
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Using all the shadow cells and the delta function jiD , , the velocity at wall 

point-B is estimated as 







⋅=

⋅=

∑
∑

jiiB

jiiB

Dvv

Duu

,

, ,   ∈i {all cells marked in shadow} (4.3)   

 

Then (VNB, VTB) can be obtained by transforming the velocity components 

from X-Y coordinates to n-t coordinates on the wall point-B. 







−=

+=

.

,

BxByTB

ByBxNB

vnunV
vnunV

 (4.4)   

 

The normal velocity VNB obtained from the above equation may not be zero. 

To enforce the no-penetration condition, a negative normal velocity correction 

(-VNB) is introduced to the wall point-B and the tangent velocity just maintains. 

.
0

NBB
NBNB

TB VV
VV

V
−=→





−=
=

δ
δ
δ

 (4.5)   

 

This correction of velocity component needs to be distributed back into all the 

shadow cells hence to make the local velocity field satisfy the no-penetration 

condition. Let NBB VV −=δ denote the velocity correction on point-B, and then 

the following velocity correction shall be added to all the shadow cells nearby 

point-B: 

.,∑= jiB DVu δδ  (4.6)   

 

To perform the above equation, the velocity correction BVδ  at point-B is first 

transferred back to X-Y system as 
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 (4.7)   

and then re-distributed to the shadow cells as velocity components in X and Y 

directions, which are used in the solver.  

, ,

, ,

,

.
i B j i j

i B j i j

u u D
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δ δ

δ δ
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 (4.8)   

 

Because a shadow cell can be shadowed by a few wall points, the overall 

correction at a shadow cell from all the nearby wall points will be: 
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 (4.9)   

 
Finally, the corrected velocity ( )* *,i iu v  at the shadow cells will be updated as 

below: 

*

*

,

.
i i i

i i i

u u u
v v v

δ

δ

 = +


= +
 (4.10)   

 
Because the velocity at a shadow cell may be corrected by multiple wall points, 

the corrected velocity field may not fully satisfy the no-penetration boundary 

condition. Instead of using the implicit velocity correction method as proposed 

by Shu et al. [22] for incompressible flows, an explicit method is used via 

iterative approach for the velocity correction. The whole procedure for the 

velocity correction consists of the following steps: 

 

1) For wall point-B, or index-j, calculate ( )BB vu ,  via equation (4.3)  
from the shadow cells to point-B.  
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2) Calculate ( )BB vu δδ ,  via equation (4.7) . 

3) Calculate ( )ii vu δδ ,  via equation (4.8) for all the shadow cells of 
the wall point-B. 

4) Repeat the steps 1), 2) and 3) for all wall points j=1, 2, … , J. 

5) Calculate ( )ii vu δδ ,  via equation (4.9)  for all the shadow cells 
considering the velocity correction contribution from the nearby 
wall boundary points. 

6) Calculate the corrected velocity ( )* *,i iu v  via equation (4.10)  for the 

shadow cells, and the set the corrected velocity ( )* *,i iu v as the new 
velocity on the shadow cells. 

7) Repeat steps 1) to 6), until the no-penetration condition satisfied, or 
0NBV = . 

 

Experiments show that no-penetration boundary condition can be well 

satisfied by running the above iterative velocity correction process in about 50 

to 100 iterations when the average normal velocity drops below the magnitude 

of 10-6, or 0.0001% of the mainstream flow velocity. The iterative velocity 

correction method is validated by plotting the average normal velocity 

magnitude on the wall boundary versus the number of iteration, as shown in 

Figure 4.2 (a). The average normal velocity on the wall boundary is monitored 

and used to determine the satisfaction of the no-penetration condition in the 

current work. The Mach 3 flow over a circular cylinder problem is used for 

this validation. A uniform velocity field at U=3 is defined as initial condition 

in the domain. Figure 4.2 (b) shows the streamlines after the velocity 

correction for the entire cylinder boundary, which shows no flow penetration. 
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         (a) Normal velocity correction log              (b) Streamlines over cylinder 

Figure 4.2 Demonstration of explicit velocity correction method 
 

4.1.2 Flux correction 

The focus now turns to find an alternate method for the correction of pressure, 

density and energy on the shadow cells near the wall boundary. Besides the 

streamline curvature theorem and constant entropy associated to the wall 

boundary in the development of Euler solver, the wall boundary is also treated 

by satisfying zero flux for the inviscid flow. 

 

Without the immersed wall(s) in the domain, the following Euler equations are 

fully satisfied if the boundary conditions are properly applied. 

0,U F G
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (4.11)   
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    

+ +        

 (4.12)   

 

When the immersed wall(s) are introduced in the domain, the flow field 
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nearby the boundary is changed due to the effect of wall boundary conditions. 

Let (δU, F’, G’) denote the changes of the flow field for the conservative state 

and the flux terms due to the immersed wall(s), (U, F, G) and (U*, F*, G*) 

denote the original conservative terms and the combined conservative terms, 

respectively. As the combined conservative terms also satisfy the governing 

equation (4.11) , the following equation can be derived 

* * *, ', ' ,U U U F F F G G Gδ= + = + = +
 

(4.13)   

( ) ( ) ( )* * * ' '
0 0.

U U F F G GU F G
t x y t x y

δ∂ + ∂ + ∂ +∂ ∂ ∂
+ + = → + + =

∂ ∂ ∂ ∂ ∂ ∂  
(4.14)   

 

By shifting the two conservative terms (F, G) to the right side of the equation, 

it becomes 

( ) ' ' .
U U F G F G

t x y x y
δ∂ +  ∂ ∂ ∂ ∂

+ + = − + ∂ ∂ ∂ ∂ ∂   
(4.15)   

 

Comparing equation (4.15) to equation (4.11) , the term on the right side of the 

equation is purely contributed from the immersed wall(s) and is named to be 

wFδ


, which will cause the change of state represented by Uδ . 

( ) ' ' .wU U F G F G F
t t x y x y
δ

δ
∂  ∂ ∂ ∂ ∂ ∂

+ + + = − + = −∇⋅ ∂ ∂ ∂ ∂ ∂ ∂ 


 (4.16)   

 

Considering equation (4.11) , the above equation will be simplified to 

( ) ' ' .wU F GF
t x y
δ

δ
∂  ∂ ∂

= −∇ ⋅ = − + ∂ ∂ ∂ 


 (4.17)   

 

The Uδ in the above equation can be solved via finite volume method in a cell. 
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,w w

L L

U dtA F ds U F ds
dt A
δ δ δ δ= − → = −∫ ∫

 
 (4.18)   

where A and L is the area of the cell and immersed boundary in the cell, 

respectively. 

 

To a shadow cell near the wall boundary, the contribution of wFδ


 cannot be 

calculated directly. On the wall boundary, w
nFδ


 can be calculated using the 

normal velocity and flow variables calculated through the nearby Cartesian 

shadow cells. Then the w
nFδ


 on the wall boundary can be distributed back 

onto the nearby shadow cells, or Cartesian cells, where the governing 

equations are solved.  

 

Following the finite volume method in solving the Euler equation, w
nFδ


 on 

wall boundary are assessed as 

( )

.

w w
n

w w w w
nw

n w w w w
n

w w w
n

v
u v p

F
v v p

E p v

ρ

ρ
δ

ρ

 
 

+ 
=  + 
 + 








 (4.19)   

 

In the equation above, the superscript (w) denotes the values of the variables 

on wall boundary, and the subscript (n) denotes the values for velocity 

projected on the normal direction. As the velocity components are corrected 

via the enforcement of no-penetration condition, the contribution of wFδ


 to 

the two momentum equations can be ignored. So the the contribution of wFδ


 

for the mass conservation equation and energy conservation equation on the 
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wall boundary will be taken into account. Hence, w
nFδ


 for the mass 

conservation equation and energy conservation equation on the wall boundary 

will be calculated only 

( )
( ) ( )
1

.
4

w ww
nn

w w ww
nn

vF

E p vF

ρδ

δ

  
=   

+     

 

   (4.20)   

 

The values of flow variables on the wall boundary are calculated using the 

delta function as given in subsection 4.1.1 before the velocity correction is 

performed. 

 

The flux contribution w
nFδ


 calculated in equation (4.20)  is on the wall 

boundary, or on the Lagrange nodes. Using the delta function proposed by 

Peskin, the flux contribution w
nFδ


 introduced by the wall boundary to the 

conservative variables U(1, 4) can be distributed onto the nearby Cartesian 

Eulerian shadow cells via 

( ),2 .w w
i i j n jj

dtU D F dS
dh

δ δ= ⋅∑


 (4.21)   

 

In the equation, it is assumed that the mesh spacing in X and Y direction is 

identical, hence 2A dh= ; the ,i jD  is the delta function interpolation between 

the Cartesian cell (i) and the nearby Lagrange nodes (…, j-1, j, j+1, …); and 

the w
jdS  is the average arc length between two successive wall nodes 

(j)(j+1), as shown in Figure 4.3. 

 

Once the conservative variables U(1, 4) are updated, the density and energy 



Chapter 4   Flux Correction-Based Immersed Boundary Solver 

88 
 

values are updated as well. Finally the pressure can be updated by the equation 

of state. 

 

Figure 4.3 Calculation of normal flux on the wall boundary 

 

Eventually, the conservative variables U(1, 4) are updated by 

( )
( )

*
1

, .
4i i i

U
U U U with

EU
ρ

δ
   

= + =   
   

 (4.22)   

 

The flow chart plotted in Figure 4.4 summarizes the whole approach in 

implementing no-penetration condition and zero normal flux condition on the 

wall boundary. In all the steps of implementing the no-penetration condition 

and the zero normal flux condition, the normal direction of the wall boundary 

and the delta function interpolation between the wall node and the surrounding 

shadow cells are needed only. There is no need to compute the curvature of 

the boundary and this avoids the process to identify whether the shadow cells 

are in fluid domain or solid domain. 
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Figure 4.4 Implementation of no-penetration condition and zero normal 
flux condition for wall boundary 

 

1,  Solve Euler Equation and get ( *ρ , *u , *v , *E , *p ). 

START of Wall Boundary 
Condition Implementation 

2,  Calculate (ρ, u, v, P, E)w on wall nodes. i.e. ( )*
,

w
i j iju D u=∑

 

3,  Calculate w
tv  and w

nv  by:   y
w
t

w w
xu n v nv −= ,  x

w
n

w w
yu n v nv +=  

4,  To enforce 0w
nv =   w w

n nv vδ = −   ( ) ( ), ,w w w w
n nx ynv v v nuδ δ δ δ= . 

Re-distribute the velocity correction back to nearby Euler shadow 
cells via delta-function distribution: 

( ) ( ) ( ){ }, ,, ,w w
i i i j i ju v D u D vδ δ δ δ= ∑ ∑  ( ) ( )* *, ,i i i iu v u u v vδ δ+ +=  

w
nv = 0  

No 

Yes 

5,  To enforce 0w
nFδ =


 on wall:  ( ) ( ){ }1,4 ,w w w w w w
n n nF v E p vδ ρ= +
   ,  and 

then re-distribute w
nFδ


 back to nearby Euler cells:  

( ) ( )2
,

w w
i j n jjiF dt dh D F dSδδ = ∑

   ( ) ( )*1, 4 1,4ii iU U Fδ= +


  ( ), Eρ  

The pressure is updated by:  ( ) ( )2 211 2p E u vγ ρ = − − + 
 

6,  Re-form the conserved variables U(1, 2, 3, 4) using the updated 
( ), , , ,u v E pρ  for all the shadow cells. 

7,  Continue the solution evolution in temporal domain. 

END of Wall Boundary 
Condition Implementation 
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4.2 Validation analysis 

The Mach 3 supersonic flow over a 2D circular cylinder is used to validate the 

proposed method. The computational domain and boundary condition are 

defined the same as those described in subsection 3.2.1. To get better 

understanding of the new approach in the implementation of immersed wall 

boundary condition, the solver is run on three different mesh sizes as shown in 

Table 4.1. The results are also used for the analysis of grid independent 

solution. Both first order flux scheme and second-order flux scheme are tested 

and compared as well. 

 

dh Mesh Size No. of Nodes in 
Diameter 

1/10 40 × 80 20 

1/20 80 × 160 40 

1/40 160 × 320 80 

 

Table 4.1 Mesh configuration for grid independent solution study 

 

Using the first order flux scheme, the four pressure profiles on the central line 

before the cylinder are plotted for the comparison, as shown in Figure 4.5. The 

pressure contours, Mach number contours and streamlines are plotted in 

Figure 4.6 based on the finest mesh of dh=1/40. The distribution of pressure 

and Mach number agrees with the solution obtained via the ghost-cell method 

presented in Chapter 3 and the results published by Visbal and Gaitonde [44] 

using sixth-order Roe scheme on BFC mesh. The streamlines plotted in Figure 

4.6 (b) demonstrate the fluid flows over the cylinder wall smoothly and 
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closely, which indicates the no-penetration condition of the immersed cylinder 

wall boundary being well satisfied. The pressure profile plotted in Figure 4.5 

shows that with the finer mesh, the shock wave can be captured much sharply 

and closely to the published numerical solution that was obtained by C6F8-

Roe method [44], and the pressure profile behind the shock wave matches 

better to the numerical solution with finer mesh. The position of the shock 

wave converges at around X=-1.67 using the current solver with the first-order 

flux scheme. This is very close to that reported in the numerical solution, X=-

1.7.  The maximum pressure predicted after the shock wave and before the 

cylinder wall is 11.88, about 2% lower than the exact solution (12.15). This 

could be due to the dissipation losses introduced by the numerical viscosity in 

the solver implemented with the first-order flux scheme. 

 

It is observed that the pressure value in the cells just before the cylinder wall 

at X=-1 drops, as shown in the pressure profile in Figure 4.5. This is different 

to the solution trend obtained using the traditional body-fitted grid [43], [44] 

or the ghost-cell method as presented in Chapter 3. In those solutions, the 

pressure reaches the maximum value on the cylinder wall at X=-1. The 

difference indicates the influence of the pressure distribution by the 

implementation of the immersed wall boundary condition, though the no-

penetration condition is well satisfied. An acceptable reason for the pressure 

loss near the cylinder wall is due to the damping effect introduced by the 

implementation of IBM wall boundary. This is the characteristic of the IBM 

and cannot be avoided. On the other hand, the comparison of the pressure 

profile on different mesh sizes also implies that the impact of the pressure loss 
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becomes weaker with finer mesh.  
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Figure 4.5 Comparison of pressure profile with Roe scheme (1st order 
scheme) 

 

          

         (a) Pressure Contours             (b) Mach number contours & Streamlines 

Figure 4.6 Pressure contours (1st order scheme) 

 

The same problem is also solved by the second-order flux scheme to improve 

the accuracy of the solution and also to study the accuracy difference among 
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different flux limiter functions. All the five flux limiter functions are tested. 

The pressure profile obtained from using the limiter functions of Minmod, 

Osher and Sweby is more accurate and close to the exact solution, as shown in 

Figure 4.7. The shock wave captured by the second-order flux scheme is 

sharper, and the maximum pressure behind the shock wave is closer to the 

exact solution. However, pressure oscillation occurs just at the shock wave 

position when the limiter functions of Van Leer and Van Albada are used. 

Similar phenomenon of pressure oscillation is observed when higher β value 

(i.e., β=1.9) is defined for the limiter functions of Osher and Sweby. When 

β=1.1, the pressure oscillation at the shock wave position is not found. This 

illustrates that flux limiter functions and the value of the damping factor must 

be chosen and tested carefully when the second or higher-order flux schemes 

are used to compute the solution. 

 

The new approach for IBM implementation is well validated by the Mach 3 

supersonic flow over a 2D cylindrical circle. The shock wave and pressure 

profile obtained through the new approach agree well with the actual solution. 

However, it is noted that velocity and pressure near the wall boundary are 

affected slightly due to the implementation of no-penetration wall boundary 

condition. This is a unique feature that is introduced by the implementation of 

the immersed boundary method, as the velocities at the Eulerian cell centers at 

the both sides of the wall boundary are corrected in order to satisfy the no-

penetration wall boundary condition. In the conventional ghost-cell method or 

symmetrical wall boundary method, the velocities at the Eulerian cell centers 

that are inside the solid domain will be corrected. Figure 4.8 illustrates the 
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difference in the normal velocity correction by IBM and ghost-cell method. 

Though both methods can enforce normal velocity 0nV = , the velocity fields 

near the wall boundary are different. The velocity distribution is relatively 

smooth after the correction by the current IBM, and a sudden velocity change 

usually exists after the correction by ghost-cell method or symmetrical method. 

The sharp velocity change indicates that greater deceleration is produced to 

the fluid, and the smooth velocity distribution indicates that lower deceleration 

is produced to the fluid. At this point of view, the implementation of the IBM 

weakens the “reflection” condition near the wall boundary. It is known that 

pressure will increases in the situation of flow deceleration. This may explain 

why the flow reaches the maximum pressure point at the cylinder boundary in 

the implementation of ghost-cell method and symmetrical wall boundary 

method, as the sharp deceleration always exists on the boundary. In the current 

implementation, the velocity near the boundary is smoothed and no 

deceleration exists, hence the pressure near the wall boundary drops.   
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(a)  Minmod Limiter   (b) Van Leer Limiter 

Figure 4.7 Comparison of pressure profile (2nd order scheme) 
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    (a)  Normal velocity before correction    (b) Normal velocity after correction 

Figure 4.8 Normal velocity correction for immersed wall boundary 

 

4.3 Numerical test cases and results 

The new approach implemented is validated by the Mach 3 supersonic flow 

over a 2D circular cylinder. Compared to the conventional implementation by 

ghost cell method or symmetrical method, the new approach is much easier 

and simple. In this section, the method is used to compute other test cases and 

the results are discussed. All the test cases presented in this section are two-

dimensional problems. 

 

4.3.1 Supersonic flow over a wedge 

To further test the new approach, a supersonic flow over a wedge is 

considered. The incoming supersonic flow is at M∞=2. The original 

configuration of the problem is a 2D supersonic flow in a symmetric 

convergent channel, where both the top and bottom walls are bent inward to 

form a 15º convergent section, as shown in Figure 4.9 (a). As the geometry of 

 nV  

Wall 

 X   

 0   

 nV  

 X   

 0   

Wall  
 

 By FC-IBM 
By Ghost-cell method 
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the physical domain and boundary condition are symmetrical, only the bottom 

half of the physical domain is considered as the computational domain. The 

central line of the channel becomes the top boundary of the computational 

domain, and the symmetrical boundary condition is defined. A rectangle 

domain in size of L×H=3×1 represents the computational domain; the wedge 

is modeled as the immersed wall boundary as indicated in Figure 4.9 (b). The 

left boundary of the domain is defined as supersonic flow inlet with M∞=2; the 

bottom boundary is defined as wall; and the right boundary is defined as outlet. 

 

The computational domain is meshed as coarse uniform mesh of 120×40, or 

dh=0.025. The height of the wedge is 0.134. So there are only 5 coarse cells at 

the height of the wedge.  To resolve the wedge wall shape accurately and 

improve the accuracy of the influence to the mainstream flow by the immersed 

wedge wall, fine meshes are adapted along the wedge wall at the beginning of 

the solution. Figure 4.10 shows the final solution-adapted mesh distribution 

for (a) coarse mesh, (b) 1-level adaption mesh and (c) 2-level adaption mesh. 

The mesh distribution clearly demonstrates that fine meshes are adapted to the 

shock wave position, where high flow gradient exists. The final number of 

mesh cells for three cases is 6573, 10974 and 26850, respectively. The 

corresponding contours of Mach number are plotted in Figure 4.11 for the 

three different meshes. From the contours of Mach number, it is observed that 

the shock wave is captured shaper and shaper from coarse mesh to one level 

adaption and further to 2-level adaption.  



Chapter 4   Flux Correction-Based Immersed Boundary Solver 

97 
 

 

 

 

 

 

 

 

 

(a)  Original configuration of the convergent channel 

 

 

 

 

(b)  Computational domain and boundary condition for the wedge and channel 

Figure 4.9 Configuration and boundary condition for supersonic flow over 
a wedge 

 

The Mach number after the wedge shock (location B as indicated in Figure 

4.12) and the angle of the wedge shock (angle β as indicated in Figure 4.12) 

are often used for accuracy assessment to this case. The analytical Mach 

number after the wedge shock at location B is 1.44 ([47], [48]) and the 

prediction by the current method is 1.497, 1.495 and 1.472 for uniform coarse 

mesh, 1-level adaption and 2-level adaption solution, respectively. The 

theoretical value of the angle β of the wedge shock emitting from the front 

wedge point is 45.38º. The angel β of the wedge shock predicted by the 

current solver is 45.09º, 45.14º, and 45.82º on three different mesh sizes. The 
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results are in good agreement with the theoretical analysis, which shows the 

capability of the current solver with new approach of IBM implementation in 

solving supersonic flow over a wedge.  

 

With the solution adaption capability in the current solver, the computing time 

for obtaining the 1-level adaption solution is 567 seconds, only 125 seconds 

more than that needed for the coarse mesh solution. The computing time for 

the 2-level adaption solution is 2517 seconds, which is much less than 6140 

seconds needed for the same uniform finer meshes.  

 

 

 

 

 

Figure 4.10 Solution adaptive mesh for supersonic flow over a wedge 

(a) adapt to wedge wall by 1-level only,   (b) adapt to wedge wall and 
solution by 1-level,   (c) adapt to wedge wall and solution by 2-level. 

(a) 

(b) 

(c) 
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Figure 4.11 Contours of Mach number for supersonic flow over a wedge 

 

 

Figure 4.12 Wedge shock and solution parameters for supersonic flow over 
a wedge 

 

(a) adapt to wedge wall by 1-level only,   (b) adapt to wedge wall and 
solution by 1-level,   (c) adapt to wedge wall and solution by 2-level. 

(a) 

(b) 

(c) 

β Wedge shock 
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4.3.2 Supersonic flow over a double-ellipse 

In this subsection, the supersonic flow over a double-ellipse is simulated. The 

immersed wall boundary is represented by two elliptical segments in this 

problem. They are defined by: 

( ) ( )
( ) ( )

2 2

2 2

0 : 2.4 0.6 1,
0

0 : 1.4 1.0 1,

0 : 1.0,
0 0.6

0 : 0.6.

y x y
x

y x y

y y
x

y y

  ≤ + = ≤ 
 ≥ + =
 ≤ =

≤ ≤  ≥ = −

 

 

(4.23)   

The geometry of the double-ellipse is similar to the aircraft nose, as shown in 

Figure 4.13. The incoming supersonic flow of M=2.0 passes through the 

double-ellipse at the angle of attack 20º. The computational domain is set as a 

rectangle 6×8, with the double-ellipse wall immersed at the right zone of the 

domain. The left and bottom boundaries are defined as supersonic inlet, and 

the right and top boundaries are defined as outlet.  

 

As the incoming flow is supersonic at Mach number 2.0, a bow shock will be 

generated before double-ellipse wall. Due to asymmetrical outline of the 

double-ellipse wall boundary and the incoming flow at an angle of attack 20º, 

the shock generated at the bottom and top part of the double-ellipse wall will 

be different. Because of the characteristic of the supersonic flow, another 

shock will be emitted from the intersection corner of the two elliptic segments.  

 

The solution is obtained on coarse uniform mesh of 60×80, and further refined 

by 1-level and 2-level solution adaption with density gradient as the 

refinement indicator. Figure 4.14 shows the mesh distribution for (a) coarse 
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mesh, (b) 1-level adaption mesh and (c) 2-level adaption mesh. The 

corresponding pressure contours for different mesh sizes are plotted in Figure 

4.15. The figure clearly shows that sharper shocks can be captured with the 

finer meshes enabled by the solution adaption. By choosing the solution 

adaption variables and regions to adapt carefully, finer meshes will be 

generated in the zones near the shocks and hence to improve the accuracy in 

resolving the sharp changes before and after the shocks. The total number of 

mesh cells for the converged solution is 8376 and 22485 for 1-level adaption 

and 2-level adaption, respectively, or 1.7x and 4.7x more than the coarse 

uniform mesh. The computing time for the 1-level adaption and 2-level 

adaption is about 1.6x and 6.3x more than it for the solution on coarse uniform 

mesh. Longer computing time demanded for the finer mesh with 2-level 

adaption is partially due to more mesh cells adapted in the domain, and also 

partially due to smaller time step which has to be used on finer meshes for 

temporal evolution of the solution.  

 

 

 

 

 

 

 

 

 

Figure 4.13 Configuration for supersonic flow over a double-ellipse 
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(a) Uniform mesh of 60×80, (b) 1-level adaption, (c) 2-level adaption 

Figure 4.14 Double-ellipse case: solution adaptive mesh.   

 

 
(a) Uniform mesh of 60×80, (b) 1-level adaption, (c) 2-level adaption 

Figure 4.15 Double-ellipse case: pressure contours 

 

From the contours of pressure plotted in Figure 4.15, it is observed that the 

bow shock before the double-ellipse wall and the wedge shock emitted from 

the corner of the two ellipse walls are captured and they maintain at the 

location consistently. As the current solver is based on finite volume method, 

smooth contours and nearly perfect shock profile are obtained with fine mesh. 

This agrees well with the finite volume solution obtained by Arminjon et al. 

[49]. The pressure coefficient pC  on the double-ellipse wall boundary is 

plotted in Figure 4.16. The pC  profiles obtained on three different meshes 

(a) (b) (c) 

(a) (b) (c) 
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match well with the results obtained by Arminjon et al. based on body-fitted 

mesh using finite volume method [49]. With finer mesh enabled by solution 

adaption, the pC  profile near the corner region of the two elliptical walls can 

be predicted more accurately. 

 

The study of the supersonic flow past a double-ellipse demonstrates that the 

new approach can be used to simulate the supersonic flow over such kind of 

bluff body conveniently. Using the solution adaption function in the current 

solver, both the resolution of the wall boundary and the accuracy of the 

solution can be improved significantly and efficiently. 

 

Figure 4.16 Double-ellipse case: pressure coefficient profile 

 

 

4.3.3 High speed flow over a NACA0012 airfoil 

Numerical simulation of high speed flow over airfoil is extremely interested 

by many researchers and engineers. High flow gradients, shocks and thin 

geometry interface are common problems associated with aerodynamics of 
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airfoil and require a great attention. Traditionally, either O-type or C-type of 

grid is generated around the airfoil geometry such that the grids can conform 

to the airfoil geometry nicely. This is especially important for the turbulent 

simulation and flow the prediction of friction force. 

 

Due to the presence of thin geometry interface near the trailing edge of airfoil, 

special consideration was introduced to enforce the wall boundary condition at 

the corner near the trailing edge. Usually, additional cells or virtual cells are 

introduced for the upper edge of the airfoil and the bottom edge of the airfoil 

separately, so the wall boundary condition for the upper and bottom edges can 

be satisfied fully without interface. Such special local treatment can be found 

in many literatures ([9], [18]) and was also illustrated in Chapter 3. The 

advantage of the special local treatment is that the wall boundary condition on 

the edges near the sharp corner can be fully satisfied; however it is tedious and 

great attention must be taken to ensure that all the actual cells and 

additional/virtual cells are correctly used in the solver and the boundary 

condition implementation.  

 

In this section, the high speed flows over an airfoil are simulated to further 

validate and study the new approach in IBM implementation. The airfoil 

profile is NACA0012. Flow conditions for subsonic, transonic and supersonic 

cases will be considered. The incoming free-stream Mach number for subsonic 

flow is 0.7, transonic flow is 0.8 and supersonic flow is 1.2. The angle of 

attack is 0º for all the three flow conditions. Transonic flows Mach number of 

0.7, with the angle of attack at 1.49º and 4º are solved for further analyses. 



Chapter 4   Flux Correction-Based Immersed Boundary Solver 

105 
 

The solutions for the flows with the angle of attack at 0º, incoming free-stream 

Mach number at 0.7, 0.8 and 1.2 are plotted in Figure 4.17 in pressure 

contours and pressure coefficient profiles on the airfoil surface. The pressure 

coefficients are compared with experimental data. 

 

For the subsonic case with flow condition as Mach=0.7 and AoA=0.0º, the 

flow around the airfoil are in subsonic range and the pressure changes along 

the airfoil surface are gently as shown in Figure 4.17 (a). The predicted 

pressure coefficient on the airfoil surface is in good agreement with the 

experimental data quoted by Lee et al. [50] and Yoshihara and Sacher [51]. 

For the flow condition with the free-stream Mach number increased to 0.8 and 

AoA at 0.0º, the supersonic flow and a strong shock are generated near the 

mid zone of the airfoil chord, as indicated in Figure 4.17 (b). The pressure 

coefficient, the strength and the location of the shock wave position match 

accurately with the experimental data and numerical results obtained by Lee et 

al. [50]. When the incoming free-stream is at supersonic condition with Mach 

number at 1.2, as indicated in Figure 4.17 (c) a strong bow shock wave is 

generated in front of the airfoil head and a pair of oblique shock waves are 

generated at the trailing edge of the airfoil. Compared to the numerical results 

obtained by Lee et al. [50], the location of the bow shock is predicted 

accurately but the oblique shock waves are slightly located before the trailing 

edge. The pressure coefficient distribution on the airfoil surface also indicates 

that the oblique shock occurs at about 90% of the chord length. This also 

causes the lower pressure coefficient near the trailing edge as compared to the 

experimental data. However, the pressure coefficient before the trailing edge 
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still matches with the experimental data.  
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Figure 4.17 Pressure contours and coefficient profile for NACA0012 airfoil 
at AoA=0.0º 

 

The pressure coefficients are predicted accurately for flow over the 

NACA0012 airfoil under the conditions of Mach number 0.7 and 0.8, 

AoA=0.0º. This demonstrates that the new approach of FC-IBM 

implementation is able to simulate the subsonic flow and transonic flow over 

the airfoil accurately. The inconsistency of the oblique shock waves predicted 

(a) M=0.7, AoA=0º (a) M=0.7, AoA=0º 

(b) M=0.8, AoA=0º (b) M=0.8, AoA=0º 

(c) M=1.2, AoA=0º (c) M=1.2, AoA=0º 
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in supersonic flow case implies that the conventional implementation of IBM, 

or the present FC-IBM, which is widely applied for incompressible flows, has 

some influence on the enforcement of the boundary condition near the trailing 

edge of the airfoil. From this point of view, special treatment for upper surface 

and lower surface is necessary when the local flow speed is supersonic. 

 

In the high speed flows over the airfoil, the developed solution adaptive 

feature in the current solver demonstrates very good performance in 

shortening the computing time. The computational domain for airfoil dynamic 

analyses is usually chosen as 15x or 20x of the airfoil chord length to ensure 

that the pressure far-field boundary condition can be used accurately. In such a 

relatively big computational domain, local mesh refinement or mesh cluster 

are used to refine the meshes around the airfoil so that the airfoil geometry can 

be represented in acceptable resolution. Usually such fine meshes are also 

extended to the far-field boundaries. Hence the number of cells in the 

computational domain is usually large and leads to longer computing time. 

However, the flow changes are mainly occurred not far away from the airfoil.  

 

Using the solution adaptive feature, the finer meshes can be adapted to the 

airfoil surface first to resolve the airfoil geometry in acceptable resolution at 

the beginning of the simulation. While the solution evolution is carried out, 

finer meshes are adapted to the regions bearing high flow gradients, for 

example high density gradient for the airfoil dynamics analyses. Figure 4.18 

shows the solution adaptive mesh distribution for the analysis: (a) the initial 

mesh distribution with finer meshes adapted around the airfoil; (b) the final 
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mesh distribution for flow condition with Mach=0.8 and AoA=0.0º, where 

finer meshes are well adapted to the regions near the airfoil nose and the 

location of the shock waves. The computing time is cut down significantly in 

obtaining a more accurate solution based on finer mesh sizes. 

   

 

Figure 4.18 Demonstration of solution adaptive mesh for high speed flow 
over NACA0012 airfoil 

 

The solution for subsonic flow under flow condition with the incoming free-

stream Mach number of 0.7 and the angle of attack at 1.49º is plotted in Figure 

4.19. The pressure contours in Figure 4.19 (a) show that the predicted flow 

structure is similar to that obtained by Lee et al. [50]. The pressure coefficient 

on the airfoil in Figure 4.19 (b) shows that the predicted pressure coefficient 

on the bottom airfoil surface matches with the experimental data but the 

pressure coefficient predicted on the upper airfoil surface is obviously lower. 

The difference of the pressure coefficient obtained on the airfoil surface for 

AoA=1.49º can be understood from the flow structure inside and around the 

airfoil. 

 

As the NACA0012 airfoil is a symmetrical airfoil, the flow structure should be 

symmetrical when the angle of attack is at 0.0º. Under this condition, the 

(a)  Initial mesh: adapted to airfoil (b)  Final mesh: adapted to the solution 
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splitting point of the flow occurs at the leading edge of the airfoil and the 

merging point of the flow falls at the trailing edge of the airfoil. This is clearly 

observed from the plot of streamlines inside the airfoil as shown in Figure 4.20 

(a), where a pair of closed recirculation flow structures is formed 

symmetrically inside the airfoil. When the angle of attack is at 1.49º, the 

splitting point of the flow near the leading edge shifts anti-clockwise slightly, 

similarly, the merging point of the flow also moves slightly away from the 

trailing edge in anti-clockwise direction. As a result, the recirculation flow 

structure inside the airfoil becomes asymmetrical as shown from the plot of 

streamlines in Figure 4.20 (b). Streamlines pass through the bottom of the 

airfoil surface nicely, but depart a bit near the trailing edge at the top of the 

airfoil surface. This indicates that a small recirculation zone is formed at the 

top airfoil surface near the trailing edge, which will influence the flow in this 

region and eventually affect the solution on the top of the airfoil surface. 

When the angle of attack is increased to 4.0º, the recirculation zone at the top 

airfoil surface near the trailing edge becomes much larger and the flow pattern 

has been alternated extremely, as illustrated in the plot of streamlines in Figure 

4.20 (c).  

 

The results for the NACA0012 airfoil at the angle of attack of 0.0º, 1.49º and 

4.0º show that though the no-penetration wall boundary condition can be fully 

satisfied, the implementation of FC-IBM introduces viscous effect near the 

wall boundary. This eventually affects the solution accuracy for the current 

Euler solver as the viscosity of flow is not considered. In the implementation 

of FC-IBM for simulations of incompressible viscous flows, the actual 
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viscosity of flows dominates and the numerical viscous effect introduced by 

the IBM could be very minor and has little impact on the solution accuracy.    
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Figure 4.19 Pressure contours and coefficient profile for NACA0012 airfoil 
(AoA=1.49º) 

 
 

 

 

 

Figure 4.20 Streamlines inside NACA0012 airfoil at different angles of 
attack 

 

 

In the Navier-Stokes equation (4.24) , the divergence of stress at the right side 

of the equation consists of pressure gradient and viscosity terms. In Euler 

solver, the viscosity term 2vµ∇  is not considered. So the solution is 

determined by the convective acceleration term ( )vVρ∇⋅


 and the pressure 

  (a) M=0.7, AoA=1.49º   (b) M=0.7, AoA=1.49º 

(b),   M=0.7 
AoA=1.49º 

(c),   M=0.7 
AoA=4.0º 

(a),   M=0.7 
AoA=0.0º 
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gradient ( p−∇ ). Under this condition, when there is numerical viscosity 

introduced to the solver, it will function as viscosity term and contribute to the 

divergence of stress in the equation. When strong convection and pressure 

gradient present, such numerical viscosity introduced will be relatively weak 

and is negligible; however weak convection and small reverse pressure 

gradient present, then such numeral viscosity introduced will change the state 

of the original equation and produce unexpected solution. 

( )  

Divergence of stress

2

ViscosityPressure
Gradient

.v vV p v
t
ρ ρ µ∂

+∇⋅ = −∇ + ∇
∂


 (4.24)   

 

From the Mach number contours plotted in Figure 4.17 and Figure 4.19, it 

shows that strong and rapid convection occurs near the leading edge of the 

airfoil and relatively weak convection occurs near the trailing edge of the 

airfoil. The pressure distribution on the airfoil surface plotted in Figure 4.21 

also shows that strong reverse pressure gradient presents near the leading edge 

of the airfoil for all the three conditions with AoA=0°, 1.49° and 4.0°. Weak 

reverse pressure gradient presents near the top trailing edge of the airfoil when 

AoA is not zero. As the analysis in the previous paragraph, under this situation, 

the numerical viscosity will contribute to the final solution and produce 

unexpected result. From the understanding of the viscous flow, the 

recirculation flow pattern usually occurs behind a non-streamlined object. This 

explains why flow recirculation is observed in the results of the airfoil flow 

when AoA is not zero, but not observed in the condition of AoA=0°. 
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Figure 4.21 Pressure distribution on the surface of a NACA0012 airfoil at 
different angles of attack 

 

 

(b),   M=0.7 
AoA=1.49º 

(c),   M=0.7 
AoA=4.0º 

(a),   M=0.7 
AoA=0.0º 

Weak reverse 
pressure gradient  

Weak reverse 
pressure gradient  
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4.4 Conclusions 

A new flux correction-based immersed boundary method (FC-IBM) is 

presented for simulation of compressible inviscid flows. The concept of FC-

IBM is to enforce the boundary condition by correcting the conservative terms 

and velocity field at the Cartesian grids near the boundary to satisfy the zero 

mass flux, zero energy flux and no-penetration conditions. The unique 

advantage of the present FC-IBM is that it avoids the tedious process to 

compute the boundary curvature and to identify whether the shadow cells are 

in fluid domain or solid domain.  

 

The new method is implemented in the developed adaptive Euler solver. To 

validate and test the new method, supersonic flows over a circular cylinder, a 

wedge and a double-ellipse structure, transonic and subsonic flows over a 

NACA0012 airfoil are simulated. The results obtained from the new method 

are in good agreement with the available data in the literature. The benefit of 

the developed adaptive Euler solver is demonstrated in terms of accuracy 

improvement and computational efficiency. However, numerical viscosity 

effect is noticed for the method and this may affect the solution in the case that 

weak convection and small reverse pressure gradient exist.  
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Chapter 5 Local Domain Free Discretization - 
Immersed Boundary Euler Solver 

 

In the implementation of 2D velocity correction based IBM (IBVCM) 

proposed by Shu et al. [22] [33], two mesh points are identified near each 

intersection point between the wall boundary and horizontal or vertical mesh 

lines and then the velocity on the wall intersection point is obtained via linear 

interpolation. The obtained velocity may not satisfy the physical velocity 

condition for wall boundary. Hence a correction is needed and applied to two 

mesh points to enforce the physical velocity condition being satisfied. In this 

correction process, special care is taken when one mesh point near the wall 

boundary is on both horizontal line and vertical line.  

 

In almost all the studies of IBM for incompressible viscous flows, the velocity 

of the immersed wall boundary is usually known for either stationary body or 

moving body. This allows the implementation of local domain free 

discretization (DFD) and IBM for immersed wall boundary condition can be 

done directly and easily. However, for inviscid flows the velocity on the 

immersed wall boundary is not known for both stationary body and moving 

body. This becomes the big challenging issue in enforcing the immersed wall 

boundary condition for numerical simulation of inviscid flows. Moreover, the 

pressure and density conditions have to be addressed separately for 

compressible flow simulation, and this is usually not a concern for 

incompressible flows. 
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The fundamental feature of wall boundary condition for inviscid flow is no-

penetration of flow in consideration of velocity field and mass conservation. 

The no-penetration of flow means that no fluid flows through the wall 

boundary, or the normal velocity on the wall boundary surface has to be zero. 

This feature is valid for both viscous flows and inviscid flows. For viscous 

flows, the tangential velocity on the wall boundary surface also becomes zero 

due to the viscous friction of fluid. So the wall boundary condition for viscous 

flows in fact consists of no-penetration (zero normal velocity) condition and 

no-slip (zero tangential velocity) condition. Since the normal velocity and 

tangential velocity on the wall surface are zero, the velocity components in 

Cartesian coordinate system are zero as well. For inviscid flows, the no-

penetration condition stands similarly as that for viscous flows. As the viscous 

friction of fluid flow is neglected, the wall is considered as slip wall, which 

means zero gradient of tangential velocity on the normal direction of wall 

boundary surface. Therefore, from the viewpoint of velocity field and mass 

conservation, the wall boundary condition for inviscid flows shall satisfy zero 

normal velocity and zero gradient of tangential velocity in normal direction as 

viscosity of the fluid is not considered. 

  

5.1 Local DFD (LDFD) method 

Inspired from the implementation of local DFD method in solving the 

incompressible natural convection problems in concentric annulus [15] and 

unsteady flow around an oscillating circular cylinder [17], and the 

implementation of IBVCM in simulation of incompressible viscous flows 

around a circular cylinder [22], the concept of the local DFD method is 
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introduced into the current compressible Euler solver in enforcing the no-

penetration and slip wall boundary conditions on the immersed wall boundary. 

To make it easier in the illustration of the implementation procedure, it is 

assumed that the wall boundary is stationary so there is no need to consider the 

moving velocity of the wall in calculating the normal and tangential velocity 

on the wall surface. 

 

As illustrated in Figure 5.1, the cells fallen inside the solid domain and near 

the wall boundary are identified and tagged as solid DFD cells. For every solid 

DFD cell, two fluid DFD cells are identified across the wall boundary in either 

X direction or Y direction. For certain cases, there are two pairs of fluid DFD 

cells in both X direction and Y direction, such as solid DFD cell (A) in Figure 

5.1. In the X direction, two fluid DFD cells are tagged as cell-(Cx) and cell-

(Dx). The cell centers of cells (A, Cx, Dx) are on the X direction line and the 

intersection point of the X direction line and the wall boundary is (Bx). In the 

vertical direction along Y axis, two fluid DFD cells are tagged as cell-(Cy) and 

cell-(Dy). The cell centers of cells (A, Cy, Dy) are on the Y direction line and 

the intersection point of the Y direction line and the wall boundary is (By). For 

solid DFD cell (A1), the fluid DFD cells only exist in X direction; and for solid 

DFD cell (A2), the fluid DFD cells only exist in Y direction. 
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Figure 5.1 Illustration of Implementation of One-Sided local DFD Method  
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5.1.1 Velocity boundary condition 

When fluid DFD cells exist in X direction for a solid DFD cell, the no-

penetration and slip wall boundary condition is enforced by correction of the 

velocity at the solid DFD cell using the fluid DFD cells in X direction. The 

normal velocity and tangential velocity at cell-(Cx) and cell-(Dx) can be 

obtained via the velocity transformation based on the local normal direction 

vector ( 1 1,x yn n ) at wall point (Bx). 

1 1

1 1

,

.
t y x

n x y

v u n v n
v u n v n
= ⋅ − ⋅

 = ⋅ + ⋅
 (5.1)   

 

To satisfy the no-penetration condition, or 0n B
v = , the normal velocity at the 

solid DFD cell (A) can be extrapolated from cell-(Cx) and the intersection 

point (Bx), as shown in Figure 5.1 (a) and (c). 

( ) ( ) ( ) .n n n nA B C C
v AC BC v AB BC v AB BC v= − ⋅ − ⋅ = − ⋅  (5.2)   

 

In the equation above, AB , BC  and AC  represent the horizontal distances 

along X direction among cell-(A), cell-(Cx) and intersection point (B x). For 

the convenience, the subscript (x) is omitted. 

 

To avoid large extrapolation error when the intersection point (Bx) is closer to 

cell-(Cx), or AB BC>>  as shown in Figure 5.1 (d), the normal velocity at the 

solid DFD cell (A) will be extrapolated from cell-(Cx), cell-(Dx) and the 

intersection point B: 
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( ) .n n n nA C D C

AB BCv v v v
CD

 −
= − + ⋅ − 

 
 (5.3)   

 

The slip boundary condition is satisfied by simply assigning the tangential 

velocity at the solid DFD cell (A) using the tangential velocity at cell-(Cx). 

.t tA C
v v=  (5.4)   

 

The normal velocity n A
v  corrected via equations (5.2) and (5.3) and the 

tangent velocity t A
v  corrected via (5.4) are able to satisfy the no-penetration 

and slip wall boundary condition at wall point (Bx). Therefore the 

corresponding Cartesian velocity components at the solid DFD cell (A) can be 

obtained as: 

1 1 1

1 1 1

,

.
n x t yA A

n y t xA A

u v n v n

v v n v n

 = ⋅ + ⋅


= ⋅ − ⋅
 (5.5)   

 

Following the similar procedure, when fluid DFD cells exist in Y direction for 

a solid DFD cell, the no-penetration and slip wall boundary condition is 

enforced by correction of the velocity at the solid DFD cell using the fluid 

DFD cells in Y direction through equations (5.1)-(5.5). The length of AB , 

BC , AC , and CD  in the equations will be replaced by the vertical distance 

along Y direction among cell-(A), cell-(Cy), cell-(Dy) and intersection point 

(By), as shown in Figure 5.1 (b). The local normal direction vector is denoted 

as ( 2 2,x yn n ) of point (By), and used to replace ( 1 1,x yn n ). 
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2 2 2

2 2 2

,

.
n x t yA A

n y t xA A

u v n v n

v v n v n

 = ⋅ + ⋅


= ⋅ − ⋅
 (5.6)   

 

Consider that the solid DFD cell (A) in Figure 5.1 is connected to the fluid 

DFD cells in both X direction and Y direction, the velocity at cell (A) needs to 

take into account the corrected velocity that satisfies the wall boundary 

condition in both directions. A weighting factor is then introduced to X 

direction and Y direction as *
1w  and *

2w , respectively. They satisfy the 

relationship of: 

* *
1 2 1.w w+ =  (5.7)   

 

Then the velocity at the solid DFD cell (A) will be: 

* *
1 1 2 2
* *
1 1 2 2

,

.
A

A

u w u w u
v w v w v

 = ⋅ + ⋅


= ⋅ + ⋅
 (5.8)   

 

Taking the average of the contribution from velocities in both X and Y 

directions is the simplest weightage. The weighting factors in this case are:  

* *
1 20.5, 0.5.w w= =  (5.9)   

 

The average weighting factor is tested by the Mach 3 flow over a circular 

cylinder. To demonstrate the effect on velocity correction in enforcing the no-

penetration wall boundary condition, the streamlines are plotted around the 

cylinder, as shown in Figure 5.2.  Streamline plotted in Figure 5.2 (a) shows 

that the no-penetration wall boundary condition can be well satisfied after first 

time step of solution evolution. Streamline plot for the converged solution in 
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Figure 5.2 (b) shows that the no-penetration wall boundary condition is 

perfectly satisfied. This comparison demonstrates that using the simple 

average weighting factors is an effective weightage method for velocity 

correction in enforcing the no-penetration wall boundary condition. Hence it is 

used for all the case studies in this thesis. 

    

(a) Streamline after one time step        (b) Streamline for converged solution 

Figure 5.2 Demonstration of average weighting method for velocity 
correction 

 

5.1.2 Pressure and density boundary condition 

As wall boundary is considered as no-penetration and slip wall for inviscid 

flows, the pressure and density on the wall boundary are approximated as:  

0, 0.p
n n

ρ∂ ∂
= =

∂ ∂
 (5.10)   

 

Using the simple extrapolation, the pressure and density at solid DFD cell (A) 

are set to the same value as the nearest fluid DFD cell (Cx) or (Cy). Taking into 

account the weightage when a solid DFD cell is connected to the fluid DFD 

cell in both X direction and Y direction, the pressure and density on solid DFD 
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cell (A) are corrected by: 

* *
1 2

* *
1 2

,

.

A Cx Cy

A Cx Cy

P w P w P

w wρ ρ ρ

 = ⋅ + ⋅


= ⋅ + ⋅
 (5.11)   

 

The energy on the solid DFD cell (A) is then updated with the corrected values 

of velocity, density and pressure using the equation of state for ideal gas. 

( )2 21 .
1 2

PE u vρ
γ

= + +
−

 (5.12)   

 

Finally, the conservation terms in Euler equations will be updated on all the 

solid DFD cells at which all the flow variables are corrected according to the 

wall boundary condition. 

 

5.2 Local DFD-Immersed Boundary Method (LDFD-IBM) 

In the local DFD method proposed for compressible inviscid flows in the 

previous section, it saves the need to calculate the curvature of the wall 

boundary surface. However, the implementation of the local DFD method 

requires the determination whether a DFD cell is in either fluid domain or 

solid domain. Though it is not difficult to make the determination using the 

method described in the subsection 3.1, if such determination can be avoided, 

the solver will be much simpler and easier in actual application. 

 

To improve the local DFD method and make the method to be easier and 

simpler in implementation and more generic to handle any irregular immersed 

wall boundaries, the local DFD-based immersed boundary method, named as 
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LDFD-IBM is proposed. Figure 5.3 illustrates the implementation of the 

LDFD-IBM. In this method, the X direction DFD cells are identified when the 

X direction line between the two successive centers intersects with the wall 

boundary. The two cells and the intersection point (Wx) are recorded as (Bx-

Cx-Wx). The (-X) neighbor cell of (Bx) and the (+X) neighbor cell of (Cx) are 

found and also recorded as (Ax-Bx-Cx-Dx-Wx). The four cells and the 

intersection point form a typical local DFD unit for the implementation of wall 

boundary condition on wall point (Wx). Similarly, on Y direction, a typical 

local  DFD unit (Ay-By-Cy-Dy-Wy) can be identified and recorded for the 

implementation of wall boundary condition on wall point (Wy). As the 

structure of the local DFD unit is similar on X direction and Y direction and 

the implementation procedure is also similar, the local DFD unit (Ax-Bx-Cx-

Dx-Wx) on X direction is used for the illustration of implementation. For the 

convenience, the subscript (x) will be omitted in following description. 

 

In the local DFD unit (A-B-C-D-W), cells B and C are next to the wall 

boundary. So the flow variables on cells B and C need to be corrected in order 

to enforce the boundary condition on the wall. To correct the flow variables at 

cell B, a mirror point B’ of the center of cell B is first found between the wall 

point W and cell D on the opposite side of the wall boundary; next the flow 

variables on the mirror point B’ can be interpolated by using the wall point W 

and cell D; finally the flow variables on point B’ are mirrored back to cell B 

based on no-penetration condition or zero normal gradient approximation. The 

step to correct the flow variables on cell B are summarized as below: 

1) Find the mirror point B’ of the cell B versus the wall boundary point W. 
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2) Calculate the normal velocity n D
v   and tangential velocity t D

v  on Cell 

D from equation (5.1). 

3) Calculate the normal velocity at point B’ by interpolation using 

equation (5.13). 

4) Mirror the normal velocity at point B’ back to cell B using equation 

(5.14) to enforce the no-penetration condition. 

5) Set the tangential velocity at cell B the same as it at cell D to enforce 

the slip condition. 

6) Calculate the corrected velocity in Cartesian coordinate system from 

equation (5.15). 

7) Assume that the energy and density at cell B are kept the same, and 

update the pressure from the equation of state. 

8) Update all the conservative terms in Euler equations using all the 

corrected flow variables. 

( ) ( )'
' ,n n nB D D

v WB WD v WB WD v= ⋅ = ⋅  (5.13)   

'
, ,n n t tB B B D

v v v v= − =  (5.14)   

1 1

1 1

,

.
B n x t yB B

B n y t xB B

u v n v n

v v n v n

 = ⋅ + ⋅


= ⋅ − ⋅
 (5.15)   

 

Repeat the above steps, the flow variables at cell C can be corrected by the 

wall point W and cell A on the opposite side of the wall boundary.  

 

As flow variables on cells near the wall boundary are corrected using the 

variables on the opposite side of the wall during the process of enforcing the 

wall boundary condition, the actual implementation includes the correction of 
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DFD cells from left side to right side and  also from right side to left side on X 

direction. This is the concept of the proposed LDFD-IBM, inspired from the 

similar implementation for incompressible viscous flow simulation [15], [16], 

[17]. 

 

When a DFD cell is identified in the X direction local DFD unit and also in the 

Y direction local DFD unit, the weightage method introduced by equations 

(5.7)-(5.9) will be applied to calculate the averaged values on this DFD cell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Illustration of Implementation of LDFD-IBM 
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(a)  Velocity Correction for DFD 

cell (B), from Right to Left 
 

(b)  Velocity Correction for DFD 
cell (C), from Left to Right 
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5.3 Numerical validation and comparison 

The LDFD-IBM is proposed based on the LDFD method with the 

consideration of the advantage of conventional IBM, in which it is not 

required to identify whether the cells near the wall boundary are in the fluid 

domain or solid domain. As described in the previous two subsections, the 

implementation of LDFD-IBM and LDFD method for compressible inviscid 

flows is quite similar. The difference is that the correction will be carried out 

for DFD cells in the solid domain in the implementation of LDFD method and 

for all DFD cells near the boundary for LDFD-IBM. To validate the two 

methods proposed, the following four compressible flow problems are solved 

by both methods and cross comparison is made and presented in this chapter.  

 

5.3.1 Mach 3 supersonic flow over a circular cylinder 

The Mach 3 supersonic flow over a circular cylinder has been studied by many 

researchers and many results are published in the literature and compared with 

the analytical data. The comparison can be made conveniently against the 

results available in the literature. 

 

The computational domain and boundary condition for the Mach 3 supersonic 

flow over a circular cylinder is the same as stated in subsection 3.4.1. Uniform 

coarse mesh is defined in the computational domain, and the cylinder wall 

boundary is adapted with finer mesh cells to improve the resolution for wall 

boundary recognition.  

 

The pressure contours and streamlines around the cylinder are plotted in 
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Figure 5.4. From the pressure contour plots, it can be observed that both 

LDFD method and LDFD-IBM are able to capture the bow shock wave 

upstream of the cylinder identically. By comparing the pressure distribution 

along the central line along X direction, the shock wave positions predicted by 

both methods are identical, as shown in Figure 5.5, and they are in good 

agreement with the results obtained by Qu [43], Fiorina and Lele [52] based 

on the body-fitted mesh solver. The pressure after the shock wave recovers 

and matches the values that were predicted by Qu and Fiorina and Lele. 

However, the pressure distribution just before the cylinder is noticed 

differently between the two methods. For LDFD method, the pressure value 

reaches the maximum towards the cylinder wall at 1X = − ; while for LDFD-

IBM, the pressure value reduces suddenly just before the cylinder wall at 

1X = − . This indicates that LDFD-IBM may introduce minor energy loss 

cross the immersed wall boundary, possibly due to the fact that artificial flow 

information inside the solid domain is used for the correction of the flow 

information in the fluid domain during the implementation of boundary 

condition for the cylinder wall.  

 

The streamlines around the cylinder show that the no-penetration boundary 

condition is well satisfied for both methods, as no penetration flow is observed. 

However, the minor difference of the streamlines is noticed near the corners 

(C1 and C2 in the zoom-in view of the streamlines) of the semi-circle and the 

right domain boundary. In LDFD method, streamlines near the corners follow 

the cylinder wall boundary closely; while in LDFD-IBM streamlines near the 

corners deviate from the cylinder wall. This could be a result of the interaction 
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between the implementation of domain boundary condition and LDFD-IBM 

on the cylinder wall boundary. Obviously, this interaction is only happened 

locally near the two corners and it has minimal influence on the capture of 

shock wave before the cylinder in the mainstream.  

       

(a)  LDFD Method:  Pressure Contours, Streamlines and Zoom-in view 
 

       
(b) LDFD-IBM:  Pressure Contours, Streamlines and Zoom-in view 

 

Figure 5.4 Comparison of results obtained by LDFD method and LDFD-
IBM for Mach 3 flow over a circular cylinder 

C1 

C1 

C2 
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In comparison of the conventional implementation by ghost cell method or 

symmetrical method, the new methods of LDFD and LDFD-IBM are very 

easy to implement. There is no need to calculate the curvature of the immersed 

wall boundary and to do bilinear interpolation. Besides the ease of 

implementation, accurate results are obtained for the Mach 3 supersonic flow 

over a circular cylinder using both methods of LDFD and LDFD-IBM and 

demonstrate the methods are promising. Hence the methods will be further 

tested for other compressible flows.  

 
Figure 5.5 Comparison of pressure profile along the central line obtained 
by LDFD method and LDFD-IBM for Mach 3 flow over a circular cylinder 

 

5.3.2 Supersonic flow over a wedge 

The supersonic flow of Mach 2 over a wedge is solved by both LDFD method 

and LDFD-IBM. The configuration and the boundary condition of the problem 

are the same as presented in subsection 4.3.1. In order to resolve the wedge 

wall boundary and the shock waves in the channel domain accurately, 2-level 

adaption is used. The Mach number contours are plotted in Figure 5.6 for 

comparison. The wedge shock emitting from the front wedge point and the 
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two reflection shock waves predicted are almost identical. The angle of the 

wedge shock predicted by the LDFD method is 45.39°, which is in very good 

agreement with the theoretical value of 45.38°.  The angle of the wedge shock 

predicted by LDFD-IBM is 46.63°, also in fair agreement with the theoretical 

value. 

 

The results show that both LDFD method and LDFD-IBM are able to simulate 

the supersonic flow over a wedge structure accurately.  

 

  

  

Figure 5.6 Comparison of Mach number contours obtained by LDFD 
method and LDFD-IBM for Mach 2 flow over a wedge 

 
 

5.3.3 Supersonic flow over a double-ellipse 

The supersonic flow past a double-ellipse is solved by the FC-IBM and the 

results are presented in subsection 4.3.2. The same problem is also solved by 

the proposed LDFD method and LDFD-IBM. Uniform coarse mesh with size 

(a)  Mach Contour,  
by LDFD 

(b)  Mach Contour,  
by LDFD-IBM 
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of 1 is defined in the computational domain. Two levels of adaption are used 

to resolve the double-ellipse wall boundary accurately and also applied to 

enhance the resolution for capturing the bow shock wave generated in front of 

the double-ellipse structure. The results of the solution adaptive mesh, 

pressure contours, streamlines over the double-ellipse and the pressure 

coefficient profile obtained by both methods are plotted in Figure 5.7 and 

Figure 5.8.  The bow shock wave in front of the double-ellipse structure and 

the inclined shock omitted from the intersection corner of the two ellipses are 

captured sharply with fine meshes adapted to the high density gradients in 

those zones. The plot of streamlines shows that air past the boundary smoothly 

and indicates that the no-penetration boundary condition is well satisfied. The 

pressure coefficient profile is compared with the numerical results obtained on 

body-fitted grid by Arminjon et al. [49] and shows good agreement.  

 

Next, to further test and validate the two methods, a hypersonic flow in the 

condition of Mach=8.15 and AoA=30° over the double-ellipse is solved. 

Because of the high Mach number and large angle of attack, the flow tends to 

be unstable and chaotic when it interacts with the ellipse wall structure. Such 

numerical simulation requires a robust solver and an appropriate method for 

implementation of boundary conditions. The results are successfully computed 

by the current LDFD method only. As the shock wave is very strong and 

closer to the ellipse structure at high Mach number condition, 3-level adaption 

is used to improve the mesh resolution between the shock wave and the 

boundary. The results are presented in Figure 5.9. The solution adaptive mesh 

in Figure 5.9 (a) shows that only fine meshes can capture the shock wave 
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sharply, as shown in Figure 5.9 (b). Streamlines plotted in Figure 5.9 (c) show 

that no flow penetration is observed, implying that the no-penetration 

boundary condition is also fully satisfied under the hypersonic condition. The 

pressure coefficient is compared with the numerical data obtained by Zeeuw 

and Powell [4], Bramkamp et al. [53] and Ganesh et al. [63], as plotted in 

Figure 5.9 (d). The comparison demonstrates that the current results match 

very well with those numerical results. 

        

 

           

 

Figure 5.7 Comparison of results obtained by LDFD method and LDFD-
IBM for flow over a double-ellipse structure (Mach=2, AoA=20°) 

(b)  Solution adaptive mesh (2x), pressure contours and streamlines computed by LDFD-IBM. 

(a)  Solution adaptive mesh (2x), pressure contours and streamlines computed by LDFD method. 
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Figure 5.8 Pressure coefficient profile on the boundary for flow over a 
double-ellipse structure (Mach=2, AoA=20°) 

 

    

 

 

Figure 5.9 Computed results by LDFD method for hypersonic flow over a 
double-ellipse structure (Mach=8.15, AoA=30°) 

 

(d)  Pressure coefficient profile on the boundary surface and comparison 

(a)  Solution adapted mesh (3x)         (b) Pressure contours         (c) Streamlines  
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5.3.4 Transonic flow in a channel with bump 

The literal meaning of immersed boundary implies that the boundary if fully 

submerged inside the computational domain. For the GAMM channel case, 

though the wall boundary represented by the 10% arc (as shown in Figure 3.6) 

is immersed inside the 3×1 rectangular Cartesian domain, the two ends of the 

boundary connect with the physical boundary of the domain. The conventional 

immersed boundary methods are not suitable to be implemented for such cases 

with the immersed wall boundary intersected over the physical boundary. 

While the current LDFD method and LDFD-IBM can still be implemented 

theoretically for this problem, as the corresponding DFD cells in X direction 

and Y direction can be identified as described in Sections 5.1 and 5.2.  

 

As the bump in the GAMM channel is relative thin, to be efficient the uniform 

coarse mesh is defined in the rectangular domain and 4 levels of mesh 

refinement are adapted to the bump wall boundary and 2 levels of solution 

adaption are used in the domain to enhance the mesh resolution for the 

predication of the shock wave presented after the throat. The Mach number 

contours predicted by the two methods are plotted in Figure 5.10 (a) and (b), 

respectively. It is noticed that the Mach number distribution computed via 

LDFD method is comparable to other numerical results obtained by Morton 

and Paisley [54], Luo et al. [45] and Lee et al. [50]. However, the Mach 

number distribution computed via LDFD-IBM is different compared to those 

numerical results and not reasonable. The streamlines plotted in Figure 5.10 (d) 

show that recirculation flow pattern is observed behind the channel throat, 

although no streamlines are noticed cross the bottom boundary of the channel. 
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This means that the no-penetration boundary condition is satisfied. However, 

the artificial viscosity introduced by LDFD-IBM implementation has caused 

unphysical phenomena. The computed Mach number profile along the bottom 

channel wall via LDFD method is plotted in Figure 5.10 (e) and is compared 

with the numerical results obtained on body-fitted grid by Luo et al. [45]. The 

square solids represent Luo’s result, and the solid line is the current result. The 

dashed line is the pressure profile along the bottom channel wall. It is noted 

from the plot that the maximal Mach number and the shock wave position are 

in good agreement.   

 

In LDFD-IBM, the flow variables at cells on both sides of the boundary will 

be corrected in order to enforce the boundary condition. Hence artificial 

viscous effect will be introduced near the boundary, as analyzed in Section 

4.3.3. As the pressure profile in Figure 5.10 (e) shows that low reverse 

pressure gradient is experienced in the region behind the throat, the unphysical 

flow phenomena will be induced as the contribution from the numerical 

viscous effect to the numerical solution increases.  

 

The study of this test case demonstrates that the robustness of the LDFD 

method is better than the LDFD-IBM, in particular, the LDFD method can 

give accurate solution when low reverse pressure gradient is experienced near 

the boundary. 
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Figure 5.10 Comparison of results obtained by LDFD method and LDFD-
IBM for transonic flow in GAMM channel 

 

(e)  Mach number profile on the lower wall of the channel, by LDFD 

(a) 
Mach Contour, 
by LDFD 

(b) 
Mach Contour,  
by LDFD-IBM 
 

(c)  Streamlines, by LDFD (d)  Streamlines, by LDFD-IBM 
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5.4 More numerical examples and discussions 

From the validation and comparison for the LDFD method and LDFD-IBM in 

the previous section, it shows that LDFD method is more robust and is able to 

predict more accurate solution for compressible inviscid flows under various 

complex conditions. Thus, more numerical studies will be carried out by the 

LDFD method to test the robustness and performance of the LDFD method 

integrated with the current adaptive solver. It should be noted that the basic 

concept for the implementation of the LDFD method and the LDFD-IBM is 

similar as the boundary conditions are enforced in X and Y direction instead 

of in normal condition. The major difference is the that boundary conditions 

are enforced by correcting the functional values at the solid DFD cells from 

the fluid DFD cells for LDFD method; while for LDFD-IBM, the boundary 

conditions are enforced by mirrored correction between the DFD cells on both 

sides of the boundary.  

  

5.4.1 Transonic flow over a NACA0012 airfoil 

The transonic flow over a NACA0012 airfoil at 0.799M∞ =  and the angle of 

attack at 2.8°  is computed by the LDFD method. As the airfoil has thin 

geometry near the trailing edge, the local DFD implementation needs to 

consider the special cases similar as the implementation of ghost-cell method 

as presented in subsection 3.2.3 and Figure 3.8 (a) for a RAE2822 airfoil. Just 

to re-cap that when a solid DFD cell has more than one fluid DFD cells in the 

X direction or in the Y direction, two sets of values are stored and linked to 

the corresponding boundary. As shown in Figure 5.11, one set of functional 
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values at solid DFD cell (S) can be corrected from the fluid DFD cell ( 1S ) 

opposite the boundary AC ; and the other set of functional values at (S) can be 

corrected from the fluid DFD cell ( 2S ) opposite the boundary BC .  

 

The coarse uniform mesh defined in the domain is at the size of 2. Finer 

meshes are clustered around the airfoil boundary by 6-level refinement. The 

solution is adapted by 5-level refinement, or at the mesh size of 1/16, to 

improve the resolution economically in the regions near the shock wave and 

high flow gradient zones near the airfoil head. The computed Mach number 

contours, streamlines, pressure coefficient profile on the airfoil surface and the 

solution adaptive mesh are plotted in Figure 5.12. The computed pressure 

coefficient profile is compared with the experimental data and numerical 

results obtained on body-fitted triangular mesh by Liu and Li [55]. The 

pressure coefficient profile agrees relatively well with the numerical data 

obtained by Liu and Li except slightly difference on the shock wave position. 

Nevertheless, the shock wave prediction is a bit off from the experimental data. 

 

Figure 5.11 Special case for LDFD method near the thin boundary region 

A 

B 

C 
S 
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Figure 5.12 Numerical results for transonic flow over a NACA0012 airfoil 

( 0.799, 2.8M AoA∞ = = ° ) 

 
 

5.4.2 High lift two-element airfoil - NLR 7301  

The two-element airfoil NLR 7301 can generate high lift force at large angle 

of attack without causing airfoil stall. This behavior is commonly used in 

passenger aircrafts during takeoff or landing when aircrafts fly at low speed 

and large angle of attack. The airfoil is also used in racing cars to generate 

down-force which is important in enhancing the car steering at high speed [56]. 

The configuration of the main airfoil and the flap is found in the AGARD-AR-

303 report [57]. The chord of the flap is 32% of the main airfoil chord; the flap 

is deflected at 20°; and the gap between the main airfoil and the flap is 2.6% 

of the main airfoil chord. The airfoil geometry is shown in Figure 5.13. The 

       (c)  Streamlines around the airfoil        (d)  Pressure coefficient profile 

       (a)  Solution adapted mesh                      (b)  Mach number contours 
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numerical experiment is done at the condition of the free-stream flow is at 

Mach number 0.185 under angle of attack at 6° and 13.1°. This test case is 

chosen to demonstrate the robustness and efficiency of the current LDFD 

method and the adaptive solver. 

 

Due to the sharp and thin geometry of the flap and the small gap between the 

main airfoil and the flap, fine meshes with 7-level adaption are clustered 

around the airfoils based on the coarse uniform mesh at 2dh = . The meshes 

around the modeled NLR 7301 airfoil and the zoom-in view of the meshes in 

the gap are plotted in Figure 5.14. The computed results for AoA=6° and 13.1° 

are plotted as Mach number contours, streamlines and pressure coefficient 

profile in Figure 5.15 and Figure 5.16, respectively. The Mach number 

contours are compared to the numerical results obtained by Liang and Yang 

[12]. The streamlines show that no-penetration boundary condition is satisfied 

for both airfoils. The pressure coefficient profile computed on the main airfoil 

and the flap for both conditions agrees closely with the experimental data 

published online [56], as shown in Figure 5.15 (c) and Figure 5.16 (c). The 

converged solution is obtained on 60,379 mesh cells, with approximate 82% 

of cells are adapted in the local region near the airfoil geometry and the gap. 
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Figure 5.13 Configuration of NLR 7301 two-element airfoil 

 

 

                  

Figure 5.14 Initial mesh adaption near the NLR 7301 two-element airfoil 

0.185, 6 13.1M α∞ = = ° °   
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Figure 5.15 Numerical results for NLR7301 ( 0.185, 6M AoA∞ = = ° ) 

 

 

 

Figure 5.16 Numerical results for NLR7301 ( 0.185, 13.1M AoA∞ = = ° ) 

(a)  Mach number contours                         (b)  Streamlines 

(c)  Pressure coefficient profile and comparison 

(a)  Mach number contours                        (b)  Streamlines 

(c)  Pressure coefficient profile and comparison 
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5.4.3 Transonic flow over SKF1.1 two-element airfoil 

The study of the NLR 7301 two-element airfoil is under subsonic flow 

condition. In this subsection, the transonic flow over another two-element 

airfoil SKF1.1 is simulated to demonstrate the performance of the LDFD 

method. The flow condition over the SKF1.1 airfoil is defined with the free-

stream Mach number at 0.65 and the angle of attack at 2.06°. Under this 

condition, a shock wave will be generated above the main airfoil. Therefore, 

this test case is more challenging than the previous numerical experiment of 

the subsonic flow on the NLR 7301 two-element airfoil. 

 

The configuration of the main airfoil and the flap of SKF1.1 airfoil used for 

this test case is the configuration case 5 documented in the AGARD-AR-138 

report [58]. The chord of the flap is 1 4  of the main airfoil chord; the flap is 

deflected at 10°; and the gap between the main airfoil and the flap is only 

1.55% of the main airfoil chord. The airfoil geometry is shown in Figure 5.17. 

Finest meshes with 7-level adaption are clustered around the airfoils based on 

the coarse uniform mesh at 2dh = . This allows for sufficient Cartesian mesh 

cells generated in the gap region, thus the boundary condition can be 

implemented accurately. The meshes around the studied SKF1.1 airfoil and 

the zoom-in view of the meshes in the gap are plotted in Figure 5.18.  

 

The computed results of pressure contours, solution adaptive meshes, 

streamlines and pressure coefficient profile are presented in Figure 5.19. The 

pressure contour distribution, plotted in Figure 5.19 (a) is agreed with the 

numerical results obtained by Jahangirian and Hashemi [13]. The streamlines 
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plotted in Figure 5.19 (c) and (d) show that no-penetration boundary condition 

is satisfied for both airfoils. The converged solution is obtained on 61,072 

cells, with approximate 82% of cells are adapted in the local region near the 

airfoil geometry, the gap and the scene of the shock wave via solution 

adaption. The pressure coefficient profile computed on the main airfoil and the 

flap is compared with the numerical data computed by Jahangirian and 

Hashemi [13] using an unstructured body-fitted grid solver. As shown in 

Figure 5.19 (e), good agreement is achieved not only in the magnitude of the 

pressure coefficient computed on both airfoils, but also in the position of the 

shock wave above the upper surface of the main airfoil. 

 

Figure 5.17 Configuration of SKF1.1 two-element airfoil 

 

 

 

 

Figure 5.18 Initial mesh adaption near the SKF1.1 two-element airfoil 

 

0.65, 2.06M α∞ = = °  
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Figure 5.19 Numerical results for SKF1.1 airfoil ( 0.65, 2.06M α∞ = = ° ) 

 

(a)  Pressure contours                                  (b)  Solution adapted mesh 

(c)  Streamlines over SKF1.1 airfoil    (d)  Zoom-in view near the gap and flap 

(e)  Pressure coefficient profile and comparison 



Chapter 5   Local DFD-Immersed Boundary Euler Solver 

146 
 

5.5 Conclusions 

A local domain-free discretization (LDFD) method is presented in this chapter 

for compressible inviscid flows. The concept of LDFD for 2D flows is to 

enforce the boundary condition by correcting the flow information on the solid 

cells (DFD cells) next to the boundary in X direction and Y direction 

separately. As the correction is performed either horizontally or vertically, it is 

simple to implement. A LDFD immersed boundary method (LDFD-IBM) is 

also presented to make the implementation simpler by avoiding the need to 

identify the solid DFD cells and fluid DFD cells.  

 

Both methods are implemented in the developed adaptive Euler solver. To 

validate and compare the two methods, supersonic flows over a circular 

cylinder and a wedge, hypersonic and supersonic flows over a double-ellipse 

structure, transonic flow in a channel with bump are simulated. The results 

obtained from the two methods are comparable and agree well with the 

available data in the literature. The LDFD method is demonstrated to be more 

robust and accurate. The challenging problems like the subsonic flow over the 

high lift two-element airfoil NLR 7301 and the transonic flow over SKF1.1 

two-element airfoil are studied by the LDFD method. The computed results 

are in good agreement with the reference data. The integration of the LDFD 

method and the developed adaptive Euler solver demonstrates good potential 

to simulate compressible inviscid flows with complex geometry.  
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Chapter 6 3D Adaptive Euler Solver  
Implemented with FC-IBM and LDFD 

Method 

 

The 2D adaptive Euler solver is discussed and benchmarked in Chapter 2. The 

proposed new FC-IBM, LDFD method and LDFD-IBM are also implemented 

in the 2D adaptive solver successfully. Validations and numerical studies 

demonstrate that the methods are good potential tools to simulate compressible 

inviscid flows with complex boundaries using the present 2D adaptive Euler 

solver on Cartesian grids. In this chapter, the development of 3D adaptive 

Euler solver and the implementation of the proposed immersed boundary 

methods are discussed. 

 

6.1 Methodology for 3D adaptive Euler solver 

The three-dimensional compressible inviscid solver is developed on the basis 

of the two-dimensional solver. The 3D compressible Euler equations in 

conservative form are given as: 

0,U F G H
t x y z

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
 (6.1)   
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The equation of the state for ideal gas in 3D flow is: 

( ) ( )2 2 211 .
2

p E u v wγ ρ = − − + +  
 (6.3)   

 

The numerical method, flux calculation, and boundary conditions for 3D 

solver are similar to those for 2D solver. The control cells for 3D solver are 

hexahedral cells in the Cartesian coordinate system. A hexahedral cell consists 

of six surface interfaces, twelve edges and eight end points. The flux 

calculation is performed on six surfaces of a hexahedral control cell, and the 

solution is stored at the cell center of the hexahedral cell. The data structure 

for the objects of 3D control cell, side surfaces, edges and end nodes are 

defined as below in Fig. 6.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Data structure for the objects of cell, face, edge and node for 
3D solver 

Tcell Tface  *Faces[6] 
double  xc,yc,zc; 
double  p,rho,u,v,E; 
double  volume; 
double  Grad[8]; 
 int   layer, refined; 
Tcell *childCells[8]; 
 Tcell  *parentCell; 
 
 Tcell  *prev; 
 
 
Tcell  *next; 
 
 

Tface Tedge  *Edges[4] 
int   bctype; 
double  nx, ny, nz; 
double  area; 
double  flux[5]; 
 Tcell *neighborCells[2]; 
 Tedge *childFaces[4]; 
 Tedge *parentEdge; 
 
 Tface  *prev; 
 
 
Tface  *next; 
 
 Tedge Tnode  *Nodes[2] 

double  nx, ny, nz; 
double  length; 
Tedge *childEdges[2]; 
 Tedge *parentEdge; 
 
 Tedge  *prev; 
 
 
Tedge  *next; 
 
 

Tnode double  x0,y0, z0; 
 double  x1,y1, z1; 
Tnode  *prev; 
 Tnode *next; 
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Figure 6.2 Refinement of a 3D Cartesian cell 

 

The adaption of 3D hexahedral cells follows the tree structure as that 

implemented in the 2D adaptive solver. When a 3D cell is to be refined, it will 

be split into eight children cells, as shown in Figure 6.2. To form the eight 

children cells, there will be 19 new nodes, 24 children edges, 22 new edges, 24 

children faces and 8 new faces created for this parent cell to be refined. Since 

there are so many new objects (nodes, edges, faces and cells) to be created in 

refining a 3D cell, the creation and recording of those new objects and their 

relationships must be handled carefully, otherwise the adaption will not be 

able to perform properly. The adaption state for faces and edges of a cell must 

be recorded too, because this will be relevant to determine the adaption for the 

neighbor cell.  In the condition when any of the six neighbor cells next to the 

six faces is adapted, the interface between the two cells such as the shaded +X 

face in Figure 6.2 does not need to be refined again. The associated five new 

nodes, four new edges, eight new children edges and four new children faces 

will be re-used by setting the correction relationship. During the coarsening 

X 
 

Y 
 

Z 
 New Nodes New Edges 

New Faces New Cells 
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adaption, the eight children cells, the six edges inside the cell and the node 

located in the center of the cell can be removed in a straightforward manner. 

To remove the children faces on the six side faces of the cell and the 

associated edges and nodes, the dependency has to be verified on the adaption 

state of the neighbor cells. If the neighbor cell is not refined, then the children 

faces, edges and nodes on this interface can be removed.  

 

6.2 FC-IBM and LDFD implementation in 3D solver 

The concept of IBM implementation in 3D solver is similar to that for the 2D 

implementation. The key difference is the definition of the immersed wall 

boundary. To be specific, for 2D implementation, the immersed wall boundary 

is actually 2D edge and is defined by line segments; while for 3D 

implementation, the immersed wall boundary is 3D surface and is represented 

by multiple small surface patches. The 3D boundary surface can be defined by 

surface meshes, either with triangles or quads. Since a 3D surface can be fully 

determined by three points in the domain, the triangular meshes are used to 

represent the 3D boundaries in the present study. ANSYS’s Gambit meshing 

tool is used to generate the triangular surface meshes that represent the wall 

boundary.  

 

To implement FC-IBM in 3D solver, the zero normal flux conditions are 

enforced by correcting the conservative terms U(1, 5) in equation (6.2) and the 

no-penetration condition is enforced by correcting velocity components 

( ), ,u v w  in equation (6.2). Because the wall boundary is formed by triangular 



Chapter 6   3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method 

151 
 

bounded surfaces, the normal velocity of a triangular surface at its center 

needs to be evaluated in order to conduct the flux correction and velocity 

correction. The delta-function interpolation is used to compute the functional 

values on each triangular surface. The shadow cells around the center of the 

triangular surface within double mesh spacing are identified and used for both 

flux and velocity corrections. There is no need to compute the boundary 

curvature and to identify whether the cells are in fluid domain or solid domain. 

The implementation procedure is similar to that for the implementation of 2D 

case, as discussed in subsections 4.1.1 and 4.1.2. However, it shall be noted 

that the normal velocity correction on the boundary is re-distributed back to 

shadow cells to correct the velocity components in X, Y and Z directions for 

3D cases.  

 

In 2D implementation of LDFD method, the relationship between DFD cells 

and the wall boundary needs to be identified. This can be done easily through 

the checking of intersection status of two line segments, one representing the 

wall boundary segment and the other representing the line segment linking 

two cell centers. When 3D implementation is considered, this process becomes 

a bit complex and tedious because the relationship between cells and boundary 

is determined by the intersection status of a line segment and a bounded 

triangular surface. In addition, the velocity transformation between Cartesian 

coordinate system and the normal-tangential coordinate system in 2D case is 

obvious and simple; in 3D case, the velocity transformation process is more 

complex and requires more care in implementation. 
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The details on the definition of wall boundary and its normal direction, 

identification of local DFD cells, velocity transformation on wall boundary are 

explained in the following sections, respectively. 

 

 

6.2.1 Wall boundary surface and normal direction 

The immersed wall boundary in 2D solver is formed by edges, which are 

defined as line segments. For 3D solver, the immersed wall boundary is 

formed by faces, which are usually defined by triangular faces or quadrangular 

faces. In the current development, the immersed wall boundary is defined by 

triangular faces. Figure 6.3 shows an immersed spherical wall boundary which 

is formed by many triangular faces. Each of the triangular faces is formed by a 

triangle ∆ABC. In 3D space, the triangular face ∆ABC is given as 

0.f ax by cz d= + + + =  (6.4)   

 

As the coordinates of the three endpoints A, B and C are known, so a, b, c and 

d in the equation can be determined by 

1 1
1 , 1 ,
1 1

1
1 , .
1

A A A A

B B B B

C C C C

A A A A A

B B B B B

C C C C C

y z x z
a y z b x z

y z x z

x y x y z
c x y d x y z

x y x y z

= =

= = −

 (6.5)   

 

Once a, b, c and d are determined, the normal vector of the triangular face is 

known as 
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[ ], , , , .x y zn n n n a b c = = 
  (6.6)   

 

To normalize the normal vector, a radial length r is introduced. 

2 2 2 .r a b c= + +  (6.7)   

 

And then the normal vector is normalized as 

[ ]ˆ ˆ ˆ, , , , .x y zn n n n a r b r c r = = 
  (6.8)   

 

For the convenience in description, the normalized normal vector is still 

written in the format of , ,x y zn n n    in the remaining of this section. 

 

Figure 6.3 3D wall boundary surface and basic triangular face 
 

6.2.2 Identification of local DFD cells 

As the LDFD method presented in the previous chapter demonstrates better 

accuracy in dealing with the immersed wall boundary condition, this method is 

implemented in the 3D solver for further study. To implement the LDFD 

n  

A 

B 

C 

P 
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method, the cells near the wall boundary have to be identified first. As a local 

DFD cell next to the wall boundary definitely has a neighbor cell on the 

opposite side of the wall boundary, so the major task to identify the pair of the 

local DFD cells next to the wall boundary is to determine whether the line 

segment formed by the two cell centers intersects with any bounded triangular 

face of the wall boundary. 

 

 

 

 

 

 

 

Figure 6.4 Intersection relationship between a triangular face and a line 
segment 

 

Taking the X direction for example, let points P1 and P2 in Figure 6.4 (a) 

represent the centers of the two neighbor cells in X direction, ∆ABC 

represents a triangular face of the wall boundary. To determine whether the 

line segment 1 2P P→  intersects with the bounded triangular face ∆ABC, the 

procedures are as below. 

1) Check if the line determined by 1 2P P→  intersects with the 

unbounded face on ∆ABC, 

2) Check if the intersection point P is on the line segment 1 2P P→ , and 

find out the point, 

3) Check if the intersection point P is inside ∆ABC. 

(a)  Point P is between P1 and P2.  (b)  Point P is inside ∆ABC. 
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To start the determination, first it is needed to check if line determined by 

1 2P P→ intersects with the unbound face on ∆ABC. Assume that they 

intersect at point P, then the coordinates of point ( ), ,P x y z  can be given as 

( ) ( ) ( ) ( ), , 1 , , 2 , , 1 , , .P x y z P x y z t P x y z P x y z= + ⋅ −    (6.9)   

 

The above equation can be rewritten as 

( )
( )
( )

1 2 1

1 2 1

1 2 1

,

,

.

x x t x x

y y t y y

z z t z z

= + −

= + −

= + −

 (6.10)   

 

In addition, as point P falls on the plane determined by the triangular face 

∆ABC, so the coordinate P(x, y, z) must satisfy the 3D plane equation (6.4) 

derived on face ∆ABC.  

( ) ( ) ( )1 2 1 1 2 1 1 2 1 0.a x t x x b y t y y c z t z z d+ ⋅ − + + ⋅ − + + ⋅ − + =          
 

(6.11)   

 

The factor t is thus obtained by 

( ) ( ) ( )
1 1 1

2 1 2 1 2 1

.ax by cz dt
a x x b y y c z z

+ + +
= −

− + − + −
 (6.12)   

 

Only when the factor t is in the range of 0 to 1, the intersection point P falls 

between P1 and P2. When 0t →  the point P is closer to P1; and when 1t →  

the point P is closer to P2. 

 

Next step is to verify if the intersection point P is inside the triangular face 

∆ABC. As shown in Figure 6.4 (b), if point P is inside the triangular face 
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∆ABC the following relationship always stands truly. 

.APB BPC APC ABCS S S S∆ ∆ ∆ ∆+ + =  (6.13)   

 

The S∆  in the equation represents the area of the triangle. Let a, b, and c 

represents the length of the three sides of a triangle, the area of the triangle can 

be calculated using the Heron’s Formula: 

( ) ( )22 2 2 4 4 41 2 .
4

S a b c a b c∆ = + + − + +  (6.14)   

 

Theoretically, the judgment method is obvious and easy in implementation. 

However, numerical experiments show that it may give wrong results due to 

the numerical errors which are possibly caused by the power and square root 

calculation in equation (6.14). In addition, it is tricky to verify the equal 

relationship for two floating point numbers in computer platform and this may 

also introduce unexpected errors. 

 

Another way to verify whether the intersection point P is inside the triangular 

face ∆ABC is same-sided phenomena. As shown in Figure 6.4 (b), if point P is 

inside the triangular face ∆ABC, then when walking from any of the three 

endpoints to another endpoint, point P is always at the same side of the third 

endpoint of the triangle. For example, when walking from AC direction, 

both points P and B are at the right side of the edge AC


 as point P is inside 

the triangle; but point Q is at the left side of the edge AC


 as point Q is outside 

the triangle. To verify this, the following two cross products are calculated 

first 
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,

.

b AB AC

p AP AC

= ×

= ×

 

   (6.15)   

 

If points P and B are at the same side when looking from AC, then the dot 

product of b


 and p  should be positive or no-negative, as the internal angle 

between the two vectors is not more than 90-degree. 

( ) ( ) 0.b p AB AC AP AC⋅ = × ⋅ × ≥
      (6.16)   

 

Otherwise, as point Q, which is outside the triangle face ∆ABC, shown in the 

figure, the dot product of  b


 and q  will be negative, as the internal angle 

between the two vectors is more than 90-degree. 

( ) ( ) 0.b q AB AC AQ AC⋅ = × ⋅ × <
      (6.17)   

 

Similarly, point P must also satisfy the following two conditions for edges CB


 

and BA


, then it can be confirmed that the point P is inside the triangle face 

∆ABC.  

( ) ( )
( ) ( )

0,

0.

CA CB CP CB

BC BA BP BA

× ⋅ × ≥

× ⋅ × ≥

   

     (6.18)   

 

If any of the conditions in equations (6.16) and (6.18) is not satisfied, then 

point P will be marked outside the triangle face ∆ABC.  

 

As described above, this method uses the cross product and dot product for 

vectors in the verification and avoids the need for the calculation of power, 
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square root and equality checking of two floating point numbers, so the 

intersection relationship between the line segment P1-P2 and the triangular 

face ∆ABC can be determined accurately. 

  

Because the relationship of cells and the wall boundary is unknown at the 

initial state, the above verification process has to be carried out for every 

triangular face of the wall boundary against all the cells. To be effective in 

finding all the local DFD cells in the initialization step, the process described 

in equations (6.12), (6.16) and (6.18) will be performed only when the cell is 

near to the triangular wall face ∆ABC; otherwise it will be skipped. Once 

again, use the X direction as an example. If a cell satisfies the condition in 

equation (6.19) it will be skipped for the verification. The Y and Z coordinate 

values for P1 and P2 are the same, so the coordinate for P1 is sufficient for the 

shortlisting. 

( ) ( )
( ) ( )
( ) ( )

1 2

1

1

max , , min , , ,

min , , ,max , , ,

min , , ,max , , .

P A B C P A B C

P A B C A B C

P A B C A B C

x x x x AND x x x x

y y y y y y y

z z z z z z z

 < >
 ∈   


∈    

 (6.19)   

 

The location of the local DFD cells in either the fluid domain or the solid 

domain can be determined following the similar methods as described for 2D 

implementation.  

 

6.2.3 Boundary condition for immersed wall  

Using the same boundary condition implementation for the immersed wall 

boundary in 2D LDFD method, the no-penetration condition, slip condition 
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and zero normal derivative approximation for pressure and density are 

applicable. 

0, 0, 0, 0.t
n

v pv
n n n

ρ∂ ∂ ∂
= = = =

∂ ∂ ∂
 (6.20)   

 

To enforce the no-penetration and slip wall boundary condition, the local 

normal velocity vector and the tangential velocity components need to be 

found out. Both normal velocity vector and tangential velocity components 

must be obtained in spherical coordinate system. So it is necessary to transfer 

the velocity vector in the Cartesian coordinate system into the corresponding 

spherical coordinate system.  

 

Figure 6.5 shows the conversion between a Cartesian coordinate system and 

its corresponding spherical coordinate system. The normalized vector 

, ,x y zn n n n =  
  represents the local normal direction on the wall boundary. 

To convert any interested vector into the spherical coordinate system, the 

radial distance r, polar angle θ and azimuthal angle φ are determined by: 

( )
( )

2 2 2

arccos .

arctan
z

z

x

y

y

x

n

n n n

n n

r
rθ

φ

 + +   
   =   
    

 

 (6.21)   

 

In this context, for a known local velocity vector [ ], ,u v w on the wall boundary 

in X-Y-Z coordinate system, it will be transformed into r θ φ− −  coordinate 

system as 
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[ ] .
0

r rx y z

x z y z

y x

V Vn n n u u
V n n s n n s s v V A v

n s n s w wV V
θ θ

φ φ

        
        = − → =        
        −        

 (6.22)   

 

Here 2 2
x ys n n= + .  

 

The velocity vector in r θ φ− −  coordinate system can be converted back to 

X-Y-Z coordinate system by 

[ ] .
0

r rx x z y
T

y y z x

z

V Vu n n n s n s
v A V n n n s n s V
w n sV V

θ θ

φ φ

   −   
      = =      
      −      

 (6.23)   

 

 

Figure 6.5 Velocity transformation between Cartesian coordinate system 
and Spherical coordinate system 

 

The following steps summarize the procedure in enforcing the boundary 

condition (equation (6.20)) for the LDFD method.  

1) For every pair of DFD cells, calculate the normal velocity and 

tangential velocity components using equation (6.22) on the fluid 

 xn  
 

yn  
 

 zn  
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DFD cell. 

2) To enforce the no-penetration condition, the normal velocity rV  at 

the solid DFD cell can be calculated by equation (5.3). 

3) To enforce the slip condition, the two tangential velocity 

components Vθ  and Vφ  at the solid DFD cell can be set by equation 

(5.4). 

4) The corrected velocity component , ,rV V Vθ φ    in the spherical 

coordinate system is then converted back to Cartesian coordinate 

system as [u, v, w] by equation (6.23). 

5) The pressure and density at the solid DFD cell are set the same as 

those at the fluid DFD cell.  

6) The energy at the solid DFD cell is updated by the equation of state 

for ideal gas. 

7) All the conservative terms in Euler equations are finally updated 

with the new values of the flow variables. 

 

Similar to the LDFD implementation for 2D flows, some solid DFD cells 

could be paired with fluid DFD cells in more than one direction or all the three 

directions of X, Y and Z. For those cells, the average weighting factors will be 

used to take into account the contribution of the boundary condition correction 

performed from multiple directions. 
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6.3 Validation for the 3D adaptive solver 

In this subsection, the performance of the 3D adaptive solver will be studied 

by the oblique shock problem and a 3D shock explosion problem. The two 

problems are chosen to test and benchmark the present 3D adaptive solver 

without the consideration of immersed wall boundaries. The 3D flows with 

immersed wall boundaries will be simulated to demonstrate the 3D IBM 

implementation by FC-IBM as well as LDFD method. 

 

6.3.1 Oblique shock problem in 3D 

The 2D oblique shock problem is studied in 3D domain to demonstrate the 

performance and accuracy of the current 3D adaptive Euler solver. The 

computational domain is chosen as 4×1×0.5. The normal inlet, oblique inlet 

and outlet boundaries are defined as shown in Figure 6.6. The boundary 

conditions for the normal inlet and oblique inlet are the same as those for 2D 

study in Chapter 2. Besides the two inlets and one outlet, the remaining three 

boundaries are defined as wall boundaries. 

 

The solver is first run on uniform coarse mesh with size of 0.5dh = , and then 

the adaptive solution-based 1-level refinement and 2-level refinement are 

conducted. The density contours on the domain boundaries and the solution 

adaptive meshes are presented in Figure 6.7. From the contour plots, it is 

noticed that the shock wave captured is much sharper with two levels of 

solution adaption. The number of mesh cells for uniform coarse mesh, 1-level 

and 2-level adaption cases are 16,000, 56,670, and 264,920, respectively. The 

number of mesh cells for 1-level and 2-level adaption is 56% and 74% less 
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respectively as compared with that needed for the uniform mesh with the same 

finer mesh spacing. The remarkable reduction in cell numbers will save the 

demands for large memory/space and long computing time. The computing 

times for the solutions based on three different mesh resolutions are 94 

seconds, 285 seconds and 2617 seconds respectively, as shown in Table 6.1. In 

comparison, the computing time needed for uniform mesh solution with size 

of 0.25dh =  is 2050 seconds, and 38,860 seconds for 0.125dh = . This is 

approximately 7 times and 14 times longer than that by the adaptive solver 

with the same finer mesh resolution. The numerical experiments demonstrate 

that the developed 3D adaptive solver is very efficient comparing to solve the 

flows on uniform mesh especially when higher level of adaption is used. 

 

 

 

 

 

Inlet ρ u v w p 

Normal 1.0 2.9 0 0 0.7143 

Oblique 1.69997 2.61934 0.50632 0 1.5282 

 
Figure 6.6 Oblique shock problem in 3D domain 
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(a)  Density contours (10 intervals) and uniform meshes 

    

(b)  Density contours (10 intervals) and 1-level adaptive meshes 

    

(c)  Density contours (10 intervals) and 2-level adaptive meshes 

Figure 6.7 Adaptive solution for the oblique shock problem in 3D domain 

 

 
Mesh Size Uniform Finer Mesh  Adaptive Mesh  

dh (h) No. of cells CPU time (s)  No. of cells CPU time (s) Speedup 

0.5 16,000 94  - - - 

0.25 128,000 2,050  56,670 285 7.2 

0.125 1,024,000 38,860  264,920 2,617 14.8 

Table 6.1 Computational time comparison for uniform mesh and adaptive 
mesh for 3D oblique shock problem 

 

 

6.3.2 Three dimensional shock explosion 

To further validate the current 3D adaptive solver, the 3D shock explosion 

problem is simulated. In this problem, the still air at high pressure and density 

is confined in a spherical volume. The computational domain for the explosion 
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is [ ]0.5, 0.5− × [ ]0.5, 0.5− × [ ]0.5, 0.5− . The sphere volume is defined as 

0.2r ≤  and the initial conditions for the problem are listed in the table below: 

 

  ρ u v w p 

0.2r ≤ : 1.0 0 0 0 1 

0.2r > : 0.125 0 0 0 0.1 

 

The solution is obtained at dimensionless time 0.1t =  to ensure that the 

explosion waves do not reach the domain boundaries. All the six boundaries of 

the computational domain are defined as outlets, and the flow information is 

extrapolated from the interior cells based on zero normal gradients. The 

solution is computed on three different meshes: coarse uniform size 0.02dh = , 

1-level adaption with finest mesh size 0.01dh =  and 2-level adaption with 

finest mesh size 0.005dh = . The density gradient is used as the indicator for 

mesh adaption, as it reflects all the three types of waves (rarefaction wave, 

contact discontinuity wave and shock wave) during the wave propagation. 

Because the spherical waves travel inside the domain, the mesh cells in 

( , , ) 0x y z >  octant are output for the plot of the results to achieve better result 

visualization. Figure 6.9 shows the present results of density contours, solution 

adapted meshes. The results clearly show that the finest meshes are adapted to 

the regions of the wave shape. The density profile in the radial direction is 

plotted along the line from (0, 0, 0) to (0.5, 0, 0), as shown in Figure 6.8. It is 

observed that the present results agree well with the analytical data obtained 

by Lahooti and Pishevar [59]. Apart from the accuracy of the solver, the 

efficiency improvement is also examined. Comparison of the computational 

time required for the solver on uniform mesh and adaptive solver shows that 
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the speedup rate is about 7 times and 14 times when the finest meshes’ size are 

0.01dh =  and 0.005dh = , respectively. 

 

 

Mesh Size Uniform Finer Mesh  Adaptive Mesh  

dh (h) No. of cells CPU time (s)  No. of cells CPU time (s) Speedup 

0.02 125,000 31  - - - 

0.01 1,000,000 866  374,816 119 7.3 

0.005 8,000,000 15,120  2,016,477 1,090 13.9 

Table 6.2 Computational time comparison for uniform mesh and adaptive 
mesh for 3D shock explosion problem 

 

 

Figure 6.8 Density profile in radial direction for the 3D shock explosion 
problem 
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(a)  Density contours (20 intervals) and uniform meshes 

         

(b)  Density contours (20 intervals) and 1-level adaptive meshes 

         

(c)  Density contours (20 intervals) and 2-level adaptive meshes 

 

Figure 6.9 Adaptive results for the 3D shock explosion problem 
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6.4 Numerical examples for 3D IBM methods 

In this subsection, the FC-IBM and LDFD method are implemented together 

with the 3D adaptive Euler solver. To validate the developed method, 

simulation of Mach 3 flow over a sphere is performed and the results are 

compared with numerical data available in the literature. 

 

6.4.1 Mach 3 flow over a sphere 

As a benchmark case, Mach 3 flow over a sphere is simulated to validate the 

current adaptive solver with immersed boundary method implemented for 3D 

problems. In this case the bow shock generated in front of the sphere can be 

used for comparison and accuracy analysis. 

 

The radius of the sphere is one unit. Because the free stream flow is in 

supersonic range and the bow shock is in front of the sphere, only half of the 

sphere is chosen for the simulation, as shown in Figure 6.10. The computed 

results are plotted in Figure 6.11 and Figure 6.12. To compare the results 

quantitatively, the Mach number distribution along the central line from (-

2,0,0) to (-1,0,0), as indicated by the solid line AB  in Figure 6.10, is plotted in 

Figure 6.11 and is compared with the numerical results obtained on a 

structured mesh solver by Rispoli et al. [60].  

 

It is noticed that the Mach number profiles computed by FC-IBM and LDFD 

have very minor difference, and both are comparable to the numerical results 

obtained on structured grid by Rispoli et al. [60]. In order to visualize the 
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results near the immersed body clearly, the Mach number contours are only 

plotted when the mesh cells are in the region of ( ), 0y z ≥ . 

  
Figure 6.10 Computational domain for Mach 3 flow over a sphere 
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Figure 6.11 Mach number profile for Mach 3 flow over a sphere 

    

         (a)  Computed by FC-IBM                 (b) Computed by LDFD method 

Figure 6.12 Mach number contours for Mach 3 flow over a sphere 

3M∞ =  

A           B 
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6.4.2 Supersonic flow over 3D objects 

In the previous subsection, shock propagation over a simple spherical surface 

is simulated. To demonstrate the capability of the developed adaptive-

immersed boundary solver in handling 3D complex boundaries, supersonic 

flows over a 3D aircraft head and an Apollo-shaped re-entry vehicle are 

simulated using the adaptive LDFD method, as this method demonstrates to be 

more robust and accurate. The geometry and the surface meshes of the aircraft 

head and the re-entry vehicle are plotted in Figure 6.13 (the outer surfaces of 

the aircraft head and the re-entry vehicle are represented by triangular mesh 

cells generated in Gambit.) The computational domain is 3D box which covers 

the boundary surfaces completely.  

 

         

Figure 6.13 Geometry and surface meshes on 3D aircraft head and an 
Apollo-shaped re-entry vehicle 

 

Firstly, supersonic flow at Mach number 2 and the angle of attack AoA=20° 

over an aircraft head is computed. The case is an extension of the 2D 

supersonic flow over a double-ellipse structure presented in Chapters 4 and 5. 

In order to compare and validate the current solver, the supersonic flow with 

same surface meshes on the aircraft head, same domain size and same flow 
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conditions is solved using Fluent solver based on tetrahedral meshes. The 

symmetrical modeling is applied for this study in reducing the computational 

demand. The meshes on the aircraft head structure and the symmetrical plane, 

and the computational domain are plotted in Figure 6.14 (a) and (b) for the 

current solver and Fluent solver, respectively.  

 

      

 

 

    

 

Figure 6.14 Pressure contours for 3D supersonic flows over an aircraft head 
with M=2, AoA=20° 

 

2M = , 20AoA = °  

(a)  3D domain and Cartesian 
mesh for the current solver 

(b)  3D domain and tetrahedral 
mesh for Fluent solver 

(c)  Pressure contour computed 
by the current solver 

(d)  Pressure contour computed 
by Fluent solver 
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The computed pressure contours are plotted on the central surface of the 

domain and the aircraft body, as shown in Figure 6.14 (c) and (d) for the 

current solver and Fluent solver, respectively. The bow shock structure 

captured by the current solver agrees well with that computed by Fluent solver.  

 

Another test case is to simulate the supersonic flow over an Apollo-shaped re-

entry vehicle. The free stream incoming flow is at Mach number 2.5 and with 

two angle of attack AoA=0° and 20°. To demonstrate the capability of the 

present method in dealing with different immersed wall boundaries, the free 

stream incoming flow is fixed at 2.5M∞ =  along the positive X direction and 

the flow condition at AoA=20° is achieved by rotating the re-entry vehicle 

surface by 20 degrees along +Z direction. Because there is no change for the 

computational domain and the 3D Cartesian meshes, no additional work is 

required for the solver in simulating the flows at AoA=0° and AoA=20°. The 

influence of the re-entry vehicle body introduced into the domain will be 

enforced according to the actual vehicle surface and its boundary location.  

 

The computed pressure contours are plotted on the central surface of the 

domain and  the re-entry vehicle body, as shown in Figure 6.15 (a) and (b) for 

AoA=0° and AoA=20°, respectively. It can be seen that the bow shock in front 

of the vehicle is captured and adapted to the different angle of attack. The 

shock waves predicted by the present solver are comparable to the numerical 

results obtained on body-fitted grids by Marcy [61] as shown in Figure 6.15 (c) 

and (d). 
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Figure 6.15 Pressure contours for 3D supersonic flow over an Apollo-
shaped re-entry vehicle with M=2, AoA=0° and 20° 

 

 

6.4.3 Supersonic flow over a 3D space vehicle 

In the previous two numerical test cases, supersonic flows over an aircraft 

head and an Apollo-shaped re-entry vehicle are computed. The geometry of 

the aircraft head and the re-entry vehicle is considered to be bluff body, which 

M∞
 M∞

 

(a)  3D flow over a re-entry vehicle 
at Mach number 2.5, AoA=0°. 

(b)  3D flow over a re-entry vehicle 
at Mach number 2.5, AoA=20°. 

(c)  Mach number 2.5, AoA=0° [61]. (d)  Mach number 2.5, AoA=20° [61]. 
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is relative simple. In this test case, supersonic flow over a full three-

dimensional space vehicle, including a craft body and a pair of wings, will be 

studied using the current solver. As the thickness of the wings is about 2% of 

the full dimension of the space vehicle, finer mesh resolution is required to 

resolve the thin geometry structure of wings accurately. This is a challenging 

case as the size of the 3D problem will become relatively large. To compare 

and validate the current solver, an identical numerical model is created with 

unstructured tetrahedral meshes and the flow is solved by Fluent solver with 

same flow and boundary conditions.  

 

The computational domain and mesh for the current solver and Fluent solver is 

shown in Figure 6.16 (a) and (b), respectively. The flow condition is defined 

with the free stream incoming flow at Mach number 2.0 and the angle of 

attack at zero degree. The computed pressure contours on the surface of the 

space vehicle and the middle symmetrical plan are plotted in Figure 6.16 (c) 

and (d) for the current solver and Fluent solver. The plots show that similar 

flow pattern is obtained from the current solver and Fluent solver, which is 

illustrated by the bow shock wave (indicated as solid-line arrow) predicted in 

front of the space vehicle and the weak oblique shock wave (indicated as 

dotted-line arrow) captured near the cockpit window. The pressure distribution 

on the space vehicle surface and the middle symmetrical plan is plotted in 

Figure 6.16 (f). The results also show that the pressure distribution obtained by 

the current solver and Fluent solver match accurately well. This demonstrates 

the current solver’s capability in solving flows over complex 3D structures. 
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Figure 6.16 Computed results for supersonic flow over a 3D space vehicle 
with M=2, AoA=0° 

 

(a)  3D domain and Cartesian 
mesh for the Current solver 

(b)  3D domain and tetrahedral 
mesh for Fluent solver 

(c)  Pressure contour computed 
by the Current solver 

(d)  Pressure contour computed 
by Fluent solver 

(f)  Pressure distribution on the space vehicle surface and the symmetrical plan 
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6.5 Conclusions 

The 3D adaptive Euler solver is developed using the same approach as that for 

the 2D adaptive Euler solver. The FC-IBM and LDFD method proposed in 

Chapters 4 and 5 are implemented in the 3D adaptive solver to enforce the 

boundary condition on wall boundary which is represented by 3D triangular 

surface segments. 

 

The accuracy of the 3D adaptive solver is validated and the performance of the 

solver is benchmarked. The results show that the adaptive solver is able to 

achieve finer mesh solution efficiently with better accuracy, in particular when 

higher level of adaption is used. The FC-IBM and LDFD implementation on 

the 3D adaptive Euler solver is validated by the 3D supersonic flow over a 

sphere. The results show good agreement with the reference data. Supersonic 

flows over an aircraft head, an Apollo-shape re-entry vehicle and a space 

vehicle with a pair of wings have been simulated by the LDFD method. The 

results demonstrate that the method is accurate and robust, and is a good 

potential tool for the application to solve such kind of supersonic flows over 

complex geometry. 
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Chapter 7 Development of Adaptive  
Viscous Solver for Laminar Flows 

Since Peskin first introduced the immersed boundary method to simulate the 

complex geometry-fluid interactions on a fixed Cartesian mesh ([20], [21]), 

significant efforts have been made to refine this method. Though the current 

work was initiated with the objective to solve compressible inviscid flows, the 

developed adaptive solver and the proposed IBM implementation can be easily 

modified to solve viscous flows in laminar condition with minor effort.  

 

7.1 Laminar viscous flow solver 

The dimensionless, two-dimensional compressible Navier-Stokes equations in 

the conservative form are given as below using the far field reference Mach 

number and Reynolds number. 

.
Re

v vM F GU F G
t x y x x

γ ∞

∞

 ∂ ∂∂ ∂ ∂
+ + = + ∂ ∂ ∂ ∂ ∂ 

 (7.1)   

 

Compared to the Euler equations in Chapter 2, the viscous stresses on the right 

side of the equation need to be included in the solver for viscous flows. The 

viscous stresses are given by 

00

, .
xyxx

v v
xy yy

xx xy x xy yy y

F G

u v q u v q

ττ
τ τ
τ τ τ τ

  
  
  = =   
  

+ − + −     

 (7.2)   
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With the Stokes hypothesis, 2
3

λ µ= − , the dimensionless stress tensor and 

heat flux vector q  are given by 

2 22 2 ,
3 3xx

u u v u v
x x y x y

τ
   ∂ ∂ ∂ ∂ ∂

= − + = −   ∂ ∂ ∂ ∂ ∂   
 (7.3)   

2 22 2 ,
3 3yy

v u v v u
y x y y x

τ
   ∂ ∂ ∂ ∂ ∂

= − + = −   ∂ ∂ ∂ ∂ ∂   
 (7.4)   

,xy yx
u v
y x

τ τ
 ∂ ∂

= = + ∂ ∂ 
 (7.5)   

( ) ( )1 1, .
1 Pr 1 Prx y

p p
q q

x y
ρ ργ γ

γ γ
∂ ∂

= =
− ∂ − ∂

 (7.6)   

 

The Reynolds number (Re), Prandtl number (Pr) and Mach number (M∞) used 

for the dimensionalization of Navier-Stokes equations are defined as 

Re , Pr , .PU d C UM
K c

ρ µ
µ
∞ ∞

∞= = =   (7.7)   

 

Here, U∞  is the far field reference velocity, d is reference length, ρ is density, 

µ is the molecular viscosity, pC  is the heat capacity, K is the conductivity, and 

c is the sound speed. 

 

For the viscous solver, the inviscid flux on the cell interface is still calculated 

following the HLLC scheme as described in Chapter 2. The viscous flux on 

the cell interface is calculated via the central difference scheme using the first 

order derivatives computed on the cell centers. 
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( )

,

1 ,
2

00

.
Re

L R
viscous v v

xyxxL R
v x y

xy yy

xx xy x xy yy y

f f f

Mf n n

u v q u v q

ττγ
τ τ
τ τ τ τ

∞

∞

= +

   
   
   = +       + − + −      

  (7.8)   

 

And the solution evolution in time domain is 

( )1 .n n
c c invscid viscous i ii

c

tU U f f l n
A

+ ∆
= − − ⋅∑

   (7.9)   

 

7.2 IBM implementation for viscous flows 

The flux correction-based immersed boundary method (FC-IBM) proposed in 

Chapter 4 for inviscid flows will be modified to enforce wall boundary 

condition in the current laminar viscous flow solver, due to its simple and ease 

in the actual implementation and other successful implementation of IBM for 

incompressible viscous flows. For viscous flows, the no-slip condition may be 

the most commonly used boundary condition. The no-slip boundary condition 

indicates that both X and Y velocity components of fluid at the solid surface 

must be the same as that of the solid boundary. Compared to the no-

penetration condition for inviscid flows, there is no need to perform the 

velocity transformation to obtain the normal velocity on the boundary. The 

target of the velocity correction is to satisfy both X and Y velocity 

components on the boundary to be zero for stationary boundary, thus the no-

slip condition will be enforced and satisfied. 
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In the current method, the velocity correction is performed via an iterative 

method similar to that described in Chapter 4. Because the implementation 

process of the no-slip condition for X direction velocity component (u) and Y 

direction velocity component (v) is the same, the detailed process is only 

illustrated for the velocity (u) in X direction. Assuming that the boundary 

velocity is known as ( 0
wu , 0

wv ), the velocity correction procedures are: 

 

1) Using the delta function to compute the velocity on the boundary from 

the nearby shadow cells: ( )*
,w i i ju u D= ⋅∑ . 

2) Setting the velocity correction as ( )0 *
w w wu u uδ = − , as the computed 

velocity *
wu  may not equal to the velocity ( 0

wu ) of boundary.  

3) Distributing the velocity correction on the boundary back to the nearby 

shadow cells via the delta function and obtaining the corrected velocity 

on the shadow cells as: ( )*
,i i w j iu u u Dδ= + ⋅∑ . 

4)  Using the corrected velocity on cells to repeat steps 1) to 3) until the 

no-slip condition is satisfied when the velocity correction on the 

boundary is within the required criteria ε, e.g. 0 *
w w wu u uδ ε= − ≤ . 

 

When the boundary condition is satisfied through the above iterative 

procedure, the effective velocity correction on an individual cell near the 

boundary is 

( )0 * .i i iu u uδ = −  (7.10)   
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As derived by Wu and Shu [32], the force exerted on the solid body can be 

computed via the integration of the velocity correction iuδ on all cells, of 

which the velocity is corrected. 

( ) ,i
Solid i

i

uF dx dy
t

δρ
δ

Ω   = × ⋅    
∑   Ω ∈ {all the shadow cells}. (7.11)   

 

As the current solver is a compressible flow solver, so the fluid density at the 

cell center is used in the force computation. Although the force calculated by 

equation (7.11) is the force exerted on the fluid, it is equivalent of the force 

exerted onto the boundary of the immersed solid in the opposite direction due 

to Newton’s third law of motion. 

 

7.3 Numerical tests 

The flow past a circular cylinder is chosen as the validation case for the 

current laminar flow solver. As a classic problem this flow has been studied 

extensively, and there are many theoretical, experimental and numerical data 

available in the literature for comparison. Another validation case to be 

simulated in this subsection is the laminar flow over a NACA0012 airfoil. The 

pressure distribution on the airfoil surface will be compared for accuracy 

analysis. 

 

7.3.1 Flow over a circular cylinder 

Reynolds (Re) number is typically used to classify the flow behaviors for 

numerical studies of flow over a circular cylinder. The Re in this analysis is 
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determined by the reference free stream velocity (U∞ ), the diameter (D) of the 

cylinder and the dynamic viscosity (ν ) of the fluid by 

Re .U D
ν
∞=   (7.12)   

 

The laminar flows are studied numerically at four different Reynolds numbers: 

20, 40, 100 and 200. The flow characteristic at Re of 20 and 40 is dominated 

by a pair of symmetrical and stationary recirculation vortices behind the 

cylinder. At the relative higher Re of 100 and 200, the flow characteristic is 

dominated by a repeating pattern of swirling vortices downstream of the 

cylinder, which is well-known as the Kármán vortex street. 

 

The flow conditions for this study are 

1.4, 1, 0.1, 0.1, 1.p U M Dρ ∞ ∞= = = = =   (7.13)   

 

The computational domain is 40D×40D with coarse uniform mesh at 200×200, 

and the flow is from left to right in X direction. The finest meshes are 

clustered around the cylinder via the adaption technique developed in the 

current solver to increase the mesh resolution locally. Adaptive mesh 

refinement is performed based on the magnitude of the vorticity in order to 

improve the solution accuracy in the recirculation region behind the cylinder 

and the swirling vortices downstream. 

 

The drag force introduced by the cylinder can be calculated based on the 

velocity correction on all shadow cells in X direction. 
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( ) ,i
D i

i

uF dx dy
t

δρ
δ

Ω   = × ⋅    
∑    Ω ∈ {all the shadow cells}. (7.14)   

 

And then the drag coefficient ( dC ) is derived as 

( ) 2 .
1 2

D
d

FC
U Dρ∞ ∞

=  (7.15)   

 

Similarly, the lift force ( LF ) introduced by the cylinder and the lift force 

coefficient ( lC ) can be calculated based on the velocity correction on all 

shadow cells in Y direction. 

( ) ,i
L i

i

vF dx dy
t

δρ
δ

Ω   = × ⋅    
∑    Ω ∈ {all the shadow cells} (7.16)   

( ) 21 2
L

l
FC

U Dρ∞ ∞

=   (7.17)   

 

Besides the drag coefficient ( dC ), the recirculation length (L) and the flow 

separation angle (θ ), as shown in Figure 7.1, are often used for comparison 

and accuracy analyses.  

 

As the Mach number for this test case is 0.1M∞ = , air can be considered as 

incompressible fluid. Hence the results can be compared and validated by the 

numerical results obtained via those incompressible flow solvers. At low Re 

numbers of 20 and 40, the drag coefficient ( dC ), the recirculation length ( L ) 

and the flow separation angle ( θ ) computed by the present solver are 

compared with the data available in the literature. The details are tabulated in 
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Table 7.1. It can be seen that the current results agree well with the numerical 

results obtained from other IBM implementations for this problem. At the 

condition of Re=20, the drag coefficient obtained by the current solver is 

2.11~2.12, which matches well to other numerical results in the range of 

2.0~2.152. At the condition of Re=40, the drag coefficient obtained by the 

current solver is about 1.58~1.59, which matches well to other numerical 

results in the range of 1.498~1.59 as well. In general, the recirculation length 

and the separation angle also match well with other numerical results as well 

for both Re numbers of 20 and 40. 

 

Figure 7.1 Flow characteristics of the flow over a circular cylinder 
 

Streamlines obtained around the circular cylinder at Re=20 and 40 are plotted 

in Figure 7.2 (a) and (b), respectively. No-penetration of streamlines is 

observed in the fluid domain outside the cylinder and also inside the cylinder, 

which indicates the no-penetration boundary condition is well satisfied. It 

agrees well with the results obtained by Wu and Shu [32] using the IVC-IBM 

for incompressible flows. 
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Case References Cd 2L/D θ  

Re=20 Wu & Shu [32] 2.091 1.86 - 

 Taira et al. [62] 2.06–2.07 1.88-1.94 43.3°-44.1° 

 Others [22], [68] 2.0–2.152 1.82-1.88 43.3°-45.0° 

 Present 
 coarse mesh (1/40) 
 fine mesh (1/80) 

 
2.12 
2.11 

 
1.98 
1.857 

 
43.2° 
43.3° 

Re=40 Wu & Shu [32] 1.565 4.62 - 

 Taira et al. [62] 1.54-1.55 4.6-4.66 53.7°-54.1° 

 Others [22], [68] 1.498–1.59 4.26-4.69 53.6°-54.1° 

 Present 
 coarse mesh (1/40) 
 fine mesh (1/80) 

 
1.58 
1.59 

 
4.47 
4.49 

 
53.2° 
53.1° 

Table 7.1 Comparison of drag coefficient dC , recirculation length L  and 
flow separation angle θ  for steady-state laminar viscous flow over a circular 
cylinder at Re=20 and 40. 
 

    

                         (a)  Re=20                                                (b)  Re=40 

Figure 7.2 Computed streamlines for the flow over a circular cylinder 

 

 

When Re increases, a repeating flow pattern of swirling vortices downstream 

of the cylinder is developed. This is the well-known Kármán vortex street. The 

flow pattern under this condition is asymmetrical and repeated periodically. 
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Table 7.2 presents the current results obtained at Re of 100 and 200 with the 

drag coefficient, lift coefficient and Strouhal number (St) and the comparison 

with other numerical results. The Strouhal number is a dimensionless number 

describing oscillating flow pattern such as the Kármán vortex street for this 

study and is defined as 

.Tf DSt
U∞

=   (7.18)   

 

The Tf  in the above equation is the frequency of the periodic flow pattern.  

 

From the results listed in Table 7.2, it is observed that the average drag 

coefficient computed via the current compressible flow solver in general 

agrees well with other numerical predictions ([24], [32], [69]-[71]). The 

present average drag coefficient is 1.38 for Re=100 and 1.36 for Re=200. The 

values are in the high band among the published numerical results of 

1.329~1.384 for Re=100 and 1.19~1.4 for Re=200. The computed magnitude 

of the lift coefficient has the similar tendency and is also in the high band 

among the published numerical data. The computed Strouhal number is 0.161 

for Re=100 and 0.187 for Re=200, which are in good agreement with 

published results, ranging from 0.142~0.18 for Re=100 and 0.163~0.211 for 

Re=200. The comparison implies that the current solver can predict the 

unsteady-state periodic flows accurately. 

 

The computed streamlines, drag coefficient and lift coefficient versus time are 

plotted in Figure 7.3. The contours of vorticity and the solution-adapted 
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meshes are plotted in Figure 7.4.  The plots demonstrate clear periodicity of 

the flow pattern of the Kármán vortex street downstream of the cylinder and 

the benefit of using solution adaptation solver for such kind of unsteady-state 

flow study. In the plots of vorticity contours, Figure 7.4 (a), the dotted-lines 

and the solid-lines denote the negative and positive levels of vorticity, 

respectively. The corresponding solution adapted meshes are plotted in Figure 

7.4 (b). It is observed that finer meshes are adapted to the vortices closely. 

 

 

Case References Cd (average) Cl St 

Re=100 Wu & Shu [32] 1.364 ±0.35 0.163 

 Lai & Peskin [24] 1.447, 1.463 ±0.33 0.144, 0.165 

 Others [69]-[71] 1.325~1.384 ±(0.25~0.339) 0.142~0.18 

 Present 1.38 ±0.354 0.161 

Re=200 Wu & Shu [32] 1.349 ±0.72 0.193 

 Lai & Peskin [24] - - 0.163, 0.190 

 Liu et al. [71] 1.31 ±0.69 0.192 

 Others [69]-[71] 1.19~1.4 ±(0.5~0.69) 0.163~0.211 

 Present 1.36 ±0.688 0.187 

Table 7.2 Comparison of drag coefficient dC , lift coefficient lC  and 
Strouhal number St for unsteady-state laminar viscous flow over a circular 
cylinder at Re=100 and 200. 
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 (b)  Drag and lift coefficients versus time 

Figure 7.3 Computed results of streamlines, drag and lift coefficient 
profile for the flow over a circular cylinder at Re=100 and 200 

Re=100 

Re=200 

Re=100 Re=200 
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(a)  Contours of vorticity 

 

 

 

(b)  Solution-adapted meshes. 

Figure 7.4 Computed results of vorticity contours and adapted meshes for 
the flow over a circular cylinder at Re=100 and 200 

 

 

Re=100 

Re=200 

Re=100 

Re=200 
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7.3.2 Flow over a NACA0012 airfoil 

The second validation case for the current viscous adaptive solver is to 

simulate the flow over a NACA0012 airfoil. Flow structures in two different 

conditions are computed. The first case is defined with the Reynolds number 

at Re=500, the free steam velocity U∞ =0.1 and the reference Mach 

number M∞ =0.1, and the angle of attack AoA=0°. The flow condition for the 

second case is the Reynolds number at Re=500, the free steam velocity 

U∞ =0.8 and the reference Mach number M∞ =0.8, and the angle of attack 

AoA=10°. The chord size of the airfoil is c=1 and the head is located at the 

center of the domain. The computational domain is 40c×40c with coarse 

uniform mesh of 200×200. To resolve the thin geometry of the airfoil 

accurately, finer meshes are clustered around the airfoil surface. Figure 7.5 

shows the configuration of the computational domain for this study and the 

clustered mesh distribution near the airfoil. Because the changes of flow are 

not so great on the cells far away from the airfoil, lower level adaption is used 

to refine those mesh cells based on the vorticity of flow. 

 

For the first case study with the flow condition of Re 500= , 0.1U∞ = , 

0.1M∞ = , and 0AoA = ° , the computed results of the pressure coefficient on 

the airfoil surface and the streamlines superimposed on the pressure contours 

are presented in Figure 7.6. The results compare well with the numerical 

results obtained via the velocity correction-based IBM for incompressible 

flows by Wu and Shu [32]. To be specific, the drag coefficient computed by 

the current solver is 0.1761dC = , which agrees closely with the drag 
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coefficient 0.1759dC =  predicted by Wu and Shu [32].  

 

For the second case study with the flow condition of Re 500= , 0.8U∞ = , 

0.8M∞ = , and 10AoA = ° , the computed results of the pressure coefficient on 

the airfoil surface and the streamlines superimposed on the pressure contours 

are presented in Figure 7.7. The current result is compared with the published 

numerical results obtained by Jahangirian and Hashemi [13]. The pressure 

coefficient profile predicted on the airfoil surface agrees well with the 

numerical results. To be specific, the current drag force coefficient predicted is 

0.479, which matches fairly to their result of 0.475. The separation point for 

this flow above the airfoil is at about 37.5% in the chord-wise direction, which 

is also in good agreement with their results of 37% with maximum error of 1%. 

 

The results computed for both cases of flow over a NACA0012 airfoil 

demonstrate that the current adaptive viscous solver is accurate and efficient 

for flow simulations over streamlined geometry like airfoil in different flow 

conditions. Other flow conditions, such as various Reynolds numbers, 

different angle of attack, multiple element airfoils, and moving airfoil can be 

studied easily using the current viscous solver with its specific features of 

solution adaption and ability in handling immersed wall boundary. 
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Figure 7.5 Configuration of flow over NACA0012 airfoil and clustered 
mesh near the airfoil 

    

Figure 7.6 Computed pressure coefficient, pressure contours and 
streamlines for NACA 0012 airfoil at 0.1, Re 500, 0M AoA∞ = = = °  

X

C
p

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

Ref Data [13]
Current

 

Figure 7.7 Computed pressure coefficient, pressure contours and 
streamlines for NACA 0012 airfoil at 0.8, Re 500, 10M AoA∞ = = = °  
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7.4 Conclusions 

With the viscous stresses considered, the present 2D adaptive Euler solver is 

extended to solve laminar viscous flows easily. The fluxes contributed by the 

viscous stresses are computed using central difference scheme. Because no-

slip condition is defined for wall boundary in viscous flows, the IBM 

implementation is achieved easily by correcting the velocity field near the 

boundary to satisfy zero velocity condition for stationary boundary.  

 

The laminar viscous solver is validated by simulating laminar flow over a 

circular cylinder in steady-state condition at Re=20 and 40, and also unsteady-

state condition with Re=100 and 200. Another test case is to simulate the flow 

over a NACA0012 airfoil at Re=500 with different Mach number and angle of 

attack. Current results agree fairly well with other numerical results. The 

validation shows that the current viscous solver can be used for simulation of 

laminar viscous flows under various wall boundaries and flow conditions.  
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Chapter 8  
Conclusions and Recommendations 

 

8.1 Conclusions 

In this thesis, novel simulation techniques, namely a flux correction-based 

immersed boundary method (FC-IBM), a modified local domain-free 

discretization method (LDFD) and a local DFD-based immersed boundary 

method (LDFD-IBM), were introduced and investigated to simulate 

compressible inviscid flows in a Cartesian grid-based adaptive Euler solver.  

For the first time, we are able to implement the widely adopted IBM concept 

for incompressible flows to solve compressible inviscid flows. The three new 

methods have been validated and tested comprehensively in the present 2D 

adaptive Euler solver. The FC-IBM and LDFD method have been investigated 

in the extended 3D adaptive Euler solver as well. Validation and numerical 

test results clearly demonstrate the good potential in practical application to 

solve 3D compressible inviscid flows with complex boundaries. Some 

conclusions are drawn from the present study. 

 

8.1.1 Development of adaptive Euler solver 

An adaptive Euler solver was developed with the finite-volume discretization 

on Cartesian grid. The HLLC scheme is used to compute the flux on cell 

interface and six second-order flux schemes were implemented and studied. 

The adaptive mesh refinement (AMR) technique is an important and useful 
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tool implemented on the present Euler solver. The ghost-cell method was 

adopted and integrated with the developed adaptive Euler solver to validate 

and benchmark against the adaptive solver. Through the validation studies, it 

has been demonstrated that the present adaptive Euler solver is accurate, 

efficient and robust in simulating compressible flows with strong and weak 

shock waves. The adaptive solver has built a concrete platform to this study.  

  

8.1.2 Implementation of FC-IBM 

A novel FC-IBM was proposed based on the notion that a wall boundary shall 

satisfy the conditions of no-penetration, zero mass flux and zero energy flux. 

In the FC-IBM implementation, the first condition is enforced by velocity 

correction while the remaining two conditions by a flux correction method. 

The advantage of the FC-IBM is that it avoids the tedious process to compute 

the boundary curvature and to identify the cells are in either fluid domain or 

solid domain. This makes the method be unique and simple in the 

implementation. 

 

The FC-IBM has been implemented and integrated with the developed 2D 

adaptive Euler solver. It has been validated and studied through the 

simulations of supersonic flows over a circular cylinder, a wedge and a 

double-ellipse structure, transonic and subsonic flows over a NACA0012 

airfoil. The results obtained from the new method agree well with the 

available literature data; however, some numerical viscosity was observed and 

may affect the eventual solution, especially in the presences of weak 

convection and small reverse pressure gradient. 
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8.1.3 Implementation of LDFD and LDFD-IBM 

A modified local LDFD (LDFD) method was implemented in the developed 

adaptive Euler solver. The concept of LDFD for 2D flows is that the wall 

boundary condition can be enforced by correcting the flow information on the 

solid cells (DFD cells) next to the boundary in X direction and Y direction 

directly for 2D flows. Because the DFD cells near the boundary can be 

identified easily in X and Y directions, the method is simple to implement. 

The LDFD-based immersed boundary method (LDFD-IBM) was proposed to 

make the implementation simpler by avoiding the need to identify the solid 

DFD cells and fluid DFD cells.  

  

Validation and numerical tests for supersonic, hypersonic and transonic flows 

proved that both methods can handle simulations of various compressible 

inviscid flows. In particular, the LDFD has been demonstrated to be more 

accurate and robust. The successful numerical tests for subsonic flow and 

transonic flow over two different two-element airfoils by LDFD method 

clearly demonstrated the potential of this tool for the simulation of 

compressible inviscid flows with complex boundaries.  

   

8.1.4 Development of 3D adaptive Euler solver  

The 3D adaptive Euler solver was successfully developed in the platform of 

2D adaptive solver. The proposed immersed boundary methods, FC-IBM and 

LDFD, were implemented and integrated with the 3D adaptive solver. Because 

of the high demand for longer computing time and the increasing complexity 

for boundary recognition and implementation, the present 3D adaptive solver 
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with FC-IBM and LDFD have been validated and benchmarked primarily with 

supersonic flows over bluff body wall boundaries and complex 3D space 

vehicle consisting of curved body and wings. The results have been compared 

and validated with Fluent solver. The validation results and the benchmark 

performance demonstrated to certain extent the viability of the solver and the 

proposed methods for compressible inviscid flows. 

 

8.1.5 Application for laminar viscous flow 

The adaptive Euler solver has been extended to simulate laminar viscous flows 

simply by considering the flux contribution from the viscous stresses. Minor 

effort is required to convert the inviscid Euler solver to a laminar viscous flow 

solver. The FC-IBM was simply modified to enforce the no-slip boundary 

condition for viscous flows. Simulation of laminar viscous flows over a 

circular cylinder and a NACA0012 airfoil gave rise to an accurate derivation 

of the viscous solver in simulating steady-state and unsteady-state flows. 

 

8.2 Recommendation for future works  

Further studies and possible improvements under consideration on the 

proposed immersed boundary methods, FC-IBM, LDFD and LDFD-IBM, for 

compressible inviscid flow simulation using the developed Cartesian-grid 

based adaptive solver include: 

 

• The study of the numerical viscous effect introduced during the 

implementation of FC-IBM. Because the delta function interpolation 
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only offers the first-order accuracy, there is a possibility that the 

numerical viscous effect may be introduced during the interpolation 

process for the computation of the flux and normal velocity on the 

wall boundary. Interesting conclusions may surface from higher-order 

interpolation methods. 

• The implementation and study of other boundary conditions and their 

impact. In compressible inviscid flows, the choice of conditions for 

wall boundary is not limited to those used in this study. Other 

conditions such as constant enthalpy and adiabatic wall can be 

implemented as well for comparative studies. 

• The improvement and enhancement of the implementation of the FC-

IBM and LDFD method in 3D solver. The 3D adaptive solver can be 

extended to simulate more challenging 3D flows with complex 

boundaries, such as that of an airfoil wing, a space shuttle and even an 

entire aircraft. 

• The improvement and enhancement of the adaptive viscous flow solver 

for the application of unsteady state flows with moving boundaries. 

• The parallelization of the 3D solver by making use of the multiple core 

computing facilities. Naturally, the availability of multiple-core 

computers can greatly enhance the performance and efficiency of the 

3D adaptive solver introduced here. 
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