

IMMERSED BOUNDARY METHODS FOR

COMPRESSIBLE FLOWS

WANG JUNHONG

NATIONAL UNIVERSITY OF SINGAPORE

2012

IMMERSED BOUNDARY METHODS FOR

COMPRESSIBLE FLOWS

WANG JUNHONG

(B. ENG., M. ENG.)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2012

i

DECLARATION

I hereby declare that the thesis is my original work and it has
been written by me in its entirety. I have duly acknowledged
all the sources of information which have been used in the

thesis.

This thesis has also not been submitted for any degree in any
university previously.

WANG JUNHONG
19 November 2012

ii

Acknowledgements

I would like to express my sincere gratitude to my advisor, Professor Shu

Chang, for his invaluable guidance, advice, stimulating suggestions,

encouragement and patience throughout the course of this thesis.

I also wish to take this opportunity to thank all the research students and

research staff in Prof. Shu’s group for their valuable suggestions and kind

encouragement. Especially, I thank Dr. Zheng Hongwei and Dr. Liu Ningyu,

who gave me valuable suggestions in the early stage of the thesis; Dr. Wu Jie,

Ms. Shao Jiangyan, Ms. Ren Weiwei and Mr. Wang Yan, who gave me their

selfless, friendly and valuable suggestion and advice on the coding and

troubleshooting.

I would like to thank the National University of Singapore (NUS), my

employer as well, offering me this opportunity to pursue the Ph.D degree on

part-time basis and waiver of the research tuition fees. Moreover, I would like

to thank Mr. Tan Chee Chiang, my superior and the Senior Associate

Directory of the Computer Centre and Mr. Tommy Ho, the Director of the

Computer Centre, for their continuous support and understanding.

Last but not least, I would like to give my special thanks to my wife, daughters

and parents. Without their endless and considerate love, support and

encouragement, I would not be able to complete this thesis.

Contents

iii

Contents

DECLARATION i

Acknowledgements ii

Contents iii

Summary vii

List of Tables ix

List of Figures x

Nomenclature xvi

Chapter 1 Introduction ... 1

1.1 Non-body-fitted grid methods for compressible flows 4

1.1.1 Cut-cell method ... 4

1.1.2 Ghost-cell method ... 6

1.1.3 Grid-less method ... 8

1.2 Local Domain-Free Discretization (DFD) method 10

1.3 Immersed Boundary Method (IBM) for incompressible flows .. 12

1.3.1 Body force correction based IBM ... 13

1.3.2 Velocity correction based IBM ... 15

1.4 Motivation in current study ... 18

1.5 Outline of the Thesis ... 20

Chapter 2 Adaptive Cartesian Grid Euler Solver 22

2.1 Governing equations ... 22

2.2 Finite volume discretization and HLLC scheme 23

2.3 Second-Order flux solver .. 26

2.4 Implementation of boundary conditions 28

2.5 Solution adaptive method ... 29

Contents

iv

2.6 Test cases and discussion .. 36

2.6.1 Sod’s shock tube problem ... 36

2.6.2 Lax shock tube problem .. 38

2.6.3 Two-Dimensional oblique shock wave .. 39

2.6.4 Double Mach reflection .. 41

2.6.5 Backward step problem .. 44

2.6.6 Cylindrical shock explosion .. 46

2.7 Effectiveness of the adaptive solver ... 49

2.8 Improvement of solution accuracy by the second-order
schemes ... 50

2.9 Accuracy and convergence analysis ... 55

2.10 Conclusions ... 58

Chapter 3 Ghost-cell Method-based Adaptive Euler Solver 60

3.1 Ghost-cell method ... 61

3.2 Results and discussion .. 66

3.2.1 Supersonic flow over a circular cylinder .. 66

3.2.2 Transonic flow over a channel with bump .. 68

3.2.3 Transonic flow over a RAE2822 airfoil .. 70

3.2.4 Mach 3 flow over three disks .. 72

3.3 Conclusions ... 74

Chapter 4 Flux Correction-Based Immersed Boundary Solver 76

4.1 Flux correction-based Immersed Boundary Method 78

4.1.1 Velocity correction .. 79

4.1.2 Flux correction ... 84

4.2 Validation analysis .. 90

4.3 Numerical test cases and results ... 95

4.3.1 Supersonic flow over a wedge .. 95

4.3.2 Supersonic flow over a double-ellipse .. 100

Contents

v

4.3.3 High speed flow over a NACA0012 airfoil ... 103

4.4 Conclusions ... 113

Chapter 5 Local Domain Free Discretization - Immersed Boundary
 Euler Solver .. 114

5.1 Local DFD (LDFD) method ... 115

5.1.1 Velocity boundary condition ... 118

5.1.2 Pressure and density boundary condition ... 121

5.2 Local DFD-Immersed Boundary Method (LDFD-IBM) 122

5.3 Numerical validation and comparison 126

5.3.1 Mach 3 supersonic flow over a circular cylinder 126

5.3.2 Supersonic flow over a wedge .. 129

5.3.3 Supersonic flow over a double-ellipse .. 130

5.3.4 Transonic flow in a channel with bump .. 134

5.4 More numerical examples and discussions 137

5.4.1 Transonic flow over a NACA0012 airfoil ... 137

5.4.2 High lift two-element airfoil - NLR 7301 .. 139

5.4.3 Transonic flow over SKF1.1 two-element airfoil 143

5.5 Conclusions ... 146

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM
and LDFD Method .. 147

6.1 Methodology for 3D adaptive Euler solver 147

6.2 FC-IBM and LDFD implementation in 3D solver 150

6.2.1 Wall boundary surface and normal direction ... 152

6.2.2 Identification of local DFD cells .. 153

6.2.3 Boundary condition for immersed wall ... 158

6.3 Validation for the 3D adaptive solver 162

6.3.1 Oblique shock problem in 3D ... 162

6.3.2 Three dimensional shock explosion .. 164

Contents

vi

6.4 Numerical examples for 3D IBM methods 168

6.4.1 Mach 3 flow over a sphere .. 168

6.4.2 Supersonic flow over 3D objects .. 170

6.4.3 Supersonic flow over a 3D space vehicle.. 173

6.5 Conclusions ... 176

Chapter 7 Development of Adaptive Viscous Solver for
Laminar Flows .. 177

7.1 Laminar viscous flow solver ... 177

7.2 IBM implementation for viscous flows 179

7.3 Numerical tests.. 181

7.3.1 Flow over a circular cylinder ... 181

7.3.2 Flow over a NACA0012 airfoil ... 190

7.4 Conclusions ... 193

Chapter 8 Conclusions and Recommendations 194

8.1 Conclusions ... 194

8.1.1 Development of adaptive Euler solver .. 194

8.1.2 Implementation of FC-IBM ... 195

8.1.3 Implementation of LDFD and LDFD-IBM ... 196

8.1.4 Development of 3D adaptive Euler solver .. 196

8.1.5 Application for laminar viscous flow .. 197

8.2 Recommendation for future works ... 197

Bibliography .. 199

Summary

vii

Summary

The major challenge to implement the immersed boundary method (IBM) for

compressible inviscid flows is that the velocity on the boundary is unknown

and the needs to enforce boundary conditions for other flow variables

associated with compressible flows. Moreover, the presence of shock waves

adds to the challenges in implementation. In this thesis, a novel flux

correction-based immersed boundary method (FC-IBM), a local domain-free

discretization (LDFD) method and a local DFD-based immersed boundary

method (LDFD-IBM) were proposed and implemented to simulate

compressible inviscid flows in a Cartesian grid-based adaptive Euler solver.

For the first time, we are able to implement the widely adopted IBM concept

for incompressible flows to solve compressible inviscid flows.

The FC-IBM was proposed based on the notion that a wall boundary shall

satisfy the conditions of no-penetration, zero mass flux and zero energy flux.

The method is implemented through velocity correction to enforce the no-

penetration condition and flux correction to enforce the zero flux condition.

The advantage of the method is that it avoids the tedious process to compute

the boundary curvature and to identify whether the cells are in fluid domain or

solid domain. This makes the method unique and simple in implementation.

The LDFD method was proposed with the concept that the wall boundary

condition can be enforced by correcting the flow information on the solid cells

(DFD cells) next to the boundary in X direction and Y direction directly for

2D flows. Because the DFD cells near the boundary can be identified easily in

Summary

viii

X and Y directions, the method is simple to implement. The LDFD-IBM was

proposed to make the implementation simpler by avoiding the need to identify

the solid DFD cells and fluid DFD cells.

The proposed methods, FC-IBM, LDFD and LDFD-IBM, have been

integrated with a 2D adaptive Euler solver developed based on the finite-

volume discretization on Cartesian grids. The validation and test results for the

adaptive solver demonstrated that it is accurate, efficient and robust in

simulating compressible flows with weak or strong shock waves. The ghost-

cell method was implemented and benchmarked against the adaptive solver.

The three proposed methods have been validated comprehensively by

simulating subsonic, transonic, supersonic and hypersonic 2D flows with

various irregular boundaries. The results obtained from the validation and

numerical tests demonstrated that the new methods to be accurate and efficient.

However, numerical viscosity caused by the implementation of FC-IBM and

LDFD-IBM is noted and needs to be further studied.

The FC-IBM and LDFD method were integrated into the 3D adaptive Euler

solver and have been validated and benchmarked primarily with supersonic

flows over bluff body wall boundaries and 3D space vehicle consisting of

curved body and wings. The validation results and the benchmark

performance demonstrated to certain extent the viability of the solver and the

proposed methods for compressible inviscid flows. The present Euler solver

was also extended to solve steady-state and unsteady-state laminar viscous

flows with minor effort.

List of Tables

ix

List of Tables

Table 2.1 Computational time for uniform mesh and adaptive mesh 49

Table 4.1 Mesh configuration for grid independent solution study 90

Table 6.1 Computational time comparison for uniform mesh and
adaptive mesh for 3D oblique shock problem 164

Table 6.2 Computational time comparison for uniform mesh and
adaptive mesh for 3D shock explosion problem 166

Table 7.1 Comparison of drag coefficient dC , recirculation length L
and flow separation angle θ for steady-state laminar viscous
flow over a circular cylinder at Re=20 and 40. 185

Table 7.2 Comparison of drag coefficient dC , lift coefficient lC and
Strouhal number St for unsteady-state laminar viscous flow
over a circular cylinder at Re=100 and 200. 187

List of Figures

x

List of Figures

Figure 1.1 IBM Approaches for Compressible Flows 4

Figure 1.2 Pressure gradient on convex and concave wall boundary 8

Figure 1.3 Streamlines obtained by IBM .. 16

Figure 2.1 Ratio of successive gradients on two neighbor cells 27

Figure 2.2 Data structure of the objects (cell, edge and node) for
2D solver .. 30

Figure 2.3 Illustration of mesh refinement process 31

Figure 2.4 Flux calculation for the edges of a refined mesh cell 33

Figure 2.5 Flow chart of the current adaptive Cartesian grid Euler solver . 35

Figure 2.6 Sod’s Shock Tube Problem: comparison of predicted solution
between uniform no adaption mesh and 3-level
adaption mesh .. 37

Figure 2.7 Sod’s Shock Tube Problem: Mesh distribution with
3-level adaption .. 37

Figure 2.8 Lax Shock Tube Problem: comparison of predicted solution
between uniform no adaption mesh and 3-level
adaption mesh .. 39

Figure 2.9 Lax Shock Tube Problem: Mesh distribution with
3-level adaption .. 39

Figure 2.10 Oblique Shock Wave: Computational domain and
boundary conditions ... 40

Figure 2.11 Oblique Shock Wave: Mesh distribution (colored by density)
and Density contours (1.0 to 2.65, 30 levels) on uniform mesh
80×20. .. 40

Figure 2.12 Oblique Shock Wave: Mesh distribution (colored by density)
and Density contours (1.0 to 2.65, 30 levels) with 3-level
adaption on initial Mesh 80×20. .. 41

Figure 2.13 Oblique Shock Wave: Comparison of the predicted density
profile at y=0.5 with the exact solution 41

List of Figures

xi

Figure 2.14 Double Mach Reflection: Computational domain and
boundary conditions ... 43

Figure 2.15 Double Mach Reflection: Mesh distribution (colored by
density) and Density contours (1.9 to 21, 50 levels) with
no adaption on initial Mesh 120×30. 43

Figure 2.16 Double Mach Reflection: Mesh distribution (colored by
density) and Density contours (1.9 to 21, 50 levels) with
3-level adaption on initial Mesh 120×30. 44

Figure 2.17 Backward step problem: computational domain and
boundary conditions ... 45

Figure 2.18 Backward step problem: mesh distribution and density
contours (0.3 to 3.7, 30 levels) with no adaption on initial mesh
of 50×50. .. 45

Figure 2.19 Backward step problem: mesh distribution and density
contours (0.3 to 3.7, 30 levels) with 3-level adaption on initial
mesh of 50×50. ... 46

Figure 2.20 Cylindrical explosion: configuration and
boundary conditions ... 47

Figure 2.21 Cylindrical explosion: comparison of predicted solution
between uniform mesh and 3-level adaption mesh 47

Figure 2.22 Cylindrical explosion: density and pressure distribution
at time t=0.25 ... 48

Figure 2.23 Cylindrical explosion: mesh distribution (colored by
density) with 3-level adaption on initial mesh of 50×50 48

Figure 2.24 Computational time for finest meshes for six test case 49

Figure 2.25 Accuracy study for the Sod’s shock tube case 53

Figure 2.26 Accuracy study for different β values in Osher limiter 53

Figure 2.27 Accuracy study for oblique shock wave case
(density contours)... 54

Figure 2.28 Accuracy study for oblique shock wave case
(density profile) .. 54

Figure 2.29 Accuracy study for double Mach reflection case
(density contours)... 55

Figure 2.30 Accuracy analysis of the current solver 56

Figure 2.31 Convergence analysis of the current solver 58

List of Figures

xii

Figure 3.1 Concept of ghost-cell method .. 62

Figure 3.2 Implementation of CCST method on Cartesian grid 64

Figure 3.3 Concept in determining the property of shadow-cells 65

Figure 3.4 Mach 3 supersonic flow over a circular cylinder 67

Figure 3.5 Results for Mach 3 supersonic flow over a circular cylinder 68

Figure 3.6 Transonic flow in GAMM channel with a 10% circular bump . 69

Figure 3.7 Computed Mach number and pressure in GAMM channel 69

Figure 3.8 Special cases for ghost-cell method implementation 71

Figure 3.9 Computed results for flow over a RAE2822 airfoil
(M=0.729, AoA=2.31°) ... 72

Figure 3.10 Computational domain for Mach 3 flow over 3 disks 73

Figure 3.11 Computed density contours and solution adaptive mesh for
Mach 3 flow over 3 disks ... 74

Figure 4.1 Illustration of velocity correction using IBM 80

Figure 4.2 Demonstration of explicit velocity correction method 84

Figure 4.3 Calculation of normal flux on the wall boundary 88

Figure 4.4 Implementation of no-penetration condition and zero
normal flux condition for wall boundary 89

Figure 4.5 Comparison of pressure profile with Roe scheme
(1st order scheme) ... 92

Figure 4.6 Pressure contours (1st order scheme) ... 92

Figure 4.7 Comparison of pressure profile (2nd order scheme) 94

Figure 4.8 Normal velocity correction for immersed wall boundary 95

Figure 4.9 Configuration and boundary condition for supersonic flow
over a wedge .. 97

Figure 4.10 Solution adaptive mesh for supersonic flow over a wedge 98

Figure 4.11 Contours of Mach number for supersonic flow over a wedge ... 99

Figure 4.12 Wedge shock and solution parameters for supersonic flow
over a wedge .. 99

Figure 4.13 Configuration for supersonic flow over a double-ellipse 101

List of Figures

xiii

Figure 4.14 Double-ellipse case: solution adaptive mesh. 102

Figure 4.15 Double-ellipse case: pressure contours 102

Figure 4.16 Double-ellipse case: pressure coefficient profile 103

Figure 4.17 Pressure contours and coefficient profile for NACA0012
airfoil at AoA=0.0º ... 106

Figure 4.18 Demonstration of solution adaptive mesh for high speed
flow over NACA0012 airfoil ... 108

Figure 4.19 Pressure contours and coefficient profile for NACA0012
airfoil (AoA=1.49º) .. 110

Figure 4.20 Streamlines inside NACA0012 airfoil at different
angles of attack .. 110

Figure 4.21 Pressure distribution on the surface of a NACA0012
airfoil at different angles of attack ... 112

Figure 5.1 Illustration of Implementation of One-Sided local
DFD Method .. 117

Figure 5.2 Demonstration of average weighting method for
velocity correction ... 121

Figure 5.3 Illustration of Implementation of LDFD-IBM 125

Figure 5.4 Comparison of results obtained by LDFD method and
LDFD-IBM for Mach 3 flow over a circular cylinder 128

Figure 5.5 Comparison of pressure profile along the central line
obtained by LDFD method and LDFD-IBM for Mach 3 flow
over a circular cylinder .. 129

Figure 5.6 Comparison of Mach number contours obtained by LDFD
method and LDFD-IBM for Mach 2 flow over a wedge 130

Figure 5.7 Comparison of results obtained by LDFD method and
LDFD-IBM for flow over a double-ellipse structure
(Mach=2, AoA=20°) .. 132

Figure 5.8 Pressure coefficient profile on the boundary for flow over
a double-ellipse structure (Mach=2, AoA=20°) 133

Figure 5.9 Computed results by LDFD method for hypersonic flow over
a double-ellipse structure (Mach=8.15, AoA=30°) 133

Figure 5.10 Comparison of results obtained by LDFD method and
LDFD-IBM for transonic flow in GAMM channel 136

List of Figures

xiv

Figure 5.11 Special case for LDFD method near the thin
boundary region ... 138

Figure 5.12 Numerical results for transonic flow over a NACA0012
airfoil (0.799, 2.8M AoA∞ = = °) .. 139

Figure 5.13 Configuration of NLR 7301 two-element airfoil 141

Figure 5.14 Initial esh adaption near the NLR 7301 two-element airfoil . 141

Figure 5.15 Numerical results for NLR7301
(0.185, 6M AoA∞ = = °)... 142

Figure 5.16 Numerical results for NLR7301
(0.185, 13.1M AoA∞ = = °) .. 142

Figure 5.17 Configuration of SKF1.1 two-element airfoil 144

Figure 5.18 Initial mesh adaption near the SKF1.1 two-element airfoil ... 144

Figure 5.19 Numerical results for SKF1.1 airfoil
(0.65, 2.06M α∞ = = °) .. 145

Figure 6.1 Data structure for the objects of cell, face, edge and node for
3D solver .. 148

Figure 6.2 Refinement of a 3D Cartesian cell ... 149

Figure 6.3 3D wall boundary surface and basic triangular face 153

Figure 6.4 Intersection relationship between a triangular face and
a line segment .. 154

Figure 6.5 Velocity transformation between Cartesian coordinate
system and Spherical coordinate system 160

Figure 6.6 Oblique shock problem in 3D domain 163

Figure 6.7 Adaptive solution for the oblique shock problem in
3D domain .. 164

Figure 6.8 Density profile in radial direction for the 3D shock
explosion problem .. 166

Figure 6.9 Adaptive results for the 3D shock explosion problem 167

Figure 6.10 Computational domain for Mach 3 flow over a sphere 169

Figure 6.11 Mach number profile for Mach 3 flow over
a sphere .. 169

List of Figures

xv

Figure 6.12 Mach number contours for Mach 3 flow over
a sphere .. 169

Figure 6.13 Geometry and surface meshes on 3D aircraft head and
an Apollo-shaped re-entry vehicle ... 170

Figure 6.14 Pressure contours for 3D supersonic flows over an aircraft head
with M=2, AoA=20° .. 171

Figure 6.15 Pressure contours for 3D supersonic flow over
an Apollo-shaped re-entry vehicle with M=2,
AoA=0° and 20°... 173

Figure 6.16 Computed results for supersonic flow over
a 3D space vehicle with M=2, AoA=0° 175

Figure 7.1 Flow characteristics of the flow over a circular cylinder 184

Figure 7.2 Computed streamlines for the flow over a circular cylinder .. 185

Figure 7.3 Computed results of streamlines, drag and lift
coefficient profile for the flow over a circular cylinder
at Re=100 and 200 ... 188

Figure 7.4 Computed results of vorticity contours and adapted meshes
for the flow over a circular cylinder at Re=100 and 200 189

Figure 7.5 Configuration of flow over NACA0012 airfoil and
clustered mesh near the airfoil ... 192

Figure 7.6 Computed pressure coefficient, pressure contours and
streamlines for NACA 0012 airfoil at

0.1, Re 500, 0M AoA∞ = = = ° ... 192

Figure 7.7 Computed pressure coefficient, pressure contours and
streamlines for NACA 0012 airfoil at

0.8, Re 500, 10M AoA∞ = = = ° .. 192

Nomenclature

xvi

Nomenclature

Abbreviations

AMR Adaptive mesh-refinement

AoA The angle of attack

CFD Computational fluid dynamics

CFL Courant-Friedrichs-Lewy number

DFD Domain-free discretization

FC-IBM Flux correction-based immersed boundary method

FVM Finite volume method

GCM Ghost-cell method

HLLC The Harten, Lax and van Leer approximate Riemann

solver with the contact wave restored scheme

IBM Immersed boundary method

LDFD Local DFD

LDFD-IBM Local DFD and immersed boundary method

MUSCL Monotone Upstream-centered Schemes for

Conservation Laws

Latin Letters

a The sound speed, the Roe average sound speed

,L Ra a The left and right sound speed

Ac Area of the mesh cell.

Nomenclature

xvii

c The sound speed

dC The drag coefficient

lC The lift coefficient

Cp The heat capacity

D Dimension or the diameter of a cylinder

ijD , ,i jD Factor of delta function

wdS The average arc length of wall segment

dx, dy The mesh size in X and Y coordinate

dh The mesh size

dt Time step

E Internal energy

F, G, H Flux vector in conservative form Euler equation

vF , vG The viscous stresses

if Flux term

* , *L Rf f Flux term contributed by left-cell and right-cell

df Drag force

lf Lift force

vf The viscous flux

i, j, k The integer index

K The conductivity

l The length of 2D cell interface

L The reference lenght

L2 The L2 norm

Nomenclature

xviii

M, Ma Mach number

M∞ Free stream Mach number

N The total number of mesh cells

n Unit normal vector

, ,x y zn n n Normal vector in X, Y and Z direction

P The pressure

Pr The Prandtl number

q The energy flux

q The average velocity

xq , yq The heat flux vector

R, wR Curvature of wall boundary,

r The normalized distance in delta function

r, ir The ratio of successive gradients on the mesh

Re The Reynolds number

,L RS S The intermediate signal speeds of HLLC scheme

ms The signal speed of the contact wave

St Strouhal number

t Time

U Quantity vector in conservative form Euler equation

* , *L RU U The intermediate state for left and right

u, v, w Velocity components in X, Y, and Z direction

,B Bu v The Cartesian velocity at a wall point

,NB TBV V The normal and tangential velocity at a wall point

Nomenclature

xix

nV The normal velocity on wall boundary

x, y, z The Cartesian coordinates

Greek Letters

β The Cartesian coordinates

ε The residual threshold

ρ The density

γ The adiabatic index for air

λ The Stokes hypothesis

τ The stress tensor

µ, υ The dynamic and kinetic viscosity

ω The vorticity

t∆ The time step

∑ Summation

Ω The specific domain of all shadow cells

θ Angle

Miscellaneous Symbols

∂ Partial derivative

∇ Nabla operator

()L , ()R Superscription denotes the intermediate state at left and

right

()L , ()R Subscription denotes the variable at left and right

()i Subscription denotes the variable at cell (i)

Nomenclature

xx

()n Superscription denotes the variable at time step (n)

()n Subscription denotes the variable at normal direction

()w Subscription denotes the variable at wall boundary

()δ  The change of variable ()

Chapter 1 Introduction

1

Chapter 1 Introduction

Computational fluid dynamics (CFD) is a numerical analysis tool commonly

employed in many industrial areas not only for research & development

purposes but also for advanced design and optimization. The wide availability

of commercial CFD software tools and highly regarded open-sourced CFD

solvers are the evidence for its applications. Body-fitted grids are generally

used in almost all such software largely because they are conformed to the

boundary surfaces and thus the boundary conditions can be implemented

directly. Depending on the type of mesh cell for grids, the structure and the

connections among mesh cells for grids, body-fitted grids can be generated

either as structured or unstructured grids.

Structured grid-based body-fitted solvers that dominated CFD modeling in the

early years are less popular due to their application limitations for irregular

and complex domains. The unique advantage of structured grids is that they

can be indexed and retrieved directly via (i, j, k), which makes the coding for

the solver simple. However, it is difficult, or sometimes not possible, to

generate structured grids in irregular and complex domains. To overcome this

difficulty, unstructured grid-based body-fitted solvers were introduced and

became the most popular solver technique in CFD modeling for most

tools/solvers available in the market. The unstructured grid approach

demonstrates good flexibility in CFD modeling with irregular boundary

geometries in complex domains through using various types of mesh cells and

ability to align directly the grid nodes or mesh points on the complex

Chapter 1 Introduction

2

boundaries. However, the development of CFD solvers based on the

unstructured grids is relatively difficult and demanding because it is difficult

to directly solve the flow governing equations which are in partial differential

equation (PDE) form on such grids. Coordinate transformation of unstructured

grids is required for the discretization of the PDE-based governing equations.

The data structures of unstructured grids are complex and less computationally

efficient than their structured-grid counterparts. Hence, additional computing

resources for RAM, storage space and computing time are needed for

unstructured grid-based solvers. Despite the flexibility and advantages in

modeling irregular and complex domains for CFD analyses, it is difficult to

use unstructured body-fitted grids in the CFD analyses for problems involving

moving boundaries. Such problems are not limited to the translation, rotation

and mixed motion of the boundaries, but also include small deformation or

minor change of local boundary and the variation of geometry topology for

boundaries such as splitting and merging of solid bodies. As the grid nodes

have to be aligned with the boundaries, dynamic re-meshing has to be carried

out whenever there is a boundary change. This further increases the

complexity and the computational demand in the development and coding for

unstructured grid-based solvers for moving boundary CFD analysis.

Taking the three-dimensional CFD analysis for high speed compressible flow

over an aircraft as an example, tetrahedral unstructured grids can be generated

in the domain around the complex aircraft geometries. However enormous

efforts have to be spent to re-generate the grid in the entire domain when there

is any small geometry change locally in either airfoil profile of the wing, the

Chapter 1 Introduction

3

slat and flap in expanded position, or the auxiliary fuel tanks’ adding or

removal.

Cartesian grid-based solver is an alternate for the example described above,

besides the body-fitted structured grids and unstructured grids. Cartesian grids

have inherently good quality and are easy for grid generation, lower

computational storage requirements and significantly less computation per cell

as compared to the conventional structured and unstructured grids, as

presented by Aftosmis [1]. Cartesian grids use rectangle domain for 2D

problems and box domain for 3D problems, and are easy to be adapted and to

be extended to higher-order spatial schemes. The convergence performance of

the solver is obviously better as there are no skewed or distorted mesh cells.

The adaptive mesh-refinement (AMR) technique can be simply implemented

on Cartesian grids to give better resolution in resolving the rapid solution

changes. However, the major challenge in using the Cartesian grid is to take

into account the influence of the arbitrary boundaries to the flow solution.

Because Cartesian grids are not aligned with the solid body and its curved

boundary surfaces, the grids will intersect with the boundaries in the vicinity

of the boundary surfaces. Therefore to ensure the successful use of Cartesian

grids, accurate representation of arbitrary boundaries and quick accounting the

influence to the solution is essential and inevitable. In the following section,

non-body-fitted grid methods in solving compressible flows based on

Cartesian grids will be reviewed.

Chapter 1 Introduction

4

1.1 Non-body-fitted grid methods for compressible
flows

Cartesian grids are not fitted to the boundary or solid body. The adoption of

Cartesian grid methods to solve compressible flows was initially implemented

with cut-cell scheme for compressible Euler equations. The other two common

methods proposed to model the arbitrary immersed boundary in compressible

flow studies are ghost-cell method and grid-less (or mesh-less as named by

some researchers) method. Figure 1.1 briefly illustrates the treatment of the

boundary by the three methods for compressible flows.

Figure 1.1 IBM Approaches for Compressible Flows

1.1.1 Cut-cell method

The concept of cut-cell method on Cartesian grid is to reconstruct the cells that

intersect with the solid boundary, as illustrated in Figure 1.1 (a). The cut-cell

approach will produce very small cells near the boundary, and this causes

stability problem and small time step restriction for the solver [2][3][4]. In

addition to the stability problem, special care is required for the calculation of

the exact flux for those cut-cells.

A Cartesian cell can be cut into various shapes and sizes by the boundary. By

(a) Cut-cell Method [4] (b) Ghost-cell Method [9] (c) Grid-less Method [13]

Chapter 1 Introduction

5

defining the desired shape for cut-cells and the suitable curvature slope of the

neighbor cut-cells, Zeeuw and Powell [4] used geometry-based mesh

refinement to construct the cut-cells. The flux calculation on the cut-cells is

done through a linear reconstruction approach near the boundary. Coirier and

Powell [2] proposed a cell merging method to merge the small cut-cells into

larger neighbor parent cells to avoid the stability problems and small time step

caused by cut-cell approach. However, this will change the original Cartesian

cells not only in the geometries but also on the flux calculation and local

accuracy. The small cut-cells to merge have to be identified and the merged

cells have to be treated specially. Pember et al. [3] proposed a method that

discretizes the fluid-body interface based on a volume-of-fluid approach. A

correction is computed for each irregular cut-cell based on the fraction of the

area/volume of a cell that is inside the fluid and then it is applied to maintain

the conservation items by a variation of the algebraic redistribution algorithm.

Nemec and Aftosmis [72], [73] used cut-cell boundaries and refinement

interfaces to evaluate the solution accuracy by using linear solution

reconstruction functions and trilinear/triquadratic interpolation functions for

the solution reconstruction, similar approach to the standard shape functions

used in the finite element method. The 3D embedded-boundary problems for

the ONERA M6 wing, a missile and a re-entry capsule were studied for the

performance analysis.

Numerical experiments obtained using different approaches show that the cut-

cell method on Cartesian grid works for various speed of compressible flows.

However, the implementation of cut-cell method is rather complex and

Chapter 1 Introduction

6

inconvenience using either the linear reconstruction approaches, the merging

of small cut-cells approach, or the volume-of-fluid approach. A common issue

is that the flux calculation for the cut-cells cannot be calculated via the similar

simple steps for the Cartesian cells. This degrades the advantages in

simulating the flow on Cartesian grids.

1.1.2 Ghost-cell method

To avoid the stability problem and small time step introduced by the cut-cell

method, Forrer and Jeltsch [5] derived a new wall treatment method from the

concept of one-dimensional wall boundary. The method treats the wall

boundary as a symmetrical boundary and hence a mirror point of a fluid point

is created symmetrically to the boundary. Because this mirror point is an

artificial point, the method is commonly named as ghost-cell method (GCM),

as illustrated in Figure 1.1 (b). Since the flow information is symmetrical

against the boundary, the scalar quantities such as pressure, density, tangential

velocity and energy on the mirror point are set to be the same as they are on

the fluid point; the normal velocity vector on the mirror point is set as the

same value as it is on the fluid point but in the opposite direction. This

treatment satisfies the physical boundary condition, but does not satisfy the

curvature condition on the boundary. Because the cells cut through the

boundary are still treated as original whole cells, the method becomes simple

in implementation.

An improved ghost-cell method, the curvature corrected symmetry technique

(CCST), as named by Dadone and Grossmann [6], [7] was proposed to

Chapter 1 Introduction

7

consider the influence of the boundary curvature on entropy and total enthalpy

in the normal direction of the wall boundary. Besides the no-penetration

physical condition, the pressure and density at the mirror point are corrected

according to the integration of the normal momentum equation and constant

entropy relationship, as shown by equation (1.1). The transonic flows

computed by the CCST approach show remarkable agreement with the

numerical results obtained on body-fitted grids. The CCST approach was

further improved by introducing the adaptive mesh-refinement to cluster finer

meshes near the boundaries. This has greatly improved the computing

efficiency and demonstrates good potential to solve complex flows with

arbitrary boundaries such as transonic airfoil [8]. Jiang et al. [9] and Liu et al.

[10] adopted the CCST ghost-cell method and successfully studied the

shockwave interaction of the supersonic flow over a cylinder and the transonic

flow over an airfoil, respectively.

Pressure condition:
2
suP

n R
ρ∂

= −
∂

.

Density condition: P Constγρ
= .

(1.1)

In general, the ghost-cell method is straightforward and simple in

implementation. The method can be more efficient and useful when coupled

with the AMR. However, the successful implementation and the accuracy of

the method depend on the accurate creation of the ghost-cells, accurate

interpolation in determining the values on the ghost-cells, and accurate

calculation of the curvature for the boundary. In addition, in the derivation of

the pressure condition formula, the curvature or radius (R) is assumed to be

positive or the boundary is in convex shape. For concave shape boundary, the

Chapter 1 Introduction

8

radius (R) in equation (1.1) should be negative. This is because the normal

pressure gradient (ძp/ძn) on the wall boundary which follows the normal

direction of the wall boundary is now in the opposite direction of the radial

direction of the curved boundary, as illustrated in Figure 1.2. Such difference

is not mentioned in implementation of those ghost-cell methods.

Figure 1.2 Pressure gradient on convex and concave wall boundary

1.1.3 Grid-less method

Grid-less method, or mesh-less method as illustrated in Figure 1.1 (c), is

another approach introduced to solve compressible flows on Cartesian grids.

The concept is to model the complex boundaries using grid-less points and the

rest of domain using simple Cartesian grids. The governing equations are

solved by a grid-less solver and a Cartesian grid-based solver in the grid-less

zone and the Cartesian grid zone, respectively. So it is a hybrid method

consisting of a Cartesian grid-based solver and a grid-less solver. In the

interface of grid-less zone and Cartesian grid zone, some Cartesian grids are

included as grid-less points, hence the flow information can be exchanged

between two zones. Luo et al. [11] proposed and implemented grid-less

flow

R flow

R

(a) Convex wall boundary (b) Concave wall boundary

Chapter 1 Introduction

9

method by forming the local cloud of grid-less points from the boundary nodes,

cut-off cells and the nearby Cartesian cells on a 3×3×3 stencil for 3D flows.

Liang and Yang [12] adopted similar grid-less method and the local cloud of

grid-less points were chosen from the nearest eight cells for 2D flows. Zero

flow gradients and zero normal velocity conditions on the boundary are used

for the interpolation. Jahangirian and Hashemi [13] presented a different

implementation of grid-less method. In their work, adaptive Cartesian cells are

generated in the domain but keep away from the solid boundary with a pre-

defined distance, and within this distance a cluster of grid-less points are

generated to surround the solid boundary. So the interface of the grid-less zone

and Cartesian grid zone is in some distance away from the boundary, as shown

in Figure 1.1 (c). The data exchange between the two zones is thus performed

in the interface zone away from the boundary. The benefit of the grid-less

method is that the geometry of boundaries can be modeled directly using the

grid-less points. However, being a hybrid solver the grid-less method requires

extra development efforts and integration of a Cartesian grid solver and a grid-

less solver. As a result, the development of the solver becomes complex and

the coding demands increase obviously.

In summary, all the non-body-fitted grid methods, cut-cell, ghost-cell, or grid-

less, implemented on Cartesian grids can be used to simulate compressible

flows with arbitrary wall boundary inside the Cartesian domain. All three

methods require the interior grids in the fluid domain and the exterior grids in

the solid body to be known. It is noted that the cut-cell method is limited by

the stability problem and small time step besides the special needs for flux

Chapter 1 Introduction

10

calculation on the cut-cells; the ghost-cell method requires the calculation of

the curvature of the boundary and the mirror point of the exterior grids against

the boundary; the grid-less method needs to integrate a grid-less scheme-based

solver with a Cartesian grid-based solver, which requires more development

work and demands additional computing resources and more computational

effort.

1.2 Local Domain-Free Discretization (DFD) method

An innovative domain-free discretization (DFD) method was proposed by Shu

and Fan [14] to solve incompressible Navier-Stokes equations in the Cartesian

coordinate system. The method was enhanced by introducing the local DFD

method, which is more general and simple in implementation.

The unique feature of the DFD method is that it can be applied to solve

irregular domain problems without the need of coordinate transformation

technique, which is generally required for body-fitted solvers in irregular

domains. The numerical experiments carried out by Shu and co-workers

demonstrated high efficiency and accuracy of the DFD method in solving

PDEs such as Navier-Stokes equations in arbitrary domain. Their numerical

studies also demonstrated that a large numerical error would be introduced

into the computation when all the points in horizontal or vertical line in

Cartesian coordinate system were used for the discretization process; and

accurate numerical results can be obtained by using a few local points.

To eliminate the difficulties and make the DFD method be more general, Shu

Chapter 1 Introduction

11

and Wu [15] proposed and implemented the local DFD method on cylindrical

coordinate system for incompressible flows. The concept of the local DFD

method is that the functional values such as pressure, density and velocity at

an exterior point can be approximated by spline function using the boundary

point and local interior points near the boundary. In Shu and Wu’s

implementation, two interior points and one node on the boundary were used

to approximate the function values on the external point via a quadratic

polynomial. The local DFD method has been successfully tested to solve the

incompressible natural convection problem in concentric annulus between an

inner circular cylinder and an outer square cylinder. Shu and Wu [16]

extended the local DFD method with the use of Cartesian mesh for

incompressible flows. The functional value at the exterior node can be

computed by extrapolation in X direction and Y direction separately using two

local interior points and the boundary point. To ensure unique value at the

exterior point, the functional value computed in X direction was used for X

derivatives calculation only. The same way was applied in Y direction. The

adaptive stencil refinement was adopted to enhance the efficiency and

accuracy of the results. Wu and Shu [17] further extended the local DFD

method to solve an incompressible flow with moving boundary, represented

by an oscillating circular cylinder in the domain. The unsteady state results

obtained through the method are in good agreement with other numerical

results in the literature.

Zhou et al. [18] successfully applied the local DFD method to solve

compressible flows using a finite element Galerkin method-based solver. In

Chapter 1 Introduction

12

their work, the DFD extrapolation is carried out in the normal direction to

ensure unique functional values to be obtained at the exterior points. A linear

extrapolation is proposed, which involves the wall point inside the fluid

domain and one adjacent point along the normal direction. The results

obtained for the inviscid and viscous flows around stationary and oscillating

airfoils demonstrate that the local DFD method is accurate in solving

compressible flows as well. However, the tedious part in the implementation is

to construct the fictitious point in the normal direction and ensure that the

fictitious point is inside an element fully in the interior fluid zone, despite the

adoption of less efficient unstructured grid-based solver. Zhou and Shu [19]

extended the similar local DFD method to a 3D finite element solver. The

three-dimensional transonic flow over the ONERA M6 wing is solved for the

validation of the method. The implementation becomes more complex in 3D

solver as the construction of fictitious points in the normal direction and the

relationship identification for tetrahedral elements are not straightforward and

simple.

1.3 Immersed Boundary Method (IBM) for
incompressible flows

The immersed boundary method, or IBM in short, has been adopted,

implemented and enhanced in solving various incompressible flows on simple

Cartesian grid-based solvers enormously in the past decades since it was first

introduced by Peskin in 1970’s to solve the incompressible blood flow inside a

pumping heat [20], [21]. Since the influence of wall boundary to

incompressible flows is either through body force or velocity field, IBM will

Chapter 1 Introduction

13

work for incompressible flow solver if either one can be modeled.

The concept of IBM is that the deformation or the displacement of the

boundary will generate a force that tends to restore the boundary to its original

shape or position; this restoring force on the boundary are then re-distributed

into the surrounding nodes as body force; after that the flow field with this

added body force is solved in the entire domain including both inside and

outside of the immersed solid body. This is known as the virtual boundary

force IBM. Shu and co-workers [22] proposed a new approach, known as the

velocity correction-based IBM, in implementing the immersed boundary by

correcting the velocity near the boundary directly to enforce the no-slip

physical boundary condition.

1.3.1 Body force correction based IBM

In the virtual boundary force IBM, the wall boundary condition and the

governing equation are satisfied through iterative process with the aim to seek

zero restoring force, and in theory to enforce the no-slip boundary condition.

Based on the IBM proposed by Peskin, various improvements were introduced

to enhance and refine the method. Many research works and numerical

experiments have been done in solving various incompressible flows

involving complex and arbitrary solid boundaries. Goldstein et al. [23]

introduced a virtual boundary method which facilitates the simulations to

handle complex geometry in space and time as well. Lai and Peskin [24]

enhanced the IBM by a proposed second-order immersed boundary method

with adoption of a well-chosen Dirac delta function, which was widely

adopted and used in the implementation of IBM in the last decade. The

Chapter 1 Introduction

14

second-order method has less numerical viscosity and is a better choice for the

simulation of high Reynolds number flows. Linnick and Fasel [25] proposed a

high-order modified IBM for 2D unsteady incompressible Navier-Stokes

equations in stream function-vorticity formulation. With explicit fourth-order

in temporal domain and fourth-order in spatial domain, the steady and

unsteady flows past a circular cylinder and Tollmien-Schlichting waves in a

boundary layer were validated extensively.

In the past few years, IBM has been implemented in solving many complex

2D and 3D flows with moving boundary or deformation. Deng et al. [26]

proposed a method to scale the force on solid interface to the corresponding

grids nearby through a linear interpolation. The treatment of the immersed

boundary has been successfully implemented in the study of 3D complex flow

over a giant danio fish. Sui et al. [27] proposed a hybrid immersed boundary

and multi-block lattice Boltzmann method. The incompressible flows and

moving boundary interactions were simulated to understand the principal of

propulsion force generation for fish swimming. Coupled the structural analysis

with IBM, Shi and Lim [28] simulated the fluid-structure interaction modeling

for 3D plate and sphere deformation. Borazjani et al. [29] extended the IBM

on the curvilinear domain and hence was able to solve the 3D pulsating blood

flow through a heart valve. Pan and Shen [30] proposed and implemented an

implicit pressure correction based IBM on Cartesian grids with local

refinement. Multigrid method was also adopted to improve the convergence

and stability, and the unsteady incompressible flow was simulated and

validated in a 2D cylinder and 3D sphere. Finite-element method is less favor

Chapter 1 Introduction

15

for adoption by CFD solver development due to non-conservative

discretization sometimes [74]. While embedded-boundary method and direct

body forcing approach was used by Vanella et al. [75] in a finite-difference

solver for incompressible flows to enforce the boundary conditions on a

complex moving body. With that they demonstrated the robustness and

accuracy for the proposed formulation.

1.3.2 Velocity correction based IBM

Shu and co-workers studied various virtual boundary force IBM applications

and concluded that the no-slip boundary condition on the immersed wall

boundary is not directly enforced through the iterative process in seeking the

zero restoring force [22]. Due to numerical errors, the no-slip condition is only

satisfied approximately when zero restoring force is achieved. This is

demonstrated in Figure 1.3 (a) for the plot of streamlines near the boundary as

predicted through the conventional virtual boundary force IBM [31]. Since the

streamlines may pass through the boundary and enter into the solid body, the

actual physics of the solid boundary is not fully satisfied. To overcome this

problem, Shu and co-workers proposed an innovative velocity correction

based IBM, where the no-slip boundary condition was directly enforced

through the velocity correction at the grid points near the boundary [22], [31]-

[34]. Using the new velocity correction approach, the no-slip boundary

condition can be enforced directly and fully satisfied. The computed

streamlines, as shown in Figure 1.3 (b), do not pass through the boundary.

This implies that the physics of solid wall boundary is represented accurately

and logically. The force introduced by the solid body can be calculated from

Chapter 1 Introduction

16

the converged flow field.

Figure 1.3 Streamlines obtained by IBM

The velocity correction based IBM named IBVCM was proposed by Shu and

co-workers [22]. The concept is that the boundary velocity is corrected

directly to satisfy the no-slip boundary condition and the correction of velocity

will be transformed into the nearby Cartesian grids linearly. The body force

generated by the solid body is calculated by integration of momentum

equations over a local domain enclosed the solid body. The advantage of the

IBVCM is that the physical no-slip boundary condition is enforced directly.

The IBVCM was validated numerically by the incompressible flow over a 2D

circular cylinder for Reynolds number of 20, 40, 80, 100 and 150. Good

convergence performance and robustness of the method has been

demonstrated as compared with the conventional IBM. The method was

applied for the study of an unsteady flow past an undulating 2D fish-like body

by Shu et al. [33] to understand the mechanics of propulsion force generation

for the undulatory swimming fish. The study shows that the IBVCM is an

(a) streamlines obtained by
conventional IBM

(b) streamlines obtained by
velocity correction IBM

([22], [31])

Chapter 1 Introduction

17

effective approach in capturing the flow feature for the problem with moving

boundary.

Wu and Shu [32] recently proposed an implicit velocity correction-based

immersed boundary-lattice Boltzmann method (IB-LBM), of which the

velocity correction at the grid points near the boundary is determined from

enforcement of no-slip condition directly. The body force such as drag force

and lift force can be computed directly from the obtained velocity correction

through the relationship between the force and velocity correction. The

performed validation work demonstrates that the method can satisfy the no-

slip boundary condition accurately and offer a great potential for practical

application due to the ease in implementation. Wu and Shu [34] used the

method successfully in a study of the laminar flow behind a stationary circular

cylinder with a flapping plate. The comprehensive results demonstrate that the

velocity correction-based IB-LBM can be easily applied to study

incompressible flows with moving boundary easily.

The major advantage introduced by the velocity correction based IBM, either

IBVCM or IB-LBM, is that it is simple in implementation and enforces the no-

slip condition on boundaries directly and accurately for incompressible flow

problems. The body force can be computed from the velocity correction.

To summarize, various IBM approaches have been successfully implemented

in the numerical studies of 2D and 3D incompressible viscous flows with

stationary boundaries and moving bodies/boundaries in both steady state and

Chapter 1 Introduction

18

unsteady state. The representation of wall boundary in incompressible flows

can be implemented through either body force correction or velocity

correction.

Unlike incompressible flows, wall boundary condition for compressible flows

is not represented by the body force or velocity field alone. Other flow

variables including pressure, density and temperature are affected by the wall

boundary as well, and the values of which need to be determined on the

boundary. For compressible inviscid flows, the velocity on the wall boundary

is unknown and then, there is no target velocity field for the implementation of

IBM. Moreover, the presence of shock waves in compressible flows adds to

the challenges in the implementation. Hence the use of IBM in modeling

immersed boundary for compressible flows on Cartesian grids is not yet found

in the literature.

Inspired by the concept of the velocity correction-based IBM that was

proposed to represent the physic boundary condition directly in overcoming

the limitations of the conventional body force correction-based IBM, the

immersed boundary concept can be implemented to model immersed wall

boundary for compressible flows if the physical boundary condition can be

enforced.

1.4 Motivation in current study

With the achievements of IBM implementation for incompressible flow

analyses in mind and the understanding of the advantages and limitations of

Chapter 1 Introduction

19

the various methods implemented on Cartesian grid-based solvers for

compressible flow simulations, the objective of the current work is to develop

simple and accurate immersed boundary methods to simulate compressible

inviscid flows on a simple and efficient Cartesian grid-based solver. For the

first time, we are able to implement the widely adopted IBM concept for

incompressible flows to solve compressible inviscid flows. Numerical

simulations for compressible inviscid flows play an important role to

understand flow patterns, shock wave capturing and lift force prediction for

compressible flows at high Reynolds numbers as the viscous effect of the air

has very minor contribution. The main benefit is that the development efforts

and the computational time can be reduced significantly from the saving of

viscous boundary layer capturing and turbulence modeling as the viscous

effect is ignored.

In this study, a new flux correction-based immersed boundary method (FC-

IBM), a modified local DFD method (LDFD) and a local DFD based

immersed boundary method (LDFD-IBM) are introduced and integrated with

the Cartesian grid-based adaptive Euler solver for CFD analyses of

compressible inviscid flows. The validation and results for various test

problems show that FC-IBM and LDFD-IBM are simpler in implementation,

while LDFD is more accurate and robust.

The Cartesian grid-based adaptive Euler solver is developed using the finite

volume method. The AMR technique is adopted and implemented in the

solver to refine the mesh near the boundary and high flow-gradient regions to

Chapter 1 Introduction

20

improve the resolution for boundary representation and solution accuracy in

particular for shock wave capture, respectively. The ghost-cell method in

representing the wall boundary is implemented and validated in the current

adaptive solver.

1.5 Outline of the Thesis

Chapter 2 describes the governing equations and the development of the finite

volume method based Euler solver in 2D. The flux is obtained via the HLLC

scheme on the cell interface. Five second-order flux schemes are implemented,

validated and compared. In the later part of the chapter, the implementation of

tree structure AMR technique is given with the validation results and the

analysis of performance enhancement by using AMR is presented.

In Chapter 3, the ghost-cell method is introduced and implemented in the

current Cartesian grid-based adaptive solver to model the immersed wall

boundary for compressible inviscid flows. Validation and some test cases are

presented.

A new flux correction based-immersed boundary method (FC-IBM) is

presented in Chapter 4. The methodology, implementation procedures,

validation, test cases and discussion are given in details. In Chapter 5, a

modified local DFD method (LDFD) and its extension on immersed boundary

method (LDFD-IBM) are proposed to represent the wall boundary condition.

The concept of LDFD and LDFD-IBM for treating wall boundary in

compressible inviscid flows is explained. The methodology, implementation

procedures, validation, test cases and discussion are given in details.

Chapter 1 Introduction

21

Chapter 6 illustrates the development of the 3D adaptive solver. The validation

of accuracy and adaptive performance are presented. The FC-IBM and LDFD

will be implemented on the 3D solver and the results will be compared.

Chapter 7 explains the extension of the current adaptive compressible inviscid

flow solver into an adaptive solver for laminar viscous flow. Test cases of

laminar viscous flow past a circular cylinder and a NACA0012 airfoil are

presented.

Conclusions and recommendation for future works are given in Chapter 8.

Chapter 2 Adaptive Cartesian Grid Euler Solver

22

Chapter 2
Adaptive Cartesian Grid Euler Solver

The two-dimensional compressible inviscid solver is developed in this chapter

by using finite volume method. In this framework, the adaptive solver is also

developed and validated. The details for the development of 2D Euler solver

and the implementation of solution adaption capability will be discussed in the

following context.

2.1 Governing equations

Two-dimensional compressible Euler equations expressing the conservation

laws of mass, momentum and energy are given in the following vector forms:

,0=
∂
∂

+
∂
∂

+
∂
∂

y
G

x
F

t
U (2.1)

with

() ()

.,, 2

2





















+
+

=





















+

+
=



















=

pEv
pv

uv
v

G

pEu
uv

pu
u

F

E
v
u

U
ρ

ρ
ρ

ρ
ρ

ρ

ρ
ρ
ρ

 (2.2)

where U in the equation is the state vector of the conservative variables. F and

G are the flux vectors. The physical variables in the above equations are

density (ρ), velocity components (u) and (v), internal energy (E) and pressure

(p). The pressure p is obtained using the equation of the state for ideal gas.

Chapter 2 Adaptive Cartesian Grid Euler Solver

23

() ()2 211 .
2

p E u vγ ρ = − − +  
 (2.3)

The constant γ in the equation is the adiabatic index. For ideal gas, γ =1.4.

2.2 Finite volume discretization and HLLC scheme

In the present work, finite volume method (FVM) is used for the development

of the base Euler solver for compressible flows on Cartesian grid. For a finite

control volume, the numerical discretization of the governing equation (2.1)

by the first order time evolution scheme will be

(),1 ∑ ⋅
∆

−=+
i iii

c

n
c

n
c nlf

A
tUU 

 (2.4)

here, 1+n
cU and n

cU are the states of the conservative variables at ()1 thn + and

thn time levels; t∆ is the time step; cA is the area of the control cell; il


, if and

in stand for the length, the flux and the normal direction for the (i)th-interface

of the cell. The solution U is defined on the cell center.

The time step is determined by the minimum time step of all the control cells,

and it is calculated by

()
min ,c

n c

At CFL
u a l

  ∆ = × 
+ ⋅  ∑

 (2.5)

where, the denominator in the above equation is to summate the terms on all

four interfaces of the cell. CFL is Courant-Friedrichs-Lewy number, and is set

as CFL=0.3~0.5 in current work.

Chapter 2 Adaptive Cartesian Grid Euler Solver

24

From equation (2.4), it is known that calculation of the flux term if on cell

interface is crucial for the solver. The HLLC scheme, or the Harten, Lax and

van Leer approximate Riemann solver with the contact wave restored scheme,

is adopted due to its good resolution for shocks, contact waves and the ability

in preserving the positivity of density and internal energy [35]. It has been

proved to give robust and accurate solutions for most of compressible flows

[36], [37].

On the Cartesian grid system, the flux term if on a cell interface can be

expressed as following using the left and right cells of the interface

()






≤

≥
==

,0*

0*
,,

m
R

m
L

RLHLLC
i sf

sf
nUUff  (2.6)

with

() ()(),,*,* nUUsnUf LL
L

LL 
Φ−+Φ= (2.7)

() ()().,*,* nUUsnUf RR
R

RR 
Φ−+Φ= (2.8)

Here n is the edge vector yx nnn ,=


. For horizontal edges 0,1=n , for

vertical edges 1,0=n . The terms LS and RS are two intermediate signal

speeds of HLLC scheme on the left-side and right-side of the interface, and are

given in equations (2.9) and (2.10). The term ()nU ,Φ is the flux vector,

given in equation (2.11).

(),~~,min aqaus LL
nL −−= (2.9)

(),~~,max aqaus RR
nR ++= (2.10)

Chapter 2 Adaptive Cartesian Grid Euler Solver

25

()

()
()
()

()()
yx

yx

yxy

xyx

yx

nnn

vnunpE
pnvnunv
pnvnunu

vnun

nU ,,, =





















++

++

++

+

=Φ


ρ

ρ

ρ

for F and G. (2.11)

In the above equations, La and Ra are the left sound speed and the right sound

speed; a~ and q~ are the Roe average sound speed and average velocity,

respectively. They are determined by equation (2.12). The two intermediate

states LU * and RU * in equations (2.7) and (2.8) and the signal speed of the

contact wave ms in equation (2.6) are given in the following equations:

[] ()[]

() ()
() ()










++=

++=

=

,~

~

,,

RLRR
n

LL
n

RLRRLL

RLRL

VVq

aaa

pa

ρρρρ

ρρρρ

ργ

 (2.12)

()[]
()[] ,

*
,*

mL

L
n

L
m

L
L
m

L
m

L

ym
L
n

L
y

L
xm

L
n

L
x

L

L

mL

L
nLL

ss
upsp

E

EE

nsuu
nsuu

ss
us

U
−
−

=





















+

−−

−−








−
−

=
ρ

ρ

ρ

(2.13)

()[]
()[] ,

*
,*

mR

R
n

R
m

R
R
m

R
m

R

ym
R
n

R
y

R
xm

R
n

R
x

R

R

mR

R
nRR

ss
upsp

E

EE

nsuu
nsuu

ss
us

U
−
−

=





















+

−−

−−








−
−

=
ρ

ρ

ρ

 (2.14)

() () ()
.

() ()

R R R L L L L R
n R n n L n

m R R L L
R n L n

u s u u s u p p
s

s u s u
ρ ρ

ρ ρ

− − − + −
=

− − −
 (2.15)

Chapter 2 Adaptive Cartesian Grid Euler Solver

26

2.3 Second-Order flux solver

The previous section describes the first-order HLLC scheme. The flux on cell

interfaces is calculated simply using the values of flow variables on the centers

of two neighbor cells, or assume piecewise constant for all the flow variables

inside each cell. To achieve more accurate solutions, in particular for cases

when shocks, discontinuities or large gradients exist in the system, high order

schemes are usually adopted. For finite volume method, Monotone Upstream-

centered Schemes for Conservation Laws, or MUSCL scheme in short, is a

popular method that can provide second-order spatial accuracy. The concept is

to replace the piecewise constant approximation of Godunov’s scheme by the

reconstructed states. For each cell, the left and right states are obtained via

reconstruction through the slope limiter, and then used to calculate fluxes on

the interfaces.

There are tens of common slope limiter functions for the reconstruction of the

left and right states. The limiter function is constrained to be greater than or

equal to zero, i.e. 0r ≥ . The parameter r represents the ratio of successive

gradients on the solution mesh, as illustrated in Figure 2.1. It is computed via:

1

1

.i i
i

i i

u ur
u u

−

+

−
=

−
 (2.16)

The following five typical flux/slope limiter functions ()rφ are adopted and

implemented in the current solver to achieve the second-order accuracy. For

the Osher and Sweby limiters, β=1.5 is used and tested in the current solver.

Chapter 2 Adaptive Cartesian Grid Euler Solver

27

Figure 2.1 Ratio of successive gradients on two neighbor cells

Minmod: () ()max 0,min 1, .mm r rφ =    (2.17)

Osher: () () ()max 0,min , , 1 2 .os r rφ β β= ≤ ≤   (2.18)

Sweby:
() () ()

()
max 0,min ,1 ,min , ,

1 2 .
sw r r rφ β β

β

=   
≤ ≤

 (2.19)

Van Leer: () .
1vl

r r
r

r
φ

+
=

+
 (2.20)

Van Albada: ()
2

2 .
1va

r rr
r

φ +
=

+
 (2.21)

With the limiters evaluated via the flux limiter functions in equations (2.17)-

(2.21), the second-order scheme can be achieved by the new states (),L RU U+ −

interpolated by:

()
()

2

2.

L L
i

R R
i

U U r dh

U U r dh

φ

φ

+

−

 = + ⋅


= − ⋅
 (2.22)

The flux calculation will use the new states (),L RU U+ − to replace the current

states (),L RU U in equations (2.6)-(2.8).

U
Cell interface

X|Y
L R

Lr

Rr

Chapter 2 Adaptive Cartesian Grid Euler Solver

28

2.4 Implementation of boundary conditions

There are three types of boundary in numerical simulations for compressible

inviscid flows: inlet, outlet and wall. In the finite volume method, the flux

calculation on cell interface needs to use two cells, normally named left cell

and right cell. Hence for the implementation of boundary conditions, one

additional cell layer is extended away from the boundary surfaces by

mirroring the next interior cells of the boundary surfaces. Those cells are

virtual cells, or named as ghost cells by many researchers. Although the

governing equations are not solved on these virtual cells, the states on these

virtual cells are updated according to the appropriate boundary condition every

time step.

For inlet boundary, the flow variables of density, velocity components,

pressure and internal energy are set as given inlet conditions if the inflow is in

supersonic state. When the inflow is in subsonic state, the pressure is

extrapolated from the neighbor interior cell and the rest variables are set

according to the given inlet condition.

Next, for outlet boundary, when it is under supersonic condition, all the flow

information can be extrapolated from the interior neighbor cells simply. When

it is under subsonic condition, pressure will be set as the background pressure

and the rest of variables can still be extrapolated from the interior neighbor

cells.

For inviscid flow, wall boundary condition becomes the same as reflecting

Chapter 2 Adaptive Cartesian Grid Euler Solver

29

wall condition or same as a “symmetrical” condition. The density, pressure,

tangent velocity and internal energy in the virtual cells are the same as those of

the neighbor interior cell. The normal velocity is set to be negative of that on

the neighbor interior cell. This will ensure the no-penetration wall boundary

condition. The boundary condition for curved wall boundary is special and

needs to be treated in different ways. The treatment of curved boundary will

be discussed in the following Chapters 3, 4 and 5.

2.5 Solution adaptive method

The quad-tree data structure for storing of mesh cells is adopted in the current

work for the development of the adaptive mesh refinement (AMR) solver on

Cartesian grids. To make the adaptive process efficiently during the solution

evolution, all the connectivity and hierarchy information of the Cartesian cells

and cell interfaces are explicitly stored for quick retrieval and use. The current

solver is in unstructured Cartesian grid family. In this category, the mesh

adaption is only performed at regions where high resolution is necessary such

as the place where shock wave is located. In this manner, high resolution of

the problems can be achieved without exaggerative computational load. This

advantage of adaptive solver is remarkable compared with the solver based on

uniform mesh, in which the whole domain must be refined when high

resolution is required.

The current solver and the solution adaption process are developed by the

object-oriented programming language C/C++. For the 2D solver, three major

objects are defined in individual data structure and they are node, edge and

Chapter 2 Adaptive Cartesian Grid Euler Solver

30

cell. A cell object consists of four edge objects that enclose the cell; an edge

object consists of two node objects that are the two ends of the edge. The

object trees of cell, edge and node are listed in Figure 2.2. The objects Tcell,

Tedge and Tnode define the control cell, the cell interface or edge and the

grid node, respectively. The four edges of a cell are stored in *Edges[4]; the

neighbor cells of an edge are stored in *neighborCells[2]. Similarly, the

childCells and parentCell are defined accordingly. The variables defined

under the objects can be very easily indexed and accessed when needing to use

them. New data information can be added into the object easily when needed.

Figure 2.2 Data structure of the objects (cell, edge and node) for 2D solver

For the quad-tree mesh adaption on Cartesian grids, a parent cell will be

refined with four child cells. In this process, a maximum 12 new edges will be

created and a maximum of 5 new nodes will be added, as illustrated in Figure

2.3. New nodes are appended to the existing node object list, while new edges

and new cells are inserted before their parents in the corresponding object list.

To decide whether a cell can be refined, its adaption level and status of the

neighbor cells must be considered to avoid duplicate creation of new edges

and nodes. For example, if all the four neighbor cells of a cell are already

Tcell Tedge *Edges[4]
double xc,yc;
double p,rho,u,v,E;
double Area;
double Grad[4];
 int layer, refined;
Tcell *childCells[4];
 Tcell *parentCell;

 Tcell *prev;

Tcell *next;

Tedge Tnode *Nodes[2]
int bctype;
double nx, ny;
double length;
double flux[4];
 Tcell *neighborCells[2];
 Tedge *childEdges[2];
 Tedge *parentEdge;

 Tedge *prev;

Tedge *next;

Tnode double x0,y0;
 double x1,y1;
Tnode *prev;
 Tnode *next;

Chapter 2 Adaptive Cartesian Grid Euler Solver

31

refined to a finer level, then only one new node at the cell center and four new

edges forming the cross frame (+) inside the cell will be created.

In order to ensure the smooth transition from coarse mesh region to fine mesh

region and the accuracy of the solution, the level difference of two neighbor

cells for an edge is restricted to one. So the shadowed refined cell marked as

dotted-line in Figure 2.3 (c) is not allowed. As illustrated in the diagram,

checking of refinement dependency is needed and the refinement of the

dependent cells must be performed first before the marked cells are refined. In

the current work, the check of refinement dependency is limited to one cell

away from the cell marked for refinement to avoid recursion need of adaption

for too many cells. This makes the code implementation easier and keeps the

adaption solver efficient. The validation of the accuracy benefit and efficient

of the solver will be presented in the following sections.

Figure 2.3 Illustration of mesh refinement process

Beside the refinement process discussed above, coarsening process is also

necessary in AMR technique to reduce the number of grid used. In the

(a) Level 0 (b) Level 1 (c) Level 2

Marked for refine Refine dependent cells

Chapter 2 Adaptive Cartesian Grid Euler Solver

32

coarsening process, only parent cells can be chosen for coarsening but the

grand-parent cells will be ignored until their children cells are not marked as

refined. In addition, it is necessary to check the adaptive status of the neighbor

cells before the confirmation of the coarsening. In specific, if any neighbor

cells are grand-parent cells, then the current cell will not be coarsened to

ensure that the level difference is limited to one. Particularly, to perform

coarsening, the 4 edges in the cross (+) position and the central node will be

deleted from the object list. The other 8 sub-edges and 4 nodes can be deleted

if they are not associated with the neighbor cells. All the deleted edges, nodes

and the coarsening cells will be deleted from the corresponding object list and

then freed from the memory to save the memory usage.

As introduced previously, on an adaptive refinement grid, accurate calculation

of edge flux is of utmost important for the solver. Great attention must be paid

on the flux calculation especially on the adapted edges. When a cell is refined,

the cell will become a parent cell and has its child cells; the four edges formed

the cell will have their child edges. Flux should be calculated on the children

edges only and then their contribution to the left and right cells are directly

updated. It is not necessary to perform the flux calculation for the refined

edges. As illustrated in Figure 2.4, flux calculation will be performed on edges

AB and BC as f1 and f2, but it is no need for edge AC. The flux f1 will be

contributed to cell[n] and cell[n+2]; the flux f2 will be contributed to cell[n+1]

and cell[n+2]. So to cell[n+2], though the flux through its edge AC (or A’C’)

is not directly computed, the total flux through this edge is still counted by

edges AB and BC.

Chapter 2 Adaptive Cartesian Grid Euler Solver

33

In the current work, flux is calculated on all the valid children edges and the

non-refined edges as described above. After the flux on all edges is evaluated,

solution at the next time step in the term of the state 1+n
cU for all the non-

parent cells can be obtained via equation (2.4). For the parent cells, their new

state will be determined by summation of the state from all four child cells.

Having the new state 1+n
cU , the physical variables of density, pressure,

velocity component and internal energy at the cell centers can be obtained.

Figure 2.4 Flux calculation for the edges of a refined mesh cell

AMR technique is useful to cluster fine meshes in the region that is critical or

experiencing high flow gradients while use coarse mesh in the regions that has

less variation. For compressible flows specifically, regions close to shock

wave, rarefaction and contact wave in general have high flow gradients and

require very high mesh resolution. Hence, adaptively locating fine mesh into

these regions is very useful for accurate capturing of the sudden changes in

solution such as shock waves. On the other hand, it is also essential to coarsen

refined cells when the gradients at the cells become small. This effectively

reduced the total number of cells used, and consequently improves the

computational efficiency. In the current adaptive solver, the density gradient is

chosen as the refinement indicator because it essentially conveys the flow

A

B

C

A

B

C

A’

B’

C’

f1

f2

f1

f2

f1

f2

Cell[n] Cell[n+1] Cell[n+2]

Chapter 2 Adaptive Cartesian Grid Euler Solver

34

changes of rarefaction, shock and contact waves. In contrast, pressure and

velocity gradients only reflect the flow changes in the regions of rarefaction

and shock normally. However, these variables can also be used as the adaptive

criterion if needed. The mesh refinement can also be chosen based on the

location when it is needed, for example to cluster fine meshes near the critical

geometry.

In summary, the flow chart of the current adaptive solver as described above is

given in Figure 2.5. The solution adaption part is developed as a module

component in the solver. So it can be by-passed by giving a negative switch

indicator. This also facilitates the ease in the debug and troubleshooting for the

code development. Furthermore, it makes the comparison for solutions

computed on uniform meshes and adaptive meshes very simple and easy.

Chapter 2 Adaptive Cartesian Grid Euler Solver

35

Figure 2.5 Flow chart of the current adaptive Cartesian grid Euler solver

Mesh Generation

- Check Convergence
- Reach Flow Time
- Reach max Iteration

Yes

No

Start

Read Input

Define Initial Flow Field, and
Boundary Conditions

Solution Iteration

Calculate Time Step ∆t

Calculate Flow Gradients on Cells

Calculate Flux on Edges

Perform Solution Adaption

Output Data

End

Calculate New Solution on Cells

Calculate Residuals and Update

Search cells that are isCoarseable

Perform Cell Coarsening

Search cells that are isRefineable

Perform Cell Refinement

Update Boundary Conditions

Chapter 2 Adaptive Cartesian Grid Euler Solver

36

2.6 Test cases and discussion

For compressible flows, shock waves and Riemann discontinuous flow

structure are very common. These flow structures involve very high flow

gradient and are very challenging for numerical simulation. In this section,

results for six compressible flow problems are presented to illustrate the

accuracy and effectiveness of the current adaptive solver.

2.6.1 Sod’s shock tube problem

The first test case is a modified Sod’s shock tube problem. The initial

condition inside the o unit length tube is:

3.0<x { } { },0.1,75.0,0.1,, =LLL Puρ

3.0>x { } { }.1.0,0.0,125.0,, =RRR Puρ

The Sod’s shock tube problem is a one-dimensional problem and the

analytical solution is available [35]. The solution has a right shock wave, a

right travelling contact wave and a left sonic rarefaction wave. It is solved in

2D with the current adaptive solver in a domain of 1×0.1, and an initial

uniform mesh of 100x10 is applied.

Figure 2.6 shows the predicted solution on the initial mesh without refinement

and 3-level adaption. The numerical results are compared to the analytical

solution at dimensionless time t=0.2. It can be seen that among the profiles of

density, pressure, velocity and internal energy, only density profile can reflect

all the three waves. It authenticates the choice of density gradient as an

adaption indicator. It can be seen from the computed profile that all the three

Chapter 2 Adaptive Cartesian Grid Euler Solver

37

captured waves compare very well with the exact solution. The solution with

3-level adaption matches to the exact solution much more accurately than that

of the initial uniform mesh. The mesh distribution for 3-level adaption is

shown in Figure 2.7. It is very clear that fine meshes are adapted to the high

flow gradients at the three areas representing the rarefaction wave, the contact

wave and the normal shock wave. As a result, it improves the accuracy for the

wave capture.

X

D
en

si
ty

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

current, no adaption
current, adaption 3x
exact solution

 X

V
el

oc
ity

0 0.2 0.4 0.6 0.8 1

0

0.4

0.8

1.2

1.6

current, no adaption
current, adaption 3x
exact solution

X

P
re

ss
ur

e

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

current, no adaption
current, adaption 3x
exact solution

 X

In
te

rn
al

E
ne

rg
y

0 0.2 0.4 0.6 0.8 1

2

2.4

2.8

3.2

3.6

current, no adaption
current, adaption 3x
exact solution

Figure 2.6 Sod’s Shock Tube Problem: comparison of predicted solution

between uniform no adaption mesh and 3-level adaption mesh

Figure 2.7 Sod’s Shock Tube Problem: Mesh distribution with 3-level

adaption

Chapter 2 Adaptive Cartesian Grid Euler Solver

38

2.6.2 Lax shock tube problem

The second test case is the Lax shock tube problem [35], which is very similar

to the Sod’s shock tube problem. The initial condition of Lax shock tube

problem is:

4.0<x { } { },894.460,5975.19,99924.5,, =LLL Puρ

4.0>x { } { }.0950.46,19633.6,99924.5,, −=RRR Puρ

The Lax shock tube problem is a very severe test. The flow consists of three

strong discontinuous travelling waves to the right. The flow is also solved in

2D with the current adaptive solver in a domain of 1×0.1 and an initial

uniform mesh of 100x10.

Figure 2.8 shows the predicted solution on the initial mesh without refinement

and 3-level adaption, which is compared to the analytical solution at

dimensionless time t=0.035. Density gradient is used as the indicator for

performing solution adaption. As shown in the figure, the adaptive solver can

capture all the three strong travelling waves accurately, especially when 3-

level adaption is used. The mesh distribution for 3-level adaption is shown in

Figure 2.9. This test case shows that the current adaptive solver is very robust

to predict such strong waves.

Chapter 2 Adaptive Cartesian Grid Euler Solver

39

X

D
en

si
ty

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

current, no adaption
current, adaption 3x
exact solution

 X

V
el

oc
ity

0 0.2 0.4 0.6 0.8 1
-10

-5

0

5

10

15

20

current, no adaption
current, adaption 3x
exact solution

X

P
re

ss
ur

e

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

current, no adaption
current, adaption 3x
exact solution

X

In
te

rn
al

E
ne

rg
y

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

current, no adaption
current, adaption 3x
exact solution

Figure 2.8 Lax Shock Tube Problem: comparison of predicted solution

between uniform no adaption mesh and 3-level adaption mesh

Figure 2.9 Lax Shock Tube Problem: Mesh distribution with 3-level

adaption

2.6.3 Two-Dimensional oblique shock wave

A two-dimensional shock wave reflecting from a rigid surface is simulated in

this test case. The computational domain is a rectangular domain with length

of 4 and width of 1. The initial uniform mesh of 80x20 is used. The left and

bottom surfaces are defined as fixed inlet condition, as shown in Figure 2.10.

The top surface is defined as wall boundary. Supersonic outflow condition is

Chapter 2 Adaptive Cartesian Grid Euler Solver

40

defined at the right surface and all flow variables are extrapolated from the

interior cells. The initial condition is defined using the left inlet condition.

An incident shock angle of 29° towards the top wall is produced and the free

stream Mach number M∞ is 2.9. The shock is reflected down by the top wall.

Figure 2.11 and Figure 2.12 show the simulated density contours in the

rectangle domain on the initial uniform mesh and the adaptive mesh. The

comparison of the predicted density distribution with the exact solution is

presented in Figure 2.13 at y=0.5. The results indicate that the adaptive solver

can capture the two incident shock waves sharply and the strength of the two

shock waves agrees with the exact solution very well.

Figure 2.10 Oblique Shock Wave: Computational domain and boundary
conditions

Figure 2.11 Oblique Shock Wave: Mesh distribution (colored by density)

and Density contours (1.0 to 2.65, 30 levels) on uniform mesh 80×20.





















=





















7143.0
0.0
9.2
0.1

L

L

L

L

P
v
u
ρ

{ } { }5282.1,50632.0,61934.2,69997.1,,, =RRRR Pvuρ

outlet

Reflecting wall

Chapter 2 Adaptive Cartesian Grid Euler Solver

41

Figure 2.12 Oblique Shock Wave: Mesh distribution (colored by density)
and Density contours (1.0 to 2.65, 30 levels) with 3-level adaption on initial

Mesh 80×20.

Figure 2.13 Oblique Shock Wave: Comparison of the predicted density
profile at y=0.5 with the exact solution

2.6.4 Double Mach reflection

The shock wave strength involved in the previous oblique shock wave

reflection problem is relative weak with a low pressure ratio of 2.7. The

double Mach reflection problem is another challenging test case studied

extensively by many researchers [36]-[39]. The problem is unique according

to its high pressure ratio at about 116.5 and a strong normal shock wave with

Mach number 10 passing through a 30° wedge. For the convenience of

Chapter 2 Adaptive Cartesian Grid Euler Solver

42

construction of the computational domain, the reflecting wall or the wedge

surface, is put on X-axis starting from X=1/6. The computational domain is

chosen to be a rectangle as 4×1. The boundary conditions are as described in

Figure 2.14. To be specific, top surface is separated by point-B with the left

side of point-B as inflow condition and the right side of Point-B as outflow

condition. Point-B will move to the right following the shock wave on the top

surface. Position A is aligned to the leading point of the wedge surface, and

AB


 indicates the initial position of the shock wave. Initially a right-moving

shock with Ma=10 is positioned at AB


. The inflow condition is defined as the

post-shock condition. Initial uniform mesh of 120×30 is defined in the

rectangle domain. The simulation is carried out until a dimensionless time

t=0.20.

The computed density contours and the adaptive mesh are shown in Figure

2.15 and Figure 2.16. The main shock and the oblique wave are captured with

the initial uniform mesh with no adaption but the detailed shock structure

before the main shock near the wedge is smeared. The results with 3-level

adaption are in good agreement with other Euler solvers running on finer

meshes of 960×240 by Jun et al. [36], and 480x120 by Woodward and Colella

[40]. The complex flow structures such as the main three-shock intersection

and the structure of the jet formed near the reflecting wall are accurately

captured as shown in Figure 2.16.

Chapter 2 Adaptive Cartesian Grid Euler Solver

43

Figure 2.14 Double Mach Reflection: Computational domain and boundary
conditions

Figure 2.15 Double Mach Reflection: Mesh distribution (colored by density)
and Density contours (1.9 to 21, 50 levels) with no adaption on initial Mesh

120×30.

Inflow: { } { }5.116,125.4,1447.7,0.8,,, −=Pvuρ
Outflow: { } { }0.1,0.0,0.0,4.1,,, =Pvuρ

Inflow

Inflow

Outflow

Wedge surface

O
ut

flo
w

In
flo

w

B

A

°60
Ma=10

Chapter 2 Adaptive Cartesian Grid Euler Solver

44

Figure 2.16 Double Mach Reflection: Mesh distribution (colored by density)

and Density contours (1.9 to 21, 50 levels) with 3-level adaption on initial
Mesh 120×30.

2.6.5 Backward step problem

The backward step problem is to study the shock wave diffraction at a sharp

90° corner. Different shocks from 1.65 to 5.09 were investigated by Sun [38]

and Hillier [41]. The computational domain is chosen as 4×4 with a step

located at the left-bottom region of the square domain, as shown in Figure

2.17. The boundary conditions to the left of the shock are set as inlet with

post-shock conditions. The shock moves at Ma=3 to the right. Initially, a

vertical shock is positioned just above the corner, inflow condition is set for

the region left to the shock and outflow condition is set for the region right to

the shock. Initial mesh is defined as 50×50, with the mesh cells inside the step

is being cut out.

The predicted density contours of the shock wave diffraction are shown in

Chapter 2 Adaptive Cartesian Grid Euler Solver

45

Figure 2.18 and Figure 2.19. The former is obtained on initial uniform mesh

and the latter is obtained by 3-level solution adaption. From the comparison, it

is noticed that the computed density contours with 3-level adaption is able to

reproduce the diffraction shock sharply and the secondary shock waves are

also shown. In addition the vortex shock structure at (1, -0.75) is also captured

as indicated by the arrow in Figure 2.19. The results are comparable to the

results presented by Hillier [41].

Figure 2.17 Backward step problem: computational domain and boundary
conditions

Figure 2.18 Backward step problem: mesh distribution and density contours

(0.3 to 3.7, 30 levels) with no adaption on initial mesh of 50×50.

Inflow: Outflow:
3.843
2.628
0.0
10.34

L

L

L

L

u
v
P

ρ   
   
   =
   
   

  

1.4
0
0.0
1.0

R

R

R

R

u
v
P

ρ   
   
   =
   
   

  

Inflow Outflow

Outflow

O
ut

flo
w

In
flo

w

B

Ma=3

Chapter 2 Adaptive Cartesian Grid Euler Solver

46

Figure 2.19 Backward step problem: mesh distribution and density contours

(0.3 to 3.7, 30 levels) with 3-level adaption on initial mesh of 50×50.

2.6.6 Cylindrical shock explosion

In the Sod’s shock tube problem, though it is solved in 2D, the characteristics

of the problem are actually in a one dimensional case. The cylindrical

explosion problem is like a 2D extension of the Sod’s shock tube problem.

The computational domain is a 2×2 square with a circle region of radius R=0.4

at the center (Figure 2.20), and inside the circle region, it is filled with high

pressure and high density air. The surroundings of the circle are filled with air

at low pressure and low density. The explosion of the air inside the circle

starts at time t=0 to all directions on the 2D domain. The initial uniform mesh

is defined as 50×50.

The predicted density, pressure, velocity and internal energy distribution on

line OA


 in Figure 2.20 at dimensionless time t=0.25 are plotted in Figure 2.21

and compared to the exact solution [35]. The flow structure consists of a

circular shock wave travelling away from the center, a circular contact surface

travelling in the same direction and a circular rarefaction travelling towards

Chapter 2 Adaptive Cartesian Grid Euler Solver

47

the center of the circle. This can be observed in the 3D plot of the wave

surfaces for density and pressure in Figure 2.22. It can be seen that the

predicted profiles with 3-level solution adaption closely match the exact

solution. Moreover, the adapted mesh at the solution time t=0.25 is shown in

Figure 2.23.

Figure 2.20 Cylindrical explosion: configuration and boundary conditions

X

D
en

si
ty

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

current, no adaption
current, adaption 3x
exact solution

 X

V
el

oc
ity

0 0.2 0.4 0.6 0.8 1

0

0.4

0.8

1.2

current, no adaption
current, adaption 3x
exact solution

X

P
re

ss
ur

e

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

current, no adaption
current, adaption 3x
exact solution

 X

In
te

rn
al

E
ne

rg
y

0 0.2 0.4 0.6 0.8 1
1.2

1.6

2

2.4

2.8

current, no adaption
current, adaption 3x
exact solution

Figure 2.21 Cylindrical explosion: comparison of predicted solution
between uniform mesh and 3-level adaption mesh

Inside Circle:
{ } { }, , , 1.0,0.0,0.0,1.0 .I I I Iu v Pρ =

Outside Circle:
{ } { }, , , 0.125,0.0,0.0,0.1 .O O O Ou v Pρ =

Outflow

Outflow

O
ut

flo
w

O
ut

flo
w

Y

X
O

A

Chapter 2 Adaptive Cartesian Grid Euler Solver

48

(a) Density distribution (b) Pressure distribution

Figure 2.22 Cylindrical explosion: density and pressure distribution at time
t=0.25

Figure 2.23 Cylindrical explosion: mesh distribution (colored by density)
with 3-level adaption on initial mesh of 50×50

Chapter 2 Adaptive Cartesian Grid Euler Solver

49

2.7 Effectiveness of the adaptive solver

The major advantages of the adaptive solver are its effectiveness and accuracy

improvement in critical regions. By adapting finer meshes to the regions that

bear high flow gradients, the adaptive solver is able to resolve the significant

changes of the flow physics. In addition, considerable amount of computing

time can be saved since there is no need to apply fine meshes in the regions

with low flow gradients. Table 2.1 lists the computation time for the above six

test cases. The comparison is made between the computations on uniform finer

meshes and adaptive meshes with the same finest mesh resolution in the

computational domain.

Test Case Initial Mesh Size
and CPU Time Uniform Finer Mesh Adaptive Mesh

 dh Time (s) h/2 h/4 h/8 1x, h/2 2x, h/4 3x, h/8

1, Sod’s Shock Tube 1/100 5 13 101 888 9 53 340

2, Lax Shock Tube 1/100 3 21 175 1516 12 67 446

3, Oblique Shock 1/20 8 72 658 5614 35 216 1109

4, Double Mach Reflection 1/30 7 67 659 5655 41 235 1555

5, Backward Step 1/50 3 26 261 2275 15 96 714

6, Cylindrical Explosion 1/25 1 8 76 654 6 40 297

Table 2.1 Computational time for uniform mesh and adaptive mesh

Figure 2.24 Computational time for finest meshes for six test case

Chapter 2 Adaptive Cartesian Grid Euler Solver

50

From the table, it is observed that for the finest mesh (resolution of h/8) to all

the six cases, the computation time required for the uniform mesh is about 2~5

times more than that required for the adaptive mesh, as shown in Figure 2.24.

For the mesh resolution of h/4, this drops to 2~3; and again drops to 1.3~2 for

mesh resolution of h/2. The comparison indicates that the adaptive solver is

more efficient for higher adaptive level. Hence, to obtain high accuracy and

save computation time, a relative coarse initial uniform mesh coupled with a

higher adaptive level will be more efficient and appropriate.

Moreover, it is also noticed that the performance of the adaptive mesh varies

with the problem studied. For example, the oblique shock problem

demonstrates very good performance of the adaptive mesh for about 5 times

faster on the resolution of h/8. It is only about 2 times faster for the cylindrical

explosion problem. The flow structures indicate that the adaption is only

required for two straight shocks for the oblique shock problem, but it is

demanded for the three circular regions of shock, contact wave and rarefaction

for the cylindrical explosion problem. And normally the rarefaction region is

relative large in the domain. So larger regions need to be adapted for the

cylindrical explosion problem, hence the performance will be relatively low.

2.8 Improvement of solution accuracy by the second-
order schemes

The accuracy of the second-order schemes is studied based on three test cases:

1) Sod’s shock tube problem, 2) two-dimensional oblique shock wave, and 3)

double Mach reflection.

Chapter 2 Adaptive Cartesian Grid Euler Solver

51

Although the Sod’s shock tube problem is a relative simple test case, the

presence of right shock wave, right travelling contact wave and a left sonic

rarefaction wave make the problem a very suitable validation test case for

accuracy study for a compressible CFD solver. In order to make fair

comparison, the computational domain is fixed in 1×0.1 and the mesh size is

fixed to 100×10. The second-order scheme is implemented with five flux

limiter functions shown in the previous section. The solution for all the five

flux limiter functions is obtained and plotted in Figure 2.25, including the

profile for density, velocity, pressure and internal energy. The exact solution

and the first order solution are also plotted on the same chart for comparison.

From the comparison made in these plots, it is observed that the solution

accuracy is improved obviously by the second-order scheme in the regions

near the contact wave and shock wave. All the five flux limiter functions

produce similar solution for density, velocity and pressure, except for the

internal energy where certain level of oscillation is noticed near the contact

wave position. By comparing the local oscillation of internal energy term, the

flux limiter functions of Minmod and Sweby are able to produce more stable

solution than the other three flux limiter functions of Osher, Van Leer and Van

Albada. This verifies that using the flux limiter function does improve the

solution accuracy, while its effect makes the solver very sensitive in the

regions near the shock wave.

To further study the impact of the flux limiter functions on the solution

accuracy, three different values of β in the Osher limiter are tested and

compared: 1.1, 1.5 and 1.9, in the range of 1 to 2. The density and energy

Chapter 2 Adaptive Cartesian Grid Euler Solver

52

profiles are plotted in Figure 2.26 with comparison to the exact solution. The

density profile almost maintains with different β values defined in the limiter

function. However, the internal energy profile shows obvious difference in the

region nears the contact wave, where energy oscillation is observed as shown

in Figure 2.25. The level of oscillation becomes stronger with larger β value

used in the Osher flux limiter function. This indicates that the prediction of

contact wave is very sensitive to the flux limiter function, and the proper

choosing of the β value in the function as well.

Moreover, the two-dimensional oblique shock wave problem is a suitable 2D

test case to validate the solver. To carry out the study of accuracy

improvement for the second-order scheme, the computational domain is fixed

to 4×1 and the mesh size is fixed to 160×40. The density contour is plotted to

demonstrate the improvement of the accuracy by using the second-order solver.

As shown in Figure 2.27, the two oblique shock waves can be captured much

sharply by the second-order solver as compared to the solution obtained by the

first order solver. The density profile at y=0.5 plotted in Figure 2.28 shows

that the second-order solver using all five flux limiter functions is able to

produce similar and more accurate solution as compared to the first order

solver.

Chapter 2 Adaptive Cartesian Grid Euler Solver

53

Figure 2.25 Accuracy study for the Sod’s shock tube case

Figure 2.26 Accuracy study for different β values in Osher limiter

Chapter 2 Adaptive Cartesian Grid Euler Solver

54

Figure 2.27 Accuracy study for oblique shock wave case (density contours)

Figure 2.28 Accuracy study for oblique shock wave case (density profile)

The presence of extremely high pressure ratio of 116.5 and strong shock for

the double Mach reflection problem makes it a challenging test case for

compressible flow solver. In particular, when the second-order scheme or

other high order schemes are used to calculate the flux on the interface of the

cells, solution stability will become a common problem. Large amount of

works have been done on implementation and fine-tuning of the flux limiter

function in dealing with the second-order and high order schemes [3][5][42]

and many of the tunings were done at the trial and error basis. In the current

work, the solution for this test case was successfully obtained using all the flux

(a)
1st Order

(b)
2nd Order

Chapter 2 Adaptive Cartesian Grid Euler Solver

55

limiter functions except the Van Albada limiter. The computational domain is

fixed to 4×1 and the mesh size is fixed to 400×100. The density contour is

plotted and compared between the solution of the first order scheme and the

second-order scheme, as shown in Figure 2.29. From the comparison, it is

observed that the second-order solver is able to capture the triangle shock

structure behind the moving shock sharply and accurately. This presents the

benefit of accuracy improvement by using the second-order scheme.

Figure 2.29 Accuracy study for double Mach reflection case (density

contours)

2.9 Accuracy and convergence analysis

The numerical solution at four different meshes is computed for the Sod’s

shock tube problem for accuracy analysis of the current Euler solver using

both first-order scheme and second-order scheme. The mesh spacing used for

the analysis is 0.1, 0.05, 0.025 and 0.0125. The numerical error of density ρ is

quantified using L2 norm on all the cells in the computational domain.

(a)
1st Order

(b)
2nd Order

Chapter 2 Adaptive Cartesian Grid Euler Solver

56

()2

2 .numerical exactNL Error
N

ρ ρ−
= ∑ (2.23)

The subscript (numerical) and (exact) in the formula denote the numerical

density and the exact solution. The L2 norm error versus the four different

mesh spacing in the log scale is plotted in Figure 2.30. As the slope of the

lines show, the accuracy of numerical results is closed to 1 and 2 for the first-

order and second-order scheme, respectively. This implies that the overall

accuracy of the adaptive solver can achieve second-order accuracy using the

implemented second-order scheme with limiter function.

Figure 2.30 Accuracy analysis of the current solver

The oblique shock wave problem is chosen for the convergence analysis of the

current solver, as it is a steady-state problem. Numerical solution is computed

on uniform coarse mesh 80×20 and uniform fine mesh 320×80. To benchmark

the convergence characteristics of the adaptive solver, numerical solution is

also computed with 2-level solution adaption through two different approaches.

Slope≈0.9

Slope ≈ 1.9

Chapter 2 Adaptive Cartesian Grid Euler Solver

57

One approach (case [a]) is to enable the solution adaption from the beginning

of iteration and the other approach (case [b]) is to start the solution adaption

only after the solution is converged on coarse mesh. In the present study,

steady-state solution is considered converged when the maximal residual of

the solution is reduced below 10-6.

The four different convergence tracks are plotted in Figure 2.31 as the residual

of density versus the number of iteration of the solver. As it shows the uniform

coarse mesh solution converges the fastest in only 1800 iterations using about

2 seconds, while the uniform fine mesh solution takes about 6400 iterations

and 135 seconds to converge. Usually, large time step can be used on coarse

mesh as compared to finer mesh. Hence it takes fewer iterations of solution

evolution in marching to the steady-state solution on coarse mesh. Apart from

this, fine mesh implies more equations to be solved on the larger number of

mesh cells. As a result, the computing time required for fine mesh increases

significantly instead of linearly. The comparison of the convergence history

between two solution adaption approaches shows no much difference. Both

approaches take about 6500 iterations and 34~40 seconds to converge, with

the approach [b] takes slightly less computing time to converge. This could be

due to the fact that converged coarse mesh solution provides a better “initial

condition” for the 2-level adaption solution, while it does not take too long to

achieve the converged coarse mesh solution. This could be a useful approach

for steady-state flow simulations.

Chapter 2 Adaptive Cartesian Grid Euler Solver

58

No. of Iteration

R
es

id
ua

l

0 2000 4000 6000 8000

10-6

10-5

10-4

10-3

10-2

Coarse Mesh, cpu = 2 s
Finer Mesh, cpu = 135 s
2x Adaption [a], cpu = 40 s
2x Adaption [b], cpu = 34 s

Figure 2.31 Convergence analysis of the current solver

2.10 Conclusions

In this Chapter, an adaptive Euler solver was developed based on finite-

volume method. The HLLC scheme is used to compute the flux on cell

interface and five second-order flux schemes were implemented and validated.

The AMR technique is an important feature implemented on the current Euler

solver to improve the accuracy and efficiency of the solver.

The current adaptive Euler solver was validated through six 2D test cases,

with the adaptive solutions were obtained with 3-level solution adaption. The

present results are compared with the analytical solutions and numerical

results in the literation. The comparisons show good agreement. The solution

adaptive capability demonstrates remarkable performance not only in the

solution accuracy improvement but also in the improvement of solver

[a], solution adaption is enabled from the beginning of iteration.
[b], solution adaption is enabled only after the coarse mesh

solution is converged.

Chapter 2 Adaptive Cartesian Grid Euler Solver

59

efficiency. Five second-order schemes were implemented and their

performance for solution accuracy improvement was studied and presented.

The accuracy and convergence analyses not only show that the current

adaptive Euler solver can achieve close to second-order accuracy, but also

demonstrate that the solution can converge efficiently using the solution

adaption feature developed in the current solver.

The current adaptive Euler solver has built a concrete foundation for the

implementation and validation of the immersed boundary methods for

compressible flows.

Chapter 3 Ghost-cell Method-based Adaptive Euler Solver

60

Chapter 3 Ghost-cell Method-based
Adaptive Euler Solver

The Cartesian grid-based adaptive solver presented in Chapter 2 demonstrates

good capability and effectiveness in simulating compressible inviscid flows. In

order to use the adaptive solver for various generic compressible flow

problems, the solver needs to be extended to handle irregular wall boundary

surfaces effectively. Such kind of wall boundary surfaces can be a domain

boundary surfaces or wall boundary surfaces of immersed solid bodies in the

computational domain.

As discussed in the literature review in Chapter 1, there are three methods to

represent wall boundaries on non-body-fitted Cartesian grids. Among the three

methods, ghost-cell method is relatively less complicated to be implemented

on Cartesian grids as the flux calculation is only performed on the mesh cell

interfaces. There is no need to form special cut-cells or merge small cut-cells

into neighbor parent cells as required in cut-cell method; and neither does it

need to develop a grid-less algorithm to solve the governing equations in the

grid-less zone as required for grid-less method. Instead, in the ghost-cell

method, one only needs to accurately correct flow information near the wall

boundary according to the prescribed boundary conditions.

Therefore, the ghost-cell method is adopted and implemented in the current

adaptive Euler solver. As the method has been implemented and tested by

Chapter 3 Ghost-cell Method-based Adaptive Euler Solver

61

many researchers, the implementation of the method in the current adaptive

Euler solver enables the validation and performance study for compressible

flows involving complex boundaries can be made and compared.

3.1 Ghost-cell method

The ghost-cell method was first proposed by Forrer and Jeltsch [5] and then

improved by the curvature-correction symmetry technique (CCST) introduced

by Dadone and Grossman [6], [7], [8]. The method is an enhancement to the

symmetry technique to take into account the wall curvature for solid wall

boundary conditions based on body-fitted grid. The implementation of CCST

gives the approximation of pressure, density and normal velocity on two

image/ghost cell centers, shown as hollow dots (-1) and (-2) in Figure 3.1.

For cell center (-1):

,1

2

11 n
R
u

pp
W

s
W ∆−=− ρ (3.1)

,
1

1

1
11

γ

ρρ 







= −

− p
p (3.2)

,
1

2~~
1

1

1

12
1

2
1 








−

−
+=

−

−
− ρργ

γ ppuu (3.3)

.~~
11 vv −=− (3.4)

For cell center (-2):

,2

2

22 n
R
u

pp
W

s
W ∆−=− ρ (3.5)

Chapter 3 Ghost-cell Method-based Adaptive Euler Solver

62

,
1

2

2
22

γ

ρρ 







= −

− p
p (3.6)

,
1

2~~
2

2

2

22
2

2
2 








−

−
+=

−

−
− ρργ

γ ppuu (3.7)

.~~
22 vv −=− (3.8)

Here 1n∆ and 2n∆ are the distances between cell centers () ()1 1+ → − and

() ()2 2+ → − . The symbol ~ denotes the normal-tangent velocity components

on the wall boundary. The tangent velocity on cell centers (-1) and (-2) is the

same as it is on cell centers (+1) and (+2).

Figure 3.1 Concept of ghost-cell method

The CCST method can be adopted and extended to apply on the Cartesian grid.

To make it flexible and simple to implement, the ghost-cells in the solid zone

are searched in the local region within double mesh size from the boundary.

For convenience, the cells near the wall boundary are named shadow-cells in

this thesis. Moreover, the shadow-cells fallen in fluid zone are labeled as fluid

shadow-cells, and those fallen in solid zone are named as solid shadow-cells.

+1

+2

-2
-1

Wall

Fluid Side

Solid Side

A

B

Chapter 3 Ghost-cell Method-based Adaptive Euler Solver

63

In this context, as shown in Figure 3.2, the ghost-cells around wall point-B can

be classified into fluid shadow-cell (in green) on one side of the boundary, and

solid shadow-cell (in gray) on the other side of the boundary. When enforcing

wall boundary conditions, the flow information on the solid shadow-cells are

updated using equations (3.1) - (3.4) . Governing equations are solved on the

fluid shadow-cells directly, so there is no additional action needed for those

cells.

However, as the fluid shadow-cells and the solid shadow-cells under this case

may not be right in symmetrical relationship across the wall surface, the

pressure, density and normal velocity on the solid shadow-cells cannot be

updated directly using equations (3.1) - (3.4) . Hence the symmetrical

relationship needs to be built first. This can be done by mirroring either solid

shadow-cells into the fluid region, or mirroring fluid shadow-cells into the

solid region. As the flow information on solid shadow-cells need to be updated

based on the boundary condition and local fluid information, it will be easier

to mirror the solid shadow-cells and update the flow information on them

directly. To illustrate the process, as shown in Figure 3.2, for the solid

shadow-cell (j), if
→

jB is normal to wall surface, the cell center (j) can be

reflected based on normal direction n to (j’) into the fluid region. The flow

information on position (j’) can be obtained using local interpolation with all

the fluid shadow-cells of wall point-B. In current study, the simple inverse

distance method is used for the interpolation. Once this is done, using the wall

boundary condition equations (3.1) - (3.4) , the pressure, density and velocity

can be computed and updated for the solid shadow-cell (j). The total energy

Chapter 3 Ghost-cell Method-based Adaptive Euler Solver

64

will be updated using the equation of state.

As mentioned above, the boundary condition is implemented through updating

the flow information on solid shadow-cells from the fluid shadow-cells.

Therefore, a quick and universal way to identify whether shadow-cells fall in

fluid region or solid region is very crucial.

Figure 3.2 Implementation of CCST method on Cartesian grid

It can be found that boundary of a 2D immersed body is normally represented

by many short line segments. Imagining walk along these segments from the

head to the tail, one can always find that the fluid shadow-cells are always on

one side and the solid shadow-cells are on the other side. Inspired by this, an

j=1

j=2

k=K
Wall

Y

X

k

k+1

k-1

B
S

Fluid Shadow- Cells
near Wall point-B

Solid Shadow- Cells
near Wall point-B

j

Current Wall point-B
index=k

Other Wall points
k=1, 2, … K

n

j'

Chapter 3 Ghost-cell Method-based Adaptive Euler Solver

65

innovative approach is proposed by introducing a fluid reference point R in the

computational domain and then using the relationship between the line

segment of cell center to the fluid reference point and the wall edge to

determine the property of the shadow-cell. As shown in Figure 3.3 (a), point A

is located in the fluid region as RA


 does not intersect with the Wall; points

A’ and B’ are in the solid region as 'RA


 and 'RB


 intersect with the Wall once;

point B is in the fluid region again as RB


 intersects with the Wall twice. This

is like the situation when walking from the fluid reference point R to the point

B, it first passes the wall and goes inside the solid body and then passes the

wall again to enter into the fluid region at point B. In general, a point (i) will

be in fluid region if Ri


 intersects with the Wall by an even number of times;

and in solid region if by an odd number of times.

Figure 3.3 (b) illustrates the local view and relations of the shadow-cells (i)

and (i+1), the wall segments (j)-(j+1), and the fluid reference point R. Because

R i→


 has no intersection point with all wall segments and ()1R i→ +


intersects with the wall segment (j)-(j+1), so cell (i) is a fluid shadow-cell and

cell (i+1) is a solid shadow-cell.

Figure 3.3 Concept in determining the property of shadow-cells

Fluid
Reference

Point

Wall
A

A’

B’

B

Flow

R

(a) Overview sketch (b) Close view near the shadow-cells

Wall

R

i
i+1

j+1

j

Chapter 3 Ghost-cell Method-based Adaptive Euler Solver

66

3.2 Results and discussion

To validate the implementation of ghost-cell method in current adaptive Euler

solver, two well-known test cases are experimented numerically. The first test

case is a supersonic inviscid flow over a circular cylinder at Mach number 3;

the second test case is a transonic flow problem over a channel with a 10%

circular bump at the bottom of the channel. The transonic flow over a

RAE2822 airfoil and supersonic flow over 3 disks are computed to further

demonstrate the capability and robustness of the current adaptive solver.

3.2.1 Supersonic flow over a circular cylinder

Supersonic flow over two-dimensional circular cylinder was studied

extensively by many researchers [43], [44]. Here the supersonic flow with

inflow of Mach 3 is simulated. The computational domain is an 8×4 rectangle

domain on X-Y coordinate system, with a unit cylinder centered at the origin.

Half of the cylinder is model as the flow structure upstream of the cylinder is

more interested. The sketch of the computational domain and the location of

the cylinder are shown in Figure 3.4 (a). The left of the domain is defined as

Mach 3 inlet; the other three boundaries are defined as outlet boundary with

zero flow gradients. Because the flows at the three outlets are in supersonic

flow condition, using zero gradient extrapolation at the outlets is valid. An

initial uniform mesh of 40×80 is defined in the rectangle domain. The half

cylinder wall is expressed by 315 points with a resolution of about 0.01.

The computed pressure profile along the central line is plotted in Figure 3.4

Chapter 3 Ghost-cell Method-based Adaptive Euler Solver

67

(b). The predicted shock becomes shaper and the position of the shock is very

close to the results obtained by Qu [43] using the Lattice Boltzmann model

and Visbal and Gaitonde [44] on a body-fitted grid. The pressure after the

shock predicted is about 11.97 on the nose of the cylinder, and matches well to

their prediction of 12.10. The pressure and density contours are plotted in

Figure 3.5 (a) and (b). The contours indicate that the shock position and the

unit circular cylinder outline are computed clearly and sharply. The

streamlines shown in Figure 3.5 (c) demonstrate that the air flow passes the

circular cylinder very smoothly and with no streamlines penetrating the

cylinder surface. This implies that the no-penetration wall boundary condition

is satisfied accurately.

Figure 3.4 Mach 3 supersonic flow over a circular cylinder

Y
4

-4

-4 -1

(a) Sketch of the Problem (b) Pressure profile along the central line

X

P

-2 -1.8 -1.6 -1.4 -1.2 -1
-2

0

2

4

6

8

10

12

14

Qu K., C6F8-Roe
Current, 1-level adaption
Current, 2-level adaption
Current, 3-level adaption

Flow

X

Chapter 3 Ghost-cell Method-based Adaptive Euler Solver

68

(a) Pressure Contours (b) Density Contours (c) Streamlines

Figure 3.5 Results for Mach 3 supersonic flow over a circular cylinder

3.2.2 Transonic flow over a channel with bump

This problem is the well-known Ni’s steady-state test case: a transonic flow in

a channel with a 10% thick circular bump on the bottom (or known as GAMM

channel). The computational domain is a rectangle of length 3 and height 1.

The inlet is at left with a Mach number 0.675, see Figure 3.6. A shock is

formed downstream the throat near the bottom wall. The initial mesh is

defined as 60×20. Local meshes near the circular bump are pre-adapted by

four levels to ensure that the circular bump wall boundary is represented with

sufficient Cartesian cells.

The computed Mach number and pressure contours by 2-level adaption based

on density gradient in the flow field are presented in Figure 3.7 (a) and (b).

The Mach number distribution on the lower wall of the channel computed is

Chapter 3 Ghost-cell Method-based Adaptive Euler Solver

69

compared with those obtained using unstructured finite volume scheme by

Luo et al. [45] and hybrid grid-less method by Luo et al. [11]. The computed

result obtained via the current method matches well to those results. As shown

in the Figure 3.7 (c) for the Mach number distribution on the lower wall of the

channel, the maximal Mach number matches very well, while the shock

position is slightly further away downstream to the throat compared to other

results.

Figure 3.6 Transonic flow in GAMM channel with a 10% circular bump

(a) Mach number contours (b) Pressure contours

 X

M
a

0 0.5 1 1.5 2 2.5 3
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(c) Mach number on the lower wall of the channel

Figure 3.7 Computed Mach number and pressure in GAMM channel

1 1 1

1

h=0.1

inflow outflow

Reflecting Wall

Reflecting Wall

M=0.675

 Luo et al.
 Current, 2x adaption

Chapter 3 Ghost-cell Method-based Adaptive Euler Solver

70

3.2.3 Transonic flow over a RAE2822 airfoil

Transonic flow over RAE2822 airfoil is simulated under the free stream flow

condition at Mach = 0.729, and the angle of attack (AoA) at 2.31°. The

computational domain is chosen at about 20 times of the chord size away from

the airfoil. The coarse uniform Cartesian mesh at size of 1 5 is used as the

background mesh, and the airfoil geometry is adapted by 6-level refinement or

fine mesh size at 1 320 . The solution is adapted by 4-level refinement or mesh

size at 1/80.

As illustrated in Figure 3.2, the mirror point of the solid point or solid shadow-

cell is needed to compute against the wall boundary for each “solid point” at a

cell center. For solid body with thin or sharp boundary shape such as airfoil’s

trailing edge region, there are two special cases where a solid point is possible

to have two mirror points or a “fluid point” may become a “solid point” near

the boundary. Figure 3.8 (a) shows the case where the solid point (S) has one

mirror point (S1) against wall boundary AC and another mirror point (S1)

against wall boundary BC ; and Figure 3.8 (b) shows that the fluid points (P,

Q) become “solid point” for the wall boundary BC and AC , respectively. For

those special cells and “solid points”, two sets of flow values are computed

and stored on the solid points (S, P, and Q) according to the corresponding

boundary. The flux calculation on the cell interfaces of those cells must use

the corresponding values separately. It is noted that the fluid points (P and Q)

are in the interior fluid domain and their actual flow values are computed by

solving the governing equations.

Chapter 3 Ghost-cell Method-based Adaptive Euler Solver

71

Figure 3.8 Special cases for ghost-cell method implementation

The computed results for the transonic flow over a RAE 2822 airfoil are

presented in Figure 3.9 by pressure contours, pressure coefficient profile on

the airfoil surface, and the initial meshes adapted to the airfoil boundary and

the final meshes when the solver is converged. The computed pressure

coefficient profile (solid line) is compared with the experimental data (solid

dot) and the numerical result obtained on C-type body-fitted grid (dash line)

by Qu [43]. The current result is comparable to the numerical result obtained

by Qu [43] and Tullio et al. [64]. The shock wave position matches exactly.

The shock wave predicted on the upper surface of the airfoil is slightly

different from the experimental data because the flow in the experiment is a

turbulent flow in which the shock wave interacts with the boundary layer.

Therefore, its stiffness and location are different from the numerical

simulation.

(a) A solid point has 2 ghost points (b) A fluid point may become
 a “solid” point boundary

 Solid point at a cell center Ghost point of the solid point

A

B

C S

S1

S2

A

B
C

P

P’

Q

Q’

Chapter 3 Ghost-cell Method-based Adaptive Euler Solver

72

Figure 3.9 Computed results for flow over a RAE2822 airfoil (M=0.729,
AoA=2.31°)

3.2.4 Mach 3 flow over three disks

This example shows that the method can be applied to problems with multiple

immersed solid bodies. The wall boundary surfaces that form the solid bodies

are treated separately, and the fluid shadow-cells and solid shadow-cells can

be identified according to each wall boundary surface. The problem is a 2D

supersonic flow (with 3M∞ =) past three disks. The three disks are centered at

(-1.3, -1.0), (-1.0, 0.8) and (1.3, 0.2), with radii of 0.3, 0.3, and 0.4,

respectively. The computational domain is 8×8 with initial uniform mesh of

50×50, see Figure 3.10. The computed density contours and the final solution

adapted meshes are plotted in Figure 3.11. The predicted shock waves agree

with the numerical result obtained by Sjögreen and Petersson [46]. From the

(a) Pressure contours (b) Pressure coefficient profile

(c) Initial mesh adapted to airfoil (d) Final mesh adapted to solution

Chapter 3 Ghost-cell Method-based Adaptive Euler Solver

73

solution adaptive mesh distribution in Figure 3.11, it is confirmed again that

the current adaptive solver is very efficient in capturing shock waves for

compressible flows. To obtain a fine mesh solution at size of 1 40 , it requires

to solve the problem on 102,400 cells. In comparison, it only requires 36,600

cells approximately if 3-level adaption is used in the current adaptive solver.

The computing time for the adaptive solution is only about 1 30 of that

required for the same resolution uniform mesh. The results of this problem

demonstrate the robustness and efficiency of the current adaptive ghost-cell

solver to handle compressible flow problems with multiple solid bodies.

Figure 3.10 Computational domain for Mach 3 flow over 3 disks

O -4 +4

-4

+4

Mach=3

Chapter 3 Ghost-cell Method-based Adaptive Euler Solver

74

Figure 3.11 Computed density contours and solution adaptive mesh for
Mach 3 flow over 3 disks

3.3 Conclusions

The ghost-cell method is implemented with the current adaptive Euler solver

to simulate compressible flows with irregular wall boundaries in this Chapter.

The implementation of ghost-cell method is relatively simple compared to cut-

cell method and grid-less method. In the ghost-cell method, shadow cells near

the wall boundary are identified in the region near boundary within two mesh

spacings. Thereafter, the shadow cells are further classified as the fluid

shadow-cells and the solid shadow-cells through the ray tracing method from a

known reference fluid point. With the fluid/solid shallow-cells identified, the

wall boundary condition is then enforced by correcting the flow information

on the solid shadow-cells. To perform the correction, the mirror point of the

center of a solid shadow-cell is computed against with the boundary in the first

place; next the flow information at the mirror point is interpolated using the

Chapter 3 Ghost-cell Method-based Adaptive Euler Solver

75

flow data at the relevant fluid shadow-cells; finally the flow information is

reflected back to the solid shadow-cell through the boundary condition

relationship.

The developed adaptive ghost-cell solver is validated by a supersonic flow

over a circular cylinder and a transonic flow over a channel with bump. The

computed results are in good agreement with the numerical results available in

the literature. Moreover, transonic flow over a RAE2822 airfoil and Mach 3

supersonic flow over 3 disks are also simulated. The results demonstrate that

with special treatment for the solid shadow-cells near the thin sharp boundary

surfaces, the method is able to simulate compressible inviscid flows over 2D

airfoil accurately. Furthermore, simulation of compressible flow with multiple

wall boundaries was performed and promising results was obtained.

In summary, through the numerical experiments tested in this chapter, it can

be seen that the ghost-cell method can provide accurate results for various

problems. However, in the implementation of ghost-cell method, there is a

need to identify whether the shadow-cells are in fluid zone or solid zone and to

compute the mirror point against the boundary. Moreover, the boundary

curvature has to be computed in order to enforce the boundary condition.

Because of those requirements, the ghost-cell method is still complicated and

limited to be applied for many other compressible flow problems.

Chapter 4 Flux Correction-Based Immersed Boundary Solver

76

Chapter 4 Flux Correction-Based
Immersed Boundary Solver

In the ghost-cell method implemented in the previous chapter, the wall

boundary condition is enforced by satisfying the no-penetration condition for

wall. The relationship between the pressure gradient and the flow curvature is

governed by the streamline curvature theorem and constant entropy near the

wall interface. The method is demonstrated to be able to produce quite

accurate numerical solutions. In order to satisfy the relationship between the

local pressure gradient and the flow curvature, the wall boundary curvature is

required to be calculated. The solution accuracy will be affected by the

calculated curvature which sometimes can be less accurate. In addition, it is

mandatory to know whether a shadow cell is located in the solid domain or in

the fluid domain during the implementation, and also to find out the

mirror/ghost point against the wall boundary interface.

The requirement of calculating the curvature of the wall boundary and

determining the location of the shadow cells and their mirror position makes

the implementation tedious and less convenient, besides the possible accuracy

impact due to the inaccurate calculation of the wall boundary curvature. The

ideal situation is that the immersed wall boundary condition can be satisfied

without the need of calculation of wall curvature and advance determination of

the location of the shadow cells. To achieve this objective, new approaches

shall be introduced to implement the wall boundary condition.

Chapter 4 Flux Correction-Based Immersed Boundary Solver

77

There are four conservative variables in 2D Euler equation and five original

flow variables. The equation system is closed with the equation of state for air.

To implement the wall boundary condition, four variables have to be updated

according to the role or the effect of the boundary and the last variable can be

simply determined by the equation of state. The wall boundary condition is

treated as reflection wall in most Euler compressible flow solvers. The

commonly adopted method in enforcing the boundary condition is through the

manipulation of velocity field (or the two velocity components for 2D flows),

pressure, density and temperature/energy at the cells opposite the boundary,

which is the same as that used for body-fitted solver and the ghost-cell method

presented in Chapter 3.

As discussed, this approach is not simple and tedious to be implemented in

Cartesian grid solver. It will be simple and efficient if the boundary condition

can be enforced in the similar manner as that in the IBM approaches that have

been successfully implemented and applied for incompressible viscous flows.

In those IBM approaches, the implementation is carried out by correcting the

flow field on the cells in the vicinity of the boundary without the need to know

if they are fallen in fluid domain or solid domain. The target is to satisfy the

no-slip boundary condition either directly or indirectly. The no-slip boundary

condition means that the velocity on the boundary is known, no matter

whether the boundary is stationary or moving. For compressible inviscid flow,

the boundary condition on wall becomes no-penetration which means that no

fluid should flow across the boundary but fluid can flow freely along the

boundary. So the velocity on the boundary is unknown and it changes

Chapter 4 Flux Correction-Based Immersed Boundary Solver

78

according to flow conditions. This is the challenge to adopt and implement the

concept of traditional IBM approaches for incompressible flows in a

compressible inviscid flow solver. Besides the no-penetration condition which

only governs the velocity field, other boundary conditions that govern pressure,

density and temperature for compressible fluid must be satisfied as well. This

contributes more challenges for the implementation.

From the viewpoint of fluid dynamics for compressible inviscid flows, the

behavior of a wall boundary is to prevent fluid from entering the wall

boundary interface, which is known as the no-penetration condition. An ideal

and adiabatic wall boundary also functions as an interface with zero mass flux

and zero energy flux. Therefore, if no-penetration condition and zero fluxes’

condition on the wall boundary can be enforced, the influence of wall

boundary to the fluid domain is fully counted as the velocity, density and

temperature that are related to the three conditions are satisfied. The pressure

of the fluid can be determined by the equation of state.

4.1 Flux correction-based Immersed Boundary Method

In this chapter, a novel flux correction-based immersed boundary method,

named in short form as FC-IBM, is proposed to enforce the wall boundary

conditions on the current Cartesian grid-based adaptive Euler solver. The

velocity field is corrected based on no-penetration condition.

The implicit velocity correction-based immersed boundary method, or IVC-

IBM as named by the authors, was proposed by Shu and his co-workers [22],

Chapter 4 Flux Correction-Based Immersed Boundary Solver

79

[33] to solve the incompressible flow around a cylinder and a swimming fish.

Unlike the conventional IBM where the effect of rigid body or wall boundaries

on the surrounding flow is modeled through a forcing term calculated in

advance and then formulated to correct for the surrounding velocity field, the

authors proposed an innovative implicit velocity correction-based IBM, where

the velocity is corrected via enforcing the physical boundary condition. Their

results demonstrate that the IVC-IBM produces more reasonable results that

can accurately satisfy the physical boundary conditions on the wall boundary

surfaces for the incompressible viscos flows.

Inspiring by their work on modeling no-slip wall boundary for the

incompressible viscous flows, the IVC-IBM is adopted and modified in order

to model the no-penetration wall boundary condition for compressible inviscid

flows. Although the velocity on the no-penetration wall is not known and

varies according to the flow conditions, the no-penetration condition implies

that the normal velocity on the boundary must be zero, or 0nV = . However, as

the normal velocity computed from the Cartesian cells may not be zero, hence

the goal for velocity correction is to enforce this condition by correcting the

velocity at the nearby Cartesian cells. Similarly, the zero mass flux and zero

energy flux will be enforced on the boundary.

4.1.1 Velocity correction

For no-penetration wall boundary, the velocity boundary condition on the wall

point-B as illustrated in Figure 4.1 is that the normal velocity should be zero,

i.e. 0nV = . So the purpose of the velocity correction is to satisfy this condition.

Chapter 4 Flux Correction-Based Immersed Boundary Solver

80

To achieve this goal, the normal velocity on the boundary needs to be

computed from the nearby cells. For convenience, two-dimensional situation

is considered here for illustration. Let ,x yn n denote the normal direction

on the wall point-B, and then ,y xn n− will be the tangent direction, see

Figure 4.1.

Figure 4.1 Illustration of velocity correction using IBM

To start the velocity correction, the shadow cells around the wall point-B

within double mesh size in both X and Y directions are identified. The shadow

cells here indicate the cells that affect and determine the flow information on

wall boundary. The continuous delta function jiD , which was proposed by

Peskin [21] is used to interpolate the velocity on the boundary from the nearby

shadow cells. The delta function jiD , is given by

() ()[]






>

≤+
=

.2,0

,2,2cos1
4
1

r

rr
r

π
δ (4.1)

() () (), .i j i B i B i BD x X x x h y y hδ δ− = − × −       (4.2)

Chapter 4 Flux Correction-Based Immersed Boundary Solver

81

Using all the shadow cells and the delta function jiD , , the velocity at wall

point-B is estimated as







⋅=

⋅=

∑
∑

jiiB

jiiB

Dvv

Duu

,

, , ∈i {all cells marked in shadow} (4.3)

Then (VNB, VTB) can be obtained by transforming the velocity components

from X-Y coordinates to n-t coordinates on the wall point-B.







−=

+=

.

,

BxByTB

ByBxNB

vnunV
vnunV

 (4.4)

The normal velocity VNB obtained from the above equation may not be zero.

To enforce the no-penetration condition, a negative normal velocity correction

(-VNB) is introduced to the wall point-B and the tangent velocity just maintains.

.
0

NBB
NBNB

TB VV
VV

V
−=→





−=
=

δ
δ
δ

 (4.5)

This correction of velocity component needs to be distributed back into all the

shadow cells hence to make the local velocity field satisfy the no-penetration

condition. Let NBB VV −=δ denote the velocity correction on point-B, and then

the following velocity correction shall be added to all the shadow cells nearby

point-B:

.,∑= jiB DVu δδ (4.6)

To perform the above equation, the velocity correction BVδ at point-B is first

transferred back to X-Y system as

Chapter 4 Flux Correction-Based Immersed Boundary Solver

82

()
()





+⋅−=⋅−=

+⋅−=⋅−=
→







⋅−⋅=

⋅+⋅=

.0

0

ByBxyNByB

ByBxxNBxB

xByB

yBxB

vnunnVnv
vnunnVnu

nVnv
nVnu

δ

δ

δδ

δδ
 (4.7)

and then re-distributed to the shadow cells as velocity components in X and Y

directions, which are used in the solver.

, ,

, ,

,

.
i B j i j

i B j i j

u u D
v v D

δ δ

δ δ

=
 =

 (4.8)

Because a shadow cell can be shadowed by a few wall points, the overall

correction at a shadow cell from all the nearby wall points will be:

()

()

, ,

, ,

J

i i j B i jj
j

J

i i j B i jj
j

u u u D

v v v D

δ δ δ

δ δ δ

 = = ⋅


 = = ⋅


∑ ∑

∑ ∑
 (4.9)

Finally, the corrected velocity ()* *,i iu v at the shadow cells will be updated as

below:

*

*

,

.
i i i

i i i

u u u
v v v

δ

δ

 = +


= +
 (4.10)

Because the velocity at a shadow cell may be corrected by multiple wall points,

the corrected velocity field may not fully satisfy the no-penetration boundary

condition. Instead of using the implicit velocity correction method as proposed

by Shu et al. [22] for incompressible flows, an explicit method is used via

iterative approach for the velocity correction. The whole procedure for the

velocity correction consists of the following steps:

1) For wall point-B, or index-j, calculate ()BB vu , via equation (4.3)
from the shadow cells to point-B.

Chapter 4 Flux Correction-Based Immersed Boundary Solver

83

2) Calculate ()BB vu δδ , via equation (4.7) .

3) Calculate ()ii vu δδ , via equation (4.8) for all the shadow cells of
the wall point-B.

4) Repeat the steps 1), 2) and 3) for all wall points j=1, 2, … , J.

5) Calculate ()ii vu δδ , via equation (4.9) for all the shadow cells
considering the velocity correction contribution from the nearby
wall boundary points.

6) Calculate the corrected velocity ()* *,i iu v via equation (4.10) for the

shadow cells, and the set the corrected velocity ()* *,i iu v as the new
velocity on the shadow cells.

7) Repeat steps 1) to 6), until the no-penetration condition satisfied, or
0NBV = .

Experiments show that no-penetration boundary condition can be well

satisfied by running the above iterative velocity correction process in about 50

to 100 iterations when the average normal velocity drops below the magnitude

of 10-6, or 0.0001% of the mainstream flow velocity. The iterative velocity

correction method is validated by plotting the average normal velocity

magnitude on the wall boundary versus the number of iteration, as shown in

Figure 4.2 (a). The average normal velocity on the wall boundary is monitored

and used to determine the satisfaction of the no-penetration condition in the

current work. The Mach 3 flow over a circular cylinder problem is used for

this validation. A uniform velocity field at U=3 is defined as initial condition

in the domain. Figure 4.2 (b) shows the streamlines after the velocity

correction for the entire cylinder boundary, which shows no flow penetration.

Chapter 4 Flux Correction-Based Immersed Boundary Solver

84

No. of Iteration

|V
n

|

0 20 40 60 80 100
10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 (a) Normal velocity correction log (b) Streamlines over cylinder

Figure 4.2 Demonstration of explicit velocity correction method

4.1.2 Flux correction

The focus now turns to find an alternate method for the correction of pressure,

density and energy on the shadow cells near the wall boundary. Besides the

streamline curvature theorem and constant entropy associated to the wall

boundary in the development of Euler solver, the wall boundary is also treated

by satisfying zero flux for the inviscid flow.

Without the immersed wall(s) in the domain, the following Euler equations are

fully satisfied if the boundary conditions are properly applied.

0,U F G
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (4.11)

() ()

2

2, , .

u v
uvu pu

U F G
uv v pv

E u E p v E p

ρ ρρ
ρρρ

ρ ρρ

    
     +    = = =     +
    

+ +        

 (4.12)

When the immersed wall(s) are introduced in the domain, the flow field

Chapter 4 Flux Correction-Based Immersed Boundary Solver

85

nearby the boundary is changed due to the effect of wall boundary conditions.

Let (δU, F’, G’) denote the changes of the flow field for the conservative state

and the flux terms due to the immersed wall(s), (U, F, G) and (U*, F*, G*)

denote the original conservative terms and the combined conservative terms,

respectively. As the combined conservative terms also satisfy the governing

equation (4.11) , the following equation can be derived

* * *, ', ' ,U U U F F F G G Gδ= + = + = +

(4.13)

() () ()* * * ' '
0 0.

U U F F G GU F G
t x y t x y

δ∂ + ∂ + ∂ +∂ ∂ ∂
+ + = → + + =

∂ ∂ ∂ ∂ ∂ ∂
(4.14)

By shifting the two conservative terms (F, G) to the right side of the equation,

it becomes

() ' ' .
U U F G F G

t x y x y
δ∂ +  ∂ ∂ ∂ ∂

+ + = − + ∂ ∂ ∂ ∂ ∂ 
(4.15)

Comparing equation (4.15) to equation (4.11) , the term on the right side of the

equation is purely contributed from the immersed wall(s) and is named to be

wFδ


, which will cause the change of state represented by Uδ .

() ' ' .wU U F G F G F
t t x y x y
δ

δ
∂  ∂ ∂ ∂ ∂ ∂

+ + + = − + = −∇⋅ ∂ ∂ ∂ ∂ ∂ ∂ 


 (4.16)

Considering equation (4.11) , the above equation will be simplified to

() ' ' .wU F GF
t x y
δ

δ
∂  ∂ ∂

= −∇ ⋅ = − + ∂ ∂ ∂ 


 (4.17)

The Uδ in the above equation can be solved via finite volume method in a cell.

Chapter 4 Flux Correction-Based Immersed Boundary Solver

86

,w w

L L

U dtA F ds U F ds
dt A
δ δ δ δ= − → = −∫ ∫

 
 (4.18)

where A and L is the area of the cell and immersed boundary in the cell,

respectively.

To a shadow cell near the wall boundary, the contribution of wFδ


 cannot be

calculated directly. On the wall boundary, w
nFδ


 can be calculated using the

normal velocity and flow variables calculated through the nearby Cartesian

shadow cells. Then the w
nFδ


 on the wall boundary can be distributed back

onto the nearby shadow cells, or Cartesian cells, where the governing

equations are solved.

Following the finite volume method in solving the Euler equation, w
nFδ


 on

wall boundary are assessed as

()

.

w w
n

w w w w
nw

n w w w w
n

w w w
n

v
u v p

F
v v p

E p v

ρ

ρ
δ

ρ

 
 

+ 
=  + 
 + 








 (4.19)

In the equation above, the superscript (w) denotes the values of the variables

on wall boundary, and the subscript (n) denotes the values for velocity

projected on the normal direction. As the velocity components are corrected

via the enforcement of no-penetration condition, the contribution of wFδ


 to

the two momentum equations can be ignored. So the the contribution of wFδ


for the mass conservation equation and energy conservation equation on the

Chapter 4 Flux Correction-Based Immersed Boundary Solver

87

wall boundary will be taken into account. Hence, w
nFδ


 for the mass

conservation equation and energy conservation equation on the wall boundary

will be calculated only

()
() ()
1

.
4

w ww
nn

w w ww
nn

vF

E p vF

ρδ

δ

  
=   

+     

 

  (4.20)

The values of flow variables on the wall boundary are calculated using the

delta function as given in subsection 4.1.1 before the velocity correction is

performed.

The flux contribution w
nFδ


 calculated in equation (4.20) is on the wall

boundary, or on the Lagrange nodes. Using the delta function proposed by

Peskin, the flux contribution w
nFδ


 introduced by the wall boundary to the

conservative variables U(1, 4) can be distributed onto the nearby Cartesian

Eulerian shadow cells via

(),2 .w w
i i j n jj

dtU D F dS
dh

δ δ= ⋅∑


 (4.21)

In the equation, it is assumed that the mesh spacing in X and Y direction is

identical, hence 2A dh= ; the ,i jD is the delta function interpolation between

the Cartesian cell (i) and the nearby Lagrange nodes (…, j-1, j, j+1, …); and

the w
jdS is the average arc length between two successive wall nodes

(j)(j+1), as shown in Figure 4.3.

Once the conservative variables U(1, 4) are updated, the density and energy

Chapter 4 Flux Correction-Based Immersed Boundary Solver

88

values are updated as well. Finally the pressure can be updated by the equation

of state.

Figure 4.3 Calculation of normal flux on the wall boundary

Eventually, the conservative variables U(1, 4) are updated by

()
()

*
1

, .
4i i i

U
U U U with

EU
ρ

δ
   

= + =   
   

 (4.22)

The flow chart plotted in Figure 4.4 summarizes the whole approach in

implementing no-penetration condition and zero normal flux condition on the

wall boundary. In all the steps of implementing the no-penetration condition

and the zero normal flux condition, the normal direction of the wall boundary

and the delta function interpolation between the wall node and the surrounding

shadow cells are needed only. There is no need to compute the curvature of

the boundary and this avoids the process to identify whether the shadow cells

are in fluid domain or solid domain.

Chapter 4 Flux Correction-Based Immersed Boundary Solver

89

Figure 4.4 Implementation of no-penetration condition and zero normal
flux condition for wall boundary

1, Solve Euler Equation and get (*ρ , *u , *v , *E , *p).

START of Wall Boundary
Condition Implementation

2, Calculate (ρ, u, v, P, E)w on wall nodes. i.e. ()*
,

w
i j iju D u=∑

3, Calculate w
tv and w

nv by: y
w
t

w w
xu n v nv −= , x

w
n

w w
yu n v nv +=

4, To enforce 0w
nv =  w w

n nv vδ = −  () (), ,w w w w
n nx ynv v v nuδ δ δ δ= .

Re-distribute the velocity correction back to nearby Euler shadow
cells via delta-function distribution:

() () (){ }, ,, ,w w
i i i j i ju v D u D vδ δ δ δ= ∑ ∑  () ()* *, ,i i i iu v u u v vδ δ+ +=

w
nv = 0

No

Yes

5, To enforce 0w
nFδ =


 on wall: () (){ }1,4 ,w w w w w w
n n nF v E p vδ ρ= +
   , and

then re-distribute w
nFδ


 back to nearby Euler cells:

() ()2
,

w w
i j n jjiF dt dh D F dSδδ = ∑

  () ()*1, 4 1,4ii iU U Fδ= +


  (), Eρ

The pressure is updated by: () ()2 211 2p E u vγ ρ = − − + 

6, Re-form the conserved variables U(1, 2, 3, 4) using the updated
(), , , ,u v E pρ for all the shadow cells.

7, Continue the solution evolution in temporal domain.

END of Wall Boundary
Condition Implementation

Chapter 4 Flux Correction-Based Immersed Boundary Solver

90

4.2 Validation analysis

The Mach 3 supersonic flow over a 2D circular cylinder is used to validate the

proposed method. The computational domain and boundary condition are

defined the same as those described in subsection 3.2.1. To get better

understanding of the new approach in the implementation of immersed wall

boundary condition, the solver is run on three different mesh sizes as shown in

Table 4.1. The results are also used for the analysis of grid independent

solution. Both first order flux scheme and second-order flux scheme are tested

and compared as well.

dh Mesh Size No. of Nodes in
Diameter

1/10 40 × 80 20

1/20 80 × 160 40

1/40 160 × 320 80

Table 4.1 Mesh configuration for grid independent solution study

Using the first order flux scheme, the four pressure profiles on the central line

before the cylinder are plotted for the comparison, as shown in Figure 4.5. The

pressure contours, Mach number contours and streamlines are plotted in

Figure 4.6 based on the finest mesh of dh=1/40. The distribution of pressure

and Mach number agrees with the solution obtained via the ghost-cell method

presented in Chapter 3 and the results published by Visbal and Gaitonde [44]

using sixth-order Roe scheme on BFC mesh. The streamlines plotted in Figure

4.6 (b) demonstrate the fluid flows over the cylinder wall smoothly and

Chapter 4 Flux Correction-Based Immersed Boundary Solver

91

closely, which indicates the no-penetration condition of the immersed cylinder

wall boundary being well satisfied. The pressure profile plotted in Figure 4.5

shows that with the finer mesh, the shock wave can be captured much sharply

and closely to the published numerical solution that was obtained by C6F8-

Roe method [44], and the pressure profile behind the shock wave matches

better to the numerical solution with finer mesh. The position of the shock

wave converges at around X=-1.67 using the current solver with the first-order

flux scheme. This is very close to that reported in the numerical solution, X=-

1.7. The maximum pressure predicted after the shock wave and before the

cylinder wall is 11.88, about 2% lower than the exact solution (12.15). This

could be due to the dissipation losses introduced by the numerical viscosity in

the solver implemented with the first-order flux scheme.

It is observed that the pressure value in the cells just before the cylinder wall

at X=-1 drops, as shown in the pressure profile in Figure 4.5. This is different

to the solution trend obtained using the traditional body-fitted grid [43], [44]

or the ghost-cell method as presented in Chapter 3. In those solutions, the

pressure reaches the maximum value on the cylinder wall at X=-1. The

difference indicates the influence of the pressure distribution by the

implementation of the immersed wall boundary condition, though the no-

penetration condition is well satisfied. An acceptable reason for the pressure

loss near the cylinder wall is due to the damping effect introduced by the

implementation of IBM wall boundary. This is the characteristic of the IBM

and cannot be avoided. On the other hand, the comparison of the pressure

profile on different mesh sizes also implies that the impact of the pressure loss

Chapter 4 Flux Correction-Based Immersed Boundary Solver

92

becomes weaker with finer mesh.

X

P

-2 -1.8 -1.6 -1.4 -1.2 -1
0

2

4

6

8

10

12

14

Current, dh = 1/10
Current, dh = 1/20
Current, dh = 1/40
Roe Scheme (Visbal & Gaitonde)

Figure 4.5 Comparison of pressure profile with Roe scheme (1st order
scheme)

 (a) Pressure Contours (b) Mach number contours & Streamlines

Figure 4.6 Pressure contours (1st order scheme)

The same problem is also solved by the second-order flux scheme to improve

the accuracy of the solution and also to study the accuracy difference among

Chapter 4 Flux Correction-Based Immersed Boundary Solver

93

different flux limiter functions. All the five flux limiter functions are tested.

The pressure profile obtained from using the limiter functions of Minmod,

Osher and Sweby is more accurate and close to the exact solution, as shown in

Figure 4.7. The shock wave captured by the second-order flux scheme is

sharper, and the maximum pressure behind the shock wave is closer to the

exact solution. However, pressure oscillation occurs just at the shock wave

position when the limiter functions of Van Leer and Van Albada are used.

Similar phenomenon of pressure oscillation is observed when higher β value

(i.e., β=1.9) is defined for the limiter functions of Osher and Sweby. When

β=1.1, the pressure oscillation at the shock wave position is not found. This

illustrates that flux limiter functions and the value of the damping factor must

be chosen and tested carefully when the second or higher-order flux schemes

are used to compute the solution.

The new approach for IBM implementation is well validated by the Mach 3

supersonic flow over a 2D cylindrical circle. The shock wave and pressure

profile obtained through the new approach agree well with the actual solution.

However, it is noted that velocity and pressure near the wall boundary are

affected slightly due to the implementation of no-penetration wall boundary

condition. This is a unique feature that is introduced by the implementation of

the immersed boundary method, as the velocities at the Eulerian cell centers at

the both sides of the wall boundary are corrected in order to satisfy the no-

penetration wall boundary condition. In the conventional ghost-cell method or

symmetrical wall boundary method, the velocities at the Eulerian cell centers

that are inside the solid domain will be corrected. Figure 4.8 illustrates the

Chapter 4 Flux Correction-Based Immersed Boundary Solver

94

difference in the normal velocity correction by IBM and ghost-cell method.

Though both methods can enforce normal velocity 0nV = , the velocity fields

near the wall boundary are different. The velocity distribution is relatively

smooth after the correction by the current IBM, and a sudden velocity change

usually exists after the correction by ghost-cell method or symmetrical method.

The sharp velocity change indicates that greater deceleration is produced to

the fluid, and the smooth velocity distribution indicates that lower deceleration

is produced to the fluid. At this point of view, the implementation of the IBM

weakens the “reflection” condition near the wall boundary. It is known that

pressure will increases in the situation of flow deceleration. This may explain

why the flow reaches the maximum pressure point at the cylinder boundary in

the implementation of ghost-cell method and symmetrical wall boundary

method, as the sharp deceleration always exists on the boundary. In the current

implementation, the velocity near the boundary is smoothed and no

deceleration exists, hence the pressure near the wall boundary drops.

X

P

-2 -1.8 -1.6 -1.4 -1.2 -10

2

4

6

8

10

12

14

2nd scheme, dh = 1/20
2nd scheme, dh = 1/40
1st scheme, dh = 1/20
1st scheme, dh = 1/40
Roe Scheme (Visbal & Gaitonde)

X

P

-2 -1.8 -1.6 -1.4 -1.2 -10

2

4

6

8

10

12

14

2nd scheme, dh = 1/20
2nd scheme, dh = 1/40
1st scheme, dh = 1/20
1st scheme, dh = 1/40
Roe Scheme (Visbal & Gaitonde)

(a) Minmod Limiter (b) Van Leer Limiter

Figure 4.7 Comparison of pressure profile (2nd order scheme)

Chapter 4 Flux Correction-Based Immersed Boundary Solver

95

 (a) Normal velocity before correction (b) Normal velocity after correction

Figure 4.8 Normal velocity correction for immersed wall boundary

4.3 Numerical test cases and results

The new approach implemented is validated by the Mach 3 supersonic flow

over a 2D circular cylinder. Compared to the conventional implementation by

ghost cell method or symmetrical method, the new approach is much easier

and simple. In this section, the method is used to compute other test cases and

the results are discussed. All the test cases presented in this section are two-

dimensional problems.

4.3.1 Supersonic flow over a wedge

To further test the new approach, a supersonic flow over a wedge is

considered. The incoming supersonic flow is at M∞=2. The original

configuration of the problem is a 2D supersonic flow in a symmetric

convergent channel, where both the top and bottom walls are bent inward to

form a 15º convergent section, as shown in Figure 4.9 (a). As the geometry of

 nV

Wall

 X

 0

 nV

 X

 0

Wall

 By FC-IBM
By Ghost-cell method

Chapter 4 Flux Correction-Based Immersed Boundary Solver

96

the physical domain and boundary condition are symmetrical, only the bottom

half of the physical domain is considered as the computational domain. The

central line of the channel becomes the top boundary of the computational

domain, and the symmetrical boundary condition is defined. A rectangle

domain in size of L×H=3×1 represents the computational domain; the wedge

is modeled as the immersed wall boundary as indicated in Figure 4.9 (b). The

left boundary of the domain is defined as supersonic flow inlet with M∞=2; the

bottom boundary is defined as wall; and the right boundary is defined as outlet.

The computational domain is meshed as coarse uniform mesh of 120×40, or

dh=0.025. The height of the wedge is 0.134. So there are only 5 coarse cells at

the height of the wedge. To resolve the wedge wall shape accurately and

improve the accuracy of the influence to the mainstream flow by the immersed

wedge wall, fine meshes are adapted along the wedge wall at the beginning of

the solution. Figure 4.10 shows the final solution-adapted mesh distribution

for (a) coarse mesh, (b) 1-level adaption mesh and (c) 2-level adaption mesh.

The mesh distribution clearly demonstrates that fine meshes are adapted to the

shock wave position, where high flow gradient exists. The final number of

mesh cells for three cases is 6573, 10974 and 26850, respectively. The

corresponding contours of Mach number are plotted in Figure 4.11 for the

three different meshes. From the contours of Mach number, it is observed that

the shock wave is captured shaper and shaper from coarse mesh to one level

adaption and further to 2-level adaption.

Chapter 4 Flux Correction-Based Immersed Boundary Solver

97

(a) Original configuration of the convergent channel

(b) Computational domain and boundary condition for the wedge and channel

Figure 4.9 Configuration and boundary condition for supersonic flow over
a wedge

The Mach number after the wedge shock (location B as indicated in Figure

4.12) and the angle of the wedge shock (angle β as indicated in Figure 4.12)

are often used for accuracy assessment to this case. The analytical Mach

number after the wedge shock at location B is 1.44 ([47], [48]) and the

prediction by the current method is 1.497, 1.495 and 1.472 for uniform coarse

mesh, 1-level adaption and 2-level adaption solution, respectively. The

theoretical value of the angle β of the wedge shock emitting from the front

wedge point is 45.38º. The angel β of the wedge shock predicted by the

current solver is 45.09º, 45.14º, and 45.82º on three different mesh sizes. The

M=2.0

Symmetric Boundary

Outlet

Wall

Immersed Wall Boundary

15°

0.5 0.5 2.0

1.0
Outlet

Symmetric Boundary

M=2.0

Chapter 4 Flux Correction-Based Immersed Boundary Solver

98

results are in good agreement with the theoretical analysis, which shows the

capability of the current solver with new approach of IBM implementation in

solving supersonic flow over a wedge.

With the solution adaption capability in the current solver, the computing time

for obtaining the 1-level adaption solution is 567 seconds, only 125 seconds

more than that needed for the coarse mesh solution. The computing time for

the 2-level adaption solution is 2517 seconds, which is much less than 6140

seconds needed for the same uniform finer meshes.

Figure 4.10 Solution adaptive mesh for supersonic flow over a wedge

(a) adapt to wedge wall by 1-level only, (b) adapt to wedge wall and
solution by 1-level, (c) adapt to wedge wall and solution by 2-level.

(a)

(b)

(c)

Chapter 4 Flux Correction-Based Immersed Boundary Solver

99

Figure 4.11 Contours of Mach number for supersonic flow over a wedge

Figure 4.12 Wedge shock and solution parameters for supersonic flow over
a wedge

(a) adapt to wedge wall by 1-level only, (b) adapt to wedge wall and
solution by 1-level, (c) adapt to wedge wall and solution by 2-level.

(a)

(b)

(c)

β Wedge shock

A
B

Chapter 4 Flux Correction-Based Immersed Boundary Solver

100

4.3.2 Supersonic flow over a double-ellipse

In this subsection, the supersonic flow over a double-ellipse is simulated. The

immersed wall boundary is represented by two elliptical segments in this

problem. They are defined by:

() ()
() ()

2 2

2 2

0 : 2.4 0.6 1,
0

0 : 1.4 1.0 1,

0 : 1.0,
0 0.6

0 : 0.6.

y x y
x

y x y

y y
x

y y

  ≤ + = ≤ 
 ≥ + =
 ≤ =

≤ ≤  ≥ = −

(4.23)

The geometry of the double-ellipse is similar to the aircraft nose, as shown in

Figure 4.13. The incoming supersonic flow of M=2.0 passes through the

double-ellipse at the angle of attack 20º. The computational domain is set as a

rectangle 6×8, with the double-ellipse wall immersed at the right zone of the

domain. The left and bottom boundaries are defined as supersonic inlet, and

the right and top boundaries are defined as outlet.

As the incoming flow is supersonic at Mach number 2.0, a bow shock will be

generated before double-ellipse wall. Due to asymmetrical outline of the

double-ellipse wall boundary and the incoming flow at an angle of attack 20º,

the shock generated at the bottom and top part of the double-ellipse wall will

be different. Because of the characteristic of the supersonic flow, another

shock will be emitted from the intersection corner of the two elliptic segments.

The solution is obtained on coarse uniform mesh of 60×80, and further refined

by 1-level and 2-level solution adaption with density gradient as the

refinement indicator. Figure 4.14 shows the mesh distribution for (a) coarse

Chapter 4 Flux Correction-Based Immersed Boundary Solver

101

mesh, (b) 1-level adaption mesh and (c) 2-level adaption mesh. The

corresponding pressure contours for different mesh sizes are plotted in Figure

4.15. The figure clearly shows that sharper shocks can be captured with the

finer meshes enabled by the solution adaption. By choosing the solution

adaption variables and regions to adapt carefully, finer meshes will be

generated in the zones near the shocks and hence to improve the accuracy in

resolving the sharp changes before and after the shocks. The total number of

mesh cells for the converged solution is 8376 and 22485 for 1-level adaption

and 2-level adaption, respectively, or 1.7x and 4.7x more than the coarse

uniform mesh. The computing time for the 1-level adaption and 2-level

adaption is about 1.6x and 6.3x more than it for the solution on coarse uniform

mesh. Longer computing time demanded for the finer mesh with 2-level

adaption is partially due to more mesh cells adapted in the domain, and also

partially due to smaller time step which has to be used on finer meshes for

temporal evolution of the solution.

Figure 4.13 Configuration for supersonic flow over a double-ellipse

 X

 Y

M∞
 =2.0

AoA=20°

Immersed Wall Boundary

Outlet

Outlet

Outlet

M∞
 =2.0, AoA=20°

 Ellipse 1: () ()2 22.4 0.6 1x y+ =

Ellipse 2: () ()2 21.4 1.0 1x y+ =

Chapter 4 Flux Correction-Based Immersed Boundary Solver

102

(a) Uniform mesh of 60×80, (b) 1-level adaption, (c) 2-level adaption

Figure 4.14 Double-ellipse case: solution adaptive mesh.

(a) Uniform mesh of 60×80, (b) 1-level adaption, (c) 2-level adaption

Figure 4.15 Double-ellipse case: pressure contours

From the contours of pressure plotted in Figure 4.15, it is observed that the

bow shock before the double-ellipse wall and the wedge shock emitted from

the corner of the two ellipse walls are captured and they maintain at the

location consistently. As the current solver is based on finite volume method,

smooth contours and nearly perfect shock profile are obtained with fine mesh.

This agrees well with the finite volume solution obtained by Arminjon et al.

[49]. The pressure coefficient pC on the double-ellipse wall boundary is

plotted in Figure 4.16. The pC profiles obtained on three different meshes

(a) (b) (c)

(a) (b) (c)

Chapter 4 Flux Correction-Based Immersed Boundary Solver

103

match well with the results obtained by Arminjon et al. based on body-fitted

mesh using finite volume method [49]. With finer mesh enabled by solution

adaption, the pC profile near the corner region of the two elliptical walls can

be predicted more accurately.

The study of the supersonic flow past a double-ellipse demonstrates that the

new approach can be used to simulate the supersonic flow over such kind of

bluff body conveniently. Using the solution adaption function in the current

solver, both the resolution of the wall boundary and the accuracy of the

solution can be improved significantly and efficiently.

Figure 4.16 Double-ellipse case: pressure coefficient profile

4.3.3 High speed flow over a NACA0012 airfoil

Numerical simulation of high speed flow over airfoil is extremely interested

by many researchers and engineers. High flow gradients, shocks and thin

geometry interface are common problems associated with aerodynamics of

Chapter 4 Flux Correction-Based Immersed Boundary Solver

104

airfoil and require a great attention. Traditionally, either O-type or C-type of

grid is generated around the airfoil geometry such that the grids can conform

to the airfoil geometry nicely. This is especially important for the turbulent

simulation and flow the prediction of friction force.

Due to the presence of thin geometry interface near the trailing edge of airfoil,

special consideration was introduced to enforce the wall boundary condition at

the corner near the trailing edge. Usually, additional cells or virtual cells are

introduced for the upper edge of the airfoil and the bottom edge of the airfoil

separately, so the wall boundary condition for the upper and bottom edges can

be satisfied fully without interface. Such special local treatment can be found

in many literatures ([9], [18]) and was also illustrated in Chapter 3. The

advantage of the special local treatment is that the wall boundary condition on

the edges near the sharp corner can be fully satisfied; however it is tedious and

great attention must be taken to ensure that all the actual cells and

additional/virtual cells are correctly used in the solver and the boundary

condition implementation.

In this section, the high speed flows over an airfoil are simulated to further

validate and study the new approach in IBM implementation. The airfoil

profile is NACA0012. Flow conditions for subsonic, transonic and supersonic

cases will be considered. The incoming free-stream Mach number for subsonic

flow is 0.7, transonic flow is 0.8 and supersonic flow is 1.2. The angle of

attack is 0º for all the three flow conditions. Transonic flows Mach number of

0.7, with the angle of attack at 1.49º and 4º are solved for further analyses.

Chapter 4 Flux Correction-Based Immersed Boundary Solver

105

The solutions for the flows with the angle of attack at 0º, incoming free-stream

Mach number at 0.7, 0.8 and 1.2 are plotted in Figure 4.17 in pressure

contours and pressure coefficient profiles on the airfoil surface. The pressure

coefficients are compared with experimental data.

For the subsonic case with flow condition as Mach=0.7 and AoA=0.0º, the

flow around the airfoil are in subsonic range and the pressure changes along

the airfoil surface are gently as shown in Figure 4.17 (a). The predicted

pressure coefficient on the airfoil surface is in good agreement with the

experimental data quoted by Lee et al. [50] and Yoshihara and Sacher [51].

For the flow condition with the free-stream Mach number increased to 0.8 and

AoA at 0.0º, the supersonic flow and a strong shock are generated near the

mid zone of the airfoil chord, as indicated in Figure 4.17 (b). The pressure

coefficient, the strength and the location of the shock wave position match

accurately with the experimental data and numerical results obtained by Lee et

al. [50]. When the incoming free-stream is at supersonic condition with Mach

number at 1.2, as indicated in Figure 4.17 (c) a strong bow shock wave is

generated in front of the airfoil head and a pair of oblique shock waves are

generated at the trailing edge of the airfoil. Compared to the numerical results

obtained by Lee et al. [50], the location of the bow shock is predicted

accurately but the oblique shock waves are slightly located before the trailing

edge. The pressure coefficient distribution on the airfoil surface also indicates

that the oblique shock occurs at about 90% of the chord length. This also

causes the lower pressure coefficient near the trailing edge as compared to the

experimental data. However, the pressure coefficient before the trailing edge

Chapter 4 Flux Correction-Based Immersed Boundary Solver

106

still matches with the experimental data.

 x/c

-C
p

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-1.5

-1

-0.5

0

0.5

1

Exp
Lee et al.
Current

 x/c

-C
p

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-1.5

-1

-0.5

0

0.5

1

1.5

Exp
Lee et al.
Current

 x/c

-C
p

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-1.5

-1

-0.5

0

0.5

1

Exp
Lee et al.
Current

Figure 4.17 Pressure contours and coefficient profile for NACA0012 airfoil
at AoA=0.0º

The pressure coefficients are predicted accurately for flow over the

NACA0012 airfoil under the conditions of Mach number 0.7 and 0.8,

AoA=0.0º. This demonstrates that the new approach of FC-IBM

implementation is able to simulate the subsonic flow and transonic flow over

the airfoil accurately. The inconsistency of the oblique shock waves predicted

(a) M=0.7, AoA=0º (a) M=0.7, AoA=0º

(b) M=0.8, AoA=0º (b) M=0.8, AoA=0º

(c) M=1.2, AoA=0º (c) M=1.2, AoA=0º

Chapter 4 Flux Correction-Based Immersed Boundary Solver

107

in supersonic flow case implies that the conventional implementation of IBM,

or the present FC-IBM, which is widely applied for incompressible flows, has

some influence on the enforcement of the boundary condition near the trailing

edge of the airfoil. From this point of view, special treatment for upper surface

and lower surface is necessary when the local flow speed is supersonic.

In the high speed flows over the airfoil, the developed solution adaptive

feature in the current solver demonstrates very good performance in

shortening the computing time. The computational domain for airfoil dynamic

analyses is usually chosen as 15x or 20x of the airfoil chord length to ensure

that the pressure far-field boundary condition can be used accurately. In such a

relatively big computational domain, local mesh refinement or mesh cluster

are used to refine the meshes around the airfoil so that the airfoil geometry can

be represented in acceptable resolution. Usually such fine meshes are also

extended to the far-field boundaries. Hence the number of cells in the

computational domain is usually large and leads to longer computing time.

However, the flow changes are mainly occurred not far away from the airfoil.

Using the solution adaptive feature, the finer meshes can be adapted to the

airfoil surface first to resolve the airfoil geometry in acceptable resolution at

the beginning of the simulation. While the solution evolution is carried out,

finer meshes are adapted to the regions bearing high flow gradients, for

example high density gradient for the airfoil dynamics analyses. Figure 4.18

shows the solution adaptive mesh distribution for the analysis: (a) the initial

mesh distribution with finer meshes adapted around the airfoil; (b) the final

Chapter 4 Flux Correction-Based Immersed Boundary Solver

108

mesh distribution for flow condition with Mach=0.8 and AoA=0.0º, where

finer meshes are well adapted to the regions near the airfoil nose and the

location of the shock waves. The computing time is cut down significantly in

obtaining a more accurate solution based on finer mesh sizes.

Figure 4.18 Demonstration of solution adaptive mesh for high speed flow
over NACA0012 airfoil

The solution for subsonic flow under flow condition with the incoming free-

stream Mach number of 0.7 and the angle of attack at 1.49º is plotted in Figure

4.19. The pressure contours in Figure 4.19 (a) show that the predicted flow

structure is similar to that obtained by Lee et al. [50]. The pressure coefficient

on the airfoil in Figure 4.19 (b) shows that the predicted pressure coefficient

on the bottom airfoil surface matches with the experimental data but the

pressure coefficient predicted on the upper airfoil surface is obviously lower.

The difference of the pressure coefficient obtained on the airfoil surface for

AoA=1.49º can be understood from the flow structure inside and around the

airfoil.

As the NACA0012 airfoil is a symmetrical airfoil, the flow structure should be

symmetrical when the angle of attack is at 0.0º. Under this condition, the

(a) Initial mesh: adapted to airfoil (b) Final mesh: adapted to the solution

Chapter 4 Flux Correction-Based Immersed Boundary Solver

109

splitting point of the flow occurs at the leading edge of the airfoil and the

merging point of the flow falls at the trailing edge of the airfoil. This is clearly

observed from the plot of streamlines inside the airfoil as shown in Figure 4.20

(a), where a pair of closed recirculation flow structures is formed

symmetrically inside the airfoil. When the angle of attack is at 1.49º, the

splitting point of the flow near the leading edge shifts anti-clockwise slightly,

similarly, the merging point of the flow also moves slightly away from the

trailing edge in anti-clockwise direction. As a result, the recirculation flow

structure inside the airfoil becomes asymmetrical as shown from the plot of

streamlines in Figure 4.20 (b). Streamlines pass through the bottom of the

airfoil surface nicely, but depart a bit near the trailing edge at the top of the

airfoil surface. This indicates that a small recirculation zone is formed at the

top airfoil surface near the trailing edge, which will influence the flow in this

region and eventually affect the solution on the top of the airfoil surface.

When the angle of attack is increased to 4.0º, the recirculation zone at the top

airfoil surface near the trailing edge becomes much larger and the flow pattern

has been alternated extremely, as illustrated in the plot of streamlines in Figure

4.20 (c).

The results for the NACA0012 airfoil at the angle of attack of 0.0º, 1.49º and

4.0º show that though the no-penetration wall boundary condition can be fully

satisfied, the implementation of FC-IBM introduces viscous effect near the

wall boundary. This eventually affects the solution accuracy for the current

Euler solver as the viscosity of flow is not considered. In the implementation

of FC-IBM for simulations of incompressible viscous flows, the actual

Chapter 4 Flux Correction-Based Immersed Boundary Solver

110

viscosity of flows dominates and the numerical viscous effect introduced by

the IBM could be very minor and has little impact on the solution accuracy.

 x/c

-C
p

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-1.5

-1

-0.5

0

0.5

1

Exp
Lee et al.
Current

Figure 4.19 Pressure contours and coefficient profile for NACA0012 airfoil
(AoA=1.49º)

Figure 4.20 Streamlines inside NACA0012 airfoil at different angles of
attack

In the Navier-Stokes equation (4.24) , the divergence of stress at the right side

of the equation consists of pressure gradient and viscosity terms. In Euler

solver, the viscosity term 2vµ∇ is not considered. So the solution is

determined by the convective acceleration term ()vVρ∇⋅


 and the pressure

 (a) M=0.7, AoA=1.49º (b) M=0.7, AoA=1.49º

(b), M=0.7
AoA=1.49º

(c), M=0.7
AoA=4.0º

(a), M=0.7
AoA=0.0º

Chapter 4 Flux Correction-Based Immersed Boundary Solver

111

gradient (p−∇). Under this condition, when there is numerical viscosity

introduced to the solver, it will function as viscosity term and contribute to the

divergence of stress in the equation. When strong convection and pressure

gradient present, such numerical viscosity introduced will be relatively weak

and is negligible; however weak convection and small reverse pressure

gradient present, then such numeral viscosity introduced will change the state

of the original equation and produce unexpected solution.

()  

Divergence of stress

2

ViscosityPressure
Gradient

.v vV p v
t
ρ ρ µ∂

+∇⋅ = −∇ + ∇
∂


 (4.24)

From the Mach number contours plotted in Figure 4.17 and Figure 4.19, it

shows that strong and rapid convection occurs near the leading edge of the

airfoil and relatively weak convection occurs near the trailing edge of the

airfoil. The pressure distribution on the airfoil surface plotted in Figure 4.21

also shows that strong reverse pressure gradient presents near the leading edge

of the airfoil for all the three conditions with AoA=0°, 1.49° and 4.0°. Weak

reverse pressure gradient presents near the top trailing edge of the airfoil when

AoA is not zero. As the analysis in the previous paragraph, under this situation,

the numerical viscosity will contribute to the final solution and produce

unexpected result. From the understanding of the viscous flow, the

recirculation flow pattern usually occurs behind a non-streamlined object. This

explains why flow recirculation is observed in the results of the airfoil flow

when AoA is not zero, but not observed in the condition of AoA=0°.

Chapter 4 Flux Correction-Based Immersed Boundary Solver

112

Figure 4.21 Pressure distribution on the surface of a NACA0012 airfoil at
different angles of attack

(b), M=0.7
AoA=1.49º

(c), M=0.7
AoA=4.0º

(a), M=0.7
AoA=0.0º

Weak reverse
pressure gradient

Weak reverse
pressure gradient

Chapter 4 Flux Correction-Based Immersed Boundary Solver

113

4.4 Conclusions

A new flux correction-based immersed boundary method (FC-IBM) is

presented for simulation of compressible inviscid flows. The concept of FC-

IBM is to enforce the boundary condition by correcting the conservative terms

and velocity field at the Cartesian grids near the boundary to satisfy the zero

mass flux, zero energy flux and no-penetration conditions. The unique

advantage of the present FC-IBM is that it avoids the tedious process to

compute the boundary curvature and to identify whether the shadow cells are

in fluid domain or solid domain.

The new method is implemented in the developed adaptive Euler solver. To

validate and test the new method, supersonic flows over a circular cylinder, a

wedge and a double-ellipse structure, transonic and subsonic flows over a

NACA0012 airfoil are simulated. The results obtained from the new method

are in good agreement with the available data in the literature. The benefit of

the developed adaptive Euler solver is demonstrated in terms of accuracy

improvement and computational efficiency. However, numerical viscosity

effect is noticed for the method and this may affect the solution in the case that

weak convection and small reverse pressure gradient exist.

Chapter 5 Local DFD-Immersed Boundary Euler Solver

114

Chapter 5 Local Domain Free Discretization -
Immersed Boundary Euler Solver

In the implementation of 2D velocity correction based IBM (IBVCM)

proposed by Shu et al. [22] [33], two mesh points are identified near each

intersection point between the wall boundary and horizontal or vertical mesh

lines and then the velocity on the wall intersection point is obtained via linear

interpolation. The obtained velocity may not satisfy the physical velocity

condition for wall boundary. Hence a correction is needed and applied to two

mesh points to enforce the physical velocity condition being satisfied. In this

correction process, special care is taken when one mesh point near the wall

boundary is on both horizontal line and vertical line.

In almost all the studies of IBM for incompressible viscous flows, the velocity

of the immersed wall boundary is usually known for either stationary body or

moving body. This allows the implementation of local domain free

discretization (DFD) and IBM for immersed wall boundary condition can be

done directly and easily. However, for inviscid flows the velocity on the

immersed wall boundary is not known for both stationary body and moving

body. This becomes the big challenging issue in enforcing the immersed wall

boundary condition for numerical simulation of inviscid flows. Moreover, the

pressure and density conditions have to be addressed separately for

compressible flow simulation, and this is usually not a concern for

incompressible flows.

Chapter 5 Local DFD-Immersed Boundary Euler Solver

115

The fundamental feature of wall boundary condition for inviscid flow is no-

penetration of flow in consideration of velocity field and mass conservation.

The no-penetration of flow means that no fluid flows through the wall

boundary, or the normal velocity on the wall boundary surface has to be zero.

This feature is valid for both viscous flows and inviscid flows. For viscous

flows, the tangential velocity on the wall boundary surface also becomes zero

due to the viscous friction of fluid. So the wall boundary condition for viscous

flows in fact consists of no-penetration (zero normal velocity) condition and

no-slip (zero tangential velocity) condition. Since the normal velocity and

tangential velocity on the wall surface are zero, the velocity components in

Cartesian coordinate system are zero as well. For inviscid flows, the no-

penetration condition stands similarly as that for viscous flows. As the viscous

friction of fluid flow is neglected, the wall is considered as slip wall, which

means zero gradient of tangential velocity on the normal direction of wall

boundary surface. Therefore, from the viewpoint of velocity field and mass

conservation, the wall boundary condition for inviscid flows shall satisfy zero

normal velocity and zero gradient of tangential velocity in normal direction as

viscosity of the fluid is not considered.

5.1 Local DFD (LDFD) method

Inspired from the implementation of local DFD method in solving the

incompressible natural convection problems in concentric annulus [15] and

unsteady flow around an oscillating circular cylinder [17], and the

implementation of IBVCM in simulation of incompressible viscous flows

around a circular cylinder [22], the concept of the local DFD method is

Chapter 5 Local DFD-Immersed Boundary Euler Solver

116

introduced into the current compressible Euler solver in enforcing the no-

penetration and slip wall boundary conditions on the immersed wall boundary.

To make it easier in the illustration of the implementation procedure, it is

assumed that the wall boundary is stationary so there is no need to consider the

moving velocity of the wall in calculating the normal and tangential velocity

on the wall surface.

As illustrated in Figure 5.1, the cells fallen inside the solid domain and near

the wall boundary are identified and tagged as solid DFD cells. For every solid

DFD cell, two fluid DFD cells are identified across the wall boundary in either

X direction or Y direction. For certain cases, there are two pairs of fluid DFD

cells in both X direction and Y direction, such as solid DFD cell (A) in Figure

5.1. In the X direction, two fluid DFD cells are tagged as cell-(Cx) and cell-

(Dx). The cell centers of cells (A, Cx, Dx) are on the X direction line and the

intersection point of the X direction line and the wall boundary is (Bx). In the

vertical direction along Y axis, two fluid DFD cells are tagged as cell-(Cy) and

cell-(Dy). The cell centers of cells (A, Cy, Dy) are on the Y direction line and

the intersection point of the Y direction line and the wall boundary is (By). For

solid DFD cell (A1), the fluid DFD cells only exist in X direction; and for solid

DFD cell (A2), the fluid DFD cells only exist in Y direction.

Chapter 5 Local DFD-Immersed Boundary Euler Solver

117

Figure 5.1 Illustration of Implementation of One-Sided local DFD Method

Fluid DFD Cells in the
Fluid Domain

Solid DFD Cells in the
Solid Domain

Wall
Boundary

A

By

Dy

A2

A1

Cy

Bx Dx Cx

A Cx Dx Bx

[nx1, ny1]

A un

ut ut

un

ut

un

u

v

(a)
X Direction

[nx2, ny2]

u

v
ut

un

un

ut

un

ut

A

By

Cy

Dy

A

(b)
Y Direction

A C D B

un[A]

un[C]

(c) Extrapolation for AB BC<

A’

A C D B

un[A]

un[C]

A’

u'n[A]

(d) Extrapolation for AB BC>

un[D]

Chapter 5 Local DFD-Immersed Boundary Euler Solver

118

5.1.1 Velocity boundary condition

When fluid DFD cells exist in X direction for a solid DFD cell, the no-

penetration and slip wall boundary condition is enforced by correction of the

velocity at the solid DFD cell using the fluid DFD cells in X direction. The

normal velocity and tangential velocity at cell-(Cx) and cell-(Dx) can be

obtained via the velocity transformation based on the local normal direction

vector (1 1,x yn n) at wall point (Bx).

1 1

1 1

,

.
t y x

n x y

v u n v n
v u n v n
= ⋅ − ⋅

 = ⋅ + ⋅
 (5.1)

To satisfy the no-penetration condition, or 0n B
v = , the normal velocity at the

solid DFD cell (A) can be extrapolated from cell-(Cx) and the intersection

point (Bx), as shown in Figure 5.1 (a) and (c).

() () () .n n n nA B C C
v AC BC v AB BC v AB BC v= − ⋅ − ⋅ = − ⋅ (5.2)

In the equation above, AB , BC and AC represent the horizontal distances

along X direction among cell-(A), cell-(Cx) and intersection point (B x). For

the convenience, the subscript (x) is omitted.

To avoid large extrapolation error when the intersection point (Bx) is closer to

cell-(Cx), or AB BC>> as shown in Figure 5.1 (d), the normal velocity at the

solid DFD cell (A) will be extrapolated from cell-(Cx), cell-(Dx) and the

intersection point B:

Chapter 5 Local DFD-Immersed Boundary Euler Solver

119

() .n n n nA C D C

AB BCv v v v
CD

 −
= − + ⋅ − 

 
 (5.3)

The slip boundary condition is satisfied by simply assigning the tangential

velocity at the solid DFD cell (A) using the tangential velocity at cell-(Cx).

.t tA C
v v= (5.4)

The normal velocity n A
v corrected via equations (5.2) and (5.3) and the

tangent velocity t A
v corrected via (5.4) are able to satisfy the no-penetration

and slip wall boundary condition at wall point (Bx). Therefore the

corresponding Cartesian velocity components at the solid DFD cell (A) can be

obtained as:

1 1 1

1 1 1

,

.
n x t yA A

n y t xA A

u v n v n

v v n v n

 = ⋅ + ⋅


= ⋅ − ⋅
 (5.5)

Following the similar procedure, when fluid DFD cells exist in Y direction for

a solid DFD cell, the no-penetration and slip wall boundary condition is

enforced by correction of the velocity at the solid DFD cell using the fluid

DFD cells in Y direction through equations (5.1)-(5.5). The length of AB ,

BC , AC , and CD in the equations will be replaced by the vertical distance

along Y direction among cell-(A), cell-(Cy), cell-(Dy) and intersection point

(By), as shown in Figure 5.1 (b). The local normal direction vector is denoted

as (2 2,x yn n) of point (By), and used to replace (1 1,x yn n).

Chapter 5 Local DFD-Immersed Boundary Euler Solver

120

2 2 2

2 2 2

,

.
n x t yA A

n y t xA A

u v n v n

v v n v n

 = ⋅ + ⋅


= ⋅ − ⋅
 (5.6)

Consider that the solid DFD cell (A) in Figure 5.1 is connected to the fluid

DFD cells in both X direction and Y direction, the velocity at cell (A) needs to

take into account the corrected velocity that satisfies the wall boundary

condition in both directions. A weighting factor is then introduced to X

direction and Y direction as *
1w and *

2w , respectively. They satisfy the

relationship of:

* *
1 2 1.w w+ = (5.7)

Then the velocity at the solid DFD cell (A) will be:

* *
1 1 2 2
* *
1 1 2 2

,

.
A

A

u w u w u
v w v w v

 = ⋅ + ⋅


= ⋅ + ⋅
 (5.8)

Taking the average of the contribution from velocities in both X and Y

directions is the simplest weightage. The weighting factors in this case are:

* *
1 20.5, 0.5.w w= = (5.9)

The average weighting factor is tested by the Mach 3 flow over a circular

cylinder. To demonstrate the effect on velocity correction in enforcing the no-

penetration wall boundary condition, the streamlines are plotted around the

cylinder, as shown in Figure 5.2. Streamline plotted in Figure 5.2 (a) shows

that the no-penetration wall boundary condition can be well satisfied after first

time step of solution evolution. Streamline plot for the converged solution in

Chapter 5 Local DFD-Immersed Boundary Euler Solver

121

Figure 5.2 (b) shows that the no-penetration wall boundary condition is

perfectly satisfied. This comparison demonstrates that using the simple

average weighting factors is an effective weightage method for velocity

correction in enforcing the no-penetration wall boundary condition. Hence it is

used for all the case studies in this thesis.

(a) Streamline after one time step (b) Streamline for converged solution

Figure 5.2 Demonstration of average weighting method for velocity
correction

5.1.2 Pressure and density boundary condition

As wall boundary is considered as no-penetration and slip wall for inviscid

flows, the pressure and density on the wall boundary are approximated as:

0, 0.p
n n

ρ∂ ∂
= =

∂ ∂
 (5.10)

Using the simple extrapolation, the pressure and density at solid DFD cell (A)

are set to the same value as the nearest fluid DFD cell (Cx) or (Cy). Taking into

account the weightage when a solid DFD cell is connected to the fluid DFD

cell in both X direction and Y direction, the pressure and density on solid DFD

Chapter 5 Local DFD-Immersed Boundary Euler Solver

122

cell (A) are corrected by:

* *
1 2

* *
1 2

,

.

A Cx Cy

A Cx Cy

P w P w P

w wρ ρ ρ

 = ⋅ + ⋅


= ⋅ + ⋅
 (5.11)

The energy on the solid DFD cell (A) is then updated with the corrected values

of velocity, density and pressure using the equation of state for ideal gas.

()2 21 .
1 2

PE u vρ
γ

= + +
−

 (5.12)

Finally, the conservation terms in Euler equations will be updated on all the

solid DFD cells at which all the flow variables are corrected according to the

wall boundary condition.

5.2 Local DFD-Immersed Boundary Method (LDFD-IBM)

In the local DFD method proposed for compressible inviscid flows in the

previous section, it saves the need to calculate the curvature of the wall

boundary surface. However, the implementation of the local DFD method

requires the determination whether a DFD cell is in either fluid domain or

solid domain. Though it is not difficult to make the determination using the

method described in the subsection 3.1, if such determination can be avoided,

the solver will be much simpler and easier in actual application.

To improve the local DFD method and make the method to be easier and

simpler in implementation and more generic to handle any irregular immersed

wall boundaries, the local DFD-based immersed boundary method, named as

Chapter 5 Local DFD-Immersed Boundary Euler Solver

123

LDFD-IBM is proposed. Figure 5.3 illustrates the implementation of the

LDFD-IBM. In this method, the X direction DFD cells are identified when the

X direction line between the two successive centers intersects with the wall

boundary. The two cells and the intersection point (Wx) are recorded as (Bx-

Cx-Wx). The (-X) neighbor cell of (Bx) and the (+X) neighbor cell of (Cx) are

found and also recorded as (Ax-Bx-Cx-Dx-Wx). The four cells and the

intersection point form a typical local DFD unit for the implementation of wall

boundary condition on wall point (Wx). Similarly, on Y direction, a typical

local DFD unit (Ay-By-Cy-Dy-Wy) can be identified and recorded for the

implementation of wall boundary condition on wall point (Wy). As the

structure of the local DFD unit is similar on X direction and Y direction and

the implementation procedure is also similar, the local DFD unit (Ax-Bx-Cx-

Dx-Wx) on X direction is used for the illustration of implementation. For the

convenience, the subscript (x) will be omitted in following description.

In the local DFD unit (A-B-C-D-W), cells B and C are next to the wall

boundary. So the flow variables on cells B and C need to be corrected in order

to enforce the boundary condition on the wall. To correct the flow variables at

cell B, a mirror point B’ of the center of cell B is first found between the wall

point W and cell D on the opposite side of the wall boundary; next the flow

variables on the mirror point B’ can be interpolated by using the wall point W

and cell D; finally the flow variables on point B’ are mirrored back to cell B

based on no-penetration condition or zero normal gradient approximation. The

step to correct the flow variables on cell B are summarized as below:

1) Find the mirror point B’ of the cell B versus the wall boundary point W.

Chapter 5 Local DFD-Immersed Boundary Euler Solver

124

2) Calculate the normal velocity n D
v and tangential velocity t D

v on Cell

D from equation (5.1).

3) Calculate the normal velocity at point B’ by interpolation using

equation (5.13).

4) Mirror the normal velocity at point B’ back to cell B using equation

(5.14) to enforce the no-penetration condition.

5) Set the tangential velocity at cell B the same as it at cell D to enforce

the slip condition.

6) Calculate the corrected velocity in Cartesian coordinate system from

equation (5.15).

7) Assume that the energy and density at cell B are kept the same, and

update the pressure from the equation of state.

8) Update all the conservative terms in Euler equations using all the

corrected flow variables.

() ()'
' ,n n nB D D

v WB WD v WB WD v= ⋅ = ⋅ (5.13)

'
, ,n n t tB B B D

v v v v= − = (5.14)

1 1

1 1

,

.
B n x t yB B

B n y t xB B

u v n v n

v v n v n

 = ⋅ + ⋅


= ⋅ − ⋅
 (5.15)

Repeat the above steps, the flow variables at cell C can be corrected by the

wall point W and cell A on the opposite side of the wall boundary.

As flow variables on cells near the wall boundary are corrected using the

variables on the opposite side of the wall during the process of enforcing the

wall boundary condition, the actual implementation includes the correction of

Chapter 5 Local DFD-Immersed Boundary Euler Solver

125

DFD cells from left side to right side and also from right side to left side on X

direction. This is the concept of the proposed LDFD-IBM, inspired from the

similar implementation for incompressible viscous flow simulation [15], [16],

[17].

When a DFD cell is identified in the X direction local DFD unit and also in the

Y direction local DFD unit, the weightage method introduced by equations

(5.7)-(5.9) will be applied to calculate the averaged values on this DFD cell.

Figure 5.3 Illustration of Implementation of LDFD-IBM

Wall
Boundary

Cells next to the
DFD cells

DFD Cells with one
mesh size away from
the wall boundary

Cx|y

Wy

Ay

C2

C1

By

Wx Ax Bx Dx

Dy

A B C D W B’ A B C D W C’

n D
v

n B
v

n A
v

n C
v

(a) Velocity Correction for DFD

cell (B), from Right to Left

(b) Velocity Correction for DFD
cell (C), from Left to Right

Chapter 5 Local DFD-Immersed Boundary Euler Solver

126

5.3 Numerical validation and comparison

The LDFD-IBM is proposed based on the LDFD method with the

consideration of the advantage of conventional IBM, in which it is not

required to identify whether the cells near the wall boundary are in the fluid

domain or solid domain. As described in the previous two subsections, the

implementation of LDFD-IBM and LDFD method for compressible inviscid

flows is quite similar. The difference is that the correction will be carried out

for DFD cells in the solid domain in the implementation of LDFD method and

for all DFD cells near the boundary for LDFD-IBM. To validate the two

methods proposed, the following four compressible flow problems are solved

by both methods and cross comparison is made and presented in this chapter.

5.3.1 Mach 3 supersonic flow over a circular cylinder

The Mach 3 supersonic flow over a circular cylinder has been studied by many

researchers and many results are published in the literature and compared with

the analytical data. The comparison can be made conveniently against the

results available in the literature.

The computational domain and boundary condition for the Mach 3 supersonic

flow over a circular cylinder is the same as stated in subsection 3.4.1. Uniform

coarse mesh is defined in the computational domain, and the cylinder wall

boundary is adapted with finer mesh cells to improve the resolution for wall

boundary recognition.

The pressure contours and streamlines around the cylinder are plotted in

Chapter 5 Local DFD-Immersed Boundary Euler Solver

127

Figure 5.4. From the pressure contour plots, it can be observed that both

LDFD method and LDFD-IBM are able to capture the bow shock wave

upstream of the cylinder identically. By comparing the pressure distribution

along the central line along X direction, the shock wave positions predicted by

both methods are identical, as shown in Figure 5.5, and they are in good

agreement with the results obtained by Qu [43], Fiorina and Lele [52] based

on the body-fitted mesh solver. The pressure after the shock wave recovers

and matches the values that were predicted by Qu and Fiorina and Lele.

However, the pressure distribution just before the cylinder is noticed

differently between the two methods. For LDFD method, the pressure value

reaches the maximum towards the cylinder wall at 1X = − ; while for LDFD-

IBM, the pressure value reduces suddenly just before the cylinder wall at

1X = − . This indicates that LDFD-IBM may introduce minor energy loss

cross the immersed wall boundary, possibly due to the fact that artificial flow

information inside the solid domain is used for the correction of the flow

information in the fluid domain during the implementation of boundary

condition for the cylinder wall.

The streamlines around the cylinder show that the no-penetration boundary

condition is well satisfied for both methods, as no penetration flow is observed.

However, the minor difference of the streamlines is noticed near the corners

(C1 and C2 in the zoom-in view of the streamlines) of the semi-circle and the

right domain boundary. In LDFD method, streamlines near the corners follow

the cylinder wall boundary closely; while in LDFD-IBM streamlines near the

corners deviate from the cylinder wall. This could be a result of the interaction

Chapter 5 Local DFD-Immersed Boundary Euler Solver

128

between the implementation of domain boundary condition and LDFD-IBM

on the cylinder wall boundary. Obviously, this interaction is only happened

locally near the two corners and it has minimal influence on the capture of

shock wave before the cylinder in the mainstream.

(a) LDFD Method: Pressure Contours, Streamlines and Zoom-in view

(b) LDFD-IBM: Pressure Contours, Streamlines and Zoom-in view

Figure 5.4 Comparison of results obtained by LDFD method and LDFD-
IBM for Mach 3 flow over a circular cylinder

C1

C1

C2

C2

Chapter 5 Local DFD-Immersed Boundary Euler Solver

129

In comparison of the conventional implementation by ghost cell method or

symmetrical method, the new methods of LDFD and LDFD-IBM are very

easy to implement. There is no need to calculate the curvature of the immersed

wall boundary and to do bilinear interpolation. Besides the ease of

implementation, accurate results are obtained for the Mach 3 supersonic flow

over a circular cylinder using both methods of LDFD and LDFD-IBM and

demonstrate the methods are promising. Hence the methods will be further

tested for other compressible flows.

Figure 5.5 Comparison of pressure profile along the central line obtained
by LDFD method and LDFD-IBM for Mach 3 flow over a circular cylinder

5.3.2 Supersonic flow over a wedge

The supersonic flow of Mach 2 over a wedge is solved by both LDFD method

and LDFD-IBM. The configuration and the boundary condition of the problem

are the same as presented in subsection 4.3.1. In order to resolve the wedge

wall boundary and the shock waves in the channel domain accurately, 2-level

adaption is used. The Mach number contours are plotted in Figure 5.6 for

comparison. The wedge shock emitting from the front wedge point and the

Chapter 5 Local DFD-Immersed Boundary Euler Solver

130

two reflection shock waves predicted are almost identical. The angle of the

wedge shock predicted by the LDFD method is 45.39°, which is in very good

agreement with the theoretical value of 45.38°. The angle of the wedge shock

predicted by LDFD-IBM is 46.63°, also in fair agreement with the theoretical

value.

The results show that both LDFD method and LDFD-IBM are able to simulate

the supersonic flow over a wedge structure accurately.

Figure 5.6 Comparison of Mach number contours obtained by LDFD
method and LDFD-IBM for Mach 2 flow over a wedge

5.3.3 Supersonic flow over a double-ellipse

The supersonic flow past a double-ellipse is solved by the FC-IBM and the

results are presented in subsection 4.3.2. The same problem is also solved by

the proposed LDFD method and LDFD-IBM. Uniform coarse mesh with size

(a) Mach Contour,
by LDFD

(b) Mach Contour,
by LDFD-IBM

Chapter 5 Local DFD-Immersed Boundary Euler Solver

131

of 1 is defined in the computational domain. Two levels of adaption are used

to resolve the double-ellipse wall boundary accurately and also applied to

enhance the resolution for capturing the bow shock wave generated in front of

the double-ellipse structure. The results of the solution adaptive mesh,

pressure contours, streamlines over the double-ellipse and the pressure

coefficient profile obtained by both methods are plotted in Figure 5.7 and

Figure 5.8. The bow shock wave in front of the double-ellipse structure and

the inclined shock omitted from the intersection corner of the two ellipses are

captured sharply with fine meshes adapted to the high density gradients in

those zones. The plot of streamlines shows that air past the boundary smoothly

and indicates that the no-penetration boundary condition is well satisfied. The

pressure coefficient profile is compared with the numerical results obtained on

body-fitted grid by Arminjon et al. [49] and shows good agreement.

Next, to further test and validate the two methods, a hypersonic flow in the

condition of Mach=8.15 and AoA=30° over the double-ellipse is solved.

Because of the high Mach number and large angle of attack, the flow tends to

be unstable and chaotic when it interacts with the ellipse wall structure. Such

numerical simulation requires a robust solver and an appropriate method for

implementation of boundary conditions. The results are successfully computed

by the current LDFD method only. As the shock wave is very strong and

closer to the ellipse structure at high Mach number condition, 3-level adaption

is used to improve the mesh resolution between the shock wave and the

boundary. The results are presented in Figure 5.9. The solution adaptive mesh

in Figure 5.9 (a) shows that only fine meshes can capture the shock wave

Chapter 5 Local DFD-Immersed Boundary Euler Solver

132

sharply, as shown in Figure 5.9 (b). Streamlines plotted in Figure 5.9 (c) show

that no flow penetration is observed, implying that the no-penetration

boundary condition is also fully satisfied under the hypersonic condition. The

pressure coefficient is compared with the numerical data obtained by Zeeuw

and Powell [4], Bramkamp et al. [53] and Ganesh et al. [63], as plotted in

Figure 5.9 (d). The comparison demonstrates that the current results match

very well with those numerical results.

Figure 5.7 Comparison of results obtained by LDFD method and LDFD-
IBM for flow over a double-ellipse structure (Mach=2, AoA=20°)

(b) Solution adaptive mesh (2x), pressure contours and streamlines computed by LDFD-IBM.

(a) Solution adaptive mesh (2x), pressure contours and streamlines computed by LDFD method.

Chapter 5 Local DFD-Immersed Boundary Euler Solver

133

Figure 5.8 Pressure coefficient profile on the boundary for flow over a
double-ellipse structure (Mach=2, AoA=20°)

Figure 5.9 Computed results by LDFD method for hypersonic flow over a
double-ellipse structure (Mach=8.15, AoA=30°)

(d) Pressure coefficient profile on the boundary surface and comparison

(a) Solution adapted mesh (3x) (b) Pressure contours (c) Streamlines

Chapter 5 Local DFD-Immersed Boundary Euler Solver

134

5.3.4 Transonic flow in a channel with bump

The literal meaning of immersed boundary implies that the boundary if fully

submerged inside the computational domain. For the GAMM channel case,

though the wall boundary represented by the 10% arc (as shown in Figure 3.6)

is immersed inside the 3×1 rectangular Cartesian domain, the two ends of the

boundary connect with the physical boundary of the domain. The conventional

immersed boundary methods are not suitable to be implemented for such cases

with the immersed wall boundary intersected over the physical boundary.

While the current LDFD method and LDFD-IBM can still be implemented

theoretically for this problem, as the corresponding DFD cells in X direction

and Y direction can be identified as described in Sections 5.1 and 5.2.

As the bump in the GAMM channel is relative thin, to be efficient the uniform

coarse mesh is defined in the rectangular domain and 4 levels of mesh

refinement are adapted to the bump wall boundary and 2 levels of solution

adaption are used in the domain to enhance the mesh resolution for the

predication of the shock wave presented after the throat. The Mach number

contours predicted by the two methods are plotted in Figure 5.10 (a) and (b),

respectively. It is noticed that the Mach number distribution computed via

LDFD method is comparable to other numerical results obtained by Morton

and Paisley [54], Luo et al. [45] and Lee et al. [50]. However, the Mach

number distribution computed via LDFD-IBM is different compared to those

numerical results and not reasonable. The streamlines plotted in Figure 5.10 (d)

show that recirculation flow pattern is observed behind the channel throat,

although no streamlines are noticed cross the bottom boundary of the channel.

Chapter 5 Local DFD-Immersed Boundary Euler Solver

135

This means that the no-penetration boundary condition is satisfied. However,

the artificial viscosity introduced by LDFD-IBM implementation has caused

unphysical phenomena. The computed Mach number profile along the bottom

channel wall via LDFD method is plotted in Figure 5.10 (e) and is compared

with the numerical results obtained on body-fitted grid by Luo et al. [45]. The

square solids represent Luo’s result, and the solid line is the current result. The

dashed line is the pressure profile along the bottom channel wall. It is noted

from the plot that the maximal Mach number and the shock wave position are

in good agreement.

In LDFD-IBM, the flow variables at cells on both sides of the boundary will

be corrected in order to enforce the boundary condition. Hence artificial

viscous effect will be introduced near the boundary, as analyzed in Section

4.3.3. As the pressure profile in Figure 5.10 (e) shows that low reverse

pressure gradient is experienced in the region behind the throat, the unphysical

flow phenomena will be induced as the contribution from the numerical

viscous effect to the numerical solution increases.

The study of this test case demonstrates that the robustness of the LDFD

method is better than the LDFD-IBM, in particular, the LDFD method can

give accurate solution when low reverse pressure gradient is experienced near

the boundary.

Chapter 5 Local DFD-Immersed Boundary Euler Solver

136

Figure 5.10 Comparison of results obtained by LDFD method and LDFD-
IBM for transonic flow in GAMM channel

(e) Mach number profile on the lower wall of the channel, by LDFD

(a)
Mach Contour,
by LDFD

(b)
Mach Contour,
by LDFD-IBM

(c) Streamlines, by LDFD (d) Streamlines, by LDFD-IBM

Chapter 5 Local DFD-Immersed Boundary Euler Solver

137

5.4 More numerical examples and discussions

From the validation and comparison for the LDFD method and LDFD-IBM in

the previous section, it shows that LDFD method is more robust and is able to

predict more accurate solution for compressible inviscid flows under various

complex conditions. Thus, more numerical studies will be carried out by the

LDFD method to test the robustness and performance of the LDFD method

integrated with the current adaptive solver. It should be noted that the basic

concept for the implementation of the LDFD method and the LDFD-IBM is

similar as the boundary conditions are enforced in X and Y direction instead

of in normal condition. The major difference is the that boundary conditions

are enforced by correcting the functional values at the solid DFD cells from

the fluid DFD cells for LDFD method; while for LDFD-IBM, the boundary

conditions are enforced by mirrored correction between the DFD cells on both

sides of the boundary.

5.4.1 Transonic flow over a NACA0012 airfoil

The transonic flow over a NACA0012 airfoil at 0.799M∞ = and the angle of

attack at 2.8° is computed by the LDFD method. As the airfoil has thin

geometry near the trailing edge, the local DFD implementation needs to

consider the special cases similar as the implementation of ghost-cell method

as presented in subsection 3.2.3 and Figure 3.8 (a) for a RAE2822 airfoil. Just

to re-cap that when a solid DFD cell has more than one fluid DFD cells in the

X direction or in the Y direction, two sets of values are stored and linked to

the corresponding boundary. As shown in Figure 5.11, one set of functional

Chapter 5 Local DFD-Immersed Boundary Euler Solver

138

values at solid DFD cell (S) can be corrected from the fluid DFD cell (1S)

opposite the boundary AC ; and the other set of functional values at (S) can be

corrected from the fluid DFD cell (2S) opposite the boundary BC .

The coarse uniform mesh defined in the domain is at the size of 2. Finer

meshes are clustered around the airfoil boundary by 6-level refinement. The

solution is adapted by 5-level refinement, or at the mesh size of 1/16, to

improve the resolution economically in the regions near the shock wave and

high flow gradient zones near the airfoil head. The computed Mach number

contours, streamlines, pressure coefficient profile on the airfoil surface and the

solution adaptive mesh are plotted in Figure 5.12. The computed pressure

coefficient profile is compared with the experimental data and numerical

results obtained on body-fitted triangular mesh by Liu and Li [55]. The

pressure coefficient profile agrees relatively well with the numerical data

obtained by Liu and Li except slightly difference on the shock wave position.

Nevertheless, the shock wave prediction is a bit off from the experimental data.

Figure 5.11 Special case for LDFD method near the thin boundary region

A

B

C
S

S1

S2

Chapter 5 Local DFD-Immersed Boundary Euler Solver

139

Figure 5.12 Numerical results for transonic flow over a NACA0012 airfoil

(0.799, 2.8M AoA∞ = = °)

5.4.2 High lift two-element airfoil - NLR 7301

The two-element airfoil NLR 7301 can generate high lift force at large angle

of attack without causing airfoil stall. This behavior is commonly used in

passenger aircrafts during takeoff or landing when aircrafts fly at low speed

and large angle of attack. The airfoil is also used in racing cars to generate

down-force which is important in enhancing the car steering at high speed [56].

The configuration of the main airfoil and the flap is found in the AGARD-AR-

303 report [57]. The chord of the flap is 32% of the main airfoil chord; the flap

is deflected at 20°; and the gap between the main airfoil and the flap is 2.6%

of the main airfoil chord. The airfoil geometry is shown in Figure 5.13. The

 (c) Streamlines around the airfoil (d) Pressure coefficient profile

 (a) Solution adapted mesh (b) Mach number contours

Chapter 5 Local DFD-Immersed Boundary Euler Solver

140

numerical experiment is done at the condition of the free-stream flow is at

Mach number 0.185 under angle of attack at 6° and 13.1°. This test case is

chosen to demonstrate the robustness and efficiency of the current LDFD

method and the adaptive solver.

Due to the sharp and thin geometry of the flap and the small gap between the

main airfoil and the flap, fine meshes with 7-level adaption are clustered

around the airfoils based on the coarse uniform mesh at 2dh = . The meshes

around the modeled NLR 7301 airfoil and the zoom-in view of the meshes in

the gap are plotted in Figure 5.14. The computed results for AoA=6° and 13.1°

are plotted as Mach number contours, streamlines and pressure coefficient

profile in Figure 5.15 and Figure 5.16, respectively. The Mach number

contours are compared to the numerical results obtained by Liang and Yang

[12]. The streamlines show that no-penetration boundary condition is satisfied

for both airfoils. The pressure coefficient profile computed on the main airfoil

and the flap for both conditions agrees closely with the experimental data

published online [56], as shown in Figure 5.15 (c) and Figure 5.16 (c). The

converged solution is obtained on 60,379 mesh cells, with approximate 82%

of cells are adapted in the local region near the airfoil geometry and the gap.

Chapter 5 Local DFD-Immersed Boundary Euler Solver

141

Figure 5.13 Configuration of NLR 7301 two-element airfoil

Figure 5.14 Initial mesh adaption near the NLR 7301 two-element airfoil

0.185, 6 13.1M α∞ = = ° °

Chapter 5 Local DFD-Immersed Boundary Euler Solver

142

Figure 5.15 Numerical results for NLR7301 (0.185, 6M AoA∞ = = °)

Figure 5.16 Numerical results for NLR7301 (0.185, 13.1M AoA∞ = = °)

(a) Mach number contours (b) Streamlines

(c) Pressure coefficient profile and comparison

(a) Mach number contours (b) Streamlines

(c) Pressure coefficient profile and comparison

Chapter 5 Local DFD-Immersed Boundary Euler Solver

143

5.4.3 Transonic flow over SKF1.1 two-element airfoil

The study of the NLR 7301 two-element airfoil is under subsonic flow

condition. In this subsection, the transonic flow over another two-element

airfoil SKF1.1 is simulated to demonstrate the performance of the LDFD

method. The flow condition over the SKF1.1 airfoil is defined with the free-

stream Mach number at 0.65 and the angle of attack at 2.06°. Under this

condition, a shock wave will be generated above the main airfoil. Therefore,

this test case is more challenging than the previous numerical experiment of

the subsonic flow on the NLR 7301 two-element airfoil.

The configuration of the main airfoil and the flap of SKF1.1 airfoil used for

this test case is the configuration case 5 documented in the AGARD-AR-138

report [58]. The chord of the flap is 1 4 of the main airfoil chord; the flap is

deflected at 10°; and the gap between the main airfoil and the flap is only

1.55% of the main airfoil chord. The airfoil geometry is shown in Figure 5.17.

Finest meshes with 7-level adaption are clustered around the airfoils based on

the coarse uniform mesh at 2dh = . This allows for sufficient Cartesian mesh

cells generated in the gap region, thus the boundary condition can be

implemented accurately. The meshes around the studied SKF1.1 airfoil and

the zoom-in view of the meshes in the gap are plotted in Figure 5.18.

The computed results of pressure contours, solution adaptive meshes,

streamlines and pressure coefficient profile are presented in Figure 5.19. The

pressure contour distribution, plotted in Figure 5.19 (a) is agreed with the

numerical results obtained by Jahangirian and Hashemi [13]. The streamlines

Chapter 5 Local DFD-Immersed Boundary Euler Solver

144

plotted in Figure 5.19 (c) and (d) show that no-penetration boundary condition

is satisfied for both airfoils. The converged solution is obtained on 61,072

cells, with approximate 82% of cells are adapted in the local region near the

airfoil geometry, the gap and the scene of the shock wave via solution

adaption. The pressure coefficient profile computed on the main airfoil and the

flap is compared with the numerical data computed by Jahangirian and

Hashemi [13] using an unstructured body-fitted grid solver. As shown in

Figure 5.19 (e), good agreement is achieved not only in the magnitude of the

pressure coefficient computed on both airfoils, but also in the position of the

shock wave above the upper surface of the main airfoil.

Figure 5.17 Configuration of SKF1.1 two-element airfoil

Figure 5.18 Initial mesh adaption near the SKF1.1 two-element airfoil

0.65, 2.06M α∞ = = °

Chapter 5 Local DFD-Immersed Boundary Euler Solver

145

Figure 5.19 Numerical results for SKF1.1 airfoil (0.65, 2.06M α∞ = = °)

(a) Pressure contours (b) Solution adapted mesh

(c) Streamlines over SKF1.1 airfoil (d) Zoom-in view near the gap and flap

(e) Pressure coefficient profile and comparison

Chapter 5 Local DFD-Immersed Boundary Euler Solver

146

5.5 Conclusions

A local domain-free discretization (LDFD) method is presented in this chapter

for compressible inviscid flows. The concept of LDFD for 2D flows is to

enforce the boundary condition by correcting the flow information on the solid

cells (DFD cells) next to the boundary in X direction and Y direction

separately. As the correction is performed either horizontally or vertically, it is

simple to implement. A LDFD immersed boundary method (LDFD-IBM) is

also presented to make the implementation simpler by avoiding the need to

identify the solid DFD cells and fluid DFD cells.

Both methods are implemented in the developed adaptive Euler solver. To

validate and compare the two methods, supersonic flows over a circular

cylinder and a wedge, hypersonic and supersonic flows over a double-ellipse

structure, transonic flow in a channel with bump are simulated. The results

obtained from the two methods are comparable and agree well with the

available data in the literature. The LDFD method is demonstrated to be more

robust and accurate. The challenging problems like the subsonic flow over the

high lift two-element airfoil NLR 7301 and the transonic flow over SKF1.1

two-element airfoil are studied by the LDFD method. The computed results

are in good agreement with the reference data. The integration of the LDFD

method and the developed adaptive Euler solver demonstrates good potential

to simulate compressible inviscid flows with complex geometry.

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

147

Chapter 6 3D Adaptive Euler Solver
Implemented with FC-IBM and LDFD

Method

The 2D adaptive Euler solver is discussed and benchmarked in Chapter 2. The

proposed new FC-IBM, LDFD method and LDFD-IBM are also implemented

in the 2D adaptive solver successfully. Validations and numerical studies

demonstrate that the methods are good potential tools to simulate compressible

inviscid flows with complex boundaries using the present 2D adaptive Euler

solver on Cartesian grids. In this chapter, the development of 3D adaptive

Euler solver and the implementation of the proposed immersed boundary

methods are discussed.

6.1 Methodology for 3D adaptive Euler solver

The three-dimensional compressible inviscid solver is developed on the basis

of the two-dimensional solver. The 3D compressible Euler equations in

conservative form are given as:

0,U F G H
t x y z

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
 (6.1)

() () ()

2

2

2

, , , .

u v w
vuu u p uw

U v F uv G v p H vw
pw uw vw w p
E u E p v E p w E p

ρ ρρ ρ
ρρ ρ ρ

ρ ρ ρ ρ
ρ ρ ρ

     
      +      
     = = = + =
     
 +    
      + + +        

 (6.2)

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

148

The equation of the state for ideal gas in 3D flow is:

() ()2 2 211 .
2

p E u v wγ ρ = − − + +  
 (6.3)

The numerical method, flux calculation, and boundary conditions for 3D

solver are similar to those for 2D solver. The control cells for 3D solver are

hexahedral cells in the Cartesian coordinate system. A hexahedral cell consists

of six surface interfaces, twelve edges and eight end points. The flux

calculation is performed on six surfaces of a hexahedral control cell, and the

solution is stored at the cell center of the hexahedral cell. The data structure

for the objects of 3D control cell, side surfaces, edges and end nodes are

defined as below in Fig. 6.1.

Figure 6.1 Data structure for the objects of cell, face, edge and node for
3D solver

Tcell Tface *Faces[6]
double xc,yc,zc;
double p,rho,u,v,E;
double volume;
double Grad[8];
 int layer, refined;
Tcell *childCells[8];
 Tcell *parentCell;

 Tcell *prev;

Tcell *next;

Tface Tedge *Edges[4]
int bctype;
double nx, ny, nz;
double area;
double flux[5];
 Tcell *neighborCells[2];
 Tedge *childFaces[4];
 Tedge *parentEdge;

 Tface *prev;

Tface *next;

 Tedge Tnode *Nodes[2]

double nx, ny, nz;
double length;
Tedge *childEdges[2];
 Tedge *parentEdge;

 Tedge *prev;

Tedge *next;

Tnode double x0,y0, z0;
 double x1,y1, z1;
Tnode *prev;
 Tnode *next;

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

149

Figure 6.2 Refinement of a 3D Cartesian cell

The adaption of 3D hexahedral cells follows the tree structure as that

implemented in the 2D adaptive solver. When a 3D cell is to be refined, it will

be split into eight children cells, as shown in Figure 6.2. To form the eight

children cells, there will be 19 new nodes, 24 children edges, 22 new edges, 24

children faces and 8 new faces created for this parent cell to be refined. Since

there are so many new objects (nodes, edges, faces and cells) to be created in

refining a 3D cell, the creation and recording of those new objects and their

relationships must be handled carefully, otherwise the adaption will not be

able to perform properly. The adaption state for faces and edges of a cell must

be recorded too, because this will be relevant to determine the adaption for the

neighbor cell. In the condition when any of the six neighbor cells next to the

six faces is adapted, the interface between the two cells such as the shaded +X

face in Figure 6.2 does not need to be refined again. The associated five new

nodes, four new edges, eight new children edges and four new children faces

will be re-used by setting the correction relationship. During the coarsening

X

Y

Z
 New Nodes New Edges

New Faces New Cells

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

150

adaption, the eight children cells, the six edges inside the cell and the node

located in the center of the cell can be removed in a straightforward manner.

To remove the children faces on the six side faces of the cell and the

associated edges and nodes, the dependency has to be verified on the adaption

state of the neighbor cells. If the neighbor cell is not refined, then the children

faces, edges and nodes on this interface can be removed.

6.2 FC-IBM and LDFD implementation in 3D solver

The concept of IBM implementation in 3D solver is similar to that for the 2D

implementation. The key difference is the definition of the immersed wall

boundary. To be specific, for 2D implementation, the immersed wall boundary

is actually 2D edge and is defined by line segments; while for 3D

implementation, the immersed wall boundary is 3D surface and is represented

by multiple small surface patches. The 3D boundary surface can be defined by

surface meshes, either with triangles or quads. Since a 3D surface can be fully

determined by three points in the domain, the triangular meshes are used to

represent the 3D boundaries in the present study. ANSYS’s Gambit meshing

tool is used to generate the triangular surface meshes that represent the wall

boundary.

To implement FC-IBM in 3D solver, the zero normal flux conditions are

enforced by correcting the conservative terms U(1, 5) in equation (6.2) and the

no-penetration condition is enforced by correcting velocity components

(), ,u v w in equation (6.2). Because the wall boundary is formed by triangular

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

151

bounded surfaces, the normal velocity of a triangular surface at its center

needs to be evaluated in order to conduct the flux correction and velocity

correction. The delta-function interpolation is used to compute the functional

values on each triangular surface. The shadow cells around the center of the

triangular surface within double mesh spacing are identified and used for both

flux and velocity corrections. There is no need to compute the boundary

curvature and to identify whether the cells are in fluid domain or solid domain.

The implementation procedure is similar to that for the implementation of 2D

case, as discussed in subsections 4.1.1 and 4.1.2. However, it shall be noted

that the normal velocity correction on the boundary is re-distributed back to

shadow cells to correct the velocity components in X, Y and Z directions for

3D cases.

In 2D implementation of LDFD method, the relationship between DFD cells

and the wall boundary needs to be identified. This can be done easily through

the checking of intersection status of two line segments, one representing the

wall boundary segment and the other representing the line segment linking

two cell centers. When 3D implementation is considered, this process becomes

a bit complex and tedious because the relationship between cells and boundary

is determined by the intersection status of a line segment and a bounded

triangular surface. In addition, the velocity transformation between Cartesian

coordinate system and the normal-tangential coordinate system in 2D case is

obvious and simple; in 3D case, the velocity transformation process is more

complex and requires more care in implementation.

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

152

The details on the definition of wall boundary and its normal direction,

identification of local DFD cells, velocity transformation on wall boundary are

explained in the following sections, respectively.

6.2.1 Wall boundary surface and normal direction

The immersed wall boundary in 2D solver is formed by edges, which are

defined as line segments. For 3D solver, the immersed wall boundary is

formed by faces, which are usually defined by triangular faces or quadrangular

faces. In the current development, the immersed wall boundary is defined by

triangular faces. Figure 6.3 shows an immersed spherical wall boundary which

is formed by many triangular faces. Each of the triangular faces is formed by a

triangle ∆ABC. In 3D space, the triangular face ∆ABC is given as

0.f ax by cz d= + + + = (6.4)

As the coordinates of the three endpoints A, B and C are known, so a, b, c and

d in the equation can be determined by

1 1
1 , 1 ,
1 1

1
1 , .
1

A A A A

B B B B

C C C C

A A A A A

B B B B B

C C C C C

y z x z
a y z b x z

y z x z

x y x y z
c x y d x y z

x y x y z

= =

= = −

 (6.5)

Once a, b, c and d are determined, the normal vector of the triangular face is

known as

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

153

[], , , , .x y zn n n n a b c = = 
 (6.6)

To normalize the normal vector, a radial length r is introduced.

2 2 2 .r a b c= + + (6.7)

And then the normal vector is normalized as

[]ˆ ˆ ˆ, , , , .x y zn n n n a r b r c r = = 
 (6.8)

For the convenience in description, the normalized normal vector is still

written in the format of , ,x y zn n n   in the remaining of this section.

Figure 6.3 3D wall boundary surface and basic triangular face

6.2.2 Identification of local DFD cells

As the LDFD method presented in the previous chapter demonstrates better

accuracy in dealing with the immersed wall boundary condition, this method is

implemented in the 3D solver for further study. To implement the LDFD

n

A

B

C

P

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

154

method, the cells near the wall boundary have to be identified first. As a local

DFD cell next to the wall boundary definitely has a neighbor cell on the

opposite side of the wall boundary, so the major task to identify the pair of the

local DFD cells next to the wall boundary is to determine whether the line

segment formed by the two cell centers intersects with any bounded triangular

face of the wall boundary.

Figure 6.4 Intersection relationship between a triangular face and a line
segment

Taking the X direction for example, let points P1 and P2 in Figure 6.4 (a)

represent the centers of the two neighbor cells in X direction, ∆ABC

represents a triangular face of the wall boundary. To determine whether the

line segment 1 2P P→ intersects with the bounded triangular face ∆ABC, the

procedures are as below.

1) Check if the line determined by 1 2P P→ intersects with the

unbounded face on ∆ABC,

2) Check if the intersection point P is on the line segment 1 2P P→ , and

find out the point,

3) Check if the intersection point P is inside ∆ABC.

(a) Point P is between P1 and P2. (b) Point P is inside ∆ABC.

A

B

C

P
P1 P2

A

B

C

P

Q
p = PA x CA

q= QA x CA

t

X

Y

Z

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

155

To start the determination, first it is needed to check if line determined by

1 2P P→ intersects with the unbound face on ∆ABC. Assume that they

intersect at point P, then the coordinates of point (), ,P x y z can be given as

() () () (), , 1 , , 2 , , 1 , , .P x y z P x y z t P x y z P x y z= + ⋅ −   (6.9)

The above equation can be rewritten as

()
()
()

1 2 1

1 2 1

1 2 1

,

,

.

x x t x x

y y t y y

z z t z z

= + −

= + −

= + −

 (6.10)

In addition, as point P falls on the plane determined by the triangular face

∆ABC, so the coordinate P(x, y, z) must satisfy the 3D plane equation (6.4)

derived on face ∆ABC.

() () ()1 2 1 1 2 1 1 2 1 0.a x t x x b y t y y c z t z z d+ ⋅ − + + ⋅ − + + ⋅ − + =          

(6.11)

The factor t is thus obtained by

() () ()
1 1 1

2 1 2 1 2 1

.ax by cz dt
a x x b y y c z z

+ + +
= −

− + − + −
 (6.12)

Only when the factor t is in the range of 0 to 1, the intersection point P falls

between P1 and P2. When 0t → the point P is closer to P1; and when 1t →

the point P is closer to P2.

Next step is to verify if the intersection point P is inside the triangular face

∆ABC. As shown in Figure 6.4 (b), if point P is inside the triangular face

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

156

∆ABC the following relationship always stands truly.

.APB BPC APC ABCS S S S∆ ∆ ∆ ∆+ + = (6.13)

The S∆ in the equation represents the area of the triangle. Let a, b, and c

represents the length of the three sides of a triangle, the area of the triangle can

be calculated using the Heron’s Formula:

() ()22 2 2 4 4 41 2 .
4

S a b c a b c∆ = + + − + + (6.14)

Theoretically, the judgment method is obvious and easy in implementation.

However, numerical experiments show that it may give wrong results due to

the numerical errors which are possibly caused by the power and square root

calculation in equation (6.14). In addition, it is tricky to verify the equal

relationship for two floating point numbers in computer platform and this may

also introduce unexpected errors.

Another way to verify whether the intersection point P is inside the triangular

face ∆ABC is same-sided phenomena. As shown in Figure 6.4 (b), if point P is

inside the triangular face ∆ABC, then when walking from any of the three

endpoints to another endpoint, point P is always at the same side of the third

endpoint of the triangle. For example, when walking from AC direction,

both points P and B are at the right side of the edge AC


 as point P is inside

the triangle; but point Q is at the left side of the edge AC


 as point Q is outside

the triangle. To verify this, the following two cross products are calculated

first

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

157

,

.

b AB AC

p AP AC

= ×

= ×

 

  (6.15)

If points P and B are at the same side when looking from AC, then the dot

product of b


 and p should be positive or no-negative, as the internal angle

between the two vectors is not more than 90-degree.

() () 0.b p AB AC AP AC⋅ = × ⋅ × ≥
     (6.16)

Otherwise, as point Q, which is outside the triangle face ∆ABC, shown in the

figure, the dot product of b


 and q will be negative, as the internal angle

between the two vectors is more than 90-degree.

() () 0.b q AB AC AQ AC⋅ = × ⋅ × <
     (6.17)

Similarly, point P must also satisfy the following two conditions for edges CB


and BA


, then it can be confirmed that the point P is inside the triangle face

∆ABC.

() ()
() ()

0,

0.

CA CB CP CB

BC BA BP BA

× ⋅ × ≥

× ⋅ × ≥

   

    (6.18)

If any of the conditions in equations (6.16) and (6.18) is not satisfied, then

point P will be marked outside the triangle face ∆ABC.

As described above, this method uses the cross product and dot product for

vectors in the verification and avoids the need for the calculation of power,

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

158

square root and equality checking of two floating point numbers, so the

intersection relationship between the line segment P1-P2 and the triangular

face ∆ABC can be determined accurately.

Because the relationship of cells and the wall boundary is unknown at the

initial state, the above verification process has to be carried out for every

triangular face of the wall boundary against all the cells. To be effective in

finding all the local DFD cells in the initialization step, the process described

in equations (6.12), (6.16) and (6.18) will be performed only when the cell is

near to the triangular wall face ∆ABC; otherwise it will be skipped. Once

again, use the X direction as an example. If a cell satisfies the condition in

equation (6.19) it will be skipped for the verification. The Y and Z coordinate

values for P1 and P2 are the same, so the coordinate for P1 is sufficient for the

shortlisting.

() ()
() ()
() ()

1 2

1

1

max , , min , , ,

min , , ,max , , ,

min , , ,max , , .

P A B C P A B C

P A B C A B C

P A B C A B C

x x x x AND x x x x

y y y y y y y

z z z z z z z

 < >
 ∈   


∈    

 (6.19)

The location of the local DFD cells in either the fluid domain or the solid

domain can be determined following the similar methods as described for 2D

implementation.

6.2.3 Boundary condition for immersed wall

Using the same boundary condition implementation for the immersed wall

boundary in 2D LDFD method, the no-penetration condition, slip condition

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

159

and zero normal derivative approximation for pressure and density are

applicable.

0, 0, 0, 0.t
n

v pv
n n n

ρ∂ ∂ ∂
= = = =

∂ ∂ ∂
 (6.20)

To enforce the no-penetration and slip wall boundary condition, the local

normal velocity vector and the tangential velocity components need to be

found out. Both normal velocity vector and tangential velocity components

must be obtained in spherical coordinate system. So it is necessary to transfer

the velocity vector in the Cartesian coordinate system into the corresponding

spherical coordinate system.

Figure 6.5 shows the conversion between a Cartesian coordinate system and

its corresponding spherical coordinate system. The normalized vector

, ,x y zn n n n =  
 represents the local normal direction on the wall boundary.

To convert any interested vector into the spherical coordinate system, the

radial distance r, polar angle θ and azimuthal angle φ are determined by:

()
()

2 2 2

arccos .

arctan
z

z

x

y

y

x

n

n n n

n n

r
rθ

φ

 + +   
   =   
    

 

 (6.21)

In this context, for a known local velocity vector [], ,u v w on the wall boundary

in X-Y-Z coordinate system, it will be transformed into r θ φ− − coordinate

system as

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

160

[] .
0

r rx y z

x z y z

y x

V Vn n n u u
V n n s n n s s v V A v

n s n s w wV V
θ θ

φ φ

        
        = − → =        
        −        

 (6.22)

Here 2 2
x ys n n= + .

The velocity vector in r θ φ− − coordinate system can be converted back to

X-Y-Z coordinate system by

[] .
0

r rx x z y
T

y y z x

z

V Vu n n n s n s
v A V n n n s n s V
w n sV V

θ θ

φ φ

   −   
      = =      
      −      

 (6.23)

Figure 6.5 Velocity transformation between Cartesian coordinate system
and Spherical coordinate system

The following steps summarize the procedure in enforcing the boundary

condition (equation (6.20)) for the LDFD method.

1) For every pair of DFD cells, calculate the normal velocity and

tangential velocity components using equation (6.22) on the fluid

 xn

yn

 zn

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

161

DFD cell.

2) To enforce the no-penetration condition, the normal velocity rV at

the solid DFD cell can be calculated by equation (5.3).

3) To enforce the slip condition, the two tangential velocity

components Vθ and Vφ at the solid DFD cell can be set by equation

(5.4).

4) The corrected velocity component , ,rV V Vθ φ   in the spherical

coordinate system is then converted back to Cartesian coordinate

system as [u, v, w] by equation (6.23).

5) The pressure and density at the solid DFD cell are set the same as

those at the fluid DFD cell.

6) The energy at the solid DFD cell is updated by the equation of state

for ideal gas.

7) All the conservative terms in Euler equations are finally updated

with the new values of the flow variables.

Similar to the LDFD implementation for 2D flows, some solid DFD cells

could be paired with fluid DFD cells in more than one direction or all the three

directions of X, Y and Z. For those cells, the average weighting factors will be

used to take into account the contribution of the boundary condition correction

performed from multiple directions.

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

162

6.3 Validation for the 3D adaptive solver

In this subsection, the performance of the 3D adaptive solver will be studied

by the oblique shock problem and a 3D shock explosion problem. The two

problems are chosen to test and benchmark the present 3D adaptive solver

without the consideration of immersed wall boundaries. The 3D flows with

immersed wall boundaries will be simulated to demonstrate the 3D IBM

implementation by FC-IBM as well as LDFD method.

6.3.1 Oblique shock problem in 3D

The 2D oblique shock problem is studied in 3D domain to demonstrate the

performance and accuracy of the current 3D adaptive Euler solver. The

computational domain is chosen as 4×1×0.5. The normal inlet, oblique inlet

and outlet boundaries are defined as shown in Figure 6.6. The boundary

conditions for the normal inlet and oblique inlet are the same as those for 2D

study in Chapter 2. Besides the two inlets and one outlet, the remaining three

boundaries are defined as wall boundaries.

The solver is first run on uniform coarse mesh with size of 0.5dh = , and then

the adaptive solution-based 1-level refinement and 2-level refinement are

conducted. The density contours on the domain boundaries and the solution

adaptive meshes are presented in Figure 6.7. From the contour plots, it is

noticed that the shock wave captured is much sharper with two levels of

solution adaption. The number of mesh cells for uniform coarse mesh, 1-level

and 2-level adaption cases are 16,000, 56,670, and 264,920, respectively. The

number of mesh cells for 1-level and 2-level adaption is 56% and 74% less

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

163

respectively as compared with that needed for the uniform mesh with the same

finer mesh spacing. The remarkable reduction in cell numbers will save the

demands for large memory/space and long computing time. The computing

times for the solutions based on three different mesh resolutions are 94

seconds, 285 seconds and 2617 seconds respectively, as shown in Table 6.1. In

comparison, the computing time needed for uniform mesh solution with size

of 0.25dh = is 2050 seconds, and 38,860 seconds for 0.125dh = . This is

approximately 7 times and 14 times longer than that by the adaptive solver

with the same finer mesh resolution. The numerical experiments demonstrate

that the developed 3D adaptive solver is very efficient comparing to solve the

flows on uniform mesh especially when higher level of adaption is used.

Inlet ρ u v w p

Normal 1.0 2.9 0 0 0.7143

Oblique 1.69997 2.61934 0.50632 0 1.5282

Figure 6.6 Oblique shock problem in 3D domain

X

Y

Z

Normal
Inlet

Oblique Inlet

Outlet

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

164

(a) Density contours (10 intervals) and uniform meshes

(b) Density contours (10 intervals) and 1-level adaptive meshes

(c) Density contours (10 intervals) and 2-level adaptive meshes

Figure 6.7 Adaptive solution for the oblique shock problem in 3D domain

Mesh Size Uniform Finer Mesh Adaptive Mesh

dh (h) No. of cells CPU time (s) No. of cells CPU time (s) Speedup

0.5 16,000 94 - - -

0.25 128,000 2,050 56,670 285 7.2

0.125 1,024,000 38,860 264,920 2,617 14.8

Table 6.1 Computational time comparison for uniform mesh and adaptive
mesh for 3D oblique shock problem

6.3.2 Three dimensional shock explosion

To further validate the current 3D adaptive solver, the 3D shock explosion

problem is simulated. In this problem, the still air at high pressure and density

is confined in a spherical volume. The computational domain for the explosion

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

165

is []0.5, 0.5− × []0.5, 0.5− × []0.5, 0.5− . The sphere volume is defined as

0.2r ≤ and the initial conditions for the problem are listed in the table below:

 ρ u v w p

0.2r ≤ : 1.0 0 0 0 1

0.2r > : 0.125 0 0 0 0.1

The solution is obtained at dimensionless time 0.1t = to ensure that the

explosion waves do not reach the domain boundaries. All the six boundaries of

the computational domain are defined as outlets, and the flow information is

extrapolated from the interior cells based on zero normal gradients. The

solution is computed on three different meshes: coarse uniform size 0.02dh = ,

1-level adaption with finest mesh size 0.01dh = and 2-level adaption with

finest mesh size 0.005dh = . The density gradient is used as the indicator for

mesh adaption, as it reflects all the three types of waves (rarefaction wave,

contact discontinuity wave and shock wave) during the wave propagation.

Because the spherical waves travel inside the domain, the mesh cells in

(, ,) 0x y z > octant are output for the plot of the results to achieve better result

visualization. Figure 6.9 shows the present results of density contours, solution

adapted meshes. The results clearly show that the finest meshes are adapted to

the regions of the wave shape. The density profile in the radial direction is

plotted along the line from (0, 0, 0) to (0.5, 0, 0), as shown in Figure 6.8. It is

observed that the present results agree well with the analytical data obtained

by Lahooti and Pishevar [59]. Apart from the accuracy of the solver, the

efficiency improvement is also examined. Comparison of the computational

time required for the solver on uniform mesh and adaptive solver shows that

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

166

the speedup rate is about 7 times and 14 times when the finest meshes’ size are

0.01dh = and 0.005dh = , respectively.

Mesh Size Uniform Finer Mesh Adaptive Mesh

dh (h) No. of cells CPU time (s) No. of cells CPU time (s) Speedup

0.02 125,000 31 - - -

0.01 1,000,000 866 374,816 119 7.3

0.005 8,000,000 15,120 2,016,477 1,090 13.9

Table 6.2 Computational time comparison for uniform mesh and adaptive
mesh for 3D shock explosion problem

Figure 6.8 Density profile in radial direction for the 3D shock explosion
problem

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

167

(a) Density contours (20 intervals) and uniform meshes

(b) Density contours (20 intervals) and 1-level adaptive meshes

(c) Density contours (20 intervals) and 2-level adaptive meshes

Figure 6.9 Adaptive results for the 3D shock explosion problem

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

168

6.4 Numerical examples for 3D IBM methods

In this subsection, the FC-IBM and LDFD method are implemented together

with the 3D adaptive Euler solver. To validate the developed method,

simulation of Mach 3 flow over a sphere is performed and the results are

compared with numerical data available in the literature.

6.4.1 Mach 3 flow over a sphere

As a benchmark case, Mach 3 flow over a sphere is simulated to validate the

current adaptive solver with immersed boundary method implemented for 3D

problems. In this case the bow shock generated in front of the sphere can be

used for comparison and accuracy analysis.

The radius of the sphere is one unit. Because the free stream flow is in

supersonic range and the bow shock is in front of the sphere, only half of the

sphere is chosen for the simulation, as shown in Figure 6.10. The computed

results are plotted in Figure 6.11 and Figure 6.12. To compare the results

quantitatively, the Mach number distribution along the central line from (-

2,0,0) to (-1,0,0), as indicated by the solid line AB in Figure 6.10, is plotted in

Figure 6.11 and is compared with the numerical results obtained on a

structured mesh solver by Rispoli et al. [60].

It is noticed that the Mach number profiles computed by FC-IBM and LDFD

have very minor difference, and both are comparable to the numerical results

obtained on structured grid by Rispoli et al. [60]. In order to visualize the

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

169

results near the immersed body clearly, the Mach number contours are only

plotted when the mesh cells are in the region of (), 0y z ≥ .

Figure 6.10 Computational domain for Mach 3 flow over a sphere

X

M
ac

h
nu

m
be

r

-2 -1.8 -1.6 -1.4 -1.2 -1
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

FC-IBM, coarse mesh
FC-IBM, fine mesh
Rispoli et al.

 X

M
ac

h
nu

m
be

r

-2 -1.8 -1.6 -1.4 -1.2 -1
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

LDFD, coarse mesh
LDFD, fine mesh
Rispoli et al.

Figure 6.11 Mach number profile for Mach 3 flow over a sphere

 (a) Computed by FC-IBM (b) Computed by LDFD method

Figure 6.12 Mach number contours for Mach 3 flow over a sphere

3M∞ =

A B

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

170

6.4.2 Supersonic flow over 3D objects

In the previous subsection, shock propagation over a simple spherical surface

is simulated. To demonstrate the capability of the developed adaptive-

immersed boundary solver in handling 3D complex boundaries, supersonic

flows over a 3D aircraft head and an Apollo-shaped re-entry vehicle are

simulated using the adaptive LDFD method, as this method demonstrates to be

more robust and accurate. The geometry and the surface meshes of the aircraft

head and the re-entry vehicle are plotted in Figure 6.13 (the outer surfaces of

the aircraft head and the re-entry vehicle are represented by triangular mesh

cells generated in Gambit.) The computational domain is 3D box which covers

the boundary surfaces completely.

Figure 6.13 Geometry and surface meshes on 3D aircraft head and an
Apollo-shaped re-entry vehicle

Firstly, supersonic flow at Mach number 2 and the angle of attack AoA=20°

over an aircraft head is computed. The case is an extension of the 2D

supersonic flow over a double-ellipse structure presented in Chapters 4 and 5.

In order to compare and validate the current solver, the supersonic flow with

same surface meshes on the aircraft head, same domain size and same flow

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

171

conditions is solved using Fluent solver based on tetrahedral meshes. The

symmetrical modeling is applied for this study in reducing the computational

demand. The meshes on the aircraft head structure and the symmetrical plane,

and the computational domain are plotted in Figure 6.14 (a) and (b) for the

current solver and Fluent solver, respectively.

Figure 6.14 Pressure contours for 3D supersonic flows over an aircraft head
with M=2, AoA=20°

2M = , 20AoA = °

(a) 3D domain and Cartesian
mesh for the current solver

(b) 3D domain and tetrahedral
mesh for Fluent solver

(c) Pressure contour computed
by the current solver

(d) Pressure contour computed
by Fluent solver

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

172

The computed pressure contours are plotted on the central surface of the

domain and the aircraft body, as shown in Figure 6.14 (c) and (d) for the

current solver and Fluent solver, respectively. The bow shock structure

captured by the current solver agrees well with that computed by Fluent solver.

Another test case is to simulate the supersonic flow over an Apollo-shaped re-

entry vehicle. The free stream incoming flow is at Mach number 2.5 and with

two angle of attack AoA=0° and 20°. To demonstrate the capability of the

present method in dealing with different immersed wall boundaries, the free

stream incoming flow is fixed at 2.5M∞ = along the positive X direction and

the flow condition at AoA=20° is achieved by rotating the re-entry vehicle

surface by 20 degrees along +Z direction. Because there is no change for the

computational domain and the 3D Cartesian meshes, no additional work is

required for the solver in simulating the flows at AoA=0° and AoA=20°. The

influence of the re-entry vehicle body introduced into the domain will be

enforced according to the actual vehicle surface and its boundary location.

The computed pressure contours are plotted on the central surface of the

domain and the re-entry vehicle body, as shown in Figure 6.15 (a) and (b) for

AoA=0° and AoA=20°, respectively. It can be seen that the bow shock in front

of the vehicle is captured and adapted to the different angle of attack. The

shock waves predicted by the present solver are comparable to the numerical

results obtained on body-fitted grids by Marcy [61] as shown in Figure 6.15 (c)

and (d).

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

173

Figure 6.15 Pressure contours for 3D supersonic flow over an Apollo-
shaped re-entry vehicle with M=2, AoA=0° and 20°

6.4.3 Supersonic flow over a 3D space vehicle

In the previous two numerical test cases, supersonic flows over an aircraft

head and an Apollo-shaped re-entry vehicle are computed. The geometry of

the aircraft head and the re-entry vehicle is considered to be bluff body, which

M∞
 M∞

(a) 3D flow over a re-entry vehicle
at Mach number 2.5, AoA=0°.

(b) 3D flow over a re-entry vehicle
at Mach number 2.5, AoA=20°.

(c) Mach number 2.5, AoA=0° [61]. (d) Mach number 2.5, AoA=20° [61].

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

174

is relative simple. In this test case, supersonic flow over a full three-

dimensional space vehicle, including a craft body and a pair of wings, will be

studied using the current solver. As the thickness of the wings is about 2% of

the full dimension of the space vehicle, finer mesh resolution is required to

resolve the thin geometry structure of wings accurately. This is a challenging

case as the size of the 3D problem will become relatively large. To compare

and validate the current solver, an identical numerical model is created with

unstructured tetrahedral meshes and the flow is solved by Fluent solver with

same flow and boundary conditions.

The computational domain and mesh for the current solver and Fluent solver is

shown in Figure 6.16 (a) and (b), respectively. The flow condition is defined

with the free stream incoming flow at Mach number 2.0 and the angle of

attack at zero degree. The computed pressure contours on the surface of the

space vehicle and the middle symmetrical plan are plotted in Figure 6.16 (c)

and (d) for the current solver and Fluent solver. The plots show that similar

flow pattern is obtained from the current solver and Fluent solver, which is

illustrated by the bow shock wave (indicated as solid-line arrow) predicted in

front of the space vehicle and the weak oblique shock wave (indicated as

dotted-line arrow) captured near the cockpit window. The pressure distribution

on the space vehicle surface and the middle symmetrical plan is plotted in

Figure 6.16 (f). The results also show that the pressure distribution obtained by

the current solver and Fluent solver match accurately well. This demonstrates

the current solver’s capability in solving flows over complex 3D structures.

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

175

X

P

0 1 2 3 4 5 6-1

0

1

2

3

4

5

6
Current, LDFD
Fluent

Figure 6.16 Computed results for supersonic flow over a 3D space vehicle
with M=2, AoA=0°

(a) 3D domain and Cartesian
mesh for the Current solver

(b) 3D domain and tetrahedral
mesh for Fluent solver

(c) Pressure contour computed
by the Current solver

(d) Pressure contour computed
by Fluent solver

(f) Pressure distribution on the space vehicle surface and the symmetrical plan

Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method

176

6.5 Conclusions

The 3D adaptive Euler solver is developed using the same approach as that for

the 2D adaptive Euler solver. The FC-IBM and LDFD method proposed in

Chapters 4 and 5 are implemented in the 3D adaptive solver to enforce the

boundary condition on wall boundary which is represented by 3D triangular

surface segments.

The accuracy of the 3D adaptive solver is validated and the performance of the

solver is benchmarked. The results show that the adaptive solver is able to

achieve finer mesh solution efficiently with better accuracy, in particular when

higher level of adaption is used. The FC-IBM and LDFD implementation on

the 3D adaptive Euler solver is validated by the 3D supersonic flow over a

sphere. The results show good agreement with the reference data. Supersonic

flows over an aircraft head, an Apollo-shape re-entry vehicle and a space

vehicle with a pair of wings have been simulated by the LDFD method. The

results demonstrate that the method is accurate and robust, and is a good

potential tool for the application to solve such kind of supersonic flows over

complex geometry.

Chapter 7 Development of Adaptive Viscous Solver for Laminar Flows

177

Chapter 7 Development of Adaptive
Viscous Solver for Laminar Flows

Since Peskin first introduced the immersed boundary method to simulate the

complex geometry-fluid interactions on a fixed Cartesian mesh ([20], [21]),

significant efforts have been made to refine this method. Though the current

work was initiated with the objective to solve compressible inviscid flows, the

developed adaptive solver and the proposed IBM implementation can be easily

modified to solve viscous flows in laminar condition with minor effort.

7.1 Laminar viscous flow solver

The dimensionless, two-dimensional compressible Navier-Stokes equations in

the conservative form are given as below using the far field reference Mach

number and Reynolds number.

.
Re

v vM F GU F G
t x y x x

γ ∞

∞

 ∂ ∂∂ ∂ ∂
+ + = + ∂ ∂ ∂ ∂ ∂ 

 (7.1)

Compared to the Euler equations in Chapter 2, the viscous stresses on the right

side of the equation need to be included in the solver for viscous flows. The

viscous stresses are given by

00

, .
xyxx

v v
xy yy

xx xy x xy yy y

F G

u v q u v q

ττ
τ τ
τ τ τ τ

  
  
  = =   
  

+ − + −     

 (7.2)

Chapter 7 Development of Adaptive Viscous Solver for Laminar Flows

178

With the Stokes hypothesis, 2
3

λ µ= − , the dimensionless stress tensor and

heat flux vector q are given by

2 22 2 ,
3 3xx

u u v u v
x x y x y

τ
   ∂ ∂ ∂ ∂ ∂

= − + = −   ∂ ∂ ∂ ∂ ∂   
 (7.3)

2 22 2 ,
3 3yy

v u v v u
y x y y x

τ
   ∂ ∂ ∂ ∂ ∂

= − + = −   ∂ ∂ ∂ ∂ ∂   
 (7.4)

,xy yx
u v
y x

τ τ
 ∂ ∂

= = + ∂ ∂ 
 (7.5)

() ()1 1, .
1 Pr 1 Prx y

p p
q q

x y
ρ ργ γ

γ γ
∂ ∂

= =
− ∂ − ∂

 (7.6)

The Reynolds number (Re), Prandtl number (Pr) and Mach number (M∞) used

for the dimensionalization of Navier-Stokes equations are defined as

Re , Pr , .PU d C UM
K c

ρ µ
µ
∞ ∞

∞= = = (7.7)

Here, U∞ is the far field reference velocity, d is reference length, ρ is density,

µ is the molecular viscosity, pC is the heat capacity, K is the conductivity, and

c is the sound speed.

For the viscous solver, the inviscid flux on the cell interface is still calculated

following the HLLC scheme as described in Chapter 2. The viscous flux on

the cell interface is calculated via the central difference scheme using the first

order derivatives computed on the cell centers.

Chapter 7 Development of Adaptive Viscous Solver for Laminar Flows

179

()

,

1 ,
2

00

.
Re

L R
viscous v v

xyxxL R
v x y

xy yy

xx xy x xy yy y

f f f

Mf n n

u v q u v q

ττγ
τ τ
τ τ τ τ

∞

∞

= +

   
   
   = +       + − + −      

 (7.8)

And the solution evolution in time domain is

()1 .n n
c c invscid viscous i ii

c

tU U f f l n
A

+ ∆
= − − ⋅∑

  (7.9)

7.2 IBM implementation for viscous flows

The flux correction-based immersed boundary method (FC-IBM) proposed in

Chapter 4 for inviscid flows will be modified to enforce wall boundary

condition in the current laminar viscous flow solver, due to its simple and ease

in the actual implementation and other successful implementation of IBM for

incompressible viscous flows. For viscous flows, the no-slip condition may be

the most commonly used boundary condition. The no-slip boundary condition

indicates that both X and Y velocity components of fluid at the solid surface

must be the same as that of the solid boundary. Compared to the no-

penetration condition for inviscid flows, there is no need to perform the

velocity transformation to obtain the normal velocity on the boundary. The

target of the velocity correction is to satisfy both X and Y velocity

components on the boundary to be zero for stationary boundary, thus the no-

slip condition will be enforced and satisfied.

Chapter 7 Development of Adaptive Viscous Solver for Laminar Flows

180

In the current method, the velocity correction is performed via an iterative

method similar to that described in Chapter 4. Because the implementation

process of the no-slip condition for X direction velocity component (u) and Y

direction velocity component (v) is the same, the detailed process is only

illustrated for the velocity (u) in X direction. Assuming that the boundary

velocity is known as (0
wu , 0

wv), the velocity correction procedures are:

1) Using the delta function to compute the velocity on the boundary from

the nearby shadow cells: ()*
,w i i ju u D= ⋅∑ .

2) Setting the velocity correction as ()0 *
w w wu u uδ = − , as the computed

velocity *
wu may not equal to the velocity (0

wu) of boundary.

3) Distributing the velocity correction on the boundary back to the nearby

shadow cells via the delta function and obtaining the corrected velocity

on the shadow cells as: ()*
,i i w j iu u u Dδ= + ⋅∑ .

4) Using the corrected velocity on cells to repeat steps 1) to 3) until the

no-slip condition is satisfied when the velocity correction on the

boundary is within the required criteria ε, e.g. 0 *
w w wu u uδ ε= − ≤ .

When the boundary condition is satisfied through the above iterative

procedure, the effective velocity correction on an individual cell near the

boundary is

()0 * .i i iu u uδ = − (7.10)

Chapter 7 Development of Adaptive Viscous Solver for Laminar Flows

181

As derived by Wu and Shu [32], the force exerted on the solid body can be

computed via the integration of the velocity correction iuδ on all cells, of

which the velocity is corrected.

() ,i
Solid i

i

uF dx dy
t

δρ
δ

Ω   = × ⋅    
∑ Ω ∈ {all the shadow cells}. (7.11)

As the current solver is a compressible flow solver, so the fluid density at the

cell center is used in the force computation. Although the force calculated by

equation (7.11) is the force exerted on the fluid, it is equivalent of the force

exerted onto the boundary of the immersed solid in the opposite direction due

to Newton’s third law of motion.

7.3 Numerical tests

The flow past a circular cylinder is chosen as the validation case for the

current laminar flow solver. As a classic problem this flow has been studied

extensively, and there are many theoretical, experimental and numerical data

available in the literature for comparison. Another validation case to be

simulated in this subsection is the laminar flow over a NACA0012 airfoil. The

pressure distribution on the airfoil surface will be compared for accuracy

analysis.

7.3.1 Flow over a circular cylinder

Reynolds (Re) number is typically used to classify the flow behaviors for

numerical studies of flow over a circular cylinder. The Re in this analysis is

Chapter 7 Development of Adaptive Viscous Solver for Laminar Flows

182

determined by the reference free stream velocity (U∞), the diameter (D) of the

cylinder and the dynamic viscosity (ν) of the fluid by

Re .U D
ν
∞= (7.12)

The laminar flows are studied numerically at four different Reynolds numbers:

20, 40, 100 and 200. The flow characteristic at Re of 20 and 40 is dominated

by a pair of symmetrical and stationary recirculation vortices behind the

cylinder. At the relative higher Re of 100 and 200, the flow characteristic is

dominated by a repeating pattern of swirling vortices downstream of the

cylinder, which is well-known as the Kármán vortex street.

The flow conditions for this study are

1.4, 1, 0.1, 0.1, 1.p U M Dρ ∞ ∞= = = = = (7.13)

The computational domain is 40D×40D with coarse uniform mesh at 200×200,

and the flow is from left to right in X direction. The finest meshes are

clustered around the cylinder via the adaption technique developed in the

current solver to increase the mesh resolution locally. Adaptive mesh

refinement is performed based on the magnitude of the vorticity in order to

improve the solution accuracy in the recirculation region behind the cylinder

and the swirling vortices downstream.

The drag force introduced by the cylinder can be calculated based on the

velocity correction on all shadow cells in X direction.

Chapter 7 Development of Adaptive Viscous Solver for Laminar Flows

183

() ,i
D i

i

uF dx dy
t

δρ
δ

Ω   = × ⋅    
∑ Ω ∈ {all the shadow cells}. (7.14)

And then the drag coefficient (dC) is derived as

() 2 .
1 2

D
d

FC
U Dρ∞ ∞

= (7.15)

Similarly, the lift force (LF) introduced by the cylinder and the lift force

coefficient (lC) can be calculated based on the velocity correction on all

shadow cells in Y direction.

() ,i
L i

i

vF dx dy
t

δρ
δ

Ω   = × ⋅    
∑ Ω ∈ {all the shadow cells} (7.16)

() 21 2
L

l
FC

U Dρ∞ ∞

= (7.17)

Besides the drag coefficient (dC), the recirculation length (L) and the flow

separation angle (θ), as shown in Figure 7.1, are often used for comparison

and accuracy analyses.

As the Mach number for this test case is 0.1M∞ = , air can be considered as

incompressible fluid. Hence the results can be compared and validated by the

numerical results obtained via those incompressible flow solvers. At low Re

numbers of 20 and 40, the drag coefficient (dC), the recirculation length (L)

and the flow separation angle (θ) computed by the present solver are

compared with the data available in the literature. The details are tabulated in

Chapter 7 Development of Adaptive Viscous Solver for Laminar Flows

184

Table 7.1. It can be seen that the current results agree well with the numerical

results obtained from other IBM implementations for this problem. At the

condition of Re=20, the drag coefficient obtained by the current solver is

2.11~2.12, which matches well to other numerical results in the range of

2.0~2.152. At the condition of Re=40, the drag coefficient obtained by the

current solver is about 1.58~1.59, which matches well to other numerical

results in the range of 1.498~1.59 as well. In general, the recirculation length

and the separation angle also match well with other numerical results as well

for both Re numbers of 20 and 40.

Figure 7.1 Flow characteristics of the flow over a circular cylinder

Streamlines obtained around the circular cylinder at Re=20 and 40 are plotted

in Figure 7.2 (a) and (b), respectively. No-penetration of streamlines is

observed in the fluid domain outside the cylinder and also inside the cylinder,

which indicates the no-penetration boundary condition is well satisfied. It

agrees well with the results obtained by Wu and Shu [32] using the IVC-IBM

for incompressible flows.

Chapter 7 Development of Adaptive Viscous Solver for Laminar Flows

185

Case References Cd 2L/D θ

Re=20 Wu & Shu [32] 2.091 1.86 -

 Taira et al. [62] 2.06–2.07 1.88-1.94 43.3°-44.1°

 Others [22], [68] 2.0–2.152 1.82-1.88 43.3°-45.0°

 Present
 coarse mesh (1/40)
 fine mesh (1/80)

2.12
2.11

1.98
1.857

43.2°
43.3°

Re=40 Wu & Shu [32] 1.565 4.62 -

 Taira et al. [62] 1.54-1.55 4.6-4.66 53.7°-54.1°

 Others [22], [68] 1.498–1.59 4.26-4.69 53.6°-54.1°

 Present
 coarse mesh (1/40)
 fine mesh (1/80)

1.58
1.59

4.47
4.49

53.2°
53.1°

Table 7.1 Comparison of drag coefficient dC , recirculation length L and
flow separation angle θ for steady-state laminar viscous flow over a circular
cylinder at Re=20 and 40.

 (a) Re=20 (b) Re=40

Figure 7.2 Computed streamlines for the flow over a circular cylinder

When Re increases, a repeating flow pattern of swirling vortices downstream

of the cylinder is developed. This is the well-known Kármán vortex street. The

flow pattern under this condition is asymmetrical and repeated periodically.

Chapter 7 Development of Adaptive Viscous Solver for Laminar Flows

186

Table 7.2 presents the current results obtained at Re of 100 and 200 with the

drag coefficient, lift coefficient and Strouhal number (St) and the comparison

with other numerical results. The Strouhal number is a dimensionless number

describing oscillating flow pattern such as the Kármán vortex street for this

study and is defined as

.Tf DSt
U∞

= (7.18)

The Tf in the above equation is the frequency of the periodic flow pattern.

From the results listed in Table 7.2, it is observed that the average drag

coefficient computed via the current compressible flow solver in general

agrees well with other numerical predictions ([24], [32], [69]-[71]). The

present average drag coefficient is 1.38 for Re=100 and 1.36 for Re=200. The

values are in the high band among the published numerical results of

1.329~1.384 for Re=100 and 1.19~1.4 for Re=200. The computed magnitude

of the lift coefficient has the similar tendency and is also in the high band

among the published numerical data. The computed Strouhal number is 0.161

for Re=100 and 0.187 for Re=200, which are in good agreement with

published results, ranging from 0.142~0.18 for Re=100 and 0.163~0.211 for

Re=200. The comparison implies that the current solver can predict the

unsteady-state periodic flows accurately.

The computed streamlines, drag coefficient and lift coefficient versus time are

plotted in Figure 7.3. The contours of vorticity and the solution-adapted

Chapter 7 Development of Adaptive Viscous Solver for Laminar Flows

187

meshes are plotted in Figure 7.4. The plots demonstrate clear periodicity of

the flow pattern of the Kármán vortex street downstream of the cylinder and

the benefit of using solution adaptation solver for such kind of unsteady-state

flow study. In the plots of vorticity contours, Figure 7.4 (a), the dotted-lines

and the solid-lines denote the negative and positive levels of vorticity,

respectively. The corresponding solution adapted meshes are plotted in Figure

7.4 (b). It is observed that finer meshes are adapted to the vortices closely.

Case References Cd (average) Cl St

Re=100 Wu & Shu [32] 1.364 ±0.35 0.163

 Lai & Peskin [24] 1.447, 1.463 ±0.33 0.144, 0.165

 Others [69]-[71] 1.325~1.384 ±(0.25~0.339) 0.142~0.18

 Present 1.38 ±0.354 0.161

Re=200 Wu & Shu [32] 1.349 ±0.72 0.193

 Lai & Peskin [24] - - 0.163, 0.190

 Liu et al. [71] 1.31 ±0.69 0.192

 Others [69]-[71] 1.19~1.4 ±(0.5~0.69) 0.163~0.211

 Present 1.36 ±0.688 0.187

Table 7.2 Comparison of drag coefficient dC , lift coefficient lC and
Strouhal number St for unsteady-state laminar viscous flow over a circular
cylinder at Re=100 and 200.

Chapter 7 Development of Adaptive Viscous Solver for Laminar Flows

188

(a) Streamlines

 Time

C
d C
l

0 5 10 15 201.25

1.3

1.35

1.4

1.45

-1

-0.5

0

0.5

1

1.5

2

2.5

Cd plot
Cl plot

 Time

C
d C
l

0 5 10 15 201

1.1

1.2

1.3

1.4

1.5

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Cd plot
Cl plot

 (b) Drag and lift coefficients versus time

Figure 7.3 Computed results of streamlines, drag and lift coefficient
profile for the flow over a circular cylinder at Re=100 and 200

Re=100

Re=200

Re=100 Re=200

Chapter 7 Development of Adaptive Viscous Solver for Laminar Flows

189

(a) Contours of vorticity

(b) Solution-adapted meshes.

Figure 7.4 Computed results of vorticity contours and adapted meshes for
the flow over a circular cylinder at Re=100 and 200

Re=100

Re=200

Re=100

Re=200

Chapter 7 Development of Adaptive Viscous Solver for Laminar Flows

190

7.3.2 Flow over a NACA0012 airfoil

The second validation case for the current viscous adaptive solver is to

simulate the flow over a NACA0012 airfoil. Flow structures in two different

conditions are computed. The first case is defined with the Reynolds number

at Re=500, the free steam velocity U∞ =0.1 and the reference Mach

number M∞ =0.1, and the angle of attack AoA=0°. The flow condition for the

second case is the Reynolds number at Re=500, the free steam velocity

U∞ =0.8 and the reference Mach number M∞ =0.8, and the angle of attack

AoA=10°. The chord size of the airfoil is c=1 and the head is located at the

center of the domain. The computational domain is 40c×40c with coarse

uniform mesh of 200×200. To resolve the thin geometry of the airfoil

accurately, finer meshes are clustered around the airfoil surface. Figure 7.5

shows the configuration of the computational domain for this study and the

clustered mesh distribution near the airfoil. Because the changes of flow are

not so great on the cells far away from the airfoil, lower level adaption is used

to refine those mesh cells based on the vorticity of flow.

For the first case study with the flow condition of Re 500= , 0.1U∞ = ,

0.1M∞ = , and 0AoA = ° , the computed results of the pressure coefficient on

the airfoil surface and the streamlines superimposed on the pressure contours

are presented in Figure 7.6. The results compare well with the numerical

results obtained via the velocity correction-based IBM for incompressible

flows by Wu and Shu [32]. To be specific, the drag coefficient computed by

the current solver is 0.1761dC = , which agrees closely with the drag

Chapter 7 Development of Adaptive Viscous Solver for Laminar Flows

191

coefficient 0.1759dC = predicted by Wu and Shu [32].

For the second case study with the flow condition of Re 500= , 0.8U∞ = ,

0.8M∞ = , and 10AoA = ° , the computed results of the pressure coefficient on

the airfoil surface and the streamlines superimposed on the pressure contours

are presented in Figure 7.7. The current result is compared with the published

numerical results obtained by Jahangirian and Hashemi [13]. The pressure

coefficient profile predicted on the airfoil surface agrees well with the

numerical results. To be specific, the current drag force coefficient predicted is

0.479, which matches fairly to their result of 0.475. The separation point for

this flow above the airfoil is at about 37.5% in the chord-wise direction, which

is also in good agreement with their results of 37% with maximum error of 1%.

The results computed for both cases of flow over a NACA0012 airfoil

demonstrate that the current adaptive viscous solver is accurate and efficient

for flow simulations over streamlined geometry like airfoil in different flow

conditions. Other flow conditions, such as various Reynolds numbers,

different angle of attack, multiple element airfoils, and moving airfoil can be

studied easily using the current viscous solver with its specific features of

solution adaption and ability in handling immersed wall boundary.

Chapter 7 Development of Adaptive Viscous Solver for Laminar Flows

192

Figure 7.5 Configuration of flow over NACA0012 airfoil and clustered
mesh near the airfoil

Figure 7.6 Computed pressure coefficient, pressure contours and
streamlines for NACA 0012 airfoil at 0.1, Re 500, 0M AoA∞ = = = °

X

C
p

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

Ref Data [13]
Current

Figure 7.7 Computed pressure coefficient, pressure contours and
streamlines for NACA 0012 airfoil at 0.8, Re 500, 10M AoA∞ = = = °

Incoming flow

Y

X

40c

c

40c

O

Chapter 7 Development of Adaptive Viscous Solver for Laminar Flows

193

7.4 Conclusions

With the viscous stresses considered, the present 2D adaptive Euler solver is

extended to solve laminar viscous flows easily. The fluxes contributed by the

viscous stresses are computed using central difference scheme. Because no-

slip condition is defined for wall boundary in viscous flows, the IBM

implementation is achieved easily by correcting the velocity field near the

boundary to satisfy zero velocity condition for stationary boundary.

The laminar viscous solver is validated by simulating laminar flow over a

circular cylinder in steady-state condition at Re=20 and 40, and also unsteady-

state condition with Re=100 and 200. Another test case is to simulate the flow

over a NACA0012 airfoil at Re=500 with different Mach number and angle of

attack. Current results agree fairly well with other numerical results. The

validation shows that the current viscous solver can be used for simulation of

laminar viscous flows under various wall boundaries and flow conditions.

Chapter 8 Conclusions and Recommendations

194

Chapter 8
Conclusions and Recommendations

8.1 Conclusions

In this thesis, novel simulation techniques, namely a flux correction-based

immersed boundary method (FC-IBM), a modified local domain-free

discretization method (LDFD) and a local DFD-based immersed boundary

method (LDFD-IBM), were introduced and investigated to simulate

compressible inviscid flows in a Cartesian grid-based adaptive Euler solver.

For the first time, we are able to implement the widely adopted IBM concept

for incompressible flows to solve compressible inviscid flows. The three new

methods have been validated and tested comprehensively in the present 2D

adaptive Euler solver. The FC-IBM and LDFD method have been investigated

in the extended 3D adaptive Euler solver as well. Validation and numerical

test results clearly demonstrate the good potential in practical application to

solve 3D compressible inviscid flows with complex boundaries. Some

conclusions are drawn from the present study.

8.1.1 Development of adaptive Euler solver

An adaptive Euler solver was developed with the finite-volume discretization

on Cartesian grid. The HLLC scheme is used to compute the flux on cell

interface and six second-order flux schemes were implemented and studied.

The adaptive mesh refinement (AMR) technique is an important and useful

Chapter 8 Conclusions and Recommendations

195

tool implemented on the present Euler solver. The ghost-cell method was

adopted and integrated with the developed adaptive Euler solver to validate

and benchmark against the adaptive solver. Through the validation studies, it

has been demonstrated that the present adaptive Euler solver is accurate,

efficient and robust in simulating compressible flows with strong and weak

shock waves. The adaptive solver has built a concrete platform to this study.

8.1.2 Implementation of FC-IBM

A novel FC-IBM was proposed based on the notion that a wall boundary shall

satisfy the conditions of no-penetration, zero mass flux and zero energy flux.

In the FC-IBM implementation, the first condition is enforced by velocity

correction while the remaining two conditions by a flux correction method.

The advantage of the FC-IBM is that it avoids the tedious process to compute

the boundary curvature and to identify the cells are in either fluid domain or

solid domain. This makes the method be unique and simple in the

implementation.

The FC-IBM has been implemented and integrated with the developed 2D

adaptive Euler solver. It has been validated and studied through the

simulations of supersonic flows over a circular cylinder, a wedge and a

double-ellipse structure, transonic and subsonic flows over a NACA0012

airfoil. The results obtained from the new method agree well with the

available literature data; however, some numerical viscosity was observed and

may affect the eventual solution, especially in the presences of weak

convection and small reverse pressure gradient.

Chapter 8 Conclusions and Recommendations

196

8.1.3 Implementation of LDFD and LDFD-IBM

A modified local LDFD (LDFD) method was implemented in the developed

adaptive Euler solver. The concept of LDFD for 2D flows is that the wall

boundary condition can be enforced by correcting the flow information on the

solid cells (DFD cells) next to the boundary in X direction and Y direction

directly for 2D flows. Because the DFD cells near the boundary can be

identified easily in X and Y directions, the method is simple to implement.

The LDFD-based immersed boundary method (LDFD-IBM) was proposed to

make the implementation simpler by avoiding the need to identify the solid

DFD cells and fluid DFD cells.

Validation and numerical tests for supersonic, hypersonic and transonic flows

proved that both methods can handle simulations of various compressible

inviscid flows. In particular, the LDFD has been demonstrated to be more

accurate and robust. The successful numerical tests for subsonic flow and

transonic flow over two different two-element airfoils by LDFD method

clearly demonstrated the potential of this tool for the simulation of

compressible inviscid flows with complex boundaries.

8.1.4 Development of 3D adaptive Euler solver

The 3D adaptive Euler solver was successfully developed in the platform of

2D adaptive solver. The proposed immersed boundary methods, FC-IBM and

LDFD, were implemented and integrated with the 3D adaptive solver. Because

of the high demand for longer computing time and the increasing complexity

for boundary recognition and implementation, the present 3D adaptive solver

Chapter 8 Conclusions and Recommendations

197

with FC-IBM and LDFD have been validated and benchmarked primarily with

supersonic flows over bluff body wall boundaries and complex 3D space

vehicle consisting of curved body and wings. The results have been compared

and validated with Fluent solver. The validation results and the benchmark

performance demonstrated to certain extent the viability of the solver and the

proposed methods for compressible inviscid flows.

8.1.5 Application for laminar viscous flow

The adaptive Euler solver has been extended to simulate laminar viscous flows

simply by considering the flux contribution from the viscous stresses. Minor

effort is required to convert the inviscid Euler solver to a laminar viscous flow

solver. The FC-IBM was simply modified to enforce the no-slip boundary

condition for viscous flows. Simulation of laminar viscous flows over a

circular cylinder and a NACA0012 airfoil gave rise to an accurate derivation

of the viscous solver in simulating steady-state and unsteady-state flows.

8.2 Recommendation for future works

Further studies and possible improvements under consideration on the

proposed immersed boundary methods, FC-IBM, LDFD and LDFD-IBM, for

compressible inviscid flow simulation using the developed Cartesian-grid

based adaptive solver include:

• The study of the numerical viscous effect introduced during the

implementation of FC-IBM. Because the delta function interpolation

Chapter 8 Conclusions and Recommendations

198

only offers the first-order accuracy, there is a possibility that the

numerical viscous effect may be introduced during the interpolation

process for the computation of the flux and normal velocity on the

wall boundary. Interesting conclusions may surface from higher-order

interpolation methods.

• The implementation and study of other boundary conditions and their

impact. In compressible inviscid flows, the choice of conditions for

wall boundary is not limited to those used in this study. Other

conditions such as constant enthalpy and adiabatic wall can be

implemented as well for comparative studies.

• The improvement and enhancement of the implementation of the FC-

IBM and LDFD method in 3D solver. The 3D adaptive solver can be

extended to simulate more challenging 3D flows with complex

boundaries, such as that of an airfoil wing, a space shuttle and even an

entire aircraft.

• The improvement and enhancement of the adaptive viscous flow solver

for the application of unsteady state flows with moving boundaries.

• The parallelization of the 3D solver by making use of the multiple core

computing facilities. Naturally, the availability of multiple-core

computers can greatly enhance the performance and efficiency of the

3D adaptive solver introduced here.

Bibliography

199

Bibliography

[1]. M.J. Aftosmis. Solution adaptive Cartesian grid methods for

aerodynamics flows with complex geometries. von Karman Institute

for Fluid Dynamics, March 1997, Lecture series, 1997-02.

[2]. W.J. Coirier and K.G. Powell. An accuracy assessment of Cartesian-

Mesh approaches for the Euler equations. Journal of Computational

Physics, Volume 117, (1995), 121-131.

[3]. R.B. Pember, J.B. Bell, P. Colella, W.Y. Crutcheield and M. L.

Welcome. An adaptive Cartesian grid method for unsteady

compressible flow in irregular regions. Journal of Computational

Physics, Volume 120, (1995), 278-304.

[4]. D.D. Zeeuw and K.G. Powell. An adaptively refined Cartesian mesh

solver for the Euler equations. Journal of Computational Physics,

Volume 104, (1993), 58-68.

[5]. H. Forrer and R. Jeltsch. A higher-order boundary treatment for

Cartesian-grid methods. Journal of Computational Physics, Volume

140, (1998), 259-277.

[6]. A. Dadone and B. Grossman. Ghost-cell method for inviscid two-

dimensional flows on Cartesian grids. AIAA Journal, Volume 42,

(2004), 2499-2507.

[7]. A. Dadone and B. Grossman. Ghost-cell method for analysis of

inviscid three-dimensional flows on Cartesian-grids. Computers &

Fluids, Volume 36, (2007), 1513-1528.

Bibliography

200

[8]. A. Dadone and B. Grossman. Ghost-cell method with far field

coarsening and mesh adaptation for Cartesian grids. Computers &

Fluids, Volume 35, (2006), 676-687.

[9]. X. Jiang, Z. Chen and H. Li. Numerical investigation on the interaction

of cylinder and shockwave based on the immersed boundary method.

Modern Physics Letters B. Volume 23, (2009), 317-320.

[10]. J. Liu, N. Zhao and O. Hu. The ghost cell method for inviscid

compressible flow on adaptive tree Cartesian grids. AIP Conference

Proceedings. The 2nd International ISCM Symposium and the 12th

International EPMESC Conference, (2010), 759-763.

[11]. H. Luo, J.D. Baum and R. Löhner. A hybrid Cartesian grid and gridless

method for compressible flows. Journal of Computational Physics,

Volume 214, (2006), 618-632.

[12]. X. Liang and G. Yang. Euler solution using adaptive Cartesian grid

with a gridless boundary treatment. Acta Mechanica Sinica. Volume

25, (2009), 187-196.

[13]. A. Jahangirian and M.Y. Hashemi. Adaptive Cartesian Grid with

mesh-less zones for compressible flow calculations. Computers &

Fluids, Volume 54, (2012), 10-17.

[14]. C. Shu and L.F. Fan. A new discretization method and its application

to solve incompressible Navier-Stokes equation. Computational

Mechanics, Volume 27, (2001), 292-301.

[15]. C. Shu and Y.L. Wu. Domain-free discretization method for doubly

connected domain and its application to simulate natural convection in

eccentric annuli. Computer Methods in Applied Mechanics and

Bibliography

201

Engineering. Volume 191, (2002), 1827-1841.

[16]. C. Shu and Y.L. Wu. Adaptive mesh refinement-enhanced local DFD

method and its application to solve Navier-Stokes equations.

International Journal for Numerical Methods in Fluids, Volume 51,

(2006), 897-912.

[17]. Y.L. Wu and C. Shu. Application of local DFD method to simulate

unsteady flows around an oscillating circular cylinder. International

Journal for Numerical Methods in Fluids, Volume 58, (2008), 1223-

1236.

[18]. C.H. Zhou, C. Shu and Y.Z. Wu. Extension of domain-free

discretization method to simulate compressible flows over fixed and

moving bodies. International Journal for Numerical Methods in

Fluids. Volume 53, (2007), 175-199.

[19]. C.H. Zhou and C. Shu. A local domain-free discretization method to

simulate three-dimensional compressible inviscid flows. International

Journal for Numerical Methods in Fluids. Volume 61, (2009), 970-

986.

[20]. C.S. Peskin. Flow patterns around heart valves: a numerical method.

Journal of Computational Physics, Volume 10, (1972), 252-271.

[21]. C.S. Peskin. A numerical analysis of blood flow in the heart. Journal

of Computational Physics, Volume 25, (1977), 220-252.

[22]. C. Shu, N. Liu and Y.T. Chew. A novel immersed boundary velocity

correction-lattice Boltzmann method and its application to simulate

flow past a circular cylinder. Journal of Computation Physics, Volume

226, (2007), 1607-1622.

Bibliography

202

[23]. D. Goldstein, R. Hadler and L. Sirovich. Modeling a no-slip flow

boundary with an external force field. Journal of Computational

Physics. Volume 105, (1993), 354-366.

[24]. M. Lai and C.S. Peskin. An immersed boundary method with formal

second-order accuracy and reduced numerical viscosity. Journal of

Computational Physics. Volume 160, (2000), 705-719.

[25]. M.N. Linnick and H.F. Fasel. A high-order immersed interface method

for simulating unsteady incompressible flows on irregular domains.

Journal of Computational Physics. Volume 204, (2005), 157-192.

[26]. J. Deng, X.M. Shao and A.L. Ren. A new modification of the

immersed-boundary method for simulating flows with complex

moving boundaries. International Journal for Numerical Methods in

Fluids, Volume 52, (2006), 1195–1213.

[27]. Y. Sui, Y.T. Chew, P. Roy and H.T. Low. A hybrid immersed-

boundary and multi-block lattice Boltzmann method for simulating

fluid and moving-boundaries interactions. International Journal for

Numerical Methods in Fluids, Volume 53, (2007), 1727-1754.

[28]. X. Shi and S. P. Lim. A LBM-DLM/FD method for 3D fluid-structure

interactions. Journal of Computational Physics, Volume 226, (2007),

2028-2043.

[29]. I. Borazjani, L. Ge and F. Sotiropoulos. Curvilinear immersed

boundary method for simulating fluid structure interaction with

complex 3D rigid bodies. Journal of Computational Physics, Volume

227, (2008), 7587–7620.

[30]. D. Pan and T.T. Shen. Computation of incompressible flows with

Bibliography

203

immersed bodies by a simple ghost cell method. International Journal

for Numerical Methods in Fluids, Volume 60, (2008), 1378-1401.

[31]. J. Wu, C. Shu and Y. H. Zhang. Simulation of incompressible viscous

flows around moving objects by a variant of immersed boundary-

lattice Boltzmann method. International Journal for Numerical

Methods in Fluids, Volume 62, (2009), 327-354.

[32]. J. Wu and C. Shu. Implicit velocity correction-based immersed

boundary-lattice Boltzmann method and its application. Journal of

Computational Physics. Volume 228, (2009), 1963-1973.

[33]. C. Shu, N. Liu, Y.T. Chew and Z. Lu. Numerical simulation of fish

motion by using Lattice Boltzmann-immersed boundary velocity

correction method. Journal of Mechanical Science and Technology,

Volume 21, (2007), 1352-1358.

[34]. J. Wu and C. Shu. Numerical study of flow characteristics behind a

stationary circular cylinder with a flapping plate. Physics of Fluids,

Volume 23, (2011).

[35]. E.F. Toro. Riemann Solvers and Numerical Methods for Fluid

Dynamics – A Practical Introduction. 2nd Edition. Springer, (1999),

249-264.

[36]. H. Jun, S. Guo and Z. Yao. Solution to Euler equations by high-

resolution upwind compact scheme based on flux splitting.

International Journal for Numerical Methods in Fluids. Volume 56,

(2008), 2139-2150.

[37]. H.W. Zheng, C. Shu and Y.T. Chew. An object-oriented and

quadrilateral-mesh based solution adaptive algorithm for compressible

Bibliography

204

multi-fluid flows. Journal of Computational Physics, 227, (2008),

6895-6921.

[38]. C. Sun. Simulations of compressible flows with strong shocks by an

adaptive Lattice Boltzmann Model. Journal of Computational Physics.

Volume 161, (2000), 70-84.

[39]. Z.J. Wang and Y. Liu. The spectral difference method for the 2D Euler

equations on unstructured grids. AIAA paper 2005-5112, (2005).

[40]. P. Woodward and P. Colella. The numerical simulation of two-

dimensional fluid flow with strong shocks. Journal of Computational

Physics. Volume 54, (1984), 115-173.

[41]. R. Hillier. Computation of shock wave diffraction at a ninety degrees

convex edge. Shock Waves, Volume 1, (1991), 89-98.

[42]. G.H. Tu and X.J. Yuan. A characteristic-based shock-capturing scheme

for hyperbolic problems. Journal of Computational Physics. Volume

225, (2007), 2083-2097.

[43]. K. Qu. Development of Lattice Boltzmann method for compressible

flows. Ph.D Thesis, National University of Singapore. (2008).

[44]. M.R. Visbal and D.V. Gaitonde. Shock capturing using compact-

differencing-based methods. AIAA paper 2005-1265, 43rd AIAA

Aerospace Sciences Meeting and Exhibit, 10-13, January 2005, Reno,

Nevada, (2005).

[45]. H. Luo, J.D. Baum and R. Löhner. A fast, matrix-free implicit method

for compressible flows on unstructured grids. Journal of

Computational Physics, Volume 146, (1998), 664-690.

[46]. B. Sjögreen and N.A. Petersson. A Cartesian embedded boundary

Bibliography

205

method for hyperbolic conservation laws. Communications in

Computational Physics. Volume 2, (2007), 1199-1219.

[47]. C. Shu, H. Ding, H.Q. Chen and T.G. Wang. An upwind local RBF-

DQ method for simulation of inviscid compressible flows. Computer

Methods in Applied Mechanics and Engineering, Volume 194, (2005),

2001-2017.

[48]. D.W. Levy, K.G. Powell and B.V. Leer. Use of a rotated Riemann

solver for the two-dimensional Euler equations. Journal of

Computational Physics, Volume 106, (1993), 201-214.

[49]. P. Arminjon, M.C. Viallon and A. Madrane. A finite volume extension

of the Lax-Friedrichs and Nessyahu-Tadmor schemes for conservation

laws on unstructured grids. International Journal of Computational

Fluid Dynamics. Volume 9, (1997), 1-22.

[50]. S.J. Lee, B.G. Cho and I. Lee. Two-dimensional unsteady

aerodynamics analysis based on a multiphase perspective. Computers

& Fluids, Volume 53, (2012), 105-116.

[51]. H. Yoshihara and P. Sacher. Test cases for inviscid flow field methods.

AGARD AR-211, 1986.

[52]. B. Fiorina and S. K. Lele. An artificial nonlinear diffusivity method for

supersonic reacting flows with shocks. Journal of Computational

Physics, Volume 222, (2007), 246-264.

[53]. F. Bramkamp, Ph. Lamby and S. Müller. An adaptive multiscale finite

volume solver for unsteady and steady state flow computations.

Journal of Computational Physics. Volume 197, (2004), 460-490.

[54]. K.W. Morton and M.F. Paisley. A finite volume scheme with shock

Bibliography

206

fitting for the steady Euler equations. Journal of Computational

Physics. Volume 80, (1989), 168-203.

[55]. C.H. Liu and Y. Li. Turbulence modeling for computing viscous high-

Reynolds-number flows on unstructured meshes. Computer Methods in

Applied Mechanics and Engineering, Volume 190, (2001), 5325-5339.

[56]. URL online webpage: NLR 7301 Multi-Element Airfoil Calculation.

http://www.symscape.com/node/318#.UIqmDYbpUmc, last valid in Oct

2012.

[57]. AGARD-AR-303, A selection of experimental test cases for the

validation of CFD codes. NATO Advisory Group for Aerospace

Research and Development. 1994.

[58]. AGARD-AR-138, Experimental data base for computer program

assessment. NATO Advisory Group for Aerospace Research and

Development. 1979.

[59]. M. Lahooti and A. Pishevar. A new fourth order central WENO

method for 3D hyperbolic conservation laws. Applied Mathemaitcs and

Computation. Volume 218, (2012), 10258-10270. .

[60]. F. Rispoli, R. Saavedra, F. Menichini and T.E. Tezduyar. Computation

of inviscid supersonic flows around cylinders and spheres with the V-

SGS stabilization and YZβ shock-capturing. Journal of Applied

Mechanics. Volume 76, (2009), 021209-1~6.

[61]. J. Marcy. Computational fluid dynamics analysis of flow Over a re-

Entry vehicle. 46th AIAA Aerospace Sciences Meeting and Exhibit,

(2008), eSIBN: 978-1-62410-128-1.

[62]. K. Taira and T. Colonius. The immersed boundary method: A

Bibliography

207

projection approach. Journal of Computational Physics. Volume 225,

(2007), 2118-2137.

[63]. N. Ganesh, N.V. Shende and N. Balakrishnan. R-parameter: A local

truncation error based adaptive framework for finite volume

compressible flow solvers. Computers & Fluids, Volume 38, (2009),

1799-1822.

[64]. M.D. de Tullio, P. de Palma, G. Iaccarino, G. Pascazio and M.

Napolitano. An immersed boundary method for compressible flows

using local grid refinement. Journal of Computational Physics.

Volume 225, (2007), 2098-2117.

[65]. S.J. Lee, B.G. Cho and I. Lee. Two-dimensional unsteady

aerodynamics analysis based on a multiphase perspective. Computers

& Fluids. Volume 53, (2012), 105-116.

[66]. X. Du, C. Corre and A. Lerat. A third-order finite-volume residual-

based scheme for the 2D Euler equations on unstructured grids.

Journal of Computational Physics. Volume 230, (2011), 4201-4215.

[67]. K. Karagiozis, R. Kamakoti and C. Pantano. A low numerical

dissipation immersed interface method for the compressible Navier-

Stokes equations. Journal of Computational Physics. Volume 229,

(2010), 701-727.

[68]. X. He and G. Doolen. Lattice Boltzmann method on curvilinear

coordinates system: flow around a circular cylinder. Journal of

Computational Physics. Volume 124, (1997), 306-315.

[69]. P.M. Gresho, R. Chan and C. Upson and R. Lee. A modified finite

element method for solving the time-dependent incompressible Navier-

Bibliography

208

Stokes equations: part 2: applications. International Journal for

Numerical Methods in Fluids, Volume 4, (1984), 619-640.

[70]. E.M. Saiki and S. Biringen. Numerical simulation of a cylinder in

uniform flow: application of a virtual boundary method. Journal of

Computational Physics. Volume 123, (1996), 450-465.

[71]. C. Liu, X. Zheng and C.H. Sung. Preconditioned multigrid methods for

unsteady incompressible flows. Journal of Computational Physics.

Volume 139, (1998), 35-57.

[72]. M. Nemec and M. J. Aftosmis. Adjoint error estimation and adaptive

refinement for embedded-boundary Cartesian meshes. 18th AIAA

Computational Fluid Dynamics Conference, June 25-28, (2007),

AIAA paper 2007-4187.

[73]. M. Nemec and M. J. Aftosmis. Adjoint sensitivity computations for an

embedded-boundary Cartesian mesh method. Journal of

Computational Physics, Volume 227, (2008), 2724-2742.

[74]. M. F. Barad, P. Colella and S. G. Schladow. An adaptive cut-cell

method for environmental fluid mechanics. International Journal for

Numerical Methods in Fluids, Volume 60, (2009), 473-514.

[75]. M. Vanella, P. Rabenold and E. Balaras. A direct-forcing embedded-

boundary method with adaptive mesh refinement for fluid-structure

interaction problems. Journal of Computational Physics, Volume 229,

(2010), 6427-6449.

	Chapter 1 Introduction
	1.1 Non-body-fitted grid methods for compressible flows
	1.1.1 Cut-cell method
	1.1.2 Ghost-cell method
	1.1.3 Grid-less method

	1.2 Local Domain-Free Discretization (DFD) method
	1.3 Immersed Boundary Method (IBM) for incompressible flows
	1.3.1 Body force correction based IBM
	1.3.2 Velocity correction based IBM

	1.4 Motivation in current study
	1.5 Outline of the Thesis

	Chapter 2 Adaptive Cartesian Grid Euler Solver
	2.1 Governing equations
	2.2 Finite volume discretization and HLLC scheme
	2.3 Second-Order flux solver
	2.4 Implementation of boundary conditions
	2.5 Solution adaptive method
	2.6 Test cases and discussion
	2.6.1 Sod’s shock tube problem
	2.6.2 Lax shock tube problem
	2.6.3 Two-Dimensional oblique shock wave
	2.6.4 Double Mach reflection
	2.6.5 Backward step problem
	2.6.6 Cylindrical shock explosion

	2.7 Effectiveness of the adaptive solver
	2.8 Improvement of solution accuracy by the second-order schemes
	2.9 Accuracy and convergence analysis
	2.10 Conclusions

	Chapter 3 Ghost-cell Method-based Adaptive Euler Solver
	3.1 Ghost-cell method
	3.2 Results and discussion
	3.2.1 Supersonic flow over a circular cylinder
	3.2.2 Transonic flow over a channel with bump
	3.2.3 Transonic flow over a RAE2822 airfoil
	3.2.4 Mach 3 flow over three disks

	3.3 Conclusions

	Chapter 4 Flux Correction-Based Immersed Boundary Solver
	4.1 Flux correction-based Immersed Boundary Method
	4.1.1 Velocity correction
	4.1.2 Flux correction

	4.2 Validation analysis
	4.3 Numerical test cases and results
	4.3.1 Supersonic flow over a wedge
	4.3.2 Supersonic flow over a double-ellipse
	4.3.3 High speed flow over a NACA0012 airfoil

	4.4 Conclusions

	Chapter 5 Local Domain Free Discretization - Immersed Boundary Euler Solver
	5.1 Local DFD (LDFD) method
	5.1.1 Velocity boundary condition
	5.1.2 Pressure and density boundary condition

	5.2 Local DFD-Immersed Boundary Method (LDFD-IBM)
	5.3 Numerical validation and comparison
	5.3.1 Mach 3 supersonic flow over a circular cylinder
	5.3.2 Supersonic flow over a wedge
	5.3.3 Supersonic flow over a double-ellipse
	5.3.4 Transonic flow in a channel with bump

	5.4 More numerical examples and discussions
	5.4.1 Transonic flow over a NACA0012 airfoil
	5.4.2 High lift two-element airfoil - NLR 7301
	5.4.3 Transonic flow over SKF1.1 two-element airfoil

	5.5 Conclusions

	Chapter 6 3D Adaptive Euler Solver Implemented with FC-IBM and LDFD Method
	6.1 Methodology for 3D adaptive Euler solver
	6.2 FC-IBM and LDFD implementation in 3D solver
	6.2.1 Wall boundary surface and normal direction
	6.2.2 Identification of local DFD cells
	6.2.3 Boundary condition for immersed wall

	6.3 Validation for the 3D adaptive solver
	6.3.1 Oblique shock problem in 3D
	6.3.2 Three dimensional shock explosion

	6.4 Numerical examples for 3D IBM methods
	6.4.1 Mach 3 flow over a sphere
	6.4.2 Supersonic flow over 3D objects
	6.4.3 Supersonic flow over a 3D space vehicle

	6.5 Conclusions

	Chapter 7 Development of Adaptive Viscous Solver for Laminar Flows
	7.1 Laminar viscous flow solver
	7.2 IBM implementation for viscous flows
	7.3 Numerical tests
	7.3.1 Flow over a circular cylinder
	7.3.2 Flow over a NACA0012 airfoil

	7.4 Conclusions

	Chapter 8 Conclusions and Recommendations
	8.1 Conclusions
	8.1.1 Development of adaptive Euler solver
	8.1.2 Implementation of FC-IBM
	8.1.3 Implementation of LDFD and LDFD-IBM
	8.1.4 Development of 3D adaptive Euler solver
	8.1.5 Application for laminar viscous flow

	8.2 Recommendation for future works

	Bibliography

