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Summary

Freeway traffic engineering is an important area in modern intelligent transportation sys-

tems (ITS), where solutions are desperately needed to address the emergent societal and

environmental problems caused by freeway traffic congestions. Due to the unavailability

of land resources for constructing new freeway infrastructures, to improve the efficiency

of existing freeway systems is not only a challenging research topic, but also a require-

ment to freeway system administrators. Freeway traffic modeling and control are the

main topics in freeway traffic engineering. In particular, accurate freeway traffic model-

ing is the basis for design and analysis of freeway traffic control system, while efficient

freeway traffic control is the ultimate objective of researches in freeway traffic systems.

In this work, the attention is concentrated on learning based parameter calibration for

macroscopic traffic flow modeling and design of learning control strategies for local and

coordinated freeway ramp metering.

A hybrid iterative parameter calibration algorithm is first proposed for estimating the

parameters of macroscopic freeway traffic models. This algorithm is a hybridization of

the multivariate Newton-Raphson method and the simultaneous perturbation algorithm.

Convergence of parameters is theoretical guaranteed and well demonstrated through

applications with real traffic data and comparison with existing method. In particular,

the simultaneous perturbation based gradient estimation scheme improves the parametric

convergence in face of local minima. An optimal freeway local ramp metering algorithm is

then presented, which uses Fuzzy Logic Control (FLC) and Particle Swarm Optimization

(PSO). The FLC based ramp metering algorithm effectively handles the freeway system
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uncertainties and randomness, and the fuzzy rule parameters are optimized through

a microscopic traffic simulation based PSO algorithm. A novel Weighted Total Time

Spent (WTTS) based cost function is introduced to measure the efficiency of freeway

local ramp metering. By minimizing the WTTS, a balance between freeway mainstream

traffic and on-ramp traffic is pursued, which has rarely been discussed. A Simultaneous

Perturbation Stochastic Approximation (SPSA) based parameter learning scheme is then

proposed to adaptively update the parameters of the FLC based local ramp metering

algorithm without disturbing the normal freeway operations.

To address the networked freeway ramp metering problem, an FLC based Local Coor-

dinative Ramp Metering (LCRM) algorithm is proposed. By LCRM, a ramp metering

controller generates the local ramp metering signals based on not only its local traffic

condition but also the traffic conditions at its neighboring controllers. Such an LCRM

algorithm enables cooperation among neighboring ramp metering controllers, which ef-

fectively improves the efficiency of the overall traffic control system. Finally, we propose

a Macroscopic Traffic Scheduling (MTS) method for networked freeway traffic control.

The MTS method divides the considered time period of traffic control into intervals,

within which reference mainstream densities are assigned to and tracked by the local

ramp metering controllers. Using MTS method, the optimal networked freeway ramp

metering problem is treated as an optimization problem. Performances of the LCRM

and MTS algorithms are improved using the SPSA based parameter learning algorithm.

Algorithmic simplicity, low system costs and improved efficiencies are the main contri-

butions of these two methods.
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Chapter 1

Introduction

1.1 Modeling and Control of Freeway Traffic

While the human society are benefiting from the convenience and comfort provid-

ed by modern transportation systems, it is also increasingly confronted with various

challenges accompanied. With the expansion of metropolitan areas and the increase of

private automotive vehicles, traffic congestion have become a major contributing factor

to many emerging societal and environmental issues. For instance, traveling time and

fuel consumption are increased under congestion, which consequently result in more air

pollution, and road safety is reduced. This situation has become even more pushing due

to the unavailability of sufficient land resources for construction of new transportation

infrastructures, which is traditionally adopted for solving the traffic congestion prob-

lems. Under such circumstances, more efficient management and utilization of existing

freeway systems are of substantial importance, which has been realized by policy makes

and researchers.

Traffic flow modeling and control are important topics on research of freeway system-

s. Generally speaking, freeway traffic flow models can be classified into two categories:

macroscopic and microscopic models. Macroscopic models focus on modeling freeway

2
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traffic flow behaviors at the macroscopic level. The traffic flow behaviors are represented

by mathematical equations, which generalize the relationships between aggregated state

variables, e.g. average traffic flow, density, and speed. Microscopic models, on the other

hand, represent traffic flow behaviors by modeling the behaviors of individual Driver-

Vehicle-Unit (DVU), e.g. acceleration-deceleration behaviors, lane-changing behaviors,

merging and over-taking behaviors. Both models are useful due to their unique character-

istics: macroscopic modeling is computationally more efficient, but microscopic modeling

is more detailed and intuitive. It is worthwhile mentioning that parameter calibration

is required to guarantee accuracies of these models, because parameters vary and are

dependent on several factors, for example, freeway geometries, characteristics of driver

behaviors, weather conditions etc. Comparatively speaking, calibration of microscopic

models is more challenging and expensive, because there is a huge amount of parameters

to be investigated (easily over 50). The task of calibrating microscopic traffic models has

mainly been carried out by research institutions or industrial enterprises. Calibration of

macroscopic models is relatively less demanding due to the smaller size of parameters

and the lower cost involved in obtaining sample traffic data.

Control of freeway traffic flow is the core of freeway traffic engineering, where variable

speed limit control and ramp metering are the most commonly used methods. Ramp me-

tering has received much attention from researchers due to its good efficiency in dealing

with freeway congestion and improving freeway traffic conditions. Freeway ramp meter-

ing can be categorized into local and coordinated control strategies. Local ramp metering

strategies regulates the freeway links or networks by implementing controllers at each

on-ramp link. These controllers can obtain system information at the vicinities of the

on-ramp links, and each controller works independently without communication or inter-
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action with other controllers Coordinated ramp metering strategies, on the other hand,

control all on-ramp links of the freeway system in a coordinated manner. There is either

a control center that derives instructions to influence the behaviors of local controllers,

or inter-controller communications and interactions that enables the local controllers to

work collaboratively with each other. Local and coordinated freeway ramp metering

strategies also pursue different objectives. Local ramp metering strategies aim at main-

taining proper traffic conditions at each on-ramp link locally, but traffic conditions at the

macroscopic level is not concerned. Coordinated strategies consider traffic conditions of

the whole freeway system, and pursue the optimization of it. From a systematic view-

point, the coordinated ramp metering strategies are obviously more efficient, because

freeway traffic networks are integrated systems of interactive subsystems. For example,

maintaining optimal freeway traffic flow at an on-ramp link locally will lead to less or no

capacity on the freeway mainstream at downstream locations, and consequently renders

the downstream neighboring on-ramp link badly performing or uncontrollable. However,

it is still worthwhile investigating various local ramp metering problems, because there

are cases that on-ramp links are located far away from each other, and hence the coupling

among them can be elegantly dismissed. Additionally, ramp metering at the local level

are easier to solve and can be studied at lower cost compared with its counterpart at the

network level. The formulation of the problem and the methodologies used for studying

local ramp metering problems can provide valuable insight on solving the coordinated

ramp metering problems.

In the next section, a review of literature on freeway traffic modeling and ramp

metering will be provided.
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1.2 Literature Review

This section presents a survey of literature pertinent to studies on modeling and con-

trol of freeway traffic flow. Accurate modeling of freeway traffic flow is a prerequisite

for various other tasks in freeway traffic management, i.e. traffic simulation, system

analysis, and control system design. Since model calibration techniques are crucial to

ensure the appropriateness and accuracy of traffic flow models for specific applications,

they are of significant importance in freeway traffic engineering. Furthermore, experi-

ments with real freeway systems are hard to achieve in practice due to the prohibitive

cost, various safety issues, and the importance to maintain routine freeway operations;

therefore, reliable traffic flow models are highly desirable for simulation based research

activities. Freeway traffic flow models and various parameter calibration techniques will

be reviewed in this section. Various control techniques were studied for ramp metering

of local and networked freeway systems, and most of them utilized freeway traffic flow

models on design and analysis of control systems. These control techniques, ranging

from conventional feedback control to recently developed learning control, and artificial

intelligence based intelligent control methods, will also all be covered in the next few

sections.

1.2.1 Freeway Traffic Flow Modeling

Macroscopic Freeway Traffic Models

Lighthill and Whitham studied the macroscopic modeling of freeway traffic flow using

traffic density as the only state variable, but transient behavior of the model is poor

[1]. Payne modified this model based on the fluid dynamics theory, and the modified

model is continuous in both space and time [2]. This model was further modified to
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be discrete in space and time by Payne [3]. Another major and important revision to

the macroscopic traffic flow model was proposed by Papageorgiou [4] and Cremer and

May [5]. This model has received wide acceptance with numerous applications. The

improved model (also widely known as the METANET model) is discrete in space and

time, and the relationships between state variables, e.g. mean traffic flow, density, and

speed, are expressed in the form of nonlinear mathematical equations. There are other

macroscopic freeway traffic flow models, and possible modifications on the METANET

model was discussed by Karaaslan et al. [6]. These modifications are complementary to

the framework of METANET model.

on-ramp traffic inflow off-ramp traffic outflow

mainstream traffic

inflow

mainstream traffic

outflow
traffic within mainstream section

Fig. 1.1: A model of the freeway section with on-ramp and off-ramp links.

In METANET model, a freeway mainstream link is divided into sections. A model

of the freeway mainstream section is given in Fig. 1.1. For each mainstream section,

on-ramp and off-ramp links might be connected at the beginning and ending locations.

Neighboring mainstream sections are correlated by mainstream entering and exiting traf-

fic flows. Empirical elements are incorporated in the METANET model to make it more

compatible for practical situations. For example, the empirical fundamental diagram

is used, and the impact of exogenous traffic flow to mainstream traffic flow dynamics is

also properly modeled. These improvements have made the METANET model especially

useful in practical application.

During the evolution of macroscopic freeway traffic flow models, macroscopic traffic
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flow models has evolved from simple model with single variable to complex models with

multiple variables and parameters, from continuous time models to discrete time models,

and from purely theoretically derived models to empiricism incorporated models. Due

to the improved accuracy, the macroscopic traffic flow models play important roles in

many important applications. For instance, model based state estimation of freeway

traffic [7–11], prediction of travel time, model based freeway traffic control. However, it

has been recently reported that some microscopic traffic flow behaviors, i.e. interactions

among vehicles, have substantial influence on macroscopic behaviors of traffic flow [12].

Generalisation of these impacts by extending the METANET model was studied by

introducing additional terms in the METANET model [13].

These traffic flow behaviors were also studied from a different perspective of view,

which focuses on describing the behaviors of individual Driver Vehicle Unit (DVU) and

the interactions among multiple DVU. By such a modeling method, traffic flow behaviors

at the microscopic level are investigated. A review of literature on microscopic traffic

flow modeling will be provided in the next section.

Microscopic Freeway Traffic Models

Main driver’s behaviors described in the microscopic freeway traffic models include

acceleration-deceleration behavior, lane-changing behavior, and overtaking behavior, etc.

These microscopic behaviors are modeled based on the internal car-following models, on

which a summary was provided by Garber [14]. The typical car following and lane-

changing behaviors are illustrated in Fig. 1.2. As shown, each vehicle is considered

as a DVU, the acceleration and deceleration behaviors of a following DVU is regarded

as a response stimulated by behaviors of its leading DVU. This is usually referred as

the “stimuli-response” mechanism. The lane-changing and overtaking behaviors involve
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complex interactions among multiple DVUs, e.g. when a DVU is merging into another

lane as shown in Fig. 1.2, it has to pay attention to the status of the DVUs immediately

before and after its target position in the new lane as well as vehicles in the front and at

the back of its current position. A similar “stimuli-response” based approach is used for

modeling of these behaviors.

following vehicle

v f

leading vehicle

vl

following vehicle

v f

leading vehicle

vl

lane changing

vehicle
vc

Fig. 1.2: Car following and lane changing behaviors in car following model.

As one of the most popular microscopic traffic simulation platforms, PARAMICS has

been widely used for solving various freeway traffic problems [15–18]. In these works, the

main reason that microscopic traffic modeling based simulation is favored over macro-

scopic traffic flow models is that the efficiency of the proposed control algorithms can be

evaluated against more realistic traffic conditions.

Although microscopic modelings of freeway traffic can provide detailed and more real-

istic description of freeway traffic, the number of parameters is usually large (easily over

50), and the model calibration problem become a challenging task. Besides, greater com-

putational power and longer computation time is required when microscopic models are
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used for freeway traffic simulations. In practice, macroscopic and microscopic traffic flow

models can be used according to the specific objective and focal point of the considered

problem. If computational cost and simulation time are the main concerns, macroscopic

traffic flow models are more suitable options. On the other hand, if the influence of

environmental constraints and behaviors of individual vehicles play a substantial role,

microscopic traffic flow models serve the objective better.

A detailed summary and comparison on characteristics and important features of

various traffic flow models is given in Tab. 1.1.

Category Macroscopic modeling Microscopic modeling

Modeling

Method

1. Discretized in space and time.
1. Vehicles are regarded as

DVUs.

2. Relationships among

macroscopic state variables are

expressed by mathematical

equations.

2. Vehicle behaviors are modelled

based on “stimuli-response”

effect by car-following models.

3. Road geometry and

environments are modeled.

4. Detailed graphical display.

Important

Features

1. Computationally efficient.
1. Requires higher computational

power.

2. A small number of parameters. 2. A large number of parameters.

3. Parameter calibration needed. 3. Difficult to calibrate.

Examples 1. Payne’s model. 1. PARAMICS.

2. Lighthill and Whitham model. 2. VISSIM.

3. METANET model. 3. AIMSUN, etc.

Tab. 1.1: A summary on traffic flow models.

1.2.2 Parameter Calibration

Freeway traffic is a complex process with highly nonlinear traffic flow dynamics, ran-

dom traffic demand, stochastic driver behaviors and exogenous disturbances. From an
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engineering perspective of view, macroscopic traffic flow models are always preferred for

system analysis and controller design, because macroscopic traffic flow models take the

form of mathematical equations and are suitable for efficient programming. Besides,

simulations with macroscopic models are more time and cost efficient compared with

real experiments. Due to the safety issues, cost issues, and the importance of maintain-

ing normal freeway operations, model based simulations are usually applied to provide

theoretical proof on the efficiencies of traffic management measures.

Since parameters of freeway models are varied rather than constant, parameter cal-

ibration is essentially required to ensure accuracy and applicability of the model for

specific applications. Extended Kalman filtering based algorithms were studied for esti-

mation of freeway traffic states, where parameters of freeway traffic flow model is regarded

as part of the freeway states and were estimated together with other freeway traffic s-

tates [8–10]. These methods regards parameters of the METANET model as time varying

and estimates their values in realtime by the extended kalman filtering algorithm. An

iterative learning control (ILC) based parameter identification algorithm was proposed

to update parameters of the METANET model by iteratively learning from the discrep-

ancies between the model generated traffic data and measured traffic data [19]. These

methods treat the parameters of METANET model as time-varying, and the objective

is to track the measured freeway states by output of freeway models through tuning the

model parameters.

Parameter calibration problems can also be addressed as optimization problems,

where cost functions are defined to measure the discrepancy between model generat-

ed traffic data and real traffic data [13]. The parameters that minimizes this discrep-

ancy are pursued. Due to the inherent randomness and disturbances in real freeway
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system, accurate fitting between model generated traffic data and real traffic data is un-

achievable. Therefore, traffic flow models can only approximate the traffic flow dynamics

using first principle physical laws based mathematical formulae which are able to capture

the macroscopic behaviors of the process.

In parameter calibration problems, existing algorithms all adopt a scalar valued cost

function. Traffic data can be collected at times or locations, a commonly used method

in solving the parameter calibration problem with multiple data sets is to calculate the

mean squared error (MSE) with respect to all sample data as the only objective function,

and the parameters that lead to the minimum MSE value is considered as optimal. This

approach suffers from two main drawbacks. First, the MSE value reflects the averaged

fitting accuracy for multiple data sets, while the fitting accuracies for individual data sets

are not investigated, e.g. the fitting accuracies might vary greatly among different data

sets. Second, accurate convergence of parameters can hardly be guaranteed by existing

parameter calibration algorithms. This is because, when scalar valued cost function is

used, the system gradient is in the form of gradient vector. It is difficult to ensure

the convergence of parameters using existing parameter updating algorithm when highly

nonlinear relationship exists between parameters and the cost function. For instance, the

Newton-Raphson method [20] requires the inverse of Jacobian, whereas a vector-valued

gradient or its pseudo-inverse can not meet the ranking condition.

The heuristic Nelder-Mead algorithm was also studied for parameter calibration of

freeway traffic flow model [21–23]. However, this algorithm converges to non-stationary

points [24, 25]. Other intelligent algorithms, like PSO and GA, are nature inspired al-

gorithms which have been frequently used for parameter calibration and optimization

problems. Yet, they usually require many generations to achieve convergence of param-



Chapter 1. Introduction 12

eters, and the local minima problem also limited their application.

Above all, how to achieve convergence of parameters and cope with multiple data

sets in parameter calibration requires further studies.

1.2.3 Freeway Traffic Control

Various strategies have been studied for freeway traffic management in the last few

decades. Among these strategies, ramp metering has been reported to be efficient in

dealing with freeway traffic congestions and improving freeway mainstream traffic flow

[26].

A freeway ramp is a section of road which allows vehicles to enter or exit a freeway. An

entry ramp is called on-ramp and an exiting ramp is called off-ramp. Ramp metering aims

at maintaining proper freeway traffic conditions by regulating the traffic flows entering

freeways from the on-ramp entries. Ramp metering is realized by implementation of a

device, usually a traffic light or a two-phase (red and green only) signal together with a

signal controller at the on-ramp link.

A typical ramp metering system is shown in Fig. 1.3. The freeway mainstream is

divided into three main areas around the on-ramp link. The merging area starts from

the on-ramp connection point to the end of acceleration lane. The upstream area is the

area upstream of the merging area and the downstream area is the area downstream of

the merging area.

Existing ramp metering algorithms can be categorized into fixed time strategies and

traffic responsive strategies. Fixed time ramp metering strategies adopt fixed ramp

metering signals at specific periods of time and have been plagued with low efficiency

[27, 28]. Traffic responsive ramp metering strategies determine ramp metering signals

according to realtime traffic conditions. Traffic ramp metering strategies can also be
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Fig. 1.3: The freeway ramp metering system.

classified into local and coordinated ramp metering strategies based on whether the local

traffic measurement or traffic measurement of a wider area is used for determining the

local ramp metering signals.

In the following, a review will be provided on various ramp metering strategies..

Fixed-time Ramp Metering strategies

Fixed-time ramp metering strategies are based on constant historical demands, and

the ramp metering signals are derived in an off-line fashion for particular times-of-day.

Realtime measurements are not used. The traffic flow models are simple static models.

Fixed-time ramp metering strategies can be finally regarded as linear programming or

quadratic programming problems, which can be solved by readily available computer

codes [27].

The main drawback of fixed-time strategies is that ramp metering signals are derived

based on historical data, but realtime traffic conditions are not taken into considerations.

Efficiencies of the fixed-time strategies may deteriorate because of the variations in traffic

demand, which might be caused by freeway system randomness, disturbances and changes

in drivers’ route choices, unpredictable events etc.

The basis of fixed-time ramp metering strategies is that freeway traffic is a macroscop-

ically repeated process, e.g. roughly repeated traffic demands and congestion hours. By
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utilizing such a repetitiveness, the system control signals, i.e. ramp metering flow rates,

can be properly scheduled so as to obtain the optimal system performance. However, it

is quite obvious that freeway traffic demands are not strictly repeated at the microscopic

level, on the contrary, they are subject to variations caused by system randomness and

disturbances. From this perspective of view, the inefficiencies of fixed-time ramp meter-

ing strategies are caused by the utilization of macroscopic freeway traffic repetitiveness

for derivation of microscopic control signals.

Note also that although efficiencies of the fixed-time ramp metering strategies are

limited, they possess valuable features that are desirable in real implementations, e.g.

low implementation cost and simple system structure.

Local Ramp Metering Strategies

Local control strategies determine the ramp metering signals at an on-ramp entry

according to traffic conditions at the vicinity of the merging area. The demand-capacity

(DC) and occupancy (OCC) strategies determine the ramp flow rate based on the dif-

ference between a predefined mainstream flow capacity and the measured mainstream

flow upstream of the merging area [29]. The main drawback of these strategies is that

a constant mainstream flow capacity is adopted [28]. However, it was reported that

mainstream flow capacity may vary substantially due to factors such as weather condi-

tions [30–32].

A number of local ramp metering strategies are based on the fundamental diagram

of freeway traffic, which shows the relationship between mainstream traffic flow and

density under homogeneous traffic conditions. As shown in Fig. 1.4, mainstream traffic

flow achieves the maximum when density is at the critical value, where ρc and ρmax

are the critical density and maximum density respectively. Since a proportional rela-
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Fig. 1.4: A fundamental diagram of freeway traffic.

tionship exists between freeway occupancy and density, there is a similar fundamental

diagram for the relationship between occupancy and flow with a critical occupancy value

corresponding the maximum traffic flow.

Some ramp metering strategies aim at maintaining the mainstream density at the

critical density by ramp metering so as to maximize the mainstream traffic flow. The

feedback based ALINEA algorithm is a well-known ramp metering strategy. By ALIN-

EA, the mainstream occupancy (mainstream traffic density) is measured, and the error

between the measured occupancy (density) and the critical occupancy (density) is used

to update the ramp metering signal [33]. Adaptive ALINEA algorithms were also pro-

posed, where critical occupancy was considered time varying and estimated in realtime

by kalman filtering algorithm [34].

Note that maximum mainstream traffic flow is pursued by most existing ramp me-

tering strategies, e.g. ALINEA and its variants, however, on-ramp traffic conditions are

not considered by these strategies except that some queue constraint policies, i.e. put a
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constraint on the on-ramp queue volume to keep it below a predefined maximum limit-

s [35]. There are two main drawbacks with this strategy: First, the efficiency of the ramp

metering strategy at the global level is not investigated, e.g. high queue volume under

high traffic demand increases the waiting time spent by vehicles on the on-ramp link

although maximum traffic flow is maintained on the mainstream. Second, mainstream

traffic capacity (maximum mainstream traffic flow rate) and the critical occupancy and

density are varied rather than constant [32], making the maintenance of the maximum

mainstream traffic flow a challenging task.

Coordinated Ramp Metering Strategies

Coordinated ramp metering strategies aim at optimizing the performance of the over-

all freeway network, and the on-ramps within the whole network are controlled in a

coordinated manner. To achieve this objective, coordinated ramp metering strategies

determine the ramp metering signals according to traffic conditions within the entire

freeway network. Total time spent (TTS) by vehicles within the freeway network is usu-

ally adopted as the cost function to measure the efficiency of coordinated ramp metering

systems.

Coordinated ramp metering algorithm, named HERO, using extended ALINEA algo-

rithm was proposed in [36], where mainstream bottlenecks are identified and local ramp

metering controllers work in a coordinated way to avoid traffic congestion and high queue

volumes on the on-ramps. The proposed algorithm was reported to outperform uncoor-

dinated local ramp metering and approach the efficiency of sophisticated optimal control

schemes. Increased traffic throughput and reduced travel time were also obtained by

HERO algorithm.

The Model Predictive Control (MPC) based ramp metering strategies were studied
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for coordinated ramp metering of freeway networks [28, 37]. Based on historical and

predicted freeway demands, the optimal system states, i.e. freeway mainstream densities

that minimize the system TTS within No time intervals into the future, are calculated.

The first Na (Na is usually much shorter than No) time intervals’ solutions are adopted

as the reference density signals, which are subsequently tracked by local controllers using

ALINEA based algorithm. Combination of the MPC with a game theoretic approach

was also studied to seek the optimal ramp metering strategies in [38].

Since MPC based strategies are based on the the frame work of centralized con-

trol systems, they suffer from the limitations of centralized control systems also. First,

complex model based computation is continuously required to calculate the optimal sys-

tem states. Second, the centralized organizational structure of the control system lacks

flexibility.

It is worth mentioning that, online computation power has been less a problem with

the development of computation technologies; however, the problem of organizational

structure of MPC remains.

A dual heuristic programming approach was also proposed to solve the coordinated

freeway ramp metering problem [39]. This method is based on the frame work of approxi-

mate dynamic programming [40], which solves dynamic programming problems by using

artificial neural networks based methods. Although, this dual heuristic programming

approach provided alternative options in design of control system for networked freeway

system, it is still limited to the drawbacks of centralized control.

Above all, further studies are needed to address the drawbacks of centralized control

systems.

It is worth noting from the above review that although local ramp metering strategies
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are less efficient than coordinated ramp metering strategies, they require less implemen-

tation cost and have very simple control structures. On the other hand, coordinated ramp

metering strategies although can achieved better ramp metering performance compared

with local ramp metering strategies, not only require more computation cost, but also

increase the system complexity and reduce the system flexibility. Apparently, there is a

tradeoff between system efficiency and complexity, flexibility as well as implementation

cost.

From the perspective of freeway administrators, it is highly desirable that good system

performance can be obtained with low implementation cost but without increasing the

system complexity and reducing system flexibility.

There are many other freeway traffic control algorithms studied by researchers in

the recent year. In the next session, a review on these techniques will be provided, also

reviewed are some key issues regarding studies on freeway traffic.

Actual Implementations of Ramp Metering

Ramp metering as a freeway traffic management measure has been implemented in

many areas in the world. One of the most important research program on freeway ramp

metering is the $65,000 experiment mandated by the Minnesota State Legislature in

2000. 433 ramp meters were shut off in the Minneapolis-St. Paul area for eight weeks in

the study. Results of the study showed that freeway capacity experienced a 9% reduction

and freeway speeds dropped by 7% after turning off the ramp meters. Meanwhile travel

time increased by 22% and crashes increased by 26%. Due to the persistent controversies

on ramp meters, fewer meters are activated during the course of a normal day than prior

to this study.

Freeway ramp metering are also studied in California, USA by the Partners for Ad-
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vanced Transportation TecHnology (PATH), which is under Institute of Transportation

Studies (ITS) at the University of California, Berkeley. Studies on freeway traffic mod-

eling, simulation and control has been conducted by the PATH program. In particular,

the freeway service patrol project under the PATH program resulted in an set of open

access freeway traffic data, which is a useful and valuable resource for studies on freeway

research. The freeway traffic data with detailed descriptions of the project and data

are available on the internet at http://ipa.eecs.berkeley.edu/~pettyk/FSP/. Re-

search experience from research on ramp meters showed that fewer accidents have been

achieved.

In Netherland, a coordinated ramp metering system was implemented at the Am-

sterdam ring road. Results showed that by implementation of the coordinated ramp

metering, freeway system efficiency improves and the total time spent by vehicles in the

freeway networked is reduced [41]. Similar studies were also conducted in Paris, and

similar results were reported [42].

Ramp metering is also implemented in many other countries and areas in the world,

e.g. Japan, Australia, New Zealand, Germany, Italy.

Overall, ramp metering is still an alternative option to address the freeway congestion

related issues and many studies are devoted to assessing the efficiency of real-time ramp

metering system.

Due to the prohibitively high cost of large freeway ramp metering system, the imma-

turity of large scale optimal ramp metering algorithms and the importance of maintaining

normal freeway operation, most of the existing ramp metering programs have been im-

plemented at limited scales.

More future research on optimal control algorithm for large scale freeway systems
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as well as assessment from real implementations are needed to provide more insight for

the policy makers to expand the implementation of ramp metered on existing freeway

systems.

1.2.4 Recent Advances and Important Issues

Recent Advances

Artificial Intelligence based algorithms, e.g. fuzzy logic control, genetic algorithm

and artificial neural networks, were also investigated for freeway traffic problems. Fuzzy

clustering was used for estimation of travel time [43], a type-2 fuzzy logic based approach

was proposed for estimation of short term traffic [44], a hybrid fuzzy neural network was

proposed for freeway incident detection with linear least square regression [45] and re-

inforcement learning and multi-agent system based urban traffic control systems were

studied [46,47]. FLC based algorithms were reported beneficial to freeway traffic control

with good robustness and smoothness of control signal, and improved traffic conditions

through microscopic simulation was reported with FLC based ramp metering [48]. An-

other desirable feature of FLC based control method is that human expert knowledge

can be incorporated into the controller design process to improve the control efficiency.

This is very important for solving large scale complex systems, where traditional control

methods fail but reliable expert knowledge is available.

An FLC based method was proposed for control of networked freeway system where

the total time spent (TTS) by vehicles within the freeway system was used as the cost

function [49]. A model predictive control (MPC) based methodology was adopted to tune

the controller parameters. The MPC based method adopted in the work and several other

works [28, 37] is efficient in dealing with various constraints, however, it is also limited

in the following aspects. Other applications of FLC for freeway ramp metering can also
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be found in [50–61].

AI based techniques can be easily implemented due to their heuristic natures and

nature inspired concept. However, there are usually a large number of parameters to

tuned before they can be really implemented. For example, tuning the input and output

membership functions in the FLC algorithms and the connection weights in ANN based

algorithms is always a challenging task in dealing with highly complex systems. Besides,

most of these algorithms are only suitable for off-line implementations, where the optimal

controller settings have to be identified in advance of the implementations.

Traffic Flow Repetitiveness and Randomness

Although randomness exists in freeway systems, e.g. randomness in traffic demands,

it is well recognized that the overall freeway traffic is repeated at a macroscopic level.

For instance, there are daily morning peak hour traffic from 6 AM to 8 AM and evening

peak hour traffic from 5:30 PM to 7:30 PM during weekdays.

Many freeway traffic control methods try to utilize the repetitiveness for various pur-

poses, e.g. fixed-time ramp metering strategies and iterative learning control (ILC) based

ramp metering strategies. A common practice in utilization of freeway traffic repetitive-

ness is to use predefined traffic demand profiles for model based traffic simulations.

ILC is an intelligent learning approach for dealing with reference tracking problems,

where the control input signals are iteratively updated based on the output of previous

control trial(s). Applications of ILC for freeway ramp metering were studied in [62–66],

where predefined reference mainstream densities were tracked by the ILC based ramp

metering strategies.

Another way of utilizing the freeway traffic repetitiveness is that the efficiencies of

ramp metering algorithms can be evaluated under repeated traffic situations. Hence,
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historical data can be collected on the controllers’ efficiencies with varied parameter set-

tings, which contains information on the impact of parameter variation to the system

efficiency. These historical data can be properly exploited to gain insight into the con-

sidered system, hence, system performance can be improved by proper adjustment of

parameters. Note that the historical data is also contaminated with inherent system

noise and disturbances, therefore, it should be properly explored by giving consideration

to the adverse effects. Further studies are needed to fully address these issues, especially

studies on how to make use of the system repetitiveness with proper handling of the

randomness and uncertainties.

Control Objective

The objective of freeway ramp metering has a substantial influence on ramp metering

systems, because it measures the efficiencies of various ramp metering strategies.

For coordinated ramp metering problems, TTS has been widely used as the system

cost function, and the objective is to find the optimal ramp metering strategies that

minimizes the TTS.

For local freeway traffic control, most existing algorithms aim at obtaining optimal

mainstream flow through maintaining the mainstream density or occupancy at the critical

value. Such a method is limited due to the following considerations:

1. The efficiency of the algorithms depends on estimation of the critical density or

occupancy value which is usually defined empirically. In fact it has been revealed

that these critical values are time varying and accurate estimation of critical density

is still unresolved

2. Freeway traffic under congested traffic conditions is inhomogeneous, but the rela-
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tionship between freeway average mainstream flow and density under inhomoge-

neous is still uninvestigated.

3. The waiting time spent by vehicles on the on-ramp link has not been considered

systematically by existing ramp metering algorithms.

Above all, further studies on freeway local ramp metering are needed, which should

take the above objective related issues into consideration.

1.3 Focus of the Research and Main Objective

In view of the review in previous sections, main research gaps for the current study

of freeway traffic flow theory and control are summarized below:

• Existing parameter calibration methods aim at obtaining parameters with satis-

factory performance rather than accurate convergence of parameters towards the

optimal parameters. Although gradient based methods theoretically guarantee

parametric convergence, they are limited by the local minima problems and com-

plex calculation of system gradient. Research on parameter calibration problems

is lacking in providing accurate parametric convergence without involvement of

complex model based calculation.

• Existing freeway local ramp metering methods mainly focus on maintaining max-

imum traffic flow on the freeway mainstream, which makes queueing vehicles be

forced to wait on the on-ramp link when traffic load is heavy. Optimal freeway

local ramp metering pursuing a balance between mainstream and on-ramp traffic

has not been studied.
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• FLC combined with effective parameter tuning can approximate any optimal con-

trol policies, which is able to improve the system performance without interrupting

normal process operation if parameter learning and updating is in a trial to trial

fashion. This is essentially a realtime implementable learning control methodology,

which has not been studied for freeway ramp metering systems.

• Existing centralized control based coordinated freeway ramp metering systems are

limited in high computational cost, complex system structure, and low system

flexibility, it is worthwhile to investigate more efficient coordinated ramp metering

strategies with simpler system structure, lower computational cost and improved

system flexibility. Unfortunately, there has been no such study in literature.

• Existing networked freeway ramp metering strategies with high efficiency requires

high implementation cost and have complex system structure, while other methods,

which have simpler system structures and require lower implementation costs, are

less efficient. It is highly desirable to combine these existing ramp metering strate-

gies into a new networked ramp metering strategy with good system performance,

structural simplicity and low implementation cost. This way the advantages of

various ramp metering strategies can be fully utilized. However, there has been no

such study by now.

Given the above research gaps in modeling and control of freeway traffic flow, the

specific objectives of this research were to:

• address the parameter calibration problem of macroscopic traffic flow models by

a proposed hybrid iterative algorithm, which provides accurate parametric conver-

gence to the optimal parameters and minimizes the discrepancies between model
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generated data and real freeway data.

• address the problem of optimal freeway local ramp metering by pursuing a proper

balance between traffic on the freeway mainstream link and on-ramp link, and

propose a microscopic traffic simulation based parameter tuning approach to find

the optimal freeway local ramp metering policies.

• propose a parameter tuning algorithm to adjust parameters of the ramp metering

controller, which requires no involvement of complex model based calculation and

is suitable for real implementation.

• explore the potential of local coordinative ramp metering strategies for networked

freeway ramp metering by combining FLC based coordinative decision making and

limited communication among neighboring controllers.

• solve the optimal networked freeway ramp metering problem by a simple but effi-

cient macroscopic traffic scheduling, which combines fixed-time traffic scheduling

strategy with a model-free parameter learning scheme to effectively improve the

system performance while retaining the simplicity of the fix-time scheduling strat-

egy.

For macroscopic simulations in this research, the METANET model is adopted due

to its successful applications in this field. For microscopic simulations, PARAMICS plat-

form (Version 6) is used, which can be viewed as alternative to other similar platforms

due to the comparable performances of commonly used microscopic traffic simulation

platforms. The parameters of METANET model are treated as time invariant, which

is because macroscopic freeway models are expected to generalize the macroscopic level

behaviors of freeway traffic flow under various traffic conditions at any time, therefore,
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a single set of parameters that enable the general applicability of the model for specific

freeway system is pursued. Parametric calibration of macroscopic traffic flow models

other than METANET is beyond the scope of our research, but could be dealt with in

a similarly way as presented here. FLC based algorithms are adopted for both local

and coordinated freeway ramp metering, because human expert knowledge can be con-

veniently incorporated for controller design. Additionally, FLC based algorithms can

handle system randomness and uncertainties very well. To adjust the parameters of

FLC based ramp metering algorithms and freeway traffic planning, the SPSA based pa-

rameter learning algorithm is used due to its superiority in dealing with optimization

problems with large dimensional size of parameters. Furthermore, its model-free nature

and simplicity make it suitable for realtime implementation.
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1.4 Outline of Dissertation
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LCRM

Fuzzy Logic Control
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Chapter 7: MTS based Networked

Freeway ramp metering

MTS
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Chapter 8: Conclusion

Summary of Result

Recommendation for future work

Fig. 1.5: A flow chart on the main content of the thesis.

A flow chart describing the main content of the thesis is shown in Fig. 1.5. As shown,

background knowledge and technique information on essential algorithms and the traffic

model are provided in Chapters 1 and 2. Chapter 3 is the first technical chapter, where

the parameter calibration problem is addressed first. This arrangement of the research
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topics is because calibrating traffic flow parameters from real traffic data is the first step

to conduct model based research on freeway traffic control. Chapters 4 and 5 are on

the freeway local ramp metering problem, which is the fundamental topic on freeway

traffic control. Chapter 4 focuses on the off-line optimization based method to seek

optimal ramp metering policies, while Chapter 5 extends the research to consider the

controller parameter optimization problem in an adaptive fashion. The two parameter

tuning methods presented in Chapters 4 and 5 can either be used for different traffic

systems or used in combination, i.e. off-line optimization is used first to provide reason-

able initial point for adaptive learning. The last two chapters discusses the networked

freeway ramp metering problem, which extends the works presented in Chapters 4 and

5. Chapter 6 emphasizes the potential of cooperations among neighboring on-ramp me-

tering controllers for improving the overall performance of the freeway system, while

Chapter 7 emphasizes the importance of utilizing the macroscopic repetitiveness of free-

way traffic. These two networked freeway traffic control methods are suitable for freeway

systems with strong interaction among neighboring controllers and strong repetitiveness

respectively.

More detailed overview on the content of each chapter are as follows:

Chapter 1 has given an introduction of some relevant background, a brief literature

review, the motivation for this research, the objectives and focus of this research, as well

as its main contributions.

Chapter 2 provides introductions on the SPSA algorithm, the FLC algorithm and the

METANET macroscopic traffic flow model, which are important technical tools and

models that the thesis utilizes.
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Chapter 3 addresses the problem of parameter calibration for traffic flow modeling us-

ing a proposed novel hybrid iterative calibration algorithm. By combining the multi-

variate Newton-Raphson method with simultaneous perturbation based gradient esti-

mation. The proposed method retains the convergence properties of the multivariate

Newton-Raphson method while enhancing the quality of parameter calibration by ran-

domized parameter updating scheme, which help avoid the local minima problem as-

sociated with gradient based algorithms. Numerical studies with real traffic data are

conducted, demonstrating efficiency of the proposed method.

Chapter 4 investigates the problem of optimal freeway local ramp metering. The objec-

tive is set as to achieve a balance between traffic on the freeway mainstream link and

on-ramp link. An FLC based local ramp metering algorithm is designed which incorpo-

rates human expert knowledge for reducing the fuzzy rule base. Controller parameters

are tuned through microscopic simulation based PSO algorithm so to achieve the optimal

control performance.

Chapter 5 presents a novel realtime parameter learning based FLC approach for optimal

local freeway ramp metering. A simple and efficient SPSA based model-free realtime

parameter learning scheme is proposed to tune the parameters of FLC ramp metering

controller. System performance is improved by the proposed method without interrupt-

ing normal freeway operations.

Chapter 6 studies the problem of coordinated freeway ramp metering. An FLC based

local coordinative ramp metering strategy is proposed for networked freeway ramp me-

tering. Through information exchange among neighboring local controllers, local mea-

surements on traffic conditions are shared among neighboring controllers. Consequently,
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reference mainstream densities are generated by FLC based coordinative decision making

algorithms based on both local and exchanged measurements. Finally, ALINEA based

reference tracking algorithms are utilized to track the reference mainstream densities

accordingly. The optimal parameters of the coordinated decision making algorithms are

found by SPSA based parameter learning. By the proposed ramp metering strategy,

reduced communication cost and system complexity are obtained due to the information

exchange scheme among neighboring controllers, and system performance is improved

through an parameter learning scheme which works without disturbing the normal free-

way operations.

Chapter 7 proposes a novel macroscopic traffic scheduling strategy for addressing the

networked freeway ramp metering problem. By regarding freeway traffic as a stochastic

process which is generally repeated, traffic flow within the freeway network is sched-

uled at the macroscopic level, where the reference mainstream density signals within

macroscopically predefined time periods are scheduled. The ALINEA based algorithm is

utilized by local ramp metering controllers to track the scheduled reference signals. The

optimal scheduling plan is obtained using an SPSA based model-free parameter learning

scheme. The proposed strategy is simple and efficient due to the combination of fixed-

time macroscopic traffic scheduling strategy, ALINEA based traffic responsive strategy

and the model-free parameter learning scheme.

Chapter 8 comprises conclusions as well as recommendations for future research works.
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1.5 Main Contributions

In detail, the results of this present study may shed light on:

• parameter calibration for macroscopic freeway traffic flow model by a proposed

novel hybrid iterative calibration algorithm, which accurately estimates parameters

of macroscopic traffic flow model and minimizes the discrepancies between real

traffic data and model generated traffic data.

• optimal freeway local ramp metering using FLC and microscopic traffic simulation

based optimization, which finds the optimal ramp metering strategies and pursues

a balance between traffic on the freeway mainstream and on-ramp links.

• FLC based algorithms for local and coordinated freeway ramp metering, which

incorporates human expert knowledge in controller design and effectively cope with

the randomness and uncertainties in freeway system .

• efficient realtime parameter learning for optimal freeway ramp metering, which im-

proves the system performance by learning from historical data to direct parameter

updating without a priori knowledge on system dynamics.

• optimal ramp metering for networked freeway system by macroscopic traffic schedul-

ing , which combines the simple fixed-time traffic scheduling strategy with the ef-

ficient ALINEA based traffic responsive strategy to provide simple but efficient

solution for networked freeway ramp metering problems.

• coordinated freeway ramp metering using FLC based local coordinative ramp me-

tering strategy, which complements the drawbacks of centralized control systems

with reduced communication cost and improved system performance.
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The contributions of the thesis are summarized in Tab. 1.2.

Problem Challenges Method Para Tun-

ing

Performance

Parameter

calibration:

Chapter 3

A: Nonlinear

dyn, sys noise

and distb

Multivariate

N-R with SP

Guaranteed

accurate conv,

improved

local minima

avoidance

Consistently minimized CF

Local RM:

Chapter 4 & 5

B: A and traffic

balance issue,

uncertainties

FLC with P-

SO tuning

Efficient Effective reduction of CF, well

balanced freeway traffic

FLC with SP-

SA tuning

Simple and ef-

fective

Efficient minimization of CF, well

balanced freeway traffic, realtime

implementable

Networked

RM: Chapter 6

& 7

C: B and complex

inter-controller

coupling

FLC based

LCRM with

SPSA tuning

Simple and ef-

fective

Effective reduction of CF, low

communication and implementa-

tion cost, realtime implementable

MTS with

SPSA tuning

Simple and ef-

fective

Efficient minimization of CF,

simple system structure, low im-

plementation cost, minor or no

communication

Tab. 1.2: The contributions of the thesis. para: parameter, dyn: dynamics, sys: system,

distb: disturbance,N-R: Newton-Raphson, FLC: fuzzy logic control, SP: simultaneous

perturbation, conv: convergence, CF: cost function, i.e. discrepancy between model

generated and real traffic data in parameter calibration or WTTS/TTS in ramp metering,

RM: ramp metering, SPSA: simultaneous perturbation stochastic approximation, LCRM:

local coordinated ramp metering, MTS: macroscopic traffic scheduling.



Chapter 2

Revisit on SPSA, FLC,

METANET and ALINEA

To facilitate the understanding of this thesis, this chapter revisits the SPSA algorith-

m, the FLC algorithm and the METANET model, which are frequently referred in the

subsequent chapters.

Specifically, the SPSA algorithm is adopted as a benchmark parameter calibration

algorithm. It is also used for parameter tuning purposes to improve the efficiencies of

various ramp metering systems. FLC is used as an intelligent control algorithm for

approximation of the optimal control policies, the parameters in the antecedent and

consequent parts of the FLC algorithms proposed in this thesis are treated as tunable

parameters. The macroscopic freeway traffic flow model, METANET, is used as the

default traffic simulation model for case studies. The ALINEA algorithm is regarded as

a benchmark ramp metering algorithm.

2.1 The SPSA Algorithm

Simultaneous perturbation stochastic approximation (SPSA) is a type of stochastic

approximation (SA) algorithm proposed by Spall [67], for optimizing systems of mul-

33
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tiple unknown parameters. SPSA based optimization iteratively update the estimated

parameters towards better performing directions by making use of a stochastically esti-

mated gradient information. Different from earlier SA algorithms like RobbinsCMonro

algorithm [68], Kiefer-Wolfowitz algorithm [69], the SPSA algorithm requires less com-

putational power in each iteration for parameter updating. This unique feature of SPSA

makes it especially useful in dealing with optimization problems with a large number of

parameters.

Denote L as a scalar cost function which is related with decision parameters x ∈ R
p×1,

where p is the number of parameters. The SPSA algorithm for minimization of L is

expressed as:

x̂i+1 = x̂i − aiĝi (2.1)

ĝi [j] =
L(x̂i + ciδi)− L(x̂i − ciδi)

2ciδi [j]
(2.2)

where i ∈ [0 ∞] is the index of iteration, x̂i is the estimation of the optimal parameters at

iteration i, ci denotes a perturbation gain, δi denotes a random vector whose components

are Bernoulli distributed on {+1, −1} with probability 0.5, ĝi [j] and δi [j] denote the

jth component of vectors ĝi and δi respectively.

Values of L(x̂i + ciδi) can be observed either from experiments or from simulations.

It is worth noting that observations on L are contaminated by various system noises in

experiments and realistic simulations, the superiority of SPSA and other SA algorithms

is that parameter updating can be carried out to reduce the cost function values, even if

strong noise exists in the observations of cost functions values.

Using SPSA based parameter tuning algorithm, the convergence of parameters to

the global optimal is subject to satisfactions of several assumptions on the considered

system and the configurations of algorithmic parameters [67]. The important conditions
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required on ai and ci are as follows:

1. ai > 0, ai → 0 as i→ ∞, and
∑∞

i=0 ai = ∞

2. ci > 0, ci → 0 as i→ ∞, and
∑∞

i=0(
ai
ci
)2 <∞

Note that no system model information is required in the implementations of SPSA

algorithm, which means that SPSA is a model-free optimization algorithm. This feature

of SPSA is important for real implementations, because explicit relationship between the

system cost function ,L, and the system parameters, θ, is hardly available in complex

and large scale systems. The algorithmic structure of the SPSA algorithm is also very

simple, i.e. no complex mathematical operation is involved. These features of the SPSA

algorithm make it quite suitable for solving realtime optimization problems.

2.2 The FLC Algorithm

Fuzzy logic began with the 1965 proposal of fuzzy set theory by Lotfi Zadeh [70], which

is a form of multiple-valued logic. It emulates the human brain’s reasoning mechanism,

where representation of information and knowledge is approximate rather than fixed and

exact. In contrast with traditional logic, by which binary sets have two-valued logic,

true or false, fuzzy logic variables may have a truth value that ranges in degree between

0 and 1. Fuzzy logic handles the concept of partial truth, where the degree of truth

may range between completely true and completely false. Furthermore, when linguistic

variables are used, these degrees may be managed by specific functions. Fuzzy logic has

been applied to many fields, from control theory to artificial intelligence.

In this work, a T-S type fuzzy logic controller (FLC) based algorithm is used for

freeway local ramp metering. Fuzzy labels are defined for input variables and fuzzy
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rules are designed to determine the controller output by linear equations. The “IF-

THEN” fuzzy rules emulate the reasoning and thinking mechanism of human brain,

which is convenient for incorporation of human expert knowledge in controller design.

The mechanism of fuzzy logic control is summarized in Fig. 2.1. For each input vector,

membership values of all input variables are calculated with respect to their fuzzy sets,

this step is named as “FUZZIFICATION”. Consequently, the firing weights of each fuzzy

rule is determined according to the membership values of input variables with respect to

the corresponding fuzzy sets in each rule, and this step is referred as “INFERENCE”.

The final output of the controller is the sum of outputs of all rules weighted by the

corresponding firing weights, referred as “DEFUZZIFICATION”.

FUZZIFICATION INFERENCE DEFUZZIFICATION

RULE BASE

Fig. 2.1: Flow chart of fuzzy logic control.

Denote xm, m ∈ [1,M ] the mth input variable, where M is the number of input

variables, denote Ll(xm) the linguistic variable of xm corresponding to the lth fuzzy

rule, an example fuzzy rule is expressed as:

IF x1 is Ll(x1) AND x2 is Ll(x2) · · · AND xM is Ll(xM ),

THEN yl = θl0 + θl1x1 + · · ·+ θlmxm,

where θlj , j ∈ [0,M ] are all constant parameters, l denotes the index of the fuzzy rule

and yl denotes the rule output.

Denote µl(xm) the membership value of xm with respect to input fuzzy set Ll(xm),
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the firing weight of the above fuzzy rule, denoted as µl, is calculated as:

µl = min(µl(x1), µ
l(x2), · · · , µ

l(xM )) (2.3)

or

µl = µl(x1) ∗ µ
l(x2) ∗ · · · ∗ µ

l(xM ) (2.4)

depending on the the inference mechanism used.

The final output y is then calculated by the following formula:

y =

∑

l µ
lyl

∑

l µ
l
. (2.5)

2.3 The METANET Model

Freeway traffic flow behavior is highly complex which can be described by a set of

highly nonlinear equations [1, 2, 5, 23]. Among these models, the METANET model is

most widely used [5]. In METANET model, the freeway mainstream link is divided into

small sections, where each section can be connected with an on-ramp and/or off-ramp

link. An illustrative example of the section model is given in Fig. 2.2. The complete

model describes the spatial and temporal relationships between the main state variables,

i.e. average mainstream density, speed, and flow, and the main mathematic equations

involved are as follows:

rn sn

qn−1 qnρn,vn

Fig. 2.2: Freeway mainstream section model.
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ρn(k + 1) = ρn(k) +
T

Ln
[qn−1(k)− qn(k) + rn(k)− sn(k)] (2.6)

qn(k) = ρn(k)vn(k) (2.7)

vn(k + 1) = vn(k) +
T

τ
[V (ρn(k)) − vn(k)]

︸ ︷︷ ︸

relaxation term

+ Lnvn(k) [vn−1(k)− vn(k)]
︸ ︷︷ ︸

convection term

−
Tµ

Lnτ

[ρn+1(k) − ρn(k)]

[ρn(k) + ψ]
︸ ︷︷ ︸

anticipation term

(2.8)

V (ρn(k)) = vfexp

(

−
1

a
(
ρn(k)

ρc
)a
)

, (2.9)

where the variables are defined as:

n index of mainstream sections, n ∈ [1, N ] and N is the total number of mainstream

sections;

k index of discrete time step, k ∈ [0, K] and K is the total number of time steps;

T period of sampling (hour);

ρn average density within section n, (veh/km);

vn mean speed of vehicles within section n, (km/hour);

qn volume of vehicles from section n to n+ 1, (veh/hour);

rn inflow volume of vehicles at on-ramp of section n, (veh/hour);

sn outflow volume of vehicles at off-ramp of section n, (veh/hour);

vf free flow speed of vehicles, the speed of vehicles under zero mainstream density,

(km/hour);

ρc the critical mainstream density, (veh/km);
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Ln length of section n, (km);

τ a time constant, reflecting the reaction speed of drivers, (hour);

µ, ψ, and a are all constant parameters, reflecting the characteristics of geometry of

freeway roads, vehicle types and driver behaviors. (2.6) is the density equation which

shows the conservation law of vehicles. (2.7) expresses the relationship between average

traffic flow, density and space mean speed. (2.8) is the equation that determines the speed

variation from k to k+1. The speed variation is determined by three terms: the relaxation

term showing that mainstream traffic speed intends to follow a target value determined

by the fundamental relationship between density and speed under homogeneous traffic

conditions, the convection term showing contribution of upstream section traffic to the

speed dynamics, and the anticipation term reflecting influence of downstream traffic to

speed dynamics of the current section. Note that exponential nonlinearity exists in (2.9),

the last three terms and (2.7) are all nonlinear, making the complete model complexly

parameterized by the following model parameters

θ = [vf ρc a µ ψ τ ]T .

The evolution of queue volume on the on-ramp links is described by:

ω(k + 1) = ω(k) + T (d(k)− r(k)), (2.10)

where d(k) denotes the flow rate of traffic demand at the on-ramp link.

Additional terms can be added to (2.8) to capture the impact of merging flow and

lane drop to mean traffic speed on the mainstream link [71].
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2.4 The ALINEA Algorithm

ALINEA is the most well-known ramp metering algorithm which was proposed by

Markos Papageorgiou in the 1990s. The ALINEA control law is expressed as:

r(k + 1) = r(k) + β(o∗ − o(k)). (2.11)

The flow rate of merging traffic should not exceed the maximum traffic flow available

at the on-ramp link, where the maximum flow rate is calculated as:

rωmax(k + 1) = d(k) +
ω(k)

T
. (2.12)

An additional constraint is imposed on the maximum allowable flow rate from the on-

ramp link due to considerations of traffic condition in the mainstream. This constraint

is calculated as:

romax = Qo
ρmax − ρ(k)

ρmax − ρc
, (2.13)

where Qo is the maximum flow rate achievable on the on-ramp link under free-flow

conditions, and ρmax is the maximum density on the mainstream. To prevent the ramp

metering signal from exceeding these physical limit of ramp flow rate, a modified ALINEA

algorithm with constraint on the overall ramp metering signal is expressed as:

r1(k + 1) = max{min[r(k) + β(o∗ − o(k)), rmax(k + 1)], rmin}, (2.14)

where rmin is set to be a nonzero value to prevent total closeup of the on-ramp entry,

and rmax(k + 1) = min{rωmax(k + 1), romax(k + 1)} is the maximum allowable flow rate.

More detailed settings on constraints of ramp metering signal were discussed [28].

To prevent the formation of high queue volume on the freeway on-ramp link and

improve the equity of freeway ramp metering, constraints can be enforced to prevent
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the queue volume from exceeding predefined limits. Denote ωmax as the limit on queue

volume, ALINEA ramp metering with queue constraints can be expressed as:

r(k + 1) = max{r1(k + 1), rω(k + 1)}

rω(k + 1) = d(k)−
ωmax − ω(k)

T
.

(2.15)

Detailed explanation on ramp metering and queue constraints strategies are discussed

in [35]

In the next chapter, the hybrid iterative parameter calibration algorithm will be

presented.



Chapter 3

Hybrid Iterative Parameter

Calibration Algorithm for

Macroscopic Freeway Modeling

3.1 Introduction

Freeway traffic is an important subarea in modern intelligent transportation systems,

and what measures to take to address the emerging environmental and societal issues

caused by traffic congestions has aroused huge interest from researchers. Freeway traffic

prediction, travel time estimation and traffic flow control are active topics in this area

[5, 7, 28].

Freeway traffic flow is a highly nonlinear process, where there are random traffic

demand, uncertain exogenous disturbances and stochastic driver behaviors, and both

macroscopic and microscopic traffic models have been studied by researchers to simulate

the traffic flow process. Microscopic traffic modeling relies on detailed description of

the behaviors of drive-vehicle-unit (DVU) and their interactions, and the environmental

factors etc. Macroscopic traffic modeling focuses on describing the evolutions of macro-

scopic traffic flow state variables. The relationships of the state variables in the time and

42
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space domain are expressed by mathematical formulae.

From an engineering perspective of view, first physical principle based macroscopic

models are favorable for system analysis and controller design, because conducting model

based studies with mathematical formulae is more time and cost efficient compared with

experiments and computationally expensive microscopic traffic simulations. A series of

fluid dynamics based macroscopic freeway traffic flow models have been studied by re-

searchers [1,2,5,72], and many researches on freeway traffic flow control were carried out

based on these models [8,42,71]. To utilize these models, parameter calibration is a pre-

requisite to ensure accuracy and applicability of the models for specific implementations.

Regarding the parameter calibration problem, a standard practice is to formulate it

as a least squares problem by adopting a mean square error (MSE) based cost function

to measure the discrepancy between model generated data and real traffic data, and pa-

rameters minimizing the cost function are pursued. A heuristic complex algorithm was

used to minimize a least square output error based criterion and real freeway data is used

for parameter calibration and model validation [23]. However, parameters calibrated by

this method may converge to non-stationary points [24,25]. An iterative learning based

algorithm was proposed for parameter identification of a macroscopic traffic flow model,

where parameter values are regarded as time varying and parameters that led to accu-

rate fitting between model generated data and real data were pursued [73]. However,

application of the method to real freeway data needs further investigation. An extended

kalman filtering algorithm was proposed for freeway state estimation, where parameters

of the METANET model were regarded as part of the system variables and were es-

timated together with the real freeway state variables [8]. An alternative method for

such problem is to recursively update the parameters towards their optimal values by s-
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tochastic approximation, e.g. simultaneous perturbation based stochastic approximation

(SPSA) [67]. Under several assumptions and conditions, the convergence of parameters

to their optimal values is guaranteed [67, 74–76]. This method is especially useful for

problems with a large number of decision parameters.

Gradient based algorithms are efficient in solving nonlinear equations, for example,

the Newton-Raphson method iteratively update the estimated solutions by utilizing the

inverse of analytically calculated Jacobian matrices, where the convergence of parameters

is theoretically guaranteed [77] for quite generic nonlinear objective functions that might

be non-convex. A potential drawback of gradient based algorithms is to have local

minima. The SPSA algorithm estimates the system gradient by randomly producing a

set of searching directions, hence increases the chance of escaping from local minima [67].

A limitation of SPSA algorithm is its strict convergence condition, which cannot be easily

guaranteed for nonlinear objective functions that are non-convex.

To ensure the convergence of parameters, system gradient information is a critical

factor. If the cost function is a scalar one, as is usually the case in optimization problems,

the system gradient is in the form of p × 1 gradient vector, where p is the dimension of

parameters. It is difficult to ensure the convergence of parameters by existing iterative

parameter updating laws when highly nonlinear relationship exists between parameters

and the cost function. For instance, the Newton-Raphson method requires the inverse

of Jacobian, whereas a vector-valued gradient or its pseudo-inverse is difficult to meet

the ranking condition. By introduce multiple cost functions, a Jacobian matrix with full

rank can be computed for iteratively updating parameters.

In this chapter, a novel hybrid iterative parameter calibration approach is proposed

to calibrate the parameters of macroscopic traffic flow models. The MSE values for mul-
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tiple data sets are used as cost functions to measure the discrepancies between model

generated data and real traffic data, and the objective is to seek parameters that min-

imize these cost functions. A multivariate Newton-Raphson method based algorithm

is adopted to iteratively update the estimated parameters, where the system Jacobian

matrix is estimated by a simultaneous perturbation based gradient estimation algorithm.

By imposing random perturbations on the parameters, the system Jacobian matrix is

estimated based on the corresponding changes in the cost functions according to simple

formula. Since the Jacobian matrix estimated from simultaneous perturbation method

are randomized, the multivariate Newton-Raphson method based iterative parameter

updating law is able to randomly search the parameter space, which reduces the risk of

being trapped in local minima.

Simulation studies with real freeway data show that the proposed algorithm is effec-

tive in finding parameters of the macroscopic traffic flow model to significantly reduce

the discrepancies between model generated data and real freeway data sets. As compared

with the SPSA based parameter calibration algorithm, the cost functions obtained by

the proposed method are a% and b% lower for two sets of real traffic data.

This chapter is organized as follows. The problem of parameter calibration for freeway

traffic flow model is formulated in Section 3.2. The hybrid iterative parameter calibration

approach is described and analyzed in Section 3.3. Simulation studies are provided in

Section 3.4. Section 3.5 concludes the chapter.

3.2 Problem Formulation

The METANET model is adopted for macroscopic modelling of freeway traffic flow

in this chapter. Given a stretch of freeway mainstream link with mainstream speed
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measured at certain location for T consecutive time intervals, given proper boundary

conditions, input data and the parameters θ to the freeway model, the mainstream

speed corresponding to the measured location is generated. Denote the set of measured

sample mainstream speed sequence and model generated mainstream speed sequence as

{vsk} and {vmk } respectively, where k ∈ [1, T ] is the index of sample data.

A mean squared errors (MSE) based cost function is used to measure the discrepancy

between {vmk } and {vsk}. Denote the cost function with respect to θ as L(θ):

L(θ) =
1

T

T∑

k=1

(vsk − vmk )2 . (3.1)

Assume we have o sets of sample data, denote the performance index with respect to

these sample sets as

L(θ) = [L1 · · · Lo]
T ,

which is adopted as the cost function in this work.

The objective of parameter calibration is to find θ∗ that minimizes L. Due to the

natural model approximation, perfect fitting between sample data and model generated

data is impossible. The objective in this work is to find a set of parameters, θ∗, that re-

duce the cost functions to their minimums L∗, i.e. L∗ = L(θ∗). The problem formulated

above is equivalent to solving the following nonlinear equations:

L(θ) = L∗. (3.2)

It is worth noting that the model parameters can be regarded as both time varying

and time invariant; however, parameters identified in this chapter are regarded constant,

because the parameters resulted in such a way reflect the characteristics of traffic flow
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behaviors at the macroscopic level, i.e. the traffic flow dynamics are generalized by a

traffic flow model with the same set of parameters.

3.3 Hybrid Iterative Calibration Approach

3.3.1 Simultaneous Perturbation Based Gradient Estimation

To acquire the system gradient, the Jacobian matrix is estimated by a simultaneous

perturbation algorithm [67,75], which calculate the system gradient by imposing random

perturbations to estimated parameters and observe the variations in cost functions. The

simultaneous perturbation algorithm is expressed as:

Ĵ [mn] =
1

Z

Z∑

z=1

Lm

(

θ̂ + c∆z
)

− Lm

(

θ̂ − c∆z
)

2cδzn
. (3.3)

where z ∈ [1, Z] is the index of perturbation trials, θ̂ is the estimation of θ∗, Ĵ [mn] is

the component of Ĵ at the mth row and nth column, ∆z =
[
δz1 · · · δzn · · · δzp

]T
is the

perturbation vector corresponding to the zth perturbation trial, c is a positive scalar,

which determines the amplitude of perturbation on the parameters.

Denoting O(xn) as the order of magnitude at xn. Assume that the third order

derivatives of L exist continuously and are bounded, it can be proved that the expectation

of the difference between the Jacobian matrix, J , and the estimated Jacobian matrix, Ĵ ,

by simultaneous perturbation algorithm given in (3.3) is O(c2), i.e.

J [mn]− Ĵ [mn] = O
(
c2
)
, (3.4)

and this difference is negligible if c is sufficiently small. A complete proof for such

problems is given in [67].
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3.3.2 The Hybrid Algorithm

Denoting

Li = L
(

θ̂i

)

dLi = Li+1 −Li

dθi = θ̂i+1 − θ̂i

δLi = L∗ −Li

δθi = θ∗ − θ̂i

Ĵi = Ĵ
(

θ̂i

)

.

In the following, let ‖ · ‖ denote the maximum norm for vectors and its induced matrix

norm for matrices.

The proposed hybrid iterative parameter calibration algorithm is expressed as follows:

θ̂i+1 = θ̂i − aiĴ
−1
i Li (3.5)

where i denotes the iteration number, Ĵi denotes the estimation of the Jacobian matrix

by (3.3) and ai denotes a learning rate.

The proposed algorithm takes the form of multivariate Newton-Raphson algorithm

except that the analytical Jacobian matrix is replaced by the estimated Jacobian matrix

Ĵ resulted from simultaneous perturbation method. Li is cost functions at iteration

i, which represents the discrepancies between model generated data and real data for

the data sets. From the perspective of learning control theory, the proposed parameter

updating algorithm (3.5) can be regarded as a gradient based parameter updating scheme

that iteratively learns from the current discrepancies corresponding to the estimated

parameters.
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It should be noted that the rank of the Jacobian matrix is related to the data sets

used, for example, if two sets of data are collected under similar conditions and the MSE

values with respect to these two data sets are used as performance indices, the derivatives

of the performance indices with respect to the model parameters will be approximately

the same. This makes the corresponding rows in the Jacobian matrix strongly correlated

and reduce the rank of the Jacobian matrix. Due to the above reason, the data sets used

should be weakly correlated from each other, i.e. data should be collected from different

locations or on different dates.

3.3.3 Convergence Analysis

The convergence of the proposed algorithm is given in Theorem 3.1.

Theorem 3.1. Given θ and L as previously defined, the updating law (3.5) guarantees

that θ̂i and Li converge to bounded neighborhoods of θ∗ and L∗ respectively, i.e.:

1. limi→∞ δLi =
ǫ1

1−ρ1
,

2. limi→∞ δθi =
ǫ2

1−ρ2
,

under conditions that ρ1 < 1 and ρ2 < 1, where ρ1, ρ2, ǫ1 and ǫ2 are as defined in the

proof.

Proof. See Appendix 8.2.

In real implementations, the parameter calibration task becomes much more com-

plex due to the impact of measurement noise, process randomness and exogenous dis-

turbances. Under such conditions, there will be a mismatch between sample and model

generated data, which weaken the accuracy of Taylor approximation and the convergence

of parameters. To cope with the above issues, gradient estimation can be conducted in a
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stochastic manner. Firstly, perturbation vectors ∆z, z ∈ [1, p] are generated randomly,

which satisfy

rank([∆1 ∆2 · · · ∆p]) = p

. Then the system gradient is calculated using the following formula:

Ĵ [mn] =
1

p

p
∑

z=1

Lm

(

θ̂ + c∆z
)

− Lm

(

θ̂ − c∆z
)

2cδzn
, (3.6)

where ∆z, z ∈ [1, p] are uncorrelated, which is essential to remove the redundancies

within the perturbations to parameters. Additionally, restriction criterion are applied to

prevent inappropriate parameter updating, e.g. updating that leads to violent changes

in parameters and cost functions. The complete parameter calibration process with

restriction criterion is shown in Fig. 3.1. In the above algorithm, checking the rank of

Initialize parameters, set i = 0, set values of
imax, c0, a0, and set L0 = L(θ̂0).

Randomly generate uncorrelated ∆
z, z ∈

[1, p] and calculate Ĵi according to (3.6).
Calculate θ̂i+1 according to (3.5).

Whether ‖θ̂i+1 − θ̂i‖ is too large?

Let Li+1 = L(θ̂i+1), whether ‖Li+1 − Li‖ is
too large?

Whether i reaches maximum value imax?

i = i+1

Terminate

no

no

yes

yes

yes

no

Fig. 3.1: The hybrid iterative calibration algorithm.

Ĵi is to ensure that the ranking condition is satisfied to ensure convergence. Parameter

updating resulting in abrupt changes in the parameters and performance indices are
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prohibited for stability considerations. The implementation of restriction criterion is

mainly out of practical considerations to prevent violent variations of parameters.

3.4 Illustrative Examples

3.4.1 Description of Data

#3

#1

#7

#20

To Oakland

Fig. 3.2: Layout of California I-880 freeway detectors.

Real traffic data on the California I-880 freeway from the PATH programm is used for

testing the proposed algorithm. Detailed description on the traffic data is available online

(http://ipa.eecs.berkeley.edu/~pettyk/FSP/). Measurement data obtained from

four sets of mainstream loop detectors is used. A description of the considered freeway

and layout of detector stations is given in Fig. 3.2. Data collected from northbound

detectors at detector stations numbered 3, 1, 7 and 20 on the California I-880 freeway

is used. Detectors are allocated at an interval of 1700 feet. The original freeway data

is processed with a 1 minute time interval. This data is further discretized with 15-

seconds interval by linear interpolation, because a time interval of 15 seconds is considered

suitable for freeway traffic modeling when the interval length of detectors is around 500
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Fig. 3.3: Speed profiles of real data at detector station 1 and 7.

meters (1700 feet) [23]. 2633 data points in total are resulted from the interpolation from

each measurement station. Let xt1 and xt2 , t2 > t1, denote the original data consecutively

measured at time t1 and t2, three new data points are obtained by the following linear

formula:

xti = xt1 +
i

4
× (xt2 − xt1), i ∈ {1, 2, 3}. (3.7)

In the simulations, two sets of data collected from two different days are used. For

convenience, the two sets are denoted as A and B in the following. Since data collected

from detector stations 3 and 20 are used as input to the METANET model, model

generated data at detector stations 1 and 7 is regarded as output of the model. The

speed profile of the real data measured at detector stations 1 and 7 are given in Fig. 3.3.

#1 and #7 denote the detector stations 1 and 7. Set A is the data set used for parameter

calibration and Set B is data set used for validating the calibrated parameters.
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3.4.2 Simulation Setup

Denote model generated traffic speed at detector station 1 and 7 as v1(t) and v7(t),

t ∈ [1 T ], where T is the total number of data points considered, denote the real traffic

speed data at detector station 1 and 7 as vo1(t) and vo7(t). The following performance

indices are defined:

L1 = (
1

T

T∑

t=1

(v1(t)− vo1(t))
2)0.5

L2 = (
1

T

T∑

t=1

(v7(t)− vo7(t))
2)0.5

Ls = (
1

2T

T∑

t=1

((v1(t)− vo1(t))
2 + (v7(t)− vo7(t))

2))0.5

(3.8)

In the following, Lh = [L1 L2]
T denotes the performance index vector adopted by the

hybrid algorithm. Ls is the performance index adopted by SPSA algorithm, which is

actually the MSE with respect to data at both detector stations. A decaying updating

gain is adopted by SPSA as suggested [75], i.e. ai =
0.015

(i+1)0.602 . The updating gain for the

hybrid algorithm is a constant one , i.e. ai = 0.015, ∀i. The amplitude of perturbations

adopted by SPSA is a decaying one, i.e. ci = c0
(i+1)0.201

, as suggested in [75], where

c0 is an initial perturbation amplitude. In both cases, the initial parameter vector is

θ = [70 45 3 50 15 0.03]T , and c0 = [0.5 0.5 0.2 0.5 0.5 0.005]. The pseudo inverse of the

Jacobian matrix is used in the simulations, because two performance indices are available

and the Jacobian matrix not square.

3.4.3 Results And Discussion

In this chapter, data set A is used for parameter calibration and set B is used for

validating the calibrated parameters. For convenience, the SPSA based calibration is

referred as Case I and the hybrid iterative algorithm based calibration is referred as

Case II in the following.
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Fig. 3.4: Evolution of performance index values, L1 and L2.
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Fig. 3.5: Evolution of Ls.
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The evolution of individual cost function values in 15000 iterations are given in

Fig. 3.4. As shown, the cost functions are significantly reduced in both Case I and

II. The stable values of L1 and L2 obtained are 4.974 and 3.458 respectively in Case I, a

and b in Case II, where the values obtained by the hybrid method is A% and B% lower

than that obtained by SPSA. This shows the superiority of the proposed algorithm in

achieving more accurate fitting between model generated data and real data. This supe-

riority of the proposed algorithm is further verified from a comparison of the evolution

of Ls in Fig. 3.5, where Ls resulted are c and d in case I and II, where a e% reduction is

obtained by the proposed hybrid method.

The rates of convergence in L1, L2 and Ls in Case II are faster than that in Case I,

showing an advantage of the proposed hybrid algorithm over SPSA; however, it is worth

mentioning that this advantage is achieved at the cost of more evaluation trials for the

proposed hybrid algorithm than that for the SPSA based algorithm.
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Fig. 3.6: Evolution of parameters in Case I.
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Fig. 3.7: Evolution of parameters in Case II.

The evolution of parameters in Case I and Case II are given in Fig. 3.6 and Fig. 3.7.

It can be seen that parameter convergence are achieved in both cases. The directions of

parametric updating in Case II vary frequently at the macroscopic level, while parametric

updating in Case I follows uniformmacroscopic directions for individual parameters. This

shows that larger space in the parameter space has been evaluated and considered by the

hybrid parameter calibration method, i.e. more updating directions have been searched,

which is as expected and helpful for avoiding local minima.

To validate the parameters calibrated, they are used by the METANET model for

fitting the validating data. The error between real data and the model generated data

at the examined detector stations are given in Fig. 3.8 and Fig. 3.9, where t is the

index of data points, e♯1(t) and e♯7(t) are the difference between real data and model

generated data at time t and detector stations 1 and 7 respectively. As is shown, the

model generated data with parameters calibrated by the hybrid method (red curve) fits
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Fig. 3.8: Results of parameter validation.
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Fig. 3.9: Results of parameter validation.

the measurement data more accurately compared with the SPSA calibrated parameter

case. e♯1(t) and e♯7(t) during the time intervals between 1500 and 2500, differ greatly in
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two cases: these fitting error values fluctuate with smaller amplitudes around zero in the

hybrid calibration case, while obvious steady state errors exist in the other case. This

indicates that the fitting accuracy is significantly improved by parameters calibrated from

the hybrid method. The values of L1, L2 and Ls with parameters calibrated from Case

I and II are 8.543, 10.722, 9.694 and 5.261, 3.522, 4.477 respectively. The cost function

values with respect to detector stations 1 and 7 are greatly reduced when parameters

calibrated from the proposed algorithm is used, and the overall RMSE is also considerably

lower than that resulted from parameters calibrated by SPSA based algorithm.

The above results clearly demonstrate that the proposed hybrid iterative parameter

calibration algorithm is able to achieve very good overall accuracy of fitting between

model generated data and real data, and convergence of parameters is improved compared

with the SPSA based algorithm.

3.4.4 Further Investigation

To obtain the gradient information, a standard operation is to calculate the gradi-

ent analytically based on the available system model with respect to real traffic data.

However, Newton-Raphson method easily converges to local minimum when the system

model is highly complex and multiple local minimum points exists in the parameter s-

pace, and parametric convergence is sensitive to the initial parameter values. Due to

the randomized perturbation and updating mechanism adopted in the proposed method

for gradient estimation, the parameter calibration process are able jump out of the local

minima rather than strictly following the directions resulted from local gradient informa-

tion. Hence the convergence properties can be enhanced by using the proposed gradient

estimation instead of analytically calculated gradient.

Two groups of calibration tests are conducted to compare the performance of the
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multivariate Newton-Raphson method using the estimated gradient and analytically cal-

culated gradient. Traffic data collected under free flow and congested traffic conditions

are used in test Group A and Group B. The first 100 and first 1000 data sets described

in 3.4.2 are considered as collected under free flow and congested traffic conditions, and

are used in Group A and B respectively. It is obvious that a traffic congestion occurs

during the time intervals from 500 to 1000. In each group, 5 set of initial parameter

values are randomly generated. These parameters are consequently used for parameter

calibration with gradient analytically calculated and estimation respectively.

The results of test Group A in Fig. 3.10 show that the performance of analytically

calculated gradient based calibration is sensitive to the initial values of the parameters,

where the MSE values occasionally converge to local minima. In comparison, the hybrid

algorithm with randomly estimated gradient performs well for randomly selected initial

values, and the MSE values converge uniformly to a value (1.334) which is lower than

the minimum (2.846) achieved with analytically calculated gradient. The results of test

Group B in Fig. 3.11 show that when traffic data resulted from congestion is used,

the gradient estimation based hybrid calibration method performs well, while in the

analytical gradient calculation case, the performance is inconsistent with that obtained

in Group A and MSE diverges. The inconsistency in the performance of analytical

gradient calculation based Newton-Raphson method is possibly due to the nonlinear

traffic flow model and highly complex traffic flow dynamics, especially under congestion.

These results demonstrate that the proposed hybrid method with estimated gradi-

ent improved the performance of Newton-Raphson method based parameter calibration

algorithm by achieving lower cost function and enhanced parametric convergence.
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Fig. 3.10: Results of test simulations using traffic data under free flow conditions.

3.5 Conclusion

A novel hybrid iterative parameter calibration approach is proposed for parameter cal-

ibration of macroscopic freeway traffic flow models. The parameter calibration problem

is formulated as an optimization problem with multiple performance indices. By com-

bination of the iterative multivariate Newton-Raphson method with the simultaneous

perturbation based numerical gradient estimation scheme, the performance index values

of multiple data sets are driven towards a desired value. By the proposed approach, the

fitting accuracies for multiple data sets are investigated and an uniform accuracy level

is obtained for all data sets. Numerical studies with real freeway data show that the

proposed hybrid approach effectively finds parameters that drive all performance indices
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Fig. 3.11: Results of test simulations using traffic data with traffic congestion.

to the desired value, and outperforms the SPSA based parameter calibration algorithm

by improved convergence of parameters and higher accuracy of data fitting.

Chapter 3 tackles the parameter calibration problem, which is the basis for model based

research on freeway traffic control. By the hybrid parameter calibration algorithm pro-

posed in Chapter 3, the parameters of freeway traffic flow models are accurately calibrat-

ed so that the real traffic situations can be well reproduced using the traffic flow model

and traffic data. Above all, the work presented in Chapter 3 qualifies us to carry out

various research on freeway traffic control using model based simulations with reasonable

confidence on the results.

In the remaining chapters, freeway ramp metering at both local and network levels are
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investigated. In particular, Chapters 5 to 7 are based on simulations using macroscopic

traffic flow model. Coming next is a Chapter on freeway optimal local ramp metering

using FLC based control algorithm, which is an attempt to utilization of microscopic

traffic flow models for assisting the design of ramp metering controllers.



Chapter 4

Optimal Freeway Local Ramp

Metering Using FLC and PSO

4.1 Introduction

As traffic demand and traffic congestion rate increase in metropolitan areas around

the world, development of freeway infrastructures has greatly increased in past decades.

Due to the unavailability of land resource, researchers and practitioners have been mo-

tivated to pursue more efficient utilization of existing traffic infrastructures rather than

blind construction of new ones.

Various freeway traffic management strategies have been studied. Among these meth-

ods, ramp metering has been reported to be efficient in dealing with freeway congestions

and improving freeway mainstream traffic flow [26]. A freeway ramp is a section of road

which allows vehicles to enter or exit a freeway. An entry ramp is called on-ramp and

an exiting ramp is called off-ramp. Ramp metering aims at maintaining proper freeway

traffic conditions by regulating the traffic flows entering freeways from the on-ramp en-

tries. Ramp metering is realized by implementation of a device, usually a traffic light or

a two-phase (red and green only) signal together with a signal controller at the on-ramp

63
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link.

Existing ramp metering algorithms can be categorized into fixed time strategies and

real-time (traffic responsive) strategies. Fixed time ramp metering strategies adopt

fixed ramp metering signals at specific times and have been plagued with low efficien-

cy [28, 78, 79]. Traffic responsive ramp metering strategies determine ramp metering

signals according to realtime traffic conditions. Traffic responsive strategies can be fur-

ther categorized into the local and coordinated ramp metering algorithms. Local ramp

metering determines the ramp metering signals at an on-ramp entry according to traffic

conditions at the vicinity of the merging area. The demand-capacity (DC) and its varia-

tions determine the ramp flow based on the difference between a predefined mainstream

flow capacity and the measured mainstream flow upstream of the merging area [80]. This

algorithm was criticized for adopting constant mainstream flow capacity [28]. A num-

ber of ramp metering algorithms are based on the famous fundamental diagram, which

shows the relationship between mainstream traffic flow and density under homogeneous

traffic conditions. As shown in Fig. 1.4, mainstream traffic flow achieves its maximum

when density is at the critical value. These algorithms try to maintain the mainstream

density at the critical density by ramp metering so as to maximize the mainstream flow.

The feedback control based ALINEA algorithm is a well-known ramp metering algorith-

m. By ALINEA algorithm, the mainstream occupancy (mainstream traffic density) is

measured, and the error between the measured occupancy and the critical occupancy

(density) value is used to update the ramp metering signal [33].

Coordinated ramp metering aims at optimizing the performance of the network-

wide traffic flow, which requires the on-ramps within the network to be controlled in a

coordinated manner rather than independently [28,38,81]. Therefore, coordinated ramp
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metering algorithms determine the ramp metering signals according to traffic conditions

of the entire freeway network. Total time spent (TTS) by vehicles within the freeway

network is usually adopted as a cost function to measure the efficiency of coordinated

ramp metering systems.

Artificial Intelligence (AI) based approaches were also studied for traffic problems.

Fuzzy clustering was used for estimation of travel time [43], a type-2 fuzzy logic based

approach was proposed for estimation of short term traffic [44], a hybrid fuzzy neural

network was proposed for freeway incident detection with linear least square regres-

sion [45] and reinforcement learning and multi-agent system based urban traffic control

systems were studied [46]. FLC based algorithms were reported beneficial to freeway

traffic control with good robustness and smoothness of control signal, and improved

traffic conditions through microscopic simulation was reported with FLC based ramp

metering [48].

Traffic simulation is important for studies on traffic control, especially for evaluating

the efficiencies of traffic control or management algorithms. Microscopic and macro-

scopic traffic simulation models are commonly used for researches on freeway traffic.

Microscopic traffic simulations are based on modeling the behaviors of individual Driver-

Vehicle-Unit (DVU) and detailed description of physical and environmental constraints.

Microscopic traffic simulations such as PARAMICS and VISSIM have received wide

applications. Macroscopic simulation models are comprised of mathematical equation-

s which describe the temporal and spatial relationships among aggregated traffic state

variables, i.e. mean traffic density, speed and flow. METANET model is a second or-

der macroscopic freeway traffic flow model which is used in various studies on freeway

traffic [5]. However, it was reported that microscopic activities in traffic flow, e.g. in-
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teractions among vehicles, greatly influence the traffic flow dynamics, especially under

congested traffic conditions [12]. Whether macroscopic models can fully represent the

influence of these microscopic activities requires further studies. Since ramp metering

controllers are expected to deal with congestions, therefore, more powerful and realistic

simulation method would be necessary for validation of the such algorithms.

The objective of ramp metering is another important issue in freeway local ramp

metering. Most existing ramp metering algorithms aim at obtaining optimal mainstream

flow through maintaining the mainstream density or occupancy at the critical value. Such

a method incurs several problems. First, the efficiency of the algorithms depends on

estimation of the critical density or occupancy value which is usually defined empirically.

In fact it has been revealed that these critical values are time varying and accurate

estimation of critical density is still unresolved. Second, the relationship between freeway

average mainstream flow and density under inhomogeneous and congested conditions

are uninvestigated, which however is the basis of such algorithms in achieving optimal

mainstream traffic flow. Third, the time delay incurred by vehicles on the on-ramp link

is not discussed while ramp metering aims at maximizing mainstream traffic flow only.

A FLC based ramp metering controller was proposed in [49] where total time spent

(TTS) by vehicles within the freeway system is used as the cost function, and a model

predictive control based methodology was adopted to tune the controller parameters.

The work is limited in the following aspects. First, the traffic conditions within the

whole freeway link might not be fully measured by detectors to calculate the TTS,

which requires either more detectors or prediction of traffic conditions. Second, the

efficiency is highly dependent on the accuracy of the macroscopic traffic flow models.

Third, continuous computational power is required for implementation of the proposed
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algorithm.

In this chapter, we propose a novel T-S type FLC based ramp metering algorithm for

solving the optimal freeway local ramp metering problem, and a Weighted TTS (WTTS)

based cost function that considers traffic conditions on both the freeway mainstream and

on-ramp link. The optimization of the cost function essentially requires maintaining a

proper balance between traffic conditions on the mainstream and on-ramp link. An ad-

vantage of using WTTS instead of TTS is that the performance of ramp metering can

be evaluated without the need to measure or predict the traffic conditions of the entire

freeway network. The input membership functions of the FLC controller are predefined,

and the size of fuzzy rule base is reduced by incorporating human expert knowledge.

Parameters of the consequent part are fine-tuned through a PSO algorithm and micro-

scopic traffic simulations. The microscopic traffic simulation platform, PARAMICS, is

used to evaluate controller performance and provides detailed and realistic simulation of

traffic flow behaviors.

The chapter is organized as follows. Section 4.2 provides background knowledge and

formulation of the optimal freeway local ramp metering problem. Section 4.3 presents

the proposed FLC based local ramp metering algorithm and the PSO based parameter

tuning algorithm. In Section 4.4, the performance of the proposed algorithm is exam-

ined through numerical experiments on PARAMICS simulation platform. Section 4.5

concludes the chapter.



Chapter 4. Optimal Freeway Local Ramp Metering Using FLC and PSO 68

flow direction −−−→A C

B

Merging Area

Traffic Light Position

Detectors

On−ramp Link

Fig. 4.1: Freeway local ramp metering model.

4.2 Problem Statement

4.2.1 Freeway Model

A freeway mainstream link with an on-ramp link is considered, as shown in Fig. 4.1.

Measurement data is collected from detectors on the freeway mainstream and on-ramp

link. Mainstream average density (or occupancy), speed and queue length on the on-ramp

link can be measured by proper deployment of detectors, i.e. as indicated in the figure.

Detectors are deployed on both the mainstream link and on-ramp link. The mainstream

merging area is the mainstream area connected to the on-ramp link. A detector is

located at the downstream location of the mainstream merging area, thus mainstream

traffic condition can be reflected by the measurement from this detector, i.e. mainstream

average flow, speed and density (which is equivalently replaced by occupancy in practice).

Detectors on the on-ramp link are located at beginning and ending positions so that traffic

conditions on the on-ramp link is monitored. Upstream traffic is the mainstream traffic

from point A to the merging area, and downstream traffic is the mainstream traffic from

the merging area to point C.

Without loss of generality, the dynamics of freeway traffic flow can be characterized

by a discrete relationship between freeway states, x(k) ∈ X, and control signal or the

ramp metering signal, r(k) ∈ R:

x(k + 1) = f(x(k), r(k)), (4.1)

where system states x(k) can include average flows, densities and velocities of mainstream
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merging area. Ramp metering algorithm can be defined as a set of functions [X → R],

which define the ramp metering signal, r, according to system states x.

The cost function J can be regarded as a functional mapping defined as:

J = g(x(k), r(k)). (4.2)

4.2.2 Objective

By regarding the ramp metering control algorithm as a functional mapping, i.e.

r(k) = h(x(k)), h ∈ [X → R], the objective of optimal local ramp metering is to

seek an optimal function h∗ within this set such that the cost function is minimized, i.e.

h∗ = argmax
h

g
(
x(k), h(x(k))

)
. (4.3)

4.3 FLC Based Local Ramp Metering

4.3.1 Motivations

Optimal freeway local ramp metering has been limited to maintaining maximum

mainstream traffic flow by most existing studies. However, freeway local ramp metering

also involves traffic on the on-ramp link which should be appropriately treated when

developing ramp metering strategies, because the waiting time spent by vehicles on the

ramp increases if ramp metering prevents timely merging of these vehicles. This will

not only result in unappreciated road priority of these vehicles, but also influence the

traffic flow on related surface street links. An ideal way for solving this problem is to

take the Total Time Spent (TTS) by vehicles within the whole freeway network as a cost

function to measure the efficiency of ramp metering, which is adopted in coordinated

freeway ramp metering systems. For freeway local ramp metering, however, there might

not be enough detectors on the freeway mainstream link to help calculation of TTS in
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real freeway systems, because there are only limited detectors on the ramp link and the

merging areas of the mainstream link. Given the above consideration, a practical method

is to take a weighted total time spent by vehicles within the merging area and on-ramp

link as the cost function, which emphasizes a more balanced evaluation of ramp metering

efficiency.

Due to the highly nonlinear dynamics of freeway traffic flow behaviors and the ran-

domness in freeway systems, e.g. measurement noise, uncertainty of traffic demand, it is

difficult to design a ramp metering algorithm that works the best under various traffic

conditions. However, it is possible that the optimal ramp metering strategy be reason-

ably approximated by control algorithms with parameterized functional approximators,

e.g., artificial neural networks and fuzzy logic based control algorithms which have been

proven to be universal approximators. FLC based control emulates the reasoning process

of human brain which is capable of generalizing the control policies by limited number

of fuzzy rules. A desirable feature of FLC is that the control algorithm can approximate

any functional mapping if properly designed [82]. Furthermore, FLC based controllers

are insensitive to system uncertainties and human expert knowledge can be conveniently

incorporated in the controller design process.

Although randomness exists in freeway systems, especially in the traffic demand, the

overall traffic conditions are repeated at a macroscopic level. For instance, the traffic

demand during the peak hour period is a random value, yet these values are around an

average level. The efficiency of the ramp metering algorithm should be evaluated based

on the average performance of multiple random trials rather than a single random trial.

Motivated by the above considerations, we propose the FLC based ramp metering

algorithm to achieve the performance. The FLC controller is optimally tuned based on
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PSO algorithm and freeway traffic simulations.

4.3.2 Design of FLC Algorithm

The characteristics of the above FLC controller depend on both the input fuzzy

sets and the parameters in the equations of the consequent part. Due to the adoption of

predefined input fuzzy sets, the FLC algorithm is then characterized solely by parameters

of the consequent part. Mainstream density (ρ), speed (v) and the on-ramp queue volume

(ω) are used as input variables for the ramp metering algorithm. These variables can be

measured by deploying loop detectors on the freeway mainstream and on-ramp link. 2

fuzzy labels are defined for each input variable with triangular type fuzzy sets, which was

suggested to start with in FLC design [83]. The input fuzzy sets, with input variables

normalized into the range of −1 and 1, and the corresponding fuzzy labels are shown

in Fig. 4.2. Two fuzzy sets are defined for each variable and are labeled by linguistic

variables LOW and HIGH respectively.
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Fig. 4.2: Input fuzzy sets and fuzzy labels.
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A similar ramp metering strategy like ALINEA is used here where a desired main-

stream density, ρd, is to be tracked and the ramp metering signal is determined as follows:

r(k + 1) = r(k) + β(ρd − ρ(k)) (4.4)

where β is a constant feedback gain. Different from ALINEA, ρd is determined by the

FLC based algorithm according to realtime traffic conditions. The desired mainstream

density is not directly determined by the output of the FLC controller, but treated as

the product of a predefined value, ρr, and a coefficient, cρ, which is determined by the

controller instead. An example of the fuzzy rule is:

IF ρ is HIGH AND v is HIGH AND ω is HIGH, THEN clρ = θl
0
+ θl

1
ρ+ θl

2
v + θl

3
ω

where θlj, j = 0, 1, 2, 3, are the output parameters of the lth fuzzy rule. The desired

mainstream density is eventually calculated as follows:

ρd = ρr

∑

l µ
lclρ

∑

l µ
l
. (4.5)

Denote θ the vector of FLC output parameters, i.e.,

θ = [θ10, · · · , θ
1
3 · · · θL0 , · · · , θ

L
3 ] (4.6)

where L is the number of rules.

Due to the setting of input fuzzy sets, there are 8 possible combinations of antecedent

fuzzy labels as listed in Tab. 4.1. Some of the rules are unrealistic, because the dynamics

characteristics of traffic flow determine that when mainstream density is high, the main-

stream speed must be low. Fuzzy rules corresponding to combinations of 1, 2, 7 and 8

are unrealistic, therefore, they are removed from the rule base. Due to the settings of

input fuzzy sets and rule base, there are 4 fuzzy rules and 4×4 = 16 tunable parameters.

Finally, the optimal freeway local ramp metering problem is equivalent to seeking the

optimal parameter vector, θ∗, such that the cost function is minimized.
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Tab. 4.1: Possible combinations of antecedent fuzzy labels in fuzzy rules.

l Ll(ρ) Ll(v) Ll(ω)

1 LOW LOW LOW

2 LOW LOW HIGH

3 LOW HIGH LOW

4 LOW HIGH HIGH

5 HIGH LOW LOW

6 HIGH LOW HIGH

7 HIGH HIGH LOW

8 HIGH HIGH HIGH

4.3.3 PSO Based Parameter Tuning

We apply the PSO algorithm for tuning the parameters of the FLC controller. PSO

solves an optimization problem by keeping a population of particles in the search space,

and each particle is associated with a set of parameters. The parameters of these particles

are updated according to simple mathematical formulae. The standard PSO algorithm

is expressed by (4.7)-(4.9).

V j+1
i = ηjV j

i + c1rand()(θ
p
i − θ

j
i ) + c2rand()(θ

g
i − θ

j
i ) (4.7)

ηj = ηmax −
(ηmax − ηmin)× j

Gen
(4.8)

θ
j+1
i = θ

j
i + V j+1

i (4.9)

During the optimization process, each particle keeps a record of the parameters it has

reached with the best performance, this parameter is called the personal best solution.

Meanwhile, a neighborhood of 3 particles is defined for each particle, and the parame-

ters with best performance ever reached by particles within the neighborhood are also

recorded, which is called the global best solution. The velocity of particles is the vector

of parameters’ updating signal. The searching and parameter updating mechanism of
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PSO can be regarded as a combination of both exploitative and explorative searching

behaviors of the particles. The exploitative searching is realized by moving the current

solution towards both the personal and global best solutions so as to get closer to the

optimum, which might possibly be a local optimum. The explorative searching is real-

ized by retaining the current direction of movement so that broader region in the search

space can be explored. As the parameter updating process evolves, the weighting factor

ηj decreases so that particles converge towards the optimal solutions. Analysis on con-

vergence properties of PSO was studied by researchers [84–86]. Although the assumption

of infinite numbers of generation is practically unsatisfied, PSO algorithms can find good

solutions given appropriate selection of parameters in practice.

The configuration parameters of the PSO algorithm are given in Table. 4.2. It should

be noted that the values of η, c1 and c2 are important to performance of PSO algorithm.

Suggested values of these parameters were given in several studies which were considered

adequate for some of the usual benchmark problems [84,87].

Tab. 4.2: Configuration of PSO Algorithm.

Parameters Value

Swarm Size 20

Gen 100

ηmax 0.9

ηmin 0.4

c1 2.0

c2 2.0
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Tab. 4.3: Summary of simulation parameters.

ρr a0 a1 a2 ωmax

45 0.1 400 0.01 50

4.3.4 Fitness Function

The following cost function is adopted to evaluate the efficiency of the ramp metering

controller:

J = T
∑

1≤k≤T

{

ρ(k)Lnδn + a0ω(k) + a1(cρ(k) − cρ(k − 1))2

+ a2 max
[
(ω(k)− ωmax), 0

]2
} (4.10)

where Ln is the length of the nth section, δn is the number of lanes of section n, a0,

a1 and a2 are constant weighting coefficients, T is the length of controller time step,

and ωmax is the maximum number of vehicles allowable on the on-ramp link. These

parameters are summarized in Tab. 4.3, where 45 is the estimated critical density value

and queue length over 50 is considered overlong and are penalized more. The values of

a0, a1 and a2 are found to be suitable in simulation studies.

Note that (4.10) is a weighted total time spent (WTTS) by vehicles in the merging

process which is comprised of four terms. The first term is the time spent by vehicles

on the mainstream merging area. The second term is the time spent by vehicles on the

on-ramp link. The last two terms are weighted penalties on violent variations in the

desired mainstream density signals and overlong queues on the on-ramp link. A cost

function in the form of (4.10) represents a more comprehensive assessment of the traffic

conditions under ramp metering, taking into consideration of traffic conditions on not

only the mainstream link, but also the on-ramp link. The penalty terms on temporal

difference in ramp flow rate is out of the practical concern that violent changes of ramp

flow rate should be avoided, because real traffic flow changes with a limited rate.
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To obtain minimum cost function value from (4.10), the first two terms are the main

factors to be considered which are conflicting to each other. To reduce the time spent by

vehicles on the mainstream link requires higher traffic flow and speed there, however, to

ensure better mainstream traffic flow would prevent on-ramp vehicles from merging which

inevitably increase the waiting time spent by vehicles on the on-ramp link. Vice versa,

a similar situation would occur, therefore, a balance between the these main aspects is

essentially required so as to achieve optimal performance of ramp metering.

4.4 Numerical Experiments

4.4.1 Simulation Setup

To evaluate the proposed approach for freeway local ramp metering, a benchmark

freeway system shown in Fig. 4.3 is considered. A 3-lane mainstream link is comprised

of 9 mainstream sections of 500 meters, S1 to S9. An on-ramp link is connected to S5

at the beginning location. Three areas, A, B and C, are defined at the mainstream and

on-ramp link origins and the mainstream ending location.

A

B
on−ramp link

C

S1 S2 S3 S4 S5 S6 S7 S8 S9

Fig. 4.3: Benchmark PARAMICS freeway model.

The PARAMICS simulation platform is used for modeling the benchmark freeway

system. Traffic demands at the mainstream origin and on-ramp link are given in Fig. 4.4.
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3 hours’ simulation time is considered. The total traffic volumes to be released from origin

areas A and B to destination area C are 18000 and 2650 respectively. 10 simulation

periods are defined, each of 18 minutes. The fractions of traffic volume released within

each period are given as in the graph where a peak traffic demand is presented.
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Fig. 4.4: Traffic demand for PARAMICS freeway model.

4.4.2 Results and Discussions

Performance Of PSO

The evolution of average cost function values among all particles in each generation

is shown in Fig. 4.5. As shown, the average cost function value has been greatly reduced

from an initially large value by roughly 60 percent. This indicates that the controller

parameters found by the particles are generally improved towards better performances.

Meanwhile, the maximum cost function value among all particles is greatly reduced.

The reduced difference between the maximum and average cost function indicates that

the parameters found by particles eventually become stable and the corresponding cost
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functions achieved almost comparable values. During the simulation, the minimum cost

function value has not changed much. This is probably because good parameters are

found by particles in the initialization stage and these parameters has been kept without

much variations throughout the optimization process. Note that randomness exists in

freeway traffic and multiple simulation trials are conducted so as to obtain an averaged

cost function value to better reflect the appropriateness of the corresponding parameters

and controllers. Although the evolution of average cost function value is a bit fluctuated,

improvement is quite obvious on the average level.

The above results show that the PSO algorithm can effectively tune the parameters

of the FLC controller to improve control performance.
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Fig. 4.5: Evolution of cost function.

FLC Based Optimal Ramp Metering

To gain more in-depth look into the FLC based ramp metering, the following addi-

tional performance indices are defined to quantitatively evaluate the performances of the
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parameters in each generation, where i and k denote the indices of the particles and time

steps.

ρ+ the averaged of total mainstream density in each generation calculated as:

ρ+ =

∑

i

∑

k ρ(k)

population size
.

q+ the averaged of total mainstream flow in each generation calculated as:

q+ =

∑

i

∑

k q(k)

population size
.

ω+ the averaged of total queue volume on the on-ramp link in each generation calculated

as:

ω+ =

∑

i

∑

k ω(k)

population size
.

Fig. 4.6 shows the evolution of these indices during the optimization process. As

shown, q+ and ω+ are generally reduced along the generation axis, while ρ+ has been

increased. It is clear that the improvement in performance of FLC based ramp metering

is achieved by allowing more vehicles to be merged into the mainstream such that queue-

ing vehicles on the on-ramp link can be reduced. Meanwhile the mainstream density

increases, which results in reduction of mainstream traffic flow.

These results suggest that a tradeoff between mainstream traffic flow and on-ramp

queue volume exists on the average level, and optimal ramp metering should keep a

proper balance between them. The fine-tuned FLC controllers in the simulations have

reduced the total on-ramp queue volume by approximately 50 percent which results in

less than 3 percent reduction in average total mainstream traffic flow.



Chapter 4. Optimal Freeway Local Ramp Metering Using FLC and PSO 80

0 10 20 30 40 50 60 70 80 90 100
950

1000

1050

generation

ρ+

0 10 20 30 40 50 60 70 80 90 100
3.45

3.5

3.55
x 10

4

generation

q+

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

generation

ω
+

Fig. 4.6: Evolution of additional performance indices.

Further Discussion

In the design of fuzzy rule base, we have removed several unrealistic fuzzy rules from

the rule base in the design of FLC controller. The basis for such selection of fuzzy rules

is that the characteristics of freeway traffic flow behaviors preclude the occurrence of

certain situations described by some fuzzy rules. The average firing weights of the fuzzy

rules used in the rule base and those removed from the rule base in the last generation

are shown in Fig. 4.7 and Fig. 4.8, where k is the index of simulation time interval in

15 seconds. As shown, average firing weights of fuzzy rules removed from the rule base

are insignificant during the whole simulation period. The average firing weights of rule 4

in Tab. 4.1 is considerably insignificant compared with the other three rules in the rule

base. This is due to the effect of the fine-tuned FLC controller on ramp metering, which

has avoided the situation described by the antecedent part of rule 4, i.e. density is low

and speed is high and on-ramp queue volume is high. The fine-tuned ramp metering
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controller allows vehicles from the on-ramp link to merge freely when mainstream traffic

is light, therefore, high queue volume is effectively avoided.
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Fig. 4.7: Average weights of fuzzy rules used in the rule base.
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Fig. 4.8: Average weight of fuzzy rules removed from the rule base.
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4.5 Conclusion

In this chapter, the optimal freeway local ramp metering problem is solved by using

a novel T-S type FLC based ramp metering algorithm. The objective of freeway local

ramp metering is to seek a proper balance between traffic on the freeway mainstream

and on-ramp link. Input membership functions of the proposed FLC controller are

predefined and the size of fuzzy rule base is reduced by incorporating human expert

knowledge. Consequent parameters of the FLC controller are fine-tuned using a PSO

algorithm and microscopic traffic simulations. Simulation results show that performance

of FLC controllers for ramp metering are effectively improved by the proposed parameter

tuning scheme, and traffic conditions on the freeway mainstream and on-ramp link are

well balanced to provide optimal performance of local ramp metering.

In this chapter, the freeway optimal local ramp metering problem is addressed using

an off-line optimization approach. In real freeway traffic systems, the freeway traffic

conditions may slowly change after long period of operation due to certain reasons. For

example, installation of road pricing infrastructures and alteration of routes at nearby

area will affect the drivers’ choice of route. Such abrupt changes in the traffic situation

will require the controller parameters to be re-tuned so as to ensure optimal system

efficiency. Another issue involved with the off-line parameter calibration method is that

controller parameters resulted from model based optimization should be further refined

so as to achieve the optimal real system performance. The above issues can be address by

adaptive parameter tuning, which tunes the controller parameters based realtime system

situations. The coming chapter addresses the above problem by proposing an SPSA

based adaptive parameter learning method.



Chapter 5

FLC based Adaptive Freeway

Local Ramp Metering with SPSA

based Parameter Learning

5.1 Introduction

As traffic demand and traffic congestion rate increase in metropolitan areas, the de-

velopment of freeway infrastructures has greatly increased in the past decades. However,

urban streets and expressways traffics are still congested, especially during peak hours.

Due to the emergent societal and environmental issues associated with traffic congestion,

and the unavailability of land resources, higher efficiency in utilization of existing traffic

infrastructures should be pursued instead of blind construction of new ones.

Various freeway traffic control methods have been studied by researchers. Among

these methods, ramp metering was reported to be effective in control of freeways and

freeway networks. Ramp metering is realized by implementation of a device, usually a

traffic light or a two-phase (red and green only) signal together with a signal controller

at the on-ramp link. The basis for ramp metering based traffic control is that freeway

mainstream traffic is closely related to the on-ramp traffic flow, and freeway traffic con-
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ditions around the mainstream merging area can be regulated by regulating the on-ramp

merging traffic flow. Ramp metering algorithms can generally be classified into fixed time

algorithms and real-time (traffic responsive) algorithms. Fixed time ramp metering have

been plagued with low efficiency and sometimes they are counterproductive [28, 78, 79].

This is mainly due to the fact that ramp metering control signals are derived based on

historical traffic data and are fixed during specific period of time without considering

realtime traffic situations. Traffic responsive ramp metering algorithms determine ramp

metering control signals according to realtime traffic conditions. The demand-capacity

(DC ) algorithm determines the ramp flow based on the difference between a predefined

mainstream flow capacity and the measured mainstream flow upstream of the merging

area [29]. However, this algorithm adopts a constant mainstream flow capacity, which

has been found to be time varying [28].

Many ramp metering algorithms are based on the fundamental diagram of traffic

flow, which shows the relationship between mainstream traffic flow and density under

homogeneous traffic conditions. As shown in Fig. 1.4, mainstream traffic flow achieves

the maximum when density is at the critical value. These algorithms try to maintain

the mainstream density at the critical density by ramp metering so as to maximize the

mainstream flow. ALINEA is a well-known local ramp metering algorithm that is based

on the principles of the fundamental diagram [33]. Mainstream occupancy is used instead

of density in ALINEA, because a proportional relationship between mainstream density

and occupancy exists, but occupancy is more convenient to be measured. The occupancy

at the downstream location of the merging area is measured and the difference between

this occupancy and a reference value, the critical occupancy, is used to correct the ramp

metering signal. To address the issue of time-varying critical occupancy in practice,
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adaptive ALINEA that updates the value of critical occupancy is studied in [34]. Studies

on freeway traffic control by ramp metering or ramp metering combined with other

methods, e.g. route guidance, speed limit control, can be found in [28,37,88].

The optimality issue is very important in ramp metering, where the following three

important questions should be answered:

1. What is the objective of freeway local ramp metering?

2. What kind of controller structure is suitable for freeway ramp metering?

3. How to validate the efficiency of the ramp metering system?

For the first question, a suitable performance index or cost function is needed for

assessing the efficiency of the ramp metering strategies. Most existing studies on freeway

local ramp metering aim at pursuing maximum mainstream traffic flow. This strategy

is limited by the fact that vehicles on the on-ramp links might be forced to wait if

mainstream traffic is congested. In [28], when a predefined limit on the queue length is

violated, maximum ramp metering flow is activated to address this issue. However, this

strategy aims at avoidance of long on-ramp queues rather than pursuing optimal ramp

metering performance for the whole freeway system.

For the second problem, it should be noted that the optimal design of ramp metering

controller is challenging due to the highly nonlinear dynamics in freeway traffic flow

behaviors and the inherent freeway system randomness, e.g. uncertain traffic demand.

For complex systems like freeway systems, it is possible that the optimal ramp metering

strategies can be approximated using parameterized functionals, e.g. artificial neural

networks. A drawback of these methods is that off-line parameter tuning is required, but

the control performance can not be guaranteed with respect system conditions different
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from that used for parameter tuning. For example, the controller with its parameters

tuned under free-flow traffic conditions, will not work effectively under congested traffic

conditions. In [89], realtime adaptive fuzzy logic control is oriented, the performance of

fuzzy controllers is evaluated based on estimated traffic situations, and hence the ramp

metering efficiency relies on the accuracy of traffic demand prediction.

For the third question, traffic simulations are usually adopted to evaluate the efficien-

cy of ramp metering algorithms. Because it is almost impossible to conduct experiments

directly on freeway roads, due to the cost issues, safety issues, and the importance of

maintaining normal freeway operations. To simulate freeway traffic, both macroscopic

and microscopic models can be used. Macroscopic models are comprised of continuous

or discrete mathematical equations which show the spatial and temporal relationship-

s between freeway traffic states, e.g., METANET model [5]. Successful application of

macroscopic freeway models can be found in [28,37,88,89]. Microscopic models provide

detailed descriptions on physical and geometrical properties of vehicles and roads, and

the behaviors of vehicles dynamics and their interactions are also well described, e.g.,

PARAMICS [90]. Microscopic traffic simulation models model the behaviors of Driver-

Vehicle Unit (DVU) and the interactions among them. Applications of microscopic traffic

simulation models can be found in [17,46,91].

From the above analyses, it is clear that research on freeway ramp metering is lack-

ing in the pursuit of optimal overall performance in local ramp metering, which not only

emphasizes maintaining good mainstream traffic conditions, but also takes traffic condi-

tions on the on-ramp link into consideration. Meanwhile, realtime control strategies with

efficient parameter tuning are needed so as to improve the efficiency of ramp metering

under varied traffic situations.
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In this chapter, a weighted total time spent (WTTS ) based cost function is use to as-

sess the efficiency of freeway local ramp metering system. WTTS is defined as a weighted

sum of the total time spent by vehicles to pass the mainstream merging area and the

total waiting time spent by vehicles on the on-ramp link. By using WTTS as the cost

function, traffic conditions on the freeway mainstream and on-ramp link are both taken

into consideration. Since fewer detectors are needed for calculation of WTTS compared

with that of TTS, the implementation cost is reduced. Minimization ofWTTS essentially

requires that a balance should be properly maintained between traffic on the mainstream

and on-ramp link. For example, congested mainstream traffic should be avoided, because

it will cost more time to be spent by vehicles to travel through the mainstream merging

area, and high on-ramp queue volume should also be avoided, because the time spent by

queuing vehicles will increase. A T-S type FLC algorithm is used to make the decisions

on the reference mainstream density according to realtime traffic conditions, due to the

superiority of FLC in dealing with various uncertainties and the universal approximating

capability of FLC. To improve the efficiency of the FLC based ramp metering algorithm

to achieve the optimal performance, parameters in both the antecedent and consequent

parts of FLC are tuned by an SPSA based parameter learning algorithm. The SPSA

based parameter learning scheme utilizes the macroscopic repetitiveness of freeway traf-

fic to repeatedly make observations on the efficiency of the ramp metering algorithms.

Based on these observations, an estimation on gradient information is obtained, which

contains information on the relationship between variations of controller parameters and

the control performance. The observed performances and estimated gradient, although

contaminated with noise, is able to effectively direct the updating of parameters towards

better performing directions [67, 74, 75, 92]. The proposed parameter learning scheme
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possesses several main desirable features. First, the FLC based control algorithm can

cope with various traffic conditions due to the rule based control law. Second, system

noise is well handled because of the capability of FLC in dealing with system uncer-

tainties and noise. Third, the parameter adaptation mechanism is simple, effective, and

suitable for realtime parameter tuning without interrupting normal freeway operations.

The chapter is organized as follows. Section 5.2 provides background knowledge and

formulation of the freeway local ramp metering problem. Section 5.3 describes the design

of FLC based ramp metering algorithm. Section 5.4 presents the proposed FLC based

local ramp metering algorithm and the SPSA based parameter learning algorithm. In

Section 5.5, illustrative examples are provided, which demonstrates the efficiency of the

proposed method. Section 5.6 concludes the chapter.

5.2 Problem Formulation

5.2.1 Freeway Model

flow direction −−−→A C

B

Merging Area

Traffic Light Position

Detectors

On−ramp Link

Fig. 5.1: Freeway local ramp metering model.

The freeway local ramp metering system as shown in Fig. 4.1 is considered in this

chapter. Detectors are implemented on both the freeway mainstream and on-ram link,

where measurement of traffic conditions is obtained. Mainstream average density (or

occupancy), speed and queue volume on the on-ramp link can be measured by proper

deployment of detectors, i.e. as indicated in Fig. 5.1. The mainstream merging area is the

mainstream area connected to the on-ramp link. A detector is located at the downstream
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location of the mainstream merging area. Mainstream traffic condition can be reflected

by the measurement from this detector, i.e. mainstream average flow, average density

(which can be equivalently replaced by occupancy in practice) and mean traffic speed.

Detectors on the on-ramp link are located at beginning and ending positions so that traffic

conditions on the on-ramp link is monitored. Upstream traffic is the mainstream traffic

traveling from point A into the merging area, and downstream traffic is the mainstream

traffic from the merging area to point C.

5.2.2 Objective

To evaluate the efficiency of freeway local ramp metering, the following WTTS based

cost function is used:

J = T
∑

1≤k≤K

{

ρm(k)Lλ+ w0ω(k) + w1(ρr(k)− ρr(k − 1))2

+ w2 max
[
(ω(k)− ωmax), 0

]2
} (5.1)

where k denotes the index of time intervals, ρm denotes the average traffic density in the

merging area, ρr denotes the reference mainstream density, ω denotes the queue volume

on the on-ramp link, w0, w1 and w2 are constant weighting coefficients, T denotes the

length of the time interval, K denotes the total number of time intervals, L denotes

the length of the freeway merging area, λ denotes the lane number of the mainstream

merging area, and ωmax is the maximum number of vehicles allowable on the on-ramp

link.

Note that WTTS in (5.1) is comprised of four terms. The first term is the time

spent by vehicles on the mainstream merging area. The second term is the time spent

by vehicles on the on-ramp link. The last two terms are weighted penalties on violent

variations in the desired mainstream density signals and overlong queues on the on-ramp

link. A cost function in the form of (5.1) represents a more comprehensive assessment of



Chapter 5. FLC based Adaptive Freeway Local Ramp Metering with SPSA based
Parameter Learning 90

the traffic conditions under ramp metering, taking into consideration of traffic conditions

on not only the mainstream link, but also the on-ramp link. The penalty terms on

temporal difference in ramp flow rate is out of the practical concern that violent changes

of ramp flow rate should be avoided, because real traffic flow changes with a limited

rate. It is similar to TTS except that the total time spent by vehicles on the freeway

mainstream in replaced by the total time spent by vehicles in the merging area.

In this chapter, the objective of optimal freeway local ramp metering is to minimize

the WTTS value. To obtain minimum cost function value from (5.1), the first two terms

are the main factors to be considered which are conflicting to each other. To reduce the

time spent by vehicles on the mainstream link requires higher traffic flow and speed there,

however, to ensure better mainstream traffic flow would prevent on-ramp vehicles from

merging which inevitably increase the waiting time spent by vehicles on the on-ramp

link. A similar situation would occur the vice versa. Therefore, a balance between the

these main aspects is essentially required so as to achieve optimal performance of ramp

metering.

5.3 FLC based Ramp Metering Algorithm

5.3.1 Input Membership Functions

The average traffic density in the mainstream merging area (ρm) and the queue

volume on the on-ramp link (ω) are used as the input variables of the FLC algorithm.

The averaged traffic speed in the mainstream merging area is not used due to the strong

correlation between mainstream traffic density and speed, i.e. when average mainstream

traffic density is high, the corresponding average mainstream traffic speed is always low,

and the vice versa.
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Triangular type membership functions are used for input variables. Fig. 6.2 shows

the input membership functions when 3 fuzzy labels are used for input variables. The

input variables ρm and ω are normalized into the range of [ρc−12, ρc+18] and [0, ωmax]

respectively, and the normalized variables are denoted as ρnm and ωn respectively. Three

membership functions are used, which are labelled as LOW, MEDIUM and HIGH. The

initial parameters in the input membership functions, i.e. aρ,0, bρ,0, cρ,0, aω,0, bω,0 and

cω,0, are as indicated. These variables are treated as tunable parameters which will be

adjusted by the parameter learning algorithm. The initial values of these parameters in

the input membership functions are also given in Fig. 5.2.
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Fig. 5.2: Input membership functions.

5.3.2 Fuzzy Rule Base

Denote Ll(ρnm) and Ll(ωn) as the label names of normalized input variables ρnm and

ωn corresponding to the lth fuzzy rule, respectively. Denote µl(ρnm) and µl(ωn) as the

degree of membership of normalized input variables ρnm and ωn in their corresponding

membership functions of the lth fuzzy rule. An example fuzzy rule is expressed as:
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IF ρnm is Ll(ρnm) AND ωn is Ll(ωn), THEN ρlr = θl0 + θl1ρ
n
m + θl2ω

n,

where θlj, j ∈ {0, 1, 2} are constant parameters, l denotes the index of the fuzzy rule, and

ρlr denotes the output of the lth fuzzy rule, i.e. desired mainstream density. A summary

of the fuzzy rule base used is shown in Tab. 5.1.

Tab. 5.1: Fuzzy rule base.

l Ll(ρnm) Ll(ωn) l Ll(ρnm) Ll(ωn)

1 LOW LOW 6 MEDIUM HIGH

2 LOW MEDIUM 7 HIGH LOW

3 LOW HIGH 8 HIGH MEDIUM

4 MEDIUM LOW 9 HIGH HIGH

5 MEDIUM MEDIUM

5.3.3 Inference and Defuzzification

To simplify the FLC algorithm, crisp values are used as the output of fuzzy rules

instead of equations, because θl0, l ∈ [0, N ] are found to be critical to the performance of

FLC controller. Denote the firing weight of the lth fuzzy rule as µl. It is calculated as:

µl = µl(ρnm) ∗ µl(ωn). (5.2)

The final output, i.e. the desired mainstream density value, denoted as ρr is calculated

by the following formula:

ρr =

∑N
l=1 µ

lρlr
∑N

l=1 µ
l
, (5.3)

where N is the total number of fuzzy rules.

In the first iteration, the consequent parameters of the FLC algorithm, i.e. θl0, are

randomly generated within the range [0.8ρc, ρc]. The consequent parameters initial-

ized this way ensures that performance of freeway local ramp metering is close to the

performance of ALINEA, which is well established.
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Denote θ as the vector of FLC parameters, including both the input membership

function parameters and the output parameters. The task of the parameter tuning is to

tune θ such that performance of the local freeway control is optimized, or equivalently,

the cost function (J or WTTS) is minimized.

5.4 SPSA based Parameter Learning

Denote p as the dimension of tunable parameters θ, i as the index of iterations, and

denote θi as the parameters adopted in iteration i. At iteration i, a vector δ ∈ R
p×1

is generated, where each component of δ is randomly chosen from +1 and −1. Two

perturbed parameter vectors θ+
i = θ + ciδ and θ−

i = θ − ciδ are consecutively used by

the FLC controller for experimental trials, where ci is a constant parameter. Denote the

resulted performances as J+
i and J−

i respectively. Then an estimation on the gradient

gi =
∂J
∂θ

|θ=θi
is calculated as:

ĝi =








J+

i
−J−

i

2ciδ[1]
...

J+

i
−J−

i

2ciδ[p]







, (5.4)

where δi [j] denote the jth component of δi.

Based on the estimated gradient, system parameters are updated by:

θi+1 = θi − aiĝi (5.5)

where ai is a positive learning gain.

It is worth noting that estimated system gradient ĝi is contaminated by system noises

and disturbances in real systems. A great feature of the SPSA based parameter learning

algorithm is that parameters can be updated towards directions leading to reduced cost

function, even if strong system randomness exists. The convergence of parameters to

the global optimal is subject to satisfactions of several assumptions on the considered
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system and the configurations of algorithmic parameters [67]. The important conditions

required on ai and ci are as follows:

1. ai > 0, ai → 0 as i→ 0, and
∑∞

i=0 ai = ∞

2. ci > 0, ci → 0 as i→ 0, and
∑∞

i=0(
ai
ci
)2 <∞

In this work, ai and ci are set as:

ai =
a0

(i+A+ 1)α
(5.6)

ci =
c0

(i+A)γ
, (5.7)

where A, a0, a0, α and γ are constant parameters.

1. Set i = 0, and set values of c0, a0, α , γ .

2. Apply θ i for an experiment trial, and save the resulted

cost function value to Ji

3. Randomly generate δ i, apply θ i +ciδ i and θ i−ciδ i for t-

wo experimental trials and save the corresponding cost func-

tions as J+ and J− respectively. Then, calculate ĝi by (4).

4. Calculate θ i+1 by θ i+1 = θ i−aiĝi.

5. Whether ‖θ i+1−θ i‖ is too large?

6. Whether the termination conditions are met?

i = i+1

7. Terminate

no

yes

yes

no

Fig. 5.3: A flow chart of the SPSA based parameter learning algorithm.

A flow chart showing the SPSA based parameter updating mechanism is summarized

in Fig. 5.3. The termination criterion are used to stop further parameter updating when

satisfactory performance has been achieved and improvement in the cost function for



Chapter 5. FLC based Adaptive Freeway Local Ramp Metering with SPSA based
Parameter Learning 95

several consecutive iterations is lower than a predefined value. The parameter learning

process is terminated after a predefined number of iterations in this work. To ensure

the stability of the parameter updating algorithm, parameter updating is rejected when

violent change occurs in the parameters of two consecutive iterations, i.e. ‖θi+1−θi‖ > ǫ,

where ǫ is a positive constant.

5.5 Illustrative Examples

5.5.1 Simulation Setup

tra f f ic

mainstream
A B

#1 #2 #3 #4

on− ramp

#5 #6 #7

o f f − ramp

#8 #9 #10 #11

Fig. 5.4: Layout of freeway model. 3-lane freeway mainstream link of 11 mainstream

sections is modeled with the METANET model, and single lane on-ramp and off-ramp

links are connected to mainstream section 4 and 6 respectively.
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Fig. 5.5: Traffic demand profiles.

To evaluate the proposed approach for freeway local ramp metering, a benchmark

freeway system as shown in Fig. 5.4 is considered. The METANET freeway traffic flow

model is used for modeling the above freeway system, and model parameters in [26] are

adopted. Mainstream and on-ramp traffic demand are as shown in Fig. 5.5. A simulation
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time of 4 hours in total is considered. The traffic demand on the mainstream increases

from an initially low flow rate of 1500 veh/h to 5000 veh/h after 200 time intervals. After

k = 200, mainstream traffic varied around 5000 veh/h with an amplitude of 500 veh/h

and finally decreases to 4500 veh/h. Traffic demands at the on-ramp and off-ramp both

start from low normal demand flow rates, then increases to their maximum values at

k = 200. The maximum traffic demands are kept between k = 200 to k = 800, after

k = 800, the traffic demands slightly decrease to lower levels. A 10% random noise is

imposed on the traffic demand in the simulations.

3 scenarios, No Control, ALINEA and FLC , are investigated in the simulation s-

tudies, where no ramp metering, ALINEA based ramp metering and FLC based ramp

metering are used respectively. In FLC based ramp metering, WTTS and TTS based

cost functions are both investigated.

Parameters in the cost function and the SPSA tuning algorithm are summarized in

Tab. 5.2, where SPSA parameters suggested in [75] are adopted.

Tab. 5.2: Summary of simulation parameters.

A a0 c0 α γ ρr w0 w1 w2 ωmax

1 0.25 0.1ρc 0.602 0.201 33.5 0.01 0.01 0.01 150

5.5.2 Results and Discussion

The evolution of cost functions for 100 iterations are shown in Fig. 5.6. It is clear

that, by the SPSA based parameter learning, the cost functions are effectively reduced in

both cases, and the minimum cost functions are obtained after about 30 iterations. Note

that the large values of WTTS and TTS in the first iteration are due to the randomized

initialization of initial parameters. It is also worth noting that there is a sharp initial

decline in the cost functions followed by a slow decline in the curves in Fig. 5.6. This is a
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Fig. 5.6: Evolution of cost functions.

Tab. 5.3: Summary of cost functions.

Scenario WTTS TTS

No Control 683.9 1923.6

ALINEA 372.7 1764.0

FLC(J=WTTS) 188.3 1585.4

FLC(J=TTS) 207.0 1543.5

typical situation that happens in most optimization problems. Note that the randomly

generated perturbation vectors also introduce randomness in the estimated gradient and

the corresponding directions of parameter updating. Such randomness is important

to avoid convergence to local optimal solutions during the parameter learning process,

although some fluctuations are also resulted from this randomness.

The average cost functions (resulted from 20 simulations) associated with the 3 sce-

narios are summarized in Tab. 5.3. The TTS achieved by ALINEA based ramp metering
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is 8.3% lower than that of no control case. The TTS obtained in FLC based ramp meter-

ing is 17.6% and 19.8% lower than that of no control case when WTTS and TTS based

cost functions are used respectively. The proposed FLC based method using WTTS as

cost function achieved a 10% reduction in TTS compared with that of ALINEA. Mean-

while, WTTS are reduced by 45.5%, 72.5% and 69.7% respectively compared with the

no control case. The proposed method achieved by the the proposed method is 49.5%

lower than that of ALINEA based method. It can be seen that the proposed method

significantly improves the efficiency of freeway local ramp metering compared with A-

LINEA based method. The performances of FLC based ramp metering are very close in

cases of WTTS and TTS based cost functions.

Note that when WTTS is used as the cost function, the evolution of TTS is similar

to that of WTTS. A similar situations occurs when TTS based cost function is used.

These results demonstrate that WTTS can replace TTS as a performance index to

effectively represent the efficiency of freeway local ramp metering system. However, it is

important to note that although WTTS and TTS are shown to be equivalent, WTTS

based ramp metering has the advantage of requiring fewer detectors, which reduces the

implementation cost of freeway local ramp metering system.

The profiles of mainstream density and speed in all scenarios are shown in Fig. 5.7

and Fig. 5.8, the profiles of the on-ramp queue volume are shown in Fig. 5.9. Based on

the above results, the following main findings and discussions are concluded:

• The proposed SPSA based parameter learning algorithm is effective in tuning the

parameters of the FLC based ramp metering algorithm and the convergence of cost

functions is quite fast, i.e. minimum cost function values are obtained within 30

iterations.
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Fig. 5.7: Mainstream density profiles. ρr are the reference mainstream density signal,

which is generated by the FLC algorithm and to be tracked on the mainstream link.

No Control : Without ramp metering, the mainstream average traffic density increases

to about 50 veh/lane/km quickly after the simulation begins, causing the mainstream

traffic to be congested. The average mainstream density slowly drops to a lower values

after k = 500. ALINEA: Mainstream average traffic density closely tracks the critical

density and congestion is prevented on the mainstream. FLC : The mainstream density

is increased to about 37 veh/lane/km when traffic demand is high, i.e. during the time

300 < k < 700 (referred as the congestion period). After this period, mainstream density

is reduced.

• ALINEA based ramp metering effectively maintains the mainstream density around

the critical density and improves the mainstream speed during the congested period

in no control case, i.e. the time period when 250 < k < 750. However, during the

congestion period, high queue volume is formed, which is unfair to vehicles on the

on-ramp link.

• The FLC based ramp metering mitigates the mainstream traffic conditions by

adjusting the mainstream traffic density so that the mainstream density will not

cause the mainstream speed to drop significantly. Meanwhile, high on-ramp queue

volume is avoided. A tradeoff between mainstream traffic and on-ramp traffic is
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clearly demonstrated. The significantly reductions in the values of TTS and WTTS

indicate that a balance between these two traffic conditions has been achieved by

the proposed FLC based ramp metering method.
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Fig. 5.8: Mainstream speed profiles. No Control : Mainstream speed significantly drops

to below 50 km/h during the period with high traffic demand. ALINEA: Mainstream

speed is improved to over 60 km/h during the congestion period. FLC : The mainstream

speed was kept around a level which is higher than the no control case and lower than

the ALINEA case during the congestion period.

5.5.3 Further Discussion

Balance between Mainstream and On-ramp Traffic

It is interesting to note that, by FLC based ramp metering, the controller tends to

increase the reference mainstream density value when on-ramp queue increases during

the congestion period. Furthermore, the mainstream density is maintained above the

critical value during the congestion period. This results in both an increase in the

mainstream density and an decrease in the on-ramp queue volume. It is obvious that

there has been a balance between traffic conditions on the freeway mainstream and on-

ramp link. The optimal FLC based ramp metering maintains the mainstream density
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Fig. 5.9: On-ramp queue volume profiles. No Control : All vehicles are released into the

freeway mainstream and no ramp queue is formed. ALINEA: A high queue volume of

about 250 vehicles occurs during the congestion period. FLC : The on-ramp queue volume

is effectively suppressed compared with the ALINEA case, i.e. during the congestion

period, the maximum queue volume is reduced from 250 vehicles to about 160 vehicles.

higher than the critical density when traffic demand is high so that on-ramp queue volume

is reduced. Although the mainstream speed is slightly reduced during the congestion

period compared with ALINEA case, efficiency of the overall freeway system is improved

in termed of reduced values of TTS and WTTS.

Variations in Traffic Demand

In practice, although traffic demand profiles are repeated at the macroscopic level,

variations or disturbances in traffic demand might occur. For instance, the peak traffic

demands at certain on-ramp or off-ramp links may occur at an earlier or later times, or

randomly occur within a specific time period. It is highly desirable that performance of

the ramp metering system is consistent irrespective of these variations. To investigate the

performance of the proposed method under these circumstances, additional case studies

are conducted to consider varied traffic demand, i.e. the occurrence time of the maximum

traffic demand is randomly generated in different simulations. The occurrence time of
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the maximum traffic demand at the on-ramp and off-ramp link are randomly distributed

within a range of 100 time intervals around that of the previously defined traffic demand

in Fig. 5.5. Examples of the random demand profiles for the on-ramp and off-ramp link

are shown in Fig. 5.10.
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Fig. 5.10: Random traffic demand at the on-ramp and off-ramp links. The demand

profiles in solid curves are for the on-ramp link and profiles in dashed curves are for the

off-ramp link. A 10% random noise is applied in the simulations.
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Fig. 5.11: Evolution of TTS and WTTS with random occurrence of maximum traffic

demand. Both TTS and WTTS values are significantly reduced. The minimum values

are obtained after about 40 iterations.

Using WTTS as the cost function, the evolution of WTTS and TTS values are shown

in Fig. 5.11. It is clear that although randomness exists in the occurrence of maximum

traffic demand, the proposed method effectively finds the optimal ramp metering policies.

The minimum TTS value is consistent with that reported in previously simulations.

The results of the additional case studies demonstrate that the proposed method is very
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efficient in coping with various randomness and uncertainties in freeway traffic system.

Implementation Issues

The TTS values in the initial iterations are quite high, therefore, the FLC algorithm-

s with randomly generated parameters are not suitable for implementation due to its

poor performance. After about 40 iterations, the performance of the FLC algorithms

is quite good, hence, they can be applied for real implementation with satisfactory per-

formance. Due to the approximation natural of traffic flow models, the further tuning

might be necessary after implementation in order to achieve the optimal performance of

the real system. The proposed SPSA based parameter learning algorithm can be used

for this task, because it can achieve consistent improvement in the system performance,

as demonstrated in the case studies. Most importantly, the parameter learning task

can be realized without interrupting the normal operation of freeway systems, because

parameters are kept unchanged within each round of freeway operation and parameter

updating can be carried out after the freeway operation hours, i.e. during midnight time

when traffic load is very light and no ramp metering is needed. Above all, the proposed

parameter tuning method is quite suitable for realtime implementations.

5.6 Conclusion

The freeway local ramp metering problem is addressed by a proposed FLC based

decision making algorithm with SPSA based parameter learning. A T-S type FLC al-

gorithm is designed to determine a reference mainstream density according to realtime

traffic conditions, and the reference mainstream density is maintained by ALINEA based

ramp metering algorithm. The objective of optimal freeway local ramp metering is to

minimize a WTTS based cost function, which requires seeking a balance between main-
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stream traffic and on-ramp traffic. The parameters of the FLC controller are effectively

tuned by an SPSA based parameter learning algorithm. Simulation studies demonstrate

that the proposed method is very efficient in improving the performance of freeway local

ramp metering, irrespective of variations and uncertainties in the freeway traffic system.

In particular, TTS is reduced by over 17.6% compared with no control case, and by over

10% compared with that of ALINEA case. WTTS is reduced by over 72.5% compared

with no control case, and by over 49.5% compared with that of ALINEA case. Traffic

conditions on the freeway mainstream and on-ramp link are well balanced so that the

system wide performance of freeway local ramp metering achieves the optimal. It is also

demonstrated thatWTTS and TTS are equivalent performance indices for measuring the

performance freeway local ramp metering, but the proposedWTTS based ramp metering

are less expensive, which makes WTTS more suitable for practical implementations.

By Chapter 5, the FLC based freeway local ramp metering has been extensively stud-

ied and its potential has been demonstrated by the improved efficiencies of freeway local

ramp metering systems. For large freeway networks, the ramp metering problem is more

complex due to the complicated coupling among neighboring areas. Direct extension of

the FLC based ramp metering to the networked freeway systems is inappropriate. This

is because when the number of input variables increase, the number of tunable param-

eters would increase exponentially, making parameter tuning extremely hard. To avoid

the above problem, Chapters 6 and 7 propose a divide-and-conquer based method and

a macroscopic scheduling based method respectively. Both methods are simple, efficient

and require low implementation cost.

In the coming chapter, the local coordinated ramp metering (LCRM) method is first

presented. The LCRM method differs from existing centralized control framework based
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coordinated ramp metering strategies, which suffer from several drawbacks, e.g. requiring

continuous computation with complex model involved, lacking system flexibility and high

communication cost. The main innovation by the LCRM strategy is that coordinations

are carried out among neighboring controllers rather than among all controllers due

to the strong interactions among neighboring controllers. Furthermore, communication

cost is reduced by the local coordination strategy and complex freeway model involved

computation is not required.



Chapter 6

A Novel and Efficient Local

Coordinative Freeway Ramp

Metering Strategy with SPSA

based Parameter Learning

6.1 Introduction

Freeway traffic management is an important area of modern intelligent transportation

systems. Improving the efficiency of freeway traffic management has become an emergent

task for administrators of freeway facilities due to the freeway traffic congestions, which

cause various environmental and societal problems, e.g. increased air pollution and fuel

consumption, and increased travel time. The unavailability of sufficient land resources

is another factor that motivates researchers to pursue more efficient use of existing free-

way facilities. Freeway ramp metering can effectively relieve or prevent freeway traffic

congestions by regulating the merging activities of on-ramp traffic. Ramp metering is

realized by implementation of a device together with a signal controller at the on-ramp

link.

106
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Ramp metering strategies can be generally classified into two categories: local ramp

metering strategy and coordinated ramp metering strategy. Local ramp metering strate-

gies use traffic measurement at the vicinity of the on-ramp link to determine the ramp

metering signals. The objective is to keep traffic conditions around the on-ramp link

properly maintained, e.g. to maximize the mainstream traffic flow, to prevent conges-

tion. Well-known local ramp metering strategies are the demand-capacity (DC ) and

occupancy (OCC ) strategies [29]. DC and OCC aim at maintaining the mainstream

traffic flow at the capacity, and feed-forward disturbance rejection schemes are used

based on mainstream measurement of flow and occupancy respectively. It was reported

by later works that the flow capacity in the mainstream merging area may substantially

vary from day to day under similar environmental conditions [32]. Hence predefined

mainstream capacity may lead to inefficient ramp metering [27]. The ALINEA strate-

gy [33] is a well known ramp metering algorithm, which can be used for effective freeway

local ramp metering [33]. The basic idea of ALINEA based local ramp metering is that

the maximum average mainstream traffic flow (Qmax) is obtained when the mainstream

average density (or occupancy) is kept around a critical density ρc (or critical occupancy),

according to the fundamental diagram of freeway traffic as shown in Fig. 1.4. Variants

of the ALINEA were also studied [34, 35]. It was also found that critical occupancy, at

which mainstream capacity flow occurs, is more stable even under adverse weather condi-

tions [32]. An iterative learning control (ILC ) based approach was proposed to maintain

mainstream average densities at the critical density under unknown but repeated system

disturbance, i.e. exiting traffic flow at off-ramp links [62].

Coordinated ramp metering strategies determine the ramp metering signals based

on traffic conditions within the whole freeway network. For coordinated ramp metering
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problems, the objective is to pursue the optimal efficiency of the freeway traffic system,

e.g. to minimize the total time spent (TTS ) by vehicles within the freeway system, to

minimize the fuel consumption or travel time. Compared with local ramp metering s-

trategies, coordinated ramp metering strategies is capable of more efficient freeway ramp

metering, when there are multiple bottlenecks on the freeway or limited storage space

on the on-ramp links. Coordinated ramp metering algorithms based on multi-variable

control [42] and optimal control methods were both investigated [26, 28, 37, 81, 93–96].

The multi-variable control based strategy is limited by the use of linearized traffic flow

model, which becomes inefficient under heavy congestion [36]. The optimal control based

strategies requires complex numerical solution algorithms, which might cause difficulty in

field implementations. Model predictive control (MPC) based methods are also optimal

control based strategies, where macroscopic traffic flow model and continuous computa-

tional power is required [28, 37, 49] It should be noted that existing coordinated ramp

metering algorithms are based on the centralized control framework, which suffers from

the difficulties with operation, high maintenance cost and lack of flexibility.

In view of the above situation, it is desirable to have a coordinated ramp metering

strategy which is capable of achieved better efficiency than uncoordinated ramp metering

strategies, while avoiding the pitfalls of centralized control methods.

In this chapter, a local coordinative ramp metering strategy is proposed in an ef-

fort to address the limitations of existing coordinated ramp metering strategies. By the

proposed approach, all local ramp metering controllers exchange their measurement in-

formation with their neighboring controllers and a local coordination scheme is adopted.

The ALINEA algorithm is used by local ramp metering controllers to maintain their local

mainstream densities at corresponding reference values, which are determined based on
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both the local traffic measurement and the traffic measurement exchanged from neigh-

boring controllers. Such a information exchange scheme requires communications among

neighboring local controllers. Compared with the communication required by centralized

control based strategies, under which all controllers have to communicate with the con-

trol center, the communication cost can be greatly reduced. This is because no matter

where the control center is located in centralized control strategies, there is always a large

number of controllers that are located remotely and require higher cost to communicate

with the control center. Additionally, the coordinated ramp metering algorithms are only

effective when the ramps are closely located [97], which suggests that local coordination

activities among neighboring on-ramps are more important than those among on-ramps

remotely located. In this chapter, an FLC based local coordinative decision making algo-

rithm is proposed to determine the local controllers’ reference mainstream density signals

based on local and exchanged measurement information. The FLC based algorithm can

effectively deal with the uncertainties and noises in freeway system, and the rule based

control structure is simple and easy to understand. Since there is no reliable a priori ex-

pert knowledge for the freeway system, the local coordinative decision making algorithm

is tuned by a simple and efficient SPSA based parameter learning algorithm to find the

optimal parameters in the FLC algorithm. Using the SPSA based parameter learning

scheme, the local coordinative decision making algorithms can be effectively adjusted to

improve the efficiency of coordinated ramp metering system.. Furthermore, the SPSA

based parameter learning can be carried out without interrupting the routine operation

of freeway networks, which makes it suitable for real implementations. Additionally, no

realtime model involvement is required by the proposed strategy, which has a model-free

nature; and the feedback control based ALINEA algorithm makes the propose strate-
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gy insensitive to unexpected disturbances. The proposed coordinated ramp metering

strategy can be realized by implementing communication devices in uncoordinated local

controllers, and the structure of the control system can be easily modified to adapt to

changes in the freeway network structure.

6.2 Problem Formulation

6.2.1 The Problem

Consider a freeway system comprised of multiple freeway mainstream links, which

are divided into N sections. Denote n as the index of mainstream sections and Ln as the

length of section n. Denote the λ as the index of on-ramp links, O as the total number

of on-ramp links.

The local coordinative decision making algorithm for on-ramp λ can be viewed as a

mapping fλ from its input, i.e. x(k), comprised of local and exchanged traffic measure-

ment, to the output, i.e. y = ρrλ(k), the reference mainstream density at on-ramp λ.

This mapping can be expressed as:

ρr,λ(k) = fλ(x(k)). (6.1)

ρr,λ is used as the desired mainstream density by the ALINEA based ramp metering

algorithm instead of the critical density. Hence the ramp metering flow rate at on-ramp

λ is determined as:

rλ(k + 1) = rλ(k + 1) + β(ρr,λ(k)− ρλ(k)), (6.2)

where rλ and ρλ are the ramp flow rate and average mainstream density at on-ramp λ.

Let J denote the cost function that measures the efficiency of the freeway ramp

metering system. In this chapter, TTS based cost function is used, which is calculated
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as:

J = T
T∑

k=1

{
N∑

n=1

Lnσnρn(k) +
O∑

λ=1

[

ωλ(k) + ar(rλ(k)− rλ(k − 1))2

+ aω(max{ωλ(k)− ωmax, 0})
2

]}

,

(6.3)

where ωλ denotes the queue volume at on-ramp λ, σn denotes the number of lanes on

the mainstream section n, ar and aω are two weighting parameters. ωmax denotes a

predefined maximum limit on the on-ramp queue volume, and queue volume higher than

this level will be penalized.

Note that there are 4 terms on the right hand size of (6.3). The first term is the

total time spent by vehicles on the freeway mainstream. The second term measures the

total waiting time spent by vehicles on the on-ramp links. The third and fourth terms

penalizes violent changes in the on-ramp flow rates and queue volumes exceeding the

maximum limit. Note also that different values of ωmax and aω indicate varied emphasis

on the on-ramp queue volumes, i.e. smaller aω and larger ωmax indicate that lower

emphasis is given to constrain the on-ramp queue volume and higher queue volumes are

allowable, and the vice versa. The parameters in the cost functions used here are given

in Tab. 6.1.

Tab. 6.1: Parameters in the cost function.

ar (h3/veh2) aω (h/veh2) ωmax (veh)

0.01 0.01 250

6.2.2 Objective

ρr,λ in (6.1) can be rewritten as a function of θ as well, namely

ρr,λ = f(x, θ). (6.4)
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The objective of the local coordinative ramp metering strategy is to adaptively adjust

the reference mainstream density signals for all on-ramp links, ρr,λ, λ ∈ [1, O], according

to realtime traffic conditions such that J is minimized.

6.3 The Local Coordinative Ramp Metering Strategy

6.3.1 System Structure

Processor

module

Communication

module

Detector

module

Controller

module

Storage

module

Parameter

learning

module

Measurement

System states
updating signal

Measurement

Measurement

Reference signal

Measurement

Historical

data

Control signal

updating signal
information sharing

Fig. 6.1: The diagram of the cooperative coordination system.

The structure of the cooperative coordination system is shown in Fig. 6.1. Main

components in the diagram are described as follows:

Detector module This module is comprised of loop detectors buried on the freeway

mainstream and ramp links, which measures the traffic states on the freeway mainstream

and on-ramp links. The measurement information is supplied to the communication

module and processor module.

Communication module This module includes the data transmitter and receiver

devices. Local measurement information obtained at neighboring on-ramp links is inter-
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nally exchanged through measurement sharing using the communication module.

Processor module The processor module is comprised of a computing unit, which

determines the control signal based on the available system information, and supply the

control signal to the controller. Updating signals for parameters of the ramp metering al-

gorithms are received from the communication module to adjust the local ramp metering

algorithm.

Controller module The controller module includes the traffic signal light system,

which regulates the ramp metering rates at the on-ramp entry.

Storage module The storage module collects and stores measurement information

from communication modules of local control systems, and these measurement data is

supplied to the parameter learning module.

Parameter learning module The parameter learning module takes historical data

as its input, and determines the updating signals for the parameters of the processor

module in order to improve the system performance.

Note that in Fig. 6.1, three layers can be identified in the hierarchy of the local

coordinative ramp metering system. The first layer is the local ramp metering control

layer, which includes the detector module, processor module and controller module. The

second layer is the communication layer, containing the communication module. The

third layer is the centralized control layer comprised of the parameter learning module

and the data storage module. The three-layer hierarchy is typical in centralized control

systems. The third layers is at the top of the hierarchy which determines the macroscopic

level behaviors of the ramp metering system, i.e., adjusting the behaviors of all local
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controllers by tuning the parameters of the local ramp metering algorithms. The second

layer is an intermediate layer, which connects the first and third layer. Note also that

there is no explicit physical boundary between this layer and the other two layers, because

communication modules exist in both the local control devices and the control center.

The first layer is the basic layer, where ramp metering control signals are generated and

applied.

The structure of the proposed local coordinative ramp metering strategy differs from

that of traditional centralized control systems, where major differences are summarized

as follow:

1. The processor module takes both locally measurement and measurement exchanged

from neighboring controllers as its input, while in traditional centralized control

systems, only locally measurement is used.

2. Data exchange among local controllers is implemented in the proposed strategy,

while in existing centralized control systems, for example, MPC based control

systems, communication is only implemented between the control center and local

controllers.

3. By the proposed strategy, updating signals are used to update parameters of the

coordinative decision making algorithms instead of directly updating the local ref-

erence signals.

Note that the communication module in Fig. 6.1 is important for the proposed s-

trategy, because it does not require communication between the local controller and the

control center in realtime. Once the parameters of the coordinative decision making

algorithms are determined, communication within limited distance among neighboring
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controllers is needed, reducing the communication cost at run time.

6.3.2 Input Membership Functions

Without loss of generality, a local coordinated ramp metering system containing two

local controllers are considered for controller design as well as the illustrative examples

presented in the next section. The controller design method can be easily extended for

more generic cases.

Let the two local controllers indexed as 1 and 2 respectively. The average mainstream

traffic densities, i.e. ρ1 and ρ2, and the queue volumes on the on-ramp links, i.e. ω1

and ω2, are used as the input variables of the FLC based coordinative decision making

algorithm. The averaged traffic speed in the mainstream merging area is not used due to

the strong correlation between mainstream traffic density and speed, i.e. when average

mainstream traffic density is high, the corresponding average mainstream traffic speed

is always low, and the vice versa.

Triangular type membership functions are used for input variables. Fig. 6.2 shows

the input membership functions with 2 fuzzy labels for mainstream average density and

on-ramp queue volume. The average densities of both controllers are normalized into

the range of [25, 45], and on-ramp queue volumes of both controllers are normalized

into the range of [0, ωmax]. The normalized variables are denoted as ρn1 , ρ
n
2 , ω

n
1 , and

ωn
2 respectively. The two fuzzy labels are labelled as LOW and HIGH for each variable.

The initial parameters in the input membership functions, i.e. aρ,1, bρ,1, aρ,2, bρ,2, aω,1,

bω,1, aω,2, and bω,2 are as indicated. These variables are treated as tunable parameters

which will be adjusted by the parameter learning algorithm. The initial values of these

parameters in the input membership functions are also given in Fig. 6.2.
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Fig. 6.2: Input membership functions.

6.3.3 Fuzzy Rule Base

Denote Ll(ρn1 ), L
l(ρn2 ), L

l(ωn
1 ) and Ll(ωn

2 ) as the label names of normalized input

variables ρn1 , ρ
n
2 , ω

n
1 , and ωn

2 corresponding to the fuzzy rule indexed by l. Denote

µl(x) as the degree of membership of normalized input variables x in their corresponding
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membership functions of the lth fuzzy rule. An example fuzzy rule is expressed as:

6.1
IF ρn1 is Ll(ρn1 ) AND ρn2 is Ll(ρn2 ) AND ωn

1 is Ll(ωn
1 ) AND ωn

2 is Ll(ωn
2 ),

THEN ρlr = θl0 + θl1ρ
n
1 + θl2ρ

n
2 + θl3ω

n
1 + θl4ω

n
2 ,

(6.5)

where θlj, j ∈ {0, 1, 2, 3, 4} are constant parameters, l denotes the index of the fuzzy

rule, and ρlr denotes the output of the lth fuzzy rule, i.e. desired mainstream density. A

summary of the fuzzy rule base used is shown in Tab. 6.2.

Tab. 6.2: Fuzzy rule base.

l
Input Fuzzy Label

l
Input Fuzzy Label

Ll(ρn1 ) Ll(ρn2 ) Ll(ωn
2 ) Ll(ωn

2 ) Ll(ρn1 ) Ll(ρn2 ) Ll(ωn
2 ) Ll(ωn

2 )

1 LOW LOW LOW LOW 9 HIGH LOW LOW LOW

2 LOW LOW LOW HIGH 10 HIGH LOW LOW HIGH

3 LOW LOW HIGH LOW 11 HIGH LOW HIGH LOW

4 LOW LOW HIGH HIGH 12 HIGH LOW HIGH HIGH

5 LOW HIGH LOW LOW 13 HIGH HIGH LOW LOW

6 LOW HIGH LOW HIGH 14 HIGH HIGH LOW HIGH

7 LOW HIGH HIGH LOW 15 HIGH HIGH HIGH LOW

8 LOW HIGH HIGH HIGH 16 HIGH HIGH HIGH HIGH

6.3.4 Inference and Defuzzification

To simplify the FLC algorithm and mitigate the computational burden, crisp values

are used as the output of fuzzy rules instead of equations, because θl0, l ∈ [0, N ] are found

to be critical to the performance of FLC controller. Denote the firing weight of the lth

fuzzy rule as µl. It is calculated as:

µl = µl(ρn1 ) ∗ µ
l(ρn2 ) ∗ µ

l(ωn
1 ) ∗ µ

l(ωn
2 ). (6.6)

The final output, i.e. the reference mainstream density value, denoted as ρr is calculated

by the following formula:

ρr =

∑N
l=1 µ

lρlr
∑N

l=1 µ
l
, (6.7)
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where N is the total number of fuzzy rules. For each on-ramp controller λ, a separate

FLC algorithm is used, and the resulted ρr in (6.7) is used as the reference mainstream

density ρr,λ in (6.1).

In the first iteration, the consequent parameters of the FLC algorithm, i.e. θl0, are

set equal to ρc. Since the reference mainstream density is equal to the critical density in

the first iteration, the performance of the ramp metering system in the initial iteration

is identical to that of ALINEA, which is well established.

6.3.5 Objective

Note that the coordinative decision making algorithm can be different at differen-

t locations, therefore, separate decision making algorithms are needed for each local

controller. Denote θ as the vector of all FLC parameters, including both the input

membership function parameters and the output parameters.

Then, the objective of the parameter learning task is to tune θ such that performance

of the local freeway control is optimized, or equivalently, the cost function (J or TTS) is

minimized.

6.3.6 SPSA Based Parameter Learning

Denote p as the dimension of θ, i as the index of iterations, and denote θi as the

parameters adopted in iteration i. At iteration i, a vector δi ∈ R
p×1 is generated, where

each component of δi is randomly chosen from +1 and −1. Two perturbed parameter

vectors θi+ = θi + ciδi and θi− = θi − ciδi are used by the local coordinative ramp

metering strategy for two experimental trials, where ci is a constant parameter. Denote

Ji+ and Ji− as the corresponding cost function resulted from these two experiments. An
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estimation on the gradient, i.e. gi =
∂J
∂θ

|θ=θi
, is then calculated as:

ĝi =
Ji+ − Ji−

2ci








1
δi[1]
...

1
δi[p]







, (6.8)

where δi [j] denotes the jth component of δi.

Consequently, the system parameters are updated according to the following formula:

θi+1 = θi − aiĝi (6.9)

where ai is a positive learning gain.

The convergence of parameters to the global optimal is subject to satisfactions of

several assumptions on the considered system and the configurations of algorithmic pa-

rameters [67]. The important conditions required on ai and ci are as follows:

1. ai > 0, ai → 0 as i→ 0, and
∑∞

i=0 ai = ∞

2. ci > 0, ci → 0 as i→ 0, and
∑∞

i=0(
ai
ci
)2 <∞

In this chapter, ai and ci are set as:

ai =
a0

(i+A+ 1)α
(6.10)

ci =
c0

(i+A)γ
, (6.11)

where A, a0, a0, α and γ are constant parameters.

Note that, in real implementations, the estimated system gradient ĝi is contaminat-

ed by system noises and disturbances in the freeway system. Even though, the SPSA

based parameter learning algorithm is able to direct the updating of parameters towards

directions with reduced cost function. The randomized perturbation vector also intro-

duces randomness into the estimated gradient, and such randomness is beneficiary for
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Tab. 6.3: Parameters of the SPSA based parameter learning algorithm.

α γ a0 A

0.602 0.201 0.15 1

1. Set i = 0, set values of c0, a0, α , γ , set θ̂ 0.

2. Randomly generate perturbation vector δ i,

where components of δ are uniformly distribut-

ed between 1 and −1.

3. Apply θ i + ciδ i and θ i− ciδ i for two experi-

ments and save the resulted cost functions as Ji+

and Ji− respectively.

4. Calculate ĝi according to (6.8)

5. Calculate θ i+1 by θ i+1 = θ i−aiĝi.

6. Whether updating criterion are met?

7. Whether terminating criterion are met?

i = i+1

8. Terminate.

yes

yes

no

no

Fig. 6.3: The flow chart of the SPSA based parameter learning algorithm.

the parameter updating to escape from local minimum solutions. The parameters in the

SPSA based parameter learning algorithm are summarized in Tab. 6.3.

Note also that parameters of the FLC based coordinative decision making algorithm

are kept unchanged once the experiment starts, this way the appropriateness of these

parameters can be evaluated throughout the whole period of freeway operation. The

parameters are updated at the end of each iteration, e.g. when cost functions associated

with θi+ and θi− are obtained, and communication between the control center and the

local controllers is needed only when the overall cost function is to be calculated and

the parameter updating signals are transmitted. These data transmission tasks can be
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carried out when the ramp metering system stops working, for instance, they can be

done during midnight times, when traffic load is extremely light and no ramp metering

is needed. This arrangement of data transmission and parameter updating tasks keeps

the normal freeway operation uninterrupted.

6.4 Numerical Example

6.4.1 Simulation Setup

To validate the proposed cooperative distributed ramp metering approach, a freeway

network shown in Fig. 6.4 is considered. A benchmark freeway network consisted of 10

mainstream sections, 2 on-ramp links, and 1 off-ramp link is considered. The layout of

the freeway model considered is provided in Fig. 6.4. All mainstream sections have 3

lanes and all on-ramp and off-ramp links have a single lane. The two on-ramp links are

connected with section 4 and 8 at the beginning location, the off-ramp link is connected

with section 5 at the ending position.

METANET model is used to simulate the freeway system, and the model parameters

are listed in Tab. 6.4. The traffic demand profiles are given in Fig. 6.5. A total time of

3 hours is considered. A traffic volume at 5000 veh/hour is considered during the peak

traffic hours on the freeway mainstream, which drops to 1500 veh/hour at a later time.

The traffic demands at the two on-ramp links and the off-ramp link also consider peak

hour traffic. Random noise with amplitude 10% of the above demand is imposed in the

simulations.
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Fig. 6.4: Layout of the benchmark freeway network model.
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Fig. 6.5: Traffic demand.

Tab. 6.4: METANET model parameters.

vf ρc ρmax a µ

km/hour veh/lane/km veh/lane/km km2/hour

110 33.5 180 1.636 60

φ β P T L

veh/lane/km km/hour second km

40 10 60 10 0.5

The following three scenarios are investigated in the simulation studies:

No control Case No ramp metering is applied at the on-ramp links.
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ALINEA case ALINEA based ramp metering strategy is used for local freeway ramp

metering at both on-ramp links, where the critical mainstream density, ρc, is used as the

reference mainstream density.

LCRM case The FLC based local coordinative ramp metering strategy is used to

determine the desired mainstream densities at each on-ramp link, and the ALINEA based

algorithm is used to track these desired mainstream densities locally at the corresponding

on-ramp links.

6.4.2 Results and Discussions
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Fig. 6.6: Evolution of TTS.

The evolution of TTS values in 100 iterations are shown in Fig. 6.6. As shown, the

value of TTS in the first iteration is around 2450 veh·h, which is also the TTS associated

with ALINEA based strategy. TTS is reduced to around 1800 veh ·h after 100 iterations.

Note that after about 50 iteration, the good TTS value has been achieved.

Based on these results, the following summaries can be made on the above results:

• Although the evolution of TTS is fluctuated due to the freeway system noise, signif-

icantly improved efficiency is obtained by the propose parameter tuning algorithm

in terms of reduced TTS. This show the great potential of the proposed method

for networked freeway ramp metering problem.

• Reduction of TTS by the SPSA based parameter learning scheme is fast, i.e. the
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minimum is achieved after only 50 iterations. This demonstrates the efficiency of

the parameter learning algorithm.

The average TTS obtained from 30 independent experimental trials are 3205.8 (veh ·

h), 2428.4 (veh·h), 1859.7 (veh·h) for the no control case, ALINEA based ramp metering

case and LCRM based control case respectively. By the proposed algorithm, the TTS is

reduced by 42% compared with that of no control case, and by 23.4% compared with that

of ALINEA case. It is clear that significantly improved efficiency of the ramp metering

system has been achieved by the proposed method.

The profiles of mainstream densities of section 4 and 8 are shown in Fig. 6.7. The

profiles of on-ramp queue volumes are shown in Fig. 6.8. Based on these results, the

following findings are summarized:

• Although ALINEA based strategy effectively prevents traffic congestions on the

freeway mainstream, high on-ramp queue volumes are created. This is unfair to

vehicles on the on-ramp link, because they have to spent more time waiting on the

on-ramp link.

• The on-ramp queue volume at on-ramp 1 is effectively reduced by the LCRM s-

trategy. During the congestion period, the mainstream density around on-ramp

link 1 is set lower than the critical density when mainstream density approaches

the critical density and vehicles begin to queue up around on-ramp link 2. This is

obviously an inefficient strategy with a local ramp metering perspective, because

queue is created at on-ramp 1 when queuing vehicles could have been released into

the mainstream to achieve higher traffic flow rate on the mainstream. However,

this strategy reserves more capacity on the freeway mainstream link so that more

vehicles from on-ramp link 2 can be merged, which will not only prevent the occur-
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(a) Density profile at section 4.
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(b) Density profile at section 8.

Fig. 6.7: Mainstream density profiles. No Control : Without control, severe congestion

occurs on the freeway mainstream. Mainstream density at section 4 rises to over 120

veh/lane/km during the time from k = 450 to k = 750. At section 8, mainstream traffic

is also congested with densities over 120 veh/lane/km during the time from k = 500 to

k = 750. ALINEA: Mainstream congestion is not incurred and the mainstream densities

at section 4 and 8 closely track the critical density value, except that mainstream density

at section 4 drops below the critical density at k = 500. LCRM : Mainstream density

at section 4 is kept around a value which is lower than the critical density throughout

the whole congestion period. The mainstream density at section 8 is closely tracks the

critical density during the time from k = 250 to k = 600. After k = 600, density in

section 8 slowly decreases.
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rence of traffic congestion, but also reduce the on-ramp queue volume at on-ramp

link 2.

• The local controllers work as ALINEA based local ramp metering controllers except

that the reference mainstream densities are coordinately determined with mild

requirement on communication among local controllers. The significantly improved

system efficiency at the system level demonstrates that limited local coordination

strategy is quite effective for networked freeway ramp metering systems.

• Using the LCRM strategy, on-ramp queue volumes at the two on-ramp links are

limited within a moderate level, i.e. below 300 vehicles, which makes the ramp me-

tering system fairer to vehicles from the on-ramps compared with that of ALINEA

case. Particularly, queue volume at on-ramp link 2 are significantly reduced during

the congested period, resulting in shorter waiting time spent by vehicles there.

• The queue volumes at the two on-ramp links are comparable in terms of their

amplitudes and durations. This indicates that the resulted ramp metering strategy

is quite fair to vehicles from both on-ramp links. The ALINEA based strategy is

unable to achieve such an equity among vehicles from different on-ramps, i.e. high

queue volume is created at on-ramp 2, while only a minor queue volume is created

at on-ramp 1.

6.5 Further Discussions on Equity Issues

6.5.1 Case Studies

In the above case studies, ωmax = 250 vehicles is used for both on-ramp links in

all cases, which means that the two on-ramp links are treated as equally important.
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(a) On-ramp queue volume at on-ramp link 1.
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(b) On-ramp queue volume at on-ramp link 2.

Fig. 6.8: Profiles of on-ramp queue volumes. No control : Almost all vehicles from the

on-ramp links are released into the freeway mainstream except that there is a small queue

volume of about 120 vehicles at on-ramp link 1 around k = 500. ALINEA: There is a

small queue at on-ramp link 1 around k = 500, but a large queue of about 550 vehicles is

created at on-ramp link 2. LCRM : The a queue volume of about 300 vehicles is created

at on-ramp link 1. The queue volume at on-ramp link 2 is significantly reduced with a

maximum of about 300 vehicles. The queue at on-ramp link 1 is created at an earlier

time than that at on-ramp link 2.

However, due to the variations in ramp storage capacities at different on-ramp links,

different queue constraints might be needed in practice. To further investigate the influ-

ence of different settings of queue constraints on the performance of the proposed local
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coordinative ramp metering strategy, additional case studies are conducted.

Denote ω1
max and ω2

max as the queue constraints for on-ramp link 1 and 2 respectively.

In the first set of cases, different values of equal constraints are used respectively. In the

second set of cases, ω1
max is varied, while a number of ω2

max is applied. In the last set of

cases, ω1
max is kept unchanged, while ω2

max is varied. A summary of the queue constraints

values for each set of cases is shown in Tab. 6.5.

Tab. 6.5: Summary of queue constraints in additional case studies.

Set Case
ω1
max ω2

max
Set Case

ω1
max ω2

max
Set Case

ω1
max ω2

max

(veh) (veh) (veh) (veh) (veh) (veh)

1

1 150 150

2

1 150 250

3

1 250 150

2 200 200 2 200 250 2 250 200

3 250 250 3 250 250 3 250 250

4 300 300 4 300 250 4 250 300

5 350 350 5 350 250 5 250 350

6.5.2 Results and Discussions
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Fig. 6.9: Set 1: Evolution of TTS.

The evolution of TTS in case studies of set 1 are given in Fig. 6.9 and on-ramp queue

volume profiles are shown in Fig. 6.10. The TTS values are reduced to the minimums
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Fig. 6.10: Set 1: On-ramp queue volumes.

using the proposed strategy. This indicates that although different priorities are given

to the two on-ramp links, the proposed method effectively finds the optimal balance

between mainstream and on-ramp traffic to obtain the minimum system TTS.

Although the constraints on the on-ramp queue volumes are quite stringent in cases

1 and 2, i.e. lower maximum queue limit is used compared with that of other cases, the

on-ramp queue volumes are not strictly kept below the maximum limits. Particularly,

the queue volumes at on-ramp 1 reach the maximum of over 300 vehicles in both cases.

The queue volumes at on-ramp 2 are lower than that at on-ramp 1, but maximum queue

volumes of over 200 vehicles are created. This is probably because violations of the queue

constraints will benefit the overall traffic system to avoid congestions on the mainstream.

However, this doesn’t mean that constraints on queue volumes should always be violated

to gain such benefits. For instance, in case 5, the maximum queue limits are set as 350,

which is never violated at both on-ramps.

It is worth mentioning that although the same queue constraints are applied at both
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on-ramps, the on-ramp traffic at on-ramp 1 has been sacrificed a bit to have higher queue

volumes compared with that at on-ramp 2, when the constraint is stringent, i.e. ωmax is

low.

Note that the minimum TTS value obtained in case 1 is higher than that obtained in

cases 2 and 3. The lowest minimum TTS are obtained in cases 4 and 5. It is clear that as

more stringent constraint on queue volumes leads to increased TTS. It is clear that when

lower maximum queue limit is applied, more penalty is incurred due to the violation

of queue constraints, although the proposed strategy has managed to find the optimal

balances between the two on-ramps, and between on-ramp and mainstream traffic.
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Fig. 6.11: Set 2: Evolution of TTS.

The evolution of TTS in case studies of set 2 are given in Fig. 6.11 and on-ramp queue

volume profiles are shown in Fig. 6.12. Fig. 6.13 and Fig. 6.14 show the evolution of TTS

in case studies of set 3 and the corresponding on-ramp queue volume profiles. TTS in

both sets are reduced to the minimums, which are comparable in all cases. In set 3,

when ω1
max is fixed at 250 vehicles, as ω2

max is increased, the queue volumes at on-ramp 1

is decreased while queue volumes at on-ramp 2 is increased correspondingly. This shows

a strong correlation between the queue constraint at on-ramp 2 and the corresponding
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Fig. 6.12: Set 2: On-ramp queue volumes.

balance between the two on-ramp links. However, such a correlation is not identified in

the results of case studies in set 2, where the on-ramp queue volumes at both on-ramps

vary in an unclear manner.
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Fig. 6.13: Set 3: Evolution of TTS.

It is interesting to note that the profiles of total on-ramp queue volumes on both

links are quite close in all cases, as shown in Fig. 6.15. This suggests that the total

queue volumes on the on-ramp links and the total mainstream traffic volumes resulted
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Fig. 6.14: Set 3: On-ramp queue volumes.
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Fig. 6.15: Sum of on-ramp queue volumes.
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from the proposed strategy are roughly unchanged, because of the repetitiveness of the

total traffic volume. From a macroscopic perspective of view, this means that the bal-

ance between mainstream traffic and on-ramp traffic is also unchanged irrespective of

the varied constraints on queue limits. It can be inferred from the above results that

the overall performance of the proposed strategy is determined mainly by the balance

between mainstream and on-ramp traffic. This is probably due to the severe consequence

related with mainstream traffic congestions, e.g. sharply reduced traffic throughput on

the mainstream, increased travel time and waiting time. Besides, the efficiency of coor-

dinative ramp metering strategies would be when mainstream traffic is congested. For

instance, when mainstream traffic congestion occurs around an on-ramp link, it will

propagate towards the upstream direction on the freeway mainstream, which makes the

neighboring mainstream areas congested also and the controller within the affected area

won’t be able to cooperate effective by ramp metering.

From the above results, the following main findings can be concluded:

1. The proposed strategy is able to find the optimal balance between traffic on the on-

ramp links under varied settings of queue constraints, where the TTS is minimized.

2. Using the proposed strategy, variations in the settings of queue constraints can

effectively adjust the queue volumes on the on-ramp links, which allows varied

priorities among on-ramp links.

3. The optimal balances between mainstream and on-ramp traffic resulted from varied

settings of queue constraints are similar at the macroscopic level.
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6.6 Conclusions

In this chapter, a novel FLC based local coordinative ramp metering strategy is

studied for networked freeway traffic control. Local traffic measurement information

is exchanged among neighboring controllers through limited communication, based on

which reference mainstream densities are coordinately determined by FLC based coordi-

native decision making algorithm. ALINEA based strategy is adopted by local controllers

to track the reference mainstream densities. The parameters of the FLC algorithm are

tuned by a simple SPSA based parameter learning algorithm, which effectively finds

the optimal coordinative decision making policies without interruption to normal free-

way operations. Using the proposed strategy, limited communication among neighboring

controllers is required rather than continuous communication between the control center

and all local controllers. This reduces the communication cost of existing centralized

control based strategies. Furthermore, the structure of the proposed strategy is quite

simple and no complex model based computation is involved. The efficiency of coordinat-

ed freeway ramp metering system is significantly improved in case studies. In particular,

using the proposed local coordinative ramp metering strategy, the TTS is reduced by

over 48% compared with no control case, and by over 18% compared with ALINEA based

ramp metering case. This study shows the great potential of the proposed strategy for

coordinated freeway ramp metering problems.

The study presented in Chapter 6 extends the FLC based ramp metering strategies

by applying it for coordination among multiple controllers within a freeway network. The

combination of FLC and SPSA based parameter learning is further demonstrated to be

effective for solving optimal control problems. It is worth pointing out that the proposed
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approach falls into the framework of decentralized and cooperative control, because there

is no centralized decision making units in the control system, which complements existing

studies on networked freeway ramp metering systems.

In the next chapter, the networked freeway ramp metering problem is addressed

by another novel and efficient strategy, which considers the networked freeway ramp

metering problem as a macroscopic traffic scheduling problem. A macroscopic traffic

scheduling (MTS) strategy is proposed which utilizes the strengths of fixed-time traffic

scheduling strategies and the feedback based ramp metering. The considered time is

divided into macroscopic time periods, for which reference mainstream density signals are

scheduled at each on-ramp controller. The feedback based reference tracking algorithm

is used by local controllers for drive the mainstream densities to track these scheduled

reference signals. To obtain the optimal system performance, an SPSA based parameter

learning algorithm is used to find the optimal scheduling plan of the reference mainstream

density signals.

Different from the LCRM strategy proposed in last chapter, the MTS strategy solves

the networked freeway ramp metering problem as an off-line optimization problem with

consideration to system randomness and disturbances. (It is also suitable for implemen-

tation requiring realtime parameter tuning due to the effectiveness of SPSA in dealing

with randomness and disturbances.) Therefore, the reference signals are fixed before each

operation trial, not like that of LCRM case where reference signals are varied according

to realtime traffic conditions and the coordination policies. Additionally, communication

is required neither among individual controllers nor between the controllers and a control

center during the operation time. These unique features of the MTS strategy reduces

the system complexity and implementation cost.
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However, MTS and LCRM shares some common feature, e.g. they both utilize the

repetitiveness of freeway traffic and aim at optimization of the network wide freeway

traffic flow to obtain minimum TTS. Furthermore, decision variables are all tuned at the

macroscopic level by minimizing the system cost function.



Chapter 7

Networked Freeway Ramp

Metering Using Macroscopic

Traffic Scheduling and SPSA

based Parameter Learning

7.1 Introduction

Freeway traffic control is an active research area in modern intelligent transportation

systems due to the emerging environmental and societal issues resulted from traffic con-

gestions. Previous works on freeway traffic control mainly focused on ramp metering,

which was reported to be effective in reducing freeway congestions and improving freeway

traffic conditions [26].

Freeway ramp metering is realized by implementing a traffic light at the freeway on-

ramp entries to regulate the traffic flow merging into freeway mainstream. Mainstream

freeway traffic condition is closely related with the merging traffic flow from on-ramp

links, therefore, mainstream traffic conditions can be regulated by regulating the merging

behaviors of on-ramp traffic. According to the fundamental diagram, as shown in Fig. 1.4,

137
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which shows the empirical relationship between average mainstream traffic flow and

density under homogeneous traffic conditions. The maximum mainstream traffic flow is

obtained when mainstream density is at the critical density.

Existing ramp metering strategies generally fall into two categories: fixed time s-

trategies and traffic responsive strategies. Fixed time ramp metering strategies adopt

fixed ramp metering signals at specific times, and these signals are derived based on

historical data rather than realtime traffic situations [79, 80]. The fixed time ramp me-

tering strategies are inefficient and sometimes counterproductive [27]. The basis for fixed

time ramp metering strategy is that daily freeway traffic is generally repeated, therefore,

historical freeway data can be used for proper scheduling the ramp metering signals to

improve the efficiency of freeway systems, e.g. mitigate or prevent freeway congestion,

reduce the travel times. This strategy may incur problems due to the uncertainties in

freeway traffic systems. For instance, we can consider the situation that the historical

traffic volume entering the freeway mainstream from an on-ramp link between 7AM and

7:10AM is 300 vehicles. However, due to system randomness, traffic volume entering

the freeway within the first and second 5 minutes can be (a): 50 and 250 vehicles, or

(b): 150 and 150 vehicles. Apparently, these are two different traffic conditions, i.e. the

mainstream traffic will be more violently impacted by the sharply increased merging flow

in case (a) that by the smooth merging flow in case (b), although the average traffic flow

rates within the 10 minutes time interval are the same in both cases. In face of such

randomness in freeway traffic, a fixed time ramp metering strategy will not be able to

guarantee a consistent performance. This is because an important feature of the freeway

traffic repetitiveness is that it is a macroscopic level behavior rather than a microscopic

one. Hence, to utilize the repetitiveness in freeway traffic, traffic scheduling should be
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conducted at the macroscopic level correspondingly. It is worth pointing out that al-

though fixed time ramp metering strategies are limited in their efficiency, they possess

important features which are favorable in real implementations. For example, fixed time

ramp metering strategies have simple controller structure and require no realtime traffic

measurement and online computation.

Traffic responsive ramp metering strategies determine the ramp metering signals from

realtime traffic conditions to cope with varied traffic conditions. Among various traffic re-

sponsive ramp metering algorithms, the ALINEA algorithm and its variants are reported

to be effective in improving freeway mainstream traffic flow in filed implementations [33].

The key idea of ALINEA based ramp metering is that maximum mainstream traffic flow

is obtained by maintaining the mainstream density at the critical density, as suggested

by the fundamental diagram. A feedback control based algorithm is adopted by ALINEA

for maintaining mainstream traffic density at the critical density. ALINEA can either be

used as a local ramp metering algorithm to maximize local mainstream traffic flow, or

as a local reference mainstream density tracking algorithm, where the reference signals

are determined by system level coordinated ramp metering algorithms.

Recently, networked freeway ramp metering problems have aroused huge research

interests among researchers. The networked freeway ramp metering is a challenging

problem due to the networked nature of the freeway systems, the complex interactions

among subsystems, and the uncertainties in freeway systems. Model predictive control

(MPC ) based approaches were studied for ramp metering of networked freeway systems

[28, 37]. The optimal freeway states in the whole freeway network, i.e. mainstream

densities around the on-ramp entries and the speed limit signals, are calculated with

respect to a period of time into the future (denoted as t1). The calculated freeway states
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are subsequently used as reference signals to tracked by local ramp metering controllers.

The optimal state variables are recalculated after another period of time (denoted as t2,

and t1 >> t2). Another MPC based method was used for ramp metering of networked

freeway systems, where a genetic fuzzy logic control approach was proposed [49]. It

should be noted that MPC based methods require continuous computational power for

calculating the optimal traffic states. When the size of the freeway network increases,

there are a large number of system states to be optimally specified, which is quite a

challenging task so far.

Although randomness and uncertainties exist in freeway traffic, strong repetitiveness

exists in the freeway traffic system on the macroscopic level, i.e. there are daily morning

peak hours from 6 AM to 9 AM and evening peak hours from 5 PM to 8 PM. Several

researches were conducted to make use of the repetitiveness of freeway traffic for ramp

metering purposes. An iterative learning control (ILC ) based ramp metering method was

studied for driving the mainstream traffic density to track the critical density [62]. Traffic

at off-ramp links are considered as unknown but repeated disturbance, and accurate

tracking is achieved by iteratively learning from the result of previous control trial.

In real implementation of freeway ramp metering systems, it is desirable that effi-

ciencies of the simple ramp metering algorithms can be improved while retaining their

strengths. Driven by this thinking, a novel hybrid method combining the fixed time

strategy based traffic scheduling with ALINEA based traffic responsive ramp metering is

proposed for networked freeway ramp metering. By the proposed method, freeway traf-

fic are macroscopically scheduled in the time domain. This scheduling approach makes

use of the macroscopic repetitiveness in freeway traffic. Different from existing fixed

time ramp metering strategies, the reference mainstream density signals are scheduled
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instead of fixed time ramp metering signals, and traffic scheduling is conducted at the

macroscopic level, i.e. the reference signals are defined for time periods comprised of

multiple time intervals. The ALINEA based local ramp metering algorithm is adopted

to track the reference signals. Since the performance of the proposed method depends on

the scheduled reference signals, these reference signals are regarded as decision variables,

which are tuned by an SPSA based parameter learning algorithm to achieve the optimal

system performance. The SPSA based parameter learning algorithm makes observations

on the performance of historical operation trials and learns from the system gradient to

effectively direct the updating of parameters. Compared with networked ramp meter-

ing methods requiring continuous computational power, e.g. MPC based methods, the

implementation cost of the proposed method is comparable with that of ALINEA based

local ramp metering systems. Although communication between local controllers and

a control center is needed due to its centralized control nature, yet data transmission

is carried out only after each trial of freeway operation for updating of cost functions

and reference signals. Regular communication between local controllers and the control

center is unnecessary, therefore, the communication cost is greatly reduced. Most im-

portantly, the parameter learning task can be performed without disturbing the normal

freeway operations, and is suitable for realtime implementations.

The chapter is organized as follows. Background knowledge and formulation of the

optimal networked freeway ramp metering problem are given in Section 7.2. The pro-

posed macroscopic traffic scheduling based ramp metering method and SPSA based pa-

rameter learning algorithm are described in Section 7.3. Case studies are conducted in

Section 7.4. Section 7.5 concludes the chapter.
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7.2 Problem Formulation

7.2.1 METANET Model Revisit

The freeway traffic flow process is highly complex, and can be described by macro-

scopic models comprised of nonlinear equations [1, 2, 5, 23]. Among these models, the

METANET model is most widely used [5]. In METANET model, the freeway main-

stream link is divided into small sections, where each section can be connected with an

on-ramp and/or off-ramp link. An example of the mainstream section model is given in

Fig. 7.1. The complete model describes the spatial and temporal relationships between

the main state variables, e.g. average mainstream traffic density and flow, mean traffic

speed. The main mathematic equations involved are as follows:

rn sn

qn−1 qnρn, vn

Fig. 7.1: Freeway mainstream section model.

ρn(k + 1) = ρn(k) +
T

Ln
[qn−1(k)− qn(k) + rn(k)− sn(k)] (7.1)

qn(k) = ρn(k)vn(k) (7.2)

vn(k + 1) = vn(k) +
T

τ
[V (ρn(k)) − vn(k)]

︸ ︷︷ ︸

relaxation term

+ Lnvn(k) [vn−1(k)− vn(k)]
︸ ︷︷ ︸

convection term

−
Tµ

Lnτ

[ρn+1(k) − ρn(k)]

[ρn(k) + ψ]
︸ ︷︷ ︸

anticipation term

(7.3)

V (ρn(k)) = vfexp

(

−
1

a
(
ρn(k)

ρc
)a
)

, (7.4)

where the variables are defined as:
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n index of mainstream sections, n ∈ [1, N ] and N is the total number of mainstream

sections;

k index of discrete time step, k ∈ [0, K] and K is the total number of time steps;

T period of sampling (hour);

ρn average density within section n, (veh/km);

vn mean speed of vehicles within section n, (km/hour);

qn volume of vehicles from section n to n+ 1, (veh/hour);

rn inflow volume of vehicles at on-ramp of section n, (veh/hour);

sn outflow volume of vehicles at off-ramp of section n, (veh/hour);

vf free flow speed of vehicles, the speed of vehicles under zero mainstream density,

(km/hour);

ρc the critical mainstream density, (veh/km);

Ln length of section n, (km);

τ a time constant, reflecting the reaction speed of drivers, (hour);

µ, ψ, and a are all constant parameters, reflecting the characteristics of geometry of

freeway roads, vehicle types and driver behaviors. (7.1) is the density equation which

shows the conservation law of vehicles. (7.2) expresses the relationship between average

traffic flow, density and space mean speed. (7.3) is the equation that determines the speed

variation from k to k+1. The speed variation is determined by three terms: the relaxation

term showing that mainstream traffic speed intends to follow a target value determined

by the fundamental relationship between density and speed under homogeneous traffic
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conditions, the convection term showing contribution of upstream section traffic to the

speed dynamics, and the anticipation term reflecting influence of downstream traffic to

speed dynamics of the current section. Note that exponential nonlinearity exists in (7.4),

the last three terms and (7.2) are all nonlinear, making the complete model complexly

parameterized by the following model parameters

φ = [vf ρc a µ ψ τ ]T .

The evolution of queue volume on the on-ramp links is described by:

ω(k + 1) = ω(k) + T (d(k)− r(k)), (7.5)

where d(k) denotes the flow rate of traffic demand at the on-ramp link.

Additional terms can be added to (7.3) to capture the impact of merging flow and

lane drop to mean traffic speed on the mainstream link [71].

7.2.2 ALINEA based Ramp Metering

ALINEA is the most well-known ramp metering algorithm which was proposed by

Markos Papageorgiou in the 1990s. The ALINEA control law is expressed as:

r(k + 1) = r(k) + β(o∗ − o(k)). (7.6)

The flow rate of merging traffic should not exceed the maximum traffic flow available

at the on-ramp link, where the maximum flow rate is calculated as:

rωmax(k + 1) = d(k) +
ω(k)

T
. (7.7)

An additional constraint is imposed on the maximum allowable flow rate from the on-

ramp link due to considerations of traffic condition in the mainstream. This constraint

is calculated as:

romax = Qo
ρmax − ρ(k)

ρmax − ρc
, (7.8)
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where Qo is the maximum flow rate achievable on the on-ramp link under free-flow

conditions, and ρmax is the maximum density on the mainstream. To prevent the ramp

metering signal from exceeding these physical limit of ramp flow rate, a modified ALINEA

algorithm with constraint on the overall ramp metering signal is expressed as:

rl(k + 1) = max{min[r(k) + β(o∗ − o(k)), rmax(k + 1)], rmin}, (7.9)

where rmin is set to be a nonzero value to prevent total close-up of the on-ramp entry,

and rmax(k + 1) = min{rωmax(k + 1), romax(k + 1)} is the maximum allowable flow rate.

More detailed settings on constraints of ramp metering signal were discussed [28].

To prevent the formation of high queue volume on the freeway on-ramp link and

improve the equity of freeway ramp metering, constraints can be enforced to prevent

the queue volume from exceeding predefined limits. Denote ωmax as the limit on queue

volume, ALINEA ramp metering with queue constraints can be expressed as:

r(k + 1) = max{rl(k + 1), rω(k + 1)}

rω(k + 1) = d(k) −
ωmax − ω(k)

T
.

(7.10)

Detailed explanation on ramp metering and queue constraints strategies are discussed

in [35]

7.3 Optimal Macroscopic Freeway Traffic Scheduling with

Parameter Learning

7.3.1 Networked Freeway Ramp Metering Problem

Let the considered freeway mainstream link be comprised of N sections indexed by

n, and denote λ as the index of on-ramp link, λ ∈ [1, λm], where λm is the total number

of on-ramp links. Denote the on-ramp merging flow rate at on-ramp link λ at time step

k as rλ(k). The optimal networked freeway ramp metering task is to seek a set of control
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profile:
{

rλ(k) : k ∈ [1, K], λ ∈ [1, λm]

}

, (7.11)

such that the optimal ramp metering performance is obtained.

7.3.2 The Macroscopic Traffic Scheduling Strategy

Let the consideredK time intervals be equally divided into np periods and denote p as

the index of the time periods. By the macroscopic traffic scheduling strategy, reference

mainstream densities are specified for each time period at each on-ramp link. These

reference signals are the desired mainstream density to be maintained accordingly by

local ramp metering controllers.

Denote ρrλ(p) as the scheduled reference mainstream density at on-ramp link λ in the

pth period. Denote ρλ(k) and rλ(k) as the mainstream density and on-ramp merging

flow rate at on-ramp link λ during time interval k. The on-ramp merging flow rate at at

on-ramp link λ is then determined as:

rλ(k + 1) = rλ(k) + β (ρrλ(k)− ρλ(k)) (7.12)

ρrλ(k) = ρrλ(p), if
(p − 1)K

np
+ 1 ≤ k <

pK

np
. (7.13)

It is clear that the performance of the ramp metering system using the macroscopic

traffic scheduling strategy depends on the vector of decision variables:

θ = [ρr1(1) · · · ρr1(np) · · · ρrλm
(1) · · · ρrλm

(np)]
T . (7.14)

7.3.3 Cost function

The total time spent (TTS ) by all vehicles within the whole network, is commonly

used to evaluate the efficiency of the ramp metering system. TTS based cost function is
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expressed as:

J = T
K∑

k=1

{
N∑

n=1

ρn(k)δnLn +

λm∑

λ=1

ωλ(k)

}

, (7.15)

where T is the length of time interval, δn is the number of lanes in section n, and Ln is

the length of the nth section.

An additional term is usually included in the performance index to apply penalty on

overlong queues at on-ramps. This term reflects equity considerations to prevent long

queues at on-ramp links, which also prevents severe intervention to urban surface street

traffic. The TTS based cost function with penalty terms is expressed as:

J = T

K∑

k=1

{
N∑

n=1

ρn(k)δnLn+

λm∑

λ=1

ωλ(k)+αω

λm∑

λ=1

(

max
(
0, (ωλ(k)−ωλ,max)

))2
}

, (7.16)

where αω is the weight for the penalty term on on-ramp queue volume, ωλ,max is a

threshold queue volume and any queue volume higher than this value would be penalized.

It is important to note that smooth reference mainstream density signals are desirable

in the macroscopic traffic scheduling problem. This is because abrupt changes in the

scheduled reference density signals will cause violent fluctuations in the traffic flow both

on the mainstream and on-ramp links during the transitional time between consecutive

periods. For this reason, another term is included in the TTS based cost function in

(7.16) to penalize variations in the scheduled reference signals.

In this paper, a revised cost function including penalty terms on on-ramp queue

volumes and variations of reference signals is used, which is expressed as:

J = T
K∑

k=1

{
N∑

n=1

ρn(k)δnLn +

λm∑

λ=1

ωλ(k) + αω

λm∑

λ=1

(

max
(
0, (ωλ(k)− ωλ,max)

))2
}

+ T

np∑

p=2

λm∑

λ=1

αr

(
ρrλ(p)− ρrλ(p− 1)

)2
,

(7.17)
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where αr is a constant weight. Note that ρrλ(p) − ρrλ(p − 1) is the change in reference

density signal at on-ramp link λ from period p− 1 to period p.

7.3.4 Objective

Based on the above formulation, performance of the macroscopic traffic scheduling

strategy depends on the scheduled reference mainstream density profile θ. θ directly

influences the mainstream density profiles and on-ramp volume profiles, i.e. ρn(k) and

ωλ(k) in (7.17). Hence the system performance (in terms of TTS ), can be adjusted by

tuning θ.

The objective of macroscopic freeway traffic scheduling is to seek the optimal θ such

that the cost function, i.e. J in (7.17), is minimized.

7.3.5 SPSA Based Parameter Learning

Due to the efficiency of the SPSA algorithm for parameter tuning and optimization

tasks, it has been widely used in various fields. In this chapter, we adopt the simultaneous

perturbation stochastic approximation method to solve the macroscopic traffic scheduling

problem.

Denote i as the index of iterations, θi as the parameter vector in the ith iteration. At

each iteration, i.e. i, the following procedures are followed by the SPSA based parameter

learning algorithm:

1. A perturbation vector is generated as ∆i = ciδi, where ci is a positive constant

and δi is of the same dimension as θ with its components randomly chosen from 1

and −1.

2. Two experimental operation trials are conducted using parameter vectors θ+
i =

θi +∆i and θ−
i = θi −∆i respectively.
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3. Denote the corresponding cost functions resulted from these two experimental trials

as J+
i and J−

i . An estimated gradient is calculated by:

ĝi =
J+
i − J−

i

2ci















1
δi[1]
...

1
δi[j]
...

1
δi[Mpmax]















, (7.18)

where δi[j] denotes the jth component of δi.

4. Set θi+1 = θi − aiĝi, where ai is a constant learning gain.

5. If ‖θi+1 − θi‖ is not too large, go to the next step; else, go back to 1..

6. If the termination criterion are not met, set i = i+ 1 and go to 1.; else terminate

the parameter learning process.

The whole parameter learning process is described by a flow chart as given in Fig. 7.2.

Two important conditions on ai and ci must be satisfied to guarantee asymptotic con-

vergence of θ to the optimal parameter, which are summarized as:

1. ai > 0, ai → 0 as i→ 0, and
∑∞

i=0 ai = ∞,

2. ci > 0, ci → 0 as i→ 0, and
∑∞

i=0(
ai
ci
)2 <∞.

In practice, exponentially decreasing ai and ci are used, i.e. ai = a0
(i+1+A)α and ci =

c0
(i+A)γ , where A is a positive integer, a0 and c0 are positive constants, α and γ are

positive constants.
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1. Set i = 0, set values of c0, a0, α , γ , set θ̂ 0.

2. Randomly generate perturbation vector δ ,

where components of δ are uniformly distribut-

ed between 1 and −1.

3. Apply θ i + ciδ i and θ i− ciδ i for two experi-

ments and save the resulted cost functions as J+i
and J−i respectively.

4. Calculate ĝi according to (7.18)

5. Calculate θ i+1 by θ i+1 = θ i−aiĝi.

6. Check whether updating criterion are met.

7. Check whether terminating criterion are met.

i = i+1

8. Terminate.

yes

yes

no

no

Fig. 7.2: The diagram of SPSA based parameter learning algorithm for tuning desired

mainstream densities.

7.4 Illustrative Example

7.4.1 Simulation Setup

To validate the proposed method, a freeway network shown in Fig. 7.3 is considered.

The freeway network is comprised of 10 mainstream sections, 2 on-ramp links, and 1

off-ramp link is considered. All mainstream sections have 3 lanes and all on-ramp and

off-ramp links have a single lane. The two on-ramp links are connected with section 4

and 8 at the beginning location, the off-ramp link is connected with section 5 at the

ending position. METANET model is used to simulate the freeway system, and model

parameters are listed in Tab. 7.1. The traffic demand profiles are given in Fig. 7.4.
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Fig. 7.3: Layout of the benchmark freeway network model.
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Fig. 7.4: Traffic demand. A total time of 3 hours is considered. A traffic volume at 5000

veh/hour is considered during the peak traffic hours on the freeway mainstream, which

drops to 1500 veh/hour at a later time. The traffic demands at the two on-ramp links

and the off-ramp link also consider peak hour traffic. Random noise with amplitude 10%

of the above demand is imposed in the simulations.

vf ρc ρmax a µ

km/hour veh/lane/km veh/lane/km km2/hour

110 33.5 180 1.636 60

φ β np planning period L

veh/lane/km km/hour minute km

40 10 24 10 0.5

Tab. 7.1: METANET model parameters.
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7.4.2 Case Studies

The following three scenarios are investigated in the numerical studies:

No Control

No ramp metering is applied at on-ramp entries, and vehicles are allowed to merge

into the freeway freely.

ALINEA

ALINEA algorithm is applied at all on-ramp entries, and the mainstream density

are to be maintained at the critical density value. No constraints is applied to

control the queue volumes on the on-ramp links.

ALINEA-Q

ALINEA is applied for ramp metering, and constraints are enforced to prevent

formulations of high queue volumes.

MTS

The macroscopic traffic scheduling method is applied for ramp metering. Macro-

scopic traffic scheduling is utilized to determine the desired mainstream densities

for each control period. ALINEA is applied at the local ramp metering level to

track the predetermined mainstream densities on the freeway mainstream.

MTS-Q

The macroscopic traffic scheduling based ramp metering is implemented with con-

straints on queue volumes enforced.
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In the simulation studies, the learning rate ai and perturbation amplitude ci in SPSA

based parameter learning are defined as:

ai =
a0

(i+ 1)α
(7.19)

ci =
c0

(i+ 1)γ
, (7.20)

where values of α, γ as suggested by [75] are used, a0 = 0.002 and c0[j] = 0.05ρc, ∀j.

The reference signals are set as ρr,λ(p) = ρc, ∀λ, p in the first iteration. This makes

it equivalent to an ALINEA based ramp metering algorithm, which guarantees good

system performance in the first iteration.

7.4.3 Results and Discussion
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(a) Evolution of TTS using MTS.
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(b) Evolution of TTS using MTS-Q ((ωmax = 250)).

Fig. 7.5: Evolution of TTS.

The evolutions of TTS values for 3000 iterations using MTS and MTS-Q cases are

shown in Fig. 7.5. It is clear that by using the proposed SPSA based parameter learn-
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ing approach, the TTS value is significantly reduced in both cases, indicating that the

efficiencies of networked ramp metering is greatly improved in both cases. The initial

TTS value in MTS and MTS-Q cases are around 2100 and 2500 veh · h respectively.

The minimum TTS values, around 1600 and 1900 veh · h, are reached after 1500 and

750 iterations in MTS and MTS-Q cases respectively. The reduction in TTS are 23.8%

and 24.0% in MTS and MTS-Q case respectively, which means considerably improved

freeway traffic conditions in both cases are obtained.

Note that the initial and minimum TTS values in MTS-Q case are increased by

19.0% and 18.8% compared with those in MTS case, which is due to the implementation

of queue constraints in MTS-Q case.

It is also worth noting that the evolution of TTS is fluctuated. This is due to

the randomness in the freeway process, for example, randomized freeway demand, and

such randomness will result in variations in the performance of the same ramp metering

strategy. It should be mentioned that such randomness are important features of freeway

traffic systems, and it also makes the optimal ramp metering problem more challenging.

However, the impact of the freeway system randomness to the performance of freeway

ramp metering have never been discussed by existing studies.

The density profiles at on-ramp connected mainstream sections are shown in Fig. 7.6

and Fig. 7.7, the profiles of queue volumes at on-ramp links are shown in Fig. 7.8 to

Fig. 7.9. From these results, the following interesting findings are summarized:

• By merging almost all vehicles from the on-ramp links without ramp metering, the

mainstream traffic is highly congested.

• By driving the mainstream density to track the critical density, ALINEA based

ramp metering effectively prevented the occurrence of mainstream congestions.
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Fig. 7.6: Mainstream density profile using MTS. ρr1 and ρr2 are the scheduled main-

stream density valued at on-ramp link 1 and 2. No-Control : Without ramp metering,

mainstream congestions occur on the mainstream around both on-ramp links during the

time intervals from 250 to 750 (which will be referred as the congestion period in the fol-

lowing). ALINEA: Under ALINEA control, mainstream congestions are prevented, and

the mainstream densities around both on-ramp connected locations are maintained at the

critical density during the congestion period in no-control case, except that mainstream

density around on-ramp 1 drops below the critical density due to the unavailability of

enough on-ramp traffic. MTS : Using MTS without queue constraint, the mainstream

densities at on-ramp 1 is kept below the critical density throughout the congestion pe-

riod. mainstream density at on-ramp 2 is kept slightly below the critical density during

the initial part of the congestion period and slightly above the critical density during a

later part of the congestion period. The mainstream densities around both on-ramp links

tracks the scheduled mainstream densities closely during the congestion period. During

the rest of the time, mainstream densities are obviously lower than the scheduled values.

However, large queue volume, over 600 vehicles, is created at the on-ramp link

2. ALINEA-Q based ramp metering effectively prevented the formulation of high

queue volumes on the on-ramp links. However, mainstream density increases sig-

nificantly, especially around on-ramp link 1.
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Fig. 7.7: Mainstream density profile using MTS-Q (ωmax = 250). ALINEA-Q : With

ALINEA-Q based ramp metering, congestion on the freeway mainstream are mitigated.

Mainstream densities around both on-ramp links increase considerably above the criti-

cal density, especially around on-ramp 1. MTS-Q : With MTS-Q based ramp metering,

mainstream density around on-ramp 1 follows the scheduled mainstream density closely

during the congestion period. Mainstream density around on-ramp 2 tracks the sched-

uled mainstream density during the initial time of the congestion period, but increases

considerably above the scheduled values during the rest time of the congestion period.

• Without queue constraints, the MTS based ramp metering have achieved macro-

scopic redistribution of freeway traffic in the time domain, i.e. vehicles merged

at the on-ramp link 1 is reduced to allow the creation of moderate queue volume

so that more vehicles at on-ramp link 2 is merged and the queue volume there is

greatly reduced.

• Implementation of queue constraint does not guarantee the optimal performance of

ramp metering, although queue volumes can be effectively restricted. However, by

restricting the on-ramp queue volume, the ramp metering strategy will be fairer to

vehicles from the on-ramp link, i.e. vehicles from the on-ramp link are not forced
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to queue and wait in order to achieve the optimal network performance.

• When MTS is used, the scheduled mainstream densities are closely tracked on the

freeway mainstream during the congestion periods. The scheduled values are higher

than the actual mainstream densities, because the traffic demand during the rest

of time are insufficient to maintain the scheduled mainstream densities.

• When queue constraint is applied, variations in the merging flow and mainstream

densities will occur, which is unfavorable in real systems due to the violent fluctu-

ations in the control signal and traffic flow states.
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Fig. 7.8: Volumes of queueing vehicles at on-ramp links without queue constraint. No

Control : Nearly all vehicles from the on-ramp links are merged except that a small

queue volume occurs around k = 500 at on-ramp 1. ALINEA: Large volumes of queuing

vehicles occurs at on-ramp 2 during k = 250 to k = 800. There is only a minor amount

of queueing vehicles at on-ramp 1. MTS : Large volume of queue is created at on-ramp

1 and the queue volume is significantly higher than that in no control case and ALINEA

case. A maximum queue volume of about 300 vehicles occurs at k = 500. At on-ramp

2, the queue volume is considerably reduced compared with that of ALINEA case. The

maximum queue volume is about 300 vehicles.

Since the performance of MTS-Q suffers from the implementation of queue con-

straints, it is interesting to investigate the effect of different queue constraints on perfor-

mance of MTS-Q based ramp metering. Evolutions of TTS using MTS-Q based ramp
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Fig. 7.9: Volumes of queueing vehicles at on-ramp links with queue constraint (ωmax =

250). ALINEA-Q : Queue volumes at both on-ramp links are capped by the constraint

values (250 vehicles) during the congestion period. MTS-Q : The queue volume at on-

ramp 1 occurs at an earlier time compared with that of ALINEA case and a reduction

of queue volume occurs during the congestion period. At on-ramp 2, the on-ramp queue

starts at a later time and ends earlier compared with that of ALINEA-Q case.

metering with varied ωmax values are given in Fig. 7.10. From these results, the following

can be concluded:

• When larger ωmax is used, better optimal performances are obtained by both MTS

and MTS-Q based ramp metering.

• The TTS values of MTS-Q based ramp metering are consistently higher than those

of MTS cases.

• The influences of ωmax to performances of MTS and MTS-Q based ramp metering

are insignificant when large ωmax values is used, i.e. ωmax > 300. This can be

straightforwardly explained by the fact that when ωmax is larger than the maximum

possible queue volume when no queue constraint is applied, queue constraint will

be ineffective and unnecessary.
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(a) Evolution of TTS using MTS.
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(b) Evolution of TTS using MTS-Q.

Fig. 7.10: Evolution of TTS under varied queue constraints. Without queue constraint,

the minimum TTS values of obtained by MTS based ramp metering decreases as ωmax is

increased, indicating improved performance of ramp metering. The reduction in the op-

timal TTS values is insignificant when ωmax > 250. With queue constraint implemented,

the minimum TTS values achieved by MTS-Q based ramp metering also decreases when

ωmax is increased, and this reduction is insignificant when larger ωmax value is used.
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7.4.4 Further Discussion

Investigation on different lengths of period

Note that np can also be regarded as a decision variable for the macroscopic scheduling

problem. A larger np allows more detailed scheduling, but increases the number of

variables to be scheduled and complexity of the problem at the meantime. A smaller

np reduces the number of variables to be determined and makes the traffic control less

sensitive to temporal variations in the traffic conditions. When np = K, the reference

mainstream density needs to be scheduled for each time interval, macroscopic traffic

scheduling is transformed back into a pure fixed time strategy. When np = 1, a constant

reference mainstream density is used, and ramp metering becomes a reference tracking

problem. ALINEA falls into this case, where the reference mainstream density is set as

the critical density. When 1 < np < K, the problem is transformed into a macroscopic

scheduling problem and the reference signals are updated less frequently than that in

pure fixed time strategy and more frequently than that in ALINEA case.

To investigate the performance of the proposed method with different lengths of

scheduling period, additional case studies are conducted, where different np values are

used. The investigated scenarios are summarized in Tab. 7.2. Note that scenarios A is an

extreme situations, where the most ambitious and detailed scheduling is targeted, which

is a similar as the fixed-time strategy.

Fig. 7.11 shows the evolutions of the TTS in the studied scenarios. In scenario A,

TTS is not reduced by the parameter learning scheme. This is probably because the

freeway traffic demand is highly random at the microscopic level. (Note that gaussian

random noise is applied in the traffic demand.)

In all the other scenarios, TTS values are reduced during the repeated parameter
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Tab. 7.2: Scenarios with different np.

Scenario np Planning Period

A 1440 10 seconds

B 240 1 minute

C 48 5 minutes

D 24 10 minutes

E 8 30 minutes
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Fig. 7.11: Evolution of TTS using different np.

learning process. And it is worth mentioning that when np is decreased, lower TTS values

are achieved. This shows that the performance of MTS strategy based ramp metering

approach improves as the length of the planning period is increased. This phenomenon

illustrates that when the length of the planning period is increased, the macroscopic level

freeway traffic repetitiveness can be utilized better by the MTS strategy.

Furthermore, the final TTS values obtained in scenarios D and E are comparable. It

shows that the MTS strategy has been quite effective with the corresponding values of

np.
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Communication Cost

To realize the proposed parameter learning scheme in real implementations, commu-

nication is needed between the local controllers and a control center. For instance, local

controllers must report local traffic conditions to the the control center so that TTS can

be calculated after a complete freeway operation trial, and updated reference signals must

be transmitted to local controllers before the next freeway operation trial. The existence

of the control center and the communication mechanism makes the proposed algorithm a

centralized control method. However, it is worth mentioning that once reference signals

are determined and transmitted to the local controllers, no further communication is

needed during the whole period of freeway operation. Hence the communication cost re-

quired by the proposed method is very low compared with that of MPC based methods,

where regular communication is a must between the control center and local controllers.

Implementation Issue

Freeway traffic load during mid-night time, i.e. from 11:00 PM to 3 AM, is very low,

therefore, no ramp metering is needed during this period. Therefore, the communication

activities and parameter updating tasks can be carried out during this period. By this

arrange of communication activities and parameter updating tasks, normal freeway oper-

ation is uninterrupted. The above feature makes the proposed method especially suitable

for real implementations, because improved system performance is obtained through day-

to-day parameter learning without any interference to normal freeway operations.
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7.5 Conclusions

To solve the networked freeway ramp metering problem, a novel macroscopic freeway

traffic scheduling method is proposed, which combines a macroscopic traffic scheduling

approach with the ALINEA based traffic responsive ramp metering strategy. At the

macroscopic level, time and location specific reference mainstream density signals are

scheduled, where the macroscopic repetitiveness in freeway traffic is utilized. While at

the microscopic level, the ALINEA based traffic responsive local ramp metering algorith-

m is applied to maintain the local mainstream densities at the corresponding reference

values. The ALINEA based reference tracking scheme enables the traffic scheduling

method to cope with the randomness and variations in freeway traffic. By the proposed

method, the networked freeway ramp metering problem is simplified as an optimization

problem, where the reference signals are the decision variables. To find the optimal

macroscopic traffic scheduling plan, which results in minimum TTS, an SPSA based

parameter learning algorithm is used to tune the reference signals. The combined use

of macroscopic traffic scheduling and ALINEA effectively improves the efficiency of net-

worked ramp metering system, while the advantages of both methods, i.e. the structural

simplicity of the macroscopic traffic scheduling approach, and the capability of ALINEA

to cope with real time traffic situations, are retained. As a centralized control approach,

the proposed method requires minor communication cost and is suitable for real imple-

mentation, because no interruption to normal freeway operation is incurred. Case studies

show that the proposed method greatly improves the performance of networked freeway

ramp metering systems. The proposed method achieves minimum TTS that is 23.8%

lower than that of ALINEA case when no queue constraint is not applied, and 24% lower

than that of ALINEA case when queue constraint is applied.
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In this chapter, the ramp metering control problem for networked freeway traffic

is solved by combining the ALINEA control algorithm with an SPSA based parameter

learning algorithm. By the proposed approach, macroscopic repetitiveness of freeway

traffic is considered and utilized to formulate the original problem as a macroscopic

traffic planning problem. The mainstream traffic densities around controlled on-ramp

entries are maintained at desired values during specified time periods. The ALINEA

based local ramp metering law is adopted to maintain the mainstream densities at the

corresponding desired values. In order to obtain the optimal system performance, the

SPSA based parameter learning algorithm is adopted for tuning the desired mainstream

mainstream density values. The proposed approach pursues macroscopic optimality of

the network-wide freeway traffic flow while retaining the simplicity of ALINEA and fixed

time control strategy; additionally, the computational power for real implementation is

less demanding than existing algorithms.



Chapter 8

Conclusions

8.1 Summary of Results

In this thesis, the learning based parameter calibration and ramp metering problems

were studied for the freeway traffic system, several innovative algorithms were proposed,

which complement existing studies and address the limitations of existing methods.

In particular, the problem of parameter calibration for macroscopic freeway traffic

modeling is studied in Chapter 3, where a novel hybrid iterative calibration algorithm

was proposed. The hybrid algorithm adopts multiple MSE based cost functions to mea-

sure the discrepancies between model generated data sets and real traffic data sets. By

combining the multivariate Newton-Raphson algorithm with the simultaneous perturba-

tion based gradient estimation, the proposed hybrid iterative algorithm aims at finding

the optimal parameters to minimize all cost functions. The gradient estimation scheme

avoided the involvement of complex model based gradient calculation, while parametric

convergence is theoretically guaranteed by virtue of the multivariate Newton-Raphson

algorithm. Besides, randomness is introduced into the parameter updating process to

enhance the quality of parametric convergence in face of local minima. In simulation s-

tudies with real freeway data, the proposed method effectively calibrates the METANET

165
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model parameters to obtain excellent fitting between model generated data and real da-

ta, and the MSE values with respect to multiple data sets are significantly lower than

that obtained by the SPSA based parameter calibration. This part of the work demon-

strates that the proposed hybrid iterative calibration algorithm is an effective and useful

alternative to existing parameter calibration methods.

In Chapters 4 and 5, the problem of optimal freeway local ramp metering is consid-

ered, where the main objective is to strike a balance between mainstream and on-ramp

traffic conditions while pursuing the optimal performance of local ramp metering systems.

A WTTS based cost function is adopted to measure the efficiency of freeway local ramp

metering, and a balance between mainstream and on-ramp traffic is essentially pursued

by the WTTS based cost function. Additionally, WTTS based cost function requires less

implementation cost compared with that of TTS based cost function. FLC based local

ramp metering algorithms are proposed to determine the reference mainstream density

based on traffic conditions on the freeway mainstream and on-ramp link. The local feed-

back control based algorithm is then used maintaining the mainstream traffic density

around the reference density. To find the optimal parameter settings for the FLC based

local ramp metering algorithms, two parameter tuning schemes are proposed.

Specifically, in Chapter 4, repeated freeway traffic demands with system randomness

are considered, and PARAMICS microscopic traffic simulation is used to evaluate the

performance of the ramp metering algorithm. Antecedent membership functions in the

FLC algorithm is predefined and consequent parameters are regarded as tunable pa-

rameters. The PSO algorithm is used to find the optimal parameters that minimizes

the WTTS value. Simulation results show that the proposed method effectively finds

the optimal ramp metering policies to strike a balance between freeway mainstream and
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on-ramp traffic.

Another parameter tuning scheme is proposed in Chapter 5 to find the optimal set-

tings of the FLC based local ramp metering algorithm. Different from the previous chap-

ter, time space variations in traffic demands are considered in this chapter and parameters

in both the antecedent and consequent parts of the FLC algorithm are considered as tun-

able parameters. These parameters are tuned using an SPSA based model-free parameter

learning algorithm, which iteratively learns from operation trials with perturbed system

parameters to update the parameters and improve system performance. A desirable fea-

ture of the SPSA based parameter learning scheme is that the normal freeway operation

is uninterrupted by the parameter learning. Case studies using METANET model show

that the new parameter tuning scheme can effectively find the optimal parameters of

the FLC algorithm and obtain a balance between mainstream traffic and on-ramp traf-

fic. Furthermore, the performance of the proposed method is able to cope with various

randomness in freeway traffic demands and suitable for realtime implementations.

In Chapters 6 and 7, the networked freeway ramp metering problem is studied, where

simultaneous control of multiple on-ramp links is considered. It is a more challenging

problem due to the complex interactions among local controllers, on which no explicit

relationship has been established, however, to obtain the optimal system performance,

the behaviors of these local controllers should be properly coordinated. Traditional cen-

tralized control based coordinated ramp metering systems are limited by the involvement

of complex model based calculation, low system flexibility and high computation cost.

To address these drawbacks of existing methods, two new centralized control based ram-

p metering strategies are proposed, which are simple, efficient and suitable for realtime

implementations.
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Firstly, a novel local coordinative ramp metering strategy is proposed, by which lo-

cal controllers exchanged their measurement information with neighboring controllers.

Based on both local and exchanged traffic measurements, FLC based coordinative de-

cision making algorithms are used by local controllers to coordinately make decisions

on the reference mainstream densities, which are tracked using feedback control based

algorithm. The parameters of the FLC based coordinative decision making algorithms

are iteratively updated using an SPSA based parameter learning scheme. By the pro-

posed local coordinative ramp metering strategy, local controllers communicate with

their neighboring controllers rather than continuous communications with the control

center, hence communication cost is reduced. Furthermore, the no complex model based

calculation is involved by the proposed algorithm, therefore, simple algorithmic struc-

ture is obtained. Efficiency of the proposed strategy is demonstrated through extensive

case studies, where TTS is significantly reduced compared with that of uncoordinated

feedback control based ramp metering case.

Finally, another macroscopic traffic scheduling strategy is proposed for networked

freeway ramp metering. This novel ramp metering strategy considers the freeway traffic

as a macroscopically repeated process, where reference mainstream densities are sched-

uled for predefined time periods. These reference signals are tracked accordingly by local

controllers using feedback control based algorithm. By the proposed macroscopic traffic

scheduling strategy, the networked ramp metering problems is simplified as a optimiza-

tion problem, where the time and location specific reference signals are treated as decision

variables. A model-free SPSA based parameter learning algorithm is used to iteratively

update these scheduled reference signals and improve the system performance. The pro-

posed strategy requires minor communication cost in addition to the implementation cost
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of uncoordinated feedback control based ramp metering strategy. Besides, the structure

of the proposed strategy based ramp metering system is quite simple. These important

characteristics of the proposed strategy together with its significantly improved efficien-

cy compared with that of the local feedback control based strategy make it suitable for

realtime implementations.

Additionally, traffic data collected from real traffic systems is used for calibrating the

parameters of the macroscopic traffic flow models. This adds up to the importance of

the research in this thesis for solving real and practical problems.

Meanwhile, popular traffic flow models are applied for simulating the freeway traffic

flow, where various practical issues in real freeway systems are carefully considered,

e.g. randomness and variations in freeway traffic demands, freeway congestions. In

particular, the well-known METANET model is used to simulate freeway traffic flow

for both local and coordinated freeway ramp metering problems, and the PARAMICS

microscopic traffic simulation platform is used, which enables the performance of ramp

metering algorithms to be investigated under traffic situations that is close to real traffic

situations.

Overall, several important issues in freeway traffic modeling and control are investi-

gated and successfully addressed. Achievements obtained mainly lie in:

1. improving the accuracy parameter calibration for freeway traffic modeling,

2. improving the efficiency of both local and networked freeway ramp metering,

3. handling freeway system randomness and uncertainties,

4. realizing model-free parameter learning to adjust parameters of the control algo-

rithms without interrupting normal freeway operation,
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5. exploring the potentials of existing methodologies to obtain simple but more effi-

cient freeway ramp metering algorithms,

6. utilizing both macroscopic and microscopic traffic simulations to facilitate effective

design and analysis of freeway ramp metering systems,

where the current work can serve as good reference.

8.2 Suggestions for Future Work

It would be desirable that future research could be done to improve the current study

in the following aspects:

1. In this thesis, freeway traffic control is realized by ramp metering, however, variable

speed limit control based strategies also worth consideration. It can be used jointly

with ramp metering to improve the efficiency of freeway traffic control systems.

2. Real traffic data used for numerical studies in this thesis is limited due to limit-

ed resources available, otherwise, the proposed methods can be further validated

against more complex freeway networks and real traffic data.

3. Field testing with the proposed ramp metering strategies would be of substantial

importance to demonstrate their efficiencies.

4. The proposed ramp metering schemes mainly focus on improvement of ramp me-

tering performances. Further studies are needed to provide theoretical basis for

the various algorithms proposed in this thesis.

The above mentioned issues suggest interesting topics for future studies, for which

this thesis can serve as a starting point and reference.
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Appendix A: Proof Details

A.1 Proof of Theorem 1

Proof. At each iteration, by the mean value theorem and Taylor’s expansion, we have

dLi = J
(
θ̄i1

)
dθi, (8.1)

and

δLi = J
(
θ̄i2

)
δθi, (8.2)

where θ̄i1 denotes a point on the line segment of θ̂i and θ̂i + dθi, θ̄i2 denotes a point on

the line segment of θ∗ and θ̂i.

Let Ji1 and Ji2 denote J
(
θ̄i1

)
and J

(
θ̄i2

)
respectively. The evolution of cost functions

during the parameter calibration process is expressed as:

Li+1 = Li + dLi

= Li + Ji1dθi

= Li − aiJi1 Ĵ
−1
i Li. (8.3)

Using L∗ to subtract both sides of the above relationship, we have

δLi+1 = (I − aiJi1 Ĵ
−1
i )δLi + aiJi1 Ĵ

−1
i L∗. (8.4)

Let ρ1 be the upper bound of
∥
∥
∥I − aiJi1 Ĵ

−1
i

∥
∥
∥, and ǫ1 be the upper bound of

∥
∥
∥aiJi1 Ĵ

−1
i L∗

∥
∥
∥,
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apply norm on both sides of the relationship (8.4), we have

‖δLi+1‖ =
∥
∥
∥(I − aiJi1 Ĵ

−1
i )δLi + aiJi1 Ĵ

−1
i L∗

∥
∥
∥

≤
∥
∥
∥I − aiJi1 Ĵ

−1
i

∥
∥
∥ ‖δLi‖+

∥
∥
∥aiJi1 Ĵ

−1
i L∗

∥
∥
∥

≤ ρ1 ‖δLi‖+ ǫ1

≤ ρi+1
1 ‖L0‖+ ǫ1

i∑

j=0

ρ1
j

= ρi+1
1 ‖L0‖+ ǫ1

1− ρ1
i+1

1− ρ1
(8.5)

hence if ρ < 1, we have

lim
i→∞

‖δLi‖ =
ǫ1

1− ρ1
, (8.6)

which means θi converges to a bounded neighborhood of θ∗. Since ǫ1 depends on ai,

the radius of the bounded neighborhood can be reduced by adopting a smaller updating

gain.

By proper gradient estimation method, e.g. simultaneous perturbation algorithm,

we are able to obtain estimated Jacobian matrix such that Ji1 ≃ J
(

θ̂i

)

. By adopting

a small enough updating rate which makes θ̄i1 and θ̂i close enough to each other, we

obtain
∥
∥
∥I − aiJi1 Ĵ

−1
i

∥
∥
∥ ≤ ρ1 < 1, satisfying the convergence criteria for δLi.

Since

θ̂i+1 = θ̂i−aiĴ
−1
i Li, (8.7)

using θ∗ to subtract both sides of the above relationship, we have

θ∗ − θ̂i+1 = θ∗ − θ̂i+aiĴ
−1
i Li (8.8)
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hence, we have

δθi+1 = δθi + aiĴ
−1
i (Li −L∗ +L∗),

= δθi − aiĴ
−1
i δLi + aiĴ

−1
i L∗

= δθi − aiĴ
−1
i Ji2δθi + aiĴ

−1
i L∗

= (I − aiĴ
−1
i Ji2)δθi + aiĴ

−1
i L∗ (8.9)

Apply norm on both sides of the above relationship, we have

‖δθi+1‖ = ‖(I − aiĴ
−1
i Ji2)δθi + aiĴ

−1
i L∗‖

≤ ‖(I − aiĴ
−1
i Ji2)δθi‖+ ‖aiĴ

−1
i L∗‖

= ‖(I − aiĴ
−1
i Ji2)‖‖δθi‖+ ‖aiĴ

−1
i L∗‖ (8.10)

Let ρ2 denote the upper bound of ‖I − aiĴ
−1
i Ji2‖, ǫ2 denote the upper bound of

‖aiĴ
−1
i L∗‖, we have

‖δθi+1‖ ≤ ρ2‖δθi‖+ ǫ2

≤ ρ2
i+1‖δθ0‖+ ǫ2

i∑

j=0

ρ2
j

= ρ2
i+1‖δθ0‖+ ǫ2

1− ρ2
i+1

1− ρ2
. (8.11)

From the above relationship, it is clear that if ρ2 < 1, we get

lim
i→∞

‖δθi‖ =
ǫ2

1− ρ2
, (8.12)

indicating that θi converges to a bounded neighborhood of θ∗. Similar to the convergence

of δLi, the radius of this neighborhood can also be reduced by using a small updating

gain.
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