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ABSTRACT

In this thesis, we consider the control of patient flow through physicians

in emergency departments (EDs), which have attracted many researchers’

attention. Our work here seems to be the first model to quantitatively analyze

the control of patient flow in an emergency department from a queueing

theory perspective.

Problem: In emergency departments, the physicians must choose between

catering to patients right after triage, who are yet to be checked, and those

that are work-in-process (WIP), who are occasionally returning to be checked.

The service requirements for the two kinds of patients are different: for the

patients right after triage, they must see a doctor within targeted time win-

dows (that may depend on the patients’ severity and other parameters);

while the WIP patients, on the other hand, impose congestion costs. The

physicians in the emergency departments have to balance between triage and

WIP patients so as to minimize costs, while meeting the constraints on the

time-till-first-service.

Model: We model this prioritization problem as a queueing system with

multi-class customers, combining deadline constraints, feedback and conges-

tion costs together. We consider two types of congestion costs: per individual
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visit to a server or cumulative over all visits. The former is the base-model,

which paves the way for the latter (more ED-realistic) one.

Method: The method we use is conventional heavy-traffic analysis in queue-

ing theory, based on the empirical evidence that the emergency departments

can be viewed as critically-loaded stationary systems between late morning

till late evening. We propose and analyze scheduling policies that asymptot-

ically minimize congestion costs while adhering to all deadline constraints.

Solution: The policies have two parts: the first chooses between triage and

WIP patients using a simple threshold policy; assuming triage patients are

chosen, the physicians serve the one with the largest delay relative to dead-

line; alternatively, WIP patients are served according to some generalized cµ

policy, in which µ is simply modified to account for feedbacks. The poli-

cies that we propose are easy to implement and, from an implementation

point of view, has the appealing property that all information required is

indeed typically available in emergency departments. For the proposed poli-

cies, asymptotic optimality, as well as some congestion laws that support

forecasting of waiting and sojourn times, are established.

Application: Finally, via data from the complex ED reality, we use our

models to quantify the value of refined individual information, for example,

whether an ED patient will be admitted to the hospital as opposed to being

discharged. This is an illustration on how our recommendations can improve

the operational efficiency and service quality.
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1. INTRODUCTION

Very few things can be more important than health care to our lives. Health

care is such a holistic topic that each part of it deserves a lot of efforts

for understanding. In this thesis, we will focus on hospitals, especially, the

“gate” of hospitals – emergency departments. Emergency departments are

service systems, which are so crucial in the sense that the quality of service

there is closely related to people’s lives. Emergency departments without

good quality of service (long delays) can result into unnecessary death ([28]).

It is the job of physicians to provide good treatments to patients, while

it is the system managers’ job to manage the emergency departments well

and eliminate unnecessary delay of treatments. The problem of long delays in

emergency departments has been observed in many places, and has attracted

system managers’ attentions.

In 2011, the Ministry of Health (MOH) of China proposed to use a triage

system to manage the emergency departments. The objective is to improve

the quality of care (the safety of patients). By using this triage system,

patients are classified into 4 classes according to their severities. Patients will

be scheduled to see the physicians according their severities, and a natural

problem after this triage system is, what is the best scheduling, so that

physicians can provide the best quality of care to the patients.
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In developed countries such as the United States, triage systems are

widely used in emergency departments, but similar scheduling problem still

exists. From 1991 to 2009 in the United States, the number of emergency

departments decreased by 10%, while the number of visits to the emergency

departments increased by more than 20% ([22]). As a result, the ED envi-

ronment in the United States has become more crowded. Indeed, from 2003

to 2009, the waiting time in most of the emergence departments increased

by 25% (from 46.5 to 58.1 mins, see [21]).

All these show the needs to manage emergency departments, that is,

to improve the performance of emergency departments. To do this, it is

necessary to understand the operations in the emergency departments. As

it has been observed, control of patient flow is a major factor for improving

hospital operations. Indeed, patient flow is a central driver of a hospital’s

operational performance, which is tightly coupled with the overall quality and

cost of health care ([2, 34, 33]). This is also true in emergency departments.

This brings the research problem of patient flow management in emergency

departments.

Here is how patients go through the emergency departments: a new pa-

tient arriving at an emergency department is first triaged by a nurse, then

waits in the waiting area for the first examination by the physicians; after

the first examination, the patient may leave the emergency department di-

rectly, or go to the other parts of the emergency department to do further

examinations, such as doing CT scan or blood test; after getting the report

of the examination, the patient returns to the physicians to get guidelines

for further treatments; the patient may have to do several examinations to
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complete the treatments; after all treatments are done, the patient leaves

the emergency department, either by being admitted to the hospital, or dis-

charged to go home. This is illustrated in the following:

Fig. 1.1: Patient flow in emergency departments
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There are two kinds of patients in an emergency department: one is new

patients arriving from the outside of the system, the other is the work-in-

process (WIP) patients who have stayed in the system for a while and have

received some treatments. Different from the new-arriving patients, there

is no external arrivals for those WIP patients and they are all transferred

from new or other WIP patients. In addition, each patient may visit the

physicians for several times, this corresponds to the several examinations

took place in the emergency department, as described above. The following

table is calculated using the numbers in Table 2 of [43], in which the authors

did data analysis with data from an emergency department in Israel. The

patients in this emergency department are classified into 7 classes, and the

patients are also classified into 4 classes, according to their expertise. From

There are two kinds of patients in an emergency department: one is new

patients arriving from the outside of the system, the other is the work-in-

process (WIP) patients who have stayed in the system for a while and have

received some treatments. Different from the new-arriving patients, there is

no external arrivals for those WIP patients and they are all transferred from

new-arriving or other WIP patients. In addition, each patient may visit the

physicians for several times, this corresponds to the several examinations took

place in the emergency department, as described above. The following table

is calculated using the numbers from Table 2 of [44], in which the authors

did empirical analysis with data from an emergency department in Israel.
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The patients in this emergency department are classified into 7 classes, and

the physicians are also classified into 4 classes, according to their expertise.

From this table, it can be seen that, each patient visits the physician for at

least 3 times.

Tab. 1.1: Number of visits in an Israeli emergency department

Physician type Patient type Average number of visits

1 1, 7 3.9698

2 2, 5 2.9904

3 3, 6 2.9700

4 4 2.9904

The service requirements for those new and WIP patients are different:

• New patients: when arriving at the emergency department, the new

patients are generally classified into different classes via a pre-specified

triage system, for example, Canadian Emergency Department Triage

& Acuity Scale (CTAS, [7]). The triage system classifies the patients

into different classes according to the severity of those patients (by

using emergency severity index, ESI), and puts requirements on the

Time-Till-First-Examination (TTFE) for patients in different classes –

that is, a patient must start the first examination in some pre-specified

time-window. For example, in the CTAS, patients are classified into

5 classes according to the clinical conditions, and the corresponding

deadlines are as follows:
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Tab. 1.2: Deadlines specified in CTAS

Severity Resuscitation Emergent Urgent Less urgent Non-urgent
Deadlines Immediate 15 mins 30 mins 60 mins 120 mins

Patients in level 1 (Resuscitation) are with very serious conditions,

and they must start their first examination immediately. Generally

those patients are treated in a separate area so those patients are not

considered in this thesis. For the patients in the other four levels, they

may wait for a while, but with different deadlines on waiting times. For

example, a patient whose health condition is identified as “Urgent” can

wait for as long as 30 minutes, which is the length of the safe period

for this patient before receiving the first treatment.

• WIP patients: work-in-process patients use the resources in the emer-

gency department, and bring congestions to the emergency department.

The directors of the emergency department use cost which is called con-

gestion cost to measure the congestion incurred by those WIP patients

– the congestion cost can represent several costs, such as waiting costs,

clinical costs, emotional costs, psychological costs and others. One ex-

ample of what congestion cost can measure is the impact of long waiting

time: if a patient waits in the emergency department for a long time,

then that patient may face high risk of suffering additional disease (ei-

ther caused by the existing disease or infected from other patients –

the emergency department is indeed not a safe place to stay.)

However, how to identify the cost functions by WIP patients are gen-

erally difficult. Here is an example of how the director in an Israeli



1. Introduction 6

emergency department do. In that Israeli emergency department, the

director identified the cost functions by the patients’ triage class, age

and the decisions after treatments, see the following Fig. 1.2 (cited

from [10]):

Fig. 1.2: Cost functions in an Israeli emergency department

69 
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Figure 24: Cost for all patients, emphasizing admitted and discharged 
differences. 

Note that the service policy algorithm uses configured cost functions. Thus, the ED 

manager is able to easily change them in order to meet desired performance indicators. 

7.1.5 The PTN Simulation Model 

The PTN simulation model is based on a queueing network, following the model 

illustrated in Figure 19.  The queues are organized into a two-dimensional structure. The 

first dimension indicates the triage level; the second dimension indicates the patient's 

encounter number with a physician. The scheduling algorithm selects a patient from the 

appropriate queue and transfers her to the next queue after the treatment and latent 

time, or out of the queueing system after treatment time in the case of a patient's last 

encounter. 

Most scheduling algorithms use FCFS within queues. Our simulation is able to simulate 

service policies that take individual identities into account, e.g., in situations in which 

cost function is complex, and to prioritize patients by calculating their waiting cost 

within the ED. 

Service times and latent times are taken as is from the input plan. Our simulation is able 

to take arrival time from the input or to generate the arrival times based on known 

process distributions, such as the Poisson process.  

The simulation simulates a physician pool with a configured number of physicians. Each 

physician spends time treating a patient, but physicians may also spend a configured 

amount of time in additional work, e.g., filling out treatment orders and discharge 

Generally, a patient with more serious condition needs more care from

the emergency department, and will bring more congestion, hence will

result more cost to the emergency department. The patients are clas-

sified into different age groups, and the cost functions for patients in

different age groups are different, for example, the cost from the pa-

tients over 75 is higher than patients from other groups. Also the

decisions after treatments have impact on the cost functions: for those

patients who will be discharged to go home, their cost is twice as much



1. Introduction 7

as the cost by those patients who will be admitted to the hospitals (as

it can be seen from the figure, the cost functions are grouped into two

groups. The functions in the upper group correspond to the patients

who will be admitted to the hospitals, while the functions in the lower

group correspond to the patients who will be discharged to go home).

This system has attracted many researchers’ attention. However, there

are several complexities in analyzing emergency departments. As described

above, there are several classes of new patients, as well as several classes of

WIP patients. The service requirements for different classes of patients are

different. An optimal scheduling policy should not be a (simple) static one:

if the priority is always given to the new patients, then the queue lengths

of the WIP patients will be long – this makes the emergency department

blocked and all patients have to experience long sojourn times; on the other

hand, if the priority is always given to the WIP patients, the waiting time

for the new patients will increase – this is dangerous for the new patients

with serious health conditions.

Till now, there are hundreds of simulation-based studies for emergency

departments. Simulation models are useful to compare different policies and

get insights on the importance of features, however, they are not suitable to

find the optimal policy among all reasonable policies. As a result, analytical

models are needed. However, because of the complexities mentioned above,

building analytical models is indeed a challenging problem ([40]). In this

thesis, we will build two analytical models, and propose the corresponding

asymptotically optimal policies to manage the emergency departments.

The complexities, as well as the challenge to manage patient flow, stem
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from two flow characteristics: deadlines and feedbacks. First, arriving pa-

tients must be served within time-deadlines that are assigned after triage,

based on clinical considerations ([18, 29]). Second, patient flow has a signifi-

cant feedback component that must be accounted for: WIP patients possibly

return several times to physicians during their stay in the emergency depart-

ment, before ultimately being either released or hospitalized, see Tab. 1.1.

Another challenge is that the new and the WIP patients have different service

requirements: the service requirements for those WIP patients is to minimize

the congestion cost (recall that the service requirements for triage patients

is to meet pre-specified deadlines).

In a summary, WIP patients impose operational congestion (e.g. they

occupy beds), which must be controlled while adhering to clinical triage

constraints (e.g. stabilizing patient conditions). It is this operational-and-

clinical friction that makes the problem interesting and complicated, from

the viewpoint of the physician: when becoming idle, what class should be

served next - triage or WIP - after which one must decide on the specific

patient to be examined.

In this thesis, we will model and analyze the emergency department by

using queueing models. We will ignore some unimportant features to make

the models tractable. Other possible important features will be discussed in

Chapter 4. The first feature we ignore is the time for the examination steps.

This means that feedbacks in the model are immediate. If the times for

the examination steps are very short, then this is a reasonable assumption.

We will give a conjecture in §4.1 on how long can these examination steps

be. Another feature is the triage-steps. This thesis will not focus on any
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triage system here, but only considers the steps after the triage stage. It is

worth to mention that, though triage systems are not the main subject of this

thesis, the results in this thesis can give us suggestions on how to design triage

systems (for example, the case study in subsection 3.2). Finally, the decisions

after the treatments (whether to be discharged to go home or be accepted

by hospital)are not the main focus here either, though they can also be used

to help managers improve the operations of the emergency departments, as

shown in §3.2.

Instead, this thesis will focus on the features which we regard as the

most important ones in emergency departments, they are: feedback, dead-

lines on the time-till-first-treatment, and congestion cost incurred by those

work-in-process patients. As a reminder, the deadline constraints are clini-

cal constraints while the congestion costs are operational consideration. The

problem faced by the director is how to balance between the clinical and op-

erational considerations. To this end, we model and analyze the emergency

departments by using queueing theory, and propose flow control policies that

minimize congestion costs while subject to deadline constraints.

In this thesis, we consider two models, which differ by their conges-

tion costs: the first is a basic (queue length) model in which the congestion

costs are incurred per individual doctor visits; in the second, congestion costs

accumulate over all visits during patient sojourn-times. The mathematical

framework used here is conventional heavy-traffic, in which one analyzes a

sequence of systems that converge to critical loading. This is a relevant op-

erational regime, despite the fact that emergency departments are inherently

time-varying. Specifically, empirical evidence suggests that, during regular
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peak shifts between late morning till late evening, the emergency depart-

ments can be usefully viewed as critically-loaded stationary systems ([2]).

Within this asymptotic framework, the work-in-process analysis follows the

generalized cµ-rule of [41], after generalizing it to models with feedback.

The triage analysis combines the due-date scheduling in [42] with the formu-

lation of [35]. The latter offers a rigorous meaning for adherence to (triage)

time-constraints, by introducing “asymptotic compliance” as a relaxation

for “feasibility”. Together, triage and work-in-process controls yield what we

prove to be asymptotically optimal flow-control policies: they minimize WIP

congestions costs subject to triage compliance.

The proposed policies for both models have the same structure: they

are two-stage policies. At the first stage, the physicians first determine the

priority between the triage classes and the WIP classes. Then at the second

stage, the physicians determine the specific patient to be served next. The

details of the policies are slightly different.

In the basic (queue length) model, the proposed policy is as follows:

first fix any one triage class, for example, the triage class with index 1. If a

physician becomes idle at time t, then:

• At the first stage, use a threshold policy to determine the priority

between the triage classes and the WIP classes: the threshold policy

only uses the information of triage class with index 1;

• At the second stage:

– If the physician decides to serve a patient from triage classes, the

physician chooses the head-of-the-line patient from the triage class
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with the largest relative age;

– If the physician decides to serve a patient from WIP classes, the

physician uses a policy which is similar to the generalized cµ rule

([41]), and we call this policy the modified generalized cµ rule.

For the second (sojourn time) model, the system first classifies the WIP

patients into starting classes and subsequent classes. Then the physicians

use the following guidelines: the threshold policy between triage and WIP

patients, as well as the policy part to determine the priorities among triage

patients, do not change; while if a physician decides to serve a patient from

the WIP classes, the physician first serves a patient in the subsequent classes

if there is any, then uses a policy which is similar to the generalized cµ rule

for the starting classes.

Under the proposed policies, some congestion laws are established. Those

congestion laws are based on a principle which is known as the snapshot prin-

ciple, that is, under the heavy traffic scaling, the duration of a patient staying

in the emergency department is very short, and the status of the emergency

department will not change too much. The congestion laws can help us es-

timate the waiting time of a new arriving patient, the age of the patient at

the head-of-the-line, and the sojourn time of a new arriving patient if the

routing vector is known.

Finally, we apply the sojourn time framework, with the expert-elicited

sojourn time costs from [10], to support analysis of the value of information

in ED flow-control. Specifically, we show that accurate prediction of both

the number of visits to a physician and whether a patient will be hospitalized
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or discharged, reduces WIP congestion cost by as much as 27%. From our

ED sources, and supported by [39, 40], such predictions can be accurately

made and, hence, are worth being accounted for.

Literature review and contributions: To the best of our knowledge, this

thesis is the first research analyzing the control of patient flow in an emer-

gency department, from a queueing-theory perspective. (As mentioned be-

fore, there are hundreds of simulation-based studies; [8].) After starting this

project, additional work has appeared on the operations of emergency depart-

ments. The closest to this thesis are [39, 40]: [39] discusses a complexity-

based triage systems, based on the number of visits that patients pay to

the emergency department physician (serving as an up-front proxy for com-

plexity); and [40] analyzes the advantage of streaming patients (separating

them into classes, e.g. by their admission vs. discharge status), comparing

this practice vs. pooling and, what they call, “virtual-streaming”. The lat-

ter supplements class-separation with dynamic resource allocation, and it is

shown to dominate the other two. We will return to [39, 40] in §3.2, where we

analyze the value of the information they require. There are additional papers

that cater to specific emergency department characteristics: [44] models the

emergency department as a single-class time-varying queueing system with

feedback (Erlang-R), operating in the QED regime, and in support of staffing

physicians and nurses; [17] develops an overloaded queueing network to an-

alyze the impact of interruptions on throughput of emergency department;

and [4] addresses synchronization of activities in emergency department (e.g.

interpretations of a blood-test and x-ray imaging must precede a visit to the
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physician), by analyzing a fork-join queueing network in heavy-traffic.

The models and analysis in this thesis follow two main lines of research:

formulation of the triage constraints is adapted from [35], which analyzes

admission control; and our IP control generalizes [41], which solves a cost

minimization problem for a multi-class queue without feedback. The results

in [41] have been generalized by [31] to a feedforward network of parallel

queues, and both papers establish asymptotic optimality of the generalized

cµ-rule. Here we generalize [41] to a model with both feedback and dead-

lines, and prove asymptotic optimality of a routing rule in which a modified

generalized cµ-rule plays a central role.

The model structure for IP patients here resembles [25, 26], where the au-

thor considers a dynamic scheduling problem of a multiclass M/GI/1 queue-

ing system with Markovian feedback. Unlike [25, 26], which minimize a cost

function that is linear in average queue lengths and proves the optimality of

a static routing policy (and the model is known as Klimov’s model), here

we consider a minimization problem with cumulative costs over a finite hori-

zon, with cost rates that are convex functions of queue lengths (or waiting

times), which gives rise to asymptotic optimality of a dynamic routing policy.

Notably, the analysis of WIP patients here in fact can be applied to cover

Klimov’s model: simply take the deadlines and means of service times for

triage patients to be 0. We thus establish, indirectly, asymptotic optimality

of the generalized cµ-rule also for Klimov’s model (with convex costs). A final

related references is [12], which concerns dynamic scheduling of a multi-class

fluid network with feedbacks.

Diffusion approximations for queueing systems with multiclass customers
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and feedback have been analyzed in [15, 38], restricting to a global FCFS ser-

vice discipline among all classes. The analysis here can be also adapted to

the FCFS discipline, as well as to other work-conserving disciplines. Indeed,

we prove the convergence of a weighted queue length to a reflected Brownian

motion, under any work-conserving policy (Proposition 2.4.1), in which the

global FCFS policy is a special case. Proving convergence of individual queue

lengths, for each class, amounts to establishing state-space collapse, which

will follow from standard arguments (e.g. [9]).

The main contributions of this thesis can be summarized as follows:

• Methodological: We analysis multiclass queueing systems with feed-

back, particularly,

1. Proving the conjecture in [31] regarding feedback, and improving

upon it by identifying simpler asymptotically optimal policies;

2. Solving Klimov’s model with convex costs, for both individual

waiting times and cumulative sojourn times;

3. Analyzing multiclass queueing systems with feedback, under any

work-conserving policy;

4. Accommodating jointly delay constraints and congestion costs.

• Practical: We model and analyze the control of patient flow in EDs,

from the point of view of ED physicians, which naturally gives rise to

a queueing perspective:

1. The models here capture the tradeoff between catering to triage-

vs. WIP-patients;
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2. They give rise to scheduling policies that are insightful and imple-

mentable;

3. They enable analysis of the value of information in a real ED

setup.

Structure of the thesis: This thesis is organized as follows. A basic ED

model is introduced in Chapter 2: a detailed description of the model, policy

and insights is given in §2.1; heavy traffic conditions, asymptotic compliance

and optimality are introduced in §2.2 and §2.3, respectively. The main results

and some auxiliary propositions and extensions are presented in §2.4, with

their discussions in §2.5. The proofs for the main theorems are in §2.6,

and the proofs for propositions and complements are provided in §2.7. Our

alternative ED model, with sojourn time costs, is discussed in §3.1, with an

application in §3.2, using data from an Israeli ED, and expert-elicited costs.

The technical discussions are in §3.4-3.5. We conclude with a discussion of

future research directions in Chapter 4.

Notation: Firstly, from now on, we will use abbreviation “ED” for “emer-

gency department”. We use the standard notation R+ to denote the set of

nonnegative real numbers. For a real number x, dxe is the maximal integer

less than or equal to x; RJ
+ and RK

+ are the J-dimensional and K-dimensional

nonnegative orthant, respectively; ZK+ is the subset of RK
+ with all compo-

nents integers. Unless otherwise specified, all vectors are assumed to be

column vectors. The notation {ek} is reserved for the standard basis of RK .

The transposition of a vector or a matrix is indicated with a superscript T .
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Vector inequalities are understood to be componentwise; e.g., for x, y ∈ RN ,

x < y if and only if xi < yi, for all i = 1, 2, . . . , N . We also use 0 to denote a

column vector with all components being 0, with the dimension being clear

from the context. For any given matrix M , we use Mj· to denote the jth row,

and M·k the kth column of M . The function 1(·) is the indicator function,

the value of which is 1 when the event within (·) prevails, and 0 otherwise.

We assume that all random variables are defined on a common proba-

bility space (Ω,F ,P). Expectation with respect to P is E. Let D[0,∞) be

the standard Skorohod space of right-continuous left-limit (RCLL) functions

defined on [0,∞) and equipped with the Skorohod J1 topology. Similar to

D[0,∞), D[0, t] is the space of functions on [0, t]. The symbol ⇒ denotes

weak convergence of stochastic processes, and → stands for convergence of

non-random elements in D[0,∞). Finally, e(·) is the 1-dimensional identity

function on R+, where e(t) = t, t ≥ 0.



2. A BASIC MODEL

This section will build a basic quantitative model for emergency departments

(EDs). The congestion cost in this model is based on the queue length of

each class, thus the model here is also called as queue length model.

2.1 The model, policy and intuitions

In this basic model, ED dynamics is captured by a multiclass queueing sys-

tem, with S servers (physicians), J classes of triage patients and K classes of

work-in-process (WIP) patients. Triage patients are yet to be examined by a

physician, and work-in-process (WIP) patients require further treatment. (A

patient class could embody information such as treatment type, emergency

level or age; see [10].) Triage customers subject to deadline constraints,

while WIP customers incur queueing costs. To highlight the application

to EDs, “patient” is used interchangeably with “customer” and “physician”

with “server”. Let J and K denote the index sets of triage and WIP pa-

tients, respectively: j ∈ J is an index for triage patients, and l, k ∈ K are

indices for WIP patients. It will be convenient to let J = {1, 2, . . . , J} and

K = {1, 2, . . . , K}, while keeping in mind that the indices 1, 2, . . . , J in J

differ from those in K.



2. A basic model 18

The system is depicted in the following Fig. 2.1. In this figure, we use

superscript 0 for the terms of the triage patients. For example, we denote

by λ0
1 and m0

1 the arrival rate and the mean service time of class 1 triage

patients, while λ1 and m1 the arrival rate and the mean service time of class

1 WIP patients.

Fig. 2.1: Patient flow in emergency department (queue cost)
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The system is depicted in the following figure (in this figure, we use

superscript 0 for the arrival rates of the triage patients, this is to distin-

guish from the arrival rates of WIP patients. While after this figure, we

shall omit the superscript 0 from the arrival rates and mean service times

of triage patients to simplify notation: their index j ∈ J suffices for their

characterization.):
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Triage patients: For each triage patient class j ∈ J , there are two indepen-

dent sequences of i.i.d. random variables, {uj(i), i = 1, 2, . . .} and {vj(i), i =

1, 2, . . .}, as well as two real numbers λj and mj. Assume E[uj(1)] = 1,

E[vj(1)] = 1 and denote a2
j = var(uj(1)), b2

j = var(vj(1)). Among j-triage

patients, the interarrival time between the (i−1)st and ith arrivals is uj(i)/λj

and the service time required for the ith patient is mjvj(i). As a result, λj

From now on, we will not use the specific index number and instead,

will use j ∈ J and k, l ∈ K to represent the indices of triage and WIP

patients. For example, we use λ0
j , j ∈ J to denote the arrival rates of triage

patients. As index j ∈ J suffices for their characterization, we shall omit the

superscript 0, that is, we will use λj,mj, j ∈ J to denote the arrival rates
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and mean service times for triage patients.

Triage patients: For each triage patient class j ∈ J , there are two indepen-

dent sequences of i.i.d. random variables, {uj(i), i = 1, 2, . . .} and {vj(i), i =

1, 2, . . .}, as well as two real numbers λj and mj. Assume E[uj(1)] = 1,

E[vj(1)] = 1 and denote a2
j = var(uj(1)), b2

j = var(vj(1)). Among j-triage

patients, the interarrival time between the (i−1)st and ith arrivals is uj(i)/λj

and the service time required for the ith patient is mjvj(i). As a result, λj

is the arrival rate and mj is the mean service time requirement of a j-triage

patient. Assume λj > 0 for all j ∈ J and use ΛJ to denote the vector with

components λj, j ∈ J . Denote MJ as the vector with components mj, j ∈ J .

For t ≥ 0 and j ∈ J , let the renewal process

Ej(t) := max

{
n ≥ 0 :

n∑

i=1

uj(i) ≤ λjt

}

indicate the number of j-triage arrivals till time t, and the renewal process

Sj(t) := max

{
n ≥ 0 :

n∑

i=1

mjvj(i) ≤ t

}

denote the number of service completions if the physician has devoted t time

units to j-triage patients. Denote µj = 1/mj, which is the service rate for

j-triage patients.

Among each class of triage patients, the service discipline is First-Come-

First-Served (FCFS). After completing service, a j-triage patient will join

the queue of k-WIP patients, with probability Pjk (again in the figure, we
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denote it by P 0
jk), or leave the system directly, with probability 1−∑k∈K Pjk.

Let the matrix PJK = (Pjk)J×K be the triage-to-WIP matrix. Use φj(n) to

denote the indicator function recording to which class the nth j-triage patient

will transfer: this patient will transfer to the queue of k-WIP patients if

φj(n) = ek (recall that {ek} is reserved for the standard basis of RK), or leave

the system directly if φj(n) = 0. Then {φj(n), n ≥ 1} is a sequence of i.i.d.

random vectors with P(φj(n) = ek) = Pjk, and P(φj(n) = 0) = 1−∑k∈K Pjk.

Use φjk(n) to denote (φj(n))k, the kth element of φj(n), and use

Φj(n) :=
n∑

i=1

φj(i),

to record the transition of the first n j-triage patients.

WIP patients: For WIP classes, there are no external arrivals. All WIP

patients are transferred from either triage or WIP patients. Denote the

number of k-WIP arrivals till time t by Ek(t). Just like triage patients, for

each class k ∈ K, there are a sequence of random variables {vk(i), i = 1, 2, . . .}

and a real number mk. Assume E[vk(1)] = 1 and denote b2
k = var(vk(1)).

Among k-WIP patients, the service time required for the ith patient receiving

service is mkvk(i). When we discuss queue lengths, service order among each

WIP class will not affect the result, thus we do not assume it to be FCFS.

When there is a need (such as when discussing waiting times and sojourn

times), we will put the FCFS discipline explicitly. Then, mk is the mean

service time requirement of a k-WIP patient. Denote by M the vector with

components mk, k ∈ K.
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For t ≥ 0 and k ∈ K, use the renewal process

Sk(t) := max

{
n ≥ 0 :

n∑

i=1

mkvk(i) ≤ t

}

represent the number of service completions if the physician has devoted t

time units to k-WIP patients. Denote µk = 1/mk; then this is the service

rate for k-WIP patients.

After completing service, an l-WIP patient will join the queue of k-

WIP patients, with probability Plk, or exit the system with probability

1 −∑k∈K Plk. Denote the matrix P = (Plk)K×K to be the WIP-to-WIP

transition matrix and assume that its spectral radius is strictly less than 1.

Let φl(n) be the indicator function, showing which class the nth served l-

WIP patient will transfer to; that is, the nth l-WIP patient finishing service

will go to the queue of k-WIP patients if φl(n) = ek, and leave the system if

φk(n) = 0. Then {φl(n), n ≥ 1} is a sequence of i.i.d. random vectors with

P(φl(n) = ek) = Plk and P(φl(n) = 0) = 1−∑k∈K Plk. Use φlk(n) to denote

(φl(n))k, the kth element of φl(n) and, as before, use

Φl(n) :=
n∑

i=1

φl(i),

to record the transition of the first n served l-WIP patients.

Assume that all the arrivals of triage classes, services and transitions

of all triage and WIP classes, are mutually independent. This assumption

is not necessary for the proofs, but it simplifies calculations and saves the

notation (as in [35]). (Practically, arrivals of triage classes can be correlated
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with service times of triage and WIP classes, as in [15].)

Introduce a K-dimensional vector Λ = (λk)k∈K, in which λk is inter-

preted as the effective arrival rate for k-WIP patients, through the following

equation:

ΛT = (ΛJ )TPJK + ΛTP. (2.1)

Then

ΛT = (ΛJ )TPJK(I − P )−1. (2.2)

Define M e
J = (me

j)j∈J as

M e
J = MJ + PJK(I − P )−1M, (2.3)

in which me
j is called the effective mean service time of j-triage patients, and

define M e = (me
k)k∈K to be

M e = (I − P )−1M, (2.4)

in which me
k is called the effective mean service time of k-WIP patients. Then

(2.3) can be written as

M e
J = MJ + PJKM

e. (2.5)

The reason we call me
j “effective” is because it is the expected total ser-

vice requirement of a j-triage patient, accumulated up to leaving the system.

The reason for me
k to be “effective” is similar.
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An infeasible problem: Service goals for triage and WIP patients are differ-

ent:

• Triage patients facing deadlines: Denote by τj(t) the age of the

head-of-the-line j-triage patient at time t. Then a feasible policy must

ensure τj(t) ≤ dj, for j ∈ J and t ≥ 0.

• WIP patients incurring costs: Denote by Qk(t) the number of k-

WIP patients in the system at time t. Those k-WIP patients will incur

cost at rate Ck(Qk(t)), for some functions Ck, k ∈ K. Consequently,

the total cost will be incurred at rate
∑

k∈K Ck(Qk(t)).

A control policy is defined as π = {Tj, j ∈ J ; Tk, k ∈ K}, in which Tj(t),

j ∈ J , and Tk(t), k ∈ K, are, respectively, the cumulative time allocated to

j-triage patients and k-WIP patients during the first t time units. Then the

objective is to solve the following optimization problem for any T ≥ 0,

min
Π

∫ T

0

∑

k∈K
Ck(Qk(s))ds

s.t. τj(t) ≤ dj, ∀j ∈ J and 0 ≤ t ≤ T.

(2.6)

Here π is implicit in the formulation, and π ∈ Π, the set of all candidate

control policies (to be defined later).

The problem above is clearly infeasible, as the age processes τj(·), j ∈ J ,

are stochastic. The first task of this thesis is to generalize (2.6) to one with a

plausible meaning. To this end, we will consider a sequence of systems with

the same structure as above, and show that in conventional heavy traffic,

there is a plausible generalization of “feasibility” for the triage constraints.
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However, even if one can generalize the problem (2.6) to a reasonable

one, the optimal policy could not be a trivial one: if the physician always

gives priority to triage patients, the queue length of the WIP patients will

get long and the cost high; on the other hand, if the physician always gives

priority to WIP patients, this reduces the cost but the triage patients are

likely to not start their service before their deadlines. Indeed, we propose a

threshold policy that determines between triage patients and WIP patients

which we describe in the following. We shall prove that this policy is asymp-

totically optimal in the following sense: it is asymptotically feasible and

it stochastically minimizes total congestion cost, among all asymptotically

feasible policies.

The Proposed policy: Choose any one of the triage classes (conceivably the

least dj, say d1). Then a physician that becomes idle at time t adopts the

following guidelines:

• Serve triage patients if τ1(t) ≥ d1 − ε, where ε is small relative to d1

(e.g. d1 = 30 minutes while ε = 3 minutes);

• If a physician decides to serve a patient from triage classes, the physi-

cian chooses the head-of-the-line patient from the class with index

j ∈ argmaxj∈J
τj(t)

dj
;

• If a physician decides to serve a patient from WIP classes, the physician
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chooses the head-of-the-line patient from the class with index

k ∈ argmaxk∈K
C ′k(Qk(t))

me
k

.

Within a suitable heavy traffic framework (Section 2.2), the above policy

is asymptotically “feasible” and asymptotically optimal among all asymptot-

ically “feasible” policies. The simplicity of the asymptotically optimal poli-

cies, as well as state-space collapse and snap-shot properties that it enjoys

(Theorem 2.4.3 and Proposition 2.4.3), are all due to the fact that heavy-

traffic analysis exposes macroscopic and mesoscopic essentials, which is for-

malized by fluid and diffusion approximations (§2.6.4). For example, the

S-server system here behaves as one with a super single-server, in which this

virtual server is S-times faster than each of the original servers, see for exam-

ple, [11]; accordingly and without loss of generality, our subsequent analysis

will assume S = 1.

Non-unique optima: Under the relative crudeness of heavy-traffic dy-

namics, there are other policies that emerge as asymptotically optimal (Sec-

tion 2.5). For example, the decision of triage vs. WIP can be formulated in

terms of a threshold ω =
∑

j∈J λ
0
jdjm

e
j : if

∑
j∈J m

e
jQj(t) ≥ ω, a physician

just becoming idle caters to triage patients, otherwise to WIP patients. Fur-

thermore, triage classes can be alternatively prioritized according to shortest-

deadline-first, that is, serve j ∈ argminj∈J [dj − τj(t)]; and the selection cri-



2. A basic model 26

terion of WIP-classes can also be any rule that makes

max
l,k∈K

sup
0≤t≤T

∣∣∣∣
C ′l(Ql(t))

me
l

− C ′k(Qk(t))

me
k

∣∣∣∣ ≈ 0, (2.7)

in particular the one conjectured in page 853 of [31].

Intuition of the policy: The idea is first to maximize service effort for WIP

patients which, given the server’s fixed capacity, is the same as minimizing

it for triage patients subject to adhering to their deadline constraints; then

one allocates the service capacity to WIP patients to greedily minimize the

queueing cost rate. This is a reasonable approach since, in a critically loaded

(heavy traffic) system, there is enough capacity for the triage patients to

“see” the system in light-traffic, which implies that their needs can be ac-

commodated essentially ad hoc. (The situation could be very different in

a significantly time-varying environment, in contrast to the stationary case

assumed here. An example is a mass-casualty event during which triage

patients overload the system; see Section 4 for further discussion.)

The driver of heavy-traffic dynamics is the (total) workload in the sys-

tem. At time t, while conditioning on all queue lengths, its definition is

∑

j∈J
me
jQj(t) +

∑

k∈K
me
kQk(t),

which can be interpreted as the average time that a single server would empty

the system, assuming there are no new arrivals after time t. The significance

of the workload is due to the fact that it is invariant to, and minimized
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by, any work-conserving policy (Proposition 2.4.1 and (2.41)). Since most

j-triage customers at time t arrived to the system during (t−τj(t), t], it must

be that Qj(t) ≈ λ0
jτj(t) and the workload equals approximately

∑

j∈J
me
jλ

0
jτj(t) +

∑

k∈K
me
kQk(t).

The invariance of the potential workload now implies that minimizing the

weighted queue lengths of WIP patients
∑

k∈Km
e
kQk(t) (which is in con-

cert with minimizing WIP congestion costs) is equivalent to maximizing the

weighted age processes of triage patients
∑

j∈J m
e
jλ

0
jτj(t).

Triage vs. WIP patients: By the deadline constraints, an upper bound

for
∑

j∈J m
e
jλ

0
jτj(t) is ω =

∑
j∈J λ

0
jdjm

e
j , and a “good” policy should thrive

to narrow their gap. From the light-traffic view of triage patients, this can be

achieved by serving triage patients only as their deadline in getting “danger-

ously” close - a “threat” that can be monitored through the status of (any)

single triage class, as we explain next.

Triage selection: The selection rule among triage classes is designed to

ensure that their age processes are so balanced that one class of triage patients

is about to violate its deadline constraint if and only if all other classes are

close to their deadlines as well. In fact,
τj(t)

dj
≈ τj′ (t)

dj′
, for any j, j′ ∈ J , at

all times t, which implies that the age of any one triage class tells those of

the others. (Such balancing rules are common in heavy traffic; see the age

processes of [35] in conventional heavy traffic, and the QIR controls of [20] in

the QED regime.) Alternative selection rules could also achieve the desired

balance, as described in §2.5.1.
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WIP selection: After applying the threshold guideline and the triage

selection rule, one expects that
∑

k∈Km
e
kQk(t) is minimized, thus invariant

under any work conserving policy. To minimize cumulative queueing cost,

it suffices to minimize cost rates greedily at each time. We are thus led

to a convex optimization problem with linear constraints (2.10). The KKT

condition now yields the generalized cµ rule in this thesis, as in [41] but with

the µ’s replaced by 1/me
k to account for feedbacks.

The above outline also guides the proofs of the main results, Theorems

2.4.1 and 2.4.2. These results are consequences of the parsimonious nature

of heavy-traffic dynamics, which is also manifested through some congestion

laws that will be now described.

Performance analysis: Under the proposed policy, we can also do system’s

performance analysis. A tool is known as snapshot principle.

A Snapshot principle: This is a common feature of heavy traffic ([36])

which, as explained in page 187 of [43] and adopted here, during the sojourn

time of a patient within the ED, the various queue lengths do not change

significantly (or rather negligibly in diffusion scale). In some sense, the ED is

temporarily in “steady state”, which leads one to expect that some congestion

laws in steady state, for example Little’s Law or Arrival See Time Average

(ASTA), would also prevail temporarily. This snapshot principle then enables

predictions of virtual waiting and sojourn times (when the service discipline

among each WIP class is FCFS), as we now explain.

Waiting times: When a patient of a particular class completes service,

the queue length of that class approximately equals the number of arrivals
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during this patient’s queueing time. (The service duration is negligible rela-

tive to queueing time.) By the snapshot principle, the queue length Qk and

the virtual waiting time ωk are then related via Qk(t) ≈ λkωk(t), with λk

being the arrival rate to class k. On the other hand, if we denote by τk(t) the

age of the head-of-the-line k-WIP patient at time t, then Qk(t) ≈ λkτk(t), as

those patients in the queue at time t arrive during the interval (t− τk(t), t].

It follows that ωk(t) ≈ τk(t), which suggests that an estimate of the virtual

waiting time (or the waiting duration, predicted at an arrival time) is simply

the age of the head-of-the-line patient (See §2.4.4, which is in the spirit of

[23]).

Sojourn times: By the snapshot principle, the ED sojourn time of a

patient arriving at time t constitutes the sum of all virtual waiting times

at time t over the patient’s route. Moreover, virtual waiting times remain

unchanged during successive visits of the patient to a specific queue. It

follows that, asymptotically, the ED sojourn time of a patient is ωj(t) +
∑

k∈K hkωk(t), given that the patient experiences hk physician visits as a

class k patient. Now replace waiting times on the route by the ages of the

head-of-the-line patients at the time of arrival. One concludes that τj(t) +
∑

k∈K hkτk(t) can be taken as a forecast for the ED sojourn time, over a

pre-specified route of a patient that arrives at time t (§2.4.5).

2.2 Heavy traffic condition

As noticed before, the problem (2.6) may not have any feasible solution in

conventional meaning. In this thesis, we will analyze and solve this problem
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in an asymptotical framework, which is known as the conventional heavy

traffic framework.

Consider a sequence of systems, as discussed in Section 2.1. The se-

quence will be indexed by r ↑ ∞, and r will be appended as a superscript to

denote quantities associated with the rth system. Then, in the rth system,

the arrival rate of j-triage class is λrj and the effective arrival rate for k-WIP

class is λrk. The deadline for j-triage patients is drj , while the cost func-

tion Ck for k-WIP patients will be specified in the next section. We assume

that the service times and transition vectors are invariant with respect to r,

hence there will be no superscript for terms relating to the service times and

transition vectors.

The traffic intensity for the rth system is defined to be

ρr :=
∑

j∈J
λrjmj +

∑

k∈K
λrkmk.

By (2.2) and (2.3), it can also be represented as

ρr =
∑

j∈J
λrjm

e
j .

This underscores the meaning of me
j being the effective mean service time for

j-triage patients.

Assume that the sequence of our systems is under (conventional) heavy-
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traffic, that is,

λrj → λj, j ∈ J , and

r(ρr − 1)→ β, as r →∞,
(2.8)

for some λj > 0, j ∈ J , and β ∈ R. Let Λ = (λk)k∈K be the vector obtained

from (2.2), with ΛJ = (λj)j∈J in (2.8).

Under condition (2.8), the queue lengths are expected to be O(r), and

similarly the ages of head-of-the-line triage patients. Hence, for each j ∈ J ,

assume the deadline of j-triage patients satisfies the following convergence:

drj
r
→ d̂j, as r →∞,

where d̂j, j ∈ J , are strictly positive constants.

Denote by Qr
j(t) and Qr

k(t) the number of j-triage and k-WIP patients

in the rth system at time t, respectively. Assume that the following initial

condition holds:

Assumption 2.2.1: When r →∞,

r−1Qr
j(0) ⇒ 0, j ∈ J ,

r−1Qr
k(0) ⇒ 0, k ∈ K.
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2.3 Asymptotic compliance and optimality

A control policy πr = {T rj , j ∈ J , T rk , k ∈ K} determines the age processes

of the head-of-the-line patients in the rth system, τ r(·) = {τ rj (·), j ∈ J }.

Define the diffusion scaled age processes through

τ̂ rj (t) = r−1τ rj (r2t), j ∈ J .

The following concept of “asymptotically compliant” family of control

policies, is a generalization of “feasibility” for the optimization problem (2.6).

Definition 2.3.1: A family of policies {πr} is said to be asymptotically com-

pliant if, for any fixed T ≥ 0,

sup
0≤t≤T

[
τ̂ rj (t)− d̂j

]+

⇒ 0, as r →∞, for all j ∈ J .

Define the diffusion scaled number of k-WIP patients in the system by

Q̂r
k(t) = r−1Qr

k(r
2t), k ∈ K.

Assume that, at time t, k-WIP patients incur a queueing cost at rate Ck(Q̂
r
k(t)),

for some function Ck. (Concrete assumptions on Ck will be provided in As-

sumption 2.4.1.) Then the cumulative queueing cost is

U r(t) :=

∫ t

0

∑

k∈K
Ck

(
Q̂r
k(s)

)
ds. (2.9)
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The heavy-traffic adaptation of problem (2.6) is to stochastically minimize

U r(t), for each t, over all asymptotically compliant families of policies. For-

mally:

Definition 2.3.2: A family of control policies {πr∗} is said to be asymptotically

optimal if

1. it is asymptotically compliant and

2. for every t > 0 and every x > 0,

lim sup
r→∞

P {U r∗ (t) > x} ≤ lim inf
r→∞

P {U r(t) > x} ;

here {U r∗} is the family of cumulative queueing costs defined through

(2.9) under the family of control policies {πr∗}, and {U r} is the sequence

of queueing costs corresponding to any other asymptotically compliant

family of policies {πr}.
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2.4 Main results

2.4.1 Cost functions and an optimization problem

For any given a ≥ 0, consider the optimization problem over x = (xk)k∈K:

min
x

∑

k∈K
Ck(xk)

s.t.
∑

k∈K
me
kxk = a,

x ≥ 0.

(2.10)

Denote the optimal solution as

x∗ = ∆K(a).

The mapping ∆K : R+ → RK
+ is part of the lifting mapping used in the

state-space collapse result; see Theorem 2.4.3.

Assume that the cost functions Ck, k ∈ K, satisfy the following, in

analogy to [41]:

Assumption 2.4.1 (Cost regularity): The nondecreasing cost functions {Ck, k ∈

K} are strictly convex, continuously differentiable. In addition, for all a > 0,

there is an optimal solution x∗ to the optimization problem (2.10) such that

x∗k > 0, k ∈ K.

By this assumption and the KKT condition, a sufficient condition for a

nonnegative vector x∗ = (x∗k)k∈K to be optimal is the existence of α0 ∈ R
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such that

C ′k(x
∗
k)− α0m

e
k = 0,

∑

k∈K
me
kx
∗
k = a.

(2.11)

It is easy to see that this optimal vector x∗ satisfies C ′l(x
∗
l )/m

e
l = C ′k(x

∗
k)/m

e
k,

for all l, k ∈ K. Using this fact, the proof of the following is elementary:

Lemma 2.4.1: The function ∆K(·) is well defined, and ∆k(a) is nondecreasing

in a, for each k ∈ K.

Proof: From the assumption on cost functions, we can write x∗l = C
′−1
l

(
me

l

me
k
C ′k(x

∗
k)
)

for all l, k ∈ K. Then for any fixed k ∈ K, from (2.11),

∑

l∈K
me
lC
′−1
l

(
me
l

me
k

C ′k(x
∗
k)

)
= a.

From Assumption 2.4.1,
∑

l∈Km
e
lC
′−1
l

(
me

l

me
k
C ′k(·)

)
is a strictly increasing func-

tion, as a result, for any a there will be a unique solution x∗k, and if a in-

creases, x∗k will also increase. These prove that ∆k is well defined and is

nondecreasing. 2

2.4.2 A lower bound

The first result in this section gives a lower bound for the costs, among all

asymptotically compliant families of policies.
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For j ∈ J and k ∈ K, define K ×K matrices Γj = (Γjll′) and Γk = (Γkll′)

through

Γjll′ =





Pjl(1− Pjl′), if l = l′

−PjlPjl′ , if l 6= l′
and Γkll′ =





Pkl(1− Pkl′), if l = l′

−PklPkl′ , if l 6= l′
.

Define Q̂w = Φ(X̂); here Φ is the 1-dimensional Skorohod mapping ([13]),

and X̂ is a Brownian motion with drift rate β and variance

∑

j∈J
(me

j)
2λja

2
j +

∑

j∈J

(∑

k∈K
me
kPjk −me

j

)2

λjb
2
j +

∑

k∈K

(∑

l∈K
Pklm

e
l −me

k

)2

λkb
2
k

+
∑

j∈J
λj(M

e)TΓjM e +
∑

k∈K
λk(M

e)TΓkM e.

(2.12)

Finally define ω̂ =
∑

j∈J λj d̂jm
e
j .

Theorem 2.4.1 (Lower Bound): Fix any asymptotically compliant family

of policies, with the corresponding cumulative costs U r defined in (2.9). Then

for any t, x > 0,

lim inf
r→∞

P {U r(t) > x} ≥ P

{∫ t

0

∑

k∈K
Ck

(
∆k

(
(Q̂w(s)− ω̂)+

))
ds > x

}
.

This theorem is proved in §2.6.2.
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2.4.3 The proposed policy and its asymptotic optimality

Now we will modify the proposed policy in Section 2.1 to the following se-

quence of scheduling policies, which we denote by {πr∗}.

• When becoming idle, the physician deploys a threshold policy to deter-

mine which type of patient classes to serve next – a triage-type patient

or an WIP-type patient. Fix any j ∈ J , for example, 1 ∈ J :

– If Qr
1(t) ≥ λr1d

r
1, priority is given to triage-type patients;

– Otherwise, priority is given to WIP-type patients.

• If the physician chooses to serve a patient from the triage classes at time

t, the physician chooses the head-of-the-line patient from the class with

index

j ∈ argmaxj∈J
τ rj (t)

drj
. (2.13)

• If the physician chooses to serve a patient from WIP classes at time t,

the physician uses a policy ensuring (for any T > 0)

max
l,k∈K

sup
0≤t≤T

∣∣∣∣∣
C ′l(Q̂

r
l (t))

me
l

− C ′k(Q̂
r
k(t))

me
k

∣∣∣∣∣ ⇒ 0. (2.14)

An example of such a policy is to choose k ∈ argmaxk∈K
C′k(Q̂r

k(t))

me
k

, which

is a modified generalized cµ-rule. (More examples of policies ensuring

(2.14) can be found in §2.5.2.)

The main result for this basic (queue length) model is the following

theorem, which we prove in §2.6.5.
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Theorem 2.4.2 (Asymptotic Optimality): The family of control policies

{πr∗} is asymptotically optimal.

In proving Theorem 2.4.2, we will show that the proposed policy makes

the system “well behaved”, in the sense that the weighted queue length

converges, and there is state-space collapse for the queue length processes;

see Proposition 2.4.1 and Theorem 2.4.3 below.

Proposition 2.4.1 indeed holds under any family of work-conserving poli-

cies. To state it, define the diffusion scaled queue length processes for triage

classes: Q̂r
j(t) = r−1Qr

j(r
2t), j ∈ J , and diffusion scaled weighted queue

length processes

Q̂r
w(t) =

∑

j∈J
me
jQ̂

r
j(t) +

∑

k∈K
me
kQ̂

r
k(t). (2.15)

Proposition 2.4.1 (Invariance principle for work-conserving policies):

Under any family of work-conserving policies,

Q̂r
w ⇒ Q̂w, as r →∞. (2.16)

This proposition is proved in §2.6.3.

To state the state-space collapse result, define the lifting vector ∆J :

R+ → RJ
+ as the J-dimensional vector x = ∆J a, which is the solution to the
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following equation

∑

j∈J
me
jxj = a,

xj

λj d̂j
=

xj′

λj′ d̂j′
, for j, j′ ∈ J .

As in Lemma 2.4.1, one can also prove ∆J (·) is well-defined, and ∆j is

nondecreasing for each j ∈ J . Unlike ∆K, the mapping ∆J is linear. The

function pair (∆J ,∆K) is the lifting mapping in the state-space collapse

result. Let Q̂r = {Q̂r
j , j ∈ J , Q̂r

k, k ∈ K} and recall ω̂ =
∑

j∈J λj d̂jm
e
j .

Theorem 2.4.3 (State-Space Collapse): Under the family of control poli-

cies {πr∗}, Q̂r ⇒ Q̂, where Q̂ = {Q̂j, j ∈ J , Q̂k, k ∈ K} is specified by

Q̂j(t) = ∆j min
(
Q̂w(t), ω̂

)
, j ∈ J , (2.17)

Q̂k(t) = ∆k

(
(Q̂w(t)− ω̂)+

)
, k ∈ K. (2.18)

This theorem is proved in §2.6.4.

2.4.4 Virtual waiting times

In this and the next subsection, we will analyze the family of control policies

{πr∗}. In addition, assume that the service discipline among each WIP class

is FCFS.

Define the virtual waiting time of a patient class at time t as the time

that a virtual patient of this class, arriving at t, would have to wait till
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completing the service. (Note that this definition is slightly different from

the traditional one, which is the waiting time till service starts. As the service

time is negligible in heavy traffic scaling, these two definitions yield the same

result.) Denote by ωrj (t) and ωrk(t) the virtual waiting times for j-triage class

and k-WIP class respectively, and define the diffusion scaled virtual waiting

time processes by

ω̂rj (t) = r−1ωrj (r
2t), j ∈ J , and ω̂rk(t) = r−1ωrk(r

2t), k ∈ K. (2.19)

Proposition 2.4.2 (Asymptotic Sample-Path Little’s Law): Under the fam-

ily of control policies {πr∗}, with FCFS service discipline among each WIP

patient class, when r →∞,

ω̂rj − Q̂r
j/λ

r
j ⇒ 0, j ∈ J ,

ω̂rk − Q̂r
k/λ

r
k ⇒ 0, k ∈ K.

This proposition is proved in §2.7.2.

Remark 2.4.1: From the convergence of Q̂r in Theorem 2.4.3, one can obtain

the convergence of the vector of virtual waiting times under the family of

control policies {πr∗}.

Recall that τ rj (t) is defined as the age of the head-of-the-line j-triage

patient in the rth system. Now, define τ rk (t) as the age of the head-of-
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the-line k-WIP patient in the rth system, and similarly its diffusion scaling

τ̂ rk (t) = r−1τ rk (r2t), k ∈ K. The next proposition establishes connections

between the virtual waiting time processes and the age processes. This kind

of result is often referred to as a snapshot principle.

Proposition 2.4.3 (Snapshot Principle – Virtual Waiting Time and Age):

Under the family of control policies {πr∗}, with FCFS among each WIP pa-

tient class, when r →∞,

ω̂rj − τ̂ rj ⇒ 0, j ∈ J ,

ω̂rk − τ̂ rk ⇒ 0, k ∈ K.

This proposition is proved in §2.7.3.

2.4.5 Sojourn times

This section considers sojourn times associated with specific routes through

the system, as in [37]. Each patient is associated with a route vector h ∈ ZK+ ,

where hk denotes the number of times that the patient visits the physician

as a k-WIP patient before leaving the system. A vector h ∈ ZK+ is called

j-feasible if it is possible that a patient entering the system as a j-triage

patient has a route vector h. Denote by W r
jh(t) the sojourn time of the next

j-triage patient, arriving after t, with route vector h, and the diffusion scaled

processes

Ŵ r
jh(t) = r−1W r

jh

(
r2t
)
, j ∈ J .
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Proposition 2.4.4 (Snapshot Principle – Sojourn Time and Queue Lengths):

Under the family of control policies {πr∗}, with FCFS among each WIP pa-

tient class, if a route vector h is j-feasible, then as r →∞,

Ŵ r
jh −

Q̂r
j

λrj
−
∑

k∈K

hk
λrk
Q̂r
k ⇒ 0, j ∈ J .

This proposition is proved in §2.7.4.

Remark 2.4.2: From Theorem 2.4.3, when r →∞,

Q̂r
j

λj
+
∑

k∈K

hk
λk
Q̂r
k ⇒ ∆j min

(
Q̂w, ω̂

)
+
∑

k∈K

hk
λk

∆k

(
(Q̂w − ω̂)+

)
.

Then Proposition 2.4.4 gives rise to

∆j min
(
Q̂w(·), ω̂

)
+
∑

k∈K

hk
λk

∆k

(
(Q̂w(·)− ω̂)+

)

being a good candidate for estimating the distribution of Ŵ r
jh(·).

The following is a direct corollary of Propositions 2.4.2, 2.4.3 and 2.4.4.

Corollary 2.4.1 (Snapshot Principle – Sojourn Time and Ages): Under

the family of control policies {πr∗} with FCFS among each WIP patient class,
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if a route vector h is j-feasible, then as r →∞,

Ŵ r
jh − τ̂ rj −

∑

k∈K
hkτ̂

r
k ⇒ 0, j ∈ J .

Remark 2.4.3: This corollary suggests that, upon arrival, patients can es-

timate their sojourn time by using the current age of the head-of-the-line

patients on their routes (assuming they know their route). As in [37], the

diffusion limit does not depend on the specific order in which the physician

is visited.

2.5 Further discussion

2.5.1 Alternative triage policies to (2.13)

The recipe in (2.13), as part of an asymptotically optimal policy, is not

unique. From the proof in §2.6.4, it will be seen that any asymptotically

compliant family of control policies ensuring

∑

j∈J
me
jQ̂

r
j(·) ⇒ min

(
Q̂w(·), ω̂

)
, as r →∞, (2.20)

is asymptotically optimal (recall that Q̂w and ω̂ are defined in §2.4.2). One

such control policy, assuming that triage classes are chosen to be served at

time t, is having the physician cater to the head-of-the-line patient from the
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class with index

j ∈ argmaxj∈J
Qr
j(t)

λrjd
r
j

;

the latter can be easily proved asymptotically equivalent to (2.13).

Next consider the Shortest-Deadline-First policy: when the triage classes

are chosen to be served at time t, the physician chooses the head-of-the-line

patient from the class with index

j ∈ argminj∈J
(
drj − τ rj (t)

)
. (2.21)

From Lemma 2.7.2, the above is asymptotically equivalent to choosing the

head-of-the-line patient from the class with index

j ∈ argminj∈J
(
drj −Qr

j(t)/λ
r
j

)
.

Lemma 2.5.1: For any T ≥ 0, as r →∞,

sup
0≤t≤T

∣∣∣∣∣Q̂
r
j(t)− ∆̃j min

(∑

j∈J
me
jQ̂

r
j(t) +

∑

k∈K
me
kQ̂

r
k(t), ω̂

)∣∣∣∣∣ ⇒ 0.

Here ∆̃J (a) = (∆̃j(a))j∈J is defined as follows (where we assume that the

indices of triage classes are ordered such that d̂j is decreasingly in j): if
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∑
j∈J λjm

e
j(d̂j − d̂j′)+ ≤ a <

∑
j∈J λjm

e
j(d̂j − d̂j′+1)+, then

∆̃j1(a) =





λj1

(
d̂j1 − d̂j′ +

(
a−∑j∈J λjm

e
j(d̂j − d̂j′)+

)
/j′
)
, for j1 ≤ j′,

0, for j1 > j′.

This lemma will be proved in §2.7.5.

One can now prove that the family of control policies, with (2.21) re-

placing (2.13), is asymptotically compliant, and satisfies (2.20) – it is thus

asymptotically optimal.

The expression of ∆̃J is more complicated than ∆J . On the other hand,

a discussion in [35] suggests that the policy in (2.13) is a more natural one,

as it uses a ‘relative’ term. As a result, we choose (2.13) for elaboration. The

comparison of (2.13) and (2.21) may involve rates of convergence, which is

beyond the scope of the present paper.

2.5.2 WIP-Policies that imply (2.14)

For any K ×K-dimensional invertible matrix G, with Gkk > 0, Gkk′ < 0 for

k 6= k′ ∈ K while
∑

lGkl ≥ 0. We also assume that all terms in G−1 are

non-negative, and all components of GM e being positive. Let H denote the

K-dimensional vector with the kth component 1/(GM e)k. When the WIP

classes are chosen to be served at time t, the physician chooses a patient from

the class with index

k ∈ argmaxk∈KHk

(
GC ′

(
Q̂r(t)

))
k

; (2.22)
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here C ′(Q̂r(t)) is a K-dimensional column vector with C ′k(Q̂
r
k(t)) being its

kth component.

Lemma 2.5.2: For any T ≥ 0, as r →∞,

sup
0≤t≤T

∣∣∣∣∣∣

C ′k

(
Q̂r
k(t)
)

me
k

−
C ′l

(
Q̂r
l (t)
)

me
l

∣∣∣∣∣∣
⇒ 0,

for all l, k ∈ K. As a result, (2.14) holds.

This lemma will proved in §2.7.6.

There are two special choices of G which are especially interesting:

1. G = I: then Hk = 1/me
k; hence (2.22) is

k ∈ argmaxk∈K
C ′k(Q̂

r
k(t))

me
k

.

This is a generalized cµ policy, modified from [41] and [31] to account

for feedbacks.

2. G = I − P : noticing that M e = (I − P )−1M , then H is a vector with

µk being the kth component; hence (2.22) is

k ∈ argmaxk∈K

[
C ′k

(
Q̂r
k(t)
)
−
∑

l∈K
PklC

′
l

(
Q̂r
l (t)
)]

µk.

Note that this is the policy conjectured in [31].

The expression in (2.14) is similar to equation (51) in [41], with the

waiting times there replaced by the queue lengths, and the mean service
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times there replaced by the effective mean service times. As the effective

mean service time is in fact the expected total service time of a patient,

accumulated over all visits, the following exhaustive policy is also expected

to satisfy (2.14): when the WIP classes are chosen to be served, the physician

chooses a patient from the class with index k ∈ argmaxk∈KC
′
k(Q̂

r
k(t))/m

e
k, and

serves this patient continuously until completing all services – the current

one as well as feedbacks. This exhaustive policy is not FCFS within each

WIP class. Alternatively, this system can be viewed as a new one with

no feedback, but with the service times for k-WIP patients being now the

cumulative service requirement – with mean me
k. To have this system enjoy

asymptotically the queueing-cost lower bound in Theorem 2.4.1, there must

exist at least one triage class for each WIP class, such that after the triage

service, this class of triage patients will transfer directly to the WIP class

with positive probability – that is, for each column in PJK, there must be at

least one positive element. Needless to say, such is not plausible in an ED

setup.

2.5.3 Waiting costs

This section considers waiting costs, instead of queueing costs. To this end,

assume that the service discipline among each WIP class is FCFS. Recall

that ωrk(t) is the virtual waiting time of a k-WIP patient at time t, and its

diffusion scaling ω̂rk(t) is defined in (2.19). Define ¯̄Er
k(t) = r−2Er

k(r
2t) for



2. A basic model 48

k ∈ K. One seeks to stochastically minimize the following cost:

Ũ r(t) :=
∑

k∈K

∫ t

0

Ck (ω̂rk(s)) d
¯̄Er
k(s), (2.23)

among all asymptotically compliant families of control policies.

The control policy {πr∗} in Section 2.4 is slightly modified as follows.

The first step, using a threshold policy to determine between triage classes

and WIP classes, and the step using (2.13) to determine priorities among

triage patients, do not change. The step determining the priority among

WIP classes changes as follows:

• If the physician decides to serve a patient from the WIP classes, the

physician uses a policy ensuring that, for any T ≥ 0,

max
l,k∈K

sup
0≤t≤T

∣∣∣∣∣∣

C ′l

(
Q̂r

l (t)

λrl

)

me
l

−
C ′k

(
Q̂r

k(t)

λrk

)

me
k

∣∣∣∣∣∣
⇒ 0.

An example of such a policy is to choose k ∈ argmaxk∈K
C′k(Q̂r

k(t)/λrk)
me

k
.

Other examples of policies satisfying the above can be deduced from the

policies in §2.5.2: assume G and H are K ×K-dimensional invertible

matrix and K-dimensional vectors in §2.5.2, the physician chooses a

patients from the class with index

k ∈ argmaxk∈KHk

(
GC ′

(
Q̂r(t)/λr

))
k
,

here C ′
(
Q̂r(t)
λr

)
is a K-dimensional column vector with C ′k

(
Q̂r

k(t)

λrk

)
being
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its kth component.

Denote this family of modified policies by {π̃r∗}.

Proposition 2.5.1 (Waiting Time Cost): The family of control policies {π̃r∗}

is asymptotically compliant. It is also asymptotically optimal among all

asymptotically compliant families of work-conserving control policies, in the

sense that for any fixed t > 0 and x > 0,

lim sup
r→∞

P
{
Ũ r∗ (t) > x

}
≤ lim inf

r→∞
P
{
Ũ r(t) > x

}
,

where {Ũ r∗} is the family of cumulative cost, defined through (2.23) under

the family of control policies {π̃r∗}, and {Ũ r} is the corresponding cost under

any other asymptotically compliant family of work-conserving policies {πr}.

The proof for this proposition can be found in §2.7.7.

2.6 Proofs for theorems

2.6.1 Preliminary analysis

This section starts with an analysis that covers any asymptotically compliant

family of control policies.
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For j-triage class, j ∈ J , define diffusion scaled processes

Êr
j (t) = r−1

(
Er
j (r

2t)− λrjr2t
)
,

Ŝrj (t) = r−1(Sj(dr2te)− µjr2t), T̂ rj (t) = r−1
(
T rj (r2t)− λrjmjr

2t
)
,

and fluid scaled processes

¯̄Qr
j(t) = r−2Qr

j(r
2t), ¯̄Er

j (t) = r−2Er
j (r

2t),

¯̄T rj (t) = r−2T rj (r2t), ¯̄Srj (t) = r−2Sj(r
2t).

From Donsker’s Theorem, when r →∞,

(Êr
j , Ŝ

r
j , j ∈ J ) ⇒ (Êj, Ŝj, j ∈ J ); (2.24)

here (Êj, j ∈ J ) and (Ŝj, j ∈ J ) are independent driftless Brownian mo-

tions, with the corresponding covariance matrices

diag(λja
2
j), diag(µjb

2
j).

Lemma 2.6.1: Under any asymptotically compliant family of control policies,

and for all T ≥ 0,

max
j∈J

sup
0≤t≤T

∣∣∣Q̂r
j(t)− λj τ̂ rj (t)

∣∣∣ ⇒ 0, as r →∞. (2.25)

Proof: For each triage class j ∈ J , the patients in queue at time t are those
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patients arriving between [t− τ rj (t), t], thus

Qr
j(t) = Er

j (t)− Er
j

(
(t− τ rj (t))−

)
.

Then

Q̂r
j(t)− λrj τ̂ rj (t) = Êr

j (t)− Êr
j

(
(t− ¯̄τ rj (t))−

)
, j ∈ J . (2.26)

Here ¯̄τ rj (t) = r−2τ rj (r2t) is the fluid scaled age process of class j triage pa-

tients. From the definition of asymptotic compliance, ¯̄τ rj ⇒ 0 and τ̂ rj are

stochastically bounded for all j ∈ J . Together with (2.24) and (2.8), (2.25)

is easily proved from (2.26), in view of the Random-Time-Change theorem.

2

The following is a direct corollary, which translates the asymptotic com-

pliance condition to the language of queue length processes.

Corollary 2.6.1: Under any asymptotically compliant family of control poli-

cies, when r →∞,

sup
0≤t≤T

[
Q̂r
j(t)/λj − d̂j

]+

⇒ 0, j ∈ J .

Proof: As (x+ y)+ ≤ x+ + y+ for any x, y ∈ R, we have

sup
0≤t≤T

[
Q̂r
j(t)/λj − d̂j

]+

≤ sup
0≤t≤T

[
Q̂r
j(t)/λj − τ̂ rj

]+

+ sup
0≤t≤T

[
τ̂ rj (t)− d̂j

]+

.
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From (2.25) and the definition of asymptotic compliance, both terms on the

right-hand side of the above equation converge to 0 in probability, as a result,

the term on the left-hand side should also converge to 0 in probability. This

proves the conclusion. 2

Lemma 2.6.2: Under any asymptotically compliant family of control policies,

when r →∞,

¯̄T rj (·) ⇒ λjmje(·), (2.27)

Q̂r
j(·) + µjT̂

r
j (·) ⇒ Êj(·)− Ŝj (λjmje(·)) . (2.28)

As a result, Q̂r
j and T̂ rj are stochastically bounded.

Proof: For j ∈ J , as

Qr
j(t) = Qr

j(0) + Er
j (t)− Sj(T rj (t)),

then

¯̄Qr
j(t) = ¯̄Qr

j(0) + ¯̄Er
j (t)− λrjt−

[
¯̄Srj

(
¯̄T rj (t)

)
− µj ¯̄T rj (t)

]
+ µj

[
λrjmjt− ¯̄T rj (t)

]

(2.29)

and

Q̂r
j(t) = Q̂r

j(0) + Êr
j (t)− Ŝrj ( ¯̄T rj (t))− µjT̂ rj (t). (2.30)
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From Corollary 2.6.1 and the Functional Law of Large Numbers, for any

T ≥ 0, when r →∞,

sup
0≤t≤T

¯̄Qr
j(t)⇒ 0, sup

0≤t≤T

∣∣∣ ¯̄Er
j (t)− λrjt

∣∣∣⇒ 0, (2.31)

sup
0≤t≤T

∣∣∣ ¯̄Srj
(

¯̄T rj (t)
)
− µj ¯̄T rj (t)

∣∣∣ ≤ sup
0≤t≤T

∣∣∣ ¯̄Srj (t)− µjt
∣∣∣⇒ 0, (2.32)

and (2.27) can be easily obtained from (2.29). Then (2.24) and (2.30), to-

gether with the Random-Time-Change theorem, imply (2.28). 2

The rest of this subsection discusses system dynamics, without assuming

a specific policy. Thus the following discussion can be applied to all policies.

Define the diffusion scaled processes for j ∈ J , l, k ∈ K:

Êr
k(t) = r−1(Er

k(r
2t)− λrkr2t),

Ŝrk(t) = r−1(Sk(r
2t)− µkr2t), T̂ rk (t) = r−1(T rk (r2t)− λrkmkr

2t),

Φ̂r
jk(t) = r−1

(
Φjk(dr2te)− Pjkr2t

)
, Φ̂r

lk(t) = r−1
(
Φlk(dr2te)− Plkr2t

)
.

Then from Donsker’s Theorem, when r →∞,

(
Φ̂r
jk(·), Φ̂r

lk(·), Ŝrk(·); j ∈ J , l, k ∈ K
)

⇒
(

Φ̂jk(·), Φ̂lk(·), Ŝk(·); j ∈ J , l, k ∈ K
)

;

(2.33)

here (Φ̂jk(·), k ∈ K), j ∈ J , (Φ̂kl(·), l ∈ K), k ∈ K, (Ŝk(·), k ∈ K) are
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independent driftless Brownian motions, with covariance matrices

Γj, j ∈ J , Γk, k ∈ K, and diag(b2
k),

respectively.

Recall that Er
k(t) is the arrival process for k-WIP patients, k ∈ K. Then

Qr
k(t) = Qr

k(0) + Er
k(t)− Sk(T rk (t)), (2.34)

and

Er
k(t) =

∑

j∈J
Φr
jk

(
Sj
(
T rj (t)

))
+
∑

l∈K
Φr
lk (Sl (T

r
l (t))) .

From this and (2.1), similar to (2.30),

Q̂r
k(t) =Q̂r

k(0) + Êr
k(t)− Ŝrk( ¯̄T rk (t))− µjT̂ rk (t)

=Q̂r
k(0) + Êrk(t)− Ŝrk( ¯̄T rk (t)) +

∑

j∈J
PjkµjT̂

r
j (t)

+
∑

l∈K
PlkµlT̂

r
l (t)− µkT̂ rk (t);

(2.35)

here

Êrk(t) =
∑

j∈J
Φ̂r
jk

(
¯̄Srj

(
¯̄T rj (t)

))
+
∑

l∈K
Φ̂r
lk

(
¯̄Srl

(
¯̄T rl (t)

))

+
∑

j∈J
PjkŜ

r
j

(
¯̄T rj (t)

)
+
∑

l∈K
PlkŜ

r
l

(
¯̄T rl (t)

)
.

(2.36)
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Denote (Q̂r
w(t) is defined in (2.15), but we would like to repeat it here)

Q̂r
w(t) =

∑

j∈J
me
jQ̂

r
j(t) +

∑

k∈K
me
kQ̂

r
k(t),

X̂r
w(t) =Q̂r

w(0) + r(ρr − 1)t+
∑

j∈J
me
j

[
Êr
j (t)− Ŝrj

(
¯̄T rj (t)

)]

+
∑

k∈K
me
k

[
Êrk(t)− Ŝrk

(
¯̄T rk (t)

)]
,

T̂ r+(t) =r−1

(
r2t−

∑

j∈J
T rj (r2t)−

∑

k∈K
T rk (r2t)

)
.

(2.37)

From (2.5) and (2.4), one can verify that

−me
jµj +

∑

k∈K
Pjkµjm

e
k = −1, (2.38)

−me
kµk +

∑

l∈K
Pklµkm

e
l = −1. (2.39)

Multiply (2.30) by me
j , (2.35) by me

k, and summing them together, one

has

Q̂r
w(t) = X̂r

w(t) + T̂ r+(t),

Q̂r
w(t) ≥ 0,

T̂ r+(·) is nondecreasing with T̂ r+(0) = 0.

(2.40)

Note that the policy may not be work-conserving, thus it is possible that T̂ r+
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increases at t when Q̂r
w(t) 6= 0. Hence

Q̂r
w(t) ≥ Φ(X̂r

w)(t); (2.41)

here Φ is the 1-dimensional Skorohod mapping; see for example, [31]. Equal-

ity in (2.41) holds when the system operates under any work-conserving

policy.

2.6.2 Proof of Theorem 2.4.1: Lower bound

Proof of Theorem 2.4.1: Fix an arbitrary family of control policies {πr}

which is asymptotically compliant. Define

Γr1(t) =

{
U r(t) > x, max

k∈K
sup

0≤s≤t
¯̄Qr
k(s) ≤

1

r1/4

}
,

Γr2(t) =

{
max
k∈K

sup
0≤s≤t

¯̄Qr
k(s) >

1

r1/4

}
,

Γr3(t) =

{
U r(t) ≤ x, max

k∈K
sup

0≤s≤t
¯̄Qr
k(s) >

1

r1/4

}
.

Here ¯̄Qr
k is the fluid scaled number of k-WIP patients in the system, defined

via

¯̄Qr
k(t) = r−2Qr

k(r
2t), k ∈ K.

Then

{U r(t) > x} = (Γr1(t) ∪ Γr2(t)) \Γr3(t). (2.42)
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First we prove

lim
r→∞

P {Γr3(t)} = 0. (2.43)

For notation simplicity, denote Ir(s, ϑ) = [s, s+ 1
ϑr1/4

] and ϑ0 = 4 maxk∈K µk.

For s < u, denote Srk(s, u) = Sk (T r(r2s) + r2(u− s)) − Sk (T r(r2s)) and

¯̄Srk(s, u) = r−2Srk(s, u). One can prove that

lim
r→∞

P

{
max
k∈K

sup
0≤s≤t

sup
u∈Ir(s,ϑ0)

¯̄Srk(s, u) >
1

2r1/4

}
= 0.

Note that for all k ∈ K and u > s, Qr
k(r

2s) ≤ Qr
k(r

2u) + Srk(s, u) because

Srk(s, u) is the number of departures of k-WIP patients during [r2s, r2u] if the

physician allocates all the capacity to k-WIP patients in this period. Thus

¯̄Qr
k(s)− ¯̄Qr

k(u) ≤ ¯̄Srk(s, u) and

lim
r→∞

P

{
max
k∈K

sup
0≤s≤t

sup
u∈Ir(s,ϑ0)

[
¯̄Qr
k(s)− ¯̄Qr

k(u)
]
>

1

2r1/4

}
= 0.

It follows that

lim
r→∞

P {Γr3(t)} ≤ lim sup
r→∞

P
{
U r(t) ≤ x,max

k∈K
sup

0≤s≤t
inf

u∈Ir(s,ϑ0)

¯̄Qr
k(u) >

1

2r1/4

}

≤ lim sup
r→∞

P
{

min
k∈K

2

ϑ0r1/4
Ck

(
1

2
r3/4

)
≤ x,

max
k∈K

sup
0≤s≤t

inf
u∈Ir(s,ϑ0)

¯̄Qr
k(u) >

1

2r1/4

}

≤ lim sup
r→∞

P
{
r1/2

ϑ0

min
k∈K

2

r3/4
Ck

(
1

2
r3/4

)
≤ x

}
= 0.

This completes the proof of (2.43).
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From (2.42) and (2.43) one can conclude that,

lim inf
r→∞

P {U r(t) > x} = lim inf
r→∞

P {Γr1(t) ∪ Γr2(t)} . (2.44)

Next we derive a lower bound for the latter term.

Denote

Γr0(t) =

{
max
k∈K

sup
0≤s≤t

¯̄Qr
k(s) ≤ r−1/4

}
.

We first prove that, on sets Γr0(t), the following is true on D[0, t]:

¯̄T rk (·) ⇒ λkmke(·), k ∈ K. (2.45)

For s ≤ t, define T̃ rj (s) = r−1T̂ rj (s) for j ∈ J , and

Q̃r
k(s) = r−1Q̂r

k(s), Ẽrk(s) = r−1Êrk(s),

S̃rk(s) = r−1Ŝrk(s), T̃ rk (s) = r−1T̂ rk (s),

Φ̃r
jk(s) = r−1Φ̂r

jk(s), Φ̃r
lk(s) = r−1Φ̂r

lk(s),

for j ∈ J , l, k ∈ K. Then from (2.35),

∑

l∈K
PlkµlT̃

r
l (s)− µkT̃ rk (s)

= Q̃r
k(s)− Q̃r

k(0)− Ẽrk(s) + S̃rk

(
¯̄T rk (s)

)
−
∑

j∈J
PjkµjT̃

r
j (s).

(2.46)

On Γr0(t), sup0≤s≤t Q̃
r
k(s)⇒ 0. Together with (2.27), the expression of Ẽrk in

(2.36), and ¯̄T rk (s) ≤ s for all k ∈ K (those hold for all asymptotic compliant
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policies), one can deduce that the terms on the right-hand side of (2.46)

converge to 0. Then on Γr0(t),

∑

l∈K
PlkµlT̃

r
l (·)− µkT̃ rk (·)⇒ 0, on D[0, t].

Introducing a K-dimensional process T̃ rµ(s) = (µkT̃
r
k (s))k∈K on D[0, t], the

above is then

(P T − I)T̃ rµ(·)⇒ 0, on Γr0(t).

As P T − I is invertible, and all µk, k ∈ K, are nonzero, then

T̃ rk (·)⇒ 0, k ∈ K on D[0, t],

which is equivalent to (2.45).

For s ≤ t, define X̂ r
0 (s) = X̂r

w(s) on Γr0(t), and otherwise,

X̂ r
0 (s) =

∑

j∈J
me
jQ̂

r
j(0) +

∑

k∈K
me
kQ̂

r
k(0) + r(ρr − 1)s

+
∑

j∈J
me
j

[
Êr
j (s)− Ŝrj

(
λrjmjs

)]
+
∑

k∈K
me
k

[
Ĕrk(s)− Ŝrk (λrkmks)

]
;

here for k ∈ K,

Ĕrk(s) =
∑

j∈J
Φ̂r
jk

(
λrjs
)

+
∑

l∈K
Φ̂r
lk (λrl s) +

∑

j∈J
PjkŜ

r
j

(
λrjmjs

)
+
∑

l∈K
PlkŜ

r
l (λrlmls) .
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From (2.45) on Γr0(t), (2.27) and λrk → λk, k ∈ K, when r →∞,

X̂ r
0 ⇒ X̂

on D[0, t]. Here X̂ is the Brownian motion defined in §2.4.2. For s ≤ t,

denote

Ẑr+(s) =

(
Φ(X̂ r

0 )(s)−
∑

j∈J
me
j(Q̂

r
j(s)− λrj d̂j)+ −

∑

j∈J
me
jλ

r
j d̂j

)+

;

then by the continuity of Φ and the definition of asymptotic compliance, on

D[0, t], when r →∞,

Ẑr+(·) ⇒
(
Q̂w(·)− ω̂

)+

.

From (2.41), on Γr0(t),

∑

k∈K
meQ̂r

k(s) ≥ Ẑr+(s), s ≤ t.

By the definition of ∆K and the nondecreasing property of ∆k for all k ∈ K,
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we have

Γr1(t) ∪ Γr2(t)

⊇
{∫ t

0

∑

k∈K
Ck

(
∆k(Ẑr+(s))

)
ds > x,max

k∈K
sup

0≤s≤t
¯̄Qr
k(s) ≤ r−1/4

}
∪ Γr2(t)

⊇
{∫ t

0

∑

k∈K
Ck

(
∆k(Ẑr+(s))

)
ds > x

}
.

Combined with (2.44),

lim inf
r→∞

P {U r(t) > x} ≥ lim inf
r→∞

P

{∫ t

0

∑

k∈K
Ck

(
∆k(Ẑr+(s))

)
ds > x

}
.

From the convergence of Ẑr+, the right-hand side is exactly the lower bound

in Theorem 2.4.1. This completes the proof. 2

2.6.3 Proof of Proposition 2.4.1: Invariant principle for work-conserving

policies

Proof of Proposition 2.4.1: For any family of work-conserving policies,

besides (2.40), the following is also true:

T̂ r+ increases at t only when Q̂r
w(t) = 0.

As a result, equality holds in (2.41).

From (2.33), (2.24) and the fact that ¯̄T rj (s) ≤ s, j ∈ J and ¯̄T rk (s) ≤ s,

k ∈ K, it is easy to see that X̂r
w in (2.37) is stochastically bounded. By the
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Lipschitz continuity of Φ ([31]), Q̂r
w is stochastically bounded, which implies

the stochastic boundedness of Q̂r
j , j ∈ J , and Q̂r

k, k ∈ K. Then ¯̄Qr
j ⇒ 0 for

j ∈ J . Note that (2.29) is still true. We then have

¯̄T rj (·) ⇒ λjmje(·), j ∈ J . (2.47)

For k ∈ K, following the procedure in proving (2.45) in the proof of Theorem

2.4.1, one also has

¯̄T rk (·) ⇒ λkmke(·), k ∈ K. (2.48)

Together with (2.47), (2.33), (2.24) and the Random-Time-Change theorem,

when r →∞,

X̂r
w ⇒ X̂. (2.49)

By the continuity of the mapping Φ, (2.16) follows. 2

2.6.4 Proof of Theorem 2.4.3: State-space collapse

Hydrodynamic limit: We start to analyze the family of control policies {πr∗}.

In the present subsection, we focus only on the triage part.

Under the policies {πr∗}, we have the following dynamic equations of the

system:

Qr
j(t) = Qr

j(0) + Er
j (t)−Dr

j (t), j ∈ J , (2.50)
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Dr
j (t) = Sj

(
T rj (t)

)
, j ∈ J , (2.51)

Qr
k(t) = Qr

k(0) + Er
k(t)−Dr

k(t), k ∈ K, (2.52)

Er
k(t) =

∑

j∈J
Φr
jk

(
Sj
(
T rj (t)

))
+
∑

l∈K
Φr
lk (Sl (T

r
l (t))) , k ∈ K, (2.53)

Dr
k(t) = Sk (T rk (t)) , k ∈ K, (2.54)

∑

j∈J

[
T rj (t)− T rj (s)

]
+
∑

k∈K
[T rk (t)− T rk (s)] ≤ t− s, for s < t, (2.55)

Y r(t) = t−
(∑

j∈J
T rj (t) +

∑

k∈K
T rk (t)

)
, (2.56)

∫ ∞

0

(
max
j∈J

τ rj (t)

drj
−
τ rj′(t)

drj′

)+

∧ 1dT rj′(t) = 0, j′ ∈ J , (2.57)

∫ ∞

0

1 (Qr
1(t) > λr1d

r
1) d

∑

k∈K
T rk (t) = 0, (2.58)

∫ ∞

0

1

(
Qr

1(t) < λr1d
r
1,
∑

k∈K
Qr
k(t) > 0

)
d
∑

j∈J
T rj (t) = 0, (2.59)

∫ ∞

0

1

(∑

j∈J
me
jQ

r
j(t) +

∑

k∈K
me
kQ

r
k(t) > 0

)
dY r(t) = 0. (2.60)

Define the hydrodynamic scaled processes for j-triage classes, j ∈ J ,

Ēr
j (t) = r−1Er

j (rt), S̄rj (t) = r−1Sj(rt), τ̄ rj (t) = r−1τ rj (rt),

T̄ rj (t) = r−1T rj (rt), Q̄r
j(t) = r−1Qr

j(rt), D̄r
j (t) = r−1Dr

j (rt),

and for k-WIP classes, k ∈ K,

Ēr
k(t) = r−1Er

k(rt), S̄rk(t) = r−1Sk(rt),

T̄ rk (t) = r−1T rk (rt), Q̄r
k(t) = r−1Qr

k(rt), D̄r
k(t) = r−1Dr

k(rt).
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First we can prove the following lemma, which is similar to Lemma 2.6.1.

Lemma 2.6.3: For any T > 0, sup0≤t≤T
∣∣λrj τ̄ rj (t)− Q̄r

j(t)
∣∣⇒ 0.

Proof: For each triage class j ∈ J , the patients in queue at time t are those

patients arriving between [t− τ rj (t), t], thus

Qr
j(t) = Er

j (t)− Er
j

(
(t− τ rj (t))−

)
.

Then

Q̄r
j(t) = Ēr

j (t)− Ēr
j

(
(t− τ̄ rj (t))−

)
, j ∈ J . (2.61)

By the functional law of large numbers, sup0≤t≤T |Ēr
j (t)− λrjt| ⇒ 0, together

with (2.61), the conclusion can be easily proved. 2

Similar to [35], there is

Lemma 2.6.4: Almost surely, every sequence contains a subsequence {rn}

such that, the hydrodynamic scaled processes Ērn
j , S̄

rn
j , τ̄

rn
j , T̄

rn
j , Q̄rn

j , D̄
rn
j , j ∈

J , Ērn
k , S̄

rn
k , T̄

rn
k , Q̄rn

k , D̄
rn
k , k ∈ K, converge uniformly on compact time sets

to limit processes Ēj, S̄j, τ̄j, T̄j, Q̄j, D̄j, j ∈ J , Ēk, S̄k, T̄k, Q̄k, D̄k, k ∈ K which

satisfy the following equations

Q̄j(t) = Q̄j(0) + λjt− D̄j(t), j ∈ J , (2.62)

D̄j(t) = µjT̄j(t), j ∈ J , (2.63)

Q̄k(t) = Q̄k(0) + Ēk(t)− D̄k(t), k ∈ K, (2.64)
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Ēk(t) =
∑

j∈J
µjPjkT̄j(t) +

∑

l∈K
µlPlkT̄l(t), k ∈ K, (2.65)

D̄k(t) = µkT̄k(t), k ∈ K, (2.66)

λj τ̄j(t) = Q̄j(t), j ∈ J , (2.67)

∑

j∈J
[T̄j(t)− T̄j(s)] +

∑

k∈K
[T̄k(t)− T̄k(s)] ≤ t− s, for s < t, (2.68)

Ȳ (t) = t−
(∑

j∈J
T̄j(t) +

∑

k∈K
T̄k(t)

)
, (2.69)

∫ ∞

0

(
max
j∈J

Q̄j(t)

λj d̂j
− Q̄j′(t)

λj′ d̂j′

)+

∧ 1dT̄j′(t) = 0, j′ ∈ J , (2.70)

∫ ∞

0

1
(
Q̄1(t) > λ1d̂1

)
d
∑

k∈K
T̄k(t) = 0, (2.71)

∫ ∞

0

1

(
Q̄1(t) < λ1d̂1,

∑

k∈K
Q̄k(t) > 0

)
d
∑

j∈J
T̄j(t) = 0, (2.72)

∫ ∞

0

1

(∑

j∈J
me
jQ̄j(t) +

∑

k∈K
me
kQ̄k(t) > 0

)
dȲ (t) = 0. (2.73)

Remark 2.6.1: Any S̄ = (Ēj, S̄j, τ̄j, T̄j, Q̄j, D̄j, j ∈ J , Ēk, S̄k, T̄k, Q̄k, D̄k, k ∈

K) satisfying (2.62)-(2.73) is called a hydrodynamic model solution, and one

can prove that, any hydrodynamic model solution is Lipschitz, hence abso-

lutely continuous and differentiable almost everywhere.

Proof: We follow the argument for Theorem 4.1 in [14]. Almost surely, we

have the following convergence ([13]):

Ēr
j (t)→ λjt, u.o.c., j ∈ J , (2.74)
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S̄rj → µjt, u.o.c., j ∈ J , (2.75)

S̄rk → µkt, u.o.c., k ∈ K, (2.76)

1

r
Φr
jk(brtc)→ Pjkt, u.o.c., j ∈ J , k ∈ K, (2.77)

1

r
Φr
lk(brtc)→ Plkt, u.o.c., l, k ∈ K. (2.78)

Fix such a sample path and notice that on this sample path, we always have

1

r

(∑

k∈K
(T rk (rt)− T rk (rs)) +

∑

j∈J

(
T rj (rt)− T rj (rs)

)
)
≤ t− s, for t > s.

As a result, there exists a subsequence {rn} such that as n→∞,

1

rn
T rnj (rnt)→ T̄j(t), u.o.c., j ∈ J , (2.79)

1

rn
T rnk (rnt)→ T̄k(t), u.o.c., k ∈ K. (2.80)

Here T̄j, j ∈ J , T̄k, k ∈ K are Lipschitz continuous processes. Then (2.62)-

(2.69) (except (2.67), which is from Lemma 2.6.3) follow from (2.50)-(2.56),

(2.74)-(2.78) and (2.79)-(2.80). From the Lipschitz continuity of Tj, j ∈

J , Tk, k ∈ K, it is easy to see that (τ̄j, Q̄j, D̄j, j ∈ J , Ēk, Q̄k, D̄k, k ∈ K)

is also Lipschitz continuous.

The proofs for (2.70)-(2.73) are similar. Here we give a proof for (2.73).

If (2.73) is not true, then there is a t0 and δ > 0 such that
∑

j∈J m
e
jQ̄j(t0) +

∑
k∈Km

e
kQ̄k(t0) > 0 and Ȳ (t0 + δ) − Ȳ (t0 − δ) ≥ 0. As

∑
j∈J m

e
jQ̄j(t0) +

∑
k∈Km

e
kQ̄k(t0) is Lipschitz continuous, we can also assume that this δ is

chosen so that
∑

j∈J m
e
jQ̄j(t) +

∑
k∈Km

e
kQ̄k(t) > 0 for all t ∈ [t0 − δ, t0 + δ].
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Then for n large enough,
∑

j∈J m
e
jQ̄

rn
j (t) +

∑
k∈Km

e
kQ̄

rn
k (t) > 0 for all t ∈

[t0 − δ, t0 + δ], and Ȳ rn(t0 + δ)− Ȳ rn(t0 − δ) ≥ 0. However, this contradicts

with our work-conserving assumption. As a result, (2.73) should be true. 2

Lemma 2.6.5: Any hydrodynamic model solution satisfies

∑

j∈J
me
jQ̄j(t) +

∑

k∈K
me
kQ̄k(t) =

∑

j∈J
me
jQ̄j(0) +

∑

k∈K
me
kQ̄k(0).

Proof: From the fact that
∑

j∈J λjm
e
j = 1, (2.38)-(2.39) and (2.62)-(2.66),

we can prove

∑

j∈J
me
jQ̄j(t) +

∑

k∈K
me
kQ̄k(t) =

∑

j∈J
me
jQ̄j(0) +

∑

k∈K
me
kQ̄k(0) + Ȳ (t).

From (2.73), (2.68) and (2.69), Ȳ (·) = 0. This completes the proof. 2

State-space collapse for triage patients: First we prove a state-space collapse

result for the hydrodynamic model solution.

Lemma 2.6.6 (State-space collapse for hydrodynamic model solution):

Fix C > 0. For any hydrodynamic model solution with
∑

j∈J m
e
jQ̄j(0) +

∑
k∈Km

e
kQ̄k(0) < C, there exists a constant T0 such that, for all t ≥ T0,

Q̄J (t) = ∆J min

(∑

j∈J
me
jQ̄j(t) +

∑

k∈K
me
kQ̄k(t), ω̂

)
.
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Furthermore, if

Q̄J (0) = ∆J min

(∑

j∈J
me
jQ̄j(0) +

∑

k∈K
me
kQ̄k(0), ω̂

)
,

then Q̄J (t) = Q̄J (0).

Proof: For j ∈ J , define

fj(t) =
1

λj d̂j

(
Q̄j(t)−∆j min

(∑

j∈J
me
jQ̄j(0) +

∑

k∈K
me
kQ̄k(0), ω̂

))−
.

If f1(t) > 0 and is differentiable, then one can claim

f ′1(t) = − 1

d̂1

< 0.

Indeed, if this is not true, then T̄ ′1(t) 6= 0 and from (2.70), one has Q̄1(t)

λ1d̂1
=

maxj∈J
Q̄j(t)

λj d̂j
. Together with f1(t) > 0, one can prove by contradiction that

Q̄1(t) < λ1d̂1. Then from (2.72), one has Q̄k(t) = 0 for all k ∈ K. This,

together with f1(t) > 0, will contradict the definition of ∆j.

As a result, f1 will decrease to 0 in a finite time (denote it as T1) and

once becoming 0, it will never be positive again. Then for each j ∈ J , if

fj(t) > 0 for some t ≥ T1, then T̄ ′j(t) = 0 from (2.70), hence

f ′j(t) = − 1

d̂j
< 0.
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Consequently, after a finite time (denote it by T2 ≥ T1), all fj will be 0 and

will never be positive again.

Now for any t ≥ T2, fj(t) = 0 for all j ∈ J . Define

gj(t) =
1

λj d̂j

(
Q̄j(t)−∆j min

(∑

j∈J
me
jQ̄j(0) +

∑

k∈K
me
kQ̄k(0), ω̂

))+

.

We can assume g1(t) > 0 whenever
∑

j∈J λj d̂jmjgj(t) > 0. Otherwise, if

g1(t) = 0 and there is another j ∈ J such that gj(t) > 0, then from the

definition of ∆J , Q̄1(t)/λ1d̂1 < maxj∈J Q̄j(t)/λj d̂j, and from (2.70), T̄ ′1(t) =

0 and g′1(t) = 1

d̂1
> 0. Hence right after t, g1(·) will be positive.

Now, as we have proved that fj(t) = 0 for all j ∈ J and over t ≥ T2,

together with g1(t) > 0 and the definition of ∆j, we have
∑

j∈J m
e
jQ̄j(t) +

∑
k∈Km

e
kQ̄k(t) > ω̂,

∑
k∈K Q̄k(t) > 0 and for 1 ∈ J , Q̄1(t) > λ1d̂1. Then

from (2.71),
∑

k∈K T̄
′
k(t) = 0. From (2.73),

∑
j∈J T̄

′
j(t) = 1. As a result, the

derivative of
∑

j∈J λj d̂jmjgj(t) is

∑

j∈J
λjmj − 1 < 0.

Thus in finite time (denote it by T0 ≥ T2),
∑

j∈J λj d̂jmjgj(t) will converge

to 0. It follows that, for all t ≥ T0, fj(t) = gj(t) = 0, j ∈ J . Finally, from

Lemma 2.6.5,

Q̄J (t) = ∆J min

(∑

j∈J
me
jQ̄j(0) +

∑

k∈K
me
kQ̄k(0), ω̂

)
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= ∆J min

(∑

j∈J
me
jQ̄j(t) +

∑

k∈K
me
kQ̄k(t), ω̂

)
,

for t ≥ T0. 2

The main result in this subsection is the following lemma, which proves

the state-space collapse result for triage patients.

Lemma 2.6.7: Under Assumption 2.2.1 and the proposed family of control

policies, when r →∞,

sup
0≤t≤T

∣∣∣Q̂r
j(t)−∆j min

(
Q̂r
w(t), ω̂

)∣∣∣ ⇒ 0.

Proof: The basic argument is similar to the arguments in [9]. For complete-

ness, we include it here. From Lemma 2.6.6, we know that Assumption 3.2

of Bramson holds, then from Theorem 5 of [9], we can obtain what the terms

“multiplicative state space collapse” (equation (3.41) of [9]):

sup0≤t≤T

∣∣∣Q̂r
j(t)−∆j min

(
Q̂r
w(t), ω̂

)∣∣∣
sup0≤t≤T Q̂

r
w(t) ∧ 1

⇒ 0.

Notice that here Q̂r
w(t) plays the role of Ŵ r in Theorem 5 of [9] there.

Next from our Proposition 2.4.1, we know that sup0≤t≤T Q̂
r
w(t) ∧ 1 is

stochastically bounded. As a result,

sup
0≤t≤T

∣∣∣Q̂r
j(t)−∆j min

(
Q̂r
w(t), ω̂

)∣∣∣ ⇒ 0.
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This proves the result. 2

State-space collapse for WIP patients: From Propositions 2.4.1 and Lemma

2.6.7, when r →∞, one has

∑

k∈K
me
kQ̂

r
k ⇒

(
Q̂w − ω̂

)+

. (2.81)

Recall that the proposed policy for WIP patients is to ensure

max
l,k∈K

sup
0≤t≤T

∣∣∣∣∣
C ′l(Q̂

r
l (t))

me
l

− C ′k(Q̂
r
k(t))

me
k

∣∣∣∣∣ ⇒ 0. (2.82)

Lemma 2.6.8: Under the family of control policies {πr∗}, one has (Q̂r
k, k ∈

K)⇒ (Q̂k, k ∈ K). Here

Q̂k = ∆k

(
(Q̂w − ω̂)+

)
, k ∈ K. (2.83)

Proof: The proof is similar to [41]; for completeness, we include it here.

From (2.82), for any given T > 0,

max
l,k∈K

sup
0≤t≤T

∣∣∣∣C ′−1
l

(
me
l

me
k

C ′k

(
Q̂r
k(t)
))
− Q̂r

l (t)

∣∣∣∣ ⇒ 0. (2.84)

From the assumption on C ′k, k ∈ K, C ′−1
l

(
me

l

me
k
C ′k(·)

)
is a nondecreasing func-

tion.
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From (2.84) and (2.81), we have

∑

l∈K
me
lC
′−1
l

(
me
l

me
k

C ′k

(
Q̂r
k

))
⇒

(
Q̂w − ω̂

)+

.

As the function on the left-hand of the above equation has a continuous

inverse, Q̂r
k converges. From (2.84), (Q̂r

l , l ∈ K)⇒ (Q̂l, l ∈ K). Also

C ′l(Q̂l)

me
l

=
C ′k(Q̂k)

me
k

, l, k ∈ K.

This proves (2.83). 2

Proof of Theorem 2.4.3: Lemma 2.6.8 proved (2.18). From Proposition

2.4.1, Lemma 2.6.7 and the continuity of the function ψ(x) = min(x, ω̂), with

the application of the continuous mapping theorem and the Convergence-

together Theorem (Theorem 11.4.7 in [43]), we get (2.17). 2

2.6.5 Proof of Theorem 2.4.2: Asymptotic optimality

Proof of Theorem 2.4.2: First, it can be verified that ∆j min (x, ω̂) ≤

λj d̂j for any x and j ∈ J . Then from Theorem 2.4.3, under the proposed

policies {πr∗}, Q̂r
j ⇒ Q̂j ≤ λj d̂j. An analysis of work-conserving policies

will show that (2.25) is equivalent to “asymptotic compliance” for work-

conserving policies (see Lemma 2.7.2); hence the family of the policies {πr∗}

is asymptotically compliant.

By Theorem 2.4.3, together with the continuity of the cost functions,
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one also has

∫ t

0

∑

k∈K
Ck

(
Q̂r
k(s)

)
ds ⇒

∫ t

0

∑

k∈K
Ck

(
Q̂k(s)

)
ds

=

∫ t

0

∑

k∈K
Ck

(
∆k

(
(Q̂w(s)− ω̂)+

))
ds.

Hence, under the family of the proposed policies, the lower bound in The-

orem 2.4.1 is attained. As a result, the family of the proposed policies is

asymptotically optimal. 2

2.7 Additional proofs

2.7.1 Additional results for work-conserving policies

In this section, we prove some additional results for work-conserving policies;

in particular, they apply to {πr∗}. From the discussion in proving Proposition

2.4.1, Q̂r
j , j ∈ J , are stochastically bounded and (2.47) holds for any work-

conserving policies. With these, notice that (2.30) is still true, hence we can

verify the convergence (2.28). As Q̂r
j , j ∈ J , are stochastically bounded, T̂ rj ,

j ∈ J , are also stochastically bounded.

Next consider WIP patients. Define ŶrK = (Ŷrk)k∈K with each k ∈ K,

Ŷrk(t) = Q̂r
k(t)− Q̂r

k(0)− Êrk(t) + Ŝrk(
¯̄T rk (t))−

∑

j∈J
PjkµjT̂

r
j (t),

and recall that Êrk is defined in (2.36). Denote T̂ rµ = (µkT̂
r
k )k∈K. Then from
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(2.35),

T̂ rµ = (P T − I)−1ŶrK. (2.85)

We can easily verify the stochastic boundedness of ŶrK from the facts ¯̄T rj (s) ≤

s and ¯̄T rk (s) ≤ s, for all j ∈ J and k ∈ K. This implies the stochastic

boundedness of T̂ rµ , then T̂ rK = (T̂ rk )k∈K.

Note that, for all k ∈ K,

Êr
k(t) = Êrk(t) +

∑

j∈J
PjkµjT̂

r
j (t) +

∑

l∈K
PlkµlT̂

r
l (t). (2.86)

Then the stochastic boundedness of Êr
k can be then obtained from the stochas-

tic boundedness of Êrk , T̂ rj and T̂ rl (j ∈ J , k, l ∈ K).

Define the fluid scaled virtual waiting time processes as

¯̄ωrj (t) = r−2ωrj
(
r2t
)
, j ∈ J , ¯̄ωrk(t) = r−2ωrk

(
r2t
)
, k ∈ K.

First we prove the following:

Lemma 2.7.1: Under any family of work-conserving policies, with FCFS among

each WIP class, when r →∞,

¯̄ωrj ⇒ 0, j ∈ J ,

¯̄ωrk ⇒ 0, k ∈ K.

Proof: We only prove the results for j ∈ J , as the proof for k ∈ K is the
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same. First note that, for any ε > 0, if ωrj (t) ≥ ε, then

Sj
(
T rj (t+ ε)

)
≤ Qr

j(0) + Er
j (t).

Then ¯̄ωrj (t) ≥ ε ensures

Ŝrj

(
¯̄T rj (t+ ε)

)
+ µjT̂

r
j (t+ ε) + λrjrε ≤ Q̂r

j(0) + Êr
j (t).

Hence, for any fixed T > 0 and ε > 0, we have

P
{

sup
0≤t≤T

¯̄ωrj (t) ≥ ε

}

≤ P
{
λrjrε ≤ sup

0≤t≤T

∣∣∣Q̂r
j(0) + Êr

j (t)− Ŝrj
(

¯̄T rj (t+ ε)
)
− µjT̂ rj (t+ ε)

∣∣∣
}
.

However, noticing that sup0≤t≤T

∣∣∣Q̂r
j(0) + Êr

j (t)− Ŝrj
(

¯̄T rj (t+ ε)
)
− µjT̂ rj (t+ ε)

∣∣∣

is stochastically bounded, together with the fact that λrjrε→∞, implies that

the probability on the right-hand side above converges to 0. Hence

lim
r→∞

P
{

sup
0≤t≤T

¯̄wrj (t) ≥ ε

}
= 0.

This completes the proof. 2

Lemma 2.7.2: Under any family of work-conserving policies, for any given
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T > 0, we have

sup
0≤t≤T

∣∣∣λrj τ̂ rj (t)− Q̂r
j(t)
∣∣∣ ⇒ 0, j ∈ J .

Proof: The proof follows exactly that of Lemma 2.6.1, by noticing that

from Lemma 2.7.1 and the fact sups≤t τ
r
j (s) ≤ sups≤t ω

r
j (s) for all t and j, we

have sup0≤s≤t ¯̄τ rj (s) ⇒ 0. Note that the result here is slightly different from

Lemma 2.6.1, as only after proving this lemma, can we have the stochastic

boundedness of τ̂ rj , j ∈ J , for all work-conserving policies. 2

2.7.2 Proof of Proposition 2.4.2: Asymptotic sample-path Little’s law

Lemma 2.7.3: Under the family of control policies {πr∗}, when r →∞,

(
T̂ rj , j ∈ J , Êr

k, T̂
r
k , k ∈ K

)
⇒

(
T̂j, j ∈ J , Êk, T̂k, k ∈ K

)
,

for some continuous processes
(
T̂j, j ∈ J , Êk, T̂k, k ∈ K

)
satisfying

µjT̂j(t) = −Q̂j(t) + Êj(t)− Ŝj (λjmjt) , (2.87)

Êk(t) = Êk(t) +
∑

j∈J
PjkµjT̂j(t) +

∑

l∈K
PlkµlT̂l(t), (2.88)

(P T−I)
(
µkT̂k

)
k∈K

= ŶK. (2.89)
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Here

Êk(t) =
∑

j∈J
Φ̂jk (λjt) +

∑

l∈K
Φ̂lk (λlt) +

∑

j∈J
PjkŜj (λjmjt) +

∑

l∈K
PlkŜl (λlmlt) ,

Ŷk(t) = Q̂k(t)− Êk(t) + Ŝk(λkmkt)−
∑

j∈J
PjkµjT̂j(t).

Proof: From (2.30), (2.86) and (2.85), we have (T̂ rµ = (µkT̂
r
k )k∈K)

T̂ rj (t) =
[
Q̂r
j(0)− Q̂r

j(t) + Êr
j (t)− Ŝrj

(
¯̄T rj (t)

)]
/µj, (2.90)

Êr
k(t) = Êrk(t) +

∑

j∈J
PjkµjT̂

r
j (t) +

∑

l∈K
PlkµlT̂

r
l (t), (2.91)

T̂ rµ(t) = (P T − I)−1ŶrK(t), (2.92)

where

Êrk(t) =
∑

j∈J
Φ̂r
jk

(
¯̄Srj

(
¯̄T rj (t)

))
+
∑

l∈K
Φ̂r
lk

(
¯̄Srl

(
¯̄T rl (t)

))

+
∑

j∈J
PjkŜ

r
j

(
¯̄T rj (t)

)
+
∑

l∈K
PlkŜ

r
l

(
¯̄T rl (t)

)
,

Ŷrk(t) = Q̂r
k(t)− Q̂r

k(0)− Êrk(t) + Ŝrk(
¯̄T rk (t))−

∑

j∈J
PjkµjT̂

r
j (t).

As a result,
(
T̂ rj , j ∈ J , Êr

k, T̂
r
k , k ∈ K

)
can be represented as a continuous

mapping from
(
Q̂r
j , Ê

r
j , Ŝ

r
j ,

¯̄T rj , Φ̂
r
jk, Φ̂

r
lk, Q̂

r
k, Ŝ

r
k,

¯̄T rk , j ∈ J , l, k ∈ K
)

, whose con-

vergence can be obtained from the assumptions and Theorem 2.4.3. The ex-

pressions (2.87)-(2.89) in the lemma can be easily verified from (2.90)-(2.92).

This completes the proof. 2
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Proof of Proposition 2.4.2: We prove the result for j-triage patients. For

k-WIP patients, the proof is similar. The convergence of Q̂r
j , together with

Lemma 2.7.1, ensure that, for any T > 0,

sup
0≤t≤T

∣∣∣Q̂r
j(t)− Q̂r

j

(
t+ ¯̄ωrj (t)

)∣∣∣ ⇒ 0, as r →∞.

Thus it is enough to prove

sup
0≤t≤T

∣∣∣λrj ω̂rj (t)− Q̂r
j

(
t+ ¯̄ωrj (t)

)∣∣∣ ⇒ 0, as r →∞.

Note that the j-triage patients that are present at time t+ωrj (t) arrive during

the time interval (t, t+ωrj (t)], and those j-triage patients arriving during this

interval will remain in this class, or finish this stage of service at t + ωrj (t).

Hence

Qr
j

(
t+ ωrj (t)

)

≤ Er
j (t+ ωrj (t))− Er

j (t) ≤ Qr
j

(
t+ ωrj (t)

)
+ ∆Srj

(
t+ ωrj (t)

)
;

(2.93)

here, with some abuse of notation, ∆Srj
(
t+ ωrj (t)

)
= Sj

(
T r(t+ ωrj (t))

)
−

Sj
(
T r(t+ ωrj (t)−)

)
. From this relationship, we can get the following for the

diffusion scaled processes:

∣∣∣λrj ω̂rj (t)− Q̂r
j

(
t+ ¯̄ωrj (t)

)∣∣∣ ≤
∣∣∣Êr

j

(
t+ ¯̄ωrj (t)

)
− Êr

j (t)
∣∣∣

+4Ŝrj (t+ ¯̄ωrj (t)) + µj4T̂ rj (t+ ¯̄ωrj (t)).
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Here

4Ŝrj (t+ ¯̄ωrj (t)) = Ŝrj

(
¯̄T rj (t+ ¯̄ωrj (t))

)
− Ŝrj

(
¯̄T rj (t+ ¯̄ωrj (t)−)

)

and

4T̂ rj
(
t+ ¯̄ωrj (t)

)
= T̂ rj (t+ ¯̄ωrj (t))− T̂ rj (t+ ¯̄ωrj (t)−).

From the convergence of Ŝrj (
¯̄T rj (·)) and T̂ rj (·), then both 4Ŝrj (· + ¯̄ωrj (·)) and

4T̂ rj
(
·+ ¯̄ωrj (·)

)
converge to 0. Together with Lemma 2.7.1 and the conver-

gence of Êr
j , j ∈ J , the processes on the right-hand side above will converge

to 0; thus the process on the left-hand side will also converge to 0, which

completes the proof. 2

2.7.3 Proof of Proposition 2.4.3: Snapshot principle – virtual waiting time

and age

Lemma 2.7.4: Under the family of control policies {πr∗}, for any given T > 0,

when r →∞,

sup
0≤t≤T

∣∣∣λrkτ̂ rk (t)− Q̂r
k(t)
∣∣∣ ⇒ 0, k ∈ K.

Proof: The proof follows exactly as the one for Lemma 2.6.1. For k ∈ K,

note that the convergence of Êr
k has been proved in Lemma 2.7.3. On the
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other hand, sups≤t τ
r
k (s) ≤ sups≤t ω

r
k(s) for all t and k; hence, from Lemma

2.7.1 we have sup0≤s≤t ¯̄τ rk (s)⇒ 0. 2

Proof of Proposition 2.4.3: This can be easily deduced from Proposition

2.4.2, Lemmas 2.7.2 and 2.7.4. 2

2.7.4 Proof of Proposition 2.4.4: Snapshot principle – sojourn time and

queue lengths

The argument here follows the framework in [37]. Introduce the following

notation: τ rjh(t) is the time at which the patient of interest to us arrives to

the system, and ζrjki(t) is the time at which this patient becomes a k-WIP

patient for the ith time (it is also related to h, but we omit h to simplify the

notation). Then

t ≤ ζrjki(t) ≤ τ rjh(t) +W r
jh(t). (2.94)

Define the fluid scaled processes

¯̄ζrjki(t) = r−2ζrjki(r
2t), ¯̄W r

jh(t) = r−2W r
jh(r

2t), ¯̄τ rjh(t) = r−2τ rjh(r
2t).

Lemma 2.7.5: Under the family of control policies {πr∗} with FCFS among

each WIP class, if h is j-feasible, then for any T ≥ 0, as r →∞,

sup
0≤t≤T

¯̄W r
jh(t) ⇒ 0, (2.95)

sup
0≤t≤T

[
¯̄τ rjh(t)− t

]
⇒ 0. (2.96)
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As a result, when r →∞,

sup
0≤t≤T

[
¯̄ζrjki(t)− t

]
⇒ 0. (2.97)

We first assume this last lemma is true and prove Proposition 2.4.4.

Proof of Proposition 2.4.4: The sojourn time W r
jh(t) can be represented

as

W r
jh(t) = ωrj (τ

r
jh(t)) +

∑

k∈K

hk∑

i=1

ωrk
(
ζrjki(t)

)
.

From this we then have

Ŵ r
jh(t)−

[
Q̂r
j(t)

λrj
+
∑

k∈K

hk
λrk
Q̂r
k(t)

]

= ω̂rj (¯̄τ rjh(t)) +
∑

k∈K

hk∑

i=1

ω̂rk

(
¯̄ζrjki(t)

)
−
[
Q̂r
j(t)

λrj
+
∑

k∈K

hk
λrk
Q̂r
k(t)

]

=

[
ω̂rj (t)−

Q̂r
j(t)

λrj

]
+
∑

k∈K
hk

[
ω̂rk(t)−

Q̂r
k(t)

λk

]

+
[
ω̂rj
(
¯̄τ rjh(t)

)
− ω̂rj (t)

]
+
∑

k∈K

hk∑

i=1

[
ω̂rk

(
¯̄ζrjki(t)

)
− ω̂rk(t)

]
.

From Lemma 2.7.5 and the convergence of ω̂rj , j ∈ J and ω̂rk, k ∈ K,

[
ω̂rj
(
¯̄τ rjh(t)

)
− ω̂rj (t)

]
+
∑

k∈K

hk∑

i=1

[
ω̂rk

(
¯̄ζrjki(t)

)
− ω̂rk(t)

]
⇒ 0.

Together with Proposition 2.4.2, the conclusion is immediate. 2



2. A basic model 82

Proof of Lemma 2.7.5: We first prove (2.95). It is enough to show that,

for any ε > 0, there exists an N <∞ such that, for all r ≥ N ,

P
{

sup
0≤t≤T

¯̄W r
jh(t) ≥ ε

}
≤ ε.

Similarly to [37], denote ‖h‖ =
∑K

k=1 hk. Then we have

P
{

sup
0≤t≤T

¯̄W r
jh(t) ≥ ε

}
≤ max

k∈K
P
{

sup
0≤t≤T+ε

¯̄ωrk(t) ≥
ε

‖h‖+ 1

}

+ P
{

sup
0≤t≤T+ε

¯̄ωrj (t) ≥
ε

‖h‖+ 1

}
.

(2.98)

From Lemma 2.7.1, the right-hand side of (2.98) converges to 0, hence (2.95)

holds.

The proof of (2.96) follows the one in [37]. Let Lri,j,h = min{n >

i;hr(j, n) = h}, where hr(j, n) is the visit vector associated with the nth

j-triage patient. We can write

P
{

sup
0≤t≤T

[¯̄τ rjh(t)− t] ≥ ε

}

≤ P
{

inf
0≤t≤T

[Er
j (r

2t+ r2ε)− Er
j (r

2t)] <
1

2
λjr

2ε

}

+ P
{
Er
j (r

2T ) > 2λjr
2
}

+ P

{
sup

1≤i≤2λjr2
[Lri,j,h − i] >

1

2
λjr

2ε

}
.

The first two terms on the right-hand side converge to zero by the strong

law of large numbers. The j-triage patients have i.i.d. paths and hence i.i.d.

visit vectors. Let the probability of a particular j-triage patient, having visit
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vector h, be gh, where gh > 0 since h is j-feasible. Define ĝh = 1− gh, then

P

{
sup

1≤i≤2λjr2
[Lri,j,h − i] >

1

2
λjr

2ε

}
≤ 1−

[
1− ĝ

1
2
λkr

2ε

h

]2λkr
2

= 1−
[

1− r2ĝ
1
2
λkr

2ε

h

r2

]2λkr
2

.

The same reason as in [37] then implies that the latter expression vanishes,

as r →∞. This establishes (2.96).

Combining (2.95), (2.96) with (2.94), now yields (2.97). 2

Proof of Corollary 2.4.1: This is implied by Propositions 2.4.4, 2.4.2 and

2.4.3. 2

2.7.5 Proof for Lemma 2.5.1

Proof: The proof follows the framework in §2.6.4. For completeness, we

include the steps here.

Firstly, the argument in proving Lemma 2.6.4 still works for the new

scheduling policy, except for the equation (2.70), which we replace by the

following:

∫ ∞

0

(
dj −

Q̄j(t)

λj
−min

j′∈J

{
dj′ −

Q̄j′(t)

λj′

})+

∧ 1dT̄j(t) = 0, j ∈ J . (2.99)

Because the proof of Lemma 2.6.5 does not use (2.70), thus it is still true for

the new policy.

Next we prove that, for any fixed C > 0 and a hydrodynamic model
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solution with
∑

j∈J m
e
jQ̄j(0) +

∑
k∈Km

e
kQ̄k(0) < C, there exists a constant

T̃0 such that, for all t ≥ T̃0,

Q̄J (t) = ∆̃J min

(∑

j∈J
me
jQ̄j(t) +

∑

k∈K
me
kQ̄k(t), ω̂

)
.

To prove this, for j ∈ J , define

f̃j(t) =
1

λj d̂j

(
Q̄j(t)− ∆̃j min

(∑

j∈J
me
jQ̄j(0) +

∑

k∈K
me
kQ̄k(0), ω̂

))−
.

If f̃1(t) > 0 and is differentiable, then one can claim

f̃ ′1(t) = − 1

d̂1

< 0.

Indeed, if this is not true, then T̄ ′1(t) 6= 0 and from (2.99), one has d̂1 −
Q̄1(t)
λ1

= minj′∈J
{
d̂j′ − Q̄j′ (t)

λj′

}
. Together with f̃1(t) > 0, one can prove by

contradiction that Q̄1(t) < λ1d̂1. Then from (2.72), one has Q̄k(t) = 0 for all

k ∈ K. This, together with f̃1(t) > 0, will contradict the definition of ∆̃j.

As a result, f̃1 will decrease to 0 in a finite time (denote it as T̃1) and

once becoming 0, it will never be positive again. Then for each j ∈ J , if

f̃j(t) > 0 for some t ≥ T̃1, then T̄ ′j(t) = 0 from (2.70), hence

f̃ ′j(t) = − 1

d̂j
< 0.

Consequently, after a finite time (denote it by T̃2 ≥ T̃1), all f̃j will be 0 and
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will never be positive again.

Now for any t ≥ T̃2, f̃j(t) = 0 for all j ∈ J . Define

g̃j(t) =
1

λj d̂j

(
Q̄j(t)− ∆̃j min

(∑

j∈J
me
jQ̄j(0) +

∑

k∈K
me
kQ̄k(0), ω̂

))+

.

We can assume g̃1(t) > 0 whenever
∑

j∈J λj d̂jmj g̃j(t) > 0. Otherwise, if

g̃1(t) = 0 and there is another j ∈ J such that g̃j(t) > 0, then from the

definition of ∆̃J , d̂1 − Q̄1(t)/λ1 > minj∈J (d̂j − Q̄j(t)/λj), and from (2.99),

T̄ ′1(t) = 0 and g̃′1(t) = 1

d̂1
> 0. Hence right after t, g̃1(·) will be positive.

Then the discussion in the last paragraph in the proof of Lemma 2.6.6,

we can prove that in finite time (denote it by T̃0 ≥ T̃2),
∑

j∈J λj d̂jmj g̃j(t)

will converge to 0. It follows that, for all t ≥ T̃0, f̃j(t) = g̃j(t) = 0, j ∈ J .

This proves that

Q̄J (t) = ∆̃J min

(∑

j∈J
me
jQ̄j(0) +

∑

k∈K
me
kQ̄k(0), ω̂

)
,

for t ≥ T0.

Then we can follow the argument in [9], first proving “multiplicative

state space collapse” (equation (3.41) of [9]):

sup0≤t≤T

∣∣∣Q̂r
j(t)− ∆̃j min

(
Q̂r
w(t), ω̂

)∣∣∣
sup0≤t≤T Q̂

r
w(t) ∧ 1

⇒ 0.



2. A basic model 86

Then from our Proposition 2.4.1, we know

sup
0≤t≤T

∣∣∣Q̂r
j(t)− ∆̃j min

(
Q̂r
w(t), ω̂

)∣∣∣ ⇒ 0.

This proves the result. 2

2.7.6 Proof for Lemma 2.5.2

Proof: We follow the framework in §2.6.4, but for WIP patients now. We

first prove that under the proposed policy, any limit of the hydrodynamic

scaled processes Ēj, S̄j, τ̄j, T̄j, Q̄j, D̄j, j ∈ J , Ēk, S̄k, T̄k, Q̄k, D̄k, k ∈ K should

satisfy (2.62)-(2.73), as well as the following:

∫ ∞

0

(
max
k′∈K

Hk′
(
GC ′

(
Q̄(t)

))
k′ −Hk

(
GC ′

(
Q̄(t)

))
k

)+

dT̄k(t) = 0. (2.100)

This is because, if the above is not true, then there is a t0 and δ > 0

such that maxk′∈KHk′
(
GC ′

(
Q̄(t0)

))
k′ > Hk

(
GC ′

(
Q̄(t0)

))
k

and T̄k(t0 +

δ) − Ȳk(t0 − δ) ≥ 0. We can also assume that this δ is chosen so that

maxk′∈KHk′
(
GC ′

(
Q̄(t)

))
k′ > Hk

(
GC ′

(
Q̄(t)

))
k

for all t ∈ [t0 − δ, t0 + δ].

Then for n large enough, maxk′∈KHk′
(
GC ′

(
Q̄rn(t)

))
k′ > Hk

(
GC ′

(
Q̄rn(t)

))
k

for all t ∈ [t0 − δ, t0 + δ], and T̄ rnk (t0 + δ) − T̄ rnk (t0 − δ) ≥ 0. However, this

contradicts with the work principle for WIP patients. As a result, (2.100)

should be true.

Without loss of generality (from Lemma 2.6.5 and 2.6.6), we assume
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that for all t ≥ 0,

∑

k∈K
me
kQ̄k(t) =

(∑

j∈J
me
jQ̄j(0) +

∑

k∈K
me
kQ̄k(0)− ω̂

)+

.

For any fixed k ∈ K, define a K ×K matrix Bk = Υ + Θk, where Υ is

a K ×K diagonal matrix with component −Hl in the lth place, and Θk is a

K ×K matrix with its kth column being Hk while all others are 0, that is,

Υ =




−H1 · · · 0 · · · 0

...
. . . · · · · · · ...

0 · · · . . . · · · 0

... · · · · · · . . .
...

0 · · · 0 · · · −HK




and Θk =




0 · · · Hk · · · 0

...
. . .

... · · · ...

0 · · · Hk · · · 0

... · · · ...
. . .

...

0 · · · Hk · · · 0




.

It is easy to verify that the vector M e is the only column vector (up to

scaling) satisfying

BkGM e = 0.

Recall the definition of ∆k in Lemma 2.4.1 and define

Q̄0 = ∆K

(∑

j∈J
me
jQ̄j(0) +

∑

k∈K
me
kQ̄k(0)− ω̂

)+

.

Then

BkGC ′(Q̄0) = 0.

Here C ′(Q̄0) is aK-dimensional vector with C ′k(Q̄0k) being its kth component.
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This means that for any k, l ∈ K,

Hk

(
GC ′(Q̄0)

)
k

= Hl

(
GC ′(Q̄0)

)
l
.

Next we prove that for any fixed C > 0 and a hydrodynamic model

solution with
∑

j∈J m
e
jQ̄j(0) +

∑
k∈Km

e
kQ̄k(0) < C, there exists a constant

T̃0 such that, for all t ≥ T̃0,

Q̄K(t) = ∆K

(∑

j∈J
me
jQ̄j(t) +

∑

k∈K
me
kQ̄k(t)− ω̂

)+

.

We first prove that, if Q̄(t) 6= Q̄0, then there is a k+ such that

Hk+

(
G
(
C ′(Q̄(t))− C ′(Q̄0)

))
k+
> 0.

It is enough to prove
(
G
(
C ′(Q̄(t))− C ′(Q̄0)

))
k+
> 0. This is because we have

G−1G
(
C ′(Q̄(t))− C ′(Q̄0)

)
=
(
C ′(Q̄(t))− C ′(Q̄0)

)
, and

(
C ′(Q̄(t))− C ′(Q̄0)

)

is a vector with positive component(s), together with the assumption that

all components of G−1 are nonnegative, we know that there must be at least

one term in G
(
C ′(Q̄(t))− C ′(Q̄0)

)
being positive.

Now choose any k− ∈ argmink∈K{
C′k(Q̄k(t))

me
k
−C′k(Q̄0k)

me
k
}, then C ′k−(Q̄k−(t))−

C ′k−(Q̄0k−) ≤ 0. Now we will prove that

Hk−

(
G
(
C ′(Q̄(t))− C ′(Q̄0)

))
k−
≤ 0.
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It is enough to prove that
(
G
(
C ′(Q̄(t))− C ′(Q̄0)

))
k−
≤ 0. As Gk−k′ ≤ 0 for

all k′ 6= k− and k− ∈ argmink∈K{
C′k(Q̄k(t))

me
k
− C′k(Q̄0k)

me
k
}, we have

(
G
(
C ′(Q̄(t))− C ′(Q̄0)

))
k−
≤
∑

k′∈K
Gk−k′

(
C ′k−(Q̄k−(t))− C ′k−(Q̄0k−)

)
.

From the assumption of
∑

k′∈KGk−k′ ≥ 0, and the fact that C ′k−(Q̄k−(t)) −

C ′k−(Q̄0k−) ≤ 0, we know
(
G
(
C ′(Q̄(t))− C ′(Q̄0)

))
k−
≤ 0.

As Hk−

(
GC ′(Q̄0)

)
k−

= Hk0

(
GC ′(Q̄0)

)
k0

, thus Hk−

(
GC ′(Q̄(t))

)
k−

<

Hk0

(
GC ′(Q̄(t))

)
k0

. From (2.100) we then have T̄ ′k−(t) = 0. Then
Q̄′k− (t)

me
k−

=

λk
me

k−
> 0. As a result, there will be a finite time T̄0 such that for all t ≥ T̄0,

C′k(Q̄k(t))

me
k
≥ C′k(Q̄0k)

me
k

, which is equivalent to Q̄k(t) ≥ Q̄0k. However, we have

∑

k∈K
me
kQ̄k(t) =

∑

k∈K
me
kQ̄0k,

as a result, Q̄k(t) = Q̄0k for all k and t ≥ T̄0.

Then we can follow the argument in [9], first proving “multiplicative

state space collapse” (equation (3.41) of [9]):

sup0≤t≤T

∣∣∣Q̂r
k(t)−∆k min

(
Q̂r
w(t), ω̂

)∣∣∣
sup0≤t≤T Q̂

r
w(t) ∧ 1

⇒ 0.

Then from our Proposition 2.4.1, we know

sup
0≤t≤T

∣∣∣Q̂r
k(t)−∆k min

(
Q̂r
w(t), ω̂

)∣∣∣ ⇒ 0.
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This proves the result. 2

2.7.7 Proof for Proposition 2.5.1: Waiting time cost

We first provide the proof of a lower bound, which is similar to the proof of

Theorem 2.4.1.

For any fixed k ∈ K, define Cr
a, C

r
b , C

r
c as follows:

Cn
k1 =

1

Er
k(r

2b)− Er
k(r

2a)

Er
k(r2b)∑

i=Er
k(r2a)

1

r
τ rk,i,

Cn
k2 =

1

Er
k(r

2b)− Er
k(r

2a)

∫ nb

na

1

r
Qr
k(t)dt,

Cn
k3 =

1

Er
k(r

2b)− Er
k(r

2a)

Er
k(r2b)−Qr

k(b)∑

i=Er
k(r2a)

1

r
τ rk,i.

Then Cr
k3 ≤ Cr

k2 ≤ Cr
k1. Further,

Cr
k1 − Cr

k3 =
1

Er
k(r

2b)− Er
k(r

2a)

Er
k(r2b)∑

i=Er
k(r2b)−Qr

k(r2b)+1

1

r
τ rk,i

≤ r−1

¯̄Er
k(b)− ¯̄Er

k(a)
Q̃r
k(b) max

Er
k(r2b)−Qr

k(r2b)+1≤i≤Er
k(r2b)

1

r
τ rk,i.

As the proposed policy is work-conserving, Proposition 2.4.1 and Lemma

2.7.1 hold. Then we have Cr
k1−Cr

k3 ⇒ 0 as r →∞. As a result, Cr
k1−Cr

k2 ⇒ 0

as r →∞, that is, for any 0 ≤ a < b ≤ T ,

1
¯̄Er
k(b)− ¯̄Er

k(a)

(∫ b

a

τ̂ rkd
¯̄Er
k −

∫ b

a

Q̂r
k(s)ds

)
⇒ 0. (2.101)
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With this, we can prove the following

lim inf
r→∞

P
{
Ũ r(t) > x

}
≥ P

{∫ t

0

∑

k∈K
λkCk

(
∆̂k

(
(Q̂w(s)− ω̂)+

)
/λk

)
ds > x

}
.

(2.102)

Here ∆̂K = (∆̂k)k∈K is defined for any a ≥ 0 as the solution x∗ = ∆̂K(a) to

the following:

min
x

∑

k∈K
λkCk(xk/λk)

s.t.
∑

k∈K
me
kxk = a,

x ≥ 0.

(2.103)

The argument is modified slightly from the discussion in proving Proposition

6 of [41]. For completeness, we provide the several key steps here. Fix ε > 0

and for any t ≥ 0, consider a sequence of stopping times of Q̃ω defined as

t1 = min{1, inf{0 < t ≤ 1 : |(Q̃ω(t)− ω̂)+ − b(Q̃ω(0)− ω̂)+/εcε| ≥ ε}},

ti+1 = min{1, inf{ti < t : |(Q̃ω(t)− ω̂)+ − b(Q̃ω(ti)− ω̂)+/εcε| ≥ ε}}.

Thus ti+1 is the first time (Q̃ω− ω̂)+ changes by ε starting from (Q̃ω(ti)− ω̂)+

at time ti. Because (Q̃ω − ω̂)+ is continuous, supi(ti+1 − ti) → 0 as ε → 0,

so that supi(ti+1 − ti) = O(ε). Via Jensen’s inequality and (2.101), we can
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prove that

Ũ r(t)

≥
∑

k∈K

∑

i

λk(ti+1 − ti)Ck
(
λ−1
k (ti+1 − ti)−1

∫ ti+1

ti

(Q̃r
k(t)− ω̂)+dt

)
+ or(1) +O(ε)

≥
∑

k∈K

∑

i

λk(ti+1 − ti)Ck
(

(ti+1 − ti)−1

∫ ti+1

ti

∆̂k

(
(Q̃r

ω(t)− ω̂)+
)
dt

)
+ or(1) +O(ε).

Using the fact that (Q̃r
ω− ω̂)+ ⇒ (Q̃ω− ω̂)+ and the way defining ti, we have

(ti+1 − ti)
∫ ti+1

ti

Q̃r
ω(t)dt = (Q̃ω(ti)− ω̂)+ +O(ε) + or(1).

We can arrive at the following

lim inf
r→∞

Ũ r(t) ≥
∑

k∈K

∑

i

λk(ti+1 − ti)Ck
(
λ−1
k ∆̂k

(
(Q̃ω(ti)− ω̂)+

))
+O(ε).

Letting ε→ 0, then we have (2.102).

Finally, following the discussion in §2.6.4 exactly, especially the steps to

get the state-space collapse results, one can prove that the family of modified

policies {π̃r∗} reaches the lower bound. As a result, {π̃r∗} is asymptotically

optimal.



3. AN ALTERNATIVE MODEL

3.1 Sojourn time model and its policy

In some emergency departments, the costs are not based on the queue lengths,

but on individual’s sojourn time ([10]). In this section, we consider an al-

ternative model, which is called sojourn time model. The structure of this

model is identical to the figure in §2, except that congestion cost is associated

with each patient’s sojourn time in the WIP stage (as opposed to queueing

and waiting costs previously).

With an assumption that the routing matrix P is upper-triangular, the

number of routing vectors is finite. Thus, without loss of generality, one can

assume that in the WIP stage each patient has a deterministic routing vector

and there are finite number of routing vectors. We use C0 to denote the set of

starting classes of routes, for k ∈ C0, and let Ck denote all the classes on the

route that starts at k. If the waiting time for a specific patient, say patient

i, with starting class k waits ωk′(i), as a k′-WIP patient (k′ ∈ Ck), then the

sojourn time of this patient is
∑

k′∈Ck ωk′(i). Any class in
⋃
k∈C0 Ck\{k} is

called a subsequent class. The structure of the model is as in the following

figure.

Now the cumulative cost incurred by those WIP patients till time t is
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Fig. 3.1: Patient flow in emergency department (sojourn time cost)3. An alternative model 84
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Now the cumulative cost incurred by those WIP patients till time t is

as follow:

Sr(t) =
∑

k∈C0

Ek(t)∑

i=1

Ck

(∑

k′∈Ck

ωk′(i)

)
. (3.1)

Here Ck(·) is a convex increasing function (which differs from those in the

previous section).

There are still deadline constraints on triage patients. As a result, the

problem is still to minimize the cumulative cost above, while subject to the

deadline constraints on those triage patients. Similarly to the queue length

as follow:

Sr(t) =
∑

k∈C0

Ek(t)∑

i=1

Ck

(∑

k′∈Ck

ωk′(i)

)
. (3.1)

Here Ck(·) is a convex increasing function (which differs from those in the

previous section).

There are still deadline constraints on triage patients. As a result, the

problem is still to minimize the cumulative cost above, while subject to the
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deadline constraints on those triage patients. Similarly to the queue length

model, we will solve this problem in the conventional heavy traffic framework.

The heavy traffic framework is similar to the one for the queue length

model. The definition of asymptotic compliance is also identical to the one

in the queue length model.

Define the diffusion scaled waiting time of a WIP patient at stage k′

with starting class k by

ω̃rk′(t) = r−1ωrk′(r
2t).

Assume that, a WIP patient starting with class k incur a sojourn time cost

Ck
(∑

k′∈Ck ω̃
r
k′
)
. Then the cumulative queueing cost till time t is

S̃r(t) =
∑

k∈C0

∫ t

0

Ck

(∑

k′∈Ck

ω̂rk′(s)

)
d ¯̄Er

k(s). (3.2)

Definition 3.1.1: A family of control policies {πr∗∗} is said to be asymptotically

optimal if

1. it is asymptotically compliant and

2. for every t > 0 and every x > 0,

lim sup
r→∞

P
{
S̃r∗∗(t) > x

}
≤ lim inf

r→∞
P
{
S̃r(t) > x

}
;

here {S̃r∗∗} is the family of cumulative queueing costs defined through
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(2.9) under the family of control policies {πr∗∗}, and {S̃r} is the sequence

of queueing costs corresponding to any other asymptotically compliant

family of policies {πr}.

We propose the following routing policy: the first step, using a threshold

policy to determine the priority between triage classes and WIP classes, and

the step using (2.13) to determine priorities among triage patients, do not

change. The step determining the priority among WIP classes will change as

follows:

• Give priority to all subsequent classes, while allocating the service ca-

pacity to all starting classes to ensure the following

max
l,k∈C0

sup
0≤t≤T

∣∣∣∣∣∣

C ′l

(
Q̂r

l (t)

λrl

)

me
l

−
C ′k

(
Q̂r

k(t)

λrk

)

me
k

∣∣∣∣∣∣
⇒ 0. (3.3)

Here Ql, Qk are the queue lengths of the starting classes j, k ∈ C0,

and me
l ,m

e
k are the corresponding effective means of service times. An

example of such a policy is to choose k ∈ argmaxk∈C0
C′k(Q̂r

k(t)/λrk)
me

k
. Other

examples of policies satisfying the above can be modified from the

policies in §2.5.2: assume G and H are K ×K-dimensional invertible

matrix and K-dimensional vectors in §2.5.2, the physician chooses a

patients from the class with index

k ∈ argmaxk∈C0Hk

(
GC ′

(
Q̂r(t)

λr

))

k

,
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here C ′
(
Q̂r(t)
λr

)
is a |C0|-dimensional column vector with C ′k

(
Q̂r

k(t)

λrk

)

being its kth component (here |C0| is the number of terms in C0).

This family of policies is denoted by {π̃r∗∗}.

Giving priority to all subsequent classes when serving WIP classes is

consistent with the observation in [40], where it is referred to as “Prioritize

Old” policy.

Theorem 3.1.1 (Sojourn Time Cost): The family of control policies {π̃r∗∗}

is asymptotically optimal.

The proof for this Theorem can be found in §3.4.

Remark 3.1.1: 1. A different feature from the queue length case in choos-

ing which WIP class to serve is as follows: one assigns priority to those

patients who have already received at least one WIP treatment. Then

when applying the results to the case with upper WIP-to-WIP transi-

tion matrix, such a service policy is not FCFS within classes: indeed,

if patients in an WIP class can originate from both triage and WIP pa-

tients, priority must be given to the latter. It follows that, even under

Markovian routing, it is necessary to record the class-history of each

patient.

2. Congestion laws: Similarly to our cost-per-visit model, and assuming

the above class designation, the snapshot principle also prevails for the
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WIP cost per sojourn time model, under our proposed policy. The

snapshot principle then implies the sample-path version of Little’s law:

the relation between waiting time and queue length for any starting

class, where the former is asymptotically identical to the age of head-

of-the-line patient in that class. Moreover, the overall WIP sojourn

time is approximately the waiting time in the corresponding starting

class, since higher priority is given to the subsequent classes. Thus, a

predictor for the sojourn time of a patient, who is starting the WIP pro-

cess in class k, would be simply the age of the head-of-the-line patient

in class k.

3.2 An ED case study: the value of information & imputed

costs

Most triage indices are based on 5 severity levels ([18, 29]). This granularity

is typically too lean to account for patient characteristics that are relevant

for decision making - clinical and operational. For example, the ED in Israel

([10]), which uses the Canadian Triage and Acuity Scale (CTAS), attempts

to also take into account age and predicted A&D status (will the patient

be Admitted, Discharged or transferred to another facility); other EDs, for

example those implementing the U.S. Emergency Severity Index (ESI), con-

sider the number of ED resources used by the patient, a proxy for which could

be the number of visits to an ED physician that a patient experiences. Note
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that A&D status and the number of WIP phases are unknown at the triage

state, but existing report, as well as ED directors, tell us that experienced

ED physicians or nurses can predict them accurately; see [39, 40]. In this

subsection, based on data from our partner, we use our models to assess the

operational benefits of such predictions.

For simplicity and insight, we analyze only the WIP part of the ED

patient flow, and we focus on A&D status and the number of WIP visits to

an ED physician (which we refer to as WIP phases: each such phase will be

regarded as a separate class in our formal model.)

In ED-Partner, patients experience 1-5 WIP phases: 28% go through 1

phase only, 30% have 2 phases, 28% - 3 phases, 11% - 4 phases, and 3% go

through 5 WIP phases.

Tab. 3.1: Number of WIP visits

# WIP visits 1 2 3 4 5

Proportion 0.28 0.30 0.28 0.11 0.03

The fractions of patients who are Discharged is close to 60%; the others

are admitted or transferred elsewhere - both referred to as Admitted. We

assume that A&D status and the number of WIP phases are independent;

hence, for example, the fraction of patients who will be admitted after 3

WIP phases is 40%× 28% = 11.2%. Expert-solicitation in [10] revealed that

sojourn time costs can be assumed quadratic. Specifically, the cost function

for admitted patients is ca(t) = Ct2 for some constant C; the specific value

of C turns out unimportant for the comparisons that we shall perform - we

thus assume C = 1. For discharged patients, the cost is twice that of the
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admitted ones, hence it is cd(t) = 2t2.

Tab. 3.2: Cost functions

A & D Status Admitted Discharged

Proportion/Cost function 0.40, t2 0.60, 2t2

Assume that the external arrival rate is 1, and the mean service time for

WIP patients is equal across all phases (this is not unreasonable from our

experience); denote this common value by m, which is determined so that

the ED operates in heavy traffic (traffic intensity ρ ≈ 1).

Now we compare three scenarios: no-information, where the ED con-

troller is aware of neither A&D status nor the number of WIP phases; partial-

information, where only the number of WIP phases is known, which will be

shown to lead to a reduction of 18% in congestion costs; and full-information,

where both are known, which results in about 27% reduction relative to the

no-information cost. The results of the three scenarios are summarized in

the following table (here “Y” means the information can be estimated when

a patient arriving at the ED, “N” means can not; “⇓ 18.01%” means by com-

paring to the “Benchmark” in Case 1, the congestion cost can be reduced by

18.01%, similarly to “⇓ 26.8%”.):

Tab. 3.3: Comparison of results

Case 1 Case 2 Case 3

# WIP visits N Y Y

A & D Status N N Y

Congestion Cost Benchmark ⇓18.01% ⇓26.8%
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No information: Each patient goes (stochastically) through 1 to 5 phases;

e.g. the probability of continuing to phase 3 after a 2nd physician visit is

P23 = (1−0.28−0.3)/(1−0.28) ≈ 0.583. The individual sojourn cost function

is

c(t) = 0.4ca(t) + 0.6cd(t) = 1.6t2. (3.4)

In §3.5 of the Appendix, we analyze a system with only two phases. From the

analysis there, with the above cost functions and means of service times, an

asymptotically optimal policy is to give priority to the second phase. This ar-

gument can be generalized to multi-phases: for example, in the 5 phase prob-

lem, one can first consider the last two phases. It can be argued, similarly

to §3.5, that an optimal policy assigns priority to the last phase. Then the

2-phase system is reduced to a system with only one phase and, in turn, the

5-phase to a 4-phase system. Continuing this way, an optimal policy assigns

priority to phases 2 – 5 over phase 1, and only the queue length of the latter

remains non-negligible asymptotically. From the argument in the Appendix,

the minimal queueing costs, corresponding to the above policy, accrues ap-

proximately at rate 1.6( (Q̃w−ω̂)+

me
1

)2 = 1.6 × 0.1874 (Q̃w−ω̂)2

m2 = 0.2998 (Q̃w−ω̂)2

m2 .

As a reminder, here Q̃w is a reflected Brownian motion, ω̂ is a weighted sum-

mation of the triage deadlines, and both can be calculated via the formulae

in §2.4.2.

Partial information: Now assume that the ED director knows, for individual

patients, their number of WIP phases (1-5). Then the cost function is still

as in (3.4). The patients are initially classified into 5 WIP classes; e.g.
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Class 3 returns 3 times to the physician, giving rise to 2 additional classes

along the way and ultimately being either admitted or discharged. (There

is a total of 15 classes.) From the sojourn time analysis in the previous

section, an asymptotically optimal policy assigns priority to all non-starting

WIP classes, while allocating the remaining service capacity to the 5 starting

phases as follows: serve a class with index

k ∈ max
l∈K

Ql(t)

l × pl
. (3.5)

Here Ql is the queue length of class l WIP patients, and pl is the fraction of

patients that visit the physician l times, l = 1, · · · , 5. From the argument

in the Appendix (especially (3.7) and the paragraph above it), the minimal

cost rate will be the value of the following problem:

min 0.28c(
Q1

0.28
) + 0.30c(

Q2

0.30
) + 0.28c(

Q3

0.28
) + 0.11c(

Q4

0.11
) + 0.03c(

Q5

0.03
)

s.t. m(Q1 + 2Q2 + 3Q3 + 4Q4 + 5Q5) = (Q̃w − ω̂)+.

withQi being the queue length of starting class i (i phases). Then the optimal

solution satisfies Q∗5 = 0.15
0.28

Q∗1, Q
∗
4 = 0.44

0.28
Q∗1, Q

∗
3 = 0.84

0.28
Q∗1, Q

∗
2 = 0.6

0.28
Q∗1, with

Q∗1
0.28

= (Q̃w−ω̂)+

m(0.28+1.2+2.52+1.76+0.75)
. Simple algebra leads to the asymptotically
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minimal cost rate of

(0.28 + 0.3× 4 + 0.28× 9 + 0.11× 16 + 0.03× 25)× 1.6×
(
Q∗1

0.28

)2

=
1.6× (Q̃w − ω̂)2

m2(0.28 + 1.2 + 2.52 + 1.76 + 0.75)
= 1.6× 0.1536

(Q̃w − ω̂)2

m2

=0.2458
(Q̃w − ω̂)2

m2
.

Calculating 0.2998−0.2458
0.2998

= 0.1801, it follows that having the information on

the number of WIP visits will reduce 18.01% of the no-information cost.

This is consistent with [39], in which this number of visits (complexity) is

identified as an important factor for improving ED operations.

Complete information: Now assume, at the director’s disposal, an accurate

prediction of both the number of WIP phases and the A&D status. By

the assumed independence of these two pieces of information, one can first

analyze the unilateral impact of A&D status, then multiply the two impacts

together. For completeness, we present an analysis that accounts jointly for

both factors.

Denote by Qai and Qdi the queue length of i-phase patients who will be

admitted and discharged, respectively. From the analysis in the Appendix

(especially (3.7) and the paragraph above it), and now having 10 initial

classes (the rest, due to their high-priority, enjoy negligible queueing), the

minimal cost rate is approximately the optimal value of the following opti-
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mization problem:

min
1

0.6

(
0.28ca(

Qa1

0.28
) + 0.30ca(

Qa2

0.30
) + 0.28ca(

Qa3

0.28
)

+0.11ca(
Qa4

0.11
) + 0.03ca(

Qa5

0.03
)

)

+
1

0.4

(
0.28cd(

Qd1

0.28
) + 0.30cd(

Qd2

0.30
) + 0.28cd(

Qd3

0.28
)

+0.11cd(
Qd4

0.11
) + 0.03cd(

Qd5

0.03
)

)

s.t. m(Qa1 + 2Qa2 + 3Qa3 + 4Qa4 + 5Qa5 +Qd1 + 2Qd2

+ 3Qd3 + 4Qd4 + 5Qd5) = (Q̃w − ω̂)+.

(In the above, we use the fact that ca and cd are quadratic functions, and

b(x
b
)2 = 1

b
x2).) Similarly to the partial information case, the problem can be

further reduced to the following:

min (0.28 + 0.3× 4 + 0.28× 9 + 0.11× 16 + 0.03× 25)

×
(

2

0.6
×
(
Qa1

0.28

)2

+
1

0.4
×
(
Qd1

0.28

)2
)

s.t.
Qa1 +Qd1

0.28
=

(Q̃w − ω̂)+

m(0.28 + 1.2 + 2.52 + 1.76 + 0.75)
.

The optimal value, namely the minimal cost rate, is 10
7
× 0.1536 (Q̃w−ω̂)2

m2 =

0.2194 (Q̃w−ω̂)2

m2 . As 0.2458−0.2194
0.2458

= 0.1074 and 0.2998−0.2194
0.2998

= 0.2682, we con-

clude that the information of A&D status unilaterally reduces 10.7% cost;

this is consistent with [40], who showed that A&D status contributes to im-

proving ED operations. Furthermore, having jointly the A&D status and the

number of WIP phases reduces congestion costs by 26.8%.
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3.3 Imputed cost

The ED case study was based on expert estimates of costs in an Israeli

hospital. Generally, such cost parameters are unavailable, which raises a

natural question: assume that an ED, after accumulating ample experience,

operates close to optimally; can one then infer the relative costs associated

with patient classes? The answer will shed light on the implicit understanding

of these costs by ED physicians. As an example, assume that patients are

classified into two classes: admitted and discharged, with the same means

of service times; assume further that sojourn time costs are quadratic, but

the parameters are unknown. The results in this thesis suggest that, if the

proportion of the queue lengths of the admitted class to the discharged class

are roughly a constant (state-space collapse), then the inverse of this constant

is an estimator of the ratio of the cost parameters. This is because, under

the assumptions on mean service times, one can expect that

caQa(t) ≈ cdQd(t)

from the state-space collapse results; here ca, cd are the cost parameters of

patients admitted and discharged, respectively, and Qa, Qd are the corre-

sponding rate. Then one has, as discussed above,

ca
cd
≈ Qd(t)

Qa(t)
.
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3.4 Proof of Theorem 3.1.1: Sojourn time cost

We first provide the proof of an asymptotic lower bound for all asymptoti-

cally compliant policies. Note that, when an WIP patient transfers to a next

stage, the cost accumulates and the cost function does not change. As a

result, whenever there are WIP patients in the ED, the physician should not

be idle, as the physician can always serve an WIP patient to reduce sojourn

cost. Then for any asymptotically compliant family of control policies, one

can prove that the family {Q̂r
ω} is stochastically bounded, in particular the

diffusion scaled queue length processes of WIP patients are stochastically

bounded. We now restrict our discussion to asymptotically compliant poli-

cies, in which the physician can not be idle if there are WIP patients. Then

one can prove Lemma 2.7.1. Following exactly the discussion in §2.7.7, we

can prove that, for any 0 ≤ a < b ≤ T ,

1
¯̄Er
k(b)− ¯̄Er

k(a)

(∫ b

a

τ̂ rkd
¯̄Er
k −

∫ b

a

Q̂r
k(s)ds

)
⇒ 0.

Now, following the steps in §2.7.7 (also in [41]), we can prove that for all

x ≥ 0,

lim inf
r→∞

P
{
S̃r(t) > x

}
≥ P

{∫ t

0

∑

k∈C0
λkCk

(
∆̂∗k

(
(Q̂w(s)− ω̂)+

)
/λk

)
ds > x

}
.
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Here ∆̂∗K = (∆̂∗k)k∈K is defined, for any a ≥ 0, via the solution to the following:

min
x

∑

k∈C0
λkCk

(∑

j∈Ck
xj/λk

)

s.t.
∑

k∈C0

∑

k′∈Ck

me
k′xk′ = a,

x ≥ 0.

(3.6)

The fact that the proposed family of control policies {π̃r∗∗} reaches the

lower bound can be proved easily, by showing the corresponding state-space

collapse result. Here we just give some structural insights on the optimal so-

lution to the problem (3.6). For classes in Ck, we know that, if
∑

k′∈Ck m
e
k′xk′

is fixed, then the solution minimizing Ck(
∑

k′∈Ck xk′/λk) is making xk non-

zero, while all other xk′ with k′ ∈ Ck\{k} are 0 (this is because me
k > me

k′ ,

for all k′ ∈ Ck\{k}). As a result, if the problem has an optimal solution

with some k′ ∈ Ck\{k} for some k, then one can always find a better solu-

tion, which is a contradiction. Now the problem is reduced to the following

problem:

min
x

∑

k∈C0
λkCk (xk/λk)

s.t.
∑

k∈C0
me
kxk = a,

x ≥ 0,

(3.7)

Following the discussion in solving (2.10) (using the KKT conditions), we can

define a new function, in analogy to ∆̂K(·) from (2.103) (but now with sub-
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script C0), and under {π̃r∗∗}, this function plays the role of a lifting mapping

in state-space collapse results.

3.5 Incomplete information

We consider a two phase problem as outlined in §3.2. Assume that each

patient in the ED will need at most two phases of treatment. After the first

phase, some of patients will leave the ED directly, while others will go to

phase 2. Assume that the mean service times at both phases are 1, and the

fraction of patients continuing to the second phase is p.

The physician in the ED does not have the complete information. That

is, when a new patient arrives at the ED, the physician does not know how

many phases will this patient go through in the ED. While arriving at the

second phase, the physician naturally knows that this is the second visit.

Assume that the cost function of a patient is ax2, when the sojourn time is

x. (As a is not important in the following analysis, we fix it to be 1.)

The physician seeks a routing policy which asymptotically minimizes the

following cost:

S̃r(t) =

∫ t

0

(τ̂ r11(s))2 d ¯̄Er
1(s) +

∫ t

0

(τ̂ r12(s) + τ̂ r2 (s))2 d ¯̄Er
2(s), (3.8)

in which τ r11(s) represents the waiting time of a patient arriving at time epoch

s and will go through only phase 1, τ r12(s) represents the waiting time in phase

1 of a patient arriving at time epoch s and going through both phases, and

τ r2 represents the waiting time in phase 2 of that patient; Er
1 is the arrival
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process for patients with 1 visit only, and Er
2 is the arrival process for patients

with 2 phases.

Following the discussion in the previous section, one can prove that

lim
r→∞
S̃r(t) ≥(1− p)

∫ t

0

(
∆̃1

(
Q̃w(s)− ω̂

)+
)2

ds

+ p

∫ t

0

(
∆̃1

(
Q̃w(s)− ω̂

)+

+ ∆̃2

(
Q̃w(s)− ω̂

)+

/p

)2

ds,

(3.9)

where (∆̃1(a), ∆̃2(a)) is the solution to the following optimization problem:

min
x

(1− p)x2
1 + p(x1 + x2/p)

2

s.t. (1 + p)x1 + x2 = a,

x1, x2 ≥ 0.

(3.10)

It is easy to see that the optimal solution to this problem is x1 = a
1+p

and

x2 = 0. As a result, in this two phase problem, an asymptotically optimal

policy is to give priority to the second phase.

Note that, there is some secretly trick in getting the lower bound above.

Following the discussion in §2.7.7, one can only prove that

1
¯̄Er

1(b) + ¯̄Er
2(b)− ¯̄Er

1(a)− ¯̄Er
2(a)
×

(∫ b

a

τ̂ r11(s)d ¯̄Er
1(s) +

∫ b

a

τ̂ r12(s)d ¯̄Er
2(s)−

∫ b

a

Q̃r
1(s)ds

)
⇒ 0.

(3.11)

Here Q̃1(t) is the queue length of those patients in the first phase at time t.

But this is not enough for proving (3.9). Indeed, the service discipline in the
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first phase is FCFS. One can thus expect that

1
¯̄Er

1(b)− ¯̄Er
1(a)

(∫ b

a

τ̂ r11(s)d ¯̄Er
1(s)

)
=

1
¯̄Er

2(b)− ¯̄Er
2(a)

(∫ b

a

τ̂ r12(s)d ¯̄Er
2(s)

)

=
1

¯̄Er
1(b) + ¯̄Er

2(b)− ¯̄Er
1(a)− ¯̄Er

2(a)

(∫ b

a

τ̂ r11(s)d ¯̄Er
1(s) +

∫ b

a

τ̂ r12(s)d ¯̄Er
2(s)

)
.

(3.12)

By using (3.12), together with (3.11), then following the discussion in §2.7.7

(also in [41]), we deduce (3.9).



4. SOME FUTURE RESEARCH DIRECTIONS

This thesis modeled and analyzed the patient flow in EDs by using queueing

theory. Two ED models are built, and asymptotic optimality of proposed

policies are also established. The differences of these two models (as shown

in the following table) are the assumptions (cost structure and the routing

behavior) and the information used in the policies (queue lengthes or ages):

Tab. 4.1: Comparison of two models

Queue Length Model Sojourn Time Model

Congestion Cost Queue Length Sojourn Time

blueWIP Transition Markovian Deterministic

WIP Policy Queue Length Age

The models considered in this thesis capture usefully the control of ED

patient flow, however, they are by no means the final story. Several no-

ticeable ED characteristics are left out. Additional ED features that seek

modeling include time-varying arrival rates, treatment times between suc-

cessive visits to the physician, ambulance diversion (admission control) and

patients who Leave-Without-Being-Seen (LWBS) or Against-Medical-Advice

(LAMA). Those features, we believe, are worthy of future researchs.



4. Some future research directions 112

4.1 Adding delays between transfers

In emergency department, there are delays between successive patient visits

to physicians. In [44], the delay phases are modeled as infinite-server queues

(content phases). One would expect that, if the delays are short, those delays

will have no impact asymptotically; at the other extreme, if the delays are

long, then those patients experiencing long delays can be regarded as new

arrivals and the system’s performance will change. The question is the precise

meaning of “short” and “long”, which we now formalize.

Consider the basic model as an example. Similarly to [44], model the de-

lays as infinite-server queues with exponential service times. The individual

service rate for the infinite-server queue between j-triage patients and k-WIP

patients is rαjkµjk, and the one between l-WIP patients and k-WIP patients

is rαlkµlk. Here µjk and µlk are fixed positive constants. The magnitude of

the α’s will determine “short” delays (large α) vs. “long” (small). Specifi-

cally, we conjecture that when α > −2 (for all α’s), the delays are then short

enough to leave the results in this thesis intact. Conversely, αjk < −2 (for

all j, k) decouples the triage from WIP - both can be controlled separately;

and αlk < −2 (for all l, k) pushes the WIP feedback far enough into the

future so that the WIP sub-system can be analyzed as a queueing system

without feedback. All other cases require further thought and plausibly a

more delicate analysis. A brief discussion is provided in §A.
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4.2 Time-varying arrival rates

Emergency departments, like many other service systems, must cope with

arrival rates that are significantly time-varying. The following figure, plotted

using SEEStat developed in SEELab at Technion, elaborate the arrival rate

to the emergency department of a hospital in Israel based on data on all

workdays in September-October 2004:

Fig. 4.1: Arrival rate in an Israeli ED
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As it can be seen from this figure, the arrival rate on the whole day is

time-dependent. In the present paper, we have focused our attention on the

ED afternoon-evening peak, which rendered relevant a stationary critically-

loaded model. Nevertheless, it is still of interest (to analyze the whole day),

and theoretically challenging, to view the ED as a time-varying queueing

system. This is especially true when staffing capacity can not be matched

well with demand - an unfortunate recurring scene in EDs - in which case

the system could alternate between underloaded and overloaded periods of
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a day ([30], [27]). The triage part of the time-varying ED flow control is

analyzed in [10], where the following problem is solved, in a fluid framework

and for a single triage-class: minimize service capacity for triage patients

subject to adhering to their triage constraints. A corresponding WIP part

is carried out in [6]. Combining these two results could provide the starting

point for solving the flow control problem for a time-varying ED, within a

fluid framework.

4.3 Length-of-Stay constraints

Many EDs implement, or at least strive for, an upper bound on patients’

overall Length of Stay (LOS). In an Israeli ED ([10]), for example, the goal is

to release a patient within at most 4 hours. Note, however, that if there are

too many patients within the ED, LOS constraints could simply turn infea-

sible. To this end, one could, perhaps should apply a rationalized admission

control - a rare protocol in the Israeli ED, but relatively prevalent in U.S.

EDs in the form of ambulance diversion ([16, 1, 2]). Interestingly, admission

control problems, with costs incurred by blocked customers, in fact motivated

[35]. But we opted for the analysis of triage-constraints first, in the belief

that they play a higher order (clinical) role. Nevertheless, accommodating

LOS and Triage constraints simultaneously is of interest and significance -

we thus leave it for future research.
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4.4 Adding abandonment to triage or WIP patients

The following figure, plotted using SEEStat again, elaborate the proportion

of patients leaving the ED in the Israeli hospital based on all workdays in

September-October 2004: From the figure, it can be seen that during the

afternoon-evening peak, the fraction of patients abandoning the ED is around

5%. Similar proportion is also observed in [2].

Fig. 4.2: Abandon proportion in an Israeli ED
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Abandonment phenomenon has become a growing concern in overcrowded

EDs. There are two kinds of abandonment: Left-Without-Been-Seen (LWBS)

and Against-Medical-Advice (AMA), in which the former represents the phe-

nomenon that the triage patients leave the ED before receiving any treat-

ments, while the latter represents the phenomenon that the WIP patients

leave the ED before finishing all treatments. For those LWBS patients may

miss out their necessary care and be exposed to unnecessary medical risk.

Similarly for those AMA patients. Thus it is necessary to analyze a model
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with customer abandonment. Queueing models with customer abandonment

has been analyzed in service systems such as call centers, and has proved sig-

nificant in affecting system performance and optimal decisions; see [19, 32].

Indeed, abandonment could significantly impact the structure of optimal

policies. For systems without feedback, [24] considered linear cost, with

hazard rate scaling of patience time distributions, and [3] covered general

cost functions with exponential patience time distributions. Both the works

analyze the corresponding Brownian control problem, and then interpret the

results to the original queueing systems. Both works show that the cµ (or

the generalized cµ) is no longer an optimal policy. As a result, for systems

with feedback, it is also natural to conjecture that the generalized cµ rule

is not optimal. But more fundamentally, understanding of the impact of

abandonment on systems with feedback is still lacking.



APPENDIX



A. DISCUSSION FOR THE CONJECTURE IN §4.1:

ADDING DELAYS AFTER SERVICE

From Lemma 3.4 of [5], we know that, for any given sequence of xn ∈ D,

there are yn ∈ D satisfying the following equation:

yn(t) = xn(t)− µn
∫ t

0

yn(s)ds; (A.1)

furthermore, if µn → ∞ and the sequence of {xn} is tight with xn(0) → 0,

then yn → 0. We shall use this result in the following discussion.

We use Qr
jk(t) to denote the number of patients in the delayed system

between j-triage and k-WIP patients at time t, and Qr
kl(t) the number of

patients in the delayed system between the k-WIP and l-WIP patients at

time t.
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The number of k-WIP patients at time t is

Qr
k(t) = Qr

k(0) +
∑

j∈J

(
Φjk

(
Sj
(
T rj (t)

))
+Qr

jk(0)−Qr
jk(t)

)

+
∑

l∈K
(Φlk (Sl (T

r
l (t))) +Qr

lk(0)−Qr
lk(t))− Sk (T rk (t))

= Qr
k(0) +

∑

j∈J
Φr
jk

(
Sj
(
T rj (t)

))
+
∑

l∈K
Φr
lk (Sl (T

r
l (t)))− Sk (T rk (t))

−
∑

j∈J

(
Qr
jk(t)−Qr

jk(0)
)
−
∑

l∈K
(Qr

lk(t)−Qr
lk(0)) , k ∈ K.

(A.2)

If we ignore the changes of T rj , j ∈ J and T rk , k ∈ K, then the difference

between (A.2) and (2.34) is
∑

j∈J
(
Qr
jk(t)−Qr

jk(0)
)
+
∑

l∈K (Qr
lk(t)−Qr

lk(0)),

which is the total change in the numbers of patients within the infinite-server

queues that would delays between services. As a result, we first describe an

analysis for infinite-server queues.

Consider a sequence of infinite-server queueing systems G/M/∞. In the

rth system, the arrival process is Er(·), with individual service rate µr = µrα,

in which α > −2. Assume that the fluid scaled arrival processes ¯̄Er are tight.

Here

¯̄Er(t) = r−2Er(r2t).

Denote by S a unit rate Poisson process, with its fluid scaling ¯̄Sr(t) =

r−2(S(r2t)−r2t). Then the fluid scaled queue length process ¯̄Xr = r−2Xr(r2t)
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can be represented as

¯̄Xr(t) = ¯̄Xr(0) + ¯̄Er(t)− ¯̄Sr
(
µr2+α

∫ t

0

¯̄Xr(s)ds

)
− µr2+α

∫ t

0

¯̄Xr(s)ds.

Fix a T > 0 and assume that there is M > 0 such that lim supr→∞
¯̄Er(T ) <

M/2. Define a sequence of stopping times (indexed by r) via

σr = inf

{
t > 0, µr2+α

∫ t

0

¯̄Xr(s)ds > M

}
∧ T.

Using (A.1), if ¯̄Xr(0) ⇒ 0, then one can show that ¯̄Xr(σr ∧ ·) ⇒ 0. And

following the discussion in proving (39) in [5], we can also prove σr ⇒ T . As

a result, ¯̄Xr ⇒ 0 on [0, T ]. As this T is arbitrary, we have ¯̄Xr ⇒ 0 on [0,∞).

Now return to our queueing systems with delays. Note that the arrival

processes for the infinite-server queueing systems are parts of the departure

processes from the physician. We can then easily verify that the requirements

for the analysis of the above G/M/∞ hold, in particular the sequence of the

fluid scaled arrival processes is tight. As a result, the G/M/∞ system will

not change in fluid scaling, meaning that the delays will have no impact on

the fluid limit of the ED model. (For a rigorous discussion, we can first

argue that the fluid limit of
∑

j∈J m
e
j

¯̄Qr
j +
∑

k∈Km
e
k

¯̄Qr
k will not change, and

then follow the steps in §2.6.2 to prove that the fluid limit for the busy time

processes do not change, namely they are λjmjt for j ∈ J and λkmkt for

k ∈ K.)

Finally we discuss the diffusion scaled processes. From the differences

between (A.2) and (2.34), to prove that
∑

j∈J m
e
jQ̂

r
j+
∑

k∈Km
e
kQ̂

r
k is invariant
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to all work-conserving policies, it is enough to argue that the following is true

for each k ∈ K:

1

r

[∑

j∈J

(
Qr
jk(r

2t)−Qr
jk(0)

)
+
∑

l∈K

(
Qr
lk(r

2t)−Qr
lk(0)

)
]
⇒ 0.

This again brings us to the analysis of G/M/∞ systems. Now for a se-

quence of G/M/∞ systems, fix a sequence of {λr}, and denote X̂r(t) =

r−1(Xr(r2t)− λr/µr) as well as

Êr(t) = r−1(Er(r2t)− λrr2t), and Ŝr(t) = r−1(S(r2t)− r2t).

We then have

X̂r(t) = X̂r(0) + Êr(t)− Ŝr
(
µr2+α

∫ t

0

¯̄Xr(s)ds

)
− µr2+α

∫ t

0

X̂r(s)ds.

Suppose that there is a sequence of {λr} with (i) λr → λ for some λ > 0, (ii)

X̂r(0)⇒ 0, and (iii) making {Êr} tight. Then from the fluid limit argument,

we can prove that Ŝr
(
µr2+α

∫ t
0

¯̄Xr(s)ds
)

converge to a driftless Brownian

motion with variance λ; using (A.1), we can now deduce that X̂r(·)⇒ 0.

Finally, return to the queueing systems with delays. From the above

discussion, it is enough to prove that the diffusion scaled arrival processes to

the delayed queues are tight. This is a gap that we are leaving for our future

research.
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