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SUMMARY

In contemporary statistics, the need to extract useful information from large

data boosts the popularity of high dimensional feature selection. High dimen-

sional feature selection aims at selecting relevant features from the suspected high

dimensional feature space by removing redundant features. Among high dimen-

sional feature selection studies, a large number of them have considered the main

effect features only, although the interactive effect features are also necessary for

the explanation of the response variable. In this thesis, we propose feasible feature

selection procedures under the high dimensional feature space by considering both

the main effect features and the interactive effect features, in the context of lin-

ear models and generalized linear models. An efficient feature selection procedure

usually comprises two important steps. The first step is designed to generate a

sequence of candidate models and the second step is designed to identify the best



Summary vii

model from these candidate models. In order to obtain an elaborate selection pro-

cedure under the high dimensional space with interactions, we are committed to

improving both two steps.

In chapter 2 of this thesis, we expand current studies of the new model selection

criterion EBIC (Chen and Chen, 2008) to interactive cases. The theoretical prop-

erties of EBIC for linear interactive models with a diverging number of relevant

parameters, as well as for generalized linear interactive models, are investigated.

The acceptable conditions under which EBIC is selection consistent are identified

and some numerical studies are provided to show sample properties of EBIC. In

chapter 3 of our study, we firstly propose a novel feature selection procedure, called

sequential L1 regularization algorithm (SLR), for generalized linear models with

only main effects. In this SLR, EBIC is applied as the identification criterion of

the optimal model, as well as the stopping rule. Subsequently, SLR is extended to

interactive models by handling main effects and interactive effects differently. The

theoretical property of SLR is explored and the corresponding conditions required

for its selection consistency are identified. In chapter 4 of our thesis, extensive

numerical studies are provided to show the effectiveness and the feasibility of SLR.
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LIST Of NOTATIONS

n the sample size or the number of independent

observations

y the n-dimensional response variable

X the design matrix with element xij

X(s) the sub-matrix composed of the columns of X with

indices in subset s

Xj the jth column vector of X

xi the ith row vector of X

β(s) the sub-vector of the coefficient vector β with indices

in s

p the number of the main effect features

ν(s) the number of components in sub-model s

s0n the true model
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In the identity matrix with order n
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CHAPTER 1

Introduction

With the rapid development of electrical industry and information technology,

contemporary data from various fields like biotechnology and finance tends to be

extremely large. Technologies related to large data are required in order to extract

knowledge and insights from large and complex collections of digital data. In

statistics, one of the most popular technology to deal with large data is high

dimensional feature selection. High dimension means that the number of features

p in the feature space is of polynomial order or exponential order of the sample size

n, which is also known as small n large p situation. The small n large p situation,

which is now commonly used, has experienced great changes if compared with
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the past, when few fields of statistics explored more than 40 features (Blum and

Langley, 1997; Kohavi and John, 1997). Feature selection, referred to as variable

selection, is a basic project which aims to select causal or relevant features from

suspected space by removing the most irrelevant and redundant features. It is

widely applied in many areas, including, for instance, quantitative trait loci (QTL)

mapping and genome wide association studies (GWAS), e.g. Storey et.al (2005),

Zou and Zeng (2009).

When the number of features p is fixed whereas the number of observations n

is sufficiently large, two main objectives of feature selection, selection consistency

and prediction accuracy, could be achieved simultaneously and effectively through

some traditional criteria like Akaikes information criterion (AIC) (Akaike, 1973),

Bayes information criterion (BIC) (Schwartz, 1978), cross-validation (CV) (Stone,

1974) and generalized cross-validation (GCV) (Craven and Wahba, 1979). Further-

more, in this fixed p large n situation, the optimal model is often decided directly

from finite candidate models by applying one of these traditional model selection

criteria. Actually, feature selection could be regarded as a special case of model

selection. They are different in that feature selection concentrates on detecting

causal features while model selection concentrates on the accuracy of the model.

However, model selection cannot be employed to identify the optimal model di-

rectly in high dimensional feature space, probably because there would be nearly
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2p sub-models with a quite large p and this huge number of candidate sub-models

make the identification of the best model impracticable in terms of computation-

al cost. Therefore, a popular way for variable selection in large p situation is to

obtain a certain number of candidate models first through some feature selection

approaches before deciding the final model on the basis of various model selection

criteria.

It is noted that, in small n large p situation, it is unlikely to address selection

consistency and prediction accuracy at the same time because of the occurrence of

over-fitting, thus it is necessary to address these two goals from different aspects.

The selection consistency deserves more attention than the prediction accuracy

since it is essential to extract effective information considering noise accumulation

and model interpretation. For instance, in QTL mapping and disease gene map-

ping, our primary interest is the markers which are either QTL or disease genes

themselves but not others. On the other hand, the occurrence of over-fitting also

suggests the requirement for reappraising the feasibility of those traditional criteria

under the new situation. In fact, it has been observed by many researchers that

all four criteria AIC, BIC, CV and GCV tend to be liberal in selecting a model

with many spurious covariants. This implies that they may not be suitable for

small n large p situation. As a result, some works have been done on adjusting the

priors on the basis of these criteria. Among these works, the most significant is the
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extended BIC information criterion (EBIC) developed by Chen and Chen (2008).

In high dimensional studies, the sparsity assumption, which indicates the true

number of relevant or causal features is small, is commonly used. This assumption

is reasonable for small n large p problems because it arises from many scientific

endeavors. For instance, in disease classification, it is generally agreed that only

a small fraction of total genes are responsible for a disease. However, it is a chal-

lenging task to select a few causal features that could explain the response variable

from a large amount of candidates, with a relatively small sample size. And various

difficulties in high dimensional space arise, such as high spurious correlation, mix

of causal and non-causal features and complicated computation. Statisticians have

made great efforts to develop new techniques to overcome these difficulties. Some

of them proposed dimension reduction, a straightforward and effective strategy,

to deal with the feature selection problem in high or ultra-high space. Strategies

for dimension reduction, such as sure independence screening (SIS), iterative SIS

(ISIS) (Fan and Lv, 2008), tournament screening (TS) (Chen and Chen, 2009) and

maximum marginal likelihood estimator (MMLE) (Fan and Song, 2010), can ease

the computation burden efficiently without losing important information, because

they possess sure screening properties which assure the probability that the reduced

lower-dimensional model contains the true model converges to 1 under certain con-

ditions. Nevertheless, the reduced lower-dimensional space still requires further
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selection because it has a much larger dimension than expected.

In general, an efficient procedure for high dimensional feature selection often

consists of two stages: a screening stage and a selection stage. The screening stage,

that is, the dimension reduction stage, may not be necessary if the number of fea-

tures p is large but not large enough. However, this stage becomes imperative when

interactions of features are considered since the dimension increases significantly.

The second stage, i.e. the further selection stage, is the core of feature selection

in high dimensional space. This selection stage usually comprises two important

steps. The first step aims at generating some candidate models and the second

step aims at selecting a final model among the candidate models. The first step

can be carried out through a suitable feature selection procedure. Feature selection

procedures can be classified into two major categories: sequential procedures in-

cluding classical methods like stepwise selection, backward elimination; penalized

likelihood methods including Lasso (Tibshirani, 1996). Among these categories,

the more popular one is penalized likelihood methods. The second step is realized

by using an appropriate model selection criterion. Traditionally, the AIC, BIC or

CV are used. In the case of high-dimensional data, a more suitable criterion is the

EBIC.

In the following sections, a detailed review of literatures related to the selection

stage are presented. In section 1.1, literatures about feature selection methods,
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especially penalized likelihood methods, are reviewed. In section 1.2, various model

selection criteria, especially the EBIC, are introduced. In section 1.3, the aim and

the organization of this thesis are given.

1.1 Feature Selection Methods

Many researchers have concentrated on developing efficient methods for feature

selection recently, especially in small n large p situation. Most of these selec-

tion methods were initially proposed through observations in linear models (LMs).

Under LMs, the well-known ordinary least squares (OLS) estimates, which are

obtained by minimizing residual squared error, suffer from two main drawbacks

(Tibshirani, 1996). The first drawback is prediction accuracy since OLS estimates

usually have low bias but large variance. The second drawback is interpretation

because a large number of OLS estimates are non-zero whereas only a small subset

of predictors exhibiting the strongest effects are required. Best subset selection

improves OLS by selecting or deleting an independent variable through hypothe-

sis testing, thus it provides interpretable models. Many traditional criteria, such

as AIC (Akaike, 1973) and BIC (Schwarz, 1978), follow stepwise subset selection.

However, the discrete process of subset selection may result in variability, that is,

small changes in data might lead to very different models.
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An alterative way to improve OLS is to add the penalty function coupled with

the tuning parameter λ to the log-likelihood function, which is referred to as the

penalized likelihood method. Penalized likelihood methods perform variable selec-

tion and estimate unknown parameters by jointly minimizing empirical errors and

penalty functions. In light of penalty functions, penalized methods often shrink

estimates to make tradeoff between variance and bias overcoming the drawbacks

of OLS estimates and best subset selection. These penalized likelihood method-

s include, for instance, least absolute shrinkage and selection operator (LASSO)

(Tibshirani, 1996), smoothly clipped absolute deviation (SCAD) penalty (Fan and

Li, 2001), least angle regression (LARS) (Efron et.al, 2004).

In the following paragraphs, literatures about penalized likelihood methods are

reviewed in details. It is generally known that both linear models (LMs) and gen-

eralized linear models (GLMs) play an important role in feature selection whereas

many penalized methods were initially developed through LMs, a special case of

GLMs. Thus, we first introduce penalized likelihood methods in the context of

LMs, that is, y = Xβ + ε, where y denotes the n × 1 response vector, X is an

n× r matrix and ε represents the n× 1 error term. Penalized likelihood estimates

can be summarized in the following form

β̂ = arg min
β
{‖y −Xβ‖2

2 +
r∑
j=1

pλ(βj)}.
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The penalty function pλ has a direct impact on the performance of various

penalized approaches. It is regarded as a good penalty if it results in an estimator

with three properties: unbiasedness, sparsity and continuity (Fan and Li, 2001).

Unbiasedness : The resulting estimator is unbiased for large true unknown pa-

rameters.

Sparsity : The resulting estimator can automatically set estimated coefficients

with small values to zero.

Continuity : The resulting estimator is continuous in data to avoid instability

in model prediction.

In 1993, Frank and Friedman proposed bridge regression with the Lq penalty,

that is, pλ(β) = λ|β|q. When q > 1, penalized estimates shrink the solutions to

reduce variability whereas do not enjoy sparsity. In particular, when q = 2, the

corresponding process, referred to as ridge regression (Draper and Smith, 1998),

shrinks coefficients continuously and thus obtains a better prediction result. Nev-

ertheless, ridge regression fails to provide an easy interpretable model since it does

not set any coefficients to zero.

When q ≤ 1, the Lq penalty results in sparse solutions but relatively large

biases. Among Lq families, the most famous one is the Lasso (Tibshirani, 1996)
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with L1 penalty, which is also referred to as basis pursuit in signal processing (Chen,

Donoho, and Saunders, 2001). Lasso’s estimates approach OLS estimates if the

value of λ is small whereas most of them are exactly zero when λ is sufficiently

large. This nature of Lasso leads to a continuous shrinking operation and sparse

estimates, which makes it catch researchers’ attentions increasingly due to the fact

that sparse models are more interpretable and preferred in sciences.

It was pointed out by Osborne et.al (2000) that Lasso provided a computa-

tionally feasible way for feature selection since its entire regularization path is

computed in the complexity of one linear regression. Subsequently, asymptotic

behaviors of Lasso estimates, i.e. consistency and limiting distributions, were in-

vestigated by Knight and Fu (2000). In order to apply Lasso for feature selection,

it is essential to assess how well the sparse model given by Lasso relates to the

true model. This assessment is made by some researchers through investigating

the model selection consistency of Lasso, and they then proposed some conditions,

for instance, Irrepresentable Condition (Zhao and Yu, 2006), Mutual Incohorence

Condition (Wainwright, 2009), Neighborhood Stability Condition (Meinshausen

and Buhlmann, 2006). These conditions require non-causal features to weakly

correlate with the relevant features, which seems too strong to be satisfied.

Lasso can be fitted efficiently by Least Angle Regression (LARS) (Efron et.al,

2004), the version of stagewise via the L1 penalty. LARS has a similar result
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with Lasso and it is useful in enhancing the understanding of Lasso. In addition,

although Lasso yields almost the same solution path with LARS, it might have a

slower speed in tracing the entire solution path. In general, Lasso is a valuable tool

for model fitting and feature selection. Nevertheless, it has several fundamental

limitations. Firstly, Lasso lacks the oracle property (Fan and Li, 2001): estimates

perform as well as if the true model is given in advance, because of its biased

estimates for large coefficients. Secondly, Lasso cannot handle the collinearity,

which reflects in its poor performance when high correlations exist. Actually, for a

group of features among which two-way correlations are high, Lasso tends to select

one feature from this group but does not care which one it is (Zou and Hastie,

2005).

Motivated by Lasso, numerous alternatives or extensions arose quickly. Zou and

Hastie (2005) proposed a new shrinkage and selection method, referred to as elastic

net, by combining Lasso and ridge regression, that is, pλ(β) = λ1|β|+ λ2|β|2. The

elastic net produces a sparse model with better prediction accuracy than Lasso,

especially for microarray data analysis, although it encourages a grouping effect

unfortunately. This grouping effect suggests that strongly correlated predictors

tend to be in or out of the model together. Zou (2006) advocated a new version

of Lasso, adaptive Lasso, by utilizing penalty for penalizing different coefficients,

i.e. pλ(βj) = λwj|βj| for wj = 1/|β̂j| with an initial estimator β̂j. If a reasonable
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initial estimator is available, adaptive Lasso enjoys the oracle property in the sense

of Fan and Li (2001) under either fixed p (Zou, 2006) or sparse high feature space

(Huang, Ma and Zhang, 2008) whereas Lasso does not. In summary, elastic net and

adaptive Lasso improve Lasso in two different ways: elastic net handles collinearity

whereas lacks the oracle property; adaptive Lasso owns the oracle property but

does not handle collinearity. To improve Lasso in both ways, Zou and Zhang

(2009) combined the strength of elastic net and adaptive Lasso and developed a

better method called the adaptive elastic-net.

Another significant extension of Lasso, sequential Lasso (SLasso), was proposed

by Luo and Chen (2013b) through solving a sequence of partial L1 penalized prob-

lems. By letting the earlier selected features not be penalized in later stages,

SLasso ensures sk ⊂ sk+1, where sk represents the set of features selected until

step k. This differs from Lasso in which a feature included in previous stages may

be left out in a later step. Under reasonable assumptions, SLasso enjoys the oracle

property in the scenario that the number of features p = exp(nk) and the number

of relevant features p0n diverges. It bears a similarity with OMP (Cai and Wang,

2011) but is advantageous in revealing properties of OMP under much weaker

conditions. In addition, SLasso is computationally appealing due to the intrinsic

nature of sequential methods and L1 penalty, which makes it more powerful for

high dimensional linear regression than other approaches like the elastic-net.
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In comparison with Lq families, SCAD (Fan and Li, 2001) is a successful al-

ternative because of its desirable properties including unbiasedness, sparsity and

continuity. The SCAD has a nonconcave penalty, which is given by

p′λ(β) = λI(β ≤ λ) +
(aλ− β)+

a− 1
I(β > λ) for some a > 2 and β > 0.

A penalty similar to SCAD is the minimax concave penalty (MCP) (Zhang, 2010),

whose derivative is expressed by p′λ(β) = (aλ − β)+/a. SCAD clearly takes off at

the origin as the L1 penalty and then gradually levels off, and MCP translates the

flat part of p′λ(β) of SCAD to the origin (Fan and Lv, 2010). The SCAD estimator

enjoys the asymptotically oracle property when the dimension of covariates is either

fixed (Fan and Li, 2001) or diverging slowly (Fan and Peng, 2004) or much larger

than the sample size, i.e. small n large p (Kim et.al, 2008). Nevertheless, it is more

difficult to compute SCAD estimates than other concave approaches, for example,

the L1 approach, although there has been effort to develop efficient algorithms for

these non-convex penalized problems.

Besides LMs, feature selection in other GLMs is also prevalent because of their

wide range of applications. However, GLMs are relatively little studied in high

feature space in comparison with LMs, probably because GLMs have more complex

data structures, complicated solution paths and implicit estimates and thus feature

selection in GLMs is more challenging. In fact, GLMs and LMs are only different

in that the former accepts different links between E(y) and Xβ, for example,
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identity, log, logit, whereas the later only allows identity. In light of the similarity

of LMs and GLMs, it is noteworthy to extend feature selection methods from LMs

to GLMs. As mentioned by previous literatures, feature selection methods such as

Lasso (Tibshirani, 1996), adaptive Lasso (Zou, 2006) and SLasso (Luo and Chen,

2013b) are efficient and powerful for high dimensional linear regression. Among

these methods, some like the adaptive Lasso (Zou, 2006) were extended to GLMs

only through a brief discussion while some were systematically investigated. For

instance, Lasso was systematically explored under GLMs and Park and Hastie

(2007) then developed the path-following algorithm. Nevertheless, SLasso, the

significant method which is highly advantageous in the oracle property and the

computation complexity, is not included in these extensions.

1.2 Model Selection Criteria

In high dimensional feature space, penalized methods can generate a sequence

of candidate models in light of different values of the tuning parameter λ. The

identification of the optimal model from these candidate models depends on the

appropriate choice of the tuning parameter, a choice which can be made through

some suitable model selection criteria. The selection criteria are determined by the

aim of a study. For instance, in a GLM, when a study focuses on the prediction
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performance of candidate models, it would be better to apply deviance or CV. But

if this study concentrates on singling out causal features, EBIC (Chen and Chen,

2008) may become a good selection criterion.

Over the past four decades, many traditional model selection criteria, including

the Cp criterion (Mallows, 1973), AIC (Akaike, 1973), BIC (Schwarz, 1978), CV

(Stone, 1974) and GCV (Craven and Wahba, 1979), have been proposed. The Cp

criterion mainly relies on some forms of the mean squared error (MSE) that is

frequently used for measuring the performance of a prediction. AIC and BIC have

similar forms, which are defined as minus twice log-likelihood for model s combining

with a penalized part, although they are developed from different philosophy. The

penalized part is given by 2ν(s) in AIC and ν(s) log n in BIC, where ν(s) represents

the cardinality of s. In CV, the dataset is divided into training set and testing set

alternatively. CV fits a model on the training set but validates the performance of

the model on the testing set. GCV is a generalization of CV by averaging diagonal

elements of the hat matrix. All these traditional criteria performed well when the

total number of features was small.

Recently high dimensional datasets frequently appear and pose great challenges

to model selection. In high feature space, AIC and BIC, which focus more on selec-

tion consistency, have a strong tendency to overestimate the number of regressors.

Furthermore, AIC seems to select the model with more features than BIC because
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of AIC’s relative smaller penalized part. Other classic criteria like CV and GCV,

which aim to minimize prediction errors, are also overly liberal by selecting a lot

of spurious features. This liberal phenomenon implies all these traditional criteria

may not be suitable for high dimensional feature selection and this implication has

been observed by many authors, e.g. Siegmund (2004), Bogdan et.al (2004), Chen

and Chen (2008).

Many authors attempted to improve traditional model selection criteria in high

dimensional space. Some of them concentrated on adjusting priors for BIC, includ-

ing modified BIC (mBIC) (Bogdan et.al, 2004) and extended BIC (EBIC) (Chen

and Chen, 2008). The mBIC supplements the original BIC with an additional term

ν(s) log(l − 1) for the study of QTL mapping with interactions. However, its via-

bility and effectiveness were reflected only through some simulations. In contrast,

EBIC, which was firstly developed by Chen and Chen (2008) through examining

both the number of unknown parameters and the complexity of the model space,

is shown to be selection consistent through strict demonstration under different

types of models, e.g. Chen and Chen (2008), Chen and Chen (2012), Luo and

Chen (2013a).

The definition and derivation of EBIC could be described in detail below. As-

sume {(yi, xi1, xi2, ..., xip) : i = 1, 2, ..., n} are the response variable and predictors

while f(yi|xij,β) is the conditional density of yi. The log likelihood function of yi
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is defined as

ln(β) = log Πn
i=1f(yi|xij,β).

Let β(s) be the sub-vector of the coefficient vector β with those components outside

s being 0 and β̂(s) be its corresponding maximum likelihood estimator (without

penalty). For s ⊂ {1, 2, ..., p}, the EBIC selects the optimal model which minimizes

EBICγ(s), where

EBICγ(s) = −2ln(β̂(s)) + ν(s) log n+ 2γ log

(
p

ν(s)

)
.

Various prior probabilities on models in different sub-models, which are indexed by

a parameter γ in the range greater than zero, are what make the difference between

EBIC and BIC. The original BIC is actually a special case of EBIC with γ = 0.

The mBIC could also be considered a special situation of EBIC in an asymptotic

sense; that is, it is asymptotically equivalent to EBIC with γ = 1.

The most important property of EBIC, selection consistency, is defined as

P (EBICγ(s0n) < min
s 6=s0n

EBICγ(s))→ 1 when n→∞.

It indicates that the selected model with the smallest EBIC converges to the true

model s0n at the probability 1. Under the constraint γ > 1 − 1
2k

, EBIC (Chen

and Chen, 2008) was shown to be selection consistent in LMs for p = O(nk) and

a fixed p0n, where p0n denotes the number of true features. This finding also

implies that BIC is not selection consistent because its corresponding γ is out
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of range. Generally, in comparison with BIC, EBIC controls the entry of spurious

features efficiently while keeping most of the true features, which may be its biggest

improvement. Luo and Chen (2013a) extended the selection consistency of EBIC

to the ultra-high feature space which allowed p = exp(O(nk)) but a diverging

p0n, for instance, O(nc) with a small c. This diverging setting for p0n is more

promising than a fixed setting for the purpose of reflecting the estimability of

feature effects. That’s because causal features in high dimensional space are still

relatively large and their effects often taper off to zero, although the true model

is assumed to be sparse. Besides LMs, EBIC is still selection consistent under

the more complicated and helpful GLMs with either canonical link (Chen and

Chen, 2012) or non-canonical link (Luo and Chen, 2013c). This significant work

has constituted an integral part for EBIC in ultra-high feature space. It is worth

noting that EBIC is not restricted to LMs and GLMs. In fact, it also performs well

in other types of models like gaussian graphical models (Foygel and Drton, 2010)

and Cox Proportional Hazards models (CPH) (Luo and Chen, 2013d).

The vast majority of previous studies for EBIC are limited to main effects.

The interactive effects are not considered in these studies although interactions

are prominent in explaining the response variable in some practical fields. For

example, empirical studies in QTL mapping have shown that interactions among

loci might conduce to most common diseases. The lack of interactive cases in
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high dimensional space may result in an inaccurate choice. In particular, for some

significant two-covariate interactions, there may be little main effects at a single

covariate, thus we cannot detect them when only main effects are considered. As

mentioned by many authors, such as Storey et.al (2005), Zou and Zeng (2009),

Zhao and Chen (2012), it is necessary to consider both main effects and interactive

effects for high dimensional feature selection. Therefore, in our thesis, for a wider

application of the EBIC, we would examine the properties of the EBIC under LMs

and GLMs, taking into consideration of interactions.

1.3 Aims and Organizations

For feature selection, both LMs and other GLMs play an important role in

high or ultra-high feature space. Among studies in high dimensional space, only a

relatively small number have been written on sparse models involving interactive

terms or non-linearity. As mentioned in section 1.1, the most popular feature

selection method under LMs and GLMs is the penalized likelihood method. Among

penalized methods, the more significant one is SLasso (Luo and Chen, 2013b)

proposed for LMs with only main effects. Therefore, in our thesis, we first provide

its extension, called sequential L1 regularization algorithm (SLR), to improve the

feature selection process for GLMs; and secondly we promote SLR to interactive
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models.

It was mentioned in section 1.2 that EBIC (Chen and Chen, 2008) is suitable

for high dimensional feature selection, because it can efficiently restrict the false

discovery rate while maintaining the positive discovery rate whereas classic model

selection criteria cannot. Nevertheless, the selection consistency of EBIC has been

demonstrated in models with main effect features only and it has not been explored

in either LMs or GLMs when interactions are taken into consideration. Denote LMs

and GLMs containing both main effects and interactive effects by linear interactive

models (LIMs) and generalized linear interactive models (GLIMs) respectively.

Under LIMs and GLIMs, the selection consistency of EBIC are also established in

our study.

In summary, our main purpose in this thesis was to propose feature selection

procedures for high dimensional space with interactions. Only two-way interactions

are considered in our interactive models since high order interactive effects are rare

and complicated. The results of our study may contribute to a more effective and

accurate way of selecting relevant features in QTL mapping and GWAS. At the

same time, the correct extraction of useful information in these fields of biology,

that is, the selection of relevant features, may offer a clear explanation for some

diseases like cancer, thus having a great potential impact upon our everyday life.
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The thesis is arranged as follows: In chapter 2, we will concentrate on examining

the selection consistency of EBIC in LIMs and GLIMs under a general scenario

where the number of relevant features is allowed to vary with sample size. In

chapter 3, with the application of EBIC, we will provide an efficient procedure

SLR to conduct feature selection in GLMs. SLR will be explored under models

with only main effects and interactive models respectively through section 3.1 and

section 3.2. In section 3.3, we will establish the selection consistency of SLR.

In chapter 4, extensive numerical studies will be provided to verify finite sample

properties of SLR. In the final chapter, chapter 5, some overall conclusions will be

presented and suggestions for future research will be given.
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CHAPTER 2

EBIC Under Interactive Models

EBIC is a new model selection criterion firstly developed by Chen and Chen

(2008) for feature selection in high dimensional space. It was motivated from

the classic BIC (Schwarz, 1978) by examining the complexity of the model space

through a parameter γ in the range [0, 1]. Under high or ultra-high space, EBIC

had been shown to be selection consistent under either LMs (Luo and Chen, 2013a)

or GLMs (Chen and Chen, 2012; Luo and Chen, 2013c). Nevertheless, in all these

studies, only the main effect features are taken into account whereas the interactive

effect features are not.

In this chapter, properties of EBIC under interactive models are explored. Only
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two-way interactive effect features are considered in this study and the data is

generally assumed to be centered. In section 2.1, we give a brief description for

EBIC under models with pairwise interactions. The selection consistency of EBIC

under linear interactive models (LIMs) and generalized linear interactive models

(GLIMs) is explored and discussed in section 2.2 and section 2.3 respectively.

2.1 Description for EBIC

In model selection, either main effect features or interactive effect features may

be related to the response variable y. As mentioned in section 1.2, for the study

of only main effects, EBIC is equivalent to an additional penalty term 2γ log
(
p
ν(s)

)
in the original BIC. When pairwise interactions are considered, this additional

penalty term should be 2γ log
(
p(p+1)
ν(s)

)
. Nevertheless, this approach is not credible

because the effect of selecting a main effect feature differs from that of selecting

an interactive effect feature. For example, a pairwise interaction involves two

covariates whereas a main effect feature only includes one corresponding covariate.

Thus, under either LIMs or GLIMs, EBIC should be modified by penalizing model

s with two parts of penalized functions in order to emphasize different roles of

main effect features and interactive effect features. We prepare one penalty part

2γm log
(

p
νm(s)

)
for main effects and the other part 2γI log

(
p(p−1)
νI(s)

)
for interactive
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effects, where νm(s) and νI(s) represent the number of main effect features and

the number of interactive effect features in the model s. As a result, EBIC under

models with interactions can then be expressed by

EBICγ(s) = −2ln(β̂(s)) + ν(s) log n+ 2γm log

(
p

νm(s)

)
+ 2γI log

(
p(p− 1)/2

νI(s)

)
.

(2.1)

2.2 Selection Consistency Under Linear Interac-

tive Model

Let {(yi, xi1, ..., xip) : i = 1, 2, ..., n} be independent observations. We consider

the following linear interactive model (LIM)

yi = xτiβ + εi =

p∑
j=1

βjxij +

p−1∑
j=1

p∑
k=j+1

βhxijxik + εi, i = 1, 2, ..., n. (2.2)

This model is equivalent to y = Xβ+ε if it is expressed in matrix notation, where

y = (y1, y2, ..., yn)τ , β = (β1, ..., βp(p+1)/2)τ , ε = (ε1, ..., εn)τ , X = (x1,x2, ...,xn)τ .

The first p components of xi are xij = xij while other p(p− 1)/2 components xih

satisfy xih = xijxik, where h = (2p − j + 1)j/2 + k − j for 1 ≤ j < k ≤ p. There

are two assumptions for this LIM. Firstly, the error term ε ∼ N(0, σ2In), where In

represents the identity matrix. Secondly, the model is sparse, which suggests most

components of β should be 0.
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Some notations required are introduced here first. We use s0n = {j : βj 6=

0, j ∈ {1, ..., p(p+ 1)/2}} to denote the true model. Refer to s as a submodel and

let ν(s) be the number of components in s. Let p0n = ν(s0n) and thus it represents

the number of relevant (or causal, true) features. In addition, we assume X(s)

is the matrix composed of the columns of X with indices in s and Xτ (s) is the

transpose of X(s). Define ∆n(s) = ‖µ−Hn(s)µ‖2
2, where µ = X(s0n)β(s0n) and

Hn(s) = X(s)(Xτ (s)X(s))−1Xτ (s). Then we state the main result on the selection

consistency of EBIC under high dimensional space with a diverging p0n.

Theorem 2.1. Assume model (2.2) and min( 4n(s)
p0n ln p

: s0n * s, ν(s) ≤ kn)→∞ for

kn = rp0n with any fixed r > 1. Besides, assume that p0n ln p = o(n), ln p0n/ ln p→

0. Then when n goes to +∞,

P ( min
s:ν(s)≤kn

EBICγ(s) > EBICγ(s0n))→ 1 (2.3)

if γm > 1− lnn
2 ln p

, γI > 1− lnn
4 ln p

.

Theorem 2.1 indicates that the selected model with the smallest EBIC among

models having a cardinality less than rp0n (r > 1), with a probability converging

to 1, will be the true model. The restriction for the cardinality of selected models

is reasonable since only models with the size comparable with the true model will

be considered in practice. This consistency theorem allows p = O(nk) (k > 0) or

ln p = O(nk) (0 < k < 1) and a diverging p0n satisfying ln p0n = o(ln p). Certainly,

it is still valid for a fixed p0n under either high or ultra-high feature space.
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The assumption limn→∞min( 4n(s)
p0n ln p

: s0n * s, ν(s) ≤ kn) = ∞ is called consis-

tency condition in Luo and Chen (2013a), which is shown to be weaker and greater

than asymptotic identifiability condition (Chen and Chen, 2008). This assumption

implicitly requires √
n

p0n ln p
min{|βj| : j ∈ s0n} → ∞, (2.4)

and thus it determines a constraint on the pattern (n, p0n, p,β). For example,

if p = O(exp(nk)) and p0n = O(nc), (2.4) reduces to n(1−c−k)/2 min{|βj| : j ∈

s0n} → ∞, which implies min{|βj| : j ∈ s0n} should have a magnitude larger

than O(n(c+k−1)/2). In this way, we obtain a consistency pattern (n, p0n, p) =

(n,O(nc), O(exp(nk))), min{|βj| : j ∈ s0n} = O(n(b−1)/2), 0 < c, k < 1, k + c <

b < 1. Similarly, when p = O(nk) and p0n = O(lnn), the following pattern is

still consistent: (n, p0n, p) = (n,O(lnn), O(nk)), min{|βj| : j ∈ s0n} = O(n(b−1)/2),

k > 0, 0 < b < 1.

Proof of Theorem 2.1 : Let Smj be the class of submodels including j main effects

but no interactive effects; Let SIj be the class of submodels containing j interactions

but no main effects. Thus, the size of Smj , τ(Smj ), should be Cj
p ; the size of SIj ,

τ(SIj ), should be Cj
p(p−1)/2. Under LIMs, for any s, EBICγ(s) − EBICγ(s0n) can

be decomposed into T1 + T2, where

T1 = n ln
yτ{In −Hn(s)}y
yτ{In −Hn(s0n)}y

= n ln
yτ{In −Hn(s)}y
ετ{In −Hn(s0n)}ε

= n ln{1 +
yτ{In −Hn(s)}y − ετ{In −Hn(s0n)}ε

ετ{In −Hn(s0n)}ε
}
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and

T2 = (ν(s)−ν(s0n)) lnn+2γm(ln τ(Smνm(s))−ln τ(Smνm(s0n)))+2γI(ln τ(SIνI(s))−ln τ(SIνI(s0n))).

Based on T1 and T2, the selection consistency is then explored under two cases:

s0n * s and s0n ⊂ s, in which two lemmas given by Luo and Chen (2013a) are

required, that is,

P (χ2
j ≥ m) =

1

Γ(j/2)
(m/2)j/2−1e−m/2(1 + o(1)) if m→∞ and j/m→ 0 (2.5)

and

ln(
p!

j!(p− j)!
) = j ln p(1− δ)(1 + o(1)) if p→∞ and

ln j

ln p
→ δ. (2.6)

Case 1: s0n * s

Without loss of generality, we assume σ2 = 1 and can write

εT{In −Hn(s0n)}ε =

n−p0n∑
i=1

Z2
i = (n− p0n)(1 + op(1)) = n(1 + op(1)),

where Zi are i.i.d. stand normal variable. We then have

yτ [In −Hn(s)]y − ετ [In −Hn(s0n)]ε

= ∆n(s) + 2µτ [In −Hn(s)]ε+ ετHn(s0n)ε− ετHn(s)ε.

For this equation, the following statements will be established uniformly for all s

with ν(s) ≤ kn, that is:

ετHn(s0n)ε = p0n(1 + op(1)); (2.7)
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max{ετHn(s)ε, ν(s) ≤ kn} = Op(kn ln p); (2.8)

|µτ [In −Hn(s)]ε| =
√

∆n(s)Op(kn ln p). (2.9)

Under our assumptions in the theorem, (2.7)-(2.9) then imply that

yτ [In −Hn(s)]y − ετ [In −Hn(s0n)]ε = ∆n(s)(1 + op(1)).

Thus

T1 = n ln(1 +
∆n(s)

n
(1 + op(1)))

uniformly for all s with ν(s) ≤ kn.

It is trivial that (2.7) is satisfied. We then prove (2.8) and (2.9). Let m =

2kn[ln an + ln(kn ln an)], where an = p(p + 1)/2. Obviously, kn
m
→ 0. Let Sj be

the class of submodels consisting of j features. Note that ετHn(s)ε = χ2
j(s) for

j = ν(s). By the Bonferroni inequality, we get

P (max{ετHn(s)ε : ν(s) ≤ kn} ≥ m)

= P (max{ετHn(s)ε : s ∈ Sj, j ≤ kn} ≥ m) ≤
kn∑
j=1

τ(Sj)P (χ2
j ≥ m).

The fact τ(Sj) = Cj
an ≤ ajn, combined with the equation (2.5), suggests that there

is some c closing to 1 but not depending on j, such that

τ(Sj)P (χ2
j ≥ m) ≈ c

1

2j/2−1Γ(j/2)

τ(Sj)

aknn
(kn ln an)−knmj/2−1

≤ c

m
(kn ln an)−jmj/2 =

c

m
[

√
m

(kn ln an)2
]j =

c

m
qjn,



2.2 Selection Consistency Under Linear Interactive Model 28

where

qn =

√
m

(kn ln an)2
=

√
2kn[ln an + ln(kn ln an)]

(kn ln an)2
(1 + o(1)) ≤ q

for some 0 < q < 1 when n is sufficiently large. Therefore

P (max{ετHn(s)ε : s ∈ Sj, j ≤ kn} ≥ m) ≤ c

m

kn∑
j=1

qjn ≤
c

m

q

1− q
→ 0.

Thus

max{ετHn(s)ε, ν(s) ≤ kn} = m(1 + op(1)) = Op(kn ln p),

which establishes (2.8).

To verify (2.9), note that

µτ [In −Hn(s)]ε =
√

∆n(s)Z(s)

for Z(s) ∼ N(0, 1). Then we have

|µτ [In −Hn(s)]ε| =
√

∆n(s) max{|Z(s)| : ν(s) ≤ kn}.

For the same m, we have

P (max{|Z(s)| : ν(s) ≤ kn} ≥
√
m) = P (max{|Z(s)| : s ∈ Sj, j ≤ kn} ≥

√
m)

≤
kn∑
j=1

τ(Sj)P (|Z(s)| ≥
√
m)

=
kn∑
j=1

τ(Sj)P (χ2
1 ≥ m)

≤
kn∑
j=1

τ(Sj)P (χ2
j ≥ m)
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because P (χ2
1 ≥ m) < P (χ2

j ≥ m) by (2.5). Similarly, the last sum converges to

zero. This establishes (2.9).

Let γ = max(γm, γI), then we turn to EBICγ(s) − EBICγ(s0n). When n is

sufficiently large, if ∆n(s)
n
→ 0, T1 = n ln(1 + ∆n(s)

n
(1 + op(1))) is nearly ∆n(s)(1 +

op(1)). Thus

EBICγ(s)− EBICγ(s0n)

≥ ∆n(s)(1 + op(1))− p0n lnn− 2γp0n ln an ≥
∆n(s)

p0n ln p
(p0n ln p− lnn

ln p
− 4γ)→∞

uniformly for all s with ν(s) ≤ kn and any bounded γ. If ∆n(s)
n

> 0, then for some

positive c, we have

EBICγ(s)− EBICγ(s0n)

≥ n ln(1 + c)− p0n lnn− 2γp0n ln an ≥ n ln(1 + c)− p0n lnn− 4γp0n ln p→∞

uniformly for all s with ν(s) ≤ kn and any bounded γ.

Case 2: s0n ⊂ s

When s0n ⊂ s, {In −Hn(s)}X(s0n) = 0. As a result,

yτ [In −Hn(s)]y = ετ [In −Hn(s)]ε

and

ετ [In −Hn(s0n)]ε− ετ [In −Hn(s)]ε = ετ [Hn(s)−Hn(s0n)]ε = χ2
j(s),
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where j = ν(s) − ν(s0n). Denote s = (sm, sI), where sm represents the submodel

with only νm(s) main effects while sI denotes the submodel with only νI(s) inter-

active effects. Then j = jm + jI for jm = νm(s)− νm(s0n) and jI = νI(s)− νI(s0n).

We have

n log
ετ [In −Hn(s0n)]ε

ετ [In −Hn(s)]ε

= n log(1 +
χ2
j(s)

ετ [In −Hn(s0n)]ε− χ2
j(s)

)

≤
nχ2

j(s)

ετ [In −Hn(s0n)]ε− χ2
j(s)

.

When n → ∞, n−1ετ [In − Hn(s0n)]ε → σ2 = 1, that is, ετ [In − Hn(s0n)]ε =

n(1 + o(1)).

Let S̃jm,jI = {(sm, sI) : (sm, sI) ⊂ (Smjm+νm(s0n), S
I
jI+νI(s0n)); s0n ⊂ s}.

Note that τ(S̃jm,jI ) = Cjm
p−νm(s0n)C

jI
bn−νI(s0n) ≤ pjmbjIn , where bn = p(p− 1)/2.

Let mjm,jI = 2jm(ln p+ ln(jm ln p)) + 2jI(ln bn + ln(jI ln bn)).

Then we have

P (max
jm,jI

max{χ2
jm+jI

(s) : s ⊂ S̃jm,jI}
mjm,jI

≥ 1)

≤
∑
jm,jI

P (max{χ2
jm+jI

(s) : s ⊂ S̃jm,jI} ≥ mjm,jI )

≤
∑
jm,jI

τ(S̃jm,jI )P (χ2
jm+jI

(s) ≥ mjm,jI ).

Follow a similar way with case (1), we can get

∑
jm,jI

τ(S̃jm,jI )P (χ2
jm+jI

(s) ≥ mjm,jI ) ≤
c

mjm,jI

(

√
mjm,jI

jm ln p
)2(

√
mjm,jI

jI ln bn
)2,
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where

qjm =

√
mjm,jI

jm ln p
≤
√

c

ln p
(1 + o(1))→ 0

and

qjI =

√
mjm,jI

jI ln bn
≤
√

c

ln p
(1 + o(1))→ 0

for some finite c.

Thus,

max{χ2
jm+jI

(s) : s ⊂ S̃jm,jI , s0n ⊂ s} = mjm,jI (1 + op(1)).

Noting that ln bn = 2 ln p(1 + o(1)), we have

mjm,jI ≤ 2jm(ln p+ ln((kn − p0n) ln p)) + 2jI(ln bn + ln((kn − p0n) ln bn))

≤ (2jm + 4jI) ln p(1 + op(1))

since ln((kn−p0n) ln p)
ln p

→ 0. In addition,

nχ2
j(s)

ετ [In −Hn(s0n)]ε− χ2
j(s)

≤ nmjm,jI

n−mjm,jI (1 + op(1))
≤ mjm,jI (1 + op(1))

≤ [2jm ln p+ 4jI ln p](1 + op(1)).

Thus

T1 ≥ −[2jm ln p+ 4jI ln p](1 + op(1))

and

T2 = j lnn+ [2γmjm ln p+ 4γIjI ln p](1 + o(1)).
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Finally, we have

EBICγ(s)− EBICγ(s0n)

≥ (jm + jI) lnn+ [2γmjm ln p+ 4γIjI ln p](1 + o(1))

−[2jm ln p+ 4jI ln p](1 + op(1))

= jm lnn+ 2γmjm ln p(1 + o(1))− 2jm ln p(1 + op(1))

+jI lnn+ 4γIjI ln p(1 + o(1))− 4jI ln p(1 + op(1)).

When γm > 1 − lnn
2 ln p

, γI > 1 − lnn
4 ln p

, it can be deduced that EBICγ(s) −

EBICγ(s0n) > 0 uniformly for all s with ν(s) ≤ kn and s0n ⊂ s, if n is suffi-

ciently large.

2.3 Selection Consistency Under Generalized Lin-

ear Interactive Model

In the generalized linear interactive model (GLIM), y = (y1, ..., yn)τ follow a

particular exponential distribution with the density function

f(y|θ) =
n∏
i=1

exp{yiθi − b(θi)}. (2.10)
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The parameter θ = (θ1, ..., θn)τ is referred to as the natural parameter and its

corresponding space Θ is convex. Based on the properties of the exponential family,

b′(θi) = E(yi) = µi, b
′′(θi) = V ar(yi) = σ2

i . (2.11)

The mean µ = (µ1, ..., µn)τ is related to the design matrix X = (x1, ...,xn)τ

through the linear predictor η = (η1, ..., ηn)τ and a one-to-one continuous differen-

tiable transformation g, that is,

g(µi) = ηi = xτiβ =

p∑
j=1

xijβj +

p−1∑
j=1

p∑
k=j+1

xijxikβh, i = 1, 2, ..., n, (2.12)

where the last p(p − 1)/2 components of xi satisfy xih = xijxik (1 ≤ j < k ≤ p)

if h > p and β = (β1, ..., βp(p+1)/2)τ . This GLIM has a canonical link if η = θ.

An advantage of the canonical link is the existence of a minimal sufficient statistic

for β, that is, all information about β is contained in a function of the data with

the same dimension as β. The commonly used distributions for y, like normal,

poisson, bernoulli, all satisfy the canonical link. Thus, we only consider the GLIM

with the canonical link in our study.

Assume β(s) is the sub-vector composed of the elements of β with indices in

subset s and ν(s) is the number of features in s. We denote the set of true features

by s0n and denote the true coefficient vector by β0. By the assumption of sparsity,

most components of β0 are zero except for those in s0n, which implies p0n = ν(s0n)

is relatively small in comparison with p. The log likelihood function of y is given
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by ln(β) =
∑n

i=1 log f(yi|θi) =
∑n

i=1[yix
τ
iβ − b(xτiβ)]. Besides, let sn(β) = ∂ln(β)

∂β

and Hn(β) = ∂2ln(β)
∂β∂βτ

.

For C = rp0n (r > 1), define A0 = {s : s0n ⊂ s; ν(s) ≤ C}; A1 = {s : s0n *

s; ν(s) ≤ C}. The following conditions are imposed for EBIC under GLIMs.

C1: p = O(exp(nk)), 0 < k < 1/3; p0n = o(nk) uniformly for all k > 0.

C2: Suppose B(s) = {β : xτi (s)β(s) ∈ Θ, i = 1, ..., n}, then the interior of B(s)

is not empty, and β0(s) ∈ B(s) for s ∈ A0 ∪ A1.

C3: inf min{|β0j| : j ∈ s0n} > n−1/4.

C4: For all j, there exists a positive constant K such that |xij| ≤ K and

max
1≤i≤n

x2
ij∑n

i=1 x
2
ijσ

2
i

≤ Kn−1/6

log n

when n is sufficiently large.

C5: When n is sufficiently large, for s ∈ A1, there exists positive constants k1

and k2, such that

k1 ≤ λmin(n−1Hn(β0(s ∪ s0n)) ≤ λmax(n−1Hn(β0(s ∪ s0n)) ≤ k2.

C6: There exists a constant δ > 0, for all s ∈ A1, such that for any ε > 0,

| Hn(β(s ∪ s0n))

Hn(β0(s ∪ s0n))
− 1| ≤ ε
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when ‖β(s ∪ s0n)− β0(s ∪ s0n)‖2 ≤ δ.

These conditions are almost similar to those in Chen and Chen (2012). Chen

and Chen (2012) investigated properties of EBIC under GLMs with only main

effects and our study can be regarded as the extension or improvement of their

work. C1 points out the application range of EBIC in the GLIM, i.e. ultra-high

feature space and C3 determines a constraint on the coefficients. C4 is a weak

condition since it won’t be violated if the square of a feature is not severely skewed.

C6 extends C5 to a small neighborhood while both of them are only provided for

s ∈ A1.

Lemma 2.1: Under conditions C1-C6, for all s ∈ A0,

‖β̂(s)− β0(s)‖2
2 = Op(n

−1/3) (2.13)

uniformly when n→ +∞.

Theorem 2.2. Under conditions C1-C6, when n→∞,

P{min
s∈A1

EBICγ(s) ≤ EBICγ(s0n)} → 0 (2.14)

for any γm > 0, γI > 0 ;

P{ min
s∈A0,s 6=s0n

EBICγ(s) ≤ EBICγ(s0n)} → 0 (2.15)

for any γm > 1− logn
2 log p

; γI > 1− logn
4 log p

.
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Lemma 2.1 gives the convergence rate of the L2-consistency of the MLE β̂(s)

when s0n ⊂ s. Theorem 2.2 rigorously establishes the selection consistency of

EBIC under models with a fixed p0n. The EBIC remains selection consistent if p0n

diverges slowly with n at a low rate like p0n = O(log n).

Proof for Lemma 1: This proof is quite similar to the theorem 1 of Chen and

Chen (2012), except for the changes for the class of models in A0. Firstly, we

review an inequality (Chen and Chen, 2012) required, that is,

P (
n∑
i=1

ani(yi − µi) >
√

2m) ≤ exp(−m(1− ε)) (2.16)

for any m = O(n1/3) and ani satisfies
∑n

i=1 a
2
niσ

2
i = 1 and maxi |ani| = o(n−1/6).

Then we state this proof in details.

Let β(s) = β0(s) + n−1/3r, where r is a unit vector. It is clear that β(s) falls

into the neighborhood of β0(s) when n is sufficiently large and thus C5 and C6 are

applicable. For all s ∈ A0,

ln(β(s))− ln(β0(s)) = n−1/3rτsn(β0(s))− 1/2n1/3rτ{n−1Hn(β̃(s))}r

≤ n−1/3rτsn(β0(s))− k1(1− ε)n1/3.

As a result,

P (ln(β(s))− ln(β0(s)) > 0 : for some r)

≤ P (rτsn(β0(s)) ≥ cn2/3 : for some r)
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≤
∑
j∈s

P (snj(β0(s)) ≥ cn2/3) +
∑
j∈s

P (−snj(β0(s)) ≥ cn2/3).

Let a2
ni = x2

ij/
∑n

i=1 x
2
ijσ

2
i and we get max |ani| = o(n−1/6) by C4. Note that

snj(β0(s)) =
∑n

i=1(yi − µi)xij and
∑n

i=1 x
2
ijσ

2
i = O(n), thus by (2.16),

P (sn(β0(s)) ≥ cn2/3) ≤ P (
n∑
i=1

ani(yi − µi) ≥
√

2cn1/3) ≤ exp(−cn−1/3).

The total number of models in A0 is less than

C1
p(p+1)/2 + ...+ CC

p(p+1)/2 ≤ (
p(p+ 1)

2
)C ≤ p2C = exp{2Cnk} = exp{o(n1/3)}

because p0nn
k = o(n1/3) for all 0 < k < 1/3. Thus

∑
s∈A0

∑
j∈s

P (snj(β0(s)) ≥ cn2/3) = o(1).

In a similar way, we can have

∑
s∈A0

∑
j∈s

P (−snj(β0(s)) ≥ cn2/3) = o(1).

It should be noted that ln(β(s)) is a concave function, which suggests β̂(s) exists

and falls into the n−1/3-neighborhood of β0(s) uniformly for all s ∈ A0 with a

probability tending to 1. This lemma is then proved.

Proof for Theorem 2.2 :

Case 1: proof for (2.14)

For any s in A1, EBICγ(s) ≤ EBICγ(s0n) if and only if

ln(β̂(s))− ln(β̂(s0n))
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≥ 0.5[ν(s)− ν(s0n)] log n+ γm[log

(
p

νm(s)

)
− log

(
p

νm(s0n)

)
]

+γI [log

(p(p−1)
2

νI(s)

)
− log

( p(p−1)
2

νI(s0n)

)
]

≥ −0.5p0n(log n+ 2γm log p+ 4γI log p) > −cn1/3 for some positive c.

We then need to show that the probability that this inequality occurs goes to zero.

Let s̃ = s ∪ s0n for any s ∈ A1. For those β(s̃) near β0(s̃), we get

ln(β(s̃))− ln(β0(s̃))

= {β(s̃)− β0(s̃)}τsn(β0(s̃))− 1

2
{β(s̃)− β0(s̃)}τHn(β∗(s̃)){β(s̃)− β0(s̃)},

where β∗(s̃) is between β(s̃) and β0(s̃). Clearly, by C5 and C6,

{β(s̃)− β0(s̃)}τHn(β∗(s̃)){β(s̃)− β0(s̃)} ≥ k1n(1− ε)‖β(s̃)− β0(s̃)‖2
2.

Thus

ln(β(s̃))− ln(β0(s̃)) ≤ {β(s̃)− β0(s̃)}τsn(β0(s̃))− k1

2
n(1− ε)‖β(s̃)− β0(s̃)‖2

2.

For any β(s̃) satisfies ‖β(s̃)− β0(s̃)‖2 = n−1/4, we obtain

ln(β(s̃))− ln(β0(s̃)) ≤ n−1/4‖sn(β0(s̃))‖2 −
k1

2
(1− ε)n1/2.

By (2.16), it can be deduced that maxs∈A1 ‖sn(β0(s̃)‖2 = Op((nk)1/2) for k =

o(n1/3). Thus,

max{ln(β(s̃))− ln(β0(s̃)) : ‖β(s̃)− β0(s̃)‖2 = n−1/4, s ∈ A1}

≤ c{n−1/4(nk)1/2 − n1/2} ≤ c(n5/12 − n1/2) ≤ −cn1/2

(2.17)
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for a generic constant c. This (2.17) indicates that ln(β(s̃)) obtains its maximum

value inside ‖β(s̃)− β0(s̃)‖2 ≤ n−1/4, because of its concavity. It also suggests

max{ln(β(s̃))− ln(β0(s̃)) : ‖β(s̃)− β0(s̃)‖2 ≥ n−1/4, s ∈ A1}

≤ max{ln(β(s̃))− ln(β0(s̃)) : ‖β(s̃)− β0(s̃)‖2 = n−1/4, s ∈ A1} ≤ −cn1/2.

.

After that, let β(s̃) =
(
β̂(s)
0

)
. By C3, we can conclude

‖β(s̃)− β0(s̃)‖2 ≥ ‖β0(s0n − s)‖2 > n−1/4.

As a consequence, with a probability tending to 1,

ln(β̂(s))− ln(β0(s0n)) = ln(β(s̃))− ln(β0(s̃)) ≤ −cn1/2

uniformly for all s ∈ A1. Therefore, (2.14) is proved.

Case 2: proof for (2.15)

For s ∈ A0, let c = ν(s) − ν(s0n), c1 = νm(s) − νm(s0n) and c2 = νI(s) − νI(s0n).

Clearly, c = c1 + c2. By (2.6), EBICγ(s) ≤ EBICγ(s0n) is equivalent to

ln(β̂(s))− ln(β̂(s0n))

≥ 0.5[(ν(s)− ν(s0n)] log n+ γm[log

(
p

νm(s)

)
− log

(
p

νm(s0n)

)
]

+γI [log

(p(p−1)
2

νI(s)

)
− log

( p(p−1)
2

νI(s0n)

)
]

≥ (0.5c log n+ γmc1 log p+ γIc2 log
p(p− 1)

2
)(1 + o(1)).

We then show that, the probability that this inequality occur goes to zero uniformly

for s ∈ A0 with νm(s) = c1 and νI(s) = c2.



2.3 Selection Consistency Under Generalized Linear Interactive Model 40

When n is sufficiently large,

ln(β̂(s))− ln(β̂(s0n))

≤ ln(β̂(s))− ln(β0(s))

≤ {β̂(s)− β0(s)}τsn(β0(s))− 1− ε
2
{β̂(s)− β0(s)}τHn(β0(s)){β̂(s)− β0(s)}

≤ 1

2(1− ε)
sτn(β0(s)){Hn(β0(s))}−1sn(β0(s)).

The next, we show that the following

sτn(β0(s)){Hn(β0(s))}−1sn(β0(s))

2(1− ε)
≥ 0.5c log n+ γmc1 log p+ γIc2 log

p(p− 1)

2

does not occur. Due to the fact that {Hn(β0(s))}−1/2sn(β0(s)) is a linear combi-

nation of yi − µi, follow (2.16), then for every s ∈ A0,

P [sτn(β0(s)){Hn(β0(s))}−1sn(β0(s)) ≥ 2(1− ε)(0.5c log n+ γmc1 log p+ γIc2 log
p(p− 1)

2
)]

≤ exp{−(1− ε)(0.5c log n+ γmc1 log p+ γIc2 log
p(p− 1)

2
)}

with an arbitrarily small but generic ε > 0.

Let

0.5c1 log n+ γmc1 log p ≥ c1 log p (2.18)

and

0.5c2 log n+ γIc2 log
p(p− 1)

2
≥ c2 log

p(p− 1)

2
. (2.19)

We have rm ≥ 1− logn
2 log p

and rI ≥ 1− 0.5 logn

log
p(p−1)

2

. Plus (2.18)-(2.19), thus

exp{−(1−ε)(0.5c log n+γmc1 log p+γIc2 log
p(p− 1)

2
)} ≤ p−c1(1−ε)(

p(p− 1)

2
)−c2(1−ε)
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when rm ≥ 1− logn
2 log p

and rI ≥ 1− logn
4 log p

.

For any fixed c1, c2, the number of models in A0 is

Cc1
p C

c2
p(p−1)/2 ≤ pc1(

p(p− 1)

2
)c2 .

Therefore, uniformly for s ∈ A0,

P (
sτn(β0(s)){Hn(β0(s))}−1sn(β0(s))

2(1− ε)
≥ 0.5c log n+γmc1 log p+γIc2 log

p(p− 1)

2
)→ 0.

This completes the proof for (2.15).
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CHAPTER 3

Feature Selection Procedures

In high dimensional space, EBIC can identify the optimal model from candi-

date models with cardinality up to rp0n (r > 1). With the application of EBIC, we

develop a novel feature selection procedure, referred to as sequential L1 regulariza-

tion algorithm (SLR), in this chapter. This chapter comprises three sections. The

first two sections separately explore SLR under models with only main effects and

interactive models while the third section aims at investigating theoretical proper-

ties of SLR. In section 3.1, SLasso (Luo and Chen, 2013b), a powerful procedure

for high dimensional linear regression, is reviewed first. Analogous to SLasso, we

select the next feature (features) maximizing the profile marginal score function,



3.1 Models with Only Main Effects 43

and propose SLR for feature selection in GLMs. In section 3.2, SLR is extended

from models with only main effects to interactive models. The core idea for this

extension is to group features into main effects and interactive effects and handle

them differently. In section 3.3, the selection consistency of SLR under a GLM

with the canonical link is established and the corresponding conditions required

are provided.

3.1 Models with Only Main Effects

3.1.1 Linear Model: SLasso

A linear model with only main effects is given by

y = Xβ + ε, (3.1)

where y = (y1, ..., yn)τ , β = (β1, ..., βp)
τ , X = (xij)n×p and ε = (ε1, ..., εn)τ with

ε ∼ N(0, σ2In). For feature selection under this LM, SLasso (Luo and Chen,

2013b) is superior to other selection procedures. It selects features sequentially

by letting earlier selected features not be penalized in later steps, which can be

described as follows.
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• SLasso starts with the L1 penalized sum of squares:

l1 = ‖y −Xβ‖2
2 + λ

p∑
j=1

|βj|.

l1 is minimized by tuning λ to the largest value to allow some βj nonzero.

Denote the set of indices of all nonzero βj by s1 and it is referred to as the

active set.

• Assume the active set sk is obtained after k steps have been carried out. In

the (k + 1)th step, the partial penalized function

lk+1 = ‖y −Xβ‖2
2 + λ

∑
j∈sck

|βj|

is then minimized by letting λ to be the largest value to allow at least one βj

with j ∈ sck nonzero. All features with nonzero estimated coefficients then

form the active set sk+1.

This process continues until some stopping rule is satisfied. EBIC (Chen and Chen,

2008) serves as an appropriate and workable stopping rule because of its selection

consistency and the tendency of minν(s)=k EBICγ(s) > minν(s)=k+1 EBICγ(s).

Assume Xj is the jth column vector of X and X(s) is the matrix composed of

the columns of X with indices in s. For j ∈ sc, define

γ(Xj|s) = Xτ
j (I −Hn(s))y (3.2)

for Hn(s) = X(s)(Xτ (s)X(s))−1Xτ (s). From the point of calculation, the process

of SLasso can be restated as follows.
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• Initial Step: Standardize y, Xj, j = 1, 2, ..., p such that
∑n

i=1 yi = 0,∑n
i=1 y

2
i = n,

∑n
i=1 xij = 0 and

∑n
i=1 x

2
ij = n. SLasso selects the feature

(features) given by

s1 = {l : |Xτ
l y| = max

j=1,...,p
|Xτ

j y|}.

• General Step: For k ≥ 1, let

stemp = {l : |γ(Xl|sk)| = max
j∈sck
|γ(Xj|sk)|}.

Update sk+1 = sk ∪ stemp. If EBICγ(sk+1) > EBICγ(sk), stop and take sk

as the optimal model; otherwise, continue.

Clearly, the feature in stemp corresponds to the estimated nonzero βj with j ∈

sck. After sk is obtained, SLasso selects the next feature or features maximizing

|γ(Xj|sk)|, which shares the same way of identification with OMP (Cai and Wang,

2011). These two procedures choose the same feature when only one feature max-

imizes |γ(Xj|sk)|. However, SLasso differs from OMP when there are more than

one features in stemp. This difference is embodied in that OMP selects all these

features whereas SLasso may not select all of them due to the restriction of partial

cone condition (Luo and Chen, 2013b). Actually, there are very few cases when

there are more than one features that maximize |γ(Xj|sk)|. Thus, the difference of

SLasso and OMP can be passed over. In general, SLasso is essentially equivalent

to OMP.
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3.1.2 Generalized Linear Model: SLR

SLasso (Luo and Chen, 2013b) and OMP (Cai and Wang, 2011) are powerful

for high dimensional linear regression because of selection consistency and fast

implementation. These two sequential procedures select the next feature that

maximizes |γ(Xj|s)| (j ∈ sc). The identification criterion γ(Xj|s) deserves to be

extended to GLMs in view of the similarity of LMs and GLMs. It is interpreted

from the perspective of residuals by Cai and Wang (2011). Nevertheless, there are

several kinds of residuals for GLMs, for instance, raw residuals, pearson residuals

and deviance residuals, which makes it quite difficult to be promoted. Fortunately,

it can also be interpreted from the perspective of score function. Compared with

residuals, the score function is advantageous in that it is unique in both LMs and

GLMs while it is also frequently applied in statistics.

In this subsection, we propose a novel sequential L1 regularization algorithm

(SLR) to conduct feature selection in GLMs. SLR is implemented by promoting

the identification criterion γ(Xj|s) from the perspective of score function. There

are three parts for this subsection. The concept of profile marginal score function is

introduced in the first part and we show that γ(Xj|s) can be described as a profile

marginal score function in the context of LMs. In the second part, we provide a

detailed description for SLR by applying the profile marginal score function under
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a GLM with only main effects. Finally, i.e. the third part, we modify SLR in the

logistic model, an integral part of GLMs, when separation (Albert and Anderson,

1984) occurs.

3.1.2.1 Profile Marginal Score: γ(Xj|s)

Most practical problems of parameter inference aim at inferring part of the

parameter vector of interest in the presence of nuisance parameters, thus moti-

vate the emergence of profile evaluation. For the parameter vector (ψ,ω) with a

nuisance ω, the profile evaluation firstly supposes ψ is known and then rewrites

the log-likelihood function as ln(ψ,ω) = lψ(ω) to show that ω varies whereas ψ is

fixed. To estimate ω, it maximizes lψ(ω), i.e. ω̃ψ = arg maxω lψ(ω), and succeeds

in evaluating ω̃ψ for each ψ. The interest ψ can then be estimated by

ψ̃ = arg max
ψ

lψ(ω̃ψ) = arg max
ψ

ln(ψ, ω̃ψ). (3.3)

In this way, the nuisance ω is profiled out. A bit of logical deduction illustrates that

ψ̃ and ω̃ψ̃ are maximum likelihood estimators (ψ̃, ω̃) = arg maxψ,ω ln(ψ,ω). The

log-likelihood function lψ(ω̃ψ) = ln(ψ, ω̃ψ) is completely in terms of ψ and is re-

ferred to as the profile log-likelihood function. Take the derivative of ln(ψ, ω̃ψ) with

respect to ψj, and the corresponding function can be called the profile marginal

score function.



3.1 Models with Only Main Effects 48

We then show that γ(Xj|s) = Xτ
j (I−Hn(s))y can be interpreted as the profile

marginal score function of βj with j ∈ sc. Decompose the parameter vector β into

(β(s),β(sc)), where β(s) denotes the sub-vector consisting of the components of β

with indices in s. We firstly assume β(sc) is fixed, and obtain a β̃(s) which varies

with β(sc) through

∂ln(β)

∂β(s)
|β(sc) =

∂lβ(sc)(β(s))

∂β(s)
= 0. (3.4)

Under LMs, the equation (3.4) indicates

β̃(s) = (Xτ (s)X(s))−1Xτ (s)(y −X(sc)β(sc)) (3.5)

and
n∑
i=1

(yi − µ̃i)xij = 0 for all j ∈ s, (3.6)

where µ̃i = xτi (s)β̃(s) + xτi (s
c)β(sc) while xi = (xi1, ..., xip)

τ .

For j ∈ sc, take the first derivative of ln(β̃(s),β(sc)), we have the profile marginal

score function

∂ln(β̃(s),β(sc))

∂βj
=

n∑
i=1

(yi − µ̃i)(xi(s)
∂β̃(s)

∂βj
+ xij). (3.7)

Plug (3.6)-(3.7), it becomes

∂ln(β̃(s),β(sc))

∂βj
=

n∑
i=1

(yi − µ̃i)xij = Xτ
j (y − µ̃), ∀j ∈ sc. (3.8)

Specially, when β(sc) = 0, features outside the current active set s are treated

equally. Impacts of these features on the variation of ln(β̃(s),β(sc)) are measured
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and the feature with the greatest impact, i.e. the feature corresponds to the largest

absolute profile marginal score value, is selected by SLasso and OMP. Let β̂(s) =

β̃(s)|β(sc)=0 and µ̂ = µ̃|β(sc)=0. Combining with the equation (3.5), for j ∈ sc, we

have

∂ln(β̃(s),β(sc))

∂βj
|β(sc)=0 = Xτ

j (y − µ̂) = Xτ
j (y −X(s)β̂(s)) = Xτ

j (I −Hn(s))y.

(3.9)

Thus γ(Xj|s) is indeed a profile marginal score function with respect to βj.

3.1.2.2 SLR in GLM

A GLM including only main effects is composed of three components. Firstly,

the response variable y = (y1, ..., yn)τ ∼
∏n

i=1 f(yi|θi) =
∏n

i=1 exp{θiyi − b(θi)}.

At the same time, the mean µ = (µ1, ..., µn)τ and variance σ2 = (σ2
1, ..., σ

2
n)τ of

y satisfy µi = b′(θi) and σ2
i = b′′(θi). The second component is a linear predictor

η = (η1, ..., ηn)τ which is expressed by ηi = xτiβ, where xi = (1, xi1, ..., xip)
τ

and β = (β0, β1, ..., βp)
τ . The third component is the link function g between µ

and η, i.e. g(µ) = η. The coefficient vector β of this GLM is slightly different

with that of previous sections because of the existence of the intercept β0, as

well as the design matrix X = (x1, ...,xn)τ . Thus for a current active set s, we

keep β(sc) and X(sc) unchanged whereas redefine β(s) and X(s) by automatically

including the corresponding β0 and X0 = (1, ..., 1)τ . For instance, when s = {j},
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let β(s) = (β0, βj)
τ while X(s) = (X0 Xj) with Xj = (x1j, ..., xnj)

τ .

In this GLM, the log-likelihood function is given by

ln(β) =
n∑
i=1

{yiθ(β)i − b(θ(β)i)}. (3.10)

Take the first derivative of ln(β) with respect to βj for any j, we have

∂ln(β)

∂βj
= Xτ

jW (y − µ)g′(µ), (3.11)

where W is a diagonal matrix with n diagonal elements Wii = 1/b′′(θi)(g
′(µi))

2

and (y −µ)g′(µ) is a vector with n elements (yi − µi)g′(µi). SLR selects the next

feature among features outside the current active set s that maximize |γg(Xj|s)|,

where

γg(Xj|s) = Xτ
j Ŵ (y − µ̂)g′(µ̂), j ∈ sc. (3.12)

This identification criterion γg(Xj|s) is obtained from the point of profile marginal

score function, which is analogous to γ(Xj|s). The corresponding process can be

described in detail as follows.

Assume β(sc) is fixed and take the derivative of β(s), we have ∂ln(β)
∂β(s)

|β(sc) = 0.

It indicates

Xτ (s)W̃ (y − µ̃)g′(µ̃) = 0. (3.13)

Both W̃ and µ̃ depend only on β̃ = (β̃(s),β(sc)) with β̃(s) = arg maxβ(s) ln(β(s),β(sc)).
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Specially, when β(sc) = 0, we have the profile marginal score function

∂ln(β̃(s),β(sc))

∂βj
|β(sc)=0 = Xτ

j Ŵ (y − µ̂)g′(µ̂), j ∈ sc. (3.14)

The Ŵ and µ̂ in (3.14) vary with β̂ = β̃|β(sc)=0 = (β̂(s),0), thus can be written

as Ŵ = W (β̂) and µ̂ = µ(β̂).

Unlike LMs, it is unable to get β̂ directly, thus we apply the popular iterated

weighted least squares (IWLS) procedure to solve

∂ln(β)

∂β(s)
|β(sc)=0 = Xτ (s)Ŵ (y − µ̂)g′(µ̂) = 0. (3.15)

The IWLS procedure starts with an initial value β(0) =

 β(0)(s)

0

. For the

positive integer h ≥ 1, let β(h) = (β(h)(s),β(h)(sc)). The β(h)(sc) is always fixed

as 0 while β(h)(s) can be obtained through

β(h)(s) = β(h−1)(s) + (Xτ (s)W (β(h−1))X(s))−1Xτ (s)W (β(h−1))z(β(h−1)), (3.16)

where z(β(h−1)) = (y − µ(β(h−1)))g′(µ(β(h−1))). That’s because

∂ln(β)

∂β(s)
|β=βnew ≈

∂ln(β)

∂β(s)
|β=βold +

∂2ln(β)

∂β(s)∂βτ (s)
|β=βold(β

new(s)− βold(s)) ≈ 0

(3.17)

and

E(
∂2ln(β)

∂β(s)∂βτ (s)
) = −Xτ (s)WX(s). (3.18)

This fitting process would be stopped if ‖β(h)−β(h−1)‖2
2 is close to 0. In this way,

β̂ = β(h) and µ̂ = µ(β̂), Ŵ = W (β̂) can be got subsequently.
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In this IWLS process, an appropriate β(0) is required to be given first. For the

sequential procedure SLR, it is reasonable to let the initial β(0) of the later step

be the final β̂ of the previous step, which suggests that we only need to decide an

initial β(0) at the very start of SLR. Let the starting model s0 = {∅}. Due to the

fact that ∂ln(β)
∂β(s0)

= 1τŴ (y − µ̂)g′(µ̂) = 0 when βj = 0 for j = 1, 2, ...p, the initial

estimator can be (β̂0, 0, ..., 0)τ with β̂0 = g(y).

Then we describe SLR in details on the basis of the identification criterion

γg(Xj|s) give in (3.12).

• Initial step: Standardize Xj, j = 1, 2, .., p; Initialize β̂ = (g(y), 0, ..., 0)τ ,

µ̂ = y1, θ̂ = b′−1(µ̂), Ŵ = diag{1/b′′(θ̂i)g′(µ̂i)2}. SLR selects the feature

(features) given by

s1 = {l : |Xτ
l Ŵ (y − µ̂)g′(µ̂)| = max

j=1,2,..,p
|Xτ

j Ŵ (y − µ̂)g′(µ̂)|}.

• General Step: For k ≥ 1,

– IWLS: new β̂, µ̂, Ŵ :

Initialize β(0) = β̂, µ(β(0)) = µ̂, W (β(0)) = Ŵ ;

For h = 1, 2, 3, ...

β(h)(sk) = β(h−1)(sk)+(Xτ (sk)W (β(h−1))X(sk))
−1Xτ (sk)W (β(h−1))(y−

µ(β(h−1)))g′(µ(β(h−1))) while β(h)(sck) = 0;

µ(β(h)) = g−1(Xβ(h)); θ(β(h)) = b′−1(µ(β(h)));
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W (β(h)) = diag{1/b′′(θi(β(h)))g′(µi(β
(h)))2};

Stop if ‖β(h−1) − β(h)‖2
2 ≤ 1e− 10;

New β̂ = β(h), µ̂ = µ(β(h)), Ŵ = W (β(h)).

– Active set sk+1:

γg(Xj|sk) = Xτ
j Ŵ (y − µ̂)g′(µ̂);

stemp = {l : |γg(Xl|sk)| = max
j∈sck
|γg(Xj|sk)|}.

Update sk+1 = sk ∪ stemp. If EBICγ(sk+1) > EBICγ(sk), stop and

take sk as the optimal model; otherwise, continue.

3.1.2.3 Special Situation: Separation In Logistic Model

The logistic model has become increasingly popular in many areas like medical

or genome-wide association studies. In those logistic studies, datasets are usually

small or sparse, which is likely to cause the phenomenon that is called separation

(Albert and Anderson, 1984). Separation is a non-negligible problem in models

where the response variable of interest is dichotomous, and it occurs when covari-

ates perfectly predicts some binary outcomes (Heinze and Schemper, 2002). More

specifically, in binary logistic model, separation occurs if there exists a β such

that: xτiβ ≥ 0 for i ∈ E1; xτiβ ≤ 0 for i ∈ E2, where Ei represents the set of

row identifiers of X for observations from the same value of response variable, i.e.
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E1 = {i : yi = 1}, E2 = {i : yi = 0}.

When separation occurs, E1 and E2 are separated by one feature or a linear

combination of some variables, which results in the monotonicity of log-likelihood

function on at least one parameter. From the perspective of estimation, the sepa-

ration phenomenon tends to lead to some infinite maximum likelihood estimates in

the fitting process, thus it poses a challenge to MLE method. As a result, our SLR,

which also includes a MLE procedure, might not work normally when separation

exists.

To solve the problem caused by separation, Firth (1993) proposed a modified

score procedure to remove O(n−1) bias of MLE by adding the Jeffreys invariant

prior |I(β)|1/2 (Jeffreys, 1946), where I(β) represents the fisher information ma-

trix. This prior is shown to be an effective tool to produce finite MLE (Heinze

and Schemper, 2002). Thus, under logistic models, we modify SLR by adding a

penalty part log |I(β)|1/2 to ln(β) in the fitting process. This modification does

not influence the performance of SLR much because the Jeffreys invariant prior is

asymptotic negligible.

Consider the logistic model for a binary dependent variable yi (i ∈ 1, 2, ..n)

which satisfies

P (yi = 1|X) = 1− P (yi = 0|X) = πi
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and

πi =
exp{xτiβ}

1 + exp{xτiβ}
or xτiβ = log

πi
1− πi

.

Under this logistic regression, the new SLR follows the same way of the original

SLR except for using the modified likelihood function in the IWLS process. The

corresponding modified function can be expressed as

lM(β) =
n∑
i=1

{yixτiβ − log(1 + exp{xτiβ})}+ 1/2 log |I(β)|. (3.19)

The matrix I(β) depends on the previous selected indices s only and is given by

I(β) = Xτ (s)WX(s),

where W = diag{πi(1− πi)} with π = g−1(Xβ).

Since

∂ log |I(β)|
∂βj

= tr[I(β)−1∂I(β)

∂βj
].

Take the derivative of lM(β), we have

∂lM(β)

∂β(s)
|β(sc) =

n∑
i=1

{yi − πi +Hii(
1

2
− πi)}xi(s). (3.20)

The Hii in (3.20) represents the ith diagonal element of the matrix Hn(s), where

Hn(s) = W
1
2X(s)(Xτ (s)WX(s))−1Xτ (s)W

1
2 .

Redefine a new diagonal matrix Hd = diag{Hii}, then (3.20) can be simplified as

∂lM(β)

∂β(s)
|β(sc) = Xτ (s)[y − π +Hd(

1

2
1− π)].
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Subsequently, for h ≥ 1, a finite β̂ = (β̂(s),0) can be obtained through

β(h)(s) = β(h−1)(s)+I−1(β(h−1))Xτ (s)[y−π(β(h−1))+Hd(β
(h−1))(

1

2
1−π(β(h−1)))].

(3.21)

Thus, the computing algorithm for the modified SLR under the binary logistic

model can be described as follows:

• Initial Step: Standardize Xj, j = 1, 2, ..., p; Initialize β̂ = (β̂0, 0, ..., 0)′

with β̂0 = log y/(1 − y); µ̂ = π̂ = y1; Ŵ = diag{π̂i(1 − π̂i)}; Ĥd =

diag{[Ŵ 1
2 1(1τŴ1)−11τŴ

1
2 ]ii}. SLR chooses the feature given by

s1 = {l : |Xτ
l Ŵ (y − µ̂)g′(µ̂)| = max

j=1,2,..,p
|Xτ

j Ŵ (y − µ̂)g′(µ̂)|},

where g′(µ̂) = 1/µ̂+ 1/(1− µ̂).

• General Step: For k ≥ 1,

– IWLS: new β̂, µ̂, Ŵ , Ĥd:

Initialize β(0) = β̂, π(β(0)) = π̂, W (β(0)) = Ŵ , Hd(β
(0)) = Ĥd;

For h = 1, 2, 3, ...

I(β(h−1)) = Xτ (sk)W (β(h−1))X(sk);

β(h)(sk) = β(h−1)(sk)+I
−1(β(h−1))Xτ (sk)[y−π(β(h−1))+Hd(β

(h−1))(1
2
1−

π(β(h−1))] while β(h)(sck) = 0;

π(β(h)) = exp{Xβ(h)}/(1 + exp{Xβ(h)});

W (β(h)) = diag{π(β(h))i(1− π(β(h)))i};

Hd(β
(h)) = diag{[W 1

2 (β(h))X(sk)(X
τ (sk)W (β(h))X(sk))

−1Xτ (sk)W
1
2 (β(h))]ii};
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Stop if ‖β(h−1) − β(h)‖2
2 < 1e− 10;

New β̂ = β(h), µ̂ = π̂ = π(β(h)), Ŵ = W (β(h)), Ĥd = Hd(β
(h)).

– Active set sk+1:

γg(Xj|sk) = Xτ
j Ŵ (y − µ̂)g′(µ̂);

stemp = {l : |γg(Xl|sk)| = max
j∈sck
|γg(Xj|sk)|}.

Update sk+1 = sk ∪ stemp. When EBICγ(sk+1) > EBICγ(sk), stop

and regard sk as the optimal model; otherwise, continue.

3.2 Interactive Models

In some practical fields like QTL mapping, it is no longer enough to consider

only main effect features because interactive effects are also an indispensable part

for explaining the response variable. Thus, it is essential to popularize feature

selection procedures in interactive models. In this section, we focus on extending

the procedure SLR from models with only main effects to interactive models which

include both main effects and pairwise interactive effects. We first introduce tech-

niques that we apply for this extension, then we give a detailed description of SLR

under the interactive case.
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3.2.1 Techniques For Extension

Interactive models differ from models with only main effects primarily in two

aspects. Firstly, the total number of features in interactive models is much larger

due to the existence of interactions, thus computation complexity increases. Sec-

ondly, interactions are usually highly correlated and assumption of model sparsity

may not hold. Thus for high dimensional feature selection, it is inappropriate to

employ SLR in interactive models directly. Under interactive cases, SLR needs

to be improved, taking into consideration of differences of models with only main

effects and interactive models.

For interactive models with an extremely large number of features, it is natural

to reduce the dimension of feature space first before selecting features when practi-

cal costs are taken into consideration. The maximum marginal likelihood estimator

(MMLE) (Fan and Song, 2010) is a popular dimension reduction method for GLMs.

It selects a set of features in Mr = {j : |β̂j| ≥ r} for a predefined threshold value r,

where β̂j = (β̂j,0, β̂j) = arg maxβ0,βj
∑n

i=1 n
−1l(β0+βjxij, yi) and l(y, θ) = θy−b(θ).

Through this screening process, MMLE reduces the dimension to a proper num-

ber without losing important features. Thus, under interactive models, we start

with a screening step by subjecting the main effect features and the interactive

effect features to screening respectively. Those main effect features that survived
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the screening step are denoted by sm while interactive features that survived the

screening step are denoted by sI . Then we turn to the further feature selection

stage under the reduced lower-dimensional space.

Suppose some steps have been carried out and the active set s has been ob-

tained. Then the further selection stage for SLR under interactive models mainly

comprises three steps. The first step aims at dividing the survived main effect

features and the survived interactive effect features into two different groups: G1

and G2, where G1 = sm and G2 = sI . In the second step, we select the next

feature (features) that maximizes |γg(Xj|s)| separately for j ∈ sm \s and j ∈ sI \s.

The corresponding set of the selected main effect feature (features) is denoted by

atemp while the set of the selected interactive effect feature (features) is denoted by

btemp. Finally, i.e. the third step, the feature (features) in atemp and btemp are com-

pared, and the better one is taken as the final selected feature (features). Clearly,

the comparison of atemp and btemp is equivalent to selecting a better model from

s ∪ atemp and s ∪ btemp, thus it is natural to apply the model selection criterion

EBIC (Chen and Chen, 2008) to make this comparison.

In general, the selection stage under interactive models is mainly different from

the selection stage under models with only main effects in that the former groups

features into main effects and interactive effects before it conducts feature selec-

tion separately on these two groups. This group selection keeps the flexibility of



3.2 Interactive Models 60

selecting features within a group. It differs from the classical group selection which

chooses features in an all-in-all-out fashion, that is, all features of a group would

be selected/deleted as long as any feature in this group is selected/deleted. In

summary, our techniques for extension from models with only main effects to in-

teractive models are particularly promising. Because they contribute to a better

and more stable performance under different interaction proportions if compared

with the case without them, i.e., the case applying SLR introduced in subsection

3.1.2 to interactive models directly.

3.2.2 SLR in Generalized Linear Interactive Model

A generalized linear interactive model (GLIM) is quite similar to a GLM in-

troduced in the subsection 3.1.2.2, except that they have distinct X and β. In a

GLIM, for X = (x1, ...,xn)τ ,

ηi = xτiβ = β0 +

p∑
j=1

xijβj +

p−1∑
j=1

p∑
k=j+1

xijxikβh, i = 1, 2, ..., n. (3.22)

Clearly, the dimension of both β and xi is p(p + 1)/2 + 1 rather than p + 1. In

addition, the last p(p−1)/2 components of xi satisfy xih = xijxik (1 ≤ j < k ≤ p).

For feature selection under a GLIM, we firstly employ MMLE (Fan and Song,

2010) for screening and denote the set of survived main/interactive effect features

by sm/sI . It is clear that sm ⊂ {1, 2, ..., p} and sI ⊂ {p+ 1, ..., p(p+ 1)/2}. Define



3.2 Interactive Models 61

sc = sm \ s and sc = sI \ s. In the further selection stage, SLR can be restated as

follows.

• Initial step:

– Standardize Xj, j = 1, 2, .., p;

Initialize β̂ = (g(y), 0, ..., 0)τ , µ̂ = y1, θ̂ = b′−1(µ̂), Ŵ = diag{1/b′′(θ̂i)g′(µ̂i)2};

– Main effect feature:

a1 = {l : |Xτ
l Ŵ (y − µ̂)g′(µ̂)| = max

j∈sm
|Xτ

j Ŵ (y − µ̂)g′(µ̂)|};

Interactive effect feature:

b1 = {l : |Xτ
l Ŵ (y − µ̂)g′(µ̂)| = max

j∈sI
|Xτ

j Ŵ (y − µ̂)g′(µ̂)|};

– SLR selects the feature (features) given by s1, where

s1 = a1 if EBICγ(a1) < EBICγ(b1);

s1 = b1 if EBICγ(a1) > EBICγ(b1).

• General Step: For k ≥ 1,

– IWLS: new β̂, µ̂, Ŵ :

Initialize β(0) = β̂, µ(β(0)) = µ̂, W (β(0)) = Ŵ ;

For h = 1, 2, 3, ...

β(h)(sk) = β(h−1)(sk)+(Xτ (sk)W (β(h−1))X(sk))
−1Xτ (sk)W (β(h−1))(y−

µ(β(h−1)))g′(µ(β(h−1))) while β(h)(sck) = 0;

µ(β(h)) = g−1(Xβ(h)); θ(β(h)) = b′−1(µ(β(h)));
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W (β(h)) = diag{1/b′′(θi(β(h)))g′(µi(β
(h)))2};

Stop if ‖β(h−1) − β(h)‖2
2 ≤ 1e− 10;

New β̂ = β(h), µ̂ = µ(β(h)), Ŵ = W (β(h)).

– Identification Criterion:

γg(Xj|sk) = Xτ
j Ŵ (y − µ̂)g′(µ̂);

– Main effect feature:

atemp = {l : |γg(Xl|sk)| = max
j∈skc
|γg(Xj|sk)|};

Interactive effect feature:

btemp = {l : |γg(Xl|sk)| = max
j∈skc
|γg(Xj|sk)|};

– SLR selects the feature (features) in stemp, where

stemp = atemp if EBICγ(sk ∪ atemp) < EBICγ(sk ∪ btemp);

stemp = btemp if EBICγ(sk ∪ atemp) > EBICγ(sk ∪ btemp);

– Update the active set sk+1 = sk ∪ stemp.

If EBICγ(sk+1) > EBICγ(sk), stop and take sk as the optimal model;

otherwise, continue.

Clearly, EBIC (Chen and Chen, 2008) paves the way for this selection procedure

SLR. The application of EBIC can be described in three aspects: deciding the

final selected feature of each step from the selected main effect feature and the

selected interactive effect feature; being the stopping rule; and identifying the best



3.3 Theoretical Property 63

model from candidate models generated. All three applications are regarded as

reasonable because of the selection consistency of EBIC introduced in chapter 2.

3.3 Theoretical Property

The selection consistency of SLR under GLMs with the canonical link is ex-

plored in this section. Notations without special explanations are the same as those

in subsection 3.1.2.2 and we do not restate them again. Under the canonical link,

that is, θ = η, the identification criterion of SLR becomes

γg(Xj|s) = Xτ
j (y − µ̂), j ∈ sc,

where µ̂ = b′(X(s)β̂(s)) and β̂(s) is obtained through ∂ln(β)
∂β(s)

|β(sc)=0 = 0. This

γg(Xj|s) can be decomposed into three parts. The first part γ1(Xj|s) = Xτ
j (y−µ),

where µ = E(y) = b′(Xβ0) and β0 denotes the vector consisting of true coef-

ficients. The second part γ2(Xj|s) = Xτ
j (µ − µ1), where µ1 = b′(X(s)β1(s))

for β1(s) = E(β̂(s)). Actually, β1(s) is related to β0, since β1(s) = β0(s) +

(Xτ (s)W1X(s))−1Xτ (s)W1X(sc)β0(sc) with W1 = diag{b′′(xτi (s)β1(s))}. The

third part γ3(Xj|s) = Xτ
j (µ1 − µ̂). Clearly, γ1(Xj|s) and γ3(Xj|s) vary with y

whereas γ2(Xj|s) not.

Let ν(s) be the cardinality of s. Denote the set of relevant (true) features by
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s0n and p0n = ν(s0n). Besides, let s− = s0n ∩ sc. The selection consistency of SLR

is established under the following assumptions.

A1.

max
j∈sc0n

|γ2(Xj|s)| < rmax
j∈s−
|γ2(Xj|s)|, 0 < r < 1.

A2. For any s ⊂ s0n and i = 1, ..., n, there exists positive m and M such that

m ≤ b′′(x) ≤M for all x ∈ [xτi (s)β1(s),xτiβ0].

A3.

n1/2(ln p)−1/2λmin[
Xτ (s0n)X(s0n)

n
] min{|β0j| : j ∈ s0n} → ∞.

The λmin[X
τ (s0n)X(s0n)

n
] is commonly assumed to be bounded away from zero in high

feature space, which suggests that A3 is equivalent to n1/2(ln p)−1/2 min{|β0j| :

j ∈ s0n} → ∞. Thus SLR allows the scenario that ln p = O(nk) (k < 1) and

minj∈s0n|β0j| > Cn−δ for δ < (1− k)/2.

Theorem 3.1. Under assumptions A1-A3, SLR is selection consistent in the sense

that

P (sk = s0n)→ 1, as n→∞,

when ν(sk) = p0n.

Proof for Theorem 3.1: Look at the general (k + 1)th step, the identification
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criterion is given by

γg(Xj|sk) =
n∑
i=1

(yi − µ̂i)xij, (3.23)

where µ̂i = b′(xτi (sk)β̂(sk)). Define

stemp = {l : |γg(Xl|sk)| = max
j∈sck
|γg(Xj|sk)|}.

We will show that, with probability tending to 1, stemp ⊂ s0n.

The following statements are established first:

γ1(Xj|sk) = Op(n
1/2
√

ln p); (3.24)

γ3(Xj|sk) = Op(n
1/2
√

ln p); (3.25)

max
j∈s−k
|γ2(Xj|sk)| ≥ Cnn

1/2
√

ln p for Cn →∞. (3.26)

Note that γ1(Xj|sk) = Xτ
j (y−µ) ∼ (0,

∑n
i=1 x

2
ijσ

2
i ). By Chebyshev’s inequality,

for any j ∈ sck,

P (|γ1(Xj|sk)| > n1/2
√

ln p) ≤
∑n

i=1 x
2
ijσ

2
i

n ln p
≤ maxi σ

2
i

ln p
→ 0,

and thus (3.24) is proved.

When n is sufficiently large, β̂(sk) ∼ N(β1(sk), (X
τ (sk)W1X(sk))

−1), where

W1 = diag{b′′(xτi (sk)β1(sk))}. This, combined with the fact that

β1(sk) = β0(sk) + (Xτ (sk)W1X(sk))
−1Xτ (sk)W1X(sck)β0(sck),
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shows that

γ3(Xj|sk) = Xτ
j (µ1 − µ̂)

= −Xτ
j (b′(X(sk)β̂(sk))− b′(X(sk)β1(sk)))

= −Xτ
jW1X(sk)(β̂(sk)− β1(sk))(1 + o(1)).

It is clear that

Xτ
jW1X(sk)(β̂(sk)− β1(sk)) ∼ N(0, X̃j

τ
H̃n(sk)X̃j),

where X̃j = W
1/2
1 Xj, X̃(sk) = W

1/2
1 X(sk) and H̃n(sk) = X̃(sk)(X̃

τ (sk)X̃(sk))
−1X̃τ (sk).

Therefore, for any j ∈ sck,

P (|γ3(Xj|sk)| > n1/2
√

ln p) ≤ X̃j

τ
H̃n(sk)X̃j

n ln p

≤
λmax(H̃n(sk))

∑n
i=1 x

2
ijb
′′(xτi (sk)β1(sk))

n ln p

≤ M

ln p
→ 0,

which establish (3.25).

By Taylor inequality with Lagrange remainder term,

(µ− µ1)i = b′(xi(sk)β0(sk) + xi(s
c
k)β0(sck))− b′(xi(sk)β1(sk))

= b′′(ξi)[xi(sk)(β0(sk)− β1(sk)) + xi(s
c
k)β0(sck)].

Let W (ξ) = diag{b′′(ξi)}, we have

γ2(Xj|sk) = Xτ
j (µ− µ1) = Xτ

jW (ξ)[X(sk)(β0(sk)− β1(sk)) +X(sck)β0(sck)].
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Define

γE(Xj|sk) = Xτ
jW1[X(sk)(β0(sk)− β1(sk)) +X(sck)β0(sck)]

= Xτ
jW

1/2
1 [I − H̃n(sk)]W

1/2
1 X(sck)β0(sck)

= X̃j[I − H̃n(sk)]X̃(sck)β0(sck),

where X̃(sck) = W
1/2
1 X(sck).

We have

∆ = βτ0(sck)X̃
τ (sck)(I − H̃n(sk))X̃(sck)β0(sck)

= βτ0(s−k )X̃τ (s−k )(I − H̃n(sk))X̃(s−k )β0(s−k )

≥ λmin(X̃τ (s−k )(I − H̃n(sk))X̃(s−k ))‖β0(s−k )‖2
2

≥ λmin(X̃τ (s0n)X̃(s0n))‖β0(s−k )‖2
2

for X̃(s0n) = W
1/2
1 X(s0n). This inequality is obtained because (X̃τ (s−k )(I −

H̃n(sk))X̃(s−k ))−1 is a sub-matrix of (X̃τ (s0n)X̃(s0n))−1 through the formula of

the inverse of blocked matrices.

On the other hand,

∆ =
∑
j∈s−k

β0jX̃j

τ
(I − H̃n(sk))X̃(s−k )β0(s−k )

≤ ‖β0(s−k )‖1 max
j∈s−k
|γE(Xj|sk)|.

Thus

max
j∈s−k
|γE(Xj|sk)|
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≥ nλmin(
X̃τ (s0n)X̃(s0n)

n
)
‖β0(s−k )‖2

2

‖β0(s−k )‖1

≥ nλmin(
Xτ (s0n)W1X(s0n)

n
) min
j∈s0n

|β0j|

= Bnn
1/2
√

ln p,

where Bn = n1/2(ln p)−1/2λmin(X
τ (s0n)W1X(s0n)

n
) minj∈s0n |βj|. By A2 and A3 , Bn →

∞. In addition, due to the fact that b′′(x) > 0 and W (ξ) ≥ m
M
W1, we have

maxj∈s−k
|γ2(Xj|sk)| ≥ m

M
Bnn

1/2
√

ln p = Cnn
1/2 ln p, thus (3.26) is proved.

Finally, A1 indicates that

max
j∈s−k
|γ2(Xj|sk)| −max

j∈sc0n
|γ2(Xj|sk)| ≥ (1− r)Cnn1/2 ln p.

This fact, combined with (3.24), (3.25), (3.26), implies that, with probability con-

verging to 1,

max
j∈s−k
|γg(Xj|sk)| > max

j∈sc0n
|γg(Xj|sk)|.

Thus, with probability tending to 1, stemp ⊂ s−k ⊂ s0n. The proof is then completed.
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CHAPTER 4

Numerical Study

In this chapter, extensive numerical studies are provided to show the effective-

ness of our SLR with EBIC (Chen and Chen, 2008). In section 6.1, we introduce

some measures and correlation structures which will be used in simulations. In

section 6.2, for the study of only main effects, we explore SLR under the poisson

log linear model and the logistic model. Three other competing approaches are

provided for comparison with SLR and this comparison can be described from two

aspects: selection consistency and prediction accuracy. In section 6.3, we simulate

SLR under two popular interactive models, linear interactive model and logistic in-

teractive model, through subsection 6.3.1 and 6.3.2 respectively. The effectiveness
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of EBIC is also demonstrated in these two subsections by comparing SLR under

different (γm, γI).

4.1 Introduction

4.1.1 Measures

Six measures are provided for the assessment of SLR: positive discovery rate

(PDR), false discovery rate (FDR), positive selection rate (PSR), false selection

rate (FSR), model size and deviance.

Discovery Rate: PDR and FDR are primary measures used to assess sample

performances and they are defined as

PDR =
ν(sr ∩ s0n)

ν(s0n)
, FDR =

ν(sr \ s0n)

ν(sr)
, (4.1)

where sr represents the optimal model and s0n denotes the true model. The higher

PDR and the lower FDR a procedure has, the better it is. For two procedures with

almost identical PDR and FDR, the one with a smaller model size, i.e. a smaller

ν(sr), is viewed as better. The asymptotic property of SLR, that is, selection con-

sistency, indicates that PDR approaches 1 and FDR converges to 0 simultaneously

when n goes to infinity.
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Selection Rate: PSR (FSR) are identical with PDR (FDR) under models with

only main effects. Under interactive models, PSR and FSR can also be given by

(4.1) although they have slightly different sr and s0n. Specifically, for PSR and

FSR, we assume there are total p features while these features are not classified

by main effects and interactive effects. The Xi corresponds to feature i and XiXj

corresponds to feature i and feature j. Nevertheless, for PDR and FDR, we suppose

there are p(p+ 1)/2 features consisting of main effects and interactive effects. The

Xi corresponds to the main effect feature i while XiXj (i < j) corresponds to the

interactive feature (2p− i+ 1)i/2 + j − i.

Deviance: Deviance is an important criterion used to evaluate fitting perfor-

mances. It is expressed by

Deviance = 2{ln(saturated model)− ln(fitted model)}

The saturated model allows the author to choose a predicted value µi for each

observation and it fits perfectly to such that ln(saturated model) = 0 in most

cases. The deviance reduces as the model fit improves. Specially, it is zero if the

model exactly fits the data.
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4.1.2 Correlation Structure

Refer to p as the number of main effect features and refer to p0n as the number

of causal features. Denote Xj (1 ≤ j ≤ p) by the jth column vector of X. The

following correlation structures are considered for Xj.

Structure 1: Power decay correlation: Xj = ρXj−1 +
√

1− ρ2zj for j = 1, ..., p,

where zj is independently and identically distributed (i.i.d ) as standard normal

distribution.

Structure 2: Features have a constant pairwise correlation, that is, the covari-

ance matrix of covariates satisfies ρij = ρ and ρii = 1.

Structure 3: This correlation structure is taken from Luo and Chen (2013b):

Xj =
zj +wj√

2
for j ∈ s0n, Xj =

zj +
∑

k∈s0n zk√
1 + p0n

for j ∈ sc0n,

where all zj and wj are i.i.d ∼ N(0, In).

Structure 4: It is adapted from Fan and Song (2010). Let Xj (1 ≤ j ≤ p− 50)

be i.i.d ∼ N(0, In). Other Xj (i = p− 49, ..., p) is given by

Xj =
1

5
[

p0n∑
t=1

(−1)t+1X10t +
√

25− p0nξi]

for independent ξi following N(0, In).
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Structure 5: This structure is slightly different from structure 2 in that its

covariance matrix is a diagonal block matrix. Each block matrix except the last

one is of dimension 100× 100 while ρii = 1 and ρij = ρ in each block.

Structure 6: This structure is motivated by the phenomenon that gene markers

from different chromosomes have little correlations whereas makers within the same

chromosome are correlated. Let z1 and rj (j = 1, ..., p) are i.i.d ∼ N(0, In).

Xj =
1√
5
z1 +

√
2

5
rj, 1 ≤ j ≤ p0n;

Xj =
1

2
Xj−k +

√
3

2
rj, p0n + 1 ≤ j ≤ p.

Structure 7: Let r = [p/3]. Asssume (Xj)
r
j=1 and (εj)

p
j=1 i.i.d ∼ N(0, In).

Xj = 0.6Xj−r + 0.8εj, j = r + 1, ..., 2r;

Xj =
r∑
i=1

Xj/
√
j +

√
j − r/jεj, j = 2r + 1, ..., p.

4.2 Models with Only Main Effects

4.2.1 Sample Properties

In this subsection, not only selection consistency but also prediction accuracy

are considered, thus we provide two parts. The first part deals with selection
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consistency and applies EBIC with γEBIC = 1− lnn
4 ln p

in SLR to identify the optimal

model. The second part focuses on prediction accuracy and uses deviance in SLR

for model comparison. Under the study of the second part, three independent data

sets are generated in the same way in each simulation but serve different purposes.

The first set is used for fitting, the second data is intended for testing and the third

set is used for comparison.

Under GLMs, three competing regularization methods with the following penal-

ties are considered: M1: pλ(β) = λ
∑
|βj| (Park and Hastie, 2007); M2: pλ(β) =

λ
∑
ωj|βj| (Zhou, 2006; Huang, Ma and Zhang, 2008); M3: p′λ(|β|) = λI(|β| ≤

λ) + (aλ−|β|)+
a−1

I(|β| > λ) (Fan and Li, 2001; Zou and Li, 2008). The well-known

names for these three penalties under linear expressions are Lasso, adaptive Lasso

and SCAD respectively. They share the same stopping rule with SLR in this study.

The R package glmpath can be used directly for the computation of M1. When

p > n, the weight ωj in M2 is chosen as 1/|β̂j|, where β̂j denotes the marginal

regression estimator. By letting X∗j = Xj/ωj and β∗j = ωjβj, glmpath can also be

adopted in M2. For M3, the package SIS is employed.

We take the diverging pattern as (n, p0n, p) = (n, [4n0.155], [4en
0.275

]) for n =

100, 200, 400. The true coefficient βj (j ∈ s0n) is given by (−1)u(0.8 + 0.05u) for

u ∼ binomial(2, 0.5). Four different correlation structures and two models are

considered in this study. Structure 1 and 2 are prepared for the poisson log linear
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model while structure 3 and 4 are applied in the binary logistic model. We let

ρ = 0.5 in structure 2. Two hundred datasets are generated and analyzed for each

simulation setting.

We firstly use a simple example to show that the Jeffreys invariant prior does

not affect performances of SLR much. This conclusion is achieved through the

comparison between SLR with and without Jeffreys prior when there is no sepa-

ration. We fix 200 observations under structure 3 and reduce p to 8. Then the

following result is obtained.

PDR FDR Msize

SLR (with prior) 0.940 0.042 2.98

SLR (without prior) 0.940 0.042 2.98

Clearly, the performance of SLR with and without Jeffreys prior are exactly the

same, which may owe to the asymptotic negligible effect of Jeffreys invariant prior.

Simulation results of the first part are reported in Table 4.1 and the following

conclusions can be made. Firstly, the performance of SLR closely matches its

asymptotic property, that is, PDR approaches rapidly to 1 and FDR decreases

to 0, under all four structures and both two models. Secondly, SLR is regarded

as a better procedure than M1, M2 and M3 due to its quite higher PDR and a

slightly lower FDR. Subsequently, we apply the deviance in the second part and the
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corresponding results are presented in Table 4.2. As shown in this table, M3 has

the smallest deviance while M2 has the largest. It implies that M3 is the optimal

approach, followed by SLR and M1, then by M2 in terms of prediction accuracy.

SLR is comparable with M1 for two reasons. Firstly, SLR fits better under small

n whereas M1 performs better under large n. Secondly, SLR has a better fitting

performance under the poisson log linear model but M2 fits better under the logistic

model. It is worth noting that SLR is no longer the optimal approach when we

focus on prediction accuracy, which suggests that the best select procedure should

be decided by the aim of the study.

4.2.2 Real Data Example 1

In this example, we apply SLR to a popular cancer data called leukemia da-

ta (Golub et.al, 1999). Leukemia data has been analyzed by many authors, for

example, Lee et.al (2003) and Liao and Chin (2007), through different classifica-

tion methods. This data consists of two parts: initial data and independent data.

There are 38 bone marrow samples in the initial data, which comprises 27 acute

lymphoblastic leukemia (ALL) and 11 acute myeloid leukemia (AML). The inde-

pendent data is an independent collection of 34 leukemia samples including 20 ALL

and 14 AML. Expression levels of 7129 genes produced by Affymetrix high-density

oligonucleotide microarrays are also included in this data. Code 1 for ALL and 0
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for AML. We then use gene expression to classify between ALL and AML.

Summary of significant genes for the classification between ALL and AML

are presented in Table 4.3 and Table 4.4, where EBIC is used in the former but

deviance is applied in the later. When deviance is employed, we use the initial

data for fitting while apply the independent data for testing. As shown in Table

4.3, SLR, M1 and M3 identify the same significant gene with frequency ID 3320.

Actually, this gene is also selected by Golub et.al (1999) and Liao and Chin (2007).

M2 chooses the gene with ID 6218, which is consistent with the finding of Lee et.al

(2003) and Liao and Chin (2007), although this gene is not identified by other

three approaches. Table 4.4 shows that SLR and M1 result in a almost identical

deviance and model size. At the same time, M3 obtains a model with the largest

deviance and the smallest model size while M2 achieves the smallest deviance. This

result is slightly different with simulations in the previous subsection. In addition,

all these four approaches separately overlap with part of significant genes given by

Lee et.al (2003) or Liao and Chin (2007). However, the overlapping between M3

and Lee et.al (2003) is more than that of SLR and M1, although M3 has a smaller

model size.
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4.3 Interactive Model

4.3.1 Linear Interactive Model

This subsection consists of three parts. The finite sample property of SLR

with the application of EBIC is what we are interested in, thus we provide the

first part. In this part, the consistency of EBIC is also verified by exploring the

impact of (γm, γI). As mentioned in subsection 3.2.1, we extend SLR from models

with only main effects to interactive models mainly through grouping features

into main effects and interactive effects and handling features with distinct effects

separately. In the second part, we aim at showing the advantage of this grouping

treatment through a simple comparison: grouping v.s. non-grouping. The third

part investigates a special situation that marginal effects of some predictors are zero

but their joint effects are not. Under this situation, the necessity of interactions is

showed through the comparison of SLR between the case with interactive effects

and the case with only main effects.
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4.3.1.1 Finite Sample Properties

The true linear interactive model in this study is assumed to be

yi =
k∑
j=1

xijβj +

p0n−k∑
j=1

xijxi(j+1)βk+j, i = 1, 2, ...n, (4.2)

where εi i.i.d ∼ N(0, σ2). The proportion of interaction terms is nearly 0.5 by

letting k = [p0n/2] + 1. Mimic heritability in broad sense and we define a ratio h

which is expressed as h = βTΣ?β
βTΣ?β+σ2 . The variance σ2 is determined by setting h

to certain values when n = 100 and kept unchanged for other n. We let σ = 1.5,

1 in this study such that h is roughly 0.8 and 0.9. The covariates are generated

according to structure 1, 5 and 6 with ρ = 0.4 while two hundred replicates are

done.

The diverging pattern is taken as (n, p0n, p)=(n, 3[n0.345], [exp(n0.325)]) for n =

100, 200, 500. Let ν(sm) = ν(sI) = n. The true coefficient βj is generated through

two ways which are called the original case and the sequential case. In the original

case, βj = n−0.150 + |zj|/10 for zj ∼ N(0, 1), which ensures min{|βj| : j ∈ s0n} =

O(n−0.150). For the sequential case, βj is generated in the same way as the original

case when n = 100. When n = 200, the first p0n|n=100 parameters βj are kept

unchanged whereas the remaining p0n|n=200 − p0n|n=100 coefficients are generated

as 200−0.150 + |zj|/10. Generate βj in a similar way when n = 500 and we obtain

sequential values.
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Sample Properties: Results of SLR with γEBIC = (1 − lnn
2 ln p

, 1 − lnn
4 ln p

) are

presented in Table 4.5. This table shows that: (i) PDR converges to 1 and FDR

decreases to 0 rapidly as n increases from 100 to 500, under all three structures,

two h levels and two cases. This finding demonstrates that the sample performance

of SLR closely matches its asymptotic property. (ii) The sequential case performs

better than the original case, which seems to provide clear evidence that larger

coefficients contribute to the identification of true features.

Impact of (γm, γI): BIC is a traditional criterion while EBIC and mBIC are

improvements for it. BIC and EBIC differ in the value of (γm, γI), i.e. γEBIC =

(1 − lnn
2 ln p

, 1 − lnn
4 ln p

) but γBIC = (0, 0). The mBIC is comparable with EBIC in

an asymptotic sense with γas = (1, 1). Under these three different (γm, γI), the

following conclusions can be made from Table 4.5. (i) The PDR of SLR with γBIC

is generally a bit higher since BIC selects much more features. The FDR of SLR

with BIC does not reduce as n increases, which suggests that BIC is not selection

consistent. (ii) Both EBIC and mBIC are selection consistent because sample

properties of SLR with γEBIC and γas closely match their asymptotic properties.

This finding verifies the effectiveness of Theorem 2.1 in the finite sample case. (iii)

Compared with EBIC, mBIC loses certain power while overly controls FDR for

small n.

Subsequently, we describe the impact of γm and γI respectively by assuming
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five different set of (γm, γI). The corresponding simulation results are provided in

Table 4.6. We may conclude that: (i) γI appears to affect PDR and FDR more

than γm. That’s because: if γI is fixed, both PDR and FDR decrease when γm

increases from 0 to (1− lnn
2 ln p

); if γm is fixed, FDR still decreases but PDR increases

when γI increases from 0 to (1 − lnn
4 ln p

). In addition, differences among patterns

with the same γm and different γI seem to be larger than those with the same γI

but distinct γm. (ii) PDR→ 1 and FDR→ 0 cannot be achieved simultaneously

if either γm or γI is less than the threshold value. This finding demonstrates the

effectiveness of the consistency theorem of EBIC again.

4.3.1.2 Comparison: Grouping v.s. Non-Grouping

We extend SLR from models with only main effects to interactive models pri-

marily through grouping features into main effects and interactive effects and s-

electing features separately on these two groups. Under interactive models, SLR

with the application of grouping, i.e. SLR after the extension, is supposed to per-

form better than SLR without grouping, i.e. SLR before the extension. The

contrast between the case with grouping (m1) and the case without grouping

(m2) is investigated through a simple simulation under two frequently used struc-

tures, that is, ρij = 0.5|i−j| (structure 1) and ρij = 0.5 (structure 2). We take

(n, p, p0n) = (n, n1.2, 6) for n=100 and 200 in this simulation. Besides, we assume
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the same true model as (4.2) while let each εi ∼ N(0, 1). The true coefficient βj in

this model is given by 0.5 + |zj|/10 for zj ∼ N(0, 1). The symbol k in this model

denotes the number of causal main effects features. PDR and FDR are used to

assess this simulation and each PDR(FDR) is over 200 replications.

Under different k, the comparison between m1 and m2 is reported in Table 4.7.

As shown in this table, m1 is selection consistent under various k, although m2

appears to perform a little better when k is conveniently close to p0n. However, m2

is unable to achieve a good perform when k is small, that is, relevant interactions

accounting for a large proportion, which is completely different with m1. In partic-

ular, when k = 0, m2 cannot identify any true features whereas m1 can select the

vast majority of true features as the sample size increases. In summary, m1 has a

more stable and better performance than m2. This finding further demonstrates

that our techniques for extension is effective.

4.3.1.3 Special Situation: Main v.s. Main-interactive

The motivation for this study is a conjecture in QTL mapping studies. A

QTL study can be regarded as a large-scale feature selection problem due to the

existence of QTL with large effects or moderate effects or small effects, as well

as interactive effects. In order to reduce the complexity of QTL studies, some
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researchers, for instance, Wang et.al (2011), focus on selecting markers with high

LOD scores first before applying these preselected markers to identify main effects

and interactive effects. Nevertheless, it may be difficult to identify these markers

with high LOD scores if the marginal effects of them are small or even zero. To

investigate properties of SLR under the special situation that marginal effects

of some predictors are zero but their joint effects are not, we put forward this

simulation and provide a comparison between the case considering only main effects

(case A) and the case considering both main effects and interactive effects (case

B). PSR and FSR are applied to assess the sample performance in this simulation

rather than PDR and FDR.

Under the space with p = [exp(n0.325)], we define the true model as

yi = xi1β1 + xi2β2 + · · ·+ xikβk + xi1xi2βk+1 + xi3xi4βk+2 + εi, i = 1, ..., n,

where each εi ∼ N(0, 0.52) and k = [n0.345] + 1 for n = 100, 200, 400. Let ν(sm) =

ν(sI) = n. The covariates are generated in almost the same way as structure 1, 5,

6 except that the mean of Xj is 1 instead of 0. Subsequently, the true coefficient βj

is given by βj = −βk+1 = −βk+2 = n−0.135 for 1 ≤ j ≤ 4 and βj = n−0.135 + |zj|/10

for other j, where zj ∼ N(0, 1). Clearly, marginal effects of the first four true

features are zero whereas their unique effects are not.

With the application of EBIC, results of SLR under case A and case B are
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presented in Table 4.8. The γ value in EBIC is chosen as 1− lnn
4 ln p

and (1− lnn
2 ln p

, 1−

lnn
4 ln p

) separately for case A and B. From Table 4.8, we can conclude that SLR

achieves a better performance under case B than under case A. That’s because:

(i) PSR of case B quickly becomes larger than that of case A when n increases,

although this PSR is lower when n = 100. (ii) Under case B, FSR falls sharply

and it will be less than the FSR of case A when n is sufficiently large. (iii) It

is unable to identify any true features with zero marginal effects under case A.

Because PSR1234, the probability of selecting the first four true features, is always

zero for all n. In contrast, we identify these four features with a satisfactory

probability under case B. In summary, case B contributes to the identification

of relevant features more than case A. The comparison between these two cases

further illustrates that it is indeed imperative to consider interactive models in

some practical fields.

4.3.1.4 Real Data Example 2

Under linear interactive models, we illustrate our SLR through a real QTL data

set (Bailey et.al, 2008) containing 362 F2 mice and 211 gene markers. These mark-

ers imply there are 211 main effect features and 22155 interactive effect features.

The corresponding QTL experiment of this data set is carried out to identify loci

causing locomotor activation and anxiety. It tests 8 open field measures which
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may contribute to activation and anxiety disorders, that is, Percent time spent

in center of arena, Total distance, Total rearing, Ambulatory episodes, Average

velocity, Percent resting, Activity factor and Anxiety factor. We drop individuals

that have large than 30 missing values and impute remaining missing values by R

package Imputation.

Significant and suggestive QTL causing activation and anxiety are presented

in Table 4.9. This table gives a model (with repetition) including 12 main effect

features and 5 interactive effect features : 5 main effects on chromosome 8; 3 main

effects on chromosome 17; 2 main effects and 2 interactive effects on chromosome 2;

1 main effect on chromosome 7; 1 main effect and 1 interactive effect on chromosome

13, 3 interactive effect on chromosome 6 and 12. In this model, a main effect locus

on chromosome 8 is most significant because it associates with multiple measures

like Total distance, Activity factor. This finding is the same as that of Bailey et.al

(2008). The locus on chromosome 17 and the interaction between chromosomes 6

and 12 also play an important role in causing activation and anxiety. In addition,

we find that loci on chromosome 2 and 13 are responsible for Percent time in center

and Percent resting while the locus on chromosome 7 is suggestive. It is slightly

different from Bailey et.al (2008) because they think the predominant interaction

between chromosome 13 and 17 accounting for largest portion of behaviors.



4.3 Interactive Model 86

4.3.2 Logistic Interactive Model

In this subsection, we simulate SLR with EBIC under the binary logistic interac-

tive model. The diverging pattern is taken as (n, p, p0n) = (n, [6exp(n0.2575)], 2[n0.2125]).

The yi, i = 1, 2, ..., n in this logistic model is generated from a Bernoulli distribu-

tion with probability p(θi) = exp(θi)/(1 + exp(θi)), where θi is assumed to be

xi1β1 + ... + xikβk + xi1xi2βk+1 + +xi3xi4βk+2 + ... + xi(2(p0n−k)−1))xi(2(p0n−k))βp0n .

Three different k, that is, k1 = p0n − [0.25p0n], k2 = [0.5p0n] and k3 = [0.25p0n],

are considered in this simulation. The true βj is given by 2β1 = −βk+1 = 4n−0.175;

βj = (−1)j+14n−0.175 + 0.025|rj| for other j, where rj ∼ binomial(10, 0.5). The

covariates are firstly generated according to structure 6 and 7 and we then let

Xj = Xj + 0.5. Thus, the marginal effect of the first true feature becomes zero

but its joint effect is not. In the screening step of SLR, a relatively large ν(sm) =

ν(sI) = p is chosen to try to avoid losing any true features. In addition, we consider

four different (γm, γI) in EBIC: γBIC = (0, 0), γMID = (1
2
(1 − lnn

2 ln p
), 1

2
(1 − lnn

4 ln p
)),

γEBIC = (1− lnn
2 ln p

, 1− lnn
4 ln p

) and γas = (1, 1).

Performances of SLR with various (γm, γI) are reported in Table 4.10. This

table shows a similar trend as in the linear interactive model: (i) SLR with γBIC

and γMID generally achieve a slightly higher PDR and a much larger FDR than

that with γEBIC . (ii) SLR with γEBIC quickly achieves a comparable PDR when
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n increases whereas its FDR is more satisfactory. In general, it closely match-

es its asymptotic property and this finding is consistent with Theorem 2.2. (iii)

SLR with γas is also selection consistent although it appears to over control FDR

and lose some power, especially for small n. In addition, Table 4.10 also implies

that the proportion between main effects and interactive effects would influence

performances of SLR. This implication is reflected in different PDR(FDR) under

k1, k2 and k3. Subsequently, we explore this influence in details by investigating

discovery rate for main effects and interactive effects respectively. And the corre-

sponding results are presented in Table 4.11. Denote the discovery rate of main

effect features by PDRm(FDRm). Denote the discovery rate of interactive effect

features by PDRI(FDRI). As shown in Table 4.11, PDRm is generally higher

than PDRI under k1 whereas PDRI becomes larger than PDRm under k3. On

the other hand, FDRm is smaller than FDRI under k1 but FDRI becomes lower

than FDRm under k3. These findings appear to suggest that the more true main

(interactive) effects in a fixed model the easier to identify the corresponding main

(interactive) features.
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Poisson Log Linear PDR(FDR) Model Size

n=100 n=200 n=400 n=100 n=200 nn=400

Structure 1 SLR .928(.300) .986(.285) 1.000(.194) 11.8 14.1 14.7

M1 .394(.467) .418(.472) .473(.452) 6.3 8.2 9.9

M2 .393(.470) .412(.476) .468(.443) 6.1 8.1 9.4

M3 .404(.450) .478(.442) .537(.441) 7.2 9.5 11.2

Structure 2 SLR .718(.298) .778(.286) .791(.272) 8.1 10.3 12.2

M1 .658(.324) .678(.298) .724(.283) 7.7 8.8 11.4

M2 .635(.379) .672(.299) .722(.284) 7.9 8.7 11.3

M3 .674(.320) .688(.296) .755(.279) 7.9 9.0 11.8

Logistic PDR(FDR) Model Size

n=100 n=200 n=400 n=100 n=200 nn=400

Structure 3 SLR .207(.186) .526(.092) .980(.044) 2.0 5.2 10.3

M1 .166(.164) .356(.076) .790(.033) 1.6 3.5 8.1

M2 .167(.164) .351(.080) .778(.032) 1.6 3.4 8.0

M3 .168(.164) .361(.076) .791(.033) 1.6 3.5 8.1

Structure 4 SLR .189(.170) .527(.080) .987(.035) 1.8 5.2 10.3

M1 .148(.165) .344(.057) .865(.020) 1.4 3.3 8.8

M2 .148(.167) .339(.056) .850(.018) 1.4 3.2 8.7

M3 .148(.167) .348(.058) .868(.021) 1.4 3.3 8.9

Table 4.1 Models with Only Main Effects: Simulations under Poisson Log Linear

Model and Logistic Model with the focus on Selection Consistency
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Poisson Log Linear Model Size Deviance

n=100 n=200 n=400 n=100 n=200 nn=400

Structure 1 SLR 25.0 28.1 31.0 120.80 428.5 1012.6

M1 23.8 26.8 29.3 197.76 1127.8 5223.8

M2 25.6 29.2 32.5 257.6 1642.3 7289.6

M3 31.6 35.6 39.7 57.4 146.2 326.9

Structure 2 SLR 25.0 28.0 31.1 65.18 153.51 332.52

M1 26.5 32.3 36.7 62.73 148.59 322.68

M2 25.7 32.4 37.2 108.15 198.45 497.53

M3 31.6 35.7 39.9 56.06 142.48 317.71

Logistic Model Size Deviance

n=100 n=200 n=400 n=100 n=200 nn=400

Structure 3 SLR 38.6 35.6 38.0 45.26 130.04 268.53

M1 28.1 34.5 39.5 62.35 122.39 265.01

M2 26.7 33.5 39.4 73.92 125.53 264.89

M3 39.8 45.1 50.2 45.01 101.03 251.28

Structure 4 SLR 38.5 34.6 37.4 39.19 142.50 267.45

M1 28.1 34.2 39.4 61.31 124.73 264.66

M2 26.8 33.0 39.2 61.65 128.53 264.90

M3 39.9 45.1 50.2 58.60 111.01 250.86

Table 4.2 Models with Only Main Effects: Simulations under Poisson Log Linear

Model and Logistic Model with the focus on Prediction Accuracy



4.3 Interactive Model 90

Frequency ID Gene Description

SLR 3320 U50136.rna1.at

M1 1745 M16038.at

3320 U50136.rna1.at

M2 6218 M27783.s.at

M3 3320 U50136.rna1.at

4847 X95735.at

Table 4.3 Models with Only Main Effects: Real Data Example 1, Summary of Sig-

nificant Genes for Classification by Applying EBIC
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Deviance(1e-10) Model Size Frequency ID

SLR 2.181 32 50 461 1250 1372 1753 1829 2065 2111 2242 2301 3320

3565 3847 3916 4137 4186 4190 4196 4245 4399 4499 4541

4855 5348 5376 5865 5970 6158 6169 6838 7066 7128

M1 2.183 29 129 230 461 894 1745 1862 2111 2242 2301 2697 3221

3320 3338 3847 3967 4137 4193 4196 4230 4499 5002

5039 5348 5772 5954 6021 6169 6539 6801

M2 2.167 31 312 461 1010 1144 1685 1779 1834 1882 2001 2015 2020

2267 2354 3320 3507 3967 4186 4399 4499 4847 5039 5171

5290 5772 6055 6167 6218 6281 6308 6539 6855

M3 5.607 14 461 1249 1779 1834 1846 2001 2020 3320 3847 4847

5039 5772 5954 6539

Table 4.4 Models with Only Main Effects: Real Data Example 1, Summary of Sig-

nificant Genes for Classification by Applying Deviance
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Original Case σ = 1 σ = 1.5

n γBIC γEBIC γas γBIC γEBIC γas

Structure 1 100 .423(.949) .414(.275) .321(.099) .324(.961) .271(.256) .238(.093)

200 .655(.941) .915(.182) .825(.039) .388(.965) .615(.243) .466(.061)

500 .726(.940) .952(.097) .948(.021) .671(.962) .836(.139) .577(.024)

Structure 5 100 .637(.923) .405(.121) .319(.051) .485(.941) .259(.155) .238(.062)

200 .880(.920) .932(.113) .829(.035) .590(.947) .642(.159) .482(.046)

500 .911(.918) .958(.068) .958(.011) .764(.938) .853(.099) .589(.011)

Structure 6 100 .428(.948) .411(.229) .323(.052) .351(.957) .263(.244) .237(.082)

200 .695(.937) .914(.155) .831(.043) .385(.965) .612(.223) .472(.056)

500 .808(.938) .958(.082) .954(.015) .684(.963) .843(.140) .581(.015)

Sequential Case σ = 1 σ = 1.5

n γBIC γEBIC γas γBIC γEBIC γas

Structure 1 100 .423(.949) .414(.275) .321(.099) .324(.961) .271(.256) .238(.093)

200 .687(.940) .926(.156) .837(.042) .402(.962) .686(.231) .493(.053)

500 .931(.937) .958(.081) .958(.015) .699(.961) .842(.105) .733(.018)

Structure 5 100 .637(.923) .405(.121) .319(.051) .485(.941) .259(.155) .238(.062)

200 .887(.918) .934(.079) .843(.028) .622(.942) .729(.142) .505(.031)

500 .954(.916) .958(.047) .958(.007) .812(.936) .855(.077) .802(.005)

Structure 6 100 .428(.948) .411(.229) .323(.052) .351(.957) .263(.244) .237(.082)

200 .712(.936) .934(.144) .841(.032) .411(.960) .708(.205) .501(.037)

500 .934(.935) .958(.073) .958(.011) .731(.961) .845(.103) .742(.013)

Table 4.5 Linear Interactive Model: Finite Sample Performance: PDR(FDR), γBIC =

(0, 0), γEBIC = (1− lnn
2 ln p , 1−

lnn
4 ln p), γas = (1, 1)
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PRD(FDR)

n γ1 γ2 γEBIC γ3 γ4 γEBIC

Structure 1 100 .229(.972) .336(.924) .270(.255) .393(.546) .321(.403) .270(.255)

200 .222(.980) .498(.945) .616(.243) .691(.581) .676(.340) .616(.243)

500 .512(.974) .723(.932) .838(.138) .877(.578) .856(.289) .838(.138)

Structure 5 100 .370(.951) .313(.581) .261(.156) .374(.368) .325(.262) .261(.156)

200 .364(.967) .598(.601) .642(.157) .713(.376) .689(.220) .642(.157)

500 .557(.952) .842(.542) .853(.090) .895(.380) .862(.201) .853(.090)

Structure 6 100 .254(.969) .343(.918) .262(.246) .376(.504) .312(.405) .262(.246)

200 .231(.979) .507(.942) .611(.228) .702(.536) .681(.337) .611(.228)

500 .534(.967) .801(.912) .845(.136) .882(.535) .858(.273) .845(.136)

Table 4.6 Linear Interactive Model: Impact of (γm, γI), σ = 1.5. γ1 = (1− lnn
2 ln p , 0);

γ2 = (1 − lnn
2 ln p ,

1
2(1 − lnn

4 ln p)); γ3 = (0, 1 − lnn
4 ln p); γ4 = (1

2(1 − lnn
2 ln p), 1 − lnn

4 ln p); γEBIC =

(1− lnn
2 ln p , 1−

lnn
4 ln p)
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Structure 1: PDR(FDR) Structure 2: PDR(FDR)

n k m1 m2 m1 m2

100 0 .083(.768) .000(1.000) .130(.390) .000(1.000)

1 .655(.457) .167(.207) .739(.146) .167(.094)

2 .333(.416) .005(.970) .326(.156) .081(.515)

3 .230(.364) .168(.196) .209(.152) .168(.058)

4 .748(.407) .500(.145) .782(.122) .500(.081)

5 .520(.285) .512(.198) .507(.080) .501(.063)

6 .988(.274) .995(.142) .997(.082) .999(.064)

200 0 .963(.179) .000(1.000) .988(.043) .000(1.000)

1 .937(.259) .127(.313) .992(.055) .158(.086)

2 .973(.252) .333(.164) .983(.061) .333(.056)

3 1.000(.220) .345(.124) 1.000(.034) .338(.041)

4 1.000(.221) .658(.135) 1.000(.056) .665(.044)

5 .848(.187) .833(.142) .839(.050) .835(.047)

6 1.000(.185) 1.000(.124) 1.000(.046) 1.000(.045)

Table 4.7 Linear Interactive Model: Comparison: Grouping v.s. Non-Grouping
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Structure 1 PSR(FSR) PSR1234

ρ n=100 n=200 n=400 n=100 n=200 n=400

.5 main .200(.168) .429(.136) .500(.134) .000 .000 .000

main-interactive .008(.991) .565(.439) 1.000(.099) .015 .450 1.000

.2 main .200(.165) .429(.151) .500(.140) .000 .000 .000

main-interactive .002(.997) .508(.480) 1.000(.125) .006 .388 1.000

Structure 5 PSR(FSR) PSR1234

ρ n=100 n=200 n=400 n=100 n=200 n=400

.5 main .200(.097) .429(.071) .500(.062) .000 .000 .000

main-interactive .041(.912) .687(.288) 1.000(.053) .055 .595 1.000

.2 main .200(.141) .429(.116) .500(.113) .000 .000 .000

main-interactive .002(.997) .572(.416) 1.000(.095) .009 .455 1.000

Structure 6 PSR(FSR) PSR1234

ρ n=100 n=200 n=400 n=100 n=200 n=400

.5 main .200(.191) .429(.139) .500(.131) .000 .000 .000

main-interactive .002(.999) .494(.472) 1.000(.114) .006 .353 1.000

.2 main .200(.175) .429(.139) .500(.132) .000 .000 .000

main-interactive .004(.993) .491(.481) .999(.132) .010 .345 1.000

Table 4.8 Linear Interactive Model: Special Situation: Main v.s. Main-Interactive
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Feature ID Chr Location(Mb) Effect Interaction

Percent time in center 163 13 89.444 main

6559 2 178.315 interactive Chr13:22.251

13 22.251 interactive Chr2:178.315

Total Distance 96 8 57.724 main

193 17 56.801 main

13116 6 102.455 interactive Chr12:2.058

12 2.058 interactive Chr6:102.445

Total Rearing 30 2 153.094 main

Ambulatory Episodes 98 8 68.129 main

193 17 56.801 main

13116 6 102.455 interactive Chr12:2.058

12 2.058 interactive Chr6:102.455

Average Velocity 101 8 89.447 main

Percent Resting 23 2 97.379 main

85 7 63.356 main

101 8 89.447 main

Activity factor 96 8 57.724 main

193 17 56.801 main

13116 6 102.455 interactive Chr12:2.058

12 2.058 interactive Chr6:102.455

Anxiety factor 6534 2 178.315 interactive Chr11:68.383

11 68.383 interactive Chr2:178.315

Table 4.9 Linear Interactive Model: Real Data Example 2, Summary of Suggestive

and Significant QTL
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Structure 6: PDR(FDR) Structure 7: PDR(FDR)

k1 γ n=100 n=200 n=500 n=100 n=200 nn=500

γBIC .395(.801) .562(.746) .737(.716) .495(.747) .630(.709) .795(.706)

γMID .470(.622) .637(.556) .813(.548) .527(.479) .653(.454) .817(.427)

γEBIC .460(.247) .630(.236) .787(.159) .515(.158) .637(.149) .803(.136)

γas .435(.160) .593(.143) .777(.086) .483(.127) .620(.115) .796(.098)

k2 γ n=100 n=200 n=500 n=100 n=200 nn=500

γBIC .340(.794) .590(.716) .776(.711) .475(.713) .655(.677) .801(.672)

γMID .330(.491) .607(.467) .784(.442) .473(.354) .650(.426) .820(.481)

γEBIC .280(.168) .560(.153) .782(.128) .378(.134) .610(.128) .807(.113)

γas .255(.053) .497(.036) .769(.025) .312(.109) .585(.052) .793(.047)

k3 γ n=100 n=200 n=500 n=100 n=200 nn=500

γBIC .468(.763) .641(.712) .774(.692) .568(.714) .783(.598) .835(.755)

γMID .465(.662) .636(.552) .768(.503) .580(.550) .785(.400) .835(.539)

γEBIC .385(.302) .621(.228) .767(.172) .443(.260) .733(.131) .835(.125)

γas .313(.155) .576(.133) .762(.074) .343(.119) .585(.072) .833(.065)

Table 4.10 Logistic Interactive Model: Performances under Different Interactions,

γBIC = (0, 0), γMID = (1
2(1− lnn

2 ln p), 1
2(1− lnn

4 ln p)), γEBIC = (1− lnn
2 ln p , 1−

lnn
4 ln p), γas = (1, 1),

k1 = p0n − [0.25p0n], k2 = [0.5p0n], k3 = [0.25p0n]
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Structure 6 PDRm(FDRm) PDRI(FDRI)

k γ n=100 n=200 n=500 n=100 n=200 nn=500

k1 γBIC .473(.518) .574(.368) .683(.358) .160(.972) .500(.935) .928(.921)

γMID .600(.415) .678(.412) .792(.413) .080(.877) .430(.768) .920(.713)

γEBIC .600(.189) .690(.242) .784(.177) .040(.233) .330(.073) .800(.020)

γas .567(.144) .667(.140) .780(.101) .040(.026) .230(.005) .760(.000)

k3 γBIC .090(.718) .083(.729) .078(.742) .593(.732) .788(.602) .912(.501)

γMID .160(.676) .084(.627) .073(.639) .567(.602) .774(.432) .908(.307)

γEBIC .160(.225) .082(.246) .070(.567) .460(.246) .767(.131) .907(.048)

γas .090(.020) .066(.143) .053(.325) .387(.148) .727(.092) .903(.009)

Structure 7 PDRm(FDRm) PDRI(FDRI)

k γ n=100 n=200 n=500 n=100 n=200 nn=500

k1 γBIC .570(.432) .676(.386) .778(.391) .270(.938) .400(.936) .922(.911)

γMID .637(.312) .714(.343) .788(.368) .200(.725) .350(.650) .960(.452)

γEBIC .650(.130) .718(.159) .784(.152) .110(.105) .230(.050) .900(.012)

γas .623(.118) .710(.103) .784(.115) .060(.065) .170(.030) .860(.002)

k3 γBIC .060(.678) .010(.798) .010(.910) .737(.674) .944(.538) 1.000(.728)

γMID .140(.558) .040(.643) .010(.848) .727(.467) .934(.290) 1.000(.444)

γEBIC .190(.252) .060(.375) .010(.615) .527(.173) .868(.058) 1.000(.037)

γas .150(.030) .060(.180) .000(.368) .407(.113) .690(.029) 1.000(.013)

Table 4.11 Logistic Interactive Model: Discovery Rate: Main v.s. Interactive,

γBIC = (0, 0), γMID = (1
2(1− lnn

2 ln p), 1
2(1− lnn

4 ln p)), γEBIC = (1− lnn
2 ln p , 1−

lnn
4 ln p), γas = (1, 1),

k1 = p0n − [0.25p0n], k3 = [0.25p0n]
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CHAPTER 5

Conclusion and Future Research

5.1 Conclusion

In contemporary statistics, one of the most popular topics is high dimensional

feature selection, in which both LMs and other GLMs play a major role. Among

high dimensional feature selection studies, a large number considered the main

effect features only while only a few considered the interactive effects, although

interactions were also prominent in explaining the response variable. In our thesis,

we aimed at proposing feasible feature selection procedures in the space including

both main effects and interactive effects, with the emphasis on achieving selection
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consistency. These selection procedures may result in a great improvement in high

dimensional feature selection process for both LMs and GLMs.

As mentioned in chapter 1, an efficient feature selection procedure usually con-

sists of two important steps: a suitable feature selection method and an appropri-

ate model selection criterion, where the former is designed to generate candidate

models and the later aims at identifying the best model from these candidate mod-

els. Among model selection criteria, EBIC (Chen and Chen, 2008) is a desirable

choice for high dimensional feature selection because it can effectively limit the

false discovery rate while it suffers slightly lower positive discovery rate than the

classic BIC (Schwarz, 1978). Nevertheless, the selection consistency of EBIC is not

demonstrated when interactive effects are taken into consideration.

In chapter 2, we established the selection consistency of EBIC under high fea-

ture space through acceptable conditions by considering both main effects and

pairwise interactive effects in LMs and GLMs. One advantage of our study is that

we allow a diverging number of relevant features rather than a fixed number. Our

subsequent simulations in chapter 4 showed that EBIC with a proper (γm, γI) is

effective in high dimension model selection. One possible limitation of our study is

that we did not consider the high order interaction due to its rarity and complexity.
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In chapter 3, with the application of EBIC, we developed feature selection pro-

cedures under two kind of models: models with only main effects and interactive

models. Selection procedures can be roughly classified into two categories: se-

quential procedures and penalized likelihood methods. Among these categories,

penalized methods are more popular. Thus, under models with only main effects,

we firstly reviewed SLasso (Luo and Chen, 2013b), a powerful partial penalized

procedure for high dimensional linear regression. Analogous to SLasso that se-

lected the feature maximizing the profile marginal score function, we proposed a

novel procedure SLR for high dimension feature selection in GLMs. In this SLR,

the application of EBIC was mainly reflected in two aspects: being the stopping

rule and being the criterion to identify the optimal model from candidate models.

Under reasonable conditions, SLR was shown to be selection consistent under the

canonical link. Subsequently, we extended SLR to interactive models by grouping

features into main effects and interactive effects and selecting features separately

on these two groups. This extension had a key advantage in that it achieved a

relatively stable performance under different number of interactions.

In chapter 4, we conducted extensive numerical studies to verify finite sample

properties of SLR under different types of models. The sample performance of

SLR was mainly assessed by positive discovery rate (PDR) and false discovery rate

(FDR). With a proper (γm, γI), SLR was shown to closely match its asymptotic
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property, that is, PDR and FDR converged to 1 and 0 respectively when the number

of observations n was sufficiently large. In contrast, SLR with (γm, γI) = (0, 0),

i.e. the traditional BIC (Schwarz, 1978), did not appear to be selection consistent

due to the existence of many spurious features.

5.2 Future Research

In this section, we would like to state several interesting directions for future

works related to this thesis.

In chapter 2, we established the selection consistency of EBIC under GLIMs

with the canonical link. However, the canonical link does not always provide the

best fit and a non-canonical link is more preferable in some situations (McCullagh

and Nelder, 1989). In addition, in SLR of chapter 3, the computing algorithm

we proposed was applicable for both the canonical link and the non-canonical link

whereas SLR was only shown to be selection consistent under the former. Thus, a

direct extension of our study is to conduct feature selection under the non-canonical

link.

Our main purpose in this thesis was to develop a powerful feature selection

procedure, especially for QTL mapping, under the small n large p situation. As
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mentioned in chapter 2, the model selection criterion EBIC relies on the value of

(γm, γI). A larger (γm, γI) results in a lower PDR and FDR although the cor-

responding EBIC is still selection consistent. However, these distinct consistent

(γm, γI) may produce completely different outcomes in some real datesets. Thus,

future work should involve a method for choosing an appropriate (γm, γI) in QTL

datasets.
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