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Summary vi

Summary

Condition based maintenance (CBM) has become one of the main industrial chal-

lenges in the last decade. An early maintenance would reduce the efficiency of the

production mainly by increasing the downtime of the machine, and a late maintenance

would damage the quality of the production. Therefore, the goal of CBM is to do the

maintenance whenever it is required. Early fault detection and diagnosis can help to

increase the availability of the industrial machines and reduce the economical loss per-

taining to the maintenance of the machinery systems. As the name of condition based

maintenance implies the decision of maintenance in this system is based on the condition

and the subsystem performing the condition monitoring is usually named tool condition

monitoring (TCM) in the literature. This subsystem is responsible of assessing the health

status of machinery system components and pieces based on direct or indirect acquired

signals. However, direct methods are not usually favored as they involve stoppage of

production for measurements contradicting with the goal of CBM. In the indirect TCM,

using extracted features from non-intrusively sensed signals such as force, vibration, or

acoustic emission, the health status of the tools are estimated.

The prediction process of health status can be dichotomized into diagnostics and

prognostics. Diagnostics is to predict the current health status based on the data gathered

from beginning of the task up to the current moment. Prognostics is to predict the future

health status based on the data gathered from beginning till present. On the other hand,

based on whether the predicted metric is continuous or discrete, the approaches can be

divided into regression and classification. In this thesis, as the prediction approaches

for the continuous tool condition monitoring were scarce yet important, the major focus

is on this type of prediction. The developed continuous TCM approaches are evaluated

based on the tool wear monitoring experimental data provided by Singapore Institute

of Manufacturing Technology. Moreover, a semi-nonparametric temporal approach is

also proposed for the fault detection and diagnostics (classification) in the rotary electric
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motors and evaluated on the common faults in a synchronous motor.

In Chapter 1, the motivation of the research, relativeness of the research area to other

prediction and forecasting areas and a literature review on the existing works of leading

researchers in the field is introduced. Furthermore, the importance of temporal informa-

tion in acquiring accurate predictions is highlighted and hidden Markov model (HMM)

as a probabilistic model that can capture the temporal information in the sequential ob-

servations is briefed. In Chapter 2, a temporal probabilistic approach based on HMM

is proposed to perform continuous tool wear monitoring. In Chapter 3, a more complex

model called hidden semi-Markov model is then applied to improve the performance

further and to study the tunability of the model based on a given loss function that may

indicate the cost (loss) difference between an under- and over- estimation. Then in Chap-

ter 4, a multi-modal HMM-based approach is proposed to improve the performance of

the single HMM-based approach introduced in Chapter 2. Moreover, three weighting

schemes and two switching strategies are proposed and compared along with the single

HMM-based approach as benchmark. Chapter 5 studies the possible improvement of

HMM-based fault detection and diagnosis (classification) using a semi-nonparametric

approach. As the true model is usually not realizable for real world applications, it is

attempted to increase the accuracy of the classification by using the training data more

effectively. Finally, Chapter 6 summarizes the contributions of this thesis and gives

possible directions for future work in this area.



Nomenclature

List of Notations and Abbreviations

Notation Description

P(.|.) Conditional probability.

O1:T Observation sequence from time step 1 to T where observation at each time

step is a vector.

S 1:T State sequence from time step 1 to T .

A Transition probability matrix.

ai, j probability of transition from ith state to jth.

π0 Initial transition probability vector.

pi Self transition probability.

B Emission probability matrix in discrete HMM.

λ Parameter set.

Di ith data sequence (experiment).

m number of hidden state values.

n number of data sequences (experiments).

µ Mean vector in multi-variate Gaussian distribution.

Σ Covariance matrix in multi-variate Gaussian distribution.

χ Dimensionality of the observation vector.

Hi Continuous label of the ith health state.
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Notation Description

k
j
c Number of samples belonging to the cth health state in the jth data sequence.

t
j

i
Starting time of the ith health state in the jth sequence.

αt(.) Forward variable vector at time t.

βt(.) Backward variable vector at time t.

γt(i) Joint probability of observing all input features through up to current time T

while S t = Hi (t ≤ T ).

ξt′ (i) Joint probability of observing all input features through up to current time T

while S t′ = Hi (t′ > T ).

ŷT expected tool wear at current time T .

y
j
t Actual tool wear at time t in the jth experiment.

x
j

i
(t) value of the ith feature at time t in the jth experiment.

S b Scatter between.

S w Scatter within.

dmax Maximum duration.

µdi
Mean of ith health state duration distribution.

σdi
Standard deviation of ith health state duration distribution.

(S t, τt) Pair of hidden state of the model at time step t and its remaining duration τt at

that time step onward.

αt(., .) Forward variable in hidden semi-Markov model.

βt(., .) Backward variable in hidden semi-Markov model.

ζt(i) Joint probability of observing O1 : T and transition from ith health state to the

next health state at time t.

ξt′ (i, k) Joint probability of observing all the input features up to the current time T

while (S t′ , τt′) = (i, k) where t′ > T .

loss(.) Loss function.

ρ Asymmetry factor in the asymmetric Gaussian distribution.
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Notation Description

ϕ General left side percentage factor in the asymmetric Gaussian distribution.

d̄i Duration at the peak in the ith asymmetric duration distribution function.

Nmode Number of modes considered in the multi-modal approach.

λi Parameter set of the ith mode in the multi-modal approach.

λ′
T

Updated parameter set to be used at time step T .

π′0,T Updated initial state probability to be used at time step T .

Lw Window length for the windowing algorithm.

3t(i) Highest probability obtained obtained by a single path up to time t that ends in

state Hi.

V1:T Viterbi-path taken from time step 1 to T .

W i
T

Weightage of the ith mode for the ultimate output calculation.

∆ Bounded hindsight window length.

φt Discount factor at time t in Discounted hindsight weighting scheme.

Iq(., ., .) Set of (starting,ending) time index pairs.

Rh Observation segment in the reference sequence that its most likely health state

index is h based on Viterbi-path.

dist(., .) Aligned distance between two matrices.

S core(., ., ., .) Score function.

vi ith discrete state value that hidden state variable can take in HMM.

F Probabilistic transition frequency profile matrix with fi, j elements.

E Average probabilistic emission matrix with ei, j elements.

δ(., .) Similarity measure for two matrices.

G(.|.) similarity scoring function.

Qi(.) ith class similarity score computed for the given signature.

C(.) Classification output of the HMMSNP approach.
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Abbreviation Description

CBM Condition based maintenance.

TCM Tool condition monitoring.

HMM Hidden Markov model.

HSMM Hidden semi-Markov model.

CNC Computer numerically controlled.

REM Rotary electric motor.

FDD Fault detection and diagnosis.

PSHMCO Physically segmented hidden Markov model with continuous output.

FDR Fisher’s discriminant ratio.

GMM Gaussian mixture model.

BIC Bayesian information criteria.

MLP Multi-layer perceptron.

MSE Mean squared error.

MRE Mean relative error.

PSHsMCO Physically segmented hidden semi-Markov model with continuous output.

CV Cross-validation.

GLSP General left side percentage.

m2HMM Multi-modal hidden Markov model.

SNPH Semi-nonparametric hindsight.

DH Discounted hindsight.

BH Bounded hindsight.

TT Training-testing ratio.

BRG Bearing fault condition.

UBR Unbalanced rotor bar condition.

HTY Healthy condition.

SqS Squeezing and stretching.

APPA Average peak-to-peak amplitude.

PTFP Probabilistic transition frequency profile.

APE Average probabilistic emission.

HMMSNP Hidden Markov model-based semi-nonparametric approach.

HMMSqS Hidden Markov model with squeezing and stretching preprocessing.
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Chapter 1

Introduction

As industrial machines started to grow more and more complex and sophisticated,

their maintenance has become a major issue in the industry, therefore new methods have

been developed to address this issue. The primarily developed maintenance approaches,

were either fault-driven or time-based. In fault- driven approach, there wouldn’t be any

maintenance in the system till an apparent failure would occur which indicates this ap-

proach is reactive rather than being proactive. Furthermore, this strategy may cause a

lot of physical and financial damage and it is not applicable to all machinery systems,

specifically those in which the quality and precision of the product is greatly important.

The other approach, which is time-based, is to do inspection and maintenance regularly

and periodically. Although this strategy would increase the reliability of the machinery

systems, it may lead to undesirable downtimes and unnecessary maintenance expendi-

tures. Hence, the regular periodic maintenance should be advanced and shifted to the

intelligent maintenance philosophy to satisfy the manufacturers’ high reliability require-

ments. To address the disadvantages lying in both aforementioned approaches, the idea

of a condition based approach was developed.

Condition Based Maintenance (CBM) has become one of the main industrial chal-

lenges in the last decade. An early maintenance would reduce the efficiency of the

production mainly by increasing the downtime of the machine, and a late maintenance

would damage the quality of the production. Therefore, the ultimate goal of CBM is

to do the maintenance whenever it is required. As the industry grows, the importance

1
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of fault detection and diagnostics in the machinery systems is also increasing. Early

fault detection and diagnosis can help to increase the availability of the industrial ma-

chines and reduce the economical loss pertaining to the maintenance of the machin-

ery systems [1]. As the name of condition based maintenance implies the decision of

maintenance in this system is based on the condition and the subsystem performing the

condition monitoring is usually named Tool Condition Monitoring (TCM) in the litera-

ture. This subsystem is responsible for assessing the health status of machinery system

components and pieces based on either directly or indirectly acquired signals. How-

ever, direct methods are not usually favored as they involve stoppage of production for

measurements, thus contradicting with the goal of CBM. TCM reduces the amount of

unnecessary downtime for maintenance purposes, and consequently reduces the cost of

maintenance [2, 3, 4, 6, 5]. Moreover, TCM improves the quality and precision of the

product.

1.1 Background and Motivation of Research

In non-linear systems, acquiring perfect physical models may be a challenging task,

as the interaction among various mechanisms such as electrical, mechanical, chemical,

etc. and other properties of the system has to be completely comprehended. For exam-

ple, in the tool wear progression, five wear mechanisms may be involved i.e. abrasion,

adhesion, fatigue, dissolution, and tribo-chemical processes [7]. However, as stated

in [8], it is difficult to predict their relative importance in various conditions. Thus,

as a perfect physical model is not available in many real-world applications (such as

tool wear monitoring), many researchers have focused on developing data-driven pre-

diction approaches based on historical data. A survey on these approaches can be found

in [9,10]. Figure 1.1 schematizes components of a data-driven tool condition monitoring

system.

A data-driven CBM system can be realized by integrating CBM’s four essential com-

ponents. These four components are as follows

1. Acquiring and collecting data in an indirect manner (non-intrusively) without
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Figure 1.1: Components of a data-driven tool condition monitoring system.

causing machinery downtime (using sensors, etc.)

2. Preprocessing the acquired data as well as feature extraction and selection,

3. Modeling, condition monitoring (or fault detection and diagnosis),

4. Decision making.

The first three components materialize the TCM subsystem. After performing condition

monitoring, assessing the health status of the components and providing the predicted

health status for future time steps (remaining useful life), decision making can be per-

formed by either experts (manually) or based on expert systems and automated decision

making systems. In this research our focus is on the third component up to the deci-

sion making point where the outputs from the third component are provided either in

continuous (e.g. tool wear monitoring) or discrete (e.g. fault detection) form.

Tool condition monitoring in a machinery system, means enabling a system to pre-

dict the health status (tool condition) in a machine based on the non-intrusively extracted

features. The horizon of this prediction may be different depending on the application.
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Figure 1.2: Schematizing the context of diagnosis, prognosis and hindsight. x-axis

shows time line.

Basically, this prediction process is commonly dichotomized into two tasks, namely, di-

agnostics and prognostics [5, 6, 11, 12, 13, 14]. Figure 1.2 depicts the concept of these

two tasks.

Diagnostics is to predict the current health status based on the data gathered from be-

ginning of sampling up to the current moment. Prognostics is to predict the future health

status based on the data gathered from beginning till present. Obviously, diagnostics is

an easier task compared to prognostics and a good diagnostics algorithm is a necessary

requirement and an initial step to achieve a sound prognostics algorithm. A survey on

the diagnostics and prognostics approaches can be found in [9].

In [15], trend projection models are used, in which model parameters can be easily

computed but may overfit the past degradation patterns. Fuzzy inference system (FIS)-

based approaches are also extensively used in TCM [16, 17, 18, 19], which in general

require a priori knowledge to be available when determining the rules and membership

functions. The strategy exploiting fuzzy and neuro-fuzzy tools such as adaptive neuro

fuzzy inference system (ANFIS) are also applied to TCM applications [20,21,22], which

are data-driven and can be regarded as special classes of neural network methods. Artifi-

cial neural network (NN) is one of the most commonly used approaches in this domain.

In [14, 23, 24, 25, 26, 27, 28, 29, 30], NNs are used in a time series prediction manner

providing nonlinear projection without the need for prior knowledge. However their

prediction horizon is short. Hidden Markov models (HMM) and hidden semi-Markov
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models (HSMM) are used [31,32,33,34,35,36,37] to distinguish various wearing stages

or machinery fault types.

Another way to categorize the prediction approaches is based on whether or not their

predicted output is continuous. Consequently, the prediction approaches can be divided

into regression (continuous output) and classification (discrete output) approaches. In

this thesis, as the prediction approaches for the continuous tool condition monitoring

were scarce yet important, the major focus is on this type of prediction approaches

which are evaluated based on the experimental data. However, a semi-nonparametric

temporal approach is also proposed for the fault detection and diagnosis (classification)

in the rotary electric motors and evaluated on the common faults in a synchronous motor.

As an illustrative example for the continuous TCM, tool wear monitoring in a computer

numerically controlled (CNC)-milling machine is described, which has been used to

evaluate the corresponding proposed approaches throughout this thesis. Here, the back-

ground on the Tool wear monitoring as well as fault detection and diagnosis in rotory

electric motors are provided.

1.1.1 Tool Wear Monitoring

As the modern manufacturing industry develops, the question on how to improve the

quality while reducing the production time-line and lowering its cost is more and more

highlighted. Among various causes of poor production qualities, undetected amount of

tool degradation and wearing that happens during the machining processes are one of

the major issues. If the tool wear status would not be detected in time, it may lead to

inefficient machining or destruction of the machine tool. Thus, it is necessary to perform

accurate tool wear monitoring and integrate it as a part of CBM system.

As recognizing the accurate physical model of the tool wearing process turns to

be infeasible in real-world applications, various researches are tended to data-driven

approaches to perform tool wear monitoring. Many data-driven approaches are proposed

so far for this purpose [40].

HMM is one of the commonly used approaches to perform tool wear monitoring for

various machining processes such as grinding [41], milling [33, 42, 43, 44, 45],drilling
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[37], turning [46, 47]. The cutting tool wear monitoring and prediction of useful life

were modeled using hidden Markov model (HMM) and continuous HMM [33, 34, 35,

37, 36]. In all the existing HMM and HSMM-based approaches, the wearing data is

discretized into several stages and then multiple HMMs are used to distinguish between

those stages. Each HMM or HSMM is assigned to recognize one specific stage and

an expectation-maximization method is utilized to estimate the parameters. However,

training HMMs and HSMMs using expectation-maximization method is essentially a

black-box approach, which does not provide explicit relationship between the wearing

value and the hidden state values in the trained HMMs or HSMMs.

In most of the proposed approaches, tool wear monitoring is treated as a classifica-

tion problem rather than regression. In contrast, in this thesis, tool wear monitoring is

treated as a regression problem. The idea is to regularly assess the health status of the

tool in the machinery system at each time step in terms of a continuous measure based

on the past input data. In other words, instead of setting some thresholds and differ-

entiating distinct health states as various (ordinal) classes, we would like to ultimately

monitor the health state of the tool using a continuous measure. This allows us to have

a smoother decision maker system for the condition based maintenance. It also enables

us to incorporate different quality thresholds for different applications using the same

condition based maintenance system e.g. to satisfy and guarantee different qualities in

various products.

The continuous health state in each machinery system corresponds to different stages

of deterioration. Tool wear monitoring in the cutting machinery systems is one of appli-

cations of continuous TCM. For example, in a milling machine, the features extracted

from various signals such as force, vibration and acoustic emission are used as the inputs

to predict the continuous wearing metric of the cutter [5, 6, 48].

In this thesis, tool wear monitoring in a CNC-milling machine is used as an illus-

trative example for continuous TCM. As indicated in [49], tool flank wear length or

wear-land, is generally regarded as the tool wear criterion or an important index to eval-

uate the tool performance. Thus, it is adopted as the continuous tool wear indicator to

be predicted in the CNC-milling machine.
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1.1.2 Fault Detection and Diagnosis in Rotary Electric Motors

Rotary electric motors (REM) provide the basis for the electromechanical energy

conversion in all industrial environments [39]. Thus, as the industry grows, the im-

portance of fault detection and diagnosis (FDD) in the rotary electric motors is also

increasing. Early fault detection and diagnosis can help to increase the availability of

the industrial machines and reduce the economical loss pertaining to the maintenance of

the machinery systems [1].

The task of FDD in REMs is to automatically detect the faulty condition from the

healthy condition and furthermore recognize the specific type of fault such as bearing

fault, unbalanced rotor bar, etc. that has occurred in order to reduce downtime and

maintenance cost. The goal of automated FDDs is to detect the specific faults based

on non-intrusively captured signals such as vibration and electrical signals over a wide

range of operating speeds.

In the REMs, machine vibration arises due to action-reaction forces acting on the

surface-to-surface contacts of moving machine parts. A healthy machine exhibits low

level of vibrations. One the other hand, machine with bearing single-point defects and

unbalanced rotor (possibly caused by breakage, wear and tear, accumulation of de-

posits, temperature changes, etc.) generates unique vibration signatures [51]. Among

the common signatures analyzed during condition monitoring of REMs, vibration sig-

nature analysis seems to be the most responsive one [53, 54, 55]. Vibration is the most

commonly measured signal used in monitoring machinery condition and an effective

media for diagnosing mechanical faults [1, 51, 56, 57, 58, 59]. Another common signal

that has been extensively used to diagnose faults in the motor is the motor current signal.

Motor current signature analysis normally inspects the current spectrum for a specific

fault spectrum [60, 61, 62, 63, 64, 65]. This requires a sufficiently high frequency resolu-

tion. Since the signature is non-stationary and non-linear, traditional Fourier transform

using fast Fourier Transform (FFT) may not be able to capture the fault spectra, requir-

ing other techniques, such as wavelet [60,61,62,63,64], high resolution techniques [66],

or polynomial-phase transform [67]. Diagnosis methods using stator current by wavelet

decomposition for bearing fault are reported in [64, 68, 69, 70]. Also in [71], wavelet
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decomposition is applied on the inverter input current to identify the induction motor

faults. However, the careful selection of wavelet is not trivial [72, 73]. In this thesis,

instead of using motor current, vibration signatures are used, as it may be difficult to

detect these faults using motor current signatures spectra especially under extreme low

signal-to-noise ratio [74] and presence of varying load torque effect [60].

Hidden Markov models (HMM) are extensively used for fault detection and diag-

nosis in various rotary electrical motors [58, 75, 76, 77, 78, 79, 80, 81] as well as failure

prognostics [82]. In all cases, the HMM-based approach is successful in distinguishing

healthy condition from faulty conditions (fault detection). The challenging part is to

diagnose the faults as the amplitude of the vibration signals from various faults may be

similar between various operating speeds. That increases the chance of misclassifica-

tion based on maximum likelihood strategy considering the fact that the true model is

not practically realizable in real applications.

The most common fault in the REMs is bearing related faults which are responsible

for about 50% of all rotary machine faults [50]. The second most common fault is the

unbalanced rotor which causes excessive vibrations in the machines [51, 52]. Thus, as

an illustrative example in this thesis, these two faults are tried to be classified along the

healthy condition in a synchronous motor as one of the REM types that is widely used

in all the industrial applications where constant speed is essential.

1.1.3 Necessity of Temporal Models for Diagnostics and Prognostics

Sequential data exist in every scientific and industrial domain. The sequential prop-

erty of data in different domains is mainly imposed either by time (temporal sequential

data) or space (spatial sequential data). Samples in the sequential training data, rather

than being drawn independently and identically from a joint distribution of inputs (X)

and outputs (y), consists of sequences of (X, y) pairs which have significant sequential

correlations (patterns) [83]. That is, nearby X and y values are likely to be related to

each other. These correlations and patterns are important because they can be exploited

to improve the prediction accuracies in the utilized models. Therefore, the importance

of capturing these temporal (spatial, or both) patterns, have become a major focus of



Chapter 1. Introduction 9

research in machine learning for various applications.

Various problems can be addressed and formulated as cases of sequential data anal-

ysis. Generally, these problems can be categorized as follows

• Time Series Prediction (e.g. stock market prediction [84], etc.)

• Sequential Supervised Learning (e.g. part of speech tagging [85], error control

coding [86], DNA annotation [87], etc.)

• Sequence Classification or Labeling (e.g. hand-written identification [88], object-

shape detection [89], sign language recognition [90], fault detection [91], etc.)

• Diagnostics & Prognostics (e.g. TCM in industrial machines [92])

These problems have similarities and differences in their specific formulation. Some of

these similarities and differences between diagnostics & prognostics and the other three

categories are listed in table 1.1.

Table 1.1: Some Similarities and differences between diagnostics & prognostics and the

other sequential data analysis categories.

Category Similarity Difference

Time Series Prediction The input data from beginning till

current time is available.

yt+1 must be predicted while y1:t

true values are available.

Sequential Supervised Learning The true output values are not avail-

able.

The whole sequence is available.

Sequence Classification The inputs are provided as sequen-

tial data similar to rest of categories.

Only one label must be predicted

given the whole sequence.

Another aspect that sequential data analysis problems can be categorized based on,

is the value of output that must be predicted whether it is continuous or discrete. On this

basis, they can be categorized as regression or classification. By comparing the problem

statements, it may be suggested that tool condition monitoring is more difficult than

the other aforementioned problems specifically in case of continuous health assessment

(Regression case such as continuous tool wear monitoring).

As mentioned earlier and it is stated in [83, 93], in order to achieve more accurate

predictions, there is a necessity in capturing trends and modeling the sequential pat-
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tern rather than treating the experimental data samples as if they are independently and

identically distributed. Markov models and hidden Markov model can model the de-

pendence (correlation) between the elements in a sequence [94]. Hidden Markov model

(HMM) assumes that the system being modeled is a Markov process with unobserved

(hidden) states. Since HMM satisfies the need to capture sequential patterns, in this

thesis, HMM-based approaches are proposed and studied to fulfill the prediction tasks

either for regression or classification.

1.1.4 Hidden Markov Model

Signal modeling methods can be broadly dichotomized into two classes, namely, de-

terministic models and statistical models [95]. Deterministic models exploit the known

specific properties of the signal, for example when it is known that a signal is sinusoidal,

then by identifying the amplitude, phase and frequency it can be modeled. In other type

of the models classified as statistical models, which include Gaussian Processes, Markov

Processes, and hidden Markov processes, only the statistical properties of the signals are

characterized. The underlying assumption of the statistical model, is that the signal can

be well characterized as a parametric random process, and that the parameters of the

stochastic process can be determined (estimated) in a precise, well-defined manner [95].

Among the statistical models, hidden Markov model is one of the most popular mod-

els, since it is very rich in mathematical structure which helps researchers to form the

theoretical basis required in different applications. In this Section, first the theory of dis-

crete Markov chains is described and then it is shown how the concept of hidden states,

where the observation is a probabilistic function of the state, can be used effectively.

Discrete Markov Process

Consider a system which may be described at any time as being in one state from

the set of m distinct states {v1, v2, . . . , vm}. At regularly spaced discrete times, the system

undergoes a change of state (self transition is also possible) according to a set of proba-

bilities associated with the state. The time instants associated with the state changes are

denoted as t = 1, 2, . . . and the actual state at time t is S t.
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A full probabilistic description of the aforementioned system in general requires

specification of the current state at time t, as well as all the predecessor states [95].

However, for a special case of discrete first order Markov chain, this probabilistic de-

scription is truncated to just the current and the previous state as follows [96]

P(S t = v j|S t−1 = vi, S t−2 = vk, . . . ) = P(S t = v j|S t−1 = vi). (1.1)

Furthermore, assuming stationarity, the right hand side of (1.1) is independent of time

and thus leads to the state transition probabilities characterized as follows

A = [ai, j]m×m = [P(S t = v j|S t−1 = vi)]m×m, 1 ≤ i, j ≤ m (1.2)

with the state transition elements having the properties ai, j ≥ 0 and
m∑

j=1
ai, j = 1 since they

obey standard stochastic constraints.

The above stochastic process may be called an observable Markov model since the

output of the process is the set of states at each time step, where each state corresponds

to an observable event. As an example, consider a simple 3-state Markov model of the

weather in Singapore. Assume that the weather once a day (e.g. at 12 pm) is observed

as one and only one of the following states rainy, cloudy, or sunny that are denoted re-

spectively as R,C, and S. Figure 1.3 depicts the transition graph and gives the estimated

transition probability matrix A in this example.

Figure 1.3: Illustrative 3-state discrete Markov Process for weather condition in Singa-

pore.

Now as an example, we would like to calculate the probability (according to the
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postulated model) that the weather sequence for the next 4 days will be “sunny, cloudy,

cloudy, rainy”, given that today’s weather (t = 0) is rainy.

The corresponding observation sequence for t = 1, 2, . . . , 4 can be defined as

O1:4 = {S,C,C,R}, with initial state of R.

Now given the model and the observation sequence, the probability P(O1:4|Model) can

be computed as follows

P(O1:4|Model)

= P(R) × P(S|R) × P(C|S) × P(C|C) × P(R|C)

= π0(1) × a1,3 × a3,2 × a2,2 × a2,1

= 1 × 0.2 × 0.7 × 0.4 × 0.5 = 0.028

where π0 is the initial state probability distribution and π0(i) indicates the probability of

initially being at ith state.

Hidden Markov Model

As mentioned, the described discrete Markov process may also be called observable

Markov process as the states are observable at each time step. However, this may not

be applicable to many real-world applications in which the actual physical states are

not observable or hard to observe (hidden) and we may only have access to indirect

observations that are probabilistic functions of those hidden physical states. Thus to

address this issue in the applications, hidden Markov model may be utilized.

The hidden Markov model is a doubly stochastic process. This model has only one

discrete hidden state variable, and a set of discrete or continuous observation nodes [96].

Fig. 1.4 depicts graphical model of HMM along with its transition graph. The basic

theory of HMM was published in a series of papers by Baum and his colleagues in the

late 1960s and early 1970s and was implemented for speech processing applications by

Baker at CMU, and by Jelinek and his colleagues at IBM in the 1970s [95].

Here, the hidden Markov model is illustrated using a similar yet different weather

condition example in Singapore. This time assume that there is a janitor in one of the

buildings of Singapore (with no window and means of observing outside world) who

never leaves the building and does not follow the weather reports. The only thing related
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Figure 1.4: Graphical model of HMM including its transition graph.

to the weather condition that he observes is his boss who comes to the office at noon

either carrying an umbrella or not. Thus, in this example, the observation is either

boss carrying an umbrella or not {U,¬U} and the hidden state is the weather condition

that can be rainy, cloudy or sunny, {R,C,S}. Carrying an umbrella by the boss can

be modeled as a probabilistic function of the weather condition (which is hidden to the

janitor). The probabilistic function which connects the observations to the hidden state is

named emission probability in the literature. Let’s assume that the emission probabilities

in this example are estimated to be as follows

B = [bi, j] =





P(U|R) P(¬U|R)

P(U|C) P(¬U|C)

P(U|S) P(¬U|S)





=





0.9 0.1

0.6 0.4

0.2 0.8





Now, the questions that we would like to answer is that firstly, what is the joint

probability of having a specific sequence of hidden states while observing a set of ob-

servations (sequence ofU and ¬U), for that corresponding time line. Another question

is that given a set of observations up to a point in time, what is the probability of being

at ith hidden state for its next time step. These two questions are illustrated as follows.

Question 1.

Five days back the Janitor has asked his boss about the weather that day and his boss

has replied “It is raining”, thus S 0 = R. Consequently, the initial state probability is
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Figure 1.5: Illustrative graphical model of HMM for weather condition.

π0 = [1 0 0]T . Assuming that the Janitor’s observations for the passed 4 days have been

O1:4 = {¬U, ¬U, U, U} what is the joint probability that the weather condition for

the passed four days has been S 1:4 = {S,C,C,R}? This probability can be computed as

follows

P(O1:4, S 1:4|Model)

= P(S 0 = R) × P(S 1 = S|S 0 = R) × P(O1 = ¬U|S 1 = S)

× P(S 2 = C|S 1 = S) × P(O2 = ¬U|S 2 = C) × P(S 3 = C|S 2 = C)

× P(O3 = U|S 3 = C) × P(S 4 = R|S 3 = C) × P(O4 = U|S 4 = R)

= π0(1) × a1,3 × b3,2 × a3,2 × b2,2 × a2,2 × b2,1 × a2,1 × b1,1

= 1 × 0.2 × 0.8 × 0.7 × 0.4 × 0.4 × 0.6 × 0.5 × 0.9 = 0.0048

Question 2.

Two days back the boss has told the janitor that it is sunny. Assuming that the janitor has

seen the boss carrying an umbrella yesterday, what is the probability of raining outside

today given that the boss is not carrying an umbrella today?

Figure 1.5 depicts the graphical model of the HMM used in this question. Based on

the assumptions, the problem can be written formally and calculated as follows

P(S 2|O1:2,Model) ∝ P(O2 = ¬U|S 2) ×
∑

S 1∈{R,C,S}
P(S 2|S 1) × P(S 1|O1) (1.3)
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To compute the probability in (1.3), first P(S 1|O1) has to be computed as follows

P(S 1|O1,Model) ∝ P(O1 = U|S 1) × P(S 1|S 0 = S) × P(S 0 = S)

{ P(S 1 = R|O1,Model) = N1 × P(O1 = U|S 1 = R) × P(S 1 = R|S 0 = S) × P(S 0 = S)

⇒ P(S 1 = R|O1,Model) = N1 × b1,1 × a3,1 × 1 = 0.18N1

{ P(S 1 = C|O1,Model) = N1 × P(O1 = U|S 1 = C) × P(S 1 = C|S 0 = S) × P(S 0 = S)

⇒ P(S 1 = C|O1,Model) = N1 × b2,1 × a3,2 × 1 = 0.42N1

{ P(S 1 = S|O1,Model) = N1 × P(O1 = U|S 1 = S) × P(S 1 = S|S 0 = S) × P(S 0 = S)

⇒ P(S 1 = S|O1,Model) = N1 × b3,1 × a3,3 × 1 = 0.02N1

where N1 is a normalizing factor equal to 1/P(O1). However, it is not required to be

calculated, since based on the total probability principal

∑

S 1∈{R,C,S}
P(S 1|O1,Model) = 1⇒ 0.18N1 + 0.42N1 + 0.02N1 = 1⇒ N1 = 1.6129

Therefore, P(S 1 = R|O1) = 0.2903, P(S 1 = C|O1) = 0.6774, and P(S 1 = S|O1) =

0.0323. Finally, P(S 2|O1:2,Model) in (1.3) can be calculated as

⇒ P(S 2 = R|O1:2,Model)

= N2 × P(O2 = ¬U|S 2 = R) ×
∑

S 1∈{R,C,S}
P(S 2 = R|S 1) × P(S 1|O1)

= N2 × b1,2 × (a1,1 × 0.2903 + a2,1 × 0.6774 + a3,1 × 0.0323) = 0.04613N2

⇒ P(S 2 = C|O1:2,Model)

= N2 × P(O2 = ¬U|S 2 = C) ×
∑

S 1∈{R,C,S}
P(S 2 = C|S 1) × P(S 1|O1)

= N2 × b2,2 × (a1,2 × 0.2903 + a2,2 × 0.6774 + a3,2 × 0.0323) = 0.1639N2

⇒ P(S 2 = S|O1:2,Model)

= N2 × P(O2 = ¬U|S 2 = S) ×
∑

S 1∈{R,C,S}
P(S 2 = S|S 1) × P(S 1|O1)

= N2 × b3,2 × (a1,3 × 0.2903 + a2,3 × 0.6774 + a3,3 × 0.0323) = 0.1032N2
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Similar to N1, N2 which is also a normalizing factor, can be computted and it is equal

to 3.1925. Hence,

P(S 2 = R|O1:2,Model) = 0.04613 × N2 = 0.1473.

Similar to the calculations used here, to find the probability of today being rainy

based on today’s and preceding observations, probabilities of being in different health

status for the machinery system at each time step based on the indirect observations can

be computed after estimating the parameters of HMM.

1.2 Objectives and Scope of Research

Among the aforementioned four components of the CBM, in this thesis, the focus

is on the third component that is “Modeling and Condition Monitoring”. Although the

data acquisition process plays an important role in realization of an effective condition

based maintenance system, it is out of scope of this thesis. Also, as the condition based

maintenance systems can be operated by either experts (manually) or based on expert

systems and automated decision making systems, the condition monitoring up to condi-

tion prediction is performed.

As mentioned in the previous Section, the intrinsic uncertainties which underlie the

condition monitoring procedure and its temporal sequential nature, made hidden Markov

model-based approaches a perfect option for this task. However, the HMM-based ap-

proaches that are implemented for this task in the literature are basically used as a black-

box approach which are unable to depict a correspondence between the hidden state

values in the HMM and the actual physical states. Thus, in this thesis, firstly an HMM-

based approach for TCM is proposed which depicts the aforementioned correspondence.

Furthermore, the proposed approach performs a continuous TCM in contrast to the pre-

vious HMM-based TCM approaches. Later on, more complex structures based on the

similar idea developed in that approach are utilized to improve the prediction perfor-

mance further. Using a hidden semi-Markov model-based approach, it is studied how

to capture the trends in the training data more effectively by capturing the state-duration

distributions with more realistic distributions. Also, it is investigated how to incorpo-
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rate a given loss function into the proposed HSMM-based TCM approach. Moreover, to

capture all possible underlying trends available in a given training data, a multi-modal

TCM approach is proposed which uses parallel single models as various modes that

are responsible for various captured trends. Various weighting schemes and switching

strategies that can be incorporated in the multi-modal approach to unify the results from

the multi modes into one, are proposed and studied.

Moreover, in this thesis, it is attempted to improve the performance of conventional

HMM-based classification approach used for fault detection and diagnosis by incorpo-

rating the training data more effectively. To improve the performance of the existing

HMM-based classification approach, an HMM-based semi-non parametric approach is

proposed which takes the advantages of both parametric and nonparametric approaches.

1.3 Contribution and Outline of Thesis

This thesis is organized as follows. In Chapter 2, a temporal probabilistic approach

based on the hidden Markov model (HMM), named physically segmented HMM with

continuous output (PSHMCO), is introduced for continuous tool condition monitoring

(TCM) in machinery systems. The proposed approach has the advantage of provid-

ing an explicit relationship between the actual health states and the hidden state values.

The provided relationship is further exploited for formulation and parameter estima-

tion in the proposed approach. The introduced approach is tested for continuous tool

wear prediction in a computer numerical control (CNC)-milling machine and compared

with two well-established neural network (NN) approaches, namely, multilayer percep-

tron and Elman network. In the experimental study, the prediction results are provided

and compared after adopting appropriate hyper-parameter values for all the approaches

by cross-validation. Based on the experimental results, physically segmented HMM ap-

proach outperforms the NN approaches. Moreover, the prognosis ability of the proposed

approach is studied.

In Chapter 3, a more complex temporal probabilistic approach based on hidden

semi-Markov model is proposed for continuous (real-valued) tool condition monitor-
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ing (TCM) in machinery systems. Similar to Chapter 2, as an illustrative example, tool

wear prediction in CNC-milling machine is conducted using the proposed approach.

Results indicate that the additional flexibility provided in the new approach compared

with the PSHMCO improves the performance. The prediction results are provided for

three different cases i.e. cross-validation, diagnostics and prognostics. Possibility of

incorporating an asymmetric loss function in the proposed approach in order to reflect

and consider the cost differences between an under- and over-estimation in TCM is also

explored and the simulation results are provided.

In Chapter 4, a novel multi-modal hidden Markov model-based approach is proposed

for tool wear monitoring. The proposed approach improves the performance of the sin-

gle hidden Markov model-based approach named PSHMCO (proposed in Chapter 2)

by using multiple PSHMCOs in parallel. In this multi-modal approach, each PSHMCO

captures and emphasizes on a different tool wear regiment. In this Chapter, three weight-

ing schemes, namely, bounded hindsight, discounted hindsight and semi-nonparametric

hindsight are proposed and two switching strategies named soft- and hard-switching are

introduced to combine the outputs from multiple modes into one. Similar to preceding

Chapters, the proposed approach is applied to tool wear monitoring in a CNC-milling

machine. The performance of the multi-modal approach with various weighting schemes

and switching strategies is reported and compared with PSHMCO.

In Chapter 5, a semi-nonparametric approach based on hidden Markov model is

introduced for fault detection and diagnosis in Rotary Electric Motors. In this ap-

proach, after training the hidden Markov model classifiers (parametric stage), two matri-

ces named probabilistic transition frequency profile and average probabilistic emission

are computed based on the hidden Markov models for each signature (non-parametric

stage) using probabilistic inference. These matrices are later used in forming a similar-

ity scoring function, which is the basis of the classification in this approach. Moreover,

a preprocessing method, named squeezing and stretching is proposed which rectifies

the difficulty of dealing with various operating speeds in the classification process. The

experimental results are provided and compared for a synchronous motor. Further inves-

tigations are carried out, providing sensitivity analysis on the length of signatures, the
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number of hidden state values, as well as statistical performance evaluation and compar-

ison with conventional hidden Markov model-based fault diagnosis approach.

Finally, the thesis is concluded in Chapter 6. This chapter summarizes the contribu-

tions of the research work reported in this thesis and outlines the future work directions.



Chapter 2

Physically Segmented Hidden Markov

Model with Continuous Output

2.1 Introduction

Tool Condition Monitoring (TCM) has become one of the main industrial challenges

in the last decade. TCM reduces the amount of unnecessary downtime for maintenance

purposes, and consequently reduces the cost of maintenance [2, 3, 4, 6, 5]. Moreover,

TCM improves the quality and precision of the product.

The idea of continuous tool condition monitoring is to monitor the health condition

of the tool at each time step in terms of a continuous metric based on the available in-

put data. In other words, instead of setting thresholds and differentiating distinct health

states as various (ordinal) classes, we would like to ultimately monitor the health state

of the tool in a continuous form. This task allows us to have smoother decision mak-

ing systems in the condition based maintenance and it can incorporate different quality

thresholds for different applications using the same condition based maintenance system

e.g. to guarantee different qualities in various products. The input data in this task, is

a set of selected features that are extracted from non-intrusively sensed and captured

signals. Signals such as force, vibration and acoustic emission can be captured and

recorded using various sensors mounted on the machinery systems.

Hidden Markov models (HMM) and hidden semi-Markov models (HSMM) are used

20
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[31,32,33,34,35,36,37] to distinguish various wearing stages or machinery fault types.

In all the existing HMM and HSMM-based approaches, the wearing data is discretized

into several stages and then multiple HMMs are used to distinguish between those

stages. Each HMM or HSMM is assigned to recognize one specific stage or fault. Train-

ing HMMs and HSMMs using expectation-maximization method, however is essentially

a black-box approach, which does not provide explicit relationship between the wearing

value and the hidden state values in the trained HMMs or HSMMs.

In this Chapter, a temporal probabilistic approach based on HMM, named physi-

cally segmented hidden Markov model with continuous output (PSHMCO), is proposed

to tackle the problem of continuous health assessment of cutters in a CNC-milling ma-

chine. The proposed approach depicts the explicit relationship between the actual physi-

cal states and the hidden state values. Furthermore, the provided relationship is exploited

for formulation and parameter estimation in PSHMCO. In addition, the suggested ap-

proach ultimately predicts the real-valued health state metric (tool wear) instead of dis-

crete types or stages.

This Chapter is organized as follows. In Section 2, the proposed approach, PSHMCO,

is introduced. Diagnostics and prognostics procedures are described in Section 3. Sec-

tion 4 provides information about the experimental data and selected features from the

acquired signals in the experiments. In Section 5, performance of PSHMCO is compared

with two well-established neural networks, namely, Multi-Layer Perceptron (MLP) and

Elman network. The Chapter is concluded in Section 6.

2.2 Physically Segmented Hidden Markov Model with

Continuous Output

As the name implies, this approach is based on hidden Markov model. Contrary

to the conventional use of HMMs which is in classification, here HMM is applied to

a continuous problem (regression). In this approach, explicit relationship is provided

between the tool conditions (physical health states) and the hidden state values of the

HMM. Then, the relationship is further exploited to directly compute the parameters
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using maximum likelihood method assuming to have a complete training set. Finally,

the state estimation is described for different points in time.

Hidden Markov model is a simple dynamic Bayesian network [96]. This model has

only one discrete hidden state variable, and a set of discrete or continuous observation

nodes.

As mentioned in the preceding Chapter, a first-order temporal Markov model is char-

acterized by the assumption that,

P(S t = vi|S t−1, S t−2, . . . , S 1) = P(S t = vi|S t−1), (2.1)

where P(.|.) is the conditional probability, S t is the hidden state variable at time t and vi

is the ith hidden state value. Equation (2.1) indicates that the conditional probability of

any current state, given knowledge of all previous states, is the same as the conditional

probability of the current state, given its previous state only [97].

In order to use the HMM in the PSHMCO approach, firstly, the output space will be

discretized into several hidden state values or health states as shown in Fig. 2.1. After

that the outputs in the training set would be discretized and assigned to those health states

(segmented). Then, the parameters of the hidden Markov model are directly estimated

based on the complete training dataset with discretized outputs. Hence, when the new

testing data is given to the HMM model, using the inference algorithms and the learned

parameters, a probability distribution over real-valued health states (hidden state values)

can be computed for each time step. Finally, using the calculated probability distribution

and the discretized real-valued labels of health states, an expected real-valued output

will be computed for each time step. In this and the following Sections, the PSHMCO

approach for diagnostics and prognostics in TCM is introduced in details.

2.2.1 Discretization & Formulation

Using uniform discretization method on the continuous health metric (tool wear),

continuous wearing values can be discretized into m classes or state values with real-

valued labels, {H1, ...,Hm}. These state values correspond to m ordinal wearing stages.

As shown in Fig. 2.1, after discretization and segmenting the tool wear values in the
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training set, segments are labeled ordinally from H1 to Hm indicating explicit correspon-

dence between the health states (hidden state values) in the HMM and the actual physical

wearing metric.

An appropriate value for the number of health states can be adopted based on cross-

validation results. Since wearing is a gradual process and sampling rate is relatively high

comparing to the number of possible state values, at each time step only two possible

transitions are available (excluding the last state which is modeled as an attraction point).

The two possible transitions given that S t−1 = Hi are either staying at the same condition

Hi with probability pi or going to the next degradation stage Hi+1 with probability 1− pi,

as shown in Fig. 2.1. Therefore, the transition probability matrix, A, for the HMM used

Figure 2.1: Illustrative example of tool wear discretization and the correspondence of the

Actual tool wear with the hidden state values in the implemented HMM, {H1, . . . ,H10}.

Arrows indicate possible transitions from each health state.
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in the TCM can be formulated as,

A = [ai, j]m×m =





p1 1 − p1 0 0 ... 0

0 p2 1 − p2 0 ... 0

. . .

. . .

. . .

0 0 0 ... pm−1 1 − pm−1

0 0 0 ... 0 1





, (2.2)

where the element at ith row and jth column, ai, j, is the transition probability of going

from ith health state to jth health state. m is the total number of state values that the

hidden state can take and pi is the probability of self-transition in the ith health state.

2.2.2 Parameter Estimation

Assuming stationarity, the only parameters to be identified are, the initial health state

probabilities (prior probabilities), transition probability matrix in (2.2) and emission

probabilities that connect the hidden states to the observations (input features). These

parameters must be estimated for the HMM given the training data. The parameter es-

timation can be done using either maximum likelihood (ML) or maximum a posteriori

method. Here, Maximum Likelihood learning method is adopted. Gradient ascent and

expectation-maximization (Baum-Welch) are the two conventional algorithms to esti-

mate the parameters based on ML [96]. However, in this work since the data is complete

(without missing information) and taking the advantage of explicit relationship between

the given actual physical states and the hidden state values, there is no need to use either

of the two mentioned algorithms. Using the ML method, parameters can be directly es-

timated from the discretized health states based on the measured tool wear (as depicted

in Fig. 2.1), and the input feature sequences that are extracted from the dataset.

The ML method calculates the parameters that maximize the likelihood probability

of the training dataset. Therefore, in order to find the parameters, the joint probability

distribution of the training dataset (likelihood probability) must be derived and then be

maximized. Since the n experimental sequences included as the training set {D1, . . . ,Dn}
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are independent of each other, the joint probability distribution for HMM can be written

as

P(D1,D2, . . . ,Dn|λ) =
n∏

j=1

P(D j|λ), (2.3)

where D j is the experimental data sequence collected from the jth experiment and λ

is the set of HMM parameters. In (2.3) the joint probability distribution for the jth

experiment given the parameters, P(D j|λ), can be computed as

P(D j|λ) = P(S
j

1:T j
,O

j

1:T j
|λ) = πo(S

j

1
)

T j∏

t=1

P(S
j
t |S

j

t−1
)P(O

j
t |S

j
t ),

O
j

1:T j
={O j

1
,O

j

2
, ...,O

j

T j
} , S

j

1:T j
= {S j

1
, S

j

2
, ..., S

j

T j
},

(2.4)

where D j includes extracted features O
j

1:T j
and tool wear sequence S

j

1:T j
, and T j is

the length of the jth experimental sequence. Assuming that the emission probabilities

P(O
j

i
|S j

i
) are Gaussian distributions [98] and considering the transition matrix in (2.2),

joint probability distribution of the jth experimental data given in (2.4) can be rewritten

as

P(D j|λ) = π0(S
j

1
) ×

m−1∏

i=1

p
k

j

i
−1

i
(1 − pi) ×

m∏

i=1

t
j

i+1
−1
∏

t=t
j

i

1

(2π)χ/2|Σi|1/2
e(− 1

2 (O
j
t−µi)

TΣ−1
i

(O
j
t−µi)),

t
j

i
=






1 +

i−1∑

c=1

k j
c f or i > 1

1 f or i = 1

,

(2.5)

where λ = {π0, p1, ..., pm−1, µ1, ..., µm,Σ1, ...,Σm}, π0 is the prior probability distribution

of the initial health state, m is the number of health states, µi and Σi are respectively

mean and covariance matrix used in the Gaussian distribution to compute the emission

probability at time t given the fact that S
j
t = Hi. χ is the dimension of observation vector

or in other words the number of features being used for TCM. t
j

i
is the starting time step

of the ith health state and k
j
c is the number of samples belonging to the cth health state,

both in the jth experimental data. From (2.5), the log likelihood for the implemented
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HMM with real-valued observations can be computed as

L̄ =

n∑

j=1

L j =

n∑

j=1

log(P(D j|λ)),

L j = log(P(D j|λ)) = log(π0(S
j

1
)) −
χT j

2
log(2π)

+

m−1∑

i=1

(k
j

i
− 1) log(pi) + log(1 − pi) −

k
j

i

2
(|Σi|) −

m∑

i=1

t
j

i+1
−1
∑

t=t
j

i

1

2
(O

j
t − µi)

T
Σ−1

i (O
j
t − µi).

(2.6)

To find the parameter set, which maximizes the log likelihood in (2.6), the partial

derivatives of the log likelihood are set to zero. Consequently, the parameters may be

computed as follows,

∂L̄

∂pi

= 0{

n∑

j=1

[
k

j

i
− 1

pi

− 1

1 − pi

] = 0{
n × (1 − pi) + n × pi

pi × (1 − pi)
−

n∑

j=1
k

j

i

pi

= 0

{ pi = 1 − n
n∑

j=1
k

j

i

,

(2.7)

∂L̄

∂µi

= 0{ −
n∑

j=1

t
j

i+1∑

t=t
j

i
+1

1

2
[Σ−1

i + (Σ−1
i )T ](O

j
t − µi) = 0

{

n∑

j=1

t
j

i+1∑

t=t
j

i
+1

(O
j
t − µi) = 0{

n∑

j=1

t
j

i+1∑

t=t
j

i
+1

O
j
t − µi

n∑

j=1

k
j

i
= 0

{ µi =

n∑

j=1

t
j

i+1∑

t=t
j

i
+1

O
j
t

n∑

j=1
k

j

i

,

(2.8)
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1
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j
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i
+1
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t − µi)(O
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n∑
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j
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+1
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.

(2.9)
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Using the formulas in (2.7), (2.8) and (2.9), all of the required parameters can be es-

timated. The initial state probability π0 is defined as the uniform probability distribution

in case there are no prior knowledge about the general initial state value.

Next, a computationally efficient forward-backward algorithm which is required for

diagnostics and prognostics using the implemented HMM, is described.

2.2.3 Forward-Backward Variables in PSHMCO

Forward-backward algorithm is a recursive algorithm used in Markov models to ad-

dress inference problems. A simple implementation of this algorithm for TCM using

PSHMCO is introduced in this Section. This algorithm uses two auxiliary variables,

forward and backward variables, to compute the required probabilities, recursively.

Forward variable in HMM is defined as the joint probability of being at ith state Hi at

time t while observing the inputs from time step 1 to t, O1:t. As in [95], forward variable

can be written as

αt(i) , P(O1:t, S t = Hi). (2.10)

From law of total probability [95], a recursive formula to calculate αt in (2.10) can

be derived as follows,

αt(i) =

m∑

j=1

αt−1( j)P(Ot|S t = Hi)P(S t = Hi|S t−1 = H j)

with initial condition α1(i) = π0(i) × P(O1|S 1 = Hi).

(2.11)

Based on the graduality of the wearing process and the possible transitions in (2.2),the

forward variable can be computationally simplified as

αt(i) =






piαt−1(i)P(Ot|st = Hi) + (1 − pi−1)αt−1(i − 1)P(Ot|st = Hi) f or i > 1

piαt−1(i)P(Ot|st = Hi) f or i = 1

.

(2.12)

The second auxiliary variable, which is called backward variable, is the joint proba-

bility of observing all the inputs from time step t + 1 to T given the health state is at the

ith stage (Hi) at time step t. It can be written as

βt(i) , P(Ot+1:T |S t = Hi). (2.13)
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According to [95], the backward variable can be computed recursively as

βt(i) =

m∑

j=1

ai jP(Ot+1|S t+1 = H j)βt+1( j)

with initial condition βT (i) = 1,

(2.14)

where ai j is the transition probability of going from ith health state to jth health state.

Based on the graduality of the wearing process and the transition matrix in PSHMCO,

the backward variable can be computationally simplified further and rewritten as

βt(i) =






(1 − pi) × P(Ot+1|S t+1 = Hi+1) × βt+1(i + 1) f or i < m

+pi × P(Ot+1|S t+1 = Hi) × βt+1(i)

pi × P(Ot+1|S t+1 = Hi) × βt+1(i) f or i = m

. (2.15)

2.2.4 State Estimation

In order to estimate the state values of the state variables in the implemented HMM

at each time step based on the observations, two variables are further defined. γt is the

joint probability of observing all the input features up to the current time T while being

at the ith health state at time t where t < T . γt is used to find the value of the state

variable at t for diagnosis purpose based on all the observations from beginning of an

experiment up to the current time, T . Based on [95], γt can be defined and computed as

follows,

γt(i) , P(S t = Hi,O1:T ) = P(O1:t, S t = Hi) × P(Ot+1:T |S t = Hi) = αt(i) × βt(i), (2.16)

where αt(i) and βt(i) are the forward and backward variables that can be computed based

on (2.12) and (2.15).

In order to predict the state value of the state variable in future based on the available

observations up to the current time T , another variable, ξt′ , is defined. Similar to γt, ξt′ is

the joint probability of observing all the input features from beginning of an experiment

up to the current time T , but being at the ith health state at time t′ in future (t′ > T ). ξt′
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is defined and computed recursively based on transition probabilities and γT as follows,

ξt′(i) , P(st′ = Hi,O1:T ), t′ > T

ξt′(i) =
∑

S t′−1

P(S t′−1,O1:T ) × P(S t′ = Hi|S t′−1) = ξt′−1(i) × pi + (1 − pi−1) × ξt′−1(i − 1)

with initial condition ξT (i) = γT (i).

(2.17)

In the succeeding Section, γt and ξt′ are used for diagnostics and prognostics.

2.3 Diagnostics & Prognostics

In this Section, the TCM approach (diagnostics & prognostics) is provided in a prob-

abilistic manner based on the state estimation variables defined in the previous Section

and the real valued labels determined in the discretization phase.

Diagnosis is the task of predicting the health state at the current time T given all the

observations from time step 1 up to T [10]. In the realm of Bayesian Networks, this task

is called filtering or monitoring and it can be written in a probabilistic form as follows,

P(S T = Hi|O1:T , λ) =
P(O1:T , S T = Hi)

P(O1:T )
=
γT (i)

P(O1:T )
(2.18)

Probability of being at each health state at time T using the implemented HMM can

be calculated using (2.16) and (2.18). It is worth mentioning that the denominator in

(2.18) is not required to be calculated. It is a normalizing factor and can be calculated

after finding γT (i) for all the health states as follows,

m∑

i=1

P(S T = Hi|O1:T , λ) = 1{
1

P(O1:T )

m∑

i=1

γT (i) = 1

{ P(O1:T ) =

m∑

i=1

γT (i).

(2.19)

Hence, based on (2.16) and (2.19), (2.18) can be rewritten as

P(S T = Hi|O1:T , λ) =
γT (i)

m∑

i=1
γT (i)

=
αT (i)

m∑

i=1
αT (i)

. (2.20)

where λ is included in the conditions as a reminder that the calculations are based on

the parameter set of the trained HMM. Finally, the continuous output of the PSHMCO
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model, ŷT , which corresponds to the expected amount of tool wear at the current time

step T , can be calculated based on (2.20) as follows,

ŷT =

m∑

i=1

P(S T = Hi|O1:T , λ) × Hi. (2.21)

Fig. 2.2 depicts the procedure of diagnosis using PSHMCO approach (assuming that the

covariance matrices are diagonal for simplicity in visualization).

Figure 2.2: Schematic diagnosis procedure in PSHMCO approach (assuming that the

covariance matrices are diagonal for simplicity in visualization).
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Prognosis is the task of predicting the future health state at time t′ (t′ > T ) while the

observations are only available from the beginning up to the current time T [5,6,11]. In

order to find the probability of being at each state in future, the model must be unrolled

over the time horizon while there are no observations available from T onwards. Hence,

prognosis for t′ > T can also be formulated similar to diagnosis case in a probabilistic

manner as follows,

P(S t′ = Hi|O1:T , λ) =
P(S t′ = Hi,O1:T )

P(O1:T )
=
ξt′(i)

m∑

i=1
ξt′(i)

, (2.22)

where λ is again included to indicate that calculations are based on the parameter set

of the trained HMM and P(O1:T ) is a normalizing factor replaced by
m∑

i=1
ξt′(i) similar to

(2.19). In the end, the continuous output of the model, ŷt′ , which corresponds to the

expected amount of tool wear at time step t′ in future, can be computed based on (2.22)

as follows,

ŷt′ =

m∑

i=1

P(S t′ = Hi|O1:T , λ) × Hi. (2.23)

2.4 Experimental Data & Feature Selection

The experimental data is obtained through real-time sensing on a CNC-milling ma-

chine. The experimental setup and the extracted features that include both statistical

features of the force signals and wavelet features extracted from force, vibration and

acoustic emission (AE) signals are described in Appendix A. The total number of ex-

tracted features in the acquired experimental data is 482 features. The extracted features

include both statistical and wavelet features. The statistical features comprise 16 fea-

tures extracted from force signals in each direction, resulting in 48 statistical features

in total. The wavelet features include features with 5 decomposition levels from every

signal leading to 62 (21 + 22 + 23 + 24 + 25 = 62) extracted features from each signal,

summing up to 434 wavelet features, 62 × 3 (force signals in three directions) + 62 × 3

(vibration signals in three directions) + 62 (AE signal).

Constructing the tool condition prediction model using only a selected subset of

features prevents unnecessary complexity in the model and consequently improves the
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prediction results. In addition, extracting only the selected features from the newly

conducted experiments greatly reduces the feature extraction computation cost for online

applications. In this study, the feature selection is performed offline. The features are

determined based on Fisher’s Discriminant Ratio (FDR) values on the training data and

are not changed in the simulated online study. In the simulated online monitoring, only

the selected features are extracted and utilized in order to save the computational effort

and also for fast data processing.

The idea of feature selection in a classification domain is to find a subset of features

that explicitly discriminate the classes based on the training set. Hence, the features to

be selected must have similar values for the samples in one class and distinct values for

the samples from different classes. FDR is such a metric that shows how discriminative

a feature is. It is a ratio of scatter between (S b) and the scatter within (S w). A modified

version of FDR introduced in [33] is as follows,

FDR(xi) =
S bxi

S wxi
=

κ∑

c=1

κ∑

j=1
(µxi

c − µxi

j
)
2

κ∑

c=1
S wxi

c

(2.24)

where κ is the number of classes, xi is the ith feature (element) in the observation vector

O = [x1 x2 . . . xχ]
T , µxi

c is the mean value of fi in the cth class and S wxi
c is the scatter

within (variance) the cth class measured for xi. In order to use the FDR criterion for fea-

ture selection in the continuous TCM, samples must be clustered based on their output

values. One of the conventional clustering algorithms is called Gaussian Mixture Model

(GMM) [99, 100]. In this work, GMM is used for clustering of the samples based on

their corresponding outputs. GMM tries to model the given data, which in this case is

the output set (tool wear), by a mixture of Gaussian functions. The parameters of these

Gaussian functions will be estimated by expectation-maximization technique. To find

a proper number of Gaussian functions that fits the data, different number of Gaussian

mixtures are explored from 1 to 10, and then the model with minimum Bayesian Infor-

mation Criterion (BIC) is adopted as the appropriate GMM for clustering the output set.

BIC is a measure of goodness of fit for an estimated statistical model [101]. The BIC

results are depicted in Fig. 2.3. In this work, the data collected from three of the cutters

which are 07BX1, 31PN4 and 34PT1, is selected to be the training set and the feature se-
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lection process is performed only on the data from these training cutters. From Fig. 2.3,

Figure 2.3: Bayesian Information Criterion for GMMs on the training outputs with var-

ious number of mixtures.

it can be seen that the minimum BIC is achieved by the GMM with three Gaussian func-

tions. Hence, the number of Gaussian functions to be used is set to 3. After applying the

GMM to the outputs, the posterior probability p(Mc|y j
t ) can be computed for all samples

in the training set, where p(Mc|y j
t ) indicates the probability that the actual tool wear at

time t in the jth experiment (y
j
t ), is generated by the cth Gaussian function (Mc).

After finding the posterior probabilities, µxi
c and S wxi

c can be computed in a weighted

form as follows,

µxi

c =
weighted sum of ith feature in cth cluster

effective cardinality of cth cluster
=

n∑

j=1

T j∑

t=1
p(Mc|y j

t ) × x
j

i
(t)

n∑

j=1

T j∑

t=1
p(Mc|y j

t )

, (2.25)

S wxi

c =

n∑

j=1

T j∑

t=1
[p(Mc|y j

t ) × x
j

i
(t) − µxi

c ]2

n∑

j=1

T j∑

t=1
p(Mc|y j

t )

, (2.26)

where x
j

i
(t) is the value of the ith feature at time t in the jth experimental sequence.

Then, the computed means and scatter within measures can be used in (2.24) to find

FDR for ith feature. Fig. 2.4 shows the FDR values after being sorted in a descending

manner.
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The FDR value indicates how discriminant each feature is, hence it can be used to

rank the features. As it can be seen in Fig. 2.4, there is a knee in the curve at 38 . This

knee point is used as a rule of thumb to chose the number of features to be selected.

Therefore, 38 features with the highest FDR value are chosen for the prediction model.

Table 2.1 shows shares of extracted features from each signal in the set of selected

features. Moreover, shares of different wavelet levels of each signal in the set of selected

features are listed in Table 2.2.

Figure 2.4: FDR values of features sorted in a descending manner.

Table 2.1: Shares of extracted features from each signal in the set of selected

features.Fx,Fy and Fz are force signals in different directions.Vx,Vy and Vz are vibration

signals in different directions and AE is the acoustic emission signal.

Signal FX FY FZ VX VY VZ AE Total

Statistical Features 6 2 6 - - - - 14

Wavelet Features 11 5 5 0 3 0 0 24

Total Share 17 7 11 0 3 0 0 38

As it can be understood from Table 2.1, features extracted from the force signals

are majorly selected as the most discriminant features. In contrast, none of the features

extracted from acoustic emission are selected, which suggests that this signal may not
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Table 2.2: Shares of different wavelet levels of each signal in the set of selected features.

Level
Signal

FX FY FZ VibX VibY VibZ AE

Level1 0 1 1 0 0 0 0

Level2 1 1 1 0 0 0 0

Level3 2 1 1 0 0 0 0

Level4 3 1 1 0 1 0 0

Level5 5 1 1 0 2 0 0

be useful for condition monitoring in CNC-milling machines because of its low signal

to noise ratio. Feature selection results indicated that the most discriminant features

are majorly selected from the force signals in X and Z directions. In X direction, total

amplitude of cutting force, maximum force level and standard deviation are respectively

the most discriminant signals. Average force in Z direction is also suggested to be

important based on the FDR values.

2.5 Diagnostics & Prognostics Results

In this Section, performance of the proposed PSHMCO approach is compared with

two artificial neural network (NN) approaches in diagnostics of the cutter. Moreover,

the prognostics ability of the PSHMCO is tested.

As supervised learning algorithms, NNs are used in both regression and classifica-

tion problems [102]. Among various NNs, multi-layer perceptron (MLP) and Elman

network are two of the most commonly used neural networks that can be adopted for

continuous tool condition monitoring. In this case, features are regarded as the inputs of

the networks and the output is the measured wearing metric [14, 23, 24, 25].

First, optimal NNs and PSHMCO are determined through identifying their hyper-

parameters, which are the number of hidden state values in PSHMCO as well as the

structure and number of hidden neurons in both NNs. Here the cross-validation method



Chapter 2. Physically Segmented Hidden Markov Model with Continuous Output 36

is applied. Then, performance of all three approaches are compared based on two accu-

racy indicators, namely, mean square error (MSE), mean relative error (MRE). Finally,

the capability of PSHMCO in prognostics is studied. It is noteworthy that in all three

cases, the collected data from the three cutters (07BX1, 31PN4 and 34PT1) that was used

in feature selection process is regarded as the training set for all models.

2.5.1 Determination of Hyper-parameters

Two modes can be considered for cross-validation in case of condition monitoring

for the cutter with multiple flutes i.e. leave one flute out and leave one experiment

out. In this work, since the training set is limited to 3 experiments, leave one flute out is

conducted. All models are trained on the data from two flutes out of three flutes, and then

tested on the data from the excluded flute, all from the training experiments. Different

hyper-parameter values for the three models are tested and the results are provided in

Fig. 2.5 to Fig. 2.7.

Figure 2.5: Cross-Validation results for MLP with different structures. The solid curve

corresponds to MLP X − 4 − 1 structure which leads to minimum MSE at X = 10.

As shown in Fig. 2.5, the MLP structure 10 − 4 − 1, where 10 and 4 are the number

of hidden neurons in the first and second hidden layers respectively, leads to the best

cross-validation MSE. Hence, the same structure for MLP is adopted in the succeeding
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case. Furthermore, in order to prevent over-fitting problem in MLP, Bayesian regulation

back-propagation [103,104] is used as the learning algorithm for the implemented MLP.

Figure 2.6: Cross-Validation results for Elman network with various structures. The

dotted curve corresponds to Elman network with X − 3 − 1 structure which leads to

minimum MSE at X = 20.

Fig. 2.6 indicates that the Elman network with structure 20 − 3 − 1 with two hidden

layers leads to the best performance in cross-validation comparing to other structures.

Hence, the Elman network with structure 20 − 3 − 1 is adopted to be used in the diag-

nostics case.

From Fig. 2.7, it can be seen that 14 may be used as an appropriate number of health

states in the PSHMCO for the given dataset. Hence, the number of hidden state values

(health states) is set to 14 in the succeeding cases.

2.5.2 Diagnostic Results

Now we compare diagnosis accuracy of the three approaches on the testing set using

the implemented programs for each approach in MATLAB2010b. All models are trained

using the training set (i.e. data collected from cutters 07BX1, 31PN4 and 34PT1), and

then tested for diagnostics on the testing set (i.e. data collected from cutters 09BX3,
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Figure 2.7: Cross-Validation results for PSHMCO with different number of discretized

health states (hidden state values).

18SC3 and 33PN6). In the diagnosis process, at each time step (cut), the input data

from the beginning of the diagnosis process up to the current time step is available to all

models in order to predict the tool wear of the three flutes at the current time step, T .

The required parameters for PSHMCO are estimated from the training dataset based

on equations (2.7), (2.8) and (2.9). Given the observation sequences, O1:T , of each flute,

ŷT is computed for each flute based on (2.21). The maximum value of the computed

ŷT among the three flutes at each time step T is regarded as the ultimate output in all

approaches and is compared with the maximum actual wearing value of 3 flutes at T .

Number of health states in PSHMCO are set to 14 as suggested in the cross-validation

stage. Fig. 2.8 depicts the adopted parameter values in PSHMCO approach.

At each time step within each experiment, the maximum wearing value among 3

flutes is used as the desired outcome. The rationale is that, the quality of the ultimate

work-piece is determined by the maximum tool wear of the three flutes. Figure 2.9

depicts the predicted ultimate output of all approaches along with the actual outcome

(true output) for one of the testing experiments (18SC3). Table 2.3 shows the diagnosis

error rate of all three approaches on the testing set in terms of MSE in details as well

as the overall diagnosis accuracy of the approaches in terms of MSE and MRE. It is
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Figure 2.8: State transition probabilities and parameters of emission probability distribu-

tions depicted in parallel coordinates (assume that off-diagonal elements of the covari-

ance matrices are zero so that the inter-feature correlations can be discarded and they

can be simply visualized in parallel coordinates).

noteworthy that the provided accuracies of the NNs are the averaged accuracies over 10

trials.

As it can be seen in Table 2.3, Elman network outperforms the conventional MLP
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Figure 2.9: Predicted output of PSHMCO, MLP and Elman Network along with the true

output for the data collected from cutter 18SC3.

approach, which indicates that the underlying temporal information for TCM cannot be

ignored. Moreover, the PSHMCO approach outperforms both MLP and Elman network,

which suggests that PSHMCO approach is stronger in capturing the temporal informa-

tion for TCM comparing to the Elman network.

It is noteworthy that the approaches are not applied online in this study. The data has

collected and stored so that the same data can be provided to test different approaches

Table 2.3: Prediction error rate in diagnostics task using PSHMCO , multi-layer percep-

tron (MLP) and Elman network (Elm-Net) in terms of MSE and MRE.

Model
Mean Square Error Total Testing Error Indicators

09BX3 18SC3 33PN6 MSE MRE

PSHMCO 341.2336 135.3554 297.5691 258.0527 ± 108.4787 0.1164 ± 0.0082

MLP 778.47574 283.43268 436.13632 499.3482 ± 253.5029 0.1662 ± 0.0383

Elm-Net 580.4041 277.9204 324.8272 394.3839 ± 165.8576 0.1470 ± 0.0330
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and conduct fair comparisons. However, the online application is simulated. In order to

simulate time progression, data is sequentially provided to the prediction models each

time up to a simulated current time step, and then the prediction is made. In this study,

the average computation time for diagnostics through time by PSHMCO is measured to

be 2.6ms, with 14 health states and 38 input features (observations) at each sampling

time. Thus, it suggests that the PSHMCO approach is computationally feasible for the

similar online applications.

2.5.3 Prognostic Results

In this test, PSHMCO is unrolled over the time axis for prognostics. Different pre-

diction horizons are explored and the mean of corresponding prediction accuracies over

the testing set are provided in Table 2.4 in terms of MSE.

Similar to diagnostics, the maximum value among the three flutes at each time step is

used as the desired output. Having the prediction horizon, tp, and given the observation

sequences from beginning of the experiment up to T , the task is to predict the desired

output at time t′ = T + tp and this can be computed using (2.23). Fig. 2.10 shows

the prediction results by PSHMCO along with the real tool wear on one of the test

experiments (18SC3) with different prediction horizons, which are 1, 4, 7 and 10 time

steps. The starting point is set to 11.

Table 2.4: Prognosis (mean) total accuracy for PSHMCO in terms of MSE with different

prediction horizons on the testing set.

Model
Prediction Horizon (Time Steps Ahead)

1 2 3 4 5 6 7 8 9 10

PS-HMCO 422.31 491.46 602.73 680.12 732.52 771.17 802.26 829.00 852.78 874.34

From Table 2.4 and Fig. 2.10, it can be seen that, although the overall accuracy

has reduced comparing to the diagnostics (which is expected), interestingly the resultant

prognostics accuracy when the prediction horizon is equal to 1 or 2, still outperforms the
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Figure 2.10: Prognostics results of PSHMCO model with different prediction horizons

on the data collected from the cutter 18SC3.

MLP in diagnostics, which shows the importance of the temporal information. Although

the PSHMCO’s prognosis accuracy is unable to beat the Elman network diagnostics

result, since Elman network also captures temporal information, the results confirms

the power of PSHMCO in capturing the temporal information, and the suitability of

PSHMCO as a predictor.

2.6 Summary

In this Chapter, a temporal probabilistic approach is proposed for the continuous tool

condition monitoring in machinery systems. The proposed PSHMCO approach is based

on a physically segmented hidden Markov model that can handle continuous output. As

an illustrative example, the proposed approach is applied to tool wear prediction in a

CNC-milling machine.

The experimental study indicates that PSHMCO outperforms multi-layer perceptron

and the Elman networks in tool condition monitoring. It is also shown that the proposed

approach can be used for prognostics by unrolling the model over the time horizon. The
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PSHMCO approach is found to be suitable for the applications in which the operating

conditions are fixed. The fixed operating conditions property, similar to the conducted

experiment, can be seen in applications with high volume of productions such as mold-

ing processes.

In succeeding Chapters, some of the restrictions that are enforced in the model must

are lifted to improve the performance further. Moreover, as completely different reg-

iments would arise when different operating conditions are being considered, multi-

modal approaches can be studied. Switching models that can each capture a specific

regiment and increase the resolution within each trend can be applied to improve the

prediction performance further.



Chapter 3

Hidden Semi-Markov Model-based

Approach

3.1 Introduction

As it is stated in Chapter 2, to improve the prediction performance of the proposed

PSHMCO approach even further, some of the restrictions that are imposed based on

the Hidden Markov model (HMM) may be lifted. One of the deficiencies of hidden

Markov model in modeling real-world applications, is its unrealistic fixed state-duration

distribution, which is a geometric distribution. The state-duration distribution indicates

the probability of staying in one state for different possible durations. Therefore in the

HMM-based approach, having a fixed state-duration distribution may lead to unsatisfac-

tory prediction results in cases that the assumption of having a geometric state-duration

distribution does not hold. However, it is known that lots of processes in nature are not

abiding geometric distribution [105].

In this chapter, a Hidden-Semi Markov Model (HSMM)-based approach is intro-

duced to address the aforementioned deficiency in HMM-based approach and improve

the prediction performance. Another issue that is addressed in this Chapter is how to

incorporate an asymmetric loss function into the proposed approach, to consider the

dramatic cost differences between under- and over-estimation of the tool condition. To

this end, having flexible duration distributions in the HSMM, it is attempted to mod-

44
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ify the overall skewness of the duration distributions based on a given asymmetric loss

function and training dataset.

This Chapter is organized as follows. In Section 2, a more complex approach com-

pared to PSHMCO, named a physically segmented hidden semi-Markov model with

continuous output (PSHsMCO) is proposed for continuous TCM. Then a computation-

ally efficient version of forward-backward algorithm for inference in the PSHsMCO

as well as state estimation variables are described in the same Section. Diagnosis and

Prognosis procedures based on efficient forward-backward algorithm in PSHsMCO are

discussed in Section 3. Afterward, simulation results based on the experimental data

are provided and compared in Section 4. Moreover, the possibility of incorporating an

asymmetric loss function in PSHsMCO is explored and evaluated by simulation results

in Section 5. Finally, the Chapter is concluded in Section 6.

3.2 Hidden Semi-Markov Model-Based Approach

The idea behind hidden semi-Markov model is to use temporal data in a more effi-

cient way than in HMMs by keeping track of duration of staying in each state [106].

3.2.1 HMM Fixed Duration Distribution

In the HMM used in PSHMCO approach proposed in the preceding chapter, as de-

picted in Fig. 3.1, there are only two possible transitions (excluding the last state which

is modeled as an attraction point) from each health state Hi, either staying in the same

wearing state Hi with probability of pi or going to the next wearing state Hi+1 with the

probability of 1 − pi. Thus, the probability of staying in Hi for exact d time steps in the

utilized HMM can be calculated as

P(staying in Hi for exact d time steps) = pd
i × (1 − pi) (3.1)

in which pi is the probability of self-transition at ith health state Hi. As it can be under-

stood from (3.1), this probability has a geometric distribution. However, it is known that

lots of processes in nature are not abiding geometric distribution [105]. Therefore, in



Chapter 3. Hidden Semi-Markov Model-based Approach 46

order to add more flexibility to the state-duration probability distribution function, du-

ration factor is added to HMM and transition probabilities are redefined based on these

durations.

3.2.2 Formulation and Parameter Estimation

In the proposed HSMM-based approach, duration of remaining in each health state

will be treated as a random variable and its corresponding parameters would be added

to the parameter set needed to be determined for the model in the training (parameter

estimation) procedure. Furthermore, for simplicity, the duration variables are assumed

to have normal distributions.

Similar to PSHMCO in Chapter 2, firstly the measured tool wearing of the cutters in

the training set are uniformly discretized into m ordinal classes (clusters) {H1, . . . ,Hm}.

These ordinal classes corresponds to various health stages of the cutters from initial

wearing conditions to severely worn out. Moreover, the labels of these classes are real-

valued and correspond to the mean wearing value in each class. These real valued labels

are later used as the values that hidden states of both HSMM and HMM can take at each

time step.

Having all the HMM parameters except the transition probabilities as defined in

Chapter 2 for realizing PSHMCO approach, the additional parameters that are required

to be defined to formulate the HSMM utilized in PSHsMCO are as follows

• di is defined as a random variable having a normal distribution that corresponds to

duration distribution in the ith health state (hidden state). Consequently, two more

Figure 3.1: Schematic transition graph of the HMM utilized in PSHMCO approach.
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parameters would be added to the parameter set for each health state, µdi
and σdi

as the mean and standard deviation of the duration variable di at each health state.

• For implementation purposes (dmax) is also needed to be defined as the overall

maximum possible duration.

Similar to the HMM utilized in PSHMCO approach, in each time step, the imple-

mented HSMM has only two possible options of either remaining at the same health

state as the previous time step or proceeding to the next health state. The probability of

remaining in the same state would be generated using the duration distribution, and the

transition probability would only be used at the time that the duration of staying at one

health state is over and the health state is going to change. That is why this model is

called Hidden Semi Markov Model, since it only uses the Markov Transition when the

duration of staying in one state is over [106]. Therefore, the transition matrix, A would

be different from the PSHMCO transition matrix defined in Chapter 2. Out of two pos-

sible transitions at each time step, the only valid transition after the duration of staying

in one state has passed is the option of going to the next state. This assumption corre-

sponds to each row of the transition matrix, A, having only one non-zero element, which

indicates the transition to the next wearing stage. Figure 3.2 schematizes the utilized

HSMM transition graph.

Based on the described assumptions and the duration distributions to find the prob-

ability of staying at each health state, the parameter set and the transition matrix of the

Figure 3.2: Schematic transition graph of the utilized HSMM in PSHsMCO where the

ith state-duration probability distribution is denoted by P(di).
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HSMM utilized in PSHsMCO can be written as follows

A =

[

ai j

]

m×m

=


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, (3.2)

λ = {π0, µ1, ..., µm,Σ1, ...,Σm
︸                       ︷︷                       ︸

HMM Parameters

, µd1
, . . . , µdm

, σd1
, . . . , σdm

, dmax
︸                                 ︷︷                                 ︸

Duration Distribution Parameters

}, (3.3)

where A is the transition matrix, π0 is the prior probability distribution of the initial

health state, µi and Σi are respectively mean and covariance matrices being used in the

Gaussian distributions to compute the emission probability at time t given the fact that

S t = Hi, µdi
and σdi

are the parameters of the Gaussian distribution representing the

duration variable at the ith health state denoted as di. All the required parameters can

be identified using maximum log-likelihood approach on the complete dataset that is

provided as the training set.

Assuming that all experiments are independently distributed (as the experiments are

conducted independently), joint probability of observing training sequences given the

parameters of the HSMM can be written as follows

P(D1,D2, . . . ,Dn|λ) =
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(3.4)

where Dq is the qth experiment, n is the number of experiments, t
q

i
is the starting time

step of the ith health stage in each specific sequence, m is the number of health states,

τt
q

i
is the remaining duration of staying at the corresponding state in the pair (S

q

t
q

i

, τt
q

i
), k

q

j
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is the observed duration of the jth health state in each specific sequence, Ot
q

i
:t

q

i+1
−1 is the

observations from the time step entering to the ith state till transition to the next state

in the qth experimental data and S t
q

i
:t

q

i+1
−1 indicates the state sequence during that time.

Assuming conditional independence between the observations in one sequence given

their corresponding states and the duration variables following Gaussian distributions,

(3.4) can be written as

P(Dq|λ) = π0(S
q

1
)
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q

t
q
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1 +
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j=1 k
q

j
For i > 1

1 For i = 1
.

(3.5)

Furthermore, assuming the emission probability is a multivariate Gaussian variable,

(3.5) can be written as,

P(Dq|λ) =π0(S
q

1
)

m∏

i=1

1
√

2πσ2
di

exp(−
(k

q

i
− µdi

)2

2σ2
di
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×
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2
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TΣ−1

i (Oq
r − µi)),

(3.6)

where χ is the dimension of observation (input) space. Finally based on (3.4) and (3.6),

the log-likelihood of the joint probability of P(D1:n|λ) can be written as follows

L̄ =

n∑

q=1

Lq =

n∑

q=1

ln(P(Dq|λ)),

Lq = ln(P(Dq|λ)) = ln(π0(S
q

1
)) −
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[
1

2
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i (Oq
r − µi)].

(3.7)

Now, by setting the partial derivatives of the log-likelihood to zero, the parameters of

the HSMM can be found as follows

∂L̄
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= 0{
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− µdi
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√√√√ n∑
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(k

q
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− µdi

)2

n
(3.8)
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∂L̄

∂µi

= 0{

n∑

q=1

t
q

i+1
−1
∑

t=t
q

i

1

2
[Σ−1

i + Σ
−T
i ](O

q
t − µi)(−1) = 0

{

n∑

q=1

t
q

i+1
−1
∑

t=t
q

i

Σ−1
i (O

q
t − µi) = 0{

n∑

q=1

t
q

i+1
−1
∑

t=t
q

i

O
q
t − µi

n∑

q=1

k
q

i
= 0

{ µi =

n∑

q=1

t
q

i+1
−1
∑

t=t
q

i

O
q
t

n∑

q=1
k

q

i

(3.11)

Using the formulas in (3.8), (3.9), (3.10) and (3.11) all of the required parameters

can be estimated. In this implementation of HSMM, the initial probability π0 and dmax

are defined as follows

π0(i) =
1

m
, i = 1, . . . ,m,

dmax = max
i
{µdi
+ 2σdi

},

where dmax is used as the upper bound limit of duration variables and π0 is defined as

uniform distribution (similar to PSHMCO approach) for the case than no prior knowl-

edge about the general initial state value is available. In this implementation of the
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HSMM, an m× dmax probability distribution matrix is computed and stored based on the

probability distributions parameterized by the mean and variance of the duration within

each health state. The ith row, jth column element of the probability distribution matrix

indicates the probability of staying in the ith health state for jth time steps computed

by the relevant normal distribution. Each row of the probability distribution matrix is

later normalized by the summation of its elements. Thus, the duration of staying in each

health state is regarded as a bounded positive integer that may be modeled by a truncated

normal distribution.

After estimating the parameters of the HSMM based on the training set using formu-

las in (3.8)-(3.11), the health states for a newly given data (test data) may be estimated

by inference algorithms. The inference in HSMM can be done by means of Forward-

Backward algorithm. An Efficient Forward-Backward algorithm for HSMM (Explicit-

Duration Hidden Markov Model) is introduced in [107]. Here, a similar Forward-

Backward algorithm is used to do inference in the implemented HSMM for TCM.

3.2.3 Forward-Backward variables in PSHsMCO

As mentioned before, Forward-Backward algorithm is a recursive algorithm that

can be used in Markov models to answer inference problems in them. A computa-

tionally simplified implementation of this algorithm for tool condition monitoring using

PSHsMCO is introduced in this part. This algorithm uses two auxiliary variables called

Forward and Backward variables to compute the required probabilities, recursively.

Forward variable is defined as the joint probability of being at ith state at time t and

remaining in that state for the next k steps while observing the inputs from time step 1

up to t. According to [107], forward variable can be formulated as

αt(i, k) , P(O1:t, (S t, τt) = (Hi, k)) (3.12)

where O1:t = {O1,O2, . . . ,Ot} are the newly given observations (inputs) from time step

1 to t, (S t, τt) is the pair of hidden state of the model at time step t and its remaining

duration τt at that state from time step t onward. Hi is the ith health state value that

the state variable of the model can take, Hi ∈ {H1,H2, . . . ,Hm}. From law of total
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probability, (3.12) can be computed as follows

αt(i, k) = αt−1(i, k+1)P(Ot|S t = Hi)+

m∑

j=1, j,i

αt−1( j, 1)ai, jP(Ot|S t = Hi)P((S t, τt) = (Hi, k)),

(3.13)

where m is the number of health state values, ai, j is the transition probability from the

ith health state (Hi) to jth health state (H j) and di is the duration of remaining in i health

state (Hi). The initial condition for the recursive equation in (3.13) is

α1(i, k) = π0(i)P(O1|S 1 = Hi)P((S 1, τ1) = (Hi, k)). (3.14)

Based on the assumptions that are made about graduality of the wearing process and

consequently the possible transitions in the implemented model, (3.13) can be simplified

as follows

αt(i, k) =






αt−1(i, k + 1)P(Ot|S t = Hi) For i > 1

+αt−1(i − 1, 1)P(Ot|S t = Hi)P((S t, τt) = (Hi, k))

αt−1(i, k + 1)P(Ot|S t = Hi) For i = 1

(3.15)

The second auxiliary variable to be defined is called Backward variable. According

to [107], the backward variable is defined as

βt(i, k) , P(Ot+1:T |(S t, τt) = (Hi, k)). (3.16)

where (S t, τt) = (Hi, k) indicates that the health status is supposed to remain in this state

for the next k time steps and then will transit to another state j, j , i. Therefore, βt(i, k)

can be written as

βt(i, k) =






P(Ot+1|S t+1 = Hi)βt+1(i, k − 1) For k > 1

m∑

j=1, j,i

ai, jP(Ot+1|S t+1 = H j) For k = 1

× ∑
d≥1

P((S t+1, τt+1) = (H j, d))βt+1( j, d)]

. (3.17)

Since (3.17) is a backward recursive formula, its initial condition has been defined

as,

βT (i, k) = 1, k ≥ 1. (3.18)
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Based on the assumptions that are made on the graduality of the wearing process and

consequently the model’s specific form of transition matrix in our implemented HSMM,

the backward variable can be simplified further and be rewritten as

βt(i, k) =






P(Ot+1|S t+1 = Hi)βt+1(i, k − 1) For k > 1

P(Ot+1|S t+1 = Hi+1) For k = 1

×
dmax∑

d=1

P((S t+1, τt+1) = (Hi+1, d))βt+1(i + 1, d)

. (3.19)

3.2.4 State Estimation

In order to estimate the state values of the state variables at each time step based on

the observations using the HSMM model, three auxiliary variables are further defined.

Similar to auxiliary variables defined in [107], these variables would help to simplify the

state estimation computation for either current time (diagnosis) or future (prognosis).

The three variables are defined and further simplified based on the assumptions that are

made in the TCM problem statement.

The first variable to be defined is ζt(i), which is the joint probability of observing

O1:T and transition from ith health state (Hi) to its next health state at time t. ζt(i) can be

written as

ζt(i) , P(O1:T , S t−1 = Hi, S t = Hi+1) (3.20)

The joint probability in (3.20) can be calculated as follows

ζt(i) = αt−1(i, 1)(1 − ai,i)P(Ot|S t = Hi)
∑

k≥1

P((S t, τt) = (Hi+1, k))βt(i + 1, k) (3.21)

where P((S t, τt) = (Hi+1, k)) is the probability of staying at Hi+1 for the next k time steps.

The second auxiliary variable that can be used for state estimation of S t based on

the whole observation sequence O1:T is γt(i). γt(i) is the joint probability of O1:T and

S t = Hi that can be written as

γt(i) , P(O1:T , S t = Hi). (3.22)

Moreover, based on law of total probability and considering the possible transitions in
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the implemented HSMM, P(O1:T , S t = Hi, S t+1 = Hi) can be written as follows

P(O1:T , S t = Hi, S t+1 = Hi) = P(O1:T , S t = Hi) − P(O1:T , S t = Hi, S t+1 = Hi+1)

= P(O1:T , S t+1 = Hi) − P(O1:T , S t = Hi−1, S t+1 = Hi)
(3.23)

Consequently, based on (3.23) and using (3.21), a backward recursive formula can be

derived for γt(i) as

γt(i) = γt+1(i) + ζt+1(i) − ζt+1(i − 1), (3.24)

and its initial condition can be calculated as

γT (i) =

dmax∑

k=1

αt(i, k). (3.25)

The third auxiliary variable is ξt′(i, k). In order to find the probability of being at

one state in future, the model must be unrolled on the time horizon while there are no

more observations. Therefore, similar to the forward variable defined in (3.12), ξt′(i, k)

is defined as a form of forward variable for t′ (where t′ > T ) that only considers the

observations up to time step T , as the time steps further in time are not observed yet. It

can be written in a recursive form using law of total probability as follows

ξt′(i, k) , P(O1:T , (S t′ , τt′) = (Hi, k)), ∀t′ > T

ξt′(i, k) = ξt′−1(i, k + 1) + ξt′−1(i − 1, 1) × P((S t′ , τt′) = (Hi, k))

initial condition ξT (i, k) = αT (i, k).

(3.26)

3.3 Diagnostics & Prognostics

As mentioned in the preceding Chapters, diagnosis is the task of predicting the health

state at time T given all the observations from time step 1 to T . In the realm of Bayesian

Networks, this task is called filtering or monitoring and it can be written in a probabilistic

manner as follows

P(S T = Hi|O1:T , λ) =
P(O1:T , S T |λ)

P(O1:T |λ)
{ P(S T = Hi|O1:T , λ) =

γT (i)

P(O1:T |λ)
. (3.27)

Therefore, probability of being at each health state at time T can be calculated using

(3.27) and (3.25). It is also worth mentioning that the denominator in (3.27) is not
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required to be calculated. It is a normalizing factor that can be calculated after finding

γT (i) for all the health states as

m∑

i=1

P(S T = Hi|O1:T , λ) = 1{
1

P(O1:T |λ)

m∑

i=1

γT (i) = 1{ P(O1:T |λ) =
m∑

i=1

γT (i).

(3.28)

Consequently, based on (3.25) and (3.28), (3.27) can be rewritten as

P(S T = Hi|O1:T , λ) =
γT (i)

m∑

i=1
γT (i)

=

dmax∑

k=1

αT (i, k)

m∑

i=1

dmax∑

k=1

αT (i, k)

. (3.29)

Finally, the continuous output of the model which corresponds to the expected amount

of tool wear at the current time step T , can be calculated based on (3.29)as follows

ŷT =

m∑

i=1

P(S T = Hi|O1:T , λ) × Hi. (3.30)

Furthermore, prognosis is the task of predicting the future health state at time t′ (t′ > T )

while the observation data is only available up to the current time T . Similar to the

diagnosis case, prognosis can be written in a probabilistic manner as

P(S t′ = Hi|O1:T , λ) =
P(O1:T , S t′ = Hi|λ)

P(O1:T |λ)
=

dmax∑

k=1

P(O1:T , (S t′ , τt′) = (Hi, k))

P(O1:T |λ)
. (3.31)

Using ξt′(i, k) defined in (3.26), (3.31) can be rewritten and computed as

P(S t′ = Hi|O1:T , λ) =

dmax∑

k=1

ξt′(i, k)

P(O1:T |λ)
=

dmax∑

k=1

ξt′(i, k)

m∑

i=1

dmax∑

k=1

ξt(i, k)

. (3.32)

Similar to (3.28), P(O1:T |λ) is a normalizing factor that is replaced by
m∑

i=1

dmax∑

k=1

ξt(i, k).

After computing P(S t′ = Hi|O1:T , λ), the continuous output ŷt′ (where t′ > T ) of the

model, which corresponds to the expected amount of tool wear at time step t′ in future,

can be calculated based on (3.32) as follows

ŷt′ =

m∑

i=1

P(S t = Hi|O1:T , λ) × Hi. (3.33)
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3.4 Diagnostics and Prognostics Results

In this section performance of single HSMM-based approach called PSHsMCO and

single HMM-based approach named PSHMCO are compared in diagnostics and prog-

nostics of the cutter’s wearing metric in a CNC-milling machine. The dataset and the

features that are used to conduct the comparative study in this section are identical to

ones provided in Chapter 2.

The performance of the aforementioned approaches are compared in three cases.

Case I, can be regarded as a cross-validation phase conducted to identify an appropri-

ate number of hidden state values for both PSHMCO and PSHsMCO. After adopting

an appropriate number of hidden state values, performance of the two approaches are

compared for diagnostics and prognostics based on mean squared error (MSE) in Cases

II and III, respectively. A short description of the three Cases are as follows

• Cross-validation: this can be done in two modes, i.e. leave one flute out and leave

one experiment out.

• Testing diagnosis ability: testing the model for diagnostics on the experiment that

are excluded from the training set.

• Testing prognostics: using the model for prognostics purposes by unrolling the

model over the time horizon (this task can be done with different prediction hori-

zons).

3.4.1 Cross-Validation Results

As mentioned before, two modes can be considered for cross-validation (CV) in case

of condition monitoring for the cutters with multiple flutes i.e. leave one flute out and

leave one experiment out. Similar to CV in Chapter 2, since the training set is limited to

3 experiments, leave one flute out is conducted. Which means in both approaches, both

models are trained on two flutes out of three flutes in each experiment of the training

set and then tested on the excluded flute. Different number of hidden state values are

explored for the two approaches. Figure 3.3 depicts the cross validation error of the
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excluded flute using the two approaches with various number of possible hidden state

values.

Figure 3.3: Cross-validation error rate in both PSHMCO and PSHsMCO with different

number of hidden state values (health states).

From Fig. 3.3, it can be understood that 14 that is selected in Chapter 2 as an appro-

priate number of health states for PSHMCO sounds to be also an appropriate number of

health states HSMM-based approach. Therefore, number of hidden state values (health

states) of both approaches are set to 14 in the succeeding cases. In addition, Fig. 3.3

shows that PSHsMCO has generally outperformed PSHMCO approach in terms of av-

erage error rate in cross-validation case with various number of hidden state values.

3.4.2 Diagnostics Results

This case is to compare the diagnosis accuracy of the two approaches on the test-

ing set (the data collected from the three cutters 09BX3, 18SC3 and 33PN6), which are

excluded from the training set data collected from cutters (07BX1, 31PN4 and 34PT1).

As mentioned in Chapter 2, to simulate the online experiments using the stored experi-

mental data, at each time step (cut), the data from the beginning of the experiment up to

the current time step is given to both approaches in order to predict the tool wear of the

cutter at that time step. As suggested in Case I, number of health states is adopted to be

14 for both approaches. Table 3.1 shows the diagnosis error of the two approaches on
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the testing set.

Table 3.1: Prediction error rate in diagnosis using PSHMCO and PSHsMCO approaches

in terms of MSE.

Approach
Mean Square Error

09BX3 18S C3 33PN6 Total

PSHsMCO 314.29 136.02 263.96 238.09±91.90

PSHMCO 341.23 135.35 297.56 258.05 ±108.47

All the parameters computed during the training phase of HSMM-based approach are

depicted in Fig. 3.4. For visualization simplicity the covariance matrices are assumed to

be diagonal in this figure. As can be seen in Fig. 3.4, the duration distributions for the

initial wearing stages are more compressed towards the smaller values than the moderate

wearing stages, which corresponds to the steepness of the wearing curve in the initial

stages compared to the moderate wearing stages.

3.4.3 Prognostics Results

In this case, both models are unrolled over the future time steps for prognostics.

Different prediction horizons are studied and the corresponding prediction accuracies

are provided in Table 3.2.

From Table 3.2, it can be seen that the prediction error rate gets larger as the pre-

diction horizon increases (which is expected). It is also noteworthy, that the prediction

error rate of the HSMM-based approach with prediction horizon of 9 steps is less than

the acquired average prognosis error rate from the HMM-based approach with prediction

horizon of 1. This fact indicates that HSMM-based approach is more efficient in captur-

ing the temporal information, which results into smaller error rates in both diagnostics

and prognostics.

It is noteworthy that the error indicator (MSE) used in this section indicates predic-

tions deviation from the exact actual wearing values. However, it does not recognize the
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Figure 3.4: Computed parameters of the PSHsMCO approach in diagnostics case. The

diagrams on the left depict all the duration distributions of various health states with

truncated Gaussian distributions. On the right, the diagrams show the mean and variance

of all observed selected features within each health state. The covariance matrices are

assumed to be diagonal for simplicity in visualization.

difference between an under- and over-estimation and can be regarded as a symmetric

loss function [108]. In the next section, an asymmetric loss function will be given and

the performance of the approaches is compared based on their ability in minimizing the

total loss.

3.5 Asymmetric Loss Function

All the error rates given in the preceding section are based on squared error that

can be regarded as a symmetric loss function, not distinguishing between the over- and

under-estimations. But in reality in most of tool condition monitoring systems, it is
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Table 3.2: Prognosis error rate for PSHMCO and PSHsMCO approaches in terms of

average MSE with different prediction horizons on the testing data.

Model
Prediction Horizon (Time Steps Ahead)

1 2 3 4 5 6 7 8 9

PSHsMCO 311.3 314.0 317.9 322.4 327.5 333.1 339.5 346.5 353.9

PSHMCO 422.3 491.4 602.7 680.1 732.5 771.1 802.2 829.0 852.7

preferred to be pessimistic rather than optimistic. For example, in the case of cutter

condition monitoring in a CNC-milling machine, it is preferred to change the cutter

sooner rather than using the cutter longer and having a defected work-piece as a result.

Thus, it is better to over-estimate the tool wear of the cutter rather than under-estimate.

This preference can be formulated using an asymmetric loss function. In this section, an

arbitrary asymmetric function is given as follows

err (10−3mm) = estimated tool wear − actual tool wear,

loss(err) =






e(−err/8) − 1 err < 0

e(err/10) − 1 err ≥ 0
.

(3.34)

Now, the performance of the two approaches can be compared based on the given

asymmetric loss function. In the example of CNC-milling machine given here, the val-

ues of estimated and actual tool wear are recorded and used in scale of 10−3mm. As

desired in case of TCM for CNC-milling machine, the defined loss function in (3.34)

penalizes more if the predicted tool wear is under-estimated (err < 0) compared to

over-estimation to the same degree.

One of the main advantages of the proposed HSMM-based approach, which is its

duration flexibility, can be exploited in this case. Since the given loss function is asym-

metric and the HSMM duration distribution is flexible it can be made asymmetric to

incorporate the asymmetricity of the loss function in the predictive model in order to

improve the performance.

In the previous section, as we had a symmetric squared error loss function, we as-
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sumed for simplicity that duration distributions may be modeled with Gaussian distri-

butions. However, when we want to use an asymmetric loss function, consequently we

would like different sides of the peak in the Gaussian functions to be also asymmetric

corresponding to the difference indicated in the loss function.

Therefore, an asymmetric version of Gaussian function [109] which has a parameter

called asymmetry to control the amount of asymmetricity in the function is adopted in

this section. The newly defined duration distribution P(di) is,

P(di = x) =






1√
2πσi

exp(− q2

2σ2
L

) q < 0

1√
2πσi

exp(− q2

2σ2
R

) q ≥ 0

q = x − d̄i, σLi
= σi(1 + ρ), σRi

= σi(1 − ρ)

(3.35)

where ρ is the asymmetry factor, d̄i is the duration at the peak in the ith duration distri-

bution function, σi is the average root mean square width, σLi
and σRi

are left and right

width (deviation), respectively.

In this chapter, since the right side of the Gaussian distribution corresponds to the

longer probable durations which may cause under-estimation, the asymmetry parameter

should favor the left side of the peak. Thus the asymmetry factor may vary between (0,

1). As indicated in (3.35), once the asymmetry parameter is set, then the right and left

width can be computed based on asymmetry and the average width.

Without loss of generality, the duration samples from the training set can be sorted

based on their values in an ascending order. Then, the log-likelihood of the ith duration

distribution, Ldi
, can be written as

Ldi
= −

ndi

2
log(2π) − ndi

log(σi) −
nLi∑

j=1

(x j − d̄i)
2

2σ2
Li

−
ndi∑

j=nLi
+1

(x j − d̄i)
2

2σ2
Ri

(3.36)

where x j is the jth duration sample, ndi
is the total number of duration samples for the

ith health state and

nLi
= ndi

× ϕ, (3.37)

is the number of samples assumed to be generated from the left side of the peak in the

ith duration distribution. ϕ is an auxiliary hyper-parameter of the model that can be

found through cross-validation and it indicates the general percentage of the samples
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Figure 3.5: Effect of asymmetry factor on the estimated asymmetric Gaussian distribu-

tion while GLSP factor (ϕ) is arbitrarily set to 30%.

in the duration distributions generated from the left side of the peaks in the duration

distributions. Figure 3.5 and 3.6 depicts the effects of asymmetry and general left side

percentage (GLSP) factors, ρ and ϕ, on the estimated asymmetric Gaussian distributions.

Assuming to find proper values for ρ and ϕ as the hyper-parameters of the state-

duration distributions based on cross-validation phase. d̄i and σi may be estimated using

maximum likelihood method. Substituting σLi
and σRi

in (3.36) with their parametric

form in (3.35), (3.36) can be rewritten as

Ldi
= −

ndi

2
log(2π) − ndi

log(σi) −
∑nLi

j=1
(x j − d̄i)

2

2σ2
i
(1 + ρ)2

−
∑ndi

j=nLi
+1

(x j − d̄i)
2

2σ2
i
(1 − ρ)2

(3.38)
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Figure 3.6: Effect of GLSP factor on the estimated asymmetric Gaussian distribution

while asymmetry factor (ρ) is arbitrarily set to 0.3.

By setting the derivatives of (3.38) to zero, d̄i and σi can be estimated as follows

∂Ldi

∂d̄i

= 0{

∑nLi

j=1
(x j − d̄i)

σ2
i
(1 + ρ)2

+

∑ndi

j=nLi
+1

(x j − d̄i)

σ2
i
(1 − ρ)2

= 0

{ (1 − ρ)
nLi∑

j=1

(x j − d̄i) + (1 + ρ)

ndi∑

j=nLi
+1

(x j − d̄i) = 0

{

ndi∑

j=1

x j − ndi
d̄i + ρ(ndi

− 2nLi
)d̄i + ρ[

ndi∑

j=nLi
+1

x j −
nLi∑

j=1

x j] = 0

{ d̄i =
Ctot + ρ(Ctot − 2CL)

ndi
+ ρ(ndi

− 2nLi
)
, Ctot =

ndi∑

j=1

x j, CL =

nLi∑

j=1

x j,

(3.39)

∂Ldi

∂σi

= 0{ −
ndi

σi

+

nLi∑

j=1
(x j − d̄i)

2

σi
3(1 + ρ)2

+

ndi∑

j=nLi
+1

(x j − d̄i)
2

σi
3(1 − ρ)2

= 0

{ −
ndi

σi

+
1

σi
3
× [

nLi∑

j=1
(x j − d̄i)

2

(1 + ρ)2
+

ndi∑

j=nLi
+1

(x j − d̄i)
2

(1 − ρ)2
] = 0

{ σi =

√√√√√√√

1

ndi

× [

nLi∑

j=1
(x j − d̄i)2

(1 + ρ)2
+

ndi∑

j=nLi
+1

(x j − d̄i)2

(1 − ρ)2
].

(3.40)

Now, diagnostics accuracy of the two approaches is re-examined based on the asymmet-

ric loss function given in (3.34) to show the applicability of the HSMM-based approach
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Figure 3.7: Mean of cross-validated total loss for every value taken by ρ and ϕ.

while having an asymmetric loss function. But, before proceeding to the diagnostics

part, the appropriate values for the two newly added hyper-parameters must be adopted

through cross-validation.

3.5.1 Asymmetric Cross-Validation

In this section, the number of hidden state values is set to 14 so that the results may

be comparable with the models used in the previous sections. The hyper-parameters that

are considered to be explored in this case are the asymmetry factor ρ and the general left

side percentage ϕ. Figure 3.7 depicts the corresponding mean of the total loss on the

cross-validated sets for every value taken by ρ and ϕ.

As can be seen in Fig. 3.7, ρ = 0.7 and ϕ = 90% are depicted to be appropriate

values to be selected based on the cross-validation total loss. Therefore these values are

adopted for the hyper-parameters of the HSMM-based approach in diagnostics.

3.5.2 Asymmetric Diagnostics

Here, diagnostics accuracy of the HMM and HSMM-based approaches (PSHMCO

and PSHsMCO) are compared based on the given asymmetric loss function in (3.34).

Similar to diagnostics case in the previous section, the testing set is the data collected

from the three cutters 09BX3, 18S C3 and 33PN6. All the models are trained based on
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the data collected from cutters 07BX1, 31PN4 and 34PT1.

In this simulated experiment, at each time step (cut), the data from the beginning of

the experiment up to the current time step is given to both models in order to predict the

tool wear of the three flutes at that time step. Number of health states is set to 14 in all

models as suggested in the previous section. In this case, similar to the previous section,

the maximum wearing value of all 3 flutes at each time step (cut) within each experiment

is regarded as the desired outcome. As an indicator to show how much the asymmetric

function adopted for the state-duration distributions in the HSMM-based approach has

improved the performance, the results of HSMM with symmetric Gaussian function

is also included along with the HMM-based approach. Table 3.3 shows the diagnosis

accuracies of the approaches based on the total loss on the testing set.

Table 3.3: Prediction error rate for diagnostics using PSHMCO and PSHsMCO ap-

proaches in terms of total loss for the given loss function in (3.34).

Approach
Total Loss

09BX3 18S C3 33PN6 Average Total Loss

Asymmetric PSHsMCO 2147 705 1672 1508±734

Symmetric PSHsMCO 2719 843 1794 1785 ±938

PSHMCO 4826 883 2289 2666 ±1998

3.6 Summary

In this chapter, a more complex model compared to HMM used in Chapter 2 called

hidden semi-Markov model, is utilized in the proposed approach named Physically Seg-

mented Hidden Semi-Markov model with Continuous Output (PSHsMCO) to perform

continuous diagnosis and prognosis in TCM applications. Also, a computationally effi-

cient version of forward-backward algorithm for application of PSHsMCO in continu-

ous health condition monitoring is described. Based on the simplified forward-backward

algorithm, diagnostics and prognostics procedures are defined.
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A comparative study is conducted between the suggested HSMM-based approach

(PSHsMCO) and the HMM-based approach proposed in Chapter 2. Performances of

the two approaches are compared in three cases i.e. cross-validation, diagnostics and

prognostics. Based on the experimental results, HSMM-based approach outperforms

the HMM-based approach in both diagnostics and prognostics. Interestingly, the error

rate of the HSMM-based approach predicting 9 time steps ahead is less than the acquired

one step ahead average prognosis error rate from the HMM-based approach which indi-

cates how powerful HSMM is compared to HMM in capturing the underlying temporal

information.

In the last section, applicability of the asymmetric Gaussian functions as the state-

duration distributions in the proposed PSHsMCO approach is explored. Using the asym-

metric Gaussian function, the asymmetric loss functions can be incorporated into the ap-

proach in order to recognize the preference between the under and over estimations. Ex-

perimental results also indicate that using asymmetric Gaussian functions as the duration

distribution functions improve the performance substantially while using an asymmetric

loss function.



Chapter 4

Multi-Modal Hidden Markov

Model-Based Approach

4.1 Introduction

A hidden Markov model-based approach named physically segmented hidden Markov

model with continuous output (PSHMCO) was proposed in Chapter 2 to estimate the

continuous tool wear of cutters in a CNC-milling machine, where an explicit relationship

between the physical states and the hidden state values is derived. The PSHMCO ap-

proach outperforms the conventional Artificial Neural Network approaches [111]. How-

ever, PSHMCO, that uses a single HMM, adopts a fixed regiment, hence may lose the

desired generalization property.

In this Chapter, to improve the performance of PSHMCO, multiple PSHMCOs are

used in parallel as multiple modes. In this multi-modal HMM-based (m2HMM) ap-

proach, each PSHMCO captures and emphasizes on a different tool wear regiment. In

this Chapter, three weighting schemes, namely, bounded hindsight, discounted hindsight

and semi-nonparametric hindsight are proposed and two switching strategies named

soft- and hard- switching are introduced to combine the outputs from multiple modes

into one. The performance of the multi-modal approach with various weighting schemes

and switching strategies is reported and compared with PSHMCO. Furthermore, the

windowed variant of both PSHMCO and m2HMM approaches are introduced that sub-

67
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stantially reduces the computational cost without sacrificing the prediction accuracy.

This Chapter is organized as follows. Section 2 describes the proposed windowed

variant of the single HMM-based prediction approach called PSHMCO. In Section 3,

a multi-modal HMM-based approach is proposed with three weighting schemes and

switching strategies along with the windowed variant of m2HMM. The preliminary ex-

perimental results are provided and compared between the single and multi-modal ap-

proaches in Section 4. Furthermore, the switching strategies, weighting schemes and

the windowed variants are compared in Section 5. Also, the robustness of the semi-

nonparametric weighting scheme with respect to its hyper-parameter value is shown in

this Section. Finally, the Chapter is summarized in Section 6.

4.2 Windowed Single HMM-based Approach

In this Chapter, the physically segmented hidden Markov model-based approach

with continuous output (PSHMCO) proposed in Chapter 2 for tool wear monitoring

is regarded as the single HMM-based approach for further discussions in this Chapter.

γt can be defined and computed as

Here, in order to reduce the computational cost in PSHMCO a windowing algorithm

is introduced. In this algorithm, instead of providing the full observation sequence to the

HMM up to current time, O1:T , a windowed observation sequence of the recently past

observations up to current time, OT−Lw+1:T is given to HMM where Lw is the window

length. However, to preserve the general trend of the sequence and the path that HMM

is taking through the sequence, the only parameter that has to be updated as the time

proceeds is the initial probability.

As stated in Chapter 2, whenever the prediction starts on a newly given sequence, if

no data is available on the initial degradation state, the initial probability is assumed to

have a uniform distribution on all possible states. In the proposed windowed approach

instead of preserving and using all the past observations and involving all of them into

the current predictions, only the windowed observation sequence is used. However, the

initial probability distribution at each time step is updated for the next sequence window
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as follows

π′0,T+1 = γ
′
1 = P(S ′1,O

′
1:Lw
|λ′T ),

O′1:Lw
= OT−Lw+1:T = {OT−Lw+1, . . . ,OT },

S ′1 = S T−Lw+1,

(4.1)

where π′0,T+1 is the updated initial probability at time T that must be used for the predic-

tion at the next time step, T+1. λ′T is the updated parameter set for time T . λ′T is identical

to the parameter set of the given HMM, λ, except for its initial probability distribution

π0 that is updated by π′0,T . At each time step T > Lw, the windowed observations O′1:Lw

is given to the HMM with the updated parameter set λ′T based on (4.1).

The proposed windowing algorithm makes the length of observations used in the

forward-backward algorithm bounded to a window length (Lw) smaller than the average

full length sequence (L̄ f ). Consequently, the computation cost for the forward-backward

algorithm reduces L̄ f /Lw times.

4.3 Multi Modal HMM-Based Approach

In this Chapter similar to the preceding Chapters, TCM of a cutter in a CNC-milling

machine is used as an illustrative example. While usually all the cutters are made from

the same material in one dataset, the geometrical difference of cutters in the training and

testing set could deviate and cause inaccurate predictions.

The idea of multi-modal approach is to generalize the prediction model by capturing

more possible trends using combinations of distinct experiments for training, and then

integrating the prediction results from all the single models in a weighted form. Here,

three weighting schemes are proposed along with two switching strategies based on the

computed weightages. Moreover, the windowed algorithm introduced in Section 2 is

extended for the multi-modal approach.

In the proposed multi-modal approach to improve performance of the single HMM-

based approach called PSHMCO, given a set of n experiments as the training set, Nmode

PSHMCOs are trained. Each PSHMCO is trained on one distinct combination of the

experiments to capture the common trend between the combined experiments (mode).
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It is noteworthy that the number of modes in this approach is less than or equal the

number of possible combinations given n experiments, thus the number of modes is

Nmode ≤ 2n − 1.

After training all the PSHMCOs as in Chapter 2, given a new set of observations as

the testing set, we would like to assess the importance of each PSHMCO for the final

prediction at each time step and reflect that as a weightage. Then, based on the switching

strategy, the PSHMCOs’ weightages are used to predict the ultimate output at each time

step. Figure 4.1 schematizes the prediction process in the m2HMM approach.

The weightages of the modes can be computed in various ways with each empha-

sizing on the importance of different factors. The common ground between the three

weighting schemes that will be introduced here is that, the weight of each PSHMCO is

computed based on the historical observations (hindsight) and the current time, in order

to assess the usefulness and similarity of that PSHMCO for prediction at that point of

time. However, the factors that are considered to assess the weightages in these three

schemes are different. Two of the weighting schemes are solely based on the parametric

models thus named parametric hindsight weighting schemes, namely, bounded hind-

sight and discounted hindsight. The third weighting scheme uses the parametric models

to locate the positions in the corresponding training data used to train them (paramet-

ric phase), and then finds the most similar portion to the observations at hand given

for prediction and ultimately assigns the similarity score to each model as the weightage

(nonparametric phase). As the third weighting scheme has both parametric and nonpara-

metric phases and furthermore its ultimate result is based on the nonparametric phase,

it is named Semi-Nonparametric hindsight. As mentioned in Chapter 1, hindsight is the

process of reviewing the historical data and calculating the probable health states at the

past time steps [96, 112].

4.3.1 Most Probable Health States

All the proposed weighting schemes in this Chapter, use a dynamic programming

method known as Viterbi algorithm. The Viterbi algorithm is used to find the most

probable health states (Viterbi-path) taken at the past time steps within each model. As
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Figure 4.1: Illustration of multi-modal HMM-based approach.

described in [95], the Viterbi path can be formulated as follows

3t(i) = max
S 1:t−1

{P(S 1:t−1, S t = Hi,O1:t|λ)}, (4.2)

where 3t(i) is the highest probability obtained by a single path up to time t that ends

in state Hi. As indicated in [95], by induction a recursive formula can be obtained as

follows

3t+1( j) = max
i=1,...,m

{3t(i) × ai, j} × P(Ot+1|S t+1 = H j, λ), (4.3)

where ai, j is the transition probability to go from Hi to H j in the HMM with the λ

parameter set. Furthermore because of the specific structure assumed in Chapter 2 for

PSHMCO based on the gradual process of wearing and degradation, from each health

state Hi only two possible transitions exist i.e. either staying at the same health state or

going to the next health state Hi+1 till the cutter completely worn out and enter the last

wearing stage Hm. Thus, (4.3) can be computationally simplified as follows

3t+1( j) =max{3t( j − 1) × (1 − p j−1), 3t( j) × p j}

× P(Ot+1|S t+1 = H j, λ).
(4.4)

Finally, V1:T that is the sequence of health state indices taken through the Viterbi-path

and is required for the weighting schemes, can be computed by performing backtracking

on the stored matrix that has kept track of all the arguments which has maximized (4.3)

for every t and j. For more details on Viterbi algorithm refer to [95].

In the succeeding subsection, the three weighting schemes are described in details.
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4.3.2 Weighting Schemes

As shown in Fig. 4.1, the observations (input features) are fed into all PSHMCOs

in parallel. After finding the output of each PSHMCO based on (2.21), the next issue

is to decide about the weightages of PSHMCOs outputs for polling (weighted averag-

ing). Two methods, the parametric and semi-nonparametric hindsight, are adopted and

compared for weighted polling. In all weighting schemes, the idea is to re-evaluate the

likelihood of preceding time steps (hindsight) along with the current time step and use

it as a metric to assess compatibility of each single model with the recent observations.

Parametric Hindsight

One of the motivations in using a multi-model approach is to use possible mix of

trends captured by various models to improve prediction in new trends. These new

trends may be relevant in parts to the modeled trends in multiple models. The aim

is to give a higher weightage to the models which are more likely to have a similar

trend with the new experiment at each time step. In this Section, two schemes are

suggested for computation of weightages in parametric form. In both schemes, focus is

more on the latest time steps rather than long past ones. This allows a more dynamic

switching of influence on the outputs between the multiple models. The basic idea of

the proposed parametric hindsight weighting schemes are similar to the sliding window

approaches used in the image and signal processing applications such as spatio-temporal

visual tracker [113], smoothing [114] as well as enhancing the temporal information

[115]. Two parametric schemes are introduced as follows.

Bounded Hindsight

In this scheme, given the observations up to the current time step T , the maximum

likelihood of the probable health states for ∆ − 1 (bounded) preceding time steps (hind-

sight) along with the current time step in each PSHMCO are calculated. Summation

of these ∆ likelihoods, wi
T
, is used as an indicator of how relevant each PSHMCO is

to the currently on-going experiment at that time. Hence wi
T

is used as the correspond-

ing weightage for ith PSHMCO. An appropriate value for ∆ can be found using cross-
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Figure 4.2: Illustration of bounded hindsight weighting scheme.

validation. The bounded weightage, wi
T
, for the ith HMM can be computed as follows

wi
T =

T∑

t=T−∆+1

P(S t = HV i
t
,O1:T |λi) =

T∑

t=T−∆+1

γi
t(V

i
t ). (4.5)

where ∆ is the window size of the hindsight is bounded to, V i
t is the health state index

at time t of the viterbi-path taken by the ith PSHMCO. λi is the ith PSHMCO parameter

set.

Discounted Hindsight

In this weighting scheme, similar to the bounded hindsight, given the observations up

to the current time step T , the maximum likelihood of the Viterbi-path health states for

preceding time steps (hindsight) in each PSHMCO are calculated. Instead of having a

uniform summation on the likelihoods, first, every calculated likelihood is multiplied by

a discount factor to increase the importance of the recent preceding time steps compared

to the long past ones. Then, the summation of the discounted likelihoods is used as the

corresponding weightage for each PSHMCO. In this work, the discount function is set to

be a Gaussian distribution over the preceding time steps with its peak value at the current

time step. An appropriate standard deviation for this function may be found based on

cross-validation. The discounted weightage, wi
T
, for the ith PSHMCO can be computed

as follows

wi
T =

T∑

t=1

φt × P(S t = HV i
t
,O1:T |λi) =

T∑

t=1

φt × γi
t(V

i
t ),

φt = N(t; T, σ2)

(4.6)

where φt is the value of the Gaussian distribution with mean value of T and standard

deviation of σ at time step t. Figure 4.3 illustrates the discounted hindsight weighting
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Figure 4.3: Illustration of discounted hindsight weighting scheme.

scheme.r

Semi-Nonparametric Hindsight

Here, another weighting scheme is introduced to compute appropriate weightages

required in the m2HMM approach to integrate the PSHMCOs outputs into its ultimate

output. The basic idea of this weighting scheme is similar to the sequence alignment

methods. Sequence alignment is a way of arranging sequences to identify regions of

similarity originally developed in bioinformatics for aligning DNA, RNA or protein se-

quences [116].

Since the proposed scheme has both parametric and nonparametric phases and its

final result comes from the nonparametric stage, this weighting scheme is named Semi-

NonParametric Hindsight (SNPH). Given the new observations and the HMMs parame-

ter sets, the procedure of semi-nonparametric hindsight is schematized as follows.

• For each HMM, using its parameter set and the given observations find the most

probable path of health states based on Viterbi-path algorithm. Find V i
1:T based on

λi and O1:T .

• Find the intervals Iq in the qth training sequence of the ith training combination

(Di,q) that corresponds to the most likely path taken in the ith HMM based on the

reference segment of the Viterbi-path V i
1:T that is denoted by V i

T−r+1:T . Iq can be
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identified as a set of starting, ending time index pairs as follows

Iq(V i
1:T ,D

i,q, r) =
⋃

h∈Ψ
{(ti,q,h

s , t
i,q,h
e )},

Ψ = {V i
T−r+1,V

i
T−r+1 + 1, . . . ,V i

T },
(4.7)

where Di,q = {Oi,q,Y i,q} is the qth training sequence of the ith training combination

that includes observations Oi,q and their actual corresponding tool wear values Y i,q,

Ψ is the set of health states’ indices that have been taken in the reference sequence

based on the computed Viterbi-path, t
i,q,h
s and t

i,q,h
e are respectively the starting and

ending time steps of the hth health state in Di,q.

• Align Oi,q,h = O
i,q

t
1,q,h
s :t

1,q,h
e

and the Rh which is the corresponding observation segment

in the reference sequence that its most likely health state index is h based on

Viterbi-path and is defined as follows

Rh = {Oths :the
|T − r + 1 ≤ th

s ≤ t ≤ th
e ≤ T,V i

ths+1
, h,V i

the−1
, h,V i

t = h}, (4.8)

where the starting and ending time steps of the hth health state in the reference

sequence are denoted by th
s and th

e , respectively.

• The Aligned distance between the two matrices can be computed as

dist(Oi,q,h,Rh) =






min
i=1,...,lh−l′

h
+1
{

√

K∑

k=1

l′
h∑

j=1
(O

i,q,h

k, j+i−1
− Rh

k, j
)2} f or l′

h
≤ lh

min
i=1,...,l′

h
−lh+1
{
√

K∑

k=1

lh∑

j=1
(O

i,q,h

k, j
− Rh

k, j+i−1
)2} f or l′

h
> lh

,

lh = ti,q,h
e − ti,q,h

s + 1, l′h = th
e − th

s + 1,

(4.9)

where length of corresponding segments to the hth health state in the reference

sequence (R) and training observation sequence Oi,q are denoted by l′
h

and lh, re-

spectively.

• Based on the aligned distance function dist(., .) defined in (4.9), the total score
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function for qth sequence of the ith PSHMCO can be computed as follows

S core(Di,q,O1:T ,V
i
1:T , r)

=





V i
T∑

h=V i
T−r+1

dist(Oi,q,h,Rh)

V i
T∑

h=V i
T−r+1

min{lh, l
′
h
}





−1

,

(4.10)

where O1:T is the newly given observation sequence from time step 1 up to current

time T and V1:T is the index sequence of the health states taken within the Viterbi-

path.

• Finally, maximum of the scores obtained from all included sequences in the ith

PSHMCO training set as the maximum aligned similarity, would be adopted for

the weightage of ith PSHMCO in the final outcome. Thus, the weightage of the

ith PSHMCO can be computed as

wi
T = max

q
{S core(Di,q,O1:T ,V

i
1:T , r)} (4.11)

Figure 4.4 illustrates the semi-nonparametric hindsight weighting scheme. For illus-

tration purpose, in Fig. 4.4, it is assumed that V i
T−r+1 , V i

T
meaning that there are more

than one distinct health index in the reference segment of the Viterbi-path.

After both parametric and semi-nonparametric hindsight schemes, the computed

weightages can be used to either mix the outputs (soft-switching) or perform hard-

switching between modes.

4.3.3 Switching Strategy

After assigning relevance weightages to all the modes based on any of the weighting

schemes that are introduced, two strategies are considered for integrating various modes’

outputs into the ultimate multi-modal output. These two strategies can be formulated as

follows
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Figure 4.4: Illustration of semi-nonparametric hindsight weighting scheme.

• Soft-Switching,

ŷ
S o f t

T
=

Nmode∑

i=1
wi

T
× ŷi

T

Nmode∑

i=1
wi

T

, (4.12)

where ŷ
S o f t

T
is the ultimate output for time step T using the soft-switching strategy,

ŷi
T

is the output of the ith PSHMCO and wi
T

is its corresponding weightage.

• Hard-Switching,

ŷHard
T = ŷ

arg max
i
{wi

T
}

T
, i = 1, . . . ,Nmode. (4.13)

where ŷHard
T

is the ultimate output for time step T using the hard-switching strat-

egy.

As (4.12) indicates, the soft-switching strategy uses the weighted average of all

PSHMCOs as the ultimate output. On the other hand, the hard-switching strategy as

shown in (4.13) assigns the output of the PSHMCO with the highest weightage as the

ultimate output.
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4.3.4 Windowing Algorithm for m2HMMs

Similar to the windowing algorithm introduced in Section 2, by using the windowed

observations instead of full observation sequences, the computational cost can also be

reduced drastically in the proposed m2HMMs.

Here, instead of giving full observation sequence up to the current time T , O1:T to

each PSHMCO, a windowed observation sequence OT−Lw+1:T is given to all PSHMCOs.

Thus, similar to the windowing algorithm introduced in Section 2, the initial probability

will be updated for all the HMMs based on their weightages as follows

π′0,T+1 =

Nmode∑

i=1
wi

T
× γ′1,i

Nmode∑

i=1
wi

T

=

Nmode∑

i=1
wi

T
× P(S ′1,O

′
1:Lw
|λ′i,T )

Nmode∑

i=1
wi

T

,

O′1:Lw
= OT−Lw+1:T , S ′1 = S T−Lw+1,

(4.14)

where π′0,T+1 is the updated initial probability that must be used for the prediction at next

time step, T + 1. λ′i,T is the same as parameter set of the ith HMM, λi, except that its

initial probability distribution π0 is updated by π′0,T .

Similar to the windowing algorithm proposed in Section 2, the proposed window-

ing algorithm for m2HMM approach will reduce the computation cost in the forward-

backward algorithm by L̄ f /Lw times where L̄ f is the average length of the given full

observation sequence.

4.4 Preliminary Experimental Results

In this Section, the results of cutter wear diagnostics in a CNC-milling machine

obtained by the multi-modal HMM-based approach (m2HMM) with various weighting

schemes are compared with the single HMM-based approach (PSHMCO) proposed in

Chapter 2. The m2HMM is implemented with three weighting schemes and two switch-

ing strategies introduced in Section 3.
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4.4.1 Experimental Data and Features

The experimental data comprises cutting process of 6 cutters, which are 07BX1,

31PN4, 09BX3, 18SC3, 34PT1 and 33PN6. The cutters are different from one another

by the cutter geometry and coating, but all are 6mm Alignment-Tool carbide ball-nose

end with three flutes. In all the cutting processes, Inconel 718, which is used in Jet en-

gines, is set as the work-piece material. During the cutting process, the upper face of

the material is cut with horizontal lines from the top edge to the bottom edge. After 320

times of cutting, another cutter starts again at the top edge of the material for another

round of experiment. A three-channel dynamometer is mounted on the CNC-milling

machine that captures force signal in three directions. Moreover, for training and test-

ing purposes, the tool wear data is directly measured and collected using microscope

in the conducted experiments. Figure 4.5 schematizes the experimental setup used in

this study. The detailed description of the experimental setup, data acquisition process

can be found in Appendix A. The experimental setup is identical to the experimental

setup used in previous Chapters. However, as indicated in Chapter 2 after feature se-

lection, the vibration and acoustic emission signals, although are easier to be captured,

the features extracted from them are not as discriminant as the features extracted from

the force signals. Therefore to reduce the number of features further and to focus only

on the force signals, after performing a comparative feature selection study in [117], 13

statistical features that shown to be the most salient features in that study are extracted to

be utilized. Table 4.1 lists the extracted features and indicates the direction of the force

signals that they are extracted from.

4.4.2 Preliminary Results

All prediction models are trained using data collected from three experiments, which

are conducted using 07BX1, 33PN6, and 34PT1 type cutters. The trained prediction

models are then tested on the experimental data acquired from the three remaining dis-

tinct cutters 09BX3, 18SC3, and 31PN4. In this study, similar to Chapter 2, the number

of health states is adopted to be 14 for all the HMMs. Although the number of health

states in all HMMs is adopted to be 14, the parameter sets of these HMMs which are
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Figure 4.5: The tool wearing estimation experimental setup.

computed based on various combinations of training experiments would be different thus

leading to various wearing regiments. Moreover, all possible combinations of the three

training experiments are used here to train different modes in the m2HMM approaches

leading to 7 distinct modes. Based on the cross-validation, the hyper-parameters of the

three weighting schemes which are the size of bounded hindsight window, the standard

deviation of the discounted hindsight, and the size of the reference observation sequence

in semi-nonparametric weighting scheme are adopted to be 10, 2.5, and 10, respectively.

Figure 4.6 depicts the resultant relative weightage values by the three weighting schemes

on the three cutters used for testing. As it can be seen in Fig. 4.6, the changes in the

weightages through time using the Semi-nonparametric scheme is smoother than the

other two.

Table 4.2 shows the prediction performance of PSHMCO compared with variants of

multi HMM-based approach (considering the three suggested weighting schemes and

the two switching strategies) in terms of mean squared error (MSE) and mean relative

error (MRE).

In this experiment, at each time step (cut), the extracted features (observations) from

the beginning of the experiment up to the current time step are given for diagnostics. It is

noteworthy that in practice, the precision of a work-piece is ultimately determined by the

flute with the maximum wearing value. Thus, during testing, the maximum estimated

wearing value among the three flutes at each time step is used as the predicted outcome

of the cutter wearing.
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Table 4.1: List of statistical extracted features from force signals in X,Y and Z directions.

Feature Direction

Amplitude Ratio X, Y and Z

First Order Differencing X and Y

Total Harmonic Power X and Z

Maximum Force Level X

Total Amplitude of Cutting Force X

Standard Deviation X

Kurtosis Y

Average Force Z

Skewness Z

Table 4.2: Tool wear prediction error rate in CNC-milling machine using single

HMM-based approach (PSHMCO), and variants of Multi-modal HMM-based (m2-

HMM) approach with three weighting schemes, namely, bounded, discounted and semi-

nonparametric hindsight and two switching strategies (soft- and hard-switching).

Approach
Mean Squared Error Mean Relative Error

09BX3 18SC3 31PN4 Total 09BX3 18SC3 31PN4 Total

PSHMCO 725.54 330.68 749.16 601.79 ± 235.09 0.1604 0.1168 0.1733 0.1502 ± 0.0296

Soft m2HMM Bounded 522.33 148.08 354.01 341.47 ± 187.44 0.1386 0.1012 0.1439 0.1279 ± 0.0233

Soft m2HMM Discounted 514.80 163.94 375.15 351.29 ± 176.64 0.1363 0.1045 0.1489 0.1299 ± 0.0229

Soft m2HMM Semi-Nonparametric 337.16 156.73 244.88 246.25 ± 90.21 0.1314 0.1063 0.1200 0.1193 ± 0.0125

Hard m2HMM Bounded 486.84 167.57 930.05 528.16 ± 382.91 0.0959 0.1111 0.2518 0.1529 ± 0.0860

Hard m2HMM Discounted 487.18 188.43 916.77 530.79 ± 366.12 0.0961 0.1191 0.2497 0.1549 ± 0.0828

Hard m2HMM Semi-Nonparametric 557.54 303.62 946.56 602.58 ± 323.82 0.1373 0.1555 0.2522 0.1816 ± 0.0617

It can be seen from Table 4.2 that the total performance of m2HMM approach with

parametric hindsight (either discounted or bounded) and soft-switching shows about

40% improvement in average precision and about 20% improvement in standard devi-
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Figure 4.6: Resultant weightages for the three cutters using the three weighting schemes.

Y-axes show the area value of each weightage and the X-axes show time steps. The

weightages are normalized to sum up to one at each time step. The PSHMCO indices in

the legend indicate which cutters’ data are included for each mode in a binary manner.

The three indices correspond to 07BX1,33PN6, and 34PT1 respectively from left to

right.

ation. Furthermore, m2HMM-based approach with semi-nonparametric hindsight and

soft-switching strategy (Soft m2HMM-SNPH) achieves the best average total perfor-

mance. This suggests that semi-nonparametric weighting scheme can be an appro-

priate way of integrating outputs from various PSHMCOs. Moreover, m2HMM ap-

proach variants with hard-switching have been unable to outperform PSHMCO and

their counter-variants with soft-switching. Although, the results suggests that on aver-

age, Soft m2HMM-SNPH outperforms PSHMCO and other variants of m2HMM, these

preliminary results may not be convincing. Thus, in order to assess the significance of

improvements made by the m2HMM variants and see whether the Soft m2HMM-SNPH

can outperform the other approaches in a statistically significant manner further investi-

gations are conducted.

4.5 Further Investigations

In this Section, the efficiency of the proposed m2HMM approach with various weight-

ing schemes is further investigated to confirm whether it can statistically outperform
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PSHMCO. Moreover, performance of the two switching strategies, namely Soft- and

Hard- switching, are compared and the effect of reference length in the SNPH weighting

scheme is studied. Furthermore, the windowing algorithms proposed in Sections 2 and

3 are examined to see whether the computational cost can be reduced while maintain-

ing high prediction accuracy in comparison with the original PSHMCO and m2HMM

approaches.

For the purpose of having enough samples to assess the statistical significance in

performance differences, various trials are generated by different partitionings of the

whole acquired dataset from 6 cutters in Section 4 based on all possible combinations.

Two scenarios are assumed in this Section,

• Easy Scenario: in which the data from 5 cutters is used for training and then the

prediction models are tested on the one remaining cutter. The training-testing (TT)

ratio in this case is 5:1.

• Difficult Scenario: in which the data from 3 cutters is used for training and then

the prediction models are tested on the 3 remaining cutters. TT ratio in this case

is 3:3.

The number of possible combinations and thus various trials for the easy scenario is

C6
1
= 6 and for the difficult scenario is C6

3
= 20. In the succeeding subsections the

prediction models are trained, tested and compared based on the various trials in the

two scenarios. Moreover, every possible combination of experiments in the training

partitions are used to train one mode in the m2HMM approaches. Consequently, the

Nmode of the m2HMM approaches in the easy scenario is 31 (25 − 1) and for the difficult

scenario is 7 (23 − 1).

It is noteworthy that in all testing experiments the predictions are made from time

step 20 to 320 for the sake of fairness in comparisons and reporting the results while

various windowing lengths or hyper-parameter values are considered. In the succeeding

subsections, if not indicated differently the values of hyper-parameters are adopted to be

identical with the ones in the Section 5.
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Table 4.3: Overall performance comparison of hard- and soft- Switching strategies

within all weighting schemes along with the average PSHMCO performance provided as

the benchmark. Average performances are compared based on mean squared error and

the P-value shows the significance of performance difference between the two strategies

using the same weighting scheme.

Weighting Scheme
Easy (TT ratio 5:1) Difficult (TT ratio 3:3) P-Value (Hard vs. Soft)

Hard-Switching Soft-Switching Hard-Switching Soft-Switching Easy Difficult

m2HMM Bounded 543.96 ± 397.81 553.17 ± 436.31 806.00 ± 654.13 689.23 ± 556.64 0.8667 0.0052

m2HMM Discounted 542.96 ± 308.54 551.85 ± 415.22 792.77 ± 625.78 692.31 ± 553.18 0.9050 0.0143

m2HMM Semi-Nonparametric 556.64 ± 267.36 486.59 ± 449.75 836.94 ± 662.22 631.89 ± 550.42 0.6389 0.0067

PSHMCO 720.78 ± 362.45 842.24 ± 474.51

4.5.1 Switching Strategy: Hard Vs. Soft

As mentioned in Section 3, the resultant weightages from three proposed schemes

can be used to perform switching based on two strategies i.e. Soft- and Hard- switch-

ing. Table 4.3 and 4.4 show the results of the two strategies in the two scenarios based

on various weighting schemes in terms of MSE and MRE, respectively. As it can be

seen in both Tables, although m2HMM with hard-switching average performances are

better than the PSHMCO, the m2HMM with Soft-switching outperforms all their Hard-

switching counter-variants and the p-values in the difficult scenario indicate the signif-

icance of this matter. However, the p-values in the easy scenario indicate that there is

not enough evidence to support or reject the idea in that scenario although the average

performance of the soft-switching variants are better.

Thus, in general it is recommended to use the soft-switching disregarding the weight-

ing scheme that has been used in the multi-modal approach as it leads to higher average

performance without additional computation cost.

In the succeeding subsections soft-switching is adopted for all the m2HMM ap-

proaches.
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Table 4.4: Overall performance comparison of Hard- and Soft- Switching strategies

in terms of mean relative error within all weighting schemes along with the average

PSHMCO performance provided as the benchmark. Each P-value shows the significance

of performance difference between the two strategies using the same weighting scheme.

Weighting Scheme
Easy (TT ratio 5:1) Difficult (TT ratio 3:3) P-Value (Hard vs. Soft)

Hard-Switching Soft-Switching Hard-Switching Soft-Switching Easy Difficult

m2HMM Bounded 0.1603 ± 0.0649 0.1593 ± 0.0617 0.1920 ± 0.0904 0.1772 ± 0.0804 0.9509 0.0259

m2HMM Discounted 0.1631 ± 0.0592 0.1605 ± 0.0605 0.1910 ± 0.0893 0.1785 ± 0.0812 0.8996 0.0701

m2HMM Semi-Nonparametric 0.1617 ± 0.0707 0.1513 ± 0.0539 0.1899 ± 0.0895 0.1681 ± 0.0714 0.7722 0.0291

PSHMCO 0.1890 ± 0.0560 0.1980 ± 0.0673

4.5.2 Overall Performance Comparison

Here, the PSHMCO and the m2HMMs with various weighting schemes are trained

and tested using the two scenario trials that each has partitioned the whole dataset into

training and testing sets. Table 4.5 shows the average performance of each approach in

the two scenarios in terms of MSE and MRE. Moreover, the p-values from the pair-wise

t-test performed between various approaches and PSHMCO as well as m2HMM-SNPH

are reported in Table 4.5.

From Table 4.5, it is suggested that all m2HMM approaches disregarding their weight-

ing schemes have outperformed PSHMCO in terms of both MSE and MRE in a statis-

tically significant manner in both scenarios. Furthermore, the m2HMM with SNPH

weighting scheme significantly outperforms the rest in the difficult scenario. However,

the p-values for the easy scenario indicate that there is not enough evidence to support

or reject the hypothesis in that scenario.

4.5.3 Full Vs. Windowed Observations

Here, the windowing algorithms proposed in Sections 2 and 3 are applied on PSHMCO

and the m2HMM approaches. The results are reported and compared with the original

PSHMCO which uses full observations. Table 4.6 shows the average performance of
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Table 4.5: The pair-wise t-test results from comparing the performance in all the multi-

modal approaches with various weighting schemes and PSHMCO as well as m2HMM-

SNPH with the rest. Each P-value shows the significance of performance difference

between the two approaches either in terms of MSE or MRE based on pair-wise t-test.

Easy Scenario (TT ratio 5:1)
Approaches

PSHMCO m2HMM-BH m2HMM-DH m2HMM-SNPH

Mean Squared Error 720.78 ± 362.45 553.17 ± 436.31 551.85 ± 415.22 486.59 ± 449.75

P-Value (vs. PSHMCO) NA 0.0211 0.0100 0.0204

P-Value (vs. m2HMM-SNPH) 0.0204 0.1479 0.1970 NA

Mean Relative Error 0.1890 ± 0.0560 0.1593 ± 0.0617 0.1605 ± 0.0605 0.1513 ± 0.0707

P-Value (vs. PSHMCO) NA 0.0078 0.0037 0.0210

P-Value (vs. m2HMM-SNPH) 0.0210 0.2936 0.2891 NA

Difficult Scenario (TT ratio 3:3) PSHMCO m2HMM-BH m2HMM-DH m2HMM-SNPH

Mean Squared Error 842.24 ± 474.51 689.23 ± 556.64 692.31 ± 553.18 631.89 ± 550.42

P-Value (vs. PSHMCO) NA 0.0014 0.0016 1.98e − 6

P-Value (vs. m2HMM-SNPH) 1.98e − 6 0.0171 0.0154 NA

Mean Relative Error 0.1980 ± 0.0673 0.1772 ± 0.0804 0.1785 ± 0.0812 0.1681 ± 0.0714

P-Value (vs. PSHMCO) NA 0.0028 0.0038 1.16e − 6

P-Value (vs. m2HMM-SNPH) 1.16e − 6 0.0146 0.0144 NA

windowed version of all approaches in the two scenarios in terms of MSE and MRE.

Pair-wise t-test is conducted between the resultant performances from the original PSHMCO

and the windowed version of all mentioned approaches on all trials in the two scenarios.

Given the window length Lw, the hyper-parameters of bounded and semi-nonparametric

hindsight are set equal to Lw and for the discounted hindsight the σ is set to Lw/4.

As it can be understood from Table 4.6, the windowed version of the multi-modal

approaches disregarding the weighting scheme have significantly outperformed the orig-

inal PSHMCO. Furthermore, the windowed PSHMCO has achieved a slightly better

performance than its original form. Figure 4.7 and 4.8 show the average performance of
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Table 4.6: The performance of windowed version of the three multi-modal approaches

and PSHMCO in terms of MSE and MRE in two scenarios while Lw = 13. The average

accuracies of the original PSHMCO with full observations are also given as the base-

line. The P-values show significance of each windowed approach outperforming Full

PSHMCO in terms of MSE in each case based on pair-wise t-test.

Windowed Approach
Easy (TT ratio 5:1) Difficult (TT ratio 3:3) P-Value (vs. Full PSHMCO)

MSE MRE MSE MRE Easy Difficult

W m2HMM-BH 558.99 ± 453.04 0.1593 ± 0.0626 668.95 ± 644.30 0.1709 ± 0.0839 0.0370 0.0049

W m2HMM-DH 555.04 ± 425.54 0.1605 ± 0.0608 680.39 ± 636.94 0.1742 ± 0.0850 0.0163 0.0077

W m2HMM-SNPH 479.86 ± 467.83 0.1497 ± 0.0530 643.71 ± 641.94 0.1663 ± 0.0770 0.0299 0.0006

W PSHMCO 636.16 ± 466.43 0.1784 ± 0.0624 759.74 ± 602.63 0.1918 ± 0.0747 0.3156 0.0778

Full PSHMCO 720.78 ± 362.45 0.1890 ± 0.0560 842.24 ± 474.51 0.1980 ± 0.0673 NA NA

all approaches in the two scenarios in terms of MSE and MRE with respect to various

window lengths. Based on Figure 4.7 and 4.8 , the m2HMM-SNPH outperforms all the

other weighting schemes as well as PSHMCO in the two scenarios.

Interestingly results indicate that the windowing algorithm not only reduces the com-

putational time, but also improves the average performance of PSHMCO by reducing the

unnecessary connection to the long past observations if adopted appropriately.

Table 4.6 shows the average computational time required to perform prediction using

various approaches at each time step in the two given scenarios. Although the compu-

tational time required for m2HMMs in the two scenarios are higher than PSHMCO, the

table indicates feasibility of all approaches as all of them are preformed in a fraction of

a second. It is also shown that using the windowed observations the required computa-

tional time has drastically reduced.

4.5.4 Reference Length Sensitivity Analysis

Here, the effect of reference length hyper-parameter on the performance of the m2HMM

with Semi-Nonparametric Hindsight (m2HMM-SNPH) is studied. For this purpose, the

average performance of the m2HMM-SNPH approach is measured while varying its
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Figure 4.7: Average performance of windowed variants of m2HMM approaches with

various weighting schemes along with windowed PSHMCO with respect to window

length in the easy Scenario (TT ratio 5:1). The x-axis in both graphs indicate the window

length (Lw). Average performance of PSHMCO and the m2HMM-SNPH are included

for comparison.

Figure 4.8: Average performance of windowed variants of m2HMM approaches with

various weighting schemes along with windowed PSHMCO with respect to window

length in the difficult Scenario (TT ratio 3:3).

hyper-parameter value from 1 to 20 (shown in Fig. 4.9).

As it can be seen in Fig. 4.9, the average performance of m2HMM-SNPH changes

are small as its hyper-parameter value varies in the two cases, showing that m2HMM
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Table 4.7: The average computational time (in milliseconds) required to perform pre-

diction in the two scenarios using each approach.

Approach
Easy Scenario Difficult Scenario

(Nmode = 31) (Nmode = 7)

Full m2HMM-BH 375.5 85.5

Full m2HMM-DH 380.8 87.6

Full m2HMM-SNPH 410.8 95.0

Full PSHMCO 1.6

Windowed m2HMM-BH 23.1 5.4

Windowed m2HMM-DH 26.3 6.0

Windowed m2HMM-SNPH 133.1 23.8

Windowed PSHMCO 0.7

Figure 4.9: Reference length sensitivity analysis in m2HMM-SNPH. The average perfor-

mance of the m2HMM-SNPH is depicted for the two scenarios Easy (TT ratio 5:1) and

Difficult (TT ratio 3:3) while its hyper-parameter value varies. The PSHMCO average

performance lines in the two cases are also depicted for comparison.

overall average performance is robust and disregarding its hyper-parameter value bet-

ter than PSHMCO. Interestingly, the average performance achieved by m2HMM-SNPH

(disregarding it hyper-parameter value) in the difficult scenario is even outperforming

the PSHMCO average performance obtained in the easy scenario .
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4.6 Summary

A multi-modal HMM-based approach, which is an extension of existing physically

segmented HMM with continuous output (PSHMCO) approach, is proposed for tool

condition monitoring. Two switching strategies are introduced to combine the outputs

from various modes into one. The relevance of each mode at each time is assessed based

on the given observation at that time and its precedings. Three weighting schemes i.e.

bounded-, discounted- and semi-nonparametric hindsight (SNPH) are proposed which

quantify the relevance of modes as weightages to be used in switching strategies.

As an illustrative example, the proposed multi-modal approach is applied to cutter

wear monitoring in the CNC-milling machine. Based on the experimental results, the

m2HMM approach with soft switching (disregarding its weighting scheme) outperforms

the PSHMCO significantly. Furthermore, the m2HMM with semi-nonparametric and

soft switching proves to be the best among all combinations of strategies and weighting

schemes.

Moreover, to reduce the computational burden, a windowing algorithm is proposed

for both PSHMCO and m2HMM that dramatically increases the speed. Results indi-

cate that if an appropriate window length is adopted, the windowed version of both

approaches can reach the same level of performance as their original and in some cases

even outperform them.



Chapter 5

Hidden Markov Model-Based Fault

Detection and Diagnosis

5.1 Introduction

Rotary electric motors (REM) provide the basis for the electromechanical energy

conversion in all industrial environments [39]. Thus, as the industry grows, the impor-

tance of fault detection and condition based maintenance in the rotary electric motors

also increases. Early fault detection and diagnosis can help to increase the availability

of the industrial machines and reduce the economical loss pertaining to the maintenance

of the machinery systems [1].

As mentioned in Chapter 1, the most common fault in the REMs is bearing related

faults which are responsible for about 50% of all rotary machine faults [50]. The second

most common fault is the unbalanced rotor which causes excessive vibrations in the

machines [51, 52] . Among the REMs, synchronous motors are one of the motor types

that are widely used in all the industrial applications where constant speed is essential.

In this Chapter, a new hidden Markov model (HMM)-based fault diagnosis approach is

introduced to distinguish the two major faults namely bearing fault and unbalanced rotor

bar from the healthy condition in synchronous motors over a wide range of operating

speeds. In this work, vibration signatures are used for fault detection and diagnosis.

As mentioned in Chapter 1, the vibration signature is the most responsive and most

91
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commonly measured signal used for mechanical fault diagnosis in REMs. Machine

vibration arises due to action-reaction forces acting on the surface-to-surface contacts

of moving machine parts. A healthy machine exhibits low level of vibrations and a

machine with unbalanced rotor or bearing defects generates unique vibration signa-

tures [51]. However, the detection of bearing faults using vibration signals is affected by

the machine speed [118]. In this Chapter, vibration signals are used as the observation

sequences through time which are fed to the HMMs used in the proposed approach.

Hidden Markov models (HMM) are extensively used for fault detection and diag-

nosis [58, 75, 76, 77, 78, 79, 80, 81] as well as failure prognostics [82] in various rotary

electrical motors. In all cases, the HMM-based approaches are successful in distinguish-

ing healthy condition from faulty conditions (fault detection). The challenging part is

to diagnose the faults as the amplitude of the vibration signals from various faults may

be similar with various operating speeds. That increases the chance of misclassification

based on maximum likelihood strategy considering the fact that the true model is not

completely realizable in real-world applications. In this Chapter, to improve the per-

formance of the existing HMM-based approach, a semi-nonparametric approach is pro-

posed. In this approach, after training the HMM classifiers (parameter estimation stage),

two matrices named probabilistic transition frequency profile and average probabilistic

emission are computed and stored based on the HMMs for each signature (nonparamet-

ric stage) in the training phase using probabilistic inference. When a new signature is

given for fault diagnosis, after applying all HMM classifiers on the given signature and

computing the required matrices based on each HMM, the similarity between the given

signature and the training signatures in each class is assessed with a scoring function

based on the stored matrices. The introduced approach is named HMM-based Semi-

NonParametric (HMMSNP) since firstly it uses both HMM (parametric) and similarity

of the resultant matrices with the corresponding matrices from the training data (non-

parametric), and ultimately the classification result is based on the nonparametric stage

on top of the conventional (parametric) HMM classifiers. Performance of the proposed

approach is compared with the conventional HMM-based approach. Furthermore, a pre-

processing method named squeezing and stretching is introduced to rectify the difficulty
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of dealing with various operating speeds in the classification process.

The rest of this Chapter is organized as follows. In Section 2, the mechanics of vi-

bration for bearing and unbalanced rotor faults are introduced. Section 3 describes the

rationale and the procedure of the proposed preprocessing method. In Section 4, the con-

ventional HMM-based fault diagnosis approach is briefed, and the proposed HMMSNP

approach is introduced. Preliminary experimental results are provided and compared for

the mentioned approaches in Section 5. In Section 6, further investigations are carried

out to show the statistical significance of the performance improvements. Sensitivity

analysis is also conducted on the number of hidden state values and the length of input

signatures. Finally, this Chapter is concluded in Section 7.

5.2 Rotary Machine Fault Mechanics

Machines with rolling elements have moving bearings, e.g. spherical balls, tapered

rollers, or cylindrical rollers, to support the rotating shaft. These rolling elements are

always in metal-to-metal contact with the inner and outer raceway, and as a result are

subject to constant wear and tear. Bearing and raceway wear and tear present initially as

general roughness and progresses to metal fatigue, and ultimately spall and chip on the

surface of the rolling elements [50].

Defective surfaces on these components are a source of machine vibration. A chipped

rolling element spins as it revolves around the raceway. When it is in contact with the

defective surface of the raceway, an impact pulse is produced, creating a free vibration.

In the absence of significant damping medium in the bearing assembly, the impact pulses

decay exponentially.

Another major fault in the rotary machines is unbalanced rotor. Unbalanced rotor

is the most common source of excessive vibration. Possible causes are, asymmetrical

mass distribution of the rotating element as a result of wear, erosion, material build-

up, thermal expansion or contraction, causing shaft bending or misalignment. As a

result, the center of gravity of the rotating element does not coincide with the center of

rotation, and at the point of unbalanced mass creates a synchronous radial perturbation
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Figure 5.1: Samples from three conditions at 23Hz operating speed. (a) Bearing fault,

(b) unbalanced rotor and (c) healthy condition.

force Fc, causing a forced vibration. Assuming a rigid isotropic rotor system [52], this

phenomenon is described as

Fc = mubr × rubr ×Ω2 × e (Ωt+θ), (5.1)

where mubr is the unbalanced rotor mass, rubr is the distance between the unbalanced

mass and the center of gravity of the rotor, t is time, Ω is the shaft rotational speed, θ

is the angular position of rubr and  is the complex operator. As a reference, healthy

machine signatures are also recorded. Fig. 5.1 shows three sample vibration sequences

under different conditions, i.e. bearing fault (BRG), unbalanced rotor (UBR) and healthy

(HTY) conditions at 23Hz as a medium rotating speed. As can be seen in Fig. 5.1, a

healthy machine has the lowest level of vibration compared to other conditions.

Note that the signatures corresponding to the same fault are different in period and

amplitude when the operating speeds are different. Figure 5.2 depicts the unbalanced

rotor fault signatures with the operating speed starting from 15Hz and increased up to

32Hz. As the operating speed increases from 15 Hz to 32 Hz, signatures are getting

squeezed along the time horizon and increased in amplitude. Thus, a preprocessing pro-

cedure is required to map all the signatures acquired from various operating speeds to a

common speed. For this purpose, a preprocessing method is proposed in the succeeding
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Figure 5.2: Unbalanced rotor fault signature generated at various speeds ranging from

15 to 32 Hz. The Operating frequency is increased by 1Hz starting from 15Hz. The time

span for data recorded at each operating speed (frequency) is 66.8 ms. As the operating

frequency increases, the signal squeezes and the vibration in the y-axis increases. This

observation is the basis of the Squeezing and Stretching preprocessing.

section.

5.3 Signature Squeezing & Stretching

In this Section, a signature preprocessing method named Squeezing and Stretching

(SqS) is introduced. The idea of SqS method is similar to Dynamic Time Warping

(DTW), that is used extensively in data-mining and sequence labeling applications [81].

In DTW, the similar subsequences between the reference sequence and the testing se-

quence will be dynamically matched [119, 120]. This method warps the time axis at

various points to match the two sequences. However, the length of these warpings are

not fixed and they have to be computed dynamically with the objective of achieving the

highest similarity matching. In signature squeezing, as the operating speeds are known,

thus the conversion of the time series to a common time line is simply possible through

a fixed warping and appropriate resampling. The vibration amplitude in the signals

acquired from lower operating speeds can also be scaled to match a common higher

operating speed through stretching in amplitude.
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Figure 5.3: Signature squeezing application scheme. In both examples, the upper signa-

ture is squeezed to match the speed of the other signature at the bottom and the results

after squeezing process are shown and compared on the right.

5.3.1 Squeezing in Time

In this phase of preprocessing, all the signatures will be squeezed to a common high

operating speed. After adopting a high operating speed (the highest operating speed

available in the training set) as the common operating speed, since the operating speed

is known for each signature, signatures will be squeezed based on their ratio of speed to

the adopted common operating speed. The squeezing in time mappings for time (x-axis)

can be formulated as

ts =
Ωo

Ωc

× to, (5.2)

where ts is the squeezed time, to is the time line in the original sequence, Ωo is the oper-

ating speed of the original signature and Ωc is the common operating speed. Figure 5.3

shows examples of applying squeezing method on UBR and BRG signatures.

As can be seen in Fig. 5.3, after applying the squeezing preprocessing, the period of

the sequences in both cases matches although the signatures are asynchronous and have

relative phase difference.
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5.3.2 Stretching in Amplitude

After squeezing procedure, the period differences between the signatures are reme-

died. However, as can be seen in Fig. 5.3, the amplitude differences between sequences

acquired from various operating speeds are obvious. Thus, further preprocessing is done

to map the amplitude of the given signatures to the common operating speed. Here,

the signatures are stretched in the y-axis, based on the average peak-to-peak amplitude

(APPA) in the signatures gathered from that operating speed and the common speed.

After windowing the signatures, the minimum and maximum amplitudes within each

window is found and used to calculate APPA for each signature. The ratio of average

APPA in common speed to the average APPA is used for scaling the signature signal in

amplitude. It is noteworthy that in this procedure all the signatures, no matter which fault

and condition they are indicating, are stretched based on the average APPA in the col-

lected speed w.r.t. the common speed. Thus the stretching procedure can be formulated

as

ys =
APPAc

APPAo

× yo, (5.3)

where ys is the stretched vibration signal, yo is the original vibration signal before trans-

formation, APPAc is the average APPA in the common operating speed, and APPAo is

the average APPA in the collected operating speed. Figure 5.4 depicts the effect of sig-

nature stretching in matching the amplitudes from various operating speeds by relative

magnification of the vibration amplitudes.

5.4 HMM-based Fault Diagnosis

Hidden Markov models can be used as generative models in fault diagnostics. In its

conventional form, each HMM is trained on a specific fault. Whenever a new data is

given to the model, each HMM returns the log-likelihood that the new data is generated

by a similar fault as the training data. This approach is used in many fault detection and

diagnostics applications [75, 76, 77, 80]. In this Chapter, the conventional HMM-based

fault diagnostics is used as a benchmark to assess the proposed HMM-based approach.
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Figure 5.4: Signature stretching application on the pre-squeezed signatures. In both

examples, the upper signature is stretched in the amplitude based on (5.3) to match

the other signature at the bottom and the results after stretching process are shown and

compared on the right.

5.4.1 Conventional HMM-Based Classification

As mentioned in Chapter 1, hidden Markov model is a simple dynamic Bayesian

network. This model has only one discrete hidden state variable, and a set of dis-

crete or continuous observation nodes. The HMM parameters can be estimated using

expectation-maximization techniques. The hidden state variable in the hidden Markov

model can take different state values. As the number of these values increases, the com-

putational cost for estimating the parameters and performing inference on the HMM

becomes more and more expensive. Thus, an appropriate number of hidden state val-

ues for the HMM must be adopted and it can be done by considering either the average

log-likelihood of the trained models with various number of hidden state values on the

training set or cross-validation on the training set.

Assume the number of hidden state values adopted is m and the state values are

{v1, v2, . . . , vm}. Then, a first order temporal Markov model can be characterized by the

assumption that

P(S t = vi|S t−1, S t−2, . . . , S 1) = P(S t = vi|S t−1), i = 1, . . . ,m (5.4)

where P(·|·) is a conditional probability, S t is the hidden state variable at time t and vi is
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Figure 5.5: Conventional HMM-based fault diagnostics scheme with three classes i.e.

healthy condition (HTY), unbalanced rotor (UBR), and bearing fault (BRG).

the ith hidden state value.

Assuming stationarity, the initial state probabilities (prior probabilities), transition

probabilities and emission probabilities, which connect the hidden states to the observa-

tions (vibration signals) are the only parameters to be identified. Given the training data,

these parameters can be estimated using expectation-maximization technique [80].

Task of fault diagnostics in REMs is to correctly classify a given signature (sequence

of observations through time) into one of the predefined classes such as healthy con-

dition or various types of faults. This task is conventionally done by comparing the

provided log-likelihoods from different HMMs each trained on the samples having spe-

cific faulty or healthy condition [80]. The newly given signature is classified into the

condition whose corresponding HMM achieves the maximum log-likelihood among all

HMMs. Based on a trained HMM with estimated parameter set of λ, likelihood of a

given sequence being generated by that HMM can be computed using forward-backward

algorithm [95]. As the signatures are periodic and acquired asynchronously, no prior in-

formation can help us to identify the initial probability for the HMM and all the states

are equally probable with a uniform distribution. Thus, the initial probability can be

ignored in the calculations.
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As illustrated in Fig. 5.5, in the conventional HMM-based fault diagnostics, the

newly given signature is classified as the corresponding class of the HMM that achieves

the maximum log-likelihood.

5.4.2 HMM-based Semi-Nonparametric Approach

As the true model in real-world applications is not always realizable, we will try to

improve the classification performance by integrating and taking the advantages of both

parametric (model based) and nonparametric classification approaches.

Here, an HMM-based semi-nonparametric (HMMSNP) approach is developed to

improve the performance of the conventional HMM-based approach that relies on the

log-likelihood. In this approach, after performing the squeezing and stretching prepro-

cessing, the parameters are learned from the training sequences. The parameter esti-

mation procedure is identical with the conventional HMM-based approach. When the

expectation-maximization training procedure is over, the trained HMMs are applied on

their corresponding training sequences. Using the probabilistic inference, two matri-

ces named probabilistic transition frequency profile and average probabilistic emission

which are denoted as F and E, respectively, are computed and stored for each training

sequence. These matrices will be used to form a scoring function that is used as the clas-

sification basis. The procedure of computing F and E matrices and their computation

rationale are explained in the succeeding subsections.

After training the HMMs based on the training signatures, given a signature, prob-

ability of state values that the state variable of an HMM takes at each time step can be

estimated using forward-backward algorithm [95]. As described in the preceding Chap-

ters, γt is defined as the probability distribution of the state values at time t and it can be

written as

γt =

[

γt(i)

]

m×1
, o1:T = {o1, o2, . . . , ot, ot+1, . . . , oT } = o1:t ∪ ot+1:T

γt(i) , P(S t = vi, o1:T ) = P(o1:t, S t = vi) × P(ot+1:T |S t = vi) = αt(i) × βt(i),

(5.5)

where o1:T is the given sequence of observations, which in this case is the vibration signal

after SqS preprocessing in terms of acceleration, T is the length of the given sequence,
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and S t is the hidden state at time step t. αt(i) and βt(i) are the forward and backward

variables that can be computed using the forward-backward algorithm [95].

Probabilistic Transition Frequency Profile

Using the computed probabilities of each state at every time step, the probabilistic

transitions between the states can be computed by the outer product of consequent time

steps probabilities. After computing all the probabilistic transitions given the sequence

and the parameters of the HMM, the average of the computed matrices called proba-

bilistic transition frequency profile (PTFP) is stored and used as the overall transition

pattern for the given signature based on a given HMM. Here, PTFP is denoted by F and

it can be formulated as

F =

[

fi, j

]

m×m

=
1

T − 1
×

T∑

t=2

γt−1 ⊗ γt, (5.6)

where T is the length of the signature, γt−1 ⊗ γt is the outer product of the two vectors

γt−1 and γt. fi, j is the ith row, jth column element in matrix F, which indicates the

probabilistic frequency that transition from ith state to jth state has occurred in that

signature (normalized by the total number of transitions throughout the sequence). In

other words, matrix F captures a normalized 3-dimensional transition frequency map

for each signature.

The transition frequency map can be used to recognize differences and distinguish

between signatures which have distinct trend of transition frequency. Figure 5.6 visu-

alizes the average F matrices in the HTY, UBR, and BRG conditions (classes). It is

noteworthy that although the number of state values in all the classes are set to be iden-

tical, the state values vary between the classes. However, in order to be able to visually

compare the overall trends between matrices from different classes, the states are rear-

ranged and sorted based on their average emission value in the vibration domain.

Average Probabilistic Emission

It is noteworthy that the map provided by F only recognizes the differences between

sequences of transitions in the state values after applying HMM on the signatures. How-

ever, as the probabilistic transition frequencies are normalized to become comparable



Chapter 5. Hidden Markov Model-Based Fault Detection and Diagnosis 102

(a) Average PTFP in HTY (b) Average PTFP in UBR (c) Average PTFP in BRG

(d) Average APE in HTY (e) Average APE in UBR (f) Average APE in BRG

Figure 5.6: schematizing PTFP (F) and APE (E) matrices as a 3-dimensional map.

Average PTFPs from the training data for the HTY, UBR, BRG classes are shown in the

first row from left to right, respectively. Similarly, the APEs are shown in the second

row. For the sake of better visual comparison, the states are sorted based on their average

emitted vibration value within each class.

between various classes, there may be cases that identical transitions correspond to very

different real-valued observations in the vibration domain (e.g. when an HMM from

HTY class is applied on a signature from UBR class while performing testing). Thus,

another metric is required to assess how similar two identical transitions within two

signatures are in their real-valued observed sequences (emitted vibrations). For this pur-

pose, the average probabilistic emission (APE) matrix denoted by E is introduced as

a metric to be used in the similarity scoring function. Given an observation sequence

(signature), E can be computed as follows

E =

[

ei, j

]

m×m

,

ei, j =

∑T
t=2 ot.γt−1(i).γt( j)
∑T

t=2 γt−1(i).γt( j)
,

(5.7)

where ot is the observed vibration at time t in the signature (after performing SqS pre-

processing), and ei, j is the ith row, jth column element in matrix E. ei, j indicates the
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Figure 5.7: Training phase illustration in the HMM-based semi-nonparametric approach.

After estimating the parameters of the HMMs (parametric phase) for healthy (HTY), un-

balanced rotor (UBR) and Bearing fault conditions, the HMMs are applied on their cor-

responding training sequences (DHTY , DUBR, and DBRG) and their corresponding PTFPs

and APEs are computed and stored (nonparametric phase).

average observed vibration through the sequence with the probabilistic transition from

ith state to jth state. Similar to F matrix, E can also be recognized as a 3-dimensional

graph. This graph indicates the average observed vibration through the sequence while

the transition has taken place from i to jth state. Here, our goal is to firstly, find the

most similar training sequence to the given sequence in terms of PTFP and APE within

each class. Then use the highest similarity scores achieved from each class and compare

them to finally classify the given sequence. Figure 5.7 schematizes the training stage in

the HMMSNP approach implemented to classify the three conditions (HTY, UBR, and

BRG) in this application.

Classification

When a new sequence is given to the system for fault diagnostics (classification),

its PTFP and APE are first computed based on each HMM corresponding to a specific

class (condition). In the testing phase, similar to the nonparametric nearest neighbor

approach [98, 121], we will try to find the nearest training data in terms of F and E

matrices and classify the newly given sequence as the same class that the most similar
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training data belongs to. To this end, first we define a similarity measure δ(., .) for two

given E (or F) matrices as follows

δ(E1, E2) =

m∑

i=1

m∑

j=1

∣
∣
∣
∣
∣

E1(i, j) − E2(i, j)

E2(i, j)

∣
∣
∣
∣
∣

−1

, (5.8)

where E1 and E2 are two arbitrary E matrices. δ(., .) computes the summation of element-

wise inverted relative difference between the two given matrices as an indicator of simi-

larity. Then, the similarity of the signature with the training sequences used to train those

HMMs is assessed based on a similarity scoring function that uses δ(., .) on the computed

PTFP and APE matrices for the given sequence and those matrices previously computed

and stored during the training phase. The goal of the similarity scoring function is to

assess how similar two sequences are based on their PTFP and APE matrices taking

into account that two signatures with high similarity scores must have relatively high

similarity measure values in terms of both APE and PTFP. Thus, the similarity scoring

function, G, is defined as multiplication of the two similarity measures as follows

G(o′1:T |λi,O
i,q ∈ Di) = G(F i

new, E
i
new|F i

q, E
i
q) = δ(F i

new, F
i
q) × δ(Ei

new, E
i
q), (5.9)

where o′1:T is the new observation sequence (signature) that has to be classified, λi is the

parameter set of the ith HMM, Di = {Oi,1,Oi,2, . . . ,Oi,ni} is the set of training signatures

that corresponds to the ith condition. F i
q, Ei

q, F i
new and Ei

new are the F and E matrices

calculated based on ith HMM from the qth training signature, Oi,q, used to train the

ith HMM and the given sequence, respectively. After applying the HMMs (parametric

phase) on the newly given sequence and computing the corresponding Fnew and Enew

matrices, the most similar sequence (signature) to the new sequence based on (5.9) is

found from each class (nonparametric phase). The highest similarity score within each

class is regarded as the representative similarity score of that class as follows

Qi(o
′
1:T ) = max

q=1,...,ni

{G(o′1:T |λi,O
i,q ∈ Di)} = max

q=1,...,ni

{G(F i
new, E

i
new|F i

q, E
i
q)}, (5.10)

where Qi(o
′
1:T ) is the ith class similarity score computed for the given signature o′1:T ,

and ni is the number of training sequences for the ith class. Finally, the new sequence

is classified as the class with the highest score. Thus, the classification output can be
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Figure 5.8: Testing phase illustration in the HMM-based semi-nonparametric approach.

After applying the HMMs (parametric phase) on the newly given sequence and comput-

ing the corresponding F and E matrices, the most similar signature from each class is

found based on their PTFP and APE matrices (nonparametric phase). The highest sim-

ilarity score within each class is regarded as the representative similarity score. Finally,

the new sequence is classified as the class with the highest score.

written as

C(o′1:T ) = arg max{Q1(o′1:T ),Q2(o′1:T ), . . . ,QK(o′1:T )}, (5.11)

where K is the number of classes (conditions) and C(o′1:T ) is the class index that o′1:T

is ultimately classified as based on HMMSNP approach. Figure 5.8 schematizes the

HMMSNP classification (testing phase) implemented for fault diagnostics.

5.5 Preliminary Experimental results

In this Section, three fault diagnosis approaches which are HMMSNP, the conven-

tional HMM-based approach without SqS preprocessing and HMM-based approach with

SqS preprocessing (HMMSqS) are evaluated and compared on a fixed dataset. The

HMMs in all three approaches are trained on one training set and then tested on another

testing set. These approaches are evaluated based on their accuracies and the confu-
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sion matrices shown in Table 5.1 as well as the exemplified average incurred cost using

each approach. To have a fair comparison between the three approaches, the number of

hidden state values in all the HMMs is fixed to 10.

In this Section the acquired dataset mentioned in Section 3 is partitioned into training

and testing set based on the machine operating speed, the data from all the machine

conditions that has been acquired from 15Hz,17Hz,...,31Hz is considered as the training

set and the rest of the dataset which is acquired from 16Hz,18Hz,...,32Hz are regarded

as the testing set.

5.5.1 Classification Accuracy

As expected, the conventional HMM-based approach without the use of Squeezing

& Stretching preprocessing, achieves the least accuracy since it does not consider the

differences between the signatures with various rotary speeds within the classes. The

second best performance is achieved by the conventional HMM-based approach with

the use of SqS preprocessing (HMMSqS), which unifies the speed within the signatures

by mapping all the different rotary speeds to the highest rotary speed available in the set

and scaling their vibration amplitude. Using the SqS preprocessing, the accuracy is sig-

nificantly improved comparing to the conventional HMM-based approach. Finally, the

HMM-based Semi-nonparametric approach with the use of SqS preprocessing (HMM-

SNP) has achieved the highest accuracy on the testing set.

Table 5.1: Classification accuracy and the confusion matrices using HMM, HMMSqS,

and HMMSNP evaluated on the testing set.

Approach
HMM HMMSqS HMMSNP

HTY UBR BRG HTY UBR BRG HTY UBR BRG

HTY 73 17 0 90 0 0 90 0 0

UBR 19 66 5 0 80 10 0 90 0

BRG 9 21 60 9 14 67 7 12 71

Total Diagnostics Accuracy 73.70% 87.78% 92.96%
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As can be seen from Table 5.1, the semi-nonparametric approach has achieved the

highest accuracy and shows considerable improvement to the conventional HMM-based

approaches with or without the SqS preprocessing. Although, it is shown that HMM-

SNP has improved the classification performance on the given testing set, further inves-

tigations are carried out in the succeeding Section to see whether the improvement is

repeatable and statistically significant.

5.5.2 Cost Analysis

To compare the performance of the three mentioned approaches in terms of financial

benefit, here we define an average incurred cost matrix which exemplifies the actual costs

that various classifications/misclassifications can lead to. Table 5.2 shows the postulated

costs and required hours of maintenance. The average incurred cost C, which takes into

account material cost, downtime cost and man power cost is defined as follows

C =
[

Ci, j

]

3×3
,

C1,1 = CHTY |HTY = 0 + 0 + 0,

C1,2 = CUBR|HTY = PUBR + tdd
UBR × V + tm

UBR × M,

C1,3 = CBRG|HTY = PBRG + tdd
BRG × V + tm

BRG × M,

C2,1 = CHTY |UBR = PUBR + tud × V + (tI + tm
UBR) × M,

C2,2 = CUBR|UBR = PUBR + tdd
UBR × V + tm

UBR × M,

C2,3 = CBRG|UBR = C2,2 +C3,3 + taI × M,

C3,1 = CHTY |BRG = PBRG + tud × V + (tI + tm
BRG) × M,

C3,2 = CUBR|BRG = C2,2 +C3,3 + taI × M,

C3,3 = CBRG|BRG = PBRG + tdd
BRG × V + tm

BRG × M,

(5.12)

where all the parameters and their postulated values are listed in Table 5.2.

Based on Table 5.2, the cost matrix C given in (5.12) can be evaluated as

C =





0 850 800

15050 850 1750

15000 1750 800





. (5.13)
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Table 5.2: List of assumed material and human resource costs.

Notion Description Value

V Value generated by the machine per hour 200$

M Maintenance fee given to technician per hour 50$

PBRG Average Material Cost for BRG Fault 50 $

PUBR Average Material Cost for UBR Fault 100$

tdd
UBR Downtime for detected UBR fault 3 hours

tm
UBR Maintenance time for UBR fault 3 hours

tdd
BRG Downtime for detected BRG fault 3 hours

tm
BRG Maintenance time for BRG fault 3 hours

taI Additional Inspection time 2 hours

tud Downtime for undetected fault 3 days

tI Inspection time 8 hours

Table 5.3 shows the average incurred cost resulted from the three approaches. The

cost matrices shown in Table 5.3 are calculated by element-wise multiplication of the

confusion matrices and the average incurred cost matrix C in (5.13). It is also shown

that the incurred cost would be 148, 500 if all the samples were detected correctly. And

in case of taking a failure-driven approach (assuming that machine is healthy for all

signatures) would incur a cost equal to 2, 704, 500. As it can be understood from Ta-

ble 5.3, in this example, the HMMSNP saves 325,400 and 39,000 compared to HMM

and HMMSqS, respectively.

5.6 Further Investigations and Sensitivity Analysis

In this Section, the efficiency of the proposed approach is further investigated to

confirm whether it can statistically improve the performance. Moreover, the effect of the

signature length and the hyper-parameter value on the classification accuracy is studied.
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Table 5.3: Cost Analysis for HMM, HMMSqS, and HMMSNP approaches evaluated on

the testing set.

Approach
HMM HMMSqS HMMSNP

HTY UBR BRG HTY UBR BRG HTY UBR BRG

HTY 0 14,450 0 0 0 0 0 0 0

UBR 285,950 56,100 8,750 0 68,000 17,500 0 76,500 0

BRG 135,000 36,750 48,000 135,000 24,500 53,600 105,000 21,000 56,800

Total Cost 585,000 298,600 259,600

Misclassification Cost⋆ 436,500 150,100 111,100

⋆ Cost Due to Misclassification = Total Incurred Cost - Optimum Cost

For this purpose, different trials are generated by randomly partitioning the whole

dataset and the aforementioned three approaches are compared based on the randomly

partitioned trials. Assume that the operating speeds are categorized into three, that is,

Slow: 15-20 Hz, Medium: 21-26 Hz, Fast: 27-32 Hz. In each trial, 2 operating speeds

out of 6 within each category are randomly adopted as the testing data and the rest as the

training set. The categorization of speeds is done to make sure that all three ranges of

speeds would be included within both testing and training set, although they are selected

randomly. This investigation is carried out by randomly generating 30 distinct trials out

of (C6
2
)3 = 153 possible combinations (nearly 1 percent of all possible combinations).

5.6.1 Overall Performance

Here, the three fault diagnostics approaches, which are the conventional HMM clas-

sifier, HMM-based Classifier with SqS preprocessing, and the HMMSNP approach, are

examined and compared on the 30 randomly partitioned trials. In all three approaches,

the number of the hidden state values in the HMMs is adopted to be 10 and the length

of the signatures is fixed to 6 motor rotations (6 periods).

Figure 5.9 shows the resultant classification accuracy of the aforementioned ap-
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proaches on the 30 trials. It can be seen, that the accuracy has been significantly im-

proved by the use of the SqS preprocessing. It can also be identified that the semi-

nonparametric approach has achieved an overall better performance in comparison to

the other two conventional HMM classifiers. A pair-wise t-test on the HMMSqS and

the semi-nonparametric approaches indicates that the mean of the resultant accuracies

from these two approaches are significantly different (P-value=1.74e-9, where average

accuracy using HMMSNP is 92.8% comparing to 87.6% in case of HMMSqS). Thus,

the HMMSNP approach improves the classification accuracy nearly 5% in a statistically

significant manner.

Figure 5.9: Resultant classification accuracies on 30 random trials using conventional

HMM, the HMM (HMMSqS) and HMM-based Semi-nonparametric (HMMSNP) ap-

proaches with SqS preprocessing.

Table 5.4 shows the average computation time required to classify a given signature

using each approach in terms of milliseconds. All the approaches are implemented and

run on a same regular PC (Dell-OPTIPLEX 980). As expected, by adding the nonpara-

metric phase to the HMM-based classification approach, the computation time increases.

However, the computation time required to classify a new given signature in all three ap-

proaches are less than a second that makes them computationally feasible for this task.
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Table 5.4: Computation time in various fault diagnostics approaches given a new signa-

ture for classification in milliseconds.

Computation Time (milliseconds)
HMM HMMSqS HMMSNP

247.6 ± 4.1 247.7 ± 0.6 321.1 ± 1.3

5.6.2 Hyper-parameter Sensitivity

Here, the sensitivity of the aforementioned approaches w.r.t. the value of the hyper-

parameter i.e. number of the hidden state values is studied in terms of accuracy and

computational cost. Figure 5.10 shows the performance of the three approaches w.r.t.

various hyper-parameter values ranged from 2 to 20. Each point of the error bars in

Fig. 5.10 indicates the mean and variance of the classification accuracies achieved by

the approach in the 30 randomly partitioned trials given the specified number of hidden

state values.

As can be seen in Fig. 5.10, the performance of all three approaches would generally

improves as the number of hidden state values increases. However, this increment in

the accuracy is steeper for the smaller values and it starts to reduce for larger values.

It can also be seen from Fig. 5.10, that except for the case of two hidden state values,

HMMSNP outperforms the other two approaches. This indicates that HMMSNP out-

performs HMMSqS and conventional HMM classifier in fault diagnostics given that an

appropriate number of hidden state values is adopted. It is noteworthy that in all three

approaches, as the number of hidden state values (m) increases the computational com-

plexity increases exponentially with O(m2). Thus, it is important to adopt the smallest

number of states that can satisfy the required accuracy. In this study, based on Fig. 5.10,

the number of hidden state values used for HMMs in the primary results Section, which

is 10, shows to be an appropriate value. Thus, the same value is adopted in the succeed-

ing signature length sensitivity analysis.
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Figure 5.10: Resultant classification accuracies from various number of hidden state

values using conventional HMM compared with the HMM (HMMSqS) and HMM-based

Semi-nonparametric (HMMSNP) approaches with SqS preprocessing.

5.6.3 Signature Length Sensitivity

In this part, the sensitivity of the aforementioned approaches w.r.t. the length of

the given sequences (signatures) is studied. In Fig. 5.11, the performance of the three

approaches are shown in terms of classification accuracy for various adopted signature

lengths. Each point of the error bars in Fig. 5.11 indicates the mean and variance of

the classification accuracies achieved by the approach over the 30 randomly partitioned

trials given the specified length of signatures. As can be seen in Fig. 5.11, the classi-

fication accuracy increases in all the three approaches up to a certain length and then

starts to fluctuate. This indicates that all three approaches are sensitive to the length of

signatures while it is ranged between 1 to 6 rotations, but after passing that range, they

become insensitive to the length. In this experiment, the classification accuracy of all

three approaches monotonically increases up to the point that signature length is equal

to 6 rotations. To have a fair comparison between the three approaches, the number of

the hidden state values is fixed and set to 10.

It can be seen from Fig. 5.11, that except for the 1-rotation length case that is con-

sidered as inadequate information since the signature is too short, the HMMSNP outper-

forms the other two approaches in all the other cases. This indicates that HMMSNP can
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use the underlying information within the data more effectively. It is also noteworthy

that the computational cost of all the three approaches increases linearly by increasing

the length of signature.

Figure 5.11: Resultant classification accuracies with respect to various signature lengths

in terms of number of periods using conventional HMM compared with the HMM

(HMMSqS) and HMM-based Semi-nonparametric (HMMSNP) approaches with SqS

preprocessing.

5.7 Summary

In this Chapter, an HMM-based semi-nonparametric (HMMSNP) fault diagnostics

approach is proposed to improve further the classification accuracy of the conventional

HMM-based approach that relies on the log-likelihood. The HMMSNP approach im-

proves the fault diagnostics performance by integrating and taking the advantages of

both parametric and nonparametric classification approaches. In HMMSNP, based on

the parametric HMMs, two matrices named probabilistic transition frequency profile

and average probabilistic emission are computed for each signature which can repre-

sent the trend of that sequence in states and vibration domains. Furthermore to remedy

the difficulty of dealing with various operating speeds in the fault diagnostics a prepro-

cessing method named squeezing and stretching (SqS) is introduced. The experimental
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results indicate that using the SqS processing increases the classification accuracy sig-

nificantly.

The proposed approach is applied to fault diagnostics in a synchronous motor with

two types of faults i.e. bearing fault and unbalanced rotor. Experimental results indicate

that the HMMSNP achieves a higher classification accuracy compared to the conven-

tional HMM-based classification approach and the HMM-based classification with SqS

preprocessing (HMMSqS). The results from sensitivity analysis indicate that although

the number of hidden state values and the length of signature affects the performance of

all the approaches, but generally HMMSNP outperforms the HMM and HMMSqS.



Chapter 6

Conclusion and Future Work

This chapter summarizes the contributions of the research work reported in this thesis

and outlines the future work directions.

6.1 Contributions

6.1.1 PSHMCO

Tool condition monitoring (TCM) has become one of the main challenges in the

industrial environment. As the trend in TCM is changing from determining different

classes (discrete condition states) to monitoring the continuous condition metrics (such

as continuous tool wear index), Firstly, in Chapter 2, a temporal probabilistic approach

called PSHMCO is proposed for the continuous tool condition monitoring in machinery

systems. The proposed PSHMCO approach is based on a physically segmented hidden

Markov model that can handle continuous output. The PSHMCO has the advantage

of providing explicit relationship between the actual health states and the hidden state

values of the HMM. The provided relationship is further exploited for formulation and

parameter estimation of PSHMCO.

As an illustrative example, the proposed approach is applied to tool wear prediction

in a CNC-milling machine. The experimental study indicates that PSHMCO outper-

forms multi-layer perceptron and the Elman networks in tool condition monitoring. It

is also shown that the proposed approach can be utilized for prognostics by unrolling
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the model over the time horizon. The PSHMCO approach is found to be suitable for

the applications in which the operating conditions are fixed. The fixed operating con-

ditions property, similar to the conducted experiment in Appendix A, can be seen in

applications with high volume of productions such as molding processes. Later on, the

prediction performance of the PSHMCO approach is further improved by changing its

core model from HMM to Hidden Semi-Markov Model (HSMM), which has a flexible

state-duration distribution in contrast with HMM.

6.1.2 HSMM-based Approach

In Chapter 3, A hidden semi-Markov model based approach called PSHsMCO was

introduced for continuous diagnosis and prognosis. Also, a computationally efficient

version of forward-backward algorithm for application of HSMM in continuous tool

condition monitoring is described. Based on the simplified forward-backward algorithm,

diagnostics and prognostics procedures are defined.

A comparative study is conducted based on the experimental data in Appendix A

between PSHMCO and PSHsMCO approaches. Based on the experimental results,

PSHsMCO approach outperforms the PSHMCO approach in both diagnostics and prog-

nostics. The results indicate that (as expected) by changing the unrealistic fixed state-

duration distribution (geometric) in PSHMCO to a more realistic Gaussian state-duration

distribution in PSHsMCO, the efficiency of the prediction model in capturing the under-

lying temporal information in the experimental sequential data increases.

Furthermore, in order to recognize the preference between the under- and over- es-

timation. In the last section, applicability of the asymmetric Gaussian functions as the

state-duration distributions in the proposed HSMM-based approach is studied. Using

the asymmetric Gaussian function, the asymmetric loss functions can be incorporated

into the PSHsMCO approach. Finally, the performance improvement in case of utilizing

asymmetric Gaussian functions as the state-duration distribution while given asymmet-

ric loss function, is verified on the experimental data.
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6.1.3 Multi-modal HMM-Based Approach

Although the first, two single model approaches proposed in Chapters 2 and 3, out-

performed other conventional approaches such as Multi-layer perceptron and Elman net-

work in the continuous tool condition monitoring applications. A single model may not

be adequate to capture all possible trends when different wearing regiments are avail-

able because of various operating conditions, different cutter shapes and geometries,

etc. Therefore, a multi-modal HMM-based (m2HMM) approach, which is an extension

of PSHMCO approach proposed in chapter 2, is proposed for continuous tool condition

monitoring. The m2HMM uses multiple PSHMCOs in parallel. In this approach, each

PSHMCO captures and emphasizes on a different tool wear regiment. Moreover, two

switching strategies namely, soft- and hard- switching, are introduced to combine the

outputs from various modes into one. The relevance of each mode at each time is as-

sessed based on the given observation at that time and its precedings. Three weighting

schemes i.e. bounded-, discounted- and semi-nonparametric hindsight (SNPH) are pro-

posed which quantify the relevance of modes as weightages to be used in the switching

strategies.

The proposed multi-modal approach is applied to cutter wear monitoring in the

CNC-milling machine and based on the experimental results, the m2HMM approach

with soft switching (disregarding its weighting scheme) outperforms the PSHMCO in a

statistically significant manner. Furthermore, the m2HMM with semi-nonparametric and

soft switching proves to be the best among all combinations of the switching strategies

and weighting schemes.

As utilizing multiple PSHMCOs in parallel increases the computational cost, a win-

dowing algorithm is proposed for both PSHMCO and m2HMM that dramatically in-

creases the speed. Results indicate that if an appropriate window length is adopted, the

windowed variant of both approaches can reach the same level of performance as their

original and in some cases even outperform them.
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6.1.4 Semi-Nonparametric HMM-based Classification

In Chapter 5, in contrast with the previous Chapters which focus on the HMM-based

continuous tool condition monitoring approaches and trying to formulate and directly

estimate the parameters based on their correspondence to the physical states, an HMM-

based semi-nonparametric (HMMSNP) fault detection and diagnosis approach is pro-

posed to improve further the accuracy of the conventional HMM-based classification

approach that relies on the log-likelihood.

The HMMSNP approach improves the fault diagnosis performance by integrating

and taking the advantages of both parametric and nonparametric classification approaches.

In HMMSNP, based on the parametric HMMs, two matrices named probabilistic tran-

sition frequency profile and average probabilistic emission are computed for each sig-

nature which can represent the trend of that sequence in states and observation (such

as vibration) domains. Furthermore to remedy the difficulty of dealing with various

operating speeds in the fault diagnosis, a pre-processing method named squeezing and

stretching (SqS) is introduced. The experimental results indicate that using the SqS

pre-processing increases the classification accuracy significantly.

The proposed approach is applied to fault detection and diagnosis in a synchronous

motor with two types of faults i.e. bearing fault and unbalanced rotor (Appendix B). Ex-

perimental results indicate that the HMMSNP achieves a higher classification accuracy

compared to the conventional HMM-based classification approach and the HMM-based

classification with SqS pre-processing (HMMSqS). Also, the results from sensitivity

analysis indicate that although the number of hidden state values and the length of signa-

ture affects the performance of all the approaches, but generally HMMSNP outperforms

the HMM and HMMSqS.

Finally the advantages, disadvantages and some comments on the general approaches

developed through Chapters 2 to 5 in this thesis are summarized in Table 6.1.

6.2 Future Work

In this Section, some of the future work directions that can be taken are suggested.
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In the case of continuous TCM, to improve the prediction performance further, more

complex dynamic Bayesian networks (DBN) that can reflect more inter (observation,

state) dependencies may be applied. However, while increasing the complexity of the

DBNs, the computational feasibility of the proposed approaches have to be considered

for possible online applications.

Furthermore, to improve the asymmetric loss function incorporation and respon-

siveness of the HSMM to a given loss function, multiple asymmetricity factors can be

identified for various partition of the states instead of one for all states (as in Chapter 3).

However, this will increase the complexity and challenge associated with the identifica-

tion of the newly added parameters.

Also the windowing approximation can be employed in the HSMM-based approach

to reduce the computational burden and then a multi-modal form of the HSMM-based

approach can be utilized to increase the prediction capability of multi-modal approach

and incorporate the loss-function applicability in that approach as well.

As the number of possible combinations in the training data exponentially increases

with the number of provided experiments, it would be interesting to assess the impor-

tance of the modes created using the combination of training data, and see whether the

results from combined training sets or from individual training experiments are more

important while being used in a multi-modal approach. Thus, being able to give rules of

thumb on mode selection while constructing the multi-modal approach as the computa-

tion burden significantly increases if all of possible combinations will be considered in

general.

In future, the HMM-based semi-nonparametric fault diagnosis approach proposed in

Chapter 5, can be extended and examined on various types of electromechanical devices.

Moreover, the number of classes considered for diagnosis may be increased to make the

experiments more realistic. Also, as the perfect ground truth model is not realizable

in most of real-world applications, it would be interesting to use the proposed semi-

nonparametric approach in other time series or sequence classification applications such

as brain-computer Interaction, etc.

Finally, considering the limited labeled information, and training data available in
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the real industrial applications, in contrast to the required amount for the data-driven

approaches in general, it would be interesting to pursue intelligent ways to synthesize

pseudo-data based on the limited actual experimental data to increase the generalization

power of the prediction models. Although this area has been explored in machine learn-

ing domain as developing upsampling methods, an upsampling method that preserves

the locality and dependencies in the sequential data is required to generate effective

pseudo-data for the industrial applications.
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Table 6.1: Advanteges, disadvantages and some comments on the approaches developed

in this thesis.

Approach Advantages Disadvantages Comments

PSHMCO

- Correspondence between actual

physical state and hidden state val-

ues.

- Direct parameter estimation.

- Unrealistic (fixed) geometric state-

duration distribution.

- It outperforms Multi-Layer Percep-

tron and Elman Network in tool wear

monitoring.

- Only has one hyper-parameter

i.e. number of hidden state values

(health states) that can be set via

cross-validation.

PSHsMCO

- Correspondence between actual

physical state and hidden state val-

ues.

- Direct parameter estimation.

- flexible state-duration distribution.

- asymmetric loss function can be

incorporated by utilizing asymmetric

state-duration distributions.

- Computational cost increases com-

pared to PSHMCO by dmax times.

- It outperforms PSHMCO in tool

wear monitoring.

- Its symmetric state-duration

distribution variant has one hyper-

parameter i.e. number of hidden

state values (health states) but its

asymmetric variant has more hyper-

parameters to be set.

m2HMM

-Capturing multiple trends by utiliz-

ing multiple modes.

- Direct parameter estimation.

- Correspondence between actual

physical states and the hidden state

values.

- Computationally is more expensive

than single model approaches.

- It outperforms single HMM-based

approach (PSHMCO).

- Various switching strategies and

weighting schemes can be consid-

ered.

- A windowed variant is proposed

which reduces the computational

cost.

HMMSNP

- It outperforms the conventional

HMM-based approach.

- Its non-parametric stage enables

it to utilize the training data more

effectively.

- The similarity matrices generated

based on PTFP and APE specifies

various trends corresponding to

various conditions or classes without

a need for a priori knowledge.

- Iterative parameter estimation using

Expectation-Maximization.

- Computationally more expensive

than the conventional HMM-based

approach.

- Squeezing & Stretching preprocess-

ing approach utilized in HMMSNP

makes the acquired signals from var-

ious operating speeds comparable.

- The ultimate classification output

is based on its nonparametric stage

rather than maximum likelihood.
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Appendix A

Tool Wear in CNC-milling machine

Dataset and Experimental Setup

A.1 Introduction

Ball-nose milling cutters have been used extensively in CNC machining of critical

parts in the aerospace and motor industries. In the milling process, these changes are

closely linked with the cutting forces acting on the edge of the ball-end milling cut-

ter. The cutting forces that are developed during the milling process, can directly or

indirectly estimate process parameters such as tool wear, tool life, surface finish, etc.

A.2 Dataset & Features

The experimental data is obtained through real-time sensing on a CNC-milling ma-

chine using a force sensor and a vibration sensor both with 3 channels for different

directions and an AE sensor. The data comprises cutting process of 6 cutters which are

07BX1, 09BX3, 18SC3, 31PN4, 33PN6 and 34PT1. The cutters are different with one

another in terms of cutter geometry and coating but they are all 6mm alignment-tool car-

bide ball-nose end with three flutes. Figure A.1 depicts the tool wear regiments in the 6

experimented cutters.

In the conducted experiment, a röders TEC vertical milling machine is used as the
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Figure A.1: Tool wear regiment in the 6 experimented cutters.

testbed. For all the cutting processes, Inconel 718, which is used in Jet engines, is

adopted as the work-piece material. During the cutting process, the upper face of the

material is cut with horizontal lines from the top edge to the bottom edge. After each

cut, tool snapshots were taken to measure the amount of tool wear. An LECIA MZ12.5

high performance stereo microscope is used to measure the tool wear of the cutting tool.

After 320 cutting times, another cutter process will start at the top edge of the material.

Table B.1 shows the operating condition parameters of the CNC-milling machine and the

experimental components. According to Table B.1, each cutter will travel for 112.5 ×

320 = 36000 mm = 36 m. Fig. A.2 shows the experimental setup.

As it is depicted in Fig. A.2, the tool wear is measured after each cut and stored on

the computer along with the sensed signals which are captured using LabView R© soft-

ware running on the computer. After data acquisition, these signals are used for feature

extraction and selection using FDR.

A.2.1 Statistical Features

16 statistical features are extracted from force signal available in each direction (X, Y

and Z), resulting in 48 features available in total as a 3-channel dynamometer is mounted

on the CNC-milling machine. A list of these features is shown in Table A.2.
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Table A.1: List of operating condition parameters for the experimental setup and the

required components.

Parameter Value

spindle speed 10360 rpm

Feed rate 1.555 m/min

Width of cuts 0.125 mm

Hight of cuts 78mm

Depth of cuts 0.25 mm

Duration of cut ≈ 4s

Number of cuts per experiment 320

Components

röders TEC vertical milling machine

6mm ball nose tungsten carbide cutters

Inconel 718 workpiece

Kistler 8152B211 Piezotron R© (AE sensor)

Kistler 8636C PiezoBEAM R© accelerometers (vibration sensor)

Kistler 9265B Quartz 3-component dynamometer (force sensor)

Kistler 5019A multichannel charge amplifier (force amplifier)

NI-DAQ PCI 6250 M series

LECIA MZ12.5 stereomicroscope

Computer

A.2.2 Wavelet Features

Signals that have been captured using the sensors mounted on the milling machine

have non-stationary characteristics, therefore wavelet or multi-resolution approaches are

used for feature extraction along with the extracted statistical features. In this work,

Daubechies wavelet 8 (DB8) is applied to three force signals, and discrete Meyer wavelet

is used for three vibrations and AE signals, all wavelets are with 5 decomposition levels.

Hence, 62 (21+22+23+24+25 = 62) coefficients are acquired for each signal, summing

up to 434 for all the 7 signals. The average energy of these coefficients are used as the
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Figure A.2: Experimental setup.

Table A.2: List of extracted statistical features from each force signal channel [4].

No. Feature No. Feature

1 Residual Error 9 Sum of the Squares of Residual Errors

2 First Order Differencing 10 Peak Rate of Cutting Forces

3 Second Order Differencing 11 Total Harmonic Power

4 Maximum Force Level 12 Average Force

5 Total Amplitude of Cutting Force 13 Variable Force

6 Combined Incremental Force changes 14 Standard Deviation

7 Amplitude Ratio 15 Skewness

8 Standard Deviation of the Force Compo-

nents in Tool Breakage Zone

16 Kurtosis

extracted features. According to [33], the average energy can be written as,

E j =
1

N j

N j∑

k=1

[dn
j,k(t)]

2 (A.1)

where j is the scale, dn
j,k

(t) is the wavelet packet coefficient of the signal, N j is the number

of coefficients at each scale and t is the discrete time.
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Appendix B

Synchronous Motor Fault Generating

Setup and Dataset

In this work, the two common fault modes in the synchronous motors, which are un-

balanced rotor and bearing faults, are generated using a SpectraQuest R© fault simulator

machine shown in Fig. B.1. Table B.1 lists the operating parameters and the required

components for the experiments.

Table B.1: List of operating condition parameters for the experimental setup and the

required components.

Parameter Value

Room Ambient Temperature ≈ 28oC

Duration of Each Signature 800ms

Operating Rotational Speed 15, 16, . . . , 32Hz

Sampling Frequency 5KHz

Number of Signatures per Rotational Speed 10

Components

DEWETRON R© digital data acquisition system

1/2 HP 230V/50Hz/3-phase AC variable speed synchronous machine

Piezoelectric Accelerometer with 10kHz bandwidth

The accumulated data comprises data sequences for the bearing fault (BRG), unbal-

anced rotor fault (UBR), and healthy machine (HTY), with 180 sequences (signatures)
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Figure B.1: Machinery Fault Simulator by SpectraQuest R©, Inc.

(a) (b)

Figure B.2: Experimental setups used to generate bearing faults (a) and unbalanced rotor

(b).

for each class, where 10 signatures are recorded at each machine operating speed of

15Hz up to 32Hz. The BRG class consists of a mixture of three possible faults associ-

ated with bearings i.e. rolling element fault, inner raceway fault and outer raceway fault.

The acceleration of the machine vibration is measured by a stud-mounted piezo-

electric accelerometer of 10kHz bandwidth above the bearing journal. Vibration signa-

tures are recorded by DEWETRON R© digital data acquisition system with a sampling

frequency of 5kHz using Hanning window. Each data sequence (vibration signature) is

4000 samples in length, representing a snap-shot time window of 800ms. Fig. B.2 shows

the experimental setups used to generate the various bearing faults and the unbalanced

rotor.
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Figure B.3: Samples from three conditions namely, Healthy, Bearing fault and Unbal-

anced rotor fault at three operating speeds i.e. 15hz, 23Hz and 31Hz.

As can be seen in Fig. B.2(b), two rotors with screws attached are mounted on the

shaft to simulate unbalanced rotor fault. The weight of these screws generates unequal

centrifugal forces when the rotor spins, thus creating vibrations due to unbalanced rotor.

Fig. B.3 shows three sample vibration sequences under different conditions, i.e. bear-

ing fault, unbalanced rotor and healthy conditions at various rotating speeds. As can be

seen in Fig. B.3, a healthy machine has the lowest level of vibration compared to other

conditions.
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