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Summary

With the popularity of photo sharing websites, new web images on a wide

variety of topics have been growing at an exponential rate. At the same time,

the contents of images are also enriched and more diverse than ever before. This

brings about two main challenging problems in semantic image annotation: 1)

the semantic space of image dataset is enlarged and may contain two or more

semantic spaces; 2) the trend of image corpus is towards large-scale or web-scale

setting, which is generally unaffordable for traditional annotation approaches.

To address the first challenging problem, this thesis proposes multi-label

learning algorithms for semantic image annotation from two paradigms: multi-

label learning on single-semantic space and multi-label learning on multi-semantic

space. For the first paradigm, different from most existing works that motivated

from label co-occurrence, we propose a novel Label Exclusive Linear Represen-

tation (LELR) model for image annotation, which incorporates a new type of

context–label exclusive context. In the setting of multi-label learning problems,

when the number of categories is large, we may expect negative correlations among

categories. Given a set of exclusive label groups that describe the negative rela-

tionship among class labels, our proposed method enforces exclusive assignment of

the labels from each group to a query image. For the second paradigm, we propose

a multi-task linear discriminative model for harmoniously integrating multiple se-

mantics, and investigating the problem of learning to annotate images with train-

ing images labeled in two or more correlated semantic spaces, such as fascinating

nighttime, or exciting cat. Image semantics can be viewed at two levels: Cognitive

level and Affective level. The two spaces of image semantics are inter-related and

vi



can be used together to reinforce each other in order to improve the accuracy of

concept detection and in particular, to detect complex concepts involving both

types of basic concepts.

To address the second challenging problem, this thesis proposes an efficient

sparse graph based multi-label learning scheme for large-scale image annotation,

whereby both the efficacy and accuracy are further enhanced. In order to anno-

tating large-scale image corpus, we perform the multi-label learning on the so-

called hashing-based `1-graph, which is efficiently derived with Locality Sensitive

Hashing approach followed by sparse `1-graph construction within the individ-

ual hashing buckets. Unlike previous large-scale approaches that propagate over

individual label independently, our proposed large-scale multi-label propagation

(LSMP) scheme encodes the tag information of an image as a unit label con-

fidence vector, which naturally imposes inter-label constraints and manipulates

labels interactively. It then utilizes the probabilistic Kullback-Leibler divergence

for problem formulation on multi-label propagation.

To demonstrate the advantages and utility of our algorithms, extensive

experiments on the challenging real-world benchmarks are provided for each pro-

posed multi-label learning method. We compare each proposed approach to the

state-of-the-art methods, as well as offer insights into individual result. The

promising performance well validate the effectiveness of the proposed approaches.

In the end, some limitations and broad vision for multi-label learning are also

discussed.
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Chapter 1

Introduction

1.1 Background

1.1.1 Semantic Image Annotation

For image annotation, the main task is to assign semantic keywords to an image

in order to reflect its semantic content. Due to the rapid development of digital

photography and the popularity of photo sharing websites, the digital images

are increasing in an explosive way. Robust browsing and retrieval of these huge

amount of images via semantic keywords is becoming a critical requirement. In the

real world, most Internet image search engines efficiently utilize text-based search

to satisfy the queries of users, while not exploiting the visual content of images.

Utilizing visual content to annotate images with a richer and more relevant set

of semantic keywords would allow one to further exploit the fast indexing and

retrieval architecture of these search engines, which boosts the search performance

at the same time. This makes the problem of annotating images with relevant

semantic keywords increasingly important.
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In the field of semantic image annotation, one of the main challenges is

the well-known “semantic gap” problem, which points to the fact that it is hard

to bridge the gap between low level feature and high-level human perception.

Humans tend to use high-level semantic concepts (e.g., keywords, text descriptors)

to interpret image content and measure their similarity. While the visual features

extracted utilizing computer vision techniques are mostly low-level features, such

as color, shape, texture, etc. Though a large amount of research has been carried

out on designing algorithms to extract effective visual features in the past two

decades, these algorithms cannot adequately model image semantics and have

many limitations when dealing with broad content image databases [Mojsilovic

and Rogowitz, 2001]. Therefore, to satisfy user’s expectations and support query

by high-level concepts, a large number of machine learning techniques for bridging

the “semantic gap” have been applied along with a great deal of research efforts.

Given the set of semantically labelled training images that are represented

with low level features, a machine learning algorithm can be trained to utilize the

visual feature to perform semantic label matching. Once trained, the algorithm

can be used to label new images. There are generally two types of semantic

image annotation approaches: single-label learning and multi-label learning for

image annotation. In a single-label setting [Shotton et al., 2006], each image

will be categorized into one semantic label and only one of the predefined label

categories. In other words, only one label will be assigned on each image in this

setting. In a multi-label setting [Boutell et al., 2004; Kang, Jin, and Sukthankar,

2006], which is more challenging but much closer to real world applications, each

image will be assigned with one or multiple labels from a predefined label set.

This thesis focuses on multi-label learning (MLL) for image annotation.
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1.1.2 Single-Label Learning for Semantic Image Annota-

tion

For single-label learning algorithms, firstly, low level visual features are extracted

from image, and then the features are considered as input to a conventional binary

classifier which indicates which concept category it belongs to. Finally, the output

of the classifier is the semantic concept which is assigned for image annotation.

In a single-label learning setting, once the images are classified into different cate-

gories, each image is only annotated with one category concept such as bus, tree,

building etc. The common algorithms for single-label learning annotation basi-

cally include three types: support vector machines(SVM) [Vapnik, 1995], artificial

neural network(ANN) [Frate et al., 2007],and decision tree(DT) [Quinlan, 1986a].

Based on this single-label learning annotation, retrieval of images in the

search engine is straightforward by just typing in keywords related to the concept

labels . The main advantage of this type of approach is that searching of images

is efficient because the search engine needs not to do usual image indexing and

expensive on-line matching. However, this type of approach ignores the fact that

many images may contain multiple semantic concepts. As a result, many relevant

images may be missed from the retrieval list if a user does not search using the

exact keyword. One effective way to alleviate this problem is to annotate each

image with multiple keywords in order to reflect different semantics contained

in the image. This motivates semantic image annotation focusing on multi-label

learning for improving the search performance.
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1.2 Multi-Label Learning for Semantic Image An-

notation

Conventional single-label learning methods for image annotation usually consider

an image as an entity associated with only one label in model learning stage. These

single-label learning algorithms may sound attractive and straightforward, but

they overlook the fact that a real-world image usually contains multiple semantic

concepts rather than a single one. In most real-world problems, multiple labels

can be assigned to an image. In many online image sharing websites (e.g. Picasa,

Flickr, and Yahoo! Gallery), most of the images have more than one tags. For

example, an image can be annotated as “road” as well as “car”, where the terms

“road” and “car” are in different categories. Furthermore, the traditional methods

lack a mechanism to rank images according to their similarity to the annotated

label. Owing to the great potential of automatically tagging images with related

labels, multi-label image annotation is becoming increasingly important and is a

more reasonable approach for real-world image annotation, because it assigns an

image to several categories and assigns an image to a category with a confidence

value which assists in image ranking. This dissertation mainly investigates multi-

label learning for semantic image annotation.

The most commonly-used approach for multi-label learning is to divide it

into multiple binary classification problems [Chang, K. Goh, and CBSA, 2003;

Yan, Tesic, and Smith, 2007], and determine the labels for each test sample by

aggregating the classification results from all the classifiers. However, there are

three main disadvantages of this type of approach: 1) It assumes each class label

independently so that it is not able to utilize the correlation information of labels
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to boost the performance; 2) It is cannot be employed for annotating images with

a large number of classes because each class requires a binary classifier for training;

3) Most binary classification approaches toward multi-label learning suffer severely

from the unbalanced data problem [Weiss and Provost, 2003], particularly when

the number of classes is large. Given image dataset, once the number of classes is

large, the number of negative samples is overwhelmingly larger than the number

of positive samples for every class. As a result, most of trained binary classifiers

will assign the negative labels to test images. This motivates many researchers to

exploit machine learning algorithms for multi-label learning. The detailed related

works of multi-label learning will be reviewed in Chapter 2.

Due to the explosive growth of digital technologies, new images on a large

variety of topics have been growing at an exponential rate. And the contents in

images are enriched and more diverse than ever before. This brings about two

main challenges in multi-label learning: (a) the semantic space of image data is

enlarged and contains one or more semantic spaces, where there may been multi-

ple semantic spaces included in an image dataset (e.g. cognitive semantic space

and emotive semantic space); and (b) the image corpus for annotation is towards

to large-scale or web-scale setting, which is generally infeasible for traditional

annotation approaches. According to the above mentioned two challenging prob-

lems, this thesis focuses on exploiting the semantic multi-label learning from three

aspects: (a) multi-label learning on traditional single-semantic space, (b) multi-

label learning on multi-semantic space, and (c) multi-label learning in large-scale

dataset. For the first challenge, multi-label learning with label exclusive context

in single semantic space is first proposed and explored in Chapter 3, then an ex-

tension version towards multi-semantic space for multi-label image annotation is
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proposed and discussed in Chapter 4. For the second challenge, a graph-based

semi-supervised multi-label learning approach for large-scale image annotation is

exploited in Chapter 5, which is founded on hashing-based l1 graph construction

and Kullback-Leibler divergence based label similarity measurement.

1.2.1 Multi-Label Learning with Label Exclusive Context

Since many words are semantically related, labels in image dataset are usually

correlated. This correlation among labels are helpful for predicting labels of test

images. For example, the concepts “lake” and “boat” usually appear in the same

image. When assigning a label “boat” to a test image, this image may contain the

label “lake”. so they are correlated concepts. It is reasonable to make use of such

a correlated context of labels for predicting class labels of the query image sample.

In the past, many researcher have explored the co-occurrent label context in multi-

label learning for image annotation [Zhu et al., 2005; Yu et al., 2005; McCallum,

1999].

In order to further improve the performance of image annotation, we pro-

pose a novel Label Exclusive Linear Representation (LELR) method for multi-

label image annotation. Unlike the past research efforts based on co-occurrent

information of labels, we incorporate a new type of label context named label ex-

clusive context into the LELR scheme, which describes the negative relationship

among class labels. Given a set of exclusive label groups that describe the negative

relationship among class labels, the proposed LELR enforces repulsive assignment

of the labels from each group to a test image. Extensive experiments on the chal-

lenging real-world benchmarks demonstrate the effectiveness of embedding this

new context into multi-label learning scheme.



7

1.2.2 Multi-Label Learning on Multi-Semantic Space

In order to manege the huge amount and variety of images, there is a basic shift

from content-based image retrieval to concept-based retrieval techniques. This

shift has motivated research on image annotation which offers a series of chal-

lenges in media content processing techniques. The semantic gap [Lew et al.,

2006] between high-level semantics and low-level image features is still one of the

main challenging problems for image classification and retrieval. Moreover, image

semantics can be viewed at two levels: Cognitive level and Affective level [Han-

jalic, 2006]. The two spaces of image semantics are inter-related and should be

used together to reinforce each other in order to improve the accuracy of concept

detection and in particular, to detect the complex concepts involving both types

of basic concepts.

However, existing studies on image semantic annotation mainly aim at the

assignment of either the cognitive concepts or affective concepts to a new item

separately. Moreover, they fail to take into consideration the correlation between

concepts from different spaces. For example, certain cognitive concepts (such as

snake and tiger) are usually attached with negative emotion, while other con-

cepts (such as beach and sunset) are associated with positive emotions. As a

result, the complex concepts consisting of concepts from different spaces cannot

be inferred easily. For detecting these complex concepts, the current learning

process requires a huge amount of efforts in extracting different types of cogni-

tive and emotive features and is thus generally unaffordable for large-scale image

dataset. Moreover, it is hard to generate concepts from different semantic spaces

simultaneously because they require the use of different techniques to be applied

to different semantic spaces, and the aggregation of results of individual concepts
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from different spaces is usually unable to model the meanings of complex query in

the real-world search task. This motivates us to harmoniously embed these two or

more semantic spaces into one general framework for annotating the deeper and

multi-semantic labels to images. In this thesis, we are particularly interested in

explicit multi-semantic 1 image annotation under the unified generic visual fea-

tures. This framework not only works well on cognitive and affective spaces but

can also be applied to other multi-space semantics such as object and scene.

1.2.3 Multi-Label Learning in Large-Scale Dataset

The last decade has witnessed a growing interest in image annotation. In many

real world scenario cases, we often face the challenging situation that there is

no sufficient labeled data whereas large numbers of unlabeled image data may

could be far easier to be crawled on the web. And annotating this large-scale

unlabeled data often requires the employment of a huge number of experienced

human annotators and consuming much time, which directly motivates recent

development of large-scale semi-supervised learning (SSL) methods [Zhu, 2006;

Subramanya and Bilmes, 2009]. With the small amount of labeled image data,

SSL makes itself as an effective annotation technique through working together

with other unlabeled data for learning and inference.

For image annotation, a graph is often employed as an effective represen-

tation for label propagation in large-scale setting, wherein all images of the entire

dataset are expressed as vertices and edges reflecting similarity between the im-

1The multi-semantic (or polysemy) retrieval has been explored in [Kesorn, 2010] for multi-
modality (visual and textual) based image retrieval, in which a visual object or text word may
belong to several concepts. For example, a “horizontal bar” object can belong to high jump or
pole vault event. Differently, the term multi-semantic used in this chapter emphasizes that an
image can be labeled in multiple semantic spaces.
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ages. For generative modeling methods, the priori probabilistic assumptions usu-

ally play an import role for propagation. Different from this body of generative

modeling work, graph-based modelings are especially interested in non-parametric

and discriminative local structure discovery with the assumption that the larger

the weight of edge connecting vertices, the higher the possibility of sharing the sim-

ilar labels between the images. And it is also demonstrated that graph-based ap-

proaches are usually able to achieve the state-of-the-art performance as compared

to other SSL algorithms [Zhu, 2006]. In this thesis, we propose an efficient semi-

supervised large-scale multi-label learning approach based on hashing-accelerated

`1-graph construction.

1.3 Thesis Focus and Main Contributions

The overall objective of this thesis is to develop methodologies for multi-label

learning image annotation from three aspects: 1) exploiting label exclusive con-

text for multi-label learning on traditional single semantic space; 2) developing

multi-task linear discriminative model for multi-label learning on multi-semantic

space; and 3) utilizing hashing based sparse `1-graph construction to exploit multi-

label learning annotation in large-scale image dataset. Three major contributions

are made in this dissertation.

1) Multi-Label Learning with Label Exclusive Context: We introduce in

this thesis a novel approach to multi-label image annotation which incorporates a

new type of context — label exclusive context — with linear representation and

classification. Given a set of exclusive label groups that describe the negative rela-
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tionship among class labels, our method, namely LELR for Label Exclusive Linear

Representation, enforces repulsive assignment of the labels from each group to a

query image. The problem can be formulated as an exclusive Lasso (eLasso) model

with group overlaps and affine transformation. Since existing eLasso solvers are

not directly applicable to solving such an variant of eLasso in our setting, we pro-

pose a Nesterov’s smoothing approximation algorithm for efficient optimization.

Extensive comparing experiments on the challenging real-world visual classifica-

tion benchmarks demonstrate the effectiveness of incorporating label exclusive

context into visual classification.

2) Multi-Label Learning on Multi-Semantic Space: To exploit the com-

prehensive semantic of images, we propose a general framework for harmoniously

integrating the above multiple semantics, and investigating the problem of learn-

ing to annotate images with training images labeled in two or more correlated

semantic spaces. This kind of semantic annotation is more oriented to real world

search scenario. Our proposed approach outperforms the baseline algorithms by

making the following contributions. 1) Unlike previous methods that annotate

images within only one semantic space, our proposed multi-semantic annotation

associates each image with labels from multiple semantic spaces. 2) We develop a

multi-task linear discriminative model to learn a linear mapping from features to

labels. The tasks are correlated by imposing the exclusive group lasso regulariza-

tion for competitive feature selection, and the graph Laplacian regularization to

deal with insufficient training sample issue. 3) A Nesterov-type smoothing approx-

imation algorithm is presented for efficient optimization of our model. Extensive

experiments on NUS-WIDE-Emotive dataset (56k images) with 8 × 81 emotive
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cognitive concepts and Object&Scene datasets from NUS-WIDE well validate the

effectiveness of the proposed approach.

3) Multi-Label Learning in Large-Scale Image Dataset: Motivated by re-

cent development of semi-supervised or active annotation methods, we develop

a novel large-scale multi-label learning scheme, whereby both the efficacy and

accuracy of large-scale image annotation are further enhanced. Our proposed

scheme outperforms the state-of-the-art algorithms by making the following con-

tributions. 1) Unlike previous approaches that propagate over individual label

independently, our proposed large-scale multi-label propagation (LSMP) scheme

encodes the tag information of an image as a unit label confidence vector, which

naturally imposes inter-label constraints and manipulates labels interactively. It

then utilizes the probabilistic Kullback-Leibler divergence for problem formulation

on multi-label propagation. 2) We perform the multi-label propagation on the so-

called hashing-based `1-graph, which is efficiently derived with Locality Sensitive

Hashing approach followed by sparse `1-graph construction within the individual

hashing buckets. 3) An efficient and convergency provable iterative procedure

is presented for problem optimization. Extensive experiments on NUS-WIDE

dataset (both lite version with 56k images and full version with 270k images) well

validate the effectiveness and scalability of the proposed approach.

1.4 Organization of the Thesis

The detailed organization of this dissertation is as follows.

Chapter 2 gives a comprehensive review of the related works on single-
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label learning image annotation, multi-label learning image annotation on single-

semantic space, and semi-supervised learning on large-scale dataset.

Chapter 3 presents a label exclusive context based multi-label learning

framework for semantic image annotation, which is formulated as an exclusive

Lasso (eLasso) model. Extensive evaluations of the framework on the challenging

real-world visual classification benchmarks are given.

Chapter 4 further introduces a multi-label learning framework on multi-

semantic space, which is a multi-task linear discriminative model to learn a linear

mapping from features to labels. Extensive evaluations of the framework on NUS-

WIDE-Emotive dataset (56k images) with 8× 81 emotive cognitive concepts and

Object&Scene datasets from NUS-WIDE are given.

Chapter 5 introduces hashing-based `1-graph construction for large-scale

multi-label image annotation, which utilizes the probabilistic Kullback-Leibler

divergence for problem formulation on multi-label learning. Extensive evaluations

of the framework on NUS-WIDE dataset (both lite version with 56k images and

full version with 270k images) are given.

Chapter 6 concludes the thesis with highlight of contributions of this thesis,

and discusses future research directions.
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Chapter 2

Literature Review

With the proliferation of digital photography, semantic image annotation becomes

increasingly important. Image Annotation is typically formulated as a single-

label or multi-label learning problem. This chapter serves to introduce the neces-

sary background knowledge and related works of single-label learning, multi-label

learning and semi-supervised learning before delving deep into the proposed mod-

els of multi-label learning for semantic image annotation.

2.1 Single-Label Learning for Semantic Image

Annotation

In semantic image annotation, single-label learning methods usually consider an

image as an entity associated with only one label in model learning stage. The

common algorithms for single-label learning annotation basically include three

types: support vector machines(SVM), artificial neural network(ANN), and deci-

sion tree(DT). In the following, we introduce representative works and necessary
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background knowledge of each of these techniques.

2.1.1 Support Vector Machines

The SVM method comes from the application of statistical learning theory to sep-

arating hyperplanes for binary classification problems [Cortes and Vapnik, 1995].

The central idea of SVM is to adjust a discriminating function and find a hy-

perplane from a training set of image samples to separate the training dataset.

In SVM methods, each training sample is represented with a feature vector and

a class label. Training a SVM classifier consists in searching for the hyperplane

that leaves the largest number of image samples of the same class on the same

side, while maximizing the distance of both classes from the hyperplane. SVM is a

supervised classifier. And it has been shown with high effectiveness in high dimen-

sional data classifications,especially when the training dataset is small [Vapnik,

1995]. The advantage of SVM over other classifiers is that it can achieve optimal

class boundaries by finding the maximum distance between classes. It has been

widely employed to solve the classification problems, such as text classification,

object detection and image annotation.

Although SVMs are mainly designed for the discrimination of two classes,

they can be adapted to multi-class (single-label learning) problems. A multi-

class SVM classifier can be obtained by training several classifiers and combining

their results. In the training phase, a separate SVM classifier for each concept

is trained and each SVM will generate a probability value for a input sample.

During the testing phase, the decisions from all classifiers are combined and fused

to assign the final class label to a test image. In the past two decades, SVM is

successfully applied to image annotation. For example, Chapelle et al. [Chapelle,
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Haffner, and Vapnik, 1999] utilize the above combined SVM framework to train

SVM classifiers for 14 semantic concepts. In their work, images are represented

with HSV histogram. Each trained classifier is regarded as “one vs. all” classifier.

In the testing stage, each SVM classifier generates a probabilistic value. The class

with maximum probability is finally considered as the label of the test image. In

the work of [Shi et al., 2004a], the authors use SVM to learn the semantic concepts

for image regions, where the images are first segmented using k-means algorithms,

and 23 SVM classifiers are trained to learn the 23 region level concepts.

2.1.2 Artificial Neural Network

Artificial Neural Networks (ANN) started playing a important role in the field

of remote sensing. Since the early nineties, several studies focused on evaluating

the performance of ANNs by comparing with traditional statistical methods in

remote sensing applications, and in particular in image classification. ANN is a

learning network, which learns from training samples and makes decision for a

test sample. It consists of multiple layers of interconnected nodes, which are also

called perceptrons. Generally, an ANN is also known as multilayer perceptron

(MLP).

For image annotation, the first layer of ANN is the input layer which has

perceptrons equal to the dimension of input image sample. The number of percep-

trons in the output layer is equal to the number of concept classes. The important

and open issues are the choice of the number of hidden layers and the number of

perceptrons at each hidden layer [Frate et al., 2007]. The numbers of hidden layers

and perceptrons are usually selected empirically depending on the practical prob-

lems. In an ANN, the connecting edges between perceptrons of different layers
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are associated with weights. Each perceptron works as a processing element and

is governed by an activation function. The activation function generates output

based on the weights and the outputs of the perceptrons at the previous layers.

For annotating a test image, ANN first learns the edge weights in the process of

training, which minimizes the overall learning error. Then each output percep-

tron generates a confidence measure and the class associated with the maximum

measure indicates the decision about the test image.

The main advantage of ANN is that the outputs of output layer perceptrons

are determined by the previous layers and the connecting edges. Training ANN

is not dependent on any other parameter tuning or any assumption about the

feature distribution. Many researchers have applied the ANN to image annotation.

Frate et al. [Frate et al., 2007] use the ANN for satellite image annotation. They

utilized a 4-layer ANN to classify pixels of images into four categories: vegetation,

asphalt, building, and bare soil. In their experiment, a network of two hidden

layers is employed, where each layer consists of 20 neurons. Kim et al. [Shi et

al., 2004b] utilize the ANN technique to classify images into object and non-

object images by 3-layer ANN. They assume that the center 25% of the image

significantly characterizes the content of the entire image and use this center part

to represent the image. However, the performance of classification will be degraded

if the object appears in the other part of the image.

2.1.3 Decision Tree

Decision Tree (DT) learning is a special type of machine learning technique. Many

researchers have utilized decision tree (DT) learning to perform image classifica-

tion. Given a set of training images described by a fixed set of input attributes
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and a known outcome for each image, a DT is built by recursively dividing the

training images into non-overlapping sets, and every time the images are divided,

the attribute used for the division is discarded. The procedure continues until all

images of a group belonging to the same class or the tree reaches its maximum

depth when no attribute remains to separate them [Quinlan, 1986b]. Finally, the

above learning process produces a DT which can classify the outcome value based

on the given attributes of new images. For annotating a new image, the tree is

traversed from the root node to a leaf node using the attribute value of the new

image. The decision of the new image is the outcome of the leaf node where the

image reaches.

Unlike other classification model whose input-output relationships are diffi-

cult to describe, a DT expresses the input-output relationship using human under-

standable rules (e.g., if-then rules). There are mainly three types of DT algorithms

in the literature: ID3 [Quinlan, 1986a], C4.5 [Quinlan, 1993], and CART [Breiman

et al., 1993]. Sethi et al. [Sethi and Coman, 2001] utilize CART to annotate out-

door images with four classes. They partition each component of HSL colour

space into eight intervals and consider each of the 24 intervals as an attribute. As

a result, each image in the experiment is represented with 24 attributes. In the

work of [Wong and Leung, 2008], acquisition parameters (aperture, exposure time,

and focal length, etc.) are used as attributes. Since the attributes are continuous

values, they adopt the C4.5 method to classify scenery images into ten semantic

concepts. Different from the above mentioned algorithms which can only anno-

tate images globally, Liu et al. [Liu, Zhang, and Lu, 2008] utilize DT to annotate

regions of segmented images. In order to training a DT, they use weighted average

of color and texture features, and develop pre-pruning and post-pruning scheme.
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2.2 Multi-Label Learning for Semantic Image An-

notation

Generally, image semantics are recognized at two levels: cognitive level and affec-

tive level [Hanjalic, 2006]. Many multi-label annotation algorithms are proposed

and well studied to assign labels to each image for a fixed image collection crawled

from websites such as Flickr. For this fixed data set, images are assigned with

either cognitive concepts or emotive concepts. In this section, we will introduce

the related works of multi-label learning on single-semantic space from two as-

pects: multi-label learning on cognitive semantic space and multi-label learning

on emotive semantic space.

2.2.1 Multi-Label Learning on Cognitive Semantic Space

Multi-label learning is a hot and promising research direction, especially on cogni-

tive semantic space. In the following of this subsection, multi-label learning means

multi-label learning on cognitive semantic space(unless specified otherwise). At

the early stage of research on multi-label learning, its literature is primarily geared

to text classification or bioinformatics. Therefore, besides giving review on the

related works of multi-label learning for semantic image annotation, we also in-

troduce several representative works about text classification methods based on

multi-label learning scheme.

Multi-label learning methods can be mainly categorized into two differ-

ent groups [Tsoumakas and Katakis, 2007]: 1) problem transformation methods,

and 2) algorithm adaptation methods. The first group includes methods that

are algorithm independent. They transform the multi-label learning task into
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multiple, independent single-label learning problems and determine the labels for

each sample point by aggregating the classification results from all the classifiers.

The second group includes methods that employs specific learning algorithms to

handle multi-label data directly.

2.2.1.1 Problem Transformation Methods

In this section, we briefly introduce three main problem transformation methods:

Binary Relevance Method, Pairwise Classification Method and Label Powerset

Method.

1) Binary Relevance Method

In the problem transformation methods, the most well-known method is

the binary relevance method (BR) [Godbole and Sarawagi, 2004]. BR converts

the multi-label problem into multiple binary problems. Each binary classifier is

then utilized to predict the association of a single label. For the classification of

a new instance, BR outputs the union of the labels that are positively predicted

by the classifiers.

Yan et al. [Yan, Tesic, and Smith, 2007] present a BR-based boosting algo-

rithm for multi-label learning. Different from other methods, the binary classifiers

are trained on subsets of the samples and attribute spaces. In the learning pro-

cess, their proposed algorithm reduces the information redundancy in the label

space by jointly optimizing the loss functions over all the labels. Ji et al. [Ji et

al., 2008] introduce a general framework for extracting shared structures in a BR

approach. In this framework, a common subspace is assumed to be shared among

multiple labels. Although they use an approximation algorithm for the solution to



20

the proposed formulation, the resulting method is computationally expensive. In

the work of [Raez, Lopez, and Steinberger, 2004], the authors propose a BR model

for solving the class-label imbalance problem. They solve the text categorisation

problem by overweighting positive examples in the BR models. In a real-time

environment and on large collections, they observe that classification speed can

be improved with marginal effect on predictive performance by ignoring rare class

labels in text dataset.

For image annotation, Chang et al. [Chang, K. Goh, and CBSA, 2003] pro-

pose a BR-based soft annotation procedure for providing images with semantical

multiple labels. They choose Support Vector Machines (SVMs) and Bayes Point

Machines for training binary classifiers. Each classifier assumes the task of de-

termining the confidence score for a semantic label. The annotation starts with

labeling a small set of training images, each with one single semantical label. An

ensemble of binary classifiers is then trained for predicting label membership for

test images. The trained ensemble is applied to each test image to give the image

multiple soft labels, and each label is associated with a label membership factor.

Although BR method is conceptually simple and relatively fast, it con-

structs a decision boundary individually for each label so that this method can

not explicitly model label correlations [Yan, Tesic, and Smith, 2007; Godbole and

Sarawagi, 2004]. Moreover, due to the typical sparsity of labels in multi-label

dataset, each binary classifier is likely to have far more negative examples than

positive. The performance of BR is also be affected by class-imbalance [Raez,

Lopez, and Steinberger, 2004],
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2) Pairwise Classification Method

Another popular transformation method is pairwise classification (PW).

The above mentioned BR method is a one-vs-rest paradigm, in which each classi-

fier corresponds to each label in the image dataset. PW is a one-vs-one paradigm

where each classifier is associated with each pair of labels [Hullermeier et al., 2008].

As a results, instead of N binary problems for BR (N is the number of labels in

the dataset), M = N(N − 1)/2 binary problems are formed in PW.

Different from BR methods, the classification in PW results in a set of pair-

wise preferences (which give rise more naturally to a ranking) rather than a label

set prediction. PW methods are widely used in ranking schemes. Hullermeier et

al. [Hullermeier et al., 2008] developed a ranking by pairwise comparison scheme

(RPC). The proposed scheme obtains a ranking by counting the votes received by

each label. Furnkranz et al. [Furnkranz et al., 2008] extend RPC with calibrated

label ranking to create a bipartition of relevant and irrelevant labels for multi-

label learning. In their proposed scheme, a virtual label partitions a ranking into

relevant and irrelevant labels to form a concrete label-set prediction for any test

instance.

In order to deal with the large number of classifiers in a PW scheme

(quadratic with respect to N), many PW approaches utilize single-label base

classifiers to improve scalability. The multi-label pairwise perceptron (MLPP)

proposed in [Mencia and Furnkranz, 2008a] trains one perceptron for each pos-

sible class-label pair. Although its performance is better than related BR-based

perceptron algorithm, it scales quadratically with N rather than linearly. In the

work of [Mencia and Furnkranz, 2008b], the authors introduce a modified version

of above MLPP which can scale to large label space by using simple perceptrons.
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This modified version contains a special adaptation: rather than having to main-

tain the (N(N − 1))/2 models normally associated with PW, it instead keeps all

examples in memory and builds models dynamically for each prediction.

3) Label Powerset Method

Another fundamental problem transformation method is the label powerset

(LP). LP considers each unique set of labels that exists in a multi-label training

set as one of the classes of a new single-label classification task. For a new test

image, the single-label classifier of LP outputs the most probable class, which is

a set of labels.

Boutell et al. [Boutell et al., 2004] presented a LP-based multi-label learning

scheme for scene classification, which uses multi-label training model and specific

testing criteria. They use a Support Vector Machine (SVM) as a classifier. A new

training strategy named cross training is utilized to build SVM classifiers. In the

last they extend the SVM classifier to multi-label scene classification. However,

the above proposed scheme may lead to data sets with a large number of classes

and few examples per class.

Due to the fact that the scalability of LP is quite poor (quadratically with

the number of distinct label sets), LP can not be widely used as an off-the-shelf

method. Tsoumakas et al. [Tsoumakas and Katakis, 2007] develop an efficient

approach RAkEL (RAndom K-labEL subsets), which constructs an ensemble of

LP classifiers. In the proposed RAkEL scheme, each LP classifier is trained based

on a different small random subset of the set of labels. A ranking of the labels is

produced by averaging the zero-one predictions of each model per considered label.

In addition, a thresholding scheme is also exploited to produce a classification.
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This method has become one of the most well known in the multi-label literature.

In the above mentioned LP methods, label correlations is directly utilized

in the process of learning. However, different from the binary models of BR and

PW, LP model only classify new samples with label sets it has already seen in

the training set. The computation and implementation of LP is also complex

because it requires as many class labels in the single-label transformation as there

are distinct label sets in the training data (usually, these labels are likely to be

very sparse with respect to training samples.).

2.2.1.2 Algorithm Adaptation Methods

The algorithm adaptation methods utilize specific learning algorithms to solve

multi-label learning problem. Many research works in recent belong to the second

group such as Label Ranking, Co-occurrent Context, Label Propagation. In the

following, we introduce several representative multi-label learning methods of the

second group.

1) Label Ranking

Another group of algorithm adaptation approaches toward multi-label learn-

ing is label ranking. These algorithms first learn a ranking function of class labels

from the labeled samples in training dataset, and then utilize the function to sort

the class labels for test samples.

In the area of Bioinformatics and Text Mining, Elisseeff et al. [Elisseeff and

Weston, 2002] present a label ranking scheme based on a large margin ranking

system that shares a lot of common properties with SVMs. They develop a linear

model that minimizes the Ranking Loss while having a large margin. In the
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work of [Schapire and Singer, 2000], Adaboost.MH and Adaboost.MR are two

extensions of AdaBoost [Freund and Schapire, 1997] for multi-label learning. In

the first extension, the goal of the learning algorithm is to predict all and only

all of the correct labels. Thus, the learned classifier is evaluated in terms of its

ability to predict a good approximation of the set of labels associated with a given

document. In the second extension, the goal is to design a classifier that ranks

the labels so that the correct labels will receive the highest ranks.

For image annotation, In [Liu et al., 2009], Liu et al. propose to rank the

image tags according to their relevance with respect to the associated images by

tag similarity and image similarity in a random walk model. To estimate the tag

relevance to the images, they first get the initial tag relevance scores based on

probability density estimation, and then apply a random walk on a tag similarity

graph to refine the scores. Since all the tags have been ranked according to

their relevance to the image, for each uploaded image, they find the K nearest

neighbors based on low-level visual features. Finally, the top ranked tags of the

K neighboring images are collected and recommended to the user.

Motivated by the fact that the existing user-provided image tags in pub-

lic photo sharing websites are imprecise and incomplete, Zhu et al. [Zhu, Yan,

and Ma, 2010] propose a tag ranking and refinement scheme in form of convex

optimization which comprehensively considers the tag characteristics from the

points of view of low-rank, error sparsity, content consistency and tag correla-

tion. They use a matrix to represent the image-tag relationship. In their work,

the tag refinement problem is formulated as a decomposition of the user-provided

tag matrix D into a low-rank refined matrix A and a sparse error matrix E,

namely D = A + E. Compared with existing works, the low-rank and error spar-



25

sity are firstly integrated into the optimization procedure for multi-label learning.

With the assistance of constraints of content consistency and tag correlation, the

proposed approach is capable of correcting imprecise tags and enriching the in-

complete ones.

Compared to single-label learning approaches, one advantage of label rank-

ing approaches is that they are superior at dealing with large numbers of classes

since only a ranking function is learned to compare the relevance of individual

class labels with respect to the test samples. Another advantage is that these

approaches do not have the issue of unbalanced data because no binary decision

has to be made regarding class labels. However, these label ranking approaches

do not explicitly explore the correlated information of labels, which is similar to

the single-label learning approaches.

2) Label Co-occurrent Context

The essential difference between single-label learning and multi-label learn-

ing is that labels in single-label learning are assumed to be mutually exclusive

while labels in multi-label learning are often assumed to be correlated. In the

context of multi-label learning, there has been many works focusing on exploiting

label correlation (label co-occurrent context) for semantic image annotation.

Zhu et al. [Zhu et al., 2005] suggest a maximum entropy model for multi-

label learning classification. They explore correlations among categories with

maximum entropy method and derive a classification algorithm for multi-labelled

documents. The experimental results validate that multi-labelled classification

is beneficial and helpful in the model considering the correlation between labels,

especially when the correlation is relatively strong.
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In the work of [Ueda and Saito, 2002], a probabilistic generative model for

multi-label learning is proposed to explicitly incorporates the pairwise correlation

between any two class labels. They assume that multi-labeled text has a mix-

ture of characteristic words appearing in single-labeled text that belong to each

category of the multi-categories. By employing SVM and Bag-of-Word (BOW)

representation, two types of probabilistic generative models for multi-labeled text

called parametric mixture models (PMM1, PMM2) are presented in this work.

Yu et al. [Yu et al., 2005] introduce a multi-label informed latent semantic

indexing (MLSI) algorithm which preserves the information of inputs and mean-

while captures the correlations between the multiple outputs. They assume a

linear model between the input features and the output class labels, and a regres-

sion model is proposed to find the appropriate linear combination weights. The

label correlation is explored by imposing a common prior for the combination

weights on different classes. They use this method as a preprocessing step and

achieve encouraging results on the multi-label text classification problems.

Griffiths et al. [Griffiths and Ghahramani, 2005] propose a Bayesian model

to assign labels through underlying latent representations. They define priors over

infinite combinatorial structures from nonparametric Bayesian statistics, and use

it to develop methods for unsupervised learning in which each object is represented

by a sparse subset of an unbounded number of features. And these features can be

binary, take on multiple discrete values, or have continuous weights. In addition,

they assume a probability distribution over equivalence classes of binary matrices

with a finite number of rows and an unbounded number of columns, which is

suitable for use as a prior in probabilistic models that represent objects using a

potentially infinite array of features.
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Despite above mentioned efforts in exploiting the co-occurrent information

of labels, most of the research is limited to pairwise correlation between class

labels. In order to improving the performance, there are several algorithms for

multi-label learning that assume a particular structure among the class labels.

Cai et al. [Cai and Hofmann, 2004] present a hierarchical classification

method that generalizes Support Vector Machine learning, which directly incor-

porates prior knowledge about class relationships. They assume a hierarchical

structure among the class labels, and the introduced method is based on discrim-

inant functions that are structured in a way that mirrors the class hierarchy. The

method can work with arbitrary, not necessarily singly connected taxonomies and

can deal with task-specific loss functions.

Rousu et al. [Rousu et al., 2004] also proposed a hierarchical structure

among the class labels to explore multi-label learning problem. They present

a variation of the maximum margin multi-label learning framework, which is

suited to the hierarchical classification task and allows efficient implementation

via gradient-based methods. And the classification hierarchy is represented as a

Markov network equipped with an exponential family defined on the edges.

McCallum [McCallum, 1999] assumes that class labels can be divided into a

small number of disjoint clusters. They describes a probabilistic generative model

that can represents the correlations between class labels, in which the multiple

classes that comprise a document are represented by a mixture model. Since

the labeled training data indicates which classes were responsible for generating

a document, and it does not indicate which class was responsible for generating

each word. The authors use EM to fill in this missing value by learning both

the distribution over mixture weights and the word distribution in each class’s
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mixture component.

Kang et al. [Kang, Jin, and Sukthankar, 2006] proposed a correlated label

propagation framework for multi-label learning, which explicitly exploits high-

order correlation between labels. Different from previous approaches to multi-

label learning that either treat class label independently or only take into count

the pairwise correlations, the proposed algorithm exploits label correlations of

any order. Most existing approaches only consider the propagation of a single

class label between training examples and test examples. Motivated by this, the

proposed framework takes into account the simultaneous propagation of multiple

labels. They formulate the proposed framework as a linear programming problem

with an exponential number of constraints, which cannot be practically solved

using standard techniques. To solve this problem exactly and efficiently, an algo-

rithm based on properties of submodular functions is introduced.

Different from this body of work motivated from Co-occurrent Label Con-

text, we exploit in Chapter 3 a novel type of context named label exclusive context

for multi-label learning, which describes the negative relationship among class la-

bels.

3) Label Propagation

As a graph-based approach, Label Propagation belongs to the semi-supervised

learning and has been proved to be an effective for both text categorization and

image annotation [Kang, Jin, and Sukthankar, 2006; Cao, Luo, and Huang, 2008;

Wang and Zhang, 2006; Zhou, Scholkopf, and Hofmann, 2005]. The central idea

of label propagation is to first construct a graph in which each node represents

a data point and each edge is assigned a weight (e.g. the similarity between
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data points), then propagate the class labels of labeled data to unlabeled data

based on the constructed graph in order to make predictions. A number of ma-

chine learning algorithms have been exploited for label propagation, including the

approaches based on Green functions [Zhou, Scholkopf, and Hofmann, 2005], har-

monic functions [Zhu, Ghahramani, and Lafferty, 2003], Gaussian processes [Chu

and Ghahramani, 2005]

Based on Green functions, Zhou et al. [Zhou, Scholkopf, and Hofmann,

2005] propose a general regularization framework on directed graphs for label

propagation. Given a directed graph in which some of the nodes are labeled, the

authors exploits the link structure of the graph to infer the labels of the remaining

unlabeled nodes. For the regularization framework, the objective functions are

defined over nodes of a directed graph that forces the classification function to

change slowly on densely linked subgraphs.

Gaussian fields and harmonic functions-based methods are motivated by

assuming that the label assignments should be smooth over the entire graph. The

work in [Zhu, Ghahramani, and Lafferty, 2003] is one of most popular approaches

in label propagation. Zhu et al.develop an label propagation approach to semi-

supervised learning based on a Gaussian random field and harmonic functions,

where the propagation is performed on a weighted graph representing labeled and

unlabeled data. In their proposed scheme, firstly, labeled and unlabeled data

are represented as vertices in a weighted graph with edge weights encoding the

similarity between instances. Then the learning problem is formulated in terms

of a Gaussian random field on this graph. This work concentrates on the use of

only the mean of the field, which is characterized in terms of harmonic functions

and spectral graph theory. The fully probabilistic framework is closely related to
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Gaussian process classification

In [Chu and Ghahramani, 2005], the authors propose a probabilistic kernel

approach to label propagation for preference learning over instances or labels. The

formulation of learning label preference is based on Gaussian processes. A new

likelihood function is proposed to capture the preference relations in the Bayesian

framework. In addition, this approach remains linear with the size of the training

instances, rather than growing quadratically, which provides a general Bayesian

framework for model adaptation and probabilistic prediction.

Based on a linear neighborhood model, Wang et al. [Wang and Zhang, 2006]

present a semi-supervised learning approach called Linear Neighborhood Propa-

gation(LNP), which assumes that each data point can be linearly reconstructed

from its neighborhood. The authors exploit the structure of the whole dataset

through synthesizing the linear neighborhood around each data object. The LNP

algorithm first approximates the whole graph by a series of overlapped linear

neighborhood patches. The edge weights in each patch is solved by a standard

quadratic programming procedure. Then all the edge weights will be aggregated

together to form the weight matrix of the whole graph for annotating. Finally,

LNP propagates the labels from the labeled points to the whole dataset using

these linear neighborhoods with sufficient smoothness.

Label propagation is an important technique in machine learning. It has

shown the promising performance in label learning problem. Despite the various

motivations behind the above mentioned approaches utilizing label propagation,

most of them are based on the prior assumption of consistency: nearby data

points or data points on the same structure are likely to have the same class label.

Based on the same assumption, we develop a multi-label propagation scheme for
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large-scale image annotation in Chapter 5, which based on efficient sparse graph

construction.

2.2.2 Multi-Label Learning on Emotive Semantic Space

Unlike research in cognitive semantic space, most researchers in the field of emo-

tive semantic image classification focus on effective and special visual feature

extraction in order to explore the emotion contained in images. The popularly

adopted methods for emotive semantic annotation include Support Vector Ma-

chines (SVMs), Neural Network, Random Forest, the C4.5 tree classifier and Naive

Bayes classifier method. A summary of below introduced representative works in

multi-label learning on emotive semantic space is provided in Table 2.1

Wang et al. [Wang, Yu, and Jiang, 2006] extract special integrated his-

togram features and utilize support vector regression for automatically emotional

image annotation. The authors analyze the emotional space and propose a scheme

to annotate the image emotion semantic automatically and realize emotional im-

age retrieval. Based on psychological experiments measuring evoked feelings by

art paintings, they first identify an orthogonal three-dimension emotional factor

space of image through 12 pairs of emotional words. Then, the following three

specific image features are designed for each emotional factor to predict it. They

are luminance-warm-cool fuzzy histogram, saturation-warm-cool fuzzy histogram

integrated with color contrast and luminance contrast integrated with edge sharp-

ness. The values of emotional factors can be predicted from the image features

automatically by using support vector machine of regression (SVR). Finally, an

emotion-based image retrieval system is designed and implemented, in which the

users can perform retrieval using semantic words.
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In the work of [Yanulevskaya et al., 2008], an SVM framework for supervised

learning of emotion categories is first adopted with extracting the holistic image

features. Then, the authors develop an emotion categorization system trained

by ground truth from psychology studies. The training data contains emotional

valences scored by human subjects on the International Affective Picture System

(IAPS). The extracted specific features (Gabor features, the Wiccest features, or

both) for each ground truth image are used to train a classifier to distinguish

between the various emotional valences. For test the performance, the emotion

classification system is applied to a collection of masterpieces. Although the re-

sults are preliminary, they demonstrate the potential of machines to elicit realistic

emotions as can be derived from visual scenes.

Machajdik et al. [Machajdik and Hanbury, 2010] investigate methods to

extract and combine low-level features that represent the emotional content of an

image from psychology and art theory views. Firstly, the authors exploit theo-

retical and empirical concepts from psychology and art theory to extract image

features that are specific to the domain of artworks with emotional expression.

Then, they concentrate on determining the affect of still images and studying the

extracted specific feature for the task of affective image classification. For classi-

fication, they adopte the Naive Bayes classifier to annotate images with emotive

concepts.

Besides focusing on extracting specific features for affective image anno-

tation, many other works also employ the generic features to classify emotional

images.

Hayashi et al. [Hayashi and Hagiwara, 1998] adopt the RGB color feature

and classified the affective images through neural network. They developed a im-
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Table 2.1: A list of the representative works in multi-label learning on emotive
semantic space.

Work Extracted Features Type of Feature Algorithm

[Hayashi and Hagi-
wara, 1998]

RGB color feature generic feature Neural Network

[Wu, Zhou, and
Wang, 2005]

shape, color, and texture feature generic feature SVM

[Wang, Yu, and
Jiang, 2006]

luminance-warm-cool fuzzy histogram,
saturation-warm-cool fuzzy histogram
integrated with color contrast and lu-
minance contrast integrated with edge
sharpness

specific feature SVR

[Yanulevskaya et
al., 2008]

Gabor features, Wiccest features specific feature SVM

[Machajdik and
Hanbury, 2010]

combined specific low-level features
learned from psychology and art theory

specific feature Naive Bayes

age query system by impression words named the IQI system that automatically

estimates impression words from various kinds of images. For the image charac-

teristics, the system utilizes the RGB color projection distributions in the vertical

and the horizontal axis, which correlate closely with the impression of an image

and a spectrum of frequency domain which expresses density of the image. In

addition, extracting these generic image feature is much simpler than other ex-

traction methods of specific features. The authors prove that the proposed image

characteristics are effective for the reduction of the units in the input layer and

are robust for shift of the image.

In the work of [Wu, Zhou, and Wang, 2005], a method to classify and

retrieve affective images is proposed, which utilizes SVM for affective image clas-

sification based on general features (shape, color, and texture features). Firstly,

several adjective words are collected which are usually used by people when ob-

serving images, such as the word of lovely and beautiful etc. Then, users are

invited to evaluate the images in the training set. In addition, affective space of
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image is constructed according to the thought of “dimensions”. Visual features of

images are extracted and visual feature space of image is constructed. Finally, the

mapping between affective space and visual feature space is calculated by SVMs.

2.2.3 Summary

With the increasing of the demand for image search with complex queries, the

explicit comprehensive semantic annotation becomes one of the main challenging

problems. However, most of the above mentioned multi-label learning algorithms

aim at annotating images with concepts coming from only one semantic view,

e.g. cognitive or affective. They ignore the fact that a real world image dataset

may consists of two or more semantic subspace. And the two or multiple spaces

of image semantics are inter-related and can be used to reinforce each other for

improving the annotation performance. Therefore, different from the above body

of efforts on multi-label learning in unitary semantic space (either cognitive or

emotive space), we propose and investigate the problem of multi-semantic image

annotation in Chapter 4 to meet the requirement of real-world search conditions,

which harmoniously embeds both cognitive semantic learning and affective seman-

tic learning into one general framework for annotating the multi-semantic labels

to images.

2.3 Semi-Supervised Learning in Large-Scale Dataset

For many applications like image annotation, especially in large-scale setting, an-

notating training data is often very time-consuming and tedious. This directly

motivates a large number of recent endeavors for exploring semi-supervised learn-



35

ing for annotation when the dataset scales up to large-scale setting.

Recently many researchers focus on embedding the graph Laplacian regu-

larizers into transductive support vector machines (TSVMs) on large-scale data.

Collobert et al. [Collobert et al., 2006] apply concave-convex procedure (CCCP)

to TSVMs when scaling up to large-scale setting, which shows that the improve-

ments in SVM scalability can also be applied to TSVMs. In this work, CCCP is

employed to iteratively optimizes non-convex cost functions that can be expressed

as the sum of a convex function and a concave function. The optimization is car-

ried out iteratively by solving a sequence of convex problems obtained by linearly

approximating the concave function in the vicinity of the solution of the previous

convex problem. The proposed large-scale transductive SVMs method is guar-

anteed to find a local minimum and has no difficult parameters to tune. This

makes the proposed method an efficient approach for implementing Transductive

SVM with an empirical scaling of (L + U)2, which involves training a sequence of

typically 1−10 conventional convex SVM optimization problems (where L and U

are the numbers of labeled and unlabeled examples.).

Sindhwani et al. [Sindhwani and Keerthi, 2006] provide an efficient and

scalable implementation of TSVM for linear classification problems involving large

and sparse datasets, which enhances the training speed of TSVM. In this work,

the authors explore and present a family of semi-supervised linear support vector

classifiers based on the finite Newton technique. These SVM algorithms are de-

signed to handle partially-labeled sparse datasets with possibly very large number

of examples and features. In this family of semi-supervised SVMs inspired from

Deterministic Annealing (DA) techniques, the global minimizer is parametrically

tracked. The proposed approach alleviates the problem of local minima in the
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TSVM optimization procedure which results in better solutions on some prob-

lems. A computationally attractive training algorithm is also presented, which

involves a sequence of alternating convex optimizations. Therefore, as proved by

the experiments, these algorithms can be valuable and helpful in applied scenarios

where sparse classification problems arise frequently, labeled data is scarce and

plenty of unlabeled data is easily available.

Karlen et al. [Karlen et al., 2008] solve a large-scale transduction problem

(650, 000 samples), in which the regularizer of TSVM is trained by stochastic gra-

dient descent. In this work, the authors introduce a large scale nonlinear method

that elegantly combines the two main regularization principles for discriminative

semi-supervised learning: transduction and manifold-based regularization. After

They train the proposed system using stochastic gradient descent and choose lin-

ear or multi-layer architectures rather than kernel methods. This results in faster

training and testing times than other TSVM algorithms. Since it also allows semi-

supervised learning to be performed online, the proposed method can be scale to

large-scale online computing.

To deal with much more larger dataset (900, 000 labeled and unlabeled sam-

ples), Tsang et al. [Tsang and Kwok, 2006] adopt a sparsified manifold regularizer

and formulates as a center-constrained minimum enclosing ball problem, which

derives the sparse solutions with both low time and space complexities by utilizing

core vector machine (CVM). In this work, the authors exploited two issues associ-

ated with the Laplacian SVM: 1) How to obtain a sparse solution for fast testing?

2) How to handle data sets with millions of unlabeled examples? For the first

issue, a sparsified manifold regularizer based on the ε-insensitive loss is proposed.

For the second one, manifold regularization is incorporated into the CVM. In the
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Table 2.2: A list of the representative works of semi-supervised learning in large-
scale dataset.

Work Size of Dataset Type of Annotation Algorithm

[Collobert et al., 2006] 70,000 single-label learning TSVMs
[Sindhwani and Keerthi, 2006] 80,000 single-label learning TSVMs

[Tsang and Kwok, 2006] 900,000 single-label learning CVM
[Karlen et al., 2008] 650,000 single-label learning TSVMs

[Subramanya and Bilmes, 2009] 120 million single-label learning based on KLD

end, the above proposed solutions to the two issues make the resultant algorithm

have low time and space complexities. In addition, a sparse solution can also be

recovered by avoiding the underlying matrix inversion in the original LapSVM.

The work in [Subramanya and Bilmes, 2009] solves a problem on a 120

million node graph, in which the graph-regularized transductive learning formula-

tion is based on minimizing a Kullback-Leibler divergence (KLD) based loss. At

the beginning of the work, the authors provide theoretical analysis and give cer-

tain theoretical properties of the proposed graph-regularized transductive learning

objective function. They prove that AM on the proposed KLD based objective

converges to the true optimum, and provide a test for convergence. Then, in order

to handling large-scale data, they propose a graph node ordering algorithm that

is cache cognizant and leads to a linear speedup in parallel computations. This

ensures that the algorithm can scale to large-scale datasets.

A summary of above mentioned representative works of semi-supervised

learning in large-scale dataset is provided in Table 2.2. From Table 2.2, we ob-

serve that most of existing large-scale semi-supervised learning approaches focus

on single-label annotation. However, a real world images usually has multiple se-

mantics and requires multi-label annotation. The challenging situation for image

annotation is that there is no sufficient labeled images whereas large numbers of
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unlabeled image data may could be far easier to crawled on the web, and annotat-

ing this large-scale unlabeled images with multiple labels is generally unaffordable

for traditional large-scale semi-supervised learning methods. Different from above

mentioned works on large-scale single-label learning, in this thesis, we are particu-

larly interested in efficient multi-label learning for image annotation in large-scale

setting, which will be introduced in Chapter 5.
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Chapter 3

Multi-Label Learning with Label

Exclusive Context

3.1 Introduction

Multi-label learning aims to solve the problem where each image sample can be

assigned with multiple class labels simultaneously. As in a fixed data set, many

concepts are semantically related, and hence the class labels may correlate to each

other. As shown in Figure 3.1(a), the objects {“tree”, “grass”, “sky”} or {“tower”,

“sky”, “cloud”} are frequently contained in the same image and thus form two

groups of co-occurrent labels. As reviewed in Chapter 2, this kind of co-occurrent

context is widely employed by many researchers for image annotation. However,

the performance of multi-label learning could further be improved. Different from

this body of work motivated from label co-occurrence, we exploit in this chapter

a complementary type of context, the label exclusive context, that describes the

negative relationship among class labels. For example, as shown in Figure 3.1(b),
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(a) Co-occurrent labels

(b) Exclusive labels

Figure 3.1: Two types of label context in real-scene images. The label co-occurrent
context as in (a) describes the positive correlation among labels. The label ex-
clusive context as in (b) describes the negative correlation among labels. In this
chapter, we will novelly incorporate the label exclusive context with linear repre-
sentation for visual classification.

the objects {“boats”, “tiger”, “book”} seldom simultaneously appear in a real-

scene image. We call such a kind of negatively correlated labels as exclusive labels.

The label exclusive context has recently been explored in [Desai, Ramanan, and

Fowlkes, 2009; Choi et al., 2010] for the object detection tasks. Here we are

particularly interested in the effect of label exclusive context in the setup of multi-

label image classification. Given a multi-label query image and several groups of

exclusive labels learned from the training images, it is reasonable to expect that

the labels in each group should be exclusively assigned to the predicted label

vector. This motivates us to develop a visual classification framework with which

label exclusive context may be naturally incorporated.
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Figure 3.2: Flowchart of linear representation with exclusive label context.

3.1.1 Scheme Overview

The major contribution of this work is a label exclusive context regularized lin-

ear representation and classification method. It is notoriously hard to impose

repulsive forces between labels. Desai et al. [Desai, Ramanan, and Fowlkes, 2009]

utilize a greedy algorithm to learn and impose repulsive forces for non-maxima

suppression for the object detection task. In this chapter,, the problem of im-

age classification is formulated as an exclusive Lasso [Zhou, Jin, and Hoi, 2010]

model which is a recent advance in sparse learning. Figure 3.2 depicts the work-

ing mechanism of our method. For a given query image feature y, we seek a

linear representation coefficient vector w that best reconstructs y from reference

image features X. The predicted label vector u of the query image is the lin-

ear combination of the reference image label vectors (zero-one vector indicating

multi-label) C = [c1, ..., cn] using the same coefficient vector w (to be estimated),
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i.e., u = Cw. Given a set of exclusive label groups G, we expect that at most

one label inside each exclusive label set g ∈ G will be non-zero in the predicted

label vector u. The problem can be cast as an exclusive Lasso with group overlaps

and affine transformation. To optimize such an variant of eLasso, we develop a

Nesterov-type smoothing approximation [Nesterov, 2005] method to convert the

non-smooth problem to a smooth problem and then solve it using the Accelerated

Proximal Gradient method [Tseng, 2008]. Moreover, in our application, the ex-

clusive label groups are automatically learned using the dense subgraph searching

method [Liu and Yan, 2010]. Empirical studies on the challenging visual classifi-

cation tasks validate the effectiveness of our label exclusive linear representation

and classification method. Flowchart of linear representation with exclusive label

context is shown in Figure 3.2. In this system, we have a dictionary of reference

images X = [x1, ..., xn] with labels C = [c1, ..., cn], and a collection of predefined

or learned exclusive label sets G. Given a query image y, our method tends to

exclusively select labels inside each label set g ∈ G to appear in the predicted

label vector u = Cw where w (to be learned) best reconstructs the query image,

i.e., y ≈ Xw. This model can be cast as an exclusive Lasso problem with group

overlaps and affine transformation. For better viewing, please see original color

pdf file.

3.1.2 Related Work

We briefly review in this subsection several closely related sparse learning tech-

niques utilized in this work.
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3.1.2.1 Sparse Linear Representation for Classification

Linear representation with sparse inducing regularizer has enjoyed considerable

popularity in recent multi-class visual recognition applications [Wright et al., 2009;

Yan and Wang, 2009; Yuan and Yan, 2010]. Given a query image feature and a

dictionary of reference features, the objective of sparse linear representation is to

select a small set of reference images to reconstruct the query image. Such a sparse

representation scheme is typically free of model training and robust to sparse noise.

In this work, we show that the label exclusive context can be elegantly integrated

into linear representation to boost classification performance.

3.1.2.2 Group Sparse Inducing Regularization

Learning models regularized by group sparse inducing penalties have been widely

studied in both machine learning [Yuan and Lin, 2006; Zhao, Rocha, and Yu,

2009] and signal processing fields [Kowalski, 2009; Fornasier and Rauhut, 2008].

Let w ∈ Rn be the n parameters to be regularized. Denote I = {1, ..., n} the

variable index and G = {gi ⊆ I}l
i=1 a set of variable index groups. The group

formation varies according to the given grouping or hierarchical structure. Denote

‖wG‖p,q :=
∑

g∈G ‖wg‖q
p the `p,q-norm defined over groups G, where ‖wg‖q

p :=
(∑

j∈g |wj|p
)q/p

. The `2,1-norm regularizer is used in group Lasso [Yuan and

Lin, 2006] which encourages the sparsity on group level. Jacob et al. [Jacob,

Obozinski, and Vert, 2009] proposed the overlap group Lasso and graph Lasso

as variants of group Lasso to handle overlapping groups. Another group sparsity

inducing regularizer is the `∞,1-norm which is widely used in multi-task learning

problems [Liu, Palatucci, and Zhang, 2009; Zhang, 2006].
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3.1.2.3 Exclusive Lasso

When p = 1, q = 2, the `1,2-norm has recently been studied in the exclusive

Lasso (eLasso) regression [Zhou, Jin, and Hoi, 2010] for the multi-task learning.

Given a set of observed data D = {X, y} in which X ∈ Rm×n is the design matrix

of predictors, and y ∈ Rm is a response vector. The eLasso is defined (in our

notations) as solving the following `1,2-regularized least squares problem

min
w

1

2
‖y −Xw‖2

2 +
λ

2

∑
g∈G

‖wg‖2
1, (3.1)

where λ is a user-specified term trade-off parameter. Unlike the group Lasso[Yuan

and Lin, 2006] regularizer that assumes covariant variables in groups, the eLasso

regularizer models the scenario where variables in the same group are exclusively

selected in the output. It is assumed in [Zhou, Jin, and Hoi, 2010] that the

groups in G are disjoint. In our work, motivated by the practice of multi-label

visual classification, we will investigate the optimization of an important variant

of eLasso with group overlap and affine transformation of parameter vector.

The remainder of this chapter is organized as follows: We present the label

exclusive linear representation and classification framework in Section 3.2. The

optimization procedure is described in Section 3.3. Section 3.4 states a kernel-view

extension of our method in the setting where features are given in form of kernel

matrices. The experimental results on several benchmark visual classification

tasks are given in Section 3.5. We conclude this work in Section 3.6.
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3.2 Label Exclusive Linear Representation and

Classification

We describe in this section our label exclusive linear representation method for

multi-label visual classification. The reference image set is represented as a matrix

X = [x1, ..., xn] ∈ Rm×n where m is the feature dimension and n is the sample

number. The class labels of the reference images are encoded in a matrix C =

[c1, ..., cn] ∈ Rp×n, where p is the number of classes and the elements of label vector

ci are set to be 1 or 0 according to whether image xi containing the object(s) of

the jth class. Here we consider multiple labels, i.e., more than one entries of ci

can be 1.

3.2.1 Label Exclusive Linear Representation

Given a query image with feature y ∈ Rm, the label exclusive linear representation

(LELR) model is given by

min
w

1

2
‖y −Xw‖2

2 +
λ

2

∑
g∈G

‖Cgw‖2
1, (3.2)

where w is the linear reconstruction coefficient vector, G is a group of label sub-

sets, each of which contains several exclusive classes (assumed to be known here,

and we will address soon in Section 3.2.2 how to automatically learn G from ref-

erence set), and Cg is the rows of C indexed in g. The first term measures the

linear reconstruction error of feature y by Xw, while the second term utilizes the

`1,2-norm to encourage the label exclusion behavior in the predicted label confi-

dence vector Cw. Since both terms are convex, the objective in (3.2) is convex.

Apparently, LELR model (3.2) is a variant of the standard eLasso problem (3.1),
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with the following notable differences:

• The groups in G may be overlapping to each other (see Section 3.2.2).

• The groups are defined over the affine transformed output Cw, rather than

on the original parameter vector w.

We will design later on in Section 3.3 an efficient first-order method to optimize

the objective in (3.2). Given the optimal reconstruction coefficient ŵ, the optimal

û = Cŵ can be regarded as a label confidence vector of the query image. Such a

vector can be used for performance evaluation by calculating metrics such as the

average precision (AP).

3.2.2 Learn the Exclusive Label Sets

So far, we assume that the set G of exclusive label groups used in problem (3.2)

is known as a prior. Actually, it can be automatically learned from the training

data. Here we use the graph shift method [Liu and Yan, 2010] to learn a few

groups of exclusive labels as dense subgraphs on a weighted graph G = 〈V, E〉
defined as follows: the node set V := {1, 2, ..., p} contains all the class labels, and

the edge set E ⊆ V × V describes the pairwise exclusiveness between nodes. The

weight matrix W associated with G is given by Wij = 1 if label i and label j do not

simultaneously appear in any training image, and Wij = 0 otherwise. The dense

subgraphs of G are then determined by the graph-shift method [Liu and Yan,

2010]. The nodes in each dense subgraph naturally form, with high confidence,

an exclusive label subset. Note that the exclusive groups learned in this way

are typically overlapping to each other. Taking NUS-WIDE-LITE dataset [Chua

et al., 2009] as an example, it can be seen in the right part of Figure 3.2 that
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the labels “tiger”, “airport”, “map”, “whales”, etc., all belong to more than one

groups.

3.3 Optimization

In this section, we investigate the optimization problem associated with the LELR

model (3.2). Since LELR is a variant of eLasso, one may wish to utilize the

existing eLasso solvers for optimization. However, it comes to our notice that

the eLasso solvers in literature either suffer from slow convergence rate (e.g.,

subgradient methods in [Zhou, Jin, and Hoi, 2010]) or are particularly designed

for standard eLasso (3.1) with disjoined groups (e.g., proximal gradient method

in [Kowalski and Torreesani, 2009]), and thus are not directly applicable to LELR.

This motivates us to seek for more suitable tools to optimizie the objective in (3.2).

One natural thought is to approximate the non-smooth objective in (3.2) by a

smooth function and then solve the latter by utilizing the off-the-shelf smooth

optimization algorithms. Next, we derive a Nesterov’s smoothing optimization

method to achieve this task.

3.3.1 Smoothing Approximation

Let us re-express LELR (3.2) as follows

min
w
{F (w) := f(w) + λh(w)} , (3.3)

where f(w) := 1
2
‖y−Xw‖2

2 is a smooth convex term and h(w) := 1
2

∑
g∈G ‖Cgw‖2

1

is convex but non-smooth. It is standard that ‖Cgw‖1 has a max-structure rep-
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resentation

‖Cgw‖1 = max
‖ug‖∞≤1

〈Cgw, ug〉. (3.4)

By utilizing the Nesterov’s smoothing approximation method [Nesterov, 2005],

the ‖Cgw‖1 in (3.4) can be approximated by the following smooth function

qg,µ(w) := max
‖ug‖∞≤1

〈Cgw, ug〉 − µ

2
‖ug‖2

2, (3.5)

where µ is a parameter to control the approximation accuracy. For a fixed w,

denote ug(w) ∈ R|g| the unique minimizer of (3.5). It is standard that

ug(w) = min

{
1, max

{
−1,

Cgw

µ

}}
. (3.6)

Based on these preliminaries, we now propose to solve the following smooth opti-

mization problem as an approximation to the non-smooth problem (3.3):

min
w
{Fµ(w) := f(w) + λhµ(w)} , (3.7)

where hµ is given by

hµ(w) :=
1

2

∑
g∈G

q2
g,µ(w). (3.8)

Assume that Ω ∈ Rn is a bounded feasible set of interest for w, R := maxw∈Ω ‖w‖1,

and ‖A‖p denotes the induced p-norm of a matrix A, then we have the following

result on approximation accuracy of hµ:

Proposition 1. hµ(x) is a µ-accurate approximation to h(x), that is

hµ(w) ≤ h(w) ≤ hµ(w) + (m‖C‖1R|G|)µ. (3.9)

Proposition 2 shows that for µ > 0, the function hµ can be seen as a uniform

smooth approximation of function h.

Proof of Proposition 2
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Proof. Since 0 ∈ {ug : ‖ug‖∞ ≤ 1}, by (3.5) we get that

0 ≤ qg,µ(w) ≤ max
‖ug‖∞≤1

〈Cgw, ug〉 = ‖Cgw‖1. (3.10)

Therefore it holds that

hµ(w) =
1

2

∑
g∈G

q2
g,µ(w) ≤ 1

2

∑
g∈G

‖Cgw‖2
1 = h(w). (3.11)

It is trivial to check that ‖ug‖∞ ≤ 1 implies ‖ug‖2
2 ≤ |g| ≤ m. Therefore,

qg,µ(w) ≥ max
‖ug‖∞≤1

〈Cgw, ug〉 − µm

2
= ‖Cgw‖1 − µm

2
. (3.12)

Combining (4.9) and (4.10) we get

|qg,µ(w)− ‖Cgw‖1| ≤ µm

2
. (3.13)

Thus

|q2
g,µ(w)− ‖Cgw‖2

1|

= |qg,µ(w)− ‖Cgw‖1| · |qg,µ(w) + ‖Cgw‖1|

≤ µm

2
2‖Cgw‖1 ≤ µm‖C‖1R, (3.14)

which implies that

q2
g,µ(w) ≥ ‖Cgw‖2

1 − µm‖C‖1R. (3.15)

By summarizing both sides of the above inequality over g ∈ G, we immediately

get

hµ(w) ≥ h(w)− µm‖C‖1R|G|. (3.16)

Combining (4.9) and (3.16) leads to (3.9).

Motivated from [Nesterov, 2005, Theorem 1], we derive the following result

stating that hµ is differentiable with Lipschitz continuous gradient:
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Theorem 1. Function hµ(w) is well defined, convex and continuously differen-

tiable. Moreover, its gradient

∇hµ(w) =
∑
g∈G

qg,µ(w)(CT
g ug(w)) (3.17)

is Lipchitz continuous with the constant

Lµ =

(
m +

‖C‖1R

µ

)
‖C‖2

2|G|. (3.18)

Proof of Theorem 1

Proof. From the standard results (see, e.g. [Nesterov, 2005, Theorem 1]) we

have that qg,µ(w) is well defined and continuously differentiable, and its gradi-

ent ∇qg,µ(w) = CT
g ug(w) is Lipschitz continuous with constant

Lg,µ =
‖Cg‖2

2

µ
≤ ‖C‖2

2

µ
. (3.19)

Since hµ(w) is the summation of the squares of qµ(wg), it is also well defined with

gradient given by

∇hµ(w) =
∑
g∈G

qg,µ(w)∇qg,µ(w). (3.20)

To prove the Lipschitz continency of ∇hµ(w), we first show the Lipschitz contin-

uousness of qg,µ(w)∇qg,µ(w):

‖qg,µ(w1)∇qg,µ(w1)− qg,µ(w2)∇qg,µ(w2)‖2

= ‖qg,µ(w1)∇qg,µ(w1)− qg,µ(w1)∇qg,µ(w2)

+qg,µ(w1)∇qg,µ(w2)− qg,µ(w2)∇qg,µ(w2)‖2

≤ |qg,µ(w1)| · ‖∇qg,µ(w1)−∇qg,µ(w2)‖2

+‖∇qg,µ(w2)‖2 · |qg,µ(w1)− qg,µ(w2)|

≤
(‖C‖2

2‖C‖1R

µ
+ ‖C‖2

2m

)
‖w1 − w2)‖2, (3.21)
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where the last inequality follows the basic facts: (i) (4.14), (ii) qg,µ(w1) ≤ ‖Cgw1‖1 ≤
‖C‖1R, (iii) ‖∇qg,µ(w2)‖2 = ‖CT

g ug(w2)‖2 ≤ ‖C‖2

√
m, and (iv) |qg,µ(w1) −

qg,µ(w2)| ≤ ‖C‖2

√
m‖w1 − w2‖2 (due to the boundness of ∇qg,µ in (iii)). By

combining (3.20) and (4.15) we establish the validity of (4.13).

3.3.2 Smooth Minimization via APG

Given a fixed µ > 0, by Theorem 1 it is easy to see that the objective Fµ is

differentiable with gradient

∇Fµ(w) = XT (Xw − y) + λ∇hµ(w), (3.22)

which is Lipschitz continuous with constant

L̃µ = ‖XT X‖2 + λLµ. (3.23)

Therefore, we employ the Accelerated Proximal Gradient method [Tseng, 2008] to

optimize the smoothed LELR problem (4.16). The algorithm is formally described

in Algorithm 1. For a fixed µ, it is shown that APG has O(1/t2) asymptotical

convergence rate bound, where t is the iteration counter. If we describe conver-

gence in terms of the number of iterations needed to reach an ε solution, i.e.,

|Fµ(w)−min Fµ| ≤ ε, then by choosing µ ≈ ε the rate of convergence is O(1/ε). It

is noteworthy that the convergent complexity of Algorithm 1 depends on constant

1/L̃µ which is dominated by the factor µ when it is small. To further accelerate

Algorithm 1 for extremely small µ, one may apply the continuation technique as

suggested in [Becker, Bobin, and Candes, 2011].
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Inputs : X ∈ Rm×n, y ∈ Rm , C, G, λ, µ.
Output: w ∈ Rn

Initialization: Calculate L̃µ by (3.23). Initialize w0, v0 and let
α0 ← 1, t ← 0.
repeat

ut = (1− αt)wt + αtvt,
Calculate ∇hµ(ut) according to (3.17),
vt+1 = vt − 1

αtL̃µ

(
XT (Xut − y) + λ∇hµ(ut)

)
,

wt+1 = (1− αt)wt + αtvt+1,
αt+1 = 2

t+1
, t ← t + 1.

until Converges ;

Algorithm 1: Smooth minimization for LELR

3.4 A Kernel-view Extension

So far, the smooth minimization Algorithm 1 only applies to LELR (3.2) with

raw image features (y,X). However, in the practice of visual classification, the

descriptors are often encoded as similarities or kernel matrix, without the raw

features available. For the purpose of utilizing feature kernels for LELR, we

present in this subsection an extension of LELR to Reproducing Kernel Hilbert

Space (RKHS). The intuition of such a kernel trick is to use a non-linear function

φ to map the reference and query samples from the original space to a higher

dimensional RKHS in which we have φ(xi)
T φ(xj) = k(xi, xj) for certain kernel

function k(·, ·). In this new space, we can write the problem (3.2) as:

min
w

1

2
‖φ(y)− φ(X)w‖2

2 +
λ

2

∑
g∈G

‖Cgw‖2
1, (3.24)

where φ(X) = [φ(x1), ..., φ(xn)]. Note that the calculation in APG iteration of

Algorithm 1 is characterized by inner product of features, and thus can be straight-

forwardly extended to solve problem (3.24). Let K = φ(X)T φ(X) be the reference

feature kernel matrix, and z = φ(X)T φ(y) be the query kernel vector. The kernel-

view of Algorithm 1 for LELR is given in Algorithm 2.
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Inputs : K ∈ Rn×n, z ∈ Rn , C, G, λ, µ.
Output: w ∈ Rn

Initialization: Calculate L̃µ by (3.23). Initialize w1, v1 and let
α0 ← 1, t ← 0.
repeat

ut = (1− αt)wt + αtvt,
Calculate ∇hµ(ut)) according to (3.17),
vt+1 = vt − 1

αtL̃µ
(Kut − z + λ∇hµ(ut)),

wt+1 = (1− αt)wt + αtvt+1,
αt+1 = 2

t+1
, t := t + 1.

until Converges ;

Algorithm 2: Smooth minimization for LELR in kernel-view

3.5 Experiments

To evaluate the effectiveness of LELR for object classification, we systematically

compare it with representative state-of-the-art methods on several multi-label

object classification benchmarks.

3.5.1 Datasets and Features

The PASCAL VOC 2007&2010 are two challenging databases from the PAS-

CAL Visual Object Classes Challenge (VOC) [Everingham et al., 2010]. A total

of 20 object classes are collected from four main categories, i.e. Person, Animal,

Vehicle and Indoor. VOC 2007 and VOC 2010 datasets contain 9,963 and 21,738

images respectively. Both datasets are split into 50% for training/validation and

50% for testing. The distributions of images and objects by class are approxi-

mately equal across the training/validation and test sets. We utilize the training

set as reference image set. We extract several low-level features including SIFT

and its variants [Sande, Gevers, and Snoek, 2010], LBP and HOG by dense sam-

pling strategy in three scales. Each image is represented by Bag-of-Word model
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with spatial pyramid matching [Lazebnik, Schmid, and Ponce, 2006]. These fea-

tures are first transformed to kernel space using χ2 distance and further combined

with a detection kernel as in [Chen et al., ].

The NUS-WIDE-LITE [Chua et al., 2009] is a lite version of NUS-WIDE

database which contains 269,648 images and the associated 5,018 tags. This lite

data set consists of 55,615 images randomly selected from the NUS-WIDE data

set. For each image, an 81-D label vector is maintained to indicate its relationship

to 81 distinct concepts (tightly related to tags yet relatively high-level). For

evaluation, we construct a reference image set of size 27,807 whilst the rest are

used for testing. We extract multiple types of global visual features which include

225-D block-wise color moments, 128-D wavelet texture and 75-D edge direction

histogram. These features are transformed to kernel space using χ2 distance and

linearly combined into a mean feature kernel.

3.5.2 Evaluation Criteria

Following [Zhou et al., 2010], the criteria to evaluate the performance include

Average Precision (AP) for each label (or concept) and Mean Average Precision

(MAP) over all labels. The former is a well-known gauge widely used in the field

of image retrieval, whilst the latter is developed to handle the multi-class and

multi-label problems. All experiments are conducted on a common PC equipped

with 2 Intel quad-core 3.0 GHz CPU and 32GB physical memory.

3.5.3 Results on PASCAL VOC 2007&2010

On VOC 2007, a total number of 11 exclusive label groups are learned, and each

group contains 6 labels in average. We compare LELR with two state-of-the-
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art methods: Locality-constrained Linear Coding (LLC) [Wang et al., 2010] and

Super Vector Coding (SVC) [Zhou et al., 2010], and two reported top ranked

solutions [Everingham et al., a]: the INRIA Flat and INRIA Genetic. Moreover,

we are interested in the performance comparison between label exclusive context

and label co-occurrence context in linear representation and classification. To do

this, we simply replacing the eLasso-type regularizer
∑

g∈G ‖Cgw‖2
1 in LELR with

a graph Laplacian regularizer that enforces label co-occurrence

min
w

1

2
‖y −Xw‖2 +

λ

2
wT CT LCw, (3.25)

where L = D−W , W is a label co-occurrence matrix with the entry Wij counting

the number of times an object with label i appears in a training image with an

object with label j, and D is a diagonal matrix with Dii =
∑

j Wij. We call

such a model as label co-occurrence linear representation (LCLR). The objective

in (3.25) is quadratic and thus can be optimized with closed form solution.

Table 3.1 lists the quantitative results. As can be seen that our LELR

solution outperforms the competing methods in MAP and APs on 18 out of the

20 object classes. On comparison between LELR and LCLR, since both utilize

the same features, the improvement of the former over the latter is supposed to

stem from the fact that label exclusive context is more helpful than label con-

occurrence context in linear representation and classification. The per query time

of LELR is ∼ 0.13 second.

On VOC 2010, a total number of 11 exclusive label groups are learned

on the average of 8 labels per group. The comparing results on VOC 2010

are listed in Table 3.2. In this table, we compare our approach with the Win-

ner’10 system from NUS-PSL team [Everingham et al., b]: the rank-one algorithm

NUSPSL KERNELREGFUSING and the rank-two algorithms NUSPSL MFDETSVM.
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Table 3.1: The APs and MAPs of different image classification algorithms on
the PASCAL VOC 2007 dataset. The INRIA F and INRIA G stand for IN-
RIA Flat and INRIA Genetic, respectively.

AP % INRIA F LLC INRIA G SVC LCLR LELR

aeroplane 74.8 74.8 77.5 79.4 79.7 83.7
bicycle 62.5 65.2 63.6 72.5 76.7 81.2
bird 51.2 50.7 56.1 55.6 52.7 57.8
boat 69.4 70.9 71.9 73.8 71.2 75.2
bottle 29.2 28.7 33.1 34.0 52.0 53.0
bus 60.4 68.8 60.6 72.4 73.5 75.7
car 76.3 78.5 78.0 83.4 86.0 90.3
cat 57.6 61.7 58.8 63.6 62.5 63.8

chair 53.1 54.3 53.5 56.6 58.9 61.4
cow 41.1 48.6 42.6 52.8 53.8 54.0

dining table 54.9 51.8 54.9 63.2 54.3 57.2
dog 42.8 44.1 45.8 49.5 43.3 42.9

horse 76.5 76.6 77.5 80.9 82.5 87.4
motorbike 62.3 66.9 64.0 71.9 73.8 77.1

person 84.5 83.5 85.9 85.1 90.1 92.9
potted plant 36.3 30.8 36.3 36.4 48.1 48.7

sheep 41.3 44.6 44.7 46.5 56.8 57.6
sofa 50.1 53.4 50.9 59.8 60.7 66.2
train 77.6 78.2 79.2 83.3 78.8 84.4

tvmonitor 49.3 53.5 53.2 58.9 68.0 70.9

MAP % 57.5 59.3 59.4 64.0 66.2 69.1

We also fuse the results of LELR and a standard SVM classifier trained on the

same kernel to further improve the final performance as used in [Chen et al., ]. As

can be seen from Table 3.2, LELR outperforms NUSPSL MFDETSVM in MAP

and APs on 18 out of 20 classes, and LELR+SVM outperforms NUSPSL KERNELREGFUSING

in MAP and APs on 14 out of 20 classes. Here we do not report the results by

LCLR since it is inferior to the state-of-the-art and also for ease of presentation

of the table. The per query time of LELR is ∼ 0.2 second.

3.5.4 Results on NUS-WIDE-LITE

On NUS-WIDE-LITE dataset, a total number of 47 exclusive label groups are

learned with averagely 9 labels per group (see the right part of Figure 3.2 for some
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Table 3.2: Performance comparison of different image classification algorithms on
the PASCAL VOC 2010 dataset.

AP % NUSPSL MFD. LELR NUSPSL KER. LELR+SVM

aeroplane 91.9 93.3 93.0 93.1
bicycle 77.1 78.8 79.0 79.3
bird 69.5 71.0 71.6 72.0
boat 74.7 76.7 77.8 77.9
bottle 52.5 52.6 54.3 54.1
bus 84.3 85.2 85.2 85.5
car 77.3 78.5 78.6 78.6
cat 76.2 78.1 78.8 78.9

chair 63.0 64.6 64.5 64.9
cow 63.5 62.5 64.0 63.7

dining table 62.9 63.0 62.7 63.0
dog 65.0 67.8 69.6 70.0

horse 79.5 81.7 82.0 82.2
motorbike 83.2 84.9 84.4 84.7

person 91.2 91.4 91.6 91.6
potted plant 45.5 46.9 48.6 48.6

sheep 65.4 67.4 64.9 71.5
sofa 55.0 57.6 59.6 60.0
train 87.0 88.9 89.4 89.4

tvmonitor 77.2 75.5 76.4 76.6

MAP % 72.1 73.3 73.8 74.3

exemplar groups). We compare LELR with the following five algorithms: KNN,

SVM, LCLR, Entropic Graph Semi-Supervised Classification (EGSSC) [Subra-

manya and Bilmes, 2009] and Large-scale Multi-label Propagation (LSMP) [Chen

et al., 2010]. The last two are semi-supervised methods which make use of the

feature information of test samples. LSMP is our proposed multi-label learning

approach in large-scale dataset in Chapter 5, which is the state-of-the-art algo-

rithm in large-scale multi-label image annotation. All the algorithms utilize the

same features as described in Section 3.5.1.

The MAP results obtained under varying reference set sizes (in percentages

of the training set) are shown in Figure 3.3. Figure 3.4 illustrates the detailed

APs for each of the 81 concepts, with the whole training set as reference set. Our

observations from Figure 3.3 and Figure 3.4 are: (i) under different reference set
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Figure 3.3: The MAP results of our LELR algorithm and the four baselines with
varying reference image set sizes (in percentage) on NUS-WIDE-Lite dataset.

sizes, LELR consistently outperforms all the baseline algorithms in MAP; and

(ii) in Figure 3.4, LELR and LCLR significantly outperform the other comparing

algorithms on some rare concepts (e.g., map, horses, swimmers, waterfall, etc.).

This is because LELR and LCLR are a linear representation model which is free

of explicit model training and thus is relatively insensitive to the imbalance issue.

The LELR per query processing time is ∼ 0.75 second.

3.6 Conclusion

The LELR model is proposed to incorporate label exclusive context into a multi-

label linear representation framework for visual classification. The problem can
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Figure 3.4: The comparison of APs for the 81 concepts using five methods with
the whole training set as reference set on NUS-WIDE-LITE.

be formulated as an eLasso model with group overlaps and affine transformation.

Such a variant of eLasso can be efficiently optimized with Nesterov-type smoothing

approximation method. Extensive comparative experiments on the challenging

real-world visual classification tasks validate that LELR is a powerful model to

boost the performance of linear representation and classification.
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Chapter 4

Multi-Label Learning on

Multi-Semantic Space

4.1 Introduction

In recent years, the semantic-based image annotation has become one of the most

important research directions in multimedia community, which focuses on develop-

ing automatic annotation algorithms to extract the semantic meanings of images.

For cognitive semantics, we usually assign appropriate cognitive concepts to the

image for representing and identifying its visual contents. Affective semantics are

represented in adjective form and describe the intensities of feelings, moods or

sensibility evoked in users when viewing the images, such as Amusement, Awe,

Contentment, Excitement, Anger, Disgust, Fear and Sad [Machajdik and Han-

bury, 2010; Mikels et al., 2005]. For popular cognitive or affective queries, the re-

turned images can fill many result pages in popular search engines, but many will

not satisfy the deeper requirement of complex and multi-semantic retrieval. For
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Figure 4.1: System overview of our proposed Multi-Task Learning scheme for
Image Annotation with Multi-Semantic Labeling (IA-MSL).

example, most commercial systems can handle the individual emotional/cognitive

words well, like searching only for “cat” or searching only with the word “ex-

citing”. But for the case of searching for images with the query “exciting cat”,

the precision of result will be degraded because most images are only precisely

labeled with either affective concepts or cognitive concepts and the desired multi-

semantic labeled sample images are really rare due to the lack of mature and

efficient comprehensive semantic image annotation technique.

Learning to annotate the comprehensive semantics to images in multi-
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semantic spaces is a challenging problem in the real world applications. In this

chapter, we propose a novel and promising approach, namely, Image Annotation

with Multi-Semantic Labeling (IA-MSL), to annotate images simultaneously with

labels in two or more correlated spaces. The key challenge with IA-MSL is the

large number of classes involved in training due to the combination of multiple

semantic spaces. Thus, some classes may suffer from the problem of insufficient

training samples. One naive solution to avoid this issue is to train the classifiers

within each semantic space and then combine the outputs from these semantic

spaces for the ultimate combinational semantic prediction in an enrichment man-

ner, which imposes the conditional independency assumption. More formally, by

saying enrichment of a classifier from two semantic spaces L1 and L2, we mean

to train two such classifiers (with confidence label vector output) in L1 and L2

separately, and then obtain multi-semantic confidence vector y of test sample x

using the following strategy

y = y1 ⊗ y2,

where y1 ∈ R|L1| and y2 ∈ R|L2| are the label confidence vectors of x from semantic

space L1 and L2, respectively, and ⊗ denotes the Kronecker product. In such a

scheme, given an image observation x, we made the semantic space independent

assumption, i.e., P (l1, l2 | x) = P (l1 | x)P (l2 | x), ∀l1 ∈ L1, l2 ∈ L2. Although

simple for implementation, the apparent limitation of enrichment scheme is that it

ignores the correlations among the semantic spaces. To deal with such an issue and

harness the correlations across the semantic spaces, we propose to formulate IA-

MSL as a regularized multi-task discriminative analysis model, where individual

tasks are defined as learning linear discriminative models for individual complex

semantic concepts {(l1, l2) | l1 ∈ L1, l2 ∈ L2}. We propose to learn all the tasks
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in a joint manner by imposing two types of regularization, the graph Laplacian

regularization and exclusive group lasso regularization. The graph Laplacian reg-

ularization captures the correlation clues to refine concept classifier, especially in

cases with insufficient training samples. For each semantic space, since the image

features are typically exclusively shared among different concepts in this space, we

also exploit a so called exclusive-group-lasso regularizer to capture such negative

correlations among category groups, which performs on the unified generic fea-

tures, greatly reducing the cost of extracting different types of feature for different

semantic spaces. Taking the NUS-WIDE-Emotive dataset as an example, in both

emotive space L1 with 8 concepts and cognitive space L2 with 81 concepts, it is

reasonable to assume that if an image feature is important for one of several con-

cepts, it is less likely for this feature to be also important for the other concepts.

Such an exclusive regularization mechanism is empirically shown to be effective to

boost the multi-semantic labeling performance. System overview of our proposed

Multi-Task Learning scheme for Image Annotation with Multi-Semantic Labeling

(IA-MSL) is shown in Figure 4.1. In this figure, the training data are simultane-

ously labeled in both cognitive (81 concepts) and emotive semantic (8 concepts)

spaces. The system is trained with a multi-task linear regression model regularized

by a graph term, and an exclusive group lasso term. The graph term (middle of

the top part) encourages correlation of the 648 = 8×81 emotive-cognitive concept

pairs among tasks. While the exclusive group lasso term encourages sparse feature

sharing across different cognitive concepts under the same emotive category (left

of the top part) and different emotive concepts under the same cognitive cate-

gory (right of the top part), which also captures the negative correlations among

different emotive/cognitive categories.
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4.1.1 Major Contributions

The major contributions of this chapter are three-fold:

• We propose a novel framework for Image Annotation with Multi-Semantic

Labeling (IA-MSL), which exploits the high-level semantic of images from

two or more semi-orthogonal label spaces;

• As an implementation of IA-MSL, we develop a multi-task discriminative

analysis model to learn a proper linear mapping from features to labels. The

proposed model simultaneously considers co-occurrent relationship among

tasks through the graph Laplacian regularization, and the negative relation-

ship among tasks in feature sharing.

• A Nesterov-type smoothing approximation algorithm is developed for effi-

cient optimization of the proposed model. Empirical results on real-world

large scale datasets validate the efficiency and effectiveness of our approach.

4.1.2 Related Work

4.1.2.1 Multi-task Learning

Recently, there have been a lot of interests around multi-task learning (MTL),

both in theory and practice. The idea behind this paradigm is that, when the

tasks to be learned are similar enough or are related in some sense, it may be

advantageous to take into account these relations between tasks. Several works

have experimentally highlighted the benefit of such a framework [Caruana, 1997].

In general, MTL can be addressed through a regularization framework [Evgeniou

and Pontil, 2004]. For example, the joint sparsity regularization favors to learn
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a common subset of features for all tasks [Argyriou, Evgeniou, and Pontil, 2008;

Obozinski, Taskar, and Jordan, 2009], while the exclusive sparsity regularization

is used for exclusive feature selection across tasks in [Zhou, Jin, and Hoi, 2010].

Our method follows the regularized MTL framework. In contrast to the existing

regularization that only considers the model parameters dependent, our proposed

regularization is characterized by data as well as model parameters, and thus is

much more informative.

4.1.2.2 Group Sparse Inducing Regularization

In this section, we briefly recall some related work and the same representation

of Group Sparse Inducing Regularization which is detailed in Section 3.1.2.2.

Let w ∈ Rd be the n parameters to be regularized. Denote I = {1, ..., d}
the variable index and G = {gi ⊆ I}l

i=1 a set of variable index groups. The

group formation varies according to the given grouping or hierarchical struc-

ture. Denote ‖wG‖p,q :=
∑

g∈G ‖wg‖q
p the `p,q-norm defined over groups G, where

‖wg‖q
p :=

(∑
j∈g |wj|p

)q/p

. The `2,1-norm regularizer is used in group Lasso [Yuan

and Lin, 2006] which encourages the sparsity on group level. Jacob et al. [Jacob,

Obozinski, and Vert, 2009] proposed the overlap group Lasso and graph Lasso

as variants of group Lasso to handle overlapping groups. Another group sparsity

inducing regularizer is the `∞,1-norm which is widely used in multi-task learning

problems [Liu, Palatucci, and Zhang, 2009; Zhang, 2006]. When p = 1, q = 2,

the `1,2-norm has recently been studied in the exclusive-Lasso model [Zhou, Jin,

and Hoi, 2010] for the multi-task learning and elitist-Lasso model [Kowalski and

Torreesani, 2009] for audio signal denoising. Unlike the group Lasso regularizer

that assumes covariant variables in groups, the exclusive Lasso regularizer models
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the scenario when variables in the same group compete with each other to be

selected in the output.

4.2 Image Annotation with Multi-Semantic La-

beling

4.2.1 Problem Statement

Given a labeled dataset {xi, li}N
i=1, where xi ∈ Rd is the feature vector of the i-th

image and li is the associated image label. In this study, we assume that li is

obtained from two or more different spaces of labeling. Formally, li = {lki }K
k=1

where lki ⊆ Lk is the label(s) of image i in the k-th labeling space equipped with

label set Lk. It is noteworthy the difference between our multi-semantic labeling

classification and the so called multi-label classification. In the latter problem,

the labels associated with an image is from a unitary semantic space, e.g., object

category. Differently, in our setting, we are interested in the case that the labels

associated with the same image are obtained from different semantic spaces, e.g.,

object category and emotion. Indeed, for each space k, the label lki can be a multi-

label vector in this space. In the following descriptions, for simplicity and clarity

purpose, we consider without loss of generality that the labels are obtained from

K = 2 semantic spaces. Denote L = L1×L2 the Cartesian products of L1 and L2.

Let yi ∈ R|L| be the zero-one label matrix indicating whether xi is jointly labeled

as l1 ∈ L1 and l2 ∈ L2. By concatenating the columns of label matrix yi, we get

an |L| dimensional label vector, which is also denoted by yi in the rest of this

chapter. Given the training feature-label set {xi, yi}N
i=1, we are interested in the
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problem of learning a linear mode y = Wx such that the label of an unseen test

sample can be predicted via this model. Naively, one could utilize the following

multivariate least squares regression (LSR) model

min
W

{
J(W ) :=

1

2
‖Y −WX‖2

}
, (4.1)

where X = [x1, ..., xn] ∈ Rd×n is the feature matrix with each column a training

image feature, Y = [y1, ..., yn] ∈ R|L|×n is the label matrix with each column

a training image label vector, W ∈ R|L|×d is the parameter to be estimated.

Obviously, the proceeding LSR forms an MTL since the objective J in (4.1) can

be rewritten as:

J(W ) =

|L|∑
j=1

1

2
‖Yj −WjX‖2, (4.2)

where Yj ∈ Rn and Wj ∈ Rd are the j-th row of Y and W , respectively. In the

preceding MTL formulation, we are to learn |L| different linear regression models

(tasks) Yj = WjX, j = 1, ..., |L|. In this naive formulation, the tasks are learned

independently to each other.

For better performance, it is often beneficial to take into account the re-

lationships across tasks by imposing certain regularization to the objective (4.2).

Particular, in the setting of our multi-semantic labeling problem, there are two

types of correlations among tasks should be considered.

• Exclusive feature selection: In each semantic space, our objective is

to differentiate the related categories. Motivated by the exclusive feature

sharing previously considered in [Zhou, Jin, and Hoi, 2010], we may expect a

negative correlation among categories, namely, if a visual feature is deemed

to be important for one category, it becomes less likely for this feature

to be an important feature for the other categories. In order to capture
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such an exclusive feature selection nature among categories in each semantic

space, we propose to utilize an `2
2,1-norm regularizer analog to the `2

1-norm

regularizer used in the exclusive Lasso model [Zhou, Jin, and Hoi, 2010].

• Concepts correlation: Another important regularization we should ex-

plore is the semantic relationship between the combinational concepts in L.

This is of particular interest in our work due to the insufficient sample issue

severely occurs in multi-semantic annotation. That is, some of the combina-

tional labels in L are supported by very few or even zero training samples.

For example, in our emotion-category dataset, although the category “dog”

and the emotion “happy” are supported by plenty of samples, the combina-

tional label (“dog”, “happy”) is not supported by any sample in the training

set. Obviously, for any label j without training samples, Yj = 0, and thus

the corresponding Wj will be a zero vector through naive model (4.2). To

handle this issue, one natural way is to propagate the correlation among

concepts to their corresponding model parameters. As we will see shortly,

the Google similarity distance [Cilibrasi and Vitanyi, 2007] is a simple and

effective choice to describe the correlation among concepts.

Next, we describe in detail the two types of regularization we imposed to

the naive MTL model (4.2). Figure 4.1 gives an illustration of the pipeline of the

proposed framework.

4.2.2 An Exclusive Group Lasso Regularizer

In this subsection, we address the regularization of feature exclusive selection

across tasks. Let G1 of size |L1| be a group of label index set in L constructed as
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follows: each element g ∈ G1 is an index set of combinational labels (l1, l2) ∈ L
which share a common l1 ∈ L1. For example, for the category-emotion label

spaces, each group in G1 is the combination of emotion labels of a certain category.

Similarly, we can construct G2 of size |L2| associated with label set L2. Let us

consider the following regularizer:

Ω(W ) :=
1

2

d∑
i=1

(‖W i
G1‖2

2,1 + ‖W i
G2‖2

2,1

)
, (4.3)

where ‖W i
Gk‖2

2,1 =
(∑

g∈Gk ‖W i
g‖2

)2

, k = 1, 2, and W i ∈ R|L| is the i-th column of

W , W i
g ∈ R|L| is the restriction of vector W i on the subset g by setting W i

j = 0

for j 6= g. For each feature i, the `2
2,1-norm regularizer ‖W i

Gk‖2
2,1 can be viewed

as a group Lasso extension of `2
1 regularizer used in exclusive Lasso [Zhou, Jin,

and Hoi, 2010]. Similar to the analysis in [Zhou, Jin, and Hoi, 2010], one can

confirm that ‖W i
Gk‖2

2,1 is sparse inducing and it encourages exclusive selection of

features at the level of group g ∈ Gk. In other words, for each feature i, it tends

to assign larger weights to some important groups while assigning small or even

zero weights to the other groups.

4.2.3 A Graph Laplacian Regularizer

We explore in this subsection the semantic relationships between concepts. Sup-

pose that we are given a similarity matrix P ∈ R|L|×|L| that stores the pairwise

similarity score between concepts. The larger Pjk is, the more similar two concepts

j and k are, and vice verser. We propose to use the following graph regularizer

Ψ(W ) :=
1

2

|L|∑

j,k=1

Pjk ‖ Wj −Wk ‖2 . (4.4)
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The intuition behind the preceding regularizer is that closely related concepts

should have similar regression weights. Different from the Ω(W ) in previous sub-

section that describes the negative correlation among tasks, the graph regularizer

Ψ(W ) models the positive correlation among tasks by transferring the weight in-

formation among neighboring concepts. Such a mechanism is particularly helpful

for robust learning of weights for some combinational concepts only supported

by very few or even zero instances in the training set. Denote L = D − P the

Laplacian matrix where D is a diagonal matrix whose diagonal entries are the

row sums of P . Tr(·) represents the matrix trace operation. We may equivalently

reexpress (4.4) as the following compact form

Ψ(W ) =
1

2
Tr[W T LW ].

Generally speaking, the similarity matrix P can be defined based on any

reasonable co-currency measurement such as Google distance [Cilibrasi and Vi-

tanyi, 2007] and Flickr distance [Wu et al., 2008]. In our implementation, P is

obtained by applying the Normalized Google similarity Distance (NGD) proposed

by Cilibrasi and Vitanyi [Cilibrasi and Vitanyi, 2007]. NGD is simply estimated

by exploring the textual information available on the Web. The distance between

two concepts is measured by the Google page counts when querying both concept

names to the Google search engine. It assumes that the words and phrases ac-

quire meaning from the way they are used in society. Since Google has indexed

a vast number of web pages, and the common search term occurs in millions of

web pages, this database can somewhat reflect the term distribution in society.

Formally, NGD(x, y) between two concepts x and y is defined as

NGD(x, y) =
max{ln f(x), ln f(y)} − ln f(x, y)

ln N −min{ln f(x), ln f(y)} ,
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where f(x), f(y), and f(x, y) in this chapter denote the number of images from

training data containing concept-pair x ∈ L1 × L2 (e.g. emotive-cognitive pair),

y ∈ L1 × L2, both x and y, respectively. N is the total number of images in

training data. We then define P (x, y) = exp{−N(x, y)/η} where η is a tunable

parameter. The similarity matrix P can also be calculated by other co-occurrent

technologies such as Flickr distance [Wu et al., 2008].

4.2.4 Graph Regularized Exclusive Group Lasso

Based on the discussion in the previous two subsections, we propose to extend the

naive MTL model (4.1) to the following graph regularized exclusive Lasso MTL:

min
W



F (W ) := J(W ) + λΩ(W )︸ ︷︷ ︸

exclusive group Lasso

+ γΨ(W )︸ ︷︷ ︸
graph regularizer



 . (4.5)

As aforementioned, Equation (4.5) formulates a regularized MTL with |L| tasks,

each of which learns a linear regression model for certain combinational concept in

L. The first two terms in (4.5) form an exclusive group Lasso objective. The regu-

larizer Ω(W ) encourages the exclusive relationships across tasks. The graph Lapla-

cian regularizer Ψ(W ) enforces the semantic correlation among tasks. Through

the regularized MTL formulation (4.5), the parameters W can be learned in a

joint manner. It is straightforward to verify that the objective F (W ) in (4.5) is

convex but non-smooth since all the three components are convex whereas Ω(W )

is non-smooth. We will develop in the next section an efficient method to optimize

problem (4.5). Once the optimal parameter W ∗ is obtained, the label vector of a

test sample with feature x is given by y = W ∗x. Such a vector can be used for

performance evaluation over testing data.
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4.3 Optimization

The non-smooth structure of Ω(W ) makes the optimization of problem (4.5) a non-

trivial task. The general purpose subgradient method as used in [Zhou, Jin, and

Hoi, 2010] is applicable but it typically ignores the structure of problem and suffers

from slow rate of convergence. Our idea for optimization is to approximate the

original non-smooth objective by a smooth function and then solve the latter by

utilizing some off-the-shelf fast algorithms. In this section, we derive a Nesterov’s

smoothing optimization method [Nesterov, 2005] to achieve this purpose.

4.3.1 Smoothing Approximation

It is standard to know that for any vector p ∈ Rn, its `2-norm ‖p‖2 has a max-

structure representation ‖p‖2 = max‖v‖2≤1〈p, v〉. Based on this simple property

and the smoothing approximation techniques originally from [Nesterov, 2005],

function Ω(W ) can be approximated by the following smooth function

Ωµ(W ) =
1

2

d∑
i=1

(
q2
G1,µ(W i) + q2

G2,µ(W i)
)
, (4.6)

where

qGk,µ(W i) := max
‖V i,k

Gk ‖2,∞≤1

〈W i, V i,k〉 − µ

2
‖V i,k‖2

2. (4.7)

Herein, µ is a parameter to control the approximation accuracy. Formally, we

have the following result on approximation accuracy of Ωµ towards Ω:

Proposition 2. Assume that ‖W i‖2 ≤ R. Then Ωµ(W ) is a µ-accurate approxi-

mation to Ω(W ), that is

Ωµ(W ) ≤ Ω(W ) ≤ Ωµ(W ) + Cµ, (4.8)
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where C ≡ √
2dR (|L1|2 + |L2|2) /2.

Proposition 2 shows that for fixed µ > 0, the function Ωµ can be seen as a uniform

smooth approximation of function Ω.

Proof of Proposition 1

Proof. Since 0 ∈ {V i : ‖V i‖2,∞ ≤ 1}, by (4.7) we get that for k = 1, 2:

0 ≤ qGk,µ(W i) ≤ max
‖V i,k

Gk ‖2,∞≤1

〈W i, V i,k〉 = ‖W i
Gk‖2. (4.9)

Therefore by definition of Ω in (4.3) we get the validity of the first inequality

in (4.8). Since ‖V i
Gk‖2,∞ ≤ 1,

qGk,µ(W i) ≥ max
‖V i,k

Gk ‖2,∞≤1

〈W i, V i,k〉 − µ

2
= ‖W i

Gk‖2,1 − µ|Lk|2
2

. (4.10)

Combining (4.9) and (4.10) we get

∣∣qGk,µ(W i)− ‖W i
Gk‖2,1

∣∣ ≤ |Lk|2µ
2

,

Thus

∣∣q2
Gk,µ(W i)− ‖W i

Gk‖2
2,1

∣∣

=
∣∣qGk,µ(W i)− ‖W i

Gk‖2,1

∣∣ ·
∣∣qGk,µ(W i) + ‖W i

Gk‖2,1

∣∣

≤ |Lk|2µ
2

2‖W i
Gk‖2,1 ≤

√
2µ|L1|‖W i‖2 ≤

√
2µ|Lk|2R,

which implies that

q2
Gk,µ(W i) ≥ ‖W i

Gk‖2
2,1 −

√
2µ|Lk|2R.

By summarizing both sides of the preceding inequality for k = 1, 2 over i = 1, ..., d,

we get the validity of the second inequality in (4.8).
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For a fixed W i, denote V i,k(W i) the unique minimizer of (4.7) for k = 1, 2,

respectively. It is easy to check that for k = 1, 2, ∀g ∈ Gk,

V i,k
g (W i) =

W i
g

max
{
µ, ‖W i

g‖2

} .

The following result states that Ωµ is differentiable and its gradient can be ana-

lytically calculated:

Theorem 2. Function Ωµ(W ) is well defined, convex and continuously differen-

tiable with gradient

∇Ωµ(W ) =
[∇Ωµ(W 1), ...,∇Ωµ(W d)

]
, (4.11)

where for i = 1, ..., d,

∇Ωµ(W i) = qG1,µ(W i)V i,1(W i) + qG2,µ(W i)V i,2(W i). (4.12)

Moreover, ∇Ωµ(W ) is Lipschitz continuous with the constant

Lµ =

(
2
√

2R

µ
+ |L1|2 + |L2|2

)
d. (4.13)

Proof of Theorem 1

Proof. Fixe an i ∈ {1, ..., d}. Analog to the standard analysis and results (see,

e.g. [Nesterov, 2005, Theorem 1]) we can derive that qGk,µ(W i), k = 1, 2, is well

defined and continuously differentiable with gradients given by

∇qGk,µ(W i) = V i,k(W i),

which is Lipschitz continuous with constant

Li
k,µ =

1

µ
. (4.14)
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By chain rule of derivative we get that for k = 1, 2,

1

2
∇q2

Gk,µ(W i) = qGk,µ(W i)V i,k(W i),

which proves the (4.12), and consequently (4.11).

To prove the Lipschitz continency of ∇Ωµ(W ), one may first confirm the

Lipschitz continuousness of 1
2
∇q2

Gk,µ
(W i), k = 1, 2,

‖qGk,µ(W i)∇qGk,µ(W i)− qGk,µ(U i)∇qGk,µ(U i)‖2

= ‖qGk,µ(W i)∇qGk,µ(W i)− qGk,µ(W i)∇qGk,µ(U i)

+qGk,µ(W i)∇qGk,µ(U i)− qGk,µ(U i)∇qGk,µ(U i)‖2

≤ |qGk,µ(W i)| · ‖∇qGk,µ(W i)−∇qGk,µ(U i)‖2

+‖∇qGk,µ(U i)‖2 · |qGk,µ(W i)− qGk,µ(U i)|

≤
(√

2R

µ
+ |Lk|2

)
‖W i − U i‖2 (4.15)

where the last equality follows the basic facts: (i) constant in (4.14), (ii) |qGk,µ(W i)| ≤
‖W i

Gk‖2,1 ≤
√

2R, (iii) ‖∇qGk,µ(U i)‖2 = ‖V i,k(U i)‖2 ≤ |Lk|, and (iv) |qGk,µ(W i)−
qGk,µ(U i)| ≤ ‖Lk|‖W i−U i‖2 (due to the boundness of∇qg,µ in (iii)). By combining

(4.6) and (4.15) we establish the validity of (4.13).

4.3.2 Smooth Minimization via APG

Based on the results in the previous subsection, we now propose to solve the

following smooth optimization problem as an approximation to the non-smooth

problem (4.5):

min
W
{Fµ(W ) := J(W ) + λΩµ(W ) + γΨ(W )} . (4.16)
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Input: X ∈ Rd×n, Y ∈ R|L|×d , G1, G2, λ, γ, µ.
Output: W t ∈ R|L|×d

Initialization: Initialize W0, V0 and let α0 ← 1, t ← 0.
repeat

Ut = (1− αt)Wt + αtVt,
Calculate ∇Ωµ(Ut) according to (4.11), (4.12), and Lµ

according to (4.13).
Vt+1 = Vt − 1

αtLµ

(−(Y −WX)XT + λ∇Ωµ(Ut) + γLW
)
,

Wt+1 = (1− αt)Wt + αtVt+1,
αt+1 = 2

t+1
, t ← t + 1.

until Converges

Algorithm 3: Smooth minimization for Problem (4.16)

Given a fixed µ > 0, by Theorem 2 it is easy to see that the objective Fµ is

differentiable with gradient

∇Fµ(w) = (WX − Y )XT + λ∇Ωµ(W ) + γLW.

Therefore, we can apply any first-order methods, e.g., proximal gradient de-

scent [Nesterov, 2004] and BFGS [Nocedal and Wright, 2006], to optimize the

smooth objective (4.16). In our implementation, for simplicity and efficiency, we

employ the Accelerated Proximal Gradient method [Tseng, 2008] to optimize the

smoothed problem (4.16). The algorithm is formally described in Algorithm 3.

For a fixed µ, it is shown that APG has O(1/t2) asymptotical convergence rate

bound, where t is the time instance. If we describe convergence in terms of the

number of iterations needed to reach an ε solution, i.e., |Fµ(w)−min Fµ| ≤ ε, then

by choosing µ ≈ ε the rate of convergence is O(1/ε). It is noteworthy that the con-

vergent complexity of Algorithm 3 depends on constant 1/Lµ which is dominated

by the factor µ when it is small. To further accelerate Algorithm 1 for extremely

small µ, one may apply the continuation technique as suggested in [Becker, Bobin,

and Candes, 2011].
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4.4 Experiments

To validate the effectiveness of IA-MSL, we conduct extensive experiments on two

large scale image datasets: NUS-WIDE-Emotive; and NUS-WIDE-Object&Scene [Chua

et al., 2009]. The NUS-WIDE-Emotive set contains two types of semantic labels:

cognitive concept category with 81 tags and emotion category with 8 affective

tags. The underlying image diversity and complexity make it a good test bed

for multi-semantic image annotation experiments. The publicly available NUS-

WIDE-Object&Scene is a subset of NUS-WIDE [Chua et al., 2009] obtained after

noisy tag removal. It is also annotated in two sematic spaces: the scenes category

with 33 tags and objects category with 31 tags, which is also suitable for our

test. Moreover, since unitary semantic is a special case of multi-semantic, we also

compare our proposed algorithm with existing methods on NUS-WIDE-Emotive

with individual cognitive semantic and emotive semantic, separately. We report

quantitative results on both datasets, with an emphasis on the comparison with

the state-of-the-art related algorithms in terms of annotation accuracy.

4.4.1 Datasets

NUS-WIDE-Emotive dataset is an emotion version of the publicly available

NUS-WIDE-LITE [Chua et al., 2009] database consisting of 55,615 images. Two

kinds of semantic labels are associated to each image: an 81-D label vector indi-

cating its relationship to 81 cognitive object categories and an 8-D label vector

indicating its relationship to the 8 affective semantic concepts(tightly related to

tags yet relatively high-level). For cognitive semantic, the 81-D object category

label vector for each image is currently available from NUS-WIDE. For the emo-



78

tive semantic concepts, we adopt the similar categories as studied in [Machajdik

and Hanbury, 2010; Mikels et al., 2005]: Amusement, Awe, Contentment, Ex-

citement, Anger, Disgust, Fear, Sad to represent the 8 different types of positive

and negative emotions. To label the emotive ground truth on this dataset, the

images were peer rated in a web-survey where the participants could select the

best fitting emotional category from the eight categories. 10 human subjects with

almost equal gender distribution and with ages ranging from 23 to 30 years old

have helped to achieve the annotation task. For each image the category with

the most votes was selected as the ground truth. Images with inconclusive hu-

man votes were removed from the set. For our experiment, We randomly select

half of the images for training and the rest for testing. On image features, we

use a 1134-D feature as a concatenation of 225-D blockwise color moments, 128-D

wavelet texture, 75-D edge direction histogram, 64-D color histogram, 144-D color

correlogram and 500-D bag of visual words [Chua et al., 2009].

NUS-WIDE-Object&Scene [Chua et al., 2009] are two subsets from NUS-

WIDE. In this chapter, we select 50,000 images from these two datasets. It consists

of two kinds label categories: 31 concepts for object category and 33 concepts for

scene category. Each image is assigned with a 31-D object label vector and a 33-D

scene label vector. For evaluation, we construct a training set of size 25,000 whilst

the rest are used for testing. The same 1134-D feature as used for the previous

dataset is also applied here.

4.4.2 Baselines and Evaluation Criteria

We systematically compare our proposed IA-MSL with six baseline algorithms as

listed in Table 4.1. Amongst them,
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Table 4.1: The baseline algorithms.

Name Methods
SVM Support Vector Machine

SVM-E The enrichment of SVM from individual spaces.
NMTL Naive MTL as in (4.2)

NMTL-E The enrichment of N-SVM from individual spaces.
MTLG Regularized MTL with only graph Laplacian
MTLE Regularized MTL with only exclusive group Lasso

• The support vector machines (SVM) is a baseline for binary-class classifica-

tion problem. Here we use its multi-class version by adopting the conven-

tional one-vs-all strategy.

• The Naive Multi-task Learning (NMTL) refers to the independent MTL

regression model (4.2).

• The SVM-E and NMTL-E are two enrichment (recall the definition of en-

richment method in Section 4.1) methods of SVM and NMTL, respectively.

• The Multi-task Learning with Graph Laplacian (MTLG) and Multi-task

Learning with Exclusive Lasso (MTLE) are two special cases of the regular-

ized MTL framework (4.5), by setting λ = 0 and γ = 0, respectively.

In order to further study the performance in unitary semantic space, we

also compare IA-MSL with several state-of-the-art annotation algorithms as listed

in in Table 4.2, on each semantic space of NUS-WIDE-Emotive.

Many measurements are used to evaluate multi-label annotation perfor-

mance for concepts propagated to the unlabeled images, e.g., ROC curve, pre-

cision recall curve, Average Precision (AP), and so on. In this work, we adopt

one of the most widely used criteria, AUC (area under ROC curve) [Hanley and
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Table 4.2: The baseline algorithms for comparison in individual semantic spaces
of NUS-WIDE-Emotive.

Name Methods
SVM Support Vector Machine
LNP Linear Neighborhood Propagation [Wang and Zhang, 2006]

EGSSC Entropic Graph Classification [Subramanya and Bilmes, 2009]
LSMP Large-scale Multi-label Propagation [Chen et al., 2010]

McNeil, 1982], for annotation accuracy evaluation on each category, and Mean

AUC (MAUC) for average performance evaluation on the entire dataset. All ex-

periments are conducted on a desktop PC equipped with Intel dual-core CPU

(frequency: 3.0 GHz) and 32G bytes physical memory.

4.4.3 Experiment-I: NUS-WIDE-Emotive

On NUS-WIDE-Emotive, we category all labels into 648 (8 emotions×81 objects)

combination classes. The ground truth of 648 labels is derived by simple Cartesian

product of 8 emotive labels and 81 cognitive labels. Some of these 648 multi-

semantic labels suffer from the issue of insufficient training samples, which is not

rare in real world retrieval scenario. In such a multi-semantic setting, we compare

IA-MSL with six baselines listed in Table 4.1. Table 4.3 lists the quantitative

results. Note that for each of the 8 emotive classes, its AUC is obtained by

averaging over the 81 AUCs associated with this emotion but for different object

categories. The AUCs for 81 object categories are calculated similarly but omitted

from this conference submission due to space limit. From these results we are able

to make the following observations:

• IA-MSL simultaneously outperforms the competing methods in MAUC and

AUCs on all of the 8 emotive classes.
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Table 4.3: The MAUCs of different image annotation algorithms on the NUS-
WIDE-Emotive for 648 Concepts.

Methods SVM SVM-E NMTL NMTL-E MTLG MTLE IA-MSL

Amusement 55.7 57.9 60.0 61.2 65.7 66.1 71.1
Excitement 54.2 56.2 64.4 65.2 68.1 71.2 75.4

Awe 56.8 57.9 64.7 64.9 65.0 67.8 69.7
Contentment 67.0 68.9 75.1 76.4 76.4 80.9 83.7

Disgust 30.2 31.3 35.4 36.0 34.1 35.1 37.0
Anger 59.1 60.7 67.2 68.1 68.3 72.0 77.2
Fear 54.2 55.7 59.7 60.0 61.5 64.3 68.9
Sad 61.2 62.3 67.4 67.8 68.1 70.8 73.6

MAUC % 54.8 56.1 62.0 63.1 65.1 66.1 69.6

• On comparison between IA-MSL and NMTL, since both utilize the same

features, the improvement of the former over the latter is supposed to stem

from the fact that IA-MSL explicitly encodes exclusive group lasso and graph

Laplacian regularizer in discriminative analysis. As simplified versions of

IA-MSL, MTLG and MTLE are both superior to NMTL but inferior to

IA-MSL.

• It is interesting to note that the enrichment methods SVM-E and NMTL-

E outperform SVM and NMTL, respectively. This is not surprising since

both SVM and NMTL suffer from the insufficient training sample problem

in multi-semantic spaces, while SVM-E and NMTL-E bypass this problem

by training and testing in unitary space, and then fusing the results in

individual spaces as final output.

To show the convergence performance of the proposed smoothing approxi-

mation optimization scheme developed in Section 4.3, we illustrate in Figure 4.2

the objective value (Fµ(W )) in (4.16) convergence curve on NUS-WIDE-Emotive.

It can be observed that the algorithm converges fast in less than 100 iterates. As

a first-order information, the smoothing approximation method used in IA-MSL
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Table 4.4: The AUCs and MAUC of different image annotation algorithms on the
NUS-WIDE-Emotive for 8 Emotive Categories.

AUC % SVM NMTL MTLG MTLE IA-MSL

Amusement 73.0 76.0 77.9 77.9 78.1
Excitement 34.8 64.6 66.9 66.9 67.2

Awe 28.5 70.0 71.2 71.2 72.2
Contentment 33.2 65.2 67.1 67.0 68.2

Disgust 25.1 68.7 73.3 73.3 75.8
Anger 32.1 64.9 67.3 67.2 69.8
Fear 30.2 68.6 71.2 71.1 72.7
Sad 26.1 73.5 36.9 74.5 75.6

MAUC % 36.1 67.8 70.1 71.1 73.7

Table 4.5: The MAUCs of different image annotation algorithms on the NUS-
WIDE-Emotive for 81 object concepts.

Methods SVM NMTL MTLG MTLE IA-MSL

Group1 71.1 75.4 78.8 80.3 86.4
Group2 57.0 74.5 78.1 79.6 85.7
Group3 53.7 76.2 79.1 80.4 86.4
Group4 54.3 79.1 82.3 83.8 89.9
Group5 40.1 72.4 74.8 76.3 84.3
Group6 35.0 75.0 78.3 79.9 86.3
Group7 25.1 75.6 79.1 80.6 86.8
Group8 9.1 72.6 76.0 77.5 83.4

MAUC % 42.7 75.1 78.5 80.2 86.1

scales well w.r.t. the sample size N and feature dimensionality d. In our practice,

a typical training time on this dataset is about 512 seconds. The per query time

of IA-MSL is about 0.05 second.

By setting the semantic space number K = 1, IA-MSL is immediately ap-

plicable to unitary semantic image annotation. We have also compared IA-MSL

with baselines in Table 4.1. Table 4.4 lists the results for 8 emotive classes. Ta-

ble 4.5 lists the corresponding results for 81 cognitive object categories. To make

the table compacter, we sort the 81 concepts according to the descending order

of training sample number and evenly divide them into 8 groups. The AUCs in

Table 4.5 are obtained by averaging over each of these 8 concept groups. From

the results in both tables we can see that IA-MSL also outperforms the base-
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Table 4.6: The unitary semantic annotation results on NUS-WIDE-LITE.

Methods SVM LNP EGSSC LSMP IA-MSL
MAUC 38.5 74.5 75.0 78.3 81.5
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Figure 4.2: Convergence curve of IA-MSL on NUS-WIDE-EMOTIVE dataset.

lines for unitary semantic annotation. Moreover, we also compare IA-MSL with

several representative unitary semantic image annotation algorithms on NUA-

WIDE-LITE as listed in Table 4.6. LSMP is the algorithm focusing on large-scale

multi-label image annotation, which will be introduced in Chapter 5. It can be

seen that our method outperforms the state-of-the-arts methods.

One direct application of IA-MSL is real world image retrieval with multi-

semantic query words. On NUS-WIDE-Emotive, by inputting the emotive-cognitive

query word “Amusement Dog”, the returned top 6 ranked images by IA-MSL,

NMTL and SVM are shown in Figure 4.3.
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Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6Method

IA-MSL

NMTL

SVM

Figure 4.3: Some exemplar results of query search and ranking by IA-MSL (top
row), NMTL (middle row) and SVM (bottom row) on NUS-WIDE-Emotive with
the query: “Amusement Dog”. The red border indicates correct result while the
green one incorrect.

4.4.4 Experiment-II: NUS-WIDE-Object

&Scene

On this dataset, we category all labels into three setting: 33 scene classes, 31

object classes and 1023 (33 scene×31 concepts) combination classes. The ground

truth of 1023 labels is also derived by Cartesian product of 33 scene labels and

31 object labels. Again, some of these 1023 multi-semantic labels suffer from

the issue of insufficient training samples. We compare IA-MSL with six baseline

algorithms as shown in Table 4.1. Table 4.7 lists the quantitative results. To

make the results more compactly, we sort the 1033 concepts in the descent order

of training sample number and evenly divide them into 5 groups. The AUCs

in Table 4.7 are obtained by averaging over each of these 5 concept groups. As

can be observed that IA-MSL outperforms the competing methods in MAUC and

AUCs on all the 5 concept groups. It is noted that on Group 5, all the involved
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Table 4.7: The MAUCs of different image annotation algorithms on the NUS-
WIDE-Object&Scene for 1023 Concepts.

Methods SVM SVM-E NMTL NMTL-E MTLG MTLE IA-MSL

Group1 61.3 62.5 79.8 81.2 82.5 84.6 86.7
Group2 50.0 51.9 65.8 67.2 71.3 72.4 78.7
Group3 41.2 42.1 50.5 52.1 55.0 56.5 75.8
Group4 5.3 5.5 5.6 6.1 6.2 7.3 13.0
Group5 0 0 0 0 0 0 0

MAUC % 38.0 40.2 47.2 48.6 51.0 52.5 61.3

Table 4.8: The MAUCs of different image annotation algorithms on the NUS-
WIDE-Object&Scene for 31 object concepts.

Methods SVM NMTL MTLG MTLE IA-MSL

Group1 71.2 72.6 77.8 79.9 87.4
Group2 58.9 71.6 76.5 78.6 84.1
Group3 40.4 75.1 80.1 82.2 88.7
Group4 21.3 75.3 80.3 82.4 87.9
Group5 10.1 74.8 79.8 81.3 87.0

MAUC % 44.5 73.8 78.9 81.0 87.5

comparing algorithms return AUC value 0. This is unsurprising since Group 5

is composed of those concepts with very few or even zero training samples, and

thus all the algorithms fail including. A typical running time for training on this

dataset is about 470 seconds. The per query time of IA-MSL is about 0.08 second.

Specially, in the setting of unitary semantic image annotation, we have also

compared IA-MSL with the algorithms listed in Table 4.2. Table 4.8 and Table 4.9

list the corresponding results for 31 objects and 33 scenes, respectively. In order

to present the concise and compact results, we sort both the 31 objects and 33

scenes based on the descent order of training sample number and evenly divide

each of them into 5 groups. The AUCs are obtained by averaging over each of

these 5 groups. From the results, we observe again that IA-MSL also outperforms

the baselines for unitary semantic annotation.
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Table 4.9: The MAUCs of different image annotation algorithms on the NUS-
WIDE-Object&Scene for 33 scene concepts.

Methods SVM NMTL MTLG MTLE IA-MSL

Group1 70.0 72.4 78.8 81.5 87.0
Group2 57.1 59.6 64.5 67.2 83.7
Group3 39.8 73.8 79.3 82.0 88.1
Group4 19.1 72.5 78.9 81.1 87.6
Group5 9.0 72.1 77.6 80.3 86.8

MAUC % 43.3 72.3 77.8 80.5 87.1

4.5 Conclusion

In this chapter, we proposed the IA-MSL method to explore multi-semantic mean-

ing of images based on two or more semi-orthogonal label spaces from multi-

semantic. We formulated this challenging problem as a multi-task discriminative

analysis model, where individual tasks are defined by learning the linear dis-

criminative model for individual complex semantic concepts. We considered all

the tasks in a joint manner by imposing two types of regularization on parame-

ters, the graph Laplacian regularization and exclusive group lasso regularization.

A Nesterov-type smoothing approximation method is developed for model opti-

mization. The proposed algorithm was tested on two image benchmarks built for

multi-semantic annotation. We demonstrated the superiority of IA-MSL in terms

of both accuracy and efficacy. In future, we can attach a few sub-categories to

each category of the aforementioned 8 Emotive Categories to expand our search

range towards real world search scenario.
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Chapter 5

Multi-Label Learning in

Large-Scale Dataset

5.1 Introduction

Generally, there are three crucial subtasks in graph-based multi-label learning al-

gorithms: 1) graph construction; 2) the choice of loss function; and 3) the choice

of regularization term. As argued in [Zhu, 2005], graph construction is supposed

to be more dominating than the other two factors in terms of performance. Un-

fortunately, it is also the area that is most inadequately studied. In Section 5.3.2,

we propose a novel hashing-based scheme for efficient large-scale graph construc-

tion. The solutions to the last two subtasks may affect the final accuracy as well

as the proper optimization strategy (thus the convergence speed). As reported

in [Delalleau, Bengio, and Le Roux, 2005], early work on semi-supervised learning

can only handle 102 ∼ 104 unlabeled samples. Consequently, a large number of

recent endeavors has been devoted to the scalability of semi-supervised learning
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Figure 5.1: Flowchart of our proposed scheme for multi-label propagation. Step-0
and step-1 are the proposed hashing-based l1-graph construction scheme, which
perform neighborhood selection and weight computation respectively; Step-2 is
the probabilistic multi-label propagation based Kullback-Leibler divergence.

methods to large-scale datasets.

The seminal work in [Subramanya and Bilmes, 2009] is most similar to

our work in this chapter. Unlike previous approaches, this method models the

multi-class label confidence vector as a probabilistic distribution, and utilizes the

Kullback-Leibler (KL) divergence to gauge the pairwise discrepancy. The underly-

ing philosophy is that such soft regularization term will be less vulnerable to noisy

annotation or outliers. Here we adopt the same representation and distance mea-
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sure, but apply it to a different scenario of multi-label image annotation, which

demands a new solution.

Several algorithms were recently proposed to exploit the inter-relations

among different labels [Liu et al., 2009]. For example, Qi et al. [Qi et al., 2007]

proposed a unified Correlative Multi-Label (CML) framework to simultaneously

classify labels and model correlations between them. Chen et al. [Chen et al.,

2008] formulated this problem as a sylvester equation. They first constructed

two graphs at the sample level and category level associated with a quadratic

energy function respectively, and then obtain the labels of the unlabeled images

by minimizing the combination of the two energy functions. Liu et. al. [Liu, Jin,

and Yang, 2006] utilized constrained nonnegative matrix factorization (CNMF)

to optimize the consistency between image similarity and label similarity. Un-

fortunately, most of the aforementioned algorithms are of high complexity and

unsuitable to scale up to the large-scale datasets.

5.2 Motivation

Most existing works in the line of graph-based label propagation suffer (or par-

tially suffer) from these disadvantages: 1) they consider each tag independently

when handling multi-label propagation problem, 2) the derived labels for one im-

age are not rankable, and 3) the graph construction process is time-consuming.

And as reviewed in Section 2.3 most recent large-scale algorithms focus on the sin-

gle label case, but the scalability to large number of labels is unclear. To address

the above issues, we propose a new large-scale graph-based multi-label propaga-

tion approach by minimizing the Kullback-Leibler divergence of the image-wise
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label confidence vector and its propagated version via the so-called hashing-based

`1-graph, which is efficiently derived with Locality Sensitive Hashing approach

followed by sparse `1-graph construction within the individual hashing buckets.

Finally, an efficient and convergence provable iterative procedure is presented for

problem optimization. The main contributions of our proposed scheme can be

summarized as follows:

• We propose a probabilistic collaborative multi-label propagation formula-

tion for large-scale image annotation, which is founded on Kullback-Leibler

divergence based label similarity measurement and scalable `1-graph con-

struction.

• We also propose a novel hashing-based scheme for efficient large-scale graph

construction. Locality sensitive hashing [Indyk and Motwani, 1998; And, ;

Mu, Shen, and Yan, 2010] is utilized to speed up the candidate selection

of similar neighbors for one image, which makes the `1-graph construction

process scalable.

The remainder of this chapter is organized as follows. In Section 5.3,

we elaborate on the proposed probabilistic collaborative multi-label propagation

(LSMP) algorithm. Section 5.4 presents analysis on algorithmic complexity and

convergence properties. Experimental results on both middle-scale and large-scale

image datasets are reported in Section 5.5. Section 5.6 concludes this work along

with future work discussion.



91

5.3 Large-Scale Multi-Label Propagation

5.3.1 Scheme Overview

Our proposed large-scale multi-label propagation framework includes three con-

catenating parts: 1) An efficient k-nearest-neighbor (k-NN) search based on lo-

cality sensitive hashing (LSH) approach; 2) sparse `1-graph construction within

hashing buckets; and 3) multi-label propagation based on Kullback-Leibler diver-

gence. Figure 5.1 gives an illustration of the algorithmic pipeline.

5.3.2 Hashing-based `1-Graph Construction

The first step of the proposed framework is the construction of an directed weighted

graph G =< V, E >, where the cardinality of the node set V is m = l + u (de-

note the labeled and unlabeled data respectively), and the edge set E ⊆ V × V

describes the graph topology. Let Vl and Vu be the sets of labeled and unla-

beled vertices respectively. G can be equivalently represented by a weight matrix

W = {wij} ∈ Rm×m. To efficiently handle the large-scale data, we enforce the

constructed graph to be sparse. The weight between two nodes wij is nonzero only

when j ∈ Ni, where Ni denotes the local neighborhood of the i-th image. The

graph construction can thus be decomposed into two sub-problems: 1) how to

determine the neighborhood of a datum; and 2) how to compute the edge weight

wij.

5.3.2.1 Neighborhood Selection

For the first problem, the conventional strategies in previous work can be roughly

divided into two categories:
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• k-nearest-neighbor based neighborhood: wij is nonzero only if xj is among

the k-nearest neighbors to the i-th datum. Obviously, graphs constructed

in this way may ensure a constant vertex degree, avoiding over-dense sub-

graphs and isolated vertices.

• ε-ball neighborhood: given a pre-specified distance measure between two

nodes dG(xi, xj) and a threshold ε. Any vertex xj that satisfies dG(xi, xj) ≤
ε will be incorporated in the neighborhood of the vertex xi, resulting in

nonzero wij. It is easy to observe that the weight matrix of the constructed

graph is symmetric. However, for some vertices beyond a distance from the

others, there is probably no edge connecting to other vertices.

Although dominating the graph-based learning literature, the above two

schemes are both computation-intensive on large-scale dataset, since a linear scan

is required to process a single sample and the overall complexity is O(n2) (n is

the number of all samples). For a typical image data set to annotate, there are

104 ∼ 105 images, from each of which high-dimensional features are extracted. A

naive implementation based on either of these two schemes usually takes several

days to accomplish graph construction, which is definitely unaffordable in terms

of efficacy. Instead, in our implementation we use the locality-sensitive hashing

(LSH) to enhance the efficacy on large-scale data sets.

The basic idea of LSH is to store proximal samples into the same bucket,

which greatly saves the retrieval time at the expense of additional storage of hash

bits. LSH is a recently proposed hashing algorithm family. The most attractive

property of LSH is the theoretic guarantee that the collision probability of two

samples (i.e., projected into the same bucket) is proportional to their similarity
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in feature space. The most popular LSH approach relies on random projection

followed by a threshold-based binarization. Formally, given a random projection

direction v, the whole dataset is splitted into two half-spaces, according to the rule

h(xi) = Boolean(vT xi > 0). The hash table typically consists of k independent

bits, namely the final hash bits are obtained via sequential concatenation H(xi) =

〈h1(xi), . . . , hk(xi)〉. In the retrieval phase, the k-NN candidate set can be safely

confined to be the buckets whose Hamming distances to the query sample are

below a pre-specified small threshold. Prior investigation at the theoretic aspect

reveals that a sublinear retrieval complexity is feasible by the LSH method, which

is a crucial acceleration for the scenario of large-scale image search. Note that in

our implementation, LSH is run for multiple times in all the experiments, and the

neighborhoods are the combined to avoid the case of isolated subgraphs.

5.3.2.2 Weight Computation

A proper inter-sample similarity definition is the core for graph-based label prop-

agation. The message transmitted from the neighboring vertices with higher

weights will be much stronger than the others. Generally, the more similar a

sample is to another sample, the stronger the interaction (thus larger weight)

exists between them. Below are some popular ways to calculate the pairwise

weights:

• Unweighted k-NN similarity : The similarity wij between xi and xj is 1 if

xj is among the k-NN of xi; otherwise 0. For undirected graph, the weight

matrix is symmetric and therefore wij = wji is enforced.

• Exponentially weighted similarity : For all chosen k-NN neighbors, their
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weights are determined as below:

wij = exp

(
−dG(xi, xj)

σ2

)
, (5.1)

where dG(xi, xj) is the ground truth distance and σ is a free parameter to

control the decay rate.

• Weighted linear neighborhood similarity [Roweis and Saul, 2000; Wang and

Zhang, 2006]: In this scheme sample xi is assumed to be linearly recon-

structed from its k-NN. The weights are obtained via solving the following

optimization problem:

min
wij

‖ xi −
∑
j∈Ni

wijxj ‖2 . (5.2)

Typically additional constraints are given to wij. For example, in [Wang

and Zhang, 2006], the constraints wij ≥ 0 and
∑

j wij = 1 are imposed.

In our implementation, we adopt a scheme similar to the idea in [Roweis and

Saul, 2000; Wang and Zhang, 2006], based on the linear reconstruction assump-

tion. Moreover, prior work [Tang et al., 2009] reveals that minimizing the `1 norm

over the weights is able to suppress the noise contained in data. The constructed

graph is non-parametric and is comparably more robust than the other graph

construction strategies. Meanwhile, the graph constructed by datum-wise one-vs-

all sparse reconstruction of samples can remove considerable label-unrelated links

between those semantically unrelated samples to reduce the incorrect information

for label propagation.

Suppose we have an over-determined system of linear equations:

[
xi1 xi2 · · · xik

] × wi = xi, (5.3)
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where xi is the feature vector of the i-th image to be reconstructed, wi is the vector

of the unknown reconstruction coefficients. Let X ∈ Rd×k be a data matrix, each

column of which corresponds to the feature vector of one of its k-NN. In practice,

there are probably noises in the features, and a natural way to recover these

elements and provide a robust estimation of wi is to formulate xi = Xwi + ξ,

where ξ ∈ Rd is the sparse noise term. We can then solve the following l1-norm

minimization problem with respect to both reconstruction coefficients and feature

noise:

argw, ξ min ‖ ξ ‖1 (5.4)

s.t. xi = Xwi + ξ,

wi ≥ 0, ‖ wi ‖1= 1.

This optimization problem is convex and can be transformed into a general

linear programming problem. There exists a globally optimal solution, and the

optimization can be solved efficiently using many available l1-norm optimization

toolboxes like `1-MAGIC [Candès, Romberg, and Tao, 2006].

5.3.3 Problem Formulation

Let Ml = {xi, ri}l
i=1 be the set of labeled images, where xi is the feature vec-

tor of the i-th image and ri is a multi-label vector (its entry is set to be 1 if

it is assigned with the corresponding label, otherwise 0). Let Mu = {xi}l+u
i=l+1

be the set of unlabeled images, and M = {Ml,Mu} is the entire data set. The

graph-based multi-label propagation is intrinsically a transductive learning pro-

cess, which propagates the labels of Ml to Mu.

For each xi, we define the probability measure pi over the measurable space
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(Y,Y). Here Y is the σ-field of measurable subsets of Y and Y ⊂ N (the set

of natural numbers) is the space of classifier outputs. |Y | = 2 yields binary

classification while |Y | > 2 implies multi-label. In this paper, we focus on the

multi-label case. Hereafter, we use pi and ri for the i-th image, both of which

are subject to the multinomial distributions, and pi(y) is the probability that xi

belongs to class y. As mentioned above, {rj, j ∈ Vl} encodes the supervision

information of the labeled data. If it is assigned a unique label by the annotator,

rj becomes the so-called “one-hot” vector (only the corresponding entry is 1, the

rest is 0). In case being associated with multiple labels, rj is represented to be a

probabilistic distribution with multiple non-zero entries.

We propose the following criterion to guide the propagation of the supervi-

sion information, which is based on the concept of KL divergence defined on two

distributions:

D1(p) =
l∑

l=1

DKL

(
ri ‖ pi

)
+ µ

m∑
i=1

DKL

(
pi ‖

∑

j∈N(i)

wijpj

)
, (5.5)

and the optimal solution p∗ = argp min D1(p).

Here DKL(ri ‖ pi) denotes the KL divergence between ri and pi, whose for-

mal definition for the discrete case is expressed as DKL(ri ‖ pi) =
∑

y ri(y) log ri(y)
pi(y)

.

The first term in D1(p) trigger a heavy penalty if the estimated value pi deviates

from the pre-specified ri. Note that unlike most traditional approaches, there is

no constraint for the rigid equivalence between pi and ri. Such a relaxation is able

to mitigate the bad effect of noisy annotations. The second term of D1 stems from

the assumption that pi can be linearly reconstructed from the estimations of its

neighbors, thus penalizing the inconsistency between the pi and its neighborhood

estimation. Unlike previous works [Wang and Zhang, 2006] using squared-error
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(optimal under a Gaussian loss assumption), the adopted KL-based loss penalizes

relative error rather than absolute error in the squared-error case. In other words,

they can be regarded as the regularization terms from prior supervision and local

coherence respectively. µ is a free parameter to balance these two terms.

If µ,wij ≥ 0, then D1(p) is convex. Since no closed-form solution is feasible,

standard numerical optimization approaches such as interior point methods (IPM)

or method of multipliers (MOM) can be used to solve the problem. However, most

of these approaches guarantee global optima yet are tricky to implement (e.g., an

implementation of MOM to solve this problem would have seven extraneous pa-

rameters) [Subramanya and Bilmes, 2009]. Instead, we utilize a simple alternating

minimization method in this work.

Alternating minimization is an effective strategy to optimize functions of

the form f(x, y) where x, y are two sets of variables. In many cases, simultane-

ous optimizing over x and y is computationally intractable or unstable, while

optimizing over one set of variables with the other fixed is relatively easier.

Formally, a typical alternating minimization loops over two sub-problems, i.e.,

x(t) = argx min f(x, y(t−1)) and y(t) = argy min f(x(t), y). An example for alter-

nating optimization is the well-known Expectation-Maximization (EM) algorithm.

Note that D1 in Equation (5.5) is not amenable to alternating optimization. We

further propose a modified version by introducing a new group of variables {qi},
which is shown as below:

D2(p, q) =
l∑

l=1

DKL(ri ‖ qi) + µ

m∑
i=1

DKL(pi ‖
∑

j∈N (i)

wijqj)

+η

m∑
i=1

DKL(pi ‖ qi). (5.6)

In the above, a third measure qi is introduced to decouple the original term



98

µ
∑m

i=1 DKL

(
pi ‖

∑
j∈N(i) wijpj

)
. qi can actually be regarded as a relaxed version

of pi. To enforce consistency between them, the third term
∑m

i=1 DKL(pi ‖ qi) is

incorporated. The proof of convexity of D1(p) and D2(p, q) is given below.

Proof of Convexity of D1(p) and D2(p, q)

Proof. The convexity of D1(p) is obvious if DKL(ri ‖ pi) and DKL(pi ‖
∑

j∈N(i) wijpj)

prove convex. Consequently, to justify the convexity of D1(p), first we elaborate

on the convexity of KL divergence defined on two probability mass functions,

which has already been studied in the fields of both information theory [Cover

and Thomas, 1991] and convex optimization [Boyd and Vandenberghe, 2004].

Specifically, for DKL(p ‖ q) defined on two pairs of probability mass func-

tions (p1, q1) and (p2, q2), the convexity of DKL equivalently implies the following

fact:

DKL(λp1 + (1− λ)p2 ‖ λq1 + (1− λ)q2) ≤ λDKL(p1 ‖ q1)

+ (1− λ)DKL(p2 ‖ q2), (5.7)

where λ ∈ [0, 1]. The correctness of the above inequality is clear by applying the

log-sum inequality [Cover and Thomas, 1991], i.e.,

(
n∑

i=1

ai

)
log

∑n
i=1 ai∑n
i=1 bi

≤
n∑

i=1

ai log
ai

bi

,

on both the left and right sides of the following inequality:

DKL(λp1 + (1− λ)p2 ‖ λq1 + (1− λ)q2) =

∑
y

(λp1(y) + (1− λ)p2(y)) log
λp1(y) + (1− λ)p2(y)

λq1(y) + (1− λ)q2(y)
.
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It is easily verified that

DKL(λp1 + (1− λ)p2 ‖ λq1 + (1− λ)q2) ≤
∑

y

λp1(y) log
λp1(y)

λq1(y)
+

∑
y

(1− λ)p2(y) log
(1− λ)p2(y)

(1− λ)q2(y)

= λDKL(p1 ‖ q1) + (1− λ)DKL(p2 ‖ q2). (5.8)

Thus DKL(ri ‖ pi) is convex. And likewise the convexity of DKL(pi ‖
∑

j∈N(i) wijpj) can be justified, observing that
∑

j∈Nk(i) wijpj is a convex, linear

combination of several variables. Hence D1(p) is convex.

Using similar tricks, D2(p, q) is also demonstrated to be convex.

5.3.4 Part I: Optimize pi with qi Fixed

With {qi, i = 1 . . .m} fixed, the optimization problem is reduced to the following

form:

p∗ = argp min D2(p, q) (5.9)

s.t.
∑

y

pi(y) = 1, pi ≥ 0, ∀ i.

The above constrained optimization problem can be easily transformed into

an unconstrained one using the Lagrange multiplier:

p∗ = argp min D2(p, q) +
m∑

i=1

λi(1−
∑

y

pi(y)). (5.10)

For brevity, let Lp , D2(p, q) +
∑m

i=1 λi(1 −
∑

y pi(y)). Recall that any

locally optimal solutions should be subject to the zero first-order derivative, i.e.,

∂Lp

∂pi(y)
= µ

(
log pi(y) + 1− log

∑

j∈N (i)

wijqj(y)
)

+η
(
log pi(y) + 1− log qi(y)

)− λi

= 0. (5.11)
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From Equation (5.11), it is easily verified that (let γ = µ + η):

pi(y) = exp

(
µ log

∑
j∈N (i) wijqj(y) + η log qi(y)− γ + λi

γ

)
.

Recall that λi is the Lagrange coefficient for the i-th sample and unknown.

Based on the fact
∑

y pi(y) = 1, λi can be eliminated and finally we obtain the

updating rule:

pi(y) =

exp

(
µ
γ

log
∑

j∈N (i)

wijqj(y)) + η
γ

log qi(y)

)

∑
y exp

(
µ
γ

log
∑

j∈N (i)

wijqj(y) + η
γ

log qi(y)

) . (5.12)

5.3.5 Part II: Optimize qi with pi Fixed

The other step of the proposed alternating optimization is to update qi with

pi fixed. Unfortunately, it proves that the same trick used in subsection 5.3.4

cannot be applied to the optimization of qi, due to the highly non-linear term

log
(∑

j∈Ni
wijqj(y)

)
. To ensure that qi is still a valid probability vector after

updating, we set the updating rule as:

qnew
i = qold

i + Uh, (5.13)

where the column vector of matrix U ∈ Rd×(d−1) is constrained to be summed

0. Denote e to be a column vector with its all entries equal to 1, then we have

eT U = 0. An alternative view of this relationship is that U is the complementary

subspace of the one spanned by 1√
n
e, thus UUT = I − 1

n
eeT also holds.

Vector h in each iteration should be carefully chosen so that the updated

value of qnew
i results in a non-trivial decrease of the overall objective function.

Denote Lq , D2(p, q) and the value of qi at the t-th iteration as q
(t)
i , we have

∇Lh(q
(t)
i ) , ∂Lq(q

(t)
i + UT h)

∂h
= UT ∂Lq

∂qi

∣∣∣
qi=q

(t)
i

. (5.14)
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Note that in each iteration h is typically initialized as 0, thus h = −α∇Lh(q
(t)
i )

is a candidate descent direction (α is a parameter to control the step size). By

substituting it into Equation (5.13), we obtain the following updating rule:

q
(t+1)
i = q

(t)
i − αUUT ∂Lq

∂qi

∣∣∣
qi=q

(t)
i

= q
(t)
i − α(I − 1

n
eeT )

∂Lq

∂qi

∣∣∣
qi=q

(t)
i

. (5.15)

Input: An directed weighted sparse graph G =< V, E > of the
whole image dataset M = {Ml,Mu}, where Ml = {xi, ri}l

i=1 is
the labeled image set and Mu = {xi}l+u

i=l+1 is the set of unlabeled
images. xi is the feature vector of the i-th image and ri is a multi-
label confidence vector for xi.
Output: The convergent probability measures pi and qi.
Initialization: Randomly initialize {pi ≥ 0,

∑
y pi(y) = 1} and

{qi ≥ 0,
∑

y qi(y) = 1}.
for pi and qi are not convergent do

Optimize pi with qi Fixed:

pi(y) =
exp

(
µ
γ

log
∑

j∈N (i)

wijqj(y))+ η
γ

log qi(y)

)

∑
y exp

(
µ
γ

log
∑

j∈N (i)

wijqj(y)+ η
γ

log qi(y)

) .

Optimize qi with pi Fixed:
q
(t+1)
i = q

(t)
i − α(I − 1

n
eeT )∂Lq

∂qi
, where α lies in the range defined in

Equation (5.18).
end for

Algorithm 4: Probabilistic Collaborative Multi-Label Propagation

In this way, the pursuit of the descent direction with respect to qi is trans-

formed into an equivalent problem taking h as variable, which is further solved by

calculating ∂Lq

∂qi
. For completeness, we list the concrete value of an entry of ∂Lq

∂qi
:

∂Lq

∂qi(y)
= −ri(y)

qi(y)
− µ

∑

∀k: i∈Nk

wkipk(y)∑
j∈Nk

wkjqj(y)
− η

pi(y)

qi(y)
. (5.16)

One practical issue is the feasible region of parameter α. An arbitrary α

probably cannot ensure that the updated p
(t+1)
i in Equation (5.15) stays within
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Figure 5.2: The distribution of the number of nearest neighbors (denote as k) in
our proposed LSMP.

the range [0, 1]. A proper value of α should ensure:

0 ≤ qi − αUUT ∂Lq

∂qi

∣∣∣
qi=q

(t)
i

≤ 1. (5.17)

Denote v = UUT ∂Lq

∂qi

∣∣
qi=q

(t)
i

. It is easy to verify that

0 ≤ α ≤ min

{
max

{
qi(y)

v(y)
,

qi(y)− 1

v(y)
, ε

}}
. (5.18)

In practice, α can be adaptively determined from q
(t)
i . The whole process

of optimization is illustrated in Algorithm 4. The resultant pi is adopted to infer

the image tags, as it connects both ri and qi.

5.4 Algorithmic Analysis

5.4.1 Computational Complexity

Overall speaking, the computational complexity of the proposed algorithm consists

of two components: the cost of hashing-based `1-graph construction, and the cost
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of KL-based label propagation. The efficacy of traditional graph construction as in

[Yuan, Li, and Zhang, 2007; Tang et al., 2009] hinges on the complexity of k-NN

retrieval, which is typically O(n2) (n is the number of images) for a naive linear-

scan implementation. Our proposed LSH-based scheme guarantees a sublinear

complexity by aggregating visually similar images into the same buckets, greatly

reducing the cardinality of the set of candidate neighbors. Formally, recent work

points out the lower bound of LSH is only slightly high than O(n log(n)), which

drastically reduces the computational overhead of graph construction compared

with traditional O(n2) complexity.

On the other hand, for our proposed KL-guided label propagation proce-

dure, it has O(n k l) computation in each iteration, where k denotes the averaged

number of nearest neighbors for a graph vertex and l is the total number of labels.

Actually, most label propagation methods based on local confidence exchange have

the same complexity. The consumed time in real calculation mainly hinges on the

value of k. In Figure 5.2 we plot the distribution of k obtained via the proposed

`1-regularized weight computation, which reaches its peek value around k = 35.

This small k value indicates that `1 penalty term is able to select much compacter

reconstruction basis for a vertex. In contrast, to obtain nearly optimal perfor-

mance, previous works usually take k > 100 (see Figure 5.3). In implementation,

we find that the subtle reduce of k results in a drastic reduce of the running time

(see more details in the experimental section).

5.4.2 Algorithmic Convergence

The above two updating procedures are iterated until converged. For the ex-

periments on NUS-WIDE dataset, generally about 50 iterations are required for



104

10 20 30 50 100 150 200 300 500 800 1000 1500 2000
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

The value of k

A
ve

ra
ge

 P
re

ci
si

on
 (

A
P

)

 

 

EGSSC
LNP
k−NN

Figure 5.3: The performance of three baseline algorithms with respect to the
number of nearest neighbors (denote as k).

the convergency of the solution. An exemplar convergency curve is shown in

Figure 5.4.

5.5 Experiments

To validate the effectiveness of our proposed approach on large-scale multi-label

datasets, we conduct extensive experiments on the real-world image dataset NUS-

WIDE [Chua et al., 2009], which contains 269,648 images accompanied with to-

tally 5,018 unique tags. Images in this dataset are crawled from the photo shar-

ing website Flickr by using its public API. The underlying image diversity and

complexity make it a good testbed for large-scale image annotation experiments.

Moreover, a subset of NUS-WIDE (known as NUS-WIDE-Lite) obtained after

noisy tag removal is also publicly available. We provide quantitative study on

both the lite dataset and the full NUS-WIDE dataset, with an emphasis on the
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Figure 5.4: Convergence curve of our proposed Algorithm on NUS-WIDE dataset.

comparison with five state-of-the-art related algorithms in terms of accuracy and

computational cost.

5.5.1 Datasets

NUS-WIDE [Chua et al., 2009]: The dataset contains 269,648 images and the

associated 5,018 tags. For evaluation, we construct two image pools from the

whole dataset: the pool of labeled images is comprised of 161,789 images whilst

the rest are used for the pool of unlabeled images. For each image, an 81-D label

vector is maintained to indicate its relationship to 81 distinct concepts (tightly

related to tags yet relatively high-level). Moreover, to testify the performance

stability of various algorithms, we vary the percentage of labeled images selected

from the labeled image pool (in implementation it is varying from 10% to 100%

increased by a step of 10%. We introduce the variable τ ∈ [0, 1] for it). The

sampled labeled images are then amalgamated with the whole set of unlabeled

images (107,859 in all). We extract multiple types of local visual features from
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Figure 5.5: The distribution of 81 concepts in the training data of NUS-WIDE
and NUS-WIDE-Lite when τ = 100%.

the images (225-D block-wise color moments, 128-D wavelet texture and 75-D

edge direction histogram).

NUS-WIDE-Lite: As stated above, this dataset is a lite version of the whole

NUS-WIDE database. It consists of 55,615 images randomly selected from the

NUS-WIDE dataset. And the labels of each image are also like those of NUS-

WIDE, an 81-D label vector is set to indicate its relationship to 81 distinct con-

cepts. As done on NUS-WIDE, three types of local visual features are also ex-

tracted for this dataset. We randomly select about half of the images as labeled

and the rest to be unlabeled. Again, we use the same sampling strategy on the

labeled set to perform the stability test. Figure 5.5 illustrates the distribution

of 81 concepts in the training data of NUS-WIDE and NUS-WIDE-Lite when

τ = 100%.
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5.5.2 Baselines and Evaluation Criteria

In the experiments, five baseline algorithms as shown in Table 5.1 are evaluated

for comparative study. Amongst them, the support vector machines (SVM) is

originally developed to solve binary-class or multi-class classification problem.

Here we use its multi-class version by adopting the one-vs-one method. The se-

lected baselines includes several state-of-the-art algorithms for semi-supervised

learning. The linear neighborhood propagation (LNP) [Wang and Zhang, 2006]

bases on a linear-construction criterion to calculate the edge weights of the graph,

and disseminates the supervision information by a local propagation and updat-

ing process. The EGSSC [Subramanya and Bilmes, 2009] is an entopic graph-

regularized semi-supervised classification method, which is based on minimizing a

Kullback-Leibler divergence on the graph built from k-NN Gaussian similarity as

introduced in sub-section 5.3.2.1 and 5.3.2.2. The SGSSL [Tang et al., 2009] is a

sparse graph-based method for semi-supervised learning by harnessing the labeled

and unlabeled data simultaneously, which considers each label independently.

The criteria to compare the performance include Average Precision (AP)

for each label (or concept) and Mean Average Precision (MAP) for all labels. The

former is a well-known gauge widely used in the field of image retrieval, whilst the

latter is developed to handle the multi-class or multi-label cases. For example,

in our application MAP is obtained by averaging the APs on 81 concepts. All

experiments are conducted on a common desktop PC equipped with Intel dual-

core CPU (frequency: 3.0 GHz) and 32G bytes physical memory.

For the experiments on NUS-WIDE-Lite, the proposed method is compared

with all the five baseline algorithms. While on the NUS-WIDE, the results from

SGSSL is not reported due to its incapability to handle dataset in such large scale.
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Table 5.1: The Baseline Algorithms.

Name Methods
KNN k-Nearest Neighbors [Duda, Stork, and Hart, 2000]
SVM Support Vector Machine [Collobert et al., 2006]
LNP Linear Neighborhood Propagation [Wang and Zhang, 2006]

EGSSC Entropic Graph Classification [Subramanya and Bilmes, 2009]
SGSSL Sparse Graph-based Semi-supervised Learning [Tang et al., 2009]

5.5.3 Experiment-I: NUS-WIDE-LITE (56k)

In this experiment, we compare the proposed algorithm with five baseline algo-

rithms. The results with varying numbers of labeled images (controlled by the

parameter τ) are presented in Figure 5.6. Below are the parameters and the

adopted values for each method: for KNN, there is only one parameter k for

tuning, which stands for the number of nearest neighbors and is trivially set as

500. For SVM algorithm, we adopt the RBF kernel. For its two parameters γ

and C, we set γ = 0.6 and C = 1 in experiments after fine tuning. For LNP

algorithm, one parameter α is adjusted, which is the fraction of label information

that each image receives from its neighbors. The optimal value is α = 0.95 in our

experiments. There are three parameters µ, ν and β in EGSSC, where µ and ν

are used for weighting the Kullback-Leibler divergence term and Shannon entropy

term respectively and β ensures the convergence of the two similar probability

measures. The optimal values are set as µ = 0.1, ν = 1 and β = 2 here. For

our proposed algorithm, we set µ = 10 and η = 5. MAP of these six methods is

illustrated in Figure 5.7.

Our observations from Figure 5.6 are described as follows:

• Our proposed algorithm LSMP outperforms the other baseline algorithms

significantly when selecting different proportions of labeled set. For example,
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Figure 5.6: The results of the comparison of LSMP and the five baselines with
varying parameter τ on NUS-WIDE-Lite dataset.

with 10 percent of labeled images selected, LSMP has an improvement 16.6%

over SGSSL, 58.5% over EGSSC, 107.6% over LNP, 137.2% over SVM, and

154.5% over KNN. The improvement is supposed to stem from the fact that

our proposed algorithm encodes the label information of each image as a unit

confidence vector, which imposes extra inter-label constraints. In contrast,

other methods either consider the visual similarity graph only, or considers

each label independently.

• With the increasing number of labeled images, the performances of all algo-

rithms consistently increase. When τ ≤ 0.6, the algorithm SGSSL outper-

forms the other two state-of-art algorithms LNP and EGSSC significantly.

However, when τ > 0.6, the improvement of SGSSL over the others is lower.

The proposed method keeps higher MAP value than other five methods over
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Figure 5.7: The comparison of APs for the 81 concepts using six methods with
τ = 1.

all values of τ .

Recall that the proposed algorithm is a probabilistic collaborative multi-

label propagation algorithm, wherein pi(y) expresses the probability for the i-th

image to be associated with the y-th label. A direct application for this proba-

bilistic implication is the tag ranking task. Some exemplar results of tag ranking

are shown in Figure 5.8.

5.5.4 Experiment-II: NUS-WIDE (270k)

In this experiment, we compare the proposed LSMP algorithm with four state-

of-the-art algorithms on the large-scale NUS-WIDE dataset for multi-label image
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Figure 5.8: The tags ranking results of LSMP in NUS-WIDE-LITE.

annotation. As in previous experiments, we modulate the parameter τ to vary the

percentage of the labeled images used in the experiments and carefully tune the

optimal parameters in each method for fair comparison. For KNN, the optimal

value is k = 1000. For SVM algorithm, we set λ = 0.8 and C = 2. For LNP

method, the optimal value is α = 0.98. In the experiment of EGSSC, the best

values are µ = 0.5, ν = 1 and β = 1. For our proposed LSMP algorithm,

µ = 15 and η = 8. The results of all algorithms are shown in Figure 5.9 and the

results with respect to each individual concept are presented in Figure 5.10. From

Figure 5.10, we can observe that

• On the large-scale real-world image dataset, the proposed algorithm outper-

forms other algorithms significantly at all values of τ . For example, when

Table 5.2: Executing time (unit: hours) comparison of different algorithmson the
NUS-WIDE dataset.

Algorithms Graph Construction Time Label Estimation Time Total Time
KNN 143.6 0.7 144.3
SVM 0 132.5 132.5
LNP 143.6 0.2 143.8

EGSSC 143.6 2.4 146
LSMP 31.4 0.3 31.7
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Figure 5.9: The results of the comparison of LSMP and the four baselines with
varying parameter τ on NUS-WIDE.

τ = 0.1, LSMP has an improvement 53.5% over EGSSC, 112.6% over LNP,

197.2% over SVM, and 220.5% over KNN. Compared with the performance

on NUS-WIDE-Lite, the best performance of LSMP in NUS-WIDE is 0.193,

which is smaller than the MAP value in the Lite version. The performance

degradation is primarily attributed to the increase of data scale (the size of

labeled image pool in NUS-WIDE is 170K, while for the Lite version it is

only 27K).

• With the increasing parameter τ , the performances of all algorithms also

increase. When τ ≤ 0.6, the algorithm EGSSC outperforms LNP signifi-

cantly, but for τ > 0.6, the improvement of EGSSC than LNP is negligible.

The proposed method LSMP also keeps higher MAP value than all baselines

over all feasible values of τ similar to the case on NUS-WIDE-LITE, which



113

Figure 5.10: The comparison of APs for the 81 concepts with τ = 1.0 on NUS-
WIDE.

validates the robustness of our proposed algorithm.

We also provide the recorded running time for different algorithms on NUS-

WIDE, as shown in Table 5.2. A salient efficacy improvement can be observed

from our proposed method.

5.6 Conclusion

In this chapter we proposed and validated an efficient large-scale image annotation

method. Our contributions lie in both the hashing-accelerated `1-graph construc-

tion, and KL-divergence oriented soft loss function and regularization term in

graph-based modeling. The optimization framework utilizes the inter-label rela-
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tionship and finally returns a probabilistic label vector for each image, which is

more robust to noises and can be used for tag ranking. The proposed algorithm is

tested on several publicly-available image benchmarks built for multi-label annota-

tion, including the publicly available largest NUS-WIDE data set. We showed the

superiority of our proposed method in terms of both accuracy and efficacy. Our

future work will follow two directions: 1) extend the image annotation datasets to

web-scale and further validate the scalability of our proposed method; and 2) de-

velop more elegant algorithms for KL-based label propagation which shows better

convergent speed.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this dissertation, we first addressed the multi-label learning problems for se-

mantic image annotation using two paradigms: multi-label learning on traditional

single semantic space and multi-label learning on multiple semantic spaces. We

then presented a novel and efficient sparse graph based multi-label learning scheme

for large-scale image annotation. We summarize our research as follows:

1) We presented a label exclusive context regularized multi-label linear

representation framework for semantic image annotation, which is formulated as

an eLasso model with group overlaps and affine transformation.

2) We proposed a multi-semantic multi-label learning framework for se-

mantic image annotation, in which the multi-task linear discriminative model is

correlated by imposing the exclusive group lasso regularization for competitive

feature selection, and the graph Laplacian regularization to deal with insufficient

training sample issue.
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3) We introduced an efficient KL-divergence based multi-label learning

framework for large-scale image annotation, which is based on hashing-accelerated

`1-graph construction.

The validity and the performances of these proposed approaches were demon-

strated by extensive experiments on the challenging real-world benchmarks: PAS-

CAL VOC 2007&2010, NUS-WIDE-Emotive dataset, and NUS-WIDE dataset. In

this chapter, we summarize this dissertation with a review of our main research

contributions, and discuss new directions for future research.

6.1.1 Multi-Label Learning with Label Exclusive Context

In this dissertation, we proposed a Label Exclusive Linear Representation (LELR)

model to incorporate label exclusive context into a multi-label linear representa-

tion framework for multi-label learning. The proposed label exclusive context

described the negative relationship among class labels. Given a set of exclusive

label groups, the proposed LELR model enforces repulsive assignment of the labels

from each group to a query image. For the solution of LELR, we formulated it as

an eLasso model with group overlaps and affine transformation. Such a variant

of eLasso was efficiently optimized with Nesterov-type smoothing approximation

method. Extensive experiments on the challenging real-world visual classification

tasks validate that LELR is a powerful model to boost the performance of linear

representation and classification.

6.1.2 Multi-Label Learning on Multi-Semantic Space

To handle and explore the annotation problem of images contained comprehensive

semantics, we developed a novel and promising approach called Image Annotation
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with Multi-Semantic Labeling (IA-MSL), to annotate multi-semantic meaning of

images based on two or more semi-orthogonal label spaces from multi-semantic.

We formulated this challenging problem as a multi-task discriminative analysis

model, where individual tasks are defined by learning the linear discriminative

model for individual complex semantic concepts. We considered all the tasks in a

joint manner by imposing two types of regularization on parameters: 1) the graph

Laplacian regularization to deal with the problem of insufficient training samples;

and 2) the exclusive group lasso regularization for competitive feature selection.

For model optimization, we introduced a Nesterov-type smoothing approximation

method. The proposed algorithm was tested on two image benchmarks built

for multi-semantic annotation: NUS-WIDE-Emotive dataset, and NUS-WIDE-

Object&Scene. We validated the superiority of IA-MSL in terms of both accuracy

and efficacy.

6.1.3 Multi-Label Learning in Large-Scale Dataset

We further developed and validated an efficient sparse graph multi-label learning

method for large-scale image annotation, whereby both the efficacy and accuracy

of annotation were enhanced. Different from previous large-scale approaches that

propagate over individual label independently, we encoded the tag information of

each image to the proposed large-scale multi-label propagation (LSMP) scheme, in

which the Kullback-Leibler divergence was employed for problem formulation. We

then performed the multi-label propagation on the hashing-accelerated `1-graph,

which was efficiently derived with Locality Sensitive Hashing approach followed by

sparse `1-graph construction within the individual hashing buckets. An efficient

and convergence provable iterative procedure was also presented for problem opti-
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mization. Finally, the whole optimization framework returned a probabilistic label

vector for each image, which was more robust to noise and could be used for tag

ranking. Extensive experiments on several publicly-available image benchmarks

well validated the effectiveness and scalability of the proposed approach.

6.2 Future Work

Despite the significant progress made in this thesis, there remain several open

exciting challenges for multi-label learning of semantic image annotation. In the

followings, we discuss some interesting topics that we will explore in our future

research agenda.

1) Multi-Label Learning with Label Exclusive Context

The implementation and optimization of the proposed Label Exclusive Lin-

ear Representation (LELR) model should be improved for multi-label learning

with large number of categories (e.g. ImageNET [Deng et al., 2009] which con-

tains 5247 categories.). Since LELR is a variant of eLasso, one may wish to utilize

the existing eLasso solvers for optimization. However, we observe that the eLasso

solvers in literature either suffer from slow convergence rate (e.g., subgradient

methods in [Zhou, Jin, and Hoi, 2010]) or are particularly designed for standard

eLasso with disjoined groups (e.g., proximal gradient method in [Kowalski and

Torreesani, 2009]), and thus are not directly applicable to LELR. In this thesis,

we first approximate the non-smooth objective in by a smooth function and then

solve the latter by utilizing the off-the-shelf Nesterov’s smoothing optimization

method. However, from the experimental results of LELR model, we found that
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the executing time of LELR increases with the size of concept set in image dataset.

For example, the per query time of LELR in PASCAL VOC 2007&2010 contain-

ing 20 concepts is about 0.2 second, and the per query time in NUS-WIDE-LITE

including 81 concepts is about 0.75 second. This motivates us to seek more ef-

ficient approach to optimizie the objective function of LELR in order to handle

large number of concepts in real-world problem.

2) Multi-Label Learning on Multi-Semantic Space

The proposed Image Annotation with Multi-Semantic Labeling (IA-MSL)

method should be extended towards real world search scenario. Due to the pop-

ularity of photo sharing websites, the contents of images are enriched and more

diverse than ever before. How to effectively annotate these images on a wide

variety of semantics and topics for improved image search performance is a chal-

lenging problem. In this thesis, the proposed IA-MSL method has been designed

to annotate images simultaneously with labels in two or more semantic spaces.

But with the increasing of the number of semantic space in image corpus, a large

number of classes will be involved in training due to the combination of multiple

semantic spaces. As a result, many classes will suffer from the problem of insuffi-

cient training samples. The worst case is that some classes do not have training

samples. This motivates us to further explore the IA-MSL algorithm and expand

the search range towards real world search scenario.

3) Multi-Label Learning in Large-Scale Dataset

More elegant algorithms for the proposed KL-based large-scale multi-label

propagation (LSMP) scheme should be developed in order to get better conver-
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gent speed. As proven in this thesis, the objective function of LSMP is convex,

and hence LSMP has a global optima for the solution. But there is no closed

form solution for the objective function, which may affect the convergent perfor-

mance. Since no closed-form solution is feasible, standard numerical optimization

approaches such as interior point methods (IPM) or method of multipliers (MOM)

can be used to solve the problem. However, most of these approaches guarantee

global optima yet are tricky to implement (e.g., an implementation of MOM to

solve this problem would have seven extraneous parameters) [Subramanya and

Bilmes, 2009]. Although we adopt a simple alternating minimization method to

tackle the objective function and the implementation of LSMP is efficient, the

convergent performance may be improved if a more suitable algorithms is chosen

and exploited to solve the objective function of LSMP.
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