

IMPROVING PRODUCT-RELATED PATENT

INFORMATION ACCESS WITH

AUTOMATED TECHNOLOGY ONTOLOGY

EXTRACTION

WANG JINGJING

(B. Eng.)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48670055?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

DECLARATION

ii

ACKNOWLEDGEMENTS

Firstly, I am grateful to my supervisors Prof. Lu Wen Feng and Prof. Loh Han

Tong, for their supervision and help. I would like to thank Prof. Fuh Ying Hsi the

examiner of my PhD written Qualifying Examination. Moreover, I would like to

thank panel members of my PhD oral Qualifying Examination, also examiners of

my thesis and oral defense: Prof. Poh Kim Leng and Prof. Ang Marcelo Jr

Huibonhoa. I would also like to thank Prof. Seah Kar Heng, the chairman of my

oral defense.

Next, I would like to thank my seniors - Prof. Liu Ying and Dr. Zhan Jiaming.

I appreciate their suggestions and help. I also want to thank Prof. Fu Ming Wang

for his kindness, help and encouragement.

Then, I want to thank my friends, including Dr. Gong Tianxia (Centre for

Information Mining and Extraction, NUS); Dr. Xue Yinxing (Data Storage

Institute, A*STAR); Dr. Liu Xin, and Mr. Tu Weimin (Bioinformatics and Drug

Design group, NUS); Dr. Mu Yadong (Digital Video Multimedia Lab, Columbia

University); Dr. Yan Feng (Harvard University); and finally Dr. Niu Sihong, Dr.

Fang Hongchao and Dr. Li Haiyan (manufacturing division, Department of

Mechanical Engineering, NUS).

Lastly, I wish to thank my parents for their support and love.

iii

TABLE OF CONTENTS

DECLARATION ... I

ACKNOWLEDGEMENTS .. II

TABLE OF CONTENTS ... III

SUMMARY ... VI

LIST OF TABLES .. VII

LIST OF FIGURES ... VIII

LIST OF ABBREVIATIONS .. X

CHAPTER 1 INTRODUCTION ... 1

1.1 BACKGROUND .. 1

1.2 MOTIVATIONS ... 3

1.2.1 Current Patent Information Access .. 3

1.2.2 Relational Model Extraction ... 6

1.2.3 Functional Model Extraction .. 8

1.2.4 Specific Patent Information Access .. 10

1.3 HYPOTHESIS .. 10

1.4 TECHNOLOGY ONTOLOGY... 11

1.4.1 Definition of Technology Ontology ... 11

1.4.2 Examples of S‐Model Generation ... 12

1.4.3 Comparison with Existent Models .. 14

1.5 SCOPE AND OBJECTIVES ... 15

1.6 ORGANIZATION .. 16

CHAPTER 2 LITERATURE REVIEW .. 17

2.1 ONTOLOGY LEARNING AND ONTOLOGY EXTRACTION ... 17

2.2 PATENT MAP GENERATION .. 18

2.3 INFORMATION EXTRACTION .. 19

2.4 CLAIM PARSING ... 22

2.5 GRAPH SIMILARITY MEASURES .. 23

2.6 SUMMARY .. 23

CHAPTER 3 TECHNOLOGY ONTOLOGY FRAMEWORK .. 25

3.1 FRAMEWORK OVERVIEW.. 25

iv

3.2 SYSTEM OVERVIEW ... 26

3.2.1 Effect‐oriented Search Engine .. 27

3.2.2 Patent Growth Mapper .. 28

3.3 SUMMARY .. 29

CHAPTER 4 EXTRACTION OF TECHNOLOGY ENTITY AND EFFECT ENTITY 30

4.1 PROBLEM DEFINITION ... 30

4.2 PROPOSED METHOD ... 31

4.2.1 Pre‐processing .. 31

4.2.2 CRFs with Tag Modification ... 32

4.2.3 Pattern‐based Extraction ... 34

4.3 EVALUATION .. 35

4.3.1 Dataset ... 35

4.3.2 Evaluation Measures .. 36

4.3.3 Results .. 36

4.4 SUMMARY .. 41

CHAPTER 5 EFFECT‐ORIENTED SEARCH ENGINE .. 42

5.1 E‐MODEL EXTRACTION BASED ON DEPENDENCIES ... 42

5.2 QUERY EXPANSION ... 44

5.3 QUERY‐DOCUMENT MATCHING .. 46

5.4 RE‐RANKING .. 47

5.5 SEARCH ENGINE SYSTEM .. 48

5.6 CASE STUDY: EFFECT‐ORIENTED PATENT RETRIEVAL .. 49

5.7 SUMMARY .. 51

CHAPTER 6 INDEPENDENT CLAIM SEGMENT DEPENDENCY SYNTAX 52

6.1 PECULIARITIES OF CLAIM SYNTAX ... 52

6.2 PRACTICAL PROBLEMS OF DIRECT PARSING .. 55

6.3 BASIC IDEA OF ICSDS .. 58

6.4 PROPERTIES OF ICSDS .. 58

6.5 ICSDS PARSER ... 59

6.5.1 Tokenization and POS Tagging .. 59

6.5.2 Claim Segment Segmentation .. 59

6.5.3 Claim Segment Feature Recognition .. 60

6.5.4 Claim Segment Parsing .. 61

6.5.5 Assembling ... 63

6.6 EXAMPLES OF ICSDS PARSING .. 64

6.7 EVALUATION .. 64

v

6.8 SUMMARY .. 66

CHAPTER 7 GRAPH SIMILARITY MEASURES .. 67

7.1 GRAPH REPRESENTATION ... 67

7.2 GRAPH SIMILARITY SCORING ... 67

7.2.1 Weighted Node‐to‐Node Scoring ... 68

7.2.2 Iterative Node‐to‐Node Scoring ... 69

7.3 EXAMPLES OF GRAPH SIMILARITY MEASURES ... 70

7.4 EVALUATION OF ITERATIVE NODE‐TO‐NODE SCORING ... 73

7.4.1 Experimental Setup .. 73

7.4.2 Experimental Results .. 74

7.5 SUMMARY .. 79

CHAPTER 8 PATENT GROWTH MAPPER .. 80

8.1 NETWORK FOR CLUSTERING .. 80

8.2 TWO‐DIMENSIONAL COORDINATE SYSTEM .. 81

8.3 CORE TECHNOLOGY SELECTION ... 83

8.4 CASE STUDY: PATENT GROWTH MAP ... 84

8.5 SUMMARY .. 86

CHAPTER 9 CONCLUSIONS AND RECOMMENDATIONS ... 88

9.1 FINAL EVALUATION OF THE HYPOTHESIS .. 88

9.2 CONTRIBUTIONS ... 88

9.3 RECOMMENDATIONS FOR FUTURE WORK ... 90

BIBLIOGRAPHY ... 93

APPENDIX I SYNTACTIC PATTERNS FOR EXPRESSING EFFECT ... 103

APPENDIX II TYPES OF SEQUENTIAL NUMBER ... 106

vi

SUMMARY

This thesis focuses on patent text mining and knowledge reuse for product

design and development. With the increase in the number of issued patents and the

enhancement of patent awareness, patent disputes become more and more

frequent. To facilitate information reuse and avoid patent infringement, this thesis

defines a new ontology, called technology ontology and proposes a framework to

utilize the technology ontology. The technology ontology emphasizes on two

aspects of a technology: its effect and its structure. Two challenges were

addressed: technology ontology extraction and technology comparison.

The automated model extraction was treated as a Named Entity Recognition

problem and a parsing problem, respectively. The Named Entity Recognition

system was recognized in a cutting edge patent information access evaluation. To

realize patent claim parsing, a new dependency grammar framework was

proposed. It makes efficient and effective claim parsing possible.

For the technology comparison, a new graph similarity measure is proposed.

The proposed similarity measure can overcome the weakness of previous graph

similarity measures. Moreover, it demonstrates its superiority in a patent

classification problem.

Two applications are given. The first application is an effect-oriented patent

search engine, which offers more focused search results than conventional patent

search engine. The second application is a patent visualization tool attached to the

effect-oriented patent search engine. It is able to automatically generate patent

growth map that groups technologies and facilitates the selection of core

technologies.

vii

LIST OF TABLES

TABLE 1-1 AN EXAMPLE OF RELATIONAL MODEL .. 6

TABLE 4-1 THE ENTITY DISTRIBUTION ... 35

TABLE 7-1 NINE GRAPHS IN VSM .. 71

TABLE 7-2 THE SIMILARITY COMPARISON WITH VSM ... 72

TABLE 7-3 THE SIMILARITY SCORES BASED ON WEIGHTED NODE-TO-NODE SCORING 72

TABLE 7-4 THE SIMILARITY SCORES BASED ON ITERATIVE NODE-TO-NODE SCORING 73

TABLE 7-5 TEN CLASSES AND THE ARRANGEMENT OF TRAINING SET AND TEST SET 74

TABLE 8-1 THE THRESHOLD SIMILARITY VALUE AND CORRESPONDING CONNECTIVITY RATE 85

TABLE 9-1 THE FINAL EVALUATION OF THE HYPOTHESIS ... 88

TABLE 9-2 THE SUMMARY OF CONTRIBUTIONS .. 89

viii

LIST OF FIGURES

FIGURE 1-1 THE SHARE CHANGE BASED ON THE NUMBER OF PATENTS RELATED TO MOBILE DEVICE . 2

FIGURE 1-2 AN EXAMPLE OF RANKING MAP ... 5

FIGURE 1-3 AN EXAMPLE OF MATRIX MAP (TECHNOLOGY VS. EFFECT) ... 7

FIGURE 1-4 AN EXAMPLE OF TECHNICAL TREND MAP DESCRIBING THE CHANGES OF PRECISION

SCORES .. 8

FIGURE 1-5 MODIFICATION PROCESS OF A FUNCTION MODEL, WHERE A RECTANGLE DENOTES A

COMPONENT AND A LINE DENOTES A FUNCTION .. 9

FIGURE 1-6 THE DRAWING AND THE S-MODEL OF THE PATENT NUMBERED US6182321 13

FIGURE 3-1 THE TECHNOLOGY ONTOLOGY FRAMEWORK ... 25

FIGURE 3-2 THE OVERALL SYSTEM VIEW FOR PROPOSED METHODS ... 27

FIGURE 4-1 THE F-MEASURE OF ALL SYSTEMS ON PATENT TOPICS ... 37

FIGURE 4-2 THE F-MEASURE OF ALL SYSTEMS ON PAPER TOPICS ... 37

FIGURE 4-3 THE RECALL OF NUSME SYSTEM RUNS ON PATENT DATA .. 38

FIGURE 4-4 THE PRECISION OF NUSME SYSTEM RUNS ON PATENT DATA .. 39

FIGURE 4-5 THE RECALL OF NUSME SYSTEM RUNS ON PAPER DATA .. 40

FIGURE 4-6 THE PRECISION OF NUSME SYSTEM RUNS ON PAPER DATA .. 40

FIGURE 5-1 EXAMPLES FOR EXPRESSING PROPERTY CHANGE ... 44

FIGURE 5-2 THE DERIVATION RELATIONS BETWEEN SYNSETS .. 45

FIGURE 5-3 THE QUERY-DOCUMENT MATCHING .. 47

FIGURE 5-4 THE RE-RANKING IN THE SEARCH ENGINE ... 48

FIGURE 5-5 THE INTERFACE OF THE PATENT SEARCH ENGINE .. 49

FIGURE 5-6 THE INTERFACE OF SEMANTICS SELECTION ... 50

FIGURE 5-7 AN EXAMPLE OF SEARCH RESULTS .. 50

FIGURE 6-1 AN EXAMPLE OF EXTRACTING S-MODEL WITH DEPENDENCIES 52

FIGURE 6-2 THE FREQUENCY OF LENGTH ... 56

FIGURE 6-3 THE RELATION BETWEEN LENGTH AND TIME ... 57

FIGURE 6-4 THE SYSTEM OVERVIEW OF THE ICSDS PARSER .. 59

FIGURE 6-5 AN EXAMPLE FOR EXPLAINING DEPENDENCY RULES AND CONSTRAINTS 62

ix

FIGURE 6-6 AN EXAMPLE OF THE ICSDS PARSING ... 64

FIGURE 6-7 THE COMPARISON OF THE PARSING TIME ... 65

FIGURE 7-1 NINE EXAMPLE GRAPHS. A CIRCLE DENOTES A NODE. A LINE DENOTES AN EDGE. A “T#”

IN A CIRCLE DENOTES A TERM LABELED ON THE NODE. ... 70

FIGURE 7-2 THE DISTRIBUTION OF RUNNING EPOCH OF ITERATIVE GRAPH SIMILARITY SCORING 74

FIGURE 7-3 THE DISTRIBUTION OF RUNNING TIME OF ITERATIVE GRAPH SIMILARITY SCORING 75

FIGURE 7-4 THE K-NN WITH COSINE SIMILARITY. SCORE REPORTED IS F1 MEASURE. 76

FIGURE 7-5 THE SVM WITH DIFFERENT C. SCORE REPORTED IS F1 MEASURE. 76

FIGURE 7-6 METHOD COMPARISON: SVM, K-NN, AND K-NN WITH GRAPH SIMILARITY. SCORE

REPORTED IS F1 MEASURE. ... 77

FIGURE 7-7 THE AVERAGE SIMILARITY OF TRUE NEGATIVE ... 78

FIGURE 8-1 THE FOUR QUADRANTS OF THE PATENT GROWTH MAP .. 82

FIGURE 8-2 AN EXAMPLE OF GROWTH MAP WITH Θ FROM 0.1 TO 0.9 ... 84

FIGURE 8-3 AN EXAMPLE OF GROWTH MAP WITH Θ = 0.8, WHERE TWO MOST IMPORTANT GROUPS

ARE HIGHLIGHTED ... 85

x

LIST OF ABBREVIATIONS

ACE Automatic Content Extraction

AI Artificial Intelligence

ASTN Average Similarity of True Negative

BIO Begin, Inside, Outside

CAD Computer-Aided Design

CRFs Conditional Random Fields

DIPRE Dual Iterative Pattern Relation Extraction

E-model Effect model

EPO European Patent Office

E-S model Effect-Structure model

HMM Hidden Markov Model

HTML HyperText Markup Language

ICSDS Independent Claim Segment Dependency Syntax

IE Information Extraction

IP Intellectual Property

IPC International Patent Classification

IR Information Retrieval

JPO Japan Patent Office

KIPO Korean Intellectual Property Office

k-NN k-Nearest Neighbor

MPEP Manual of Patent Examining Procedure

MUC Message Understanding Conference

MuST Multi-modal Summarization for Trend task

xi

NCPA New Comprehensive Patent Analysis approach

NER Named Entity Recognition

NII National Institute of Informatics

NIST National Institute of Standards and Technology

NLP Natural Language Processing

NTCIR NII Test Collection for IR systems

OIE Open Information Extraction

OWL Web Ontology Language

PMO Patent Metadata Ontology

PGM Patent Growth Map

POS Part-Of-Speech

RE Relation Extraction

SAO Subject-Action-Object

SIPO State Intellectual Property Office of the People’s Republic of China

S-model Structure model

SUMO Suggested Upper Merged Ontology

SVM Support Vector Machine

TCMLs Traditional Chinese Medicine Language system

TRIZ TIPS, the Theory of Inventive Problem Solving

UML Unified Modeling Language

USPC U.S. Patent Classification system

USPTO United States Patent and Trademark Office

VSM Vector Space Model

WIPO World Intellectual Property Organization

1

CHAPTER 1

INTRODUCTION

1.1 Background

A patent is an official document, and a form of Intellectual Property (IP). A

patent also refers to a right. The United States Patent and Trademark Office

(USPTO) defines a patent as an IP right granted by the Government of the United

States of America to an investor “to exclude others from making, using, offering

for sale, or selling the invention throughout the United States or importing the

invention into the United States” for a limited time in exchange for public

disclosure of the invention when the patent is granted. This right has been

established over 200 years. The first United States Patent Act was passed into law

in 1790. The United States Constitution, which was adopted in 1789, is the

foundation of the patent law.

A product-related patent refers to any patent that contains information

pertaining to product design and development. Such information includes but is

not limited to a product, a design, a technology, a process or a kind of material.

From an engineering angle, a product must be engineered, discrete, and physical

(Ulrich & Eppinger, 2008). This definition excludes magazine, sweater, or

software from the scope of the product.

Product-related patents are important for avoidance of IP dispute and

breakthrough of technical barriers. With the increase in the number of issued

patents and the enhancement of people’s patent awareness, patent disputes

become more and more frequent. A recent example is about Google, Microsoft

and Apple. David Drummond, the senior vice president and chief legal officer of

Google, released a blog entitled “when patents attack Android” on 3 August 2011.

David said that Android’s success has yielded something else: a hostile organized

campaign against Android by Microsoft, Oracle, Apple and other companies,

waged through bogus patents; they are doing this by seeking $15 licensing fees for

every Android device and attempting to make it more expensive. David pointed

2

out that a smart phone might involve as many as 250,000 (largely questionable)

patent claims, and the competitors want to impose a “tax” for these dubious

patents that makes Android devices more expensive for consumers. On 22 May

2012, Google acquired mobile phone maker Motorola Mobility. This deal was

worth $12.5 billion. Google said its purchase is based in large part on Motorola

Mobility’s large stash of patents.

(a) (b)

Figure 1-1 The share change based on the number of patents related to mobile
device

According to data from MDB Capital, which is Wall Street’s only IP

investment bank, Google only had 317 patents related to mobile device at the

beginning of August 2011. In contrast, the number of patents related to mobile

device owned by Microsoft and Apple is 2594 and 477, respectively. It means that

Google, compared to its two major competitors, is in the worst position, as shown

in Figure 1-1(a). The acquisition of Motorola Mobile gives Google a total of 1023

mobile device patents, tripling Google’s store of patents and overtaking that of

Apple, as shown in Figure 1-1(b). The acquisition helps Google to maintain its

growth in the mobile device industry. That may be why it was reported that if

Google successfully acquires Motorola Mobility, a new era of IT troika will dawn.

The value of patents is not limited to IP right; patents are important available

source of knowledge that can support technology reuse and facilitate product

design and development. Patents provide lots of novel and complete ideas, which

usually cannot be found in other publications. As an exchange of IP right, a patent

must disclose complete and detailed information about how to make the invention

and how to use the invention, by which anyone in the same industry can easily

706

317

477

2594

 Microsoft
 Apple
 Google
 Motorola Mobility

1023

477

2594

 Microsoft
 Apple
 Google

3

understand, use and make the invention. Patent databases are often more effective

for innovative requirements gathering than academic publications and thesis

databases (Engler & Kusiak, 2008).

Therefore, the importance of patent search step in the product design and

development process (Ulrich & Eppinger, 2008) should be highlighted. In

practice, the efficiency and effectiveness of patent search and analysis relies on

available patent processing tools.

1.2 Motivations

This study is motivated by the weakness of current patent search and patent

analysis methodologies and the progress of two product-related text information

extraction problems: relational model extraction and functional model extraction.

1.2.1 Current Patent Information Access

Current patent information access means, including patent search engines and

patent analysis tools, are designed for general use. They are usually too general

and may not support product design and development well. Thirty different

implementations of patent management systems were studied (Briggs, Iyer &

Carlile, 2007) and it was concluded that current technologies are typically used by

individuals with a general understanding, such as consultants or academics, and

are less useful for technical specialists or attorneys that require detailed

knowledge about specific technical domains.

Patent search engines are designed for searching and querying. Anyone of the

World’s five major patent offices, namely United States Patent and Trademark

Office (USPTO), European Patent Office (EPO), Japan Patent Office (JPO), State

Intellectual Property Office of the People’s Republic of China (SIPO), and Korean

Intellectual Property Office (KIPO), had built its own patent database and search

engine. Moreover, a patent classification system is usually built to organize and

manage patents, and to facilitate patent retrieval in a specific domain. Typical

patent classification systems are U.S. Patent Classification (USPC) system,

Japanese F-term system, and International Patent Classification (IPC) of World

Intellectual Property Organization (WIPO).

4

Patent analysis tools are designed for abstracting and theorizing. They usually

start from a set of patents that are obtained from a patent search engine. Moreover,

they often offer visualization function to enhance information access.

Methodologically, patent analysis relies on citation analysis (Han & Park, 2006),

keyword-based document representation (Lee, Jeon & Park, 2011; Lee, Yoon &

Park, 2009) and bibliometrics. The keyword-based document representation

represents a document in terms of words it contains. In Vector Space Model

(VSM), a patent document is typically digitalized into a vector, each entry of

which corresponds to a meaningful term or theme (Manning, Raghavan & Schütze,

2008). The co-occurrence of keywords can be utilized for classification or

clustering, e.g., keyword-based similarity measures for patent clustering (Yoon B.

& Y. Park, 2004). In the ThemeScape map of the Thomson Reuters, peaked

mounds represent a concentration of documents and their relevance to one another

is determined by proximity. Bibliometrics are a set of methods to quantitatively

analyze scientific and technological literature. Such quantitative patent analysis

(Wberry, 1995; Hunt, Nguyen & Rodgers, 2007) is based on numerical statistics

of patents’ bibliographical information (or meta-data), for example, the number of

patent applications, assignees, or inventors. The obtained numbers would be

further ranked and visualized as a ranking map. For example, a column chart

where companies are ranked in terms of the number of patents they own, as shown

in Figure 1-2. The company with the largest number of patents is considered as

the dominant company, although this map does not consider any technology

details involved in the patents.

5

Figure 1-2 An example of ranking map

Patent search module and patent analysis module are usually integrated into a

single commercial system e.g., PatsnapTM and Goldfire®, an Optimal Decision

Engine. The PatsnapTM includes a search engine module and a bibliometrics

module. The Goldfire® includes a search engine module and an Innovation Trend

Analysis (ITA) module, which mainly includes technology analysis and citation

analysis. The technology analysis is based on bibliometrics.

For technology reuse, the standard Boolean model does not handle relations

well in conventional search engine. In standard Boolean model, both the

documents to be searched and the query are conceived as a set of terms. With the

increase of issued patents, using single keyword as query may obtain too many

relevant patents. A simple strategy is to use multiple keywords instead. These

keywords are treated equally in standard Boolean model. However, explicit

relation among these keywords may exist. For example, given the query “wireless

mouse with long battery life”, a paten contains all these keywords may not be the

expected return, e.g., patent numbered ‘US8390249 B2’, where “long” is used in

“long term evolution”. If quotes are used in the query, e.g., “‘wireless mouse’

‘long battery life’”, it may filter out many relevant patents. For example, the

patent numbered ‘US7702369 B1’ and titled “Method of increasing battery life in

a wireless device” does not contain “long battery life”.

For avoidance of intellectual property dispute and breakthrough of technical

barriers, there are limitations in current patent analysis methods. They overlook

Company A

Company D

Company F

Company C

Company G

Company B

Company E

0 10 20 30 40 50 60 70 80 90 100

Number of Applications

L
e

ad
in

g
 C

o
m

p
an

ie
s

6

the content of patent claim section e.g., the knowledge for avoiding patent

infringement. The citation analysis does not offer rich enough information and is

difficult to catch up-to-date trends due to the time lag between citing and cited

patents. The bibliometrics analysis does not care about the content of patent claim

section. The keyword-based analysis usually requires experts to manually identify

valuable keywords. With VSM, multiple patents may be represented by the same

vectors, while they actually describe different patented technologies. Moreover,

VSM overlooks the intrinsic structure of the patent claim section. The claim

section is the only part examined and conferred for protection. The claim is

written for claiming intellectual property right that the inventor wants to protect. It

must be as general as possible to maximize the scope of protection, and

simultaneously it must be specific enough to be distinguished from prior art. Other

parts e.g., description or drawings are for understanding and interpreting the

claims, but do not provide any protection themselves.

1.2.2 Relational Model Extraction

Relational model is a mathematical model for describing the structure of data.

In database theory, the basic data structure of the relational model is the table. A

row in a database table implements a tuple. Each tuple element is identified by a

distinct name, called attribute. Thus, the relations in relational database refer to

the various tables in the database; a relation is a set of tuples. For example, a

relation (table) is given in Table 1-1. The first row in above table can be

represented using a 2-tuple (student: “Tom”, score: 77). In this notation, the

attribute-value pairs may appear in any order.

Table 1-1 An Example of relational model

STUDENT SCORE
Jim 77

Tom 78

A new comprehensive patent analysis (NCPA) approach for new product

design was proposed (OuYang & Weng, 2011), where the critical issues are to

manually identify key technology patents, and further to manually identify the

technology and the corresponding technological performance in the patents. Such

information can be stored in database in the form of the relational model. Each

row in the table is a 2-tuple (TechnologyName, PerformanceName), where

7

TechnologyName denotes technology and PerformanceName denotes

performance.

The relational models are also valuable for generating patent map. Matrix map,

for example, demonstrates the link between two elements and where such link can

be found. An example of matrix map demonstrating the link between technology

and effect is shown in Figure 1-3. The underlying 2-tuple can be defined as

(TechnologyName, EffectName), where TechnologyName denotes technology

and EffectName denotes effect. Similarly, the underlying 2-tuple in a matrix map

can be defined as (ProblemName, SolutionName), where ProblemName denotes

problem, and SolutionName denotes solution (Fujii, Iwayama & Kando, 2004), or

(TechnologyName, PurposeName), where TechnologyName denotes technical

item and PurposeName denotes purpose. The matrix maps are used to find main

stream technical fields and to support decision making on future technology

development through seeking opportunities in sparse cells within them; they are

also used to predict business opportunities via comparing the research and

development focus of one company with that of its major competitors (Liu and

Luo 2007).

Figure 1-3 An example of matrix map (Technology vs. Effect)

Alternatively, relational models can be integrated with time, hence showing

the trend of development. For example, a set of 2-tuples (TechnologyName,

PerformanceName), in which TechnologyName denotes technology and

PerformanceName may be precision, which is a response variable ranging from

zero to one and is extracted from a collection of technical documents. Then, a

trend map can be created as shown in Figure 1-4. This map is considered as a kind

of text summarization, which was conducted as the Multi-modal Summarization

for Trend (MuST) task in the NTCIR-7 (Kato & Matsushita, 2008). The NTCIR

8

stands for National Institute of Informatics (NII) Test Collection for Information

Retrieval (IR) systems.

Figure 1-4 An example of technical trend map describing the changes of precision
scores

1.2.3 Functional Model Extraction

A relational model is a set of tuples, while a functional model is a directed

multigraph (Hung & Hsu, 2007). In such a graph, a node denotes a system or a

subsystem. Different shapes can be used to differentiate different system types.

An arc denotes relational action from the predecessor to the successor. More than

one arc is allowed between two nodes. Both node and edge is labeled with text.

With the functional model, an integrated process for designing around existing

patents was proposed (Hung Y. & Hsu Y., 2007; Yao, Jiang & Zhang et al., 2010).

This method was designed for small and medium companies to develop a new

product, similar to but different from an existing product, and at the same time

avoiding patent infringement. The method includes four steps: searching,

modeling, transforming and solving. In the searching step, a set of patents is read,

and a patent is targeted. In the modeling step, the product described in the patent

is modeled as a function model, and product components that can be improved are

highlighted. The function model helps the designer understand the relationship

(useful function, harmful function, insufficient function, etc.) between elements of

the core technologies. In the transforming step, the found problems are

transformed into features of TRIZ (referring to “the theory of inventive problem

solving”) Contradiction Matrix, which can give some inventive principles. Those

1990 1995 2000 2005
0.7

0.8

0.9

1.0

P
re

ci
si

on

Year

 Precision

9

inventive principles can inspire designers and help them to develop solutions in

the final solving step. Besides, Substance-Field Analysis is used on the modified

functional model following the standard TRIZ process.

The modification of the function model is shown in Figure 1-5. Briefly, Figure

1-5 (a) shows a function model; Figure 1-5 (b) highlights two components that can

be improved; and Figure 1-5 (c) shows the modified function model. A detailed

example can be found in (Hung & Hsu, 2007). A case study of designing spiral

bevel gear milling machine was given in (Yao, Jiang & Zhang et al., 2010).

Figure 1-5 Modification process of a function model, where a rectangle denotes a
component and a line denotes a function

The function model can be used for judgment of patent infringement. In

general, the judgment of patent infringement consists of two principles: “all

elements rule” and “doctrine of equivalents” (Hung Y. & Hsu Y., 2007).

According to “all elements rule” principle, a technology infringes a patent, if all of

the claim’s elements of the patent are found in a technology. According to

A

B C D E

F

G H I

J

01 03 04

06 09

11

05

08

02

10

07

(a)

A

B C D E

F

G H I

J

01 03 04

06 09

11

05

08

02

10

07
(b)

A

B X D E

F

G H I

Y

01 03 04

06 09

22

05

08

21

10

07

(c)

10

“doctrine of equivalents” principle, if the elements in a technology corresponding

to those in the claims substantially use the same way, perform the same function,

and obtain the same result, then those elements is considered to be equivalent to

those in the claim. A process of patent infringement avoidance is also supported

by Goldfire®.

1.2.4 Specific Patent Information Access

To overcome the weakness of current methodologies and to better satisfy the

requirements of product design and development, more specific information is

desired. For example, relational model can be utilized to enhance technology

reuse in patent search, while functional model can be utilized to consider

avoidance of intellectual property dispute and breakthrough of technical barriers

in patent analysis.

However, it is desirable that both relational model and functional model can be

automatically extracted from text. Manual model generation requires lots of

human effort, and is time consuming.

Moreover, it is desired that the technology described in a patent can be

described by a model that can be automatically compared. Automated technology

model comparison can facilitate analyzing and targeting key technologies, and at

the same time avoiding patent infringement. Previous work (Hung & Hsu, 2007)

ensures that the new design does not infringe the target patent. However, the new

design may still infringe other patents. With the automated technology model

comparison, avoidance of patent infringement among multiple patents can be

easily achieved.

1.3 Hypothesis

This thesis is as the filler for the research gaps discussed above. The

hypothesis is as follows:

(1) The product-related patent information access can be improved by better

patent processing and analysis.

(2) The effectiveness is improved by utilizing additional helpful knowledge.

(3) The helpful knowledge can be represented.

11

(4) The efficiency is guaranteed by automatic extraction of the represented

knowledge from free text.

1.4 Technology Ontology

To validate the hypothesis, the helpful knowledge is defined as technology

ontology. Ontology was originally proposed (Gruber, 1993) as an explicit

specification of conceptualization. The term is borrowed from philosophy, where

ontology is a systematic account of existence. It should not be confused with

epistemology, which is about knowledge and knowing. Ontology is further

defined as a formal, explicit specification of a shared conceptualization (Studer,

Benjamins, & Fensel, 1998). “Conceptualization” refers to an abstract model of

some phenomenon in the world by having identified the relevant concepts of that

phenomenon. “Shared” means the ontology is accepted by a group. “Explicit”

means that the type of concepts used, and the constraints on their use are explicitly

defined. “Formal” means the ontology should be machine-readable.

Briefly, ontology is a description of concepts and relationships that can exist

for an agent or a community of agents. Moreover, ontology is designed for

enabling knowledge sharing and knowledge reuse. Ontology is able to provide

structured language and explicate the relationship between different terms; thus

intelligent agent can explain flexibly its meaning without ambiguity (Uschold &

Gruninger, 1996). Ontology is usually written as a set of definitions of formal

vocabulary due to its nice properties for knowledge sharing among Artificial

Intelligence (AI) software. When the knowledge of a domain is represented in a

declarative formalism, the set of objects that can be represented, and the

describable relationship among them, are reflected in the representational

vocabulary with which a knowledge-based program represents knowledge.

1.4.1 Definition of Technology Ontology

In this study, two technology-related concepts are highlighted: effect and

structure. The effect is used for technology search and reuse from a teleological

view, while the structure is used for technology comparison and avoidance of

patent infringement in terms of claimed elements. Therefore, the Technology

12

Ontology primarily includes two models: an effect model (E-model) and a

structure model (S-model).

An effect is defined as property changes of a patient, which is directly

involved in or affected by the happening. Thus, the effect is modeled as a tuple.

Typically, an effect model is a 3-tuple (or triple) denoted as (TechnologyName,

PropertyName, PropertyChange), where TechnologyName denotes a technology

i.e., the agent of the effect, PropertyName denotes property name and

PropertyChange denotes property change. The property change can have many

forms. It may be a trend, e.g., increasing in size or number, a state, e.g.,

temperature is 80°C, or an interval, having left and right endpoints. For example, a

mouse with high battery life is modeled as a triple (Technology: “mouse”,

Property Name: “battery life”, Property Change: “high”). This modeling method

allows multiple effects to a technology.

A structure is described by all components of a technology and their

relationships. Thus, the structure can be modeled as a graph. In mathematics, a

graph is an abstract representation of a set of objects where some pairs of the

objects are connected by links. The interconnected objects are called vertices or

nodes, and the links that connect some pairs of vertices are called edges. A graph

is usually depicted in diagrammatic form as a set of dots for the vertices, joined by

lines or curves for the edges. In such a structure, a node denotes a technology, and

an edge denotes a relation between two technologies. Typically, the structure is

modeled as a tree. A tree is an acyclic connected graph where each node has zero

or more children nodes and at most one parent node. In such a tree, the root node

denotes the technology. Each non-root node denotes a component of a technology.

A directed edge from a parent node to a children node represents the “has-part”

relation.

1.4.2 Examples of S-Model Generation

The tree model is used to represent the technology’s structure. The text

supporting S-Model extraction can be found in the claim section of patent (Yang,

Lin & Lin et al., 2005). In some patents, the structure information can also be

found in the referred embodiment section. For example, the claim section of the

patent numbered US6182321 is as follows:

13

I claim:

1. A toothbrush having an elongate handle with a longitudinal axis, a rigid curved axle
extending forward generally along said longitudinal axis from one end of said handle,
and a hollow integrally formed shank and toothbrush head formed of flexible plastics
material that rotatable fits over said rigid curved axle along its length such that rotation
of said head or shank between ±180° with respect to said curved axle causes said
toothbrush head to take up different desired curved orientations.

2. A toothbrush according to claim 1, in which said axle is formed of metal.

3. A toothbrush according to claim 1, in which said shank and toothbrush head are
removably fitted to said axle.

4. A toothbrush according to claim 1, in which said shank is integrally provided with
peripheral finger-grippable formations.

The claim section consists of four claims. The first claim is an independent

claim. The other three claims are dependent claims, which are dependent on the

first claim. In the independent claim, a toothbrush is claimed and includes three

components i.e., an elongate handle, a rigid curved axle and a hollow integrally

formed shank and toothbrush head. The third component actually is combined

with two smaller components i.e., a shank and a head. The fourth claim

supplements one more component: the peripheral finger-grippable formations.

The tree model of the toothbrush patented in patent numbered US6182321 is

shown in Figure 1-6.

Figure 1-6 The drawing and the S-model of the patent numbered US6182321

The tree model corresponds well to the drawings of the referred embodiment,

where the #10 is an elongate toothbrush handle, #11 is a stiff bent metallic wire

axle, #12 is a shank, which is integrally formed with #13 i.e., a head, and #14 are

finger-grippable peripheral formations. The #15 bristles are not mentioned in the

14

claim section, probably because they are trivia. Without #15 bristles, the tree

model could still depict the patented technology well.

1.4.3 Comparison with Existent Models

The technology ontology is similar but different from the functional model. In

common, both models describe a product’s components. The difference is that

functional model mixes functional relations and positional relations between

components in the same graph, but technology ontology separates them into two

models. The mixture is the deficiency of the functional model. First, two

components may have multiple relations. This means multiple edges between two

nodes in a graph that represents a functional model. Second, a function may be

realized through multiple agents. This cannot be represented in a graph. Third, lots

of relations in the functional model offer only simple position information, which

is usually not considered as a very meaningful function. In contrast, the

technology ontology describes structure and function (which is considered as

desirable effect) separately. The S-model describes the structure of a product

through its components and their positions, while an E-model can describe

functions in detail and link to one or more components of the S-model.

Technology ontology is inspired by patent ontology that contains TRIZ

features (Russo, 2010): the Element Name (of property) Value (of property) (ENV)

model (Cavallucci & Khomenko, 2007) and Function Behavior Structure (FBS)

model (Gero & Kannengiesser, 2003). Effects, similar to E-model, were collected

in the scientific effects database of Goldfire®. Besides, relevance tree, similar to

S-model, was adopted in normative method for technological forecasting (Martino

J. P., 1993). The normative method starts with future needs and identifies the

technological performance required to meet those needs. A normative forecast has

implicit within it the idea that the required performance can be achieved by a

reasonable extension of past technological progress (Martino J. P., 1993).

Previous works on patent ontology did not focus on implicit knowledge within

patent text. Major issues covered in previous works include patent document

structure, ontology language, and ontology integration. The structure of China

patent was modeled as ontology (Zhi & Wang, 2009), in which a concept is a

section of patent, and a relation is between two different sections. The adopted

15

ontology languages were Unified Modeling Language (UML) and Web Ontology

Language (OWL). The ontology integration combines multiple ontologies. For

European patent system, the PATExpert project (Wanner, Baeza-Yates &

Brugmann et al., 2008; Giereth, Koch, & Kompatsiaris et al., 2007) defined a

modular framework to integrate multiple patent ontology, including: Patent

Metadata Ontology (PMO) (Gierth, Stabler & Brugmann et al. 2006), Structure

Ontology, and Suggested Upper Merged Ontology (SUMO). The ontology

integration can happen among different document types. For example, ontology

was developed for the US patent system and integrates information in three

knowledge domains: patent, court case and patent file wrapper (Taduri, Lau, &

Law et al., 2011). The patent file wrapper is highly unstructured document that

records prosecution history.

The knowledge contained in ontology, no matter annotated (Ghoula, Khelif, &

Dieng-Kuntz, 2007) or extracted, can support many tasks, including product

disassembly (Borst & Akkermans, 1997), classification (Shih & Liu, 2010), and

summarization (Hwang, Miller & Rusinkiewicz, 2002).

1.5 Scope and Objectives

The scope of this thesis includes technology ontology extraction, technology

comparison in terms of structure and patent information access improvement

based on technology ontology.

Five objectives to be achieved are as follows:

(1) Extract automatically E-model;

It means finding effect models in the plain text of a given patent. An effect

model consists of a technology as the agent of the effect, a property as the patient

of the effect, and the change of the property. The specific technology, property

and property’s change depends on the content of the given patent.

(2) Extract automatically S-model;

It means finding the structure model with the text of the claim section of a

given patent. The structure model must include a technology as a root node and at

16

least a component of the technology as a non-root node. The specific technology

and components depend on the content of the given patent.

(3) Compare S-models;

It means measuring the difference of multiple structure models. It is used for

comparing technologies.

(4) Improve patent search with E-model;

It means integrating effect model into patent search. The effect model offers

additional information, and therefore can improve patent search in some aspects.

(5) Improve patent clustering with S-model;

It means integrating structure model into patent clustering. The structure

models can be used for comparison of technologies and avoidance of patent

infringement. The obtained additional information can enhance patent analysis.

1.6 Organization

The rest of this thesis is organized as follows: Chapter two gives a succinct

literature reviews to cover major relevant research domains; Chapter three

proposes a framework to summarize issues related to technology ontology and

gives an introduction to all proposed methods; Chapter four proposes a method for

E-model extraction; Chapter five proposes a system to utilize the extracted E-

models; Chapter six gives a theoretical analysis on dependency paring of claims

and proposes a new method for parsing claims; Chapter seven proposes a kind of

graph similarity calculation that could be used to compare S-models; Chapter

eight introduce a system that utilize S-model for patent analysis; finally, the last

Chapter draws conclusions and discusses future work.

17

CHAPTER 2

LITERATURE REVIEW

Many currently active research domains are related to this thesis, including

Text (Data) Mining, Machine Learning, Artificial Intelligence, Natural Language

Processing, Information Retrieval, Statistics and Computational Linguistics. This

literature review only highlights the most relevant research topics including model

extraction, graph model comparison and patent map.

2.1 Ontology Learning and Ontology Extraction

Two terms are pertaining to the extraction of ontology: ontology learning and

ontology extraction. Ontology learning means the acquisition of a domain model

from data (Maedche & Staab, 2001). Ontology learning must consider two

fundamental issues: the availability of prior knowledge and the type of input

(Benz, 2007). The input types are structured data, semi-structured data and

unstructured data. On the other hand, ontology extraction emphasizes that the

input type for extracting ontological representations is unstructured text (Gaeta,

Orciuoli & Paolozzi et al., 2011).

To reduce the human effort in ontology construction, research interest in

automated method for ontology construction had risen. An automatic approach

constructing ontology as thesaurus through automatic identification of keywords

was proposed (Ahmad & Gillam, 2005). Another approach (Gaeta, Orciuoli &

Paolozzi et al., 2011) extracts relevant ontology concepts and their relationships in

terms of frequency in a knowledge base of heterogeneous text documents.

Two approaches were proposed to identify and extract part names from

General Motors’ archives (Bratus, Rumshisky & Khrabrov et al., 2011). The goal

is to develop a robust and dynamic reasoning system functioning as a repair

adviser for service technicians. The first approach is an algorithm for ontology-

guided entity disambiguation. It uses existing knowledge sources, such as General

Motors’ parts ontology and repair manuals. The second approach extracts part

names via Hidden Markov Model (HMM) with shrinkage, and models observation

18

dependencies in the repair notes by linear-chain Conditional Random Fields

(CRFs).

The sGRAPH (Zhou, Chen & Tao, 2011) is a domain-ontology-driven

automated extraction system for semantic graph. It can discover knowledge from

text publications in the domain of traditional Chinese medicine. The domain

ontology is the traditional Chinese medicine language system (TCMLs) including

a knowledge base that contains 153,692 words and 304,114 relations. The core

algorithm predicts new relation through referring existing concepts and relations.

Briefly, it must be emphasized that this thesis does not focus on the acquisition

of domain ontology. For patent database, lots of work is required for constructing,

updating and maintaining domain ontology, because the knowledge contained in a

patent usually crosses many domains, and new concepts are emerging frequently.

2.2 Patent Map Generation

Automatic patent matrix map methods also contribute to S-model extraction.

To generate the matrix map, a common strategy is to mix Text Mining (Hearst

1999; Zanasi 2005; Oluikpe, Carrillo & Harding et al., 2008) techniques with

manual intervention (Tseng, Lin & Lin, 2007). Since most information (over 80%)

is currently stored as text, text mining is believed to have a potential high

commercial value. The general text mining techniques for generating matrix map

involves: summarization (Trappey & Trappey 2008), keyword and phrase

extraction, term association based on co-occurrence (Deerwester, Dumais &

Furnas et al., 1990; Hofmann 1999) or based on semantics (Ide & Veronis 1998;

Andreevskaia and Bergler 2006), clustering (Ward, J.H., Jr. 1963; MacQueen

1967; Dunn 1973; Bezdek 1981), clustering with semantics (Choudhary and

Bhattacharyya 2002; Hotho, Staab & Stumme, 2003a; Hotho, Staab & Stumme,

2003b; Hotho, Staab & Stumme, 2003c), and cluster title generation.

Alternatively, automatic method for generating matrix maps was boosted as a

feasibility study task in NTCIR-4 (Fujii, Iwayama & Kando, 2004). The

organizers provided participants with the patent documents retrieved by a specific

topic, and participants were requested to organize those documents in a two-

dimensional matrix. In total, six topics for more than 100 relevant documents were

19

identified. Human experts then evaluated the submitted maps. Since the task was

optional, only two participant groups (Shinmori, Okumura et al. 2004; Uchida,

Mano et al. 2004) submitted their maps. One group (Shinmori, Okumura et al.

2004) focused on keyword extraction and selection, and the other group (Uchida,

Mano et al. 2004) focused on clustering and cluster title generation. Both of them

generated too many irrelevant titles. Moreover, the cluster titles are keywords

extracted verbatim from the original patent text. Since some standard titles cannot

be found in the original text directly, it is impossible to generate all correct titles.

Briefly, current patent map generation cannot be accomplished automatically.

Therefore, more researches are required. For example, the analysis on claims may

contribute to patent map generation (Shinmori & Okumura, 2004).

2.3 Information Extraction

Information Extraction (IE) is the research domain where text extraction

methods are concentrated. The earliest IE focused on Named Entity Recognition

(NER). NER seeks to locate and classify atomic elements in text into predefined

categories such as the names of persons, organizations, locations, etc. The term

“Named Entity” was coined at the 6th Message Understanding Conference (MUC-

6) in 1995. In defining IE tasks, people noticed that it is essential to recognize

information units like person names, organization names, location names, time,

data, money and percentage. The number of entity types had been increased, since

IE became a serious large-scale research effort (Kushmerick, Weld & Doorenbos,

1997; Appelt & Israel 1999). Two hierarchies of Named Entity types, for example,

had been proposed: BBN type consists of 29 types and 64 subtypes, while

Sekine’s extended Named Entity hierarchy is made up of 200 subtypes.

Early entity extraction systems rely on rule-based algorithms. These rules are

either manually coded or automatically learned (Kushmerick, Weld & Doorenbos,

1997; Soderland 1999; Xiao, Chua & Liu, 2003). In contrast, modern systems

often resort to sequence labeling method (Sarawagi 2007). Sequence labeling is a

type of pattern recognition task in machine learning (Nadeau & Sekine 2007).

Supervised learning algorithms execute a decomposition of an unstructured text,

and then assign a categorical label to each member of the sequence of the

decomposition. Typical methods are Hidden Markov Model (HMM) (Zhou & Su

20

2001) and Conditional Random Fields (CRFs) (Lafferty, McCallum & Pereira,

2001; Settles 2004). It was reported that CRFs is the state-of-art method for

assigning labels to token sequences (Sarawagi 2007; Sha & Pereira 2003).

Compared to HMM, CRFs has many advantages. Firstly, CRFs is a conditional

model, which specifies the probabilities of possible label sequences, given an

observation sequence. HMM is a generative model, which assigns a joint

probability to paired observation. Secondly, CRFs allows arbitrary non-

independent features of the observation sequence. It is not practical to represent

multiple interacting features or long-range dependencies of the observations in

HMM, since the inference problem is intractable. Thirdly, in CRFs, the

probability of a transition between labels can depend not only on the current

observation, but also on past and future observations. In contrast, HMM must

make very strict independence assumptions on the observations. Lastly, CRFs

overcomes the label bias problem. It means the transitions leaving a given state

compete only against each other, rather than all other transitions in the model.

Sequence labeling method does not rely on rules, which are too brittle in a

noisy source. Moreover, the maintenance of sequence labeling system is easier

than manual rule-based system. However, it does not mean that sequence labeling

method is better than rule-based method. The curse of sequence labeling method

is the overheads of training. For example, it was reported that training an HMM

name recognizer is more expensive than a skilled rule writer to write a rule-based

name recognizer (Appelt & Israel 1999). The HMM name recognizer cost about

800 person-hours. Preparing the training data required 20 person-hours.

There also exist hybrid systems (Rosenfeld, Feldman & Fresko et al., 2006)

that attempt to obtain the benefits of both methods. Besides, the choice of features

is as important as the choice of methods for a good NER system (Sang & Meulder

2003). Features were usually along three different axes: word-level, list lookup

and document (Nadeau & Sekine 2007).

With the availability of recognized entities, research focus of IE shifted to

Relation Extraction (RE). Generally, the task regards meaningful relations

between entities from plain text. The definition is varied according to different

task requirements. In the simplest form, Relation Extraction (RE) is a task of

extracting relation triples from free text, e.g., extracting the triple (University:

21

“Stanford”, Relation: “located-in”, Location: “California”) from text “Stanford is

an American private research university located in Stanford, California”.

Although it is not necessary to pre-define extractable relation types (Shinyama

& Sekine, 2006), entity types and relation types are usually pre-defined. The

Template Relations (Miller, Crystal & Fox et al., 1998) task in the Message

Understanding Conference (MUC) are limited to organization-related relationship

such as employee-of, product-of, and location-of. Seven entity types and seven

relation types were defined in Automatic Content Extraction (ACE) evaluation

conducted by the National Institute of Standards and Technology (NIST).

The methods for RE can be supervised, partially supervised or even

unsupervised. Supervised methods may consider the RE problem as a

classification problem (Bunescu & Mooney, 2005; Zhao S. & Grishman R., 2005).

Partially supervised methods reduce the dependence on hand-crafted training data.

For example, Dual Iterative Pattern Relation Extraction (DIPRE) (Brin, 1998)

requires only a small set of labeled seed instances and enables to discover author-

book pairs. SNOWBALL (Agichtein & Gravano, 2000) requires a few hand-

crafted extraction patterns and enables to discover corporation-headquarters pairs.

To make the tedious process of extracting large collections of facts in an

unsupervised, domain-independent, and scalable manner, unsupervised relation

extraction was proposed (Eichler, Hemsen & Neumann, 2008). This is feasible

due to the availability of named entities and dependency. KNOWITALL (Etzioni,

Cafarella & Downey et al, 2005) is able to extract hypernymy (“is-a” relationship)

without hand-labeled training examples. Open Information Extraction (OIE) was

proposed to extract a large set of relational tuples without requiring any human

input and was implemented by TEXTRUNNER (Banko, Cafarella & Soderland, et

al. 2007) with the support of dependency parsing.

An algorithm was proposed to combine the advantages of supervised IE and

unsupervised IE (Mintz, Bills & Snow, et al., 2009). Besides, the adopted features

(Jiang & Zhai, 2007; Zhou, Su & Zhang et al., 2005; Kambhatla, 2004) generally

cross three levels: lexical, syntactic and semantic. Typical features are word,

phrase, entity type, syntactic parse tree, the semantic, and dependency.

22

Briefly, rule-based or supervised methods require manual rules or small hand-

labeled corpora of a specific domain. Both resources are scarce for E-model

extraction. On the other hand partially supervised or unsupervised methods are

towards domain independence and unrestricted relation type. However, they must

be supported by related Natural Language Processing technologies, such as

semantic database (Mintz, Bills & Snow, et al., 2009) and parsing (Shinyama &

Sekine, 2006).

2.4 Claim Parsing

The S-model extraction may be realized by analyzing the parsing tree. Among

various grammars, dependency grammar (Nivre, 2005) is the most suitable one for

information extraction due to its two characteristics. Firstly, dependency grammar

explicitly expresses word-to-word relation, thus the result of dependency parsing

can easily be utilized. Other grammars usually need much more effort on post-

processing to obtain word-to-word relation. Secondly, the result of dependency

parsing can be obtained from phrase structure (or constituency) parsing (Marneffe,

MacCartney & Manning, 2006). Since phrase structure grammars occupy a high

proportion in formal grammatical systems, it means many existing natural

language technologies and resources can be reused on dependency parsing.

Generally, dependency parsing is classified into two categories: grammar-

based parsing or data-driven parsing. The grammar-based parsing requires

grammar or rules, e.g., context-free dependency grammar. The data-driven parsing

does not need grammar or rules, and the parsing decisions are made based on

learned models. The learned models can be classified into graph-based models

(Eisner, 1996; Wang, Lin & Schuurmans, 2007), transition-based models

(Yamada & Matsumoto, 2003; Nivre & Scholz, 2004) or hybrid models (Sagae &

Lavie, 2006; Nivre & McDonald, 2008; Zhang & Clark, 2008).

However, most claims seem unable to parse (Parapatics P. & Dittenbach M.

2011). Therefore, more researches are needed to investigate this issue. It should be

noted that a method was proposed to parse the claim into a set of discrete elements

(Lin et al., 2005). However, the S-model is a graph, rather than a list.

23

2.5 Graph Similarity Measures

To compare S-models, graph similarity measures can be carried out, since the

S-model is modeled as a graph. Generally, graph similarity measure is a two-

graph comparison problem, while the process of comparing graphs is referred as

graph matching (Jouili, Tabbone & Valveny, 2010).

Different graph models use different similarity measure. The Feature Directed

Acyclic Graph was proposed (Li, 2011) for Computer-Aided Design (CAD)

models retrieval. A 3D model was simplified with Feature Directed Acyclic Graph

and then converted into a shape distribution histogram (Osada, Funkhouser &

Chazelle et al., 2002), which is a vector. The similarity of two models is therefore

calculated as the distance between two vectors. For two graphs, the coupled node-

edge scoring (Zager & Verghese, 2008) uses the structural similarity of local

neighborhoods to derive pair-wise similarity scores for nodes and uses a linear

update to generate both node and edge similarity scores. The basic idea is that a

node is evaluated through its neighbor nodes and edges. The idea is inspired by a

famous link analysis algorithm i.e., Hyperlink-Induced Topic Search (also known

as Hubs and Authorities) (Kleinberg, 1999).

In S-model, the edge represents a Boolean “has-part” relation. Therefore, the

edge similarity score does not need to be updated. Moreover, the weakness of

coupled node-edge scoring is that both initial node similarity and initial edge

similarity disappear after a small number of iterations. The final score is

dominated by the updating process. In other words, the update equation is so

dominant that human’s initial intuition is killed. It is weird that two graphs are

considered as analog at the beginning but they are not similar at the end in terms

of the calculated similarity score.

2.6 Summary

To summarize, there exist several research gaps in literature. Firstly, previous

relation extraction technologies cannot be applied on patent information access for

product design and development directly. That is because rules or hand-labeled

corpora for E-model are unavailable, since existing resources for IE is unsuitable

24

for E-model extraction, e.g., entity types like person, organization and place rarely

existing in the content of a patent.

Secondly, it is desirable that claims can be correctly parsed. Thus, S-model

can be extracted with parsed dependency relations.

Lastly, a more reasonable graph similarity measure is desirable for graph

model comparison. The graph similarity measure should hand edge similarity

appropriately and keep initial intuitive similarity judgment made by human.

25

CHAPTER 3

TECHNOLOGY ONTOLOGY FRAMEWORK

Technology ontology connects the knowledge space of patent database with

that of the enterprise. It offers an enterprise an unprecedented capability to reuse

any knowledge in the entire patent space.

To summarize issues related to technology ontology, a framework for

technology ontology is given in this section. Moreover, a patent processing system

that involves these issues is introduced.

3.1 Framework Overview

As shown in Figure 3-1, the core of the Technology Ontology framework is

technology ontology extraction. Moreover, the framework contains four modules:

patent search, patent analysis, new product development and knowledge discovery.

Figure 3-1 The technology ontology framework

Patent search is the Information Retrieval stage, in which a list of patent

documents is retrieved. The E-model of technology ontology provides a base for

26

technology search and reuse from a teleological view. Product designers can

search any technology that has a specific effect. A similar search manner is

function-oriented knowledge search in product design and development process.

Function is the base for matching customers’ needs and technologies: customers’

needs are identified as requirements for functions, while technologies are

distinguished by their functions.

In patent analysis stage, a set of patents are analyzed and visualized. For

avoidance of patent infringement, patent analysis should consider the difference of

the structure. The patent technologies have similar effect, but they should be

different in terms of structure. The S-model describes claimed elements of a

technology in details and therefore offers a basis for technology comparison,

infringement judgment, and technology selection.

In new product development stage, the S-model provides a basis for

technology modification and product concept generation. A modified S-model can

be easily created by changing components in an original S-model. The product

design process adopting S-models can be considered as a process of disassembling

and assembling, where sub-system units are selected and integrated. Therefore,

the evolution of product design is the process of reselection and reintegration to

satisfy the changing demand.

Besides, the obtained technology ontology can be used for other applications

of knowledge discovery. Apart from facilitating relation models extraction and

functional models extraction, technology ontology extraction can facilitate many

text-based applications such as question answering and text summarization.

3.2 System Overview

This thesis only focuses on three modules i.e., technology ontology extraction,

patent search and patent analysis in the technology ontology framework. The

proposed methods can be integrated into a single patent processing system as

shown in Figure 3-2.

27

Figure 3-2 The overall system view for proposed methods

The overall system consists of two major components: an effect-oriented

search engine and a patent growth mapper. The architecture of the overall system

is consistent with conventional patent processing system e.g., Goldfire®, in which

a patent search module is followed by a patent analysis module.

3.2.1 Effect-oriented Search Engine

The effect-oriented search engine is the patent search module. Compared to

conventional patent search engine, the effect-oriented search engine involves

additional effect information.

To point out the specified effect, the query of the effect-oriented search engine

is structured rather than unstructured. The included effect information will affect

the relevance of a patent, and affect the place of a patent on the final patent

ranking.

The information integration is realized by a third party search engine and a re-

ranker. The third party search engine retrieve a list of relevant patents according to

the query. The re-ranker recalculates the relevance of each patent in terms of

effect information the patent contains.

To know how much effect information is contained in a patent, a query-

document matching that utilizes E-model is designed. Both query and document

28

are modeled with E-model. To enrich the natural language expression of the query,

query expansion is considered to expand the single E-model given by the input

query to multiple potential E-models. On the other hand, E-model extraction is

carried out to model the patent document.

The E-model extraction will be considered as either an entity recognition

problem or a dependency parsing problem. As an entity recognition problem, the

rules or hand-labeled corpora for E-model are needed to build, since existent

resources for IE are unsuitable for E-model extraction. As a dependency parsing

problem, the relationship between E-model and parsing tree is needed to explore.

The solution relies on the understanding of the natural language expression of E-

model. Unfortunately, the natural language expression of E-model is complex,

since a meaning can be expressed in many ways with natural language. Therefore,

it is necessary to investigate multiple possible natural language expression

manners of E-model.

3.2.2 Patent Growth Mapper

The patent growth mapper is the patent analysis module. Given a set of patents,

the patent growth mapper returns a patent map, called Patent Growth Map (PGM).

For avoidance of intellectual property dispute and breakthrough of technical

barriers, the patent growth map utilizes S-model to cluster technologies.

Technologies in the same cluster are similar in structure and are likely to infringe

each other. Moreover, the patent growth map is designed with many user-friend

features.

Firstly, a two-dimensional coordinate system is designed to contain a network,

which is the result of technology clustering. Previous network (Yoon B. & Y.

Park, 2004) did not use a coordinate system and led to arbitrary placement of dots,

each of which denotes a technology or a patent. Moreover, the two-dimensional

coordinate system facilitates the discovery of trend and the selection of core

technology. Secondly, the number of line segments is reduced, since previous

network (Yoon B. & Y. Park, 2004) uses too many line segments and is difficult

to be observed. In patent growth map, the total number of line segments is

controllable, while for each technology group, the number of line segments that

connect dots is minimized.

29

To calculate the structure similarity scores used in the clustering, a more

reasonable graph similarity measure is given. New graph similarity measures for

S-model were proposed. They focus on node similarity rather than treating node

similarity and edge similarity equally, and keep initial intuitive similarity

judgment made by human.

To automatically extract S-model, claim dependency parsing is desirable so

that S-model can be formed from the dependencies. However, as discussed

previously, claim parsing is a challenge. To address this challenge, a new claim

parsing method is proposed.

3.3 Summary

To summarize, a framework for technology ontology is given. Partial modules

in the framework are highlighted and will be explored in the rest of this thesis.

Moreover, major challenges and counter measures are discussed.

30

CHAPTER 4

EXTRACTION OF TECHNOLOGY ENTITY AND

EFFECT ENTITY

The effect-oriented search engine, discussed in Chapter 3, has an E-model

extraction module. In this chapter, the E-model extraction is considered as an

entity recognition problem. The E-model extraction is to extract E-models from

plain text of given patents. The extracted E-models are used for supporting the

effect-oriented search engine. Since NER or RE researches had never focused on

technology or product, resource related to E-model extraction is inadequate.

Fortunately, a systematic evaluation focusing on extracting technology and effect

entities was organized in NTCIR-8 (Wang, Loh & Lu, 2010). The author (Wang,

Loh & Lu, 2010) had tackled this task and built a system that was ranked as the

number one in terms of F-measure (Manning, Raghavan & Schütze, 2008). This

chapter introduces the NER method in (Wang, Loh & Lu, 2010).

4.1 Problem Definition

The purpose of the Technical Trend Map Creation task in NTCIR-8 is to

extract expressions of technologies and their effects from research papers and

patents. Given the title and abstract of patents (and papers), an entity recognition

system is required to label any technology entity and effect entity within the title

and the abstract. Technology entity is described as algorithms, tools, materials, or

data used in each study or invention. Effect entity includes one or more pairs of

attribute entity and value entity. For example, effects that are expressed by a pair

of an attribute and a value are shown as follows:

{[reduce]VALUE [the manpower]ATTRIBUTE}EFFECT

{[33%]VALUE [redundancy-rate]ATTRIBUTE}EFFECT

Syntactically, a “technology” or “attribute” is usually a noun or noun phrase,

and a “value” can be a verb, gerund, adjective or a number.

In E-model extraction, an E-model is in the form of a triple (Technology,

PropertyName, PropertyChange). For example, the triple (Technology:

31

“automation”, PropertyName: “manpower”, PropertyChange: “reduces”) is

required to be extracted from the text as follows:

The automation reduces manpower.

The Technical Trend Map Creation task can support E-model extraction if a

one-to-one correspondence (bijection) is built: Technology Entity  Technology,

Attribute Entity  PropertyName, Value Entity  PropertyChange. Thus, the

triple above can be easily extracted from the labeled text as follows:

The <Technology>automation</Technology> <value>reduces</value>

<attribute>manpower</attribute>.

4.2 Proposed Method

The task was considered as a NER problem, and a hybrid method was

proposed (Wang, Loh & Lu, 2010). The hybrid method consists of a CRFs-based

method and a pattern-based method.

4.2.1 Pre-processing

The pre-processing includes sentence segmentation, tokenization, POS tagging,

and labeling. The sentence segmentation segments a paragraph into sentences. The

developed sentence segmentation techniques are robust to HyperText Markup

Language (HTML) characters noise in patent. For example, α (character code:

03B1 in Unicodehex) is “α” in HTML, but is written as “.alpha.” in patent

HTML file. The two dots in “.alpha.” are not periods. The existence of the dots

obviously causes a problem in sentence segmentation. Therefore, the sentence

segmenter deletes the dot, when it belongs to a HTML character. Moreover, the

developed sentence segmentation techniques are also intelligent to handle many

other language situations such as suspension points, abbreviation, paper number,

decimal value. For examples, dots in “i.e.”, “vs.” and “7.654” are not considered

as periods.

The tokenization segments a sentence into tokens i.e., words, punctuations,

and labels. The Part-Of-Speech (POS) tagging is a process that reads text in some

language and assigns parts of speech to each word (and other token), such as

noun, verb, adjective, etc. For example, giving query:

32

My dog also likes eating sausage.

The tagged text is:

My/PRP$ dog/NN also/RB likes/VBZ eating/VBG sausage/NN ./.

The POS tags are explained as follows:

PRP$: Possessive pronoun
NN: Noun, singular or mass
RB: Adverb
VBZ: Verb, 3rd person singular present
VBG: Verb, gerund or present participle

The Stanford POS tagger (Toutanova, Klein & Manning, 2003; Toutanova &

Manning, 2000) was used for both tokenization and POS tagging. The POS

tagging is based on default pre-trained model

Given the training data in the form of a sequence of tokens, the labeling

generates a label sequence as long as the token sequence. The labeling scheme is

the commonly used BIO (begin, inside, outside). Three types of positive tag are

“technology”, “value”, and “attribute”, and one type of negative tag is “other”.

Each positive tag can be either “begin” or “inside”. Therefore, in total, seven tag

types were used.

4.2.2 CRFs with Tag Modification

In CRFs, the probability of a particular label sequence y given observation

sequence x is assigned as a normalized product of potential functions (Wallach, H.

M., 2004).

,ݔ|ݕሺ݌ ሻߣ ൌ
1

ܼሺݔሻ
݌ݔ݁ ቌ෍ߣ௝ܨ௝ሺݕ, ሻݔ

௝

ቍ (4.1)

In the above equation, Z(x) is a normalization factor; λj are parameters to be

estimated from training data; and

,ݕ௝ሺܨ ሻݔ ൌ෍ ௝݂ሺݕ௜ିଵ, ,௜ݕ ,ݔ ݅ሻ
௡

௜ୀଵ

 (4.2)

33

where fj(yi-1, yi, x, i) is either a state function sj(yi, x, i) of the label at position i

and the observation sequence, or a transition function tj(yi-1, yi, x, i) of the entire

observation and the labels at position i and position i - 1 in the label sequence.

Since only state functions were used, the difference of function is pertaining to

the observation sequence. These observation sequences were defined as follows:

1. n-gram in the original sequence

2. n-gram in the POS tag sequence

3. current POS tag with other observed unigram and its POS tag

An n-gram is a contiguous sequence of n items from a given sequence. A

unigram is an n-gram of size one. The maximum size of n-gram used is five.

When unigram is adapted, the maximum distance from the observed unigram to

current state is four. In other words, if the observed unigram is too far away from

current state, then it was not considered in current CRFs model.

To increase positive tags, partial non-entity tags are modified into entity tag.

The criterion for deciding which non-entity tag should be modified is that the

CRFs model does not have an enough confidence to give the non-entity tag. The

new tag is an entity tag with the highest confidence.

Formally, if the probability of the state recognized as non-entity is not high

enough (that can be controlled by a threshold confidence value e.g., 90%), the

non-entity tag is modified by an entity tag. An entity tag is chosen as the

replacement when its probability is the maximum among that of all entity tags. In

CRFs, the probability of each state given the observation sequence could be

calculated as p(y|x, λ). So the update rule is as follows:

IF

p(Y="other"|x, λ) < t // t is a threshold confidence value

THEN

p(y|x, λ) = max௒ஷ"୭୲୦ୣ୰" ,ݔ|ሺܻ݌ ሻߣ

ݕ ∶ൌ argmax௒ஷ"୭୲୦ୣ୰" ,ݔ|ሺܻ݌ ሻߣ

34

4.2.3 Pattern-based Extraction

The CRFs with tag modification does not have the capability to solve two

problems. First, the length of the observation sequence is too long. In this case,

some tokens, which offers indicator information but are too far away from current

state, are not involved in the model. This situation is very common in patent,

because the sentence in patent is usually very long due to the use of preposition

phrase or parallel structure. The second problem is ambiguity. It is difficult to

differentiate attribute entity from technology entity. The CRFs model only

contains raw text and part-of-speech information, while both attribute entity and

technology entity are usually a noun phrase. Therefore, without additional

knowledge, it is difficult to make a judgment whether a noun phrase is a

technology entity or an attribute entity.

To address these two challenges, some patterns are considered. First, the

words expressing value entity are related in terms of meanings e.g., an adjective

related to polarity opinion, namely good or bad, or a verb related to making some

changes, e.g., “improve”, “facilitate”, “adjust”, “reduce” and “prevent”. Second,

the words expressing attribute entity is usually a noun phrase, and the attribute

entity is usually the nearest noun phrase to the value entity. For example, if the

value entity equals to “improve”, “improves”, “improving” and “improvement”,

then the attribute entity is usually the nearest noun phrase after the value entity; if

the value entity equals to “improved”, then the attribute entity is usually the

nearest noun phrase before the value entity. Thirdly, the words in value entity and

the words in attribute entity should not form a collocation.

To utilize these patterns, a method was designed. This method firstly identifies

candidate value entity and noun phrase. Next, for the nearest noun phrase to a

value entity, it checks whether a collocation can be formed. If false, the noun

phrase is identified as attribute entity and the candidate value entity is identified as

value entity.

The candidate value entity was identified by a list of indicator words. Using

the training data, a word list of indicator words was built. The word list was

expanded by adding synonyms of every word in the list. There synonyms were

from WordNet (Miller 1995; Fellbaum 1998), which is a thesaurus.

35

The noun phrase is chunked by a POS-based chunker. Rules are used to

determine how long the noun phrase is enough to be an ATTRTBUTE.

For the collocation checking, a stopword list is built for every indicator word.

To build such a stopword list manually is very difficult. So it was learned from

training data and the criterion for accepting a stopword is Laplacian:

݈݊ܽ݅ܿܽ݌ܽܮ ൌ
݁ ൅ 1

ܿ ൅ ݁ ൅ 1
 (4.3)

where c is the number of correctly matched attribute entity and e is the number of

errors. If the Laplacian is smaller than 0.5, then the stopword is accepted.

4.3 Evaluation

The evaluation results in this chapter are the same as the one reported in the

NTCIR-8 (Wang, Loh & Lu, 2010). The organizer of NTCIR-8 offered tagged

topics for training and untagged topics for test. The evaluation was executed by

the organizers.

4.3.1 Dataset

The raw text of each topic is the title and the abstract of a patent or a paper.

The training data consists of 300 patent topics and 300 paper topics, while the test

data is composed of 200 patent topics and 200 paper topics.

The distribution of the desired entities is shown in Table 4-1, including

technology entities in title (TT), technology entities in abstract (AT), attribute

entities in abstract(AA), and value entities in abstract (AV).

Table 4-1 The entity distribution

Entity Type Patent Paper
TT 39 93
AT 847 342
AA 213 204
AV 198 193

36

4.3.2 Evaluation Measures

The evaluation measures are recall, precision and F-measure (Manning,

Raghavan & Schütze, 2008). F-measure (also F1 score or F-score) is the harmonic

mean of precision and recall. The precision is the number of correct results

divided by the number of all returned results. The recall is the number of correct

results divided by the number of results that should have been returned.

The calculation of the precision and the recall of the technology in title are

given as an example. A standard list, each element of which is a technology in a

topic, is built for the standard result. Similarly, a system list is built for the system

result. A matched result is a result appears in both standard list and system list.

The number of correct results is the number of matched results. The number of all

returned results is the size of the system list. The number of results that should

have been returned is the size of the standard list.

4.3.3 Results

Three system runs were submitted: NUSME-1, NUSME-2 and NUSME-3.

The NUSME-1 adopted the CRFs method. Compared to the NUSME-1, the

NUSME-2 added a tag modification step. The NUSME-3 enhanced the NUSME-2

by integrating the output of the pattern-based method with the output of the

NUSME-2. In other word, NUSME-3 is the proposed method for E-model

extraction.

The F-measure submitted by all participants in the task is shown in Figure 4-1

(patent topics) and Figure 4-2 (paper topics). The F-measure of NUSME-1,

NUSME-2, and NUSME-3 are denoted with the bars filled with sparse lines,

dense lines, and black color, respectively. The NUSME-2 and NUSME-3

achieved relatively good results with respect to F-measure for both patent topics

and paper topics. Specially, the NUSME-3 was the best among all participants not

only for patent topics but also for paper topics. Compared to NUSME-1 and

NUSME-2, the NUSME-3 expended greater efforts and obtained better results.

Notably, a big improvement was achieved by the tag modification step.

37

Figure 4-1 The F-measure of all systems on patent topics

Figure 4-2 The F-measure of all systems on paper topics

The recall and precision of the three system runs using the patent data are

shown in Figure 4-3 and Figure 4-4. The tag modification step, namely from

NUSME-1 to NUSME-2, is able to improve the recall. It induces the CRFs model

to output more positive tags, thereby increasing the chance of finding correct

ru
n

-3
-1

ru
n

-1
-4

ru
n

-1
-1

ru
n

-1
-2

ru
n

-1
-3

ru
n

-2
-3

N
U

S
M

E
-1

ru
n-

2-
2-

1

ru
n

-2
-1

ru
n

-2
-2

N
U

S
M

E
-2

ru
n-

2-
1-

1

N
U

S
M

E
-3

0.0

0.1

0.2

0.3

A
ve

ra
ge

 F
-m

ea
su

re

System

ru
n-

3-
1

N
U

S
M

E
-1

ru
n-

1-
4

ru
n-

2-
2

ru
n-

2-
3

ru
n-

2-
1

ru
n-

1-
1

N
U

S
M

E
-2

ru
n-

1-
2

ru
n-

1-
3

N
U

S
M

E
-3

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

A
ve

ra
g

e
F

-m
ea

su
re

System

38

entities. However, at the same time, the additional output also increases the

chance of reducing the precision. That is why the precision is reduced.

In Figure 4-4, the general trend is a decrease of precision from NUSME-1 to

NUSME-2 with the exception of AA. The anomaly is because no correct entity of

AA was discovered in NUSME-1 and hence its precision is zero. Therefore, once

a correct entity is discovered in the second run, the precision of AA could be

improved.

Figure 4-3 The recall of NUSME system runs on patent data

NUSME-1 NUSME-2 NUSME-3
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

System

 TT_R
 AT_R
 AA_R
 AV_R

R
ec

a
ll

39

Figure 4-4 The precision of NUSME system runs on patent data

It can be observed that the manual designed patterns (from NUSME-2 to

NUSME-3) had improved both recall and precision of AA and AV. That is

because such patterns are designed to overcome the weakness of the built CRFs

model, and usually human intelligence is superior. There is no difference on TT

and AT, because the patterns adopted are all related to attribute entity and value

entity, not technology entity.

In the CRFs-based method, the four entity types i.e. TT, AT, AA and AV are

treated equally. However, TT and AT are quite different from AA and AV,

because AA and AV, as discussed above, are relational entities i.e. they usually

appear together. This important feature has not been considered in the CRFs

method. The pattern-based method was designed to utilize the relations between

AA and AV. Therefore, integrating CRFs with pattern-based method produces the

best results.

NUSME-1 NUSME-2 NUSME-3
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

System

 TT_P
 AT_P
 AA_P
 AV_P

P
re

ci
si

on

40

Figure 4-5 The recall of NUSME system runs on paper data

Figure 4-6 The precision of NUSME system runs on paper data

NUSME-1 NUSME-2 NUSME-3
0.00

0.05

0.10

0.15

0.20

0.25

0.30

System

 TT_R
 AT_R
 AA_R
 AV_R

R
e

ca
ll

NUSME-1 NUSME-2 NUSME-3
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

System

 TT_P
 AT_P
 AA_P
 AV_P

P
re

ci
si

o
n

41

The results of paper data, which can be observed from Figure 4-5 and Figure

4-6, are almost the same as that of patent data. There is no obviously difference

between patent and paper on writing the abstract and the title.

4.4 Summary

To extract E-model, a method is proposed and evaluated in NTCIR-8 patent

mining task. The proposed system adopted both CRFs-based method and pattern-

based method. Compared to the original CRFs method, the proposed modified

CRFs module achieved a better F-measure. Moreover, the proposed pattern-based

method can overcome the weakness of the CRFs-based method. A relatively good

result, compared to other participants, was achieved.

Although the proposed method is relatively good, its absolute performance is

not good enough. Moreover, as the first IE evaluation pertaining to technology

and effect entity, the Technical Trend Map Creation task focused on entity

extraction, rather than relation extraction. Although the effect entity was described

by two relational entities, the final evaluation was based on individual entity.

However, this task offers a benchmark for future research and a corpus for effect

entity.

42

CHAPTER 5

EFFECT-ORIENTED SEARCH ENGINE

In previous chapter, the E-model extraction module of the effect-oriented

search engine, discussed in Chapter 3, is handled as a NER problem. However, the

NER method for E-model extraction is not good enough for practical use. In this

chapter, an alternative method based on parsing was proposed. Moreover, this

chapter introduces the entire effect-oriented search engine in detail from the

lowest module to the highest module. It covers the E-model extraction with

dependency parsing, query expansion, query-document matching and re-ranking.

A case study is given to show the effectiveness of the proposed effect-oriented

search engine.

5.1 E-model Extraction Based on Dependencies

It was observed that extracting TechnologyName in the E-model

(TechnologyName, PropertyName, PropertyChange) is not a simple problem.

Usually, the agent of the effect cannot be found in current sentence or current

clause. Two examples are given as follows:

The cost is reduced.

… so that the cost is reduced.

In the first example, the agent is out of current sentence. In the second

example, the agent is out of current clause. Moreover, even if the agent is in

current sentence or current clause, coreference resolution may be required. An

example is given as follows:

This improves the control reliability.

In above example, the direct agent is a pronoun “this”. A coreference

resolution is needed to find what the pronoun “this” refers to.

Therefore, the TechnologyName is assumed to be known. The focus of this

chapter is extracting the remaining two elements: PropertyName and

PropertyChange i.e., the effect. As a dependency parsing problem, the implicit

43

syntactic relationship between PropertyName and PropertyChange should be

known. A more elaborate investigation was carried out on the 500 patents in the

NTCIR-8 Technical Trend Map Creation task in order to understand better the

ways of expressing effect in natural language. The effect entities are only labeled

in the abstract section. Therefore, all abstracts of the 500 patents are read

manually in order to discover underlying patterns. The discovered expression

manners are linked with syntactical patterns.

It was discovered that an effect is expressed through an object and its character

or behavior in an object-centric view. The object corresponds to PropertyName,

while a character or a behavior corresponds to PropertyChange. Generally there

are two categories of effects in terms of PropertyChange: through adjective-like

character or through verb-like behavior. The detailed syntactical patterns for

expressing effect are given in Appendix I.

It was further discovered that the head of the PropertyChange and that of

PropertyName has dependency relation, no matter what the exact syntactical

relation between PropertyChange and PropertyName is. Therefore, a query-

focused problem is defined for extracting E-model from dependencies.

Formally, given patent abstracts, PropertyName, and PropertyChange, the E-

model extraction system should label all PropertyName and ProperyChange in the

abstracts.

For example, the PropertyName is assumed to be “manpower”, the

ProperyChange is assumed to be “reduce”, and the text is as follows:

Automation reduces the manpower in this factory.

The dependencies obtained by Stanford parser is as follows:

nsubj(reduces-2, Automation-1)

root(ROOT-0, reduces-2)

det(manpower-4, the-3)

dobj(reduces-2, manpower-4)

det(factory-7, this-6)

prep_in(manpower-4, factory-7)

44

It can be observed that the fourth dependency contains both PropertyName and

ProperyChange. Therefore, the “reduces” is labeled as ProperyChange and the

“manpower” is labeled as PropertyName.

5.2 Query Expansion

In the above example, the given PropertyChange is “reduce”, while the labeled

PropertyChange “reduces”. Although they are different in form, they are the same

PropertyChange. To link the two different terms, query expansion is used.

Query expansion is the process of reformulating the seed query in order to

improve the information retrieval performance. Query expansion usually includes

two aspects: morphology and synonym. From the syntactical patterns in Appendix

I, an additional aspect should be considered for effect-oriented search. This is

because the same PropertyChange can be expressed in different ways e.g.,

different Part-Of-Speech (POS).

For example, expressing the decrease of the “cost” can use “reduce”,

“reduction” or “reduced”, as shown in Figure 5-1(a); expressing the increase of

accuracy can use “improve”, “improvement” or “improved”, as shown in Figure

5-1(b).

(a) (b)

Figure 5-1 Examples for expressing property change

For the same property, some words that express property change are

semantically related. These words may belong to different POS. Therefore, this

kind of query expansion is called cross-POS semantic expansion.

45

The implementation of cross-POS expansion and synonym expansion is based

on WordNet (Miller 1995; Fellbaum 1998). In WordNet, the main relation among

words is synonymy. The synonyms are grouped into sets, namely synsets.

Therefore, the synonym expansion can directly utilize the synsets and the cross-

POS expansion should be based on a kind of synset-to-synset relation. In

WordNet, the relation between two words belong to different POS is called

derivative relation. The WordNet supports derivation, but does not define

derivation well. There are two pointers for derivation: “derivationally related” and

“derived from adj”. The former is evoked by a noun, a verb or an adjective, while

the latter is evoked by an adverb. Both pointers are connections between two

words, rather than two synsets. In other words, the derivation pointer is a word-to-

word relation, rather than a synset-to-synset relation.

To build the synset-to-synset derivative relation, a direct search method and an

indexing search method are proposed. Given a synset, the direct search method

finds a set of derived synsets through the derivation relations between words. As

shown in Figure 5-2, given a synset, all words contained in the synset are retrieved.

The derivatives of these retrieved words are then obtained. Lastly, the synsets,

which theses derivatives belong to, are retrieved. Thus, all derived synsets of the

given synset is obtained.

Figure 5-2 The derivation relations between synsets

The indexing search method relies on an index to retrieve the derived synsets

of a given synset. The index is a sorted list, in which each element represents a

pointer from a synset to a set of synsets. Thus, a binary search algorithm takes

logarithmic time to locate an element. The worst case performance is (log n).

46

The index was built through traversing all synsets in WordNet. A direct search

method was carried out for each synset. The results are checked manually, and

invalid links between two synsets are removed.

The morphology expansion is implemented by an inflector, rather than a

stemmer. Usually, stemming, which is the process for reducing inflected (or

sometimes derived) words to their stem, base or root, is carried out in IR

(Manning, Raghavan & Schütze, 2008) or NLP-based IR (Strzalkowski &

Vauthey, 1992). Both query and patents should be tokenized and stemmed in the

same way before a matcher can calculate the similarity between the query and the

document. In contrast, inflection is the modification of a word to express different

grammatical categories such as tense, person, and number. Specifically,

conjugation is the inflection of verbs; declension is the inflection of nouns,

adjectives and pronouns. If the stemming for the query is replaced by the

inflection, both the stemming and tokenization for the patents can be removed.

This leads to a saving of time.

The algorithm for inflection has two steps. In the first step, the inflection is

based on a sorted exception list. A binary search is implemented. If a given word

is not on the exception list, the word will be passed to the second step. In the

second step, the inflection follows regular English grammar rules.

5.3 Query-Document Matching

Since parsing is time consuming, immediate response requires an offline

parsing and an indexing (Strzalkowski & Vauthey, 1992). For patent database, it

means an additional mass memory for storing parsing results and additional

searching time. To avoid additional mass memory and searching time, online

parsing is preferable. The long online parsing time can be reduced significantly by

parsing partial sentences rather than all sentences. A candidate sentence for

parsing should contain words relevant to the query. Therefore, a sentence filter

was designed for filtering irrelevant sentences before paring.

47

Figure 5-3 The query-document Matching

As shown in Figure 5-3, after synonym expansion, cross-POS expansion and

morphology expansion, the sentence filter filters irrelevant sentence. The relevant

sentences are parsed with dependency parsing.

5.4 Re-ranking

Given n ranked patents from an external search engine, the effect-inclusive

relevance of patent i is calculated as follows:

 ܴ௘ሺ݅ሻ ൌ ݌
ሺ݅ሻܯ

max
௝
ሺ݆ሻܯ

൅ ሺ1 െ ሻ݌
݊ ൅ 1 െ ܴሺ݅ሻ

݊
 (5.1)

Here, R(i) is the original rank of patent i; M(i) denotes the number of matched

sentence in patent i; while p ∈ [0, 1] is the penalty factor for the effect item. The

48

default value of p is 0.5, which means both the original rank given by the external

search engine and the matched effect information contained in a patent are equally

important. In other words, a patent is relevant, if it is considered as relevant by the

external engine and it contains the desirable effect information.

5.5 Search Engine System

As shown in Figure 5-4, the search process has two steps. In the first step, a

structured query is input and is translated into a valid query of a third-party search

engine. A conventional patent search process is evoked and a list of relevant

patents is returned. The structured query is an E-model and consists of three

entries: technology, PropertyName and PropertyChange. In the second step, the

obtained patents are re-ranked according to the effect- inclusive relevance.

Figure 5-4 The re-ranking in the search engine

The input interface of the patent search system is shown in Figure 5-5. Like

many other patent search engines, the selection of specific search field is

available.

To use the effect-driven patent retrieval, a user is required to conceive his

query following the logic of technology ontology. The search engine offers three

input entries: product (i.e., technology), patient (i.e., property name) and relation

(property change). Both “product” and “patient” are expected to be a simple noun

phrase. The “relation” between the product and the patient is expected to be a

single noun, verb or adjective.

49

Figure 5-5 The interface of the patent search engine

After clicking the “search” button, the search engine will ask the user to select

the exact meaning of the relation word. This is realized by evoking the WordNet.

Next, after ticking the desirable semantics and clicking the “continue” button, the

search engine will return the search results. The search result is a list of patents.

Most relevant patent is show first. The discovered desired relations are highlighted

in the search result.

5.6 Case Study: Effect-oriented Patent Retrieval

The case in the Chapter 1 is used again. In this case, the goal is to search for

patents pertaining to wireless mouse, for which the mouse does not need to change

battery frequently, or has a long battery life. Naturally, the product should be

“wireless mouse”. The patient and the relation are assumed to be “battery life” and

“long”, respectively.

As shown in Figure 5-6, the search engine will suggest 12 meanings of the

“long”. As shown in Figure 5-7, the search result not only shows a list of relevant

patents, but also highlights the discovered relations. Those patents containing the

queried effect are highly ranked.

50

Figure 5-6 The interface of semantics selection

Figure 5-7 An example of search results

51

5.7 Summary

In this chapter, a method is proposed to extract E-model from dependencies.

Moreover, the effect-oriented search engine, discussed in Chapter 3, is introduced

in detail, including the necessity for query expansion, especially the one crossing

part-of-speech, query-document matching and re-ranking. Compared to

conventional search engine under term independence assumption, the effect-

oriented search engine uses additional effect information as a filter to reduce the

number of returned patents.

52

CHAPTER 6

INDEPENDENT CLAIM SEGMENT DEPENDENCY

SYNTAX

The patent growth mapper, discussed in Chapter 3, has an S-model extraction

module. The extracted S-models are used for supporting the patent growth mapper.

To extract S-model of a patented technology from its patent’s claims, the

dependencies are utilized. For example, with the dependencies, as shown in Figure

6-1(a), its S-model, as shown in Figure 6-1(b), can be formed. Therefore,

dependencies are required for solving the S-model extraction problem.

(a) (b)

Figure 6-1 An example of extracting S-model with dependencies

However, as discussed previously, claim parsing is a challenge. To address

this challenge, this chapter firstly gives a thorough discussion on the difference

between claim syntax and dependency grammar. Moreover, practical problems of

claim parsing with existing parsers were investigated.

To solve the discovered problems, new dependency syntax, called Independent

Claim Segment Dependency Syntax (ICSDS), is defined for independent claims

and is introduced in this chapter.

6.1 Peculiarities of Claim Syntax

The claim syntax obeys exactly the English grammar. However, it is peculiar.

These peculiarities had been discussed (Parapatics & Dittenbach, 2011). In this

study, the discussions focus on the inconsistency between the peculiarities and

dependency grammars.

53

(1) Template

There are some formal templates for starting a claim. They are necessary and

are used for organizing multiple claims. For examples, “We claim:” (in patent

numbered US7954694) before a first independent claim; and “The file folder of

claim 3, wherein” (in patent numbered US7954694) before a dependent claim, in

which the “file folder” is the patented product.

Such text does not offer specific information pertaining to the patented

product, but does affect dependency parsing. The counter measure is to exclude

them from parsing.

(2) Complex noun phrase as sentence

A dependency-grammar-based parser may allow a noun phrase to be a

sentence. For example, when the input text is a single noun, the noun is

considered as a sentence. When the input text is a very simple noun phrase

structure, e.g., a determiner plus a noun, the noun phrase is considered as a

sentence. However, noun phrase is easy to depend on another constituent, if it

exists.

In claim, it is very common that a complex noun phrase is an independent

sentence, and at the same there are many other constituents. Thus, a dependency-

grammar-based parser usually treats the entire complex noun phrase as a

constituent of another sentence, and makes a wrong parsing. The counter measure

is to allow noun phrase to directly use ROOT as the head.

(3) Tense

The basic tense in claim is present tense rather than past tense. Generally, the

past tense and the past participle have the same verb form. The post attributive

present participle phrase or post attributive past participle phrase is very common

to form complex noun phrase. It is hard for a dependency-grammar-based parser

to distinguish post attributive past participle from verb past tense, because a

dependency-grammar-based parser usually prefers a sentence containing a

predicate to a noun phrase. The counter measure is to execute POS correction.

54

(4) Parenthesis

Generally, a dependency-grammar-based parser usually treats an input text as

a single sentence, and assigns dependency for every word in the text. However, a

claim may not be a single sentence, because it is very common that an

independent sentence is directly inserted into a claim. Thus, incorrect automatic

parsing is inevitable.

(5) Recursion

Recursion is common in independent claim, especially when expressing

structure information. For instance, “wherein the body includes a graphical region

comprising an ornamental three dimensional sculpture” (in patent numbered

US7917986) is best analyzed as a main sentence “wherein the body includes a

graphical region” having an embedded sentence “a graphical region comprises

an ornamental three dimensional sculpture”. Moreover, the predicates of the main

sentence and sub-sentence express the same semantics. This increases the

difficulty of dependency parsing.

(6) Coordination

In dependency grammar, coordination is defined trickily. For example, in

sentence “A camera comprises a lens and a body”, the head of both “lens” and

“body” should be “comprises”. However, in dependency grammar, the head of

“and” is assigned as “lens” and the dependency relation is assigned as

“coordinator”. At the same time, the head of “body” is also assigned as “lens” and

the dependency relation is assigned as “conjunct”. Additional step is needed to

reveal the reasonable dependency relation.

Coordination is common in claim, since a product can include several

components. Although the definition of coordination in dependency grammar is

not a problem, too many coordination increases the difficulty of correct

dependency parsing.

(7) Long Distance Dependencies

Due to above mechanisms, such as noun phrase as sentence, parenthesis,

recursion and coordination, dependencies in a claim can be very long. Long

distance dependencies not only increase the difficulty of correct dependency

55

parsing, but also require significant computational cost. The counter measure is to

execute claim segmentation and build segment dependency.

6.2 Practical Problems of Direct Parsing

To have a feeling on practical problems of dependency parsing on claim with

existing parser, two parsers are selected to parse a small sample dataset. One

parser is the Stanford parser, while the other one is the MaltParser. A detailed

parser comparison can be found at (Cer, Marneffe, & Jurafsky et al. 2010). It was

said that MaltParser is much faster, while Stanford parser is much accurate. A

small sample dataset of patent was collected. It contains 22 claims and 20

abstracts, in which the effect relations are manually labeled. Manual evaluation is

carried out through making judgment about whether the labeled effect relations

can be derived from the parsed text.

It was observed that two parsers are as good as each other when parsing

abstract. The recall for both parsers is 95.00%. Mistakes were made on the same

abstract, which may be too difficult to correctly parse. However, Standford parser

is much better than MaltParser when parsing claim. The recall of Standford parser

is 81.82%, while that of MaltParser is 77.27%. This conclusion is consistent with

previous work (Cer, Marneffe, & Jurafsky et al. 2010). A more careful

examination discovered that the mistakes only occur in verb-centric structure.

Generally, a local relation e.g., adjective-noun relation can successfully be

identified. In contrast, a non-local relation e.g., long distance dependency, usually

cannot be found.

The Stanford parser was further tested due to its acceptable parsing accuracy.

The test focused on computational complexity. Both space complexity and time

complexity were considered.

For this study, a dataset, called PPAT273, is built manually. In PPAT273,

there are a total of 273 product patents, which were downloaded from United

States Patent and Trademark Office (USPTO). Each patent is a utility patent and

describes a whole product. There are ten product types, including toothbrush,

digital camera, razor, lighter, forceps, file folder, mobile phone, surgical scalpel,

hypodermic needle and paper punch.

56

From PPAT273 dataset, 273 first independent claims (referring as claim in the

rest of this chapter) were extracted. The length represents the number of tokens in

a text string. The length of a claim is defined as the number of tokens it contains.

The statistical result is shown in Figure 6-2. It is observed that the length of most

claims is more than 100. At the extreme, the length of a claim may exceed 800.

Figure 6-2 The frequency of length

It is reported (on the Stanford parser’s homepage) that the memory use is

proportionally the square of the length. Generally, parsing a text with length 20,

50, and 100 needs approximately 250MB, 600MB and 2100MB, respectively.

Therefore, the Stanford parser is unable to parse most claims in the PPAT273

dataset on a common personal computer, of which the maximum memory is

2000MB. This conclusion is consistent with previous work (Parapatics &

Dittenbach, 2011), which only tried physical memory heap size no more than

1000MB. In this study, it was tested and found that 700MB memory can only

parse a text with length no more than 28. That is worse than the expected.

However, when the memory is increased to 1400MB, the parser can parse a text

with length up to 206. This means more than half of the claims in the PPAT273

0 100 200 300 400 500 600 700 800 900
0

15

30

45

60

75

90

105

120

F
re

qu
e

nc
y

Length

57

dataset can be parsed. It seems that when the memory is added to a high enough

value, parsing does not require the memory size as much as the expected one,

which is proportional to the square of the length. It is also expected that high

performance computing server or cloud computing can offer the capability to

parse a very long claim whose length is more than 800.

Compared to space complexity, time complexity is more important. To test the

parsing time, six sample claims were selected from the 273 claims. The lengths of

five claims are evenly distributed in a range from 0 to 250, with 50 as the interval.

The sixth claim is the shortest one whose length is 21 among the 273 claims. For

each claim with length l, it was parsed l - 10 times. In the first time, the entire

token sequence of the claim is passed to the parser. In the next time, the last token

in the token sequence is removed. The cutting is repeated until the length of the

token sequence equals to 10.

Figure 6-3 The relation between length and time

The test results are shown in Figure 6-3, it was observed that generally the

parsing time is monotonically increased with the increase of length. When the

length is less than 50, the increase of parsing time is not significant. Parsing a 50

long claim requires about five second. However, the parsing time increases

sharply when the length is more than 100. Parsing a 140 long claim needs more

0 50 100 150 200

0

50

100

150

200 L12
 L40
 L96
 L135
 L174
 L206

T
im

e
(s

)

Length

58

than one minute; parsing a 170 long claim needs two minutes; while parsing a 200

long claim needs three minutes.

6.3 Basic Idea of ICSDS

To hand long length and Long Distance Dependencies, one way is to execute

claim segmentation. To maximize the utilization of existent natural language

resources, every segment is parsed with an existent the parser. In other words, it is

assumed that a claim can be segmented in a way that most word-to-word

dependencies in each segment can be correctly parsed with a conventional parser.

A higher-level parser further parses segment-to-segment dependencies and builds

the word-to-word dependencies that are crossing segments.

Generally, the Independent Claim Segment Dependency Syntax (ICSDS) is

dependency-based syntax designed for parsing independent claims, which cannot

be directly parsed well with traditional dependency grammars, e.g., the standard

Stanford dependencies. It belongs to a class of modern syntactic theories that are

all based on dependency relation. It includes means for segmenting an

independent claim into segments, recognizing segment features, building segment

dependencies and assembling segment dependencies with word-to-word

dependencies.

6.4 Properties of ICSDS

Apart from all the words in a claim, an additional token is defined as ROOT,

which means the root of the parsing tree. The properties of the ICSDS include:

(1) Connectivity

All the words are connected with the dependency relations.

(2) Single Head

Apart from ROOT, each word must have and can only have one head.

(3) Partial Planarity

Apart from the dependency relation connecting ROOT, a dependency relation

does not cross any other dependency relations when drawn above the words.

59

(4) Proximity Principle

Each dependent depends on the closest possible head.

6.5 ICSDS parser

Without large training dataset, this study focuses on grammar-based parsing

method. The first implementation of the ICSDS is based on the Stanford parser.

The system overview is shown in Figure 6-4. Since loading a trained Stanford

parser requires many seconds, the ICSDS parser processes claims in a manner of

batch processing.

Figure 6-4 The system overview of the ICSDS parser

6.5.1 Tokenization and POS Tagging

The tokenization and POS tagging is similar to the one in (Wang, Loh & Lu,

2010). The tokenization is completed by the Stanford tokenizer, while the POS

tagging is completed by the Stanford POS tagger. Thus, the mistakes caused by

using different tokenization method or POS tagging method should be minimized.

6.5.2 Claim Segment Segmentation

Given a string of tokens, the claim segment segmentation returns a sequence

of claim segments. A delimiter is a mark which fixes the boundary of a segment.

60

The delimiter is formed by some separators. Since ICSDS prefers natural

separation of text, any mark that helps separating an independent claim and

making the meaning clear is considered as a separator. These known separators

belong to three categories: HTML element, sequential number, and punctuation

mark. Generally, two separators belonging to the same category do not occur

consecutively. In contrast, two or three separators belonging to different

categories may occur consecutively. Therefore, a delimiter is defined as a triple in

the form of (HTML-element, sequential-number, punctuation-mark). For example,

a part of the first independent claim of patent numbered US4027510 is shown as

follows:

1. A forceps instrument comprising in combination,

a. an outer sleeve member,

b. a guiding viewing-tube support, tubular in shape, and
mounted concentrically within said outer sleeve,

c. a tubular barrel mounted within said outer sleeve
substantially concentrically around and axially slidable along said
guiding viewing-tube support,

...

Here, the first segment is “A forceps instrument comprising in combination”,

followed by the first delimiter (“br”, “TypeE”, “,”). The first delimiter contains a

HTML element i.e.,
 (formally
), a sequential number of type E (see

Appendix II for details), and a punctuation mark i.e., a comma. The third segment

is “a guiding viewing-tube support”, followed by the third delimiter (-, -, “,”). The

third delimiter contains only a punctuation mark i.e., a comma.

6.5.3 Claim Segment Feature Recognition

Given a claim segment, the claim segment feature recognition recognizes

features at the starting portion and the ending portion of the input claim segment.

A segment is characterized by its starting portion and ending portion. Therefore,

segment feature recognition focuses on the starting portion and the ending portion

of a segment.

A rule-based method is executed. Rules are created manually to support the

recognition. The structure of a rule for starting portion is the same as that for

ending portion. The basic elements composing a rule include segment length,

61

lexicon, part-of-speech (POS) and some word classes that are specially defined.

For example, starting portion rule “NP,2,IA,!POS:adjective” means if a segment

with length two, starting from an IA i.e., indefinite article, and the second token is

not an adjective, then the segment should start from a NP i.e., noun phrase.

6.5.4 Claim Segment Parsing

Given claim segments with features, the claim segment parsing returns claim

segment dependencies. If a claim segment relies on another segment to form a

sentence, then there exists a dependency relation between them, while the former

is called as dependent and the latter is called as head. If a claim segment does not

rely on any segment to form a sentence, then its head is the ROOT. This

dependency relation between two segments is a little different from that of two

words.

Current implementation of the claim segment parsing adopts a rule-based

method. Two major elements of the rule-based method are dependency rule and

dependency constraint. The dependency rules and the dependency constraints are

working together to support correct parsing. A dependency rule describes the

features of both the dependent and its possible head. The adopted features include

relative position, relative distance, starting feature, ending feature, and

punctuation feature. Moreover, a dependency rule can include heritage. In other

word, a dependency rule may allow a dependent to inherit another dependent’s

head. The default head is the “ROOT”. Therefore, if no rule applicable, “ROOT”

will be assigned as the head. Dependency constraints are used to provide

additional requirements on rule matching. A dependency relation is accepted, only

if a rule is matched and is subject to all constraints.

For example, four dependency rules are given as follows:

AND SNP
AND SP
NP SNP
NP SP

Here, the “SNP”, “SP”, “NP” and “AND” are segment features. The “NP”

means noun phrase. The “SNP” means first noun phrase of the sentence. The “SP”

means an inside incomplete sentence. The “AND” means “and”.

62

As shown in Figure 6-5, a claim consists of two independent sentences. A

sentence with “SP” is inserted into a sentence with “SNP”. The dependency

relation of two segments is depicted via an arc with an arrowhead towards the

head. It is assumed that the parser has successfully parsed all segments before the

segment with “NP” above the black triangle. Thus, according to the rule “NP 

SP” and the proximity principle, this segment should depend on the segment with

“SP”. Next, according to the rule “AND  NP” and the proximity principle, the

next segment with “AND” should also depend on the segment with “SP”.

A dependency constraint on coordinating conjunction can reject the first

dependency relation. Briefly, a head cannot accept dependent, if its last two

dependents are starting with “AND” and “NP”, respectively. Thus, current

segment with “NP” will depends on the segment with “SNP” correctly, according

to the rule “NP  SNP”.

Figure 6-5 An example for explaining dependency rules and constraints

Consequently, a dependency constraint on partial planarity can reject the

second dependency relation. The search for the head of the segment with “AND”

will omit any segments before it, apart from the segment with “SNP”.

A left-to-right parsing algorithm is designed to read the entire segmented

claim, and then identify the head of each segment from the left side of the claim to

the right side. The pseudo-code is shown as below:

ROOT SP NP AND NPSNP NP AND NPNP

63

Algorithm: PARSE

01 indexOfHead ← Ø
02 foreach current segment sc in S do
03 │getHead ← false;
04 │indexOfHead[sc] ← 0;
05 │rule ← PICKRULE(Rules, GETTYPE(sc));
06 │foreach segment si that i < c (or i > c) in terms of rule do
07 ││ if EXAMINE(si) then
08 │││if MATCH(rule, GETTYPE(si), GETTYPE(sc)) then
09 ││││getHead ← true;
10 ││││head ← GETHEAD(r);
11 ││││indexOfHead[c] ← index;
12 └└└└break;
13 return indexOfHead

When a segment is in the process of head identification, it is called current

segment. The head of current segment is assigned as “ROOT” initially (in line

04). In the following head search process, a rule corresponding to current segment

is picked (in line 05). According to this picked rule, either the leftward segments

or the rightward segments are examined one by one. For each segment under

examination, the algorithm first examines dependency constraints (in line 07). If

the examined segment is feasible and it together with current segment can match

the picked rule (in line 08), the head in the rule (in line 10) and its actual index (in

line 11) will be assigned to current segment.

6.5.5 Assembling

Given segment-to-segment dependencies, word-to-word dependencies within

each segment, the assembling builds word-to-word dependencies crossing

segments and returns all word-to-word dependencies. Only two kinds of word-to-

word dependencies crossing segments will be assigned: verb-noun relation and

adjective-noun relation, since they are necessary for S-model extraction. Given

two segments, it builds a dependency relation between two words, each of which

belongs to one of the two segments.

Briefly, the assembling step merges two kinds of word-to-word dependencies

together. A rule-based method was used.

64

6.6 Examples of ICSDS Parsing

To give an intuitive feeling of the parsing result, an example is given below.

The original claim is:

A mobile phone, comprising: a body having a ground portion; a metallic
cover detachably coupled to the body, the metallic cover forming an exterior
surface of the mobile phone; and a grounding unit configured to electrically
connect the ground portion of the body to the metallic cover when the metallic
cover is coupled to the body, the grounding unit being disposed on one of facing
surfaces of the body and the metallic cover, wherein the grounding unit includes:
an attachment portion located on an inner surface of the metallic cover facing the
body; and an elastic extension portion extending from the attachment portion
towards the body.

In the original claim, there are 10 segments and three sentences. In the first

sentence, a mobile phone (in Segment 1) comprises (in Segment 2) a body (in

Segment 3), a metallic cover (in Segment 4) and a grounding unit (in Segment 6).

The second sentence further elaborates the metallic cover (in Segment 5). The

third sentence further elaborates the grounding unit (in Segment 7) and it includes

(in Segment 8) an attachment portion (in Segment 9) and an elastic extension

portion (in Segment 10). The parsing result, where the word-to-word

dependencies obtained by the Stanford parser are omitted, is shown in Figure 6-6:

Figure 6-6 An example of the ICSDS parsing

6.7 Evaluation

Both effectiveness and efficiency of the ICSDS parser was tested. The

effectiveness was test on an S-model extraction problem. The PPAT273 dataset,

in which standard S-models are manually built, was used for the test. The training

set consists of 173 patents, while the test set consists of 100 patents. The accurate

rate is used as the evaluation measures. A parsing tree is considered as accurate, if

65

the S-model formed from the parsing tree is the same as the standard S-model.

Both Stanford parser and the ICSDS parser were tested.

The evaluation result showed that the accurate rate of the Stanford parser was

14%, while the accurate rate of ICSDS parser was 68%. Although 68% is not very

high, it is much higher than 14%.

The efficiency was evaluated through memory use and parsing time. The

ICSDS parser requires less memory than the Stanford parser, because its

segmentation strategy reduces the maximum length of input text. All claims can

be parsed under a computer with 1.60 GHz CPU and up to 1.4 GB Java memory.

To test the parsing time, 174 claims in the PPAT273 that can be parsed with

both the ICSDS parser and the Stanford parser were used. The range of length is

from 26 to 210. The comparison of parsing time is shown in Figure 6-7. Apart

from the shortest claim, the ICSDS parser is faster than the Stanford parser.

Moreover, the variation of parsing time with the ICSDS parser is small. The range

of parsing time is from 1 to 31 seconds. The parsing time with ICSDS parser is

almost independent from the length of claim, when the claim length is no more

than 210.

Figure 6-7 The comparison of the parsing time

67 84 92 105 114 120 130 137 146 152 159 168 175 181 186 204 209

0

50

100

150

200

250

300

350

400

450

 ICSDS
 Stanford

T
im

e
 (

se
co

n
d)

Length

66

6.8 Summary

This chapter discussed the peculiarities of clam syntax and the problem they

caused on dependency parsing. Moreover, two famous dependency parsers were

tested on claim dependency parsing. The test results show that both accuracy and

speed are challenges to successful claim parsing. Fortunately, available

dependency parsers demonstrated efficiency and effectiveness, when the length of

the claim is short and the dependency relation is local.

Therefore, a strategy combining segmentation and assembly may be helpful.

In this strategy, available dependency parsers are expected to accurately and

speedily parse all segments, while these segments are accurately linked by an

extra higher-level parser. Such a parser is expected to be not only more effective,

but also more efficient. For example, the parsing time for a claim with length of

140 is about 60 seconds. If the claim can be segmented into three segments, each

of which is less than 50, then the total parsing times is about five seconds times

three i.e., 15 seconds. If the higher-level parser can correctly assemble the three

segments in 45 seconds, then the whole parser is more efficient than the initial

parser.

The strategy is implemented by the ICSDS parser, in which the Stanford

parser is embedded. This design maximizes the utilization of available natural

language technologies and resources, and reduces the effort for implementation of

the new syntax. The evaluation results show that, compared to the Stanford parser,

the ICSDS parser is much effective and efficient on S-model extraction.

67

CHAPTER 7

GRAPH SIMILARITY MEASURES

In previous chapter, the S-model extraction module of the patent growth

mapper, discussed in Chapter 3, is discussed. The extracted S-models are utilized

in the similarity measures module of the patent growth mapper. The similarity

measures module is used for comparing technologies and measuring the difference

of technologies. In this chapter, graph similarity measures for S-model were

proposed. They focus on node similarity rather than treating node similarity and

edge similarity equally, and keep initial intuitive similarity judgment made by

human. The effectiveness of the proposed graph similarity measures was

demonstrated by a few graph examples. Moreover, the recommended graph

similarity measure i.e., iterative node-to-node scoring was evaluated by a real

world classification problem.

7.1 Graph Representation

Formally, a graph G = G(V, E), is represented as a node-node adjacency

matrix. A vertex denotes a technology or a component of the technology that is

described by a set of terms i.e., vi = {term1, term2, …} and an edge denotes a

inclusion relation between two vertices. If the cardinality of V is n, then the

adjacency matrix A of this graph is an n × n matrix, in which entry [A]ij is equal

to 1 if and only if (i, j) ∈ E, and is equal to 0 otherwise. Since the direction of the

edge is not considered, the adjacency matrix of such a graph is always symmetric.

7.2 Graph Similarity Scoring

The graph similarity scoring has two steps. In the first step, a node-to-node

similarity is obtained. In the second step, a graph matching is executed. Formally,

in the node-to-node similarity matrix X, the xij denotes the node similarity score

between node i in graph GB and node j in graph GA. With the node-to-node

similarity matrix X, the task of graph matching is to search an optimal matching

between the two graphs. What often sought in the graph matching problem is an

assignment matrix P. If set B has m elements and set A has n ൒ m elements, then P

68

will be an m × n matrix of only 0’s and 1’s, with a single 1’s entry on each row,

and no more than a single 1’s entry in each column. If Pij = 1, then element i of B

is matched to element j of A. The graph matching problem can be solved by the

Hungarian algorithm. The Hungarian algorithm calculates a maximum weight

matching between two sets, each with n elements in (n3) time (Kuhn, 1955). The

cost matrix C = E - X. The matrix E is a matrix with one in all the elements.

The final graph-to-graph similarity is the sum of node-to-node similarity

scores of matched graphs, averaging by the number of nodes in the smaller graph,

times the ratio of the number of nodes in the smaller graph to that in the bigger

graph.

SIM(A, B) =

 
1 1

/ / /
ij ij

ij B B A ij A
P P

X v v v X v
 

 
   

 
 

(7.1)

In the computation of the node-to-node similarity of two graphs, both initial

node-to-node semantic similarity and topology of every graph are considered.

Given node vA and node vB, each of which is described by a set of terms, then

semantic similarity between two nodes is defined as a degree of term matching:

 SIMSemantic(vA, vB) ≡ (vA ∩ vB) / (vA ∪ vB) (7.2)

The topologies of the two graphs are combined with the semantic similarity in

two ways. They are named as weighted node-to-node scoring and iterative node-

to-node scoring, respectively.

7.2.1 Weighted Node-to-Node Scoring

The weighted node-to-node scoring calculates the similarity between two

nodes as the sum of the semantic similarity and the topological similarity. The

69

topological similarity is defined as a function of absolute difference between the

number of adjacency edges of one node and that of the other one, shown as below:

 SIMTopological(vA, vB) ≡ 1 / (1 + | e(vA) - e(vB) |) (7.3)

Here, e(v) denotes the number of adjacency edges of the node v. Thus, the

weighted node-to-node similarity is calculated as follows:

 SIMw ≡ (1-w) · SIMTopological + w · SIMSemantic (7.4)

Here, w is the weight of semantics similarity and is in the range from zero to

one. Finally, xij = SIMw(i, j).

7.2.2 Iterative Node-to-Node Scoring

The iterative node-to-node scoring uses an iterative update method to calculate

similarity. The basic idea is: a node in graph GB is like a node in graph GA, if they

and their adjacent nodes are similar. This basic idea can be expressed as follows:

  
   1

1

max (1) (1)ij pq ij
A jq

B ip

x k x k x k


    (7.5)

The total number of summed terms is controlled by using maximum, because

the sum of all terms is too big. Since each xk is updated by a sum of several xk-1,

the normalization factor for each sum might be the number of summed xk-1. The

normalization factor matrix N can be represented as follows:

 N =

| | ... |

() ()... ()

| | ... |

sum B sum B sum B

 
 
 
  

+ E (7.6)

70

Here, sum(·) treats the columns of the matrix as vectors, returning a row vector

of the sums of each column. Matrix E is a matrix with one in all the elements.

To keep the initial relative semantic similarity, the xij(0) is added to the final xij,

and the sum is normalized by two. Therefore, the final score is as follows:

 xij = (xij + xij(0)) ./ 2 (7.7)

The update stop criteria can be set as a required number of runs, e.g., 1000

times, or an upper limit for the difference between xk and xk-1, e.g., 0.0001.

7.3 Examples of Graph Similarity Measures

To demonstrate the general effectiveness of the proposed similarity measures,

a simple graph similarity problem is created as an example. As shown in Figure

7-1, graph (a) is compared with other eight graphs.

Figure 7-1 Nine example graphs. A circle denotes a node. A line denotes an edge. A
“t#” in a circle denotes a term labeled on the node.

t3t2

t4t1

t3

t2t1

t3

t2t1

(a)

(d) (f)

t3t2 t4

t1 (b)

t3t2 t4

t5 (c)

t6t5 t7

t1

(e)

t3t2 t4

t1

t5

t3t2

t1

(g) (h)

(i)

t3t2 t4

t1

71

Intuitively, the expected similarity scores should satisfy requirements as

follows:

(1) 1 > SIM(a,b) > 0.5. Although root of graph (a) and that of graph (b) is

different literally, they have identical components.

(2) 0 < SIM(a,c) < 0.5. Although root of graph (a) and that of graph (c) is

identical literally, they do not have any identical components.

(3) 1 > SIM(a,d) > 0.5. Although the topology of graph (a) and that of graph

(d) are different, they have the same components

(4) 1 > SIM(a,e) > 0.5. Graph (a) is the major part of graph (e).

(5) 1 > SIM(a,f) > 0.5. Graph (f) is the major part of graph (a).

(6) SIM(a,f) > SIM(a,g) > SIM(a,h). That is because they have the same nodes,

but the topology of graph (f), graph (g) and graph (h) is a tree, a line and a

ring, respectively.

(7) SIM(a,i) = 1. That is because graph (a) and graph (i) are identical.

In VSM, the nine graphs can simply be represented as nine vectors, as shown

in Table 7-1.

Table 7-1 Nine graphs in VSM

 term

graph

t1 t2 t3 t4 t5 t6 t7

(a) 1 1 1 1 0 0 0
(b) 0 1 1 1 1 0 0
(c) 1 0 0 0 1 1 1
(d) 1 1 1 1 0 0 0
(e) 1 1 1 1 1 0 0
(f) 1 1 1 0 0 0 0
(g) 1 1 1 0 0 0 0
(h) 1 1 1 0 0 0 0
(i) 1 1 1 1 0 0 0

The similarity of graph (a) and other eight graphs in terms of two commonly

used similarity scorings: cosine similarity and Euclidean distance (Manning,

Raghavan & Schütze, 2008) are shown in Table 7-2. Scores that satisfy

requirements are shown in bold. The ranking of graph (b) to (i) in terms of

similarity to graph (a) with cosine similarity is the same as that with Euclidean

distance. Without considering the topology, graph (a), graph (d) and graph (i) are

equal. Graph (f), graph (g) and graph (h) are also identical. Overall, cosine

72

similarity only satisfies half of requirements. The ambiguousness caused by the

Euclidean distance is more severe.

Table 7-2 The similarity comparison with VSM

Compared
Graphs

Cosine
Similarity

Euclidean
Distance

(a) (b) 0.750 1.414
(a) (c) 0.250 2.449
(a) (d) 1.000 0.000
(a) (e) 0.894 1.000
(a) (f) 0.866 1.000
(a) (g) 0.866 1.000
(a) (h) 0.866 1.000
(a) (i) 1.000 0.000

Given different weight w, the results of the weighted node-to-node scoring

method is shown in Table 7-3. Scores that satisfy requirements are shown in bold.

Table 7-3 The similarity scores based on weighted node-to-node scoring

w
Graph Pair

(a, b) (a, c) (a, d) (a, e) (a, f) (a, g) (a, h) (a, i)
0 1.000 1.000 0.750 0.700 0.625 0.625 0.375 1.000

0.1 0.975 0.925 0.725 0.710 0.638 0.612 0.413 1.000
0.2 0.950 0.850 0.700 0.720 0.650 0.600 0.450 1.000
0.3 0.925 0.775 0.708 0.730 0.662 0.587 0.487 1.000
0.4 0.900 0.700 0.750 0.740 0.675 0.575 0.525 1.000
0.5 0.875 0.625 0.792 0.750 0.688 0.604 0.562 1.000
0.6 0.850 0.550 0.833 0.760 0.700 0.633 0.600 1.000
0.7 0.825 0.475 0.875 0.770 0.712 0.662 0.638 1.000
0.8 0.800 0.400 0.917 0.780 0.725 0.692 0.675 1.000
0.9 0.775 0.325 0.958 0.790 0.738 0.721 0.712 1.000
1 0.750 0.250 1.000 0.800 0.750 0.750 0.750 1.000

It could be observed that the weighted node-to-node scoring method can

satisfy all requirements, when w was set as 0.7, 0.8 and 0.9. It means that

involving topology can obtain more accurate similarity, but semantics plays a

more important role than topological. In other words, similarity measure should

consider the semantics as the primary part and the topology as the supplemental

part. That can explain why VSM, which does not consider topological

information, could offer acceptable results in Information Retrieval.

The proposed iterative node-to-node scoring meets all requirements discussed

above, as shown in Table 7-4. Moreover, the iterative node-to-node scoring does

not predefine any parameter, unlike the w in the weighted node-to-node scoring

73

method. Therefore, iterative node-to-node scoring was recommended in future

graph similarity calculation.

Table 7-4 The similarity scores based on iterative node-to-node scoring

Compared
Graphs

Similarity Epoch

(a) (b) 0.675 16
(a) (c) 0.325 9
(a) (d) 0.8 30
(a) (e) 0.8 17
(a) (f) 0.75 16
(a) (g) 0.589 16
(a) (h) 0.563 26
(a) (i) 1 16

7.4 Evaluation of Iterative Node-to-Node Scoring

The effectiveness of the proposed graph model and the proposed iterative

node-to-node scoring was further evaluated through a real world classification

problem.

7.4.1 Experimental Setup

The PPAT273 dataset was used. The S-model of the technology in every

patent was annotated manually. The classification problem is designed as a binary

classification. In each class, the products belonging to this class are labeled as

positive; otherwise negative. To separate training set and test set, patents are

sorted in terms of the patent number and a split point is used to separate the sorted

patents into two parts. The split point ensures that the number of positive

examples is approximately equally in training set and test set. The exact number

of training examples and text examples are different for different class, as shown

in Table 7-5.

The proposed similarity score is easy to be embedded into a k-Nearest

Neighbor (k-NN) classifier (Manning, Raghavan & Schütze, 2008) by simply

replacing the original similarity score. The k-NN classifier assigns a class label to

an example in test set according to the label(s) of the example’s k nearest

neighbors in training set. The rationale of k-NN classification is that, with the

74

contiguity hypothesis, it is expected that a test example has the same label as the

training examples located in the local region surrounding the test example.

Table 7-5 Ten classes and the arrangement of training set and test set

Class #
positive
training

positive
test

training
positive rate

training
toothbrush 93 44 49 112 39.29%
digital camera 87 43 44 195 22.05%
razor 17 8 9 25 32.00%
lighter 17 7 10 75 9.33%
forceps 13 6 7 13 46.15%
file folder 12 6 6 52 11.54%
mobile phone 12 6 6 195 3.08%
surgical scalpel 11 4 7 38 10.53%
hypodermic needle 6 3 3 33 9.09%
paper punch 5 2 3 34 5.88%

7.4.2 Experimental Results

In the experiments, the proposed iterative similarity scoring did stop before the

maximum number of runs i.e., 1000. The distribution of running times is shown in

Figure 7-2, where one epoch is defined as one time of iterative computation. As

shown in Figure 7-2, most run was stopped after the first epoch. That is because a

lack of semantic similarity between two graphs. If a run did not stop after the first

epoch, then it usually needs more than ten epochs to stop. The running time is

shown in Figure 7-3. Most running time is less than one millisecond. If not, it

would take about 17 milliseconds.

Figure 7-2 The distribution of running epoch of iterative graph similarity scoring

72.68%

1.05% 0.00% 0.00% 0.00% 0.82% 0.24% 1.27% 1.00% 1.71%

5.34% 6.66% 7.26%

1.98%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

P
e

rc
en

ta
ge

 (
%

)

Epoch

75

Figure 7-3 The distribution of running time of iterative graph similarity scoring

The proposed classifier was compared with standard k-NN classifier and

Support Vector Machine (SVM) classifier. The text digitalization adopted a

traditional way i.e., extracting title and abstract section and following the

preprocessing steps in (Wang, Lu & Loh, 2011). Since both k-NN classifier and

Support Vector Machine (SVM) classifier have parameters to tune. Parameter

tuning was executed and best parameters were used in the method comparison.

The F1 score was used as the evaluation measure.

The k-NN classifier can adopt different similarity score. Both cosine similarity

and Euclidean distance similarity was test. The k-NN classifier got a poor F1 score

when cosine similarity was used. As shown in Figure 7-4, no matter k values at k

= 1, 3 or 5, the F1 score keeps being zero for eight classes. For the other two

classes, the best F1 score is less than 6%. Therefore, only Euclidean distance was

used in the method comparison.

For SVM classifier, the cost parameter C was tuned for {0.5, 1, 2, 4, 5, 8, 10,

15, 20}. The results are shown in Figure 7-5. For any class, the F1 score is stable

in the highest value when the cost parameter C was set as a high value. Therefore,

C = 20 was used in the method comparison.

85.05%

0.00%

13.29%

1.47% 0.18% 0.01% 0.00% 0.00% 0.00% 0.00%

[0,1) [1,15) [15,20) [20,40) [40,60) [60,70) [70,80) [80,100) [100,125) [125,150)

0

20

40

60

80

100

P
e

rc
en

ta
ge

 (
%

)

Time Range (milliseconds)

76

Figure 7-4 The k-NN with cosine similarity. Score reported is F1 measure.

Figure 7-5 The SVM with different C. Score reported is F1 measure.

The results of the method comparison are shown in Figure 7-6. In most cases,

k-NN with graph similarity could achieve better F1 score than SVM or standard k-

NN. However, for class “razor” and class “forceps”, k-NN with graph similarity

1 3 5

0

1

2

3

4

5

6
 Toothbrush
 Digital Camera
 Razor
 Lighter
 Forceps
 File Folder
 Mobile Phone
 Surgical Scalpel
 Hypodermic Needle
 Paper Punch

k

F
1

 (
%

)

0.5 1 2 4 5 8 10 15 20

0

20

40

60

80

100

 Toothbrush
 Digital Camera
 Razor
 Lighter
 Forceps
 File Folder
 Mobile Phone
 Surgical Scalpel
 Hypodermic Needle
 Paper Punch

C

F
1

 (
%

)

77

did not perform well. In both cases, the recall is high (more than 85%), but the

precision is low (less than 20%). It implies that many negative examples were

labeled as positive. Since the k-NN classifier predicts class label through the votes

of examples in training set that are most close to the test example, a reasonable

explanation is a lack of representative negative examples in the training set. In

other words, a negative test example is unlike any negative training examples and

positive training examples. Thus, it may be more similar to some positive

examples, compared to negative examples. In Table 7-5, the class “forceps” has

the smallest training set but at the same time has the highest positive rate, while

the class “razor” has the second smallest training set but has the third highest

positive rate. These facts do not refute above explanation.

Figure 7-6 Method Comparison: SVM, k-NN, and k-NN with graph similarity. Score
reported is F1 measure.

To further verify the surmise above, the average similarity of true negative

(ASTN) were investigated. The average similarity of true negative is used to

evaluate the level at which a true negative is accepted as negative. Given n true

negative, the ASTN is defined as below.

Too
th

br
us

h

Digi
ta

l C
am

er
a

Raz
or

Lig
ht

er

For
ce

ps

File
 F

old
er

M
ob

ile
 P

ho
ne

Sur
gic

al
Sca

lpe
l

Hyp
od

er
m

ic
Nee

dle

Pap
er

 P
un

ch

0

20

40

60

80

100

 SVM (C = 20)
 kNN (k = 1)
 kNN (k = 3)
 kNN (k = 5)
 graph (k = 1)
 graph (k = 3)
 graph (k = 5)

Class

F
1

 (
%

)

78

ܰܶܵܣ ൌ

∑
∑ ,ሺ݅ݕݐ݅ݎ݈ܽ݅݉݅ܵ ݆ሻ௞
௝

݇
൘௡

௜ୀଵ

݊

(7.8)

The ASTN is the average of all similarity scores, each of which is between a

negative example and its nearest neighbors. For example, ASTN (k = 3) means

three nearest neighbors of each true negative example are considered in ASTN

calculation.

As shown in Figure 7-7, it is natural that ASTN (k = 1) > ASTN (k = 3) >

ASTN (k = 5), regardless the class. The ASTN of class “razor” has the minimum

value. If the class “razor” is excluded, then the ASTN of class “forceps” has the

minimum value. It means that negative test examples were less like negative

training examples in class “razor” and class “forceps”, compared to other eight

classes. Therefore, the surmise above is valid.

Figure 7-7 The average similarity of true negative

Too
th

br
us

h

Digi
ta

l C
am

er
a

Raz
or

Lig
ht

er

For
ce

ps

File
 F

old
er

M
ob

ile
 P

ho
ne

Sur
gic

al
Sca

lpe
l

Hyp
od

er
m

ic
Nee

dle

Pap
er

 P
un

ch

0

10

20

30

40

50

60

 graph (k = 1)
 graph (k = 3)
 graph (k = 5)

Class

T
N

 A
ve

ra
ge

 S
im

ila
rit

y
(%

)

79

7.5 Summary

To summarize, this chapter proposed similarity measures for the S-model. The

proposed similarity measure was presented with a set of graph examples and was

tested through a classification problem. The proposed graph similarity

demonstrated its superiority in the classification problem. A k-NN classifier with

the proposed graph similarity measure usually can perform better than a standard

k-NN classifier or a SVM classifier. However, the performance of the proposed

method is sensitive to the representativeness of the training set since it requires a

similarity computation between examples.

80

CHAPTER 8

PATENT GROWTH MAPPER

This chapter introduces the patent growth mapper, discussed in Chapter 3 in

detail from the lowest module to the highest module. Since claim dependency

parsing for S-model extraction and similarity measures is stated in Chapter 6 and

Chapter 7, respectively, this chapter covers the network for clustering and the two-

dimensional coordinate system. A case study is given to show the effectiveness of

the proposed patent growth mapper.

8.1 Network for Clustering

To monitoring the structural changes of multiple technologies, a network is

designed to cluster technologies based on their structure similarity. The network is

a graph, in which each node denotes a patented technology (or patent) and similar

nodes are linked with edges. A threshold value is used to convert the similarity

score between two nodes into binary value i.e., similar or dissimilar.

The network has four characteristics. Firstly, members in each group have

similar stricture and likely infringe each other. Secondly, a controllable parameter

called connectivity rate is used to adjust the network. The connectivity rate is the

fraction of the nodes that are connected. With the connectivity rate, the threshold

value does not need to be pre-defined. The bigger the connectivity rate is, the

smaller the threshold value is. Different from the threshold value, the connectivity

rate is a relative measure of the connectivity of the patent set. Since different

technology types usually have different complexity degrees, the similarity

distribution of different technology types should be different. A single standard to

determining the threshold value does not exist. Therefore, a relative measure is

more robust. Thirdly, the number of edges is minimized. The number of edges

equals the number of nodes minus one. Fourthly, the size of every group either

grows or keeps unchanged. That is why this patent map is called as patent

“growth” map.

To control the connectivity rate, trial and error method is used. The algorithm

requires a target connectivity rate, an initial threshold value and a step-length. The

81

target connectivity rate may be at a mid-range value. A high value of connectivity

rate reduces discrimination and easily produces big groups, while a low value of

connectivity rate leads to a mess. By default, the initial threshold value equals to

0.5, and the step-length equals 0.005. The algorithm firstly calculates the

connectivity rate using the initial threshold. When the connectivity rate is bigger

than the target connectivity rate, the threshold value is increased regularly

according to the step-length, until the connectivity rate is not bigger than the target

connectivity rate. A similar process is executed when connectivity rate is smaller

than target connectivity rate. Thus, the threshold value of similarity is

automatically calculated via the target connectivity rate. A more complex but

advanced algorithm may use a binary search tree. However, the proposed

algorithm is simple and efficient.

To obtain the minimized number of edges, the clustering algorithm processes

node one by one and link node in the process with only one node in every similar

group. Formally, a set of patents is a sequence {p1, p2, p3, …, pn}. The order is

determined by the patent number, since the patent numbers are assigned

chronologically. A patent group is a subsequence of the sequence of the patent set.

A patent group consists of one or more members. The terminator of a patent group

is defined as the last item of the patent group sequence. Given a pi from {p1, p2,

p3, …, pn}, the similarity between pi and pk (k = 1, 2, …, i - 1) is calculated. If

the similarity score is larger than the threshold value, pi is connected to the

terminator of the patent group that contains pk.

8.2 Two-dimensional Coordinate System

To monitoring the trends of structural changes, a two-dimensional coordinate

system is designed. Similar to Growth-share Matrix, which is a chart that had been

created for the Boston Consulting Group in 1968 to help corporations to analyze

their business units or product lines, the design allows the map users to observe

patents from two controlling aspects and four quadrants.

82

Figure 8-1 The four quadrants of the patent growth map

The two dimensions are timeline (X-axis) and importance (Y-axis). The four

quadrants are defined in Figure 8-1. When a technology is new and important, it is

considered as mainstream technology; when a technology is new but unimportant,

it is considered as potential technology; when a technology is old but important, it

is considered as mature technology; when a technology is old and unimportant, it

is considered as dated technology.

The time axis (X-axis) is used to demonstrate the trend of technology

development. The unit of the time axis is usually year. Normalization is used to

convert a year into a value ranging from zero to one.

The importance is designed to highlight new technology and big technology

group. The newer the technology is, the more important the technology is. The

bigger the technology group is, the more important each technology in the

technology group is. Formally, the importance is defined as follows:

83

 Importance ≡
݇
݊
∙

SizeሺGroupሺ݌௞ሻሻ
max
௜
SizeሺGroupሺ݌௜ሻሻ

 (8.1)

Here, k is the sequential number of a patent in the sequence of the patent set; n

is the size of the patent set. The function Group: p ↦	 g	 ∈	 G returns the group to

which the patent p belongs; Size: g ↦	 z	 ∈	 Ժ returns the size of the group g. The

importance score ranges from zero to one.

8.3 Core Technology Selection

To identify core technology, enterprises can select a big technology group in

any quadrant according to their strategies. For example, a competitive enterprise

may prefer mainstream technology; a risk-averse enterprise may prefer mature

technology; a risk-like enterprise may prefer potential technology.

To facilitate identifying the core technology, the core technology is each

technology group is automatically selected as the most representative member.

The most representative member is defined as the member that is mostly similar to

all of the other members in the group. If multiple candidate representative

members exist, one of them is selected as the representative member. Formally,

the representative member in a group is defined as follows:

 ݅∗ 	ൌ argmax
௜
෍Similarityሺ݅, ݆ሻ
௝

 (8.2)

Briefly, the PGM clusters technologies into different groups and distinguishes

groups in terms of their positions in the four quadrants. In this way, the designer

could target a group of technologies easily. Furthermore, for each technology

group, the most representative technology is found. This technology can be

directly considered as the core technology.

84

8.4 Case Study: Patent Growth Map

For generating the PGM, 93 patents of toothbrush were collected from

PPAT273. The tree models were extracted from claims and issued years were also

extracted.

The patent growth maps of the 93 toothbrushes with different thresholds at

{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} are shown from Figure 8-2. When the

threshold is increasing, the dots are more and more scattered. Multiple big groups

are visible when threshold value θ = 0.8 as shown in Figure 8-2 (h), in which two

important product groups are distinguished. The connectivity rates corresponding

to the thresholds are listed in Table 8-1. It is observed that the connectivity rate is

53.76% when threshold θ equals to 0.8. Moreover, it is the one closest to 50%

among all thresholds. Therefore, Figure 8-2 (h) is selected for further analysis.

(a) θ = 0.1

(b) θ = 0.2

(c) θ = 0.3

(d) θ = 0.4

(e) θ = 0.5

(f) θ = 0.6

(g) θ = 0.7

(h) θ = 0.8

(i) θ = 0.9

Figure 8-2 An example of growth map with θ from 0.1 to 0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

85

Table 8-1 The threshold similarity value and corresponding connectivity rate

Threshold
θ

Connectivity Rate
rc.

0.1 100%
0.2 100%
0.3 100%
0.4 97.85%
0.5 92.47%
0.6 76.34%
0.7 64.52%
0.8 53.76%
0.9 36.56%

To select core product, product groups are firstly selected. As shown in Figure

8-3 (when θ = 0.8), there are two most important product groups: Group 1 and

Group 8. Group 1 has 20 members, some of which are considered as mainstream

products according to defined four quadrants. Group 8 has nine members, some of

which are considered as potential products according to defined four quadrants.

Figure 8-3 An example of growth map with θ = 0.8, where two most important
groups are highlighted

It was observed that the structure of toothbrushes in Group 1 is simple. The

representative toothbrush (in patent numbered US6115870) simply comprises of

head, handle and bristles. The field of product is the bristle arrangement. For

toothbrushes in Group 1, other filed of product includes bendable head, polishing

86

element, and aesthetic design. This conclusion is consistent with previous work

(Hohlbein, Williams & Mintel 2004) supported by the Colgate-Palmolive

company. It said that the trend of toothbrush development is to consider new

material and product esthetics. Therefore, mainstream toothbrush may follow

simple structure, but improve look and properties with new material. Such

improvement has little impact on consumer’s use habits.

In contrast, the structure of toothbrushes in Group 8 is complex. The thread of

design is to involve some novel parts. For example, the representative toothbrush

(in patent numbered US6308367) is about a toothbrush with a three-dimensional

bristle profile to provide improved cleaning of interproximal and gingival

marginal regions of teeth. Such improvement may change consumer’s use habits.

Therefore, enterprises should be very careful when using these potential

technologies.

8.5 Summary

This paper proposed PGM for monitoring trends of technological changes via

measuring structural changes of patented products. In this way, the trends of

technological changes can be observed and core products are easy to target.

The PGM organizes a set of patents into a two-dimensional patent map and is

them into different groups. The two-dimensional coordinate system distinguishes

groups with four quadrants. The PGM users may select different groups according

to different strategies. The groups are easy to see, since the number of edges is

minimized. To facilitate avoidance of patent infringement, each group consists of

structure-similar patented technologies. Furthermore, core patent is automatically

highlighted. With the PGM, product designers can observe technological

development easily and target core products easily. Moreover, with technology

comparison capability and the detailed structure of technology, the scope of the

prior art is much clearer. Thus, designers can obtain a boarder and more detailed

view on prior art and a correct judgment on their own innovation.

The PGM is an efficient tool, which is able to automatically compare a large

number of similar technologies. In this way, product designers are able to grasp

hundreds of patents or thousands of patent claims in minutes. Thus, the product

87

designers obtain a capability that was hitherto impossible and allows them to

finish their work in a shorter time.

88

CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

This chapter gives a final evaluation of the hypothesis of this thesis. It also

summarizes major discoveries and contributions. Finally, it gives

recommendations for future work.

9.1 Final Evaluation of the Hypothesis

The final evaluation of the hypothesis is summarized in Table 9-1.

Table 9-1 The final evaluation of the hypothesis

Objectives Evaluation Details
Extract
automatically
E-model

Partially achieved.

Effects can be extracted with a query-
focused dependency-parsing-based
method.

Extract
automatically
S-model

Partially achieved.

A new parser is proposed. Although
perfect S-model extraction cannot be
achieved with the proposer parser, it is
efficient and much better than the state of
art.

Compare
S-models

Achieved.

A new graph similarity measure is
proposed and evaluated.

Improve
patent search
with E-model

Achieved.

An effect-oriented search engine is
proposed. Those patents that do not
contain queried effect have lowly ranked
and can be filtered out.

Improve
patent
clustering with
S-model

Achieved. A patent growth map is proposed. Each
cluster consists of technologies that likely
infringe each other.

Hypothesis Partially achieved

9.2 Contributions

New knowledge obtained and the difference between the new knowledge and

the state of art is summarized in Table 9-2. Briefly, this thesis proposes

technology ontology and a framework to utilize the technology ontology in patent

information access. Any technology is characterized by its effect (modeled as a

triple i.e., E-model) and its structure (modeled as a tree i.e., S-model).

89

Table 9-2 The summary of contributions

Contributions Advance State of Art
A new entity recognition
method

Relatively good (in
terms of F1 measure)

Other participants in
NTCIR-8 (2010)

An effect-oriented patent
search engine
New Features:
(1) Effect-oriented
(1) Cross-POS expansion
(2) Morphology expansion:
Inflection

Effect information
can be used as a filter
to reduce the number
of returned patents.
Both syntactic and
semantic search.

Google Patent Search
Engine (or other search
engines based on standard
Boolean model)
Goldfire (semantic search)

A new dependency parsing
method for patent claims

Obviously
improvement in S-
model extraction
(in terms of accurate
rate and parsing time)

Stanford parser

Two Graph Similarity
Measures
The latter is recommended.
(1) Weighted node-to-node
scoring
(2) Iterative node-to-node
scoring

Relatively good in
patent classification
(in terms of F1
measure)
Handling edge
similarity
appropriately;
Keeping initial
relative semantic
similarity

VSM based similarity
measures

Iterative graph similarity
measure (Zager
&Verghese, 2008)

Patent Growth Map (PGM)
New Features:
(1) Technologies in the
same cluster are similar in
structure and are likely to
infringe each other.
(2) Each patent is
represented as S-Model
rather than VSM.
(3) Network with
controllable connectivity
rate and minimized edge
number
(4) Coordinate system
showing trend and
facilitating selection of
core technology

Considering patent
infringement in
clustering;
Other designs for ease
of use

Patent Map via VSM (Lee,
Yoon & Park, 2009; Tseng,
Lin & Lin, 2007)

Patent Map via VSM with
Network (Yoon & Park,
2004)

To extract E-model, a new entity recognition method is proposed. The method

was evaluated in a cutting edge patent information access evaluation, in which the

90

NER that focus on technology entities and effect entities was investigated in a

large-scale for the first time. The method was the number one according to the

evaluation results.

To utilize the extracted E-models, an effect-oriented patent search engine is

introduced. Compared to traditional search engine, it uses effect information as a

filter to reduce the number of returned patents. Both syntactic and semantic

technologies are used.

To extract S-model, the Independent Claim Segment Dependency Syntax

(ICSDS) was proposed for parsing claims. Although perfect S-model extraction

cannot be achieved with the proposer parser, it is efficient and much better than

the state of art in terms of accurate rate.

To compare technologies, new graph similarity measures were proposed. The

recommended graph similarity measure shows its superiority in a classification

problem. However, the performance of proposed method is sensitive to the

representativeness of the training set, since it requires similarity computation

between two examples.

To utilize the extracted S-models and recommended graph similarity measure,

a new patent map i.e., PGM was proposed. In the PGM, technologies that likely

infringe each other are grouped together. With the growth map, product designers

can target core technologies easily.

The proposed methods promote the processing of patent information in a

deeper, larger, and faster way. At the same time, they promote the reduction of

human effort on reading patent documents and gathering information. A designer

can obtain a capability that was hitherto impossible and have a boarder and more

detailed view on prior art and a correct judgment on his own innovation.

Moreover, they will have more time to focus on creative work.

9.3 Recommendations for Future Work

(1) Extracting correct technology

For simplification, the technology TechnologyName in the E-model

(TechnologyName, PropertyName, PropertyChange) is assumed to be known (see

91

Chapter 5). To obtain more precise relation, the correct technology i.e., the agent

of the effect is necessary to be identified. The TechnologyName may be a set of

technology, if the effect is caused by several technologies. Apart from syntactical

analysis, coreference resolution analysis is also required.

(2) Expanding the ICSDS by defining more relationships between segments

The current implementation of ICSDS focuses on verb-noun relation and

adjective-noun relation (see Chapter 6). This is because they are the most

important relations for effect discovery and are difficult to correctly parse.

However, for completeness, other relations such as preposition-noun, verb-

preposition and adverb-verb should also be defined. Therefore, relationships

between segments are worth further studying.

(3) Considering more patterns of effect expression

Some patterns of effect expression, including negator and adverb (see

Appendix I), have not been implemented. Additional work is required to enable

the use of negator and adverbs. A negator or an adverb usually works as a

modifier of the center word. They can work separately or collectively to change

the semantics.

Besides, the discussed patterns applicable to text did not consider numerals. In

the future, more patterns can be designed to include numerals.

(4) Product concept design module

In the proposed framework, it is expected that the proposed technology

ontology can support product concept design and development. Especially, the

technology ontology is expected to facilitate designing around multiple existing

patents. A systematic methodology has not been proposed yet. The systematic

methodology may require some new intelligent technologies, for example

automated generation of patentable candidate product concept model.

(5) Other text-based applications

In the knowledge discovery module of the proposed framework, only the

patent classification was investigated. Other applications like patent

summarization or question-answering can also be explored.

92

(6) Integrated patent search and analysis platform

The terminal carrier of all proposed technologies will be an integrated patent

search and analysis platform. Since current trend of information technology is

towards high performance computing and wireless connection, the terminal

platform should be a cloud computing platform. More works are needed to realize

such platform.

93

BIBLIOGRAPHY

Agichtein, E. & L. Gravano (2000). Snowball: Extracting Relations from

Large Plain-text Collections. In Proceedings of DL’00, the 5th ACM Conference

on Digital Libraries

Ahmad K. & L. Gillam (2005). Automated Ontology Extraction from

Unstructured Texts. In Meersman R. & Tari Z. (Eds.), On the Move to Meaningful

Internet Systems 2005: CoopIS, DOA, and ODBASE, LNCS 3761 (pp. 1330-

1346). Berlin Heidelberg: Springer-Verlag

Andreevskaia, A. and S. Bergler (2006). Mining WordNet for A Fuzzy

Sentiment: Sentiment Tag Extraction from WordNet Glosses. 11th Conference of

the European Chapter of the Association for Computational Linguistics.

Appelt, D. & D. Israel (1999). Introduction to Information Extraction

Technology. In Proceedings of the 16th International Joint Conference on

Artificial Intelligence, Stockholm, Sweden.

Banko, M., M. Cafarella & S. Soderland et al. (2007). Open Information

Extraction from the Web. In Proceedings of the 20th International Joint

Conference on Artificial Intelligence. Hyderabad, India.

Benz D. (2007). Collaborative ontology learning. Master’s Thesis, University

of Freiburg

Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Objective Function

Algoritms, Plenum Press, New York.

Borst P. & H. Akkermans (1997). An Ontology Approach to Product

Disassembly. In Proceedings of EKAW’97, the 10th European Workshop on

Knowledge Acquisition, Modeling and Management

Bratus S., A. Rumshisky & A. Khrabrov et al. (2011). International Journal on

Document Analysis and Recognition – Special Issue on Noisy Text Analytics,

14(2).

Briggs, T., B. Iyer & P. Carlile. (2007). The Co-evolution of Design and User

Requirements in Knowledge Management Systems: the Case of Patent

94

Management Systems. In Proceedings of HICSS’07, 40th Hawaii International

Conference on System Sciences

Brin S. (1998). Extracting Patterns and Relations from the World Wide Web.

In Proceedings of WebDB’98, the International Workshop on the World Wide

Web and Databases

Bunescu R. & R. Mooney (2005). A Shortest Path Dependency Kernel for

Relation Extraction. In Proceedings of HLT’05, the Conference on Human

Language Technology and Empirical Methods in Natural Language Processing

Cavallucci, D. & N. Khomenko (2007). From TRIZ to OTSMTRIZ:

Addressing Complexity Challenges in Inventive Design. International Journal of

Product Development, 4(1-2), 4-21.

Cer D., M.-C. Marneffe & D. Jurafsky et al. (2010). Parsing to Stanford

Dependencies: Trade-offs between Speed and Accurary. In Proceedings of LREC

2010, the 7th International Conference on Language Resources and Evaluation

Choudhary, B. and P. Bhattacharyya (2002). Text Clustering using Semantics.

11th International World Wide Web Conference.

Deerwester, S., S. T. Dumais & G. W. Furnas, et al. (1990). Indexing by

Latent Semantic Analysis. Journal of the American Society for Information

Science.

Dunn, J. C. (1973). "A Fuzzy Relative of the ISODATA Process and Its Use in

Detecting Compact Well-Separated Clusters." Cybernetics and Systems 3(3): 32-

57.

Eichler, K., H. Hemsen & G. Neumann (2008). Unsupervised Relation

Extraction from Web Documents. In Proceedings of the 6th Edition of the

Language Resources and Evaluation Conference

Eisner., J. (1996) Three New Probabilistic Models for Dependency Parsing:

An Exploration. In Proceedings of COLING

Engler, J. & A. Kusiak (2008). Web Mining for Innovation. ASME

Mechanical Engineering, 130(11), 38-40.

95

Etzioni, O., M. Cafarella & D. Downey et al. (2005). Unsupervised Named-

entity Extraction from the Web: an Experimental Study. Artificial Intelligence,

165(1)

Fellbaum C. (1998). WordNet: an Electronic Lexical Database, MIT Press,

Cambridge, MA

Fujii, A., M. Iwayama & N. Kando (2004) Overview of Patent Retrieval Task

at NTCIR-4. In Proceedings of NTCIR-4, Tokyo

Gaeta M., F. Orciuoli & S. Paolozzi et al. (2011). Ontology Extraction for

Knowledge Reuse: the E-learning Perspective. IEEE Transaction on Systems,

Man and Cybernetics – Part A: Systems and Humans, 41(4)

Gero J. S. & U. Kannengiesser (2003). A Function-behaviour-structure View

of Socially Situated Design Agents. In Proceedings of the CAADRIA03

Ghoula N., K. Khelif & R. Dieng-Kuntz (2007). Supporting Patent Mining by

using Ontology-based Semantic Annotations. In Proceedings of the 2007

IEEE/WIC/ACM International Conference on Web Intelligence

Giereth M., S. Koch & Y. Kompatsiaris et al. (2007). A Modular Framework

for Ontology-based Representation of Patent Information. In Proceedings of

JURIX 2007, the 2007 Conference on Legal Knowledge and Information Systems.

Gruber, T. R. (1993). A Translation Approach to Portable Ontology

Specifications. Knowledge Acquisition, 5(2), 199-220.

Han Y. & Y. Park (2006). Patent Network Analysis of Inter-industrial

Knowledge Flows: the Case of Korea between Traditional and Emerging

Industries. World Patent Information, 28(3), 235-247.

Hearst, M. A. (1999). Untangling Text Data Mining. In Proceedings of

ACL'99, the 37th Annual Meeting of the Association for Computational

Linguistics, invited paper, oxford university press, 2003.

Hofmann, T. (1999). Probabilistic Latent Semantic Indexing. 22nd Annual

International ACM SIGIR Conference on Research and Development in

Information Retrieval. Berkley, CA, US.

96

Hohlbein D. J., M. I. Williams & T. E. Mintel (2004). Driving Toothbrush

Innovation through a Cross-functional Development Team. Compendium of

Continuing Education in Dentistry, 25(10), (supplement 2), 7-11.

Hotho, A., S. Staab, & G. Stumme (2003a). Explaining Text Clustering

Results Using Semantic Structures. Knowledge Discovery in Databases: PKDD

2003.

Hotho, A., S. Staab, & G. Stumme (2003b). Ontologies Improve Text

Document Clustering. 3rd IEEE International Conference on Data Mining: 541-

544.

Hotho, A., S. Staab, & G. Stumme (2003c). Text Clustering Based on

Background Knowledge, Institute AIFB, University of Karlsruhe.

Hung Y. & Y. Hsu (2007). An Integrated Process for Designing around

Existing Patents through the Theory of Inventive Problem-solving. Proceedings of

the Institution of Mechanical Engineers Part B: Journal of Engineering

Manufacture, 221(1), 109-122

Hunt, D., L. Nguyen & M. Rodgers (2007). Patent Searching: Tools &

Techniques. John Wiley & Sons

Hwang, C. H., B. W. Miller & M. E. Rusinkiewicz (2002). Ontological

Concept-based, User-centric Text Summarization. United States Patent

Application Publication

Ide, N. & J. Veronis (1998). Introduction to the Special Issue on Word Sense

Disambiguation: the State of the Art. Computational Linguistics 24(1).

Jiang J. & C. Zhai (2007). A Systematic Exploration of the Feature Space for

Relation Extraction. In Proceedings of the NAACL-HLT’07: Human Language

Technologies: the Conference of the North American Chapter of the Association

for Computational Linguistics

Jouili, S., S. Tabbone & E. Valveny (2010). Comparing Graph Similarity

Measures for Graphical Recognition. In Ogier J.-M. et al. (Eds.), Graphics

Recognition, Achievements, Challenges, and Evolution, Lecture Notes in

Computer Science, Volume 6020 (pp. 37-48). Berlin Heidelberg: Springer-Verlag

97

Kambhatla, N. (2004). Combining Lexical, Syntactic, and Semantic Features

with Maximum Entropy Models for Extracting Relations. In Proceedings of the

ACLdemo’04: the ACL 2004 on Interactive Poster and Demonstration Sessions,

Stroudsburg, PA, USA

Kato, T. & M. Matsushita. (2008) Overview of MuST at the NTCIR-7

Workshop: Challenges to Multi-model Summarization for Trend Information. In

Proceedings of NTCIR-7, Tokyo, Japan

Kleinberg, J. M. (1999) Authoritative Sources in a Hyperlinked Environment.

Journal of the ACM, 46, 614-632

Kuhn, H. (1955) The Hungarian Method for the Assignment Problem. Naval

Research Logistic Quarterly, 2, 83-97

Kushmerick, N., D. S. Weld & R. Doorenbos (1997). Wrapper Induction for

Information Extraction. In Proceedings of the 15th International Joint Conference

on Artificial Intelligence, Nagoya, Aichi, Japan.

Lafferty, J., A. McCallum & F. C. N. Pereira (2001). Conditional Random

Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In

Proceedings of the International Conference on Machine Learning.

Lee C., J. Jeon & Y. Park (2011). Monitoring Trends of Technological

Changes Based on the Dynamic Patent Lattice: a Modified Formal Concept

Analysis Approach. Technol. Forecast. Soc. Change, 78, 690-702.

Lee S., B. Yoon & Y. Park (2009). An Approach to Discovering New

Technology Opportunities: Keyword-based Patent Map Approach, Technovation

29, 481-497.

Li, M. (2011). Similarity Assessment and Retrieval of CAD Models. PhD’s

Thesis, National University of Singapore

Lin D. C., J. Liou, J. Du, C. H. Lin, S. W. Tu, H. Y. Tseng, C. Y. Chen, Y. C.

Lee (2005). Automatic Patent Claim Reader and Computer-aided Claim Reading

Method. United States Patent Application Publication, US 2005/0004806 A1

Liu, C.-Y. & S.-Y. Luo (2007). Applying Patent Information to Tracking a

Specific Technology. Data Science Journal, 6

98

MacQueen, J. B. (1967). Some Methods for Classification and Analysis of

Multivariate Observations. 5th Berkeley Symposium on Mathematical Statistics

and Probability.

Maedche, A. & S. Staab (2001). Ontology Learning for the Semantic Web.

IEEE Intelligent Systems, 16(2)

Manning, C.D., P. Raghavan & H. Schütze (2008). Introduction to

Information Retrieval. Cambridge University Press.

Marneffe, M., B. MacCartney & C. D. Manning (2006). Generating Typed

Dependency Parses from Phrase Structure Parses. In LREC 2006.

Martino Joseph P. (1993). Technological Forecasting for Decision Making.

McGraw-Hill

Miller, G. A. (1995). WordNet: A Lexical Database for English.

Communications of the ACM, 38(11), 39-41

Miller, S., M. Crystal & H. Fox et al. (1998). Algorithms that Learn to Extract

Information BBN: Description of the Sift System as Used for MUC-7. In

Proceedings of the MUC-7: Message Understanding Conference

Mintz, M., S. Bills & R. Snow et al. (2009). Distant Supervision for Relation

Extraction without Labeled Data. In Proceedings of ACL’09, the Joint Conference

of the 47th Annual Meetings of the ACL and the 4th International Joint Conference

on Natural Language Processing of the AFNLP, Stroudsburg, PA, USA

Nadeau, D. & S. Sekine (2007). A Survey of Named Entity Recognition and

Classification. Lingvisticae Investigationes, 30(1), 3-26

Nivre J. (2005). Dependency Grammar and Dependency Parsing. Technical

Report. Växjö University

Nivre J. & R. McDonald (2008) Integrating Graph-based and Transition-based

Dependency Parsers. In Processing of ACL-HLT

Nivre J. & M. Scholz (2004) Deterministic Dependency Parsing of English

Text. In Processing of COLING

Oluikpe, P., P. M. Carrillo, & J. A. Harding, et al. (2008). Text Mining of Post

Project Reviews. Performance and Knowledge Management.

99

Osada, R., T. Funkhouser & B. Chazelle et al. (2002) Shape Distributions.

ACM Transactions on Graphics, 21(4), 807-832

OuYang, H. & C. S. Weng (2011) A New Comprehensive Patent Analysis

Approach for New Product Design in Mechanical Engineering. Technological

Forecasting & Social Change, 78, 1183-1199

Parapatics P. & M. Dittenbach (2011). Patent Claim Decomposition for

Improved Information Extraction. In Lupu M. et al. (Eds.), Current Challenges in

Patent Information Retrieval (pp. 197-216). Berlin Heidelberg: Springer-Verlag

Rosenfeld, B., R. Feldman & M. Fresko et al. (2006) TEG – A Hybrid

Approach to Information Extraction. Knowledge and Information Systems, 9, 1-

18.

Russo, D. (2010). Knowledge Extraction from Patent: Achievements and

Open Problems: A Multidisciplinary Approach to Find Functions. In Proceedings

of the 20th CIRP Design Conference, Nantes, France.

Sagae, K. & A. Lavie (2006) Parser Combination by Reparsing. In

Proceedings of HLT-NAACL

Sang, E. F. T. K. & F. D. Meulder (2003). Introduction to the CoNLL-2003

Shared Task: Language-Independent Named Entity Recognition. In Proceedings

of the Conference on Natural Language Learning.

Sarawagi, S. (2007). Information Extraction. Foundations and Trends in

Databases, 1(3), 261-377.

Settles, B. (2004). Biomedical Named Entity Recognition Using Conditional

Random Fields and Rich Feature Sets. In Proceedings of the International Joint

workshop on Natural Language Processing in Biomedicine and its Applications.

Geneva, Switzerland.

Sha, F. & F. Pereira (2003). Shallow Parsing with Conditional Random Fields.

In Proceedings of HLT/NAACL.

Shih, M. & D. Liu (2010). Patent Classification Using Ontology-based Patent

Network Analysis. In Proceedings of PACIS, the Pacific Asia Conference on

Information Systems.

100

Shinmori, A. & M. Okumura (2004). Can Claim Analysis Contribute toward

Patent Map Generation? In Proceedings of NTCIR-4. Tokyo.

Shinyama, Y. & S. Sekine (2006). Preemptive Information Extraction Using

Unrestricted Relation Discovery In Proceedings of HLT-NAACL’06, the main

conference on Human Language Technology Conference of the North American

Chapter of the Association of Computational Linguistics. Stroudsburg, PA, USA.

Soderland, S. (1999). Learning Information Extraction Rules for Semi-

structured and Free Text. Machine Learning 34, 233-272.

Studer R., V. R. Benjamins & D. Fensel (1998) Knowledge Engineering:

Principles and Methods. Data and Knowledge Engineering, 25, 161-197

Strzalkowski, T. & B. Vauthey (1992). Information Retrieval Using Robust

Natural Language Processing. In Proceedings of ACL’92, the 30th Annual Meeting

on Association for Computational Linguistics, 104-111

Taduri, S., G. T. Lau & K. H. Law et al. (2011). An Ontology-based

Interactive Tool to Search Document in the U.S Patent System. In Proceedings of

the 12th Annual International Conference on Digital Government Research,

College Park, MD, USA

Toutanova, K. & C. D. Manning (2000). Enriching the Knowledge Sources

Used in a Maximum Entropy Part-of-Speech Tagger. In Proceedings of

EMNLP/VLC-2000 the Joint SIGDAT Conference on Empirical Methods in

Natural Language Processing and Very Large Corpora, Hong Kong.

Toutanova, K., D. Klein & C. D. Manning et al. (2003). Feature-Rich Part-of-

Speech Tagging with a Cyclic Dependency Network. In Proceedings of HLT-

NAACL 2003

Trappey, A. J. C. & C. V. Trappey (2008). An R&D Knowledge Management

Method for Patent Document Summarization. Industrial Management & Data

Systems 108(2).

Tseng, Y.-H., C.-J. Lin & Y.-I. Lin (2007). Text Mining Techniques for Patent

Analysis. Information Processing and Management, 43(5), 1216-1247.

Uchida, H. & A. Mano (2004). Patent Map Generation Using Concept-based

Vector Space Model. In Proceedings of NTCIR-4, Tokyo.

101

Ulrich, K. T. & S. D. Eppinger (2008). Product Design and Development.

Boston: McGraw-Hill/Irwin

Uschold M. & M. Gruninger (1996). Ontologies: Principles Methods and

Applications, Knowledge Engineering Review, 11, 93-136

Wallach, H. M. (2004). Conditional Random Fields: An Introduction.

Technical Report. University of Pennsylvania

Wanner, L., R. Baeza-Yates & S. Brugmann et al. (2008). Towards Content-

oriented Patent Document Processing. World Patent Information, 30(1), 21-23.

Wang, J., H.T. Loh & W. F. Lu (2010) Extracting Technology and Effect

Entities in Patents and Research Papers. In Proceedings of NTCIR-8. Tokyo,

Japan

Wang, J., W. F. Lu & H.T. Loh (2011) P-SMOTE: One Oversampling

Technique for Class Imbalanced Test Classification. In Proceedings of

IDETC/CIE 2011, ASME 2011 International Design Engineering Technical

Conference & Computers and Information in Engineering Conference.

Washington D.C., USA

Wang, Q. I., D. Lin & D. Schuurmans (2007) Simple Training of Dependency

Parsers via Structured Boosting. In Proceedings of IJCAI

Ward, J. H., Jr. (1963). "Hierarchical Grouping to Optimize an Objective

Function." Journal of the American Statistical Association 58(301): 236-244.

Wberry, T. L. (1995). Patent Searching for Librarians and Inventors.

American Library Association.

Xiao, J., T.-S. Chua, & J. Liu. (2003). A Global Rule Induction Approach to

Information Extraction. In Proceedings of the 15th IEEE International Conference

on Tools with Artificial Intelligence.

Yamada, H. & Y. Matsumoto (2003) Statistical Dependency Analysis with

Support Vector Machines. In Proceedings of the IWPT

Yang, S.-Y., S.-Y. Lin, & S.-N. Lin et al. (2005). An Ontology-based Multi-

agent Platform for Patent Knowledge Management. International Journal of

Electronic Business Management 3(3), 181-192.

102

Yao, B., P. Jiang & T. Zhang et al. (2010). A Study of Designing around

Patents Based on Function Trimming. In Proceedings of ICMIT2010, 5th IEEE

International Conference on Management of Innovation and Technology

Yoon B. & Y. Park (2004). A Text-mining-based Patent Network: Analytical

Tool for High-technology Trend. Journal of High Technology Management

Research, 15, 37-50.

Zager, L. A. & G. C. Verghese (2008). Graph Similarity Scoring and

Matching. Applied Mathematics Letters, 21, 86-94.

Zanasi, A. (2005) Text Mining and its Applications to Intelligence, CRM and

Knowledge Management, WIT Press.

Zhang, Y. & S. Clark (2008) A Tale of Two Parsers: Investigating and

Combining Graph-based and Transition-based Dependency Parsing Using Beam-

search. In Proceedings of EMNLP

Zhao, S. & R. Grishman (2005). Extracting Relations with Integrated

Information Using Kernel Methods. In Proceedings of ACL’05, the 43rd Annual

Meeting on Association for Computational Linguistics. Stroudsburg, PA, US.

Zhi, L. & H. Wang (2009). A Construction Method of Ontology in Patent

Domain Based on UML and OWL. In Proceedings of the International

Conference on Information Management, Innovation Management and Industrial

Engineering.

Zhou, C., H. Chen, & J. Tao (2011). GRAPH: a Domain Ontology-driven

Semantic Graph Auto Extraction System. Applied Mathematics & Information

Sciences, 5(2)

Zhou, G. & J. Su (2001). Named Entity Recognition Using an HMM-based

Chunk Tagger. In Proceedings of the 40th Annual Meeting on Association for

Computational Linguistics. Philadelphia, Pennsylvania, US.

Zhou, G., J. Su, & J. Zhang et al. (2005). Exploring Various Knowledge in

Relation Extraction. In Proceedings of the ACL’05: the 43rd Annual Meeting on

Association for Computational Linguistics. Stroudsburg, PA, US.

103

APPENDIX I

SYNTACTIC PATTERNS FOR EXPRESSING EFFECT

Before listing the discovered syntactic patterns, several symbols are defined in

order to describe the syntactic relation:

“◄” means the element on the right is towards the center i.e., the element on

the left;

“+” means the element on the right is necessarily added to the element on the

left;

“\” means the element on the left having a specific form, which is

morphologically related to the element on the right.

It should be noted that the element order in these syntactic patterns does not

correspond with the practical token order in natural language. An object element

is always put at the beginning of a pattern.

 (1) Adjective-like character

An adjective-like character is a descriptor such as an adjective, a noun, or a

noun phrase. The adjective may be in its comparative form. No matter its specific

type, the descriptor works like an adjective. It modifies an object in one of

manners below:

Pattern (object ◄ adjective): efficient charging

Pattern (object ◄ adjective + preposition): high in sensitivity

Pattern (object ◄ adjective + preposition): free from error

Pattern (object ◄ adjective + noun): high quality recording

Pattern (object ◄ preposition + adjective\comparative + noun): image of

higher quality

Pattern (object ◄ adjective + noun + preposition): small amount of force

Pattern (object ◄ noun + preposition): reduction of cost

Pattern (object ◄ noun): cost reduction

104

Moreover, the adjective may be modified and limited by an adverb.

Pattern (object ◄ adjective ◄ adverb): highly efficient charging

Besides, the adjective-like character may rely on a verb and works as a

complement or more specifically a predicative.

Pattern (object ◄ linking verb + adjective): The cost is high.

Pattern (object ◄ linking verb + preposition + noun phrase): The thickness is

at nanometer level.

(2) Verb-like behavior

A verb-like behavior must include a verb which is considered as the behavior

of the object. The object and the verb constitute a part of a predicate-argument

structure, in which the verb is the predicate and the object is an argument, either a

subject or a grammatical object. The form of the verb and its position is

influenced by the grammatical structure, for example, passive voice, active voice

or a syntactic expletive.

Pattern (object ◄ verb\infinitive): reduce the cost

Pattern (object ◄ verb\third person singular): reduces the cost

Pattern (object ◄ verb\present participle): reducing the cost

Pattern (object ◄ auxiliary verb + verb\past participle): the cost is reduced

Pattern (object + syntactic expletive ◄ auxiliary verb + verb\past participle):

There can be obtained the cost.

Sometimes, the verb is attached with a preposition to form a collation.

Pattern (object ◄ auxiliary verb + verb\past participle + preposition): The

transistor can be turned off.

Moreover, the verb may be modified and limited by an adverb or a preposition

phrase.

Pattern (object ◄ verb ◄ adverb): efficiently improving the reliability

Pattern (object ◄ verb ◄ adverb): improving efficiently the reliability

105

Pattern (object ◄ auxiliary verb + verb\past participle ◄ preposition phrase):

The delay is cut by half.

(3) Adjective compound

Adjective compound is composed of an adjective and a noun (or an adverb),

through a hyphen. They work in the same manner as that of adjectives.

Pattern (adjective compound): high-quality

Pattern (adjective compound): ever-higher

(4) Negator

A negator may be added to reverse the semantics.

Pattern (object ◄ negator) no cost

Pattern (object ◄ negator): without picture disruption

Pattern (object ◄ linking verb + adjective ◄ negator): The cost is not high.

Pattern (object ◄ verb ◄ negator): without reducing the reliability

Pattern (object ◄ auxiliary verb + verb\past participle ◄ negator): Transition

is not required.

It was observed that the use of negator is very flexible. The negator can be

used together with noun, adjective and verb.

106

APPENDIX II

TYPES OF SEQUENTIAL NUMBER

There are five types of sequential number in independent claim.

Type A: a sequential Roman number enclosed with a pair of round brackets or

parentheses i.e. “(” and “)”. Examples: (i), (ii), (iii), (iv)

Type B: a sequential Roman number followed with a closing round brackets

or parentheses “)”. Examples: i), ii), iii), iv)

Type C: an alphabetical sequential number enclosed with a pair of round

brackets or parentheses i.e. “(” and “)”. Examples: (a), (b), (c), (d)

Type D: an alphabetical sequential number followed with a closing round

brackets or parentheses “)”. Examples: a), b), c), d)

Type E: an alphabetical sequential number followed with a period “.”.

Examples: a., b., c., d.

