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SUMMARY 

This thesis focuses on patent text mining and knowledge reuse for product 

design and development. With the increase in the number of issued patents and the 

enhancement of patent awareness, patent disputes become more and more 

frequent. To facilitate information reuse and avoid patent infringement, this thesis 

defines a new ontology, called technology ontology and proposes a framework to 

utilize the technology ontology. The technology ontology emphasizes on two 

aspects of a technology: its effect and its structure. Two challenges were 

addressed: technology ontology extraction and technology comparison. 

The automated model extraction was treated as a Named Entity Recognition 

problem and a parsing problem, respectively. The Named Entity Recognition 

system was recognized in a cutting edge patent information access evaluation. To 

realize patent claim parsing, a new dependency grammar framework was 

proposed. It makes efficient and effective claim parsing possible. 

For the technology comparison, a new graph similarity measure is proposed. 

The proposed similarity measure can overcome the weakness of previous graph 

similarity measures. Moreover, it demonstrates its superiority in a patent 

classification problem. 

Two applications are given. The first application is an effect-oriented patent 

search engine, which offers more focused search results than conventional patent 

search engine. The second application is a patent visualization tool attached to the 

effect-oriented patent search engine. It is able to automatically generate patent 

growth map that groups technologies and facilitates the selection of core 

technologies. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

A patent is an official document, and a form of Intellectual Property (IP). A 

patent also refers to a right. The United States Patent and Trademark Office 

(USPTO) defines a patent as an IP right granted by the Government of the United 

States of America to an investor “to exclude others from making, using, offering 

for sale, or selling the invention throughout the United States or importing the 

invention into the United States” for a limited time in exchange for public 

disclosure of the invention when the patent is granted. This right has been 

established over 200 years. The first United States Patent Act was passed into law 

in 1790. The United States Constitution, which was adopted in 1789, is the 

foundation of the patent law. 

A product-related patent refers to any patent that contains information 

pertaining to product design and development. Such information includes but is 

not limited to a product, a design, a technology, a process or a kind of material. 

From an engineering angle, a product must be engineered, discrete, and physical 

(Ulrich & Eppinger, 2008). This definition excludes magazine, sweater, or 

software from the scope of the product. 

Product-related patents are important for avoidance of IP dispute and 

breakthrough of technical barriers. With the increase in the number of issued 

patents and the enhancement of people’s patent awareness, patent disputes 

become more and more frequent. A recent example is about Google, Microsoft 

and Apple. David Drummond, the senior vice president and chief legal officer of 

Google, released a blog entitled “when patents attack Android” on 3 August 2011. 

David said that Android’s success has yielded something else: a hostile organized 

campaign against Android by Microsoft, Oracle, Apple and other companies, 

waged through bogus patents; they are doing this by seeking $15 licensing fees for 

every Android device and attempting to make it more expensive. David pointed 



2 

 

out that a smart phone might involve as many as 250,000 (largely questionable) 

patent claims, and the competitors want to impose a “tax” for these dubious 

patents that makes Android devices more expensive for consumers. On 22 May 

2012, Google acquired mobile phone maker Motorola Mobility. This deal was 

worth $12.5 billion. Google said its purchase is based in large part on Motorola 

Mobility’s large stash of patents. 

  

(a) (b) 

Figure 1-1 The share change based on the number of patents related to mobile 
device 

According to data from MDB Capital, which is Wall Street’s only IP 

investment bank, Google only had 317 patents related to mobile device at the 

beginning of August 2011. In contrast, the number of patents related to mobile 

device owned by Microsoft and Apple is 2594 and 477, respectively. It means that 

Google, compared to its two major competitors, is in the worst position, as shown 

in Figure 1-1(a). The acquisition of Motorola Mobile gives Google a total of 1023 

mobile device patents, tripling Google’s store of patents and overtaking that of 

Apple, as shown in Figure 1-1(b).  The acquisition helps Google to maintain its 

growth in the mobile device industry. That may be why it was reported that if 

Google successfully acquires Motorola Mobility, a new era of IT troika will dawn. 

The value of patents is not limited to IP right; patents are important available 

source of knowledge that can support technology reuse and facilitate product 

design and development. Patents provide lots of novel and complete ideas, which 

usually cannot be found in other publications. As an exchange of IP right, a patent 

must disclose complete and detailed information about how to make the invention 

and how to use the invention, by which anyone in the same industry can easily 

706
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understand, use and make the invention. Patent databases are often more effective 

for innovative requirements gathering than academic publications and thesis 

databases (Engler & Kusiak, 2008). 

Therefore, the importance of patent search step in the product design and 

development process (Ulrich & Eppinger, 2008) should be highlighted. In 

practice, the efficiency and effectiveness of patent search and analysis relies on 

available patent processing tools. 

1.2 Motivations 

This study is motivated by the weakness of current patent search and patent 

analysis methodologies and the progress of two product-related text information 

extraction problems: relational model extraction and functional model extraction. 

1.2.1 Current Patent Information Access 

Current patent information access means, including patent search engines and 

patent analysis tools, are designed for general use. They are usually too general 

and may not support product design and development well. Thirty different 

implementations of patent management systems were studied (Briggs, Iyer & 

Carlile, 2007) and it was concluded that current technologies are typically used by 

individuals with a general understanding, such as consultants or academics, and 

are less useful for technical specialists or attorneys that require detailed 

knowledge about specific technical domains. 

Patent search engines are designed for searching and querying. Anyone of the 

World’s five major patent offices, namely United States Patent and Trademark 

Office (USPTO), European Patent Office (EPO), Japan Patent Office (JPO), State 

Intellectual Property Office of the People’s Republic of China (SIPO), and Korean 

Intellectual Property Office (KIPO), had built its own patent database and search 

engine. Moreover, a patent classification system is usually built to organize and 

manage patents, and to facilitate patent retrieval in a specific domain. Typical 

patent classification systems are U.S. Patent Classification (USPC) system, 

Japanese F-term system, and International Patent Classification (IPC) of World 

Intellectual Property Organization (WIPO). 
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Patent analysis tools are designed for abstracting and theorizing. They usually 

start from a set of patents that are obtained from a patent search engine. Moreover, 

they often offer visualization function to enhance information access. 

Methodologically, patent analysis relies on citation analysis (Han & Park, 2006), 

keyword-based document representation (Lee, Jeon & Park, 2011; Lee, Yoon & 

Park, 2009) and bibliometrics. The keyword-based document representation 

represents a document in terms of words it contains. In Vector Space Model 

(VSM), a patent document is typically digitalized into a vector, each entry of 

which corresponds to a meaningful term or theme (Manning, Raghavan & Schütze, 

2008). The co-occurrence of keywords can be utilized for classification or 

clustering, e.g., keyword-based similarity measures for patent clustering (Yoon B. 

& Y. Park, 2004). In the ThemeScape map of the Thomson Reuters, peaked 

mounds represent a concentration of documents and their relevance to one another 

is determined by proximity. Bibliometrics are a set of methods to quantitatively 

analyze scientific and technological literature. Such quantitative patent analysis 

(Wberry, 1995; Hunt, Nguyen & Rodgers, 2007) is based on numerical statistics 

of patents’ bibliographical information (or meta-data), for example, the number of 

patent applications, assignees, or inventors. The obtained numbers would be 

further ranked and visualized as a ranking map. For example, a column chart 

where companies are ranked in terms of the number of patents they own, as shown 

in Figure 1-2. The company with the largest number of patents is considered as 

the dominant company, although this map does not consider any technology 

details involved in the patents. 
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Figure 1-2 An example of ranking map 

Patent search module and patent analysis module are usually integrated into a 

single commercial system e.g., PatsnapTM and Goldfire®, an Optimal Decision 

Engine. The PatsnapTM includes a search engine module and a bibliometrics 

module. The Goldfire® includes a search engine module and an Innovation Trend 

Analysis (ITA) module, which mainly includes technology analysis and citation 

analysis. The technology analysis is based on bibliometrics. 

For technology reuse, the standard Boolean model does not handle relations 

well in conventional search engine. In standard Boolean model, both the 

documents to be searched and the query are conceived as a set of terms. With the 

increase of issued patents, using single keyword as query may obtain too many 

relevant patents. A simple strategy is to use multiple keywords instead. These 

keywords are treated equally in standard Boolean model. However, explicit 

relation among these keywords may exist. For example, given the query “wireless 

mouse with long battery life”, a paten contains all these keywords may not be the 

expected return, e.g., patent numbered ‘US8390249 B2’, where “long” is used in 

“long term evolution”. If quotes are used in the query, e.g., “‘wireless mouse’ 

‘long battery life’”, it may filter out many relevant patents. For example, the 

patent numbered ‘US7702369 B1’ and titled “Method of increasing battery life in 

a wireless device” does not contain “long battery life”. 

For avoidance of intellectual property dispute and breakthrough of technical 

barriers, there are limitations in current patent analysis methods. They overlook 
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the content of patent claim section e.g., the knowledge for avoiding patent 

infringement. The citation analysis does not offer rich enough information and is 

difficult to catch up-to-date trends due to the time lag between citing and cited 

patents. The bibliometrics analysis does not care about the content of patent claim 

section. The keyword-based analysis usually requires experts to manually identify 

valuable keywords. With VSM, multiple patents may be represented by the same 

vectors, while they actually describe different patented technologies. Moreover, 

VSM overlooks the intrinsic structure of the patent claim section. The claim 

section is the only part examined and conferred for protection. The claim is 

written for claiming intellectual property right that the inventor wants to protect. It 

must be as general as possible to maximize the scope of protection, and 

simultaneously it must be specific enough to be distinguished from prior art. Other 

parts e.g., description or drawings are for understanding and interpreting the 

claims, but do not provide any protection themselves. 

1.2.2 Relational Model Extraction 

Relational model is a mathematical model for describing the structure of data. 

In database theory, the basic data structure of the relational model is the table. A 

row in a database table implements a tuple. Each tuple element is identified by a 

distinct name, called attribute. Thus, the relations in relational database refer to 

the various tables in the database; a relation is a set of tuples. For example, a 

relation (table) is given in Table 1-1. The first row in above table can be 

represented using a 2-tuple (student: “Tom”, score: 77). In this notation, the 

attribute-value pairs may appear in any order. 

Table 1-1 An Example of relational model 

STUDENT SCORE 
Jim 77

Tom 78

A new comprehensive patent analysis (NCPA) approach for new product 

design was proposed (OuYang & Weng, 2011), where the critical issues are to 

manually identify key technology patents, and further to manually identify the 

technology and the corresponding technological performance in the patents. Such 

information can be stored in database in the form of the relational model. Each 

row in the table is a 2-tuple (TechnologyName, PerformanceName), where 
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TechnologyName denotes technology and PerformanceName denotes 

performance. 

The relational models are also valuable for generating patent map. Matrix map, 

for example, demonstrates the link between two elements and where such link can 

be found. An example of matrix map demonstrating the link between technology 

and effect is shown in Figure 1-3. The underlying 2-tuple can be defined as 

(TechnologyName, EffectName), where TechnologyName denotes technology 

and EffectName denotes effect. Similarly, the underlying 2-tuple in a matrix map 

can be defined as (ProblemName, SolutionName), where ProblemName denotes 

problem, and SolutionName denotes solution (Fujii, Iwayama & Kando, 2004), or 

(TechnologyName, PurposeName), where TechnologyName denotes technical 

item and PurposeName denotes purpose. The matrix maps are used to find main 

stream technical fields and to support decision making on future technology 

development through seeking opportunities in sparse cells within them; they are 

also used to predict business opportunities via comparing the research and 

development focus of one company with that of its major competitors (Liu and 

Luo 2007). 

 

Figure 1-3 An example of matrix map (Technology vs. Effect) 

Alternatively, relational models can be integrated with time, hence showing 

the trend of development. For example, a set of 2-tuples (TechnologyName, 

PerformanceName), in which TechnologyName denotes technology and 

PerformanceName may be precision, which is a response variable ranging from 

zero to one and is extracted from a collection of technical documents. Then, a 

trend map can be created as shown in Figure 1-4. This map is considered as a kind 

of text summarization, which was conducted as the Multi-modal Summarization 

for Trend (MuST) task in the NTCIR-7 (Kato & Matsushita, 2008). The NTCIR 
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stands for National Institute of Informatics (NII) Test Collection for Information 

Retrieval (IR) systems. 

 

Figure 1-4 An example of technical trend map describing the changes of precision 
scores 

1.2.3 Functional Model Extraction 

A relational model is a set of tuples, while a functional model is a directed 

multigraph (Hung & Hsu, 2007). In such a graph, a node denotes a system or a 

subsystem. Different shapes can be used to differentiate different system types. 

An arc denotes relational action from the predecessor to the successor. More than 

one arc is allowed between two nodes. Both node and edge is labeled with text. 

With the functional model, an integrated process for designing around existing 

patents was proposed (Hung Y. & Hsu Y., 2007; Yao, Jiang & Zhang et al., 2010). 

This method was designed for small and medium companies to develop a new 

product, similar to but different from an existing product, and at the same time 

avoiding patent infringement. The method includes four steps: searching, 

modeling, transforming and solving. In the searching step, a set of patents is read, 

and a patent is targeted. In the modeling step, the product described in the patent 

is modeled as a function model, and product components that can be improved are 

highlighted. The function model helps the designer understand the relationship 

(useful function, harmful function, insufficient function, etc.) between elements of 

the core technologies. In the transforming step, the found problems are 

transformed into features of TRIZ (referring to “the theory of inventive problem 

solving”) Contradiction Matrix, which can give some inventive principles. Those 
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inventive principles can inspire designers and help them to develop solutions in 

the final solving step. Besides, Substance-Field Analysis is used on the modified 

functional model following the standard TRIZ process. 

The modification of the function model is shown in Figure 1-5. Briefly, Figure 

1-5 (a) shows a function model; Figure 1-5 (b) highlights two components that can 

be improved; and Figure 1-5 (c) shows the modified function model. A detailed 

example can be found in (Hung & Hsu, 2007). A case study of designing spiral 

bevel gear milling machine was given in (Yao, Jiang & Zhang et al., 2010). 

 

Figure 1-5 Modification process of a function model, where a rectangle denotes a 
component and a line denotes a function 

The function model can be used for judgment of patent infringement. In 

general, the judgment of patent infringement consists of two principles: “all 

elements rule” and “doctrine of equivalents” (Hung Y. & Hsu Y., 2007). 

According to “all elements rule” principle, a technology infringes a patent, if all of 

the claim’s elements of the patent are found in a technology. According to 
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“doctrine of equivalents” principle, if the elements in a technology corresponding 

to those in the claims substantially use the same way, perform the same function, 

and obtain the same result, then those elements is considered to be equivalent to 

those in the claim. A process of patent infringement avoidance is also supported 

by Goldfire®. 

1.2.4 Specific Patent Information Access 

To overcome the weakness of current methodologies and to better satisfy the 

requirements of product design and development, more specific information is 

desired. For example, relational model can be utilized to enhance technology 

reuse in patent search, while functional model can be utilized to consider 

avoidance of intellectual property dispute and breakthrough of technical barriers 

in patent analysis. 

However, it is desirable that both relational model and functional model can be 

automatically extracted from text. Manual model generation requires lots of 

human effort, and is time consuming. 

Moreover, it is desired that the technology described in a patent can be 

described by a model that can be automatically compared. Automated technology 

model comparison can facilitate analyzing and targeting key technologies, and at 

the same time avoiding patent infringement. Previous work (Hung & Hsu, 2007) 

ensures that the new design does not infringe the target patent. However, the new 

design may still infringe other patents. With the automated technology model 

comparison, avoidance of patent infringement among multiple patents can be 

easily achieved. 

1.3 Hypothesis 

This thesis is as the filler for the research gaps discussed above. The 

hypothesis is as follows: 

(1) The product-related patent information access can be improved by better 

patent processing and analysis. 

(2) The effectiveness is improved by utilizing additional helpful knowledge. 

(3) The helpful knowledge can be represented. 
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(4) The efficiency is guaranteed by automatic extraction of the represented 

knowledge from free text. 

1.4 Technology Ontology 

To validate the hypothesis, the helpful knowledge is defined as technology 

ontology. Ontology was originally proposed (Gruber, 1993) as an explicit 

specification of conceptualization. The term is borrowed from philosophy, where 

ontology is a systematic account of existence. It should not be confused with 

epistemology, which is about knowledge and knowing. Ontology is further 

defined as a formal, explicit specification of a shared conceptualization (Studer, 

Benjamins, & Fensel, 1998). “Conceptualization” refers to an abstract model of 

some phenomenon in the world by having identified the relevant concepts of that 

phenomenon. “Shared” means the ontology is accepted by a group. “Explicit” 

means that the type of concepts used, and the constraints on their use are explicitly 

defined. “Formal” means the ontology should be machine-readable. 

Briefly, ontology is a description of concepts and relationships that can exist 

for an agent or a community of agents. Moreover, ontology is designed for 

enabling knowledge sharing and knowledge reuse. Ontology is able to provide 

structured language and explicate the relationship between different terms; thus 

intelligent agent can explain flexibly its meaning without ambiguity (Uschold & 

Gruninger, 1996). Ontology is usually written as a set of definitions of formal 

vocabulary due to its nice properties for knowledge sharing among Artificial 

Intelligence (AI) software. When the knowledge of a domain is represented in a 

declarative formalism, the set of objects that can be represented, and the 

describable relationship among them, are reflected in the representational 

vocabulary with which a knowledge-based program represents knowledge. 

1.4.1 Definition of Technology Ontology 

In this study, two technology-related concepts are highlighted: effect and 

structure. The effect is used for technology search and reuse from a teleological 

view, while the structure is used for technology comparison and avoidance of 

patent infringement in terms of claimed elements. Therefore, the Technology 
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Ontology primarily includes two models: an effect model (E-model) and a 

structure model (S-model). 

An effect is defined as property changes of a patient, which is directly 

involved in or affected by the happening. Thus, the effect is modeled as a tuple. 

Typically, an effect model is a 3-tuple (or triple) denoted as (TechnologyName, 

PropertyName, PropertyChange), where TechnologyName denotes a technology 

i.e., the agent of the effect, PropertyName denotes property name and 

PropertyChange denotes property change. The property change can have many 

forms. It may be a trend, e.g., increasing in size or number, a state, e.g., 

temperature is 80°C, or an interval, having left and right endpoints. For example, a 

mouse with high battery life is modeled as a triple (Technology: “mouse”, 

Property Name: “battery life”, Property Change: “high”). This modeling method 

allows multiple effects to a technology. 

A structure is described by all components of a technology and their 

relationships. Thus, the structure can be modeled as a graph. In mathematics, a 

graph is an abstract representation of a set of objects where some pairs of the 

objects are connected by links. The interconnected objects are called vertices or 

nodes, and the links that connect some pairs of vertices are called edges. A graph 

is usually depicted in diagrammatic form as a set of dots for the vertices, joined by 

lines or curves for the edges. In such a structure, a node denotes a technology, and 

an edge denotes a relation between two technologies. Typically, the structure is 

modeled as a tree. A tree is an acyclic connected graph where each node has zero 

or more children nodes and at most one parent node. In such a tree, the root node 

denotes the technology. Each non-root node denotes a component of a technology. 

A directed edge from a parent node to a children node represents the “has-part” 

relation. 

1.4.2 Examples of S-Model Generation 

The tree model is used to represent the technology’s structure. The text 

supporting S-Model extraction can be found in the claim section of patent (Yang, 

Lin & Lin et al., 2005). In some patents, the structure information can also be 

found in the referred embodiment section. For example, the claim section of the 

patent numbered US6182321 is as follows: 
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I claim: 

1. A toothbrush having an elongate handle with a longitudinal axis, a rigid curved axle 
extending forward generally along said longitudinal axis from one end of said handle, 
and a hollow integrally formed shank and toothbrush head formed of flexible plastics 
material that rotatable fits over said rigid curved axle along its length such that rotation 
of said head or shank between ±180° with respect to said curved axle causes said 
toothbrush head to take up different desired curved orientations. 

2. A toothbrush according to claim 1, in which said axle is formed of metal. 

3. A toothbrush according to claim 1, in which said shank and toothbrush head are 
removably fitted to said axle. 

4. A toothbrush according to claim 1, in which said shank is integrally provided with 
peripheral finger-grippable formations. 

The claim section consists of four claims. The first claim is an independent 

claim. The other three claims are dependent claims, which are dependent on the 

first claim. In the independent claim, a toothbrush is claimed and includes three 

components i.e., an elongate handle, a rigid curved axle and a hollow integrally 

formed shank and toothbrush head. The third component actually is combined 

with two smaller components i.e., a shank and a head. The fourth claim 

supplements one more component: the peripheral finger-grippable formations. 

The tree model of the toothbrush patented in patent numbered US6182321 is 

shown in Figure 1-6. 

 

Figure 1-6 The drawing and the S-model of the patent numbered US6182321 

The tree model corresponds well to the drawings of the referred embodiment, 

where the #10 is an elongate toothbrush handle, #11 is a stiff bent metallic wire 

axle, #12 is a shank, which is integrally formed with #13 i.e., a head, and #14 are 

finger-grippable peripheral formations. The #15 bristles are not mentioned in the 



14 

 

claim section, probably because they are trivia. Without #15 bristles, the tree 

model could still depict the patented technology well. 

1.4.3 Comparison with Existent Models 

The technology ontology is similar but different from the functional model. In 

common, both models describe a product’s components. The difference is that 

functional model mixes functional relations and positional relations between 

components in the same graph, but technology ontology separates them into two 

models. The mixture is the deficiency of the functional model. First, two 

components may have multiple relations. This means multiple edges between two 

nodes in a graph that represents a functional model. Second, a function may be 

realized through multiple agents. This cannot be represented in a graph. Third, lots 

of relations in the functional model offer only simple position information, which 

is usually not considered as a very meaningful function. In contrast, the 

technology ontology describes structure and function (which is considered as 

desirable effect) separately. The S-model describes the structure of a product 

through its components and their positions, while an E-model can describe 

functions in detail and link to one or more components of the S-model. 

Technology ontology is inspired by patent ontology that contains TRIZ 

features (Russo, 2010): the Element Name (of property) Value (of property) (ENV) 

model (Cavallucci & Khomenko, 2007) and Function Behavior Structure (FBS) 

model (Gero & Kannengiesser, 2003). Effects, similar to E-model, were collected 

in the scientific effects database of Goldfire®. Besides, relevance tree, similar to 

S-model, was adopted in normative method for technological forecasting (Martino 

J. P., 1993). The normative method starts with future needs and identifies the 

technological performance required to meet those needs. A normative forecast has 

implicit within it the idea that the required performance can be achieved by a 

reasonable extension of past technological progress (Martino J. P., 1993). 

Previous works on patent ontology did not focus on implicit knowledge within 

patent text. Major issues covered in previous works include patent document 

structure, ontology language, and ontology integration. The structure of China 

patent was modeled as ontology (Zhi & Wang, 2009), in which a concept is a 

section of patent, and a relation is between two different sections. The adopted 
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ontology languages were Unified Modeling Language (UML) and Web Ontology 

Language (OWL). The ontology integration combines multiple ontologies. For 

European patent system, the PATExpert project (Wanner, Baeza-Yates & 

Brugmann et al., 2008; Giereth, Koch, & Kompatsiaris et al., 2007) defined a 

modular framework to integrate multiple patent ontology, including: Patent 

Metadata Ontology (PMO) (Gierth, Stabler & Brugmann et al. 2006), Structure 

Ontology, and Suggested Upper Merged Ontology (SUMO). The ontology 

integration can happen among different document types. For example, ontology 

was developed for the US patent system and integrates information in three 

knowledge domains: patent, court case and patent file wrapper (Taduri, Lau, & 

Law et al., 2011). The patent file wrapper is highly unstructured document that 

records prosecution history. 

The knowledge contained in ontology, no matter annotated (Ghoula, Khelif, & 

Dieng-Kuntz, 2007) or extracted, can support many tasks, including product 

disassembly (Borst & Akkermans, 1997), classification (Shih & Liu, 2010), and 

summarization (Hwang, Miller & Rusinkiewicz, 2002).  

1.5 Scope and Objectives 

The scope of this thesis includes technology ontology extraction, technology 

comparison in terms of structure and patent information access improvement 

based on technology ontology. 

Five objectives to be achieved are as follows: 

(1) Extract automatically E-model; 

It means finding effect models in the plain text of a given patent. An effect 

model consists of a technology as the agent of the effect, a property as the patient 

of the effect, and the change of the property. The specific technology, property 

and property’s change depends on the content of the given patent. 

(2) Extract automatically S-model; 

It means finding the structure model with the text of the claim section of a 

given patent. The structure model must include a technology as a root node and at 
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least a component of the technology as a non-root node. The specific technology 

and components depend on the content of the given patent. 

(3) Compare S-models; 

It means measuring the difference of multiple structure models. It is used for 

comparing technologies. 

(4) Improve patent search with E-model; 

It means integrating effect model into patent search. The effect model offers 

additional information, and therefore can improve patent search in some aspects. 

(5) Improve patent clustering with S-model; 

It means integrating structure model into patent clustering. The structure 

models can be used for comparison of technologies and avoidance of patent 

infringement. The obtained additional information can enhance patent analysis. 

1.6 Organization 

The rest of this thesis is organized as follows: Chapter two gives a succinct 

literature reviews to cover major relevant research domains; Chapter three 

proposes a framework to summarize issues related to technology ontology and 

gives an introduction to all proposed methods; Chapter four proposes a method for 

E-model extraction; Chapter five proposes a system to utilize the extracted E-

models; Chapter six gives a theoretical analysis on dependency paring of claims 

and proposes a new method for parsing claims; Chapter seven proposes a kind of 

graph similarity calculation that could be used to compare S-models; Chapter 

eight introduce a system that utilize S-model for patent analysis; finally, the last 

Chapter draws conclusions and discusses future work. 
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CHAPTER 2  

LITERATURE REVIEW 

Many currently active research domains are related to this thesis, including 

Text (Data) Mining, Machine Learning, Artificial Intelligence, Natural Language 

Processing, Information Retrieval, Statistics and Computational Linguistics. This 

literature review only highlights the most relevant research topics including model 

extraction, graph model comparison and patent map. 

2.1 Ontology Learning and Ontology Extraction 

Two terms are pertaining to the extraction of ontology: ontology learning and 

ontology extraction. Ontology learning means the acquisition of a domain model 

from data (Maedche & Staab, 2001). Ontology learning must consider two 

fundamental issues: the availability of prior knowledge and the type of input 

(Benz, 2007). The input types are structured data, semi-structured data and 

unstructured data. On the other hand, ontology extraction emphasizes that the 

input type for extracting ontological representations is unstructured text (Gaeta, 

Orciuoli & Paolozzi et al., 2011). 

To reduce the human effort in ontology construction, research interest in 

automated method for ontology construction had risen. An automatic approach 

constructing ontology as thesaurus through automatic identification of keywords 

was proposed (Ahmad & Gillam, 2005). Another approach (Gaeta, Orciuoli & 

Paolozzi et al., 2011) extracts relevant ontology concepts and their relationships in 

terms of frequency in a knowledge base of heterogeneous text documents. 

Two approaches were proposed to identify and extract part names from 

General Motors’ archives (Bratus, Rumshisky & Khrabrov et al., 2011). The goal 

is to develop a robust and dynamic reasoning system functioning as a repair 

adviser for service technicians. The first approach is an algorithm for ontology-

guided entity disambiguation. It uses existing knowledge sources, such as General 

Motors’ parts ontology and repair manuals. The second approach extracts part 

names via Hidden Markov Model (HMM) with shrinkage, and models observation 
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dependencies in the repair notes by linear-chain Conditional Random Fields 

(CRFs). 

The sGRAPH (Zhou, Chen & Tao, 2011) is a domain-ontology-driven 

automated extraction system for semantic graph. It can discover knowledge from 

text publications in the domain of traditional Chinese medicine. The domain 

ontology is the traditional Chinese medicine language system (TCMLs) including 

a knowledge base that contains 153,692 words and 304,114 relations. The core 

algorithm predicts new relation through referring existing concepts and relations. 

Briefly, it must be emphasized that this thesis does not focus on the acquisition 

of domain ontology. For patent database, lots of work is required for constructing, 

updating and maintaining domain ontology, because the knowledge contained in a 

patent usually crosses many domains, and new concepts are emerging frequently. 

2.2 Patent Map Generation 

Automatic patent matrix map methods also contribute to S-model extraction. 

To generate the matrix map, a common strategy is to mix Text Mining (Hearst 

1999; Zanasi 2005; Oluikpe, Carrillo & Harding et al., 2008) techniques with 

manual intervention (Tseng, Lin & Lin, 2007). Since most information (over 80%) 

is currently stored as text, text mining is believed to have a potential high 

commercial value. The general text mining techniques for generating matrix map 

involves: summarization (Trappey & Trappey 2008), keyword and phrase 

extraction, term association based on co-occurrence (Deerwester, Dumais & 

Furnas et al., 1990; Hofmann 1999) or based on semantics (Ide & Veronis 1998; 

Andreevskaia and Bergler 2006), clustering (Ward, J.H., Jr. 1963; MacQueen 

1967; Dunn 1973; Bezdek 1981), clustering with semantics (Choudhary and 

Bhattacharyya 2002; Hotho, Staab & Stumme, 2003a; Hotho, Staab & Stumme, 

2003b; Hotho, Staab & Stumme, 2003c), and cluster title generation. 

Alternatively, automatic method for generating matrix maps was boosted as a 

feasibility study task in NTCIR-4 (Fujii, Iwayama & Kando, 2004). The 

organizers provided participants with the patent documents retrieved by a specific 

topic, and participants were requested to organize those documents in a two-

dimensional matrix. In total, six topics for more than 100 relevant documents were 
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identified. Human experts then evaluated the submitted maps. Since the task was 

optional, only two participant groups (Shinmori, Okumura et al. 2004; Uchida, 

Mano et al. 2004) submitted their maps. One group (Shinmori, Okumura et al. 

2004) focused on keyword extraction and selection, and the other group (Uchida, 

Mano et al. 2004) focused on clustering and cluster title generation. Both of them 

generated too many irrelevant titles. Moreover, the cluster titles are keywords 

extracted verbatim from the original patent text. Since some standard titles cannot 

be found in the original text directly, it is impossible to generate all correct titles. 

Briefly, current patent map generation cannot be accomplished automatically. 

Therefore, more researches are required. For example, the analysis on claims may 

contribute to patent map generation (Shinmori & Okumura, 2004). 

2.3 Information Extraction 

Information Extraction (IE) is the research domain where text extraction 

methods are concentrated. The earliest IE focused on Named Entity Recognition 

(NER). NER seeks to locate and classify atomic elements in text into predefined 

categories such as the names of persons, organizations, locations, etc. The term 

“Named Entity” was coined at the 6th Message Understanding Conference (MUC-

6) in 1995. In defining IE tasks, people noticed that it is essential to recognize 

information units like person names, organization names, location names, time, 

data, money and percentage. The number of entity types had been increased, since 

IE became a serious large-scale research effort (Kushmerick, Weld & Doorenbos, 

1997; Appelt & Israel 1999). Two hierarchies of Named Entity types, for example, 

had been proposed: BBN type consists of 29 types and 64 subtypes, while 

Sekine’s extended Named Entity hierarchy is made up of 200 subtypes. 

Early entity extraction systems rely on rule-based algorithms. These rules are 

either manually coded or automatically learned (Kushmerick, Weld & Doorenbos, 

1997; Soderland 1999; Xiao, Chua & Liu, 2003). In contrast, modern systems 

often resort to sequence labeling method (Sarawagi 2007). Sequence labeling is a 

type of pattern recognition task in machine learning (Nadeau & Sekine 2007). 

Supervised learning algorithms execute a decomposition of an unstructured text, 

and then assign a categorical label to each member of the sequence of the 

decomposition. Typical methods are Hidden Markov Model (HMM) (Zhou & Su 
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2001) and Conditional Random Fields (CRFs) (Lafferty, McCallum & Pereira, 

2001; Settles 2004). It was reported that CRFs is the state-of-art method for 

assigning labels to token sequences (Sarawagi 2007; Sha & Pereira 2003). 

Compared to HMM, CRFs has many advantages. Firstly, CRFs is a conditional 

model, which specifies the probabilities of possible label sequences, given an 

observation sequence. HMM is a generative model, which assigns a joint 

probability to paired observation. Secondly, CRFs allows arbitrary non-

independent features of the observation sequence. It is not practical to represent 

multiple interacting features or long-range dependencies of the observations in 

HMM, since the inference problem is intractable. Thirdly, in CRFs, the 

probability of a transition between labels can depend not only on the current 

observation, but also on past and future observations. In contrast, HMM must 

make very strict independence assumptions on the observations. Lastly, CRFs 

overcomes the label bias problem. It means the transitions leaving a given state 

compete only against each other, rather than all other transitions in the model. 

Sequence labeling method does not rely on rules, which are too brittle in a 

noisy source. Moreover, the maintenance of sequence labeling system is easier 

than manual rule-based system. However, it does not mean that sequence labeling 

method is better than rule-based method. The curse of sequence labeling method 

is the overheads of training. For example, it was reported that training an HMM 

name recognizer is more expensive than a skilled rule writer to write a rule-based 

name recognizer (Appelt & Israel 1999). The HMM name recognizer cost about 

800 person-hours. Preparing the training data required 20 person-hours. 

There also exist hybrid systems (Rosenfeld, Feldman & Fresko et al., 2006) 

that attempt to obtain the benefits of both methods. Besides, the choice of features 

is as important as the choice of methods for a good NER system (Sang & Meulder 

2003). Features were usually along three different axes: word-level, list lookup 

and document (Nadeau & Sekine 2007). 

With the availability of recognized entities, research focus of IE shifted to 

Relation Extraction (RE). Generally, the task regards meaningful relations 

between entities from plain text. The definition is varied according to different 

task requirements. In the simplest form, Relation Extraction (RE) is a task of 

extracting relation triples from free text, e.g., extracting the triple (University: 



21 

 

“Stanford”, Relation: “located-in”, Location: “California”) from text “Stanford is 

an American private research university located in Stanford, California”. 

Although it is not necessary to pre-define extractable relation types (Shinyama 

& Sekine, 2006), entity types and relation types are usually pre-defined. The 

Template Relations (Miller, Crystal & Fox et al., 1998) task in the Message 

Understanding Conference (MUC) are limited to organization-related relationship 

such as employee-of, product-of, and location-of. Seven entity types and seven 

relation types were defined in Automatic Content Extraction (ACE) evaluation 

conducted by the National Institute of Standards and Technology (NIST). 

The methods for RE can be supervised, partially supervised or even 

unsupervised. Supervised methods may consider the RE problem as a 

classification problem (Bunescu & Mooney, 2005; Zhao S. & Grishman R., 2005). 

Partially supervised methods reduce the dependence on hand-crafted training data. 

For example, Dual Iterative Pattern Relation Extraction (DIPRE) (Brin, 1998) 

requires only a small set of labeled seed instances and enables to discover author-

book pairs. SNOWBALL (Agichtein & Gravano, 2000) requires a few hand-

crafted extraction patterns and enables to discover corporation-headquarters pairs. 

To make the tedious process of extracting large collections of facts in an 

unsupervised, domain-independent, and scalable manner, unsupervised relation 

extraction was proposed (Eichler, Hemsen & Neumann, 2008). This is feasible 

due to the availability of named entities and dependency. KNOWITALL (Etzioni, 

Cafarella & Downey et al, 2005) is able to extract hypernymy (“is-a” relationship) 

without hand-labeled training examples. Open Information Extraction (OIE) was 

proposed to extract a large set of relational tuples without requiring any human 

input and was implemented by TEXTRUNNER (Banko, Cafarella & Soderland, et 

al. 2007) with the support of dependency parsing. 

An algorithm was proposed to combine the advantages of supervised IE and 

unsupervised IE (Mintz, Bills & Snow, et al., 2009). Besides, the adopted features 

(Jiang & Zhai, 2007; Zhou, Su & Zhang et al., 2005; Kambhatla, 2004) generally 

cross three levels: lexical, syntactic and semantic. Typical features are word, 

phrase, entity type, syntactic parse tree, the semantic, and dependency. 
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Briefly, rule-based or supervised methods require manual rules or small hand-

labeled corpora of a specific domain. Both resources are scarce for E-model 

extraction. On the other hand partially supervised or unsupervised methods are 

towards domain independence and unrestricted relation type. However, they must 

be supported by related Natural Language Processing technologies, such as 

semantic database (Mintz, Bills & Snow, et al., 2009) and parsing (Shinyama & 

Sekine, 2006). 

2.4 Claim Parsing 

The S-model extraction may be realized by analyzing the parsing tree. Among 

various grammars, dependency grammar (Nivre, 2005) is the most suitable one for 

information extraction due to its two characteristics. Firstly, dependency grammar 

explicitly expresses word-to-word relation, thus the result of dependency parsing 

can easily be utilized. Other grammars usually need much more effort on post-

processing to obtain word-to-word relation. Secondly, the result of dependency 

parsing can be obtained from phrase structure (or constituency) parsing (Marneffe, 

MacCartney & Manning, 2006). Since phrase structure grammars occupy a high 

proportion in formal grammatical systems, it means many existing natural 

language technologies and resources can be reused on dependency parsing. 

Generally, dependency parsing is classified into two categories: grammar-

based parsing or data-driven parsing. The grammar-based parsing requires 

grammar or rules, e.g., context-free dependency grammar. The data-driven parsing 

does not need grammar or rules, and the parsing decisions are made based on 

learned models. The learned models can be classified into graph-based models 

(Eisner, 1996; Wang, Lin & Schuurmans, 2007), transition-based models 

(Yamada & Matsumoto, 2003; Nivre & Scholz, 2004) or hybrid models (Sagae & 

Lavie, 2006; Nivre & McDonald, 2008; Zhang & Clark, 2008). 

However, most claims seem unable to parse (Parapatics P. & Dittenbach M. 

2011). Therefore, more researches are needed to investigate this issue. It should be 

noted that a method was proposed to parse the claim into a set of discrete elements 

(Lin et al., 2005). However, the S-model is a graph, rather than a list. 
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2.5 Graph Similarity Measures 

To compare S-models, graph similarity measures can be carried out, since the 

S-model is modeled as a graph. Generally, graph similarity measure is a two-

graph comparison problem, while the process of comparing graphs is referred as 

graph matching (Jouili, Tabbone & Valveny, 2010). 

Different graph models use different similarity measure. The Feature Directed 

Acyclic Graph was proposed (Li, 2011) for Computer-Aided Design (CAD) 

models retrieval. A 3D model was simplified with Feature Directed Acyclic Graph 

and then converted into a shape distribution histogram (Osada, Funkhouser & 

Chazelle et al., 2002), which is a vector. The similarity of two models is therefore 

calculated as the distance between two vectors. For two graphs, the coupled node-

edge scoring (Zager & Verghese, 2008) uses the structural similarity of local 

neighborhoods to derive pair-wise similarity scores for nodes and uses a linear 

update to generate both node and edge similarity scores. The basic idea is that a 

node is evaluated through its neighbor nodes and edges. The idea is inspired by a 

famous link analysis algorithm i.e., Hyperlink-Induced Topic Search (also known 

as Hubs and Authorities) (Kleinberg, 1999). 

In S-model, the edge represents a Boolean “has-part” relation. Therefore, the 

edge similarity score does not need to be updated. Moreover, the weakness of 

coupled node-edge scoring is that both initial node similarity and initial edge 

similarity disappear after a small number of iterations. The final score is 

dominated by the updating process. In other words, the update equation is so 

dominant that human’s initial intuition is killed. It is weird that two graphs are 

considered as analog at the beginning but they are not similar at the end in terms 

of the calculated similarity score. 

2.6 Summary 

To summarize, there exist several research gaps in literature. Firstly, previous 

relation extraction technologies cannot be applied on patent information access for 

product design and development directly. That is because rules or hand-labeled 

corpora for E-model are unavailable, since existing resources for IE is unsuitable 
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for E-model extraction, e.g., entity types like person, organization and place rarely 

existing in the content of a patent. 

Secondly, it is desirable that claims can be correctly parsed. Thus, S-model 

can be extracted with parsed dependency relations. 

Lastly, a more reasonable graph similarity measure is desirable for graph 

model comparison. The graph similarity measure should hand edge similarity 

appropriately and keep initial intuitive similarity judgment made by human. 
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CHAPTER 3  

TECHNOLOGY ONTOLOGY FRAMEWORK 

Technology ontology connects the knowledge space of patent database with 

that of the enterprise. It offers an enterprise an unprecedented capability to reuse 

any knowledge in the entire patent space. 

To summarize issues related to technology ontology, a framework for 

technology ontology is given in this section. Moreover, a patent processing system 

that involves these issues is introduced. 

3.1 Framework Overview 

As shown in Figure 3-1, the core of the Technology Ontology framework is 

technology ontology extraction. Moreover, the framework contains four modules: 

patent search, patent analysis, new product development and knowledge discovery. 

 

Figure 3-1 The technology ontology framework 

Patent search is the Information Retrieval stage, in which a list of patent 

documents is retrieved. The E-model of technology ontology provides a base for 
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technology search and reuse from a teleological view. Product designers can 

search any technology that has a specific effect. A similar search manner is 

function-oriented knowledge search in product design and development process. 

Function is the base for matching customers’ needs and technologies: customers’ 

needs are identified as requirements for functions, while technologies are 

distinguished by their functions. 

In patent analysis stage, a set of patents are analyzed and visualized. For 

avoidance of patent infringement, patent analysis should consider the difference of 

the structure. The patent technologies have similar effect, but they should be 

different in terms of structure. The S-model describes claimed elements of a 

technology in details and therefore offers a basis for technology comparison, 

infringement judgment, and technology selection. 

In new product development stage, the S-model provides a basis for 

technology modification and product concept generation. A modified S-model can 

be easily created by changing components in an original S-model. The product 

design process adopting S-models can be considered as a process of disassembling 

and assembling, where sub-system units are selected and integrated. Therefore, 

the evolution of product design is the process of reselection and reintegration to 

satisfy the changing demand. 

Besides, the obtained technology ontology can be used for other applications 

of knowledge discovery. Apart from facilitating relation models extraction and 

functional models extraction, technology ontology extraction can facilitate many 

text-based applications such as question answering and text summarization. 

3.2 System Overview 

This thesis only focuses on three modules i.e., technology ontology extraction, 

patent search and patent analysis in the technology ontology framework. The 

proposed methods can be integrated into a single patent processing system as 

shown in Figure 3-2. 
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Figure 3-2 The overall system view for proposed methods 

The overall system consists of two major components: an effect-oriented 

search engine and a patent growth mapper. The architecture of the overall system 

is consistent with conventional patent processing system e.g., Goldfire®, in which 

a patent search module is followed by a patent analysis module. 

3.2.1 Effect-oriented Search Engine 

The effect-oriented search engine is the patent search module. Compared to 

conventional patent search engine, the effect-oriented search engine involves 

additional effect information. 

To point out the specified effect, the query of the effect-oriented search engine 

is structured rather than unstructured. The included effect information will affect 

the relevance of a patent, and affect the place of a patent on the final patent 

ranking. 

The information integration is realized by a third party search engine and a re-

ranker. The third party search engine retrieve a list of relevant patents according to 

the query. The re-ranker recalculates the relevance of each patent in terms of 

effect information the patent contains. 

To know how much effect information is contained in a patent, a query-

document matching that utilizes E-model is designed. Both query and document 
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are modeled with E-model. To enrich the natural language expression of the query, 

query expansion is considered to expand the single E-model given by the input 

query to multiple potential E-models. On the other hand, E-model extraction is 

carried out to model the patent document. 

The E-model extraction will be considered as either an entity recognition 

problem or a dependency parsing problem. As an entity recognition problem, the 

rules or hand-labeled corpora for E-model are needed to build, since existent 

resources for IE are unsuitable for E-model extraction. As a dependency parsing 

problem, the relationship between E-model and parsing tree is needed to explore. 

The solution relies on the understanding of the natural language expression of E-

model. Unfortunately, the natural language expression of E-model is complex, 

since a meaning can be expressed in many ways with natural language. Therefore, 

it is necessary to investigate multiple possible natural language expression 

manners of E-model. 

3.2.2 Patent Growth Mapper 

The patent growth mapper is the patent analysis module. Given a set of patents, 

the patent growth mapper returns a patent map, called Patent Growth Map (PGM). 

For avoidance of intellectual property dispute and breakthrough of technical 

barriers, the patent growth map utilizes S-model to cluster technologies. 

Technologies in the same cluster are similar in structure and are likely to infringe 

each other. Moreover, the patent growth map is designed with many user-friend 

features. 

Firstly, a two-dimensional coordinate system is designed to contain a network, 

which is the result of technology clustering. Previous network (Yoon B. & Y. 

Park, 2004) did not use a coordinate system and led to arbitrary placement of dots, 

each of which denotes a technology or a patent. Moreover, the two-dimensional 

coordinate system facilitates the discovery of trend and the selection of core 

technology. Secondly, the number of line segments is reduced, since previous 

network (Yoon B. & Y. Park, 2004) uses too many line segments and is difficult 

to be observed. In patent growth map, the total number of line segments is 

controllable, while for each technology group, the number of line segments that 

connect dots is minimized. 
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To calculate the structure similarity scores used in the clustering, a more 

reasonable graph similarity measure is given. New graph similarity measures for 

S-model were proposed. They focus on node similarity rather than treating node 

similarity and edge similarity equally, and keep initial intuitive similarity 

judgment made by human. 

To automatically extract S-model, claim dependency parsing is desirable so 

that S-model can be formed from the dependencies. However, as discussed 

previously, claim parsing is a challenge. To address this challenge, a new claim 

parsing method is proposed. 

3.3 Summary 

To summarize, a framework for technology ontology is given. Partial modules 

in the framework are highlighted and will be explored in the rest of this thesis. 

Moreover, major challenges and counter measures are discussed. 
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CHAPTER 4  

EXTRACTION OF TECHNOLOGY ENTITY AND 

EFFECT ENTITY 

The effect-oriented search engine, discussed in Chapter 3, has an E-model 

extraction module. In this chapter, the E-model extraction is considered as an 

entity recognition problem. The E-model extraction is to extract E-models from 

plain text of given patents. The extracted E-models are used for supporting the 

effect-oriented search engine. Since NER or RE researches had never focused on 

technology or product, resource related to E-model extraction is inadequate. 

Fortunately, a systematic evaluation focusing on extracting technology and effect 

entities was organized in NTCIR-8 (Wang, Loh & Lu, 2010). The author (Wang, 

Loh & Lu, 2010) had tackled this task and built a system that was ranked as the 

number one in terms of F-measure (Manning, Raghavan & Schütze, 2008). This 

chapter introduces the NER method in (Wang, Loh & Lu, 2010). 

4.1 Problem Definition 

The purpose of the Technical Trend Map Creation task in NTCIR-8 is to 

extract expressions of technologies and their effects from research papers and 

patents. Given the title and abstract of patents (and papers), an entity recognition 

system is required to label any technology entity and effect entity within the title 

and the abstract. Technology entity is described as algorithms, tools, materials, or 

data used in each study or invention. Effect entity includes one or more pairs of 

attribute entity and value entity. For example, effects that are expressed by a pair 

of an attribute and a value are shown as follows: 

{[reduce]VALUE [the manpower]ATTRIBUTE}EFFECT 

{[33%]VALUE [redundancy-rate]ATTRIBUTE}EFFECT 

Syntactically, a “technology” or “attribute” is usually a noun or noun phrase, 

and a “value” can be a verb, gerund, adjective or a number. 

In E-model extraction, an E-model is in the form of a triple (Technology, 

PropertyName, PropertyChange). For example, the triple (Technology: 
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“automation”, PropertyName: “manpower”, PropertyChange: “reduces”) is 

required to be extracted from the text as follows: 

The automation reduces manpower. 

The Technical Trend Map Creation task can support E-model extraction if a 

one-to-one correspondence (bijection) is built: Technology Entity  Technology, 

Attribute Entity  PropertyName, Value Entity  PropertyChange. Thus, the 

triple above can be easily extracted from the labeled text as follows: 

The <Technology>automation</Technology> <value>reduces</value> 

<attribute>manpower</attribute>. 

4.2 Proposed Method 

The task was considered as a NER problem, and a hybrid method was 

proposed (Wang, Loh & Lu, 2010). The hybrid method consists of a CRFs-based 

method and a pattern-based method. 

4.2.1 Pre-processing 

The pre-processing includes sentence segmentation, tokenization, POS tagging, 

and labeling. The sentence segmentation segments a paragraph into sentences. The 

developed sentence segmentation techniques are robust to HyperText Markup 

Language (HTML) characters noise in patent. For example, α (character code: 

03B1 in Unicodehex) is “&alpha;” in HTML, but is written as “.alpha.” in patent 

HTML file. The two dots in “.alpha.” are not periods. The existence of the dots 

obviously causes a problem in sentence segmentation. Therefore, the sentence 

segmenter deletes the dot, when it belongs to a HTML character. Moreover, the 

developed sentence segmentation techniques are also intelligent to handle many 

other language situations such as suspension points, abbreviation, paper number, 

decimal value. For examples, dots in “i.e.”, “vs.” and “7.654” are not considered 

as periods. 

The tokenization segments a sentence into tokens i.e., words, punctuations, 

and labels. The Part-Of-Speech (POS) tagging is a process that reads text in some 

language and assigns parts of speech to each word (and other token), such as 

noun, verb, adjective, etc. For example, giving query: 
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My dog also likes eating sausage. 

The tagged text is: 

My/PRP$ dog/NN also/RB likes/VBZ eating/VBG sausage/NN ./. 

The POS tags are explained as follows: 

PRP$: Possessive pronoun 
NN: Noun, singular or mass 
RB: Adverb 
VBZ: Verb, 3rd person singular present 
VBG: Verb, gerund or present participle 

The Stanford POS tagger (Toutanova, Klein & Manning, 2003; Toutanova & 

Manning, 2000) was used for both tokenization and POS tagging. The POS 

tagging is based on default pre-trained model 

Given the training data in the form of a sequence of tokens, the labeling 

generates a label sequence as long as the token sequence. The labeling scheme is 

the commonly used BIO (begin, inside, outside). Three types of positive tag are 

“technology”, “value”, and “attribute”, and one type of negative tag is “other”. 

Each positive tag can be either “begin” or “inside”. Therefore, in total, seven tag 

types were used. 

4.2.2 CRFs with Tag Modification 

In CRFs, the probability of a particular label sequence y given observation 

sequence x is assigned as a normalized product of potential functions (Wallach, H. 

M., 2004). 

 | ,
1

,  (4.1) 

 

In the above equation, Z(x) is a normalization factor; λj are parameters to be 

estimated from training data; and 

 , , , ,  (4.2) 
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where fj(yi-1, yi, x, i) is either a state function sj(yi, x, i) of the label at position i 

and the observation sequence, or a transition function tj(yi-1, yi, x, i) of the entire 

observation and the labels at position i and position i - 1 in the label sequence. 

Since only state functions were used, the difference of function is pertaining to 

the observation sequence. These observation sequences were defined as follows: 

1. n-gram in the original sequence 

2. n-gram in the POS tag sequence 

3. current POS tag with other observed unigram and its POS tag 

An n-gram is a contiguous sequence of n items from a given sequence. A 

unigram is an n-gram of size one. The maximum size of n-gram used is five. 

When unigram is adapted, the maximum distance from the observed unigram to 

current state is four. In other words, if the observed unigram is too far away from 

current state, then it was not considered in current CRFs model. 

To increase positive tags, partial non-entity tags are modified into entity tag. 

The criterion for deciding which non-entity tag should be modified is that the 

CRFs model does not have an enough confidence to give the non-entity tag. The 

new tag is an entity tag with the highest confidence. 

Formally, if the probability of the state recognized as non-entity is not high 

enough (that can be controlled by a threshold confidence value e.g., 90%), the 

non-entity tag is modified by an entity tag. An entity tag is chosen as the 

replacement when its probability is the maximum among that of all entity tags. In 

CRFs, the probability of each state given the observation sequence could be 

calculated as p(y|x, λ). So the update rule is as follows: 

IF 

p(Y="other"|x, λ) < t // t is a threshold confidence value 

THEN 

p(y|x, λ) = max " " | ,  

  ∶ argmax " " | ,  
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4.2.3 Pattern-based Extraction 

The CRFs with tag modification does not have the capability to solve two 

problems. First, the length of the observation sequence is too long. In this case, 

some tokens, which offers indicator information but are too far away from current 

state, are not involved in the model. This situation is very common in patent, 

because the sentence in patent is usually very long due to the use of preposition 

phrase or parallel structure. The second problem is ambiguity. It is difficult to 

differentiate attribute entity from technology entity. The CRFs model only 

contains raw text and part-of-speech information, while both attribute entity and 

technology entity are usually a noun phrase. Therefore, without additional 

knowledge, it is difficult to make a judgment whether a noun phrase is a 

technology entity or an attribute entity. 

To address these two challenges, some patterns are considered. First, the 

words expressing value entity are related in terms of meanings e.g., an adjective 

related to polarity opinion, namely good or bad, or a verb related to making some 

changes, e.g., “improve”, “facilitate”, “adjust”, “reduce” and “prevent”. Second, 

the words expressing attribute entity is usually a noun phrase, and the attribute 

entity is usually the nearest noun phrase to the value entity. For example, if the 

value entity equals to “improve”, “improves”, “improving” and “improvement”, 

then the attribute entity is usually the nearest noun phrase after the value entity; if 

the value entity equals to “improved”, then the attribute entity is usually the 

nearest noun phrase before the value entity. Thirdly, the words in value entity and 

the words in attribute entity should not form a collocation. 

To utilize these patterns, a method was designed. This method firstly identifies 

candidate value entity and noun phrase. Next, for the nearest noun phrase to a 

value entity, it checks whether a collocation can be formed. If false, the noun 

phrase is identified as attribute entity and the candidate value entity is identified as 

value entity. 

The candidate value entity was identified by a list of indicator words. Using 

the training data, a word list of indicator words was built. The word list was 

expanded by adding synonyms of every word in the list. There synonyms were 

from WordNet (Miller 1995; Fellbaum 1998), which is a thesaurus. 
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The noun phrase is chunked by a POS-based chunker. Rules are used to 

determine how long the noun phrase is enough to be an ATTRTBUTE. 

For the collocation checking, a stopword list is built for every indicator word. 

To build such a stopword list manually is very difficult. So it was learned from 

training data and the criterion for accepting a stopword is Laplacian: 

 
1
1

 (4.3) 

 

where c is the number of correctly matched attribute entity and e is the number of 

errors. If the Laplacian is smaller than 0.5, then the stopword is accepted. 

4.3 Evaluation 

The evaluation results in this chapter are the same as the one reported in the 

NTCIR-8 (Wang, Loh & Lu, 2010). The organizer of NTCIR-8 offered tagged 

topics for training and untagged topics for test. The evaluation was executed by 

the organizers. 

4.3.1 Dataset 

The raw text of each topic is the title and the abstract of a patent or a paper. 

The training data consists of 300 patent topics and 300 paper topics, while the test 

data is composed of 200 patent topics and 200 paper topics. 

The distribution of the desired entities is shown in Table 4-1, including 

technology entities in title (TT), technology entities in abstract (AT), attribute 

entities in abstract(AA), and value entities in abstract (AV). 

Table 4-1 The entity distribution 

Entity Type Patent Paper
TT 39 93
AT 847 342
AA 213 204
AV 198 193
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4.3.2 Evaluation Measures 

The evaluation measures are recall, precision and F-measure (Manning, 

Raghavan & Schütze, 2008). F-measure (also F1 score or F-score) is the harmonic 

mean of precision and recall. The precision is the number of correct results 

divided by the number of all returned results. The recall is the number of correct 

results divided by the number of results that should have been returned. 

The calculation of the precision and the recall of the technology in title are 

given as an example. A standard list, each element of which is a technology in a 

topic, is built for the standard result. Similarly, a system list is built for the system 

result. A matched result is a result appears in both standard list and system list. 

The number of correct results is the number of matched results. The number of all 

returned results is the size of the system list. The number of results that should 

have been returned is the size of the standard list. 

4.3.3 Results 

Three system runs were submitted: NUSME-1, NUSME-2 and NUSME-3. 

The NUSME-1 adopted the CRFs method. Compared to the NUSME-1, the 

NUSME-2 added a tag modification step. The NUSME-3 enhanced the NUSME-2 

by integrating the output of the pattern-based method with the output of the 

NUSME-2. In other word, NUSME-3 is the proposed method for E-model 

extraction. 

The F-measure submitted by all participants in the task is shown in Figure 4-1 

(patent topics) and Figure 4-2 (paper topics). The F-measure of NUSME-1, 

NUSME-2, and NUSME-3 are denoted with the bars filled with sparse lines, 

dense lines, and black color, respectively. The NUSME-2 and NUSME-3 

achieved relatively good results with respect to F-measure for both patent topics 

and paper topics. Specially, the NUSME-3 was the best among all participants not 

only for patent topics but also for paper topics. Compared to NUSME-1 and 

NUSME-2, the NUSME-3 expended greater efforts and obtained better results. 

Notably, a big improvement was achieved by the tag modification step. 
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Figure 4-1 The F-measure of all systems on patent topics 

 

 

Figure 4-2 The F-measure of all systems on paper topics 

The recall and precision of the three system runs using the patent data are 

shown in Figure 4-3 and Figure 4-4. The tag modification step, namely from 

NUSME-1 to NUSME-2, is able to improve the recall. It induces the CRFs model 

to output more positive tags, thereby increasing the chance of finding correct 
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entities. However, at the same time, the additional output also increases the 

chance of reducing the precision. That is why the precision is reduced. 

In Figure 4-4, the general trend is a decrease of precision from NUSME-1 to 

NUSME-2 with the exception of AA. The anomaly is because no correct entity of 

AA was discovered in NUSME-1 and hence its precision is zero. Therefore, once 

a correct entity is discovered in the second run, the precision of AA could be 

improved. 

 

Figure 4-3 The recall of NUSME system runs on patent data 
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Figure 4-4 The precision of NUSME system runs on patent data 

It can be observed that the manual designed patterns (from NUSME-2 to 

NUSME-3) had improved both recall and precision of AA and AV. That is 

because such patterns are designed to overcome the weakness of the built CRFs 

model, and usually human intelligence is superior. There is no difference on TT 

and AT, because the patterns adopted are all related to attribute entity and value 

entity, not technology entity. 

In the CRFs-based method, the four entity types i.e. TT, AT, AA and AV are 

treated equally. However, TT and AT are quite different from AA and AV, 

because AA and AV, as discussed above, are relational entities i.e. they usually 

appear together. This important feature has not been considered in the CRFs 

method. The pattern-based method was designed to utilize the relations between 

AA and AV. Therefore, integrating CRFs with pattern-based method produces the 

best results. 
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Figure 4-5 The recall of NUSME system runs on paper data 

 

Figure 4-6 The precision of NUSME system runs on paper data 
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The results of paper data, which can be observed from Figure 4-5 and Figure 

4-6, are almost the same as that of patent data. There is no obviously difference 

between patent and paper on writing the abstract and the title. 

4.4 Summary 

To extract E-model, a method is proposed and evaluated in NTCIR-8 patent 

mining task. The proposed system adopted both CRFs-based method and pattern-

based method. Compared to the original CRFs method, the proposed modified 

CRFs module achieved a better F-measure. Moreover, the proposed pattern-based 

method can overcome the weakness of the CRFs-based method. A relatively good 

result, compared to other participants, was achieved. 

Although the proposed method is relatively good, its absolute performance is 

not good enough. Moreover, as the first IE evaluation pertaining to technology 

and effect entity, the Technical Trend Map Creation task focused on entity 

extraction, rather than relation extraction. Although the effect entity was described 

by two relational entities, the final evaluation was based on individual entity. 

However, this task offers a benchmark for future research and a corpus for effect 

entity. 
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CHAPTER 5  

EFFECT-ORIENTED SEARCH ENGINE 

In previous chapter, the E-model extraction module of the effect-oriented 

search engine, discussed in Chapter 3, is handled as a NER problem. However, the 

NER method for E-model extraction is not good enough for practical use. In this 

chapter, an alternative method based on parsing was proposed. Moreover, this 

chapter introduces the entire effect-oriented search engine in detail from the 

lowest module to the highest module. It covers the E-model extraction with 

dependency parsing, query expansion, query-document matching and re-ranking. 

A case study is given to show the effectiveness of the proposed effect-oriented 

search engine. 

5.1 E-model Extraction Based on Dependencies 

It was observed that extracting TechnologyName in the E-model 

(TechnologyName, PropertyName, PropertyChange) is not a simple problem. 

Usually, the agent of the effect cannot be found in current sentence or current 

clause. Two examples are given as follows: 

The cost is reduced. 

… so that the cost is reduced. 

In the first example, the agent is out of current sentence. In the second 

example, the agent is out of current clause. Moreover, even if the agent is in 

current sentence or current clause, coreference resolution may be required. An 

example is given as follows: 

This improves the control reliability. 

In above example, the direct agent is a pronoun “this”. A coreference 

resolution is needed to find what the pronoun “this” refers to. 

Therefore, the TechnologyName is assumed to be known. The focus of this 

chapter is extracting the remaining two elements: PropertyName and 

PropertyChange i.e., the effect. As a dependency parsing problem, the implicit 
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syntactic relationship between PropertyName and PropertyChange should be 

known. A more elaborate investigation was carried out on the 500 patents in the 

NTCIR-8 Technical Trend Map Creation task in order to understand better the 

ways of expressing effect in natural language. The effect entities are only labeled 

in the abstract section. Therefore, all abstracts of the 500 patents are read 

manually in order to discover underlying patterns. The discovered expression 

manners are linked with syntactical patterns. 

It was discovered that an effect is expressed through an object and its character 

or behavior in an object-centric view. The object corresponds to PropertyName, 

while a character or a behavior corresponds to PropertyChange. Generally there 

are two categories of effects in terms of PropertyChange: through adjective-like 

character or through verb-like behavior. The detailed syntactical patterns for 

expressing effect are given in Appendix I. 

It was further discovered that the head of the PropertyChange and that of 

PropertyName has dependency relation, no matter what the exact syntactical 

relation between PropertyChange and PropertyName is. Therefore, a query-

focused problem is defined for extracting E-model from dependencies. 

Formally, given patent abstracts, PropertyName, and PropertyChange, the E-

model extraction system should label all PropertyName and ProperyChange in the 

abstracts. 

For example, the PropertyName is assumed to be “manpower”, the 

ProperyChange is assumed to be “reduce”, and the text is as follows: 

Automation reduces the manpower in this factory. 

The dependencies obtained by Stanford parser is as follows: 

nsubj(reduces-2, Automation-1) 

root(ROOT-0, reduces-2) 

det(manpower-4, the-3) 

dobj(reduces-2, manpower-4) 

det(factory-7, this-6) 

prep_in(manpower-4, factory-7) 
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It can be observed that the fourth dependency contains both PropertyName and 

ProperyChange. Therefore, the “reduces” is labeled as ProperyChange and the 

“manpower” is labeled as PropertyName. 

5.2 Query Expansion 

In the above example, the given PropertyChange is “reduce”, while the labeled 

PropertyChange “reduces”. Although they are different in form, they are the same 

PropertyChange. To link the two different terms, query expansion is used. 

Query expansion is the process of reformulating the seed query in order to 

improve the information retrieval performance. Query expansion usually includes 

two aspects: morphology and synonym. From the syntactical patterns in Appendix 

I, an additional aspect should be considered for effect-oriented search. This is 

because the same PropertyChange can be expressed in different ways e.g., 

different Part-Of-Speech (POS). 

For example, expressing the decrease of the “cost” can use “reduce”, 

“reduction” or “reduced”, as shown in Figure 5-1(a); expressing the increase of 

accuracy can use “improve”, “improvement” or “improved”, as shown in Figure 

5-1(b). 

  

(a) (b) 

Figure 5-1 Examples for expressing property change 

For the same property, some words that express property change are 

semantically related. These words may belong to different POS. Therefore, this 

kind of query expansion is called cross-POS semantic expansion. 
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The implementation of cross-POS expansion and synonym expansion is based 

on WordNet (Miller 1995; Fellbaum 1998). In WordNet, the main relation among 

words is synonymy. The synonyms are grouped into sets, namely synsets. 

Therefore, the synonym expansion can directly utilize the synsets and the cross-

POS expansion should be based on a kind of synset-to-synset relation. In 

WordNet, the relation between two words belong to different POS is called 

derivative relation. The WordNet supports derivation, but does not define 

derivation well. There are two pointers for derivation: “derivationally related” and 

“derived from adj”. The former is evoked by a noun, a verb or an adjective, while 

the latter is evoked by an adverb. Both pointers are connections between two 

words, rather than two synsets. In other words, the derivation pointer is a word-to-

word relation, rather than a synset-to-synset relation. 

To build the synset-to-synset derivative relation, a direct search method and an 

indexing search method are proposed. Given a synset, the direct search method 

finds a set of derived synsets through the derivation relations between words. As 

shown in Figure 5-2, given a synset, all words contained in the synset are retrieved. 

The derivatives of these retrieved words are then obtained. Lastly, the synsets, 

which theses derivatives belong to, are retrieved. Thus, all derived synsets of the 

given synset is obtained. 

 

Figure 5-2 The derivation relations between synsets 

The indexing search method relies on an index to retrieve the derived synsets 

of a given synset. The index is a sorted list, in which each element represents a 

pointer from a synset to a set of synsets. Thus, a binary search algorithm takes 

logarithmic time to locate an element. The worst case performance is (log n). 
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The index was built through traversing all synsets in WordNet. A direct search 

method was carried out for each synset. The results are checked manually, and 

invalid links between two synsets are removed. 

The morphology expansion is implemented by an inflector, rather than a 

stemmer. Usually, stemming, which is the process for reducing inflected (or 

sometimes derived) words to their stem, base or root, is carried out in IR 

(Manning, Raghavan & Schütze, 2008) or NLP-based IR (Strzalkowski & 

Vauthey, 1992). Both query and patents should be tokenized and stemmed in the 

same way before a matcher can calculate the similarity between the query and the 

document. In contrast, inflection is the modification of a word to express different 

grammatical categories such as tense, person, and number. Specifically, 

conjugation is the inflection of verbs; declension is the inflection of nouns, 

adjectives and pronouns. If the stemming for the query is replaced by the 

inflection, both the stemming and tokenization for the patents can be removed. 

This leads to a saving of time. 

The algorithm for inflection has two steps. In the first step, the inflection is 

based on a sorted exception list. A binary search is implemented. If a given word 

is not on the exception list, the word will be passed to the second step. In the 

second step, the inflection follows regular English grammar rules. 

5.3 Query-Document Matching 

Since parsing is time consuming, immediate response requires an offline 

parsing and an indexing (Strzalkowski & Vauthey, 1992). For patent database, it 

means an additional mass memory for storing parsing results and additional 

searching time. To avoid additional mass memory and searching time, online 

parsing is preferable. The long online parsing time can be reduced significantly by 

parsing partial sentences rather than all sentences. A candidate sentence for 

parsing should contain words relevant to the query. Therefore, a sentence filter 

was designed for filtering irrelevant sentences before paring. 
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Figure 5-3 The query-document Matching 

As shown in Figure 5-3, after synonym expansion, cross-POS expansion and 

morphology expansion, the sentence filter filters irrelevant sentence. The relevant 

sentences are parsed with dependency parsing. 

5.4 Re-ranking 

Given n ranked patents from an external search engine, the effect-inclusive 

relevance of patent i is calculated as follows: 

 max
1

1
 (5.1) 

 

Here, R(i) is the original rank of patent i; M(i) denotes the number of matched 

sentence in patent i; while p ∈ [0, 1] is the penalty factor for the effect item. The 
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default value of p is 0.5, which means both the original rank given by the external 

search engine and the matched effect information contained in a patent are equally 

important. In other words, a patent is relevant, if it is considered as relevant by the 

external engine and it contains the desirable effect information. 

5.5 Search Engine System 

As shown in Figure 5-4, the search process has two steps. In the first step, a 

structured query is input and is translated into a valid query of a third-party search 

engine. A conventional patent search process is evoked and a list of relevant 

patents is returned. The structured query is an E-model and consists of three 

entries: technology, PropertyName and PropertyChange. In the second step, the 

obtained patents are re-ranked according to the effect- inclusive relevance. 

 

Figure 5-4 The re-ranking in the search engine 

The input interface of the patent search system is shown in Figure 5-5. Like 

many other patent search engines, the selection of specific search field is 

available. 

To use the effect-driven patent retrieval, a user is required to conceive his 

query following the logic of technology ontology. The search engine offers three 

input entries: product (i.e., technology), patient (i.e., property name) and relation 

(property change). Both “product” and “patient” are expected to be a simple noun 

phrase. The “relation” between the product and the patient is expected to be a 

single noun, verb or adjective.  
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Figure 5-5 The interface of the patent search engine 

After clicking the “search” button, the search engine will ask the user to select 

the exact meaning of the relation word. This is realized by evoking the WordNet. 

Next, after ticking the desirable semantics and clicking the “continue” button, the 

search engine will return the search results. The search result is a list of patents. 

Most relevant patent is show first. The discovered desired relations are highlighted 

in the search result. 

5.6 Case Study: Effect-oriented Patent Retrieval 

The case in the Chapter 1 is used again. In this case, the goal is to search for 

patents pertaining to wireless mouse, for which the mouse does not need to change 

battery frequently, or has a long battery life. Naturally, the product should be 

“wireless mouse”. The patient and the relation are assumed to be “battery life” and 

“long”, respectively. 

As shown in Figure 5-6, the search engine will suggest 12 meanings of the 

“long”. As shown in Figure 5-7, the search result not only shows a list of relevant 

patents, but also highlights the discovered relations. Those patents containing the 

queried effect are highly ranked. 
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Figure 5-6 The interface of semantics selection 

 

 

Figure 5-7 An example of search results 
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5.7 Summary 

In this chapter, a method is proposed to extract E-model from dependencies. 

Moreover, the effect-oriented search engine, discussed in Chapter 3, is introduced 

in detail, including the necessity for query expansion, especially the one crossing 

part-of-speech, query-document matching and re-ranking. Compared to 

conventional search engine under term independence assumption, the effect-

oriented search engine uses additional effect information as a filter to reduce the 

number of returned patents. 
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CHAPTER 6  

INDEPENDENT CLAIM SEGMENT DEPENDENCY 

SYNTAX 

The patent growth mapper, discussed in Chapter 3, has an S-model extraction 

module. The extracted S-models are used for supporting the patent growth mapper. 

To extract S-model of a patented technology from its patent’s claims, the 

dependencies are utilized. For example, with the dependencies, as shown in Figure 

6-1(a), its S-model, as shown in Figure 6-1(b), can be formed. Therefore, 

dependencies are required for solving the S-model extraction problem. 

 

(a) (b) 

Figure 6-1 An example of extracting S-model with dependencies 

However, as discussed previously, claim parsing is a challenge. To address 

this challenge, this chapter firstly gives a thorough discussion on the difference 

between claim syntax and dependency grammar. Moreover, practical problems of 

claim parsing with existing parsers were investigated. 

To solve the discovered problems, new dependency syntax, called Independent 

Claim Segment Dependency Syntax (ICSDS), is defined for independent claims 

and is introduced in this chapter. 

6.1 Peculiarities of Claim Syntax 

The claim syntax obeys exactly the English grammar. However, it is peculiar. 

These peculiarities had been discussed (Parapatics & Dittenbach, 2011). In this 

study, the discussions focus on the inconsistency between the peculiarities and 

dependency grammars. 
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(1) Template 

There are some formal templates for starting a claim. They are necessary and 

are used for organizing multiple claims. For examples, “We claim:” (in patent 

numbered US7954694) before a first independent claim; and “The file folder of 

claim 3, wherein” (in patent numbered US7954694) before a dependent claim, in 

which the “file folder” is the patented product. 

Such text does not offer specific information pertaining to the patented 

product, but does affect dependency parsing. The counter measure is to exclude 

them from parsing. 

(2) Complex noun phrase as sentence 

A dependency-grammar-based parser may allow a noun phrase to be a 

sentence. For example, when the input text is a single noun, the noun is 

considered as a sentence. When the input text is a very simple noun phrase 

structure, e.g., a determiner plus a noun, the noun phrase is considered as a 

sentence. However, noun phrase is easy to depend on another constituent, if it 

exists. 

In claim, it is very common that a complex noun phrase is an independent 

sentence, and at the same there are many other constituents. Thus, a dependency-

grammar-based parser usually treats the entire complex noun phrase as a 

constituent of another sentence, and makes a wrong parsing. The counter measure 

is to allow noun phrase to directly use ROOT as the head. 

(3) Tense 

The basic tense in claim is present tense rather than past tense. Generally, the 

past tense and the past participle have the same verb form. The post attributive 

present participle phrase or post attributive past participle phrase is very common 

to form complex noun phrase. It is hard for a dependency-grammar-based parser 

to distinguish post attributive past participle from verb past tense, because a 

dependency-grammar-based parser usually prefers a sentence containing a 

predicate to a noun phrase. The counter measure is to execute POS correction. 
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(4) Parenthesis 

Generally, a dependency-grammar-based parser usually treats an input text as 

a single sentence, and assigns dependency for every word in the text. However, a 

claim may not be a single sentence, because it is very common that an 

independent sentence is directly inserted into a claim. Thus, incorrect automatic 

parsing is inevitable. 

(5) Recursion 

Recursion is common in independent claim, especially when expressing 

structure information. For instance, “wherein the body includes a graphical region 

comprising an ornamental three dimensional sculpture” (in patent numbered 

US7917986) is best analyzed as a main sentence “wherein the body includes a 

graphical region” having an embedded sentence “a graphical region comprises 

an ornamental three dimensional sculpture”. Moreover, the predicates of the main 

sentence and sub-sentence express the same semantics. This increases the 

difficulty of dependency parsing. 

(6) Coordination 

In dependency grammar, coordination is defined trickily. For example, in 

sentence “A camera comprises a lens and a body”, the head of both “lens” and 

“body” should be “comprises”. However, in dependency grammar, the head of 

“and” is assigned as “lens” and the dependency relation is assigned as 

“coordinator”. At the same time, the head of “body” is also assigned as “lens” and 

the dependency relation is assigned as “conjunct”. Additional step is needed to 

reveal the reasonable dependency relation.  

Coordination is common in claim, since a product can include several 

components. Although the definition of coordination in dependency grammar is 

not a problem, too many coordination increases the difficulty of correct 

dependency parsing. 

(7) Long Distance Dependencies 

Due to above mechanisms, such as noun phrase as sentence, parenthesis, 

recursion and coordination, dependencies in a claim can be very long. Long 

distance dependencies not only increase the difficulty of correct dependency 
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parsing, but also require significant computational cost. The counter measure is to 

execute claim segmentation and build segment dependency. 

6.2 Practical Problems of Direct Parsing 

To have a feeling on practical problems of dependency parsing on claim with 

existing parser, two parsers are selected to parse a small sample dataset. One 

parser is the Stanford parser, while the other one is the MaltParser. A detailed 

parser comparison can be found at (Cer, Marneffe, & Jurafsky et al. 2010). It was 

said that MaltParser is much faster, while Stanford parser is much accurate. A 

small sample dataset of patent was collected. It contains 22 claims and 20 

abstracts, in which the effect relations are manually labeled. Manual evaluation is 

carried out through making judgment about whether the labeled effect relations 

can be derived from the parsed text. 

It was observed that two parsers are as good as each other when parsing 

abstract. The recall for both parsers is 95.00%. Mistakes were made on the same 

abstract, which may be too difficult to correctly parse. However, Standford parser 

is much better than MaltParser when parsing claim. The recall of Standford parser 

is 81.82%, while that of MaltParser is 77.27%. This conclusion is consistent with 

previous work (Cer, Marneffe, & Jurafsky et al. 2010). A more careful 

examination discovered that the mistakes only occur in verb-centric structure. 

Generally, a local relation e.g., adjective-noun relation can successfully be 

identified. In contrast, a non-local relation e.g., long distance dependency, usually 

cannot be found. 

The Stanford parser was further tested due to its acceptable parsing accuracy. 

The test focused on computational complexity. Both space complexity and time 

complexity were considered. 

For this study, a dataset, called PPAT273, is built manually. In PPAT273, 

there are a total of 273 product patents, which were downloaded from United 

States Patent and Trademark Office (USPTO). Each patent is a utility patent and 

describes a whole product. There are ten product types, including toothbrush, 

digital camera, razor, lighter, forceps, file folder, mobile phone, surgical scalpel, 

hypodermic needle and paper punch. 
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From PPAT273 dataset, 273 first independent claims (referring as claim in the 

rest of this chapter) were extracted. The length represents the number of tokens in 

a text string. The length of a claim is defined as the number of tokens it contains. 

The statistical result is shown in Figure 6-2. It is observed that the length of most 

claims is more than 100. At the extreme, the length of a claim may exceed 800. 

 

 

Figure 6-2 The frequency of length 

It is reported (on the Stanford parser’s homepage) that the memory use is 

proportionally the square of the length. Generally, parsing a text with length 20, 

50, and 100 needs approximately 250MB, 600MB and 2100MB, respectively. 

Therefore, the Stanford parser is unable to parse most claims in the PPAT273 

dataset on a common personal computer, of which the maximum memory is 

2000MB. This conclusion is consistent with previous work (Parapatics & 

Dittenbach, 2011), which only tried physical memory heap size no more than 

1000MB. In this study, it was tested and found that 700MB memory can only 

parse a text with length no more than 28. That is worse than the expected. 

However, when the memory is increased to 1400MB, the parser can parse a text 

with length up to 206. This means more than half of the claims in the PPAT273 
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dataset can be parsed. It seems that when the memory is added to a high enough 

value, parsing does not require the memory size as much as the expected one, 

which is proportional to the square of the length. It is also expected that high 

performance computing server or cloud computing can offer the capability to 

parse a very long claim whose length is more than 800. 

Compared to space complexity, time complexity is more important. To test the 

parsing time, six sample claims were selected from the 273 claims. The lengths of 

five claims are evenly distributed in a range from 0 to 250, with 50 as the interval. 

The sixth claim is the shortest one whose length is 21 among the 273 claims. For 

each claim with length l, it was parsed l - 10 times. In the first time, the entire 

token sequence of the claim is passed to the parser. In the next time, the last token 

in the token sequence is removed. The cutting is repeated until the length of the 

token sequence equals to 10. 

 

Figure 6-3 The relation between length and time 

The test results are shown in Figure 6-3, it was observed that generally the 

parsing time is monotonically increased with the increase of length. When the 

length is less than 50, the increase of parsing time is not significant. Parsing a 50 

long claim requires about five second. However, the parsing time increases 

sharply when the length is more than 100. Parsing a 140 long claim needs more 
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than one minute; parsing a 170 long claim needs two minutes; while parsing a 200 

long claim needs three minutes. 

6.3 Basic Idea of ICSDS 

To hand long length and Long Distance Dependencies, one way is to execute 

claim segmentation. To maximize the utilization of existent natural language 

resources, every segment is parsed with an existent the parser. In other words, it is 

assumed that a claim can be segmented in a way that most word-to-word 

dependencies in each segment can be correctly parsed with a conventional parser. 

A higher-level parser further parses segment-to-segment dependencies and builds 

the word-to-word dependencies that are crossing segments. 

Generally, the Independent Claim Segment Dependency Syntax (ICSDS) is 

dependency-based syntax designed for parsing independent claims, which cannot 

be directly parsed well with traditional dependency grammars, e.g., the standard 

Stanford dependencies. It belongs to a class of modern syntactic theories that are 

all based on dependency relation. It includes means for segmenting an 

independent claim into segments, recognizing segment features, building segment 

dependencies and assembling segment dependencies with word-to-word 

dependencies. 

6.4 Properties of ICSDS 

Apart from all the words in a claim, an additional token is defined as ROOT, 

which means the root of the parsing tree. The properties of the ICSDS include: 

(1) Connectivity 

All the words are connected with the dependency relations. 

(2) Single Head 

Apart from ROOT, each word must have and can only have one head.  

(3) Partial Planarity 

Apart from the dependency relation connecting ROOT, a dependency relation 

does not cross any other dependency relations when drawn above the words. 
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(4) Proximity Principle 

Each dependent depends on the closest possible head. 

6.5 ICSDS parser 

Without large training dataset, this study focuses on grammar-based parsing 

method. The first implementation of the ICSDS is based on the Stanford parser. 

The system overview is shown in Figure 6-4. Since loading a trained Stanford 

parser requires many seconds, the ICSDS parser processes claims in a manner of 

batch processing. 

 

Figure 6-4 The system overview of the ICSDS parser 

6.5.1 Tokenization and POS Tagging 

The tokenization and POS tagging is similar to the one in (Wang, Loh & Lu, 

2010). The tokenization is completed by the Stanford tokenizer, while the POS 

tagging is completed by the Stanford POS tagger. Thus, the mistakes caused by 

using different tokenization method or POS tagging method should be minimized. 

6.5.2 Claim Segment Segmentation 

Given a string of tokens, the claim segment segmentation returns a sequence 

of claim segments. A delimiter is a mark which fixes the boundary of a segment. 
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The delimiter is formed by some separators. Since ICSDS prefers natural 

separation of text, any mark that helps separating an independent claim and 

making the meaning clear is considered as a separator. These known separators 

belong to three categories: HTML element, sequential number, and punctuation 

mark. Generally, two separators belonging to the same category do not occur 

consecutively. In contrast, two or three separators belonging to different 

categories may occur consecutively. Therefore, a delimiter is defined as a triple in 

the form of (HTML-element, sequential-number, punctuation-mark). For example, 

a part of the first independent claim of patent numbered US4027510 is shown as 

follows: 

1.  A forceps instrument comprising in combination, 

<BR><BR>a. an outer sleeve member, 

<BR><BR>b. a guiding viewing-tube support, tubular in shape, and 
mounted concentrically within said outer sleeve, 

<BR><BR>c. a tubular barrel mounted within said outer sleeve 
substantially concentrically around and axially slidable along said 
guiding viewing-tube support, 

... 

Here, the first segment is “A forceps instrument comprising in combination”, 

followed by the first delimiter (“br”, “TypeE”,  “,”). The first delimiter contains a 

HTML element i.e., <br> (formally <br />), a sequential number of type E (see 

Appendix II for details), and a punctuation mark i.e., a comma. The third segment 

is “a guiding viewing-tube support”, followed by the third delimiter (-, -, “,”). The 

third delimiter contains only a punctuation mark i.e., a comma. 

6.5.3 Claim Segment Feature Recognition 

Given a claim segment, the claim segment feature recognition recognizes 

features at the starting portion and the ending portion of the input claim segment. 

A segment is characterized by its starting portion and ending portion. Therefore, 

segment feature recognition focuses on the starting portion and the ending portion 

of a segment. 

A rule-based method is executed. Rules are created manually to support the 

recognition. The structure of a rule for starting portion is the same as that for 

ending portion. The basic elements composing a rule include segment length, 
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lexicon, part-of-speech (POS) and some word classes that are specially defined. 

For example, starting portion rule “NP,2,IA,!POS:adjective” means if a segment 

with length two, starting from an IA i.e., indefinite article, and the second token is 

not an adjective, then the segment should start from a NP i.e., noun phrase. 

6.5.4 Claim Segment Parsing 

Given claim segments with features, the claim segment parsing returns claim 

segment dependencies. If a claim segment relies on another segment to form a 

sentence, then there exists a dependency relation between them, while the former 

is called as dependent and the latter is called as head. If a claim segment does not 

rely on any segment to form a sentence, then its head is the ROOT. This 

dependency relation between two segments is a little different from that of two 

words. 

Current implementation of the claim segment parsing adopts a rule-based 

method. Two major elements of the rule-based method are dependency rule and 

dependency constraint. The dependency rules and the dependency constraints are 

working together to support correct parsing. A dependency rule describes the 

features of both the dependent and its possible head. The adopted features include 

relative position, relative distance, starting feature, ending feature, and 

punctuation feature. Moreover, a dependency rule can include heritage. In other 

word, a dependency rule may allow a dependent to inherit another dependent’s 

head. The default head is the “ROOT”. Therefore, if no rule applicable, “ROOT” 

will be assigned as the head. Dependency constraints are used to provide 

additional requirements on rule matching. A dependency relation is accepted, only 

if a rule is matched and is subject to all constraints. 

For example, four dependency rules are given as follows: 

AND SNP 
AND SP 
NP SNP 
NP SP 

Here, the “SNP”, “SP”, “NP” and “AND” are segment features. The “NP” 

means noun phrase. The “SNP” means first noun phrase of the sentence. The “SP” 

means an inside incomplete sentence. The “AND” means “and”. 
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As shown in Figure 6-5, a claim consists of two independent sentences. A 

sentence with “SP” is inserted into a sentence with “SNP”. The dependency 

relation of two segments is depicted via an arc with an arrowhead towards the 

head. It is assumed that the parser has successfully parsed all segments before the 

segment with “NP” above the black triangle. Thus, according to the rule “NP  

SP” and the proximity principle, this segment should depend on the segment with 

“SP”. Next, according to the rule “AND  NP” and the proximity principle, the 

next segment with “AND” should also depend on the segment with “SP”. 

A dependency constraint on coordinating conjunction can reject the first 

dependency relation. Briefly, a head cannot accept dependent, if its last two 

dependents are starting with “AND” and “NP”, respectively. Thus, current 

segment with “NP” will depends on the segment with “SNP” correctly, according 

to the rule “NP  SNP”. 

 

Figure 6-5 An example for explaining dependency rules and constraints 

Consequently, a dependency constraint on partial planarity can reject the 

second dependency relation. The search for the head of the segment with “AND” 

will omit any segments before it, apart from the segment with “SNP”. 

A left-to-right parsing algorithm is designed to read the entire segmented 

claim, and then identify the head of each segment from the left side of the claim to 

the right side. The pseudo-code is shown as below: 

 

 

 

 

 

ROOT SP NP AND NPSNP NP AND NPNP
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Algorithm: PARSE 

01 indexOfHead ← Ø 
02 foreach current segment sc in S do  
03 │getHead ← false; 
04 │indexOfHead[sc] ← 0; 
05 │rule ← PICKRULE(Rules, GETTYPE(sc)); 
06 │foreach segment si that i < c (or i > c) in terms of rule do 
07 ││ if EXAMINE(si) then 
08 │││if MATCH(rule, GETTYPE(si), GETTYPE(sc)) then 
09 ││││getHead ← true; 
10 ││││head ← GETHEAD(r); 
11 ││││indexOfHead[c] ← index; 
12 └└└└break; 
13 return indexOfHead 

When a segment is in the process of head identification, it is called current 

segment. The head of current segment is assigned as “ROOT” initially (in line 

04). In the following head search process, a rule corresponding to current segment 

is picked (in line 05). According to this picked rule, either the leftward segments 

or the rightward segments are examined one by one. For each segment under 

examination, the algorithm first examines dependency constraints (in line 07). If 

the examined segment is feasible and it together with current segment can match 

the picked rule (in line 08), the head in the rule (in line 10) and its actual index (in 

line 11) will be assigned to current segment. 

6.5.5 Assembling 

Given segment-to-segment dependencies, word-to-word dependencies within 

each segment, the assembling builds word-to-word dependencies crossing 

segments and returns all word-to-word dependencies. Only two kinds of word-to-

word dependencies crossing segments will be assigned: verb-noun relation and 

adjective-noun relation, since they are necessary for S-model extraction. Given 

two segments, it builds a dependency relation between two words, each of which 

belongs to one of the two segments. 

Briefly, the assembling step merges two kinds of word-to-word dependencies 

together. A rule-based method was used. 
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6.6 Examples of ICSDS Parsing 

To give an intuitive feeling of the parsing result, an example is given below. 

The original claim is: 

A mobile phone, comprising: a body having a ground portion; a metallic 
cover detachably coupled to the body, the metallic cover forming an exterior 
surface of the mobile phone; and a grounding unit configured to electrically 
connect the ground portion of the body to the metallic cover when the metallic 
cover is coupled to the body, the grounding unit being disposed on one of facing 
surfaces of the body and the metallic cover, wherein the grounding unit includes: 
an attachment portion located on an inner surface of the metallic cover facing the 
body; and an elastic extension portion extending from the attachment portion 
towards the body. 

In the original claim, there are 10 segments and three sentences. In the first 

sentence, a mobile phone (in Segment 1) comprises (in Segment 2) a body (in 

Segment 3), a metallic cover (in Segment 4) and a grounding unit (in Segment 6). 

The second sentence further elaborates the metallic cover (in Segment 5). The 

third sentence further elaborates the grounding unit (in Segment 7) and it includes 

(in Segment 8) an attachment portion (in Segment 9) and an elastic extension 

portion (in Segment 10). The parsing result, where the word-to-word 

dependencies obtained by the Stanford parser are omitted, is shown in Figure 6-6: 

 

Figure 6-6 An example of the ICSDS parsing 

6.7 Evaluation 

Both effectiveness and efficiency of the ICSDS parser was tested. The 

effectiveness was test on an S-model extraction problem. The PPAT273 dataset, 

in which standard S-models are manually built, was used for the test. The training 

set consists of 173 patents, while the test set consists of 100 patents. The accurate 

rate is used as the evaluation measures. A parsing tree is considered as accurate, if 
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the S-model formed from the parsing tree is the same as the standard S-model. 

Both Stanford parser and the ICSDS parser were tested. 

The evaluation result showed that the accurate rate of the Stanford parser was 

14%, while the accurate rate of ICSDS parser was 68%. Although 68% is not very 

high, it is much higher than 14%. 

The efficiency was evaluated through memory use and parsing time. The 

ICSDS parser requires less memory than the Stanford parser, because its 

segmentation strategy reduces the maximum length of input text. All claims can 

be parsed under a computer with 1.60 GHz CPU and up to 1.4 GB Java memory. 

To test the parsing time, 174 claims in the PPAT273 that can be parsed with 

both the ICSDS parser and the Stanford parser were used. The range of length is 

from 26 to 210. The comparison of parsing time is shown in Figure 6-7. Apart 

from the shortest claim, the ICSDS parser is faster than the Stanford parser. 

Moreover, the variation of parsing time with the ICSDS parser is small. The range 

of parsing time is from 1 to 31 seconds. The parsing time with ICSDS parser is 

almost independent from the length of claim, when the claim length is no more 

than 210. 

 

Figure 6-7 The comparison of the parsing time 

 

67 84 92 105 114 120 130 137 146 152 159 168 175 181 186 204 209

0

50

100

150

200

250

300

350

400

450

 ICSDS
 Stanford

T
im

e
 (

se
co

n
d)

Length



66 

 

 

6.8 Summary 

This chapter discussed the peculiarities of clam syntax and the problem they 

caused on dependency parsing. Moreover, two famous dependency parsers were 

tested on claim dependency parsing. The test results show that both accuracy and 

speed are challenges to successful claim parsing. Fortunately, available 

dependency parsers demonstrated efficiency and effectiveness, when the length of 

the claim is short and the dependency relation is local. 

Therefore, a strategy combining segmentation and assembly may be helpful. 

In this strategy, available dependency parsers are expected to accurately and 

speedily parse all segments, while these segments are accurately linked by an 

extra higher-level parser. Such a parser is expected to be not only more effective, 

but also more efficient. For example, the parsing time for a claim with length of 

140 is about 60 seconds. If the claim can be segmented into three segments, each 

of which is less than 50, then the total parsing times is about five seconds times 

three i.e., 15 seconds. If the higher-level parser can correctly assemble the three 

segments in 45 seconds, then the whole parser is more efficient than the initial 

parser. 

The strategy is implemented by the ICSDS parser, in which the Stanford 

parser is embedded. This design maximizes the utilization of available natural 

language technologies and resources, and reduces the effort for implementation of 

the new syntax. The evaluation results show that, compared to the Stanford parser, 

the ICSDS parser is much effective and efficient on S-model extraction. 
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CHAPTER 7  

GRAPH SIMILARITY MEASURES 

In previous chapter, the S-model extraction module of the patent growth 

mapper, discussed in Chapter 3, is discussed. The extracted S-models are utilized 

in the similarity measures module of the patent growth mapper. The similarity 

measures module is used for comparing technologies and measuring the difference 

of technologies. In this chapter, graph similarity measures for S-model were 

proposed. They focus on node similarity rather than treating node similarity and 

edge similarity equally, and keep initial intuitive similarity judgment made by 

human. The effectiveness of the proposed graph similarity measures was 

demonstrated by a few graph examples. Moreover, the recommended graph 

similarity measure i.e., iterative node-to-node scoring was evaluated by a real 

world classification problem. 

7.1 Graph Representation 

Formally, a graph G = G(V, E), is represented as a node-node adjacency 

matrix. A vertex denotes a technology or a component of the technology that is 

described by a set of terms i.e., vi = {term1, term2, …} and an edge denotes a 

inclusion relation between two vertices. If the cardinality of V is n, then the 

adjacency matrix A of this graph is an n × n matrix, in which entry [A]ij is equal 

to 1 if and only if (i, j) ∈ E, and is equal to 0 otherwise. Since the direction of the 

edge is not considered, the adjacency matrix of such a graph is always symmetric. 

7.2 Graph Similarity Scoring 

The graph similarity scoring has two steps. In the first step, a node-to-node 

similarity is obtained. In the second step, a graph matching is executed. Formally, 

in the node-to-node similarity matrix X, the xij denotes the node similarity score 

between node i in graph GB and node j in graph GA. With the node-to-node 

similarity matrix X, the task of graph matching is to search an optimal matching 

between the two graphs. What often sought in the graph matching problem is an 

assignment matrix P. If set B has m elements and set A has n  m elements, then P 
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will be an m × n matrix of only 0’s and 1’s, with a single 1’s entry on each row, 

and no more than a single 1’s entry in each column. If Pij = 1, then element i of B 

is matched to element j of A. The graph matching problem can be solved by the 

Hungarian algorithm. The Hungarian algorithm calculates a maximum weight 

matching between two sets, each with n elements in (n3) time (Kuhn, 1955). The 

cost matrix C = E - X. The matrix E is a matrix with one in all the elements. 

The final graph-to-graph similarity is the sum of node-to-node similarity 

scores of matched graphs, averaging by the number of nodes in the smaller graph, 

times the ratio of the number of nodes in the smaller graph to that in the bigger 

graph. 

 

SIM(A, B) = 

 
1 1

/ / /
ij ij

ij B B A ij A
P P

X v v v X v
 

 
   

 
 

 

(7.1) 

 

In the computation of the node-to-node similarity of two graphs, both initial 

node-to-node semantic similarity and topology of every graph are considered. 

Given node vA and node vB, each of which is described by a set of terms, then 

semantic similarity between two nodes is defined as a degree of term matching: 

 SIMSemantic(vA, vB) ≡ (vA ∩ vB) / (vA ∪ vB) (7.2) 

 

The topologies of the two graphs are combined with the semantic similarity in 

two ways. They are named as weighted node-to-node scoring and iterative node-

to-node scoring, respectively. 

7.2.1 Weighted Node-to-Node Scoring 

The weighted node-to-node scoring calculates the similarity between two 

nodes as the sum of the semantic similarity and the topological similarity. The 
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topological similarity is defined as a function of absolute difference between the 

number of adjacency edges of one node and that of the other one, shown as below: 

 SIMTopological(vA, vB) ≡ 1 / (1 + | e(vA) - e(vB) |) (7.3) 

 

Here, e(v) denotes the number of adjacency edges of the node v. Thus, the 

weighted node-to-node similarity is calculated as follows: 

 SIMw ≡ (1-w) · SIMTopological + w · SIMSemantic (7.4) 

 

Here, w is the weight of semantics similarity and is in the range from zero to 

one. Finally, xij = SIMw(i, j). 

7.2.2 Iterative Node-to-Node Scoring 

The iterative node-to-node scoring uses an iterative update method to calculate 

similarity. The basic idea is: a node in graph GB is like a node in graph GA, if they 

and their adjacent nodes are similar. This basic idea can be expressed as follows: 

  
   1

1

max ( 1) ( 1)ij pq ij
A jq

B ip

x k x k x k


     (7.5) 

 

The total number of summed terms is controlled by using maximum, because 

the sum of all terms is too big. Since each xk is updated by a sum of several xk-1, 

the normalization factor for each sum might be the number of summed xk-1. The 

normalization factor matrix N can be represented as follows: 

 

 N = 

| | ... |

( ) ( )... ( )

| | ... |

sum B sum B sum B

 
 
 
  

+ E (7.6) 
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Here, sum(·) treats the columns of the matrix as vectors, returning a row vector 

of the sums of each column. Matrix E is a matrix with one in all the elements. 

To keep the initial relative semantic similarity, the xij(0) is added to the final xij, 

and the sum is normalized by two. Therefore, the final score is as follows: 

 xij = (xij + xij(0)) ./ 2 (7.7) 

 

The update stop criteria can be set as a required number of runs, e.g., 1000 

times, or an upper limit for the difference between xk and xk-1, e.g., 0.0001. 

7.3 Examples of Graph Similarity Measures 

To demonstrate the general effectiveness of the proposed similarity measures, 

a simple graph similarity problem is created as an example. As shown in Figure 

7-1, graph (a) is compared with other eight graphs. 

 

Figure 7-1 Nine example graphs. A circle denotes a node. A line denotes an edge. A 
“t#” in a circle denotes a term labeled on the node. 
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Intuitively, the expected similarity scores should satisfy requirements as 

follows: 

(1) 1 > SIM(a,b) > 0.5. Although root of graph (a) and that of graph (b) is 

different literally, they have identical components. 

(2) 0 < SIM(a,c) < 0.5. Although root of graph (a) and that of graph (c) is 

identical literally, they do not have any identical components. 

(3) 1 > SIM(a,d) > 0.5. Although the topology of graph (a) and that of graph 

(d) are different, they have the same components 

(4) 1 > SIM(a,e) > 0.5. Graph (a) is the major part of graph (e). 

(5) 1 > SIM(a,f) > 0.5. Graph (f) is the major part of graph (a). 

(6) SIM(a,f) > SIM(a,g) > SIM(a,h). That is because they have the same nodes, 

but the topology of graph (f), graph (g) and graph (h) is a tree, a line and a 

ring, respectively. 

(7) SIM(a,i) = 1. That is because graph (a) and graph (i) are identical. 

In VSM, the nine graphs can simply be represented as nine vectors, as shown 

in Table 7-1. 

Table 7-1 Nine graphs in VSM 

      term 
 
graph 

t1 t2 t3 t4 t5 t6 t7 

(a) 1 1 1 1 0 0 0 
(b) 0 1 1 1 1 0 0 
(c) 1 0 0 0 1 1 1 
(d) 1 1 1 1 0 0 0 
(e) 1 1 1 1 1 0 0 
(f) 1 1 1 0 0 0 0 
(g) 1 1 1 0 0 0 0 
(h) 1 1 1 0 0 0 0 
(i) 1 1 1 1 0 0 0 

 

The similarity of graph (a) and other eight graphs in terms of two commonly 

used similarity scorings: cosine similarity and Euclidean distance (Manning, 

Raghavan & Schütze, 2008) are shown in Table 7-2. Scores that satisfy 

requirements are shown in bold. The ranking of graph (b) to (i) in terms of 

similarity to graph (a) with cosine similarity is the same as that with Euclidean 

distance. Without considering the topology, graph (a), graph (d) and graph (i) are 

equal. Graph (f), graph (g) and graph (h) are also identical. Overall, cosine 
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similarity only satisfies half of requirements. The ambiguousness caused by the 

Euclidean distance is more severe. 

Table 7-2 The similarity comparison with VSM 

Compared 
Graphs 

Cosine 
Similarity 

Euclidean 
Distance 

(a) (b) 0.750 1.414 
(a) (c) 0.250 2.449 
(a) (d) 1.000 0.000 
(a) (e) 0.894 1.000 
(a) (f) 0.866 1.000 
(a) (g) 0.866 1.000 
(a) (h) 0.866 1.000 
(a) (i) 1.000 0.000 

 

Given different weight w, the results of the weighted node-to-node scoring 

method is shown in Table 7-3. Scores that satisfy requirements are shown in bold. 

Table 7-3 The similarity scores based on weighted node-to-node scoring 

w 
Graph Pair 

(a, b) (a, c) (a, d) (a, e) (a, f) (a, g) (a, h) (a, i) 
0 1.000 1.000 0.750 0.700 0.625 0.625 0.375 1.000 

0.1 0.975 0.925 0.725 0.710 0.638 0.612 0.413 1.000 
0.2 0.950 0.850 0.700 0.720 0.650 0.600 0.450 1.000 
0.3 0.925 0.775 0.708 0.730 0.662 0.587 0.487 1.000 
0.4 0.900 0.700 0.750 0.740 0.675 0.575 0.525 1.000 
0.5 0.875 0.625 0.792 0.750 0.688 0.604 0.562 1.000 
0.6 0.850 0.550 0.833 0.760 0.700 0.633 0.600 1.000 
0.7 0.825 0.475 0.875 0.770 0.712 0.662 0.638 1.000 
0.8 0.800 0.400 0.917 0.780 0.725 0.692 0.675 1.000 
0.9 0.775 0.325 0.958 0.790 0.738 0.721 0.712 1.000 
1 0.750 0.250 1.000 0.800 0.750 0.750 0.750 1.000 

It could be observed that the weighted node-to-node scoring method can 

satisfy all requirements, when w was set as 0.7, 0.8 and 0.9. It means that 

involving topology can obtain more accurate similarity, but semantics plays a 

more important role than topological. In other words, similarity measure should 

consider the semantics as the primary part and the topology as the supplemental 

part. That can explain why VSM, which does not consider topological 

information, could offer acceptable results in Information Retrieval. 

The proposed iterative node-to-node scoring meets all requirements discussed 

above, as shown in Table 7-4. Moreover, the iterative node-to-node scoring does 

not predefine any parameter, unlike the w in the weighted node-to-node scoring 
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method. Therefore, iterative node-to-node scoring was recommended in future 

graph similarity calculation. 

 

Table 7-4 The similarity scores based on iterative node-to-node scoring 

Compared 
Graphs 

Similarity Epoch 

(a) (b) 0.675 16 
(a) (c) 0.325 9 
(a) (d) 0.8 30 
(a) (e) 0.8 17 
(a) (f) 0.75 16 
(a) (g) 0.589 16 
(a) (h) 0.563 26 
(a) (i) 1 16 

7.4 Evaluation of Iterative Node-to-Node Scoring 

The effectiveness of the proposed graph model and the proposed iterative 

node-to-node scoring was further evaluated through a real world classification 

problem. 

7.4.1 Experimental Setup 

The PPAT273 dataset was used. The S-model of the technology in every 

patent was annotated manually. The classification problem is designed as a binary 

classification. In each class, the products belonging to this class are labeled as 

positive; otherwise negative. To separate training set and test set, patents are 

sorted in terms of the patent number and a split point is used to separate the sorted 

patents into two parts. The split point ensures that the number of positive 

examples is approximately equally in training set and test set. The exact number 

of training examples and text examples are different for different class, as shown 

in Table 7-5. 

The proposed similarity score is easy to be embedded into a k-Nearest 

Neighbor (k-NN) classifier (Manning, Raghavan & Schütze, 2008) by simply 

replacing the original similarity score. The k-NN classifier assigns a class label to 

an example in test set according to the label(s) of the example’s k nearest 

neighbors in training set. The rationale of k-NN classification is that, with the 
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contiguity hypothesis, it is expected that a test example has the same label as the 

training examples located in the local region surrounding the test example. 

Table 7-5 Ten classes and the arrangement of training set and test set 

Class # 
# positive 
training 

# positive 
test 

# training 
positive rate 

training 
toothbrush 93 44 49 112 39.29% 
digital camera 87 43 44 195 22.05% 
razor 17 8 9 25 32.00% 
lighter 17 7 10 75 9.33% 
forceps 13 6 7 13 46.15% 
file folder 12 6 6 52 11.54% 
mobile phone 12 6 6 195 3.08% 
surgical scalpel 11 4 7 38 10.53% 
hypodermic needle 6 3 3 33 9.09% 
paper punch 5 2 3 34 5.88% 

7.4.2 Experimental Results 

In the experiments, the proposed iterative similarity scoring did stop before the 

maximum number of runs i.e., 1000. The distribution of running times is shown in 

Figure 7-2, where one epoch is defined as one time of iterative computation. As 

shown in Figure 7-2, most run was stopped after the first epoch. That is because a 

lack of semantic similarity between two graphs. If a run did not stop after the first 

epoch, then it usually needs more than ten epochs to stop. The running time is 

shown in Figure 7-3. Most running time is less than one millisecond. If not, it 

would take about 17 milliseconds. 

 

Figure 7-2 The distribution of running epoch of iterative graph similarity scoring 
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Figure 7-3 The distribution of running time of iterative graph similarity scoring 

The proposed classifier was compared with standard k-NN classifier and 

Support Vector Machine (SVM) classifier. The text digitalization adopted a 

traditional way i.e., extracting title and abstract section and following the 

preprocessing steps in (Wang, Lu & Loh, 2011). Since both k-NN classifier and 

Support Vector Machine (SVM) classifier have parameters to tune. Parameter 

tuning was executed and best parameters were used in the method comparison. 

The F1 score was used as the evaluation measure. 

The k-NN classifier can adopt different similarity score. Both cosine similarity 

and Euclidean distance similarity was test. The k-NN classifier got a poor F1 score 

when cosine similarity was used. As shown in Figure 7-4, no matter k values at k 

= 1, 3 or 5, the F1 score keeps being zero for eight classes. For the other two 

classes, the best F1 score is less than 6%. Therefore, only Euclidean distance was 

used in the method comparison. 

For SVM classifier, the cost parameter C was tuned for {0.5, 1, 2, 4, 5, 8, 10, 

15, 20}. The results are shown in Figure 7-5.  For any class, the F1 score is stable 

in the highest value when the cost parameter C was set as a high value. Therefore, 

C = 20 was used in the method comparison. 
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Figure 7-4 The k-NN with cosine similarity. Score reported is F1 measure. 

 

 

Figure 7-5 The SVM with different C. Score reported is F1 measure. 
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did not perform well. In both cases, the recall is high (more than 85%), but the 

precision is low (less than 20%). It implies that many negative examples were 

labeled as positive. Since the k-NN classifier predicts class label through the votes 

of examples in training set that are most close to the test example, a reasonable 

explanation is a lack of representative negative examples in the training set. In 

other words, a negative test example is unlike any negative training examples and 

positive training examples. Thus, it may be more similar to some positive 

examples, compared to negative examples. In Table 7-5, the class “forceps” has 

the smallest training set but at the same time has the highest positive rate, while 

the class “razor” has the second smallest training set but has the third highest 

positive rate. These facts do not refute above explanation. 

 

 

Figure 7-6 Method Comparison: SVM, k-NN, and k-NN with graph similarity. Score 
reported is F1 measure. 
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(7.8) 

 

The ASTN is the average of all similarity scores, each of which is between a 

negative example and its nearest neighbors. For example, ASTN (k = 3) means 

three nearest neighbors of each true negative example are considered in ASTN 

calculation. 

As shown in Figure 7-7, it is natural that ASTN (k = 1) > ASTN (k = 3) > 

ASTN (k = 5), regardless the class. The ASTN of class “razor” has the minimum 

value. If the class “razor” is excluded, then the ASTN of class “forceps” has the 

minimum value. It means that negative test examples were less like negative 

training examples in class “razor” and class “forceps”, compared to other eight 

classes. Therefore, the surmise above is valid. 

 

Figure 7-7 The average similarity of true negative 
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7.5 Summary 

To summarize, this chapter proposed similarity measures for the S-model. The 

proposed similarity measure was presented with a set of graph examples and was 

tested through a classification problem. The proposed graph similarity 

demonstrated its superiority in the classification problem. A k-NN classifier with 

the proposed graph similarity measure usually can perform better than a standard 

k-NN classifier or a SVM classifier. However, the performance of the proposed 

method is sensitive to the representativeness of the training set since it requires a 

similarity computation between examples. 
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CHAPTER 8  

PATENT GROWTH MAPPER 

This chapter introduces the patent growth mapper, discussed in Chapter 3 in 

detail from the lowest module to the highest module. Since claim dependency 

parsing for S-model extraction and similarity measures is stated in Chapter 6 and 

Chapter 7, respectively, this chapter covers the network for clustering and the two-

dimensional coordinate system. A case study is given to show the effectiveness of 

the proposed patent growth mapper. 

8.1 Network for Clustering 

To monitoring the structural changes of multiple technologies, a network is 

designed to cluster technologies based on their structure similarity. The network is 

a graph, in which each node denotes a patented technology (or patent) and similar 

nodes are linked with edges. A threshold value is used to convert the similarity 

score between two nodes into binary value i.e., similar or dissimilar. 

The network has four characteristics. Firstly, members in each group have 

similar stricture and likely infringe each other. Secondly, a controllable parameter 

called connectivity rate is used to adjust the network. The connectivity rate is the 

fraction of the nodes that are connected. With the connectivity rate, the threshold 

value does not need to be pre-defined. The bigger the connectivity rate is, the 

smaller the threshold value is. Different from the threshold value, the connectivity 

rate is a relative measure of the connectivity of the patent set. Since different 

technology types usually have different complexity degrees, the similarity 

distribution of different technology types should be different. A single standard to 

determining the threshold value does not exist. Therefore, a relative measure is 

more robust. Thirdly, the number of edges is minimized. The number of edges 

equals the number of nodes minus one. Fourthly, the size of every group either 

grows or keeps unchanged. That is why this patent map is called as patent 

“growth” map. 

To control the connectivity rate, trial and error method is used. The algorithm 

requires a target connectivity rate, an initial threshold value and a step-length. The 
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target connectivity rate may be at a mid-range value. A high value of connectivity 

rate reduces discrimination and easily produces big groups, while a low value of 

connectivity rate leads to a mess. By default, the initial threshold value equals to 

0.5, and the step-length equals 0.005. The algorithm firstly calculates the 

connectivity rate using the initial threshold. When the connectivity rate is bigger 

than the target connectivity rate, the threshold value is increased regularly 

according to the step-length, until the connectivity rate is not bigger than the target 

connectivity rate. A similar process is executed when connectivity rate is smaller 

than target connectivity rate. Thus, the threshold value of similarity is 

automatically calculated via the target connectivity rate. A more complex but 

advanced algorithm may use a binary search tree. However, the proposed 

algorithm is simple and efficient. 

To obtain the minimized number of edges, the clustering algorithm processes 

node one by one and link node in the process with only one node in every similar 

group. Formally, a set of patents is a sequence {p1, p2, p3, …, pn}. The order is 

determined by the patent number, since the patent numbers are assigned 

chronologically. A patent group is a subsequence of the sequence of the patent set. 

A patent group consists of one or more members. The terminator of a patent group 

is defined as the last item of the patent group sequence. Given a pi from {p1, p2, 

p3, …, pn}, the similarity between pi and pk ( k = 1, 2, …, i - 1 ) is calculated. If 

the similarity score is larger than the threshold value, pi is connected to the 

terminator of the patent group that contains pk. 

8.2 Two-dimensional Coordinate System 

To monitoring the trends of structural changes, a two-dimensional coordinate 

system is designed. Similar to Growth-share Matrix, which is a chart that had been 

created for the Boston Consulting Group in 1968 to help corporations to analyze 

their business units or product lines, the design allows the map users to observe 

patents from two controlling aspects and four quadrants. 
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Figure 8-1 The four quadrants of the patent growth map 

The two dimensions are timeline (X-axis) and importance (Y-axis). The four 

quadrants are defined in Figure 8-1. When a technology is new and important, it is 

considered as mainstream technology; when a technology is new but unimportant, 

it is considered as potential technology; when a technology is old but important, it 

is considered as mature technology; when a technology is old and unimportant, it 

is considered as dated technology. 

The time axis (X-axis) is used to demonstrate the trend of technology 

development. The unit of the time axis is usually year. Normalization is used to 

convert a year into a value ranging from zero to one. 

The importance is designed to highlight new technology and big technology 

group. The newer the technology is, the more important the technology is. The 

bigger the technology group is, the more important each technology in the 

technology group is. Formally, the importance is defined as follows: 
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 Importance ≡ ∙
Size Group

max Size Group
 (8.1) 

 

Here, k is the sequential number of a patent in the sequence of the patent set; n 

is the size of the patent set. The function Group: p ↦	 g	 ∈	 G returns the group to 

which the patent p belongs; Size: g ↦	 z	 ∈	  returns the size of the group g. The 

importance score ranges from zero to one. 

8.3 Core Technology Selection 

To identify core technology, enterprises can select a big technology group in 

any quadrant according to their strategies. For example, a competitive enterprise 

may prefer mainstream technology; a risk-averse enterprise may prefer mature 

technology; a risk-like enterprise may prefer potential technology. 

To facilitate identifying the core technology, the core technology is each 

technology group is automatically selected as the most representative member. 

The most representative member is defined as the member that is mostly similar to 

all of the other members in the group. If multiple candidate representative 

members exist, one of them is selected as the representative member. Formally, 

the representative member in a group is defined as follows: 

 
∗ 	 argmax Similarity ,  (8.2) 

 

Briefly, the PGM clusters technologies into different groups and distinguishes 

groups in terms of their positions in the four quadrants. In this way, the designer 

could target a group of technologies easily. Furthermore, for each technology 

group, the most representative technology is found. This technology can be 

directly considered as the core technology. 
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8.4 Case Study: Patent Growth Map 

For generating the PGM, 93 patents of toothbrush were collected from 

PPAT273. The tree models were extracted from claims and issued years were also 

extracted. 

The patent growth maps of the 93 toothbrushes with different thresholds at 

{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} are shown from Figure 8-2. When the 

threshold is increasing, the dots are more and more scattered.  Multiple big groups 

are visible when threshold value θ = 0.8 as shown in Figure 8-2 (h), in which two 

important product groups are distinguished. The connectivity rates corresponding 

to the thresholds are listed in Table 8-1. It is observed that the connectivity rate is 

53.76% when threshold θ equals to 0.8. Moreover, it is the one closest to 50% 

among all thresholds. Therefore, Figure 8-2 (h) is selected for further analysis. 

 
(a) θ = 0.1 

 
(b) θ = 0.2 

 
(c) θ = 0.3 

 
(d) θ = 0.4 

 
(e) θ = 0.5 

 
(f) θ = 0.6 

 
(g) θ = 0.7 

 
(h) θ = 0.8 

 
(i) θ = 0.9 

Figure 8-2 An example of growth map with θ from 0.1 to 0.9 
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Table 8-1 The threshold similarity value and corresponding connectivity rate 

Threshold 
θ 

Connectivity Rate
rc. 

0.1 100%
0.2 100%
0.3 100%
0.4 97.85%
0.5 92.47%
0.6 76.34%
0.7 64.52%
0.8 53.76%
0.9 36.56%

 

To select core product, product groups are firstly selected. As shown in Figure 

8-3 (when θ = 0.8), there are two most important product groups: Group 1 and 

Group 8. Group 1 has 20 members, some of which are considered as mainstream 

products according to defined four quadrants. Group 8 has nine members, some of 

which are considered as potential products according to defined four quadrants. 

 

Figure 8-3 An example of growth map with θ = 0.8, where two most important 
groups are highlighted 

It was observed that the structure of toothbrushes in Group 1 is simple. The 

representative toothbrush (in patent numbered US6115870) simply comprises of 

head, handle and bristles. The field of product is the bristle arrangement. For 

toothbrushes in Group 1, other filed of product includes bendable head, polishing 
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element, and aesthetic design. This conclusion is consistent with previous work 

(Hohlbein, Williams & Mintel 2004) supported by the Colgate-Palmolive 

company. It said that the trend of toothbrush development is to consider new 

material and product esthetics. Therefore, mainstream toothbrush may follow 

simple structure, but improve look and properties with new material. Such 

improvement has little impact on consumer’s use habits. 

In contrast, the structure of toothbrushes in Group 8 is complex. The thread of 

design is to involve some novel parts. For example, the representative toothbrush 

(in patent numbered US6308367) is about a toothbrush with a three-dimensional 

bristle profile to provide improved cleaning of interproximal and gingival 

marginal regions of teeth. Such improvement may change consumer’s use habits. 

Therefore, enterprises should be very careful when using these potential 

technologies. 

8.5 Summary 

This paper proposed PGM for monitoring trends of technological changes via 

measuring structural changes of patented products. In this way, the trends of 

technological changes can be observed and core products are easy to target. 

The PGM organizes a set of patents into a two-dimensional patent map and is 

them into different groups. The two-dimensional coordinate system distinguishes 

groups with four quadrants. The PGM users may select different groups according 

to different strategies. The groups are easy to see, since the number of edges is 

minimized. To facilitate avoidance of patent infringement, each group consists of 

structure-similar patented technologies. Furthermore, core patent is automatically 

highlighted. With the PGM, product designers can observe technological 

development easily and target core products easily. Moreover, with technology 

comparison capability and the detailed structure of technology, the scope of the 

prior art is much clearer. Thus, designers can obtain a boarder and more detailed 

view on prior art and a correct judgment on their own innovation. 

The PGM is an efficient tool, which is able to automatically compare a large 

number of similar technologies. In this way, product designers are able to grasp 

hundreds of patents or thousands of patent claims in minutes. Thus, the product 
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designers obtain a capability that was hitherto impossible and allows them to 

finish their work in a shorter time. 
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CHAPTER 9  

CONCLUSIONS AND RECOMMENDATIONS 

This chapter gives a final evaluation of the hypothesis of this thesis. It also 

summarizes major discoveries and contributions. Finally, it gives 

recommendations for future work. 

9.1 Final Evaluation of the Hypothesis 

The final evaluation of the hypothesis is summarized in Table 9-1. 

Table 9-1 The final evaluation of the hypothesis 

Objectives Evaluation Details 
Extract 
automatically 
E-model 

Partially achieved. 
 

Effects can be extracted with a query-
focused dependency-parsing-based 
method. 

Extract 
automatically 
S-model 

Partially achieved. 
 

A new parser is proposed. Although 
perfect S-model extraction cannot be 
achieved with the proposer parser, it is 
efficient and much better than the state of 
art. 

Compare 
S-models 

Achieved. 
 

A new graph similarity measure is 
proposed and evaluated. 

Improve 
patent search 
with E-model 

Achieved. 
 

An effect-oriented search engine is 
proposed. Those patents that do not 
contain queried effect have lowly ranked 
and can be filtered out. 

Improve 
patent 
clustering with 
S-model 

Achieved. A patent growth map is proposed. Each 
cluster consists of technologies that likely 
infringe each other. 

Hypothesis Partially achieved  

 

9.2 Contributions 

New knowledge obtained and the difference between the new knowledge and 

the state of art is summarized in Table 9-2. Briefly, this thesis proposes 

technology ontology and a framework to utilize the technology ontology in patent 

information access. Any technology is characterized by its effect (modeled as a 

triple i.e., E-model) and its structure (modeled as a tree i.e., S-model). 
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Table 9-2 The summary of contributions 

Contributions Advance State of Art 
A new entity recognition 
method 

Relatively good (in 
terms of F1 measure) 

Other participants in 
NTCIR-8 (2010) 

 
An effect-oriented patent 
search engine 
New Features: 
(1) Effect-oriented 
(1) Cross-POS expansion 
(2) Morphology expansion: 
Inflection 

Effect information 
can be used as a filter 
to reduce the number 
of returned patents. 
Both syntactic and 
semantic search. 

Google Patent Search 
Engine (or other search 
engines based on standard 
Boolean model) 
Goldfire (semantic search) 

A new dependency parsing 
method for patent claims 

Obviously 
improvement in S-
model extraction 
(in terms of accurate 
rate and parsing time) 

Stanford parser 

Two Graph Similarity 
Measures 
The latter is recommended. 
(1) Weighted node-to-node 
scoring 
(2) Iterative node-to-node 
scoring 

Relatively good in 
patent classification 
(in terms of F1 
measure) 
Handling edge 
similarity 
appropriately; 
Keeping initial 
relative semantic 
similarity 

VSM based similarity 
measures 

 
Iterative graph similarity 
measure (Zager 
&Verghese, 2008) 

Patent Growth Map (PGM) 
New Features: 
(1) Technologies in the 
same cluster are similar in 
structure and are likely to 
infringe each other. 
(2) Each patent is 
represented as S-Model 
rather than VSM. 
(3) Network with 
controllable connectivity 
rate and minimized edge 
number 
(4) Coordinate system 
showing trend and 
facilitating selection of 
core technology 

Considering patent 
infringement in 
clustering; 
Other designs for ease 
of use 

Patent Map via VSM (Lee, 
Yoon & Park, 2009; Tseng, 
Lin & Lin, 2007) 

 
Patent Map via VSM with 
Network (Yoon & Park, 
2004) 

 

To extract E-model, a new entity recognition method is proposed. The method 

was evaluated in a cutting edge patent information access evaluation, in which the 



90 

 

NER that focus on technology entities and effect entities was investigated in a 

large-scale for the first time. The method was the number one according to the 

evaluation results. 

To utilize the extracted E-models, an effect-oriented patent search engine is 

introduced. Compared to traditional search engine, it uses effect information as a 

filter to reduce the number of returned patents. Both syntactic and semantic 

technologies are used. 

To extract S-model, the Independent Claim Segment Dependency Syntax 

(ICSDS) was proposed for parsing claims. Although perfect S-model extraction 

cannot be achieved with the proposer parser, it is efficient and much better than 

the state of art in terms of accurate rate. 

To compare technologies, new graph similarity measures were proposed. The 

recommended graph similarity measure shows its superiority in a classification 

problem. However, the performance of proposed method is sensitive to the 

representativeness of the training set, since it requires similarity computation 

between two examples. 

To utilize the extracted S-models and recommended graph similarity measure, 

a new patent map i.e., PGM was proposed. In the PGM, technologies that likely 

infringe each other are grouped together. With the growth map, product designers 

can target core technologies easily. 

The proposed methods promote the processing of patent information in a 

deeper, larger, and faster way. At the same time, they promote the reduction of 

human effort on reading patent documents and gathering information. A designer 

can obtain a capability that was hitherto impossible and have a boarder and more 

detailed view on prior art and a correct judgment on his own innovation. 

Moreover, they will have more time to focus on creative work. 

9.3 Recommendations for Future Work 

(1) Extracting correct technology 

For simplification, the technology TechnologyName in the E-model 

(TechnologyName, PropertyName, PropertyChange) is assumed to be known (see 
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Chapter 5). To obtain more precise relation, the correct technology i.e., the agent 

of the effect is necessary to be identified. The TechnologyName may be a set of 

technology, if the effect is caused by several technologies. Apart from syntactical 

analysis, coreference resolution analysis is also required. 

(2) Expanding the ICSDS by defining more relationships between segments 

The current implementation of ICSDS focuses on verb-noun relation and 

adjective-noun relation (see Chapter 6). This is because they are the most 

important relations for effect discovery and are difficult to correctly parse. 

However, for completeness, other relations such as preposition-noun, verb- 

preposition and adverb-verb should also be defined. Therefore, relationships 

between segments are worth further studying. 

(3) Considering more patterns of effect expression 

Some patterns of effect expression, including negator and adverb (see 

Appendix I), have not been implemented. Additional work is required to enable 

the use of negator and adverbs. A negator or an adverb usually works as a 

modifier of the center word. They can work separately or collectively to change 

the semantics. 

Besides, the discussed patterns applicable to text did not consider numerals. In 

the future, more patterns can be designed to include numerals. 

(4) Product concept design module 

In the proposed framework, it is expected that the proposed technology 

ontology can support product concept design and development. Especially, the 

technology ontology is expected to facilitate designing around multiple existing 

patents. A systematic methodology has not been proposed yet. The systematic 

methodology may require some new intelligent technologies, for example 

automated generation of patentable candidate product concept model. 

(5) Other text-based applications 

In the knowledge discovery module of the proposed framework, only the 

patent classification was investigated. Other applications like patent 

summarization or question-answering can also be explored. 
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(6) Integrated patent search and analysis platform 

The terminal carrier of all proposed technologies will be an integrated patent 

search and analysis platform. Since current trend of information technology is 

towards high performance computing and wireless connection, the terminal 

platform should be a cloud computing platform. More works are needed to realize 

such platform.  
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APPENDIX I 

SYNTACTIC PATTERNS FOR EXPRESSING EFFECT 

Before listing the discovered syntactic patterns, several symbols are defined in 

order to describe the syntactic relation: 

“◄” means the element on the right is towards the center i.e., the element on 

the left; 

“+” means the element on the right is necessarily added to the element on the 

left; 

“\” means the element on the left having a specific form, which is 

morphologically related to the element on the right. 

It should be noted that the element order in these syntactic patterns does not 

correspond with the practical token order in natural language. An object element 

is always put at the beginning of a pattern. 

 (1) Adjective-like character 

An adjective-like character is a descriptor such as an adjective, a noun, or a 

noun phrase. The adjective may be in its comparative form. No matter its specific 

type, the descriptor works like an adjective. It modifies an object in one of 

manners below: 

Pattern (object ◄ adjective): efficient charging 

Pattern (object ◄ adjective + preposition): high in sensitivity 

Pattern (object ◄ adjective + preposition): free from error 

Pattern (object ◄ adjective + noun): high quality recording 

Pattern (object ◄ preposition + adjective\comparative + noun): image of 

higher quality 

Pattern (object ◄ adjective + noun + preposition): small amount of force 

Pattern (object ◄ noun + preposition): reduction of cost 

Pattern (object ◄ noun): cost reduction 
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Moreover, the adjective may be modified and limited by an adverb. 

Pattern (object ◄ adjective ◄ adverb): highly efficient charging 

Besides, the adjective-like character may rely on a verb and works as a 

complement or more specifically a predicative. 

Pattern (object ◄ linking verb + adjective): The cost is high. 

Pattern (object ◄ linking verb + preposition + noun phrase): The thickness is 

at nanometer level. 

(2) Verb-like behavior 

A verb-like behavior must include a verb which is considered as the behavior 

of the object. The object and the verb constitute a part of a predicate-argument 

structure, in which the verb is the predicate and the object is an argument, either a 

subject or a grammatical object. The form of the verb and its position is 

influenced by the grammatical structure, for example, passive voice, active voice 

or a syntactic expletive. 

Pattern (object ◄ verb\infinitive): reduce the cost 

Pattern (object ◄ verb\third person singular): reduces the cost 

Pattern (object ◄ verb\present participle): reducing the cost 

Pattern (object ◄ auxiliary verb + verb\past participle): the cost is reduced 

Pattern (object + syntactic expletive ◄ auxiliary verb + verb\past participle): 

There can be obtained the cost. 

Sometimes, the verb is attached with a preposition to form a collation. 

Pattern (object ◄ auxiliary verb + verb\past participle + preposition): The 

transistor can be turned off. 

Moreover, the verb may be modified and limited by an adverb or a preposition 

phrase. 

Pattern (object ◄ verb ◄ adverb): efficiently improving the reliability 

Pattern (object ◄ verb ◄ adverb): improving efficiently the reliability 
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Pattern (object ◄ auxiliary verb + verb\past participle ◄ preposition phrase): 

The delay is cut by half. 

(3) Adjective compound 

Adjective compound is composed of an adjective and a noun (or an adverb), 

through a hyphen. They work in the same manner as that of adjectives. 

Pattern (adjective compound): high-quality 

Pattern (adjective compound): ever-higher 

(4) Negator 

A negator may be added to reverse the semantics. 

Pattern (object ◄ negator) no cost 

Pattern (object ◄ negator): without picture disruption 

Pattern (object ◄ linking verb + adjective ◄ negator): The cost is not high. 

Pattern (object ◄ verb ◄ negator): without reducing the reliability 

Pattern (object ◄ auxiliary verb + verb\past participle ◄ negator): Transition 

is not required. 

It was observed that the use of negator is very flexible. The negator can be 

used together with noun, adjective and verb. 
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APPENDIX II 

TYPES OF SEQUENTIAL NUMBER 

There are five types of sequential number in independent claim. 

 

Type A: a sequential Roman number enclosed with a pair of round brackets or 

parentheses i.e. “(” and “)”. Examples: (i), (ii), (iii), (iv) 

 

Type B: a sequential Roman number followed with a closing round brackets 

or parentheses “)”. Examples: i), ii), iii), iv) 

 

Type C: an alphabetical sequential number enclosed with a pair of round 

brackets or parentheses i.e. “(” and “)”. Examples: (a), (b), (c), (d) 

 

Type D: an alphabetical sequential number followed with a closing round 

brackets or parentheses “)”. Examples: a), b), c), d) 

 

Type E: an alphabetical sequential number followed with a period “.”. 

Examples: a., b., c., d. 

 


