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Summary 

 

In Type 1 diabetic (T1D) patients, it is crucial to keep the blood 

glucose (BG) concentration in normoglycemic region (70~126mg/dL) in 

fasting condition and under 180mg/dL in postprandial condition using 

exogenous insulin infusion. Such regulation is important in order to avoid 

hyperglycemia (blood glucose values that are above normoglycemic region) 

and its long term impact on the diabetics (complications such as nephropathy 

and retinopathy) and dangerous hypoglycemia (blood glucose values that are 

below normoglycemic region) that leads to diabetic coma and possibly death 

on a short-term basis. 

A number of mathematical models that represent T1D patients and 

control algorithms for blood glucose regulation in diabetic patients have been 

developed in the literature. These control algorithms were also shown to cope 

well with inter- and intra-patient variability. The aim of this research is to find 

efficient and practically implementable control algorithms by employing some 

state of the art diabetic models (that accurately simulate the diabetes patient) 

for effective regulation of blood glucose. This thesis also seeks to extend the 

utility of simple dynamic protocols that are currently practiced for treating 

hyperglycemia in patients admitted to critical/intensive care units to treat T1D 

patients. For this purpose, the Yale insulin Infusion Protocol (YIIP) is 

implemented and studied on different T1D “patients”. Studies indicate that the 

YIIP can be tailored and used for effective BG regulation in T1D “patients”. 

The thesis also examines if the “patients” can be classified into different 

groups and subject to class-specific tailored algorithms. To achieve this 

objective, a simple diabetes diagnostic test (Intravenous Glucose Tolerance 

Test, IVGTT) and a multivariate statistical tool (Principal Component 

Analysis, PCA) are utilized. Then, YIIP is tailored to work for different 

patient classes. Applicability of this investigation through validation on 

different patient models is also attempted. The results show that the developed 

algorithm can be very useful for BG control in T1D patients.   
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For the purpose of this thesis, the modeling error compensator 

(controller) based on a linear reference model (LMEC) is considered and 

evaluated on three diabetic models. The results demonstrate that the LMEC 

controller is a good candidate for controlling diabetes. The BG control is more 

effective with the patient-specific T1D patient model which could be 

constructed from past data collected from the patient. Multirate system 

identification (MRID) may be quite handy in this regard. Frequent sampling of 

BG concentration is also required for effective control but the current glucose 

sensor technology has its own limitations. In healthy humans, the endogenous 

insulin response to the BG changes within seconds. The BG control would be 

more effective if the control algorithm can mimic the healthy human 

physiological response. To achieve this goal, the availability of frequent BG 

measurement is a key factor. To solve this problem, a LMEC algorithm with 

36 seconds control interval and 3 minute BG concentration sampling interval 

with estimation of intersample BG measurement using models obtained from 

MRID is developed. Using simulated data, this idea is shown to be applicable 

and extendable to situations with larger BG concentration sampling intervals. 

The developed schemes are expected to be useful in advancing the goal 

of achieving better patient outcomes using artificial closed loop pancreatic 

system.  
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Chapter 1 

Introduction 

 

1.1 Homeostasis and Blood Glucose Regulation 

Homeostasis is the term describing the self-regulation of the process or 

activities in a biological or mechanical system to maintain stability of the 

internal environment by adjusting to changing conditions (Wikipedia, 2009b). 

It is vital to keep human body in homeostasis such as body temperature 

regulation, blood glucose (BG) regulation and hormonal regulation. The 

regulation of blood glucose to maintain glycemia (the concentration of glucose 

in the blood) in normal range is an important aspect of metabolic homeostasis. 

The mean normal glycemic value for healthy human is 90mg/dL or 5mmol/L. 

Glucose is the main source of energy for the body and brain and it is enriched 

mainly from consumed sugar and carbohydrate. BG level rises up mainly due 

to food intake and is also influenced internally by stress hormones, steroids, 

cortisone, growth hormones etc. BG is lowered by prolonged and intensive 

physical exercise and reduction/lack of nutrition.  

BG is continuously regulated by insulin and glucagon. Glucagon is 

released from alpha cells of pancreas when BG level is low. Glucagon 

stimulates breakdown of glycogen stored in liver (glycogenolysis). The 

glycogenolysis produces glucose from stored glycogen which gets introduced 

into the blood stream to raise BG level. Conversely, insulin is produced from 

the beta cells of pancreas when BG rises up to higher level either due to meal 

consumption or through glycogenolysis. Insulin activates conversion of 

glucose into glycogen to be stored in liver (and in muscle) by glycogenesis and 

helps muscle and adipose tissues to take glucose from blood for their 

metabolism. Thus BG level is lowered. With these mechanisms, glycemic 

homeostasis is maintained by the presence of these two hormones (glucagon 

and insulin) in healthy individuals. When these mechanisms are impaired over 

long periods of times, the healthy individual becomes afflicted by diabetes 

mellitus. 
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There are two main types of diabetes: Type 1 and Type 2 diabetes. 

Type 1 Diabetes Mellitus (T1D) is caused by inadequate insulin production 

due to beta cell dysfunction of the pancreas. The body’s inability to respond 

properly to endogenous insulin because of insulin resistance or decreased 

insulin sensitivity with or without insufficient endogenous insulin is classified 

as Type 2 Diabetes Mellitus (T2DM). The type of diabetes that can occur in 

women during pregnancy period is known as gestational diabetes, and another 

type of glucose impairment can happen to critically ill patients or patients in 

ICU (intensive care unit) temporarily because of hyperglycemia. 

 

1.2 Diabetes and Glycemic Regulation 

The complete lack or insufficient amount of endogenous insulin for an 

extended period of time causes diabetes. Diabetes is a metabolic disorder that 

affects the body’s ability to regulate glucose concentration in blood resulting 

in high or low BG concentration. In T1D, improper metabolic response to 

glucose (with or without inadequate insulin production by the pancreas) can 

cause the supranormal plasma glucose concentration. T1D patients’ response 

to insulin is normal without loss of insulin sensitivity. This is also known as 

insulin dependent diabetes mellitus (IDDM). In T2DM, also known as non-

insulin dependent diabetes mellitus (NIDDM), in which the very high BG 

values are a result of insulin resistance. In the gestational diabetes, pancreas 

can produce normal insulin but it cannot produce extra insulin to counteract 

the interfering effect of other hormones produced by placenta (placenta is to 

provide nutrition from mother to the embryo) and the pancreas does not have 

persistent malfunction. These hormones hinder the body ability to respond 

insulin properly and it causes insulin resistance and thus hyperglycemia. The 

critically ill patients or patients in ICU experience stress induced 

hyperglycemia even if they do not have any past history of diabetes. Other 

factors such as presence of hypertension, cortisone, steroids and pancreatic 

disease also results in hyperglycemia.  

      High BG value results in excessively sweet urine (glycosuria) as the 

renal clearance (kidney excretes plasma glucose into urine) starts when BG is 
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above 190~200mg/dL (also known as renal threshold). It leads to polyuria 

(frequent urination) and polydipsia (increased thirst) and these are well-known 

common symptoms of diabetes. It can lead to the cell dehydration, and the 

increased fluid intake only cannot cure the disease because the whole 

mechanism is regulated with the hormones and other mechanisms and thus 

medication is needed. For Type 1 diabetes, external insulin is required to 

regulate the BG regulation mechanism because of inadequate endogenous 

insulin. For Type 2 diabetes, a variety of medication, dietary changes and 

exercise are suggested to improve insulin sensitivity. However, if the 

medication only cannot lower the very high BG value, external insulin may be 

required for such patients. The same treatment as in T2D is required for the 

treatment of gestational diabetes and sometimes external insulin is required to 

lower the BG level. The intensive insulin infusion is suggested for the control 

of hyperglycemia in ICU patients. 

This thesis focuses on the control of BG concentration in Type 1 

diabetes. Type 1 diabetes and glycemic control are discussed further in the 

next section. 

 

1.3 Type 1 Diabetes and Glycemic Control 

T1D is an autoimmune disease defect in pancreas and can happen in 

both children and in adults. In the pancreas (specifically in the insulin 

producing beta cells) of those patients, T-cells mediated autoimmune attack by 

the virus destroyed the pancreatic beta cells and thus pancreas is unable to 

produce any or sufficient insulin (Wikipedia, 2009a).  Exogenous insulin is 

needed by continuous infusion and/or by bolus for controlling plasma glucose 

concentration to the levels seen in healthy individuals (70~126mg/dL 

(=3.9~7mmol/L) in fasting condition and slightly upward levels, 140mg/dL 

(7.6mmol/L) is expected 2 hours after meals). If insulin is supplied in excess, 

BG concentration would go below normal (<70mg/dL), and results in a 

condition known as hypoglycemia. The healthy individuals start suffering the 

symptoms of hypoglycemia when BG goes below 55mg/dL (3mmol/L).  On 

the other hand, if not enough insulin is supplied, the blood glucose 
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concentration would elevate and persistently stay beyond 180mg/dL 

(10mmol/L) resulting in a condition known as hyperglycemia. Both hypo- and 

hyper-glycemia can be harmful to an individual’s health. The effects of 

hypoglycemia are critical on short-term basis, and can lead to diabetic coma 

and possibly death. If insulin amount is very low or insufficient, the 

breakdown of fatty acids and amino acids occurs and it can lead to 

ketoacidosis. Sustained hyperglycemia can result in the long-term 

complications including microvascular diseases such as nephropathy, 

retinopathy, other tissues damage, and macrovascular diseases such as 

coronary heart disease, cerebrovascular disease, peripheral vascular disease 

and neuropathy. 

According to the Diabetes Control and Complications Trial (DCCT) 

(DCCT, 1993), BG should be controlled as close as possible to the normal 

range. DCCT set the intensive goal of maintaining BG concentration within 

70~120mg/dL pre-meal condition and less than 180mg/dL in post-meal 

condition. It was found that setting intensive goal can lower the rate of 

microvascular complications in diabetes patients. The American Diabetes 

Association (American Diabetes Association, 2006) recommends maintaining 

BG level between 90~130mg/dL (5~7.2mmol/L) in preprandial condition and 

less a 180mg/dL (10mmol/L) in postprandial condition.  

For T1D patients, self-management is required to adjust the insulin 

according to their BG level so as to regulate BG as closely as possible to 

mimic the profile seen in healthy individuals. To do this round the clock and in 

an effective manner, automatic closed loop control has been acknowledged as 

the best choice. For this purpose, various mathematical models have been 

developed to represent the glucose dynamics in type I diabetics. Several 

control algorithms have also been proposed to control the BG level within the 

acceptable range. While some of these works have been evaluated in clinical 

trials, many are not. Accurate quantification and understanding of BG 

dynamics (in relation to infused insulin, meals, exercise and other 

disturbances) in the form of a mathematical model is crucial in achieving 

tighter glucose regulation through automatic control schemes.  
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To cope with different patient characteristics as well as time-varying 

characteristics in any particular patient, advanced strategies would be required. 

On the hardware front, glycemic control is still limited by the infrequent 

nature of glucose sensing but rapid improvements have happened in this front 

recently (Oliver et al., 2009). The vaccine and stem cell replacement are in 

investigations and are not fully resolved the problems till date. The effective 

control of the diabetes patient should lead to a titration where the glucose 

regulation mimics the healthy person’s response. This can be achieved by 

developing a control algorithm that can cope well with the inter- and intra-

patient variability, various situations of a patient such as exercise, anxiety, 

sickness and the constraints on insulin infusion rate and frequency of BG 

concentration measurement.  

      Before going into the motivation and scope of the present work, let us 

take a quick look at insulin action and insulin analogs in Section 1.4. 

 

1.4 Insulin Action and Insulin Analogues 

Insulin plays an important role in our body metabolism. Endogenous 

insulin (pancreatic insulin) is continuously regulated in the circulation and it 

changes according to the BG concentration within seconds. It is secreted into 

circulation through portal vein and about 40% to 80% is utilized by the liver. 

Then it is diluted into the systemic insulin pool (Young and Koda-Kimble, 

2000; Pørksen, 2002), and is diffused as unbound (free insulin) in plasma. In 

glucose regulation, insulin binds the receptor on the cell wall and translocates 

the vesicles containing GLUT-4 (glucose transporter 4) to the plasma 

membrane where the diffusion of the glucose (and amino acid) to the cell takes 

place. Then it activates the glycogenesis (glycogen synthesis) in peripheral and 

adipose tissue, glycolysis, fatty acid synthesis and esterification.  It promotes 

DNA replication and protein synthesis in the body. It decreases the undesired 

proteolysis (hydrolytic breakdown of proteins), lipolysis (hydrolysis of lipids), 

gluconeogenesis (the formation of glucose from non-carbohydrate sources) 

and autophagy (self-digestion by a cell within the same cell by enzymes). In 

addition, it facilitates the arterial blood flow by relaxing the arterial wall 
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muscle. If insulin is lacking, the blood flow will be reduced because of muscle 

contraction. After binding the receptor and effected its actions, insulin is 

degraded by the insulin degrading enzyme and by liver cells or is released 

back to the extracellular compartment. The endogenous insulin degrades 

within approximately one hour after entering into circulation.   

      For the benefit of people who lack adequate endogenous insulin, there 

are many insulin analogs produced by synthetic routes. These analogs can 

function in place of endogenous insulin and provide glycemic control. They 

are injected or infused exogenously by means of intraperitoneal (i.p) or 

subcutaneous (s.c) or intravenous (i.v) or intramuscular (i.m) routes which are 

all invasive. They can be administered non-invasively through oral, nasal, 

pulmonary or transdermal membrane. The short-acting insulin or rapid-acting 

insulin such as insulin lispro contains monomers and dimers and are soluble 

more rapidly after injection. Some exogenous insulin analogs are made with 

hexamer molecules and must undergo dissociation into absorbable dimers and 

monomers at the injection sites such as regular insulin. The long-acting insulin 

such as NPH starts its action more slowly than soluble insulin but its effect 

lasts for longer.  

The exogenous insulin delivery is affected by external factors such as 

mode of insulin infusion (routes) and type of insulin. The exogenous insulin is 

degraded at liver, muscle and mostly at the kidney (30~80%). Insulin infusion 

is also the only one therapy that is currently used to control diabetes in ICU 

patients. According to the literature, tight glucose control effected via 

exogenous insulin infusion can reduce ICU patient mortality by as much as 

43% (Van den Berghe, 2003). 

 

1.5 Motivation for and Scope of the Present Work 

This work is motivated by the fact that lowering BG for hyperglycemia 

prone patients reduces the risk of eye disease, kidney failure and nerve disease 

by 76%, 50% and 60% respectively (DCCT, 1993). It has been noted by 

Boutayeb and Chetouani (2006) that a study involving over 5000 non-insulin 

dependent patients from 23 centers from all parts of England, Scotland and 
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Northern Ireland showed that complications of diabetes can be prevented by 

better control of BG and blood pressure. 

The variability in glucose metabolism, insulin sensitivity, effects of 

other medical conditions are quite large among different patients and within 

the same patient (over time) leading to inter- and intra-patient variability. No 

single control algorithm may be able to handle such large uncertainties and it 

may be useful to classify patients into appropriate classes and apply tailored 

control algorithms to each of the classes. The classification should possibly be 

done with a simple diagnostic test. It would be worthwhile to develop a 

control scheme that is tailored to different patients groups where the patient 

“group” can be described using a simple diagnostic test.  

The insulin infusion rate can be measured more frequently than the 

measurement of BG leading to a multirate system. Glucose sensor technology 

is still in development and we are unable to monitor the BG as frequently as 

we are able to measure insulin infusion rate. It would be interesting to obtain a 

fast-rate model from multirate patient data. The fast-rate model will ensure 

better control of the BG level by frequent manipulation of insulin infusion. 

The main objectives of this work are to develop effective control 

algorithms for blood glucose level regulation in type 1 diabetic patients. These 

algorithms must cope well with the inter- and intra-patient variability. The 

control algorithms studied here include simple protocol based control, tailored 

protocol based control with patient classification into sub-groups, linear robust 

controller and linear robust multirate control. With these objectives, the 

organization of the thesis is presented next. 

 

1.6 Organization of the Thesis 

      A review of mathematical models developed for T1D patients and the 

controller algorithms that are currently employed for controlling BG 

concentration and other related topics are discussed in Chapter 2. The unique 

properties of the three chosen diabetes models and the generation of several 

simulated patients from these three models are described in Chapter 2 also. 
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Introduction and application of a current hospital protocol (Yale Insulin 

Infusion Protocol, YIIP) to a cohort of diabetes patients forms the substance of 

Chapter 3. The classification of patients using the method of principal 

component analysis (PCA) to data collected from a diagnostic test and 

tailoring of YIIP for the different patient classes are described in Chapter 4. 

Validation of the above methodology with other patient models is also 

demonstrated in Chapter 4. Evaluation of a robust linear controller (LMEC) 

that can handle the parametric uncertainty explicitly in the three different 

models and on several simulated “perturbed” patients is demonstrated in 

Chapter 5. Use of multirate system identification in conjunction with LMEC 

controller to diabetic patient models (i.e., developing a new algorithm that 

uses multirate data and multirate system identification and the resulted 

identified model is used in a linear controller to regulate glucose levels in 

diabetic patients with more frequent sampling interval in seconds which is 

closely compatible to human physiological system) is described in Chapter 6. 

Finally, the conclusions of this research study and proposed future works are 

outlined in Chapter 7. 
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Chapter 2 

Modeling and Glycemic Control in Type 1 Diabetes Patients 

 

 To achieve effective BG control in T1D patients, the artificial pancreas 

has been proposed (Hovorka et al., 2006). The artificial pancreas involves a 

continuous glucose sensor to measure the patient’s blood glucose (BG), a 

control algorithm that uses this BG measurement and the target blood glucose 

value (set point) to determine the appropriate rate of insulin dosage, and an 

insulin infusion pump to deliver the exact amount of exogenous insulin via the 

subcutaneous or intravenous route. A review of electrochemical glucose 

sensors and their application in diabetes management is available in the recent 

literature (Heller and Feldman, 2008). Current progress in glucose sensor 

technology is reviewed by Oliver et al. (2009). Insulin pump systems that can 

store and precisely infuse the required amount of insulin automatically are 

now available in the market. Currently available insulin pumps, continuous 

glucose monitoring and the requirement to integrate these systems into closed-

loop control are reviewed by Aye et al. (2010).  The focus of this chapter is 

not on the hardware components of the artificial pancreas system but on the 

soft components such as the mathematical models and the control algorithms 

employed for BG control in TID patients.  

 

2.1 Mathematical Models 

 For advanced control applications, a mathematical model that 

represents the behavior of the physical system as closely as possible is very 

vital. Mathematical models of biomedical systems are applicable for other 

purposes such as in silico diagnostics test and development and testing of 

treatment regime (Zheng et al., 2007). Many mathematical models describing 

the effects of insulin and glucose intake on blood glucose concentration in 

type 1 diabetes patients have been developed and reported in the literature. 

These T1D models mainly involve the glucose subsystem, insulin subsystem 

and/ or meal subsystem. These models do not involve any term(s) related to 
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endogenous insulin secretion; instead, the pharmacodynamics/ 

pharmacokinetics of exogenous insulin are involved. In addition to 

phenomenological models, data-driven models are also available. The latter 

models are usually obtained based on the best parameter fit to patient data with 

well-known model structures such as the first order plus time delay structure 

or one of the standard time series models (autoregressive with exogeneous 

inputs (ARX), autoregressive moving average with exogeneous inputs 

(ARMAX), output error (OE), Box-Jenkins (BJ) etc.).  Hybrid models that 

combine the above two model classes are also in vogue. Section 2.1.1 

describes some T1D models that are popular in the literature and section 2.1.2 

familiarizes the reader with some of the commonly employed meal 

disturbance models.  

 

2.1.1 Models for T1D Patients 

The first diabetes model was proposed by Bolie in 1961 (Bolie, 1961) 

and another one was proposed shortly thereafter by Ackerman et al. (1965). 

The models developed since then can be classified into metabolic species (e.g., 

glucose, insulin)-based compartmental model and organ-based compartmental 

models. In the former type of model, the whole body is represented by 

compartments (e.g., glucose compartment, insulin compartment) and the 

metabolic species in each compartment is assumed to be homogeneous. In 

organ-based compartmental models, each major organ is represented as a 

compartment and metabolic-species balances are written for each 

compartment. The organ-based compartmental models are in general more 

detailed than the metabolic species-based compartmental models and 

consequently involve more parameters.  

Compartmental modeling started with the work of Bergman et al. 

(1981) whose model has come to be known as the ‘minimal’ model. 

Bergman’s model includes glucose and insulin interaction terms so that it 

acknowledges that glucose changes are effected by insulin. The nonlinearity of 

the glucose dynamics in the minimal model is found to closely reflect the true 

human glucose metabolism. Insulin effects on liver and periphery glucose 

utilization are modeled as constant terms, and they affect both insulin 
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appearance and disappearance in the remote insulin compartment. The delay 

of insulin action and other complex phenomena are lumped in a remote 

compartment. Glucose effectiveness and insulin sensitivity index (ISI) can be 

estimated from the parameters of this model. It is to be noted that the ISI 

indicates how the BG glucose responds to insulin - a very low ISI means a 

very high resistance to insulin. Generally, high ISI is desirable for controlling 

the BG level.  

Cobelli et al. (1982) incorporated the nonlinear nature of glucose, 

glucagon and insulin compartments (model for insulin compartment is built 

based on the pancreatic function) using suitable nonlinear ordinary differential 

equations. The distinct feature of this model is that it takes into consideration 

the glucagon effect. This work marked the start of inclusion of glucagon effect 

into diabetic patient models and led to more comprehensive models (beyond 

the minimal model). The model by Cobelli et al. is also based on mass balance 

of each metabolic species and physiological knowledge of human body with 

threshold functions for biological pools. This model was mainly developed for 

intravenous glucose infusion and intravenous glucose tolerance test (IVGTT) 

(Dalla Man et al., 2007).  

The model developed by Hovorka et al. (2002) is an extension of the 

minimal model but insulin action on glucose distribution/transport, disposal 

and production are differentiated. In a later work by Hovorka et al. (2004), the 

model was improved to enable direct access of plasma insulin concentration. 

In their earlier model, only the remote insulin compartment was accessible. 

These two models are based on mass balances based on the physiological 

knowledge prevalent at the time. Hovorka et al. (2002) took nonaccessible 

compartment of both insulin and glucose as well as meal digestion into 

consideration. Wilinska et al. (2005) further modified the subcutaneous insulin 

infusion mode of this model by including fast and slow insulin absorption 

channels and local insulin degradation – this enables the study of glycemic 

control via subcutaneous insulin infusion. However, the incorporated 

intrapatient variability in this model may need to be improved further 

(Wilinska and Hovorka, 2009). 
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Fabietti et al. (2006) developed a model for type 1 diabetes in which 

exogenous insulin infusion can be administered through intravenous or 

subcutaneous route. This model can also be regarded as an extension of the 

minimal model. Because an interstitial compartment is included, the interstitial 

glucose concentration is available for this model. The model includes a term 

for renal clearance and another term for intravenous glucose infusion. This 

makes the model convenient for simulating intravenous glucose tolerance test 

(IVGTT). This model is also compatible with subcutaneous glucose sensor and 

subcutaneous insulin infusion device. In addition, the well-known circadian 

insulin sensitivity variation is accounted for and the model can therefore 

represent the dawn phenomena (elevation of blood glucose concentration in 

the morning hours) commonly experienced by diabetic patients. In addition, 

the more reasonable mixed meal model according to Arleth et al. (2000a, 

2000b) is implemented.  

Another type of organ-based compartmental modeling was described 

by Parker et al. (2000). They developed a more detailed diabetes model - a 

19th order model characterized by nonlinear differential equations based on 

physiological knowledge and the work of Sorensen (1985). In this model, the 

human body is divided into six compartments. Glucose, insulin balance and 

kinetics are modeled by ordinary differential equations describing the nature 

of the interactions between them. This model also includes the effect of 

glucagon and employs threshold functions for hepatic glucose production, 

hepatic glucose uptake, peripheral glucose uptake, and kidney clearance. The 

model contains 47 physiological parameters making it less amenable for 

parameter estimation and controller design (for artificial pancreas) but is more 

comprehensive (while not necessarily more accurate) than many other models 

available in the open literature.  

The most comprehensive model of the biochemical pathophysiological 

processes associated with type 1 diabetes mellitus would be the Archimedes 

diabetes model elaborated by Eddy and Schlessinger (2003a). This model 

consists of a network of interrelated variables including biological (mechanism 

of diabetes), clinical and administrative details linked by differential equations 

describing the nature of the interactions among the variables. The biological 
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variables used and the relation between them are selected by the investigators 

based on the current knowledge of biological systems. It includes severity of 

symptoms and the presence of vascular complications. The full Archimedes 

model includes the important factors of real health care system including 

health care personnel, facilities, equipment, supplies, policies and procedures, 

regulations, utilities and cost. According to Eddy and Schlessinger (2003b), 

simulation of a clinical trial takes about 10 min using 250 PCs with this model. 

It can be concluded that this model is computationally burdensome. The 

clinical validation of this model gives statistically insignificant results 

compared with clinical outcomes (Boutayeb and Chetouani, 2006). The 

limitations of this model are that the functional forms of the equations are 

given but values of the variables and parts of the model for micro and macro-

vascular complication are not provided in the open literature. 

 

2.1.2 Meal Disturbance Models in Diabetes Patient Models 

 Inclusion of a suitable meal ingestion model to the model describing 

the glucose and insulin dynamics is essential for any meaningful studies to be 

conducted on the in silico diabetes patient model. In this section, the intention 

is to provide a description on the most commonly utilized meal models. The 

mathematical description of these meal models are presented with their 

associated T1D model in section 2.3.  

The meal model of Fisher (1991) is modeled for glucose only and used 

an exponential function to represent the glucose appearance in glucose 

compartment from gut absorption for normal subjects. Such modeling is more 

suitable for glucose clamps such as oral glucose tolerance test (OGTT) and is 

mostly associated with Bergman’s minimal model. The meal model of 

Lehmann and Deutsch (1992) is built with trapezoidal functions and reflects 

the saturation of gut absorption rate. It is also modeled for pure carbohydrate 

(CHO), and has been mostly used in their later studies and by Parker et al. 

(1999). Hovorka et al. (2002) employed their own meal model, which includes 

exponential decay function (to represent the decay after the time-of-maximum 

glucose appearance rate in the accessible glucose compartment) and two 

identical transfer rates representing two-compartment chain. The innovation of 
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this model is the inclusion of bioavailability of ingested carbohydrate. The 

meal models of both Lehmann and Deutsch (1992) and Hovorka et al. (2002) 

were validated on the plasma glucose concentration and involved 

physiological refinement (Dalla Man et al., 2007).  

Arleth et al. (2000b) developed a mixed meal (presence of different 

nutrients) model for glucose absorption from ingested meal (with variable 

rate). Arleth et al. (2000a, b) modeled the ingested meal with three 

subcategories of carbohydrates viz. sugar, fast absorption starch and slow 

absorption starch with different absorption rates. This model is more realistic, 

and is used by Fabietti et al. (2006) in their diabetic patient model.  

Different meal models can account for inter-patient variation. Thus, the 

T1D model developed by Fabietti et al. (2006) (with Arleth et al, 2000a & 

2000b meal model) will be used primarily, and other Type 1 diabetic models 

with their associated meal models will be employed where necessary.   

 

2.2 Uncertainty Issues in Diabetes Patient Models 

The diabetes patients themselves are associated with many 

uncertainties such as the well-known intraday circadian insulin sensitivity, 

illness, stress experienced by them, presence of growth hormones and 

cortisone, extent of exercise etc.; all of these are considered as intra-patient 

variability. The differences between diabetes patients such as those based on 

race, age, region, eating habits, life style, insulin sensitivity, rate of insulin 

transportation, utilization & disposal, severity of the disease, and presence and 

complications arising out of other diseases all contribute to inter-patient 

variability. In addition, most of the developed diabetic patient models 

represent the nominal (average) patient and consequently are associated with 

the patient-model mismatch (i.e., the difference between the actual patient and 

the model).  

These variations can be described using uncertainty bounds in 

respective parameters for a cohort of patients. The bounds for the parameters 

that vary can be obtained from the literature or can be assumed to be within a 
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certain percentage of their nominal values. For example, Parker et al. (2000) 

considered parameters in their model to vary anywhere in the range of ±40% 

(for some parameters) or ±20% (for other parameters) from their nominal 

values. This range also ensured non-negative metabolic response of the model 

equations to standard meal inputs. The set of highly sensitive parameters is 

chosen using parametric sensitivity analysis. The cohort of virtual patients for 

control performance studies are then obtained by employing different 

combinations of the highly sensitive parameters within their range (Parker et 

al., 2000; Ramprasad et al., 2004). 

 

2.3 Chosen Diabetes Patient Models and Associated Meal Models  

From the various diabetes patient models available in the literature, the 

3rd order nonlinear ODE model of Bergman et al. (1981), the 19th order 

nonlinear ODE model of Parker et al. (2000), and the 5th order nonlinear ODE 

model of Fabietti et al. (2006) are chosen for this study. The models and the 

reasons for choosing them are described below. 

 

2.3.1 Bergman model 

Bergman’s minimal model is chosen for its simplicity (few states) and 

because it has a very small number of parameters. The original model 

parameters were obtained from the data collected on healthy subjects. To 

mimic the response characteristics of diabetes patients, Lam et al. (2002) used 

different parameter values (p1 = 0, p2 = 0.025, p3 = 0.000013).  The parameter 

representing the endogenous insulin secretion (p1) is set equal to 0 because 

there is no endogenous insulin secretion in T1D patients. The other approach 

by Lynch and Bequette (2002) estimates the parameters of the diabetic 

minimal model by fitting the responses of the Parker et al.’s diabetes patient 

model (1999a). The parameter values obtained by this approach are used in 

this study.  

Glucose compartment:       )()(1 tPGGXGpG B ++−−=                     (2.3.1.1) 

Insulin compartment:        IB VtuIInI /)()( ++−=                                (2.3.1.2) 
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Insulin remote compartment that lumps delays and other complexities is 

modeled as: 

                                   IpXpX 32 +−=                                               (2.3.1.3) 

where, 

G = concentration of the plasma glucose above the basal level (mmol/L) 

BG = basal level for plasma glucose concentration (mmol/L), (= 4.5 mmol/L  

        typically) 

X = utilization effect of insulin in a remote compartment (min-1) 

I = concentration of the plasma insulin above basal level (mU/L) 

BI = basal level for plasma insulin concentration (mU/L), (= 15 mU/L  

        typically) 

)(tP = exogenous glucose infusion rate (mmol/L/min) 

)(tu = exogenous insulin infusion rate (mU/L/min) 

21 ,, ppn = subject dependent model parameters (min-1) (5/54 min-1, 0.028735  

                min-1, 0.028344 min-1 respectively) 

3p = subject dependent model parameter (L/mU/min2), (5.035×105L/mU/min2) 

IV = insulin distribution volume (L), (12 L) 

 

Fisher Meal Model 

The Fisher meal model is closely associated with the Bergman model.  

The exogenous glucose infusion rate )(tP is replaced by a term representing 

the Fisher meal model. The original idea of constructing this model is to 

represent the oral glucose test of a normal subject in which BG rises up to the 

maximum glucose peak after 30 min of food intake and then falls to the basal 

level within 2 to 3 hours. For this reason, the exponential function is used with 

the model parameter values that can represent the above mentioned behavior 

of glucose appearance rate from gut absorption (Fisher, 1991).  
( )( ) , 0ktP t e tβ −= ≥                                 (2.3.1.4) 

where, 

β  = 0.5 and k  = 0.05. 
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2.3.2 Parker Model 

This model is based on the work of Sorensen (1985) and comprises of 

19 ordinary differential equations. The equations and nominal values of 

parameters are listed in Table 1. The key parameters and their uncertainty 

range have been provided in Parker et al. (2000). The meal disturbance model 

of Lehmann and Deutsch (1992) is incorporated into their model. The model 

(Parker et al., 2000) has been shown to accurately model the glucose dynamics 

of a healthy subject; their model can be simulated with null pancreatic secreted 

insulin to mimic a diabetic patient but has its shortcomings as pointed out by 

Farmer et al. (2009). The Parker model shows only small excursions in blood 

glucose values even for a significant glucose meal challenge. This makes it 

easy to control the “Parker” patient with proportional only control (Farmer et 

al., 2009) or by Proportional Derivative controllers (Ramprasad et al. 2004). 

Despite this shortcoming, we chose to study the performance of our developed 

algorithms on this model because it can represent certain patient population. 

The glucose sub-model differential mass balance equations are as follows: 
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                           (subscript P denotes periphery (muscle/adipose tissue)) 

                                     (superscript C denotes capillary space) 

                                        (superscript T denotes tissue space)   
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The metabolic source and sink terms (ΓI mg/min) in the above equations are: 

70BU =Γ                                                            (2.3.2.9) 

10RBCU =Γ                                                  (2.3.2.10) 

20SU =Γ                                                         (2.3.2.11) 
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The insulin sub-model mass balances are given by 
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The related metabolic sink terms (ΓI mU/min) are 
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     0PIR =Γ , as there is no pancreatic insulin release                           (2.3.2.27)
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The mass balance of glucagon is modeled as follows: 

N
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PNR V

F)N(N −Γ=                                        (2.3.2.30) 

The equation used to describe glucagon release from the α-cells of pancreas is: 
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The above model consists of 47 physiological parameters: values of 35 

parameters are given in Table 2.1, those of 8 other parameters in Table 2.2 and 

the remaining 4 parameters are ГBU = 70; ГRBCU = 10; ГSU = 20 and ГPIR = 0. 
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Table 2.1: Parameter Values in Parker et al.’s (2000) Diabetic Patient Model 
 

C
Bv =3.5 dL Bq =5.9 L/min BT =2.1 min 
T
Bv =4.5 dL   

C
Hv =13.8 dL Hq =43.7 L/min  
C
Sv =11.2 dL Sq =10.1 L/min  
C
Lv =25.1 dL Lq =12.6 L/min  

 Aq =2.5 L/min  
C
Kv =6.6 dL Kq =10.1 L/min  

C
Pv =10.4 dL Pq =15.1 L/min G

PT =5.0 min 
T
Pv =63.0 L   

C
BV =0.265 L BQ =0.45 L/min  
C
HV =0.985 L HQ =3.12 L/min  
C
SV =0.945 L SQ =0.72 L/min  

C
LV =1.14 L LQ =0.9 L/min  

 AQ =0.18 L/min  
C
KV =0.505 L KQ =0.72 L/min  
C
PV =0.735 L PQ =1.05 L/min I

PT =20 min 
T
PV =6.3 L   

NV =9.93 L PNCF =0.910 L/min FKC =0.3 
 

 
Table 2.2: Nominal Values for Uncertain Parameters in Parker et al.’s (2000) 

Diabetic Patient Model 
 

EIPGU-EГ = 1.0 EGHGU-EГ = 1.0 EGHGP-E Г = 1.0 
EIPGU-D Г = -5.82113 EGHGU-D Г = -1.48 EGHGP-D Г = -0.4969 

FHIC (FLC) = 0.4 FPIC (FPC) = 0.15  
 
 

Lehmann and Deutsch Meal Model 

Lehmann and Deutsch (1992) modeled the gut glucose absorption from 

meal taken by the T1D patients. This model considered the saturation of 

gastric emptying rate of carbohydrates from the stomach during intestinal 

adsorption. The shape of the curve depends on the consumed carbohydrates. It 

is triangular if the amount of ingested carbohydrate is less than a critical value 

Chcrit. The shape of the curve is trapezoidal if the amount of ingested 

carbohydrate is greater than or equal to Chcrit.  
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                                  Chcrit = [(Tascge + Tdesge) Vmaxge]/2                 (2.3.2.32) 

                                          Tascge = Tdesge = Ch / Vmaxge                      (2.3.2.33) 

       Tmaxge = [Ch – ½ Vmaxge * (Tascge + Tdesge)] /Vmaxge           (2.3.2.34) 

The gastric emptying rate for meals containing carbohydrates greater than 

Chcrit, is  

Gempt  = (Vmaxge/Tascge) t  for t < Tascge,    

 = Vmaxge;   for  Tascge < t ≤ Tascge+Tmaxge,                         

 = Vmaxge-(Vmaxge/Tdesge) (t-Tascge-Tmaxge)    

               for Tascge + Tmaxge ≤ t < Tmaxge + Tascge + Tdesge   and     

 = 0 for other t                                                   (2.3.2.35) 

The absorption rate of glucose into the gut compartment is  

1
60 1meal wf

s
Γ =

+
                                        (2.3.2.36) 

where, 

Tascge, Tdesge = the rising and falling times of the curve (default values = 30  

                         min). Tascge and Tdesge are at their default values when  

                         carbohydrates ingestion is critical and cannot exceed the  

                         critical values. 

Chcrit = the critical value of ingested carbohydrates (10.8 g) 

Tmaxge = the time of plateau for maximum carbohydrate ingestion rate   
Vmaxge = the maximum gastric emptying rate (360 mg/min) 

Gempt  = the gastric emptying rate 

wf = the wave form of the gastric emptying rate  

 

2.3.3 Fabietti Model 

Fabietti et al.’s (2006) model uses 3 equations for insulin dynamics: 

one equation each for intravenous insulin infusion, subcutaneous insulin 

infusion, and the remote insulin compartment. For glucose, two equations are 

used: one for interstitial glucose balance and another for intravenous glucose 

balance. This model embeds intrapatient variability (by including the well-

known circadian insulin sensitivity variation), mixed meal characteristics and 

enables the use of both subcutaneous or intravenous insulin infusion and 

glucose sensor. This model implements the mixed meal model by Arleth et al. 
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(2000a, 2000b). The mixed meal model includes three terms corresponding to 

classes of carbohydrates in mixed meals (viz. sugar, fast absorption starch, and 

slow absorption starch), and is presented below along with Fabietti et al.’s 

model. 

The insulin sub-model is described as follows: 

For plasma insulin compartment, 

))((1 SVKI
T

I ivi
xi

++−=                              (2.3.3.1) 

( mLUI /µ= , plasma insulin concentration) 

For remote compartment, lumping some complex phenomena yields: 

)(1 IX
T

X
m

+−=                                  (2.3.3.2) 

( mLUX /µ= , equivalent insulin concentration in the remote compartment) 

For the subcutaneous compartment: 

)(1
sc

i

VS
T

S +−=                                    (2.3.3.3) 

( hUS /µ= , insulin flow from the subcutaneous to the plasma compartment) 

The glucose sub-model is described as follows: 

For plasma glucose compartment, 

rivbgi
ggyyg

EGEEM
VT

Y
T
GG −+++−++−= )(1                  (2.3.3.4) 

( LmmolG /= , blood glucose concentration) 

For the interstitial glucose, the dynamical equation is: 

XYPK
T
Y

T
GKY circis

gyyg
yg −−= )(                           (2.3.3.5) 

( LmmolY /= , glucose concentration in the interstitial compartment) 

where,                   )
12

sin(1 cccirc PtAP ++=
π                                           (2.3.3.6) 
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)175(0045.0tanh(87.0(117.0 −+= GEm                             (2.3.3.8) 
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msgg AAAE ++=                                      (2.3.3.10) 

The ingestion rate iR is filtered (Arleth et al., 2000b) to get  
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−= ,                     (2.3.3.11) 
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1.75)( sR
ssss

FFsA imsm ++++
= . (2.3.3.13) 

The hepatic glucose uptake bE is described as follows: 

crb QQE −=                                           (2.3.3.14) 

Glucose release rQ is expressed as: 

10/840 −= IErel                                          (2.3.3.15) 
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06.52
6.526.52

                        (2.3.3.16) 

Glucose uptake cQ  is modeled as follows: 

                 


 ≥−−
=

otherwise
GifG

Qg 14
141564.31564.3

                   (2.3.3.17) 

ggc QEQ += 25.0                                                         (2.3.3.18) 

This model was clinically validated on T1D patients and found to have 

satisfactory performance (Fabietti et al., 2006).  The parameter values are 

provided in Table 2.3. 

Table 2.3: Values of Parameters in Fabietti Model 
 

 

 

 

 

 

 

 

Txi 1.81 h 
Ki 0.0101 mL/h 
Tm 2.45 h 

Ti 
1.52 h (regular insulin) 
0.152 h (insulin lispro) 

Tyg 0.194 h 
Tgy 0.194 h 
Kis 0.0481 mL/μU/min 
Vg 9.91 L 
Kyg 0.952 
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2.4 Generating a Cohort of Patients for Robustness and Performance 

Studies  

The dynamics of blood glucose can vary from one patient to another 

and indeed in the same patient over time. To reflect these realities, we allow 

the dominant parameters in the mathematical models to vary over certain 

range around their nominal values (e.g. ±40% variation around the nominal 

values). A cohort of patients can be generated by sampling from the space of 

parameter values – each unique combination of these parameters results in a 

virtual patient who is then used to test the robustness and performance of the 

control algorithms. Such an approach was followed in Parker et al. (2000) and 

Ramprasad et al. (2004). 

In Parker et al.’s study (2000), parametric sensitivity analysis was 

performed and 8 parameters namely EIPGU-EГ, EIPGU-DГ, EGHGU-EГ, 

EGHGU-DГ, EGHGP-EГ, EGHGP-DГ, FLC (FHIC), and FPC were identified as 

being most influential in changing the blood glucose and insulin dynamics. 

These are the metabolic parameters described by the threshold functions 

(equation 2.4.1) in metabolic state equations 2.3.2.12, 2.3.2.15, 2.3.2.18, 

2.3.2.26 and 2.3.2.29. 

ГE = EГE {AГE + BГE tanh[CГE (xi + DГE)]}                                    (2.4.1) 

Subscript ‘i’ in equation (2.4.1) represents the state vector element 

involved in metabolic effect and subscript ‘E’ represents the specific effect 

within the model such as the effect of glucose on hepatic glucose production 

(EGHGP), the effect of glucose on hepatic glucose uptake (EGHGU), the 

effect of insulin on peripheral glucose uptake (EIPGU), or the effect of hepatic 

insulin clearance (FLC). The receptor and post-receptor terms (DГE and EГE 

respectively) reflect the inter- and intra-patient variability. These parameters 

are perturbed from their nominal values by ± 40% (± 40% is assumed here due 

to the lack of real physiological data) except for FLC that is limited to ± 20% to 

guarantee non-negative glucose concentrations (Parker et al., 2000). However, 

these combinations of parameters do capture the broad range of physiology 

found in potential patients.  

The nominal values of these eight parameters are presented in Table 

2.2. In Parker et al. (2000) , sets of any three parameters were chosen from 
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these 8 parameters resulting in 56 combinations and each parameter set was 

varied over five levels (max, 0.5*max, no change (nominal value), min, 

0.5*min) resulting in 125 possible variations and a total of 7000 variations 

(including duplicates). However, in Ramprasad et al. (2004), the sets of any 

three parameters are chosen from these 8 parameters, and the chosen 

parameter set was varied over three levels (max, no change (nominal value), 

min) resulting in 15123* 3
3

8 =C  combinations. Patients with identical values 

for all eight parameters were removed and a set of 577 unique patients was 

generated. These 577 unique virtual patients will be used as test cases in this 

study. 

In the Bergman model, n, p1, p2 and p3 are patient dependent 

parameters. Here, p1, p2 and p3 are chosen as the dominant parameters and are 

perturbed by ±50% from their nominal values. The parameters in the chosen 

parameter set ( 1p , 2p  and 3p ) are varied in three permutations (max, no 

change (nominal value), min) and the combination of these three parameters 

resulted in )27(33 =  virtual patients. These 27 virtual patients are used for 

testing the different control strategies employed in this study. The parameter n 

describes the body mass of average weight person, and is assumed not to vary 

for purposes of this investigation.  

In Fabietti model, iK , xiT , mT  and isK  are chosen for the parametric 

variation study according to Fabietti et al (2006). The range of parameter 

variation is assumed to be ±40% in preliminary studies and ±50% or ±70% in 

later studies as a wider range of patient population is desired.  A similar 

procedure as in Bergman model case is used to produce 81 virtual patients 

which are used for validation of the control algorithms considered in this 

study. 

 

2.5 Automatic Control of Glycemic Regulation in Diabetes  

 Conventionally, an open loop approach such as continuous 

subcutaneous insulin infusion therapy is employed to manage T1D patients. 

Such methods require that finger pricks be performed anywhere between 3 to 

7 times each day to get BG measurements followed by as many times of 
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insulin injection of insulin. This can place a heavy burden on patients. 

Automatic control strategies are now being studied for T1D glycemic 

regulation and are found to be promising. Many control algorithms for 

regulation of blood glucose concentration using insulin infusion are developed 

in the literature. These range from simple Proportional- Integral-Derivative 

(PID) controllers to nonlinear controllers to advanced model based control 

algorithms that are able to handle practical constraints in a formal manner (e.g. 

Model Predictive Control (MPC)). Some of the more significant works in this 

area are reviewed here.  

  

2.5.1 Insulin Administration Routes Used by Control Algorithms 

Automatic controllers have been proposed for administering insulin via 

the intravenous or subcutaneous route. Intravenous insulin delivery comes 

with inherently significant advantages such as: (1) reduction of the time delay 

that is experienced with subcutaneous insulin delivery (2) faster response to 

hyper- and hypo-glycemia, and (3) high potential for improving closed-loop 

performance (mainly as a result of the first two points mentioned). For these 

reasons, some studies have preferred to consider intravenous insulin 

administration. However, this type of administration is associated with 

catheter in-dwelling, dislodging from vein and occluding. To overcome these 

disadvantages, subcutaneous insulin administration is utilized in current 

technology and insulin pumps capable of subcutaneous administration are 

available in the market. Subcutaneous insulin infusion using these insulin 

pumps is associated with irritation and infections at the site of administration.  

 

2.5.2 Control Strategies used for Glycemic Regulation in Diabetes  

A comprehensive review of control algorithms that used intravenous 

route is available in Parker et al. (2001). Their work covers research reported 

until 1999. Here, we summarize the work on T1D control algorithms with 

particular emphasis on works reported from 1999 to 2009. A control algorithm 

that utilized intravenous insulin administration was first employed in the 

glucose controlled insulin infusion system (GCIIS) by Pfeiffer et al. (1974). 

The Biostator algorithm of Clemens (1979) used the feedback controller with a 
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dual infusion system (insulin and dextrose) to keep blood glucose 

concentration at user-specified values. A nonlinear proportional plus 

derivative controller with a five-point moving average of glucose 

measurements was used to reduce the effect of noisy glucose measurement. 

This algorithm may be appropriate for bedside implementation but the dual-

reservoir system makes it somewhat difficult to use in mobile patients or for 

use on a regular basis. Individualization of the algorithm is also required to 

make it effective on patients. 

Albisser et al. (1974) also used dual-channel system (insulin and 

dextrose infusion) in which insulin infusion is controlled by a projected value 

of blood glucose concentration that was computed using current measurement 

value of BG along with an exponential difference factor obtained from four-

minute average rate of change of BG. Individualization of patient dependent 

parameters was also required for this algorithm. This algorithm was modified 

later by many researchers: Botz (1976) lessened the postprandial 

hypoglycemia by modification on the rate dependent component to be similar 

to absolute rate of BG and eliminated the dextrose infusion; Marliss et al. 

(1977) also lessened the postprandial hypoglycemia by modification on the 

rate dependent component but retained dextrose infusion for safety reason 

although it was rarely used. Kraegen et al. (1977) used weighted average rate 

of BG over previous four minutes to reduce the controller response to the 

noise. Fischer et al. (1978) developed a linear control algorithm based on the 

experimental data. Broekhuyse et al. (1981) compared the performance of 

these algorithms and concluded that significant further development in 

controller design was needed for BG regulation in diabetes patients. Bellomo 

et al. (1982) extended the static Biostator control algorithm by updating the 

patient model parameters using the experimental data by minimizing an 

integral of squared performance index in the glycaemia excess and insulin 

infusion rate but the results still showed significant hyperglycemic peaks. 

Furler et al. (1985) developed a control algorithm using a saturation function 

in which the insulin delivery rate was calculated as a function of current 

glucose measurement on the extended version of ‘minimal model’ but meal 

disturbance rejection was not considered.  
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Fischer et al. (1987) developed a control algorithm in which controller 

performance was markedly improved by customization to the specific patient; 

however, a one minute sampling interval was used for glucose measurements. 

Such fast sampling is not yet possible on a routine basis. Sorensen (1985) 

designed an internal model controller (IMC) based on a First Order Plus Time 

Delay (FOPTD) approximation of the 19th-order nonlinear model and obtained 

adequate BG regulation performance. However, significant performance 

degradation was experienced if patient parameters were uncertain. Parrish and 

Ridgely (1997) used state-dependent Riccati equations and designed a 

controller based on partial linearization but the tracking performance showed 

steady-state offset. Kienitz and Yoneyama (1993) used H∞ control for BG 

regulation and the controller performance was found to be satisfactory for 

patients whose parameters were within the design set. However, over a wider 

range of parameter values, retuning of the controller parameters was required. 

Optimal control theory has also been applied for blood glucose control 

in Type 1 Diabetic (T1D) patients. Swan (1982) used optimal control theory 

on the linear diabetic patient model in which the insulin delivery rate was a 

function of both the current insulin and glucose concentrations. The author 

focused on a diabetic patient with initial hyperglycemic condition; however, 

meal disturbance attenuation was not treated. Fischer and Teo (1989) tested 

various insulin infusion protocols with the objective to minimize the sum of 

squares of glucose tracking error. They considered a patient with initial 

hyperglycemia and also the regulation of blood glucose during meal 

consumption. Impulse control was found to be efficient if a good estimate of 

the rate of glucose entering into blood from intestinal absorption of ingested 

meal was available.  Lim and Teo (1991) used impulse control for the same 

situations but included parameter uncertainty and reported their strategy to be 

robust and numerically stable.  

Optimal control theory was applied on the ‘minimal model’ by 

Ollerton (1989) using the integral squared error (ISE) objective function to 

minimize the deviation of measured glucose value from the desired glucose 

value using 10 min and 180 min sampling intervals. However, their insulin 

profiles were physiologically unrealistic as they displayed high amplitude 
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sustained oscillations about the basal state. Fischer (1991) used optimal 

control theory with an ISE-type objective function on ‘minimal model’. A 

secondary objective of minimizing the amount of insulin infusion for a patient 

with an initial hyperglycemic state was also considered. However, their 

controller was not robust to parametric uncertainty. It was also found that if 

the 180 min sampling interval was adopted, there was a very high chance and 

penalty of missing the inter-sample disturbance(s). 

Parker et al. (1999) and Parker (1999) implemented MPC with and 

without state estimation for blood glucose control on the modified version of 

the Sorensen (1985) model. Constraints were set for insulin delivery rate and 

for the rate of change of insulin. The controller performance was found to be 

good for an unmeasured 50g meal disturbance.  The nonlinear quadratic 

dynamic matrix control with state estimation (Gattu and Zafiriou, 1992) was 

also studied but the nonlinear controller did not show any significant 

improvement over the linear MPC. Parker et al. (2000) used the H∞ framework 

on the 19-state nonlinear ODE model with the model uncertainty and 

evaluated the disturbance rejection criteria on 577 virtual patients (generated 

with parametric perturbations) and found that the performance of the H∞ 

controller was comparable to that of the computationally-intensive MPC. 

Camelia and Doyle (2001) used the IMC framework on the minimal 

model and on the Automated Insulin Dosage Advisor (AIDA) model of 

Lehmann and Deutsch (1992) but the inherent uncertainties in the model were 

not addressed. Lam et al. (2002) employed heavy derivative PD controller on 

Bergman’s minimal model and tested the performance of the proposed 

controller on the simulated model (with multiple meals) with the available 

sensor sampling time. They tested the effect of three successive sensor failures 

and sensor lag. Promising results were obtained but oscillations and instability 

were observed in the presence of measurement noise.  

Ruiz-Velazquez et al. (2004) used H∞ controller for set point tracking 

of blood glucose in the presence of meal disturbance. Their work used 

Sorensen (1985) T1D model with Lehmann and Deutsch (1992) meal model. 

With their strategy, hyperglycemic condition was found to persist for a 
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significant amount of time leading to questions on the appropriateness of this 

controller.  

Hovorka et al. (2004) employed an adaptive nonlinear model 

predictive controller (adaptive NMPC) to keep blood glucose in 

normoglycemic region. This controller used the model developed by Hovorka 

et al. (2002). Bayesian parameter estimation was used for re-estimating 

parameters at each control step with the objective of minimizing the weighted 

sum of squares of residuals (actual BG minus estimated BG) and a penalty due 

to the deviation from prior distribution of standardized model parameters in 

the learning window. The controller performance was validated clinically on a 

cohort of T1D patients who were fasting overnight. Subcutaneous insulin 

infusion was provided using an insulin pump with the input constraint on 

insulin infusion rate. Hovorka et al. used an intravenous glucose sampling 

interval of 15 min.  The results were promising for blood glucose control 

during overnight fast but the performance of the controller on meal 

disturbance rejection criterion was not considered.  

Ramprasad et al. (2004) employed PID controller for blood glucose 

control in T1D patients with different tuning methods and tested the 

robustness of these controllers for meal disturbance rejection scenarios (both 

single- and multiple-meal disturbance(s)). They obtained best results with 

Shen’s (2002) tuning method, and demonstrated that hypoglycemia 

(<60mg/dL) could be avoided in 95% of a cohort of 577 virtual patients 

constituted from Parker et al.’s (1999) model. Frequent sampling was assumed 

for blood glucose measurement according to current glucose sensor 

technology (available at every 4 min).  

Schlotthauer et al. (2005) used NMPC for the control of blood glucose 

in T1D patients.  In their work, Multi-Layer Perceptron networks (MLP) were 

used for prediction of BG values. They used the Cobelli’s (1983, 1998a, 

1998b) model to represent the T1D patient, introduced linear first order 

dynamics for subcutaneous BG measurement and employed subcutaneous 

insulin injections for blood glucose control. Their results were quite promising 

in the context of meal disturbance rejection but they did not consider the 

presence of measurement noise or changing patient dynamics. Therefore, 
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robustness and stability issues were left unresolved. A good review on the use 

of adaptive control for blood glucose control in T1D patients can be found in 

Hovorka (2005). 

Canonico et al. (2006) used a novel PID-type controller named 

Proportional-Derivative-2nd derivative (PDD2) controller and tested it on 

virtual patients constituted from the T1D patient model of Fabietti et al. 

(2006). Better results were obtained compared with the standard insulin 

therapy of continuous subcutaneous insulin infusion (CSII) protocol. 

However, the authors did not mention the frequency of measurement of blood 

glucose concentration. 

  An overview of mathematical models and software tools employed in 

the study of glucose-insulin regulatory system can be found in Makroglou et 

al. (2006).   

Ibbini (2006) proposed a PI-fuzzy logic controller (PI-FLC) for blood 

glucose control in T1D patients. While there is no need for precise 

mathematical models with this strategy, it appears to require considerable 

human expertise to make it work well. The simulation results showed smaller 

overshoot, shorter settling time, smaller area under the curve above the set 

point and acceptable BG limits in the presence of meal disturbances and in the 

presence of uncertain parameter values when compared to other controllers 

such as LQR (Optimal Linear Quadratic Regulators), PI, PID and FLC with 

frequent BG sampling. However, Ibbini (2006) did not consider the presence 

of measurement noise.  

An advanced model based controller based on parametric 

programming was investigated by Dua et al. (2004). In their strategy, optimal 

insulin infusion was calculated off-line as an explicit function of the current 

blood glucose concentration of the patient. This has the advantage of using 

simple function evaluations for calculating insulin infusion in on-line 

applications. The Bergman ‘minimal model’ was used as a virtual patient with 

the model discretized with a sampling time of 5 minutes (to be compatible 

with current glucose sensor technology). The model predictive controller with 

the objective of minimizing a quadratic function of state variables and insulin 

infusion rate with constraints on glucose concentration (60~120mg/dL) and on 
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insulin infusion rate (0~100mU/min) was solved using the multi-parametric 

quadratic programming (mp-QP). This work was later extended in Dua and 

Pistikopoulos (2007) where patient parametric uncertainty was taken into 

account. Two meal disturbance models (Fischer (1991), and Lehmann and 

Deutsch (1992)) were used. An asymmetric function that penalizes 

hypoglycemia more than hyperglycemia was also considered. Hypoglycemia 

was successfully avoided but high glucose peak values resulted with the meal 

disturbance. A tutorial and overview on the model-based constrained control 

of T1D is provided in Doyle et al. (2007).  

Marchetti et al. (2008a) applied PID switching control in which bolus 

injection is applied for meal disturbances (prior to meals) and a switch to PID 

controller between meals. Time varying setpoint and measurement noise were 

considered in their work. A derivative filter was used to deal with sensor 

noise. Marchetti et al. (2008a) used the Hovorka model (2004) along with the 

update proposed by Wilinska et al. (2005). They also leveraged the switching 

strategy to tackle the tradeoff between hypoglycemia and the peak value of 

postprandial BG response. The robustness of their strategy was demonstrated 

by considering daily insulin sensitivity variation that may arise from 

physiological changes. Marchetti et al. (2008b) studied a kind of feedforward-

feedback control using PID for T1D patients on the same model. They 

proposed the use of pre-prandial snack or insulin bolus or the reduction of BG 

setpoint before meal to reduce the BG peak of postprandial responses. The 

results of feedforward-feedback control strategy (5 min BG sampling) with 

PID controller were found to be promising even in the face of changes in 

insulin sensitivity. A model reference approach was also evaluated with the 

feedback controller – this pointed out the need for a reasonably accurate 

reference model. The results are promising and deal with many practical 

considerations that are relevant for diabetic patient care. Other scenarios such 

as exercise effect and robustness while considering a broad range of patients 

have not been addressed.   

Eren-Oruklu et al. (2009) demonstrated an adaptive control strategy 

using general predictive controller (GPC) and linear quadratic controller 

(LQC) for regulation of blood glucose levels in patients with T1D patients. 
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System identification methods were used to obtain the patient model in Auto 

Regressive Moving Average (ARMA) form which was then used to predict 

glucose level 30 min (6 steps) ahead. In closed loop condition, the Auto 

Regressive Integrated Moving Average with eXogenous input (ARIMAX) 

model is used. The model parameters are updated continuously using recursive 

least squares (RLS) method to handle the intra- and inter-patient variability. 

Both subcutaneous BG measurement and subcutaneous insulin infusion are 

employed along with a delay compensator and one step ahead BG prediction.  

The algorithm is quite successful and is applicable to single rate data system.  

All the algorithms described above have only dealt with single rate 

system, and this can be a limitation in BG control for T1D patients.  

 

2.6 Intensive Insulin Infusion Therapy and Diabetes Control  

Critically ill patients or patients in ICU experience stress induced 

hyperglycemia even if they do not have any past history of diabetes. Other 

factors such as presence of hypertension, cortisone and pancreatic disease also 

result in hyperglycemia. From the extensive literature, it is clear that intensive 

insulin therapy (IIT) can reduce morbidity, mortality and duration of patients’ 

stay in ICU. According to Leuven study, an IIT that maintains BG in the 

80~110mg/dL range can reduce ICU mortality by 42%, bloodstream 

infections, the incidence of acute renal failure, the need for prolonged 

ventilatory support and the duration of ICU stay (Goldberg et al., 2004).  

Many IIT protocols have been developed for glycemic control in ICU - 

some protocols have been developed in medical ICU (MICU) and some 

protocols have been proposed for use in surgical ICU (SICU). These protocols 

still need to be optimized so as to be effective on a broad range of patients (i.e. 

tight and safe blood glucose control). Use of the ad-hoc protocols based 

primarily on experience is practiced in many ICUs. Avoiding hypoglycemia is 

the primary intention for patients in ICUs. It would be worthwhile to develop a 

protocol that can: (i) avoid hypoglycemia, (ii) provide tight glycemic control 

for the different conditions of patients with minimal physician intervention, 

and (iii) is easy to use by ICU medical staff involved in patient care. Other 
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control algorithms used in glycemic control for ICU patients include PID 

using sliding scale method (Chee et al., 2003) and MPC (Plank et al., 2006).  

The patient model used for ICU patients includes the pancreatic 

function (Chbat et al., 2005), which is different from almost all other T1D 

patient models. Developing a patient model that takes into account conditions 

such as hypertension, corticosteroid expression, enteral (i.e., nutrition 

administered through a tube via the nose or stomach or the small intestine) or 

parenteral (i.e., nutrition administered via a peripheral or central vein) is still 

an open problem that, when solved, can be highly useful in ICU settings.   

 

2.7 Diagnostic Tests  

 The most common diagnostic test for diabetes is based on fasting 

plasma glucose (FPG) concentration. The FPG of normal subjects is 

110mg/dL (6.1mmol/L) and diabetes is suspected (diagnosed) if FPG is more 

than 126mg/dL (7.0mmol/L). If the FPG value is between 110mg/dL and 

126mg/dL, this condition is defined as pre-diabetes and may need further 

confirmatory tests.  

Alternate indications of diabetes is based on the causal plasma glucose 

(CPG) i.e. BG value at any time of the day. If CPG is more than 200mg/dL, 

further tests such as FPG and measurement of glycated hemoglobin (HbA1c) 

levels are recommended. Sometimes, the oral glucose tolerance test (OGTT) is 

conducted. Herein, if the post-prandial glucose (PPG) measure taken after 2hr. 

following an oral intake of 75g glucose exceeds 200mg/dL (11.1mmol/L), the 

patient is diagnosed as having diabetes. In another test known as the 

intravenous glucose tolerance test (IVGTT), glucose with/without insulin is 

infused intravenously and BG is measured frequently for up to 3 hours. This 

test is definitely more invasive and involves the deployment of more human 

and material resources and therefore seldom used. However, with IVGTT, the 

dynamics of blood glucose and insulin interaction can be understood distinctly 

and so is employed for research purposes. A modified version of this test is 

developed and applied in this study as a classification test; details of the test 

will be described in chapter 4. 
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2.8 Finding a Model from Diabetic Patient Data 

 In the above sections, the patient’s model is pre-specified and an 

appropriate control algorithm that employs nominal patient parameters is 

applied. Such an approach relies significantly on the benevolent nature of 

feedback mechanism in its tolerance to model-patient mismatch. An alternate 

approach that intends to make the medical care personalized to the patient is 

possible. Here, a suitable mathematical model is identified based on data 

collected from the patient prior to and during the period of treatment. A 

suitable controller is designed based on the deduced model with sufficient 

safeguards to take care for imprecision in parameter estimates. System 

Identification (SID) tools are quite handy in obtaining an adequate 

mathematical model from the input and output data collected from the patient 

even when the biochemical, biophysical characteristic of the disease is 

unknown; this type of modeling is called black-box modeling. As mentioned 

earlier, the study by Eren-Oruklu et al. (2009) used such an approach. The data 

sets used for system identification is generally assumed to have regular and 

similar sampling intervals for all input and output variables. Such regular and 

single-rate sampling is sometimes not possible particularly in medical settings. 

In many practical situations, data are sampled at different sampling rates and 

results in the so-called multirate system. Making models from such data is 

more difficult compared to making models from single-rate data, and calls for 

special multirate system identification methods. The nature of diabetic patient 

data is described next. 

 

2.8.1 Multirate Nature of Diabetic Patient Data 

Different from single rate systems in which inputs and outputs are 

measured at one identical sampling interval, multirate systems are sampled-

data systems with non-identical sampling intervals. Multirate systems are very 

common in chemical process industries where different variables are sampled 

at different rates for some practical reasons.  

In the chemical industries, measurements from the units such as 

distillation columns and reactors are available at different sampling rates. 
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Variables such as temperature, pressure, flowrate etc. can be measured 

frequently while composition measurements, molecular weight distribution, 

melt flow index etc. can be obtained once every several minutes or even 

several hours due to hardware limitations. These features naturally lead to a 

multirate system. 

 Data obtained from diabetic patients tend to be multirate in nature: BG 

measurement is usually obtained infrequently and may be available on an 

irregular basis; however, the insulin infusion rate is measured more frequently. 

Such multirate data needs multirate system identification tools to identify the 

relevant models that may be beneficially used to achieve tight BG control.  

 

2.8.2 Multirate System Identification  

Most of the successful system identification methods in both 

polynomial (transfer function) domain and state space domain are applicable 

only to single-rate input/output data. Very few algorithms have been 

developed for multirate identification (MRID) which can process multirate 

input/output data. Conventionally, engineers interpolate the inter-sample 

input/output from the slowly sampled measurements and then estimate the 

model (fast-rate model) based on both the measured and interpolated data set. 

The model obtained from traditional interpolation techniques cannot capture 

the actual model dynamics very well when the ratio of sampling intervals 

(slow measurement interval/fast measurement interval) becomes large. This is 

because the interpolation does not take the actual dynamics of the process 

(between the intervals of each successive slowly sampled instance) into 

account. It is clear that a more reasonable systematic approach which takes 

into account the multirate nature of the process is required. This is offered by 

multirate system identification.  

Lifting technique plays an important role in multirate system 

identification; it converts a multirate system into a single rate system to which 

most of the system identification techniques can be applied successfully. 

Verhaegen and Yu (1995) presented a technique to estimate the lifted model of 

a multirate system in state-space (SS) form. They represented the multirate 
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system as a periodic system, and they estimated the lifted model using the 

multivariable output-error state space method. Their method cannot handle the 

crucial causality constraint (i.e., the state space model should be observable 

and controllable) in the identification of lifted models if the system time delay 

is greater than p  (Li et al., 2001) for Single Input/Single Output (SISO) 

multirate system with input (U ) and output (Y ) which are sampled with 

sampling interval ( pm× ) and ( pn× ) respectively ( m n , :n m γ= and p = 

base time period, both m and n are coprime). Li (2001) made modification 

(shifting the data for the system with time delay greater than p ) of their earlier 

work to effectively overcome the causality constraint when both m and n are 

coprime. With this modification, most of the existing system identification 

algorithms can be applied for identification of the lifted (slow-rate) system.  

Identification of the slow rate model is possibly best accomplished 

using state space methods which can handle multivariable processes. Li et al. 

(2001) also proposed some approaches to extract the fast rate model with 

sampling interval 𝑚𝑝 (where 𝑚 >1) from the slow rate model. Wang (2004) 

improved Li et al.’s work in a manner such that the fast rate model could be 

readily extracted at the fastest sample time (base time period, p ) with (1) 

matrix roots approach based on the condition that slow-rate state matrix A  in 

SS model is diagonalizable and (2) frequency-domain approach in which 

applying the polyphase decomposition developed by Khargonekar et al. (1985) 

to the lifted slow rate system.  Note that all of these works are valid in the 

context of linear systems only. The application of multirate system 

identification onto nonlinear systems can be seen in Ooyama et al. (1999).    

Gopaluni et al. (2003) proposed a multirate identification algorithm in 

which they used an iterative identification algorithm. In this work, they first 

identified a Finite Impulse Response (FIR) model from multirate data. Based 

on this model, the missing data points in the slow sampled measurement are 

estimated using the expectation maximization approach. Then, they estimated 

a new model iteratively using the estimated missing data points and original 

data set until the models converge. Their method is also applicable to 

irregularly sampled data system. May Su Tun et al. (2006) developed data 

selection and regression (DSAR) method for the identification of multirate 



38 
 

system. The advantage of DSAR is that it is able to handle the large ratio of 

sampling intervals as well as irregularly sampled data. 

 

2.9 Conclusions  

 In this chapter, the literature review and basic elements regarding 

regulation of BG in T1D using artificial pancreas are discussed. The review of 

Type 1 diabetic patient models and associated meal models is presented in 

section 2.1. The uncertainty issues regarding patient models, the detailed 

description of chosen T1D model and associated meal model for this study and 

the generating cohort of patients to test robustness and performance of control 

algorithms that will be developed in later chapters are described in section 2.2, 

2.3 and 2.4 respectively. The automatic control of BG in T1D patients and 

review of control algorithms is presented in section 2.5. This pointed out the 

need for robust control algorithms that can handle a broad range of patient 

variations and the need for a more realistic approach to obtain the personalized 

model and control algorithm. To achieve these goals are the scope of the 

present study. The intensive insulin infusion therapy applied in ICU is 

described briefly in section 2.6 and it appears that such an approach may be 

extended for BG control in T1D patients. The descriptions of patient 

diagnostic tests and a modified test that will be used for patient classification 

in later chapters to develop a more personalized care are expounded in section 

2.7. Finally, estimating patient models from multirate data (that is more 

realistic) using multirate system identification is introduced in section 2.8 to 

develop a more personalized approach for BG control. 
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Chapter 3 

Effectiveness of Intensive Insulin Infusion Protocol in Treating 

T1D Patients 

 

 

3.1 Background 

 It is well understood that the maintenance of plasma glucose 

concentration in normoglycemic range is crucial to the individuals’ well-being 

in all types of diabetics. This is mainly achieved by administering the right 

dose of insulin around the clock in an effective manner. To achieve this, 

closed loop feedback control has been considered by many researchers. Chee 

and Fernando (2007) provide an excellent introduction to the modeling, 

control and miniaturization aspects of the blood glucose control (artificial 

pancreas) problem. Control algorithms of varying sophistication from PID 

(proportional, integral and derivative) control to Model Predictive Control 

(MPC) have been employed for BG control in T1D patients (Bequette, 2005). 

Different from these automatic feedback controllers, rule-based insulin 

infusion protocols (IIP) have been developed and employed in hospitals for 

glycemic control in ICU (Intensive Care Unit) patients. Patients in surgical 

and/or medical ICUs frequently experience stress induced hyperglycemia and 

impaired glucose metabolism even though they may or may not have a prior 

history of diabetes. Poor glycemic control in ICU patients has been linked to 

increased morbidity and mortality rates for patients who have been treated for 

three or more days in the medical ICU (Van den Berghe et al., 2006).  The 

seminal study by Van den Berghe et al. (2001) showed the benefits of tight 

glycemic control in patients at a surgical ICU. Later trials by other medical 

teams in other ICUs indicated that the Van den Berghe’s protocol (and other 

similar ones) resulted in hypoglycemic episodes and needed reconsideration. 

Since then, several IIPs that have been fine-tuned to prevent hypoglycemia 

have been proposed and are in practice (e.g., Studer et al., 2010). 
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3.2 Motivation and Objectives 

A thorough study on how a typical IIP (Yale IIP, YIIP is used here as 

an example; its details are described in Appendix A. 1) fares in treating T1D 

patients would be instructive. Even though the IIPs are originally intended for 

treating ICU patients, would it be applicable for routine insulin-infusion based 

treatment of T1D patients (with normal meal of three meal disturbances:- 10g, 

50g & 50g for breakfast, lunch & dinner respectively). This is the main 

objective of the present study. If the IIP (with some modifications) works as 

well as a traditional control algorithm, it can be easily used by T1D patients 

(because an IIP is based on a table lookup and simple calculations) to adjust 

their periodic insulin intake or be easily programmed for use by feedback 

control schemes.  

Note that the IIPs are very amenable to straightforward implementation 

into integrated sensing and programmed implantable insulin delivery devices. 

The main difference between a T1D patient and a typical ICU patient is the 

absence of pancreatic insulin secretion in the former while the pancreatic 

function is existent but possibly inadequate in the latter (Chbat et al., 2005). If 

hypoglycemic episodes are observed in the predefined broad range of patients, 

the standard YIIP will be modified so as to avoid hypoglycemia.  

 

3.3 Yale Insulin Infusion Protocol 

 Stress during critical illness induces glucose counter regulatory 

hormones, increases insulin resistance and relative insulin deficiency resulting 

in hyperglycemia. Furthermore, several common interventions such as 

corticosteroids, vasopressors, enteral or parenteral nutrition also result in 

higher BG levels. Van den Berghe et al. (2003) reported that the use of 

intensive IIP in patients of a surgical ICU (SICU) resulted in normalization of 

BG level and reduced mortality rates. 

Yale IIP (YIIP) by Goldberg et al. (2004) is the outcome of a similar 

study on ICU patients but implemented in a Medical ICU (MICU). It was 

designed to implement effective IIP for strict glycemic control in MICU of 

Yale New Haven Hospital, USA. The protocol was intended for easy use by 
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nursing staff without the need for frequent physician input. YIIP was aimed to 

keep the patients’ BG level within a conservative BG target of 100~139mg/dL. 

This algorithm is based on three main data elements used by experienced 

clinicians to adjust insulin infusion: (1) the current BG value, (2) the previous 

BG value, and (3) the current insulin infusion rate. Thus, the IIP is based on 

the rate of BG changes rather than on absolute BG values. In reported IIP 

works, the initial insulin infusion (including bolus) is based on the current BG 

level of the patient. Admittance to IIP starts when the patient’s BG level 

exceeds 200 mg/dL. The same amount of insulin the initial insulin infusion 

amount is injected as bolus at the initialization of this IIP. Initial insulin 

infusion lasts for one hour before continuous BG monitoring is started. The 

rate of insulin infusion is updated whenever BG value is monitored - the 

frequency of BG monitoring may also change depending on the value of the 

last noted BG value and the most recent BG trend. The monitoring of patients’ 

BG level is done on hourly basis in general but a different frequency of 

monitoring (30 minutes or 15 minutes) can be used depending on the severity 

of patient’s hypoglycemic condition: the BG monitoring is required at every 

15 min when the patient’s BG value is under 75mg/dL, it changes to at every 

one hour when the patient’s BG is within target range (100~139mg/dL), it 

changes to at every 2 hours when three consecutive BG values become stable 

(in target range), etc.; and more details of YIIP can be seen in Appendix A. 1. 

The primary importance of avoiding hypoglycemia (<60mg/dL) is handled by 

using of intravenous dextrose, as per protocol when the patient BG value is 

less than 75mg/dL.  

In YIIP, the missing data values are estimated by averaging known BG 

levels from the hours before and after missing values. The YIIP was 

successfully implemented in a MICU in which nearly 40% of MICU patients 

are admitted for primary respiratory failure. This IIP was subsequently 

validated on 52 patients from the same MICU. In their (Goldberg et al., 2004) 

study of 5,808 subsequent hourly blood glucose values, only 20 (0.3%) BG 

values from 12 patients fell below 60mg/dL and only three BG values were 

less than 40mg/dL. Such hypoglycemic episodes were rapidly corrected by 

intravenous dextrose infusion. Compared to a group of 47 patients who 
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received conventional insulin therapy (intravenous or subcutaneous insulin), 

the patients who received YIIP had better glycemic control. Similar protocols 

have been developed and used in other hospitals/clinics (see Chant et al, 

2005).  

Full details of the YIIP (taken from Goldberg et al., 2004) are provided 

in Appendix A. 1. Note the precautions, the insulin infusion initialization 

process, rules for adjusting infusion rates, adjustments to BG monitoring 

frequency etc. 

 As indicated earlier, one of the goals of the present study is to check 

how IIP protocols such as the YIIP work on T1D patients. Towards this end, 

in silico patients generated from popular T1D patient models will be utilized 

for this investigation. The generation of the patient cohort and the results of 

application of YIIP to this cohort are described next. 

 

3.4 Cohort of Patients 

      There is natural variability in the physiological behavior of diabetic 

patients, and this is reflected as variability in parameters of the diabetes patient 

models. In fact, even in a single patient, the response can vary over time and 

this can be modeled as gradual or abrupt variations in model parameters over 

time. Here, it is assumed that the dominant parameters deviate by a certain 

percent (± 20% or ± 40%) about their nominal values. The combination of 

these parameter variations results in a cohort of potential patients for each 

model. The in silico patients resulting from this procedure are used to test the 

control algorithms for robustness and performance.  

In the model described in Parker et al. (2000), 8 parameters namely 

EIPGU-EГ, EIPGU-DГ, EGHGU-EГ, EGHGU-DГ, EGHGP-EГ, EGHGP-DГ, 

FLC (FHIC), and FPC are chosen as varying from one patient to another. These 

8 parameters are perturbed from their nominal values by ±40% (except for 

FLC that is limited to ±20% to guarantee non-negative glucose concentration 

as mentioned in Parker et al., 2000). From these 8 parameters, sets of any three 

parameters are chosen and the chosen parameter set is varied in three levels 

(max, no change or nominal value, min) resulting in 15123* 3
3

8 =C  
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combinations. Patients with identical values for all eight parameters were 

removed and a set of 577 unique patients was generated as in Ramprasad et al. 

(2004). These 577 unique virtual patients are used as test cases in this study. 

In Fabietti model, four parameters (namely, iK , xiT , mT  and isK ) are 

chosen to generate the virtual patients. These four parameters are perturbed by 

±40% from their nominal values (see these values in Table 2.3). These 

parameter variations are within the experimental parameter values of Fabietti 

et al. (2006). The combination of these parameters results in a cohort of 

potential patients. The chosen parameter set is varied in three levels (max, no 

change or nominal value, min) for each parameter, and the combination of 

these four parameters result in 43 ( 81)=  simulated patients. These simulated 

patients are also used to test the performance of the control algorithm.  

 

3.5 Details of the Study 

The effectiveness of YIIP is evaluated in silico i.e. on the T1D patient 

cohorts generated. The YIIP algorithm is coded and evaluated on the cohort of 

patients described in Section 3.4. The computations are done in MATLAB 

platform using SIMULINK. The effectiveness of the IIP algorithm in terms of 

disturbance rejection and its robustness are tested on cohorts of virtual T1D 

patients for a “normal” day with three carbohydrate meal disturbances of 

breakfast (10 g), lunch (50 g), and dinner (50 g) at the meal times of 7 am, 12 

noon, and 6 pm respectively. Both glucose sensing and insulin infusion are 

administered through intravenous route using portal vein for the advantages of 

using intravenous route, described in Section 2.5.1. In this study, measurement 

noise and input constraints (except that insulin infused cannot be negative) are 

not considered as it is desired to understand the ideal performance of the 

proposed strategy. 

 

3.5.1 Method I: YIIP 

The YIIP was developed for MICU patients, and it is yet to be 

validated on a broad range of T1D patients. The effectiveness of YIIP on the 

cohort of T1D patients described in Section 3.4 is studied by subjecting the 
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“patients” to three meal disturbances for 3 consecutive days. The details of 

YIIP have been provided in Appendix A. 1; intravenous route is used for 

insulin infusion and dextrose infusion (the duration for this infusion is 

simulated as 1 hr generally in this study) is given should there be a 

hypoglycemic episode. As mentioned, the initial insulin infusion amount is 

calculated based on the patient BG value, and same dose of bolus insulin is 

administered at the very start of algorithm. 

 

3.5.2 Method II: Modified YIIP (MODYIIP) 

The target of YIIP is conservative (100~139mg/dL) because it is 

designed to be safe to avoid hypoglycemia as strict blood glucose control 

(maintaining BG within 81~108mg/dL) has adverse effect on mortality rate 

(Studer et al., 2010). However, the results from the study of YIIP on chosen 

diabetic patient models show the amount of initial insulin infusion should be 

suitably adjusted. Extra glucose infusion is used in YIIP in case of 

hypoglycemia events but it is burdensome for T1D patients to carry the 

glucose reservoir, and it would be advantageous if we can modify insulin 

infusion amount.  

To improve its applicability in out-of-ICU settings and especially to 

avoid hypoglycemia in patients without the use of extra dextrose/glucose 

reservoir, the initial insulin infusion amount of YIIP will be modified suitably 

in this work leading to the development of a new modified YIIP algorithm 

(MODYIIP). The initial insulin infusion for each of the 577 patients (Parker 

model type) is modified according to their BG response to the original initial 

amount of insulin (Parker model type patients are chosen here as these type of 

patients are more sensitive to insulin). If any particular patient exhibits 

hypoglycemia (BG < 70mg/dL) with original insulin infusion amount, the 

amount of initial insulin infusion is reduced to 75% of its original value. If it 

still results in hypoglycemia, the insulin infusion is reduced to 50% of original 

amount. The procedure is repeated (i.e. to 25% and 0%) until the BG value is 

in the range of normoglycemic region. A similar procedure is applied by 

increasing the infusion amount (125%, 150%, 175% and 200%) if any patient 

shows hyperglycemia (BG > 110mg/dL 3 hours after meals). During the 
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validation of the modified YIIP on other patient models, insulin infusion is 

assumed to be via the intravenous route. 

Using the “fminsearch” tool (expect in Hovorka model patient where it 

is infused through the subcutaneous route) available in MATLAB, the idea 

was tested on the 577 Parker model type patients with initial BG value of 

around 150mg/dL. The objective was to determine the optimal insulin infusion 

amount that avoids hyperglycemia in all patients. It was determined that no 

hypoglycemic episode occurs when the initial infusion limit is set at 50% of 

original YIIP initial insulin infusion. With this reduced initial insulin amount, 

the lowest BG value reached was 75mg/dL and the highest BG value attained 

was 235.94mg/dL. The hyperglycemic episodes are compromised here to 

avoid dangerous hypoglycemia using 50% of its original values and to make 

the modified YIIP (MODYIIP) safe for T1D patients. Therefore, the 

MODYIIP is one in which only 50% of initial insulin infusion as 

recommended by standard YIIP is chosen. Note that, in MODYIIP, there is no 

need for glucose infusion to avoid hypoglycemia.  

 

3.6 Results and Discussion: YIIP on T1D Patients 

The application of the YIIP protocol is aimed to test its effectiveness 

and applicability on a broad range of T1D patients constituted from two 

diabetic patient models (Parker and Fabietti Model) with three meal 

disturbances and to study how to improve its applicability on T1D patients. 

Three carbohydrate meal disturbances - breakfast (10 g), lunch (50 g), and 

dinner (50 g) at the meal times of 7 am, 12 noon, and 6 pm respectively – are 

considered in this study. The performance of meal disturbance rejection of 

YIIP on 577 constituted patients using Parker model with three meal 

disturbances per day over a three day period is presented in Figure 3.1 (with 

initial blood glucose value of 81. 08mg/dL) and Figure 3.2 (starting from 

initial hyperglycemic state of BG~150mg/dL). The Lehmann and Deutsch 

(1992) meal model is used in these simulations.  

According to the results on Parker model with hourly BG monitoring 

(Figure 3.1), 423 patients and 547 patients out of 577 patients record a BG 
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value in excess of 139mg/dL for normal initial condition and initial 

hyperglycemic condition respectively. The highest BG peak values for these 

two cases are 207.99mg/dL and 211.42mg/dL respectively. For the normal 

initial condition, 15 patients (2.6%) experience hypoglycemia (< 60mg/dL) 

with lowest BG value being 52.61mg/dL. When the initial condition is 

hyperglycemic, 12 patients (2.08%) enter into hypoglycemic region 

(<60mg/dL) with lowest the BG value being 53.99mg/dL. Note that, in these 

subsets of patients, severe hypoglycemia has been avoided by the use of 

dextrose infusion administered intravenously. In this subgroup of patients, the 

low BG value (53.99mg/dL) was observed one hour after initial insulin 

infusion (plus bolus) was administered; this indicates that the insulin amount 

suggested by the protocol (initial insulin plus bolus dose) may be higher than 

required (i.e. overdose). This is perhaps in line with what YIIP intends to 

achieve - YIIP is initiated when the patient’s BG level is above 200mg/dL and 

the suggested insulin dosage is meant to bring such patients to normoglycemic 

range.  

 

 
Figure 3.1: Performance of hourly monitoring YIIP on 577 unique patients 
generated using Parker model (with meal disturbances) with normal initial 

condition 
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Figure 3.2: Performance of hourly monitoring YIIP on 577 unique patients 
generated using Parker model (with meal disturbances) with initial 

hyperglycemia  
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Figure 3.3: Performance of hourly monitoring YIIP on 81 constituted patients 
generated using Fabietti model with meal disturbance 
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used as the reference. Their work employed PID controller for blood glucose 

control in T1D patients and employed different tuning methods. They obtained 

best results with Shen (2002) tuning method, avoiding hypoglycemia 

(<60mg/dL) in all but 5% of the 577 virtual patients constituted from Parker et 

al.’s model. Frequent sampling (once every 4 min) was used for glucose 

measurement according to current glucose sensor technology. In comparison, 

MODYIIP (without external glucose infusion) with one hour sampling interval 

is able to avoid hypoglycemia (< 60mg/dL) successfully with a simple rule-

based protocol; however, the occurrence of hyperglycemia (> 140mg/dL) 

could not be avoided.  

 

 

Figure 3.4: Performance of hourly monitoring MODYIIP on 577 unique 
patients generated using Parker model (with meal disturbances) with initial 

hyperglycemia 
 

 

It is seen that hypoglycemia (under 60mg/dL) can be avoided 

successfully without extra glucose for all Parker model patients as expected. 

Note that, in Figure 3.4, Parker model patients with initial hyperglycemia is 

considered while in Figure 3.5 and 3.6, patients with a “normal” initial 

condition (BG around 81mg/dL) are considered.  
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Figure 3.5: Comparison of BG profiles of MODYIIP (magenta solid line) and 
original YIIP (blue dashed line) on nominal patient (Parker model type) with 

normal initial condition 
 
 
 

 
Figure 3.6: Comparison of BG profiles of MODYIIP (magenta solid line) and 

original YIIP (blue dashed line) on worst case patient (Parker model type) 
with normal initial condition  
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It is seen that, for the worst-case patient, the original YIIP requires 

infusion of glucose to avoid hypoglycemia. Comparable results were obtained 

for nominal patient and worst-case patient with MODYIIP. For the worst-case 

patient, hypoglycemia (low BG value = 56.7mg/dL) with original YIIP could 

be avoided by MODYIIP (lowest BG value = 75.93mg/dL) with less dosage of 

insulin (50% of original YIIP initial insulin infusion) and no extra glucose. 

This shows the efficacy of MODYIIP. 

The effect of MODYIIP on the cohort of Fabietti model type patients is 

shown in Figure 3.7. There are no hypoglycemic episodes (lowest BG value is 

73.73mg/dL). All 81 patients enter into hyperglycemic zone (> 139mg/dL) 

with the highest BG peak value turning out to be 317.14 mg/dL.  

 

 

Figure 3.7: Performance of MODYIIP on 81 constituted patients generated 
using Fabietti model with meal disturbance 

 
 
 

The performance of modified YIIP on nominal and worst-case patients 

of Fabietti model type is shown in Figure 3.8 and 3.9 respectively. In both 

cases, the dangerous hypoglycemia is avoided successfully without external 

glucose.  
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Figure 3.8: Performance of YIIP (blue dashed line) and MODYIIP (magenta 

solid line) on nominal patient using Fabietti model with meal disturbance 
 
 
 
 

 
Figure 3.9: Performance of YIIP (blue dashed line) and MODYIIP (magenta 
solid line) on worst-case patient using Fabietti model with meal disturbance 
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As can be seen in Figure 3.8, comparable BG profiles are obtained for 

nominal patient using both YIIP and MODYIIP; however, MODYIIP uses less 

insulin as compared to YIIP (MODYIIP uses 88.01U while YIIP uses 102.53U 

of insulin over a period of 72 hours). For the worst-case patient, YIIP uses 

both insulin and glucose liberally as compared to MODYIIP which uses a 

moderate amount of insulin but no external glucose.  

Canonico et al. (2006) used a PID-type controller named Proportional-

Derivative-2nd derivative (PDD2) controller and tested it on virtual patients 

constituted from T1D patient model of Fabietti et al. (2006). Their work 

employs frequent measurement of blood glucose concentration but the actual 

frequency was not mentioned. Compared to their work, the use of MODYIIP 

shows no hypoglycemia even with infrequent BG sampling interval (1 hr.). 

These results show that MODYIIP is a simple to implement protocol for the 

effective control of blood glucose levels in T1D patients; it has the potential to 

avoid the dangerous hypoglycemia without using external glucose infusion 

and with relatively infrequent sampling of blood glucose. Some further 

tailoring of the MODYIIP protocol is still needed to achieve tight glucose 

control. 

 

3.7.1 Validation of Modified YIIP on Bergman Model 

As one other verification of the effectiveness of the MODYIIP 

protocol, the Bergman model (Lam et al. 2002) with three meal disturbances 

(20g breakfast, 50g lunch and 40g dinner at 7am, 12 noon and 6pm) was 

simulated. Different meal amounts are considered here so as to evaluate the 

disturbance rejection capability on any realistic meal amount (which may vary 

from time to time for breakfast, lunch and dinner) and also to find out the 

relative performance of MODYIIP over other similar works conducted by 

other researchers. The Fisher meal model (Fisher, 1991) was used along with 

the Bergman model to simulate meal dynamics.  

Figure 3.10 compares the BG profiles obtained when one applied 

MODYIIP and YIIP on the nominal Bergman’s diabetic patient model with 

initial condition characterized by BG being 81mg/dL. The total insulin used by 

MODYIIP is 72.03U while that of YIIP is 58.01U and total extra glucose 
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amount used by YIIP is 87.5g for 72 hours Although no dangerous 

hypoglycemia (<45mg/dL) is observed in both cases, exogenous intravenous 

dextrose infusion was needed in original YIIP while it is not required in 

MODYIIP. Interestingly, MODYIIP shows a lowest BG value of 76.04mg/dL 

with no exogenous intravenous dextrose infusion compared to the lowest BG 

value of 52.82mg/dL obtained with YIIP which also needs exogenous 

intravenous dextrose infusion. MODYIIP results in a high BG value of 

288.31mg/dL compared to that of 253.73mg/dL obtained with original YIIP.  

 
Figure 3.10: Comparison of BG profiles of MODYIIP (magenta solid line) and 

original YIIP (blue dashed line) on nominal patient (Bergman model type) 
with normal initial condition 
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insulin infusion rate (0~100 mU/min) was solved using multi-parametric 

quadratic programming (mp-QP). In the work of Dua et al. (2004), which uses 

the same diabetes patient model, meal model and meal amount as in this study, 

the highest BG value is about 350mg/dL. As noted earlier, MODYIIP shows 

the highest BG value of only 288.31mg/dL without hypoglycemia employing a 

simple rule-based strategy. Thus MODYIIP emerges as an effective strategy 

for BG control in T1D patients. The performance comparison of MODYIIP 

and YIIP on nominal Bergman model type patient with initial hyperglycemic 

condition (of about 330mg/dL) is shown in Figure 3.11. The hypoglycemic 

(<60 mg/dL) episode can be avoided successfully with lowest BG value of 

73.11mg/dL but with not much severe postprandial hyperglycemic BG peak of 

294.76mg/dL.   

 
Figure 3.11: Comparison of BG profiles of MODYIIP (magenta solid line) and 

original YIIP (blue dashed line) on nominal patient (Bergman model type) 
with initial hyperglycemic condition 

 
 
 

The performance of MODYIIP on the worst-case Bergman model 

patient using Bergman model is shown in Figure 3.12 and 3.13 for normal and 
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Figure 3.12: Comparison of BG profile of MODYIIP (magenta solid line) and 
original YIIP (blue dashed line) on worst-case patient (Bergman model type) 

with normal initial condition 
 
  

 

Figure 3.13: Comparison of BG profile of MODYIIP (magenta solid line) and 
original YIIP (blue dashed line) on worst-case patient (Bergman model type) 

with initial hyperglycemic condition  

0 10 20 30 40 50 60 70 80
0

200

400
BG with 1 hr sampling interval

B
G

 (m
g/

dL
)

Time (hr)

0 10 20 30 40 50 60 70 80
0

1000

2000
Insulin Infusion Profile

m
U

/h
r

Time (hr)

0 10 20 30 40 50 60 70 80
0

100

200
×102                      Intravenous Glucose Infusion Profile

Time (hr)

m
g/

hr

0 10 20 30 40 50 60 70 80
0

500
BG with 1 hr sampling interval

B
G

 (m
g/

dL
)

Time (hr)

0 10 20 30 40 50 60 70 80
0

5000
Insulin Infusion Profile

m
U

/h
r

Time (hr)

0 10 20 30 40 50 60 70 80
0

1

2
x 10

4 Intravenous Glucose Infusion Profile

Time (hr)

m
g/

hr



57 
 

The dangerous hypoglycemia (<45mg/dL) is avoided by using 

MODYIIP, with the lowest BG being 59.39mg/dL and 62.8mg/dL; the total 

insulin used by MODYIIP is 61.01U and 61.5U while YIIP uses 72.52U and 

73.5U for normal and hyperglycemic initial condition respectively. In 

addition, YIIP uses 200g and 175g of total extra glucose during the 72 hours 

for normal and hyperglycemic initial conditions respectively.  

Thus, the MODYIIP protocol that was developed using Parker’s model 

is effective even on Bergman model type patients proving its robustness and 

versatility. 

 

3.7.2 Validation of Modified YIIP on Hovorka Model 

Next, a simulation study is performed to study the meal disturbance 

rejection capability of original YIIP and modified YIIP for a 60g carbohydrate 

meal using nominal Hovorka model (Hovorka et al. 2004 and Wilinska et al. 

2005). The 60g meal is given after one hour of the initial insulin infusion. The 

external insulin is infused through subcutaneous route and BG values are 

measured at 4 min sampling interval. The result of applying original YIIP on 

nominal patient of Hovorka type can be seen in Figure 3.14.  

 
Figure 3.14: BG profile with YIIP on nominal patient (Hovorka model type) 

with normal initial condition  
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The YIIP maintains the BG value above 60mg/dL by using frequent 

intravenous glucose infusion; the total insulin used by MODYIIP is 11.57U 

while that of YIIP is 12.47U and total extra glucose amount used by YIIP is 

137.5g for 18 hours. The maximum BG value is 256.99mg/dL. Thus, the YIIP 

gives acceptable performance. With MODYIIP, the result is as shown in 

Figure 3.15; it is seen that BG values can be maintained in the range (45-

257mg/dL). The low BG value is definitely a concern although the 

hypoglycemia (above 45mg/dL) is not considered to be fatal. 

 
Figure 3.15: BG profile with MODYIIP on nominal patient (Hovorka model 

type) with normal initial condition  
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Figure 3.16: BG profile with YIIP on nominal patient (Hovorka model type) 

with initial hyperglycemic condition  
 
 
 
 

 
Figure 3.17: BG profile with YIIP on nominal patient (Hovorka model type) 

with initial hyperglycemic condition  
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 These results show that MODYIIP is a possible candidate in treating 

T1D with simple and effective protocol. 

    

3.8 Conclusions 

The investigation conducted here shows that the YIIP may be modified 

and employed beneficially for blood glucose control in T1D patients. The 

original YIIP is tailored by modifying the amount of initial insulin infusion 

and bolus and by avoiding external glucose infusion – this results in a 

modified YIIP (MODYIIP) scheme. According to the results presented here, 

hypoglycemia (under 60mg/dL) can be successfully avoided with MODYIIP 

for all virtual T1D patients generated using Parker’s model and Fabietti’s 

model.  On the Hovorka’s model based nominal patient, MODYIIP results in a 

low BG value of 45.1mg/dL with initial BG at 81mg/dL– this is a cause of 

concern but may not lead to fatal consequences according to medical literature 

(Alsahli & Gerich, 2010). It is hoped that the MODYIIP scheme which is 

based on simple rules would be effective for BG control of T1D patients 

making it easy to implement in micro-implantable devices. Hyperglycemia 

(>180mg/dL) is tolerated so as to avoid hypoglycemia. Further studies could 

be performed for the modification of insulin infusion amount in MODYIIP so 

as to avoid high BG value (>180mg/dL) in T1D patients. Further studies could 

be performed for the modification of insulin infusion amount in MODYIIP so 

as to avoid high BG value (>180mg/dL) in T1D patients. In the meantime, to 

avoid hypoglycemia (that is evident in Hovorka model patient but it is not fatal 

in this study) could be performed.  
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Chapter 4 

Blood Glucose Regulation in T1D Patients: Classification Using 

Principal Component Analysis and Treatment Using Tailored 

Modified YIIP 

 

4.1 Background   

The blood glucose (BG) response to insulin and glucose varies from 

patient to patient (inter-patient variability) and even within a patient from time 

to time (intra-patient variability). The range of the response can be quite wide 

when one considers a cohort of patients. This raises the question: would be 

worthwhile and possible to classify patients into groups and tailor YIIP to each 

of these groups? In Chapter 3, YIIP was applied to control BG level in T1D 

patients and a modified YIIP scheme was also suggested with a view to avoid 

hypoglycemia (< 60mg/dL). The modified YIIP was developed based on the 

“patients” developed using the model of Parker et al. (2000), and was 

validated on cohorts of patients generated using Fabietti and Bergman models 

as well as on the nominal “patient” of the Hovorka model. It was observed that 

the modified YIIP algorithm was quite successful in avoiding hypoglycemia 

except in the case of the Hovorka “patient”. However, some patients did enter 

the hyperglycemic zone (> 180mg/dL) in postprandial condition. These results 

suggest that further modifications to the YIIP scheme are required, to make it 

effective in regulating BG levels in T1D patients. This objective is taken up in 

the present chapter where we develop a control strategy that is based on 

classification of patients into groups using Principal Components Analysis 

(PCA) followed by tailoring of YIIP to each of these groups. The goal is to 

regulate BG level in T1D patients in the range 60mg/dL < BG < 120mg/dL (in 

fasting condition) and 60mg/dL < BG < 180mg/dL (in postprandial condition).   

 

4.2 Motivation and Objectives 

As pointed out earlier, developing an algorithm that is effective and yet 

simple to implement will be helpful to treat T1D patients. YIIP (or its 
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modified version) is indeed easy to implement but its effectiveness in 

preventing hypo- and hyperglycemia needs to be improved further. The large 

uncertainty that one has to deal with in a single algorithm can perhaps be 

partitioned into smaller chunks of uncertainty via the grouping of patients into 

different classes and tailoring a control scheme (YIIP) for each of the classes. 

Such an approach can be expected to result in improved BG regulation in 

patients. 

The patient’s classes should be differentiated by their own intrinsic 

nature i.e. each class of patients should have similar intrinsic response to 

exogenous glucose and insulin. This information could be extracted from a 

suitable experiment or test (protocol). The experimental data for classification 

should be obtained from presently available diagnostic tests and the 

classification test should be simple for application in a clinical setting. These 

motivate us to continue our study in which YIIP will be used as the control 

algorithm but tailored for different classes of patients to achieve tight BG 

control. Our objective here is: (i) to develop a PCA-based methodology in 

which patients are classified into different classes based on data collected from 

a standard clinical protocol and (ii) to tailor YIIP for these different patient 

classes to meet the requirement of tight BG control (60mg/dL<BG<120mg/dL 

in fasting condition and 60 mg/dL < BG <180 mg/dL in postprandial 

condition). 

 

4.3 Clinical Diagnostic Test for Patient Classification 

Selection of an appropriate diagnostic test to use for developing the 

patient classification methodology is important. The chosen test should be 

simple and applicable in clinical setting. Already, several tests exist for the 

clinical diagnosis of diabetes – these include: (i) Oral Glucose Tolerance Test 

(OGTT), (ii) Fasting Plasma Glucose (FPG) test, (iii) Random Blood Glucose 

(RBG) test, (iv) Intra-Venous Glucose Tolerance Test (IVGTT), and (iv) 

Modified Intra-Venous Glucose Tolerance Test (MIVGTT). Among them, the 

MIVGTT is chosen because it is designed to observe both glucose and insulin 

dynamics with a single test. In MIVGTT, 0.3 g/ (kg body mass) of glucose is 

given for 1 min at the start and 0.02 U/ (kg body mass) of insulin is infused 
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after 20 min for a period of 5 min. Though the original MIVGTT needs 2.5 to 

3 hours to complete and several BG measurements are taken along the way, 

we assume that both BG and Plasma Insulin (PI) measurements available once 

every 20 min during the first hour would be enough for our designed test. The 

setting of the duration of the test for one hour is to ensure that hypoglycemia 

(< 60 mg/dL) is avoided during the test. This makes the test very feasible for 

application in a clinical setting. The fasting condition (after 8 hours of 

overnight fasting), in which 0.1 mU/L < PI <25 mU/L and 

70mg/dL<BG<300mg/dL, is required for our designed test. Note that the 

fasting PI is lower than 17 mU/L and the fasting BG is 70~99 mg/dL in 

normal individuals (Esoterix, 2010).  

After the test, the patients are offered meal or glucose depending on the 

last recorded BG value – this is required because the exogenous insulin 

administered during the test could lower BG to an undesirable level after the 

test. According to our simulations, the test appears to avoid dangerous 

hypoglycemia during the test.  

 

4.4 PCA as a Classification Tool  

Multivariate statistical tools are efficient for exploratory multivariate 

data analysis and classification. While several methods exist, PCA is chosen 

for its simplicity and effective classification efficiency. The application of 

PCA is well known for fault diagnostics in the chemical and process 

industries; it has also found applications in several domains of natural and 

social sciences. The primary application of PCA is as a dimension reduction 

tool to construct information rich, uncorrelated pseudo-variables (or prominent 

principal components) from a larger set of correlated variables. The principal 

components are arranged by their eigenvalues with principal components 

associated with larger eigenvalues being the most significant. Thus the first 

principal component is associated with the largest eigenvalue and captures the 

maximum variation from the data set. Successive principal components 

capture successively less variance and, by construction, they are orthogonal to 

the earlier principal components.  
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 Eigenvalue decomposition (EVD) of covariance matrix or singular 

value decomposition (SVD) of data set can be used to generate the principal 

components. The data set should be standardized (e.g. auto-scaled i.e. mean-

centered and variance-scaled) before the EVD or SVD so that the variables 

that have large values (based on measurement units) do not dominate the 

principal components. The PCA calculation (based on SVD of the data matrix) 

is described briefly below. 

• Auto-scaling of Variables               

( ). / ( )Z X X std Xµ= −                                            (4.1) 

• SVD of the auto-scaled data matrix Z 

[ , , ] ( )U V svd Zσ =                                              (4.2) 

• Score Matrix or Principal Component Matrix can be obtained by    

[𝑆𝑐1,𝑆𝑐2, … ] = 𝑍 ∗ 𝑉                                         (4.3) 

The PCA model is characterized by the scores matrix T and the 

loadings matrix V wherein it is noted that only the first ‘k’ prominent principal 

components are retained. Therefore, we may write 𝑍 =  𝑇𝑘𝑉𝑘𝑇 where Tk and 

Vk contains only the first k columns of T and V.  

When new data Xnew arrives, it is first scaled in a manner consistent 

with the scaling of the original data matrix X.  

,
( )

( )
new

new s
X XX

std X
µ−

=                                                    (4.4) 

Then PCA projection of the new data can be described by 

𝑡𝑛𝑒𝑤 =  𝑋𝑛𝑒𝑤,𝑆 ∗ 𝑉𝑘                                               (4.5) 

 

4.5 Details of the Study 

      The ability of the control algorithm in meeting the desired control 

objectives should be tested on a cohort of patients. For our purpose, the model 

proposed by Fabietti et al. (2006) is chosen and its dominant parameters are 

perturbed by ± 70% of their nominal values to generate the patient cohort (the 

same procedure as mentioned in section 3.4 is applied here as well to produce 
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the cohort of patients). The control algorithm is developed by two steps viz. 

(1) patient classification using PCA and (2) tailoring of YIIP for each class of 

patients. The details of both these steps will be described in sections 4.5.1 and 

4.5.2 respectively. In all the simulation studies here, measurement noise of 

about 17% has been added to the true blood glucose values. Input constraint 

has not been considered in the case studies. However, the lower bound for 

inputs (meal and insulin) is set to zero so as to keep the simulations physically 

meaningful.  

 

4.5.1 Patient Classification Using PCA 

      The PCA model is developed based on the simulated experiments. 81 

simulated patients (using Fabietti’s Model) who meet the conditions as 

specified in section 4.3 are given our designed MIVGTT for one hour so as to 

extract the intrinsic characteristics of each patient. The response of each 

patient to given intravenous glucose input (given at the start of experiment) 

and exogenous insulin infusion input (given at the 20th min of experiment) are 

measured by collecting BG and PI measurements once every 20 min. Similar 

experiments for this patient cohort are run for 10 times with different random 

initial values of BG and PI (at the start of the experiment) but within the range 

of prescribed conditions. This helps to generate a larger patient cohort – thus 

many patients in the generated database will have similar parameters but, 

depending on their initial conditions, their response to the MIVGTT will vary 

considerably. The PCA model is developed based on the collected data.  

Then the primary model is developed based on the above mentioned 

simulated experimental data with the help of PCA using information given by 

PI measurement data matrix (81 patients ×10 runs and four measurements 

each). The BG measurements are taken only to ensure that the patient does not 

experience hypoglycemia but are not used in the PCA model. Pre-processing 

of the data is performed by removing the linear trends using least squares - this 

helps to improve the classification efficiency by minimizing the effect of 

initial BG and PI values. Then, the variance scaling of each column is done so 

as to provide each variable (column) the same degree of importance in the 

PCA model. The preprocessed data set is then used to construct the PCA 
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model. When new patient data is obtained, the data is subject to consistent data 

pre-treatment and the patient is classified by projecting the data onto the 

present model (or onto present patient classes). More details on the PCA 

models will be provided later. 

 

4.5.2 Tailoring YIIP for Patient Classes 

Individualization of the treatment protocol for each patient can be very 

time consuming and such individualized protocols, even if generated, may 

lack the required robustness when faced with parametric uncertainties and 

variations. For this reason, the collected MIVGTT data is used to generate 

specific classes of patients and the YIIP is optimized for each class of patients. 

The optimized solution for each patient class should provide robust 

performance for patients within that class. 

We seek to modify the YIIP for each patient class in such a way that 

the initial insulin infusion will be optimized and followed by the original YIIP 

based insulin infusion. These modified class-based protocols would be 

generated via the formulation of an optimization problem with suitable cost 

function and constraints.  The optimization problem is set up to find the best 

initial insulin infusion amount for the YIIP on a “normal” day (with three 

meals) in which BG is controlled with the following three objectives: (i) BG 

not to exceed 180mg/dL in postprandial condition, (ii) BG not to enter the 

dangerous hypoglycemic region (<60mg/dL), and (iii) minimize the maximum 

value of BG following each meal. The schematic representation of the 

optimization problem is demonstrated in Figure 4.1 where ‘𝑥’ represents the 

initial insulin infusion amount. The need for larger insulin infusion amount to 

meet objectives (i) and (iii) conflicts with the requirement of objective (ii) 

which is to use the minimum amount of insulin required to avoid 

hypoglycemia. The three objective functions are linearly combined with equal 

weight into a single objective function. Similar optimization problems are set 

up for each class of patients obtained from the classification process and are 

solved separately. The optimal solutions obtained from the formulated 

optimization problems would serve as the initial insulin infusion amount for 

the patient classes.  
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Figure 4.1: Schematic of the Optimization Algorithm 

 

The mathematical description of the optimization problem for a class 

of patients can be described as follows. The output BG values for patient 𝑖 

over the time 𝑡, 𝐵𝐺𝑖(𝑡), which is function of insulin infusion and meal 

disturbance are described as 

𝐵𝐺𝑖(𝑡) = ℎ𝑖�𝑢(𝑡),𝑑(𝑡)�.                                                    (4.6) 

Where, 

𝑡 = time interval from 0 to 𝑡, 

𝑢(𝑡) = the rate of insulin infusion over the time 𝑡, 𝑢(𝑡) = 𝑓(𝑥,𝑌𝐼𝐼𝑃),  

𝑥 = initial insulin infusion,  

𝑌𝐼𝐼𝑃 = original YIIP based insulin infusion that followed 𝑥,                                                     

𝑑(𝑡) = the meal disturbance over the time 𝑡, 𝑑(𝑡) = 𝑔(𝑀),  

𝑀 = meal (three meals in a normal day).                                                                         

The highest BG value, ℎ𝑠𝑡𝐵𝐺 and lowest BG value, 𝑙𝑠𝑡𝐵𝐺 for a class of 

𝑛 patients are:                         

                                    ℎ𝑠𝑡𝐵𝐺 = max ��𝐵𝐺𝑖(𝑡)�𝑛� 

and                                             𝑙𝑠𝑡𝐵𝐺 = min ��𝐵𝐺𝑖(𝑡)�𝑛�. 

The three objective functions are considered as 

𝑜(𝑥) = ℎ𝑠𝑡𝐵𝐺 − 180 

where,                                     𝑜(𝑥) > 0                                                       (4.7) 

𝑝(𝑥) = 60 − 𝑙𝑠𝑡𝐵𝐺 

where,                                     𝑝(𝑥) > 0                                                       (4.8) 
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and         𝑞(𝑥) = ℎ𝑠𝑡𝐵𝐺.                             (4.9) 

These functions are combined into a single objective function with equal 

weight for a nonlinear optimization problem as  
𝑚𝑖𝑛
𝑥 (𝑜(𝑥) + 𝑝(𝑥) + 𝑞(𝑥))2                                         (4.10) 

with constraint  𝑥 ≥ 0 . 

The best value of 𝑥 for the patient class is found by optimizing the BG 

values to be in the range 60~180 mg/dL with the objective function (equation 

4.10). Note that the initial insulin infusion (𝑥) has significant effect on BG 

control in YIIP and its requirement for fine tuning (in Chapter 3), and thus 𝑥 is 

considered as the decision variable here. The constraint that 𝑥 is greater than 

or equal to zero is set in order to avoid negative values. The function 𝑜(𝑥) is 

for BG not to exceed 180 mg/dL in postprandial condition,  𝑝(𝑥) is for BG not 

to enter the dangerous hypoglycemic region (< 60 mg/dL), and 𝑞(𝑥) is to 

minimize the maximum value of BG following each meal. 

 

4.6 Results and Discussion 

 We present the results and discussion for this study in three parts: (1) 

PCA results on patient classification (section 4.6.1), (2) tailored YIIP and its 

results (section 4.6.2) and (3) validation of the developed algorithm on other 

patient models (section 4.6.3). 

 

4.6.1 PCA Results on Patient Classification 

           After applying PCA directly onto the (810×4) data set (explained 

earlier) without removal of linear trends, 9 patient classes are obtained as 

shown in Figure 4.2. It is confirmed, via matching each point in the PCA score 

plot with the assigned experiment number (i.e. each patient), that each line 

represents a single patient group. However, it would be useful to have these 

groups segregated in the PCA score space if we were to use the scores plot to 

classify future “patients” into one of these groups. 
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Figure 4.2: Patient classes obtained from PCA without data pretreatment with 
99.99% confidence interval 

 
 
 
 
 
 

  
 

Figure 4.3: Patient classes obtained from PCA with data pretreatment with 
99.99% confidence interval 
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When the linear trend is removed from each data sample and PCA of 

the resulting data set is performed, the results are as shown in Figure 4.3. It is 

seen that the segregation is much better now with only classes 5 and 9 

overlapping significantly. With the linear trend removed from each data 

sample, PCA explains 85.25% of the variance in the data set with the 1st 

principal component and 100% of the variance with the first two principal 

components. The total of 810 points resulted from 10 runs (different initial BG 

and PI values for each run) of MIVGTT for each of the 81 patients (mentioned 

in section 2.6 with 70% variation in patient parameters considered) shows up 

in Figures as 9 patient classes (each class consists of 90 points). 

The loading Plot of PCA without pretreatment and with pretreatment 

(shown in Figure 4.4 and 4.5 respectively) show the presence of three clusters 

in the variable space. This indicates that three measurements (one taken out of 

each of these clusters) may be sufficient information in order to characterize 

the patients. This insight may be useful in designing measurement protocols 

for patient classification and treatment.   

 

 

 

Figure 4.4: Loading Plot obtained from PCA without data pretreatment 
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Figure 4.5: Loading Plot obtained from PCA with data pretreatment 

 
 
 
 

4.6.2 Results with the Tailored YIIP  

 The single variable optimization (SVO) problem of finding out the best 

initial insulin infusion amount (defined by ‘𝑥’ in Figure 4.1) for the 9 patient 

classes is solved by the Nelder-Mead Simplex Search method. For this SVO 

problem, the simplex search reduces to a line search. MATLAB’s (version 7.6, 

2008a) built-in algorithm for unconstrained optimization ‘fminsearch’ is 
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60mg/dL and 180mg/dL) to avoid hypo- (<60mg/dL) and hyper- (>180mg/dL) 

glycemic condition. The optimal values of ‘𝑥’ and the highest & lowest BG 

values of each of the 9 classes are summarized in Table 4.1.  
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Table 4.1: Summarized results of tailored YIIP for all patient classes 
 

Class Initial Insulin Amount 
(mU/hr.) 

Lowest BG 
(mg/dL) 

Highest BG 
(mg/dL) 

1 6.99 67.00 178.86 
2 2.05 67.82 178.88 
3 1.14 64.83 179.46 
4 6.87 61.23 182.64 
5 2.03 60.55 182.67 
6 1.02 60.10 186.04 
7 7.38 60.68 181.04 
8 2.21 59.01 180.99 
9 1.06 59.31 184.16 

 

 

Figure 4.6 through 4.14 demonstrate the effectiveness of tailored YIIP 

on T1D patients on a normal day comprising of three meals (taken at 7 AM, 

12 Noon and 6 PM) with 20 g, 50 g & 50 g carbohydrate content respectively. 

Based on the optimal values of ‘𝑥’, the 9 classes can be further reduced into 3 

groups. The values of ‘𝑥’ for Group I (Class 1, Class 4 & Class 7) are higher 

than those of Group II (Class 2, Class 5 & Class 8) which are higher than those 

for Group III (Class 3, Class 6 & Class 9). Going forward, the results will be 

discussed based on these three groups. 

 
 

4.6.2.1 Results of Tailored YIIP for Group I 

Group I (Classes 1, 4 and 7) patients have BG values in the range of 

(60~183mg/dL) - the corresponding illustrations are shown in Figure 4.6, 4.7 

and 4.8 respectively. Hypoglycemia (<60mg/dL) is seen to be avoided 

successfully. Class 7 patients require the highest initial insulin amount among 

this group.  

Analysis of the parameter values reveals that this group has the same 

insulin diffusion rate value (Ki=3.03e-3mL/hr), which is also the lowest 

among all groups (nominal Ki=0.0101mL/hr). The time constants of insulin 

diffusion in the plasma compartment (Txi) are 0.543hr, 1.81hr and 3.077hr for 

Classes 1, 4 and 7 respectively. 
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Figure 4.6: Tailored YIIP result for Class 1 Patients 

 
 
 
 
 
 

 
Figure 4.7: Tailored YIIP result for Class 4 Patients 
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Figure 4.8: Tailored YIIP result for Class 7 Patients 
 
 
 

4.6.2.2 Results of Tailored YIIP for Group II 
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Figure 4.9: Tailored YIIP result for Class 2 Patients 
 
 
 
 
 

 

Figure 4.10: Tailored YIIP result for Class 5 Patients 
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Figure 4.11: Tailored YIIP result for Class 8 Patients 
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Figure 4.12: Tailored YIIP result for Class 3 Patient 
 
 
 
 
 

 
 

Figure 4.13: Tailored YIIP result for Class 6 Patients 
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Figure 4.14: Tailored YIIP result for Class 9 Patients 
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classes (see Table 4.1). This result is consistent with the low basal insulin 

requirements of the Parker, Bergman and Hovorka models (with nominal 

parameters), and demonstrates the validity of the classification algorithm. 

Averaging of initial insulin infusion amount may be adopted and employed if 

a “tested patient” happens to fall in between the classes shown in Figure 4.15.  

 
Figure 4.15: PCA based classification of patients obtained from Parker, 

Bergman and Hovorka models (with data pretreatment) with 99.99% 
confidence interval 
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Figure 4.16: Tailored YIIP result for Parker Model nominal Patient 

  
 
 
 

 
Figure 4.17: Tailored YIIP result for Bergman Model nominal Patient 
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Figure 4.18: Tailored YIIP result for Hovorka Model nominal Patient 
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algorithm tailored for that class would be implemented on the patient. This 

approach showed very promising results on the Parker and Bergman patient 

but resulted in hypoglycemia on the Hovorka patient. More rigorous tests 

would be needed on a large cohort of patients generated out of these models to 

test the robustness of the proposed approach. The proposed approach to 

classification based BG control, has also identified opportunities to reduce the 

experiment time of the intravenous glucose tolerance test (IVGTT) as well as 

indicated that about 3 measurements should suffice during the experimental 

duration of the IVGTT. 
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Chapter 5 

Control of BG Levels in T1D Patients using the Linear 

Modeling Error Compensator Approach 

 

5.1 Background  

 The design of robust controllers is necessary for the model-based 

control of processes that have significant uncertainties in their structure and/or 

parameter values. In the context of blood glucose control in diabetes patients, 

there is a need to design controllers that are robust against the unavoidable 

model-patient mismatch that arise due to the inter- and intra-patient variability.  

In the past, researchers have attempted to handle this problem in 

several ways; for example, systematic design of robust H∞ controller based on 

uncertainty characterization was pursued by Parker et al. (2000), and a 

simulation-optimization based approach was adopted by Ramprasad et al. 

(2004b). They established the applicability of their approach by showing how 

their robust controllers rejected meal disturbances on a cohort of virtual 

patients taken from within the uncertainty bounds. The positive and negative 

aspects of these approaches were presented in Chapter 2. 

 Further studies are needed in developing and testing the effectiveness 

of robust controllers for blood glucose regulation in T1D patients and reach 

the goal of attaining fail-proof artificial pancreas. This chapter aims to develop 

a strategy based on the linear modeling error compensation (LMEC) approach 

and examine its effectiveness in handling model uncertainties. 

 

5.2 Motivation and Objectives 

There is a need to examine alternative approaches that can handle 

uncertainties in patient models for blood glucose level control in T1D patients. 

What we need is a simple and yet effective algorithm that can help in this 

regard – linear robust controllers are therefore prime candidates for the 

purpose. Among robust controllers, the modeling error compensator has been 
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found effective in the control of chemical reactors (Alvarez-Ramirez, 2002) 

and in observer design for estimating bearing internal temperature and pre-

load of machine tool spindle (Tu and Stein, 1998). However, these studies 

involved nonlinear models.  Sun et al. (1994) proposed a linear modeling error 

compensator (LMEC) scheme which could be applied to handle uncertainties 

in linear models. Here, we wish to study the applicability of the LMEC 

scheme to regulate blood glucose concentration in T1D patients. Significant 

levels of uncertainty in patient model parameters for the different T1D models 

will be considered and LMEC controllers will be developed. The developed 

LMEC scheme will be tested on cohorts of virtual patients to determine its 

performance. 

   

5.3 Linear Modeling Error Compensator 

 In LMEC, a model reference controller is used for primary design and 

the parameter adaptation is using a compensator instead of on-line 

identification for estimation of system parameter(s) and tuning of controller 

parameter(s). The central idea of LMEC is to compensate for the error arising 

out of parametric uncertainty by determining the modeling error via plant 

input and output signals with known linear model order and using this 

information in the design. In addition to nominal feedback, another feedback 

loop is introduced using the modeling error and this feedback action is 

explicitly proportional to the parametric error which is the source of 

uncertainty. When no modeling error is present (i.e. the model parameter is not 

different from the nominal model), the compensator output becomes zero and 

the control scheme is then equivalent to the original model reference 

controller.  

 

5.3.1 Uncertainty Description 

The bounds for the uncertainty that represents inherent inter- and intra-

patient variability, is incorporated into the parameters of different diabetes 

patient models. Specific model parameters are perturbed by up to ±40% from 

their nominal values to obtain patient cohorts. Such an investigation helps to 

check the robustness of the LMEC and how its performance is when presented 
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with the inevitable model mismatch (details including those of the generated 

patient cohort are mentioned earlier in section 2.4). The controller is based on 

the linear transfer function approximation of the patient but the “true” patient 

is the nonlinear model. It is on the true patient that the LMEC based control 

algorithm will be tested. In this study, the models for controller design are 

obtained as second order transfer function approximations through a step test 

on the nonlinear model. The step response(s) are obtained by decreasing 

insulin infusion by 10% of its nominal value in the particular patient model. 

The bounds for uncertainty are determined from the parameters of the 

estimated linear second order transfer functions. 

 

5.3.2 LMEC Controller Design 

The plant )(sG  (assumed to be strictly proper) is as follows: 
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where )(sU = Laplace transform of the input, )(sY  = Laplace transform of the 

output.  

In this study, we use a second order transfer function to represent the plant. 

( )( )
PkG

s sβ γ
=

+ +  

For the nominal model,  0
0

0 0( )( )
PkG

s sβ γ
=

+ +
 

Let       )()()( sRsMsYM =                                     (5.2) 

and                                       )()()( sRsGsY c=                                       (5.3) 

where )(sM  = reference model which gives the desired behavior of the 

closed-loop system, )(sR   = reference signal, )(sGc  = transfer function 

representing the closed loop system, )(sYM = desired system response, and 

)(sY  = closed loop system response. 

The control objective is to design a feedback controller which uses 

)(sR  and )(sY  to generate )(sU in such a way that )(sY  is as close as 
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possible to )(sYM  in the presence of parametric uncertainty in )(sG . The 

reference model can be described as: 

)(
)(

)()()(1
)()(

)(
000

00

sp
sz

sGsCsF
sGsC

sM
M

M=
+

=                                   (5.4) 

in which )(0 sG is the nominal patient model bounded in )(sG , and )(0 sC  and 

)(0 sF  are conventional adaptive controllers described by: 

)()(
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=                                                          (5.5) 
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0 θ

θ
+
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s
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k
sF                                                        (5.6) 

where 
0p

M

k
kk = , Mk = leading coefficient of Mz , 0pk = nominal value of pk , 

)(sΛ = a stable monic polynomial of degree 1−n , ( Mzα ), α  = a stable 

polynomial, )(),( 21 ss θθ  = polynomials of degree at most 2−n  and 3θ  = 

constant. 

 

             
  

Figure 5.1: Schematic of a feedback control system with modeling error 
compensation 

 

Equation (5.4) can be deduced from Figure 5.1 using lower loop (bold 

lines and painted blocks). 

For the actual plant, the controller parameters which are varying (i.e 

𝜃𝑖 = 𝜃𝑖∗ and 𝑘 = 𝑘∗) can be solved using the following polynomial identity. 

(Λ − 𝜃1∗)𝐴 − (𝜃2∗ + Λ𝜃3∗)𝐵 = 𝑘∗𝛼𝑝𝑀𝐵           (5.7) 

( )R s

E 
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Instead of solving equation (5.7), the parameters for the nominal plant 

are solved by 

(Λ − 𝜃1)𝐴0 − (𝜃2 + Λ𝜃3)𝐵0 = 𝑘𝛼𝑝𝑀𝐵0     (5.8) 

By multiplying equation (5.7) with �𝑀(𝑠)
Λ(𝑠)

�𝑌(𝑠) and using the plant 

equation 𝐵(𝑠)𝑈(𝑠) = 𝐴(𝑠)𝑌(𝑠), one obtains 

𝑀𝑈 = 𝑘∗𝑌 + 𝑀 𝜃1∗

Λ
𝑈 + 𝑀𝜃2∗

Λ
𝑌 + 𝜃3∗𝑀𝑌.   (5.9) 

With the above scheme, robustness is not guaranteed against 

uncertainties that are present in the model )(sG . To achieve the robustness in 

the presence of parametric uncertainty, the modeling error signal )(sE  is 

defined by using the plant input and output signals and the information on 

)(sM  and )(0 sG . This signal reflects the difference between G  and 0G . 

                                                         ( ) ( , )E s U Y= ∑                      

MUkYMYYMUME −++
Λ

+
Λ

= 3
21 θθθ

                              (5.10) 

By using equation (5.9) for substitution of 𝑀𝑈 into equation (5.10), E is 

related to the controller parameter error as: 

YkkMYYMUME )()()()( **
33

*
22

*
11 −+−+

Λ
−+

Λ
−= θθθθθθ .             (5.11) 

The proposed control law is    )( 100 EFYFRCU −−= .                             (5.12) 

Thus,     EkFkRYYUU 13
21 −++
Λ

+
Λ

= θ
θθ

                      (5.13) 

The stable transfer function, )(1 sF  is chosen as  

qsk
sMsF

)1(
1)()( 1

1 +
= −

τ
                                     (5.14) 

where q is an integer not less than mn − , and τ is a small positive time 

constant. τ is chosen for any frequency band ],[ ul ωω  (where lω  = lower 

frequency bound (0.00001 rad/s in this study) and uω = upper frequency bound 

(0.1 rad/s in this study)). 

},min{ 0
1 qh

l

uω
ττ <                                                (5.15) 
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The bounds for 1θ , 2θ , 3θ  and k are determined by using the uncertainty bounds 

and the general theory of Diophantine polynomial equations. 

]},[);(inf{0 ulll ωωωω ∈=                                     (5.21) 

0)( >ωl                                                      (5.22) 

where 0≥> lu ωω  are finite. 

Thus, )(),(),( 100 sFandsCsF  are chosen to obtain the robust stability for any 

finite frequency band ],[ ul ωω  and to achieve the following performance 

specification: 

)()()( ωωω ljGjM c <− ,                ],[ ul ωωω ∈∀            (5.23) 

 

5.4 Details of the Study 

 The effectiveness of LMEC is evaluated in silico on a virtual cohort of 

T1D patients by perturbing the key parameters of the models by 40% i.e. we 

consider a ±40% uncertainty bound on the parameters. The LMEC controller 

algorithm is designed and its performance is evaluated on the chosen 

simulated T1D patient models (Bergman model, Parker model & Fabietti 

model). For performance evaluation, a normal day (with three meal 

disturbances: breakfast (10.8 g), lunch (50 g), and dinner (50 g) carbohydrate 

at meal times 7 am, 12 noon, and 6 pm respectively) was simulated. A bit 

different meal amount from previous chapters is considered here; again, the 
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meal amount can be different at any time. The intravenous route is chosen for 

insulin administration to negotiate these meal disturbances. 

 

5.5 Evaluation of Disturbance Rejection  

The performance of LMEC is evaluated on three chosen diabetes 

patient models (Bergman, Parker, and Fabietti models) by generating virtual 

patient cohorts based on these models. The desired set point considered in this 

study is 4.5mmol/L (or 81.1mg/dL). The performance of the proposed 

controller on the above mentioned three patient models is presented below.  

 

5.5.1 Analysis with the Bergman Model 

Uncertainty bounds are determined for the parameters p1, p2, p3 and n 

of this model. The nominal values of the four model parameters are given in 

Table 5.1 (P2_basalnominal). The performance analysis of the LMEC would be 

evaluated on several patients constituted via model parameter perturbations. 

The four model parameters (i.e., p1, p2, p3 & n) are perturbed by changing 

them by ±40 % of their nominal values. Each parameter has three levels (min, 

nominal, max) and the combination of four parameters resulted in 81 (= 34) 

virtual patients in this study.  

The parametric sensitivity analysis for these 81 combinations is done 

using their BG response to 10% decrease in their basal insulin requirements. 

Three patients with minimum, nominal, and maximum BG responses from the 

nominal BG value (81.08mg/dL) are chosen to determine the uncertainty 

bounds assuming that these three patients could cover the uncertainty bound of 

all 81 virtual patients. The parameter values of these three patients are 

presented in Table 5.1. The patient who has nominal basal insulin infusion 

represents the nominal patient of Bergman model. The nonlinear ODE model 

with parameter values given in Table 5.1 of these three patients) are perturbed 

by a 10% decrease in their basal insulin infusion and the corresponding step 

responses are obtained. Each of the obtained step responses is approximated 

by a second order transfer function without delay {κ / (τ1s+1) (τ2s+1)} and the 

values are shown in Table 5.2. The uncertainty bounds are obtained from these 
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three second order transfer functions in the form of {κp/ (s+β) (s+γ)} and the 

values of these parameters are shown in Table 5.2 also. The lower, nominal & 

and upper uncertainty bounds {(κpl, βl, γl), (κp0, β0, γ0) & (κpu, βu, γu)} are 

marked as in Table 5.3. The reference model (M) is defined to be second order 

critical damping system of unit gain {M(s) = 1/(τM
2s2+2τMs+1): 𝜏𝑀 =

√𝜏1𝜏2/2} using τ1 & τ2 of nominal patient from Table 5.2. This model M(s) is 

converted into unit time constant form and is denoted as {M(s) = zM(s)/pM(s)}. 

To design the controller C0(s) and F0(s), {Λ(s) = (s+1)}, n = 2, m = 0, kM = zM, 

and (k*=kM/kpu) are defined. The θ1(s), θ2(s) and θ3(s) are determined using the 

general theory of Diophantine polynomial equations and nominal values of 

uncertainty bounds (κp0, β0, γ0). Similarly, the lower and upper bounds of θi(s) 

are estimated using lower and upper {(κpl, βl, γl) & (κpu, βu, γu)} uncertainty 

bounds. The values of θi are numeric values and are presented in Table 5.3. To 

define the F1(s), the time constant (τ) is estimated by trial and error using 

equations (5.10) to (5.22) to satisfy the equation (5.23).  

 
Table 5.1: Patient parameter values of nonlinear ODE model for chosen three 

Bergman model patients 
Patient (Pi) p1 p2 p3 n 

P1_basalmin 0.028735 ×1 .4 0.028344 × 1.4 5.035e-05 × 0.6 5/54 × 1.4 
P2_basalnominal 0.028735 0.028344 5.035e-05 5/54 
P3_basalmax 0.028735 × 0.6 0.028344 × 0.6 5.035e-05 × 1.4 5/54 × 1.4 

 
 

Table 5.2: Parameter values of estimated second order transfer functions for 
chosen three Bergman model patients 

Patient (Pi) κ τ1 τ2 κp  β  γ  
P1_basalmin -1.02 26.54 26.54 -1.44×10-3 3.77×10-2 3.77×10-2 
P2_basalnominal -4.94 38.74 38.74 -3.29×10-3 2.58×10-2 2.58×10-2 
P3_basalmax -19.39 78.98 78.98 -3.11×10-3 1.27×10-2 1.27×10-2 

 
 

The meal model proposed by Lam et al. (2002) which gives a more 

realistic BG response for a given meal compared to Fisher meal model is used 

as the disturbance model (see Appendix A. 2), and the rate of insulin infusion 

is bounded between [0, 100] mU/min. The performance results of LMEC 

controller on the nominal patient and the cohort of 81 patients are illustrated in 

Figures 5.2 through 5.4. 
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Figure 5.2: Performance of LMEC on Bergman nominal patient model for the 
three meal disturbances (upper red dash-dot line: 180mg/dL, lower red dash-

dot line: 60mg/dL) 
 

 
Figure 5.3: Insulin infusion profile obtained with LMEC on Bergman nominal 

patient model corresponding to the meal disturbances 
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Figure 5.4: Performance of LMEC on a cohort comprising of 81 patients 

obtained from Bergman model (red dash-dot line: 60 mg/dL) 
 
 

Table 5.3: Parameter values for designed LMEC controller for Bergman 
Model  

[κpl  κp0  κpu] [-3.29 -3.11 -1.44] ×10-3 
[βl   β0  βu] [1.27 2.58 3.77] ×10-2 
[γl   γ0   γu] [1.27 2.58 3.77] ×10-2 
τ 0.51 
zM(s) 2.67 ×10-3 
pM(s) s2 + 10.33 ×10-2s + 2.67 ×10-3 
[θ1  θ2   θ2] [-5.16  -1489.30   1549.02] ×10-2 

 
 

The performance of designed LMEC on nominal patient is satisfactory, 

and BG values are in the range of 80~180mg/dL during the given three meals. 

The results of using LMEC on the patients generated with the Bergman model 

show that none of the 81 virtual patients enter the undesirable hypoglycemic 

region (<60mg/dL) and lowest glucose value reached is 72.81mg/dL. The 

highest BG value after meal reaches 213.93mg/dL, and is in the acceptable 

range although higher than 180mg/dL. It can be concluded that the 

performance of LMEC controller is satisfactory in the sense of avoiding 

hypoglycemia and maintaining reasonable BG profile through the day. It can 

also be concluded that defining uncertainty bounds using the deviation from 
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nominal BG value by 10% decrease in basal insulin is appropriate. In short, 

the LMEC with the careful specification of the uncertainty bounds is 

promising for BG control. 

 

5.5.2 Analysis with the Parker Model  

Parker et al. (2000) identified the set of eight patient model parameters 

(EIPGU-EГ, EIPGU-DГ, EGHGU-EГ, EGHGU-DГ, EGHGP-EГ, EGHGP-DГ, 

FPIC & FHIC) from amongst the 19 parameters by parametric sensitivity 

analysis. They noted that ±40% deviations in three parameters (EIPGU-EГ, 

EGHGU-EГ, and EGHGP-EГ) from their nominal values have significant 

resistance to insulin and glucose dynamics. Thus, these three parameters are 

assumed that they might almost cover the most uncertainty bounds and are 

chosen from the set of eight patient-specific parameters to determine the 

uncertainty bounds for the LMEC controller to avoid extensive numerical 

analysis. The combination of these three variables with three permutations of 

each variable (maximum limit, nominal value, minimum limit) results in 27 

combinations. The amount of insulin required to maintain the BG of each of 

these 27 patients at 81.1mg/dL (4.5mmol/L) is calculated.  

The “patients” that required the minimum, nominal and maximum 

insulin amounts to keep BG at 81.1 mg/dL (4.5 mmol/L) are chosen and their 

step responses by 10% reduction in basal insulin infusion are approximated by 

second order transfer functions. Similar methods and procedures to define the 

uncertainty bounds and designing the LMEC controller as in section (5.5.1) 

are applied here to design the LMEC controller for Parker model type patients. 

The parameter values for linear second order transfer functions and designed 

LMEC controller parameter values are provided in Tables 5.4 and 5.5 

respectively.   

 
Table 5.4: Parameter values of estimated second order transfer functions for 

chosen three Parker model patients 
 

Patient (Pi) κ τ1 τ2 κp β γ 
P1_basalmin -6.09 53.44 23.52 -0.48 ×10-2 1.87 ×10-2 4.25 ×10-2 
P2_basalnominal -6.88 52.99 24.45 -0.53 ×10-2 1.89 ×10-2 4.09 ×10-2 
P3_basalmax -7.54 69.19 25.05 -0.43 ×10-2 1.45 ×10-2 3.99 ×10-2 
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Table 5.5: Parameter values for designed LMEC controller for Parker Model 
 

[κpl  κp0  κpu] [-0.53   -0.48   -0.43] ×10-2 
[βl    β0  βu] [1.45    1.87    1.89] ×10-2 
[γl   γ0    γu] [3.99    4.09    4.25] ×10-2 
τ 6.33 
zM(s) 0.31 ×10-2 
pM(s) s2 + 11.06 ×10-2s + 0.31 ×10-2 
[θ1  θ2   θ2] [-5.10   -992.21   1038.82] ×10-2 

 

 
The robust performance of the designed LMEC controller is validated 

on a cohort of 577 virtual patients created from the Parker model (the details 

of which were presented in section 2.4). The performance of the designed 

LMEC controller on the nominal patient and on the cohort of 577 patients with 

three meal disturbances (Lehmann and Deutsch meal model described in 

section 2.3) are shown in Figures 5.5 to 5.8. The rate of maximum insulin 

infusion is set to not exceed 100mU/min (6000 mU/hr) taking into account the 

capability of modern insulin pumps.  

 

 

Figure 5.5: Performance of LMEC on nominal patient (Parker model) with 
three meal disturbances (red dash-dot line: 80 mg/dL) 
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Figure 5.6: Insulin infusion profile of LMEC on nominal patient (Parker 

model) 
 
 
 
 
 

 
Figure 5.7: Blood glucose concentration profiles of 577 constituted patients 

using Parker model 
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Figure 5.8: Insulin infusion profiles of LMEC on 577 constituted patients 

using Parker model 
 
 

With LMEC, none of the 577 patients generated from the Parker model 

enter the undesirable hyperglycemic region (>180mg/dL) and none 

experienced the dangerous hypoglycemia. Thus, all the 577 patients can be 

kept in BG range of 60~180mg/dL (with minimum and maximum BG values 

of 62.06mg/dL and 168.32mg/dL respectively). From these results, it can be 

concluded that the three parameters chosen for determination of uncertainty 

bounds are appropriate. However, steady state offset (deviation from setpoint) 

is observed in some of the patients. This may be due to insufficient integral 

action in the designed LMEC which can be improved with careful 

determination of uncertainty bounds.     

 

5.5.3 Analysis with the Fabietti Model 

The T1D patient model by Fabietti et al. (2006) contains eight patient-

dependent parameters. From these, four parameters (Txi, Ti, Ki, and Kis) are 

chosen for producing the simulated patients (circadian insulin sensitivity 

variation is kept constant at 1). These four parameters were identified as most 

important in Fabietti et al. (2006). When these parameters were varied at 3 
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levels, this resulted in a cohort of 81 virtual patients (using ±40% parameter 

variation from nominal values of the four chosen parameters). Similarly, as in 

the above models, three patients that required minimum, nominal and 

maximum basal insulin infusion are chosen. The bounds for uncertainty to 

design LMEC controller are determined from their step responses produced by 

10% reduction in their basal insulin amount. These step responses obtained are 

fitted to second order transfer functions. Then, the LMEC controller is 

designed based on the uncertainty bounds generated from three second order 

transfer function approximations. The same course of determining uncertainty 

bounds and estimating LMEC controller parameters as in section (5.5.1) are 

used in designing LMEC controller for this model. The approximated linear 

second order transfer function parameters and designed parameters for LMEC 

controller for this patient model are shown in Tables 5.6 and 5.7 respectively.  

 
Table 5.6: Parameter values of estimated second order transfer functions for 

chosen three Fabietti model patients 
 Patient (Pi) κ τ1 τ2 κp β γ 

P1_basalmin -4.59 ×10-3 3.81 3.81 -0.32 ×10-3 2.62 ×10-1 2.62 ×10-1 
P2_basalnominal -9.76 ×10-3 3.47 2.10 -1.34 ×10-3 2.88 ×10-1 4.76 ×10-1 
P3_basalmax -6.06 ×10-3 4.45 1.60 -0.85 ×10-3 2.25 ×10-1 6.27 ×10-1 

 

Table 5.7: Parameter values for designed LMEC controller for Fabietti Model 
[κpl  κp0  κpu] [-1.34 -0.85 -0.32] ×10-3 
[βl    β0  βu] [2.25    2.62    2.88] ×10-1 
[γl   γ0    γu] [2.62    4.76    6.27] ×10-1 
τ 0.87 
zM(s) 49.95 ×10-2 
pM(s) s2 + 141.36 ×10-2s + 49.95 ×10-2 
[θ1  θ2   θ2] [-67.51 -30571.56  64591.80] ×10-2 

 

The robust performance of the LMEC controller in rejection of 

disturbances is evaluated on the 81 patient cohorts that include the nominal 

patient. The embedded meal model in Fabietti et al. (2006) is used for gut 

absorption in which meal   can be defined as a mixture of sugar, starch, and 

fiber. The results of the controller performance are shown in Figures 5.9 to 

5.11. The infusion rate of insulin pump is bounded by [0, 8000] mU/hr in this 

case study assuming the future capability of insulin pumps and to show the 

effectiveness of the controller.  
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Figure 5.9: Performance of LMEC on nominal patient (Fabietti model) with 

three meal disturbances (red dash-dot line: 80 mg/dL) 
 
 
 
 

 

Figure 5.10: Insulin infusion profile of LMEC on nominal patient (Fabietti 
model) 
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Figure 5.11: Performance of LMEC on the 81 patient cohort generated using 

the Fabietti model (red dash-dot line: 60 mg/dL) 
 

 
From the results obtained after applying the LMEC on the 81-patient 

cohort obtained from the Fabietti model (shown in Figure 5.11), it is seen that 

all of them are maintained in BG range of 60~180mg/dL. None of the 81 

patients enter the dangerous hypoglycemic region (<3.33mmol/L=60mg/dL) 

or the postprandial hyperglycemic region (>180mg/dL) with minimum and 

maximum BG values of 67.93mg/dL and 150.32mg/dL respectively. 

 

5.6 Conclusions 

From the investigations conducted, it appears that the LMEC controller 

is a promising candidate for blood glucose control in T1D patients if frequent 

sampling (1 min interval is used in this study) of BG concentration is possible. 

LMEC is able to avoid hypoglycemia in a vast majority of virtual Type 1 

Diabetic patients. These hypoglycemic episodes can probably be circumvented 

through a careful specification of the uncertainty bounds. Steady state offset 

from the target value of 81.1mg/dL (4.5mmol/L) is also found with LMEC in 

Parker model but this may also be improved with refined uncertainty bounds. 
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Despite these drawbacks, it could be concluded that LMEC controller is 

capable of effectively regulating BG levels in T1D patients. 
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Chapter 6 

Glycemic Control for Type 1 Diabetics using Multirate System 

Identification and Modeling Error Compensator 

 

6.1 Background 

A number of mathematical models for diabetics and several control 

algorithms for blood glucose regulation have been proposed and employed in 

the literature. Robust control algorithms were shown to cope well the inter- 

and intra-patient variability by some researchers (Parker et al., 2000 and 

Ramprasad et al., 2004b). In these studies, the inter- and intra-patient 

variabilities were represented by certain parametric uncertainty bounds. The 

LMEC controller introduced by Sun et al. (1994) is one robust controller that 

was designed to deal with bounded parametric uncertainties. The effectiveness 

of this controller for treating T1D patients was studied in Chapter 5 from 

where it appears that LMEC is a possible candidate for BG control in T1D 

patients. However, the controller depends solely on the mathematical model 

and further clinical validation would be required to test this control strategy on 

real patients. Towards this effort, it would be worthwhile to develop the 

controller based on models developed from patient data using system 

identification tools. This could pave way for a more personalized diabetic care, 

and hence it is explored here.  

 

6.2 Motivation and Objective 

For the situation in which historical data (BG and rate of insulin 

infusion amount measurements) is available from patients, the controller 

would be more effective if it is designed based on these data. Moreover, while 

frequent sampling of BG will enable better BG control, current glucose sensor 

technology is still not there.  The typical sampling time of current glucose 

sensors are 3~6 min.   Measurement of insulin infusion rates are available 

more frequently, and meal data are available on a few-hourly basis. This 
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naturally leads to a multirate data set with less frequent BG measurement, 

even less frequent meal measurement and fast insulin infusion rate 

measurement. We assume that the patient is on continuous insulin infusion. 

Developing a control strategy based on such data will benefit diabetes care. In 

this chapter, a strategy to utilize multirate patient data for designing robust 

controllers will be outlined and evaluated. 

 

6.3 Multirate System Identification and Application of Lifting Technique  

Multirate systems are periodically time varying systems and so many 

developed identification methods cannot be directly applied. Lifting technique 

is a powerful tool which converts linear periodically time varying system 

(LPTV) to linear time invariant (LTI) system to which most of the system 

identification techniques can be applied successfully. Applying the lifting 

technique to the Single Input/ Single Output (SISO) multirate system with 

input (U ) and output (Y ) which are sampled with sampling interval ( pm× ) 

and ( pn× ) respectively ( m n , :n m γ= and p = base time period, both m  

and n  are coprime) can be illustrated as follow:  

In Figure 6.1, SISO multirate system (from U  toY ) is LPTV system, 

SISO multirate lifted system (from 1 nU U  toY ) is LTI system where 

1 nU U  represent the lifted input signals, the dash-dot line represents the fast 

rate sampling (sampling interval mp ) and dash-line represents the slow rate 

sampling (sampling interval np ). The lifting the input U can be described in 

mathematical equation (6.1).  

       

 
 

Figure 6.1: Applying the lifting technique to SISO multirate system 

 U
1U

Process Process 

nU

U lifting→Y Y

SISO multirate system SISO multirate lifted system 
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                                (6.1) 

      It is clear that dimension of U is n times that of U and underlying 

period of U is n times that of U again. Thus, now U and Y have the same time 

interval, np  and the lifted system becomes single rate system (lifted slow rate 

system). The details can be found in Khargonekar et al. (1985). A SISO 

multirate system can be effectively been converted into a MISO/MIMO single 

rate system. Standard system identification tools can now be applied to 

identify a model that represents the system dynamics for the slow sampling 

period. A fast rate model must then be extracted from this slow rate model.  

 

6.4 Details of the Study 

The MRID algorithm based on the lifting technique and using state 

space system identification (SSID) method would be useful in extracting the 

fast rate model from patient’s historical data. Then, an appropriately designed 

robust controller can be used to deal with unavoidable inter- and intra-patient 

variability. Previous study (Chapter 5) shows that LMEC is a good candidate 

for this purpose and we choose it to design the model based controller. LMEC 

can be implemented using the extracted fast rate model and the current glucose 

sensor sampling rate and provide frequent controller action (i.e. insulin 

infusion). Use of the fast rate LMEC is likely to lead to more effective BG 

control. The details of this algorithm will be presented in the following order: 

(1) collecting historical data (Section 6.4.1), (2) applying multirate system 

identification (Section 6.4.2) and (3) designing LMEC controller (Section 

6.4.3). The meal amount is estimated based on the scheduled and 

recommended meal amount for T1D patients (with given three meal glucose 

amounts: 20 g breakfast, 50 g lunch and 50 g dinner at 7am, 12pm, and 6pm 

respectively per day). (The measurement noise for meal measurement is not 

considered here as it is estimated.) Measurement noise on BG (sensor noise) of 

about 17% is applied throughout this study. 
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6.4.1 Collecting Patient Data 

      In the absence of real patient data, we used the data obtained by using 

the YIIP algorithm (Chapter 4) on patients generated using the model of 

Fabietti et al. (2006). Without loss of generality, data from patients or other 

model-treatment method combinations can be utilized. To be realistic, we 

collect data such that BG concentration is sampled less frequently (3 min 

sampling) while meal input (that will be transformed into glucose input from 

meal or meal ingestion profile using a filter described in Fabietti et al. (2006) 

to meal ingestion rate)  and insulin infusion rate are sampled frequently (36 

sec sampling).  

Note that BG concentration is the controlled variable (output) while the 

meal input and insulin infusion rate are the input variables. We assume that the 

“patient” has no initial hyperglycemia and receives external insulin infusion as 

recommended by the YIIP. Data is collected over a period of 17 days from a 

cohort of “patients” assuming three meal disturbances (glucose amounts: 20 g 

breakfast, 50 g lunch and 50 g dinner) per day. 

 

6.4.2 Application of Multirate System Identification 

The collected data comprises of BG measurement (one process output) 

collected at 3 min sampling interval ( pn× ) and insulin infusion rate & 

glucose input from meal that is estimated from meal input (two process inputs) 

collected at 36sec sampling interval ( pm× ), where m =1, n =5, and p =36sec. 

Thus, we have a sampling interval ratio, γ = 5. A typical illustration of the 

data can be seen in Section 4.6.2 (glucose input estimated from meal input is 

illustrated as meal ingestion profile in the figures). The two inputs are lifted 

according to Li et al. (2001) and Wang et al. (2004).  

By applying the lifting technique to the insulin infusion rate, we get the 

lifted input signals as described in eq. (6.1). After applying the lifting 

technique to the two process inputs with γ = 5, the lifted system (slow rate 

system) has ten lifted inputs and one output with the same sampling interval of 

( pn× ). A state space model of the lifted system can be expressed as follows 

(Khargonekar et al., 1985): 
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                      (6.2) 

To achieve the identifiablity of a state space model, the lifted slow-rate 

model must be controllable and observable. The lifted slow-rate system is 

controllable and observable only if the continuous-time system G is 

observable and controllable. This assumption is valid with the non-

pathological sampling interval p ; the continuous time delay τ  must be in the 

range of [0, ]p . We assume that the system time delay is within this limit in 

this study. Wang et al. (2004) proved that the lifted system can be controllable: 

(Ai, Bi) is controllable if ( , )A B is controllable and A  has no eigenvalue on the 

unit circle (the proof can be seen in Wang et al. (2004)). Here, we use the 

N4SID method (System Identification Toolbox, Matlab 2008b) to identify the 

Steady State (SS) model. 

Three ways have been proposed by Li et al. (2001) to extract the fast 

rate model from the lifted slow-rate system. Wang et al. (2004) further 

developed these methods and demonstrated how one could obtain a fast-rate 

model with sampling period p for the system with 3p hold interval and 2 p

sampling interval. Though theoretically sound, the above methods sometimes 

present numerical difficulties. An alternate approach by Lakshminarayanan 

(2000) is a practical solution to the problem. Firstly, he employs model 

reduction to the slow-rate model to obtain minimal state space form. The 

reduced-order model is produced with matching DC gain using equivalent 

steady state step response.  

The state or states to be deleted is determined using ‘balreal’ command 

in MATLAB. The ‘balreal’ command (The MathWorks, Inc. 1998) is used for 

producing a balanced realization in state space form reflecting the same 

controllable and observable properties of the individual states. The elements in 

the diagonal of the balanced realization form reflect the grammian-based 

combined controllable and observable properties of the different states.  
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One can delete those elements of the diagonal (states) with small value 

so that the most important features of the original system can be captured by 

retaining the larger values of the diagonal elements. The weak state(s) which 

are computed from ‘balreal’ command were deleted using the ‘modred’ 

command in MATLAB. The remaining model contains the most essential 

input-output characteristics of the original slow-rate system.  

The ‘modred’ command (The MathWorks, Inc. 1998) with matching 

DC gain method works as follows for the discrete-time state space model: 

Let the discrete-time state space model be 

( 1) ( ) ( )x k Ax k Bu k+ = +                                          (6.3) 

( ) ( ) ( )y k Cx k Du k= + .                                       (6.4) 

The state vector is divided into two parts, x1 (the states that are to be retained) 

and x2 (the states that may be eliminated). 

1

2

( 1)
( 1)

x k
x k

+ 
 + 

= 11 12 1 1

21 22 2 2

( )
( )

( )
A A x k B

u k
A A x k B
     

+     
     

            (6.5) 

( )y k =[ ]1 2 ( ) ( )C C x k Du k+                                          (6.6) 

Then, 1x states are calculated by setting the derivative of 2x to zero and the 

reduced-order model is as follows: 
1 1

1 11 12 22 21 1 1 12 22 2( 1) [ ] ( ) [ ] ( )x k A A A A x k B A A B u k− −+ = − + −                       (6.7) 

1 1
1 2 22 21 2 22 2( ) [ ] ( ) [ ] ( )y k C C A A x k D C A B u k− −= − + −                            (6.8) 

Then, the fast rate model Gf with p sampling interval is extracted from 

resulting low order slow-rate discrete-time model using ‘d2d’ MATLAB 

command which can transform discrete-time model with particular sampling 

interval into discrete-time model with required sampling interval. This method 

operates in state space domain and the resulting fast-rate model is also in 

discrete-time state space form valid for sampling interval p . 

In this work, a new approach, shown in Figure 6.2, is proposed to 

obtain the fast rate model. The gain of the SS model obtained from slow rate 

identification has discrepancies due to loss of information resulting from 

lifting the system.  Thus, the best possible system gain is found using a best 

lifted insulin input and a best lifted meal input (the lifted input signals which 

have “proper response” and are best representatives of original manipulated 
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variables are chosen from the bundle of lifted input signals) by optimization 

approach that can give best fit to the output variable (here, “proper response” 

means that the signal grasps the negative sign of process gain for insulin 

model and positive sign of process gain for meal model). The nonlinear least 

squares (NLLS) fit is applied here as a quick start. The ‘lsqnonlin’ command 

in MATLAB can be used for this method; desired bounds on the optimized 

variables can be given to ensure proper values for the adjusted gain. The 

NLLS optimization method gives quick and best solution to the objective 

function. The SS model with adjusted gain is then approximated by a second 

order transfer function (SOTF). The optimization approach with direct search 

method (‘fminsearch’ function in MATLAB) is applied here. The new 

continuous SOTF with adjusted model gain and time constants can be 

converted into discrete model with sampling interval p  by using “c2d” 

command in MATLAB. This discrete model is referred to as the MRID model 

in this work. 

  
Figure 6.2: Diagram for “New MRID” (NMRID) approach 

 

The SOTF parameters are used as the initial estimates for the nonlinear 

optimization using pattern search method in MATLAB in which new 
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continuous SOTF model (referred to as NSOTF) parameters are found for the 

cost function to give the best fit to the BG output using a best lifted insulin 

input and a best lifted meal input. The pattern search engine gives the best 

possible local minimum of the objective function with specified bounds on the 

optimization variables. The obtained NSOTF model can be converted into 

discrete fast rate model with the sampling interval p  and the resulting model 

is referred to as the “New MRID” (NMRID) model in this work. Note that the 

fast rate model obtained from the NMRID procedure is employed to obtain the 

inter-sample BG estimates for each of the patients. The LMEC-MRID 

controller (to be described next) will use these estimates to determine insulin 

infusion rates at time instants where the measured BG values are not available. 

In addition, note that the parameters of NSOTF model will be used in LMEC-

MRID controller development.  

 

6.4.3 Design of Linear Modeling Error Compensator 

The LMEC controller is designed based on the BG responses of 

selected patients to changes in insulin infusion rate. LMEC is developed for 

two scenarios based on the linearized models and the uncertainty description 

derived from them. LMEC is designed based on: (1) unit step response of 

linear models (NSOTF model) obtained from MRID of 7 selected “patients” 

(LMEC-MRID I) and (2) linear models obtained from the response of the 

nonlinear models (unit step response at nominal insulin infusion rate is 

approximated by second order linear transfer function model) of 12 selected 

“patients” (including 5 more patients to the chosen 7 MRID patients) (LMEC-

MRID II). LMEC-MRID II is developed to act as performance benchmark to 

LMEC-MRID I. 

The responses of the nominal “patient” from both scenarios provide us 

the nominal model parameters. The bounds for uncertainty are determined 

from the parameters of the estimated linear second order transfer functions of 

the selected patients. The smallest and largest parameter values are defined as 

lower and upper bound. These bounds for the uncertainty (assuming that they 

represent inherent inter- and intra-patient variability) are incorporated in the 

controller design. The uncertainty bound of LMEC-MRID II was found to be 
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wider than that of LMEC-MRID I. The details of LMEC-MRID controller 

design has already been described in Section 5.3.2.  

 

6.5 MRID Results and Discussion 

Seven specific patients are chosen from the cohort of 81 patients 

(Fabietti model). These chosen patients consist of nominal patient, and the 

patients who have lowest and highest BG from each of the three groups (as 

described in Section 4.6.3). The proposed NMRID is applied to obtain the fast 

rate model from the multirate historical data (where patients were treated using 

YIIP) of the 7 patients. The parameter values of the NSOTF model for the 7 

patients are given in Table 6.1. The NSOTF model parameters are compared 

with those of actual (NL) model approximated by a second order transfer 

function and that of SOTF models. 

 

Table 6.1: Details of the NSOTF models 
Patient Model κi τi1 τi2 κm τm1 τm2 MAE 

 NL -0.16 2.77 2.77 2.08 1.29 1.29 - 
Nominal SOTF -0.07 1.27 1.27 2.47 1.16 1.16 7.21 

 NSOTF -0.09 2.89 2.89 1.64 1.91 1.91 1.51 

G1L 
(C4p3) 

NL -0.02 2.56 2.56 1.73 1.05 1.05 - 
SOTF -0.23×10-2 0.47 0.47 0.88 0.44 0.44 16.25 

NSOTF -0.026 2.45 2.45 1.29 1.24 1.24 3.56 

G1H 
(C7p7) 

NL -0.05 5 5 4.59 3.04 3.04 - 
SOTF -0.92 ×10-

2 
1.11 1.11 2.19 1.10 1.10 15.84 

NSOTF -0.03 4.64 4.64 2.44 3.41 3.41 2.45 

G2L 
(C5p3) 

NL -0.06 2.57 2.57 1.73 1.05 1.05 - 
SOTF -0.45 ×10-

2 
0.44 0.44 0.76 0.46 0.46 15.76 

NSOTF -0.09 2.50 2.50 1.36 1.43 1.43 3.50 

G2H 
(C8p4) 

NL -0.07 4.12 4.12 4.59 3.04 3.04 - 
SOTF -0.76 ×10-

2 
1.05 1.05 1.77 0.73 0.73 11.40 

NSOTF -0.10 5.39 5.39 2.27 3.12 3.12 2.14 

G3L 
(C6p3) 

NL -0.11 2.57 2.57 1.73 1.05 1.05 - 
SOTF -0.02 1.15 1.15 0.08 0.89 0.89 22.42 

NSOTF -0.23 2.95 2.84 1.57 1.74 1.74 2.69 

G3H 
(C9p7) 

NL -0.27 5 5 4.59 3.04 3.04 - 
SOTF -0.02 1.40 1.40 1.79 1.39 1.39 17.99 

NSOTF -0.18 4.87 4.87 2.43 3.40 3.40 2.63 
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The model fits using SOTF and NSOTF models are displayed in Figure 

6.3 for nominal patient and compared with the YIIP data. For the nominal 

patient, the mean absolute error (MAE) between actual data (YIIP) and 

NSOTF model prediction is 1.51mg/dL which is rather good. The gain of unit 

step response for insulin using NSOTF model is closer to that of NL model 

than that of SOTF model even though the NSOTF model gain shows a gain 

mismatch with the actual NL model (values are provided in Table 6.1). The 

model fit to the actual BG response is better with the NSOTF model than with 

the SOTF model. The NSOTF model seems more acceptable compared to the 

SOTF model. 

 
Figure 6.3: Model fit for nominal patients (solid line: SOTF model, dash-dot 

line:  NSOTF model, dotted line: actual BG response) 
 

The second chosen patient is from Class 4 (Group I) whose BG is the 

lowest in the group. The model fits to the actual BG response are compared in 

Figure 6.4 and MAE of NSOTF model is 3.56mg/dL (given in Table 6.1). The 

NSOTF model gains for both insulin and meal are much better than those 

obtained from SOTF model (values are provided in Table 6.1). The model fit 

of NSOTF model is not good as it does not match with the actual BG response 

trend at several places (e.g. between 15hr and 25hr) but is acceptable. The 

MAE of NSOTF model is higher compared to that obtained for the nominal 

patient but the difference is not significant to be of any concern.  
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Figure 6.4: Model fit for a patient from Class 4, Group I (solid line: SOTF 

model, dash-dot line:  NSOTF model, dotted line: actual BG response) 
 

 

 

 

 
Figure 6.5: Model fit for a patient from Class 7, Group I (solid blue line: 

SOTF model, dash-dot black line:  NSOTF model, dotted red line: actual BG 
response) 
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The third chosen patient is from Class 7 (Group I) whose BG is highest 

in the group. The model fit of identified models are compared with the actual 

BG response in Figure 6.5. The MAE of NSOTF model fit is 2.45mg/dL. The 

gains of NSOTF model for insulin and meal are better than that of the SOTF 

model in terms of closeness to the gains obtained with the NL model. 

However, the gains of NSOTF model are about half of the actual response 

indicating significant mismatch to the actual BG response. Therefore, the 

response of NSOTF model is about 20mg/dL to 30mg/dL higher at the start 

(first 5 hours in Figure 6.5). These features might lead to over infusion of 

insulin and subsequently to lower BG in patients. However, this deficiency in 

the model can be compensated by bias updating.  

The fourth patient is chosen from Group II, Class 5. This patient has 

the lowest BG response in the group, and the MRID and NMRID results are 

demonstrated in Figure 6.6 for the resulting model fit. Again the NSOTF 

model gains are much better than that of the fast-rate model. The NSOTF 

model gain of insulin is higher than actual response, and that of meal is 

slightly lower than actual response (values are provided in Table 6.1). The 

NSOTF model has a MAE of 3.50 mg/dL. The estimated values for the model 

parameters indicate that use of this model in a control algorithm for computing 

insulin infusion can lead to lower insulin infusion than the actual required 

amount which may lead to hyperglycemia. This, though not optimal, is not life 

threatening in most cases. The performance of the SOTF model is not 

acceptable. 

The fifth patient is chosen from Group II, Class 8 to represent the 

patient with highest BG in this group. The MRID and NMRID results are 

presented in Figure 6.7 showing the model fit to the YIIP data. The NSOTF 

model gain for insulin is much better than the corresponding gain of the SOTF 

model. The gain for meal input is slightly better than SOTF model gain 

(values are described in Table 6.1). The NSOTF model gain for meal is lower 

than actual model gain, that for insulin is higher than actual model gain and 

time constants are greater than the actual model. These will lead to the lesser 

insulin infusion and will lead to similar effect and conclusion as in above case 

(the fourth patient). The model fit is quite good with MAE equal to 2.14mg/dL 
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for the NSOTF model. There is a mismatch of about 10mg/dL at the very start 

(0-5 hours in Figure 6.7) for the NSOTF model but the model fit for the later 

times is very acceptable. 

 

 

Figure 6.6: Model fit for a patient from Class 5, Group II (solid line: SOTF 
model, dash-dot line:  NSOTF model, dotted line: actual BG response) 

 

 

 
Figure 6.7: Model fit for a patient from Class 8, Group II (solid line: SOTF 

model, dash-dot line:  NSOTF model, dotted line: actual BG response) 

10 20 30 40 50 60 70 80 90 100
40

60

80

100

120

140

160

Time (hr)

B
G

 c
on

c 
(m

g/
dL

)

10 20 30 40 50 60 70 80 90 100
60

80

100

120

140

160

180

Time (hr)

B
G

 c
on

c 
(m

g/
dL

)



114 
 

The sixth patient is from Class 6, Group III with the lowest BG in the 

group. The MRID and NMRID model fits for this patient are shown in Figure 

6.8. The gain of insulin in the NSOTF model is about two times the true gain 

and that of meal input and is close to the actual model gain. These gains are 

much better than the gains indicated by the SOTF model (see values in Table 

6.1).  The time constant values in the NSOTF model are similar to the actual 

values. For this patient, the NSOTF model has an MAE value equal to 

2.69mg/dL. Because of much lower gain values, the SOTF model is not 

acceptable at all. (In the SOTF model identified, the time constants are also 

smaller than the true values.) Significant discrepancy is exhibited during the 

first 5 hours by the NSOTF model with higher estimated BG values than the 

actual BG response but the model fit for the later times is quite acceptable.  

 

 
 

Figure 6.8: Model fit for a patient from Class 6, Group III (solid line: SOTF 
model, dash-dot line:  NSOTF model, dotted line: actual BG response) 

 
 

The last (seventh) patient is from Class 9, Group III with highest BG 

values in its group. The model fits for SOTF and NSOTF are compared to the 

YIIP data in Figure 6.9. In the NSOTF model identified, the absolute value of 

gains for insulin and meal inputs are lesser than actual model gains. The 

overall model fit (for NSOTF model) exhibits a MAE value of 2.63mg/dL. 
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Significant discrepancy is exhibited during the first 5 hours by the NSOTF 

model with higher estimated BG values than the actual BG response but the 

model fit for the later times is acceptable.  

 

 
 

Figure 6.9: Model fit for a patient from Class 9, Group III (solid line: SOTF 
model, dash-dot line:  NSOTF model, dotted line: actual BG response) 

 

The pattern search used for NSOTF model converges for all 7 patients 

chosen. All the above results demonstrate that the NSOTF model is better than 

the SOTF model and is closer to the actual model responses. Values of time 

constants of NSOTF model are much closer to actual model values. Likewise, 

the gain values of NSOTF models are closer to actual model gain values and 

much better than the SOTF model values. The experience with SOTF and 

NSOTF models indicate that NSOTF models can be used for controller design. 

The LMEC implementation is presented in the next section.  

 

6.6 LMEC-MRID, Results and Discussion 

LMEC-MRID implementation is described in Section 6.6.1 and the 

results are shown and discussed in Section 6.6.2. 
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6.6.1 LMEC-MRID Implementation 

We developed two LMEC-MRID controllers: (1) LMEC-MRID I is 

developed based on NMRID results of the 7 selected patients discussed above 

and (2) LMEC-MRID II developed based on second order transfer function 

approximation of NL model response of 12 chosen patients (7 patients 

described above and additional 5 more patients chosen randomly to obtain 

more accurate uncertainty bounds than LMEC-MRID I. LMEC-MRID II is 

designed also as benchmark controller for LMEC-MRID I and to check if 

discrepancy exists in defined uncertainty bounds by LMEC-MRID I using 

their performance comparison. 

 

LMEC-MRID I:  The NSOTF models (insulin and meal model) obtained 

from MRID are used to design the LMEC I controller (as outlined in Section 

6.4.3). The models can also help in the estimation of BG inter-sample 

measurements based on the frequently available data on meal and insulin 

inputs. Bias updating is performed at every sampling interval when the actual 

measurement is available from the BG sensor. To overcome the spikes in the 

controller outputs, a first order filter with time constant of 1 unit in simulation 

time (1hr in actual time) is applied. The initial state of the filter is set to basal 

insulin amount for each patient. The rate limiter is also applied for maximum 

input constraint and to avoid negative input. 

 

LMEC-MRID II: LMEC II (as described in section 6.4.3) is implemented 

along with the NMRID insulin and meal models which can help to estimate 

BG inter-sample measurements. The same first order filter setting is applied to 

remove input insulin infusion spikes. The same rate limiter setting as in 

LMEC-MRID I is used. 

 

6.6.2 LMEC-MRID Results and Discussion 

For the comparison LMEC-MRID performances, three patients are 

chosen (nominal patient from Group II and two patients with highest and the 

lowest BG from Group I and Group III respectively). For testing the 

disturbance rejection capability, meals containing 10 g, 50 g and 50 g of 
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carbohydrates are provided at 7 am, 12 noon and 6 pm respectively. The set 

point is one of the target values of 81mg/dL, 90mg/dL and 100mg/dL to 

investigate the proper set point to be ensure the proper BG control.  The 

disturbance rejection capability will be demonstrated at each of these three set 

points.  

 

6.6.2.1 LMEC-MRID for Group II Patients 

Firstly, the LMEC-MRID controller settings are tuned for the nominal 

patient. The input constraint (insulin infusion rate <= 4000 mU/hr) is 

implemented for ensuring safe performance. The disturbance rejection 

performance of the two LMEC-MRID controllers for nominal patient at three 

set points (81.08mg/dL, 90mg/dL & 100mg/dL) are shown in Figure 6.10, 

6.11 and 6.12 respectively.   

 

 
 
 

Figure 6.10: Performance of LMEC-MRID controllers for nominal patient 
(Group II) with set point equal to 81 mg/dL (dashed line: LMEC-MRID I, 

dash-dot line: LMEC-MRID II, solid line: tailored YIIP) 
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Figure 6.11: Performance of LMEC-MRID controllers for nominal patient 
(Group II) with set point equal to 90 mg/dL (dashed line: LMEC-MRID I, 

dash-dot line: LMEC-MRID II, solid line: tailored YIIP) 
 

 
 

Figure 6.12: Performance of LMEC-MRID controllers for nominal patient 
(Group II) with set point equal to 100 mg/dL (dashed line: LMEC-MRID I, 

dash-dot line: LMEC-MRID II, solid line: tailored YIIP) 
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As shown in Figure 6.10 to 6.12, the performances of LMEC-MRID I 

and LMEC-MRID II are comparable. The BG results are in acceptable range 

(55mg/dL~180mg/dL). The controllers take about 3 to 5 hr for the set point to 

be reached after dinner. The controller output displays a proper trend to 

counteract the meal disturbance, and the resulting BG peak values are lower 

than tailored YIIP results, with lesser total insulin infusion amount and 

without hypoglycemic (BG < 50mg/dL) events. The total insulin amounts used 

by controllers for three set points for normal day (with three meals) are 

compared in Table 6.2.  

Table 6.2: Comparison of Insulin Infusion Amount for a Group II patient 
(nominal patient) 

Set point value LMEC-MRID I LMEC-MRID II YIIP 
81 mg/dL 4.14 ×101 U 4.15 ×101 U 6.84 ×102 U 
90 mg/dL 3.95 ×101 U 3.96 ×101 U 6.84 ×102 U 
100 mg/dL 3.76 ×101 U 3.77 ×101 U 6.84 ×102 U 

 
 

The total insulin amount used by YIIP is highest and that by LMEC-

MRID I is the lowest among the three controllers. The LMEC-MRID I uses 

lesser insulin amount and has comparable performance to the LMEC-MRID II. 

The BG trajectory goes below 60mg/dL in Figure 6.10 (for set point equal to 

81mg/dL) but the patient’s BG values stay above 60mg/dL for the other two 

set point values (90mg/dL and 100mg/dL). As expected, the set point value 

100mg/dL provides the best performance (normoglycemic region of 

70mg/dL<BG<180mg/dL) compared to the other two set point values, in the 

prospect of avoiding possible hypoglycemia. According to these results, to 

avoid possible hypoglycemia, a set point value of 100mg/dL seems to be 

better.  

 

6.6.2.2 LMEC-MRID for Group I Patients 

The LMEC-MRID controller output constraint is tuned for Group I 

patients who have highest basal insulin requirements among the cohort of 

patients. The patient from Class 7 (Group I) who exhibited highest BG values 

when subject to tailored YIIP treatment is selected as a representative member 

of this group. The corresponding LMEC-MRID results are shown in Figure 

6.13 to 6.15 for the three set points considered here.  
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Figure 6.13: Performance of LMEC-MRID controllers for a patient from Class 

7 (Group I) with set point equal to 81 mg/dL (dashed line: LMEC-MRID I, 
dash-dot line: LMEC-MRID II, solid line: tailored YIIP) 

 
  

 
Figure 6.14: Performance of LMEC-MRID controllers for a patient from Class 

7 (Group I) with set point equal to 90 mg/dL (dashed line: LMEC-MRID I, 
dash-dot line: LMEC-MRID II, solid line: tailored YIIP) 
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Figure 6.15: Performance of LMEC-MRID controllers for a patient from Class 
7 (Group I) with set point equal to 100 mg/dL (dashed line: LMEC-MRID I, 

dash-dot line: LMEC-MRID II, solid line: tailored YIIP) 
 

The total infusion amount of insulin for each of the set points for each 

controller (LMEC-MRID I, LMEC-MRID II & YIIP) in a normal day with 

three meals is given in Table 6.3. Similarly as in the above nominal patient, 

the total insulin amount used by YIIP is highest and that by LMEC-MRID I is 

lowest among the three controllers. Likewise in the above nominal patient 

case, LMEC-MRID I has economic advantages with lesser insulin amount 

used and has comparable performance to LMEC-MRID II.  

 
Table 6.3: Comparison of Insulin Infusion Amounts for a Group I patient 

Set point value LMEC-MRID I LMEC-MRID II YIIP 
81 mg/dL 2.19 ×102 U 2.21 ×102 U 3.21 ×103 U 
90 mg/dL 2.12 ×102 U 2.13 ×102 U 3.21 ×103 U 
100 mg/dL 2.05 ×102 U 2.06 ×102 U 3.21 ×103 U 

 

The controller output is constrained so as not to exceed 20000mU/hr. 

(20U/hr.), to achieve good BG control for this group, which requires higher 

insulin amount. The process input (the controller output) has an acceptable 
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trend without any spikes and the BG profile following each meal is quite good 

with BG values above 55mg/dL. There are no hypoglycemic events. However, 

the results show that the set point is not reached between meal inputs. Similar 

to the previous case, a BG target of 100mg/dL has better performance than 

other two tested BG targets in successfully staying away from the 

hypoglycemic limit but its BG peak value hits the upper limit of 180mg/dL 

which is acceptable. The overall controller performance given the constraints 

on BG is quite satisfactory. The BG can be maintained in acceptable range 

with BG around its target value between meals though more insulin is infused 

than the tailored YIIP. 

 

6.6.2.3 LMEC-MRID for Group III patients 

The patient from Class 6 who exhibits lowest BG values in tailored 

YIIP treatment, is chosen from Group III. Patients from this group need low 

basal insulin amount when compared to other patients in the cohort. This 

patient is selected in order to test the ability of the controller in preventing 

hypoglycemic events. The results of BG regulation using the two LMEC-

MRIDs are demonstrated and compared with tailored YIIP treatment results in 

Figures 6.16 to 6.18 for three BG target values.  

The LMEC-MRID controllers are implemented with a constraint on the 

insulin infusion amount (upper limit of 2000 mU/hr). This setting satisfied the 

objective that no BG value should go under 50 mg/dL or over 180 mg/dL with 

acceptable return to set point within a 3 to 5 hr period.  

Similar to previous cases, the BG target value of 100 mg/dL is better 

for patient safety compared to the other two set point values in that it avoids 

possible hypoglycemia. The total insulin infusion amounts utilized by the 

controllers for a normal day with three meals are tabulated in Table 6.4. The 

total insulin infusion amount used by LMEC-MRID is rather less than that by 

tailored YIIP and thus LMEC-MRID is advantageous economically. Likewise 

in the above cases, the total insulin used by YIIP is the highest and that by 

LMEC-MRID I is the lowest among the three controllers.  
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Figure 6.16: Performance of LMEC-MRID controllers for a patient from Class 
6 (Group III) with set point equal to 81 mg/dL (dashed line: LMEC-MRID I, 

dash-dot line: LMEC-MRID II, solid line: tailored YIIP) 
  

 
Figure 6.17: Performance of LMEC-MRID controllers for a patient from Class 
6 (Group III) with set point equal to 90 mg/dL (dashed line: LMEC-MRID I, 

dash-dot line: LMEC-MRID II, solid line: tailored YIIP) 
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Figure 6.18: Performance of LMEC-MRID controllers for a patient from Class 
6 (Group III) with set point equal to 100 mg/dL (dashed line: LMEC-MRID I, 

dash-dot line: LMEC-MRID II, solid line: tailored YIIP) 
 

 
Table 6.4: Comparison of Insulin Infusion Amounts for a Group III patient 
Set point value LMEC-MRID I LMEC-MRID II YIIP 

81 mg/dL 1.90 ×101 U 1.92 ×101 U 3.02 ×102 U 
90 mg/dL 1.79 ×101 U 1.80 ×101 U 3.02 ×102 U 
100 mg/dL 1.68 ×101 U 1.68 ×101 U 3.02 ×102 U 

 

 

The two LMEC-MRIDs have comparable performance. They are better 

to the tailored YIIP treatment outcomes since less insulin is used with the 

LMEC scheme. Similarly as in above cases, LMEC-MRID I outperforms 

economically with lesser insulin amount used and comparable performance to 

LMEC-MRID II.  

 

6.6.3 LMEC-MRID Validation on Parker Model Patient Cohort 

 The LMEC-MRID I controller was developed based on Fabietti model 

patient cohort. To test the effectiveness of the controller on patients generated 

0 5 10 15 20 25
50

100

150

200
BG using LMEC-MRID

Time (hr)

B
G

 c
on

c 
(m

g/
dl

)

0 5 10 15 20 25
0

500

1000

1500

2000
Insulin Infusion Profile

Time (hr)

In
su

lin
 in

fu
si

on
 ra

te
 (m

U
/h

r)



125 
 

from other models, the 577 patient cohort of Parker model is chosen here. The 

disturbance rejection scenario of the controller is tested using the more 

favorable set point of 100mg/dL (5.5mmol/L).  

Firstly, the 577 patients are categorized into respective patient classes 

using MIVGTT data as mentioned in sections 4.3 and 4.4. The test data are 

pretreated and then projected onto the PCA model constructed in section 4.6.1. 

The results are shown in Figure 6.19. Categorizing the 577 patients based on 

the closeness to the nearby patient classes using t-squared values as the basis, 

the 577 patients are classified into Class 2 (86 patients out of 577 patients) – 

belonging to Group II, and Class 3 (the remaining 491 patients out of 577 

patients) – belonging to Group III. The respective LMEC-MRID I for Group II 

and Group III are administered those two patient classes (with the set 

constraints) and the results are shown in Figure 6.20 and Figure 6.21 

respectively.    

 

 

 

 

 
Figure 6.19: PCA based classification of the cohort of 577 patients obtained 

from Parker models (with data pretreatment) with 99.99% confidence interval 
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Figure 6.20: Performance of LMEC-MRID I for Group II controller on Class 2 

patients - 86 patients out of 577 Parker patients 
 
 
 
 
 

 
Figure 6.21: Performance of LMEC-MRID I for Group III controller on Class 

3 patients - 491 patients out of 577 Parker patients 
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 As shown in Figure 6.20, the LMEC-MRID I for Group II controller 

can maintain BG of Class 2 patients – 86 patients almost in the range 

60~180mg/dL with the highest BG being 181.92mg/dL. The hypoglycemia 

(<60mg/dL) can be avoided successfully with the lowest BG being 

63.47mg/dL. Likewise, the result shown in Figure 6.21 reveals the fact that 

LMEC-MRID I for Group III controller (on Class 3 – 491 patients) maintained 

almost all BG values in the range of 60~180mg/dL with only one patient’s BG 

violating the range (highest BG for this patient being 192.37mg/dL) without 

hypoglycemia (with lowest BG being 69.78mg/dL). 

 These results highlight the fact that LMEC-MRID I controller could be 

a promising candidate for T1D patients managing BG within the acceptable 

range and circumventing hypoglycemia efficaciously. 

 

6.7 Conclusions 

      The proposed NMRID algorithm (NSOTF method) is quite reliable in 

providing acceptable inter-sample BG measurement estimation. The identified 

models lead to acceptable controller performance when augmented with bias 

updating mechanism, filter and constraints on the insulin infusion rate to 

controller. LMEC-MRID I is designed based on the NMRID results and 

LMEC-MRID II is designed based on the response of the NL model. Different 

LMEC-MRID settings for three groups (classified by the method proposed in 

Section 4.6.2) are proposed. The performances of LMEC-MRID I and LMEC-

MRID II for disturbance rejection at three target values are quite comparable. 

A BG target of 100 mg/dL appears to be most effective in avoiding possible 

hypoglycemic events. The LMEC-MRID controllers are seen to outperform 

tailored YIIP in keeping BG values within practical limits while using less 

insulin. The LMEC-MRID I controller performance evaluation on a cohort of 

577 patients generated with the Parker model also substantiates that LMEC-

MRID I controller is a promising candidate for blood glucose regulation 

inT1D patients. Particularly, LMEC-MRID is economically beneficial with 

lesser insulin amount used and with performance comparable to LMEC-MRID 

II – all these indicate that NMRID approach is quite acceptable. 
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Chapter 7 

Conclusions and Recommendations 

 
7.1 Conclusions 

Treating T1D in a timely and effective manner is an important problem 

for which a complete, reliable solution is not yet available. In diabetic patients, 

it is crucial to keep the fasting blood glucose concentration in normoglycemic 

range (70-126mg/dL) and a postprandial BG value of under 180 mg/dL (but 

over 55mg/dL). This can be achieved using exogenous insulin infusion in a 

manner that avoids both hyperglycemia and hypoglycemia. However, the 

unavoidable inter- and intra-patient variability makes BG control very 

challenging. To obtain effective BG regulation in Type 1 diabetics, efficient 

and practically implementable control algorithms are needed. This thesis 

proposed simple, implementable and effective control algorithms that work on 

a broad range of patients. Due to the cost and safety issues that are associated 

in testing the developed algorithms on human subjects, this thesis used state-

of-the-art T1D mathematical models as virtual patients and tested the various 

control algorithms via simulations using MATLAB.     

  The rule based control algorithms that are currently practiced in ICUs 

have had significant positive effect in reducing mortality and morbidity. These 

algorithms are built based on experience and practical knowledge of the 

physicians. Among them, the YIIP is most popular. This protocol was 

modified to develop a strategy to treat a broad range of virtual T1D patients, 

and the effectiveness of this modified YIIP was studied in Chapter 3.  The 

performance of the proposed rule based control algorithm, MODYIIP, on 

cohorts of simulated virtual patents demonstrate that MODYIIP is a potential 

candidate for treating T1D patients. However, the results show that MODYIIP 

needs to be tailored to avoid possible hyperglycemia in different patients. On 

the positive side, the proposed MODYIIP was successful in avoiding 

dangerous hypoglycemia.        

To obtain effective BG regulation in T1D patients, an efficient and 

practically implementable “class-specific” control algorithm was proposed in 



129 
 

Chapter 4. In the absence of real patients, a state-of-the-art mathematical 

model that adequately simulates BG dynamics in diabetics was employed to 

develop a classification-based approach that groups “patients” into different 

classes and to demonstrate the success of tailored, “class-specific” algorithms. 

The novel approach consists of a diabetes diagnostic test (Modified 

Intravenous Glucose Tolerance Test, MIVGTT), and a multivariate statistical 

tool (Principal Component Analysis, PCA) was used for classification. Then, 

YIIP was tailored and applied to different patient classes. Applicability of this 

approach through validation on different patient models was also investigated.  

The results indicated that T1D patients can be classified into nine 

classes. Using the tailored YIIP-based treatment on a “normal day” (with three 

meals), it was observed that hypoglycemia (< 50mg/dL) can be successfully 

avoided for the entire cohort of the in silico patients without the need to 

administer any extra glucose. For any in silico patient, the MIVGTT can be 

conducted and the patient class determined. Then, the tailored YIIP for the 

particular class can be used to treat the patient. This work has investigated the 

robustness of the approach for certain intra-patient variability within the same 

patient class and obtained acceptable results. The developed algorithm appears 

to be simple, effective and practical for treating real T1D patients. Clinical 

validation of the classification approach and the control algorithm would be 

the subsequent step in this work. 

Robust controllers are other potential candidates for treatment of T1D 

patients because they can handle predefined uncertainty in model parameters. 

LMEC (linear modeling error compensator) was chosen for investigation here 

because it is a linear controller and capable of providing good performance 

with less complexity than, say, a nonlinear controller. The central idea of 

LMEC is to compensate the error arising out of parametric uncertainty by 

determining the modeling error using plant input and output signals and 

employing a linear model of known order. In addition to nominal feedback, 

another feedback loop is introduced using the modeling error and this 

feedback action is explicitly proportional to error which is induced by 

parametric uncertainty. The uncertainty bounds are determined from the 

transfer functions of virtual patients and incorporated into the controller 
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design. Effectiveness of LMEC was demonstrated on a large set of virtual 

patients embedding as much as 50% parametric uncertainty (Chapter 5). The 

results showed that LMEC is a good candidate for BG control in T1D patients 

when frequent BG sampling is possible. Clinical test of this technique is one 

possible area for future work.  

Sometimes, data on BG and insulin infusion amount can be obtained 

from medical records or from patients. These data are often available as 

multirate measurements because variable such as insulin infusion amount are 

more frequently measurable than the BG values. To handle such data and to 

develop a control strategy subsequently, the thesis proposed a LMEC-MRID 

strategy in Chapter 6. The required transfer function parameters for LMEC 

controller were estimated from multirate data using MRID. This model helped 

in the estimation of intersample BG values to be used by the LMEC 

controllers. The estimated BG values from the model were updated whenever 

an actual BG measurement became available (bias updating). The required 

uncertainty bounds were incorporated into the LMEC controller from MRID 

of patient data. This controller was named LMEC-MRID I. The benchmark 

controller, LMEC-MRID II was designed based on the linear approximation of 

original NL model. Both LMEC-MRID I & LMEC-MRID II provided similar 

control performance and were able to keep the BG values within safe limits. 

The performance validation of developed controller on different patient cohort 

also attests the acceptable performance.  This shows that the control strategy 

based on model developed from multirate patient data is a promising strategy 

for BG control in T1D patients. 

 

7.2 Recommendations for Future Works  

 In the following sections, the recommended future works are 

summarized. 

  

7.2.1 Classification Methods   

The classification of patient classes using PCA with data pretreatment 

is simple and quite effective. However, more efficient classification methods 
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such as Dynamic PCA (DPCA) would be worth exploring. Patient data from 

MIVGTT is dynamic in nature so that DPCA would be the right choice to 

handle the classification problem. Other classification approaches such as 

Qualitative Trend Analysis can also be employed. 

 

7.2.2 Incorporation of Recursive Identification Scheme into LMEC-MRID 

The existing bias updating scheme suggested for our LMEC-MRID 

implementation is simple suggesting that the performance would be better if a 

more efficient updating scheme can be implemented.  Moreover, the intra-

patient variability that exists in T1D patients owing to different situations such 

as changing insulin sensitivity, stress and lifestyle should be identified as 

parametric variations and utilized in the LMEC-MRID algorithm. Recursive 

identification methods could be employed to handle such parameter variations 

leading to an adaptive-LMEC algorithm.  

 

7.2.3 Association of Exercise and Other Effects into Modeling 

The exercise effect cannot be neglected in real patients and has been 

taken into account by some researchers (e.g. Roy and Parker, 2006). These 

models need to be modified to handle the intensity and duration of exercise. 

Anxiety and stress can also affect BG dynamics. Anxiety and stress are known 

to cause hypertension which is correlated to hyperglycemia (Mancia, 2007). 

These issues should be dealt with in modeling of diabetics, and applied control 

strategies for BG regulation in T1D patients should also take these aspects into 

consideration. More comprehensive models of diabetes need to be developed 

and employed in artificial closed loop pancreas systems. 

 

7.2.4 Nonlinear Control Strategy 

The LMEC is effective in avoiding severe hypoglycemia for given 

uncertainty bounds. If an adequate nonlinear model is available, one could try 

employing a nonlinear modeling error compensator based on the fundamental 

nonlinear model and the uncertainty associated with its parameters. This 
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extension of MEC to biomedical process control can be an excellent avenue 

for research. 

 

7.2.5 Diabetes Control in ICU patients  

     Critically ill patients or patients in ICU experience stress induced 

hyperglycemia even if they do not have any past history of diabetes. Other 

factors such as presence of hypertension, cortisone and pancreatic disease may 

also results in hyperglycemia. From the extensive literature review, it is clear 

that intensive insulin therapy (IIT) can reduce morbidity, mortality and 

duration of patients stay in ICU. According to Leuven study, an IIT that 

maintains BG in the 80-110 mg/dL range can reduce: ICU mortality by 42%, 

bloodstream infections, the incidence of acute renal failure, the need for 

prolonged ventilatory support, and the duration of ICU stay (Goldberg et al., 

2004). Many IIP protocols have been developed for glycemic control in ICU - 

some protocols have been developed for medical ICU (MICU) and some 

others have been proposed for use in surgical ICUs (SICU). These protocols 

are currently based on physicians’ expertise and experience; however, they can 

be further optimized and personalized to provide tight BG control. Avoiding 

hypoglycemia is the primary intention in ICU patients. Developing a protocol 

that can avoid hypoglycemia, provide tight glycemic control for the different 

conditions of patients with minimal physician intervention, and is easy to use 

by ICU nursing staff would be worth the effort. Developing a patient model 

that takes into account conditions such as hypertension, corticosteroid, and 

administration through enteral or parenteral routes would be worthwhile 

efforts to pursue in order to develop more effective IIP strategies for use in 

ICUs.  
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Appendix A 

Yale Insulin Infusion Protocol & Lam et al.’s Meal Model 

 

 

A.1 Yale Insulin Infusion Protocol 

The following Yale Insulin Infusion Protocol (YIIP) is taken from 

Goldberg et al. (2004). 

This insulin infusion protocol is intended for use in hyperglycemic 

adult patients in an ICU setting, but is not specifically tailored for those 

individuals with diabetic emergencies, such as diabetic ketoacidosis (DKA) or 

hyperglycemic hyperosmolar states (HHS). 

When these diagnoses are being considered, or if BG>=500 mg/dL, an 

MD should be consulted for specific orders. Also, please notify an MD if the 

response to the insulin infusion is unusual or unexpected, of if any situation 

arises that is not adequately addressed by these guidelines.  

 

Initiating an Insulin Infusion 

1) Insulin Infusion: Mix 1U Regular Human Insulin per 1cc 0.9%NaCl. 

Administer via infusion pump (in increments of 0.5U/hr). 

2) Priming: Flush 50cc of insulin through all IV tubing before infusion 

begins (to saturate the insulin binding sites in the tubing). 

3) Target Blood Glucose (BG) Levels: 100-139mg/dL 

4) Bolus & Initial Infusion Rate: Divide initial BG level by 100, then 

round to nearest 0.5U for bolus AND initial infusion rate. 

5) Examples:     

a. Initial BG = 325mg/dL: 325 ÷ 100 = 3.25, round to 3.5: IV 

bolus 3.5U + start infusion @ 3.5U/hr. 

b. Initial BG = 174mg/dL: 174 ÷ 100 = 1.74, round to 1.5: IV 

bolus 1.5U + start infusion @ 1.5U/hr. 
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Blood Glucose (BG) Monitoring 

1) Check BG hourly until stable (3 consecutive values within target 

range). In hypotensive patients, capillary blood glucose (i.e., 

fingersticks) may be inaccurate and obtaining the blood sample from 

an indwelling vascular catheter is acceptable. 

2) Then check BG 2 hourly; once stable for 12-24 hours, BG checks can 

then be spaced 4 hourly IF: 

a. no significant change in clinical condition AND  

b. no significant change in nutritional intake. 

3) If any of the following occur, consider the temporary resumption of 

hourly BG monitoring, until BG is stable again (2-3 consecutive BG 

values within target range): 

a. any change in insulin infusion rate (i.e., BG out of target range) 

b. significant changes in clinical condition 

c. initiation or cessation of pressor or steroid therapy 

d. initiation or cessation of renal replacement therapy 

(hemodialysis, CVVH, etc.) 

e. initiation, cessation, or rate change of nutritional support (TPN, 

PPN, tube feedings, etc.) 

 

Changing the Insulin Infusion Rate 

 

If BG < 50 mg/dL 

D/C^ Insulin Infusion:  Give 1 amp (25 g) D50 IV; recheck BG at every 15 

min. (When BG >= 100 mg/dL, wait 1 hour, then restart insulin infusion 

at 50% of original rate) 

  

If BG 50-74 mg/dL 

D/C^ Insulin Infusion: If symptomatic (or unable to assess), give 1 amp (25 g) 

D50 IV: recheck BG at every 15min.  

                                    If asymptomatic, give ½ Amp (12.5 g) D50 IV or 8 

ounces juice; recheck BG at every 15-30 min.  
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(When BG >= 100 mg/dL, wait 1 hour, then restart insulin infusion at 

75% of original rate) 

 

If BG >= 75 mg/dL 

Step 1: Determine the CURRENT BG LEVEL – identifies a COLUMN in the 

table below. 

Step 2: Determine the RATE OF CHANGE from the prior BG level – 

identifies a CELL in the table – Then move right for INSTRUCTIONS: 

[Note: If the last BG was measured 2-4 hours before the current BG, 

calculate the hourly rate of change. Example: If the BG at 2PM was 150 

mg/dL and the BG at 4PM (now) 120 mg/dL, the total change over 2 

hours is -30 mg/dL; however, the hourly change is -30mg/dL ÷ 2 hours = 

-15 mg/dL/hr.] 

BG 75-
99mg/dL 

BG 100-
139mg/dL 

BG 140-
199mg/dL 

BG ≥ 
200mg/dL INSTRUCTIONS* 

 
 
 

 BG↑ by > 50 
mg/dL/hr BG↑ ↑ INFUSION by 

“2∆” 

 

 
BG↑ by > 25 

mg/dL/hr 
 

BG↑ by > 1-
50 mg/dL/hr 

OR 
BG 

unchanged 

BG↑ 
unchanged 

OR 
BG↓ by > 1-
25 mg/dL/hr 

↑ INFUSION by 
“∆” 

 
BG↑ 

 

BG↑ by > 1-
25 mg/dL/hr, 

BG 
unchanged, 

OR 
BG↓ by > 1-
25 mg/dL/hr 

BG↓ by > 1-
50 mg/dL/hr 

BG↓ by > 
26-75 

mg/dL/hr 

NO INFUSION 
CHANGE 

BG↑ 
unchanged 

OR 
BG↓ by > 1-
25mg/dL/hr 

BG↓ by > 26-
50 mg/dL/hr 

BG↓ by > 
51-75 

mg/dL/hr 

BG↓ by > 
76-100 

mg/dL/hr 

↓ INFUSION by 
“∆” 

BG↓ by > 25 
mg/dL/hr 

See below† 

BG↓ by > 50  
mg/dL/hr 

 

BG↓ by > 75 
mg/dL/hr 

BG↓ by > 
100  

mg/dL/hr 

HOLD×30min, then 
↓ INFUSION by 

“2∆” 
 

† D/C^ INSULIN INFUSION: Check BG at every 30 min, when BG ≥ 100 

mg/dL, restart infusion @75% of most recent rate. 
^ Discontinue 
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*CHANGES IN INFUSION RATE (“∆”) are determined by the current rate: 

Current Rate (U/hr) ∆ = Rate Change 
(U/hr) 

2∆ = 2× Rate 
Change (U/hr) 

<3.0 0.5 1 
3.0 – 6.0 1 2 
6.5 – 9.5 1.5 3 
10 – 14.5 2 4 
15 – 19.5 3 6 
20 – 24.5 4 8 

≥ 25 ≥ 5 10 (consult MD) 
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A.2 Lam et al.’s Meal Model 

The associated meal model for Bergman T1D patient model that is 

developed by Lam et al. (2002) is described here. 

This meal model is designed originally for OGTT and is modelled by 

the lognormal distribution function as in equation (B.1). The glucose input is 

modelled to be smooth, continuously differentiable and to ensure zero initial 

conditions. This function can be easily implemented and is physiologically 

representative. 

𝑃(𝑡)  =  𝑃𝑚𝑒𝑥𝑝(−𝑎(𝑙𝑛(𝑏𝑡) − 𝑐)2)                                               (B.1) 

where, 

 𝑃𝑚 = the peak value of exogenous glucose absorption rate 

𝑎, 𝑏 and 𝑐  = constants which determine the slopes and curvature of exogenous 

                     glucose absorption rate 

The model parameter values can be defined to represent the different 

absorption rate profiles for different meals. 
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Appendix B 

Publications and Presentation 

 

B.1 Publications 

May Su Tun, S. Lakshminarayanan, and G. P. Rangaiah, “Glycemic Control 
for Type 1 Diabetes using Multirate System Identification and Modeling Error 
Compensator”, Proceedings of 2008 International Symposium on Advanced 
Control of Industrial Processes (ADCONIP 2008 conference), Jasper, Canada, 
pp. 249-256, 2008. 

May Su Tun, S. Lakshminarayanan, and G. P. Rangaiah, “Classification and 
Treatment of Type 1 Diabetics”, Annals of the Academy of Medicine, 
Singapore (AAMS), Ann Acad Med Singapore 2010; 39 (Suppl), pp. S96, 
2010. 

May Su Tun, S. Lakshminarayanan, and G. P. Rangaiah,“Effectiveness of 
Modified YIIP on Type 1 Diabetic Patients”, Manuscript in preparation, 2013.  

May Su Tun, S. Lakshminarayanan, and G. P. Rangaiah, “Finding Model from 
Multirate Data of Type 1 Diabetic Patients and Blood Glucose Control”, 
Manuscript in preparation, 2013.  

 

B.2 Presentation 

“Glycemic Control for Type 1 Diabetes using Multirate System Identification 
and Modeling Error Compensator”, ADCONIP 2008 conference, Jasper, 
Canada, 2008. 
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