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Summary 

The objective of this study was to conduct a mechanistic study of 

MACE. Specifically, the objectives were to investigate the role of electronic 

holes, study the influence of etchant chemistries and catalyst geometry on the 

etching stability, study the porosity of etched nanostructures using IL-

patterned catalyst, and investigate the role of voltage bias in the etching 

mechanism. 

First, we report results of a systematic study on the mechanism and 

catalyst stability of metal-assisted chemical etching (MACE) of Si in HF and 

H2O2 using isolated Au catalyst. The role of electronic holes on etching of Si 

underneath Au catalyst is presented. The role of excess holes is characterized 

through the observation of pit formation as a function of catalyst proximity 

and the ratio of the H2O2 and HF concentrations in the etch solution. We show 

that suppression of excess hole generation, and therefore pitting, can be 

achieved by either adding NaCl to the etch solution or by increasing the HF 

concentration relative to the H2O2 concentration. We also demonstrate that an 

external electric field can be used to direct most of the excess holes to the back 

of the Si wafer, and thus reduce pit formation at the surface of the Si between 

the Au catalysts. We also explore the role of an Au back contact on the etching 

characteristics for three different cases: (i) back contact is exposed to the 

etchant, (ii) back contact is not exposed to the etchant, and (iii) etching with an 

additional current injection from an applied bias. Next, we propose that there 

are two possible causes for catalyst instability during MACE, namely the 

overlap of excess holes between neighboring catalysts and the generation of 

hydrogen (H2) bubbles. From these two modes of instability, we define a 
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regime of etch chemistry and catalyst spacing for which catalyst stability and 

vertical etching can be achieved.  

Next, we investigate the etching characteristics with interconnected 

catalyst configurations patterned using interference lithography (IL). We 

propose that the role of excess holes is more significant in these catalyst 

configurations such that the etched nanostructures possess a relatively high 

degree of porosity. We demonstrate that the porosity of the nanostructures can 

be exploited to obtain an ordered array of Si nanocones, which may find 

applications in biomedical research, scanning probe nanolithography, or field-

emitting-tip devices. The influence of doping type and concentration on the 

porosity of nanowires is examined. We further demonstrate that the porosity of 

the nanostructures can be tuned from the etchant concentration. 

Finally, we use an electric field to develop a new etching method called 

bias- and metal-assisted chemical etching (BiMACE) of Si. Essential features 

of BiMACE are presented and comparisons are made between MACE and 

BiMACE. Quantitative analysis of the hole contribution to BiMACE without 

and with H2O2 is presented. The etching mechanism of BiMACE is discussed. 

Application of BiMACE to fabricate Si nanowires is also demonstrated and its 

possible extension to other semiconductor materials is suggested. 
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Chapter 1. Introduction 

1.1 Background 

Nanostructures are assembly of materials in microscopic scale. In 1960, 

Feynman1 predicted that materials which are manipulated on such a small 

scale could exhibit interesting properties which are absent in macroscopic 

scale. In particular, many potential applications have been demonstrated for 

silicon (Si) nanostructures, such as Si nanowire-based field effect 

transistors,2,3 nanowire anodes for batteries,4,5 thermoelectric devices,6 

biomedical sensors,7,8 photovoltaic cells,9,10,11 and templates for magnetic data 

storage.12 These Si nanostructures are fabricated using either bottom-up 

(growth) or top-down (etching) approaches. 

The most well-known growth method is the vapor-liquid-solid (VLS) 

mechanism,13 in which chemical vapor deposition is used with a metal catalyst 

particle (e.g. Au) under conditions for which growth occurs only at the 

particle-silicon interface. However, the use of the VLS process for 

applications has a number of drawbacks. First, the VLS technique only allows 

formation of cylindrical wires. In many applications, one-dimensional 

nanostructures with other cross-sectional shapes would be useful. For 

example, fin shapes are of great interest for use in metal-oxide-semiconductor 

field effect transistors in which the channel current can be more readily 

controlled than in planar or cylindrical structures.14,15 Second, there are 

concerns with the use of catalysts such as Au at the temperatures required for 

VLS processes, because the catalyst metal is likely to be incorporated into the 

wires. Third, crystallographic orientation of the grown nanowire depends on 
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its diameter.16 Also, it has been found that no wires can be grown on highly 

doped Si wafers.17 

Among various etching methods, the metal-assisted chemical etching 

(MACE)18 has recently emerged as a promising method to fabricate Si 

nanostructures for several reasons. First, cross-sectional shapes of the etched 

nanowires can be readily varied.19 Second, it is a low-temperature process and 

thus, Au incorporation into Si can be eliminated. Third, crystallographic 

orientation of the nanowires can be controlled.20 Fourth, MACE is known to 

work on Si wafers independent of doping type and level.21 Finally, it is able to 

produce very high-aspect-ratio structures,22 which are hardly achievable by 

any other fabrication methods.  

However, due to difficulties in direct in-situ observation, the exact 

mechanism of MACE is still under scrutiny. For example, there are different 

proposed chemical reactions governing MACE process as reported in the 

literature.23 It is also intriguing as to why isolated catalyst tend to change its 

etch directions in a non-uniform manner,24,25 in contrast to etching with 

interconnected catalyst.19,20 It is therefore important to conduct a more 

systematic study on the mechanism of and catalyst stability in MACE in order 

to gain better leverage of this process to sculpture Si. The subsequent sections 

will describe general etching methods of Si, followed by a brief overview of 

MACE. 
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1.2 Etching of Silicon 

There are two types of etching of Si, wet and dry. Wet etching involves 

the use of liquid chemicals to remove the Si atoms. KOH is one of the most 

widely employed etchant for Si due to its high degree of anisotropy, i.e. {111} 

planes are etched much slower than {100} and {110} planes. By exploiting 

this etch anisotropy, several distinct structures can be fabricated on Si. Using 

interference lithography to define square openings which are aligned to <110> 

directions, Choi et al.26 demonstrated the fabrication of inverted pyramid 

arrays on Si <100> substrate, as shown in Figure 1.1a. Ahn et al.27 patterned 

long rectangular openings with the lengths aligned to <111> directions to 

fabricate high-aspect-ratio Si gratings on Si <110> substrate, as shown in 

Figure 1.1b. The high-aspect-ratio gratings were prevented from collapsing 

by using critical point drying method. It should be clear from the above 

examples that alignment is critical to achieve the desired structure. Another 

limitation is that it is not possible, for example, to obtain vertical grating 

structures with the sidewalls being non-{111} planes. 

  
                      (a)             (b) 

Figure 1.1: (a) Inverted pyramid arrays fabricated on Si <100> substrate.26 (b) 
High-aspect-ratio Si gratings fabricated on Si <110> substrate.27 
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Dry etching is also widely employed to fabricate Si nanostructures. In 

this process, a gas plasma is generated inside a vacuum chamber, forming 

reactive ions to react with the materials to be etched and form volatile 

byproducts. Nassiopoulos et al.28 fabricated Si nanowalls and nanopillars 

(Figure 1.2) by first defining an etch mask pattern using optical lithography 

and subsequently transferring the pattern to the underlying Si substrate using 

SF6 and CHF3 reactive ion etching. Dry etching process, however, has several 

limitations. First, anisotropy can be increased – by using more energetic ions – 

but in the expense of reduced etch selectivity between the etched materials and 

the etch mask, which could limit the ultimate aspect-ratio achievable with this 

process. Second, the high energy ions can produce surface damage, which can 

be undesirable for device applications. In addition, it requires specialized 

equipment which can be quite costly. 

 
    (a)                 (b) 
Figure 1.2: Silicon nanowalls (a) and nanopillars (b) fabricated using SF6 and 
CHF3 reactive ion etching.28 

 

1.3 Metal-Assisted Chemical Etching of Silicon 

MACE is a wet etch process in which the etch rate of Si in a mixture of 

HF and an oxidizing agent is greatly increased in the presence of noble metal 

catalyst. First investigated by Li and Bohn18, it was found that Au, Pt, and 
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Au/Pd can act as catalysts for MACE in a mixture of HF and H2O2. There 

were also reports of using Ag as the catalyst for MACE.24,29 It should be noted 

that there are other possible oxidizing agents besides H2O2, such as 

Fe(NO3)3,30 Na2S2O8, K2Cr2O7, and KMnO4.31  

 

  
       (a)                         (b) 

   
         (c)             (d) 
Figure 1.3: (a) Si nanofins obtained using Au perforated film etched in a 
mixed solution of 4.6 M HF and 0.44 M H2O2.19 (b-c) Cylindrical and helical 
Si nanoholes obtained using Pt nanoparticles etched for 5 minutes in a mixed 
solution of: (b) 50% HF, 30% H2O2, and H2O at a volume ratio of 2:1:8; (c) 
50% HF and 30% H2O2 at a volume ratio of 10:1.32 (d) Swinging catalyst 
etching etched in a mixed solution of 48% HF, 35% H2O2, and H2O at a 
volume ratio of 4:1.3:2.8.33 

The localized etching of Si in the vicinity of the noble metal allows one 

to fabricate various structures using MACE depending on the catalyst 

patterning techniques. Choi et al.19 used Au perforated film patterned by 

interference lithography (IL) to fabricate Si nanofin arrays, as shown in 
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Figure 1.3a. Tsujino and Matsumura32 demonstrated the fabrication of 

cylindrical and helical Si nanoholes using Pt nanoparticles, as shown in 

Figures 1.3b and c. Hildreth et al.33 demonstrated that by pinning the catalyst 

with an insulating layer, the catalyst can be forced to create 3D rotational 

etching, as can be seen in Figure 1.3d. 

 Figure 1.3b shows that the cylindrical nanoholes were surrounded by a 

porous layer as opposed to the helical nanoholes, suggesting that porosity in 

MACE is dependent on etchant concentration. It is obvious that etchant 

concentration also plays a role in determining the etch morphology of isolated 

catalyst (e.g. nanoparticles), that is low HF concentration resulted in straight 

cylindrical nanoholes (Figure 1.3b) and high HF concentration resulted in 

helical nanoholes (Figure 1.3c). Also, catalyst configuration seems to have an 

influence on the etch stability because the nanofins in Figure 1.3a are straight 

despite being etched in a high relative HF concentration. Finally, it is possible 

to stabilize etching with isolated catalyst by using a pinning structure (Figure 

1.3d). However, this is limited to a simple swinging pattern and the etching is 

restricted to only a certain depth because the pinning arms may finally detach 

from the catalyst, after which the control exerted by the pinning structure is 

lost. 

 

1.4 Research Objectives 

In view of the above review, research gaps for the current study are 

summarized below: 

• The formation of porous layer around the cylindrical pores in Figure 1.3b 

indicates that etched structures using MACE is associated with a certain 
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degree of porosity. Study on porosity of etched structures using MACE has 

been reported, but limited to the case of nanoparticles.29 

• Etchant concentration affects the etching characteristics of isolated 

catalyst.29,32 However, these studies were limited to the case of etching 

with nanoparticles. 

• It has been shown that isolated catalyst can be stabilized by using a 

pinning structure.33 However, this is limited to certain etching patterns and 

the control is lost once the pinning structure delaminates from the catalyst. 

 

The main aims of this study were to conduct a mechanistic study of 

MACE. The specific objectives were to: 

• investigate the role of electronic holes in MACE process and develop ways 

to control them. 

• study the influence of etchant chemistries and catalyst geometry on the 

etching stability of isolated patterned catalyst. 

• study the porosity of etched nanostructures using IL-patterned 

interconnected catalyst. 

• investigate the role of voltage bias in the etching mechanism. 

 

The role of electronic holes, etchant chemistries, catalyst geometry, and 

voltage bias may be crucial to gain a better understanding of the mechanism of 

MACE. This may give the leverage to fully exploit the potential of MACE to 

fabricate various structures on Si. 

The focus of this study was on a MACE system with Au catalyst and 

H2O2 as the oxidant. Even though catalytic etching is known to work with 
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different metal catalysts and oxidants, the chemical reaction obeys similar 

oxidation-dissolution principle.30  

 

1.5 Organization of Thesis 

This thesis will be divided into seven chapters. Chapter 2 will describe 

the theory of MACE of Si as reported in the literature. Types of catalyst and 

their etching mechanisms will be elaborated. Subsequently, porosity of the 

etched structures using MACE will be discussed from its dependence on 

dopant and etchant composition. Next, etching direction in MACE will be 

examined in two distinct catalyst configurations, namely interconnected and 

isolated catalyst. Finally, electrochemical etching of Si in HF will be 

discussed. 

Chapter 3 will describe the experimental procedures employed in this 

study.  

Chapter 4 will investigate the mechanism and catalyst stability of MACE 

using isolated catalyst. The role of electronic holes to the etching and pit 

formation is presented. The influence of catalyst spacing and [H2O2] on the pit 

formation is investigated. Control of hole injection is demonstrated by adding 

NaCl, increasing [HF], or applying a voltage bias. The role of Au back contact 

on the etching characteristics is explored. Two modes of etching instability are 

proposed, namely the overlap of excess holes between neighboring catalysts 

and the generation of hydrogen (H2) bubbles. From these two modes of 

instability, we define a regime of etch chemistry and catalyst spacing for 

which catalyst stability and vertical etching can be achieved.  

Chapter 5 will investigate the etching characteristics with interconnected 
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catalyst configuration patterned by IL. The role of excess holes is linked to the 

formation of Si nanocones from porous Si nanowires. Influence of Si doping 

type and concentration on the porosity is investigated. Control of excess holes 

is demonstrated by tuning the etchant composition.  

Chapter 6 will investigate a new etching method called Bias- and Metal-

Assisted Chemical Etching (BiMACE) of Si. Essential features of BiMACE are 

presented and comparisons are made between MACE and BiMACE. 

Quantitative analysis of the hole contribution to BiMACE without and with 

H2O2 is presented. The etching mechanism of BiMACE is discussed. 

Application of BiMACE to fabricate Si nanowires is also demonstrated and its 

possible extension to other semiconductor materials is suggested. 

Chapter 7 will summarize the thesis and propose several 

recommendations for future work. 
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Chapter 2. Literature Review:  

Metal-Assisted Chemical Etching of Silicon 

2.1 Introduction 

MACE has recently emerged as an attractive method to fabricate Si 

nanostructures, especially because it is simple, low-cost, and able to control 

various parameters of the etched nanostructures, such as cross-sectional shape, 

diameter, length, and crystallographic orientation.23 In fact, MACE has been 

demonstrated not only on Si substrate but also on other semiconductors, such 

as silicon germanium (SiGe)34 ,gallium arsenide (GaAs),35,36, and gallium 

nitride (GaN).37 This chapter will discuss the theory behind MACE of Si. Two 

distinct phases of catalyst and their etching mechanisms will be elaborated. 

The first form is where the catalyst is in the liquid phase (metal salt) and the 

etching occurs concurrently with the metal deposition on the Si surface. The 

second one is where the catalyst is in the solid phase and separately deposited 

on the Si surface prior to etching. Subsequently, porosity of the etched 

structures using MACE will be discussed from its dependence on dopant and 

etchant composition. Next, etching direction in MACE will be examined in 

two possible catalyst configurations, namely interconnected and isolated 

catalyst. Finally, electrochemical etching of Si in HF solution will also be 

discussed. 

 

2.2 Types of Catalyst and Redox Reactions 

In this section, mechanisms of MACE will be presented based on the 

phases of the catalyst, liquid and solid. Proposed redox reactions responsible 

for the etching of Si will be presented.  
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2.2.1 Liquid-Phase Catalyst 

In this process, Si is immersed in a mixture of HF and metal salt. The 

catalyst is thus in ionic form resulting from dissociation of the metal salt. For 

example, let us consider the most commonly known system of AgNO3/HF. 

Peng et al.30 explained the Ag deposition process by first comparing the Si 

energy levels with the metal reduction potentials, as shown in Figure 2.1a. As 

can be seen, the energy level of Ag+/Ag system is below the Si valence band 

(VB) edge. Therefore, it is expected that the Ag+ ions will be reduced 

(cathodic reaction) to solid Ag on the Si surface by attracting the electrons 

from the valence band of Si. The Si atom on the surface, losing its valence 

band electrons, will be oxidized (anodic reaction) and dissolved in HF. The 

proposed reactions are,30 

Cathode: 𝐴𝑔+ + 𝑒𝑉𝐵− → 𝐴𝑔0(𝑠)                    Equation 2.1 

Anode:    𝑆𝑖(𝑠) + 2𝐻2𝑂 → 𝑆𝑖𝑂2 + 4𝐻+ + 4𝑒𝑉𝐵−                          Equation 2.2 

    𝑆𝑖𝑂2(𝑠) + 6𝐻𝐹 → 𝐻2𝑆𝑖𝐹6 + 2𝐻2𝑂                   Equation 2.3 

Figure 2.1b depicts the electroless Ag deposition mechanism of Si in 

AgNO3/HF system. First, Ag nuclei are formed on the Si surface accompanied 

by the oxidation and dissolution of Si in contact with the nuclei to form pits.  

Since the Ag nuclei are more electronegative than Si, they attract electrons 

from the Si and become negatively charged. These negatively charged Ag 

nuclei serve as preferred sites for subsequent Ag+ reduction events. As a 

result, the etching of Si will be localized beneath the Ag particles while the Ag 

particles continue to grow in size. It is important to notice that the etching of 

Si requires HF to access the metal-Si interface. Therefore, if the Ag particles 

continue to grow and finally cover the whole Si surface, etching will halt.  
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   (a)    (b) 

Figure 2.1: (a) Qualitative diagram comparing the energy levels of Si with 
five metal reduction systems (Ec and Ev are the conduction and valence bands 
of Si). (b) Schematic of electroless Ag deposition process on a Si substrate 
immersed in HF/AgNO3 solution.30 

 

To avoid this from happening, the etching process is resumed using 

another oxidant instead of AgNO3, such as Fe(NO3)3. From Figure 2.1a, Fe3+ 

will be reduced to Fe2+ because the reduction potential is lower than the Si 

valence band edge. The reduction of Fe3+ occurs preferentially on the Ag 

particles and at the same time, the Si underneath the particles continues to 

oxidize and dissolve in HF, as shown in Figure 2.2a. The proposed reactions 

are,30 

Cathode: 𝐹𝑒3+ + 𝑒𝑉𝐵− → 𝐹𝑒2+(𝑠)                           Equation 2.4 

Anode:     𝑆𝑖(𝑠) + 2𝐻2𝑂 → 𝑆𝑖𝑂2 + 4𝐻+ + 4𝑒𝑉𝐵−                 Equation 2.5 

     𝑆𝑖𝑂2(𝑠) + 6𝐻𝐹 → 𝐻2𝑆𝑖𝐹6 + 2𝐻2𝑂                   Equation 2.6 

Upon prolonged immersion in the etchant, nanowire array will form, as shown 

in Figure 2.2b. It was suggested that the absence of lateral etching in this 

process is due to the formation of a charge-depletion layer around the metal 
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particles. The catalytic redox reaction therefore would occur at the metal/Si 

interface because it has the shortest charge-transport distance. 

  
     (a)             (b) 
Figure 2.2: (a) Mechanism of nanowire formation using electrolessly 
deposited Ag particles in HF/Fe(NO3)3 system. (b) Si nanowire arrays 
prepared in 5.0 M HF containing 0.02 M Fe(NO3)3.30 

 

Figure 2.1a also shows that there are other metals that can be 

electrolessly deposited on the Si surface. Peng et al.30 demonstrated that by 

mixing HF with KAuCl4, K2PtCl6, or Cu(NO3)2, the Si surface became loaded 

with Au, Pt, or Cu particles. These metal particles also catalyzed the etching of 

Si in HF/Fe(NO3)3 system with the etch morphology depending on the metal 

coating morphology. Au formed dense particles and resulted in nanowire 

array, similar to the case of Ag. Pt formed sparse particles and resulted in a 

combination of straight and winding pores on Si. The non-uniform etching 

direction of these Pt particles suggests that proximity of catalyst may have an 

influence on the etching direction. Finally, Cu only formed shallow pits after 

immersion in HF/Fe(NO3)3 system because the reduction potential of Fe3+/Fe2+ 

is more positive than that of Cu2+/Cu so that the Cu particles will be converted 

back to its ionic state and dissolved in the solution. It is obvious that even 

though the catalyst preparation using electroless deposition is simple, the 
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etched morphology is limited to simple pore and nanowire structures and only 

associated with certain types of metal catalyst. Diameter of the resulting Si 

nanowires could only be roughly tuned by varying the concentration of 

AgNO3 and HF.38 

 

2.2.2 Solid-Phase Catalyst 

There are many ways to deposit solid catalyst on Si surface. First 

demonstration of MACE by Li and Bohn18 utilized a thin discontinuous 

sputtered layer of metal (3-8 nm) as the catalyst. Three different metals were 

investigated, namely Au, Pt, and Au/Pd. The metal-loaded Si surface was then 

etched in 49% HF and 30% H2O2 (balanced with EtOH with equal 

proportions) to create porous Si structures, as shown in Figure 2.3. It was 

found that Pt and Pd yielded much higher etch rate than Au, suggesting 

stronger catalytic role of Pt and Pd.  

   
            (a)            (b) 
Figure 2.3: (a) Au-coated Si(100) after etching in HF/H2O2 for 30 seconds. (b) 
Pt-coated Si (100) after etching in HF/H2O2 for 30 seconds.18 

 

The proposed reactions are,18 

Cathode:  𝐻2𝑂2 + 2𝐻+ → 2𝐻2𝑂 + 2ℎ+                 Equation 2.7 

      2𝐻+ → 𝐻2↑ + 2ℎ+                                    Equation 2.8 
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Anode:      𝑆𝑖 + 4ℎ+ + 4𝐻𝐹 → 𝑆𝑖𝐹4 + 4𝐻+                      Equation 2.9 

      𝑆𝑖𝐹4 + 2𝐻𝐹 → 𝐻2𝑆𝑖𝐹6                          Equation 2.10 

Balanced: 𝑆𝑖 + 𝐻2𝑂2 + 6𝐻𝐹 → 2𝐻2𝑂 + 𝐻2𝑆𝑖𝐹6 + 𝐻2          Equation 2.11 

Since the electronic holes (h+) are generated from the reduction of H2O2 and 

H+, MACE can work irrespective of doping type and level of the Si substrate. 

It has been mentioned earlier that the etching of Si can only proceed if 

HF can access the metal-Si interface, which explains why Li and Bohn used a 

discontinuous film in their experiments. However, solid-phase catalyst has a 

clear advantage over the liquid-phase catalyst in that the catalyst can now be 

patterned with various lithographic approaches, as will be discussed in the 

later sections, to etch various nano- or microstructures on Si and not limited to 

simple pores and nanowires.  

 

2.2.3 Chartier/Bastide/Lévy-Clément Model 

Chartier et al.29 proposed the following anodic and cathodic reactions of 

MACE, 

Cathode:  𝐻2𝑂2 + 2𝐻+ → 2𝐻2𝑂 + 2ℎ+               Equation 2.12 

Anode:     𝑆𝑖 + 6𝐻𝐹 + 𝑛ℎ+ → 𝐻2𝑆𝑖𝐹6 + 𝑛𝐻+ + �4−𝑛
2
�𝐻2         Equation 2.13 

Balanced: 𝑆𝑖 + 6𝐻𝐹 + 𝑛
2
𝐻2𝑂2 → 𝐻2𝑆𝑖𝐹6 + 𝑛𝐻2𝑂 + �4−𝑛

2
�𝐻2  Equation 2.14 

It can be seen that the balanced reaction is a generalized form of that 

proposed by Li and Bohn (Equation 2.11) by putting n = 2. However, 

Chartier et al. attributed the H2 bubble generation to anodic instead of cathodic 

reaction (Equation 2.8) because the standard redox potential of H2O2/H2O 

(1.76 V/NHE) is more positive than that of H+/H2 (0 V/NHE), where NHE39 is 
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normal hydrogen electrode. In other words, H2O2 should be the principal 

reactant for the generation of h+ at the cathodic sites. Since h+ is necessary to 

change a Si atom to its oxidized state in MACE process, the absence of H2O2 

should result in minimal etching. Indeed, they did not observe any etching for 

Ag nanoparticles immersed in HF solution free of H2O2.  

 

2.3 Porosity 

In this section, porosity of the etched structures using MACE will be 

discussed from its dependence on dopant (type and concentration) as well as 

on etchant composition. 

 

2.3.1 Dopant Dependence 

In their pioneering work on MACE, Li and Bohn18 deduced the porosity 

of the etched structures from both scanning electron microscope (SEM) and 

photoluminescence (PL) analyses. From SEM characterization, they found that 

the Pt-coated areas always form larger pores with columnar structure 

regardless of doping types and concentrations (p+, p-, and n+), while the off-

metal areas have smaller pores (3-5 nm) and randomly oriented structures. 

From the PL spectra as shown in Figure 2.4, it can be seen that Pt-coated 

areas exhibit higher PL signal as compared to the uncoated area, with the 

exception for p- sample which was attributed to the formation of isolated 

peaked structures after etching.18 The higher PL signal on the coated area is 

understandable because larger pores or thinner Si skeletons will give rise to 

more prominent quantum confinement effect, as described by Canham.40 The 

PL signal obtained from the uncoated area, however, is intriguing because in a 
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control experiment, Li and Bohn18 did not observe any detectable etching 

when there is no metal coating on the Si. This strongly suggests that the 

electronic holes can travel across macroscopic distances to form porous 

structures away from the metal. Chattopadhyay et al.41 suggested that carrier 

drift could be responsible for this observation. It is therefore very interesting 

to see the effect of electric field in controlling the hole travel path and thus, 

tuning the porosity on the no-catalyst area, as we will demonstrate in Chapters 

4 to 6. 

 
Figure 2.4: Photoluminescence spectra from Pt-patterned Si after 30-second 
etching in HF and H2O2.18 

 

Hochbaum et al.42 conducted systematic TEM studies on the surface 

morphology of the etched nanowires using 0.01-0.04 M AgNO3 and 5 M HF 

for p-type Si wafers of different doping concentrations (corresponding to 

resistivity of 10, 0.01, and <0.005 Ω.cm), as shown in Figure 2.5. They found 
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that the surface roughness of the nanowires increases with decreasing 

resistivity (or increasing doping concentration) and mesoporous43 nanowires 

(average diameter ~ 9.7 nm) were formed for p-type Si with a resistivity less 

than 5 mΩ.cm. They proposed two possible reasons for the observation. First, 

higher doping concentration in the lower resistivity wafers provides more 

crystal defects which may create a larger thermodynamic driving force for 

pore formation. Second, lower resistivity wafers (i.e. more positive Fermi 

level) have smaller energy barrier for charge injection across Ag-Si interface 

because the redox potential of Ag+/Ag0 is more positive than the valence band 

of Si. As a result, the current flow increases and thus, increasing the surface 

roughness or porosity. 

 
Figure 2.5: (a)-(c) TEM micrographs of Si nanowires etched from 10, 0.01 
and <0.005 Ω.cm p-Si wafers, respectively. Scale bars are 100 nm for (a) and 
(b), and 50 nm for (c).42 

 

2.3.2 Etchant Composition Dependence 

The influence of etchant composition on the porosity of etched Si 

structures has been studied.29,32 Chartier et al.29 used molar ratio ρ, which is 

defined as [HF] / ([HF] + [H2O2]), to characterize various etched Si surface 

morphologies. The surface morphologies for different values of ρ are shown in 

Figures 2.6a to g. By allowing n to vary in their proposed etching reaction 
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(Equation 2.14), Chartier et al. proposed the concept of critical current 

density (JPS), as shown in Figure 2.6h, to explain three distinct etch 

morphologies for different range of ρ. 

 
 

   
Figure 2.6: (a)-(g) SEM images of p-Si (100) samples after HF-H2O2 etching 
for ρ values of 7, 9, 14, 20, 27, 30, and 88%, respectively. (h) Diagram 
illustrating the mechanism of the formation of cone-shaped pores in HF-H2O2 
solutions with 70% > ρ > 20%.29 

1. Pore formation (100% > ρ > 20%). 

At this range of ρ, apart from the holes consumed for etching directly 

beneath the Ag nanoparticle, some holes diffuse to the pore walls as spread 

current (Jwalls) which is lower than JPS. Hence, polishing (complete removal of 

Si) occurs beneath the particle and microporous Si forms on the walls, which 

f e d 

c b a 

h g 
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is also etched in HF-H2O2. The extent of this microporous region increases 

with decreasing ρ because more holes are available for the dissolution of Si, 

i.e. n in Equation 2.13 increases. Therefore, for 100% > ρ > 70%, pores with 

diameter matching the size of the particles are formed, as shown in Figure 

2.6g. For 70% > ρ > 20%, diameter of the pores is enlarged leading to the 

formation of cone-shaped pores, as shown in the insets of Figures 2.6d and f. 

2. Craters (20% > ρ > 9%). 

At this range of ρ, significant spread current results in a mixed process of 

polishing and porous Si formation, which leads to the formation of craters, as 

shown in Figure 2.6b and c. This morphology, however, was difficult to 

reproduce experimentally.29 

3. Polishing (9% > ρ > 0). 

At this range of ρ, the etching current is everywhere larger than JPS. The 

dissolution becomes independent of the metal nanoparticle location and result 

in a polished Si surface, as shown in Figure 2.6a. 

 

2.4 Etching Direction 

In this section, etching direction of MACE will be discussed by 

comparing two different configurations, namely interconnected catalyst and 

isolated catalyst.  

 

2.4.1 Interconnected Catalyst 

Interconnected catalyst or perforated film configuration can be obtained 

using various patterning techniques, such as interference lithography 

(IL),19,20,44 block copolymer (BCP) lithography,20,45 nanosphere lithography,46 
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and anodic aluminum oxide (AAO).47 With this catalyst configuration, 

fabrication of Si nanowire array has been demonstrated. By varying the 

exposure angles or the orientation between exposures in the IL setup, it is even 

possible to obtain nanowires with oval cross sections or nanofins.19 In all these 

reports, the etching direction of the catalyst is always uniform with respect to 

the Si substrate. While the nanowires formed on Si (100) substrates are always 

vertical, there has been an inconsistency regarding the orientation of the 

nanowires on non-(100) Si substrates. For example, Peng et al.46 observed that 

slanted nanowires are formed on Si (110) substrate, while Huang et al.47 

obtained vertical nanowires on Si substrate of the same orientation.  

 

 
        (a)    (b)        (c) 

 
          (d)    (e)        (f) 

Figure 2.7: (a)-(c) Nanowire arrays etched using a Au mesh with small hole 
spacings patterned using BCP lithography on n(100), n(110), and n(111) Si 
substrates, respectively. (d)-(f) Nanowire arrays etched using a Au mesh with 
large hole spacings patterned using IL on n(100), n(110), and n(111) Si 
substrates, respectively.20 

Chang et al.20 have resolved this discrepancy by showing that the etching 

direction of a perforated film structure depends on the hole spacing. If the hole 

spacing is small, etching proceeds along the preferred <100> direction, as 
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shown in Figures 2.7a to c. If the hole spacing is large, however, the etching 

direction is vertical independent of the crystallographic orientation of the Si 

substrate, as shown in Figures 2.7d to f. It was suggested that when the hole 

spacing is small or comparable to the metal film thickness (13 nm vs. 12 nm 

for this study), lateral movement of the catalyst is not restricted so as to result 

in the inclined nanowire array. On the other hand, when the hole spacing is 

large, lateral movement is severely restricted so that the nanowire array is 

always vertical. 

The preferential etching of Si along <100> directions in HF solution has 

been understood to be a result of different surface bond orientations, as 

proposed by Smith and Collins.48 Figure 2.8 shows the surface bond 

orientation for (100), (110), and (111) planes in HF solution. Since the 

formation of divalent Si surface state is necessary for etching, only the (100) 

plane presents the most favorable geometry because two bonds are 

symmetrically directed into the solution. 

 
Figure 2.8: Surface bond orientation for three crystal planes: (100), (110), and 
(111) in HF solution.48 
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2.4.2 Isolated Catalyst 

The first type of isolated catalyst commonly used in MACE is 

nanoparticles (NPs).24,49,50 Tsujino and Matsumura24 discovered that the 

etching direction of Ag NPs depends on the concentration of H2O2. For high 

H2O2 concentration (≥ 0.18 M), the NPs etch along the <100> directions, as 

shown in Figure 2.9a. The preferential etching along the <100> directions has 

been discussed in the previous section. For low H2O2 concentration (≤ 0.0018 

M), the NPs etch along random directions, as shown in Figure 2.9b. For the 

case of high H2O2 concentrations, the switch of etching direction to other 

<100> equivalents was attributed to the shape of the NPs. They found that the 

Ag NPs making deep straight holes were more spherical than those making the 

horizontal holes. As for the formation of winding pores for low H2O2 

concentrations, it was suggested that the spatial fluctuation in the 

concentration of HF or the oxidant in the pores may play a role. 

  
Figure 2.9: (a) Top-view SEM image of Ag NPs etched in 5.3 M HF and 0.18 
M H2O2 for 1 minute. (b) Cross-sectional SEM image of Ag NPs etched in 5.3 
M HF and 0.0018 M H2O2 for 30 minutes.24 

 

In a separate study, Tsujino and Matsumura32 also demonstrated that the 

etching direction depends on HF concentration. At low HF concentration, Pt 

NPs etch cylindrical holes along the <100> direction (Figure 2.10a) while at 

a b 
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high HF concentration, the NPs etch helical holes in various directions 

(Figure 2.10b). Again, the formation of helical holes was attributed to a shape 

effect, i.e. some irregularities on the NPs induce a local etch rate variation. 

Indeed, Lee et al.22 demonstrated that non-spherical Au particles etched pores 

with spiral sidewalls while the spherical ones etched straight pores. 

  
Figure 2.10: (a) Cross-sectional SEM image of Pt NPs etched in 50% HF, 
30% H2O2, and H2O (2:1:8 volume ratio) for 5 minutes. (b) Cross-sectional 
SEM image of Pt NPs etched in 50% HF and 30% H2O2 (10:1 volume ratio) 
for 5 minutes.32 

 

Huang et al.51 discovered that the etching direction of Ag NPs on non-

(100) Si substrates is controlled by the oxidation rate. At high [H2O2] of 0.1 

M, etching occurred along the substrate normal, as shown in Figure 2.11a. 

When the [H2O2] is lowered to 0.02 M, etching began to occur at an angle of ~ 

23° relative to the substrate normal (Figure 2.11b). When the [H2O2] is 

further lowered to 0.002 M, etching occurred at a larger tilt angle of ~ 50°, i.e. 

along the [100] direction, as shown in Figure 2.11c. It was proposed that there 

are two competing processes for the etching of Si in MACE. First process 

involves direct dissolution of Si in its divalent state, which is satisfied when 

the etching is limited by the transfer of electrons, i.e. low [H2O2]. In this case, 

etching preferentially occurs on the most favorable surface bond orientation, 

a b 
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which is the {100} planes. As a result, etching occurs along the [100] 

direction. The second process involves the formation of intermediate oxide 

phase and its subsequent dissolution in HF. This condition is met when [H2O2] 

is high. Since oxide dissolution in HF is isotropic, the etching direction 

follows the surface normal of the Si substrate. Huang et al. exploited this 

concentration-dependent etching direction to fabricate zigzag pores by 

periodically changing the etching concentration, as shown in Figure 2.11d. 

  
       (a)          (b) 

  
     (c)          (d) 

Figure 2.11: (a)-(c) Cross-sectional SEM images of p-Si (111) loaded with Ag 
NPs and etched in [H2O2] = 0.1, 0.02, and 0.002 M, respectively. (d) Cross-
sectional SEM image of p-Si (111) loaded with Ag NPs and etched for three 
periods of the sequence: 1 minute in [H2O2] = 0.1 M and 10 minutes in [H2O2] 
= 0.002 M. [HF] = 4.6 M for all samples.51 

 

The second type of isolated catalyst is nanopatterns25,33,52 made by e-

beam lithography (EBL). Hildreth et al.25 investigated the effect of catalyst 

shape and etchant composition on the etching direction of catalyst 

nanopatterns. First, they found that the complexity of the catalyst shape 

determines the possible etching path taken by the catalyst. For example, Au 
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nanolines have translational and rotational degree of freedoms (DOF) such 

that cycloid-like etching path can be seen, as shown in Figures 2.12c and e. 

By capping the lines on both ends to form dog-bone shape, the cycloid-like 

etching is eliminated allowing the catalyst to etch only along its translational 

DOFs (slide-etching), as shown in Figures 2.12d and f. Second, linewidth-to-

thickness ratio of the catalyst was also found to affect the etching stability. For 

linewidth-to-thickness ratio smaller than unity, etching is generally vertical or 

near vertical, as shown in the last two columns of Figures 2.12c and d. On the 

other hand, for linewidth-to-thickness ratio larger than unity, the etching 

direction is more unstable, as can be seen in the first two columns of Figures 

2.12c and d. Third, etchant composition or ρ (as defined in Section 2.3.2) was 

found to determine the degree of etch instability. Higher ρ generally gives rise 

to more erratic etchings, as can be seen by comparing Figure 2.12e to Figure 

2.12c. It was suggested that as ρ increases, both etching rate of Si and electric 

field strength across the catalyst also increase, where the latter is responsible 

for the self-electrophoresis movement of catalyst in MACE process. 

 
Figure 2.12: SEM images of Si etched with EBL-patterned Au nanolines (left 
column) and Au dog-bone shapes (right column) for 40 minutes. Line widths 
are 200, 100, 50, and 25 nm from left to right. Au thickness is 60 nm.25 



27 

 

Recently, Hildreth et al.33 have demonstrated that by pinning the catalyst 

with an insulating material, the catalyst can be forced to etch complex 3D 

structures. Figure 2.13a shows the erratic etching of isolated catalysts when 

they are not subject to any pinning structure. Figure 2.13b shows that when 

circular catalyst pads are pinned on its arms, the pads can etch back and forth 

around the pivot point to create scooped-out channels in Si. It was proposed 

that the catalyst motion is driven by fast-electrophoresis process, in which H+ 

ion flux from the anode (metal-Si interface) to the cathode (metal-liquid 

interface) sets up an electric field to propel the catalyst into Si. This self-

electrophoretic model was introduced by Paxton et al.53 to explain the 

spontaneous motion of Pt-Au nanorods in H2O2, and has also been adopted by 

Peng et al.54 to explain the movement of Ag catalyst into Si during MACE. 

Hildreth et al.33 calculated that the force experienced by the catalyst in their 

structures is in the range of 0.5 – 3.5 μN. As a result, the catalyst geometry 

(arm width and arm length) was found to significantly affect the etching 

behavior. If the arm is too short, the force experienced by the catalyst is not 

sufficient to move the catalyst, i.e. no etching occurs. On the other hand, if the 

arm is too long, the catalyst can delaminate from the pinning structure. 

  
  (a)     (b) 
Figure 2.13: (a) SEM images of erratic etching for non-pinned catalysts. (b) 
SEM images of “swinging” catalyst etching.33 
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It can be seen that as opposed to the case of interconnected catalyst, 

isolated catalyst usually does not etch in a uniform direction. The catalyst can 

either etch in a random manner or along the multiple <100> directions. Even 

though pinning the catalyst allows one to fabricate 3D nanostructures on Si, 

this is limited to simple swinging patterns and the etching is restricted to only  

a certain depth because the pinning arms may finally detach from the catalyst, 

after which the control exerted by the pinning structure is lost. However, this 

provides a valuable insight in that if we can control the movement of the 

isolated catalyst by other means which do not severely restrict the catalyst, 3D 

sculpturing of Si should be there for the taking.  

 

2.5 Electrochemical Etching of Silicon 

Another class of etching of Si in HF is the electrochemical etching 

method. This method had actually been invented by Uhlir55 many years ago in 

1956, but it only regained interest when Canham demonstrated its capability to 

produce light-emitting porous Si.40,56 Unlike MACE where the electronic holes 

required for the etching of Si are provided from the reduction of H2O2, 

electrochemical etching uses holes in the Si itself, which are driven to flow to 

the Si-electrolyte interface by the application of a voltage bias. For this reason, 

electrochemical etching of n-type Si requires UV illumination to generate 

electron-hole pairs.48 

The underlying mechanism of the electrochemical etching process can be 

understood by first examining the potential distribution of the etching system 

as shown in Figure 2.14a. It is typically assumed that the applied potential is 

dropped mostly on the space-charge (Vsc) and Helmholtz region (VH). The 
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possible dominance of space-charge control gives rise to the rectifying-like I-

V characteristics, as shown in Figure 2.14b (only the anodic dissolution 

portion is shown here). At small overpotential (region A), etching of Si is 

initiated on randomly distributed crystalline defect sites to form porous 

morphology. At high overpotential (region C), etching of Si occurs uniformly 

across the surface, i.e. electropolishing regime. At intermediate overpotential 

(region B), transitional morphology is formed due to a competition of pore 

formation and electropolishing. 

 
          (a)     (b) 
Figure 2.14: (a) Schematic diagram for electrochemical etching of Si, 
showing potential distribution at the various interfaces. Va is the applied 
voltage, Vref is the solution potential, VH is the Helmholtz potential, and Vscr is 
the space-charge potential. (b) Typical I-V relationship for Si in HF showing 
different regimes of dissolution.48 

 

Barillaro et al.57 demonstrated that by pre-patterning defect sites on the 

Si prior to etching, various arrays of regular Si microstructures can be 

fabricated. Figure 2.15a outlines the process to obtain patterned Si 

microstructures using electrochemical etching. First, a thermal oxide was 

grown on the sample and then, a standard photolithographic procedure was 
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carried out to define the pattern on the oxide. The pattern was then transferred 

to the Si by KOH etching to expose the pyramidal pits on Si. These pyramidal 

pits served as the preferred nucleation sites for pore formation in the 

subsequent electrochemical etching step. Figure 2.15b shows a Si microwall 

array fabricated by electrochemical etching using pre-patterned line defects. 

By controlling the pattern, it is possible to fabricate more complex 

microstructures, such as the meander-shaped wall array shown in Figure 

2.15c. In the same figure, however, it can be seen that random macropores are 

formed on the non-patterned Si area, which was suggested to be a size-effect, 

i.e. more holes can diffuse to the non-patterned Si and initiate pore formation 

as the separation between pattern increases. This highlights the limitation of 

this method, i.e. a maximum dimension exists above which it is not possible to 

obtain pore-free Si microstructures.  

 

 

 

 

               
        (b) 

 
 
 
 
 
 
 
 
         (a)             (c) 

Figure 2.15: (a) Schematic diagram illustrating the fabrication of Si 
microstructures using electrochemical etching in HF. (b) Cross-sectional view 
of an electrochemically etched wall array. (c) Top view of an 
electrochemically etched meander-shaped wall array.57 



31 

 

Chapter 3. Experimental Methods 

3.1 Introduction 

This chapter will detail the experimental methods used in this study. 

Section 3.2 will outline the sample preparation procedures. Section 3.3 will 

discuss the patterning methods. Sections 3.4 and 3.5 will describe the Au 

deposition and lift-off processes to obtain the Au patterns. Section 3.6 will 

outline the setup for the MACE experiment. Finally, Section 3.7 will discuss 

scanning electron microscopy (SEM) as the main characterization technique 

used in this study. 

 

3.2 Sample Preparation 

The Si wafer cleaning procedure consists of two RCA standard cleaning 

(SC) steps:58,59 

1. SC-1. 

SC-1 serves to remove organic contaminants from the Si wafer surface. 

First, 250 ml deionized water (DI water) is heated to 80-90°C. Then, 50 ml 

hydrogen peroxide (H2O2, 31 wt.%) and 50 ml ammonium hydroxide 

(NH4OH, 29 wt.%) are added to the solution. The Si wafers are then 

immersed in the solution for 10-15 minutes. Afterwards, they are rinsed in 

flowing DI water with bubbler for 10-15 minutes. While waiting for the 

rinsing step to complete, SC-2 solution can be prepared. 

2. SC-2. 

SC-2 serves to remove inorganic / metallic contaminants from the Si wafer 

surface. First, 300 ml DI water is heated to 80-90°C. Then, 50 ml 



32 

 

hydrogen peroxide (H2O2, 31 wt.%) and 50 ml hydrochloric acid (HCl, 37 

wt.%) are added to the solution. The Si wafers are then immersed in the 

solution for 10-15 minutes. Afterwards, they are rinsed in flowing DI 

water with bubbler for 10-15 minutes. 

 

After the SC-2 step, the Si surface is passivated by a 1.5-nm-thick 

carbon-free oxide layer,59 which should only be removed right before further 

processing steps. The oxide removal is carried out by immersing the wafer in 

10 wt.% HF for 5-10 seconds.  

On many occasions, not all the wafers will be used at the same time. 

Since the oxide layer grown on the Si surface after the SC-2 step is very thin, 

the Si surface can attract new contaminants when left unprocessed for a long 

period of time. Therefore, after the SC-2 step, the grown oxide layer can be 

stripped in 10 wt.% HF and immediately loaded into an oxidation furnace to 

grow a thick oxide layer. This oxide layer serves as a protective layer from 

any possible surface contaminants and can be conveniently removed in HF 

when the wafers are about to be used for further processing steps.  

The oxidation system (Tystar Model Mini Tytan) used in this work is 

schematically depicted in Figure 3.1. There are two types of oxidation, 

namely dry and wet oxidation.60 Dry oxidation uses O2 feed gas to induce the 

chemical reaction of Si + O2  SiO2. Wet oxidation uses H2O bubbler 

coupled with O2 carrier gas to oxidize the Si according to the reaction of Si + 

2H2O  SiO2 + 2H2. Since the new oxide forms at the Si/SiO2 interface,61 the 

oxide growth rate becomes slower (diffusion-limited) as the oxide becomes 

thicker. The diffusion-limited regimes for dry and wet oxidation are 
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approximately 4 and 100 nm, respectively.60 For this reason, dry oxidation is 

typically used to grow a thin oxide layer while much thicker oxide is more 

practical to grow using wet oxidation. We typically grow 85-nm oxide on the 

Si using wet oxidation at 900°C for 24 minutes. 

 
Figure 3.1: Schematic of a Si oxidation system. 

 

3.3 Lithography 

We used a thin Ultra-i 123 photoresist (PR) coating on Si for subsequent 

lithographic steps. First, the Si wafer is mounted on a vacuum chuck. Then, 

the PR is dispensed onto the Si wafer until it covers the entire wafer. Two-step 

spinning is employed in our experiments. The first spinning step is carried out 

at 500 rpm with an acceleration of 560 rpm/sec for 2 seconds, and serves to 

uniformly spread the PR across the whole wafer surface. The second spinning 

step is carried out at x rpm with an acceleration of 1680 rpm/sec for 58 

seconds to achieve the desired resist thickness. After spincoating, the sample 

is softbaked at 90°C on a hotplate for 90 seconds. We have calibrated the 

resulting Ultra-i 123 thickness (0.35 dilution) for various values of x, as shown 

in Figure 3.2. 

 

Resistive heating system 
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Figure 3.2: Ultra-i 123 softbaked thickness vs. spin speed. 

 

The interference lithography (IL)62,63 system used in this work is of the 

Lloyd’s mirror configuration,19 as schematically shown in Figure 3.3, with a 

HeCd laser source (λ = 325 nm). The mirror is fixed at right angle with the 

substrate by a rigid frame. By rotating the frame to a certain angle (θ), the 

incoming laser beam will interfere with the beam reflected from the mirror on 

the substrate so as to result in a standing wave with a spatial period (p) given 

by, 

                                                𝑝 = 𝜆
2 sin𝜃

           Equation 3.1 

 
Figure 3.3: Lloyd’s mirror configuration for interference lithography.63 

θ 
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After exposure, the sample is baked at 110°C for 90 seconds and 

developed in Microposit MF CD-26 developer for 60-90 seconds to produce 

the PR patterns. Figures 3.4a to c show possible geometries generated using 

IL. Single exposure results in lines, two exposures with angle of 90° between 

exposures result in dots, and two exposures with acute angle between 

exposures result in fins. 

 
           (a)    (b)         (c) 
Figure 3.4: (a) Line, (b) dot, and (c) fin PR patterns generated using 
interference lithography on a Si substrate. 

 

We have also used optical lithography to fabricate samples for our 

etching experiments. The optical lithograhy system (SUSS MicroTec MJB4) is 

schematically depicted in Figure 3.5a. It can operate in contact or proximity 

mode and uses a UV light source of 320-nm wavelength. We employed  

contact printing4 for the exposure of  the PR layer. After exposure, the sample 

is baked at 110°C for 90 seconds and then developed in Microposit MF CD-26 

developer for 60-90 seconds to produce the PR patterns. Example of PR ring 

pattern is shown in Figure 3.5b. 
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         (a)     (b) 
 

Figure 3.5: (a) Optical lithography using contact printing exposure method. 
(b) PR ring patterns on Si. 

 

After development, there can still be residual PR layer which can be 

detrimental in two aspects. First, MACE requires an intimate contact between 

Au and Si. Therefore, the presence of a thin residual PR layer between Au and 

Si will block the etching process. Second, Au patterns are obtained by first 

depositing Au film on the PR patterns and then selectively removing the Au-

coated PR patterns. If there is a thick residual PR layer prior to Au deposition, 

it could result in complete removal of the Au film. 

For this reason, an oxygen plasma etching step is necessary after PR 

development. Our plasma etching system (SAMCO Model PD-2400) is 

schematically depicted in Figure 3.6. A radio-frequency (RF) generator sets 

up a potential difference between electrodes and ionizes the oxygen gas, i.e. 

creating a gas plasma. These ionized oxygen molecules react with the PR to 

convert the polymer to carbon dioxide and water,64 which are then pumped out 

of the system. 
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Figure 3.6: Schematic diagram of an RF-powered plasma etch system. 

 

3.4 Thermal Evaporation 

Au is deposited on the PR patterns using evaporation process because of 

its unidirectional deposition flux. Unidirectional flux is necessary to minimize 

sidewall coating on the PR patterns and hence, will facilitate the subsequent 

lift-off process. A schematic diagram of the thermal evaporator (Edwards 

Auto306 FL400) used in this work is shown in Figure 3.7. First, a Au wire of 

7-10 mm in length is loaded into the tungsten boat and the chamber is pumped 

down using two-stage pumping systems. Rough pumping brings the chamber 

pressure to ~ 10-1 Torr before fine pumping takes over to lower the pressure to 

10-6 Torr range within 1-2 hours. The tungsten boat is then resistively heated 

by increasing the current slowly to ~ 4 A. During the process, the Au wire can 

be seen to melt. After the rate monitor shows a stable value of 0.02-0.03 

nm/sec, the shutter can be opened and Au will be deposited on the sample until 
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it reaches the desired thickness. 7-mm Au wire is sufficient to deposit ~ 20-nm 

Au film within a duration of ~ 20 minutes. 

 
Figure 3.7: Schematic diagram of a thermal evaporator. 

 

3.5 Lift-off 

After Au deposition, the Au-coated PR patterns must be selectively 

removed to leave behind only the Au patterns on Si. This process is called lift-

off, as schematically shown in Figure 3.8. First, an ultrasonic bath (Branson 

B2510DTH) is filled with water up to the allowed operating level. Then, the 

sample is put upside down on the sample holder (with perforations to allow 

the liquid to penetrate from below) and immersed in an acetone-filled beaker 

in the bath. After subjected to ultrasound agitation (40 kHz) for about 10 

minutes, the PR patterns should be completely removed, leaving behind the 

inverse patterns on the Au film. Typical results before and after lift-off are 

shown in Figures 3.8b and c, respectively.  
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(a) 

    
   (b)       (c) 
Figure 3.8: (a) Schematic diagram of an ultrasonic bath. (b) Tilted view of PR 
patterns coated with Au before lift-off. (c) Top view of inverse PR patterns on 
Au after lift-off. Scale bar is 1 μm. 

 

3.6 Metal-Assisted Chemical Etching of Silicon 

After lift-off, the samples are ready for MACE. The etchant consists of a 

mixture of H2O, HF, and H2O2. Since HF is known to attack glass,65 Pyrex 

beaker cannot be used for the etching experiment and the etchant must instead 

be placed in a Teflon beaker, as shown in Figure 3.9. The samples (with the 

Au patterns facing up) are put inside a Teflon sample holder which has 

perforations to allow the etchant to seep from beneath. The importance of 

exposing the back side of the sample to the etchant will become clear in the 

next chapter. 
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Figure 3.9: Schematic illustrating MACE experiment. 

 

3.7 Scanning Electron Microscopy 

The surface morphology of the samples was characterized using two 

types of scanning electron microscopes (SEM): FEI Nova NanoSEM 230 and 

Philips XL 30 FEG. The working principle of image collection in SEM is 

depicted in Figures 3.10a and b. When a primary electron beam of energy E0 

(typically with an acceleration voltage < 30 kV) is incident on a sample, the 

kinetic energy is lost via multiple inelastic scattering to generate many 

secondary electrons (SEs). These SEs are brought to rest within the interaction 

volume (or penetration depth), as shown in Figure 3.10a. Some of the SEs 

near the surface (within an escape depth λ), however, can escape to vacuum as 

a signal for the detector. The value of λ is very small (~ 2 nm) and therefore, 

SE image gives the surface structure (topography) of a sample.66  

Figure 3.10b shows that the number of escaping SEs per primary 

electron (called SE yield) depends on the angle (φ) between the primary 

electron and the surface. This is because for an inclined surface (B), the 

volume from which the SEs can escape is larger than that of a flat surface as 
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can be seen by comparing the hatched area in B and A. This means that 

protrusion or recess features will appear brighter than their surroundings even 

though they are constituted from the same material. Figure 3.10c shows a Si 

nanowire array fabricated on Si substrate using MACE. It can clearly be seen 

that the nanowires appear brighter than the Si background due to the 

difference of SE yield explained above.   

    
   (a)     (b) 

  
         (c)             (d) 
Figure 3.10: (a) Schematic dependence of the interaction volume and 
penetration depth as a function of incident energy E0 and atomic number Z of 
the incident (primary) electrons.66 (b) SEM incident beam that is normal to a 
specimen surface (at A) and inclined to the surface (at B).66 (c) Si nanowires 
fabricated on Si substrate using MACE. (d) The same nanowire array which 
has been shadow-evaporated with nickel (Ni). 

Figure 3.10a also shows that the interaction volume increases with E0 

because more scatterings can occur for higher-energy electrons, and decreases 

with the sample atomic number (Z) because more atoms are available per unit 

volume to slow down the primary electrons. The dependence on Z implies that 

materials with different atomic number can also create a contrast in SEM 
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images. Figure 3.10d shows the same Si nanowire array (Figure 3.10c) which 

has been coated with nickel (Ni) using shadow-evaporation method. It can be 

seen that the Ni-coated background appears brighter than the uncoated Si 

region because ZNi (= 28) is higher than ZSi (= 14). It should be noted, 

however, that to obtain strong atomic-number-contrast image, the SEM is 

typically operated under backscatter mode because the cross section for high-

angle elastically backscattered electron is proportional to Z2.66 
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Chapter 4. Mechanism and Stability of Catalyst in  

Metal-Assisted Chemical Etching 

4.1 Introduction 

In recent years, metal-assisted chemical etching (MACE) of Si has 

emerged as a promising low-cost alternative 3D fabrication method.  This 

method involves the etching of Si in a mixed solution of HF and H2O2 with 

noble metal catalyst,19,23 and it has successfully produced tilted and zigzag 

nanowires,54,67 nanocones,21 helical holes,24,32 and cycloidal25 and spiral 

trenches.25,52 Among all the reports on MACE, it is worthwhile to distinguish 

two distinct catalyst configurations, namely the isolated catalysts (e.g. 

nanoparticles24,32 or nanopatterns25,33,52)  and the interconnected catalysts (e.g. 

perforated films19,20,44).  

For work on MACE using isolated catalysts, it was observed that24,32 the 

direction of Pt or Ag nanoparticles can significantly deviate from directions 

normal to the original surface. When Au nanopatterns25,33 (~0.5 µm2 ) are used 

as catalysts, the etching direction into the Si is intimately related to the 

geometry  of the catalysts.  In fact, Wong et al. demonstrated that controlled 

3D motion of catalyst patterns during MACE can only be achieved by locally 

pinning them with an electrically insulating material prior to etching.33,68,69 

The second type of MACE of Si makes use of a layer of perforated Au 

film on Si surface (i.e. the anti-dot configuration).19,20,44 With the anti-dot 

configuration, the Au film causes etching in uniform direction relative to the 

substrate leaving behind nanowires and nanofins. Note that a controlled 

etching direction of nanopatterns has also been achieved by Wong et al. but 
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with the nanopatterns pinned. These results therefore point to an intriguing 

fact that the configuration of catalyst, i.e. isolated or interconnected, is 

intimately related to whether the etching direction is uniform.   

In this chapter, we report results of a systematic study on the mechanism 

and catalyst stability of metal-assisted chemical etching (MACE) of Si in HF 

and H2O2 using isolated Au catalyst. The role of electronic holes on etching of 

Si underneath a Au catalyst is presented. The role of excess holes is 

characterized through the observation of pit formation as a function of catalyst 

proximity and the ratio of the H2O2 and HF concentrations in the etch solution. 

We show that suppression of excess hole generation, and therefore pitting, can 

be achieved by either adding NaCl to the etch solution or by increasing the HF 

concentration relative to the H2O2 concentration.  

We also demonstrate that an external electric field can be used to direct 

most of the excess holes to the back of the Si wafer, and thus reduce pit 

formation at the surface of the Si between the Au catalysts. We also explore 

the role of Au back contact on the etching characteristics for three different 

cases: (i) back contact is exposed to the etchant, (ii) back contact is not 

exposed to the etchant, and (iii) etching with an additional current injection 

from an applied bias. Next, we propose that there are two possible causes for 

catalyst instability during MACE, namely the overlap of excess holes between 

neighboring catalysts and the generation of hydrogen (H2) bubbles. From these 

two modes of instability, we define a regime of etch chemistry and catalyst 

spacing for which catalyst stability and vertical etching can be achieved.  
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4.2 Experimental Details 

p-type Si (100) wafers with resistivity 4–8 Ω.cm were used for the 

MACE experiments. The wafers were cleaned in SC-1 and SC-2 solutions and 

dipped briefly in 10 wt.% HF before lithographic steps. The basic process flow 

for the preparation of samples for subsequent MACE experiments is shown in 

Figure 4.1a. First, an Ultra-i 123 photoresist layer of ~ 400-nm thickness was 

spin coated on the Si wafer and baked at 110°C for 1.5 minutes. The 

photoresist was then exposed using a UV mask aligner (SUSS MicroTec 

MJB4), baked at 110°C for 1.5 minutes, and developed in Microposit MF CD-

26 developer for ~ 1 minute to generate patterns in the photoresist. The 

patterns consist of sets of rectangles (2 µm × 100 μm) of different spacings (2, 

5, 9, 13, 17, and 20 μm) as shown schematically in Figure 4.1b.  

The samples were then subjected to an oxygen plasma etch at a 

pressure of 0.2 Torr and power of 200 W for an etching time of 30 seconds to 

remove any residual resist layer after development. An Au layer (~18 nm) was 

then deposited on the resist patterns using a thermal evaporator (Edwards 

Auto306 FL400) at a base pressure of ~ 10-6 Torr. The samples were 

subsequently put in an ultrasonic bath for 10 minutes to lift off the photoresist 

patterns, leaving behind Au strips on the Si. Typical SEM images of the Au 

strips with strip spacings of 2, 13 and 20 µm are shown in Figures 4.1c to e, 

respectively. The samples were then etched in a mixed solution of H2O, H2O2 

and HF of different proportions at room temperature. The surface 

morphologies of the Au catalysts and the Si between the Au strips were 

examined using scanning electron microscopes (FEI Nova NanoSEM 230 and 

Philips XL 30 FEG). 
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(a) 

 
(b) 

 
                      (c)     (d)                     (e)  
Figure 4.1: (a) Process steps for fabrication of Au strips using optical 
lithography. (b) Schematic of photoresist patterns with different spacings. (c)-
(e) SEM images of Au strips with spacings of 2, 13 and 20 µm. The scale bar 
for the SEM images is 20 µm. 

 

4.3 Role of Electronic Holes on Etching Underneath Au 

The MACE process involves a pair of redox reactions at the cathode 

(Au–liquid interface) and anode (Au-Si) interfaces,29  
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Cathode:           𝑛
2
𝐻2𝑂2 + 𝑛𝐻+ → 𝑛𝐻2𝑂 + 𝑛ℎ+           

Equation 4.1 

and 

Anode:           𝑆𝑖 + 6𝐻𝐹 + 𝑛ℎ+ → 𝐻2𝑆𝑖𝐹6 + 𝑛𝐻+ + �4−𝑛
2
�𝐻2  

Equation 4.2 

so that 

Balanced reaction:   𝑆𝑖 + 6𝐻𝐹 + 𝑛
2
𝐻2𝑂2 → 𝐻2𝑆𝑖𝐹6 + 𝑛𝐻2𝑂 + �4−𝑛

2
�𝐻2                   

Equation 4.3 

H2O2 is reduced at the Au surface as Au is negatively charged70 for pH 

> 3 in all possible HF concentrations,71 and this attracts H+ ions to the vicinity 

of Au catalyst. This reaction produces water and at the same time injects holes 

(h+) through the Au catalyst into Si. At the anode (Au-Si interface), the Si 

atoms underneath the Au catalyst are oxidized by the holes and dissolve in the 

HF solution as H2SiF6.  H+ ions and H2 gas are also produced at the anode.  

 

 
Figure 4.2: Si etch rate versus the H2O2 concentration for Au strips with 2-μm 
spacing with fixed [HF] = 1.73M. 

Figure 4.2 shows etch rate results for samples with an Au strip spacing 

of 2 µm as a function of the H2O2 concentration for [HF] = 1.73 M. It can be 

seen that the etch rate increases linearly as the H2O2 concentration is 
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increased. This is expected as an increase in [H2O2], in the range in which the 

HF supply is abundant, will provide an increasing number of holes to oxidize 

the Si and cause the etch rate to increase. 

 

4.4 Role of Excess Holes on Pit Formation 

As HF can only access the Si from the edge of the catalyst, this allows a 

certain number of holes (especially in the middle region underneath the 

catalyst) to diffuse away from the catalyst, as shown in Figure 4.3a. These 

excess holes will diffuse to locations away from the Au strip and then oxidize 

Si atoms at the Si surface between strips. These oxidized portions will then be 

etched by HF resulting in the formation of pits. To study pit formation in our 

samples, we have identified two different regions at the Si surface between 

adjacent Au strips: Region A (of 1 µm width half way between the two 

adjacent Au strips) and Region B (of 1 µm width along the edges of the Au 

strips), as illustrated in Figure 4.3b. 

 
(a) 

 
(b) 

Figure 4.3: (a) Schematic of hole injection into Si during MACE. (b) 
Definitions of regions A and B. 
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4.4.1 Influence of Catalyst Spacing 

 
        (a)     (b)         (c) 

 
     (d)            (e) 

 
(f) 

Figure 4.4: (a)-(e) Top-view SEM images of etched samples with strip 
spacings 2, 9, 13, 17, and 20 μm, respectively. The [HF] and [H2O2] were 
fixed at 1.73 and 1.21 M, respectively, and the etch duration was 15 minutes 
for (a) and 20 minutes for (b) through (e). The scale bar for the SEM images is 
10 μm. (f) Comparison of pit density in Region A for samples shown in (b) 
through (e).  

Figures 4.4a to e show the SEM images of the Si surface between Au 

strips with strip spacings of 2, 9, 13, 17, and 20 μm. It is reasonable to assume 

that the concentration of excess holes in the Si decreases with distance from 

the Au edges. This means that a much higher concentration of holes will be 

found in Region B compared to Region A. As a result, there should always be 
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more etching of Si in Region B than Region A. This is in agreement with all 

the SEM images shown in Figures 4.4a to e. However, it should be noted that 

for the sample with strip spacing of 2 µm, Regions A and B become 

indistinguishable, probably caused by a significant overlap of regions with 

high excess hole concentrations. For samples with larger strip spacing, Region 

A becomes smoother (i.e. has fewer pits). This is confirmed by the pit density 

shown in Figure 4.4f.  

 

4.4.2 Influence of [H2O2] 

 
          (a)     (b)          (c) 

    
       (d)            (e) 
Figure 4.5: (a)-(d) Top-view SEM images of etched samples with a strip 
spacing of 20 μm, etched with H2O2 concentrations of 0.15, 0.46, 0.76, and 
1.21 M. [HF] was fixed at 1.73 M and the etch duration was 15 minutes. The 
scale bar for the SEM images is 10 μm. (e) Comparison of pit density in 
Region A for samples shown in (b) to (d). 

We have also varied the flux of holes by changing the H2O2 

concentrations in our etching experiments. Figures 4.5a to d show the pit 

distributions for samples with a strip spacing of 20 µm and etched for 15 
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minutes with [H2O2] = 0.15, 0.46, 0.76, and 1.21 M. First, we observe that the 

Si surface between the Au strips is very smooth for the etching experiment 

with [H2O2] = 0.15 M. For low H2O2 concentrations (e.g. 0.15 M), there are 

very few extra holes available for the formation of pits, and thus the Si surface 

between the strips is very smooth. As the concentration of H2O2 is increased 

from 0.46 to 1.21 M, more extra holes are available and pits form in Region A, 

as shown in Figures 4.5b to d. This is in agreement with the results of Figure 

4.5e, which shows that the pit density increases with increasing H2O2 

concentration.   

 

4.5 Control of Excess Holes 

We have shown that excess holes are responsible for the formation of 

pits at locations away from the catalyst. We will now explore three possible 

ways to control these excess holes, namely addition of NaCl, increase in [HF], 

and application of electric field. 

 

4.5.1 Addition of NaCl 

One way to vary the injection rate of holes is to vary the supply of H+ 

ions at the Au-liquid surface. This can be achieved by adding NaCl to the 

etching solution.72 Figure 4.6a shows a schematic of the influence of adding 

NaCl to the etching solution. NaCl can readily dissociate into Na+ and Cl- ions 

and the Na+ ions are attracted to the negatively charged Au surface. As H+ ions 

are required for the generation of holes at the cathode, the presence of Na+ 

ions reduces the number of H+ ions at the Au surface and hence the number of 

holes injected into Si. This will result in (i) a reduction of the etch rate of the 
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Si underneath the Au strips and (ii) a concomitant reduction in the injection 

rate of excess holes, thereby suppressing pit formation at the Si surface 

between the Au strips. Figures 4.6b and c compare the Si surfaces for etching 

without and with the addition of 10mM NaCl to the etching solution, 

respectively.  Figure 4.6c clearly shows that there is a significant reduction in 

pit formation when NaCl is added. The etch rate was also found to decrease 

from 95 nm/min (from Figure 4.6b) to 22 nm/min (from Figure 4.6c). To 

make sure that the smooth Si surface shown in Figure 4.6c was not due to  

reduction in the etch rate, another sample was etched to a comparable depth (a 

depth of 0.9 µm achieved in 21 minutes, as shown in Figure 4.6d) and the Si 

surface was still found to be smoother than in the case when NaCl was not 

added (as shown in Figure 4.6b). 

 
(a) 

 
         (b)    (c)           (d) 

Figure 4.6: (a) Schematic diagram illustrating the effect of adding NaCl to 
etching solution. Na+ adsorption at the Au-liquid interface suppresses H+ 
adsorption and the injection of holes into the Au and Si. (b)–(d) Top-view 
SEM images of samples with a 2-μm Au strip spacing;  (b) without NaCl in 
the etching solution and etched for 10 minutes, (c) with 10mM NaCl in the 
etching solution and etched for 10 minutes, (d) with 10 mM NaCl in the 
etching solution and etched to reach a  depth of 0.9 µm. [HF] and [H2O2] were 
fixed at 1.73 and 0.46 M, respectively. The scale bar for the SEM images is 2 
μm. 
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4.5.2 Increase in [HF] 

We also consider the effect of HF concentration on pit formation in the 

MACE process. When HF supply is increased, more holes are consumed 

beneath the catalyst and fewer holes can diffuse away and form pits. It is 

therefore expected that the etch rate of Si should increase and the formation of 

pits at the Si surface between the Au strips should be reduced with an increase 

in [HF]. Figures 4.7a and b show the Si surface condition between Au strips 

with a spacing of 2 µm for [HF] = 1.73 and 27.5 M, respectively. As can be 

seen, there is a drastic change in the Si surface condition from pitted to 

smooth. The etch rate was also found to increase from 130 nm/min to 280 

nm/min when [HF] was increased from 1.73 to 27.5 M. 

  
      (a)              (b) 

Figure 4.7: Top-view SEM images of samples with Au strips of 2-μm spacing 
and etched with HF concentrations of (a) 1.73 M and (b) 27.5 M. The H2O2 
concentration was fixed at 0.46 M and the samples were etched for 15 
minutes. The scale bar for the SEM images is 2 μm. 

 

4.5.3 Effect of Electric Field 

Figure 4.8a shows a schematic of the experimental set-up used to 

manipulate the excess holes in an electric field. The H2O2 and HF solution was 

placed inside a flexible plastic container (a plastic pipette bulb) and the Si 

sample with Au strips was immersed inside the solution. The plastic container 

was pressed between two copper plates to obtain a gap between the plates of 
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2–3 mm, as shown in Figure 4.8a. The electric field across the etching 

solution could then be varied by changing the potential applied (U) across the 

two metal plates. 

Figures 4.8b, c and d show SEM images of three samples etched with 

[HF] = 1.73 M and [H2O2] = 1.21 M with U = 0, 10 and 100 V.  For the 

sample with U = 0 V, excess holes diffused into Regions A and B (see Figure 

4.8b) to form pits as described in Section 4.4. With U = 10 V, the excess holes 

are drawn toward the bulk of Si resulting in less pitting in Regions A and B.  

As shown in Figure 4.8d, the effect of the electric field in drawing the holes to 

the bulk of Si is even more significant for U = 100 V.   

 

 
(a) 

 
         (b)     (c)         (d) 
Figure 4.8: (a) Schematic illustration of the experimental set-up used for 
studies of etching in the presence of an external electric field. (b)–(d) Top-
view SEM images of samples with an Au strip spacing of 20 μm etched for 15 
minutes in [HF] = 1.73 M and [H2O2] = 1.21 M with U = 0, 10, and 100 V, 
respectively. The scale bar for the SEM images is 10 μm. 
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It was also found that the etch rate decreased with increasing electric 

field. For samples etched with U = 0, 10 and 100 V, the etch rates were 0.12, 

0.03, and 0.023 µm/min, respectively. Similar results were obtained from the 

same etching experiments but with [H2O2] = 0.46 M (see Appendix A). These 

results suggest that in the presence of the electric field, either fewer holes are 

generated at the Au/Si interface, or fewer of the holes generated at the 

interface cause a reaction there.     

 

 
         (a)            (b) 

 
         (c)            (d) 
Figure 4.9: (a) SEM images of the backside surface of a virgin Si sample. (b)–
(d) Backside surface of samples with an Au strip spacing of 20 μm etched for 
15 minutes in [HF] = 1.73 M and [H2O2] = 1.21 M, with U = 0, 10, and 100 V, 
respectively. The scale bar for the SEM images is 5 μm.  

One would expect some of the holes being drawn by the electric field to 

the bulk of the Si to reach the back side of the Si wafer and hence result in pit 

formation. Figure 4.9a shows a SEM image of the back side of a virgin 

sample. The rough back side surface is expected as the Si wafer was only 

polished on the opposite side. It is interesting to compare the SEM images (see 
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Figures 4.9b, c and d) of the back side of three samples etched with [HF] = 

1.73 M and [H2O2] = 1.21 M with U = 0, 10 and 100 V. With U = 0, most of 

the holes were consumed at the front side of the wafer, giving rise to pits in 

Regions A and B, and few pits are observed on the back side of sample. The 

pit density clearly increases when U is increased to 10 or 100 V. This is 

expected as higher electric field will cause more holes to reach the back side 

of sample.   

 

4.6 Role of Au Back Contact 

Since the reduction of H2O2 or the generation of holes (Equation 4.1) is 

greatly facilitated in the presence of Au, as explained in Section 4.3, we have 

also explored the role of Au back contact on the etching characteristics at the 

front side of the sample where the Au patterns are located. For this purpose, 

we use a different catalyst configuration obtained through the process flow 

described in Figure 4.10. First, lithographic exposure was carried out to 

expose the Si strips of 20-μm spacing beneath the PR layer. Then, another 

exposure was carried out, with the upper half of the sample covered with a 

piece of Si wafer, to generate the Si finger pattern. Subsequently, 18-nm Au 

was deposited on the sample, followed by a lift-off process to obtain Au 

fingers on Si. The function of the large pad at the base of each Au strip is to 

enable the application of an electrical bias. Finally, Au film of 18-nm 

thickness was also deposited on the back side of the sample to form a back  

contact. Care was taken to ensure that the edges were not coated with Au to 

avoid any current shorting with the Au patterns on the front side of the sample.  
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We have examined three different cases for this catalyst configuration: 

(i) back contact is exposed to the etchant, (ii) back contact is not exposed to 

the etchant, and (iii) etching with an additional current injection from an 

applied bias. 

 
Figure 4.10: Process steps to fabricate Au fingers with Au back contact. 

 

4.6.1 Double-Sided Hole Injection 

 
Figure 4.11: Schematic illustrating MACE experiment for Au fingers with Au 
back contact. The large Au pad is not immersed in the etchant solution. 

To examine the role of Au back contact, the samples were etched in a 

configuration shown in Figure 4.11. The large Au pad was not immersed in 
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the etchant solution to isolate any possible influence of the pad on the etching 

characteristics. 

 

  
      (a)      (b) 

 
(c) 

    
(d)          (e)      (f)   (g) 

Figure 4.12: (a) and (b) are top-view SEM images of samples etched for 15 
minutes with and without Au back contact, respectively. [H2O2] and [HF] 
were fixed at 1.21 and 1.73 M, respectively. (c) Schematic illustrating the 
creation of a PR step to obtain an absolute etch depth measurement. (d) and (e) 
are cross-sectional SEM images of sample etched without Au back contact at 
the active region and the reference point, respectively. (f) and (g) are cross-
sectional SEM images of sample etched with Au back contact at the active 
region and the reference point, respectively. 

Figures 4.12a and b show the top-view SEM images of the samples 

etched with and without Au back contact, respectively. Without back contact, 

regions A and B are clearly distinguishable for the reason explained in Section 

4.4. With back contact, however, numerous pits are formed uniformly between 

the Au strips, i.e. no regions A and B. This is because the back contact 

provides an additional source of hole injection to the front side of the sample. 

490 nm 170 nm 190 nm 
780 nm 
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Since the back side of sample is thoroughly coated with Au, it is expected that 

the pit formation is intensified uniformly between the Au strips at the front 

side of sample. 

One would expect that the increased amount of holes at the front side 

should result in a faster etch rate beneath the Au strips. In such condition, 

however, the Si surface between the strips could as well be etched down. To 

ensure that the etch depth measurement is absolute, i.e. not relative to the 

etched-down Si surface, PR steps were created at both edges of the sample, as 

shown Figure 4.12c. Etching is now confined within the active region and the 

protected Si surface underneath the PR steps serves as a reference point for 

etch depth measurement. Figures 4.12d and e show the etch depth for sample 

without back contact at the active region and the reference point, giving a total 

etch depth of 660 nm. Figures 4.12f and g show the corresponding results for 

sample with back contact, which obviously gives a larger total etch depth of 

970 nm. It is worthwhile to note that without a reference point, the etch depth 

measurement becomes relative to the etched-down Si surface between Au 

strips and could lead to misinterpretation (cf. Figures 4.12d and f). 

 

4.6.2 Hole Fill-Up Effect 

To eliminate the contribution of holes from the Au back contact, we have 

explored another etching configuration where only a few cc of the etchant 

were placed on the front side of sample to form a liquid droplet (diameter ~ 

0.5 cm), as shown schematically in Figure 4.13a. The droplet was arranged to 

wet only the Au strip region and not the large Au pad. The etching result is 

shown in Figure 4.13b. It can be seen that the surface between the Au strips is 
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still uniformly populated with numerous pits. As has been explained in 

Section 4.5.3, the excess holes which are injected at the front side of sample 

may reach the back side and react with the etchant to form pits. This 

consumption pathway for the excess holes is not available when only the front 

side of sample is exposed to the etchant. As such, the excess holes will finally 

fill up the whole thickness of the sample and give rise to the formation of 

numerous pits between the Au strips. 

    
  (a)         (b) 
Figure 4.13: (a) Schematic illustration of etching experiment with a droplet. 
The large Au pad was not exposed to the etchant droplet. (b) Top-view SEM 
image of sample etched with a droplet for 15 minutes. [H2O2] and [HF] were 
fixed at 1.21 and 1.73 M, respectively. 

 

4.6.3 Electrochemistry Current vs. Semiconductor Current 

We have tried to eliminate the hole fill-up effect by applying an 

electrical bias to the samples. The summary of our etching results for different 

biasing conditions is shown in Table 4.1. First, we observed that the etch rate 

is controlled by the current. Higher current gives higher etch rate, as can be 

seen by comparing samples 2 and 3 or samples 4, 5, and 6. It can be seen, 

however, that there is also an effect of bias polarity. Negative biasing (sample 

2) results in higher etch rate than the opposite polarity (samples 4 and 5) 

despite smaller current. Second, under the condition employed in sample 3, we 

observed that the pits are localized near the edge of the strips, as shown in 
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Figure 4.14. It suggests that to obtain smooth surface morphology, the current 

should be small and at the same time, the voltage drop (and thus the electric 

field) across the sample should be sufficiently large. However, this 

requirement is generally difficult to be met. Table 4.1 shows that for sample 

without any external bias (sample 1), the current as measured by the ammeter 

is only 0.4 mA, which is several orders of magnitude lower than the current 

generated even by a small bias. This means that the external current generated 

by the semiconductor far outweighs the electrochemistry current generated by 

MACE process alone. Under such condition, the hole injection becomes so 

abundant that it is difficult to achieve pit-free surface. Unfortunately, for this 

catalyst configuration, increasing the voltage (to obtain higher electric field to 

direct the holes) will concurrently increase the external current because both 

sides of sample are coated with an ohmic material (Au). 

Table 4.1: Summary of etching results on Au finger samples with Au back 
contact for different biasing conditions. The voltage is relative to the front side 
of the sample. [H2O2] and [HF] were fixed at 1.21 and 1.73 M, respectively, 
and the etch duration was 15 minutes. 
Sample 

No. 
I (A) V (V) Etch depth 

(μm) 
Surface morphology between  

Au strips 
1 4 x 10-4 0 0.39 Pits everywhere 
2 0.15 -1 2.21 Pits everywhere 
3 0.09 -1 0.35 Pits localized near the edge 
4 0.25 +1 0.64 Pits everywhere 
5 0.18 +1 0.5 Pits everywhere 
6 0.03 +0.1 0.1 Pits everywhere 

 

 
Figure 4.14: Surface morphology between Au strips for sample etched with I 
= 0.09 A and V = – 1 V (sample 3 in Table 4.1). [H2O2] and [HF] were fixed 
at 1.21 and 1.73 M, respectively, and the etch duration was 15 minutes. 
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4.7 Modes of Catalyst Instability 

In this section, we propose two possible causes for catalyst instability 

during MACE, namely the overlap of excess holes between neighboring 

catalysts and the generation of H2 bubbles. From these two modes of 

instability, we define a regime of etch chemistry and catalyst spacing for 

which catalyst stability and vertical etching can be achieved. 

 

4.7.1 Mode 1: Overlap of Excess Holes 

During etching, holes are constantly generated at the Au-Si interface 

from H2O2 reduction. Assuming the holes inside the Si diffuse isotropically 

and taking a two-dimensional (2D) slice normal to the axis and far from the 

end of the strip, the hole concentration, C(x,y,t), inside the Si can be modeled 

as a 2-D constant-source diffusion process so that 

                                   𝐶(𝑥,𝑦,𝑡)
𝐶0

= 𝑒𝑟𝑓𝑐 � 𝑥
2√𝐷𝑡

� 𝑒𝑟𝑓𝑐 � 𝑦
2√𝐷𝑡

�   
      Equation 4.4 

where C0 is the excess hole concentration at the Au-Si interface (y = 0), x and 

y represent the Cartesian coordinates defined by the schematic in Figure 

4.15a, erfc is the complementary error function, D is the hole diffusivity 

estimated from experimental data, 2.94 x 10-15 m2/sec (for details, see 

Appendix B) and t is the etch duration. 

 Since etching occurs only at the Au-Si interface, we are only interested 

in the hole concentration at y = 0. The time evolution of the hole concentration 

for samples with Au strip spacings of 20 and 2 μm are plotted using 

MATLAB73 software in Figures 4.15b and c. For a strip spacing of 20 μm, the 

hole concentration at the Au-Si interface remains uniform over the whole 



63 

 

 
(a) 

    

    

    
                                   (b)         (c) 

 
        (d)             (e) 
Figure 4.15: (a) Schematic diagram defining the coordinates for the calculated 
hole concentration. (b)-(c) Time evolution profiles of the hole concentration at 
Au-Si interface during etching for Au strips with spacings of 20 μm and 2 μm, 
respectively. (d)-(e) Cross-sectional SEM images of samples with Au strip 
spacings of 20 μm and 2 μm, respectively. [H2O2] and [HF] were fixed at 1.21 
and 1.73 M, respectively, and the samples were etched for 20 minutes. The 
scale bar for the SEM images is 2 μm. 
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etching duration such that the Au strip should remain flat. For samples with a 

strip spacing of 2 μm, however, the hole concentration at the Au-Si interface 

becomes higher at the edges due to additive accumulation of excess holes from 

the neighboring Au strip. A higher etch rate at the edges should result in a 

concave Au strip morphology after etching. Figures 4.15d and e show SEM 

images for etched samples with strip spacings of 20 and 2 μm, and show 

consistency with the simulation results in that the Au strips with 20-μm 

spacing remain flat, and the sample with 2-μm spacing shows a concave 

pattern. 

 

4.7.2 Mode 2: Generation of H2 Bubbles 

Another source of instability is the generation of H2 bubbles during 

MACE, as illustrated schematically in Figure 4.16a. As the bubbles form 

beneath the Au, those near the edges can escape into the solution more easily 

than those near the center of the catalyst strip. As a consequence, the catalyst 

is in better contact with the Si near the strip’s edges and the etch rate is higher 

there, so the shape of the Au-Si interface curves as shown in Figure 4.16a.  

According to Equation 4.3, it can be seen that H2 bubbles will form when n < 

4. This corresponds to 

                                                        [𝐻2𝑂2] < 1
3

[𝐻𝐹]                                  
Equation 4.5 

For [HF] = 1.73 M, this corresponds to [H2O2] < 0.58 M.  
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(a)

 
        (b)     (c)         (d) 

Figure 4.16: (a) Schematic illustrating the effect of trapped H2 bubbles on the 
etching profile. (b)-(d) SEM cross-sectional views of the etching profile with 
[H2O2] = 0.017 M, [HF] = 1.73M, for samples with Au strip spacings of 2, 5, 
and 20 μm, respectively. The scale bar for the SEM images is 2 μm. 

 

Figures 4.16b to d show the etch morphologies with [H2O2] = 0.017 M 

for samples with Au strip spacings of 2, 5, and 20 μm, respectively. At this 

concentration, H2 bubble generation is significant so the Au strip is unstable 

for all samples irrespective of Au strip spacing. 

 

4.7.3 Etch Stability Diagram 

Figure 4.17 summarizes the stability conditions for the etching of Si as a 

function of the Au strip spacing and [H2O2]. Two modes of instability can be 

distinguished. Mode-1 instability is due to the pronounced overlap of excess 

holes from the neighboring Au strips that gives rise to a higher hole 

concentration at the edge of strip and thus results in a concave strip 

configuration. This effect is most prominent for samples with Au strip spacing 

of 2 μm in that there is no stable regime for all H2O2 concentrations used in 
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this work. For samples with a strip spacing of 5 μm, it is possible to achieve 

etching stability for [H2O2] = 0.3 and 0.46 M.  At higher H2O2 concentrations, 

the effect of excess holes dominates and no etch stability can be obtained. 

Mode-2 instability in Figure 4.17 is caused by the generation of H2 bubbles 

beneath the Au strips. In theory (see Equation 4.5), this should happen for 

[H2O2] < 0.58 M. We have, however, observed experimentally that stable 

etching could be achieved even for H2O2 concentrations as low as 0.3 M for 

samples with strip spacing ≥ 5 μm. This suggests that when [H 2O2] is not too 

low (e.g. 0.3 M), the rate of H2 bubble generation is sufficiently low that 

bubbles still escape into the solution and therefore do not cause an instability. 

A complete summary of our results with all the SEM images can be found in 

Appendix C. 

 
Figure 4.17: Stability diagram for MACE of Si as a function of the Au strip 
spacing and the concentration of H2O2. 
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Chapter 5. Fabrication of Silicon Nanostructures with  

Metal-Assisted Chemical Etching 

5.1 Introduction 

In Chapter 4, we have presented a systematic study on the mechanism 

and stability of isolated catalyst in MACE of Si. In this chapter, we investigate 

the etching characteristics with interconnected catalyst configuration patterned 

by interference lithography (IL). It has been established that etching of Si 

proceeds in uniform direction relative to the substrate orientation when the 

catalyst is interconnected.20,23 This has been exploited to fabricate arrays of 

vertical Si nanowires,19,20 nanofins,19 or tilted nanowires.20 We propose that 

the role of excess holes is more significant in IL-patterned catalyst 

configuration such that the etched nanostructures possess a relatively high 

degree of porosity. We demonstrate that the porosity of the nanostructures can 

be exploited to obtain an ordered array of Si nanocones,21 which may find 

applications as a master copy for nanoimprinted polymer substrates in 

biomedical research, as a candidate for making sharp probes for scanning 

probe nanolithography, or as a building block for field-emitting-tip devices. 

The influence of doping type and concentration on the porosity of nanowires 

will be examined. We further demonstrate that the porosity of the 

nanostructures can be tuned from the etchant concentration. Other than the 

excess holes generated from the patterned Au catalyst, we also explore the role 

of extraneous Au nanoparticles (NPs) on the surface condition of the etched Si 

nanostructures, as detailed in Appendix F, and it will be shown that the effect 

of these NPs can be eliminated by employing an anti-reflection-coating (ARC) 
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layer in the interference lithography step. 

 

5.2 Experimental Details 

Figure 5.1 shows the process flow to obtain the Si nanowires or nanofins 

using a combination of interference lithography (IL) and MACE. The Si wafer 

was first coated with an Ultra-i 123 PR layer and baked at 90°C for 90 

seconds. The PR was then exposed using a Lloyd’s-mirror type IL setup with a 

HeCd laser source (λ = 325 nm), baked at 110°C for 90 seconds, and 

developed in Microposit MF CD-26 for ~ 1 minute to obtain periodic PR 

patterns on Si. Two exposures with angle of 90° between exposures result in 

PR dots, and two exposures with acute angle between exposures result in PR 

fins. After O2 plasma step to clear any residual PR layer, the sample was 

coated with ~ 20-nm Au using thermal evaporation at a base pressure of ~ 10-6 

Torr. The sample was then etched in a mixture of H2O, HF, and H2O2 at room 

temperature with the [HF] and [H2O2] fixed at 4.6 and 0.46 M, respectively. 

Afterwards, the Au was removed using a standard iodine-based Au etchant 

and the PR was dissolved in acetone. 

 
Figure 5.1: Schematic diagrams illustrating fabrication of Si nanowires or 
nanofins using a combination of interference lithography and MACE. 
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       (a)    (b)        (c) 
Figure 5.2: Si nanofins fabricated using interference lithography and MACE 
on (a) p-Si (100) 4-8 Ω.cm, (b) p-Si (110) 1-10 Ω.cm, and (c) p-Si (111) 1-10 
Ω.cm. 

Figures 5.2a, b, and c show Si nanofins fabricated on Si (100), (110), 

and (111) substrates, respectively. As can be seen, all the nanofins are oriented 

vertically irrespective of the substrate orientation. This is because in an 

interconnected configuration, the lateral movement of the catalyst is severely 

restricted such that inclined etching is not possible.  

 

5.3 Dominant Role of Excess Holes in IL-Patterned Catalyst 

In Section 4.4, we have shown that excess holes are responsible for the 

formation of pits at locations away from the catalyst. For large separation 

between catalysts, e.g. 20 μm, Regions A and B are clearly distinguishable. 

However, for small separation, e.g. 2 μm, Regions A and B become 

indistinguishable due to a significant overlap of regions with high excess hole 

concentrations. 

IL-patterned catalyst is in perforated film configuration with sub-micron 

separation between perforations. Therefore, the excess holes for this catalyst 

configuration should contribute significantly to etching away from the catalyst 

and give rise to porous etched nanostructures, as illustrated in Figure 5.3. We 

found that this porous region on the etched Si nanostructures exhibit enhanced 

oxidation ability even at room temperature. We exploit this finding to 



70 

 

demonstrate the fabrication of Si nanocones from porous Si nanowires etched 

for a prolonged duration. We also investigate the influence of dopant on the 

nanocone formation. Si nanofins exhibit caterpillar-like or haystack-like 

clustering upon prolonged etching and the porous layer can extend through the 

thickness of the fins. 

 
Figure 5.3: Schematic of hole injection into Si during MACE using IL-
patterned catalyst. 

 

5.3.1 Fabrication of Silicon Nanocones from Porous Silicon Nanowires 

 
Figure 5.4: Schematic diagram illustrating the formation of porous Si 
nanowires during MACE and the subsequent process flow to obtain Si 
nanocones from nanowires. Note that the bending of nanowires is not 
illustrated in this schematic diagram.  
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Figure 5.4 illustrates that during MACE, porous Si will result at the 

surface of the nanowires. We suggest that during the formation of the Si 

nanowires, as the etching duration increases, the top part of the nanowire 

would be more porous compared to the lower part because the top part would 

have been exposed to the etchant for a longer period of time. A further 

oxidation in ambient or by wet oxidation of such nanowires followed by wet 

etching in 10% HF solution, resulted in a large area, precisely located and of 

well-controlled geometry and size, of nanocones on the Si surface.  

Figure 5.5 shows the SEM images of Si nanowires that were etched with 

exactly the same etching conditions as described in Section 5.2, except with 

different etching durations that resulted in (a) straight (∼1.70 μm), (c) top-bent 

(∼1.80 μm), and (e) severely bent (∼2.00 μm) nanowires. SEM images (b), 

(d), and (f) show the respective Si nanowires after being etched again in 10% 

HF for 1 minute. The results suggest that all the nanowires obtained from the 

IL-MACE method contained silicon oxide after exposure to atmospheric 

ambient. We assume here that the removal of Si oxide from the Si nanowires 

is complete while immersed in the mixed solution of H2O, HF, and H2O2. 

Therefore, the oxide formed after the nanowires had been exposed to air must 

be due to a reaction from ambient oxygen to the porous Si at the surface of the 

nanowires. The porous Si will oxidize rapidly as the sponge-like structure56 

consists of a large number of pores resulting in a large surface area for rapid 

oxidation.74 The non-uniform distribution of porous Si along the length of the 

nanowire and its subsequent oxidation in ambient conditions results in the 

residual nanocone.  
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Figure 5.5: SEM images of large-area, precisely located (a) straight, (c) top-
bent, and (e) severely bent Si nanowires that were etched in a mixed solution 
of H2O, HF, and H2O2 at room temperature, respectively. SEM images (b), (d), 
and (f) show the different shapes of nanostructures after etching Si nanowires 
in 10% HF solution for 1 minute at room temperature. SEM image (g) shows 
Si nanocones produced by an additional wet thermal oxidation and HF etching 
of the top-bent nanowires in (c).21 
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The different degree of bending of nanowires may be linked to the 

different degree of porosity of these nanowires. Table 5.1 summarizes the 

change in volume of the nanowires as a result of etching in 10% HF solution. 

The percentage change in volume was arrived at by dividing the change of 

nanowire volume (i.e. by subtracting the final volume from the initial volume) 

by the initial volume of the nanowires. The straight nanowires remained 

straight after etching in 10% HF (Figure 5.5b), and have a reduction of 

nanowire height from ∼1.7 to 1.5 μm, giving rise to a 10% change in volume 

with the oxide removed. This implies that the straight nanowires have low 

degree of porosity. The top-bent and severely bent nanowires had a reduction 

of height from 1.80 to 1.4 μm, and 2.00 to 1.00 μm, respectively. This leads to 

a 74% and 86% volume reduction when the nanowires were etched in 10% HF 

solution. It means that these bent nanowires have much higher degree of 

porosity compared to the straight nanowires. The top-bent nanowires give rise 

to Si nanocones after the oxide at the silicon surface was removed. Note that a 

large number of these nanocones exhibit ‘blunt’ tips (Figure 5.5d). The 

removal of a significant amount of oxide from severely bent nanowires 

resulted in Si nanocones with sharp tips (Figure 5.5f). Figure 5.5g shows an 

SEM image of top-bent nanowires that have gone through a further wet 

thermal oxidation process at 900°C for 35 minutes and then etched in 10% HF 

solution. It can be seen from this figure that significantly sharper nanocones 

have been obtained by the extra wet thermal oxidation process. Therefore, we 

are able to vary the geometry of the Si nanocones by manipulating the amount 

of silicon oxide grown on the Si nanowire surface. 
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Table 5.1: The change in nanowire height and the estimated change in 
nanowire volume after the nanowires were etched in 10% HF solution for 1 
minute at room temperature.21 
Type of 
nanowires 

Diameter 
(nm) 

Initial 
height 
(μm) 

Height 
after HF 
etch (μm) 

Volume 
reduction 
(μm3) 

Change in 
volume 
(%) 

Straight 400 1.70 1.50 2.51 x 10-2 10 
Top-bent 260 1.80 1.40 7.08 x 10-2 74 
Severely bent 490 2.00 1.00 3.1 x 10-1 86 

 

5.3.2 Influence of Dopant on Porosity of Silicon Nanowires 

Hochbaum et al.42 have recently examined the structure of single 

crystalline mesoporous Si nanowires obtained by etching p-type Si wafers in a 

solution consisting of AgNO3 and HF. They have observed an increase in the 

surface roughness of the nanowires as the resistivity of three Si wafers 

changed from 10, 0.1 to 0.005 Ω.cm. As our results above were all obtained 

from n-type Si of resistivity 10 Ω.cm, we selected p-type Si wafers of 

resistivity of 10, 0.1 Ω.cm as well as n-type 0.1 Ω.cm Si to determine the 

influence of doping type and concentration for the creation of nanocones.  

The experimental procedures were exactly the same as shown in Figure 

5.4 and the SEM images of the as-prepared nanowires and the nanocones (i.e. 

after oxidation and HF etch) are shown in Figures 5.6a, c, e and b, d, f, 

respectively. It should be noted that with a lower resistivity Si wafer, the as-

prepared nanowires are of comparable height to those obtained from a Si 

wafer of 10 Ω.cm (by exploiting a shorter etch duration), but resulted in 

shorter nanocones when oxidized and etched in HF. This is in agreement with 

the results of Hochbaum et al. in that our lower resistivity wafer would have 

given rise to more porous Si nanowires and then resulted in shorter nanocones 

when oxidized and etched in HF. Our results also indicate that obtaining large-
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area ordered nanocones using our method is independent of doping type. 

There are reports on the synthesis of Si nanocones using other methods. For 

example, Bae et al.75 synthesized Si nanocones via the VLS method using Ga 

and Al catalysts. Hsu et al.76 fabricated Si nanocones via self-assembly of 

silica nanoparticles followed by careful control of reactive ion etching (RIE). 

However, spatial control is difficult with VLS method and the need for 

dedicated RIE machine significantly increases the fabrication cost. 

 
Figure 5.6: The SEM images of as-etched nanowires with (a) p-Si with 
resistivity 10 Ω.cm, (c) p-Si with a lower resistivity of 0.1 Ω.cm, and (e) n-Si 
with resistivity 0.1 Ω.cm. Etch durations were 10, 7, and 7 minutes for (a), (b), 
and (c), respectively. SEM images of the respective nanocones obtained by 
wet thermal oxidation and HF etch of the nanowires are shown in (b), (d), and 
(f) respectively.21 
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5.3.3 Caterpillar-like and Haystack-like Silicon Nanofins 

We have also explored the porosity on Si nanofins fabricated using IL-

MACE method and the results are shown in Figure 5.7. As can be seen, when 

etched for a long duration, the high-aspect-ratio nanofins cluster to the 

neighbors. The clustering is caused by capillary force between the fins on the 

liquid-air interface during drying process,77,78 and could actually be avoided if 

critical point drying technique is used.45 Interestingly, however, we found that 

the way the fins cluster is correlated to the crystallographic orientation of the 

Si substrate. When p-Si (100) sample is used, the fins cluster in a caterpillar-

like fashion, as shown in Figure 5.7a. For p-Si (110) and (111) samples, the 

fins cluster in a haystack-like fashion, as shown in Figures 5.7b and c. The 

different clustering behavior might be related to the anisotropy in the elastic 

modulus of Si.64 

 
       (a)    (b)         (c) 
Figure 5.7: Clustered Si nanofins fabricated using interference lithography 
and MACE on (a) p-Si (100) 4-8 Ω.cm, (b) p-Si (110) 1-10 Ω.cm, and (c) p-Si 
(111) 1-10 Ω.cm. Etch duration was 14 minutes for all samples. (a) shows 
caterpillar-like nanofins while (b) and (c) show haystack-like nanofins. 

 

We have demonstrated earlier that during the etching of Si nanowires, 

porous Si forms on the surface of the nanowires. This porous Si is oxidized 

readily when exposed to air so as to result in the formation of nanocones when 

etched in HF. We have tried similar experiments on the Si nanofins, as shown 
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in Figure 5.8. However, when the straight Si nanofins (Figure 5.8a) was 

immersed in 10% HF for 1 minute, only short Si stumps were left as shown in 

Figure 5.8b. This is expected because for fin geometry, the width is much 

smaller in one direction than the other such that the porous Si layer could 

extend through the whole thickness of the fin. Thus, when exposed to oxygen-

containing atmosphere, the body of the fins will almost be completely 

oxidized and etched away when immersed in HF solution. 

  
       (a)             (b) 
Figure 5.8: (a) Straight Si nanofins fabricated using interference lithography 
and MACE. (b) The same Si nanofins after immersion in 10% HF for 1 
minute. 

 

5.4 Control of Excess Holes via Etchant Concentration 

We have established in Section 5.3 that substantial number of excess 

holes is responsible for the porous etched nanostructures. Since the flux and 

consumption of holes are controlled by [H2O2] and [HF], respectively, we 

explore their influence on the porosity of the etched nanostructures.  

 

5.4.1 Influence of [H2O2] 

Figures 5.9a, b, and c show Si nanowires etched with H2O2 

concentrations of 0.46, 0.2, and 0.08 M, respectively. As can be seen, the 

nanowires become less porous or less tapered with decreasing [H2O2]. Since 
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[H2O2] controls the flux of holes injected into the Si, decreasing [H2O2] would 

produce fewer excess holes which can diffuse away from the catalyst to 

porosify the body of the nanowires. It should be noted, however, that reducing 

the [H2O2] from 0.46 to 0.08 M (~ 6:1 dilution) is still insufficient to eliminate 

the tapering or etching of the nanowire body. This is probably because the HF 

molecules proceed to react with the holes from the catalyst edges while the 

holes are uniformly injected across the catalyst. As a result, when [HF] is low 

(e.g. 1.73 M), some holes can still escape from the catalyst to etch the body. 

Another consequence of reducing [H2O2] is that fewer holes are available for 

etching underneath the catalyst, i.e. the etch rate should decrease with 

decreasing [H2O2]. Indeed, the etch rate was found to decrease from 250 

nm/min to 100 nm/min to 60 nm/min.   

 
       (a)    (b)        (c) 

 
         (d)    (e)        (f) 

Figure 5.9: Si nanowires etched with: (a) [H2O2] = 0.46 M for 10 minutes, (b) 
[H2O2] = 0.2 M for 30 minutes, and (c) [H2O2] = 0.08 M for 60 minutes. [HF] 
was fixed at 1.73 M. (d)-(f) are SEM images of the nanowires shown in (a)-
(c), after aged for ~ 1 day in atmospheric condition and etched in 10% HF for 
1 minute. 
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Figures 5.9d, e, and f show the same set of nanowires which have been 

left in atmospheric condition for ~ 1 day and subsequently etched in 10% HF 

for 1 minute. For [H2O2] = 0.46 M, the nanowires were transformed to 

nanocones after etched in HF (compare Figures 5.9a and d). As explained in 

Section 5.3.1, severely bent nanowires exhibit enhanced oxidation ability such 

that the bent portion becomes fully oxidized after exposure to atmospheric 

ambient. Nanowires etched with lower [H2O2] have a lesser degree of porosity 

and thus, undergo less volume subtraction after the HF etch step (compare 

Figures 5.9b and e or Figures 5.9c and f).  

 Similar conclusions were obtained from the same set of experiments 

carried out on Si nanofin samples and the results are summarized in Appendix 

D. 

 

5.4.2 Influence of [HF] 

Figures 5.10a, b, and c show Si nanowires etched with HF 

concentrations of 1.73, 4.6, and 8.63 M, respectively. As can be seen, the high 

porosity and tapering of the sidewall have been eliminated when [HF] is 

increased from 1.73 to 4.6 M (~ threefold increase). When HF supply is 

increased, more holes are consumed beneath the catalyst and fewer holes can 

diffuse away to etch the nanowire body. It is therefore expected that the etch 

rate of Si should increase and the porosity of the wires should be much 

reduced with an increase in [HF]. The etch rates were found to be 250, 900, 

and 750 nm/min for [HF] = 1.73, 4.6, and 8.63 M, respectively. When [HF] is 

too high, e.g. 8.63 M, etch rate may decrease due to increased evolution of H2 

bubbles.29  Figures 5.10d, e, and f show the same set of nanowires which have 
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been left in atmospheric condition for ~ 1 day and subsequently etched in 10% 

HF for 1 minute. For [HF] = 1.73 M, the nanowires were transformed to 

nanocones after etched in HF (compare Figures 5.10a and d) for the reason 

explained in Section 5.4.1. For the wires etched with higher [HF], the wires 

are relatively non-porous such that there is no observable decrease in volume 

after the HF etch step (compare Figures 5.10b and e or Figures 5.10c and f). 

Similar conclusions were obtained from the same set of experiments carried 

out on Si nanofin samples and the results are summarized in Appendix E. 

 
         (a)    (b)        (c) 

 
         (d)    (e)        (f) 

Figure 5.10: Si nanowires etched with: (a) [HF] = 1.73 M for 10 minutes, (b) 
[HF] = 4.6 M for 5 minutes, and (c) [HF] = 8.63 M for 7 minutes. [H2O2] was 
fixed at 0.46 M. (d)-(f) are SEM images of the nanowires shown in (a)-(c), 
after aged for ~ 1 day in atmospheric condition and etched in 10% HF for 1 
minute.   
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Chapter 6. Bias-and-Metal-Assisted  

Chemical Etching of Silicon  

6.1 Introduction 

Electronic holes in Si are crucial in determining the etching 

characteristics of MACE. Li and Bohn18 reported that the etch rate of Si 

depends on the rate of generation of holes, which is determined by the type of 

noble metal catalyst. It was found that Pt and Pd have stronger catalytic roles 

than Au. Chartier et al.29 discovered that the etched Si surface morphology 

using Ag nanoparticles depends on the hole current density (estimated from 

mass loss measurement), which is determined from the etchant composition. 

At relatively low H2O2 concentration, the holes are consumed very close to the 

catalyst such that cylindrical pores are formed with sizes matching the 

diameters of the nanoparticles. At higher H2O2 concentrations, the hole current 

is spread over the entire Si surface and etching occurs everywhere, 

independent of the metal nanoparticle location (electropolishing). Hadjersi31 

reported that whether or not electropolishing occurs also depends on the type 

of oxidant. Lee et al.72 suggested that hole current density, and thus the etch 

rate, can be regulated by adding salts into the etching solution. In Chapter 4, 

we have reported that pit formation between catalysts and catalyst stability 

during etching are governed by the excess hole concentration, which can be 

controlled from the etchant chemistries and catalyst spacings. In all these 

instances, however, the holes are controlled only in terms of their current 

density and not in their flow direction. 
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We have also shown in Chapter 4 that an electric field can be used to 

direct the excess holes to the back of the Si wafer and thus reduce the pit 

formation between catalysts. Therefore, in this chapter, we present results 

from an attempt to use an electric field to control the etching process. We call 

this etching method as bias- and metal-assisted chemical etching (BiMACE) 

of Si. Essential features of BiMACE are presented and comparisons are made 

between MACE and BiMACE. Quantitative analysis of the hole contribution 

to BiMACE without and with H2O2 is presented. The etching mechanism of 

BiMACE is discussed. Application of BiMACE to fabricate Si nanowires is 

also demonstrated and its possible extension to other semiconductor materials 

is suggested.   

 

6.2 Experimental Details 

Single-side polished p-type Si (100) wafers with resistivity 4-8 Ω.cm 

were used for the etching experiments. The wafers were cleaned in RCA-1 and 

RCA-2 solutions and dipped briefly in 10 wt.% HF before lithographic steps.  

The process flow for the sample preparation is shown in Figure 6.1a. 

First, a WiDE-8C wet-developable anti-reflection coating (ARC) layer of ~ 80 

nm thickness was spin coated on the Si wafer and baked at 100°C for 30 

seconds and then at 172°C for 1 minute. Next, an Ultra-i 123 photoresist layer 

of ~ 400 nm was spin coated on top of the ARC layer and baked at 110°C for 

1.5 minutes. The resist stack was then exposed using a UV mask aligner 

(SUSS MicroTec MJB4), baked at 110°C for 1.5 minutes, and developed in 

Microposit MF CD-26 developer for ~ 1.5 minutes to generate finger patterns 
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in the photoresist and simultaneously create an undercut profile in the 

underlying ARC layer, which is essential for successful lift-off process. 

Afterwards, oxygen plasma etch was carried out at a pressure of 0.2 Torr and 

power of 200 W for a duration of 20 seconds to remove any residual ARC 

layer after development. An Au layer (~ 60 nm) was then deposited on the 

resist patterns using a thermal evaporator (Edwards Auto306 FL400) at a base 

pressure of ~ 10-6 Torr. The samples were subsequently sonicated in a mixture 

of Microposit MF CD-26 developer and acetone (3:1 volume ratio) to lift off 

the resist patterns, leaving behind Au finger patterns on Si as shown in the 

scanning electron micrograph (SEM) image in Figure 6.1b.  

 
(a) 

   
   (b)      (c) 
Figure 6.1: (a) Process steps for fabrication of Au fingers for BiMACE 
experiments. (b) SEM image of Au fingers with a spacing of 20 μm. The scale 
bar for the SEM image is 100 μm. (c) Schematic diagram illustrating the setup 
for BiMACE experiment. 
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A voltage bias was applied on the samples using a DC power supply 

(GW Instek GPR-11H30D) by connecting the positive terminal to the base of 

the Au fingers and the negative terminal to the back contact, as shown 

schematically in Figure 6.1c. The samples with the Au fingers portion were 

etched in HF solution of different concentrations without H2O2 at room 

temperature. The surface morphology of the samples was examined using a 

scanning electron microscope (FEI Nova NanoSEM 230). 

 

6.3 Etching Results from BiMACE 

It has been well accepted that the MACE process involves a pair of 

redox reactions at the cathode (Au-liquid interface) and anode (Au-Si) 

interfaces,18,29  

Cathode: 𝑛
2
𝐻2𝑂2 + 𝑛𝐻+ → 𝑛𝐻2𝑂 + 𝑛ℎ+ 

Equation 6.1 

Anode:  𝑆𝑖 + 6𝐻𝐹 + 𝑛ℎ+ → 𝐻2𝑆𝑖𝐹6 + 𝑛𝐻+ + �4−𝑛
2
�𝐻2   

Equation 6.2 

Etching of Si by HF at the anode is made possible through the injection of 

holes (h+) from the reduction of H2O2 at the cathode. The etching reaction 

produces soluble H2SiF6, H+ ions, and hydrogen gas (H2). 

In the BiMACE process, the anodic reaction as given in Equation 6.2 

still holds, but the holes are now provided from the Si itself, which is, in 

principle, similar to the electrochemical etching of Si in HF.48 However, in the 

electrochemical etching of Si, the hole current is spread over the entire Si 

surface exposed to the solution, which means that the pores are formed on 

random sites. Even though it is possible to pre-pattern defect sites on the Si 
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prior to etching to facilitate the formation of various arrays of Si 

microstructures, there exists a maximum dimension (interdefect spacing) 

above which it is not possible to avoid the formation of random pores between 

the defects.57 Figure 6.2 shows typical etching result using BiMACE. As can 

be seen, unlike the electrochemical etching method, etching is localized in the 

vicinity of the catalyst.  

 
Figure 6.2: Cross-sectional SEM image of 20-μm-apart Au fingers etched 
with [HF] = 1.73 M and U = 2 V for 30 minutes. The scale bar for the SEM 
image is 10 μm. 

 

Figure 6.3a shows the etch rate of Si as a function of voltage using 

BiMACE for a fixed [HF] of 1.73 M. As can be seen, the etch rate increases as 

the voltage is increased from 1 to 2 V. This is expected because an increase in 

voltage will drive a larger hole current in the Si, which is necessary for the 

etching of Si in HF. In MACE, the hole current is provided from the reduction 

of H2O2 and therefore, for a fixed [HF], the etch rate was found to increase 

with [H2O2], as has been shown in Chapter 4. Figures 6.3b to d show the 

cross-sectional view of samples etched with BiMACE for U = 1, 1.5, and 2 V, 

respectively, which are used to construct Figure 6.3a. 
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(a) 

 
        (b)               (c)         (d) 

Figure 6.3: (a) Si etch rate versus voltage for 20-μm-apart Au fingers using 
BiMACE. (b)-(d) are cross-sectional SEM images of 20-μm-apart Au fingers 
etched with U = 1, 1.5, and 2 V, respectively. [HF] = 1.73 M and etch duration 
= 30 minutes. The scale bar for the SEM images is 10 μm. 

 
         (a)                (b)            (c)       
Figure 6.4: (a)-(b) Top-view SEM images of 20-μm-apart Au fingers etched 
using MACE with H2O2 concentrations of 1.21 M for 30 minutes (etch depth ~ 
3 μm) and 0.017 M for 4 hours (etch depth ~ 1 μm), respectively. (c) Top-view 
SEM image of 20-μm-apart Au fingers etched using BiMACE with U = 2 V 
for 30 minutes (etch depth ~ 3 μm). [HF] is fixed at 1.73 M for all the 
samples. Scale bar for the SEM images is 10 μm.  

Figures 6.4a and b show 20-μm-apart Au fingers etched using MACE 

with H2O2 concentrations of 1.21 M (30 minutes, etch depth ~ 3 μm) and 

0.017 M (4 hours, etch depth ~ 1 μm), respectively, for a fixed HF 
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concentration of 1.73 M. It can be seen that for high [H2O2] (Figure 6.4a), the 

surface between the fingers became very pitted after etching. We have 

attributed in Chapter 4 that this pit formation is caused by the diffusion of 

excess holes away from the catalyst due to the fact that HF can only access the 

Si underneath the catalyst from the catalyst edges. Even as the flux of holes is 

significantly lowered ([H2O2] = 0.017 M) such that the etch depth is only ~ 1 

μm for an etching duration of 4 hours, the pit formation between the Au 

fingers could not be entirely prevented, as shown in Figure 6.4b. In contrast, 

20-μm-apart Au fingers etched using BiMACE with U = 2 V for 30 minutes 

(comparable etch depth to the sample in Figure 6.4a) exhibited pit-free Si 

surface between the fingers, as shown in Figure 6.4c. Therefore, BiMACE 

offers better control of the excess holes responsible for pit formation, as 

compared to MACE. 

Figures 6.5a and b show 2-μm-apart Au fingers etched using MACE 

with H2O2 concentrations of 1.21 M (30 minutes, etch depth is indeterminate 

due to prominent damage on the Si surface) and 0.017 M (4 hours, etch depth 

~ 1.5 μm), respectively, for a fixed HF concentration of 1.73 M. It can be seen 

that for high [H2O2] (Figure 6.5a), apart from the prominent damage on the Si 

surface between the fingers, the fingers exhibit etch instability. We have  

shown in Chapter 4 that etch instability for closely spaced catalysts is a 

consequence of additive accumulation of excess holes from the catalyst 

neighbors, which gives rise to non-uniform etch rate underneath each 

individual finger. When the flux of holes is significantly lowered by lowering 

[H2O2] to 0.017 M, etching became more stable but the surface between the 

fingers remained pitted (Figure 6.5b). In contrast, 2-μm-apart Au fingers 
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etched using BiMACE for 30 minutes with U = 1.5 V (etch depth ~ 1.5 μm) 

exhibits etch stability while maintaining pit-free surface, as shown in Figure 

6.5c.  

 
      (a)               (b)         (c) 

Figure 6.5: (a)-(b) Cross-sectional SEM images of 2-μm-apart Au fingers 
etched using MACE with H2O2 concentrations of 1.21 M for 30 minutes and 
0.017 M for 4 hours, respectively. (c) Cross-sectional SEM images of 20-μm-
apart Au fingers etched using BiMACE for 30 minutes with U = 1.5 V. [HF] is 
fixed at 1.73 M for all the samples. Scale bar for the SEM images is 10 μm.  

To investigate the role of source of holes in the etching of Si, we 

performed experiments to isolate the contribution from “pure” BiMACE and 

“pure” MACE by including H2O2 component in the BiMACE setup. It should 

be noted, however, that when H2O2 is included, the Au back contact peels off 

easily during etching. Therefore, Au fingers are now patterned on both sides of 

the sample by using double-side polished wafer (p-type Si (100) with 

resistivity 1-10 Ω.cm). 

Figure 6.6a shows the etch rate of Si for different voltage biases with 

and without H2O2. It can be seen that the etch rate of Si increases as long as 

the supply of holes is increased, either by using higher voltage or higher H2O2 

concentration. This means that the etching of Si in HF is possible as long as 

there exists a flux of holes, regardless of the source. The difference in etch rate 

between samples without and with H2O2 for the same voltage allows us to 

calculate the contribution of holes from the Si itself and from H2O2, 
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𝑑𝑁ℎ𝑜𝑙𝑒𝑠 𝑓𝑟𝑜𝑚 𝑆𝑖

𝑑𝑡
= 𝑣𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝐻2𝑂2 × 𝐴 × 𝑁𝑆𝑖 

Equation 6.3 

𝑑𝑁ℎ𝑜𝑙𝑒𝑠 𝑓𝑟𝑜𝑚 𝐻2𝑂2

𝑑𝑡
= (𝑣𝑤𝑖𝑡ℎ 𝐻2𝑂2 − 𝑣𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝐻2𝑂2) × 𝐴 × 𝑁𝑆𝑖 

Equation 6.4 

where dN/dt is the number of reacting holes per unit time, v is the etch rate, A 

is the area of the Au strip (width of 2 µm and length of 0.5 cm), and NSi is the 

atomic density of Si (5 x 1022 cm-3). The plot of this calculation is shown in 

Figure 6.6b. As can be seen, the hole contribution from H2O2 is weakly 

dependent on the bias while the hole contribution from Si is strongly bias-

dependent. The weak dependence of H2O2 hole contribution on the bias is 

expected because the holes are generated from H2O2 reduction events on the 

Au surface and thus, the biasing conditions should have little effect. On the 

other hand, the hole contribution from Si is determined from the total amount 

of current flowing through the Si and thus, the strong bias dependence is not 

surprising.  

To check if the calculated amount of reacting holes is reasonable, the 

measured current during etching is also plotted in Figure 6.6c. By subtracting 

the total current without H2O2 from the current with H2O2, we can obtain the 

current contribution from the Si itself and from H2O2 separately, as shown in 

Figure 6.6d. It can be seen that the current contribution from the Si is much 

higher than that of the H2O2. However, as shown previously in Figure 6.6b, a 

significant portion of the total number of reacting holes during etching is 

derived from H2O2. This suggests that H2O2 is more efficient than the voltage 

bias in facilitating the holes to participate in the etching reaction. In other 

words, the hole current generated by the bias is mostly dissipated into the bulk 
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of Si, while the hole current generated by H2O2 reduction events contribute 

significantly to the surface reaction, i.e. etching of Si. It should be noted that 

the negative calculated value of flowing holes on Figure 6.6d could be caused 

by the non-uniform sample sizes, the effect of which becomes significant as 

the current contribution from H2O2 is small.  

 
   (a)     (b) 

 
   (c)     (d) 
Figure 6.6: (a) Si etch rate versus voltage for 20-μm-apart Au fingers using 
BiMACE with and without H2O2. (b) Number of reacting holes per unit time 
versus voltage for 20-μm-apart Au fingers using BiMACE with and without 
H2O2. (c) Current versus voltage for 20-μm-apart Au fingers using BiMACE 
with and without H2O2.  

 

6.4 Etching Mechanism 

BiMACE is a polarity-dependent etching method in that etching only 

occurs on the positive terminal. Figures 6.7a to c show that no etching 

occurred on Au fingers connected to the negative terminal. This is 

understandable because etching of Si in HF requires a bond exchange with 
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negatively charged fluorine ions.23,29 The negative Au electrode should 

therefore repel these ions and prevent etching from taking place. 

 
        (a)    (b)          (c) 
Figure 6.7: Cross-sectional SEM images of 20-μm-apart Au fingers connected 
to the negative terminal and etched using BiMACE for (a) double-side 
polished p-type Si (100) of resistivity 1-10 Ω.cm with U = 2 V for 20 minutes; 
(b) single-side polished n-type Si (100) of resistivity ≤ 0.005 Ω.cm with U = 1 
V for 30 minutes; (c) double-side polished n-type Si (100) of resistivity 1-10 
Ω.cm with U = 2 V for 20 minutes. [HF] is fixed at 1.73 M for all the samples. 
The scale bar for the SEM images is 10 μm. 

 
   (a)     (b)   
Figure 6.8: (a) Schematic illustrating possible conduction paths in BiMACE. 
(b) Electrical circuit representation of BiMACE system. 

Figure 6.8a shows two possible conduction paths in the  BiMACE 

system, namely through the Si and through the solution (ionic current). This 

etching system can be represented as an electrical circuit consisting of two 

parallel resistances, RSi and Rliquid, connected to a potential difference, U, as 

shown in Figure 6.8b. Rliquid corresponds to several possible chemical 
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reactions in the etching system, such as the etching of Si (Equation 6.2) and 

the electrolysis reactions of water,79 

2𝐻2𝑂 → 𝑂2 + 4𝐻+ + 4𝑒− 
Equation 6.5 

2𝐻+ + 2𝑒− → 𝐻2 
Equation 6.6 

 
       (a)    (b)         (c) 
Figure 6.9: Cross-sectional SEM images of 20-μm-apart Au fingers etched 
using BiMACE for (a) double-side polished p-type Si (100) of resistivity 1-10 
Ω.cm with U = 2 V for 20 minutes; (b) single-side polished n-type Si (100) of 
resistivity ≤ 0.005 Ω.cm with U = 1 V for 30 minutes; (c) double-side polished 
n-type Si (100) of resistivity 1-10 Ω.cm with U = 2 V for 20 minutes. [HF] is 
fixed at 1.73 M for all the samples. The scale bar for the SEM images is 10 
μm. 

For the case of p-type Si (double-side polished and patterned, with 

resistivity of 1-10 Ω.cm), Ibefore and Iafter are ~1.17 and ~1.2 A, respectively, 

for U = 2 V. From the current reading before immersion, we can extract the 

value of RSi to be ~1.72 Ω. From the current reading after immersion, we 

obtain the value of the parallel resistance to be ~ 1.67 Ω, from which we can 

extract the value of Rliquid to be (1.72 x 1.67) / (1.72 – 1.67) = 57.4 Ω. Since 

the liquid is much more resistive than the system, hole current is expected to 

flow anisotropically from the top to the bottom electrode. As a result, the 

etching is localized in the vicinity of the catalyst, as shown in Figure 6.9a. 

For the case of n+-type Si (single-side polished and patterned, with 

resistivity of ≤ 0.005 Ω.cm), I before and Iafter are ~1.17 and ~1.28 A, 
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respectively, for U = 1 V. From the current reading before immersion, we can 

extract the value of the total contact resistance RSi to be ~0.85 Ω. From the 

current reading after immersion, we obtain the value of the parallel resistance 

to be ~ 0.78 Ω, from which we can extract the value of Rliquid to be (0.85 x 

0.78) / (0.85 – 0.78) = 9.47 Ω. Since the liquid is much more resistive than the 

system, electron current is expected to flow anisotropically from the bottom to 

the top electrode. However, this electron current should not result in any 

etching because holes are required for etching of Si in HF. Figure 6.9b 

supports this argument in that no etching took place beneath the Au fingers 

even after immersion in the solution for 30 minutes.  

For the case of n-type Si (double-side polished and patterned, with 

resistivity of 1-10 Ω.cm), Ibefore and Iafter are <1 and ~28 mA, respectively, for 

U = 2 V. From the current reading before immersion, we can extract the value 

of the total contact resistance RSi to be ~2 kΩ. From the current reading after 

immersion, we obtain the value of the parallel resistance to be ~ 71.4 Ω, from 

which we can extract the value of Rliquid to be (2000 x 71.4) / (2000 – 71.4) = 

74 Ω. In contrast to the previous two cases, the liquid is now much more 

conductive than the system. Therefore, when the sample is immersed in the 

etchant, the Si simply acts as an open switch and the electrical circuit is now 

completed by electrolysis reactions via electron injection from the solution 

into the top Au electrode/anode (Equation 6.5) and electron injection from the 

bottom Au electrode/cathode to the solution (Equation 6.6). It has been 

reported that the etching of Si using noble metal catalyst in HF is greatly 

enhanced with O2 bubbling, indicating the role of O2 as an oxidizing agent via 
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its reduction reaction on the catalyst.80 The generation of O2 bubbles at the 

anode therefore serves as a source of holes required for etching of Si. Figure 

6.9c indeed shows that etching occurred significantly on the n-type sample. 

The tapered sidewall of and the formation of porous region around the etched 

trenches indicate that there is a significant amount of holes injected to the 

anode via this electrolysis mechanism. 

If electrolysis is the mechanism responsible for etching on n-type Si, one 

would expect that etching only occurs when the applied voltage (U) exceeds 

the standard potential for electrolysis of water, 1.229 V.81 Therefore, we have 

also tried to etch the n-type sample with U = 0.5 and 1.4 V, as shown in 

Figure 6.10a and b, respectively. As expected, there is no etching for U = 0.5 

V and etching occurs when U exceeds 1.229 V. The less prominent etching for 

U = 1.4 V (Figure 6.10b) compared to U = 2 V (Figure 6.9c) is expected due 

to its lower over-potential. 

 
   (a)            (b) 
Figure 6.10: Cross-sectional SEM images of 20-μm-apart Au fingers etched 
using BiMACE for double-side polished n-type Si (100) of resistivity 1-10 
Ω.cm for (a) U = 0.5 V and (b) U = 1.4 V. [HF] is fixed at 1.73 M and etching 
duration is 20 minutes. The scale bar for the SEM images is 10 μm. 

 

6.5 BiMACE to Fabricate Nanowires 

Motivated by the results of the etched micron-sized features, we have 

also explored BiMACE to etch Si nanowires. For this purpose, we have 
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employed interference lithography19 to pattern resist dot array on the Si. As in 

the case of Au finger structure (Figure 6.1c), it is necessary to have a base 

through which the bias will be applied to the Au catalyst later. This is 

accomplished by carrying out a UV flood exposure on half portion of the 

samples prior to the interference lithography step. After Au deposition, lifting 

off the resist patterns will leave behind Au film with circular perforations 

connected to an Au pad as shown in Figure 6.11a. Figure 6.11b shows Si 

nanowires etched using BiMACE (U = 1.5 V for 35 minutes) for a fixed [HF] 

of 4.6 M.  

 
             (a)    (b) 
Figure 6.11: (a) SEM image of Au perforated film connected to an Au pad. 
(b) Tilted-view SEM image of Si nanowires etched using BiMACE with U = 
1.5 V and [HF] = 4.6 M for 35 minutes. Scale bar for the SEM image is 2 μm. 

Recently, there has been much interest in fabricating nanowires using 

MACE on technologically important semiconductor materials other than Si, 

such as silicon germanium (SiGe),34 gallium arsenide (GaAs),35,36 and gallium 

nitride (GaN).37 However, the etching morphology is generally dependent on 

the oxidant concentration.36,37 The possibility of etching without oxidant using 

BiMACE might pave the way for a better control in etching of semiconductor 

materials other than silicon. 
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Chapter 7. Conclusion 

7.1 Summary 

The main objectives of this thesis were to investigate the mechanism and 

catalyst stability of MACE of Si in HF and H2O2 with isolated and 

interconnected catalyst as well as to develop ways to control the flow of 

electronic holes in the etching process. 

First, the role of electronic holes on etching underneath Au was 

presented. The role of excess holes was characterized through observations of 

pit formation as a function of catalyst proximity and the ratio of the H2O2 and 

HF concentrations in the etch solution. We showed that suppression of excess 

hole generation, and therefore pitting, can be achieved by either adding NaCl 

to the etch solution or by increasing the HF concentration relative to the H2O2 

concentration. We also demonstrated that an external electric field can be used 

to direct most of the excess holes to the back of the Si wafer, and thus reduce 

pit formation at the surface of the Si between the Au catalysts. We also 

explored the role of Au back contact on the etching characteristics for three 

different cases: (i) back contact is exposed to the etchant, (ii) back contact is 

not exposed to the etchant, and (iii) etching with an additional current 

injection from an applied bias. Next, we proposed that there are two possible 

causes for catalyst instability during MACE, namely the overlap of excess 

holes between neighboring catalysts and the generation of hydrogen (H2) 

bubbles. From these two modes of instability, we defined a regime of etch 

chemistry and catalyst spacing for which catalyst stability and vertical etching 

can be achieved.  

Next, we investigated the etching characteristics with interconnected 
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catalyst configuration patterned by interference lithography (IL). We proposed 

that the role of excess holes is more significant in IL-patterned catalyst 

configuration such that the etched nanostructures possess a relatively high 

degree of porosity. We demonstrated that the porosity of the nanostructures 

can be exploited to obtain an ordered array of Si nanocones,21 which may find 

applications in biomedical research, scanning probe nanolithography, or field-

emitting-tip devices. The influence of doping type and concentration on the 

porosity of nanowires was examined. We further demonstrated that the 

porosity of the nanostructures can be tuned from the etchant composition. 

Finally, we used an electric field to develop a new etching method called 

bias- and metal-assisted chemical etching (BiMACE) of Si. Essential features 

of BiMACE were presented and comparisons were made between MACE and 

BiMACE. Quantitative analysis of the hole contribution to BiMACE without 

and with H2O2 was presented. The etching mechanism of BiMACE was 

discussed. Application of BiMACE to fabricate Si nanowires was also 

demonstrated and its possible extension to other semiconductor materials was 

suggested. 

To conclude, this work has provided a better understanding on the 

mechanism and catalyst stability of MACE of Si. The essential role of 

electronic holes was elucidated from the series of experiments and this may 

provide ways to achieve 3D sculpturing of Si or even other semiconductor 

materials. 
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7.2 Recommendations 

Based on the results obtained in this research work, several avenues are 

available as potential future research topics: 

• Since catalyst instability depends on the mechanical properties (such as 

moment of inertia) of the catalyst,33 it will be interesting to investigate 

the etching stability of isolated catalyst with different sizes (length and 

width) and geometries, e.g. ring structure.  

• Since other noble metals also catalyze etching of Si in HF and H2O2,18,29 

it will be useful to carry out similar mechanistic studies using Pt or Ag 

catalysts.  

• Since we have demonstrated the applicability of electric field to control 

the flow of electronic holes in MACE, it will be interesting to extend this 

method to fabricate non-porous nanowires on heavily doped Si wafers 

for nanocapacitor application.82 It will also be very useful to optimize 

this method to manipulate the etching direction. 

• Since we have demonstrated BiMACE capability to etch Si without 

oxidant, it might pave the way for a better control in etching of 

semiconductor materials other than Si, which is difficult to achieve at 

present with MACE because the etching morphology is dependent on the 

oxidant concentration.36,37 
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Appendix A. Etching in an Electric Field for [H2O2] = 0.46 M 

 

Figures A1a, b and c show SEM images of three samples etched with 

[HF] = 1.73 M and [H2O2] = 0.46 M with U = 0, 10 and 100 V.  For the 

sample with U = 0 V, excess holes diffused into Regions A and B (Figure 

A1a) to form pits as described in Section 4.4. With U = 10 V, the excess holes 

are drawn toward the bulk of Si resulting in less pitting in Regions A and B 

(Figure A1b). The effect of the electric field in drawing the holes to the bulk 

of Si is even more significant for U = 100 V (Figure A1c). It was also found 

that the etch rate decreased with increasing electric field. For samples etched 

with U = 0, 10 and 100 V, the etch rates were 0.062, 0.019, and 0.009 µm/min, 

respectively. 

 
         (a)                 (b)            (c) 
Figure A1: (a)-(c) Top-view SEM images of samples with an Au strip spacing 
of 20 μm etched for 15 minutes in [HF] = 1.73 M and [H2O2] = 0.46 M with U 
= 0, 10, and 100 V, respectively. The scale bar for the SEM images is 10 μm. 
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Appendix B. Determination of D Value 

 

From Figures B1b and c, the value of the hole diffusion distance can be 

estimated as 

𝐿𝑝 = �1.72+0.82 × 10−6𝑚 = 1.88 × 10−6𝑚 

So, the hole diffusivity can be obtained using 

√𝐷𝑡 = 𝐿𝑝 , 

to determine that  D=2.94 x 10-15 m2/s. 

 
(a) 

 
                                              (b)                                (c) 
Figure B1: (a) Schematic of 2-D isotropic hole diffusion inside Si during 
etching. (b)–(c) Top-view and cross-sectional SEM images of an etched 
sample with strip spacing of 20 μm, etched with [H2O2] = 1.21 M. The [HF] 
was fixed at 1.73 M and the etch duration was 20 minutes. The scale bar is 2 
μm.  
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Appendix C. Summary of SEM Images Used for  

Construction of the Etch Stability Diagram 

 

 
Figure C1: Cross-sectional SEM images of the etched samples used to 
construct the stability diagram in Figure 4.17. [HF] was fixed at 1.73 M. 
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Appendix D. Si Nanofins Etched with Different [H2O2] 

 

 
       (a)    (b)        (c) 

  
       (d)    (e)        (f) 

Figure D1: Si nanofins etched with: (a) [H2O2] = 0.46 M for 10 minutes, (b) 
[H2O2] = 0.2 M for 30 minutes, and (c) [H2O2] = 0.09 M for 90 minutes. [HF] 
was fixed at 1.73 M. (d)-(f) are SEM images of the nanofins shown in (a)-(c), 
after aged for ~ 1 day in atmospheric condition and etched in 10% HF for 1 
minute. The etch rates for (a), (b), and (c) are 300, 120, and 60 nm/min, 
respectively. 

 
  



103 

 

Appendix E. Si Nanofins Etched with Different [HF] 

 

 
       (a)    (b)        (c) 

 
       (d)    (e)        (f) 

Figure E1: Si nanofins etched with: (a) [HF] = 1.73 M for 10 minutes, (b) 
[HF] = 4.6 M for 8 minutes, and (c) [HF] = 8.63 M for 10 minutes. [H2O2] was 
fixed at 0.46 M. (d)-(f) are SEM images of the nanofins shown in (a)-(c), after 
aged for ~ 1 day in atmospheric condition and etched in 10% HF for 1 minute. 
The etch rates for (a), (b), and (c) are 300, 500, and 400 nm/min, respectively. 

  



104 

 

Appendix F. Role of Extraneous Au Nanoparticles 

 

We notice that the etched nanostructures using our IL-MACE method 

always contain surface damage at the top portion, as can be seen in Figure F1. 

In this section, we explore the role of extraneous Au NPs in creating this 

surface damage. We demonstrate that by employing an ARC layer beneath the 

PR in the lithographic step, the contribution of these extraneous Au NPs is 

eliminated and it is possible to obtain Si nanostructures without surface 

damage. 

  
  (a)     (b) 
Figure F1: (a) Si nanowires etched for 6 minutes. (b) Si nanofins etched for 5 
minutes. [HF] and [H2O2] were 4.6 and 0.46 M, respectively. Surface damage 
is obvious at the top portion of both nanostructures. 

 

F.1 Role of Extraneous Au Nanoparticles 

The standing wave pattern generated due to reflection of the laser from 

the Si substrate in the PR during IL exposure generates PR pattern with 

scalloped sidewall. This allows Au NPs to decorate the rim of the base of the 

PR during Au deposition step, as schematically illustrated in Figure F2a. 

Figure F2b shows the Si sample with PR posts after Au deposition and the 

scalloped sidewall of the PR is clearly revealed. After removing the PR posts 
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via lift-off process, the presence of Au NPs can be observed at the rim of the 

void (Figure F2c), as suggested earlier. To investigate the role of these 

extraneous Au NPs, the sample was etched for 1 minute and the result is 

shown in Figure F2d. It can be seen that these Au NPs have etched numerous 

pores around the edges of the Si surface. Besides, there are also horizontal 

pores oriented along <100> directions in the middle region of the Si surface. 

This anisotropic etching along <100> directions is typical of isolated catalyst 

(e.g. NPs) and in agreement with the finding reported by Tsujino and 

Matsumura.24 This nanopore formation by the Au NPs is therefore expected to 

result in a considerable surface damage when the nanostructures are etched 

deeper, as shown in Figure F1. 

 
(a) 

 
      (b)    (c)       (d) 
Figure F2: (a) Schematic diagram illustrating the deposition of extraneous Au 
NPs on the Si surface beneath the scalloped PR sidewall. (b)-(d) Si sample 
with PR posts after: (b) Au deposition, (c) lift-off of PR posts, and (d) etching 
for 1 minute.  

<100> 

<100> 

100 nm 
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F.2 Elimination of Extraneous Au Nanoparticles using Anti-Reflection-

Coating Layer 

To prevent the Au NPs from being deposited on the Si surface, we have 

modified the experimental procedures by employing an ARC layer, as 

schematically illustrated in Figure F3. The Si wafer was first coated with an 

XHRiC-16 ARC layer (~ 100-nm thicknes) and baked at 175°C for 3 minutes. 

An Ultra-i 123 PR layer was then coated on the sample and baked at 90°C for 

90 seconds. The sample was exposed using a Lloyd’s-mirror type IL setup 

with a HeCd laser source (λ = 325 nm), baked at 110°C for 90 seconds, and 

developed in Microposit MF CD-26 to obtain periodic PR patterns on Si. The 

pattern was transferred to the ARC layer using O2 plasma at a pressure of 0.2 

Torr and power of 200 W for an etching time of 80 seconds. Afterwards, the 

sample was coated with 15-nm Au using thermal evaporation at a base 

pressure of ~ 10-6 Torr. The sample was then etched in a mixture of H2O, HF, 

and H2O2 at room temperature with the [HF] and [H2O2] fixed at 4.6 and 0.46 

M, respectively. Afterwards, the Au was removed using a standard iodine-

based Au etchant and the PR was dissolved in acetone. 

 
Figure F3: Schematic diagrams illustrating fabrication of Si nanowires or 
nanofins using a combination of interference lithography and MACE with 
additional ARC layer. 
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As shown in Figure F4a, even if there is still some standing wave in the 

PR, the Au NPs can only occupy the space beneath the PR and not on the Si 

surface. In practice, as shown in Figure F4b, the ARC posts have sloping 

sidewall because the PR is also trimmed sideway during the O2 plasma step to 

transfer the pattern to the ARC layer. It can be seen that the extraneous Au NPs 

are deposited on the ARC and therefore will not contribute to etching when 

immersed in HF and H2O2. Etching results using this bilayer resist stack are 

shown in Figures F4c and d. As can be seen, we are now able to fabricate Si 

nanowires and nanofins without surface damage at the top portion (c.f. 

Figures F4c, d and Figures F1a, b).  

         
      (a)                  (b) 

  
              (c)    (d) 
Figure F4: (a) Schematic diagram illustrating the elimination of extraneous 
Au nanoparticle deposition on the Si surface by using an ARC layer beneath 
the PR. (b) Si sample with PR+ARC posts after Au deposition. (c) Si 
nanowires after etching sample (b) for 7.5 minutes. (d) Si nanofins etched for 
5 minutes using the same procedure. 
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