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SUMMARY 

        Realistic modeling of the mechanical behavior of soil with reasonable material 

input is essential for the practical use of numerical methods for the solution of 

geotechnical problems. Due to the unsatisfactory prediction of the basic critical state 

models for heavily overconsolidated (OC) clays, the research conducted in this thesis 

dealt with the formulation of a new critical state model for heavily OC clays and clays 

under cyclic loading. 

        In place of the conventional Hvorslev surface, a failure envelope which is 

modified from the experimental findings explicitly enters into the model formulation. 

The peak strength of heavily OC clay can thus be predicted quite satisfactorily under 

drained loading. Meanwhile, the original critical state line (CSL) of the Modified Cam 

clay (MCC) model is repositioned in lnv p  space to better predict the undrained 

shear strength of heavily OC clays. A load-path-dependent plastic modulus is proposed 

to introduce plastic strains within the bounding surface. Thus the cyclic behavior of 

normally consolidated (NC) to lightly OC clay can be reasonably simulated. 

Comprehensive comparisons of model predictions (single element) with laboratory test 

data are conducted on various clays (kaolin clay, Fujinomori clay and Boston Blue 

Clay (BBC)) under various loading conditions to fully evaluate the capability of the 

proposed model. 

        A well conductor in soft clay subjected to lateral loading is then simulated by 

using the proposed AZ-Cam clay model in the commercial software ABAQUS through 

the user-defined model subroutine (UMAT). For monotonic loading, the predicted 

head load-displacement response shows quite large difference among the various soil 
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constitutitve models. Thus the predicted response of the well conductor is rather 

sensititve to the soil model used. The predicted p-y curves from the AZ-Cam clay 

model agree reasonably well with the centrifuge tests. For cyclic loading, the AZ-Cam 

clay model is able to predict the softening and the hysteretic behavior of the conductor 

in cyclic displacement control loading. The predicted head response agrees reasonably 

well with the centrifuge test result. 

Keywords: 

Bounding surface; Clays; Constitutive model; Cyclic loading; Failure surface; 

Monotonic loading; P-y curve 
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Chapter 1  Introduction 

1.1 Introduction 

With the development of powerful computers in the last two decades, numerical 

methods (for example, the finite element (FE) method) are more frequently used in the 

routine design. When solving practical boundary value problems, however, the 

accuracy of the numerical methods depends the characterization of the mechanical 

behavior of the material. Generally all the numerical results would be affected by the 

material constitutive model used. Thus realistic description of soil constitutive 

behavior plays an essential role in the accuracy of numerical prediction in geotechnical 

engineering. Thus tremendous research efforts have been and will continue to be 

directed towards this area. 

1.2 General description of soil 

        Generally, soil is a highly complex porous material consisting of a soil skeleton 

and pore fluids. For fully saturated soil, the voids in the soil are filled with water 

forming a two-phase system. Some of the key features of soil in a multiphase state are 

summarized (Whittle, 1987). 

(i) In general, there is no well defined region of linear soil behavior, even at small 

stress level or immediately after a load reversal (Hardin & Drnevich, 2002). 

(ii) Soils are frictional materials, which depend on the mean effective stress as well as 

deviatoric stress. 

(iii) There is a coupling effect between volumetric behavior and deviatoric shear 

behavior. For example, normally consolidated (NC) to lightly overconsolidated 

(OC) clays tend to contract during drained shearing and positive excess pore water 
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pressures are induced during undrained shearing. Heavily OC clays, however, 

tend to dilate during drained shearing and negative excess pore water pressure 

builds up in undrained shearing. 

(iv) Though isotropic assumption is often made for the reconstituted soils, natural soils 

tend to be anisotropic due to their structure, depositional environment and 

subsequent loading history (Ladd et al., 1977). 

(v) In some modes of deformation, unstable strain softening behavior is observed. 

(vi) Some soils exhibit significant time dependent behavior, like creep. Thus a real 

time scale must be used in their constitutive description (Prevost, 1976). 

1.3 Dilemma in soil modeling 

        Since soils exhibit in such a complicated way, great attention has been focused on 

the theoretical modeling during the past six decades. Drucker et al. (1957) are the 

pioneers who first attempted to model soil behaviors within the framework of classical 

plasticity theory. Subsequent research work done on laboratory reconstituted clay by 

Roscoe and his researchers in the 1960s led to the development of Critical State Soil 

Mechanics (CSSM) (Schofield & Wroth, 1968), which consists of the original Cam 

clay (CC) model and later the modified Cam clay (MCC) model (Roscoe & Burland, 

1968). Although the critical state concept of soil, when subjected to continued shear 

loading, the soil will ultimately reach a state where no volumetric strain occurs with 

further deviatoric strain, serves as a milestone in the theoretical modeling of soil 

behavior and inspires many more advanced and sophisticated models, up to now, there 

is no universal constitutive model that can describe the whole features of soil behavior 

while requiring a reasonable number of input model parameters. 
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        Whittle (1987) attributed this limitation to the fact that the current ability to 

construct models outstripped the characterization of the soil behavior. Wroth & 

Houlsby (1985) suggested that the goal of developing comprehensive constitutive 

models for soil was overly ambitious and that a better approach was to tailor the 

complexity of the model to the accuracy of solution required for a given problem. Thus 

the modeling of soil really presents a trade-off between sophistication and the 

simplicity for application. The view held by Wood (1991) would thus be inspiring that 

the models should be hierarchic, to both consider the power and usefulness of model as 

well as the degree of difficulty and complexity involved. 

1.4 Principle of effective stress 

        Terzaghi (1936) first postulated the fundamental principle of effective stress, 

which is stated as: “All measurable effects of a change in stress such as compression, 

distortion or a change of shearing resistance are exclusively due to the changes in 

effective stress.” The effective stress principle can be expressed as follows:  

u   Eσ σ I  1.1 

where , σ σ  are total and effective stress tensor respectively, the prime denotes 

„effective‟. The effective stress and effective stress invariants will all be labeled by 

prime in this thesis. The parameter u  is the pore water pressure and 
EI  is the unit 

tensor. 

        Following the effective stress principle, the mechanical behavior of soil is 

governed by the effective stresses in the soil which are carried by the soil skeleton. It is 

thus natural to formulate the constitutive model in terms of effective stress in order to 

truly represent the soil behavior. Throughout this thesis, the description of constitutive 
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models is based the continuum assumption. Thus the microstructure and particulate 

nature of soil are not of concern in the current study. 

1.5 Aims of present study 

        The main aim of the present study is to construct a simple constitutive model for 

heavily OC clay under monotonic loading. The major effort will thus be focused on 

simulating the peak strength and ultimate strength of heavily OC clay in drained 

shearing and undrained shearing, respectively. The cyclic degradation and hysteretic 

behavior of NC to lightly OC clay will also be simulated. The proposed model will be 

verified through the comparison of model predictions and measured data in laboratory 

tests under various shearing modes.  

        Centrifuge tests on a well conductor in clay subjected to lateral loading 

(monotonic and cyclic loading) will be simulated in order to further verify the 

capability of the proposed model. The derived p-y curves will be compared to the ones 

used for the design of well conductors of offshore floating structures. The results from 

the simulation are expected to provide the basis of the fatigue life assessment of well 

conductors. 

1.6 Layout of the thesis 

        The thesis consists seven chapters. Chapter 1 provides a general introduction of 

the current study. Chapter 2 presents a literature review on soil plasticity modeling. 

        Chapter 3 formulates the proposed model in the triaxial space. A failure surface 

modified from the published literature is introduced to better simulate the peak 

strength and ultimate strength of heavily OC clay in drained and undrained shearing, 
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respectively. Key attention will be paid on the formulation and the underlying 

philosophy of the plastic modulus. 

         Chapter 4 extends the model to the general stress space with detailed 

mathematical derivations. The implementation of the three-dimensional model in 

ABAQUS through the user-defined model subroutine (UMAT) will be described 

together with the associated stress updating scheme. The implementation is verified 

through the comparison of the prediction from the UMAT and ABAQUS built-in 

model. 

        Chapter 5 illustrates the physical meanings and laboratory determination methods 

of the model parameters. The model predictions for various shearing modes (triaxial 

shearing and direct simple shearing) under different loading conditions (monotonic and 

cyclic, drained and undrained) are compared to the test results. The capability and the 

shortcomings of the model are thus revealed. 

        Chapter 6 presents the results of the model prediction on the response of a well 

conductor in clay subjected to lateral loading. 

        Chapter 7 summarizes the general conclusions from the current study as well as 

recommendations for future study. 
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Chapter 2 Literature Review 

2.1 Introduction 

        Most soil constitutive models have been developed within the framework of 

plasticity theory. The literature review will be confined to critical state models which 

are the building blocks for constructing a new constitutive model. After the description 

of the critical state models, the limitations of the critical state models, namely the poor 

prediction of peak strength of heavily OC clays on the dry side and the inability to 

simulate cyclic behavior, are addressed. It is useful to note here that the review and 

subsequent new constitutive model developed are restricted to clays. As great 

differences exist between clays and sands in the compressibility and permeability, 

many constitutive models are specifically developed for one type of soil (clay or sand), 

although more unified models are also available (Pastor et al., 1990; Yu, 1998; Pestana 

& Whittle, 1999; McDowell & Hau, 2004; Yu et al., 2007; Manzanal et al., 2011). 

2.2 Soil constitutive models 

2.2.1 Critical state framework 

        The critical state framework was formulated in the 1960s at the University of 

Cambridge, although the critical concept was firstly proposed by Casagrande (1936). 

The framework is based on laboratory reconstituted clays and the soil is assumed to be 

isotropic. 

        In one-dimensional isotropic loading test, if a soil sample consolidated 

isotropically and then subjected to isotropic loading and unloading, the relationship 

between the specific volume v  ( 1v e  , e  is the void ratio of soil) of soil sample and 
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the stress state typically follows the trend shown in Figure 2.1. As the problem is one-

dimensional, the mean effective stress p  is enough to describe the stress state (a 

complete definition of all the stress and strain variables used in this thesis is provided 

in Appendix A and will not be repeated in the main thesis text). The line which the NC 

soil sample follows when subjected to compression is the isotropic normal 

compression line (NCL) and the line when the soil sample swells from the NCL is the 

swelling line (SL). It is assumed that in the lnv p  space, NCL and SL are straight 

lines which can be expressed by following equations in CSSM: 

NCL: lnv N p     2.1 

SL: lnv v p      2.2 

where , ,N    are material constants. N  is the intercept of NCL with v  axis in 

lnv p  space, ,   are the slopes of NCL and SL in lnv p  space, respectively. v  

is the intercept of SL with v  axis in lnv p  space, depending on the location from 

which point of NCL the soil swells. It is noted that the SL also serves as the reloading 

line before reaching the NCL. 

        Following the critical state concept, when the soil is subjected to continued shear 

loading, a critical state where no further change in the volume will be ultimately 

reached, although large shear distortion continues. It is assumed that this ultimate 

stress state will lie on a line called the critical state line (CSL) independent of the 

modes of shearing. The CSL is defined in v p q   space as follows (Figure 2.2): 

q Mp   2.3 

lnv p    2.4 
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where ,M   are materials constants, M  is the slope of CSL in p q   space, which 

can be related to the soil friction angle.   is the intercept of CSL with v  axis in 

lnv p  space. It is noted that N  and  are inter-related based on the specific model 

formulation as will be shown in the later part of this thesis. Thus for model input, only 

one of them is sufficient.  

        Following the classical elasto-plastic theory (a berief description of the elasto-

plastic theory is given in Appendix A), a yield surface which separates the purely 

elastic behavior from the elasto-plastic behavior has to be specified when constructing 

an elasto-plastic constitutive model. The following yield surface was proposed for the 

original Cam clay (CC) model by Schofield & Wroth (1968) as shown in Figure 2.3(a): 

ln 0
c

q p

Mp p

 
  
  

  2.5 

where cp  is the intercept of the yield surface with p  axis, serving as the hardening 

parameter and is  also called the pre-consolidated pressure.  

As can be seen from Figure 2.3 (a), the logarithmic yield surface of the CC model has 

a sharp corner on the p  axis, which causes the incremental plastic strain remaining 

unknown if an associated flow rule is used. Due to this reason, Roscoe & Burland 

(1968) proposed a modified Cam clay (MCC) model by modifing the work dissipation 

equation used by Schofield & Wroth (1968) and proposed an elliptic curve, which 

smoothens the sharp corner of the CC yield surface (Figure 2.3 (b)): 

 
2

2
0c

q
p p p

M
       2.6 
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        Associated flow rule is assumed both in the CC model and the MCC model, so 

the plastic potential is the same as the yield surface. As stated before, the pre-

consolidated pressure cp  serves as the only hardening parameter. The evolution of cp  

is assumed to be related to the plastic volumetric strain p

v . Thus the shear induced 

plastic deviatoric strain does not enter into the hardening parameter. Form Figure 2.1, 

it is easy to deduce the evolution of cp  in an incremental form as follows: 

pc
v

c

dp v
d

p


 




 
  2.7 

        Purely elastic behavior is assumed within the yield surface. The elastic bulk 

modulus K  and elastic shear modulus G  are used to represent the elastic behavior. As 

the SL serves as the unloading line and the reloading line before the stress state reaches 

the NCL, the bulk modulus can be easily obtained from Figure 2.1 as follows: 

vp
K




   2.8 

In the work of Schofield & Wroth (1968), the soil is assumed to be rigid plastic. 

Thus there is no elastic deformation and the elastic shear modulus is infinite large. 

Thus the model cannot be used in the numerical simulation of a boundary value 

problem. Typically, there are two ways to determine the shear modulus: the first is to 

assume a finite constant shear modulus; and the second is to assume a constant 

Possion‟s ratio  , and thus the shear modulus will be related to the bulk modulus K  

through following expression: 

 

 

3 1 2

2 1
G K









  2.9 
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        More discussions on the shear modulus will be presented in Chapter 3 when 

determining the shear modulus used in the new model in this thesis. 

        To implement the basic critical state models into a FE software, it is necessary to 

extend the models to general stress space. The extension to the general stress space 

requires some assumption about the shape of the yield surface in the deviatoric plane. 

The commonly used von Mises criterion implies that the yield surface in the deviatoric 

plane is a circle. Thus the soil strength is independent of the Lode‟s angle. This 

behavior generally contradicts with experimental data (Grammatikopoulou, 2004). 

Gens (1982) reported that the critical state friction angle 
cs   for clays is the same 

under conditions of triaxial compression, extension and plane strain. Thus the strength 

of clay under these shearing modes would be different depending on the Lode‟s angle, 

and thus the magnitude of the intermediate principal stress. A better approach is thus to 

follow the Mohr Coulomb criterion to consider different strengths at different Lode‟s 

angles. However, the Mohr Coulomb hexagon has sharp corners, and additional 

procedure is necessary to smoothen these corners in numerical implementation. Other 

continuous shapes have been proposed by Matsuoka & Nakai (1974) and Lade & 

Duncan (1978) as shown in Figure 2.4. Vaneekelen (1980) proposed a general 

continuous shape, with which the von Mises criterion, Morh Coulomb criterion and 

Lade criterion can all be approximated by choosing appropriate parameters, 

2.2.2 Summary on basic critical state model 

        The key ingredients presented in section 2.2.1 are sufficient to construct the basic 

critical state models. The CC model and the MCC model are called the basic critical 

state models for short in the following. Table 2.1 summarizes the five input parameters 

as well as the physical meaning. The models have been used frequently to reproduce 
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the major deformation characteristics of soft clay when subjected to monotonic loading 

in laboratory tests (Wroth & Houlsby, 1980; Houlsby et al., 1982). It has also been 

implemented in various finite element (FE) programs (Randolph et al., 1979; 

ABAQUS, 2011; Plaxis, 2011). 

        The basic critical state models capture many aspects of behavior of isotropic 

consolidated clays and have been proven to be useful in the numerical analysis of 

boundary value problems for NC to lightly OC clays (on the wet side) (Dasari, 1996; 

Mita, 2002). However, these models suffer from three major limitations: (i) the models 

tend to over predict the strength of heavily OC clays (on the dry side); (ii) for stress 

state within the yield surface, the models predict a purely elastic behavior, and are 

incapable for predicting the irrecoverable plastic strain within the yield surface when 

subjected to cyclic loading; (iii) the stiffness of soil will change abruptly when going 

from the elastic region into the plastic region. 

2.2.3 The strength of heavily OC clays 

        Experimental investigations of the behavior of OC clays in both undrained and 

drained shear tests have been reported by various authors (Henkel, 1959; Henkel, 1960; 

Parry, 1960; Gens, 1982). These tests give a consistent pattern of behavior and 

demonstrate discrepancies with the basic critical state models (Whittle, 1987). A 

typical result of triaxial isotropic undrained compression (CIUC) tests is shown in 

Figure 2.5 (a), after Atkinson & Richardson (1987). It can be seen that the undrained 

stress paths of heavily OC clays (sample S3 to S6) in the tests stop much earlier before 

reaching the initial yield surface (roughly indicated by the red dash curve). However, 

in the basic critical state models‟ prediction, the stress path will go vertically until 

reaching the yield surface and then it follows a slight strain softening. Thus the peak 
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strength from the tests is significantly lower than the value predicted by the basic 

critical state models. From Figure 2.6 (b), it can be seen the stress state of heavily OC 

clays (sample S3 to S6) will approach the CSL but stop finally to the left of the CSL 

due to the local drainage as explained by Atkinson & Richardson (1987). The 

deviation of the prediction of the basic critical state models from the test results 

appears to increase with overconsolidation ratio (OCR). The OCR in the present study 

is defined as the ratio of the maximum past effective vertical stress vm   to the current 

value before shearing 0v  . 

        Hvorslev (1936) found experimentally that a straight line approximates the failure 

envelope for OC soils satisfactorily as shown in Figure 2.6. The equation of this line 

can be described as: 

h

e e

q p
m h

p p


 

 
  2.10 

where ,hm h are the slope and intercept of Hvorslev line, respectively. ep  denotes the 

effective equivalent pressure, which is the effective pressure on the NCL at the current 

specific volume. 

Zienkiewicz & Naylor (1973) adopted this straight Hvorslev line as the yield surface 

(thus known now as the Hvorslev surface) on the dry side in their use of the MCC  

model. A non-associated flow rule with dilatancy increasing linearly from zero at the 

critical state to some fixed value at 0p   is used. Thus excessive dilatancy rates and 

the numerical discontinuity at the critical state could be avoided. Potts & Zdravkovic 

(1999) used a non-associated flow rule with Hvorslev surface as the yield surface on 

the dry side and the MCC model yield surface as plastic potential. The generalization 
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of this option has been done by Mita (2002). Similar approach using the Hvorslev 

surface as yield surface has been suggested by Atkinson & Bransby (1978) as shown in 

Figure 2.7. The yield surface consists of the Hvorslev surface with tension cutoff on 

the dry side and Roscoe surface on the wet side. Instead of using Hvorslev on the dry 

side, Lade (1977) proposed a „double hardening‟ model with a conical yields surface 

on the dry side and a cap yield surface on the wet side as shown in Figure 2.8. The 

„double hardening‟ model assumes that two yield surfaces obey different hardening 

rules and the plastic strains generated from one yield surface have no effect on the 

other yield surface. This model has been used extensively at Imperial College in 

embankment construction, although the implementation of this model in numerical 

software is not straight forward (Potts & Zdravkovic, 1999). 

        Rather than using the Hvorslev surface, more recently, Atkinson (2007) proposed 

curved lines in p q   space to represent the peak strength of heavily OC clays based 

on extensive experimental results under various loading conditions. In his mind, only 

the curved line can represent the peak strength of unbonded soil over the range of 

effective stress from zero to the critical state. Besides, the straight line is also 

intrinsically unsafe under certain conditions (Atkinson, 2007). The above proposed 

curved lines with necessary modifications will directly enter into the new model 

developed in this thesis. Further details of Atkinson‟s proposal will be discussed in 

Chapter 3. 

2.2.4 Cyclic constitutive models for clay 

        Cyclic loading is especially important for offshore foundation systems. Typically, 

three main aspects of soil response under cyclic loading have to be correctly simulated: 

(i) the cyclic degradation of soil strength; (ii) the accumulation of displacement under 
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continued cyclic loading; and (iii) the change of soil stiffness due to cyclic loading. For 

the foundation of conventional offshore platforms (e.g. fixed offshore platofrms with 

piled foundation or gravity based foundation), the bearing capacity under cyclic 

loading may govern the whole design (Andersen, 2009), although the displacement of 

the foundation may also be critical. Thus the cyclic degradation of soil strength is 

particular of concern (API-RP2A, 2000). For the fast growing offshore wind turbine 

industry, the lateral response of foundation under cyclic loading receives much more 

attention, as the superstructure is sensitive to the foundation displacement (Achmus et 

al., 2009). Moreover, the primary design issues are deformation and stiffness rather 

than ultimate capacity, which may be different from the conventional offshore 

platform design (Leblanc et al., 2010). 

        Modeling the soil cyclic behavior faces a dilemma in that in order to be 

sophisticated, more parameters are required which leads to the model being rather 

complex and some of the parameters are hard to determine. Thus a tradeoff must be 

made, balancing sophistication and simplicity. A practical way as suggested by Wroth 

& Houlsby (1985) is to tailor the complexity of the model to the accuracy of solution 

required for a given problem.  

        Whittle (1987) classified cyclic soil constitutive models into two types: (i) explicit 

model and (ii) implicit model. The explicit model uses the experimental results of 

simple cyclic tests on soils to develop relationships, which can be used to estimate the 

effects of whole cyclic histories. A monotonic loading model is necessary and then 

additional assumptions are made on the state variables of the monotonic loading model 

to take account of the cyclic loading effect based on the experimental tests. A good 

example of an explicit model is provided by Vaneekelen & Potts (1978) who describe 

the monotonic behavior of Drammen clay and then by using a fatigue parameter (the 
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excess pore water pressure generated in cyclic undrained loading), the cumulative 

effect can be taken into account. The cyclic pore pressure is related to the number of 

loading cycles and the cyclic shear stress level based on a large number of tests. More 

recently, Andersen (2009) presented results of cyclic direct simple shear (DSS) tests 

and cyclic triaxial tests in the diagrams where the number of cycles to failure is plotted 

as a function of average and cyclic shear stresses. Some typical results are shown in 

Figure 2.9. These results can be incorporated into the monotonic model to simulate the 

cyclic loading effects and thus also forms as an explicit model.  

        The explicit mdoels are straight forward to understand but cannot be used as 

general purpose constitutive models in boundary value problems. Because these 

models are based on large number of cyclic tests results of specific soils, and hence 

restricts the application of these models. Another shortcoming of these models is that 

even though the ultimate cyclic loading effects can be considered, the response during 

the cyclic loading history cannot be simulated. For these reasons, the focus of this 

thesis will be on the more general purpose models referred as implicit models. 

        The implicit model describes the general constitutive laws of soils under 

monotonic loading as well as cyclic loading. The whole cyclic loading history is thus 

simulated by updating state variables, which record the cyclic loading history. The 

complexity of the model thus depends on the number of state variables in the model. 

As stated in section 2.2.1, the basic critical state models predict purely elastic behavior 

within the yield surface. This elastic behavior within the yield surface fully de-couples 

volumetric and deviatoric shear behavior. Thus the accumulation of irrecoverable 

plastic volumetric strain (in the drained condition) or the excess pore water pressure (in 

the undrained condition) induced by a number of load cycles within the yield surface 

cannot be simulated. A natural extension of these models is thus trying to introduce 
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plastic strain within the conventional yield surface. Three main types of these 

extensions exist: (i) two-surfaces and multi-surface plasticity with kinematic hardening 

(Mroz, 1967; Prevost, 1977; Mroz et al., 1978; Prevost, 1978; Mroz et al., 1979, 1981); 

(ii) bounding surface models originally developed for metal plasticity (Dafalias, 1975; 

Krieg, 1975; Dafalias & Herrmann, 1982); and (iii) sub-loading surface models 

(Hashiguchi & Ueno, 1977; Hashiguchi, 1980, 1989). In essence, the bounding surface 

concept and sub-loading concept are practically identical, so the following review will 

only refer to the two-surfaces, multi-surface plasticity and the bounding surface 

plasticity. 

        Mroz (1967) was the first to develop a multi-surface kinematic hardening model 

for metals. In order to simulate the smooth change of stiffness, Mroz (1967) introduced 

a set of kinematic nesting surfaces of constant hardening moduli. The behavior within 

the first kinematic surface is assumed to be purely elastic. As loading or unloading 

continues, the behavior will become elasto-plastic once the stress state falls on the first 

surface. As further loading or unloading, the first surface is dragged along the stress 

path and the hardening modulus associated with the first surface applies until the stress 

state reach the next surface. Once the next surface reached, the hardening modulus 

associated with this new surface is activated and applies immediately. Meanwhile, the 

new surface moves together with the previous surface in the subsequent loading. The 

introduction of these surfaces and the corresponding hardening moduli in the stress 

space consequently leads to a piecewise linear stress-strain behavior. As the number of 

surfaces increase, a smooth stress-strain curve can be obtained. A similar model was 

developed by Iwan (1967) independently. Figure 2.10 shows the schematic layout of 

spring-slider system of Iwan (1967) and Figure 2.11 shows the resulting piecewise and 

smooth stress-strain curves (Byrne, 2000). 
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        Mroz et al. (1978) and Prevost (1978) applied this concept to deal with both 

drained and undrained soil conditions. A schematic representation of these surfaces is 

shown in Figure 2.12. It it noted that in Figure 2.12 (a), the variation of hardening 

moduli is different from Mroz (1967) that the hardening moduli will be evaluated from 

a conjugate point, which will depend on the current stress state through a specific 

interpolation rule. Mroz et al. (1979) simplified the above multi-surface model into a 

two-surface model by considering only one kinematic yield surface within an outer 

surface. This outer surface serves as a state bounding surface, which separates all the 

possible stress state from impossible stress state (Figure 2.13). The inner yield surface 

translates within the bounding surface. The hardening modulus is evaluated from a 

conjugate point. Further, Al-Tabbaa (1987) and Al-Tabbaa & Wood (1989) developed 

a bubble model with a single kinematic yield surface (bubble) and an outer bounding 

surface designated by the conventional MCC yield surface (Figure 2.14). Stallebrass & 

Taylor (1997) extended this model to incorporate additional history surface in order to 

take into account of the small strain stiffness as well as the effects of recent stress 

history of OC clay (Figure 2.15). Basically, both the two-surface and three-surface 

bubble models are similar with the kinematic hardening model family (Mroz, 1967; 

Mroz et al., 1978, 1979, 1981) 

        In the bounding surface models, the conventional yield surface is re-named as the 

bounding surface, which bounds all the possible stress states. A loading surface, which 

is homothetic to the bounding surface and always passes the current stress state, is 

introduced in order to simulate the plastic behavior within the bounding surface. If the 

stress state lies on the bounding surface, then the bounding surface models degenerate 

to the conventional elasto-plastic models and the conventional elasto-plastic theory 

applies. On the other hand, if the stress state is inside the bounding surface, plastic 
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strains are allowed if loading continues. To evaluate these plastic strains, as stated in 

Appendix A, the outward directions of the yield surface and plastic potential are 

required. These two directions are now determined from an image point on the 

bounding surface through a mapping rule. A radial mapping rule is used in Figure 2.16, 

relating the current stress point 
0   to the image point on the bounding surface   . 

The image point is the intersection point of the bounding surface and a straight line, 

which connects the origin of the stress space and the current stress point. The plastic 

modulus is now evaluated from the image point rather than from the current stress state. 

Besides, the plastic modulus depends on the proximity of the current stress point to the 

image point in the stress space.  

        Various models have been proposed based on the bounding surface concept since 

the pioneering work on soil by Dafalias & Herrmann (1982) (Lade, 1977; Whittle, 

1987; Dasari, 1996; Stallebrass & Taylor, 1997; Pestana & Whittle, 1999; Atkinson, 

2007; Yu et al., 2007). For example, Whittle (1987) presented a MIT-E3 model, which 

is based on the previous work at MIT for clay under both monotonic loading and cyclic 

loading (Kavvadas, 1982). MIT-E3 model is a very sophisticated model combining the 

bounding surface concept and the small strain nonlinear elastic behavior of soil. It also 

takes into account the anisotropic behavior of soil. Whittle (1993) demonstrated the 

ability of the model to accurately represent the behavior of three different clays 

subjected to a variety of loading paths. However, the MIT-E3 model needs fifteen 

input parameters, some of which are hard to determine from laboratory tests. Besides, 

the formulation is rather complex and a numerical stability problem may be 

encountered when implementing this model in common numerical software. This 

model thus remains as a research model. 
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        It should be noted that a key difference in the above bounding surface models is 

the formulation of the plastic modulus, which not only governs the nonlinearity and the 

coupling effect of the volumetric and deviatroic shear behavior, but also introduces 

new model parameters adding complexity to the model. Among the above models, the 

plastic modulus suggested by Pastor et al. (1985) is relatively simple and works quite 

well for a number of lightly OC clays under triaxial tests. This model will thus be 

further exploited in Chapter 3 to serve as a building block of the new model developed 

in this thesis. 

2.2.5 Nonlinearity at small strain range 

        In the 1970‟s, conventional laboratory measurements of stiffness of OC clays 

showed values much lower than those estimated from the back analysis of the field 

performance of geotechnical structures. Similar differences were also found when the 

laboratory stiffness data was compared with values of stiffness derived from in situ 

field tests (Marsland, 1971; St. John, 1975; Grammatikopoulou, 2004). 

        Local measurements of strains on soil samples revealed that the stress-strain 

behavior of OC clays is highly non-linear, with high values of stiffness at small strains, 

which were not measured correctly with the earlier conventional overall measurements 

of strain (Costa-Filho & Vaughan, 1980; Burland & Symes, 1982; Grammatikopoulou, 

2004). Atkinson & Sallfors (1991) idealized the variation of elastic shear modulus with 

shear strain as an S-shape curve as shown in Figure 2.17. In the figure, three regions 

were identified: (i) very small strains region (strains generally less than 0.001%), 

where the stiffness is almost constant with strain; (ii) small strain region (strains up to 

1%), where the stress-strain behavior is highly nonlinear; (iii) large strain region (strain 

larger than 1%), where the stiffness is low and the soil is approaching failure (Atkinson 
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& Sallfors, 1991). Similar proposal has been used by Dasari (1996) as shown in Figure 

2.18.  

        The elastic shear modulus at very small strain is commonly termed as maxG . It is 

postulated that this value reflects the true „elastic‟ properties of the soil skeleton 

(Whitman et al., 1969). Thus estimation of maxG  can be made by using techniques to 

measure the speed of elastic wave propagation in soil (Whittle, 1987). Laboratory 

resonant column tests and field cross-hole or down-hole techniques can also be 

employed to determine maxG  (Woods, 1978; Subhadeep, 2009). Hardin & Black (1968) 

postulated that maxG  of clay primarily depends on the void ratio and the mean effective 

stress. Viggiani & Atkinson (1995) related maxG  to the mean effective stress p  and 

the OCR as 

max

n

m

r

r r

G p
m OCR

p p

 
  

 
  2.11 

where rp  is a reference pressure, , ,rm n m  are material constants. 

        Clayton (2011) summarized the recent research on maxG  in his Rankine lecture 

that the shear modulus of a granular material at very small strain levels is affected 

fundamentally by three factors: (i) the void ratio of the specimen; (ii) the inter-particle 

contact stiffness, which will depend upon particle mineralogy, angularity and 

roughness, and effective stress; (iii) the deformation and the flexibility within 

individual particles, which will depend on particle mineralogy and shape. A similar 

expression as Viggiani & Atkinson (1995) is then proposed for sands and clays, 
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relating maxG  in the vertical plane of soil sample to the mean effective stress p  and 

void ratio e  as 

 
0.5

3

max 1 ( )p

atm

p
G C e MPa

p

  
   

 
  2.12 

where 
pC  is a material constant and atmp  is atmospheric pressure. 

        To determine the variation of shear modulus with shear strains, Ishibashi & Zhang 

(1993) proposed to employ a hyperbolic function to describe the decreasing rate of 

shear modulus with shear strains. Subhadeep (2009) used an alternative hyperbolic 

form to describe the stress-strain curve as follows 

max

2

max1 3 s f

G
G

G q

  

  2.13 

where s  is the absolute value of generalized shear strains and fq  is the deviatoric 

stress at failure. 

        However, in a general soil constitutive model, if the elastic shear modulus is 

related to the shear strain, the model calibration will be rather difficult, especially in 

the presence of the plastic strains. A simpler method is to relate the elastic shear 

modulus to the change of stress level. With the increasing of stress level, shear strain 

will be induced, so the elastic shear modulus will decrease. Pestana & Whittle (1999) 

thus expressed the tangent elastic shear modulus in terms of the stress ratio as 

  max 1 2 2 2

1

1 1

G

G a a 


 
 

 2.14 
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where 1 2,a a  are material constants and 2  measures the deviation of the deviatoric 

stress from the initial loading or stress reversal point.  

        When the stress state deviates significantly from the initial loading or stress 

reversal point, the shear strain is typically quite large. In this large strain region, the 

stiffness is quite low due to large plastic strain, thus the modeling of shear modulus is 

not critical, Dasari (1996) employed a constant Poisson‟s ratio following Equation 2.9. 

2.2.6 Hysteretic effect 

        If a constant Poisson‟s ratio is used, following Equation 2.8 and Equation 2.9, 

both G  and K  are linearly related to the mean effective stress but are independent of 

the deviatoric stress. In this case, the elastic formulation is theoretically unacceptable 

because it is not possible to define an elastic potential (Love, 1963). Thus the principle 

of energy conservation is violated and the elastic prediction will be path-dependent as 

demonstrated by Zytynski et al. (1978) and Whittle (1987). Whittle (1987) 

summarized three alternatives to solve this problem as: (i) relate G  to both the mean 

effective stress and deviatoric stress; (ii) relate the elastic parameters to plastic 

deformation, thus treat the elastic parameters as state variables; (iii) assume that all 

closed load cycles in effective stress space will lead to some plastic strains, so there is 

no true elastic region. 

        Hueckel & Nova (1979) introduced a modified elastic behavior within the 

conventional yield surface. They assumed that that a uni-dimensional cycle of loading 

could be accurately described by a closed symmetric hysteresis loop. For each loop, 

the non-linearity of soil is independent of the magnitude of the maximum past stress, 

but instead, is related to a reference stress state which is called a stress reversal point. 
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This method has been employed by Whittle (1987, 1993) in the MIT-E3 model to 

define the perfect hysteretic behavior of Boston Blue Clay (BBC). A simpler form to 

describe the hysteretic behavior of soil is the Masing‟s rule (Masing, 1926), which is 

commonly used for soil under cyclic loading (Dasari, 1996; Papadimitriou & 

Bouckovalas, 2002; Subhadeep, 2009). Masing (1926) (as the original paper is not in 

English, the following statement is followed from Byrne (2000)) stated that: (i) the 

shear modulus on each loading reversal is assumed a value equal to the initial tangent 

modulus for the initial loading curve, called backbone curve; (ii) the shape of the 

unloading or reloading curves is the same as that of the initial loading curve, except 

that the scale is enlarged by a factor of two. A schematic representation of Masing‟s 

rule is shown in Figure 2.19. Pyke (1979) extended Masing‟s concept by adding two 

additional rules that: (i) the unloading and reloading curves should follow the initial 

loading curve (backbone curve) if the previous maximum shear strain is exceeded; (ii) 

if the current loading or unloading curve intersects the curve described by a previous 

loading or unloading curve, the stress-strain relationship follows that curve. Pyke‟s 

extension is shown in Figure 2.20. 

2.3 Summary 

        In this chapter, common soil constitutive models are reviewed based on 

comprehensive literature. The framework of the basic critical state models-the CC 

model and the MCC model, is reviewed and previous research efforts on heavily OC 

clays are summarized. Various multi-surface and bounding surface models, which aim 

at modeling the cyclic behavior of soils are discussed. The nonlinearity at small strain 

and hysteretic behavior of soil are also summarized. 
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Table 2.1 Model parameters for basic critical state models 

Parameter Physical meaning 

N  Critical state parameter. The intercepts of NCL with v  axis in lnv p  space 

  Critical state parameter. The slop of NCL in lnv p  space 

  Critical state parameter. The slop of SL in lnv p  space 

M  Critical state parameter. The slope of CSL in p q   space. 

G  Elastic shear modulus. 

 

 

 

 

 

NCL

1



N

ln p1kPa

1



v

v

1



v

 

Figure 2.1 lnv p  plot 
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Figure 2.2 Position of the CSL 
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(b) The MCC model 

Figure 2.3 Yield surface of the basic critical state models 
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Figure 2.4 Bounding surface in deviatoric plane (Grammatikopoulou, 2004) 

 

 

 

(a) p q   space 
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(b) lnv p space 

Figure 2.5 Stress path (Atkinson & Richardson, 1987) 

 

 

Figure 2.6 Hvorslev line for Weald clay (Schofield & Wroth, 1968) 
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Figure 2.7 Hvorslev surface with tension cut-off (Atkinson & Bransby, 1978) 

 

          

Figure 2.8 „Double hardening‟ model yield surface (Potts & Zdravkovic, 1999) 
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(a) DSS test 

 

 

(b) Triaxial test 

Figure 2.9 Number of cycles to failure (Andersen, 2009) 
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Figure 2.10 Schematic layout of spring-slider system (Byrne, 2000) 

 

 

 

 

 

 

Figure 2.11 Piecewise and smooth stress strain curves (Byrne, 2000) 
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(a) Mroz et al. (1978) 

 

(b) Prevost (1978) 

Figure 2.12 Multi-surface models 
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Figure 2.13 Two surface model (Mroz et al., 1979) 

 

Figure 2.14 Bubble model (Al-Tabbaa, 1987) 
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Figure 2.15 Three surface model (Stallebrass & Taylor, 1997) 

 

Figure 2.16 Bounding surface model (Potts & Zdravkovic, 1999) 
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Figure 2.17 Variation of shear modulus with strain (Atkinson & Sallfors, 1991) 

 

 

Figure 2.18 Variation of elastic shear modulus with strain (Dasari, 1996) 
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Figure 2.19 Depicts of Masing‟s rule 

 

Figure 2.20 Pyke‟s extension of Masing‟s rule (Pyke, 1979) 
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Chapter 3 Formulation of a new critical state model for 

clays 

3.1 Introduction 

        The basic critical state models predict much higher strength of clays on the dry 

side. The fully de-coupled volumetric and deviatoric behavior within the yield surface 

leads to the inability of these models to predict the plastic strains when the clay is 

subjected to cyclic loads. Both of these two limitations have been discussed in detail in 

Chapter 2. This chapter aims at overcoming these two shorting comings by 

constructing a new constitutive model for OC clays and soft clays under cyclic loads. 

The new model developed here is termed as „AZ-Cam clay model‟ (as the main idea of 

the model was inspired by Atkinson (2007) and Zienkiewicz et al. (1985), which 

incorporates two main features: i) a failure envelope is introduced to better predict the 

peak strength and ultimate strength of heavily OC clays; and ii) the bounding surface 

concept is employed to simulate the plastic strains within the conventional yield 

surface. 

        To better present the philosophy of the AZ-Cam clay model, the experimental 

findings of Atkinson (2007), which is essential to the formulation of the dry side of the 

AZ-Cam clay model, will first be reviewed. The work of Zienkiewicz et al. (1985) will 

follow as the simple expression of plastic modulus used was reasonably successful in 

simulating various clays in the subcritical side as demonstrated in the paper. The 

detailed formulation of the AZ-Cam clay model and the interpretation of the input 

model parameters will be presented. 
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3.2 Atkinson’s proposal for peak strength of clays on the dry side 

        Hvorslev (1936) found that a straight line can describe the failure envelope of OC 

soils satisfactorily in p q   space. However, Atkinson (2007) stated that only a curved 

line can represent the peak strength of unbonded soil over the range of effective stress 

from zero to the critical state. Meanwhile, a straight line is intrinsically unsafe under 

certain conditions. As shown in Figure 3.1, the dash line is a straight line which is 

supposed to be best fitted to the experimental peak strength 1 2 3, ,P P P  as represented by 

the solid dots. The solid double line is the CSL and the solid curve best approximates 

the experimental data. From the figure, it is easy to conclude that there are certain 

ranges (e.g. to the left side of 1P  and to the right side of 3P ), in which a straight line 

over predicts the peak strength.  

        Based on extensive experimental results on various clays subjected to a variety of 

loading paths, Atkinson (2007) suggested two proposals to represent the peak strength 

of OC clays as follows: 

b

cr cr

q p

Mp p

 
  

  
  3.1 

and 

 1
q

v
Mp

  


  3.2 

where crp  is known as the critical state pressure, which is the pressure on the CSL at 

the current specific volume.   and b  are material constants governing the 

nonlinearity of the curve when plotted in p q   space. The value of v   indicates 
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the vertical distance of the current stress state to the CSL and is known as state 

parameter (Yu, 2006).  

        Mathematically, Equation 3.1 and Equation 3.2 are not exactly identical, although 

they could both fit the test data quite well as demonstrated in the paper (Atkinson, 

2007). Equation 3.1 gives a power law which is similar to that proposed by Demello 

(1977) and used routinely in rock mechanics (Hoek & Brown, 1980). The peak 

strengths obtained from tests on six clays are shown in Figures 3.2 (a)-(f) as well as the 

failure envelope from Equation 3.1 (the straight line, plotted in logarithmic scale) 

following Atkinson (2007). Equation 3.2 is similar to the relationship between stress 

ratio and state parameter proposed by Been & Jefferies (1985). The same test data as in 

Figure 3.2 with the proposed line according to Equation 3.2 are shown in Figures 3.3 

(a)-(f) following Atkinson (2007). Atkinson (2007) further pointed out that the present 

experimental data were not sufficiently precise to distinguish which of the two 

relationships fit the data best. Both of the two equations can thus be used to describe 

the peak strength of OC clays at the current stage. For the convenience of the model 

formulation, Equation 3.2 will be used in the current study. 

3.3 Simple model for clays on the wet side 

        Mroz‟s series kinematic models as presented in Chapter 2 present a complex 

process of the evolution of the yield surfaces. However, it is not straight forward to 

completely determine the total 10 input parameters for the multi-surface model with 

cyclic degradation (Mroz et al., 1981; Whittle, 1987). Dafalias & Herrmann (1982) 

presented a bounding surface model, which requires two input parameters to determine 

the plastic modulus. Zienkiewicz et al. (1985) further simplified the plastic modulus 

with only one input parameter through a power law as: 
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BH H






 
  

   

 3.3 

where H  and H  are plastic moduli at the current stress point and the image stress 

point on the bounding surface respectively.   and B  are the distance from the origin 

of the stress space to current stress point and image point respectively as shown in 

Figure 3.4.   controls the non-linearity of the plastic modulus within the bounding 

surface.  

        As long as the plastic modulus has been determined, the elasto-plastic matrix can 

be determined from Equation A.42 in Appendix A. The outward direction of the yield 

surface and plastic potential are determined from the image stress point. The model 

requires only one additional parameter   compared to those required for the basic 

critical state models. Figure 3.5 and 3.6 show the model prediction. Compared to the 

experimental data, a good agreement is achieved. 

        It is noted that the model presented by Zienkiewicz et al. (1985) ignores the 

behavior of clay on the dry side as the CSL is used as a part of the bounding surface. 

For this reason, the model always under predicts the peak strength of heavily OC clays. 

Combining with the proposal of Atkinson (2007) as stated in the previous section, it is 

now possible to formulate a constitutive model which can be used for clays over a 

wide range of OCRs. 
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3.4 Formulation of the AZ-Cam clay model in triaxial space 

3.4.1 Introduction 

        As stated in section 3.1, the basic critical state models over predict the strength on 

the dry side and are unable to simulate the plastic strains within the yield surface The 

basic structure of the AZ-Cam clay model is within the framework of critical state 

models. Key attention will be paid on the modifications of the proposal of Atkinson 

(2007) on the dry side and the plastic modulus inspired by Zienkiewicz et al. (1985). 

Similar to most general soil constitutive models, the AZ-Cam clay model is 

constructed in terms of effective stresses, and compression is defined as positive. The 

behavior is also assumed to be time-independent. First the model will be formulated in 

triaxial space ( p q   space). The generalized form in general stress space will be 

presented in Chapter 4. 

3.4.2 Loading and unloading behavior 

        In the AZ-Cam clay model, when soil undergoes unloading, the behavior is 

always assumed to be elastic. However, when soil undergoes loading, the behavior is 

always elasto-plastic and thus there is no true elastic zone. The loading and unloading 

criterion follows Pastor et al. (1990) and Manzanal et al. (2011) as 

Unloading:   0

T

eF
dF d



 
  

 
  3.4 (a) 

Neutral loading:   0

T

eF
dF d



 
  

 
  3.4 (b) 

Loading:   0

T

eF
dF d



 
  

 
  3.4 (c) 
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where F ,    represent the yield surface and stress state, respectively.  ed  is the 

elastic stress increment vector as given in Appendix A. 

3.4.3 Bounding surface 

        In the AZ-Cam clay model, the conventional yield surface is termed as the 

bounding surface. Thus the bounding surface separates all the possible stress state from 

the impossible stress state. Besides, it acts as the yield surface in conventional elasto-

plastic theory. The bounding surfaces of the basic critical state models have been 

shown in Figure 2.3 in p q   space. In the basic critical state models, the critical state 

pressure crp , which is the projection of the bounding surface apex on the p  axis, can 

be related to the pre-consolidation pressure cp  as 

c
cr

p
p

R


    3.5 

For the original Cam clay model, R  equals 2.72 while for the MCC model, R  equals 

2.0.  

As the relationship between crp  and cp  governs the strength of soil on the wet side, a 

more general relationship is adopted in the AZ-Cam clay model as follows: 

2

2
cr c

w

p p
R

 


 

 3.6 

where wR  is an input material constant. 

        A generalized form of the MCC model yield surface, which is essentially the 

same as Zienkiewicz et al. (1985) on the wet side, is adopted to describe the bounding 
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surface in the AZ Cam-clay model (Figure 3.7). Combining with Equation 3.6, the 

bounding surface on the wet side is proposed as follows: 

2 2
2

2 2

4 2 2
0

2 2
c c

w w w

q
F p p p

M R R R

   
         

    
  3.7 

Mathematically, the left intersection point of Equation 3.7 with p  axis will be greater 

than zero if 2wR  . Thus certain stress points with small mean effective stress will lie 

outside the bounding surface, which is not desirable physically. A different expression 

for the bounding surface on the dry side is proposed as: 

2 2
2

2 2

4 2 2
0

2 2
c c

d w w

q
F p p p

M R R R

   
         

      

 3.8 

where dR  is an input material constant.  

        It should be noted that as long as the value of dR  in Equation 3.8 remains not less 

than 2, the bounding surface can encompass all the stress points when they are 

approaching the origin of the stress space. If 2dR  , the left intersection point of 

Equation 3.8 with p  axis will be negative, in this case, the volumetric deformation in 

tension will be allowed. Without sufficient experimental data, the AZ-Cam clay model 

currently assumes that soil cannot sustain the tensile mean effective stress ( 0p  ). 

Besides, by incorporating a failure surface, the exact shape of the bounding surface on 

the dry side is not essential to the model. For these two reasons, the value of dR  thus 

can then be fixed at 2. 
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3.4.4 Failure envelope for heavily OC clays 

    It is helpful to clarify the difference between heavily OC clay and lightly OC clay 

defined in the current study. The heavily OC clay quoted in the present study is when 

the stress state goes through the CSL and enters into the dry side of the bounding 

surface under continued shearing, causing dilation. However, for lightly OC clay and 

NC clay, the stress state will always remain on the wet side and the behaviour is 

always contracting. This definition of heavily OC clay and lightly OC clay is 

consistent with the critical state framework.  

        The experimental data in Figure 3.2 and 3.3 presented by Atkinson (2007) reveal 

that the intercept of the proposed straight line with the vertical axis 
q

Mp
 (in Equation 

3.2) may not equal to 1 based on the best curve fitting. Actually, this value was fixed 

manually by Atkinson, reflecting an assumption in the basic critical state models. The 

assumption is that soil under continued shearing will fall on a unique straight line 

(original CLS) in lnv p  space, regardless of the mode of shearing (the CSL in the 

present study is repositioned in lnv p  space, thus the CSL in the basic critical state 

models will be pre-fixed „original‟ as will be used through out the rest of this thesis). 

As shown in Figure 3.8, the state parameter v   becomes zero when the current 

stress point reaches the original CSL (the state parameter indicates the vertical distance 

of the current stress point A  to the original CSL in lnv p  space). However, if the 

actual critical state of soil lies to the left of the original CSL as represented by curve 

a b , the state parameter will be larger than zero when the critical state is reached. In 

this case, the vertical intercept will be less than 1. 
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        Experimental data of Henkel (1959) and Atkinson & Richardson (1987) indicate 

the failure state of NC clay will fall on a unique straight line (original CSL) when 

plotted in lnv p . Henkel (1959) plotted the data in the relationship between water 

content w  and p , as w  can be linearly related to v , it is identical to making above 

statement).  

        It is helpful to clarify the failure state of clay. The failure state quoted in this 

study is the state where maximum shear stress occurs. For clays on the wet side of the 

critical state (for example, NC and lightly OC clay), during drained shearing, the soils 

compress, stiffen and strengthen. Once a region of soil becomes stiffer and stronger, 

further shearing in the surrounding soil will make it stiffer and so on (Atkinson & 

Richardson, 1987). During undrained shearing, the soil neither compresses nor dilates 

as the total volume remains the same. Thus the clay on the wet side will not form shear 

zone and the shear stress will continue increasing before reaching the critical state 

during drained and undrained shearing. For clay on the dry side, during drained 

shearing, part of soil dilates and becomes softer. Further shearing will make this region 

even much weaker. Thus further shearing will be concentrated on this weaker zone and 

a shear zone forms before reaching the critical state (Atkinson & Richardson, 1987). 

As dilation, softening and weakening only occur on the dry side of critical state in the 

presence of some drainage. During perfect undrained shearing, the soil on the dry side 

again neither compresses nor dilates. Thus the formation of shear zone before the 

critical state is unlikely unless the geometric strains are imposed (Atkinson & 

Richardson, 1987). Thus generally, the shear stress of soil on the dry side under perfect 

undrained shearing is not likely to fall. However, during the undrained test on heavily 

OC clay, it is common to see the shear stress falls suddenly. This phenomenon results 

from the local drainage occuring within the soil sample. If local drainage occurs, the 
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sample becomes a boundary value problem. Since the constitutive relation reflects the 

mechanical behavior of an ideal single element, thus any test results after local 

drainage may be less useful to calibrate the constitutive relations.  

        Thus for NC to lightly OC clay, the failure state is identical with the critical state. 

For heavily OC clay under drained shearing, the failure state comes before the critical 

state. From the test data of Parry (1958), the failure state of Weald clay (various OCRs) 

in the CIU compression loading almost lie on the CSL as shown in Figure 3.9. More 

comprehensively, Burland et al. (1996) reported that the peak strengths of four stiff 

clays lie close to the original CSL in CIU shearing, especially for Todi clay and 

Vallericca clay as shown in Figure 3.10. Therefore, it is reasonable to state the failure 

state of heavily OC clay under perfect undrained shearing coincides with the critical 

state. This claim is consistent with Atkinson (2003) that under perfect undrained 

condition, there is no peak strength before the critical state. 

        Following the above discussion, the critical state of heavily OC Weald clay and 

London clay lie to the left of the original CSL in lnv p  space as show in Figure 3.11 

after (Henkel, 1959) (To be noted, in Henkel (1959), the mean effective strress was 

reprented by J/3. While J is this thesis denotes the deviatoric stress). Burland et al. 

(1996) did not show the test result in lnv p  space, but from the calculation of the 

undrained peak strength, the critical state of heavily OC clay will also lie to the left of 

the original CSL in lnv p  space if the MCC bounding surface is used. It is noted 

that due to the strong dilation of the heavily OC clay, the local drainage may occur 

within the undrained soil sample (Atkinson and Richardson, 1987). However, from 

Parry (1960), the stress-strain relation of heavily OC Weald clay (the same test data 

with Henkel (1959)) does not show a strain-softening behavior. Thus the above 
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deviation from the original CSL cannot be fully explained by the local drainage as 

local drainage of heavily OC clay will lead to a softening behavior (Atkinson & 

Richardson, 1987). In Burland et al. (1996), the heavily OC Todi clay and Vallericca 

clay failed in bulging with the formation of shear plane after bulging. Thus it is 

reasonable to assume that clays have already failed before the possible local drainage 

occurs. 

        Thus a basic assumption is made that the critical state of heavily OC clays will 

generally lie to the left of the original CSL in lnv p  space but is still on the original 

CSL in p q   space. Similar assumption is made implicityly by Dafalias & Herrmann 

(1982), Zienkiewicz et al. (1985) for heavily OC clay and Crouch & Wolf (1994) for 

heavily OC sand. Atkinson‟s proposal of Equation 3.2 is modified consequently by 

introducing a variable intercept with vertical axis as follows: 

 
q

a v
Mp

  


  3.9 

where a  is the intercept of the proposed straight line with the vertical axis based on 

best curve fitting as suggested by Atkinson (2007). 

Equation 3.9 indicates a new straight CSL for heavily OC clay (shown in Figure 3.12), 

which lies below the original CSL if 1a  . The vertical distance between the new CSL 

and the original CSL can be easily deduced from Equation 3.9 and is termed as d  as 

follows: 

1 a
d




   3.10 
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        A misleading conclusion may be reached from Equation 3.10 that the new CSL 

proposed herein is a fixed straight line with respect to the original CSL. However, it is 

not true as Equation 3.9 and Equation 3.10 are only applicable for heavily OC clays as 

will be discussed below. 

        In order to incorporate Equation 3.9 into the general constitutive model, Equation 

3.9 should be manipulated in terms of p , q  and the pre-consolidation pressure cp . It 

should be noted that though the new CSL proposed herein generally does not coincide 

with the original CSL, the manipulation of Equation 3.9 can be still conducted with the 

help of the original CSL. The state parameter v   is not a measured term in the tests, 

but is defined under the existence of the original CSL. Thus in the final form of 

Equation 3.9, any term defined through the original CSL should be eliminated. As 

shown in Figure 3.12, the current stress point is represented as  ,A v p , the state 

parameter v   can be obtained from the following equation: 

ln op
v

p
 

 
    

 
  3.11 

where op  is effective mean pressure on the original CSL at the current specific volume, 

and is defined through: 

ln ov p      3.12 

Substitute Equation 3.11 into Equation 3.9 yields 

ln opq
a

Mp p


 
   
  

  3.13 

The current specific volume can also be specified through NCL as follows: 
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ln ev N p     3.14 

where ep  is the equivalent pressure, the effective pressure on the NCL at current 

specific volume. 

As op  is defined through the original CSL, it should be eliminated in the final form. 

This can be done by combing Equation 3.12 and Equation 3.14 as follows: 

ln lno ep N p        3.15 

After simple manipulation, Equation 3.15 can be expressed as: 

ln lno e

N
p p




  

 
 3.16 

The equivalent pressure can be obtained in terms of cp  and cv . cv  is the specific 

volume when the stress state lies on the NCL at pre-consolidation pressure cp . As 

shown in Figure 3.12, following equations hold: 

ln c
c

p
v v

p


 
   

 
  3.17 

ln c
c

e

p
v v

p


 
   

 
  3.18 

Combining Equation 3.17 and Equation 3.18 yields 

ln lnc c

e

p p

p p
 

   
   

      

 3.19 

Combining Equation 3.16 and Equation 3.19 yields 
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ln ln lno c

N
p p p

  

  

 
       3.20 

Substitute Equation 3.20 into Equation 3.13 yields 

    ln cpq
a N

Mp p
   

 
      
  

  3.21 

 N  determines the position of the original CSL. In the AZ-Cam clay model, this 

value can be easily obtained with the help of Figure 3.12 that 

 
2

ln
2

wR
N  


     3.22 

Substitute Equation 3.22 into Equation 3.21 yields 

   
2

ln ln
2

w cR pq
a

Mp p
     

 
      
    

3.23 

Introducing another two parameters, peak strength parameter   and ultimate strength 

T   

        3.24 

1
exp

a
T



 
  

 
  3.25 

Substitute Equation 3.24 and Equation 3.25 into Equation 3.23 yields 

1 ln crTpq

Mp p


 
   
  

  3.26 
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where 
2

2

c
cr

w

p
p

R


 


. Employing Tcr crp Tp  , Equation 3.26 can be further manipulated 

to  

1 ln Tcrpq

Mp p


 
   
  

  3.27 

        It should be noted that the parameter   in Equation 3.24 has the same physical 

meaning as  . Typically, a  is less than 1. T  in Equation 3.25 is thus less than 1. 

Further attention being paid on Equation 3.26 reveals that if 1T   , then the curve 

represented by Equation 3.26 (or Equation 3.27) is exactly the same as the yield curve 

of the original Cam clay model. 

3.4.5 Flow rule 

        The flow rule is specified to determine the plastic strain increments. In 

conventional plasticity theory, the outward normal directions of the yield surface and 

plastic potential at the current stress state are required. In the AZ-Cam clay model, 

both associated flow rule and non-associated flow rule can be specified. If the stress 

state remains on the bounding surface, the model degrades to the conventional elasto-

plastic model. In the triaxial space, the outward normal direction of the yield surface 

can be determined as follows (the determination of the outward normal direction of the 

plastic potential is similar, as long as substituting the plastic potential for yield surface): 

,
F F F

p q

    
   

      
  3.28 

2

2F q

q M





  3.29 
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On the wet side: 

2

8 2

2
c

w w

F
p p

p R R

 
   

  
  3.30 (a) 

On the dry side: 

2

8 2

2
c

d w

F
p p

p R R

 
   

  
  3.30 (b) 

        However, when the stress state lies within the bounding surface, the conventional 

yield surface does not exist, but the outward normal directions are still required in 

order to formulate the elasto-plastic matrix. A radial mapping rule is thus employed to 

relate the current stress point  ,A p q  in p q   space to a unique image point 

 1 1 1,B p q  on the bounding surface („  ‟ indicates the stress point lies on the bounding 

surface and will be used throughout this thesis.). The outward normal direction at 1B  is 

used as the outward normal direction at the current stress state to evaluate the elasto-

plastic matrix. The image point 1B  is determined by the interception of a straight line, 

which passes through the origin of the stress space and current stress point, with the 

bounding surface. A schematic presentation is shown in Figure 3.13. The outward 

normal direction at the current stress state is thus provided by following expressions: 

1 1

,
F F F

p q

    
   

      
  3.31 

1

2

1

2qF

q M





  3.32 

On the wet side: 
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2
c

w w

F
p p

p R R

 
   

  
  3.33 

On the dry side: 

12

1

8 2

2
c

d w

F
p p

p R R

 
   

  
  3.34 

where the subscript „1‟ denotes the first image point, which is used to differentiate 

from the second image point. 

        It it noted that in the critical state concept, when soil reaches the critical state, 

there will be no changes in the stress states and no further plastic volumetric strain. 

Thus the outward direction of the plastic potential will be vertical in p q   space. 

Based on the above discussed mapping rule, the outward direction will be vertical as 

long as the current stress point falls on the CSL if associated flow rule is used. It may 

not be at the critical state once the stress point reaches the CSL as the plastic modulus 

may not be zero. However, the CSL does act as a phase transform line. Under the CSL, 

soil undergoes volume contraction and there will be positive plastic volumetric strain 

during loading. Above the CSL, soil undergoes volume expansion and there will be 

negative plastic volumetric strain during loading. 

3.4.6 Hardening rule 

        The hardening rule of the AZ-Cam clay model is exactly the same as that used in 

the basic critical state models. The single hardening parameter cp  governs the 

expansion and the contraction of the bounding surface and no translation is permitted. 

cp  depends uniquely on the plastic volumetric strain, regardless of whenever the stress 

state lies on or within the bounding surface. Any deviatoric strain thus has no effect on 
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the evolution of the bounding surface. Detailed expression has been specified in 

Equation 2.7 to relate cp  to p

v . 

3.4.7 Plastic modulus 

        The plastic modulus governs the magnitude of the plastic strains as well as the 

hardening or the softening behavior of the materials. The description of the evolution 

process of the plastic modulus is thus the most important part in the bounding surface 

elasto-plastic theory. For conventional elasto-plasticity, the behavior is purely elastic 

within the yield surface. The plastic modulus is thus infinitely large, resulting in the 

elasto-plastic matrix to be the same as elastic matrix. In order to introduce plastic 

strains within the conventional yield surface, it is thus necessary to set a finite value to 

the plastic modulus. As stated in Chapter 2, the bounding surface models relate the 

plastic modulus at the current stress state to an image point on the bounding surface 

through a specific mapping rule. The key difference between these models is thus the 

different descriptions for the evolution of the plastic modulus within the bounding 

surface. 

        Another function of the plastic modulus is that it indicates that the strength will 

further increase when it is positive, and the strength will fall (softening behavior 

occurs) when it is negative if associated flow rule is used (Pastor et al., 1990). Thus 

soils fall to the post-peak zone after the peak strength (for example, heavily OC clays 

under drained shearing), the plastic modulus should be negative in the post-peak region. 

        Various expressions for the plastic modulus have been proposed since Dafalias 

(1975) and Krieg (1975) as reviewed in the bounding surface models in Chapter 2. 

Among these expressions, two basic fundamentals can be identified as: (i) the plastic 
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modulus should be degenerated to the value evaluated from the image point on the 

bounding surface when the current stress point coincides with the image point; and (ii) 

the plastic modulus should increase with the increasing of the distance from the current 

stress point to the image point. In addition, the Masing effect suggests that the elastic 

zone can be considered to move with the current stress (Masing, 1926). It is thus 

necessary to consider soil behavior immediately after a loading reversal. Referring to 

the loading reversal, it may be occurred under different angles as the initial load path. 

The behavior may be different for different angles (Dasari, 1996). Without detailed 

explanation, the loading reversal presented here always refers to a reversal angle larger 

than 90 degree.  

        Two-surface or multi-surface models suggest that immediately the loading 

reversal, the soil behaves purely elastic within a defined yield surface (Mroz et al., 

1978; Al-Tabbaa, 1987). The MIT models set the plastic modulus to an infinite large 

value, so that the elastic zone contracts to a point and the plastic modulus depends on 

the load history. The expression proposed by Zienkiewicz et al. (1985), though very 

simple, is not appropriate for soils loading from non-isotropic condition as the 

expression is path-independent. Thus if the cyclic mean load level is relatively large, 

even under small cyclic load amplitude, excessive plastic strain will occur. As shown 

in Figure 3.14, the maximum and minimum cyclic loads are 60% and 50% of the 

failure load, respectively. Even under this relatively small cyclic load amplitude, the 

mean effective stress rapidly reduces as the model cannot store any loading 

information during the previous loading (the cyclic mean load level is defined as the 

arithmetical average of the maximum load and the minimum load occurred in a load 

cycle; the cyclic load amplitude is defined as the half of the variation of the cyclic load 

level in a load cycle in the current study). 
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        In the AZ-Cam clay model, a load-path-dependent plastic modulus is suggested in 

order to take account of the effect of loading reversal. Immediately after a loading 

reversal, the plastic modulus becomes infinitely large and the elastic zone becomes a 

point as the MIT models. Further, the plastic modulus is evaluated from two image 

points on the bounding surface, rather than one image point as almost all the bounding 

surface models do until now in order to explicitly incorporate the failure envelope 

modified in section 3.4.4. 

        As in Figure 3.13, the current stress state is represented by  ,A p q , the first 

image point on the bounding surface  1 1 1,B p q  is determined by a radial mapping rule 

as discussed previously. The second image point on the bounding surface  2 2 2,B p q  

is determined by the interception of the bounding surface with a straight line, which 

connects the origin of the stress space and point 
fA . Point 

fA  is the vertical projection 

of the current stress point  ,A p q  on the failure envelope in p q   space, and point 

 ,B p q  is the vertical projection of the current stress point  ,A p q  on the bounding 

surface in p q   space. Thus these three stress points , ,fA A B  have the same mean 

effective stresses. It should be noted that the failure envelope modified in section 3.4.4 

is a curved line in p q   space represented by 
f TO A C  , and only applicable to 

heavily OC clays. As NC to lightly OC clays will not exhibit peak strength before 

going to the critical state, thus the CSL serves as the failure line. It is thus reasonable 

to extend the failure envelope modified in section 3.4.4 to incorporate part of the CSL 

T aC C . Thus the full failure envelope will be represented by the curve 

f T aO A C C   . With this extension, the second image point  2 2 2,B p q  can be 

uniquely determined and will never lie on the bounding surface on the wet side. If the 
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current stress point  ,A p q  lies to the right of TC ,  2 2 2,B p q  will always coincide 

with the apex of the bounding surface aC , which is also the critical state point. Then if 

 ,A p q  lies to the left of TC ,  2 2 2,B p q  will lie on the bounding surface on the dry 

side. 

        Following Equation A.39, if an associated flow rule is used, the plastic modulus 

at  1 1 1,B p q  can be evaluated as: 

1

1

T

c

p

c v

pF P
H

p p

      
     

       
  3.35 
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p
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  

 
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 3.36 
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On the dry side: 
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  3.40 

Substitute Equation 3.36 into Equation 3.35 yields 
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1
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p p 

  
 

   
  3.41 

where 
c

F

p




 and 

1

P

p




 can be determined by Equation 3.37 to Equation 3.40. 

The plastic modulus 2H  at  2 2 2,B p q  can be obtained by substituting  2 2,p q  with 

 1 1,p q  in Equation 3.41. From the above deduction, it is easy to see that the plastic 

modulus of the image point will be positive on the wet side, negative on the dry side 

and zero at the critical state point (the plastic modulus will also be zero at the origin of 

the stress space when 0p  ). 

        From conventional plasticity theory, strain-softening begins when the plastic 

modulus becomes negative if an associated flow rule is employed. If a non-associated 

flow rule is used, strain-softening begins when the plastic modulus is positive 

(Buscarnera et al., 2011). For bounding surface plasticity used in the current study, if 

the stress state lies within the bounding surface, the plastic modulus at the current 

stress is larger than the value at the first image point and the consistency condition is 

not required. Therefore, strain-softening begins when the plastic modulus becomes 

negative in the current study, regardless of the associated or non-associated flow rule. 

        Combining with the simple power law suggested by Zienkiewicz et al. (1985), the 

plastic modulus is proposed as follows: 

 1 2 1 B

B

H H H



 



 
   

 
  3.42 
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where H  is the plastic modulus at the current stress point  ,A p q . B  and   are the 

distance from the origin of the stress space O  to the first image point  1 1 1,B p q  and 

current stress point  ,A p q  respectively as shown in Figure 3.15. Parameter   is an 

input material constant. 

        When the current stress point approaches the bounding surface on the wet side, 

the second image point will approach the critical state point on the bounding surface. 

Thus 2H  will be zero. Meanwhile, B  and   will become the same, and H  will 

approach 1H . Thus the smooth change of behavior is guaranteed when the stress state 

is approaching the bounding surface. Another feature of Equation 3.42 is the proposal 

of the plastic modulus reflects the physical meaning of the failure surface. As can be 

seen from Figure 3.15, when the current stress point  ,A p q  falls on the failure 

envelope, the first image point  1 1 1,B p q  coincides with the second image point 

 2 2 2,B p q . Thus H  will become zero and the peak strength is reached. Since the 

failure envelope introduced here is based on extensive experimental data (Atkinson, 

2007), using Equation 3.42 will obviously enhance the ability of the AZ-Cam clay 

model to predict the peak strength of OC clays. 

        However, Equation 3.42 suffers three main problems: (i) Equation 3.41 reveals 

that the plastic modulus on the bounding surface follows a parabolic law that decreases 

from zero at the critical state point to a certain negative value and then increases to 

zero at 0p  . Thus the value 1 2H H  may become negative (and thus H  becomes 

negative) before the current stress point reaches the failure envelope. This fact is not 

desirable since before reaching the failure envelope, the plastic modulus should be 

positive. This problem is termed as a pre-negative problem; (ii) If the current stress 
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point approaches the bounding surface from the dry side, the second image point may 

not coincide with the critical state point, thus 2H  may not be zero. This can lead to the 

inconsistency of the model as the current stress point approaches the first image point, 

but the plastic moduli of the current stress point and the first image point still remain 

different. This problem is termed as an inconsistency problem; (iii) The plastic 

modulus expressed in Equation 3.42 is still independent of the loading history. Thus 

excessive plastic strains can still occur even under small cyclic load level when the 

stress state near the bounding surface as discussed previously. From this point of view, 

no improvement is made regarding to the proposal of Zienkiewicz et al. (1985). This 

problem is termed as a path-independent problem. Three modifications are thus 

presented to overcome the above three shortcomings. 

(i) Pre-negative problem 

        Rather than a simple difference of the plastic moduli at the two image points is 

used in Equation 3.42, a slightly different form is proposed to solve the pre-negative 

problem as follows: 

 1 2 1 B
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H H H
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 




 
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 
  3.43 

where   is a positive scalar ensuring the value 1 2H H  will be positive before the 

current stress point reaches the failure surface. 

        As stated previously, without sufficient experimental data on the tensile strength 

of clays, the clay is assumed to have no tensile strength. Thus the parameter dR  on the 

dry side of the bounding surface can be fixed at 2. When  1 1 1,B p q  lies on the wet 

side of the bounding surface, the plastic modulus can be specified as: 
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The plastic modulus at the second image point can thus be obtained by substituting 1p  

with 2p  in Equation 3.43 as follows: 
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For simplicity, let 
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  3.46 

The dry side of the bounding surface is described by 

2
2

2

4
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2
c

w

q
F p p p

M R
     


  3.47 

After a simple manipulation of Equation 3.47 yields 

2

2 2

4

2

c

w

M p
p

R M 


 

 
  3.48 

where   is the stress ratio defined as 
q

p
 


.  

Substituting Equation 3.48 into Equation 3.46 (noted that p  becomes 1p  and 2p  at 

first and second image point respectively) gives 



62 

 

   

2
2 2

2 2

1 2 2 22 2 2 22 2 2 2
1 21 2

4 2 1 2

2
c

w

M M
H H p M

R M MM M

 
 

  

 
 

      
     
 

 

 3.49 

where 1 2,   is the stress ratio at the first and second image point respectively. The 

subscript indicates the first and second image point. 

Let 

2 2
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
 and substitute it into Equation 3.49 gives 
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  3.50 

        It is then obvious that 
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2
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
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
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
 can solve this pre-negative problem 

satisfactorily. Before the current stress point reaches the failure envelope (Figure 3.15), 

2 1  , thus 1 2 0H H  . When the two image points coincide, 2 1  , thus 

1 2 0H H  . If the current stress state is outside the failure envelope, 2 1  , then 

the plastic modulus is negative. 

        Another choice of   is to let 

2
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 and substituting it into Equation 
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  3.51 
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Thus both 
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 and 
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 can solve the pre-negative problem 

satisfactorily. As 2H  is always non-positive, thus any value larger than 
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can solve the pre-negative problem. Thus for simplicity, 

2 2

2
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1

M

M







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
 will be used in 

the AZ-Cam clay model. 

(ii) Inconsistency problem 

        As stated before, any value larger than 

2 2

2

2 2

1

M

M










 can solve the pre-negative 

problem. Thus a simple method to solve the inconsistency problem is to introduce a 

state variable  , multiplied with  . The plastic modulus is thus expressed as 

 1 2 1 B

B

H H H



 




 
   

   

 3.52 

There are two requirements of  : (i)   should be a positive value no less than 1 before 

the current stress point reaches the failure envelope, or else the pre-negative problem 

may remain unsolved; (ii)   should become zero when the current stress point 

approaches the first image point in order to solve the inconsistency problem. A simple 

expression satisfying the above requirements is provided as follows: 

0.2

1

2

B

B

 


 

 
  

 
  3.53 

where B  is the stress ratio at point B  on the bounding surface.  
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        From Figure 3.15, before  ,A p q  reaches the failure envelope, 2 1  , thus 

1  . When  ,A p q  coincides with the first image point  1 1 1,B p q , 1B  , then 

0  . Equation 3.53 can thus solve the inconsistency problem successfully. However, 

two further issues have to be noted: (i) When the current stress state is outside the 

failure envelope, then 2 1  , thus 1  . From Figure 3.15, if  ,A p q  is outside the 

failure envelope, then  1 1 1,B p q  and  2 2 2,B p q  will both lie on the dry side of the 

bounding surface, then both 1H  and 2H  will be negative. From Equation 3.50, if 1  , 

H  will be negative as 2 1  , thus H  will still be negative when   is introduced as 

2H  is negative and 1  . Thus the plastic modulus at the current stress state will be 

negative when the current stress point lies outside the failure envelope. The softening 

behavior can thus be simulated; (ii) There is a numerical singularity in Equation 3.53 

when 2B  , which occurs when point  ,B p q  coincides with the critical state 

point. However, if point  ,B p q  coincides with the critical state point,  2 2 2,B p q  

will also coincide with the critical state point, thus 2H  will be zero, and thus H  will 

be independent of 2H . This singularity can be easily avoided by manually setting   to 

a finite value when  ,B p q  coincides with the critical state point and at the same 

time, the smooth change of H  can also be guaranteed. 

(iii) Path-independent problem 

        As stated before, the elastic zone can be considered to move with the current 

stress. It is thus natural to treat the soil as an elastic material immediately after a 

loading reversal. To incorporate the loading reversal effect, the exponential part in 



65 

 

Equation 3.52 is modified to be dependent on the load path. This modification can be 

achieved by introducing a parameter  . Thus the plastic modulus is expressed as 

 1 2 1 B

B

H H H



 




 
   

 
  3.54 

The parameter   depends on the load history, and becomes infinitely large 

immediately after a loading reversal. Thus the elastic zone degenerates to a point when 

a loading reversal occurs. Upon further loading,   decreases when the current stress 

point moves away from the reversal point. In one-dimensional isotropic loading 

condition, the distance from the current stress point to the reversal point can be 

measured by the mean effective stress p . In the deviatoric plane, this distance can be 

measured by deviatoric stress ratio  . A simple expression of   is thus provided as 

follows: 

 
0.5

2 2

1 2

1

 
 


 

 3.55 

where 1  and 2  measure the deviation to mean effective stress and deviatoric stress 

from the initial loading or reloading point, respectively. 

A similar expression as that proposed by Pestana & Whittle (1999) is used for 1  as 

follows: 

If relp p  , then 
1 1 relp

p



 

  

 3.56 (a) 

If relp p  , then 1 1
rel

p

p



 


 

 3.56 (b) 
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where relp  is the mean effective stress at the reloading point. 

The conventional stress ratio difference is employed to determine 2 , which can be 

expressed as: 

   
1

2
2 :rel rel           3.57 

where rel  is the stress ratio at the reloading point. 

        With the above expressions for 1  and 2 , the plastic modulus H  will depend 

on the loading history. Immediately after a loading reversal,   and H  will become 

infinitely large as 1  and 2  will be zero. Thus the soil behavior immediately after a 

loading reversal is elastic. However, the elastic zone is merely a point as with further 

loading, 1  and/or 2  will increase, thus   and H  will decrease to a finite value. 

Under one-dimensional isotropic loading, there will be no deviatoric stress. Thus 2  

remains at zero, and 1  wholly governs the loading reversal effect. Larger plastic 

volumetric strains will occur if the distance from the current stress point to the reversal 

point increases since 1  will increase, and thus   and H  will decrease. When 

encountering the general loading condition, both 1  and 2  will increase (thus   and 

H  will decrease) when the current stress point leaves away from the reversal point. 

Larger plastic strains will thus occur upon further loading since the current stress point 

will move further away from the reversal point in the stress space. 

        To sum up, a relatively simple expression is proposed to determine the plastic 

modulus at the current stress state as stated in Equation 3.53 and re-stated as follows: 
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 




 
   

   

 3.58 

Equation 3.58 only needs one input material constant  , which is similar to that used 

by Zienkiewicz et al. (1985) if the failure envelope is pre-determined in p q   space. 

The plastic modulus expressed in Equation 3.58 is evaluated from two image points, 

rather than from a single image point as most bounding surface models do. For NC to 

lightly OC clays (the stress state lies to the right of TC  in Figure 3.15), 2H  will be 

zero. Thus the plastic modulus is exclusively evaluated from the first image point and 

independent of the second image point. This characteristic is consistent with the 

proposal of Schofield & Wroth (1968) and Atkinson (2007) where the failure envelope 

is only applicable for heavily OC clays. As the plastic modulus explicitly becomes 

zero at the failure envelope, which is a further extension of that proposed by Atkinson 

(2007) based on a serials laboratory experiments, it could enhance the capability of the 

AZ-Cam clay model to predict the peak strength of OC clays. Softening behavior can 

also be simulated when the stress state falls outside the failure envelope. The plastic 

modulus expressed in Equation 3.58 also considers the loading history and predicts a 

purely elastic behavior immediately after a loading reversal, although the elastic region 

is merely a point. This path-dependent characteristic avoids excessive plastic strains 

under small cyclic load level when the stress state near the bounding surface and is an 

improvement over the model proposed by Zienkiewicz et al. (1985) while retaining its 

simplicity. Table 3.1 summarized the expressions of the variables in Equation 3.58.  

3.4.8 Shakedown behavior 

        When an elasto-plastic material is subjected to cyclic loading, generally three 

distinctive characteristics can be expected as summarized by Whittle (1987) and Yu 
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(2006): (i) Purely linear elastic behavior. If the cyclic load level is sufficient small, 

there will be no plastic deformation and any deformation is fully reversible. For 

isotropic materials, the volumetric and shear behavior are fully de-coupled. The stress-

strain relationship can be seen from Figure 3.16 (a); (ii) Stabilized behavior. If the 

cyclic load level is moderate, it is possible that after a number of loading cycles, there 

will be no further accumulation of plastic strains. Generally two situations which are 

termed as elastic shakedown and purely hysteretic behavior can occur. In elastic 

shakedown, the behavior will be purely linear elastic after a number of loading cycles. 

However, the stress-strain relationship of the purely hysteretic behavior will be 

nonlinear hysteretic, although there will be no further accumulation of plastic strains. 

The stress-strain relationship of the stabilized behavior can be seen from Figure 3.16 (b) 

and Figure 3.16 (c); and (iii) Unstable behavior. In this case, the cyclic load level is 

relatively large. Thus the material will continue exhibiting plastic strains during 

subsequent loading cycles and will fail eventually owing to fatigue or excessive plastic 

deformation. The stress-strain relationship of this type of behavior can be seen from 

Figure 3.16 (d).  

        For cohesive soils, shakedown behavior has been observed for very small cyclic 

load levels where the plastic strains reach zero after a certain number of loading cycles 

and the behavior becomes purely elastic (Lesny & Hinz, 2007). As stated before, the 

plastic modulus plays a key role in determining the magnitude of plastic strain. A first 

step to consider the shakedown behavior of clays under cyclic loading qualitatively is 

to modify the formulation of the plastic modulus as expressed in Equation 3.58.  

        Since the shakedown behavior occurs after a certain number of loading cycles, 

which induce a certain amount of plastic strains, it is thus possible to relate the plastic 

modulus to the plastic strains. Yu et al. (2007) proposed to relate the plastic modulus 
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to the accumulated plastic deviatoric strain through a power law. This proposal is 

relatively straight forward as with the increased number of loading cycles, the 

accumulated plastic deviatoric strain will increase as well. By employing a power law, 

the plastic modulus may become sufficient large such that there will be little plastic 

strains. The shakedown behavior can thus be simulated eventually as long as the cyclic 

load level is sufficiently small. However, relating the plastic modulus to the 

accumulated plastic deviatoric strain through a power law suffers from a numerical 

difficulty. If after a number of loading cycles, the stress state is approaching the critical 

state, the volumetric strain will approach zero but the plastic deviatoric strain continues 

to increase and can be infinitely large. Thus relating the plastic modulus to the 

accumulated plastic deviatoric strain through a power law will cause numerical 

difficulty when the stress state is approaching the critical state. 

        A similar law as Yu et al. (2007) is employed in the AZ-Cam clay model such 

that the plastic modulus is related to the accumulated plastic volumetric strain rather 

than the accumulated plastic deviatoric strain as follows: 

 
 

1 2 1

p
v

B

B

H H H

 

 




 
   

 
  3.59 

where  p

v   can be expressed as 

   1
sk

p p

v vd        3.60 

where sk  is an input material constant, p

vd  is the accumulated absolute plastic 

volumetric strain. This value can be calculated by summing up all the absolute value of 

the plastic volumetric strain occurred during the previous loading cycles. 
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        By relating the plastic modulus to the accumulated absolute plastic volumetric 

strain, the above numerical difficulty can be eliminated as the plastic volumetric strain 

will be zero at the critical state. Since the elastic zone of the AZ-Cam clay model 

during loading is merely a point, plastic volumetric strain will always be generated 

during loading condition. Thus  p

v   will increase with the number of loading cycles. 

With increased  p

v  , following Equation 3.59 , the plastic modulus will be larger 

than before if all the other factors remain the same, and thus less plastic strains will be 

generated. If the cyclic load level is not very large, there is a certain distance from the 

current stress state to the bounding surface. Thus the exponential part on the right hand 

side of Equation 3.59 can be sufficiently large so that there will be little plastic strains 

during loading. The shakedown behavior of clays under cyclic loading can thus be 

simulated qualitatively. 

3.4.9 Elastic component 

        It is convenient to employ elastic bulk modulus K  and elastic shear modulus G  

to represent the elastic behavior. K  is defined exactly following basic critical state 

models as expressed in Equation 2.8. The determination of G  is not quite straight 

forward. Typically, a finite constant G  can be used or by assuming a constant 

Poisson’s ratio  as expressed in Equation 2.9. 

3.4.10 Small strain nonlinearity and hysteretic behavior 

3.4.10.1  Elastic bulk modulus 

        Elastic bulk modulus governs the volumetric response of soil. Thus it has a large 

effect on the volumetric strain during drained loading and excess pore water pressure 

generated during undrained loading. For purely elastic material under undrained 
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loading, as the volumetric response and shearing response are fully de-coupled, the 

elastic bulk modulus has almost no effect on the whole soil behavior if elastic shear 

modulus has been specified. Besides, there is relatively much less test data on the 

elastic bulk modulus of soil than on the elastic shear modulus in the small strain region. 

To retain the simplicity of the model, the bulk modulus of the basic critical state 

models (Equation 2.8) will be adopted even in the small strain region. 

3.4.10.2  Elastic shear modulus 

        As stated in section 2.2.2, in order to determine the elastic shear component, a 

common choice is to adopt a constant Poisson‟s ratio  or assuming a constant elastic 

shear modulus G . However, as discussed in section 2.2.6, a constant Poisson‟s ratio 

may lead to non-conservative behavior of soil. Houlsby (1985) suggested two options 

for the choice of G  based on the conditions for conservative elastic behavior. (i) G  is 

proportional to the mean effective stress p . In order to preserve the conservation of 

the elastic behavior, the elastic bulk modulus K  is slightly adjusted depending on the 

deviatoric stress (Potts & Zdravkovic, 1999). (ii) G  is proportional to the pre-

consolidation pressure cp . This case involves the coupling of the elastic behavior and 

plastic behavior, and the shape of the yield surface will be changed (Houlsby, 1982).  

        Generally, a constant Poisson‟s ratio will be used to evaluate G  in the AZ-Cam 

clay model, although we are aware of the theoretical limitations as discussed 

previously. It is possible to incorporate maxG  in the current study. The tangent elastic 

shear modulus G  is thus related to maxG  through Equation 3.61. 

  max,G r p q G   3.61 
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where  ,r p q  is a decreasing function as specified in Equation 3.62 for monotonic 

loading. 

 
 

 
2

2

1 exp
,

2exp r

r p q


 


    3.62 

where r  is a input material constant governing decreasing rate of r . 2  measures the 

deviation of the deviatoric stress from the initial loading or loading reversal point, and 

is expressed as follows: 

   
1

2
2 :rev rev           3.63 

where rev  is the stress ratio at the loading reversal point. 

        The reason to choose this specific expression for  ,r p q  is that it is relatively 

simple and only one parameter r  can model the variation of G . A second reason is 

that r  in Equation 3.62 changes slowly when the deviatoric strain is small, and 

changes rapidly when deviatoric strain is large. This behavior is the same as (Ishibashi 

& Zhang, 1993) by using a hyperbolic function relating the shear modulus to shear 

strains. In this case, the elastic shear modulus determined from Equation 2.9 could 

serve as a lower bound of Equation 3.61 as Dasari (1996). 

3.4.10.3  Discussion on Poisson’s ratio 

        Since the elastic work cannot be negative under any stress changes, the theoretical 

limits for Poisson‟s ratio is 1 0.5   . After a review of experimental data, Hardin 

(1978) concluded that Poisson‟s ratio for soils lies somewhere between 0 and 0.2 and 

that any value within this range is accurate enough for most purposes. Lade & Nelson 
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(1987) summarized that Poisson‟s ratio appears to be constant for a given void ratio, 

but may increase with increasing void ratio. With small strain stiffness (or a large 

constant value of G is used when the mean effective stress is low) incorporated in the 

AZ-Cam clay model, while the bulk modulus is still defined the same as the basic 

critical state models, the Poisson‟s ratio in the small strain range may be negative. A 

negative Poisson‟s ratio may be acceptable theoretically, but may not be reasonable 

physically for soil (Potts & Zdravkovic, 1999). However, as the shear modulus will 

decrease with increasing strains, this negative Poisson‟s ratio only occurs in the small 

strain range from the initial loading or after a loading reversal. For NC to lightly OC 

clays, the plastic strains are much larger than the elastic strains. Thus the shear 

modulus will degrade rapidly due to large plastic strains, and hence negative Poisson‟s 

ratio should not be a concern. For heavily OC clays, during initial loading, the clays 

will behave almost elastically (linear or non-linear due to the formulation of shear 

modulus). Thus Poisson‟s ratio has no effects during undrained loading as the effective 

stress path will be almost vertical in p q   space. During drained loading, negative 

Poisson’s ratio will over predict the volumetric strain. As this occurs in the small 

strain range, it is believed that this effect is minor without further verification. 

3.4.10.4 Hysteretic behavior 

        The hysteretic behavior of the AZ-Cam clay model is solely governed by the 

elastic shear modulus. From initial loading, Equation 3.61 and Equation 3.62 are 

combined to evaluate G . The Masing‟s rule is used to describe the stiffness after a 

loading reversal. Equation 3.62 is thus changed following Masing‟s suggestions as 

expressed in Equation 3.64 

 
 

 
2

2

1 exp 2
,

2exp 2r

r p q


 


    3.64 
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        To incorporate Pyke‟s first extension, Equation 3.62 is used to determine G  in 

order to coincide with the backbone curve when the current stress ratio exceeds the 

maximum stress ratio the soil has ever encountered, rather than the maximum shear 

strain as proposed by Pyke (1979). For elastic material, the effect of using maximum 

stress ratio and maximum shear strain is the same. Thus the maximum stress ratio the 

soil has ever encountered serves as a „remembering parameter‟ reflecting the soil stress 

history. If this value is exceeded, all the previously loading and unloading history will 

be removed. This is conceptually similar to the proposal of Hueckel & Nova (1979).To 

incorporate Pyke‟s second extension, Equation 3.64 will still be used but the reference 

stress state (the stress state when the loading reversal occurs) should be changed to the 

reference stress state used to define the previous loading curves. Thus the current 

loading path will follow the previous loading path with which the current loading path 

intercepts. 

        It is necessary to determine whether the loading reversal has occurred or not when 

using the Masing‟s rule. Stallebrass (1990) defined the reversal angle as the angle of 

rotation between the previous and current stress path direction. Dasari (1996) defined 

the reversal angle in the strain space. If the angle between the previous and current 

strain increment vectors is larger than 90°, the stress path is deemed to have reversed. 

Whittle (1987) differentiated the reversal in volumetric behavior and shearing behavior. 

Thus the stress path reversal is defined through the shear behavior. A similar approach 

was used by Papadimitriou & Bouckovalas (2002). The loading reversal criterion for 

the current study directly follows Papadimitriou & Bouckovalas (2002) in that the 

shearing reversal is governed by the length of the shear strain path from the last 

reversal point, and is defined as 
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   e

len rev revQ  s s- s s-e - e : e - e
 

 3.65 

where e

lenQ  denotes the length of shear strain path, se  is the deviatoric strain tensor 

defined in Equation A.14 in Appendix A and revs-e  is the deviatoric strain tensor at the 

last loading reversal point. Loading reversal occurs where e

lendQ  (the incremental of 

scalar e

lenQ ) changes signs. 

3.5 Summary 

        This chapter describes the detailed mathematical formulation of the AZ-Cam clay 

model. A failure surface is introduced and extended based on the test data of various 

clays, and Zienkiewicz‟s simple proposal of plastic modulus is incorporated. The 

bounding surface, flow rule and hardening rule of AZ-Cam clay model are described 

and the underlying philosophy and mathematical formulation of the proposed plastic 

modulus are elaborated. The ability of the model to simulate qualitatively the 

shakedown behavior is guaranteed by relating the plastic modulus to the accumulated 

absolute volumetric strain. At the end of the chapter, the inclusion of small strain 

nonlinearity in the AZ-Cam clay model is presented and the limitations are discussed. 
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Table 3.1 Variables defining plastic modulus in AZ-Cam clay model 

Parameter Physical meaning 

H  Plastic modulus at current stress point 

1H
 

Plastic modulus at first image point 

2H
 

Plastic modulus at second image point 

  State variable solving pre-negative problem 

  State variable solving inconsistency problem 

  State variable making plastic modulus load-path-dependent 

B  
Distance from origin of stress space to first image point on BS 

  Distance from origin of stress space to current stress point 


 Model constant governing the evolution of plastic modulus 

 

 

Figure 3.1 Peak strength representation after Atkinson (2007) 
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(a) Kaolin clay                         (b) Gault clay 

 

(c) Kimmeridge clay                     (d) London clay 

 

(e) Oxford clay                     (f) Reading clay 

Figure 3.2 Test data after Atkinson (2007) 
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(a) Kaolin clay                      (b) Gault clay 

 

(c) Kimmeridge clay                          (d) London clay 

 

(e) Oxford clay                                          (f) Reading clay 

Figure 3.3 Test data after Atkinson (2007) 
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Figure 3.4 Determination of image stress point (Zienkiewicz et al., 1985) 

 

 

 

(a) Stress strain curves 
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(b) Stress path 

Figure 3.5 Prediction of the model (Zienkiewicz et al., 1985) 

 

 

(a) Stress strain curves 
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(b) Variation of mean effective stress 

Figure 3.6 Prediction of the model (Zienkiewicz et al., 1985) 

 

 

Figure 3.7 Bounding surface used in AZ-Cam clay model 
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Figure 3.8 CSL in lnv p  space 

 

 

Figure 3.9 Failure state of Weald clay in CIU compression test (Parry, 1958) 
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(a) Pietrafitta clay 

 

 

(b) Todi clay 
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(c) Vallericca clay 

 

 

(d) Corinth marl 

Figure 3.10 Stress path of various clays after Burland et al. (1996) 
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(a) Weald clay 

 

 

(b) London clay 

Figure 3.11 Failure state in lnv p  space (Henkel, 1959) 
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Figure 3.12 Position of new CSL in lnv p  space 
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Figure 3.13 Determination of image point on bounding surface 
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Figure 3.14 Effective stress path predicted by Zienkiewicz et al. (1985) 
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Figure 3.15 Determination of image points on bounding surface 
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(a) (b) 

 

 (c)                                                    d) 

Figure 3.16 Typical cyclic behavior after Whittle (1987) 
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Chapter 4 Extension of the AZ-Cam clay model to 

general stress space and numerical implementation in 

ABAQUS 

4.1 Introduction 

        In this chapter, the extension of the AZ-Cam clay model in general stress space 

will be described. The generalization to 3-dimensional space is necessary for 

implementing this model into the commercial finite element software ABAQUS (2011) 

through UMAT, which is the user subroutine in ABAQUS as will be described in 

detail in this chapter. The shape of the bounding surface, plastic potential and failure 

envelope in the deviatoric plane will be presented. The numerical implementation with 

the associated stress schemes will be shown in the second part of this chapter, followed 

by the verification of the implementation. 

4.2 Extend to general stress space 

4.2.1 Stress and strain variables in general stress space 

        As the AZ-Cam clay model is formulated based on the isotropic assumption, thus 

three stress invariants can fully describe the whole model. A common choice for these 

three stress invariants are , ,p J   as defined in section A.1.3 of Appendix A. 

4.2.2 Surfaces in the deviatoric plane 

        In order to avoid the numerical singularity, the bounding surface, plastic potential 

and failure surface in the deviatoric plane in the AZ-Cam clay model follows the 

proposal of Vaneekelen (1980) as 
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 
 1 sin 3

Z

X
g

Y





  

  4.1 

where  g   measures the distance from current stress state to isotropic axis in 

deviatoric plane. Thus by choosing appropriate parameters, von Mises criterion, Morh 

Coulomb criterion and Lade criterion can all be approximated 

4.2.3 Surfaces in general stress space 

4.2.3.1 Bounding surface in general stress space 

        The mathematical form of bounding surface in general stress space is given as 

Subcritical region: 

2

2

2 2

1 4 2 2
( ) 0

2 ( ) 2 2
c c

b w w w

F p p p
g R R R

 
       

  

s : s
  4.2 (a) 

Supercritical region: 

2

2

2 2

1 4 2 2
( ) 0

2 ( ) 2 2
c c

b d w w

F p p p
g R R R

 
       

  

s : s

 

 4.2 (b) 

 bg   takes the form as Equation 4.1 as expressed in Equation 4.3 

 
 1 sin 3

b

b
b Z

b

X
g

Y





  

  4.3 

where , ,b b bX Y Z  are material constants. 

Substitute Lode‟s angle of 030  and 030  into Equation 4.3 and take the ratio of these 

two values yields 

 
 

 

 

0

0

30 1

30 1

b

b

Z

b b

Z

b b

g Y

g Y

 


 
  4.4 
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where  030bg   and  030bg   correspond to triaxial compression and triaxial 

extension, respectively. Following the Mohr Coulomb criterion, Equation 4.4 can be 

manipulated as  

 

 

 

 

1 6 3sin

6 3sin1

b

b

Z

b cs

Z

csb

Y

Y





 



 

 4.5 

With Equation 4.5, it is possible to choose certain pair of , ,b b bX Y Z  to obtain a 

continuous shape. 

4.2.3.2 Plastic potential in general stress space 

        The plastic potential takes the same form as the bounding surface in general stress 

space as expressed in Equation 4.2, except that the  bg   is replaced by  pg  , 

which is given in Equation 4.6 

 
 1 sin 3

p

p

p Z

p

X
g

Y




    

 4.6 

where pX  is a model state variable ensuring the plastic potential always passes 

through the first image point on the bounding surface. ,p pY Z  are material constants 

describing the shape of the plastic potential, and can be different from the value used 

for the bounding surface. Thus non-associated flow rule is possible. Besides, following 

Potts & Zdravkovic (1999), ,p pY Z  determine the failure Lode‟s angle at plane strain 

condition as expressed by 

 

 

3 cos 3
tan

1 sin 3

p p

p

Y Z

Y





 


  4.7 
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      Generally, most soils fail with Lode‟s angle between 0 010 ~ 25  under plane 

strain condition (Mita, 2002). Thus by choosing certain pair of ,p pY Z , the Lode‟s angle 

at failure in plane strain condition can be taken into consideration. 

4.2.3.3 Failure envelope in general stress space 

        The failure envelope in general stress space is expressed as 

 
 

 
1 ln

cr

b

T pJ

g p p


 



 
   
  

  4.8 

where     and  T   are peak strength and ultimate strength parameters in the 

deviatoric plane, both of which now depend on the Lode‟s angle. To relate the failure 

surface to the Lode‟s angle is consistent with the recommendation of Mita (2002). 

    and  T   control the shape of failure envelope and the relative distance to the 

bounding surface at a specific Lode‟s angle. It is generally difficult to truly define the 

variation of these two parameters with Lode‟s angle. However, it is easy to define 

 030  ,  030T   (triaxial compression) and  030  ,  030T   (triaxial extension) 

as will be discussed in Chapter 5. Thus     and  T   take the general shape of 

Equation 4.1 as 

 
 1 sin 3

Z

X

Y






 



  

  4.9 

 
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  
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where , ,X Y Z   and , ,T T TX Y Z  are material constants for     and  T  , 

respectively. 

With the known value of   and T  in triaxial compression and triaxial extension, it is 

possible to determine the appropriate pairs for , ,X Y Z    and , ,T T TX Y Z . 

4.3 Elasto-plastic stiffness matrix in general stress space 

        The general equation of the elasto-plastic stiffness matrix is specified in Equation 

A.42 in Appendix A. The hardening rule in general stress space remains the same as 

that in the triaxial stress space since the hardening parameter cp  depends solely on the 

plastic volumetric strain. The remaining parameters to fully define elasto-plastic 

stiffness matrix are the two outward directions 
F



 
 

 
 and 

P



 
 

 
. As the plastic 

potential takes a similar form as the bounding surface and only differs in the shape in 

the deviatoric plane, thus only 
F



 
 

 
 will be determined since 

P



 
 

 
 can be 

obtained by substituting the parameters ,b bY Z  used for bounding surface in Equation 

4.3 by ,p pY Z . The detailed derivation follows Grammatikopoulou (2004). 

        
F



 
 

 
 is expanded as expressed in Equation 4.11 

, , , , ,
x y z xy yz zx

F F F F F F F

      

        
                 

  4.11 

By employing    , , , , ,
T

x y z xy yz zxs p p p              , each term on the right hand 

of Equation 4.11 is given as 
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 4.12 (d) 
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 4.12 (e) 
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F F s
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The value of 
F

p




 is determined as 

On the wet side: 
2
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2
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F
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 
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On the dry side: 
2
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The key is to evaluate 
F

s

 
 
 

, which is given as follows: 

F F Q F

s Q s s





         
      

         
 4.14 
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where Q  s :s . Thus 
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From the definition of Lode‟s angle of Equation A.9, the value of 
s

 
 
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 is obtained as 
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Substituting Equation 4.16 into Equation 4.14 yields 
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Then substituting Equation 4.15 into Equation 4.17 gives 
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where 1  and 2  is defined as 
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 4.19 (b) 

The value of Q  is calculated as 
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The term on the right hand side of Equation 4.21 are provided as 
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The value of det( )s  is calculated as 

         2 2 2det( ) 2x y z x yz y zx z xy xy yz zxp p p p p p                                s

  

 
4.23 

Thus 
det( )

s

 
 

 

s
 is calculated as 

     
det( ) det( ) det( ) det( ) det( ) det( ) det( )

, , , , ,
x z xy yz zxy

s p pp    

        
  
                 

s s s s s s s
 4.24 

The term on the right hand side of Equation 4.24 are provided as 
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  4.25 (d) 

 
det( )

2 2x yz xy zx

yz

p   



    



s
  4.25 (e) 

 
det( )

2 2y zx xy yz

zx

p   



    



s
  4.25 (f) 
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Substituting Equation 4.22 and Equation 4.25 into Equation 4.18 gives the value of 

F

s

 
 
 

. Combining the value of 
F

s

 
 
 

 and 
F

p




, the outward normal direction of the 

bounding surface 
F



 
 
 

 can be fully defined. 

4.4 Numerical implementation in ABAQUS 

4.4.1 UMAT in ABAQUS/Standard 

        The implementation of the AZ-Cam clay model in ABAQUS/Standard is through 

UMAT. UMAT is the user subroutine for defining a material's mechanical behavior in 

ABAQUS. Thus various constitutive models can be implemented as alternatives to the 

built-in models. This function greatly increases the freedom of users dealing with 

various materials. The two main functions of UMAT are: (i) Updating the stresses in 

the FE model due to the changes of strains which are provided by ABAQUS at the 

start of each interation; (ii) Providing a Jacobian matrix for formulating the global 

stiffness matrix in the FE model. It should be noted that the Jacobian matrix provided 

by UMAT does not necessarily exactly reflect the true behavior of material 

constitutive relations. This is because the global stiffness matrix employed only affects 

the number of iterations rather than the accuracy (Appendix B presents the numerical 

algorithm in ABAQUS to solve the nonlinear global equations). However, the updated 

stresses provided by UMAT should truly reflect the constitutive relations of the 

material. The detailed description of UMAT can be found in the ABAQUS manual 

(ABAQUS, 2011). 
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4.4.2 Stress point algorithm 

4.4.2.1 Explicit sub-stepping algorithm 

        The key part of implementing a constitutive model is the stress point algorithm, 

which updates the stresses given by the strain increments. The stress point algorithm 

used in the current study is the explicit sub-stepping algorithm, which is based on the 

work of Sloan (1987), Abbo & Sloan (1996) and Potts & Zdravkovic (1999). However, 

the stress point algorithm of all the built-in models in ABAQUS is the implicit return 

algorithm. A brief comparison of the explicit sub-stepping algorithm and the implicit 

return algorithm is given in Appendix C. 

        At each integration point, the stress increment due to the strain increment of an 

elasto-plastic material is obtained as 

   epd D d       4.26 

For the AZ-Cam clay model, the behavior on loading will always be elasto-plastic and 

elastic behavior only occurs during unloading. Thus before employing the sub-stepping 

algorithm, loading/unloading criterion specified in section A.5 should be used to check 

whether the strain increments correspond to loading or unloading. If unloading occurs, 

the material is firstly assumed to be elastic before the current strain increments d . 

Thus the stress increments can be obtained as 

   e ed D d      
 4.27 

The stress increments are thus added to the stress state  0 , which is just before the 

current strain increments. Thus the updated stress state can be obtained as 
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     0

ed      4.28 

As the bounding surface embraces all the possible stress states, it is necessary to ensure 

that the updated stress state lies within or on the bounding surface. However, as shown 

in Figure 4.1, if the final stress state (represented by C  in Figure 4.1) lies outside of 

the bounding surface, plastic strain occurs during the strain increments d , thus 

violates the initial assumption of purely elastic. It is thus necessary to split the strain 

increments  d  into two parts and the elastic stress increments should also be 

changed as 

      1d d d         4.29 (a) 

   e e

newd d     4.29 (b) 

where the first part of right hand side of Equation 4.29 (a) corresponds to the elastic 

behavior, which starts from the stress state A  and terminates at B  on the bounding 

surface as shown in Figure 4.1. The second part of right hand side of Equation 4.29 (a) 

corresponds to the elasto-plastic part B C .  e

newd  denotes the elastic stress 

increments occur along the elastic strain path A B . Specific techniques would be 

employed to find out the value of   as will be discussed in the next section. However, 

if the transition from unloading to loading occurs within the bounding surface, it is 

thus not possible to differentiate this phenomenon and purely elastic behavior would 

be predicted whenever loading occurs. Thus some errors are inevitably introduced 

which restrains the incremental size of strains. 

        As long as the behavior becomes elasto-plastic, the modified Euler scheme with 

automatically error control is used to evaluate the plastic strains and other 
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corresponding state variables as follows. To be consistent with the above discussed 

possible elastic behavior, the strain increments are specified as   1 d  . At the 

beginning of elasto-plastic behavior, the stress state is obtained by combining Equation 

4.28 and Equation 4.29 (b). The strain increments are then sub-divided into a number 

sub-steps as 

    1i i

sd T d      4.30 

where  isd  is the strain increments in one sub-step, the superscript indicates the 

number of sub-step. iT  expresses the proportion of strain increments in one sub-step 

to the total strain increments corresponding to the elasto-plastic behavior. In each sub-

step, a first estimation of stress changes will be based on the stress state at the 

beginning of that sub-step as 

        1 0 0,i ep i i i

sd D k d   
 

  4.31 (a) 

        
1

1 0 1

ip i e i i

s sd d D d   


  
   

 4.31 (b) 

     1 1

i ip

sdk dk d   4.31 (c) 

where  0

i  and  0

ik  are the stress state and the hardening parameters at the 

beginning of each sub-step, respectively.  1

ip

sd  are the plastic strains during the sub-

step.  1

id  and  1

idk  are then used to update the stress state and hardening 

parameters, from which a second estimation of stress changes are obtained as 

           2 0 1 0 1,i ep i i i i i

sd D d k dk d      
 

  4.32 (a) 
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          
1

2 0 1 2

ip i e i i i

s sd d D d d    


   
 

  4.32 (b) 

     2 2

i ip

sdk dk d   4.32 (c) 

Thus the actual changes of stress and strain variables in one sub-step are taken as the 

average of the above two calculations as 

      1 2

1

2

i i id d d      4.33 (a) 

      1 2

1

2

ip ip ip

s s sd d d      4.33 (b) 

      1 2

1

2

i i idk dk dk 
 

 4.33 (c) 

The error introduced in one sub-step can be estimated as 

 

   0

r

i i

E
R

d 



  4.34 

where „ ‟ indicates the norm of the vector and  rE  is defined as 

      2 1

1

2

i i

rE d d     4.35 

The value R  is then compared with the error tolerance TOL ( 410  is used in the current 

study). If R TOL , then the solution is acceptable, and the next sub-step or next 

increment is carried out subsequently. However, if R TOL , then the error introduced 

in the current sub-step is not acceptable and the incremental size of the current sub-
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step should be further reduced. The new strain increments in the ith  sub-step can be 

obtained by revising the iT  following Abbo & Sloan (1996) as 

0.5

0.7i

new

TOL
T

R

 
   

   

 4.36 

where i

newT  is the new iT  used in the current sub-step. With this updated i

newT , the 

same calculation is repeated until the error associated with the predicted stresses is 

acceptable. Thus the above scheme ensures that the error introduced can be controlled 

automatically. 

        At the end of the ith  sub-step, the updated stresses, hardening parameters and 

plastic strains can be obtained as 

     0

i i id      4.37 (a) 

     0

ip ip ip

s s sd      4.37 (b) 

     0

i i ik k dk    4.37 (c) 

where  0

ip

s  is the plastic strains at the beginning of the sub-step. 

        Current strain increments will be completed when the summation of iT  in all 

the sub-steps equals to 1 and then the next strain increments begin. Thus the 

calculation can be carried out by assuming a single sub-step in each strain increments 

as the error can be controlled automatically and the program can reduce the value of 

iT  automatically if necessary. 
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        Though the error tolerance TOL specified in each sub-step is rather small, there is 

a possibility that the accumulated errors may be large if the size of the strain 

increments is relatively large. For stress state within the bounding surface, it is not 

possible to check or improve the magnitude of the accumulated errors, and the only 

way is to refine the size of the strain increments. For stress state lying on the bounding 

surface, the next location of stress state should also lie on the bounding surface if 

loading occurs (consistency condition). However, as errors are inevitably introduced 

during integration, the final stress state at the end of one strain increments may not lie 

exactly on the bounding surface, which is commonly termed as drifting from the 

bounding surface. The correction of drifting from the bounding surface will be 

discussed below. 

4.4.2.2 ‘Pegasus’ method for computing   

        As pointed out previously, when the material goes into the elasto-plastic region 

from the purely elastic region in one strain increment, the portion of strain increments 

corresponding to the elastic behavior should be determined. The elastic portion is 

indicated by the value of  . The value of   can be obtained by solving the following 

equation 

       0 0, 0i e iF d k      4.38 

where  ed  is provided in Equation 4.27. Thus Equation 4.38 contains only one 

variable  , which serves as the root of Equation 4.38. The common techniques for 

solving the root of an equation are the Regula Falsi method and the Newton-Raphson 

method. The Regula Falsi method is a linear interpolation method with numerical 

efficiency of 1 (the convergence is linear). Thus relatively larger number of iterations 
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will be necessary to reach high accuracy. The Newton-Raphson method is very fast 

with numerical efficiency of 2 (the convergence is quadratic). However, the direction 

of bounding surface is necessary in order to find   which adds considerable 

complexity to that method. A modified Regula Falsi method, so-called Pegasus method 

is reported by Dowell & Jarratt (1972). As the method is relatively simple compared to 

the Newton-Raphson method, but with relatively high numerical efficiency of 1.642 

(the convergence is super-linear), this method is used to calculate  . 

        From Equation 4.38, it is certain that  1 0F     and  0 0F    . If the 

initial stress state lies on the bounding surface, theoretically  0 0F    , but for 

Pegasus method, the root should be bracketed by two value 1,i i  such that 

   1 0i iF F   . Thus the starting value for   when the stress state lies on the 

bounding surface should not be zero. As  1 0F     and  0 0F    , it is easy to 

find a starting value 0  such that  0 0F   . Thus the starting value for   is chosen 

as 0  and 1.0. The procedure for calculating   is thus as follows, which directly 

follows Dowell & Jarratt (1972). 

(1)    1 0i iF F   , 1i   is calculated by linear interpolation so that 

   

   
1 1

1

1

i i i i

i

i i

F F

F F

   


 

 









; 

(2) If    1 0i iF F   , then   1 1,i iF    is replaced by   ,i iF  , however if 

   1 0i iF F   , then   1 1,i iF    is replaced by 
   

   
1

1

1

,
i i

i

i i

F F

F F

 


 







 
   

; 
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(3) Replace   ,i iF   by   1 1,i iF    so that the function values used at each 

iteration will always have opposite signs. 

        The basic philosophy of this method is to scale down the value  1iF    by the 

factor      1i i iF F F     in order to prevent the retention of an end-point. This 

leads to an order of convergence which is superior to that of linear iteration while still 

retaining the advantage of bracketing the zero sought (Dowell & Jarratt, 1972). The 

criterion for terminating iterations should be specified such that the changing of   is 

less than 0.1% of the previous value which is used in the current study. 

4.4.2.3 Correcting the drift from the bounding surface 

        As stated in section 4.4.2.1, if the strain increment size is relatively large, 

cumulative errors may be considerable, such that the stress state may lie outside the 

bounding surface at the end of the strain increment. This phenomenon is commonly 

termed as drift from the bounding surface. It is thus necessary to correct the final stress 

state at the end of the each strain increments if it lies outside the bounding surface. 

Potts and Gens (1985) discussed five methods to project the final stress state to the 

bounding surface and concluded that some of those can lead to substantial errors. Potts 

and Gens (1985) and Potts & Zdravkovic (1999) recommended using an alternative 

method which is adopted in the current study. 

        The variables at the beginning of the strain increments are represented as stress 

state  0 , plastic strains  0

p  and hardening parameters  0k . The final states at the 

end of the strain increments are denoted as final stress state  1 , final plastic strains 

 1

p  and final hardening parameters  1k . The states after correcting are denoted as 
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„correct‟ stresses state  c , „correct‟ plastic strains  p

c  and „correct‟ hardening 

parameters  ck . If the stresses are corrected from  1  to  c , elastic strains should 

be invoked as 

      
1

1

e e

cd D  


      4.39 

Assuming the total strain increments remain the same, the above invoked elastic strains 

should be balanced by equal but opposite sign of plastic strains as 

        
1

1

p e e

cd d D   


         4.40 

The plastic strains can be calculated following Equation A.19 and are re-expressed as 

 
    0

0

,
p

P m
d






  
  

  

  4.41 

Combining Equation 4.40 and Equation 4.41 gives 

   
    0

1

0

,
e

c

P m
D


 



  
        

  4.42 

The change of plastic strains would inevitably cause changes in the hardening 

parameters as 

     
         0 0

0 0

, ,
p

P m P m
dk dk d dk dk

 


 

                 
              
                   

  

 4.43 (a) 

     1ck k dk    4.43 (b) 
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The corrected stress state should necessary lie on the bounding surface and thus 

    , 0c cF k    4.44 

Substituting Equation 4.42 and Equation 4.43 into Equation 4.44, and then expanding 

as a Taylor‟s series and neglecting terms in 2  and above, yields 

    

                   

1 1

0 0 0 0 0 0 0 0

0 0 0 0

,

, , , ,
T T

e

F k

F k P m F k P m
D dk



   

   

 
                  

                                

 

 4.45 

Substituting Equation 4.45 into Equation 4.42 and Equation 4.43, the „correct‟ final 

state would be obtained. 

        Equation 4.45 is obtained by neglecting the terms 2  and above in the Taylor‟s 

series expansion. Thus the corrected final stress will not lie exactly on the bounding 

surface, and thus a numerical tolerance should be specified and an iteration process 

would be necessary. The iteration process can be easily carried out by replacing 

    1 1, k  by     ,c ck  until the error is less than the tolerance. 

4.5 Verification of implementation 

        This section presents comparisons of predicted responses in CIU test and CID test 

using the built-in MCC model in ABAQUS and the MCC model implemented through 

UMAT following the previously discussed numerical schemes. The verification of 

implemented MCC model is achieved by comparing the predictions from UMAT and 

the built-in MCC model in ABAQUS. In general, there is no method to check the 

implementation of the AZ-Cam clay model. However, the key part of UMAT is 
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updating the stresses using explicitly sub-stepping algorithm, and this part remains the 

same for the MCC model and the AZ-Cam clay model. For 1OCR  , by choosing 

appropriate parameters, the AZ-Cam clay model degenerates to the MCC model. Thus 

by verifying the implemented MCC model, the implementation of the AZ-Cam clay 

model can be verified indirectly. For heavily OC clay in CIU test, analytical solution 

of undrained shear strength from the AZ-Cam clay model can be determined. This 

analytical solution can be used to check the implementation of the model. In all the 

analyses, the soil sample is modeled as a single eight-node brick element (C3D8) in 

ABAQUS. Thus the true testing of the constitutive behavior of soil can be achieved. 

For undrained simulation, coupled fluid-soil analysis with zero flow at all the boundary 

conditions is conducted. The element type is pore-fluid element, which contains an 

additional degree of freedom of pore pressure as is available in ABAQUS. The full 

codes for the AZ-Cam clay model are given in Appendix D. The comparison of the 

UMAT MCC model and the ABAQUS built-in MCC model is based on the 

Bothkennar clay and the material constants are obtained from Potts & Zdravkovic 

(1999) with: 2.67N  , 0.181  , 0.025  , 1.38M   and 20000G kPa . The soil 

samples are all isotropically consolidated to 200p kPa   and then isotropically swell 

to get various OC clays. 

4.5.1 Comparison of UMAT and built-in MCC model in CIU test 

        A NC clay sample subjected to monotonic CIU compression (CIUC) loading is 

simulated in this case. The total time increment in ABAQUS is 200s (for a static 

problem, the concept of „time‟ in ABAQUS is not essential. It serves to record the 

increments in a step. More details are given in Appendix B). The initial incremental 

size is 0.01s and the maximum one is 2s. The incremental size is allowed to increase 
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based on the ABAQUS default error-control algorithm. The maximum change of pore 

water pressure during a single increment is 1kPa . The above control is the same both 

for UMAT and the built-in MCC model. As can been from Figure 4.2 (a), the 

predictions from UMAT and the built-in MCC model agree quite well with the 

analytical solution after Potts & Zdravkovic (1999). Thus it is reasonable to conclude 

that the above incremental size is very fine and would result in the „exact‟ result. From 

Figure 4.2, the results from UMAT and the built-in model are almost identical, which 

verifies the implementation. 

4.5.2 Comparison of built-in and implemented MCC model in CID test 

        The incremental size is the same as in section 4.5.1. The results from UMAT and 

the built-in MCC model agree quite well as can be seen from Figure 4.3. To note that 

in Figure 4.3 (c), the soil is subjected to loading and unloading (strain control). The 

sample was initially loaded to an axial strain of 0.2 and then unloaded to 0. 

4.5.3 Comparison of explicit and implicit stress scheme 

        The built-in MCC model in ABAQUS is implemented through an implicit method 

as discussed in section 4.4. However, an explicit method is used in implementing the 

AZ-Cam clay model and the MCC model in UMAT. The differences of these two 

methods are quite small if the load incremental size is sufficient small (Potts and 

Ganendra, 1994). However, there do exist some obvious differences when the 

incremental size is relatively large. As can be seen from Figure 4.4 (a) in CIUC test for 

NC clay, if the increment size is 0.1 (the incremental load is 10% of the total load), the 

explicit method is still able to accurately predict the stress behavior while the implicit 

method under predict the stress behavior, although the deviation from the exact value 

is rather small. This is expected as in CIUC test, the ratio of different components of 
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strain tensor remains the same and the loading is proportional, thus the explicit method 

is theoretically accurate as discussed in Appendix C. For CID test of NC clay (the soil 

is initially loaded to an axial strain of 0.2 and then unloaded to 0.0), the initial 

increment size is 0.001 and the maximum increment size is 0.05 with automatic 

increasing of increment size based on ABAQUS default algorithm. As can be seen 

from Figure 4.4 (b), the result from the explicit method agrees quite well with the 

„exact value‟ while the deviation from the „exact value‟ of the implicit method is quite 

significant. Although no further comprehensive comparisons are carried out, the 

explicit method seem to be more accurate based on the above comparison. 

4.5.4 Comparison of built-in MCC and AZ-Cam clay model in CIU test 

        By choosing appropriate parameters, the AZ-Cam clay model will degenerate to 

the MCC model for NC clay. For the same soil parameters as in section 4.5.1, by 

choosing 0.5  , 0.9T  , 6.0   and 0.0k  , the comparison of the AZ-Cam clay 

model and the built-in MCC model for NC clay in CIUC test is shown in Figure 4.5. 

For heavily OC clay, the closed form undrained shear strength following isotropically 

consolidation can be deduced as will be presented in Chapter 5, which would be used 

to check the undrained shear strength of heavily OC clay from the implemented AZ-

Cam clay model in ABAQUS. From Figure 4.5, the prediction of the implemented AZ-

Cam clay model agrees well with the results from the built-in MCC model in 

ABAQUS for NC clay. The undrained shear strength of heavily OC clay (OCR=6) 

from the implemented AZ-Cam clay model agrees quite well with the theoretical value. 

        It is now reasonable to assert that the implementation of AZ-Cam clay model in 

ABAQUS through UMAT should be correct and further analysis could proceed. 
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4.6 Summary 

        In this chapter, the formulation of AZ-Cam clay model in the general stress space 

is presented. Key attention is paid on the outward direction of the bounding surface 

and plastic potential which are necessary to form the elasto-plastic matrix in three-

dimensional space. The numerical implementation of the model in ABAQUS through 

UMAT is described subsequently and the stress point algorithms are addressed 

accordingly. The Pegasus method is used to find out the elastic portion of strain 

increment when the stress state goes from the elastic region into the elasto-plastic 

region. The Newton-Raphson method is employed to correct the drift problem. Finally, 

comparisons between the predictions of the ABAQUS built-in MCC model and the 

implemented UMAT MCC model are presented to verify the numerical scheme used in 

UMAT. The differences between the implicit method and the explicit method are 

compared. The verification of the implementation of the AZ-Cam clay model is 

achieved by the verification of the implemented UMAT MCC model and the 

comparisons of the predictions of the undrained shear strength of NC clay and heavily 

OC clay. 
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Figure 4.1 Unloading and loading transition (Potts and Zdravkovic 1999) 

 

(a) Stress behavior-NC clay 

file:///C:/Documents%20and%20Settings/ceecj/Desktop/paper%20writing/Chapter%202.docx%23_ENREF_48
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(b) Excess pore pressure behavior-NC clay 

 

(c) Stress behavior-OCR=4 
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(d) Excess pore pressure behavior-OCR=4 

Figure 4.2 Comparison of UMAT & built-in MCC model in ABAQUS-CIU test 

 

(a) Stress behavior-NC clay 
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(b) Stress behavior-OCR=4 

 

(c) Stress behavior with load cycles-NC clay 

Figure 4.3 Comparison of UMAT & built-in MCC model in ABAQUS-CID test 
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(a) Stress strain curve of NC clay-CIU test 

 

(b) Stress strain curve of NC clay-CID test 

Figure 4.4 Comparison between explicit method and implicit method 
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Figure 4.5 Verification of the implementation of AZ-Cam clay model 
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Chapter 5 Material parameters determination and 

model evaluation 

5.1 Introduction 

        This chapter aims at providing the methods of determining the material 

parameters of the AZ-Cam clay model. The capability of the model in predicting the 

clay behavior in various laboratory tests both under monotonic loading and cyclic 

loading is also evaluated. The AZ-Cam clay model has ten material constants and 

additional specific information on the shear modulus of the soil (constant shear 

modulus, constant Poisson‟s ratio or the shear modulus at very small strain level). The 

effects of these material constants on the behavior of the model will firstly be 

discussed as well as the suggested methods to determine them. The model predictions 

in various laboratory tests under monotonic loading and cyclic loading will be 

presented subsequently. Measured data on the corresponding tests and other common 

model predictions will also be shown in order to demonstrate the ability and the 

limitations of the AZ-Cam clay model in predicting clay behavior under monotonic 

loading and cyclic loading. Table 5.1 gives the complete materials parameters of the 

model as well as a brief description of these parameters. 

5.2 Material parameters determination 

5.2.1 Critical state parameters 

        The critical state parameters , , ,N M   are the same as the basic critical state 

models, which can be determined from conventional laboratory tests (such as isotropic 

one-dimensional compression and extension tests, CIU test and CID tests). 
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5.2.2 Bounding surface parameters 

        wR  and dR  govern the size of the bounding surface on the wet side and on the dry 

side, respectively. Soil is conventionally assumed that it cannot sustain tensile mean 

effective stress. dR  is thus fixed at 2. wR  gives a general description of the bounding 

surface size. If wR  and dR  equal to 2, the bounding surface will be the same as the 

yield surface of the MCC model. The effect of wR  on the bounding surface in p q   

space and on the CSL for NC clay in lnv p  space is shown in Figure 5.1. The 

undrained shear strength of NC clays in CIU shearing can be deduced as follows. In 

undrained shearing, the total volumetric strain is zero and can be split into an elastic 

component and a plastic component as follows: 

0e p

v vd d     5.1 

The elastic volumetric strain can be obtained with the help of bulk modulus as 

e

v

dp
d

v p








  5.2 

The plastic volumetric strain can be obtained from Equation 2.7 as 

p c
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 
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  5.3 

Combining Equation 5.1 with Equation 5.3 yields 

c

c

dpdp

v p v p

    
 

 
  5.4 

Integrating the two sides of Equation 5.4 gives 
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where 0p  and 0cp  are initial mean effective stress and initial pre-consolidation 

pressure. For NC clay in CIU test, 0 0cp p  . 

Combining Equation 3.6 with Equation 5.5 gives the undrained shear strength as 
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Thus wR  can be evaluated from the CIU test as 
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  5.7 

where u measS   is the measured undrained shear strength of NC clay in CIU test. 

5.2.3 Ultimate strength parameter 

        The ultimate strength parameter T  governs the critical state strength of clays 

subjected to continuous shearing. T  is introduced following the assumption made 

previously that the ultimate position of heavily OC clay will generally lie to the left of 

the CSL in lnv p  space but still on the CSL in p q   space. From Equation 3.26, it 

is obvious that the failure envelope is not fixed in stress space, but depends on cp
 

(thus also on the plastic volumetric strain). The failure envelope will contract or 

expand with the bounding surface. For heavily OC clay, the critical state will be the 

interception of the curved failure envelope ( TC  as shown in Figure 3.15) with the CSL, 

where plastic modulus is zero and no plastic volumetric strain will occur. Thus, the 
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relation between the critical state mean effective stress and the pre-consolidation 

pressure at the critical state of heavily OC clay can be obtained by combining Equation 

3.6 and Equation 3.26 as 

2
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  5.8 

In CIU test, Equation 5.1 to Equation 5.5 are still applicable. By combining Equation 

5.8, the undrained shear strength of heavily OC clays under CIU tests is thus given by 
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The undrained shear strength of heavily OC clays predicted by the MCC model under 

CIU tests is 

2

02u cS M OCR p
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   5.10 

T  can thus be determined by combining the CIU test and the MCC model prediction 

as 
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where uoc measS   and uoc MCCS   are the measured and the MCC model predicted undrained 

shear strength of heavily OC clay in CIU test. The effect of T on the shape of failure 

envelope and typical effective stress path in undrained loading are shown Figures 5.2 

and 5.3. 
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5.2.4 Peak strength parameter 

        Following the proposal of Atkinson (2007), the peak strength parameter   

governs the shape of the failure envelope on the dry side and the relative distance of 

failure envelope to the bounding surface. Thus   has a great influence on the peak 

strength of heavily OC clays. This value can be determined through data regression 

following Atkinson (2007). As heavily OC clays will exhibit peak deviatoric stress 

before falling to the critical state under drained shearing, it is appropriate to evaluate 

  in drained loading tests. In CID test or in triaxial consolidated constant p (CICP) 

tests, it is possible to determine   as follows: 
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However, as cp  is a state variable and depends on the plastic strains accumulated 

before the peak deviatoric stress is reached, it is thus not possible to determine this 

value from Equation 5.12. If the clay behavior before the peak deviatoric stress is 

purely elastic, cp  will equal to 0cp . Heavily OC clay will dilate during shearing. A 

first estimate of 00.9c cp p   could be used based on numerical parametric studies. A 

final value of   should be determined by matching the peak deviatoric stress from the 

stress-strain curves. The effect of   on the failure envelope and typical effective stress 

path in drained loading are shown in Figures 5.4 and 5.5. 
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5.2.5 Plastic modulus parameter 

        The plastic modulus parameter   governs the evolution of the plastic modulus 

through a power law, which is similar to Zienkiewicz et al. (1985). It has significant 

effect on the plastic strain accumulated within the bounding surface and the change of 

stiffness within the bounding surface to the bounding surface. If   becomes infinitely 

large, the behavior of clay within the bounding surface will be purely elastic. As long 

as   remains a finite value, plastic strains may occur within the bounding surface 

during loading. For stress state lying on the bounding surface, the AZ-Cam clay model 

degenerates to the conventional elasto-plastic model. It is thus impossible to determine 

  from NC clay. For heavily OC clays, as the stress state is in the deep interior of the 

bounding surface, the initial effective stress path in the undrained loading will almost 

be vertical in p q   space. The magnitude of   has a relatively insignificant effect on 

the effective stress path. Besides, the undrained shearing strength of heavily OC clay is 

independent of   as shown in Equation 5.9. It is thus appropriate to determine   by 

matching the effect stress path or undrained shear strength uS  in CIU test on lightly 

OC clays. A typical effect of   on  undrained shear strength of lightly OC clay in the 

tests of Wroth & Loudon (1967) is shown in Figure 5.6. If   is infinite large, the mean 

effective pressure at the critical state crp  can be normalized as 
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The undrained strength can thus be normalized as 
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The normalized undrained shear strength from Equation 5.14 forms an upper bound of 

the undrained shear strength of lightly OC clay.  

5.2.6 Shakedown parameter 

        For cohesive soils, shakedown status can be reached for very small cyclic load 

levels where the plastic strains reach zero after a certain number of loading cycles and 

the behavior becomes purely elastic as discussed in section 3.4.8. The proposed 

expression for plastic modulus (Equation 3.59) relates the shakedown behavior to the 

absolute value of plastic volumetric strains accumulated in the previous loading, thus 

qualitatively addressing the shakedown effect. Generally, the above method is 

applicable only for NC and lightly OC clays. For heavily OC clay, the stress state is in 

the deep interior of the bounding surface. Thus the predicted behavior by the AZ-Cam 

clay model would be nearly elastic (linear or non-linear) for small load levels. This 

may form a limitation of Equation 3.59 and further research may be necessary. The 

shakedown parameter sk  can be determined by parametric study simulating the stress-

strain curve or plastic strain accumulation rate in stress-controlled cyclic tests. The 

effect of sk  on the accumulated plastic deviatoric strains (normalized with the plastic 

deviatoric strain occurred in the first cycle) is shown in Figure 5.7. The cyclic load 

level is indicated by 
f

q

q
 . Model inputs for this parametric study are based on the test 

by Li and Hum (2002) as will be presented below. 

5.2.7 Elastic shear modulus 

        As the bulk modulus has been specified following the basic critical state models, 

generally, a constant Poisson‟s ratio can be designated to evaluate the elastic shear 

modulus. Typical value of effective Poisson‟s ratio for clay ranges between 0.2 ~ 0.3 . 
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An alternative is to use a constant value of secant shear modulus. As the secant shear 

modulus varies with strains, thus for a typical problem, the possible strains range 

should be predicted reasonably before specifying the value of secant shear modulus. 

Wroth (1971) advocated using a constant value of shear modulus which can be 

determined as 

 1 ln
oc nc

G G
C OCR

p p

   
    

    
  5.15 

where the subscript oc  and nc  denote OC clay and NC clay. C  is a model parameter. 

        To incorporate the small strain shear modulus, maxG  can be measured in the 

laboratory using resonant column test or in the field by cross-hole or down-hole 

techniques (Wood, 1978; Whittle, 1987). However, it is rather difficult to determine 

the decreasing rate of the shear modulus, which is expressed in Equation 3.62. 

Furthermore, Equation 3.62 is proposed based on mathematical convenience and the 

physical S-shape trend of decreasing rate of the shear modulus. It is thus empirical in 

nature. The decreasing parameter r  can be determined only through parametric study. 

The degradation of secant shear modulus secG  with shear strain calculated from 

Equation 3.62 in CIU tests (no plastic strains) is shown in Figure 5.8. Similar 

prediction by Pestana & Whittle (1999) is also shown for comparison. 
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5.3 Model evaluation 

5.3.1 New position of the CSL 

        The deviation of the new CSL proposed in the present model from the original 

CSL is captured by the vertical distance d  in lnv p  space following Equation 3.10 

as 

  lnd T     5.16 

For heavily OC clays, the critical state will always lie on this new CSL. This 

assumption simplifies the assumption made by Crouch & Wolf (1994) that the CSL 

beyond a certain void ratio would be different from the original CSL with a different 

slope in lnv p  space. However, the failure envelope is only applicable to heavily 

OC clays. For NC clays, the CSL does not change. For lightly OC clays, the CSL 

would lie in between them, and depends on the initial pre-consolidation pressure and 

the value of  . This idealized CSL is reasonable when comparing to the experimental 

findings of Henkel (1959). A schematic representation of the critical state is shown in 

Figure 5.9 and Figure 5.10.  

5.3.2 Monotonic loading 

        For monotonic loading, the shakedown parameter should have no effect on the 

predicted behavior. Thus 0.0sk   is assumed for all the predictions on the monotonic 

behavior. 

5.3.2.1 CIU tests by Wroth & Loudon (1967) 

        Wroth & Loudon (1967) presented the effective stress path in p q   space of 

kaolin clay with a wide range of OCRs in CIU tests. Figure 5.11 show the predicted 
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stress path of the MCC model, the model proposed by Zienkiewicz et al. (1985) and 

the AZ-Cam clay model. It is noted that there seem to be some inconsistencies with the 

test data and documented information on the three tests at OCR equal to 2.2, 4.0 and 

8.1 in the original paper (Wroth and Loudon, 1967). Simple calculations from the 

starting intersection point of the effective stress path with paxis leads to OCRs for 

these tests of 1.8, 3.0 and 6.5. So the calculated OCRs are used in the model prediction. 

For the material constants, wR  is determined from uS  of NC clay.   is determined by 

matching the effective stress path at OCR=1.2. T is evaluated from uS  at OCR=6.5. 

Without information on drained shearing,   is evaluated by matching the effective 

stress path at OCR=6.5. Associated flow rule is used in the simulation. Without doubt, 

the MCC model predicts the vertical stress path within the bounding surface, resulting 

in larger strength predicted than the tests data for all OCRs. Zienkiewicz et al. (1985)‟s 

model (using the MCC yield surface) predicts a curved stress path, which matches 

quite well with the tests data but slightly over predicts the undrained shear strength of 

lightly OC clays. For heavily OC clays, as the CSL was used as the failure envelope, 

the model under predicts the strength of heavily OC clays. The predictions of the AZ-

Cam clay model agree quite well for NC to lightly OC clays. However, for heavily OC 

clays, although the ultimate strength agrees reasonably with the test data, there is some 

deviation on the dry side. The input parameters for the AZ-Cam clay model are 

summarized in Table 5.2. 

5.3.2.2 CIU tests by Banerjee and Stipho (1978, 1979) 

        Banerjee & Stipho (1978, 1979) published extensive CIU tests results on NC to 

heavily OC kaolin clay. Commonly known model predictions of these tests as well as 

the predictions by the AZ-Cam clay model are shown in Figure 5.12 and Figure 5.13 
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for NC to lightly OC clays. Figure 5.14 and Figure 5.15 are shown for heavily OC 

clays. For the AZ-Cam clay model, the CIUC test on NC clay is used to determine wR  

and   is evaluated by matching the effective stress path of lightly OC clay at OCR=1.2. 

The CIUC test at OCR=12 is used to evaluate T and  . Associated flow rule is used in 

the simulation. Other parameters are directly obtained from the original paper as 

summarized in Table 5.3. It should be pointed out the parameter N  is not provided in 

Banerjee and Stipho (1978, 1979). Instead, the initial specific volume 0v  was related to 

the water content w . Parameter N  and initial specific volume 0v  can be inter-related. 

        Within expectation, the MCC model over predicts the undrained shear strength 

for all the cases. Both Zienkiewicz et al. (1985)‟s model and the AZ-Cam clay model 

predict quite well for NC clays and lightly OC clays in the CIUC test but under predict 

the undrained shear strength in extension. For heavily OC clays, Banerjee and Stipho 

(1979) proposed to use the Hvorslev line as a yield surface combining with a non-

associated flow rule and achieved relatively good prediction as shown in Figure 5.14 

(b) and Figure 5.15 (b). However, as the method is still within the conventional elasto-

plastic framework, the stiffness they predicted changes abruptly during the transition 

from the elastic to plastic region. The predictions of the AZ-Cam clay model for 

heavily OC clays are acceptable, although the prediction on excess pore water pressure 

in CIU extension (CIUE) is not quite satisfactory. 

5.3.2.3 CIU tests by Kuntsche (1982) 

        A series of CIU tests were reported by Kuntsche (1982), which provided a basis 

for the assessment of soil constitutive models. This section presents the monotonic 

simulation of these tests using the proposed model. The value T  is estimated from the 

undrained shear strength of CIU test at OCR=10,   is estimated by best fitting the 
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undrained effective stress path of CIU test at OCR=2 and   is obtained by fitting the 

stress-strain curve of the sample at OCR=10. The rest of the material parameters for 

the AZ-Cam clay model are from the original paper (Kuntsche, 1982). Associated flow 

rule is used in the simulation. The input parameters are summarized in Table 5.4. 

        Figure 5.16 and Figure 5.17 show the predictions from the current model and the 

model after Zienkiewicz et al. (1985) together with the test data. Generally, the model 

prediction is satisfactory both in the effective stress path and stress-strain behavior. 

Although the model captures the undrained shear strength very well at all OCRs, there 

are some deviations in the predicted stress path with the test data. The predicted stress-

strain behavior is satisfactory, but the stiffness at OCR=10 is over predicted. As 

expected, the model after Zienkiewicz et al. (1985) under predicts the undrained shear 

strength at OCR=10. 

5.3.2.4 CIU tests by Li & Meissner (2002) 

        Figure 5.18 and Figure 5.19 show the predictions of the two-surface model 

developed by Li & Meissner (2002) and the AZ-Cam clay model on CIU tests of a 

commercially available clay after Li and Hun (2002).   and   is determined by 

matching the effect stress path at OCR=1.6 and OCR=4, respectively. T  is determined 

from the undrained shear strength at OCR=4. Associated flow rule is used in the 

simulation. The rest of the parameters are obtained from the original paper. The input 

parameters for AZ-Cam clay model is summarized in Table 5.5. Good agreements with 

the tests data have been achieved by the two-surface model and the AZ-Cam clay 

model. However, the AZ-Cam clay model over predicts the shear stiffness for NC and 

lightly OC clay. 
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5.3.2.5 CICP tests by Nakai & Hinokio (2004) 

        Nakai & Hinokio (2004) presented the comparisons of CICP tests results on 

Fujinomori clay and the prediction of 
ijt  model (Nakai & Matsuoka, 1986; Nakai, 

1989) as shown in Figure 5.20 and Figure 5.21. The AZ-Cam clay model is employed 

to simulate these test results with associated flow rule. Test data at OCR=8 are used to 

evaluate T and   (T is chosen at a typical value of 0.7 due to the lack of undrained 

shearing data). The other parameters are obtained from the original paper as 

summarized in Table 5.6. It should be noted that N  in Table 5.6 is the specific volume 

at the reference pressure (98kPa ) in lnv p  space, which is slightly different from 

the basic critical state model after Nakai (2004, 2011). The predictions of the MCC 

model are also shown in these figures for comparison. Within expectation, the MCC 

model‟s prediction agrees well with tests data for NC clays. However, for lightly to 

heavily OC clays, the MCC model over predicts the peak stress ratio, and this trend 

increases with increasing OCRs. The predictions of 
ijt  model agree satisfactorily for 

NC and lightly OC clays, but for heavily OC clays, some discrepancies occur, 

especially for the extension case. The predictions of the AZ-Cam clay model agrees 

quite well with the test data both for compression and extension case, although some 

departures exist in the prediction on the volumetric strains. 

5.3.2.6 Tests on Boston blue clay (BBC) 

        The physical and engineering properties of BBC have been extensively studied at 

MIT in the past several decades (Bailey, 1961; Bensari, 1984; Fayad, 1986; Abdulhadi, 

2009). The test data on BBC in this study are obtained from the literature (Fayad, 1986; 

Whittle, 1987; Whittle, 1993; Pestana et al., 2002). wR  is estimated from CIU test at 

OCR=1 (these data are original from Braathen (1966), as this document is not 
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published, the data are obtained from Pestana et al. (2002).   is determined by best 

fitting the effective stress path of lightly OC clay in CIU tests. The initial value of 

lateral stress coefficient for NC clay 0NCK  is taken as 0.53. For OC clay, 0K  is given as 

0.4

0 0.48K OCR following Fayad (1986) and Whittle (1993). T  can be determined 

from CIU test or 0K  consolidated undrained compression/extension ( 0 0/CK UC CK UE ) 

test. However, the values determined from different tests are largely different, which 

implicitly challenges the assumptions of the model. 0CK UC  test at OCR=8 is thus 

used as the reference test resulting in 0.763T   for triaxial compression. In order to 

simulate plane strain condition, the variation of T  in the deviatoric stress plane should 

be defined. As relatively large scatter exists in the extension tests, which may due to 

the difficulties encountered in large strains (Pestana et al., 2002), a lower bound uS  in 

0CK UE  test at OCR=4 is employed to determine T, resulting in 0.4T   for triaxial 

extension. The variation of T in the deviatoric plane is taken as the form proposed by 

Vaneekelen (1980) for yield surface in the deviatoric plane as shown below 

 
0.2

0.456

1 0.924sin 3
T




  

  5.17 

0.8   is used to fit the overall stress-strain behaviour for 0CK UC  test at OCR=8 as 

no drained tests are available. Without further information,   is assumed to be 

constant in the deviatoric plane.  

Mohr Coulomb criterion with smooth corner is used to specify the variation of M  in 

the deviatoric plane as 
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 

 
0.25

0.608

3 1 0.629sin 3

M 




  

  5.18 

The magnitude of intermediate principle stress at critical state under plane strain 

condition is described by the value 
fb (defined as 

2 3

1 3

f f

f f

 

 

 

 
, where the subscript f  

indicates that the stress is at the failure status). Although large scatter exist in the 

measured 
fb  (Whittle, 1993), a value of 0.37 will be used as reported by Randolph & 

Wroth (1981) resulting in the Lode‟s angle 08.5    at the critical state. Following 

Equation 4.7, the plastic potential in the deviatoric plane is expressed as 

 

 
0.2

3 1 0.248sin 3

pXM 




  

  5.19 

maxG  is determined by matching the shear modulus at small strain in 0CK UC  at 

8OCR   as follows: 

0.3max 460
r r

G p
OCR

p p




 
  5.20 

The decreasing rate parameter r  is determined from a parametric study, resulting in 

2r   as shown in Figure 5.22. The model input parameters for BBC are summarized 

in Table 5.7. 

        Figure 5.23 shows the comparison of the AZ-Cam clay model prediction and the 

CIU test results after Braathen (1966) (stress strain relation for OCR=2 is not available 

due to technical problem), where h   is and horizontal effective stress respectively. For 

OCR=1, the test data shown slight softening behavior before reaching the critical state, 
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which cannot be predicted by the AZ-Cam clay model for NC clay. For OCR=4 and 

OCR=8, the predicted effective stress path agrees quite well with the test data at the 

initial stage of loading but slightly over predicts the peak stress ratio. Excellent 

agreement is obtained in stress-strain relation up to an axial strain of 2% at OCR=4 and 

4% at OCR=8, after which the shear stress almost remains constant in the model 

prediction. Thus the model under predicts the undrained shear strength by around 15% 

both for OCR=4 and OCR=8. For comparison, Figure 5.24 shows the prediction on the 

same test by the MIT-S1 model after Pestana et al. (2002). 

        Figure 5.25 shows the comparison of the AZ-Cam clay model prediction and the 

0CK UC  test data. BBC exhibits obvious anisotropic behavior following 0K  

consolidation. As the AZ-Cam clay model is constructed based on the isotropic 

behavior of clay, thus for 0CK UC  at OCR=1 and OCR=2, the model is unable to 

predict the softening behavior and large deviation exists between the predicted 

effective stress and test data. At OCR=4, the predicted undrained shear strength agrees 

very well with the test data and the agreement in the stress-strain relation is 

satisfactory, both for 0CK UC  and 0CK UE  tests. As OCR=8 is a reference case used to 

evaluate the model parameters, excellent agreement is achieved at relatively large axial 

strain and the predicted undrained shear strength expectedly coincides with the test 

data. However, the model over predicts the peak stress ratio and over predicts the 

stiffness in axial strain range of 0.2 ~1% . Based on the parametric study, it is beyond 

the ability of the AZ-Cam clay model to match the stiffness in this range of strain. For 

comparison, Figure 5.26 shows the prediction on the same test by the MIT-S1 model 

after Pestana et al. (2002). 
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        It is of great importance to conduct comparison of predictions with measured data 

for modes of shearing other than triaxial, which provides as an assessment of the 

predictive capabilities and limitations of the proposed model. The AZ-Cam clay model 

is thus employed to simulate the 0K  consolidated undrained direct simple shear 

( 0CK UDSS ) tests on BBC. The test procedures have been extensively documented 

(Whittle, 1987). The key feature is that the sample is confined laterally by a wire-

reinforced membrane to prevent lateral straining and undrained shearing is simulated 

by conducting constant volume (height) tests such that the total vertical stress is equal 

to the vertical effective stress. Figure 5.27 shows comparison of model predictions and 

measured effective stress paths (  and v   is the shear stress and vertical stress acting 

on horizontal planes in the sample) and the shear stress–strain behavior. Large 

discrepancies exist both in effective stress paths and initial stiffness in model 

predictions and test data at all OCRs. The model significantly overestimates the 

undrained shear strength by 40% at OCR=1 and 15% at OCR=2. However, the 

agreements at OCR=4 and OCR=8 are quite satisfactory. For OCR larger than 2, the 

measured data show negative pore pressure up to peak shear stress and softening 

occurs subsequently. However, as a small value (0.4) is assigned to T  to reflect the 

undrained shear strength at the failure Lode‟s angle at 030  (e.g. triaxial extension), the 

dilation behavior only occurs at OCR=8 and no softening occurs at all OCRs in model 

predictions. The possible reasons for the relatively unsatisfactory model prediction 

may result from the isotropic assumption. Resedimented BBC shows highly 

anisotropic behavior (Fayad, 1986; Whittle, 1987). For comparison, Figure 5.28 and 

Figure 5.29 shows the prediction on the same test by MIT-E3 model after Whittle 

(1993) and MIT-S1 model after Pestana et al. (2002). 
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        Figure 5.30 summarizes the AZ-Cam clay model predictions of normalized 

undrained shear strength u vcS    ( vc   is the vertical effective stress at the beginning of 

shearing) in CIUC , 0CK UC , 0CK UE  and 0CK UDSS  tests with OCR. Generally, the 

model predictions agree quite well with the measured data. Due to the relatively larger 

uncertainties associated with the measured data in 0CK UE  test, the model 

significantly underestimates the undrained shear strength at OCR=8. Besides, the 

model over predicts the undrained shear strength in 0CK UDSS  for NC and lightly OC 

clay. This may due to the fact that anisotropy is most pronounced in NC and lightly 

OC BBC (Pestana et al., 2002). For comparison, Figure 5.31 shows the prediction on 

the same test by MIT-E3 model after Whittle (1993) and MIT-S1 model after Pestana 

et al. (2002). 

5.3.2.7 Shear strength of various types of heavily OC clays 

    In CIUC/E and triaxial isotropic consolidated plane strain (CIUP) shearing, uS  in 

the proposed model can be normalized as 

 

 
 

1

0

0

p

u oc

u nc

S p
T OCR

S p




 
  

    

5.21 

where 
p  is the plastic volumetric strain ratio and equals to 1




 .  

        Equation 5.21 gives a general description of the uS  character of heavily OC clays. 

For the MCC model,  T   equals to 1, independent of shearing modes. As T is only 

applicable for heavily OC clays, the model prediction begins at OCR=3 both in Figure 

5.32 and Figure 5.33, below which it is assumed to vary linearly between OCR of 1 

and 3. In Figure 5.32, almost all the test data lie below the line predicted by the MCC 
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model. The introduction of the parameter T can generally capture the variation of 

   
1

0 0

p

u uoc nc
S p S p



     with OCRs. Good agreement with the test data is achieved 

for kaolin clay and Todi clay using T=0.9 and T=0.5, respectively. For Vallericca clay 

and Corinth marl, good agreement is achieved using T=0.65, but under predicts for 

Corinth marl at small OCRs and over predicts at large OCRs of Vallericca clay. 

        Figure 5.33 shows the comparison of the predicted    max 0 max 0v voc nc
      in 

0CK UDSS  test with the test data. The bounding surface is chosen the same as the yield 

surface of the MCC model with 1M   which has little effect on the prediction of the 

normalized value. 0.5ncK   and 0.4

oc ncK K OCR , which are typical from the test data 

reported by Ladd et al. (1977) is adopted in the current study. 0.8p   is used 

following Wroth (1984). The predicted variation with T=0.8 falls close to the range of 

7 types of clays after Ladd et al. (1977). However at large OCRs, the model tends to 

over predict the value. Thus T not only depends on the Lode‟s angle as has been 

proposed but also seems to be dependent on the stress history which is neglected in the 

present study.  

        The predicted variation of pM M  in CIDC test is shown in Figure 5.34 based on 

the materials constants of Pietrafitta clay after Burland et al. (1996) and Mita et al. 

(2004) with T=0.65 based the regression in Figure 21. Good agreement is achieved for 

Pietrafitta clay with 0.35   but slightly over predicts at relatively small OCRs. It is 

inappropriate to conduct a direct comparison of other types of clays as the material 

constants would be different, but the model does capture the variation trend that 

pM M  increases with OCRs. At large OCRs, the variation becomes linear when OCR 

is plotted in logarithmic scale. Similar behavior can be found in the test data on Todi 
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clay and Corinth marl. However, it is difficult to reach the same conclusion for Weald 

clay as relatively large scatter exists. 

    Figure 5.35 shows the test data and the proposal of Atkinson (2007) following 

Equation 3.2, together with current proposal following Equation 3.9. There is no 

information about the value of uS  of the tested clays. T=0.8 is chosen to address the 

effect of T on the peak strength of OC clay. An average vertical intercept of -0.15 is 

used based on the   value reported by Atkinson (2007). As can be seen, by 

introducing T,   may be changed to best fit the test data. Thus it is recommended to 

first determine T from uS  of heavily OC clays and then fit the data to get   rather 

than fixing the vertical intercept (0 in Figure 5.35) in advance based on the original 

assumption of the MCC model during data regression, although the proposal of 

Atkinson (2007) agrees quite satisfactorily with the test data. 

5.3.2.8 Summary on monotonic loading 

        From the above comparison, the AZ-Cam clay model is able to simulate the 

isotropic behavior of clay in various modes of shearing. With the help of the failure 

surface incorporated in the model formulation, the model works well for evaluating the 

peak strength of heavily OC clay in drained shearing and the undrained shear strength 

in undrained shearing. However, the model does have limitations inherently on 

simulating the anisotropic behavior of clay as demonstrated by NC to lightly OC BBC. 

Further improvement of the model may be achieved by focusing on the anisotropic 

behavior of clay. 
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5.3.3 Cyclic loading 

5.3.3.1 Cyclic loading excluding the small strain stiffness 

5.3.3.1.1 Cyclic CIU test by Wroth & Loudon (1967) 

        Stress-control cyclic triaxial CIU tests with varied cyclic loading level on NC 

kaolin clay were presented by Wroth & Loudon (1967). The AZ-Cam clay model is 

employed to simulate this test using the same input parameters as those in Table 5.2. 

The shakedown parameter sk  is assumed to be zero as only five cycles will be 

simulated. Figure 5.36 plots the model simulation and the test result data of effective 

stress path in p q   space. As can be seen, quite satisfactory agreement is obtained 

within the first three cycles. However, relatively larger deviation exists in fourth and 

fifth cycles. As purely elastic behavior in the unloading process is assumed in the 

model formulation, the model is unable to predict the plastic behavior when unloading 

occurs. However, the plastic strain occurred in the unloading process in fifth cycle is 

obvious in the test. 

5.3.3.1.2 Cyclic CIU test by Kuntsche (1982) 

        Two-way strain-control cyclic CIU tests with constant cyclic amplitude on NC 

kaolin clay were reported by Kuntsche (1982). This section presents the cyclic 

simulation of the AZ-Cam clay model using the same material parameters as those in 

section 5.3.2.3. 0sk   is used to match the decreasing rate of mean effective stress. 

However, the use of elastic shear modulus is crucial for the model prediction. The 

adoption of shear modulus has a significant effect on the shape of the stress-strain 

curves in the cyclic loading. Figure 5.37 and Figure 5.38 show the predicted and 

measured stress-strain curves (the shear stress oct  equals to 
2

3
q ) and mean effective 



140 

 

stress by using: (a) a constant 8000G kPa  (   varies); (b) a constant 0.15   (G  

linearly depends on p ); and (c) a constant 0.10    (G  linearly depends on p ). 

        As can be seen from Figure 5.37 (a), the measured stress-strain curves exhibit a 

larger stiffness when unloading occurs, then gradually decreases with further shearing. 

However, the predicted stiffness remains the same when unloading occurs, and the 

shape of the stress-strain curve in all three cases (Figures 5.37 (b) to (d)) differs 

significantly from the measured shape. Besides, the predicted shape is sensitive to the 

Poisson‟s ratio as can be seen from Figures 5.37 (c) and (d). This case demonstrates 

the complexity of shear modulus in the cyclic loading and the simple formula (a 

constant G  or a constant   ) may not work satisfactorily. Although the model fails to 

capture the shape of the stress-strain curves, the degradation of shear stress is modeled 

quite well. Figure 5.38 further strengthen this conclusion through the predicted mean 

effective stress, which is insensitive to the shear modulus. The predicted value is quite 

close to the measured data. 

5.3.3.1.3 Cyclic CIU test by Li & Meissner (2002) 

        Stress-control cyclic CIU tests with constant cyclic load level on NC clay were 

summarized by Li & Meissner (2002). Using the same material constants as those in 

section 5.3.2.4 and 30sk   is used by matching the stress-strain curves. Figures 5.39 to 

5.41 show the model predicted stress-strain loop, excess pore water pressure, the 

corresponding measured data and the predicted value by Li and Hum (2002). As can be 

seen from these figures, the AZ-Cam clay model is able to capture the salient feature 

of stress-strain behavior in the cyclic loading. However, the excess pore water pressure 

is over predicted, although the variation trend is captured well. 
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5.3.3.1.4 Cyclic triaxial test by Nakai & Hinokio (2004) 

        Using the same material parameters as those in section 5.3.2.5 and 0sk   (as 

only 3 cycles are simulated), the predictions of the AZ-Cam clay model in cyclic 

triaxial tests on NC Fujinomori clay are shown in Figures 5.42 to 5.44. Figure 5.42 

presents the model predictions of stress-control cyclic CICP test with constant cyclic 

load level as well as the predictions by Nakai & Hinokio (2004) using 
ijt  model and 

measured data. Simulation on stress-control cyclic CICP test with varied cyclic load 

level is shown in Figure 5.43 and stress-control cyclic CID test is shown in Figure 5.44. 

As can be seen from Figure 5.42 and 5.43, the AZ-Cam clay model under predicts the 

peak stress after a number of cycles. As the measure peak stress ratio is about 1.7 in 

constant cyclic load level test and 1.5 in varied cyclic load level test, these values 

exceed the critical state stress ratio value (1.36). Thus the model is inherently unable to 

predict these peak stress ratios. As the soil sample is normally consolidated before 

shearing, the soil is generally under compression and undergoes strain hardening, the 

accumulation rate of volumetric strain is decreasing with cyclic numbers. The 

predicted volumetric strains are smaller than the measured data as shown in Figures 

5.42 to 5.44. For cyclic CID test, the model simulates the stress-strain loop and 

volumetric strain quite well, though the modeled hysteretic behavior is not very good. 

5.3.3.2 Cyclic loading including the small strain stiffness 

5.3.3.2.1 Cyclic CICP test by Dasari (1996) 

        A series of CICP tests on Gault Clay were conducted by Dasari (1996) with the 

measurement of the small strain stiffness. The accuracy of the measured axial strain 

was reported on the order of 52 10 . The material parameters for the AZ-Cam clay 

model to simulate these tests are directly following Dasari (1996). However, the 
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reported tests are insufficient to determine the values of T  and  . 0.65   is 

estimated from the regression of Atkinson (2007) and 0.9T   is assumed due to lack 

of further test data. Dasari (1996) expressed maxG  as  

0.79 0.2

max 886G p OCR
 

5.22 

        Equation 5.22 was reported to be deduced from the measured data of heavily OC 

clays (the OCRs are 70, 35, 17.5, 8.7 as stated in Table 3.6 of Dasari (1996)). However, 

applying Equation 5.22 to predict maxG  in the Test 1 to Test 5 in Table 2.3 in Dasari 

(1996) reveals Equation 5.22 significantly under estimate the value of maxG . 

Meanwhile, close attention paid to the Table 2.3 and Table 3.6 in the original thesis of 

Dasari (1996), it is obvious that two soil samples with the same initial 100p kPa  , 

but with different OCR of 2 and 35 respectively, maxG  is even smaller for larger OCR. 

This behavior contradicts the direct result from Equation 5.22. One explanation may be 

maxG  depends on the pre-consolidation pressure, and decreases with the increasing pre-

consolidation pressure. To curtail the complexity, Equation 5.22 is still used but 

modified as 

0.79 0.2

max 1650G p OCR   5.23 

The ratio of measured maxG  (the value corresponding to the deviatoric strain less than 

51 10 ) to the value predicted by Equation 5.23 for various p  is shown in Figure 5.45 

and the agreement is reasonable. 

        Theoretically, both   and r  affect the decreasing rate of secant shear modulus 

with shear strain. However, the decreasing rate of tangent shear modulus is mainly 
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controlled by r  and is independent of   as can be seen from Figure 5.46. r  is thus 

determined by matching the decreasing rate of tangent shear modulus and 6.0r   

gives a satisfactory agreement with measured data.   is determined by matching the 

overall stress-strain curve. Figure 5.47 shows the variation of tangent shear modulus in 

CICP test with 50p kPa   and 3.0OCR  . With 14  , although the model over 

predicts the decreasing rate at initial stage of loading, good agreement is obtained at 

relatively large strain range (
41.0 10q
  ). sk  is assumed to be zero (as only 1 cycle 

is simulated). Table 5.8 summarizes the material constants used in the AZ-Cam clay 

model for Gault Clay. 

        Figure 5.48 and Figure 5.49 show the comparison between model prediction and 

two identical cyclic CICP test results. It should be noted that minor difference exists in 

the measured data of Test 2 and Test 5. But for model predictions for these two tests 

are the same. The model prediction agrees well with the measured data at Test 5 before 

the first loading reversal occurs, but slightly over predicts the stiffness of Test 2. For 

cyclic loading, by using Masing‟s rule, the model captures the main feature of the 

measured data, but under predicts the decreasing rate of stiffness when loading reversal 

occurs. Thus large deviation exists in the unloading and reloading part of the stress-

strain curve. Pyke‟s first extension to Masing‟s rule that current loading or unloading 

curve intersects the initial loading curve, the stress-strain relationship follows that 

curve during further shearing. This behavior is obvious from Figure 5.48, so there is an 

abrupt change of the stress-strain curve. This is due to the relatively small cyclic load 

level, and the soil remaining almost elastic as the behavior immediately after a loading 

reversal is pure elastic. However, smooth change of stiffness occurs in Test 5 as can be 
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seen from Figure 5.49. This is due to the relatively larger cyclic load level causing 

sufficient plastic strains, which degrades the strength of the soil.  

5.3.3.2.2 Cyclic CIU test by Subhadeep (2009) 

        Kaolin clay has been used extensively at the National University of Singapore 

(NUS) and its physical properties are well documented (Goh, 2003). The cyclic CIU 

test on NC kaolin clay conducted by Subhadeep (2009) will be simulated by the AZ-

Cam clay model. As the cyclic tests were carried out on NC clay, the values of T  and 

  cannot be determined precisely, thus 0.9T   and 0.6   is assumed. The 

expression of maxG  is taken directly from Subhadeep (2009) as Equation 5.24 

0.653

max 2060G p   5.24 

        wR  is preferred to be determined from the uS  of NC clay, however, there is no 

information on this. Therefore, wR  and r  are determined by fitting the stress-strain 

curves of the test CT3-1 and CT3-2 as reported by Subhadeep (2009). However, the 

agreement is not so good as the measurements at the small strain range of virgin NC 

clay sample on the first cycle are not quite satisfactory as shown in Figure 5.50. 

        As for NC clay subjected to initial loading,   has no effect on the predicted 

behavior as the stress state always lie on the bounding surface and the model 

degenerates to the conventional elasto-plastic model.   is thus appropriate to be 

determined from matching the stress-strain loop in the absence of the effective stress 

path of lightly OC clay in undrained shear. Although both   and sk  affect the model 

prediction through plastic modulus, 0sk   is assumed in the absence of further 

information (The author is aware that a larger sk  will give a smaller  ). 10   gives 
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a satisfactory simulation on Test CT3-1 as can been seen from Figure 5.51 and Figure 

5.52. Table 5.9 summarizes the material parameters used in the AZ-Cam clay model 

for kaolin clay at NUS. 

        Figure 5.53 and Figure 5.54 show the model predictions with the measured test 

data on multi-stage cyclic CIU test on NC kaolin clay. The loading sequence for Figure 

5.53 is 60 cycles with constant amplitude 0.137% (axial strain) immediately followed 

by 60 cycles with constant amplitude of 0.254%. The agreement between the test data 

and model prediction is satisfactory, in particular the model successfully predicts the 

degradation of the strength. However, in terms of damping (indicated by the area of 

closed stress strain loop), the model over predicts the damping by using Masing‟ rule. 

The loading sequence for Figure 5.54 is 60 cycles with constant amplitude of 0.137%, 

0.254% and 0.548%, respectively, and finally 60 cycles with constant amplitude of 

0.789%. The model under predicts the strength of the first loading cycle with 

amplitude of 0.789%, but agrees well with the final loading cycle. During 60 cycles 

with amplitude of 0.789%, the test data still show a significant reduction of strength, 

while the model predicts slight reduction due to the stress state migrating into the 

deeper interior of the bounding surface. 

5.3.3.3 Summary on cyclic loading 

        From the above simulation in various cyclic loading tests, the AZ-Cam clay 

model is capable of predicting the cyclic behavior of NC to lightly OC clay. By 

employing a constant elastic shear modulus G  or a constant Poisson‟s ratio, the model 

is able to predict the degradation of strength in cyclic undrained shearing. However, 

the predicted shape of the stress-strain loops is very sensitive to the value of G  or 

Poisson‟s ratio. By incorporating the small strain stiffness and the Masing‟s rule, the 
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model can successfully simulate the degradation of strength and the hysteretic effect. 

However, the model tends to under predict the decreasing rate of shear modulus during 

the unloading and reloading process. 

5.4 Summary 

        In this chapter, detailed description of the material constants of the AZ-Cam clay 

model is presented together with the laboratory determination methods. The model 

evaluation in laboratory tests is carried out subsequently and is divided into two 

aspects: simulation on monotonic loading and simulation on cyclic loading. For 

monotonic loading, by explicitly incorporating a failure surface, the model can 

successfully predict the peak strength of heavily OC clay in drained shearing and the 

undrained shear strength. For cyclic loading, the predicted stress-strain loops largely 

depend on the choice of elastic shear modulus. A constant elastic shear modulus or a 

constant Poisson‟s ratio can predict the degradation of strength quite well, but the 

shape of stress-strain loops is not satisfactory. By incorporating the small strain 

stiffness and the Masing‟s rule, the model is able to simulate the cyclic degradation 

and hysteretic effect of NC to lightly OC clay, although the model tends to under 

predict the decreasing rate of the stiffness during unloading. Further modification will 

need to be done for the model capability for predicting the cyclic behavior of heavily 

OC clay. 
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Table 5.1 Material constants of the AZ-Cam clay model 

Parameter Physical meaning Evaluation method 

N  
Critical state parameter. The intercepts of 

NCL with v  axis in lnv p  
Isotropic 1 D compression test 

  
Critical state parameter. The slop of NCL 

in lnv p  
Isotropic 1 D compression test 

  
Critical state parameter. The slop of SL in 

lnv p  

Isotropic 1 D loading and unloading 

tests 

M  
Critical state parameter. The slope of CSL 

in p q   
Triaxial CID/CIU test 

wR  
Bounding surface size parameter in the 

subcritical region. 
Triaxial CID/CIU test 

dR  
Bounding surface size parameter in the 

supercritical region. 
Normally is fixed to 2 

T  

Ultimate strength parameter, governing 

the shape of the failure envelope in 

supercritical region. 

Triaxial CIU test 

  

Peak strength parameter, governing the 

shape of the failure envelope in 

supercritical region. 

Triaxial CID or constant p  tests. 

  

Plastic modulus parameter, governing the 

accumulation of plastic strains within the 

bounding surface 

Fitting the stress path within the 

bounding surface in triaxial CIU tests 

k  

Shakedown parameter, governing the 

plastic strain accumulation rate in cyclic 

loading 

Cyclic triaxial CID/CIU test 

G  Elastic shear modulus. 
Constant Possion’s ratio or G , or 

resonant column tests for maxG . 

r  Decreasing rate of G  ( maxG  is used) Fitting the stress-strain curves 
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Table 5.2 Model constants for the tests of Wroth & Loudon (1967) 

N      M  wR
 

2.67 0.26 0.05 0.9 2.3 

dR
 T    

    

2 0.95 0.3 8 0.25 

Table 5.3 Model constants for the tests of Banerjee & Stipho (1978, 1979)  

0v
     M  wR

 

1 2.65w  0.14 0.05 
1.05 for compression, 

0.85 for extension 
3.44 

dR
 T    


   

2 
0.9 for compression, 

0.95 for extension 
0.7 6 0.2 

Table 5.4 Model constants for the tests of (Kuntsche, 1982) 

0v
     M  wR

 

1.667, 1.862, 1.728 for 

OCR=1,2,10 respectively 

0.2 0.05 

0.74 for compression; 

0.6 for extension 

2 

dR
 T        

2 0.5 0.4 8 0.1 

Table 5.5 Model constants for the tests of Li & Meissner (2002) 

N      M  wR  

2.06 0.173 0.034 0.772 1.7 

dR  T        

2 0.65 0.4 4 0.35 
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Table 5.6 Model constants for the tests of Nakai & Hinokio (2004) 

N      M  wR
 

1.83 0.0508N 0.0112N 
1.36 for compression, 1.0 

for extension 
2 

dR
 T    

    

2 0.7 
0.2 for compression, 

0.3 for extension 
2 0.2 

Table 5.7 Model constants for BBC 

N      M  wR
 

2.96 0.184 0.034 
 

 
0.25

0.608

3 1 0.629sin 3

M 



   

 3.6 

dR
 

    T  maxG  

2 6 0.8 
 

0.2

0.456

1 0.924sin 3
T



   

 0.3max 460
r r

G p
OCR

p p




 
2r 

 

Table 5.8 Model constants for Gault Clay 

N      M  wR
 dR  

2.96 0.17 0.035 
M=0.94 for compression

 M=0.71 for extension 
2.0 2.0 

    T  maxG  r  k  

14 0.65 0.9 
0.79 0.2

max 1650G p OCR  6.0
 

0 

Table 5.9 Model constants for kaolin clay at NUS 

N      M  wR
 dR  

3.8 0.244 0.053 
M=0.98 for compression, 

M=0.74 for extension 
1.6 2.0 

    T  maxG  r  k  

10 0.6 0.9 
0.653

max 2060G p  and 0.25   5.0
 

0 
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(a) Bounding surface 
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  ln 2 

  

 
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 

p
 

(b) CSL in lnv p  space 

Figure 5.1 Effects of wR  on bounding surface and CSL 
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Figure 5.2 Effect of T on the shape of failure envelope 
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Figure 5.3 Typical effective stress path in undrained shearing 



152 

 

pcrpcrTp

CSL

q

0.8T 

1.0 

0.6 

0.2 

BS

Failure envelope

Dry side Wet side

 

Figure 5.4 Effect of   on the shape of failure envelope 
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Figure 5.5 Typical effective stress path in drained shearing 
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(a) Undrained stress path 

 

(b) Undrained shear strenght 

Figure 5.6 Determination of   
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Figure 5.7 Determination of k  

 

(a) AZ-Cam clay model 
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(b) Prediction after Pestana & Whittle (1999) 

Figure 5.8 Comparison of decreasing rate of shear modulus 
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Figure 5.9 The position of new CSL in lnv p  space 
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Figure 5.10 The position of critical state point in p q   space 

 

 

 

(a) MCC model prediction 
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(b) Prediction using the model by Zienkiewicz et al. (1985) 

 

 

 

(c) AZ-Cam clay model prediction 

Figure 5.11 Simulation on tests of Wroth & Loudon (1967) 
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(a) MCC model prediction 

 

(b) Zienkiewicz et al. (1985) prediction 
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(c) AZ-Cam clay model prediction 

Figure 5.12 Simulation on tests by Banerjee & Stipho (1978)-Effective stress path 

 

(a) MCC model prediction 
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(b) Zienkiewicz et al. (1985) prediction

 

(c) AZ-Cam clay model prediction 

Figure 5.13 Simulation on tests by Banerjee & Stipho (1978)-Stress strain curves 
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(a) MCC model prediction 

 

(b) Banerjee & Stipho (1979) prediction 
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(c) AZ-Cam clay model prediction 

Figure 5.14 Simulation on tests by Banerjee & Stipho (1979)-Stress strain curves 

 

(a) MCC model prediction 
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(b) Banerjee & Stipho (1979) prediction 

 

(c) AZ-Cam clay model prediction 

Figure 5.15 Simulation on tests by Banerjee & Stipho (1979)-Excess pore pressure 
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(a) Effective stress path after Zienkiewicz et al. (1985) 

 

(b) Effect stress path from AZ-Cam clay model 

Figure 5.16 Simulation on tests by Kuntsche (1982) 
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(a) Stress strain behavior after Zienkiewicz et al. (1985) 

 

(b) Stress strain behavior from AZ-Cam clay model 

Figure 5.17 Simulation on tests by Kuntsche (1982) 
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(a) Stress strain behavior after Li and Hun (2002) 

 

(b) Stress strain behavior predicted by AZ-Cam clay model 

Figure 5.18 Simulation on tests by Li & Meissner (2002) 
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(a) Effective stress path after Li & Meissner (2002) 

 

(b) Effective stress path after AZ-Cam clay model 

Figure 5.19 Simulation on tests by Li & Meissner (2002) 
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(a) MCC model prediction 

 

(b) Zienkiewicz et al. (1985) model prediction 
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(c) Prediction after Nakai & Hinokio (2004) 

 

(d) AZ-Cam clay model prediction 

Figure 5.20 Simulation on the test by Nakai & Hinokio (2004)-CICP compression 
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(a) MCC model prediction 

 

(b) Zienkiewicz et al. (1985) model prediction 
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(c) Prediction after Nakai & Hinokio (2004) 

 

(d) AZ-Cam clay model prediction-CICP extension 

Figure 5.21 Simulation on the test by Nakai & Hinokio (2004)-CICP extension 
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Figure 5.22 Estimation of r  for model input 

 

 

(a) Comparison of effective stress path 
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(b) Comparison of stress-strain behavior 

Figure 5.23 Effect of OCR on the undrained behavior of BBC in CIU tests 

 

Figure 5.24 Predictions by MIT-S1 model after Pestana et al. (2002) 
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(a) Comparison of effective stress path 

 

(b) Comparison of stress-strain behavior 

Figure 5.25 Effect of OCR on the undrained behavior of BBC in 0CK UC  tests 
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Figure 5.26 Predictions by MIT-S1 model after Pestana et al. (2002) 

 

(a) Comparison of effective stress path 
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(b) Comparison of stress-strain behavior 

Figure 5.27 Effect of OCR on the undrained behavior of BBC in 0CK UDSS  tests 
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Figure 5.28 Predictions by MIT-E3 model after Whittle (1987) 

 

Figure 5.29 Predictions by MIT-S1 model after Pestana et al. (2002) 
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Figure 5.30 Model predictions of uS  of BBC for various modes of shearing 

 

(a) MIT-E3 model (Whittle, 1987) (b) MIT-S1 model (Pestana et al., 2002) 

Figure 5.31 Other model predictions 
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Figure 5.32 Variation of normalized undrained shear strength-CIU tests 

 

Figure 5.33 Variation of normalized undrained shear strength- 0CK UDSS  tests 
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Figure 5.34 Variation of normalized peak stress ratio with OCRs in CIDC tests 

 

Figure 5.35 Peak state of OC clay normalized with state parameter 
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Figure 5.36 AZ-Cam clay model prediction of cyclic CIU test on NC kaolin clay 

 

 

 

 

                          (a) Measured data                           (b) Predicted using 8000G kPa  
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(c) Predicted using 0.15             (d) Predicted using 0.10   

Figure 5.37 Measured and predicted stress strain relationship 

 

                     (a) Measured data                   (b) Predicted using 8000G kPa  

 

(c) Predicted using 0.15          (d) Predicted using 0.10   

Figure 5.38 Measured and predicted effective mean stress 
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(a) Stress loop                                      (b) Excess pore pressure 

Figure 5.39 Measured data 

 

(a) Stress loop                                      (b) Excess pore pressure 

Figure 5.40 Predicted by Li and Hum (2002) 

 

(a) Stress loop                                      (b) Excess pore pressure 

Figure 5.41 Predicted by AZ-Cam clay model 
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(a) 
ijt model-stress-strain curve       (b) AZ-Cam clay model-stress-strain curve 

 

(c) 
ijt model-volumetric behavior    (d) AZ-Cam clay model-volumetric behavior 

Figure 5.42 Cyclic CICP (constant load level) test on NC Fujinomori clay 

 

(a) 
ijt  model-stress strain curve     (b) AZ-Cam clay model-stress strain curve 
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(c) 
ijt model-volumetric behavior    (d) AZ-Cam clay model-volumetric behavior 

Figure 5.43 Cyclic CICP (varied load level) test on NC Fujinomori clay 

 

(a) 
ijt  model-stress strain curve     (b) AZ-Cam clay model-stress strain curve 

 

(c) 
ijt model-volumetric behavior    (d) AZ-Cam clay model-volumetric behavior 

Figure 5.44 Cyclic CID test on NC Fujinomori clay 
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Figure 5.45 Measured maxG  and predicted maxG  

 

Figure 5.46 Determination of r  
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Figure 5.47 Determination of   

 

Figure 5.48 Simulation of Test 2 after Dasari (1996) 
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Figure 5.49 Simulation of Test 5 after Dasari (1996) 

 

Figure 5.50 Determination of wR  and r  
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(a) Measured data          (b) AZ-Cam clay model prediction 

Figure 5.51 Comparison of stress strain loops 

 

(a) Measured data          (b) AZ-Cam clay model prediction 

Figure 5.52 Comparison of effective stress path 
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Figure 5.53 Comparison of multi-stage cyclic test 

 

Figure 5.54 Comparison of multi-stage cyclic test 
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Chapter 6 Prediction of the response of well conductor 

subjected to lateral loading using the AZ-Cam clay 

model 

6.1 Introduction 

        Single element simulation is useful to evaluate the capabilities of a constitutive 

model. However, the proposed constitutive model cannot be fully accepted before 

thorough evaluation in the application in boundary value problems is conducted. This 

chapter simulates the response of a well conductor subjected to lateral loading using 

the proposed AZ-Cam clay model. The results from both monotonic loading and cyclic 

loading (limited number of loading cycles) will be presented. Predictions from other 

common models frequently used in the Geotechnical Engineering will also be 

presented together with the measured data from corresponding centrifuge tests. 

6.2 Centrifuge model tests description 

        The centrifuge tests carried out in C-CORE geotechnical centrifuge center were 

reported by Jeanjean (2009). 

6.2.1 Model dimensions and test set up 

        The soil used in those tests was fine Alwhite kaolin clay, which was designed to 

be lightly overconsolidated. The detailed properties of basic Alwhite kaolin clay are 

summarized in Table 6.1 (C-CORE, 2005; Jeanjean, 2009). 

        The kaolin cake in the centrifuge was constructed in two lifts, separated by a 5mm 

thick sand drainage layer to accelerate the consolidation of the clay. The sand layer 

was approximately 215mm below the final clay surface. Clearance holes in the sand 



192 

 

layer were placed at the predesigned locations to accommodate the conductor to be 

installed and the PCPT tests to be conducted. The clay was reconstituted from slurry 

and mixed at approximately one-half atmosphere. The clay sample was pre-

consolidated to about 95% of its effective vertical stress prior to the centrifuge test in 

order to reduce the in-flight consolidation time. The interpreted undrained shear 

strength profile from the PCPT tests, the submerged density profile, the OCR profile 

and the maximum elastic shear modulus profile are shown in Figure 6.1 after Jeanjean 

(2009, 2012) and Templeton (2009). It is noted that the method used to interpret the 

undrained shear strength from the PCPT tests is not described in the papers. 

        The model well conductor (steel) had an outer diameter of 19.05mm and 1.22mm 

wall thickness. In the centrifuge model tests, the length of the model conductor was 

limited by the depth of the sample container strong box. The total embedded model 

conductor length in the current study was 421mm, which was the maximum that could 

be accommodated with the existing 500mm deep test container. The tip of the 

conductor was simply resting on the clay bottom with no additional treatment. The 

model conductor was pushed-in closed-ended into slightly undersized pre-augered hole 

prior to each test (the pre-augered hole was 15.87mm in diameter). The applied load 

location was approximately 91mm above the mudline with no moment restriction. The 

model conductor before and after installation are shown in Figure 6.2. 

        A scale factor of 1:48 was used at 48 gravities. The embedded prototype length of 

the conductor was thus 20.2m with an outer diameter of 0.91m and 50.8mm wall 

thickness. The applied load location was thus about 4.3m above the clay surface in 

prototype scale. 
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6.2.2 Loading sequence in the centrifuge tests 

        Two sets of centrifuge tests are simulated in the current study. The first set is the 

monotonic loading test. The free head conductor was pushed laterally just over about 1 

diameter. The second set of test is the cyclic loading test, which was carried on free 

head conductor with displacement-control, the maximum and minimum lateral 

displacement was 0.175m and 0.035m (in prototype scale), respectively. 

6.3 FE model description 

6.3.1 Basic model description 

        The commercial software ABAQUS is used for the FE analysis conducted in the 

current study. All the description in this section is based on the prototype scale of the 

conductor. The analysis is quasi-static, thus any results obtained are time-independent. 

The basic geometry of the model is shown in Figure 6.3. Following the symmetric 

conditions, only a half model is used in the FE analysis. It is better to simulate the 

boundary condition of the FE model the same as the boundary condition in the 

centrifuge test. However, the horizontal dimension of the container used in the 

centrifuge test is not available. Thus the model geometry includes finite elements up to 

40 outer diameters of the conductor in the horizontal direction following Templeton 

(2009). The solid continuum element with 8-node with reduced-integration (C3D8R) is 

used to simulate the soil. The same element is used to model the conductor with an 

elastic-perfect plastic material model with von Mises failure criterion. The yield 

strength of the steel is 414MPa. The conductor is modeled down to a depth of 20.2m 

below the clay surface, which is the prototype length of the conductor. The bottom of 
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the conductor and soil is fixed at all degrees of freedom to facilitate the build-up of the 

initial stress of the soil.  

6.3.2 Soil constitutive model 

        Various soil constitutive models are used to predict the lateral response of the 

conductor. The Tresca model is elastic-perfect plastic with yield stress taken as the 

undrained shear strength. The undrained shear strength is interpreted from the PCPT 

test and is referred to the DSS test. Considering the different time period for peak strain 

in the DSS test and the centrifuge test, an empirical equation was used by Jeanjean 

(2009) to consider the loading rate effect. Thus the undrained shear strength interpreted 

from the PCPT test was increased by 27% to consider the loading rate effect for the FE 

analysis. Resonance column tests reported by Templeton (2009) showed that the ratio 

of 
maxG  to the loading rate adjusted undrained shear strength was about 550. Thus the 

maxG  profile is obtained from the loading rate adjusted undrained shear strength as 

shown in Figure 6.1 (d). The elastic shear modulus in the Tresca model thus takes this 

maxG  profile. The OCR profile in Figure 6.1 (c) is designated in the MCC model by 

assigning the initial void ratio in the ABAQUS through a subroutine. All the above 

models (except for the Tresca model) take the soil effective Poisson‟s ratio as 0.25. For 

the Tresca model, the analysis is conducted through the total stress analysis. Thus the 

undrained condition is ensured by the incompressibility of the soilwhich is simulated 

using a soil Poisson‟s ratio of 0.495.        For the AZ-Cam clay model, the basic critical 

state parameters are presented in Table 6.1. In the general stress space, Mohr-Coulomb 

criterion is used to determine the critical state stress ratio and M  is expressed in the 

form of Equation 4.1 as 

 

 
0.3

0.4

3 1 0.384sin 3

M 




  

  6.1 
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        Experiments carried out by Atkinson & Richardson (1985) suggested that as far 

as cohesive soils were concerned, flow seemed to be associated. However, the 

experimental  

study of Lewin & Burland (1970) and Wong & Mitchell (1975) showed quite clearly 

that the flow rules were non-associated. Thus it is hard to determine the flow rule in 

the current study due to the limited soil data. If associated flow rule is used with  M   

expressed in Equation 6.1, the Lode‟s angle at the critical state in the plane strain 

condition will be either 30  or 30 . This is unrealistic as most soils fail with Lode‟s 

angle lies between 10 ~ 25   (Potts & Zdravkovic, 1999). It is thus appropriate to use 

non-associate flow rule in the current study. Randolph & Wroth (1981) assumed the 

failure Lode‟s angle was zero under plane strain condition to analyze the stress state 

along the shaft of the pile. For simplicity, non-associated flow rule is used and the 

failure Lode‟s angle in plane strain condition is assumed to be zero in the current study. 

Thus the plastic potential is a circle in the deviatroic plane, which is also adopted by 

Mita (2002). 

        As the triaxial testing data on Alwhite kaolin clay is unavailable, it is thus not 

able to determine wR , T  and  . Thus the MCC yield surface is used as the bounding 

surface on the wet side, resulting in 2.0wR  . The clay in the centrifuge was lightly 

overconsolidated. Since T  and   are only applicable to heavily OC clay, which was 

concentrated on the first upper 2m. Besides, the stresses at the upper 2m are relatively 

small, assuming typical values of T  and   would thus be expected to have a minor 

effect. Thus 0.9T   and 0.5   will be used in the present study for whole range of 

Lode‟s angle.  
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        It is well known that the 
maxG  depends on the mean effective stress (Viggiani & 

Atkinson, 1995; Potts & Zdravkovic, 1999; Clayton, 2011). Thus it is appropriate to 

express the measured value of 
maxG  in the form of Equation 2.11 to associate the 

maxG  

to the mean effective stress. Similar approach was used by Dasari (1996) in a small 

strain Cam clay model and Subhadeep (2009) in a hyperbolic model. Besides, from the 

cyclic modeling of view, it is inappropriate to fix the value of the 
maxG  during the 

analysis. Because in the AZ-Cam clay model formulation, the clay behavior 

immediately after a loading reversal is almost elastic and the shear modulus takes the 

value of 
maxG . However, this value of 

maxG  may be different from the 
maxG  value at the 

initial loading due to the change of p  during the cyclic loading. Similar simulation to 

allow the 
maxG  to change with the p  under cyclic loading can be seen from Dasari 

(1996) and Papadimitriou & Bouckovalas (2002). 

        However, it is difficult to match the 
maxG  profile in Figure 6.1 (d) if Equation 2.11 

is used. This is because the OCR value at the deeper depth is almost normally 

consolidated and the exponent of p  in Equation 2.11 cannot exceed 1.0 (Clayton, 

2011). As the comparison of p-y curves, which will be presented below, concentrated 

on the upper 10 diameters of clay, Equation 2.11 is thus used to match the maxG  profile 

in the upper 10m. However, it is noted the predicted global load-displacement response 

may be softer due to the deviation of the used maxG  from measured value. This issue 

will be further discussed below. Thus the maxG  used in the current study is obtained 

from Equation 6.2 and can be seen from Figure 6.4. 

0.7max 100
r r

G p
OCR

p p

 
  

 
  6.2 
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No information is available to determine  . As discussed in Chapter 5, the model 

prediction is insensitive to  . Thus   is taken as a typical value from the simulation in 

Chapter 5 of 4. The decreasing rate of shear modulus r  is obtained from the 

parametric study of 0CK UDSS  test reported by Jeanjean (2009). As can be seen from 

Figure 6.5, the normalized stress-strain curves are relatively insensitive to the value of 

r , thus 6r   will be used in the current study. The shakedown parameter is 

assumed to be zero as the number of loading cycles is relatively small. Table 6.2 

summarizes the parameters used in the current study for the AZ-Cam clay model. 

6.3.3 Initial stresses and analysis type 

        In ABAQUS, the initial stresses of soil have to be assigned. Based on Figure 6.2 

(b), equivalent effective unit weight with 35.74 /kN m  for the upper 10m layers and 

36.40 /kN m  for the rest part is used in the ABAQUS analysis. The initial stress is 

assumed to take the common form as follows 

 sin

h nc vK OCR


 


    6.3 

where ncK  is assumed to be  1 sinncK   . Thus Equation 6.3 gives the initial 

lateral stress as 

0.360.64h vOCR     6.4 

        The installation process of the conductor will not be simulated in the current study, 

and the conductor is assumed to be wished-in-place for all the analyses. The loading is 

assumed to be fully undrained. The undrained loading could be achieved by running 

coupled fluid-solid analysis (Transient type) in ABAQUS with zero flow at all the 

boundary conditions. Accordingly, the default pore-fluid element (with additional 

degree of pore pressure) in ABAQUS will be used. However, for the simulation using 
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the Tresca model, it is not necessary to do so as the analysis is conducted under total 

stress, and no information on pore pressure will be available. 

        In all the analyses, the interface between the pile and soil is tied (share the same 

nodes at the interface) that the pile and soil share the same nodes at the interface. Thus 

no separation is allowed during loading and unloading process. It is noted that it is 

better to introduce contact analysis in the interface between the soil and the conductor 

to allow the separation of the soil and the conductor. However, it is beyond the ability 

of ABAQUS to run coupled fluid-solid analysis with UMAT when the contact pair is 

introduced. An alternative method is that by modifying the UMAT, a very large bulk 

modulus of water (compared to the bulk modulus of soil skeleton) is introduced to 

simulate the undrained condition. Under this condition, the analysis is conducted 

through total stress analysis in ABAQUS, but the constitutive law is still based on the 

effective stress. Thus it is possible to run ABAQUS with UMAT and contact analysis. 

However, this method suffers from convergence problem during cyclic loading in the 

current study. Thus there may be limitations within the implementation of the model in 

the current study. 

6.4 Mesh size and element type sensitivity study 

        As linear solid element is used to model the soil and the conductor, the size of 

elements immediately adjacent to the conductor should be relatively fine in order to 

obtain relatively accurate result. It is thus necessary to conduct mesh sensitivity study 

to make sure the mesh size is fine enough to obtain reliable results. Three types of 

mesh sizes are used in the current study to address the effect of mesh size: 1) coarse 

mesh; 2) medium mesh; 3) fine mesh as can be seen from Figure 6.6 to Figure 6.8. For 

coarse mesh, the well conductor and soil are divided into 12 equal parts 
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circumferentially (half model). One layer of elements is used to simulate the wall 

thickness in the radial direction. Immediately adjacent to the conductor (up to 2 outer 

diameters of the conductor), 4 layers of elements are used in the radial direction, 

beyond which, the mesh size gradually increases, with maximum size ratio of 25 and 

totally 5 layers of elements in radial. In the vertical direction, for upper 10m, the mesh 

size increases gradually with maximum size ratio of 10 and totally 10 layers of 

elements. From 10m to 20.2m below the clay surface, 6 layers of elements with equal 

size in vertical direction are used. For the medium mesh, the mesh of the conductor 

remains the same, the number of elements in the radial direction is doubled comparing 

to the coarse mesh. The number of elements in the vertical direction is doubled 

comparing to the coarse mesh for the upper 10m. The rest remains the same. For the 

fine mesh, two layers of elements are used to model the conductor wall thickness. The 

number of elements in the radial direction is doubled comparing to the medium mesh. 

The number of elements in the vertical direction is doubled comparing to the medium 

mesh in the vertical direction. The rest remains the same as the medium mesh.  

        Figure 6.9 presents the lateral load-displacement curves at the conductor head. All 

the predictions use 8 nodes brick element with reduced-integration (C3D8R). As can 

been seen, relatively large discrepancy exists between the predicted response using the 

coarse mesh and the fine mesh. However, the predicted response between the medium 

mesh and the fine mesh is quite small. It is thus safe to conclude that using the medium 

mesh is able to obtain relatively accurate result. To further refine the mesh size of the 

fine mesh will be inefficient to improve the accuracy compared to the increased 

computational time. Therefore, the fine mesh is appropriate in order to achieve 

accurate results. 
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        A number of continuum element types are available in ABAQUS. As the current 

study excludes contact and impact analysis, generally the second-order elements (20 

nodes) provide higher accuracy than the first-order elements (8 nodes) (ABAQUS, 

2011). Second-order reduced-integration elements in ABAQUS/Standard generally 

yield more accurate results than the corresponding fully integrated elements. However, 

for first-order elements, the accuracy achieved with full versus reduced integration is 

largely dependent on the nature of the problem (ABAQUS, 2011). Simulation carried 

out on a cantilever beam shows the results consistent with the ABAQUS manual as 

shown in Figure 6.10 (the geometry and the mesh of the cantilever beam is the same as 

the conductor described above, but the material model is linear elastic) and first-order 

elements with reduced integration can achieve good accuracy for bending related 

problems.  

        Figure 6.11 shows the conductor head lateral load-displacement response using 

different element types (Tresca model). As can be seen, 8 nodes brick element (first 

order) with full-integration (C3D8) predicts a much stiffer response than other 

elements. The prediction is improved by refining the mesh size. However, the 

predicted response is still stiffer compared to other types of elements. Thus C3D8 

element is not appropriate to simulate the lateral response of the conductor. The 

predictions using reduced-integration lie closely, whether the element is 8 nodes or 20 

nodes (second order). For the medium mesh, C3D8R element predicts a slightly stiffer 

response than the 20 nodes brick element with reduced integration (C3D20R). For the 

fine mesh, the prediction from C3D8R element is almost the same the corresponding 

C3D20R element. Considering the computational time, it is thus appropriate to use 

C3D8R element with fine mesh or to use C3D20R element with medium mesh. 
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        For the MCC model and the AZ-Cam clay model, the simulation is conducted 

through the effective stress, and the undrained condition is simulated through the 

coupled fluid-solid analysis with zero flow at the boundary condition. Thus, the 

volume change of the whole model is zero. It is thus not appropriate to use 20 nodes 

brick element with full-integration (C3D20) as this type of element will suffer from the 

volumetric locking for incompressible elasto-plastic material (ABAQUS, 2011). For 

C3D20R element, if the strains exceed 20% to 40%, the volumetric locking will also 

occur for incompressible elasto-plastic material (ABAQUS, 2011).  

        Based on the above discussion, it is thus appropriate to use C3D8R element with 

fine mesh to simulate the lateral response of the conductor, and all the results in the 

following contents are based on this type of element and mesh size. 

6.5 Other simulation from the literature 

        Templeton (2009) simulated the above centrifuge test under monotonic loading 

using the commercial software ABAQUS. The conductor was modeled with an elastic-

perfect plastic material model with von Mises criterion. The yield stress is 414 aMP . 

The constitutive model for soil is a semi-empirical elastic-plastic work hardening 

model with Mises yield. The elastic region is taken at below 10% of the ultimate 

strength, beyond which it is elastic-plastic. The input 
uS  profile is the same as the 

value used in the Tresca model in the current study, which is the loading rate adjusted 

uS  interpreted from the PCPT test reported by Jeanjean (2009) as shown in Figure 6.15. 

The input elastic shear modulus takes the profile of the 
maxG , which is the same as the 

value used in the Tresca model in the current study as shown in Figure 6.1 (d). The 

analysis was conducted using a total stress method. However, only the predicted p-y 

curves for the centrifuge test under the monotonic loading are reported by Templeton 
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(2009). The predicted conductor head load-displacement response under monotonic 

loading and the prediction under the cyclic loading were not presented in the paper. 

        Templeton (2009) also conducted a FE analysis of a real offshore site problem 

under cyclic loading, which is quite similar to the above centrifuge problem (in the 

prototype scale). The geometry of the FE model and the soil constitutive model of the 

two problems are the same. The size and the material parameters of the conductor are 

the same. The input 
uS  in the FE model for this real offshore site problem was 

obtained from the DSS test, but the author did not present the DSS test data in the paper. 

6.6 Prediction of the response under monotonic loading 

6.6.1 Head response 

        Simulation is carried out for a free head conductor subjected to lateral 1m 

displacement. Figure 6.12 shows the deformations of the soil and the conductor. 

Caution should be paid on the reliability of results from the large deformation. 

However, this issue is beyond the scope of the current study. As can be seen from 

Figure 6.12 (b), the conductor is approaching yield due to the large lateral 

displacement. The maximum von Mises stress is about 408 aMP , which occurs at about 

6m (about 7 diameters of the conductor) below the clay surface. Thus the conductor 

remains in the elastic zone. From Figures 6.11 (c)-(f), the soil in front of the conductor 

is pushed upward and compressed away from the side of the conductor. Meanwhile, 

the soil at the back of the conductor flows downward, and the surrounding soil flows 

into the back of the conductor. The soil in front and at the back of the conductor flows 

horizontally in the same direction with the displacement of the conductor. However, 

the soil at the side of the conductor flows horizontally backward. The predicted soil 
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flow mechanism is quite realistic when compared to the flow mechanism observed in 

the centrifuge test as can be seen from Figure 6.13. 

        Figure 6.14 shows the predicted and measured load-displacement curves at the 

conductor head. The prediction of API (soft clay option) depends on the uS  profile. 

The uS  profile is rather sensitive to the estimation methods as shown in Figure 6.15. 

The uS  profile interpreted from the PCPT test from Jeanjean (2009) and the one 

calculated from the AZ-Cam clay model were used in the API calculation using 

USFOS (USFOS, 2012). 

        The results from the numerical studies all over predict the lateral ultimate 

capacity of the conductor as measured from the centrifuge test (the result from API 

will ultimate exceed the measured value beyond 1m, which has not been shown). 

Although the p-y curves from the AZ-Cam clay model agree well with p-y curves from 

the centrifuge data (as will be shown in the next section), the predicted head response 

differs significantly from the measured head response. Further, the prediction from the 

AZ-Cam clay model agrees quite well with the centrifuge test up to lateral 

displacement of 0.2m. For the Tresca model, the predicted response agrees well with 

the centrifuge result up to 0.4m. Besides, the centrifuge deduced p-y curves all show a 

much higher strength than the API p-y curves. However, the predictions from the API 

method show a higher global strength. This contradicting problem may need further 

discussion. 

        The deviation from the model prediction to the measured data may result from the 

large deformation of the soil. Besides, as the interface between the soil and the 

conductor is tied in the FE model, thus no separation is allowed. This tie simulation 
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may give a stiffer response, which may be another reason for the deviation of the 

prediction to the measured data at large deformation.  

        For the AZ-Cam clay model, it is noted that the input 
maxG  is smaller than the 

measured value 10m below from the clay surface. The adopted smaller 
maxG  may give 

a softer response. As shown in Figure 6.16, at small head lateral displacement (for 

example, 0.25m), the deflection of the conductor 10m below the clay surface is almost 

negligible, thus the effect of smaller 
maxG  used in the FE model could be neglected. 

However, at larger head lateral displacement (for example, 0.5m), the conductor 

deflection 10m below the clay surface cannot be neglected. Thus the current prediction 

of load-displacement response may be softer than the one used with the measured 
maxG  

profile. 

        The above predictions are largely model-dependent. The API method predicts 

lowest lateral load compared to other models. The prediction from the total stress 

analysis with the Tresca model lies above the API method. Predicted response from the 

MCC model and the AZ-Cam clay model lie closely, where the AZ-Cam clay model 

gives a slightly lower lateral strength at the later stage and a high stiffness at the early 

stage.  

6.6.2 P-y curves 

        The p-y curves obtained from the centrifuge test were based on the classical beam 

theory that the pressure p could be obtained from double differentiate the moment 

profile. The moment profile was obtained from discrete measurements of local strain 

along the conductor. The lateral displacement y could be obtained from double 

integration of moment profile combining the specific boundary condition at the 
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conductor head and conductor tip. 6
th

 order polynomial curve was used by Jeanjean 

(2009) to match the moment profile. The lateral displacement y in the numerical study 

could be obtained directly from the output of ABAQUS. The lateral pressure p is 

calculated by dividing the outer diameter of the conductor from total node force (the 

node force integrated from the stress at the integral points of an element) at the specific 

depth. Figure 6.17 shows the p-y curves from the centrifuge test and the predicted 

values from other models. 

        As can be seen from Figure 6.17, the prediction from Templeton (2009) agrees 

quite well with the centrifuge test result for all the presented p-y curves. For the AZ-

Cam clay model, the general agreement between the prediction and the test result is 

satisfactory, but the model under predicts the limiting pressure at depth 1.5 diameters 

and 11.5 diameters below the clay surface. As can be seen from Figure 6.12 and Figure 

6.13, the FE model predicts a weldge failure mechanism in the shallow depth, which is 

consistent with the failure mechanism assumed in API (2000). However, it remains 

unknown whether a weldge formed in the centrifuge test. Thus it is difficult to explain 

the deviation in the shallow depth. For the MCC model, within expectation, it over 

predicts the ultimate pressure. As no small strain stiffness is specified in the MCC 

model, the model under predicts the stiffness at initial stage. API predicts a rather low 

stiffness and the ultimate pressure when compared to the test result. 

        Thus in assessing the fatigue life of the well conductor, the much stiffer p-y 

curves obtained from the AZ-Cam clay model indicate the lateral displacement at the 

well conductor head would be significantly lower than the value predicted by the API 

method. Thus based on the current numerical studies, the stress in the well conductor 

may be over predicted by the API method, resulting relatively larger cyclic damage to 
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the conductor. Therefore, the fatigue life predicted by the API method may be overly 

conservative based on the current numerical study. 

6.7 Prediction of the response under cyclic loading 

6.7.1 Displacement control cyclic loading 

        Figure 6.18 and Figure 6.19 show the MCC model prediction and the AZ-Cam 

clay model prediction on displacement control cyclic loading, respectively. Loading 

lasts for 10 numbers of cycles with the maximum lateral displacement of 0.175m and 

the minimum of 0.035m. Compared to the centrifuge test result as in Figure 6.20, the 

AZ-Cam clay model could realistically simulate the hysteretic behavior in the cyclic 

loading as well as the softening behavior. However, as the unloading process of the 

MCC model is purely elastic and the elastic modulus remains the same during 

unloading, the MCC model is not able to predict the hysteretic behavior in cyclic 

loading and the softening will not occur.  

        Figure 6.21 shows the cyclic p-y curves at various depths. As can be seen, under 

displacement control cyclic loading, the cyclic degradation is quite significant that the 

pressure decreases with loading cycles. Besides, the degradation is much more severe 

for shallow depth than for deeper depth as the cyclic amplitude is much larger for 

shallow depth than deeper depth. 

6.7.2 Load control cyclic loading 

        The centrifuge test data on the load control cyclic loading are not available from 

Jeanjean (2009). As stated earlier, the FE simulation of the centrifuge test under the 

cyclic loading is not available from Templeton (2009), but he reported the FE 

simulation results of the real offshore site problem under load control cyclic loading, 
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and the FE model for the centrifuge study and real offshore site problem is quite 

similar as described in section 6.5. Besides, a typical 
uS  profile in the analysed 

offshore site was provided by Templeton (2009) as shown in Figure 6.15, but the 

author did not explicitly point out whether he used this typical 
uS  profile in the FE 

analysis and whether this typical 
uS  profile was obtained from the DSS test. As can be 

seen from Figure 6.15, the typical 
uS  profile is close to the 

uS  calculated from the 

proposed AZ-Cam clay model. Thus the prediction on the cyclic loading for the real 

offshore site problem in Templeton (2009) is used to qualitative compare the response 

from the proposed model for the centrifuge problem due to the similarity of the two 

problems. It is noted that it may be unfair to directly compare the response from the 

real offshore site problem to the response obtained in the current study for the 

centrifuge problem. Thus the comparison only focuses on the response trend instead of 

the detail. 

        Generally, the hysteretic behavior is reproduced quite well by both models. 

However, the predicted stiffness from the AZ-Cam clay model is significantly lower 

than the value predicted by Templeton (2009) as can be seen from Figures 6.19 (a)-(d). 

This deviation may result from the different 
uS  value of the real offshore site problem 

and the centrifuge problem. 

        Figure 6.23 shows the cyclic p-y curves obtained from load control cyclic loading 

using the AZ-Cam clay model. As can be seen, the curves follow the Masing‟s rule, 

which is explicitly specified in the model formulation. The accumulated deformation is 

not obvious and generally the conductor is able to reach or approach the previous 

maximum load level at the same displacement, thus the degradation is not severe, if 

any. 
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6.8 Summary 

        This chapter presents the predictions of the response of a well conductor in soft 

clay subjected to lateral loading using various soil constitutive models. For monotonic 

loading, the predicted conductor head load-displacement response agrees well up to 

0.2m with the centrifuge test by the AZ-Cam clay model. At larger displacement, the 

AZ-Cam clay model, the MCC model and the Tresca model all over predicted the 

response. The API method (soft clay option) predicts a much softer response than the 

measured value at smaller displacement. The predicted p-y curves from the AZ-Cam 

clay model agree quite satisfactory with the centrifuge tests. However, the MCC model 

largely over predicts the response and the API method under predicts the response. The 

p-y curves both from centrifuge test and numerical prediction using the AZ-Cam clay 

model show a much stiffer response than from the API method. Thus the actual stress 

in the well conductor under cyclic loading may be lower compared to the prediction 

following the API method. Therefore, the fatigue life may be under predicted by the 

API method.  

        For displacement control cyclic loading, the AZ-Cam clay model is able to predict 

the softening and the hysteretic behavior of the conductor. The predicted head response 

agrees reasonably well with the centrifuge test result. For load control cyclic loading, 

the stiffness predicted by the AZ-Cam clay model is much smaller than the value 

predicted by Templeton (2009). However, both models predict the hysteretic behavior 

well. For symmetric loading, the predicted response almost follows the Masing‟s rule. 

The above comparisons reveal that the AZ-Cam clay model is able to predict the 

salient behavior of the conductor in clay. Thus the model could be used to reasonably 

predict the boundary value problem, both under monotonic loading and cyclic loading 

with relatively small number of loading cycles.  
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Table 6.1 Summary of Alwhile kaolin properties (C-CORE, 2005; Jeanjean, 2009) 

Property Value 

Material Alwhile (Speswhile) kaolin 

sG  (specific gravity) 2.64 

  0.25 

  0.05 

N  3.58 

M  0.8 

0K  0.64 

vc  (consolidation coefficient) 21 secmm  

Strength ratio,  
n

u vS OCR    0.19, 0.67n    

Liquid limit (LL) 58% 

Plastic limit (PL) 32% 

Plasticity index 26 

 

 

Table 6.2 Model constants for the AZ-Cam clay model 

N      M  wR
 dR  

3.58 0.25 0.05 
 

 
0.3

0.4

3 1 0.384sin 3

M 



   

 2.0 2.0 

    T  maxG  r  k  

4 0.5 0.9 
0.7max 100

r r

G p
OCR

p p

 
  

 
 6.0

 
0 
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(a) Undrained shear strength uS  profile (Jeanjean, 2009) 

 

(b) Submerged density profile (Jeanjean, 2012) 
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(c) OCR profile (Jeanjean, 2012) 

 

(d) Distribution of maxG  reported by Templeton (2009) 

Figure 6.1 Clay information in the centrifuge test 
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(a) Conductor model used in the centrifuge test 

 

(b) Pre-augered hole             (c) Set up in the centrifuge test 

Figure 6.2 Model conductor in the centrifuge test (Jeanjean, 2009) 

 

Figure 6.3 Geometry of the model used in ABAQUS 
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Figure 6.4 maxG used in current study 

 

(a) 6, 4r    
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 (b) 10, 4r    

Figure 6.5 Stress-strain curves in 0CK UDSS  test 

 

Figure 6.6 Coarse mesh 
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Figure 6.7 Medium mesh 

 

Figure 6.8 Fine mesh 
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(a) Tresca model prediction 

 

(b) AZ-Cam clay model prediction 

Figure 6.9 Mesh sensitivity study-head response 
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Figure 6.10 Accuracy of different element types 

 

Figure 6.11 Element type study-head response 
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(a) Deformation of soil and conductor       (b) Yielding of the conductor 

 

(c) Displacement vector of soil    (d) Soil displacement contour-X direction 

 

(e) Soil displacement contour-Y direction   (f) Soil displacement contour-Z direction 

Figure 6.12 Deformation of soil and conductor at the end of the analysis 
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Figure 6.13 Observed deformation of soil (Jeanjean, 2009) 

 

Figure 6.14 Predicted and measured head load-displacement curves 
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Figure 6.15 uS  profile based on different estimation methods 

 

Figure 6.16 Conductor lateral deflections at various head lateral displacement 
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(a) 1.5 diameters below surface    (b) 4 diameters below surface 

  

(c) 6 diameters below surface    (d) 7 diameters below surface 

  

(e) 8 diameters below surface    (f) 9 diameters below surface 
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(g) 10 diameters below surface    (h) 11.5 diameters below surface 

Figure 6.17 Comparisons of the P-y curves 

 

 

 

Figure 6.18 The MCC prediction 
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Figure 6.19 The AZ-Cam clay model prediction 

 

Figure 6.20 Measured data after Jeanjean (2009) 
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(a) 4 diameters below surface    (b) 6 diameters below surface 

 

(c) 7 diameters below surface    (d) 8 diameters below surface 

Figure 6.21 Cyclic p-y cures under displacement control 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 6.22 Comparison of head load-displacement curves 
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(a) 4 diameters below surface        (b) 6 diameters below surface 

 

(c) 7 diameters below surface       (d) 8 diameters below surface 

Figure 6.23 Cyclic p-y cures under load control 
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Chapter 7 Conclusions and recommendations 

7.1 Conclusions 

The basic critical state models provide a rational framework for understanding soil 

behavior. A summary of the findings in this thesis is as follows: 

1) The proposed AZ-Cam clay model retains the simplicity of the basic critical state 

models. To smoothen out the degradation of stiffness, the bounding surface 

concept is used. In order to govern the peak strength of heavily OC clay under 

drained shearing, rather than a straight Hvorslev line, a curved line is adopted in 

the current study as the failure line on the dry side in lnv p  space based on the 

extensive test data of Atkinson (2007). To better model the undrained shear 

strength of heavily OC clay, the original CSL of the basic critical state models is 

repositioned in lnv p  space. Therefore, the peak strength and the undrained 

shear strength of heavily OC clays can be predicted quite satisfactorily. 

2) For single element tests, comprehensive comparisons of model predictions with 

laboratory test data are conducted on various clays (kaolin clay, Fujinomori clay 

and BBC) under various loading conditions. For monotonic loading, the model 

predictions on kaolin clay and Fujinomori clay are quite satisfactory, which 

demonstrate the capability of the model. The model is unable to predict the 

softening behavior of NC and lightly OC BBC which exhibits significant 

anisotropy. However, the agreement for heavily OC BBC is acceptable, even in 

0CK UDSS  tests, which is different from the triaxial shearing modes. Although the 

prediction of BBC is relatively unsatisfactory due to the isotropic assumption of 

the model, the failure envelope introduced does enhance the ability of the AZ-Cam 
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clay model in simulating heavily OC clays while retaining the simplicity of the 

model. The predicted variations of normalized undrained shear strength ratio and 

peak strength ratio with OCRs for various types of clays under different shearing 

modes show reasonable agreement which further verify the capability of the 

proposed model. 

3) For cyclic loading, by using a constant Poisson‟s ratio, the model predicted 

effective stress path matches the test data of Wroth & Loudon (1967) quite well, 

although the model is unable to predict the plastic strain occurred during the 

unloading process of in the fifth cycle. Further, the model simulates the cyclic 

behavior of Fujinomori clay quite satisfactory by using a constant Poisson‟s ratio. 

By incorporating small strain stiffness and the Masing‟s rule as well as Pyke‟s 

extensions, the model can predict the salient hysteretic behavior of Gualt clay 

reported by Dasari (1996). The model can also predict the softening behavior of 

kaolin clay quite well in the multi-stage cyclic loading. 

4) For boundary value problems, a well conductor in soft clay subjected to lateral 

loading is simulated by the proposed soil model and other common soil models. 

For monotonic loading, the predicted head load-displacement curve differs 

significantly among different soil constitutive models. Thus the predicted response 

of the well conductor is rather sensitive to the soil model employed. The predicted 

conductor head load-displacement response agrees well up to 0.2m with the 

centrifuge test by the AZ-Cam clay model. At larger displacement, the AZ-Cam 

clay model, the MCC model and the Tresca model all over predicted the response. 

The predicted p-y curves from the AZ-Cam clay model agree reasonably well with 

the centrifuge tests. However, the API method significantly under predicts the 
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stiffness in the initial loading and the ultimate strength at large deformation. 

Therefore, the fatigue life predicted by the API method may be overly conservative. 

5) For cyclic loading, the AZ-Cam clay model is able to predict the softening and the 

hysteretic behavior of the conductor in cyclic displacement control loading. The 

predicted head response agrees reasonably well with the centrifuge test result. For 

load control cyclic loading, the stiffness predicted by the AZ-Cam clay model is 

smaller than the value predicted by Templeton (2009) using a total stress elastic-

hardening soil model. However, both models predict the hysteretic behavior very 

well. 

7.2 Recommendations 

        Along with above listed advantages of the proposed model, there are several 

limitations in the current study. Thus some recommendations for future work are listed 

as follows: 

1) More high-quality triaxial test data are required to fully justify the ultimate strength 

parameter T introduced in the current study. T reflects a basic assumption made in 

the current study that the critical state of heavily OC clay will lie to the left of the 

original CSL of basic critical state models in lnv p  space. To test this 

assumption, high-quality CIU tests on heavily OC clay should be carried out. 

However, as heavily OC clay will exhibit strain-softening when drainage occurs, if 

local drainage occurs in the undrained shearing, localized shearing band may form 

within the sample. The shear band will make the soil sample a boundary value 

problem. Thus the information after the formation of the shear band could not be 

used to test the constitutive relations. It is thus critical to control the drainage 

condition in CIU test. 
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2) Theoretical efforts should be directed to solve the negative Poisson‟s ratio problem 

when incorporating the small strain stiffness, although the effect of negative 

Poisson‟s ratio is negligible based on the current study. As the bulk modulus 

adopted in the current study is the same as that in basic critical state models, if the 

shear modulus takes the value at very small strain at initial loading, the Poisson‟s 

ratio will be negative in the very small stain region. With the increasing of strain or 

stress level, the shear modulus will decrease, thus the Poisson‟s ratio will become 

positive. A negative Poisson‟s ratio is theoretically acceptable and it seems to have 

little effect on the predicted behavior in the current study. Further research should 

be paid on this issue. A possible way is to adopt a very large bulk modulus in the 

very small strain region. However, the simulation and measurement of the bulk 

modulus in the very small strain region will inevitably introduce additional model 

parameters and add testing complexity. 

3) Continued effects should be directed on the elastic shear modulus under the cyclic 

loading. As discussed previously, the hysteretic behavior of clay under the cyclic 

loading is rather sensitive to the choice of the shear modulus. A constant shear 

modulus may not be easy to choose in a boundary value problem if the cyclic strain 

level is unknown. A constant Poisson‟s ratio is theoretically unacceptable if the 

bulk modulus follows the formula in the basic critical state models. Incorporating 

maxG  together with the Masing‟ rule works reasonably, but cannot capture the 

whole behavior under the cyclic loading. For example, the Masing‟s rule used in 

the current study under predicts the decreasing of shear stress in the unloading 

process. Thus the predicted damping is much larger than the test data of Subhadeep 

(2009). 
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4) The proposed model can only predict the isotropic cyclic behavior of NC to lightly 

OC clay. For heavily OC clay, both theoretical modeling and test data are needed 

to further improve the model. For intact soil, which exhibit significant anisotropy, 

more sophisticated anisotropic model will be needed. 

5) For the boundary value problem, more field cases should be employed to further 

verify the proposed model. The major purpose of the proposed model is to better 

simulate the peak strength and ultimate strength of heavily OC clay, but the soil in 

the centrifuge test simulated in the current study is lightly OC clay. Therefore, it is 

meaningful to further simulate the boundary value problem consisting of heavily 

OC clay by using the proposed AZ-Cam clay model. 
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Appendix A Classical theory of elasto-plasticity 

A.1 Stress and strain variables 

A.1.1 Stress definition 

        Following Chen & Mizuno (1990) and Grammatikopoulou (2004), stress is 

defined as a second order tensor which contains nine components as follows: 

x xy xz

yx y yz

zx zy z

  

  

  

 
 

  
 
 

σ

 

 A.1 

where   denotes the normal stress,   denotes the shear stress and the subscripts 

denote the direction and surface where the stress acts. Generally following equation 

holds for shear stress as 

 

ij ji    A.2 

where ,i j  refers to , ,x y z . Therefore only six independent components are required to 

fully define the stress state. The stress tensor in Equation A.1 thus can be simplified 

into a column vector as follows: 

   , , , , ,
T

x y z xy yz zx         A.3 

A.1.2 Strain definition 

        In a similar way to define the stress, the strain is also a second order tensor 

defined by nine components as follows: 
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1 1

2 2

1 1

2 2

1 1

2 2

s s

x xy xz

s s

yx y yz

s s

zx zy z

  
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 
 
 
 
 
 
 
  

ε   A.4 

where   denotes the normal strain, s  denotes the engineering shear strain and the 

subscripts denote corresponding direction and surface. Similarly, since 
s s

xy yx  , 

s s

yz zy   and 
s s

zx xz  , only six components are required to fully determine the strain 

state. Equation A.4 is thus simplified into a column vector as follows: 

   , , , , ,
T

x y z xy yz zx         A.5 

A.1.3 Stress invariants 

        From the geotechnical engineering point, a typical and suitable choice of three 

stress invariants is provided as follows: 

Mean stress:  

1
( )

3
x y zp        A.6 

Deviatoric stress:  

       
1/2

22 2 2 2 21
2 2 2

2
x y z xy yz zxJ p p p     

 
          
 

s : s   A.7 

or 3q J   A.8 

Lode‟s angle: 
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1 3 3 det( )
sin

3 2 1

2

 

 
 
 

   
   
        

s

s : s

  A.9 

where :  is the tensor scalar product,  det   is the determinant of a tensor, and s  

denotes the deviatoric stress tensor as follows 

x xy xz

yx y yz

zx zy z

p

p

p

  
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 
 

  
  

s   A.10 

A.1.4 Strain invariants 

        As the material response can be divided manually into the volumetric response 

and deviatoric shear response, two corresponding strain invariants are as follows: 

Volumetric strain: 

v x y z        A.11 

Deviatoric strain: 

 

1/2
2 2 2

1/2 2 2 22 2 2 2
3 3 3

v v v
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       
s se : e  

 A.12 

or 
1

3
s dE    A.13  

where se  represents the deviatoric components of the strain tensor defined as follows: 
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        When a material element undergoes deformation, the work done by the external 

loads is independent of the choice of reference axes. Thus the internal energy obtained 

by multiplying the stress and strain invariants should also be independent of the 

reference axes. The choice of strain invariant is based on this criterion, which 

obviously depends on the proper choice of stress invariants as well. The incremental 

work which obtained by multiplying the stress and strain state can be expressed as 

follows: 

   
TwdE d    A.15 

where wE  is the energy in the material element, „d‟ represents the small change or 

„incremental‟ as will be used throughout this thesis. 

Alternatively, the incremental energy can be expressed as follows: 

w

v ddE pd JdE    A.16 

w

v sdE pd qd     A.17 

The first term of the right hand of Equation A.16 (or Equation A.17) is the incremental 

energy resulted from the volumetric response, the second term of the right hand of 

Equation A.16 and Equation A.17 represents the incremental energy resulted from the 

deviatroic shear response. From the definitions of deviatroic stress and strain, Equation 



252 

 

A.16 and Equation A.17 actually are identical as long as deviatoric stress J 

corresponds to deviatoric strain dE  and deviatoric stress q corresponds to deviatoric 

strain s . 

A.2 Key concepts of plastic theory 

        In order to evaluate the plastic strain completely, following Yu (2006), Mita 

(2002) and Grammatikopoulou (2004), conventional plastic theory requires three main 

ingredients: yield condition, plastic flow rule and the hardening rule. All of those three 

ingredients will be discussed in the following sections. 

A.2.1 Yield criterion 

        Under any possible stress combination, the yield criterion separates the elastic 

zone, where the material behaves purely elastically from the elasto-plastic zone, where 

the material undergoes both elastic and plastic strains. Mathematically, the yield 

surface can be specified as a yield function F , which is a function of stress state    

and the hardening parameters  k : 

    , 0F k    A.18 

         The behavior of the material thus can be determined from the yield function. 

When 0F                   stress state remains in the yield surface, the behavior is purely 

elastic; 0F                  stress state remains on the yield surface, the behavior is elasto-

plastic; 0F                      theoretically impossible stress state. 
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A.2.2 Flow rule 

        The flow rule is employed to determine the plastic strain increments. The most 

widely used theory is to assume there exists a plastic potential in the general stress 

space, whose outward normal vector at the current stress state represents the plastic 

strain increment vector. The flow rule is thus can be expressed as the following 

formula (von Mises, 1928; Melan, 1938; Hill, 1950): 

 
    ,

p
P m

d





  
  

  

  A.19 

where  pd  is the plastic strain increment vector,   is a unknown non-negative 

scalar. P  is the plastic potential and is specified as 

    , 0P m    A.20 

where  m are immaterial since only the differentials of the plastic potential to the 

stress components are required in the flow rule.  

        If the plastic potential is assumed to be the same the yield function,

         , ,P m F k  , then the flow rule is associated and a normality condition 

applies; however, if the plastic potential is different from the yield function, 

         , ,P m F k  , then the flow rule is non-associated. 

        Two things have to be noted in Equation A.19. One is Equation A.19 only 

determines the relative magnitude of the plastic strain increment. As the scalar   

remains unknown at this stage, the actual plastic strain increments will not be known 

until   is solved. The other is that when Equation A.19 holds, an implicit assumption 
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of coaxial assumption is satisfied. Coaxial assumption states that principal axes of 

plastic strain increments coincide with those of the stress. This assumption is based on 

the observation of de Saint-Venant (1870) for metals, and has been the foundation of 

almost all the plasticity models used in engineering, although it may not be valid for 

soils (Yu, 2006). 

A. 2.3 Hardening rule 

        The hardening of a material is a process that involves the yield surface changing 

in size, location or shape or even the combination of those changes with the loading 

history (often measured by accumulated plastic strains or the total plastic work per 

volume) (Hill, 1950). The hardening rule thus describes the evolution of the yield 

surface in the course of plastic strain or plastic work through affecting the hardening 

parameters  k . The three most widely used hardening rules are presented in the 

follows: 

(i) Isotropic hardening rule. Under isotropic hardening rule, the centre of the yield 

position will remain statuary in the stress space, while the size will expand or 

contract isotropically. 

(ii) Kinematic hardening rule. It assumes that the yield surface translates in the stress 

space while the shape and the size remain unchanged. This is consistent with the 

Bauschinger effect observed in the uniaxial tension-compression test.  

(iii) Mixed hardening rule. The mixed hardening rule combines the features of 

isotropic hardening and kinematic hardening. 
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A.3 Elastic matrix 

        The general elastic matrix relates the increments of stress to increments of strains 

can be expressed as follows: 

   ed D d       A.21 

where  d  is the total stress increment vector and  d  is the total strain increment 

vector. eD    represents the elastic matrix, the superscript e denotes elastic and  

represents the expression is a matrix. It has to been noted that although Equation A.21 

is specified here for the increments of elastic stress and elastic strain, this expression is 

still valid when the material behaves elasto-plastically as long as the total strain 

increment was substitute by the elastic strain increment accordingly. 

        From the engineering point, the elastic matrix is a six by six symmetric matrix. 

Following generalized Hooke‟s law, if the elastic matrix contains 21 material constants, 

the material is called linear anisotropic material (Chen & Mizuno, 1990). By 

introducing fully isotropic condition, the number of material constants can be reduced 

to two. Chen & Mizuno (1990) specifies the linear isotropic elastic matrix (as linearity 

and isotropicity always hold in the present study for elastic behavior, the linear 

isotropic elastic matrix is called elastic matrix for short) as follows: 
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  A.22 
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where ,L   are called Lame‟s constants. Alternatively, the elastic matrix can be 

specified in terms of more frequently used parameters Young‟s modulus E  and 

Possion‟s ratio  as follows: 

  

1 0 0 0

1 0 0 0

1 0 0 0

1 2
0 0 0 0 0
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  A.23 

        For geotechnical purpose, as soil often undergoes volumetric strain, and behaves 

quite differently under isotropic mean stress and deviatoric stress, it is convenient to 

define the elastic matrix in terms of elastic shear modulus G  and the bulk modulus K  

as follows: 

4 2 2
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3 3 3

2 4 2
0 0 0

3 3 3

2 2 4
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  A.24 

Equation A.22, A.23 and A.24 can be inter-related. Mathematically, any two 

parameters from the above six can fully determine the elastic matrix. The relations 

between the six elastic parameters are specified as follows: 
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
  A.28 

A.4 Formulation of elasto-plastic matrix 

        Providing the three key aspects of plastic theory in section A.2 and the elastic 

matrix in section A.3, these four ingredients can thus be employed to form the elasto-

plastic matrix following Chen & Mizuno (1990) and Potts & Zdravkovic (1999). 

        Following the conventional method, the stress-strain relationship is specified 

through an incremental way in the form of Equation A.29: 

   epd D d       A.29 

where epD    represents the elasto-plastic matrix, the superscript ep  denotes the 

elasto-plastic, as opposed to the purely elastic behavior. 

        The total strain increments vector  d  can be split into two parts as follows: 

     e pd d d      A.30 
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where  ed  denotes the elastic strain increments vector and  pd  denotes the plastic 

strain increments vector.  

        Combining Equation A.21 and Equation A.30, the total stress increments can be 

expressed as follows: 

      e pd D d d        A.31 

        The incremental plastic strains can be evaluated from the flow rule. Substitute 

Equation A.19 into Equation A.31 yields: 

   e e P
d D d D 



 
           

  A.32 

As the parameter   remains unknown, additional work has to be done to determine  . 

        When the material is elasto-plastic, further loading should meet the consistency 

condition. Mathematically, the consistency condition can be expressed as follows: 

    , 0dF k    A.33 

Using the chain rule of differentiation gives: 

    0

T T
F F

dF d dk
k




    
     

    
  A.34 

The hardening parameters  k  are related to the plastic strains as follows: 

   p

p

k
dk d



 
   

  A.35 

Substitute Equation A.35 into Equation A.34 yields 
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  A.36 

Combining Equation A.19 gives 

  0

T T

p

F F k P
dF d

k


  
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  A.37 

The scalar quantity   is thus obtained as 

 
1

T
F

d
H




 
   

 
  A.38 

where H  denotes the hardening modulus (or plastic modulus) as follows: 

T

p

F k P
H

k  

       
            

  A.39 

        Having determined the unknown scalar quantity  , combine Equation A.32 and 

Equation A.39 gives another expression of   as 
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  A.40 

Equation A.32 thus can be further modified by substituting Equation A.40 into it as 
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  A.41 
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After a simple manipulation of Equation A.41, the elasto-plastic matrix is obtained as 

follows: 

T

e e

ep e
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  A.42 

A.5 Loading and unloading conditions 

        Three possible states exist as loading, unloading and neutral loading. The criterion 

has to be specified to distinguish loading, unloading and neutral loading. A universal 

criterion to determine the loading and unloading for all materials (both strain 

hardening and strain softening) was provided by Pastor et al. (1990) and Manzanal et 

al. (2011) as follows: 
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eF
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Neutral loading:   0

T
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Loading:   0
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eF
dF d



 
  

 
  A.45 

where  ed  is the elastic stress increment vector if the material behaves purely elastic 

under the giving strain increments and can be determined as follows: 

   e ed D d       A.46 
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Appendix B Solving nonlinear equations in ABAQUS 

        In ABAQUS, one of the essential parts is to solve a set of simultaneous equations 

in the form  

Ku P   B.1 

where K  is the global stiffness matrix, u  is the global nodal displacements vector and 

P  is the global load vector. 

        For linear problems, K  would remain constant during the solution. It is thus quite 

straight forward to solve Equation B.1. As long as K  is non-singular, the solution of 

Equation B.1 will be unique. However, in a nonlinear analysis, the solution cannot be 

obtained by solving a single system of linear equations, as would be done in a linear 

problem. Therefore, ABAQUS/Standard breaks the simulation into a number of 

increments (In Abaqus/Standard, the concept of time increment is used, as the concept 

of „time‟ is not essential in solve nonlinear equations in the current study, for 

simplicity, the concept of time has been ignored) (ABAQUS, 2011). Equation B.1 is 

thus expressed in an incremental form as 

i i id dK u P   B.2 

where the superscript i  indicates ith  increment.  

The Newton-Raphson method is used in Abaqus/Standard to solve each load 

increment. For each increment, the initial global stiffness 
0

i
K  (where the subscript 

indicates the number of iteration), which is evaluated from stress and/or strain states at 

the beginning of each increment is used to predict the incremental displacement vector 

1

idu  due to the increment of load vector idP . The internal force vector 
1

i
I  is thus 
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possible to be defined from 
1

idu  (the determination of 
i

I  would be explained later). A 

residual load vector 
1

i
R  is thus can be evaluated as  

1 1

i i i R P I   B.3 

For a nonlinear problem, each component (every degree of freedom in the model) 

of 
1

i
R  will seldom be zero after each increment. Thus additional iterations are needed. 

The residual load vector 
1

i
R  is thus used instead of idP  to evaluate additional 

incremental displacement vector 
2

idu  in the second iteration, and a similar procedure is 

followed to evaluated the residual load vector 
2

i
R  after the second iteration. Thus 

generally, the iteration procedure in each increment can be summarized as 

1 1

i i i

j j jd d K u R   B.4 

i i i

j j R P I   B.5 

where the subscript j  indicates the number of iteration. 
0

i id dR P .  

        In Abaqus/Standard, by default, the global stiffness matrix will be updated based 

on the stress and/or strain states at the start of the ith  increment. Thus the Newton-

Raphson method is used. However, if 
0

i
K  remains the same during increments, or 

sometimes even a stiffness evaluated from a linear elastic assumption is used during 

each increment, then the method is the modified Newton-Raphson method. This is 

because the direct solution of Equation B.1 is always problematic due to the variation 

of global stiffness K  during the solution. Therefore, an initial solution should be 

estimated based on a specified global stiffness K  (for example, the global stiffness 

obtained by assuming the problem is linear elastic). As long as this estimated initial 
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solution is within the zone of attraction (Zienkiewicz et al., 2005), the satisfied 

solution could be reached after certain iterations. The basic philosophy of using the 

modified Newton-Raphson method is that updating global stiffness in each incremental 

process may be time-consuming. A constant global stiffness employed may be possible 

to reduce computational time. However, it is a trade-off process rather than a golden 

rule. Because as a constant global stiffness employed will increase the number of 

iterations, especially for highly nonlinear problems. Thus the relative efficiency of the 

Newton-Raphson method and the modified Newton-Raphson is rather problem-

dependent (e.g. nonlinearity of the material and the degree of freedom). Besides, the 

stress point algorithm used to integrate constitutive model will also affect the relative 

efficiency. A schematic representation of the Newton-Raphson method and the 

modified Newton-Raphson is shown in Figure B.1. 

        As for a nonlinear problem, the numerical iterative solution generally will not 

reach the exact solution. Thus certain criteria should be specified to terminate the 

iteration process whatever the iterative solution converges to the exact solution or the 

solution becomes divergent. In Abaqus/Standard, two criteria are used to terminate the 

iteration process when the solution converges. (i) Each component of the residual load 

vector is less than a tolerance value, by default of 0.5% and (ii) Each component of 

incremental load vector in the last iteration is small relative to the total corresponding 

incremental displacement, by default, the fraction is 1%. Both of these criteria must be 

satisfied before a solution is said to have converged for each increment. If the solution 

from an iteration is not converged, Abaqus/Standard performs another iteration. 

However, if after a certain number (by default is 16) of iteration the solution is still not 

converged, Abaqus/Standard reduce the incremental load vector idP (by default 25% 

of the previous value).  
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        The internal load vector 
i

jI  after jth  iteration is obtained as follows. The 

predicted incremental displacement vector after jth  iteration 
i

jdu  is used to evaluate 

the corresponding incremental strains at each integral point following standard FE 

procedures. The constitutive model is then integrated along the incremental strain path 

to update the stress states before the next iteration. 
i

jI  is thus obtained from integrating 

the updated stress states in the whole domain. The essential part of this process is 

integrating the constitutive model (stress point algorithm). The stress point algorithm 

used in the current study is described in Chapter 4. 

 

Figure B.1 Representation of the Newton-Raphson method (Potts & Zdravkovic, 1999) 
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Appendix C Common stress point algorithms 

        The most commonly used stress point algorithms are sub-stepping algorithm, 

which is essentially explicit proposed by Sloan (1987) and the return algorithm, which 

is essentially implicit as proposed by Borja & Lee (1990). In both sub-stepping and 

return algorithms, the objective is to integrate the constitutive equations along an 

incremental strain path. While the magnitudes of the strain increment are known, the 

manner in which they vary during the increment is not. It is therefore not possible to 

integrate the constitutive equations without making an additional assumption. Each 

stress point algorithm makes a different assumption and that influences the accuracy of 

the solution obtained (Potts & Zdravkovic, 1999). 

C.1 Sub-stepping algorithm 

        In this algorithm, the incremental strains are divided into a number of sub-steps. 

Within each sub-step, the strains are a proportion of total incremental strains. A salient 

feature of sub-stepping algorithm is thus that the size of each sub-step can vary even 

automatically according to certain error control criterion (Sloan, 1987). Combining 

with Euler, modified Euler or Runge-Kutta scheme, the constitutive equations can be 

integrated with high accuracy. A major assumption made in this algorithm is that in 

each sub-step, the ratio between the strain components is the same as those in the total 

incremental strains. Hence the strains are said to vary proportionally over the 

increment. As in a practical problem, the strain may not vary proportionally. This 

assumption affects the accuracy of this algorithm and restrains the incremental size of 

strains. 
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C.2. Return algorithm 

        In this approach, the plastic strains over the increment are calculated from the 

stress conditions corresponding to the end of the increment. The problem is that these 

stress conditions are unknown. Hence the algorithm is implicit in nature (Potts & 

Zdravkovic, 1999). Iterative sub-algorithm is often employed to ensure convergence 

and to satisfy the constitutive behavior. It is thus possible to obtained stress changes in 

a single step. However, a major assumption made by this implicit method is that the 

plastic strains are calculated based on the stress state at the end of increment. If the 

plastic flow direction remains the same during the increment, then the return algorithm 

is exactly accurate. However, for a general problem, the plastic flow direction will 

depend on the current stress and/or strain states and evolve as a function of the 

changing stress/strain state. Thus the plastic strains evaluated from the stress state at 

the end of the increment are theoretically unacceptable and some errors inevitably 

introduced, which restrains the incremental size of strains. 

C.3. Comparison of the two algorithms 

        Potts & Ganendra (1994) performed a comparison of these two types of stress 

point algorithm and concluded that both algorithms could give accurate results. But, of 

the two, the sub-stepping algorithm is better. Another advantage of sub-stepping 

algorithm is that it is quite flexible and can easily deal with more advanced constitutive 

models used in geotechnical engineering with extremely robust error control. For the 

return algorithm, although in theory can accommodate complex constitutive models, it 

involves some extremely complicated mathematics. This means considerable effort is 

required to include a new or modified model (Potts & Zdravkovic, 1999). 
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Appendix D UMAT for the AZ-Cam clay model in 

ABAQUS 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C23456******************************************************************CCCCC 

CCC10 ************  USER DEFINED MODEL USED IN ABAQUS            *******CCCCC 

CCC10 ************  AZ-CAM CLAY MODEL-FOR CENTRIFUGE SIMULATION  *******CCCCC 

CCCCC1************  COMPRESSION IS NEGATIVE                      *******CCCCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C 

      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 

     1 RPL,DDSDDT,DRPLDE,DRPLDT, 

     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPREDEF,CMNAME, 

     3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 

     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) 

C 

      INCLUDE 'ABA_PARAM.INC' 

      CHARACTER*80 CMNAME 

      DIMENSION STRESS(NTENS),STATEV(NSTATV), 

     1 DDSDDE(NTENS,NTENS), 

     2 DDSDDT(NTENS),DRPLDE(NTENS), 

     3 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 

     4 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3) 

C 

C     ELASTIC MATRIX==EELM,PLASTIC MATRIXI==EPLM 

C     ELASTO-PLASTIC MATRIX==DDSDDE 

C     EDS_E==THE ELASTIC STRESS INCREMENT 

C     EDS_PR==THE TRIED TOTAL STRESS INCREMENT 

C     EDS_EP==ELASO-PLASTIC STRESS INCREMENT 

C     EDSTA==STRAIN INCREMENT CAUSING PURELY ELASTIC STRESS 

C     EPDSTA==STRAIN INCREMENT CAUSING ELASO-PLASTIC STRESS 

C     SN_R=STRAIN AT STRESS REVERSAL 

C     SS_R=STRESS AT STRESS REVERSAL 

C     STRAN1=STRAIN AFTER THE INCREMENT 

C 

      DIMENSION  EELM(6,6),EELPLM(6,6),EF_DIR(6),EP_DIR(6), 

     +           EDS_E(6),EDS_PR(6),EDS_EP(6), 

     +           EDSTA(6),EPDSTA(6),ESS_PRE(6), 

     +           SN_R(6),SS_R(6),STRAN1(6),SS_R0(6),ESS_RR(6), 

     +           ESS_NN(6),DPD(6,6),ESTN_RE(6),SS_ACC(6),SS_LU(6) 

C 

      PARAMETER (TOL=1.0D-4,Y_TOL=1.0D-4) 

C 

C     Y_TOL IS THE TOLENCE FOR THE YIELD FUNCTION 

C     1-LAMDA,2-KAPPA,3-M,3-G(OR SPECIFIED AS MUII) 

C     4-X,5-Y,6-Z FOR M IN DEVIATROIC PLANE 

C     7-YP,8-ZP FOR THE PLASTIC POTENTIAL 

C  

CCCCCCCCCCCCCCCCCCCCCCC 

      ELAMDA=0.25 

      EKAPPA=0.05 
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      EG_MU=-0.25 

      EX=0.4 

      EY=-0.384 

      EZ=0.3 

      EYP=0 

      EZP=1.0 

      ERW=2.0 

      ERD=2.0 

      EXT=0.9 

      EYT=0 

      EZT=1 

      EXB=0.5 

      EYB=0.0 

      EZB=1.0 

      EGAMMA=4.0 

      EGAM_L=4.0 

      EMR=10.0 

      EW1=1.0 

      EW2=6.0 

      EKK=0.0 

      EKW_FA=0.0 

C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C     V=STATEV(1),Pco=STATEV(2),INDEX=TO CONTROL THE VARIATION OF OCR 

C     EQ=GENERALIZED STRAIN LENGTH, USED FOR CHECKING STRESS REVERSAL 

C     EREI=STRAIN COMPONENT AT LATEST STRESS REVERSAL 

C     ERSI=STRESS COMPONENT AT LATEST STRESS REVERSAL 

C     NUMBER=NUMBER OF STRESS REVERSAL 

C     SS_ACC IS USELESS, NO MEANING 

C 

      EV=STATEV(1) 

      EPC=STATEV(2) 

      ELEN=STATEV(3) 

      DO I=1,6 

      SN_R(I)=STATEV(3+I) 

      SS_R(I)=STATEV(9+I) 

      SS_R0(I)=STATEV(17+I) 

      ESTN_RE(I)=STATEV(26+I) 

      SS_ACC(I)=STATEV(32+I) 

      SS_LU(I)=STATEV(38+I) 

      ENDDO 

      NUMBER=STATEV(16) 

      NLU=STATEV(45) 

      EINTA_MAX=STATEV(17) 

      EVVP=STATEV(24) 

      EPPW=STATEV(25) 

      EGOCR=STATEV(26) 

C 

      DO I=1,6 

      DO J=1,6 

      DPD(J,I)=0 

      END DO 

      END DO 

C 
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      DO I=1,3 

      DO J=1,3 

      DPD(J,I)=1.0 

      END DO 

      END DO 

C 

      IF (TIME(2).EQ.0.0 ) THEN 

C 

      DO I=1,6 

      SS_ACC(I)=STRESS(I) 

      SS_LU(I)=STRESS(I) 

      ENDDO 

C 

      DO I=1,6 

      SS_R(I)=STRESS(I) 

      SN_R(I)=STRAN(I) 

      SS_R0(I)=STRESS(I) 

      ENDDO 

      ELEN=0.0 

      NUMBER=1 

      NLU=1 

      EINTA_MAX=0.0 

      EVVP=0.0 

      EGOCR=1.0 

C 

      EDEPTH=61.0-COORDS(3) 

      IF (EDEPTH .LE.3.0 ) THEN 

      EOCR=-0.459*EDEPTH**3+3.49*EDEPTH**2-9.35*EDEPTH+11.3 

      ELSEIF (EDEPTH .LE.20.0) THEN 

      EOCR=4.92*(1.0D-5)*EDEPTH**4-0.00282*EDEPTH**3+0.0598*EDEPTH**2 

     +   -0.583*EDEPTH+3.53 

      ELSE 

      EOCR=1.1 

      ENDIF 

C 

      IF (EOCR .LT.1.0) THEN 

      EOCR=1.0 

      ENDIF 

C 

      IF (EOCR .GT.6.0) THEN 

      EOCR=6.0 

      ENDIF 

C 

      EGOCR=EOCR 

C 

      EK_NC=0.64 

C 

      DO I=4,6 

      ESS_PRE(I)=STRESS(I) 

      ENDDO 

C 

      ESS_PRE(3)=EOCR*STRESS(3) 

      ESS_PRE(2)=EK_NC*ESS_PRE(3) 

      ESS_PRE(1)=EK_NC*ESS_PRE(3) 
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C 

      EP=0.0 

      ESS=0.0 

      EJ=0.0 

      ETHETA=0.0 

      EDETS=0.0 

C 

      CALL ES_INV(ESS_PRE,EP,ESS,EJ,ETHETA,EDETS) 

      EPC_B=CAL_PC_SUB(ERW,ERD,EX,EY,EZ,EP,EJ,ETHETA) 

      CALL ES_INV(STRESS,EP,ESS,EJ,ETHETA,EDETS) 

C 

      EDEPTH=61.0-COORDS(3) 

      IF (EDEPTH .LE.20.0 ) THEN 

      EV=-6.5*(1.0D-5)*EDEPTH**3+0.0031*EDEPTH**2-0.062*EDEPTH+3.05 

      ELSE 

      EV=2.53 

      ENDIF 

C 

      EPC=EPC_B 

C 

      ENDIF  

C 

      DO I=1,6 

      STRESS(I)=SS_ACC(I) 

      ENDDO 

C 

      IF (TIME(2).LE.2.0 ) THEN 

      EKW_FA=0.0 

      ELSE 

      EKW_FA=0.0 

      ENDIF 

C 

      DO I=1,3 

      STRESS(I)=STRESS(I)+EPPW 

      END DO 

C 

C     FIRST TO CHECKING WHETHER STRESS REVERSAL OCCURED 

C 

      EP=(STRESS(1)+STRESS(2)+STRESS(3))/3.0 

      EP_R0=(SS_R0(1)+SS_R0(2)+SS_R0(3))/3.0 

C 

      DO I=1,6 

      ESS_RR(I)=SS_R0(I)/EP_R0 

      ESS_NN(I)=STRESS(I)/EP 

      ENDDO 

      EINTAS=0 

      DO I=1,3 

      EINTAS=EINTAS+0.5*((ESS_NN(I)-1)-(ESS_RR(I)-1))**2 

      ENDDO 

      DO I=4,6 

      EINTAS=EINTAS+(ESS_NN(I)-ESS_RR(I))**2 

      ENDDO 

      EINTA=EINTAS**0.5*1.732 

C 
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C     STRESS REVERSAL OCCURS WHEN EQ STARTS TO DECREASE 

C     LU=1 STRESS REVERSAL OCCURS; LU=0 DOES NOT OCCUR 

C 

      ESND=0 

      DO I=1,6 

      ESND=ESND+(ESTN_RE(I)-STRAN(I))**2 

      END DO 

      ESND=ESND**0.5 

C 

      ELENR=ELEN 

      IF (ESND.GE.1D-10) THEN 

C 

C    ELENR---THE STRAIN LENGTH FROM THE LAST LOAD REVERSAL 

C    ELEN1---THE STRAIN LENGTH FROM THE ORIGION 

C 

      DO I=1,6 

      STRAN1(I)=STRAN(I)+DSTRAN(I) 

      ENDDO 

C 

      EV_R=(SN_R(1)+SN_R(2)+SN_R(3))/3.0 

      EV_RR=(STRAN1(1)+STRAN1(2)+STRAN1(3))/3.0 

C 

      ELEN_SQ=0 

      DO I=1,3 

      ELEN_SQ=ELEN_SQ+2.0*((STRAN1(I)-EV_RR)-(SN_R(I)-EV_R))**2 

      ENDDO 

      DO I=4,6 

      ELEN_SQ=ELEN_SQ+(STRAN1(I)-SN_R(I))**2 

      ENDDO 

C 

      ELENR=ELEN_SQ**0.5 

C 

      IF (ELENR.GE.ELEN) THEN 

      LU=0 

      ELSEIF (ELEN.EQ.0) THEN 

      LU=0 

      ELSE 

      LU=1 

      DO I=1,6 

      SN_R(I)=STRAN(I) 

      SS_R(I)=STRESS(I) 

      ENDDO 

      NUMBER=NUMBER+1 

      ELENR=0 

      ENDIF 

C 

      ENDIF 

C 

      IF (TIME(2).LE.2.0 ) THEN 

      ELEN=0.0 

      ELENR=0.0 

      NUMBER=1 

      DO I=1,6 

      SN_R(I)=0 
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      SS_R(I)=STRESS(I) 

      ENDDO 

C      

      ENDIF 

C 

      EP=0.0 

      ESS=0.0 

      EJ=0.0 

      ETHETA=0.0 

      EDETS=0.0 

C 

      CALL ES_INV(STRESS,EP,ESS,EJ,ETHETA,EDETS) 

      EPC_SUB=CAL_PC_SUB(ERW,ERD,EX,EY,EZ,EP,EJ,ETHETA) 

C 

C     DETERMINE THE ELASTIC MATRIX 

C 

      DO I=1,6 

      DO J=1,6 

      EELM(J,I)=0.0 

      EELPLM(J,I)=0.0 

      END DO 

      END DO 

C 

C     1 REPRESENTS THE TANGENT SLOPE, 2 STANDS FOR THE SECANT SLOPE 

      CALL EL_M(EELM,EV,EKAPPA,EG_MU,STRESS,DSTRAN,1,ELAMDA, 

     +          EMR,EW1,EW2,SS_R,NUMBER,EINTA,EINTA_MAX,LU,SS_R0,EGOCR) 

C 

      IF (ABS(EPC_SUB/EPC-1.0).LT.(TOL)) THEN 

      EPC_SUB=EPC 

      ENDIF 

C 

C     DETERMINE THE DIRECTION TO THE CURRENT SURFACE FOR LOADING/UNLOADING 

C 

      DO I=1,6 

      EF_DIR(I)=0.0 

      END DO 

C 

      CALL EFP_DI(EF_DIR,EX,EY,EZ,EYP,EZP,EPC_SUB,STRESS,1,ERW,ERD) 

C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C     TO SPECIFY THE CRITERIA FOR LOADING AND UNLOADING 

C     ECRI_LU==THE CRITERIA FOR LOADING AND UNLOADING 

C     YIELD SURFACE VALUE,TO CHECK WHETHER YIELD OR NOT 

C     ALPHA==THE ELASTIC PORTION OF STRAIN 

C     EDSTRESSE==THE ELASTIC STRESS INCREMENT (BASED ON TANGENT STIFF) 

C                CAN ONLY BE USED TO EVAULATE THE LOADING/UNLOADING 

C     EDSTRESS_PRE==THE ELASTIC STRESS INCREMENT (BASED ON SECANT 

C                STIFF),THE ACCURATE STRESS INCREMENT 

C     EDSTRESS_ELPL==THE ELASTO-PLASTIC STRESS INCREMENT 

C 

      DO I=1,6 

      EDS_E(I)=0.0 

      EDS_PR(I)=0.0 

      EDS_EP(I)=0.0 
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      END DO 

C 

      DO I=1,6 

      DO J=1,6 

      EDS_E(J)=EDS_E(J)+EELM(J,I)*DSTRAN(I) 

      END DO 

      END DO 

C 

      ECR_LU=0.0 

      DO I=1,6 

      ECR_LU=ECR_LU+EF_DIR(I)*EDS_E(I) 

      END DO 

C 

      IF (ECR_LU.LE.0.0) THEN 

C 

CCCCCCCCCCCCCCCCCCCCCC  UNLOADING    CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C     THE UNLOADING WILL ALWAYS BE ELASTIC 

C     CALCULATE THE TRIED STRESS INCREMENT 

C     TO DETERMINE THE SECANT ELASTIC MATRIX 

C     TO DETERMINE THE SECANT BULK MODULUS 

C 

      NLU=0 

C 

      CALL C_EEST(STRESS,DSTRAN,EDS_PR,EV,EPC,ELAMDA,EKAPPA,EX,EY,EZ, 

     +     EYP,EZP,EG_MU,TOL,ERW,ERD,EXT,EYT,EZT,EXB,EYB,EZB,EGAMMA, 

     +     EGAM_L,NUMBER,SS_R,EMR,EW1,EW2,EINTA,EINTA_MAX,LU,SS_R0, 

     +     EVVP,EKK,EKW_FA,EPPW,EGOCR,TIME,NOEL) 

C 

      DO I=1,6 

      STRESS(I)=STRESS(I)+EDS_PR(I) 

      END DO 

C 

C     THE ABOVE IS TRUE FOR THE END OF INCREMENT IS ELASTIC 

C     TO CHECK WHETHER YIELD OR NOT AT THE END OF INCREMENT 

C 

      EYIELD=Y_SUR(STRESS,EX,EY,EZ,EPC_SUB,ERW,ERD) 

C 

      IF(EYIELD.GT.Y_TOL*10) THEN 

C     THE END OF INCREMENT IS PLASTIC 

C     BE CAREFUL, THE STRESS HERE IS ALREADY ADD THE ELASTIC  

C     STRESS INCREMENT 

C 

      EALFA=C_ALFA(EDS_PR,STRESS,EX,EY,EZ,EPC_SUB,DSTRAN,EV,EKAPPA, 

     +             EG_MU,ERW,ERD,ELAMDA,EMR,EW1,EW2,SS_R,NUMBER,EINTA, 

     +             EINTA_MAX,LU,SS_R0,EGOCR) 

C 

C     EDSTRAN==THE ELASTIC PART OF STRAIN INCREMENT 

C 

      DO I=1,6 

      EDSTA(I)=EALFA*DSTRAN(I) 

      EPDSTA(I)=(1.0-EALFA)*DSTRAN(I) 

      STRESS(I)=STRESS(I)-EDS_PR(I) 

C     RETURN THE STRESS STATUS BEFORE THE STRESS INCREMENT       

      END DO 
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C 

      CALL C_EEST(STRESS,EDSTA,EDS_PR,EV,EPC,ELAMDA,EKAPPA,EX,EY,EZ, 

     +     EYP,EZP,EG_MU,TOL,ERW,ERD,EXT,EYT,EZT,EXB,EYB,EZB,EGAMMA, 

     +     EGAM_L,NUMBER,SS_R,EMR,EW1,EW2,EINTA,EINTA_MAX,LU,SS_R0, 

     +     EVVP,EKK,EKW_FA,EPPW,EGOCR,TIME,NOEL) 

 

C 

      DO I=1,6 

      STRESS(I)=STRESS(I)+EDS_PR(I) 

C     THE STRESS STATUS IS ON THE YIELD SURFACE       

      END DO 

C 

C     TO RESERVE PC, SO CAN BE USED IN DRAG SUBROUTINE 

      EPC_RE=EPC 

C 

      CALL C_EPST(STRESS,EPDSTA,EDS_EP,EV,EPC,ELAMDA,EKAPPA,EX,EY,EZ, 

     +     EYP,EZP,EG_MU,TOL,ERW,ERD,EXT,EYT,EZT,EXB,EYB,EZB,EGAMMA, 

     +     EGAM_L,NUMBER,SS_R,EMR,EW1,EW2,EINTA,EINTA_MAX,LU,SS_R0, 

     +     EVVP,EKK,EKW_FA,EPPW,EGOCR,TIME,NOEL,SS_LU) 

C 

      DO I=1,6 

      STRESS(I)=STRESS(I)+EDS_EP(I) 

      END DO 

C 

      EYIELD=Y_SUR(STRESS,EX,EY,EZ,EPC,ERW,ERD) 

C 

      IF (EYIELD .GT.Y_TOL*10) THEN 

      CALL DRAG_Y(STRESS,EPC,EV,ELAMDA,EKAPPA,EG_MU, 

     +     EX,EY,EZ,EYP,EZP,TOL,ERW,ERD,EPC_RE,EMR,EW1,EW2,SS_R, 

     +     NUMBER,EINTA,EINTA_MAX,LU,SS_R0,EGOCR) 

      ENDIF 

C 

      CALL ES_INV(STRESS,EP,ESS,EJ,ETHETA,EDETS) 

C 

      EBETA=EXB/(1+EYB*SIN(3.0*ETHETA))**EZB 

      ETT=EXT/(1+EYT*SIN(3.0*ETHETA))**EZT 

      EG_THE=EX/(1+EY*SIN(3.0*ETHETA))**EZ 

C 

      IF (EP.GE.(ETT*2.0*EPC/(2.0+ERW))) THEN 

C 

      EFAIL_S=EJ/EG_THE/EP-(1+EBETA*LOG(2.0*ETT*ABS(EPC/EP)/(2.0+ERW))) 

C 

      IF (EFAIL_S .GT.0) THEN 

      CALL FAIL_CORR(STRESS,EPC,EP,EXT,EYT,EZT,EXB,EYB,EZB) 

      ENDIF 

C 

      ENDIF 

C 

C     UPDATE THE JACOBIAN MATRIX---FOR UNLOADING ENDED WITH PLASTIC 

      CALL EL_PLM(EELPLM,EX,EY,EZ,EYP,EZP,EPC,STRESS,EV,ELAMDA,EKAPPA, 

     +            EG_MU,EF_DIR,ERW,ERD,EXT,EYT,EZT,EXB,EYB,EZB,EGAMMA, 

     +            EGAM_L,NUMBER,SS_R,EMR,EW1,EW2,EINTA,EINTA_MAX,LU, 

     +            SS_R0,EVVP,EKK,EGOCR,TIME,NOEL,SS_LU) 

C 
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      DO I=1,6 

      DO J=1,6 

      DDSDDE(J,I)=EELPLM(J,I) 

      END DO 

      END DO 

C 

      EKW=-EV*(STRESS(1)+STRESS(2)+STRESS(3))/3.0/EKAPPA*EKW_FA 

C 

      DO I=1,6 

      DO J=1,6 

      DDSDDE(J,I)=DDSDDE(J,I)+EKW*DPD(J,I) 

      END DO 

      END DO 

C 

      DO I=1,3 

      STRESS(I)=STRESS(I)-EPPW 

      END DO 

C 

      ELSE 

C 

C     UPDATE THE JACOBIAN MATRIX---FOR UNLOADING PURELY ELASTIC 

      CALL EL_M(EELM,EV,EKAPPA,EG_MU,STRESS,DSTRAN,1,ELAMDA, 

     +          EMR,EW1,EW2,SS_R,NUMBER,EINTA,EINTA_MAX,LU,SS_R0,EGOCR) 

      DO I=1,6 

      DO J=1,6 

      DDSDDE(J,I)=EELM(J,I) 

      END DO 

      END DO 

C 

      EKW=-EV*(STRESS(1)+STRESS(2)+STRESS(3))/3.0/EKAPPA*EKW_FA 

C 

      DO I=1,6 

      DO J=1,6 

      DDSDDE(J,I)=DDSDDE(J,I)+EKW*DPD(J,I) 

      END DO 

      END DO 

C 

      DO I=1,3 

      STRESS(I)=STRESS(I)-EPPW 

      END DO 

C 

      ENDIF 

C  

C 

      ELSE 

C 

CCCCCCCCCCCCCCCCCCCCCC  LOADING    CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C     THE LOADING IS ALWAYS PLASTIC 

C 

      NLU_PRE=1 

      IF (NLU_PRE.EQ.NLU) THEN 

      NLU=NLU_PRE 

      ELSE 

      NLU=NLU_PRE 
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      DO I=1,6 

      SS_LU(I)=STRESS(I) 

      ENDDO 

      ENDIF 

C 

      EPC_RE=EPC 

C 

      CALL C_EPST(STRESS,DSTRAN,EDS_EP,EV,EPC,ELAMDA,EKAPPA,EX,EY,EZ, 

     +     EYP,EZP,EG_MU,TOL,ERW,ERD,EXT,EYT,EZT,EXB,EYB,EZB,EGAMMA, 

     +     EGAM_L,NUMBER,SS_R,EMR,EW1,EW2,EINTA,EINTA_MAX,LU,SS_R0, 

     +     EVVP,EKK,EKW_FA,EPPW,EGOCR,TIME,NOEL,SS_LU) 

C 

C 

      DO I=1,6 

      STRESS(I)=STRESS(I)+EDS_EP(I) 

      END DO 

C 

      EYIELD=Y_SUR(STRESS,EX,EY,EZ,EPC,ERW,ERD) 

C 

      IF (EYIELD .GT.Y_TOL*10) THEN 

      CALL DRAG_Y(STRESS,EPC,EV,ELAMDA,EKAPPA,EG_MU, 

     +     EX,EY,EZ,EYP,EZP,TOL,ERW,ERD,EPC_RE,EMR,EW1,EW2,SS_R, 

     +     NUMBER,EINTA,EINTA_MAX,LU,SS_R0,EGOCR) 

      ENDIF 

C 

      CALL ES_INV(STRESS,EP,ESS,EJ,ETHETA,EDETS) 

C 

      EBETA=EXB/(1+EYB*SIN(3.0*ETHETA))**EZB 

      ETT=EXT/(1+EYT*SIN(3.0*ETHETA))**EZT 

      EG_THE=EX/(1+EY*SIN(3.0*ETHETA))**EZ 

C 

      IF (EP.GE.(ETT*2.0*EPC/(2.0+ERW))) THEN 

C 

      EFAIL_S=EJ/EG_THE/EP-(1+EBETA*LOG(2.0*ETT*ABS(EPC/EP)/(2.0+ERW))) 

C 

      IF (EFAIL_S .GT.0) THEN 

      CALL FAIL_CORR(STRESS,EPC,EP,EXT,EYT,EZT,EXB,EYB,EZB) 

      ENDIF 

C 

      ENDIF 

C 

C     UPDATE THE JACOBIAN MATRIX---FOR UNLOADING ENDED WITH PLASTIC 

      CALL EL_PLM(EELPLM,EX,EY,EZ,EYP,EZP,EPC,STRESS,EV,ELAMDA,EKAPPA, 

     +            EG_MU,EF_DIR,ERW,ERD,EXT,EYT,EZT,EXB,EYB,EZB,EGAMMA, 

     +            EGAM_L,NUMBER,SS_R,EMR,EW1,EW2,EINTA,EINTA_MAX,LU, 

     +            SS_R0,EVVP,EKK,EGOCR,TIME,NOEL,SS_LU) 

C 

      DO I=1,6 

      DO J=1,6 

      DDSDDE(J,I)=EELPLM(J,I) 

      END DO 

      END DO 

C 

      EKW=-EV*(STRESS(1)+STRESS(2)+STRESS(3))/3.0/EKAPPA*EKW_FA 
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C 

      DO I=1,6 

      DO J=1,6 

      DDSDDE(J,I)=DDSDDE(J,I)+EKW*DPD(J,I) 

      END DO 

      END DO 

C 

      DO I=1,3 

      STRESS(I)=STRESS(I)-EPPW 

      END DO 

C 

      ENDIF 

C 

      IF (EINTA.GT.EINTA_MAX) THEN 

      EINTA_MAX=EINTA 

      ENDIF 

C 

      DO I=1,6 

      ESTN_RE(I)=STRAN(I) 

      ENDDO 

C 

      DO I=1,6 

      SS_ACC(I)=STRESS(I) 

      ENDDO 

C 

C     UPDATE STATE VARIABLES 

      STATEV(1)=EV 

      STATEV(2)=EPC 

C 

      STATEV(3)=ELENR 

      DO I=1,6 

      STATEV(3+I)=SN_R(I) 

      STATEV(9+I)=SS_R(I) 

      STATEV(17+I)=SS_R0(I) 

      STATEV(26+I)=ESTN_RE(I) 

      STATEV(32+I)=SS_ACC(I) 

      STATEV(38+I)=SS_LU(I) 

      STATEV(45)=NLU 

      ENDDO 

      STATEV(16)=NUMBER 

      STATEV(17)=EINTA_MAX 

      STATEV(24)=EVVP 

      STATEV(25)=EPPW 

      STATEV(26)=EGOCR 

C 

      RETURN 

      END 

C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

CCCCCCC   THE FOLLOWING ARE THE USER DEFINED SUBROUTINES    CCCCCCCCCCCCCCCCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

CCCCCCCC    DRAG THE STRESS POINT TO THE FAILURE SURFACE     CCCCCCCCCCCCCCCC 



278 

 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C 

      SUBROUTINE FAIL_CORR(STRESS,EPC,EPF,EXT,EYT,EZT,EXB,EYB,EZB) 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      DIMENSION STRESS(6),STR_M(6) 

C 

      EREDU=0.99 

      ED_REDU=0.01 

C 

      DO WHILE (EREDU .GT.0) 

C 

      DO I=1,6 

      STR_M(I)=STRESS(I)*EREDU 

      ENDDO 

C 

      EP=0 

      ESS=0 

      EJ=0 

      ETHETA=0 

      EDETS=0 

C 

      CALL ES_INV(STR_M,EP,ESS,EJ,ETHETA,EDETS) 

C 

      EBETA=EXB/(1+EYB*SIN(3.0*ETHETA))**EZB 

      ETT=EXT/(1+EYT*SIN(3.0*ETHETA))**EZT 

      EG_THE=EX/(1+EY*SIN(3.0*ETHETA))**EZ 

C 

      EFEXC=EJ/EP/EG_THE-(1+EBETA*LOG(2.0*ETT*ABS(EPC/EPF)/(2.0+ERW))) 

C 

      IF (EFEXC.LE.0) THEN 

      EXIT 

      ENDIF 

C 

      EREDU=EREDU-ED_REDU 

C 

      ENDDO 

C 

      DO I=1,6 

      STRESS(I)=STRESS(I)*EREDU 

      ENDDO 

C 

      RETURN 

      END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

CCCCCCCC    GET THE DISTANCE FROM THE ORIGION TO THE STRESS POINT  CCCCCCCCCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C 

      FUNCTION CAL_PC_SUB(ERW,ERD,EX,EY,EZ,EP,EJ,ETHETA) 

C 

      INCLUDE 'ABA_PARAM.INC' 



279 

 

C 

      EG_THE=EX/(1+EY*SIN(3.0*ETHETA))**EZ 

      EAW=2.0*EG_THE/ERW 

      EBW=2.0*EG_THE/(2.0+ERW) 

      EAD=2.0*EG_THE/ERD 

      EBD=2.0*EG_THE/(2.0+ERW) 

C 

      IF (EJ.LE.ABS(EG_THE*EP))  THEN 

C 

      IF (ERW .EQ.2.0) THEN 

      CAL_PC_SUB=EP+EJ**2/EP/EG_THE**2 

      ELSE 

C     BE CAREFUL, THIS IS DIFFERENT FROM THE MATLAB 

      CAL_PC_SUB=(-EAW**2*EBW*EP/EG_THE-SQRT(ABS(EAW**2*EBW 

     +           **2*EP**2+EJ**2*(EG_THE**2-EAW**2)*EBW**2/EG_THE**2))) 

     +           /((EG_THE**2-EAW**2)/EG_THE**2*EBW**2) 

      ENDIF 

C 

      ELSE 

C 

      IF (ERD .EQ.2.0) THEN 

      CAL_PC_SUB=(EP+EJ**2/EP/EG_THE**2)*(2.0+ERW)/4.0 

      ELSE 

      CAL_PC_SUB=(-EAD**2*EBD*EP/EG_THE-SQRT(ABS(EAD**2*EBD 

     +           **2*EP**2+EJ**2*(EG_THE**2-EAD**2)*EBD**2/EG_THE**2))) 

     +           /((EG_THE**2-EAD**2)/EG_THE**2*EBD**2) 

C 

      ENDIF 

C 

      ENDIF 

C 

      RETURN 

      END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

CCCCCCCC    DRAG THE STRESS POINT TO THE YIELD SURFACE     CCCCCCCCCCCCCCCCCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C 

      SUBROUTINE DRAG_Y(STRESS,EPC,EV,ELAMDA,EKAPPA,EG_MU, 

     +            EX,EY,EZ,EYP,EZP,TOL,ERW,ERD,EPC_RE,EMR,EW1,EW2,SS_R, 

     +            NUMBER,EINTA,EINTA_MAX,LU,SS_R0,EGOCR) 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      DIMENSION EST_BE(6),EF_DIR(6),EP_DIR(6), 

     +           EELM(6,6),STRESS(6),SS_R(6),SS_R0(6) 

C 

C 

      ETOL=1.0D-3 

C 

      EY_VAL=Y_SUR(STRESS,EX,EY,EZ,EPC,ERW,ERD) 

C 

      IF ((EY_VAL).GT.(ETOL)) THEN 
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C 

      IN=1 

C 

C     SEE POTTS(1999) PAGE 285 

      DO WHILE (.TRUE.) 

C 

      DO I=1,6 

      EST_BE(I)=STRESS(I) 

      EF_DIR(I)=0.0 

      EP_DIR(I)=0.0 

      END DO 

C 

      DO I=1,6 

      DO J=1,6 

      EELM(J,I)=0.0 

      END DO 

      END DO 

C 

      CALL EFP_DI(EF_DIR,EX,EY,EZ,EYP,EZP,EPC_RE,EST_BE,1,ERW,ERD) 

C 

      CALL EFP_DI(EP_DIR,EX,EY,EZ,EYP,EZP,EPC_RE,EST_BE,2,ERW,ERD) 

C 

      CALL EL_M(EELM,EV,EKAPPA,EG_MU,EST_BE,DSTRAN,1,ELAMDA, 

     +          EMR,EW1,EW2,SS_R,NUMBER,EINTA,EINTA_MAX,LU,SS_R0,EGOCR) 

C 

C     TO CALCULATE THE COEFFICIENT OF THE PLASTIC STRAIN 

C 

      EB1=0.0 

      DO I=1,6 

      DO J=1,6 

      EB1=EB1+EF_DIR(J)*EELM(J,I)*EP_DIR(I) 

      END DO 

      END DO 

C 

      EP=(EST_BE(1)+EST_BE(2)+EST_BE(3))/3.0 

C 

      EPX=2.0/(2.0+ERW)*EPC 

      IF (EP.LE.EPX) THEN 

      EB2=(8.0/ERW**2*(EP-2.0*EPC/(2.0+ERW))*(-2.0/(2.0+ERW)) 

     +     -8.0*EPC/(2.0+ERW)**2)*EV*(-EPC)/(ELAMDA-EKAPPA) 

     +     *8.0/ERW**2*(EP-2.0*EPC/(2.0+ERW)) 

C 

      ELSE 

C 

      EB2=(8.0/ERD**2*(EP-2.0*EPC/(2.0+ERW))*(-2.0/(2.0+ERW)) 

     +     -8.0*EPC/(2.0+ERW)**2)*EV*(-EPC)/(ELAMDA-EKAPPA) 

     +     *8.0/ERD**2*(EP-2.0*EPC/(2.0+ERW)) 

C 

      ENDIF 

C 

      IF (ABS(EB1-EB2).LT.ETOL) EXIT 

C 

      ECOEFF=EY_VAL/(EB1-EB2) 

C 



281 

 

C     CORRECT THE STRESS 

C 

      DO I=1,6 

      DO J=1,6 

      STRESS(J)=STRESS(J)-ECOEFF*EELM(J,I)*EP_DIR(I) 

      END DO 

      END DO 

C 

C     CORRECT PC 

      EPX=2.0/(2.0+ERW)*EPC 

      IF (EP.LE.EPX) THEN 

      EPC=EPC+ECOEFF*EV*(-EPC)*(8.0/ERW**2*(EP-2.0*EPC/(2.0+ERW))) 

     +    /(ELAMDA-EKAPPA) 

C 

      ELSE 

C 

      EPC=EPC+ECOEFF*EV*(-EPC)*(8.0/ERD**2*(EP-2.0*EPC/(2.0+ERW))) 

     +    /(ELAMDA-EKAPPA) 

C 

      ENDIF 

C 

C     CORRECT PC 

C     EPC=EPC+ECOEFF*EV*(-EPC)*(2*EP-EPC)/(ELAMDA-EKAPPA) 

C 

      EY_VAL=Y_SUR(STRESS,EX,EY,EZ,EPC,ERW,ERD) 

      IF (ABS(EY_VAL).LE.ETOL) EXIT 

C 

      IF (IN.GE.3) EXIT 

C 

      IN=IN+1 

C 

      END DO 

C 

      ENDIF 

C 

      RETURN 

      END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

CCCCCCCC CALCULATE THE STRESS INCREMENT FROM EL-PL_MATRIX  CCCCCCCCCCCCCCCCCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C 

      SUBROUTINE C_EPST(STRESS,DSTRAN,EDS_EP,EV,EPC,ELAMDA, 

     +            EKAPPA,EX,EY,EZ,EYP,EZP,EG_MU,TOL,ERW,ERD, 

     +            EXT,EYT,EZT,EXB,EYB,EZB,EGAMMA,EGAM_L,NUMBER, 

     +            SS_R,EMR,EW1,EW2,EINTA,EINTA_MAX,LU,SS_R0, 

     +            EVVP,EKK,EKW_FA,EPPW,EGOCR,TIME,NOEL,SS_LU) 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      DIMENSION ESTRS1(6),ESTRS2(6),ESTRS(6),EF_DIR(6), 

     +           EELPLM(6,6),STRESS(6),DSTRAN(6),EDS_EP(6),SS_R(6), 

     +           SS_R0(6),TIME(2),EDS_IN(6),STRS_JF(6),EELM(6,6), 
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     +           SS_LU(6) 

C 

C     TO RESERVE THE VOLUME 

      EV_R=EV 

C 

      EP22=0 

      ESS22=0 

      EJ22=0 

      ETHETA22=0 

      EDETS22=0 

C 

      EP=0 

      ESS=0 

      EJ=0 

      ETHETA=0 

      EDETS=0 

C 

      DO I=1,6 

      ESTRS(I)=STRESS(I) 

      EF_DIR(I)=0.0 

      EDS_IN(I)=0.0 

      STRS_JF(I)=0.0 

      END DO 

C 

      DO I=1,6 

      DO J=1,6 

      EELPLM(J,I)=0.0 

      EELM(J,I)=0.0 

      END DO 

      END DO 

C 

      EDD=0 

      EDD_MAX=0 

      DO I=1,6 

      EDD=ABS(DSTRAN(I)) 

      IF (EDD.GT.EDD_MAX) THEN 

      EDD_MAX=EDD 

      ENDIF 

      ENDDO 

C 

      NN=1 

      NK=1 

      DO NN=1,1000 

      EDUP=EDD_MAX/NN 

      IF (EDUP.LT.0.005) THEN 

      NK=NN 

      EXIT 

      ENDIF 

      ENDDO 

C 

      ET=0.0 

      ETOL=1.0D-4 

      ETOLE=1.0D-2 

C 
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      KTOTLE=1 

C 

      DO WHILE (ABS(ET-1.0) .GT. ETOL) 

C 

      IF (KTOTLE .GE. 40) THEN 

      EXIT 

      ENDIF 

C 

      EDT1=(1.0)/NK 

      EDT2=1-ET 

      IF (EDT1.GT.EDT2) THEN 

      EDT_P=EDT2 

      ELSE 

      EDT_P=EDT1 

      ENDIF 

C 

      CALL ES_INV(STRESS,EP,ESS,EJ,ETHETA,EDETS) 

      EBETA=EXB/(1+EYB*SIN(3.0*ETHETA))**EZB 

      ETT=EXT/(1+EYT*SIN(3.0*ETHETA))**EZT 

      EG_THE=EX/(1+EY*SIN(3.0*ETHETA))**EZ 

C 

      IF (EP.LE.(ETT*2.0*EPC/(2.0+ERW))) THEN 

      EPF=EP 

      EJF=-EG_THE*EPF 

      ELSE 

      EPF=EP 

      EJF=EG_THE*ABS(EPF)*(1+EBETA*LOG(2.0*ETT*ABS(EPC/EPF)/(2.0+ERW))) 

      ENDIF 

C 

      CALL EL_M(EELM,EV,EKAPPA,EG_MU,STRESS,DSTRAN,1,ELAMDA, 

     +          EMR,EW1,EW2,SS_R,NUMBER,EINTA,EINTA_MAX,LU,SS_R0,EGOCR) 

C 

      DO I=1,6 

      EDS_IN(I)=0.0 

      STRS_JF(I)=0.0 

      END DO 

C 

      DO I=1,6 

      DO J=1,6 

      EDS_IN(J)=EDS_IN(J)+EELM(J,I)*DSTRAN(I)*EDT_P 

      END DO 

      END DO 

C 

      DO I=1,6 

      STRS_JF(I)=STRESS(I)+EDS_IN(I) 

      END DO 

C 

      CALL ES_INV(STRS_JF,EP,ESS,EJ,ETHETA,EDETS) 

C 

      EJ_RATIO=EJ/EJF 

C 

      IF (EJ_RATIO.LT.1.0) THEN 

      EDT=EDT_P 

      ELSE 
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      EDT=EDT_P*0.1/EJ_RATIO 

      ENDIF 

C 

      CALL ES_INV(STRESS,EP,ESS,EJ,ETHETA,EDETS) 

C 

      KCOUNT=1 

C 

      DO WHILE (.TRUE.) 

C 

C     FIRST CALCULATE THE STRESS INCREMENT 

C     CALCULATE THE MEAN STRESS P 

C 

      CALL ES_INV(STRESS,EP22,ESS22,EJ22,ETHETA22,EDETS22) 

      EPC_S=CAL_PC_SUB(ERW,ERD,EX,EY,EZ,EP22,EJ22,ETHETA22) 

C 

      CALL EL_PLM(EELPLM,EX,EY,EZ,EYP,EZP,EPC,STRESS,EV,ELAMDA,EKAPPA, 

     +            EG_MU,EF_DIR,ERW,ERD,EXT,EYT,EZT,EXB,EYB,EZB,EGAMMA, 

     +            EGAM_L,NUMBER,SS_R,EMR,EW1,EW2,EINTA,EINTA_MAX,LU, 

     +            SS_R0,EVVP,EKK,EGOCR,TIME,NOEL,SS_LU) 

C 

      DO I=1,6 

      ESTRS1(I)=STRESS(I) 

      END DO 

C 

      DO I=1,6 

      DO J=1,6 

      ESTRS1(J)=ESTRS1(J)+EELPLM(J,I)*EDT*DSTRAN(I) 

      END DO 

      END DO 

C 

      EP1=(STRESS(1)+STRESS(2)+STRESS(3))/3.0 

C 

      EDP1=(ESTRS1(1)+ESTRS1(2)+ESTRS1(3))/3.0-EP1 

C     TO DETERMINE THE ELASTIC VOLUMETRIC STRAIN 

C 

      ESTR_V1=-EKAPPA/EV*EDP1/EP1 

C 

C     TO DETERMINE THE PLASTIC VOLUMETRIC STRAIN 

      EPSV1=(DSTRAN(1)+DSTRAN(2)+DSTRAN(3))*EDT-ESTR_V1 

      EVVP1=EVVP+ABS(EPSV1) 

C     TO DETERMINE THE HARDENING PARAMETER 

      EPC1=EPC+EV/(ELAMDA-EKAPPA)*(-EPC)*EPSV1 

      EV1=EV*(1.0+(DSTRAN(1)+DSTRAN(2)+DSTRAN(3))*EDT) 

      EKW=-EKW_FA*EV*EP1/EKAPPA 

      EPPW1=EPPW-EKW*((DSTRAN(1)+DSTRAN(2)+DSTRAN(3))*EDT) 

C 

C     SECOND CALCULATE THE STRESS INCREMENT 

C     CALCULATE THE MEAN STRESS P 

C 

      CALL ES_INV(ESTRS1,EP22,ESS22,EJ22,ETHETA22,EDETS22) 

      EPC_S1=CAL_PC_SUB(ERW,ERD,EX,EY,EZ,EP22,EJ22,ETHETA22) 

C 

      EY_VAL=Y_SUR(ESTRS1,EX,EY,EZ,EPC1,ERW,ERD) 

      IF (EY_VAL.GT.1.0D-2) THEN 
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      CALL DRAG_Y(ESTRS1,EPC1,EV1,ELAMDA,EKAPPA,EG_MU, 

     +     EX,EY,EZ,EYP,EZP,TOL,ERW,ERD,EPC_RE,EMR,EW1,EW2,SS_R, 

     +     NUMBER,EINTA,EINTA_MAX,LU,SS_R0,EGOCR) 

      ENDIF 

 

      CALL EL_PLM(EELPLM,EX,EY,EZ,EYP,EZP,EPC1,ESTRS1,EV1,ELAMDA,EKAPPA, 

     +            EG_MU,EF_DIR,ERW,ERD,EXT,EYT,EZT,EXB,EYB,EZB,EGAMMA, 

     +            EGAM_L,NUMBER,SS_R,EMR,EW1,EW2,EINTA,EINTA_MAX,LU, 

     +            SS_R0,EVVP1,EKK,EGOCR,TIME,NOEL,SS_LU) 

C 

      DO I=1,6 

      ESTRS2(I)=ESTRS1(I) 

      END DO 

C 

      DO I=1,6 

      DO J=1,6 

      ESTRS2(J)=ESTRS2(J)+EELPLM(J,I)*EDT*DSTRAN(I) 

      END DO 

      END DO 

C 

      EP2=(ESTRS1(1)+ESTRS1(2)+ESTRS1(3))/3.0 

C 

      EDP2=(ESTRS2(1)+ESTRS2(2)+ESTRS2(3))/3.0-EP2 

C 

C     TO DETERMINE THE ELASTIC VOLUMETRIC STRAIN 

C 

      ESTR_V2=-EKAPPA/EV1*EDP2/EP2 

C     TO DETERMINE THE PLASTIC VOLUMETRIC STRAIN 

      EPSV2=(DSTRAN(1)+DSTRAN(2)+DSTRAN(3))*EDT-ESTR_V2 

      EVVP2=EVVP+ABS(EPSV2) 

C     TO DETERMINE THE HARDENING PARAMETER 

      EPC2=EPC1+EV1/(ELAMDA-EKAPPA)*(-EPC1)*EPSV2 

      EKW=-EKW_FA*EV1*EP2/EKAPPA 

      EPPW2=EPPW-EKW*((DSTRAN(1)+DSTRAN(2)+DSTRAN(3))*EDT) 

C 

      CALL ES_INV(ESTRS2,EP22,ESS22,EJ22,ETHETA22,EDETS22) 

C 

      EPC_S2=CAL_PC_SUB(ERW,ERD,EX,EY,EZ,EP22,EJ22,ETHETA22) 

C    

      EY_VAL=Y_SUR(ESTRS2,EX,EY,EZ,EPC2,ERW,ERD) 

      IF (EY_VAL.GT.1.0D-2) THEN 

      CALL DRAG_Y(ESTRS2,EPC2,EV1,ELAMDA,EKAPPA,EG_MU, 

     +     EX,EY,EZ,EYP,EZP,TOL,ERW,ERD,EPC_RE,EMR,EW1,EW2,SS_R, 

     +     NUMBER,EINTA,EINTA_MAX,LU,SS_R0,EGOCR) 

      ENDIF 

C 

C     THE ERROR CONTROL IS SPECIFIED AS THE NORM OF THE STRESS  

C     VECTOR AND PC 

C 

      ENORS=0.0 

      ENORS1=0.0 

      ENORS2=0.0 

      DO I=1,6 

      ENORS=ENORS+STRESS(I)**2 
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      ENORS1=ENORS1+ESTRS1(I)**2 

      ENORS2=ENORS2+ESTRS2(I)**2 

      END DO 

      ENORS=ENORS**0.5 

      ENORS1=ENORS1**0.5 

      ENORS2=ENORS2**0.5 

C 

      IF (ENORS.EQ.0) THEN 

      ER_ST=0.0 

      ER_PC=0.0 

      ELSE 

      ER_ST=ABS(0.5*(ENORS2-ENORS1)/ENORS) 

      ER_PC=ABS(0.5*(EPC2-EPC1)/EPC) 

      ENDIF 

C 

      IF (ER_ST.LE.ETOLE .AND.ER_PC .LE.ETOLE) THEN 

      DO I=1,6 

      STRESS(I)=0.5*(STRESS(I)+ESTRS2(I)) 

      END DO 

      EPC=0.5*(EPC+EPC2) 

      EVVP=0.5*(EVVP1+EVVP2) 

      EV=EV1 

      EPPW=0.5*(EPPW1+EPPW2) 

      ET=ET+EDT 

      EXIT 

C 

      ELSEIF (KCOUNT.GE.3.OR.KTOTLE.EQ.19) THEN 

      DO I=1,6 

      STRESS(I)=0.5*(STRESS(I)+ESTRS2(I)) 

      END DO 

      EPC=0.5*(EPC+EPC2) 

      EVVP=0.5*(EVVP1+EVVP2) 

      EV=EV1 

      EPPW=0.5*(EPPW1+EPPW2) 

      ET=ET+EDT 

      EXIT 

C 

      ELSE 

C 

      IF (ER_ST .GT.ER_PC) THEN 

      ER_MAX=ER_ST 

      ELSE 

      ER_MAX=ER_PC 

      END IF 

      EDT1=EDT*0.8*(TOL/ER_MAX)**0.5 

      EDT2=EDT*0.25 

C 

      IF (EDT1 .GT. EDT2) THEN 

      EDT=EDT1 

      ELSE 

      EDT=EDT1 

      ENDIF 

C 

      END IF  
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C 

      KCOUNT=KCOUNT+1 

C 

      END DO 

C 

      KTOTLE=KTOTLE+1 

C 

      END DO 

C 

      DO I=1,6 

      EDS_EP(I)=STRESS(I)-ESTRS(I) 

      STRESS(I)=ESTRS(I) 

      END DO 

C 

      EV=EV_R*(1.0+(DSTRAN(1)+DSTRAN(2)+DSTRAN(3))) 

C 

      RETURN 

      END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

CCCCCCCC CALCULATE THE STRESS INCREMENT PURELY ELASTIC     CCCCCCCCCCCCCCCCCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C 

      SUBROUTINE C_EEST(STRESS,DSTRAN,EDS_EP,EV,EPC,ELAMDA, 

     +            EKAPPA,EX,EY,EZ,EYP,EZP,EG_MU,TOL,ERW,ERD, 

     +            EXT,EYT,EZT,EXB,EYB,EZB,EGAMMA,EGAM_L,NUMBER, 

     +            SS_R,EMR,EW1,EW2,EINTA,EINTA_MAX,LU,SS_R0, 

     +            EVVP,EKK,EKW_FA,EPPW,EGOCR,TIME,NOEL)  

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      DIMENSION ESTRS1(6),ESTRS2(6),ESTRS(6),EF_DIR(6), 

     +           STRESS(6),DSTRAN(6),EDS_EP(6),SS_R(6), 

     +           SS_R0(6),TIME(2),EDS_IN(6),STRS_JF(6),EELM(6,6) 

C 

C     TO RESERVE THE VOLUME 

      EV_R=EV 

C 

      EP22=0 

      ESS22=0 

      EJ22=0 

      ETHETA22=0 

      EDETS22=0 

C 

      EP=0 

      ESS=0 

      EJ=0 

      ETHETA=0 

      EDETS=0 

C 

      DO I=1,6 

      ESTRS(I)=STRESS(I) 

      EF_DIR(I)=0.0 
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      EDS_IN(I)=0.0 

      STRS_JF(I)=0.0 

      END DO 

C 

      DO I=1,6 

      DO J=1,6 

      EELM(J,I)=0.0 

      END DO 

      END DO 

C 

      EDD=0 

      EDD_MAX=0 

      DO I=1,6 

      EDD=ABS(DSTRAN(I)) 

      IF (EDD.GT.EDD_MAX) THEN 

      EDD_MAX=EDD 

      ENDIF 

      ENDDO 

C 

      NN=1 

      NK=1 

      DO NN=1,1000 

      EDUP=EDD_MAX/NN 

      IF (EDUP.LT.0.001) THEN 

      NK=NN 

      EXIT 

      ENDIF 

      ENDDO 

C 

      ET=0.0 

      ETOL=1.0D-4 

      ETOLE=1.0D-2 

C 

      KTOTLE=1 

C 

      DO WHILE (ABS(ET-1.0) .GT. ETOL) 

C 

      IF (KTOTLE .GE. 100) THEN 

      EXIT 

      ENDIF 

C 

      EDT1=(1.0)/NK 

      EDT2=1-ET 

      IF (EDT1.GT.EDT2) THEN 

      EDT_P=EDT2 

      ELSE 

      EDT_P=EDT1 

      ENDIF 

C 

      CALL ES_INV(STRESS,EP,ESS,EJ,ETHETA,EDETS) 

      EBETA=EXB/(1+EYB*SIN(3.0*ETHETA))**EZB 

      ETT=EXT/(1+EYT*SIN(3.0*ETHETA))**EZT 

      EG_THE=EX/(1+EY*SIN(3.0*ETHETA))**EZ 

C 
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      IF (EP.LE.(ETT*2.0*EPC/(2.0+ERW))) THEN 

      EPF=EP 

      EJF=-EG_THE*EPF 

      ELSE 

      EPF=EP 

      EJF=EG_THE*ABS(EPF)*(1+EBETA*LOG(2.0*ETT*ABS(EPC/EPF)/(2.0+ERW))) 

      ENDIF 

C 

      CALL EL_M(EELM,EV,EKAPPA,EG_MU,STRESS,DSTRAN,1,ELAMDA, 

     +          EMR,EW1,EW2,SS_R,NUMBER,EINTA,EINTA_MAX,LU,SS_R0,EGOCR) 

C 

      DO I=1,6 

      EDS_IN(I)=0.0 

      STRS_JF(I)=0.0 

      END DO 

C 

      DO I=1,6 

      DO J=1,6 

      EDS_IN(J)=EDS_IN(J)+EELM(J,I)*DSTRAN(I)*EDT_P 

      END DO 

      END DO 

C 

      DO I=1,6 

      STRS_JF(I)=STRESS(I)+EDS_IN(I) 

      END DO 

C 

      CALL ES_INV(STRS_JF,EP,ESS,EJ,ETHETA,EDETS) 

C 

      EJ_RATIO=EJ/EJF 

C 

      IF (KTOTLE.LT.4) THEN 

      IF (EJ_RATIO.LT.1.0) THEN 

      EDT=EDT_P 

      ELSE 

      EDT=EDT_P*0.8/EJ_RATIO 

      ENDIF 

      ELSE 

      EDT=EDT_P 

      ENDIF 

C 

      CALL ES_INV(STRESS,EP,ESS,EJ,ETHETA,EDETS) 

C 

C     FIRST CALCULATE THE STRESS INCREMENT 

C     CALCULATE THE MEAN STRESS P 

C 

      CALL ES_INV(STRESS,EP22,ESS22,EJ22,ETHETA22,EDETS22) 

      EPC_S=CAL_PC_SUB(ERW,ERD,EX,EY,EZ,EP22,EJ22,ETHETA22) 

C 

      CALL EL_M(EELM,EV,EKAPPA,EG_MU,STRESS,DSTRAN,1,ELAMDA, 

     +          EMR,EW1,EW2,SS_R,NUMBER,EINTA,EINTA_MAX,LU,SS_R0,EGOCR) 

C 

      DO I=1,6 

      ESTRS1(I)=STRESS(I) 

      END DO 



290 

 

C 

      DO I=1,6 

      DO J=1,6 

      ESTRS1(J)=ESTRS1(J)+EELM(J,I)*EDT*DSTRAN(I) 

      END DO 

      END DO 

C 

      DO I=1,6 

      STRESS(I)=ESTRS1(I) 

      END DO 

C 

      ET=ET+EDT 

      KTOTLE=KTOTLE+1 

C 

      END DO 

C 

      DO I=1,6 

      EDS_EP(I)=STRESS(I)-ESTRS(I) 

      STRESS(I)=ESTRS(I) 

      END DO 

C 

c      EV=EV_R*(1.0+(DSTRAN(1)+DSTRAN(2)+DSTRAN(3))) 

C 

      RETURN 

      END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

CCCCCCCC  TO CALCULATE THE ELASTIC PORTION OF STRAIN---ALPHA  CCCCCCCCCCCCCCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C       

      FUNCTION C_ALFA(EDS_PR,STRESS,EX,EY,EZ,EPC,DSTRAN,EV,EKAPPA,EG_MU, 

     +                 ERW,ERD,ELAMDA,EMR,EW1,EW2,SS_R,NUMBER,EINTA, 

     +                 EINTA_MAX,LU,SS_R0,EGOCR) 

C      

C     FOR THE THIS STRESS, HAVE ALREADY ADDED THE STRESS INCREMENT 

C     SHOULD BE PAID ATTENSION 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      DIMENSION ESTRS0(6),ESTRS1(6),ESTRS(6),EELM(6,6),E_DSTAN(6), 

     +           EDS_PR(6),STRESS(6),DSTRAN(6),SS_R(6),SS_R0(6) 

C 

C     ESTRESS0==ALPHA=0,ESTRESS1==ALPHA=1,ESTRESS==THE TRIED STRESS 

C 

      DO I=1,6 

      DO J=1,6 

      EELM(J,I)=0.0 

      END DO 

      END DO 

C 

      DO I=1,6 

      ESTRS0(I)=STRESS(I)-EDS_PR(I) 

      ESTRS1=STRESS(I) 
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      ESTRS(I)=ESTRS0(I) 

      END DO 

C 

      DO I=1,6 

      E_DSTAN(I)=0.5*DSTRAN(I) 

      END DO 

C 

      CALL EL_M(EELM,EV,EKAPPA,EG_MU,ESTRS0,E_DSTAN,2,ELAMDA, 

     +          EMR,EW1,EW2,SS_R,NUMBER,EINTA,EINTA_MAX,LU,SS_R0,EGOCR) 

C 

      DO I=1,6 

      DO J=1,6 

      ESTRS(J)=ESTRS(J)+0.5*EELM(J,I)*DSTRAN(I) 

      END DO 

      END DO 

C 

      ETOL=1.0D-2 

      EALFA0=0.0 

      EALFA1=1.0 

      K=2 

C 

C     TO INSURE THE TWO END POINTS HAVE DIFFERENT SIGN 

C 

      DO WHILE (.TRUE.) 

C 

      EYSUR=Y_SUR(ESTRS,EX,EY,EZ,EPC,ERW,ERD) 

      IF (EYSUR .LT.0.0) THEN 

      EALFA0=0.5**(K-1) 

      EXIT 

C 

      ELSE 

C 

      IF (K.GE.4) EXIT 

C 

      DO I=1,6 

      E_DSTAN(I)=0.5**K*DSTRAN(I) 

      END DO 

C 

      CALL EL_M(EELM,EV,EKAPPA,EG_MU,ESTRS0,E_DSTAN,2,ELAMDA, 

     +          EMR,EW1,EW2,SS_R,NUMBER,EINTA,EINTA_MAX,LU,SS_R0,EGOCR) 

C 

      DO I=1,6 

      ESTRS(I)=ESTRS0(I) 

      END DO 

C 

      DO I=1,6 

      DO J=1,6 

      ESTRS(J)=ESTRS(J)+EELM(J,I)*E_DSTAN(I) 

      END DO 

      END DO 

C 

      ENDIF 

C 

      K=K+1 
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      END DO 

C 

      IF (K.GE.4) THEN 

      C_ALFA=0.0 

      ELSE 

C 

C     THE "PEGASUS" METHOD TO CALCULATE THE ROOT OF AN EQUATION 

C     THE COMPUTATIONAL EFFICIENCY IS 1.642 

C 

      IN=1 

C 

      EF0=EYSUR 

      EF1=Y_SUR(STRESS,EX,EY,EZ,EPC,ERW,ERD) 

C 

      DO WHILE (.TRUE.) 

C 

      EALFA2=(EF1*EALFA0-EF0*EALFA1)/(EF1-EF0) 

C 

      IF (IN.GE.3) THEN 

      C_ALFA=EALFA2 

      EXIT 

      ENDIF 

C 

      DO I=1,6 

      E_DSTAN(I)=EALFA2*DSTRAN(I) 

      END DO 

C 

      CALL EL_M(EELM,EV,EKAPPA,EG_MU,ESTRS0,E_DSTAN,2,ELAMDA, 

     +          EMR,EW1,EW2,SS_R,NUMBER,EINTA,EINTA_MAX,LU,SS_R0,EGOCR) 

C 

      DO I=1,6 

      ESTRS(I)=ESTRS0(I) 

      END DO 

C 

      DO I=1,6 

      DO J=1,6 

      ESTRS(J)=ESTRS(J)+EELM(J,I)*E_DSTAN(I) 

      END DO 

      END DO 

C 

      EF2=Y_SUR(ESTRS,EX,EY,EZ,EPC,ERW,ERD) 

C 

      IF (ABS(EF2).LE.ETOL) THEN 

      C_ALFA=EALFA2 

      EXIT 

C 

      ELSE IF (EF2*EF1.LT.0.0) THEN 

      EALFA0=EALFA1 

      EALFA1=EALFA2 

      EF0=EF1 

      EF1=EF2 

      ELSE 

      EALFA0=EALFA0 

      EF0=EF0*EF1/(EF1+EF2) 
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      EALFA1=EALFA2 

      EF1=EF2 

      END IF 

C 

      IN=IN+1 

C 

      END DO 

C 

      ENDIF 

C 

      RETURN 

      END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC  

CCCCCCC    TO CHECK WHETHER OR NOT YIELDING OCCURS     CCCCCCCCCCCCCCCCCCCCCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C 

      FUNCTION Y_SUR(STRESS,EX,EY,EZ,EPC,ERW,ERD) 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      DIMENSION STRESS(6) 

C 

      EP=0.0 

      ESS=0.0 

      EJ=0.0 

      ETHETA=0.0 

      EDETS=0.0 

C 

      CALL ES_INV(STRESS,EP,ESS,EJ,ETHETA,EDETS) 

C 

      EPC_SUB=CAL_PC_SUB(ERW,ERD,EX,EY,EZ,EP,EJ,ETHETA) 

C 

      Y_SUR=(EPC-EPC_SUB)/ABS(EPC) 

C 

      RETURN 

      END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

CCCCCCCCCC   CALULATE THE EL_PLASTIC MATRIX   CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C 

      SUBROUTINE EL_PLM(EELPLM,EX,EY,EZ,EYP,EZP,EPC, 

     +            STRESS,EV,ELAMDA,EKAPPA,EG_MU,EF_DIR,ERW,ERD, 

     +            EXT,EYT,EZT,EXB,EYB,EZB,EGAMMA,EGAM_L,NUMBER,SS_R, 

     +            EMR,EW1,EW2,EINTA,EINTA_MAX,LU,SS_R0,EVVP,EKK,EGOCR, 

     +            TIME,NOEL,SS_LU) 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      DIMENSION EB1(6),ENN(6,6),EDNN(6,6),EDNND(6,6), 

     +           EP_DIR(6),EELM(6,6),EELPLM(6,6),EF_DIR(6), 
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     +           STRESS(6),DSTRAN(6),SS_R(6),ESS_RR(6),ESS_NN(6), 

     +           SS_R0(6),TIME(2),SS_LU(6) 

C 

      ETOL=1.0D-4 

C 

      EP=0.0 

      ESS=0.0 

      EJ=0.0 

      ETHETA=0.0 

      EDETS=0.0 

C 

      CALL ES_INV(STRESS,EP,ESS,EJ,ETHETA,EDETS) 

C 

C     DETERMINE THE ELASTIC MATRIX 

      DO I=1,6 

      DO J=1,6 

      EELM(J,I)=0.0 

      END DO 

      END DO   

C 

      DO I=1,6 

      EF_DIR(I)=0.0 

      EP_DIR(I)=0.0 

      END DO 

C 

C     FOR ELPLM,ONLY NEED TANGENT STIFFNESS, SO STRAN CAN BE SPECIFIED 

C     TO ANY VALUE 

C 

      DO I=1,6 

      DSTRAN(I)=0.0 

      END DO 

C 

      CALL EL_M(EELM,EV,EKAPPA,EG_MU,STRESS,DSTRAN,1,ELAMDA, 

     +          EMR,EW1,EW2,SS_R,NUMBER,EINTA,EINTA_MAX,LU,SS_R0,EGOCR) 

C 

C     TO CALCULATE THE PLASTIC MODULUS H 

C     COMPRESSION IS NEGATIVE 

C     FIRST SHOULD CALCULATE THE DISTANCE TO THE BOUNDING SURFACE 

C 

C     FIRST IMAGY POINT 

C 

      CALL ES_INV(STRESS,EP,ESS,EJ,ETHETA,EDETS) 

      EPC_S1=CAL_PC_SUB(ERW,ERD,EX,EY,EZ,EP,EJ,ETHETA) 

      IF (ABS(EPC_S1).GT.ABS(EPC)) THEN 

      EPC_S1=EPC 

      ENDIF 

C 

      IF (ABS(EPC_S1/EPC-1.0).LT.(ETOL)) THEN 

C 

C     EPC=EPC_S1 

      EPX=2.0/(2.0+ERW)*EPC 

      IF (EP.LE.EPX) THEN 

      EH=-EV/(ELAMDA-EKAPPA)*(-EPC)*(8.0/ERW**2*(EP-2.0*EPC/(2.0+ERW))) 

     +   *(8.0/ERW**2*(EP-2.0*EPC/(2.0+ERW))*(-2.0/(2.0+ERW)) 



295 

 

     +   -8.0*EPC/(2.0+ERW)**2) 

C 

      ELSE 

      EH=-EV/(ELAMDA-EKAPPA)*(-EPC)*(8.0/ERD**2*(EP-2.0*EPC/(2.0+ERW))) 

     +   *(8.0/ERD**2*(EP-2.0*EPC/(2.0+ERW))*(-2.0/(2.0+ERW)) 

     +   -8.0*EPC/(2.0+ERW)**2) 

C 

      ENDIF 

C 

      ELSE 

C 

      EP_B1=EPC/EPC_S1*EP 

C 

C     SECOND IMAGY POINT 

      EBETA=EXB/(1+EYB*SIN(3.0*ETHETA))**EZB 

      ET=EXT/(1+EYT*SIN(3.0*ETHETA))**EZT 

      EG_THE=EX/(1+EY*SIN(3.0*ETHETA))**EZ 

      IF (EP.LE.(ET*2.0*EPC/(2.0+ERW))) THEN 

      EP_B2=2.0*EPC/(2.0+ERW) 

      EPF=EP 

      EJF=-EG_THE*EPF 

      ELSE 

      EPF=EP 

      EJF=EG_THE*ABS(EPF)*(1+EBETA*LOG(2.0*ET*ABS(EPC/EPF)/(2.0+ERW))) 

      IF (EJ.GT.EJF) THEN 

C      EJF=EJ*1.05 

      EJ=0.95*EJF 

      ENDIF 

      EPC_S2=CAL_PC_SUB(ERW,ERD,EX,EY,EZ,EPF,EJF,ETHETA) 

      EP_B2=EPC/EPC_S2*EPF 

C 

      IF (ABS(EP_B2/(2.0*EPC/(2.0+ERW))-1).LT.(1D-3).OR. 

     +    EP_B2.LT.2.0*EPC/(2.0+ERW)) THEN 

      EP_B2=2.0*EPC/(2.0+ERW) 

      ENDIF 

      ENDIF 

C 

C     PLASTIC MODULUS-FIRST IMAGY POINT 

      EPX=2.0/(2.0+ERW)*EPC 

      IF (EP_B1.LE.EPX) THEN 

      EH1=-EV/(ELAMDA-EKAPPA)*(-EPC)*(8.0/ERW**2 

     +   *(EP_B1-2.0*EPC/(2.0+ERW)))*(8.0/ERW**2*(EP_B1-2.0 

     +   *EPC/(2.0+ERW))*(-2.0/(2.0+ERW))-8.0*EPC/(2.0+ERW)**2) 

      ELSE 

      EH1=-EV/(ELAMDA-EKAPPA)*(-EPC)*(8.0/ERD**2 

     +   *(EP_B1-2.0*EPC/(2.0+ERW)))*(8.0/ERD**2*(EP_B1-2.0 

     +   *EPC/(2.0+ERW))*(-2.0/(2.0+ERW))-8.0*EPC/(2.0+ERW)**2) 

      ENDIF 

C 

C     PLASTIC MODULUS-SECOND IMAGY POINT 

      IF (EP.LE.(ET*2.0*EPC/(2.0+ERW))) THEN 

      EH2=0 

      ELSE 

      EH2=-EV/(ELAMDA-EKAPPA)*(-EPC)*(8.0/ERD**2 
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     +   *(EP_B2-2.0*EPC/(2.0+ERW)))*(8.0/ERD**2*(EP_B2-2.0 

     +   *EPC/(2.0+ERW))*(-2.0/(2.0+ERW))-8.0*EPC/(2.0+ERW)**2) 

      ENDIF 

C 

      IF (EP.GE.0) THEN 

      EROH1=3.0 

      EROH2=3.0 

      EROH=(1+EROH2**2/EG_THE**2)/(1+EROH1**2/EG_THE**2) 

C     THIRD IMAGY POINT (VERTICAL PROJECTION ON THE BOUNDING SURFACE) 

C     THE STRESS RATIO 

      EROH3=3.0 

      ELSE 

      EROH1=-EJ/EP 

      EROH2=-EJF/EPF 

      EROH=(1+EROH2**2/EG_THE**2)/(1+EROH1**2/EG_THE**2) 

      EROH3=EG_THE*SQRT(ABS((2.0/(2.0+ERW))**2*EPC**2-4.0/ERD**2 

     +      *(EP-2.0*EPC/(2.0+ERW))**2))/(-EP) 

      ENDIF 

C 

      IF (ABS(EROH3-EROH2).LE.ETOL) THEN 

      EK=0.0 

      ELSE 

      EK=EROH*(EROH3-EROH1)/(EROH3-EROH2) 

      ENDIF 

C 

C     PLASTIC MODULUS H 

      ED_RAT=EPC/EPC_S1 

C 

      EP_R=(SS_LU(1)+SS_LU(2)+SS_LU(3))/3.0 

C 

      IF (ABS(EP_R).GT.ABS(EP)) THEN 

      ECA1=1-ABS(EP)/ABS(EP_R) 

      ELSE 

      ECA1=1-ABS(EP_R)/ABS(EP) 

      ENDIF 

C 

      DO I=1,6 

      ESS_RR(I)=SS_LU(I)/EP_R 

      ESS_NN(I)=STRESS(I)/EP 

      ENDDO 

      EJ_RS=0 

      DO I=1,3 

      EJ_RS=EJ_RS+0.5*((ESS_NN(I)-1)-(ESS_RR(I)-1))**2 

      ENDDO 

      DO I=4,6 

      EJ_RS=EJ_RS+(ESS_NN(I)-ESS_RR(I))**2 

      ENDDO 

      EJ_R=EJ_RS**0.5 

      IF (EJ_R.LT.ETOL) THEN 

      EJ_R=ETOL 

      ENDIF 

      ECA2=EJ_R*1.732 

C 

      ECA_EQ=(ECA1**2+ECA2**2)**0.5 
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      IF (ECA_EQ.LE.ETOL)THEN 

      ECA_EQ=ETOL 

      ENDIF 

      ECA=1.0/ECA_EQ 

C  

      ECOXI=(1+ECA*(1.0-1.0/ED_RAT))**EGAMMA 

 

      EH=(EH1-EH2*EK)*ECOXI 

C 

      ENDIF 

C 

C     DETERMINE THE DIRECTION OF YIELD SURFACE 

      CALL EFP_DI(EF_DIR,EX,EY,EZ,EYP,EZP,EPC_S1,STRESS,1,ERW,ERD) 

C 

C     DETERMINE THE DIRECTION OF PLASTIC POTENTIAL 

      IF ((EY.EQ.EYP).AND.(EZ.EQ.EZP)) THEN 

      DO I=1,6 

      EP_DIR(I)=EF_DIR(I) 

      END DO 

C 

      ELSE 

C 

      CALL EFP_DI(EP_DIR,EX,EY,EZ,EYP,EZP,EPC_S1,STRESS,2,ERW,ERD) 

      END IF 

C 

      DO I=1,6 

      EB1(I)=0.0 

      END DO 

C 

      DO I=1,6 

      DO J=1,6 

      EB1(I)=EB1(I)+EF_DIR(J)*EELM(J,I) 

      END DO 

      END DO 

C 

      EB2=0.0 

      DO I=1,6 

      EB2=EB2+EB1(I)*EP_DIR(I) 

      END DO 

C 

      EB=EB2+EH 

C 

      IF (ABS(EB).LT.(1D-10).AND.EB.GT.0) THEN 

      EB=1D-10 

      ELSEIF (ABS(EB).LT.(1D-10).AND.EB.LT.0) THEN 

      EB=-1D-10 

      ENDIF 

C 

      DO I=1,6 

      DO J=1,6 

      ENN(J,I)=EP_DIR(J)*EF_DIR(I) 

      EDNN(J,I)=0.0 

      EDNND(J,I)=0.0 

      END DO 
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      END DO 

C 

      DO J=1,6 

      DO I=1,6 

      DO K=1,6 

      EDNN(I,J)=EDNN(I,J)+EELM(I,K)*ENN(K,J) 

      END DO 

      END DO 

      END DO 

C 

      DO J=1,6 

      DO I=1,6 

      DO K=1,6 

      EDNND(I,J)=EDNND(I,J)+EDNN(I,K)*EELM(K,J) 

      END DO 

      END DO 

      END DO 

C 

      DO I=1,6 

      DO J=1,6 

      EELPLM(J,I)=EELM(J,I)-EDNND(J,I)/EB 

      END DO 

      END DO 

C 

      RETURN 

      END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

CCCCCCC   CALULATE THE DIRECTION OF YIELD SURFACE   CCCCCCCCCCCCCCCCCCCCCCCCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C 

      SUBROUTINE EFP_DI(EF_DIR,EX,EY,EZ,EYP,EZP,EPC,STRESS,KFP_V, 

     +            ERW,ERD) 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

C     ST={SIGAMA_X-P,SIGAMA_Y-P,SIGAMA_Z-P,TOU_XY,TOU_XZ,TOU_YZ} 

C     EQ_S(6)==THE DERIVATIVE OF Q TO S 

C     EDS_S(6)==THE DERIVATIVE OF DET(S) TO S 

C     EII(6)==TO CALCULATE THE SURFACE DIRECTION 

C     ETRA(6,6)==TO CALCULATE THE SURFACE DIRECTION 

C  

      DIMENSION EQ_S(6),EDET_S(6),EII(6),ETRA(6,6),EF_DIR1(6), 

     +           STRESS(6),EF_DIR(6) 

C 

      EP=0.0 

      ESS=0.0 

      EJ=0.0 

      ETHETA=0.0 

      EDETS=0.0 

C 

      DO I=1,6 

      EDET_S(I)=0.0 
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      END DO 

C 

      IF (KFP_V.EQ.2) THEN 

      EY0=EYP 

      EZ0=EZP 

      ELSE 

      EY0=EY 

      EZ0=EZ 

      ENDIF 

C 

      CALL ES_INV(STRESS,EP,ESS,EJ,ETHETA,EDETS) 

C 

      EG_THE=EX/(1+EY*SIN(3.0*ETHETA))**EZ 

C 

      EPC=CAL_PC_SUB(ERW,ERD,EX,EY,EZ,EP,EJ,ETHETA) 

C 

C     EFP_VALUE=1,FOR YIELD SURFACE,=2,FOR PLASTIC POTENTIAL 

C 

      DO I=1,3 

      EQ_S(I)=2*(STRESS(I)-EP) 

      END DO 

C 

      DO I=4,6 

      EQ_S(I)=4*STRESS(I) 

      END DO 

C 

      EDET_S(1)=(STRESS(2)-EP)*(STRESS(3)-EP)-STRESS(6)**2 

      EDET_S(2)=(STRESS(1)-EP)*(STRESS(3)-EP)-STRESS(5)**2 

      EDET_S(3)=(STRESS(1)-EP)*(STRESS(2)-EP)-STRESS(4)**2 

      EDET_S(4)=-2.0*(STRESS(3)-EP)*STRESS(4)+2.0*STRESS(5) 

     +           *STRESS(6) 

      EDET_S(5)=-2.0*(STRESS(2)-EP)*STRESS(5)+2.0*STRESS(4) 

     +           *STRESS(6) 

      EDET_S(6)=-2.0*(STRESS(1)-EP)*STRESS(6)+2.0*STRESS(4) 

     +           *STRESS(5) 

C 

      EF_Q=0.5/EG_THE**2 

C 

      EF_THE=3.0*ESS*EZ0*EY0*(COS(3.0*ETHETA))/(1+EY0*SIN(3.0*ETHETA)) 

     +         /EG_THE**2 

      EALFA1=EF_Q+EF_THE*0.6495*EDETS/COS(3.0*ETHETA)/EJ**5 

      EALFA2=-EF_THE*0.866/COS(3.0*ETHETA)/EJ**3 

C 

C     PREMARY CACULATE DIRECTION, SHOULD BE FURTHER REVISED 

C 

      DO I=1,6 

      EF_DIR(I)=EALFA1*EQ_S(I)+EALFA2*EDET_S(I) 

      EII(I)=1.0 

      EF_DIR1(I)=0.0  

      END DO 

C      

      DO I=4,6 

      EII(I)=0.0 

      END DO 
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C 

      DO I=1,6 

      DO J=1,6 

      ETRA(J,I)=0.0 

      END DO 

      END DO 

C 

      DO I=1,3 

      DO J=1,3 

      ETRA(J,I)=-1.0 

      END DO 

      ETRA(I,I)=2.0 

      END DO 

C 

      DO I=4,6 

      ETRA(I,I)=3.0 

      END DO 

C     THE ABOVE HAVE SPECIFIED EII AND ETRA 

      DO I=1,6 

      DO J=1,6 

      EF_DIR1(J)=EF_DIR1(J)+1.0/3.0*ETRA(J,I)*EF_DIR(I) 

      END DO 

      END DO 

C 

      EPX=2.0/(2.0+ERW)*EPC 

      IF(EP.LE.EPX) THEN 

      DO I=1,6 

      EF_DIR(I)=EF_DIR1(I)+8.0/3.0/ERW**2*(EP-EPC*2.0/(2.0+ERW)) 

     +          *EII(I)         

      END DO 

C 

      ELSE 

C 

      DO I=1,6 

      EF_DIR(I)=EF_DIR1(I)+8.0/3.0/ERD**2*(EP-EPC*2.0/(2.0+ERW)) 

     +          *EII(I)        

      END DO 

C 

      ENDIF 

C 

      RETURN 

      END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

CCCCCCC      CALULATE THE ELASTIC MATRIX   CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C 

      SUBROUTINE EL_M(EELM,EV,EKAPPA,EG_MU,STRESS,DSTRAN,KS_T,ELAMDA, 

     +                 EMR,EW1,EW2,SS_R,NUMBER,EINTA,EINTA_MAX,LU,SS_R0, 

     +                 EGOCR) 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 



301 

 

      DIMENSION STRESS(6),DSTRAN(6),EELM(6,6),SS_R(6), 

     +           ESS_RR(6),ESS_NN(6),SS_R0(6) 

C     K-BULK MODULUS,G-SHEAR MODULUS 

C     ES_T IS TO DETERMINE THE TANGENT OR SECANT ELASTIC MATRIX 

C     1.0 IS TANGENT, OTHERS IS SECANT 

      ETOL=1.0D-4 

C 

      EP=0.0 

      ESS=0.0 

      EJ=0.0 

      ETHETA=0.0 

      EDETS=0.0 

C 

      CALL ES_INV(SS_R,EP,ESS,EJ,ETHETA,EDETS) 

C 

      EP=0.0 

      ESS=0.0 

      EJ=0.0 

      ETHETA=0.0 

      EDETS=0.0 

C 

      CALL ES_INV(STRESS,EP,ESS,EJ,ETHETA,EDETS) 

C 

      EPSI_V=(DSTRAN(1)+DSTRAN(2)+DSTRAN(3)) 

C 

      IF (KS_T.EQ.1) THEN 

      EK=ABS(EV*EP/EKAPPA) 

      ELSE 

      EK=ABS(EV*EP/EKAPPA) 

      ENDIF 

C 

      IF (EG_MU.GE.0.5) THEN 

      EG=EG_MU 

      ELSEIF (EG_MU .GT.0) THEN 

      EG=1.5*(1-2.0*EG_MU)/(1+EG_MU)*EK 

      ELSE 

C 

      IF (EGOCR.GT.2) THEN 

      EGMAX=40.0*(ABS(EP))*EGOCR**0.7 

      ELSE 

      EGMAX=100.0*(ABS(EP))*EGOCR**0.7 

      ENDIF 

C 

      EP_R=(SS_R(1)+SS_R(2)+SS_R(3))/3.0 

      DO I=1,6 

      ESS_RR(I)=SS_R(I)/EP_R 

      ESS_NN(I)=STRESS(I)/EP 

      ENDDO 

      EJ_RS=0 

      DO I=1,3 

      EJ_RS=EJ_RS+0.5*((ESS_NN(I)-1)-(ESS_RR(I)-1))**2 

      ENDDO 

      DO I=4,6 

      EJ_RS=EJ_RS+(ESS_NN(I)-ESS_RR(I))**2 
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      ENDDO 

      EJ_R=EJ_RS**0.5*1.732 

C 

      IF (NUMBER .EQ.1) THEN 

      EAA=2.0*EXP(EW2*EJ_R)/(1.0+EXP(EW1*EJ_R)) 

      ELSEIF ((EINTA .LE.EINTA_MAX)) THEN 

      EAA=2.0*EXP(EW2*EJ_R/2.0)/(1.0+EXP(EW1*EJ_R/2.0)) 

      ELSE 

 

      EP_R0=(SS_R0(1)+SS_R0(2)+SS_R0(3))/3.0 

      DO I=1,6 

      ESS_RR(I)=SS_R0(I)/EP_R0 

      ESS_NN(I)=STRESS(I)/EP 

      ENDDO 

      EJ_RS=0 

      DO I=1,3 

      EJ_RS=EJ_RS+0.5*((ESS_NN(I)-1)-(ESS_RR(I)-1))**2 

      ENDDO 

      DO I=4,6 

      EJ_RS=EJ_RS+(ESS_NN(I)-ESS_RR(I))**2 

      ENDDO 

      EJ_R=EJ_RS**0.5*1.732 

 

      EAA=2.0*EXP(EW2*EJ_R)/(1.0+EXP(EW1*EJ_R)) 

      ENDIF 

C 

      EG=EGMAX/EAA 

C 

C      IF (EG .LT. (1.5*(1-2.0*ABS(EG_MU))/(1+ABS(EG_MU))*EK)) THEN 

C      EG=1.5*(1-2.0*ABS(EG_MU))/(1+ABS(EG_MU))*EK 

C      ENDIF 

C 

      ENDIF 

C 

      DO I=1,3 

      DO J=1,3 

      EELM(J,I)=EK-2.0/3.0*EG 

      END DO 

      EELM(I,I)=EK+4.0/3.0*EG 

      END DO 

C 

      DO I=4,6 

      EELM(I,I)=EG 

      END DO 

C 

      RETURN 

      END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

CCCCCCCCCCC   CACULATE THE STRESS INVARIANTS  CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C 

      SUBROUTINE ES_INV(STRESS,EP,ESS,EJ,ETHETA,EDETS) 
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C 

      INCLUDE 'ABA_PARAM.INC' 

C 

C     1-P,2-J,3-THETA,ESS=S:S=2*J**2 

C     EDETS==THE DETERMINANT OF S 

      DIMENSION STRESS(6) 

C 

      ETOL=1.0D-5 

C 

      EP=(STRESS(1)+STRESS(2)+STRESS(3))/3.0 

C 

      ESS=(STRESS(1)-EP)**2+(STRESS(2)-EP)**2+(STRESS(3)-EP)**2 

     +     +2*STRESS(4)**2+2*STRESS(5)**2+2*STRESS(6)**2 

C 

      EJ=(0.5*ESS)**0.5 

C 

C     SIGMA_X=STRESS(1),SIGMA_Y=STRESS(2),SIGMA_Z=STRESS(3) 

C     TOU_XY=STRESS(4),TOU_XZ=STRESS(5),TOU_YZ=STRESS(6) 

C     EDETS==THE DETERMINANT OF S 

      EDETS=(STRESS(1)-EP)*(STRESS(2)-EP)*(STRESS(3)-EP) 

     +      +2*STRESS(4)*STRESS(5)*STRESS(6) 

     +      -(STRESS(1)-EP)*STRESS(6)**2 

     +      -(STRESS(2)-EP)*STRESS(5)**2 

     +      -(STRESS(3)-EP)*STRESS(4)**2   

C 

      IF (EJ.LT.ETOL) THEN 

      EJ=ETOL 

      ESS=2.0*EJ**2 

      ETHETA=0.0 

C 

      ELSE 

      EXXX=1.5*1.73205*EDETS/EJ**3 

      IF (EXXX.GT.1.0) THEN 

      EXXX=1.0 

      ELSEIF(EXXX.LT.-1.0) THEN 

      EXXX=-1.0 

      ENDIF 

      ETHETA=-1.0/3.0*ASIN(EXXX) 

      ENDIF 

       

      IF (ABS(ETHETA-0.5235988).LT.ETOL) THEN 

      ETHETA=0.5236 

      ELSEIF (ABS(ETHETA+0.5235988).LT.ETOL) THEN 

      ETHETA=-0.5236 

      ENDIF 

C 

      RETURN 

      END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
 

 


