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SUMMARY 
 

SUMMARY 
 
Adverse environmental conditions are a threat to agricultural yield, which in 

turn affect livelihood, health and economy worldwide. Abscisic acid (ABA) is 

a vital plant hormone that regulates abiotic stress tolerance, allowing plants to 

cope with environmental stresses. Upon ABA induction, several members of 

Snf1-related protein kinases (SnRKs) are activated and mediate the ABA 

response. Under basal conditions, a group of type 2C protein phosphatases 

(PP2Cs) act as negative regulators to silence the ABA signalling pathway, 

apparently by inhibiting SnRKs. The identity of the ABA receptor has been 

controversial until at least 2 recent studies independently discovered the same 

group of 14-member PYR/PYL/RCAR (in this thesis referred to as PYL for 

simplicity) family to be the likely ABA receptors. It has been proposed that 

ABA induces PYLs to inhibit PP2Cs, resulting in the activation of SnRKs and 

the ABA response, although the mechanisms have been unknown. 

 

In this study, the structures of representative PYLs in apo and ABA-bound 

forms were determined using X-ray crystallography, providing evidence for 

the role of PYLs as ABA receptors. Comparison of the structures of ABA-

bound and unbound receptors revealed conformational changes in 2 receptor 

loops, termed ‘gate’ and ‘latch’ loops, upon hormone binding. The functional 

importance of these loops and key pocket residues involved in ABA 

recognition were validated by biochemical assays of mutant receptors. 

 

Subsequently, the structures of representative apo PP2C and 

PYL ABA PP2C complexes were determined. Analyses of these structures 
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revealed that while the overall PP2C conformation remains unchanged in PYL 

interaction, the receptor undergoes ABA-induced structural changes in the 

gate and latch regions that promote PP2C binding. In the PYL ABA PP2C 

structure, a conserved PP2C tryptophan residue inserts into the PYL pocket, 

acting as a molecular lock that stabilizes the receptor-phosphatase interaction. 

In this conformation, PYL sterically blocks the PP2C active site, which 

explains for the ABA-induced PYL inhibition of the phosphatase. Hence, we 

identified a ‘gate-latch-lock’ mechanism of hormone binding and signal 

transduction by the PYL ABA receptor. These structural observations were 

supported by interaction and phosphatase activity assays with mutant PYLs 

and PP2Cs. 

 

Consistent with previous findings, we showed that pyrabactin, a synthetic 

ABA agonist, selectively activates or inhibits specific members of the PYL 

family. Here, the crystal structures of representative pyrabactin-activated and 

pyrabactin-antagonized PYL complexes were determined. Comparison of 

these structures revealed the molecular mechanisms underlying the selective 

PYL activation and repression, providing a basis for future design of specific 

ABA receptor agonists and antagonists. 

 

Together, these data contribute significantly to the understanding of the 

molecular mechanisms controlling ABA responses. Such advancement will be 

valuable for developments in plant biotechnology to solve worldwide 

agriculture-implicated issues and may also contribute to the understanding of 

similar intracellular signalling mechanisms in humans.  
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1.1 Introduction 

“There are things known and there are things unknown, and 

in between are the doors of perception.”  
 Aldous Huxley 

 

We are constantly surrounded by signals, for example, traffic signals, 

notifications, advertisements and feelings of pain or hunger. However, we are 

only aware of these signals if we perceive them. We would not know or 

respond if we do not perceive them, even if the signals have been there. Thus, 

in the process of conveying a signal, perception of the signal is as important as 

existence of the signal itself. 

 

At the cellular level, extracellular signals are often sent to cells through 

molecules such as hormones. In plants, the hormone abscisic acid (ABA) is 

produced when environmental condition is harsh, to send signals to the plant 

cells to adapt as necessary. ABA was discovered in the 1960s and shortly 

after, much has been established about its chemistry and physiological 

importance (Weiner et al., 2010). In the following decades, more than 100 

mediators involved in ABA signalling have been identified in molecular 

genetic, biochemical and pharmacological studies (Cutler et al., 2010). 

However, for almost half a century, a missing piece of puzzle remains in our 

knowledge of ABA signal transduction. That is, how the ABA signal is 

perceived.  
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The identification of ABA receptors, plant proteins that sense the hormone 

and relay the signal to other mediators in the pathway, has been a daunting 

task full of controversy and frustrations. Since 2006, several reports claimed to 

have identified the ABA receptors (McCourt and Creelman, 2008), but none 

has been substantiated after further investigations. The turnaround came in 

mid 2009 when at least two separate findings convincingly pointed to the 

same members belonging to the START-domain superfamily of proteins as 

the candidate ABA receptors (Ma et al., 2009; Nishimura et al., 2010; Park et 

al., 2009; Santiago et al., 2009b). The 14 members of this group of proteins 

are named Pyrabactin Resistance 1 (PYR1) and PYR1-like (PYL1 PYL13) 

(Park et al., 2009) or Regulatory Component of ABA Receptor 

(RCAR1 RCAR14) (Ma et al., 2009). For simplicity, this group of 

Arabidopsis START-domain proteins are referred to as PYL(s) in this thesis. 

The discovery of PYLs as the likely ABA receptors shed light into uncovering 

how plant cells perceive and relay the ABA signal, a knowledge that has 

valuable agricultural and economic implications.   

 

This literature review focuses on the field of ABA signalling up till the initial 

discovery of the PYL proteins as the likely ABA receptors, highlighting the 

gaps that were to be addressed by the study presented in this thesis. 
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1.2 Physiological role of ABA in abiotic stress tolerance 

ABA is a vital phytohormone that confers abiotic stress tolerance in plants 

(Zhu, 2002). Under stressful environmental conditions such as water shortage, 

salinity and temperature extremes, the ABA content in plants rises 

significantly, stimulating stress-tolerant effects that help them to cope and 

survive in the adverse conditions (Figure 1). It has been demonstrated that 

mutant plants engineered with enhanced sensitivity to ABA do better than 

their wild type counterparts in drought conditions (Saez et al., 2006). Under 

drought or osmotic stress, ABA promotes stomata closure to prevent water 

loss through transpiration and the accumulation of osmocompatible solutes to 

retain water (Cutler et al., 2010; Kim et al., 2010). It has also been shown that 

ABA is required for tolerance to freezing, by the induction of dehydration 

tolerance genes (Xiong et al., 2001).  

 

The role of ABA as a negative plant growth regulator has been long 

established (Milborrow, 1974). The action of ABA in the induction and 

maintenance of seed dormancy is attributed to its potent effects in the 

inhibition of seed germination (Lopez-Molina et al., 2001). ABA also inhibits 

the growth and development of whole plants or plant parts and counteracts the 

effects of growth-stimulating hormones such as gibberellins (Cutler et al., 

2010). The inhibitory effects of ABA on germination and growth help plants 

surpass the stress conditions and germinate only when the conditions are 

favourable for growth. 
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Figure 1. ABA confers abiotic stress tolerance in plants.  

Overview of the ABA-mediated physiological responses that enable plants to 
adapt and survive in harsh environmental conditions. 
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1.3 Biosynthesis and transport of ABA 
 

Stress signals induce the expression of enzymes responsible for ABA 

biosynthesis. Most of the ABA biosynthesis genes have been identified and 

cloned, which includes zeathanxin epoxidase (ZEP), 9 cis epoxycarotenoid 

dioxygenase (NCED) and abscisic aldehyde oxidase (AAO3) (Xiong et al., 

2001; Xiong et al., 2002). ABA is synthesized from C40 carotenoids through 

several enzymatic steps (Figure 2) (Nambara and Marion-Poll, 2005). 

Zeaxanthin, formed from the hydroxylation of -carotene, is converted to 

violaxanthin by ZEP. This is followed by the synthesis and oxidative cleavage 

of neoxanthin into xanthoxin, the C15 precursor of ABA. The production of 

xanthoxin catalyzed by NCED is thought to be the key regulatory step in ABA 

biosynthesis. Xanthoxin is then converted into abscisic aldehyde which is 

oxidized into ABA.  

 

The endogenous concentration of ABA is determined by the balance between 

ABA biosynthesis and catabolism, as well as the rate of ABA transport to the 

site of action. However, the mode of intercellular movement of ABA has been 

previously unclear. Although ABA can diffuse passively across biological 

membranes, recent evidence suggest that active transporters are involved in 

shuttling ABA in and out of cells. One such transporter, AtABCG25, was 

identified in a genetic screen of mutants with altered ABA sensitivity 

(Kuromori et al., 2010). AtABCG25 is an ATP-binding cassette (ABC) 

transporter expressed mainly in vascular tissues where ABA is predominantly 

synthesized. 
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Figure 2. ABA biosynthetic pathway.  

ABA is derived from C40 epoxycarotenoid precursors through oxidative 
cleavage reactions in the plastid. The C15 intermediate, xanthoxin, is exported 
to the cytosol where it is converted to ABA through a two-step reaction via 
abscisic aldehyde. The ABA biosynthetic enzymes, zeathanxin epoxidase 
(ZEP), 9 cis epoxycarotenoid dioxygenase (NCED), short-chain alcohol 
dehydrogenase and abscisic aldehyde oxidase (AAO3), are shown in pink.  
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In AtABCG25-expressing membrane vesicles derived from insect cells, ATP-

dependent efflux of ABA was detected, suggesting the role of AtABCG25 as 

an ABA exporter. Simultaneously, another ABC transporter, AtABCG40, was 

identified to be an ABA importer (Kang et al., 2010). ABA uptake was 

increased in cells overexpressing AtABCG40 and decreased in cells with 

defective AtABCG40. More recently, another ABA importer, ABA-importing 

transporter 1 (AIT1), has been identified (Kanno et al., 2012), additionally 

demonstrating the involvement of ABA transporters in the intercellular 

transmission of ABA. Thus, a simple model of ABA translocation has been 

proposed (Umezawa et al., 2010). In this model, ABA synthesized in vascular 

cells are actively transported by ABA exporters into the extracellular 

apoplastic space, after which uptake into the sites of action, such as guard 

cells, occur through active ABA importers. 

 

1.4 Catabolism of ABA 

 

When stress signals are alleviated, ABA is metabolized into inactive products. 

ABA catabolism occurs largely through two types of reaction, hydroxylation 

and conjugation. ABA can be hydroxylated on one of the three methyl groups 

(C-7’, C-8’ and C-9’) of the ring structure (Figure 3). Of these, 8’-

hydroxylation is thought to be the predominant ABA catabolic pathway 

(Cutler and Krochko, 1999). Accordingly, the products of the 8’-

hydroxylation pathway, phaseic acid (PA) and dihydrophaseic acid (DPA) are 

the most abundant ABA catabolites. While 8’-hydroxy ABA contains 

substantial biological activity, spontaneous cyclization to form PA causes 
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significant reduction in activity (Zou et al., 1995). PA is further catabolized to 

the biologically inactive DPA.  

 

Endogenous ABA levels in Arabidopsis decreases under high humidity 

conditions, primarily by ABA catabolism through the 8’-hydroxylation 

pathway (Okamoto et al., 2009). ABA 8’-hydroxylation is catalyzed by ABA 

8’-hydroxylase, a cytochrome P450 encoded by CYP707A family of genes 

(Kushiro et al., 2004; Saito et al., 2004). Transcript levels of the 4 members of 

CYP707A family, CYP707A1 CYP707A4, are increased under drought stress 

and strongly induced upon rehydration (Kushiro et al., 2004), with the highest 

induction observed in CYP707A3 (Umezawa et al., 2006). Recent findings 

indicated that CYP707A3 functions in vascular tissues to reduce systemic 

ABA levels whereas CYP707A1 catabolizes local ABA pools inside guard 

cells in response to high humidity (Okamoto et al., 2009). 

 

In addition to hydroxylation, ABA and its hydroxylated catabolites can be 

conjugated to glucose. The major glucose conjugate of ABA, ABA glucosyl 

ester (ABA GE), is biologically inactive and may function as a storage form 

of releasable ABA (Dietz et al., 2000). In Arabidopsis, dehydration induces 

the activation of AtBG1, a -glucosidase that hydrolyzes ABA GE, leading to 

an increase in the active ABA pool (Lee et al., 2006). In plant leaves, 

ABA GE is stored in the vacuole and apoplastic space (Dietz et al., 2000) 

whereas AtBG1 is localized to the endoplasmic reticulum (ER) (Lee et al., 

2006). With its limited membrane permeability, it remains unclear how 

ABA GE translocates from its storage site to the ER where it is hydrolyzed.
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Figure 3. ABA catabolic pathways. 

Three catabolic pathways via C-7’, C-8’ and C-9’ hydroxylation are shown. 
Figure is adapted from Annu. Rev. Plant Biol. 56:165–85 (Nambara and 
Marion-Poll, 2005). 
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1.5 Chemical features of ABA 

 

The natural and biologically active isomer of ABA is the S-(+)-2-cis-4-trans-

ABA, also commonly known as S-ABA, (+)-ABA or S-(+)-ABA. The 

molecular structure consist of a cyclohexene ring with a monomethyl group, a 

dimethyl group, a ketone group, a hydroxyl group and a hydrocarbon side 

chain conjugated to the carboxylic acid group (Figure 4). The 2-cis-4-trans 

side chain geometry is reversibly isomerized by light to form the 2-trans-4-

trans inactive isomer (Cutler et al., 2010). Studies using ABA analogues 

lacking the 7’, 8’ or 9’ methyl groups showed that the 7’- methyl group is 

critical to bioactivity (Walker-Simmons et al., 1994). A flip of the 

cyclohexene ring around the chiral carbon produces unnatural the R-( )- 

enantiomer which has weak biological activity (Lin et al., 2005).  

 

Specific ABA analogues, which are structural variants of the natural S-(+)-

ABA, have been used to identify ABA-responsive genes and some are 

potential plant growth regulators (Asami et al., 1998; Huang et al., 2007). For 

instance, PBI-51, an acetylenic ABA analogue, has ABA antagonistic effects 

in Brassica napus and Vicia faba (Wilen et al., 1993; Yamazaki et al., 2003) 

while it is a weak ABA agonist in Arabidopsis (Nishimura et al., 2004). The 

use of PBI-51 to screen for ABA-related mutants has led to the isolation of 

novel ABA hypersensitive mutants (Nishimura et al., 2004). In addition, 

pyrabactin, a selective ABA agonist that does not structurally resemble ABA 

(Figure 4), has been employed in the isolation of PYR1 which led to the 
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discovery of the PYL family of proteins as ABA receptors (Park et al., 2009). 

This landmark study will be reviewed in further detail in section 1.6.6.1. 

 

Figure 4. Chemical structures of ABA stereoisomers, structural analogue 
and pyrabactin. 

The S- and R- stereoisomers of ABA differ by a flip around the chiral carbon 
(C-1’). PBI-51 is a structural analogue of ABA, while pyrabactin, which does 
not structurally resemble ABA, is a selective ABA agonist. Functional groups 
of ABA and pyrabactin are shown in colours. Nomenclature for the naming of 
carbon atom positions is shown for the S-(+)-ABA structure. 
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1.6 Components and model of the core ABA signalling pathway 
 

1.6.1 PP2Cs negatively regulate ABA signalling 

 

Reversible protein phosphorylation mediated by protein kinases and protein 

phosphatases is a major mechanism of cellular signal transduction across 

organisms. PP2Cs are a group of Mg2+/Mn2+-dependent Ser/Thr phosphatases. 

In plants, PP2Cs represent a major phosphatase family. Of the 112 

phosphatases encoded in the Arabidopsis genome, 76 are PP2Cs, which 

genetically clustered into 10 groups (A-J) with the exception of 6 genes that 

could not be clustered (Figure 5) (Schweighofer et al., 2004). At least 6 of the 

9 members of group A PP2Cs have been shown to be involved in ABA 

signalling, of which ABI1, ABI2 and HAB1 have been best characterized.  

 

The isolation and characterization of Arabidopsis ABA-insensitive mutants 

have led to identification of members of group A PP2Cs as negative regulators 

of ABA signalling. Dominant mutations abi1-1 (ABI1 G180D) and abi2-1 

(ABI2 G168D) resulting in reduced ABA responsiveness have been isolated in 

genetic screens of mutagenized Arabidopsis seeds (Leung et al., 1994; Leung 

et al., 1997; Meyer et al., 1994; Rodriguez et al., 1998a). Both mutants display 

reduced ABA-induced effects on seed dormancy, seedling growth, drought 

tolerance and stomatal regulation. The ABI1 and ABI2 genes encode 

homologous PP2C proteins and are transcriptionally upregulated by ABA 

treatment. Subsequently, HAB1 was identified based on its sequence 

homology to ABI1 and ABI2 (Rodriguez et al., 1998b).  
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Figure 5. Classification of Arabidopsis PP2Cs.  

Classification is based on genetic clustering data from TRENDS in Plant 

Science. 9:236-243 (Schweighofer et al., 2004). The general domain structure 
of group A PP2C, which comprises of an N-terminal non-catalytic region and 
a C-terminal PP2C catalytic domain, is shown beside the group A cluster. 
AGI: Arabidopsis Genome Initiative. 
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Consistent with the phenotypic effects observed in the abi1-1 and abi2-1 

mutations, the corresponding mutation in HAB1 (G246D) resulted in strong 

ABA insensitivity (Robert et al., 2006). The abi1-1, abi2-1 and HAB1 G246D 

mutations correspond to substitution of a conserved glycine residue with 

aspartate in the phosphatase catalytic centre, causing a dramatic reduction in 

the phosphatase activity towards phospho-casein, used as a heterologous 

substrate. However, owing to the dominant nature of the mutation, it was 

uncertain whether these PP2Cs are involved in ABA signalling or the mutation 

introduces unspecific phenotypes that are not related to the original function of 

the wild type proteins. 

 

It was the additional isolation of recessive loss-of-function mutations in the 

catalytic regions of ABI1, ABI2 and HAB1 resulting in ABA hypersensitive 

phenotypes that provided critical evidence that these PP2Cs negatively 

regulate ABA signalling (Gosti et al., 1999; Merlot et al., 2001; Saez et al., 

2004). This concept was further demonstrated by double or triple PP2C 

knockout mutants displaying enhanced hypersensitivity to ABA (Rubio et al., 

2009; Saez et al., 2006). Consistently, the constitutive expression of HAB1 

(35S:HAB1) in Arabidopsis led to reduced ABA sensitivity, supporting its 

role as inhibitor of ABA signalling (Saez et al., 2004).  

 

Based on the negative regulatory roles of the group A PP2Cs, it remained 

enigmatic how the abi1-1 and abi2-1 mutations and the corresponding G246D 

mutation in HAB1 induce dominant ABA insensitive phenotypes. 

Interestingly, the abi1-1 mutant protein was able to inhibit ABA signal 
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transduction as effectively as the wild type protein, shown in an ABA-

inducible transcription assay in plant protoplasts (Sheen, 1998). More recent 

studies have revealed the hypermorphic nature of this type of mutation (Moes 

et al., 2008; Robert et al., 2006), but do not fully explain how such mutation 

interferes with ABA signal transduction. Elucidation of the molecular basis of 

how PP2Cs negatively regulate ABA signalling is required. 

 

 

1.6.2 SnRK2s mediate the ABA response 

 

The identification of PP2Cs has indicated that protein phosphorylation events 

are important in ABA signalling. In line with this concept, the SnRK2 family 

was identified as ABA-activated protein kinases (Mustilli et al., 2002; 

Yoshida et al., 2002). SnRK2 belong to the SnRK group of protein kinases 

that are closely related to the yeast Snf1 and mammalian AMPK kinases. The 

Arabidopsis genome contains 38 SnRKs, which are classified into 3 groups, 

namely SnRK1 (1.1–1.3), SnRK2 (2.1–2.10) and SnRK3 (3.1–3.25) (Hrabak 

et al., 2003) (Figure 6a). The SnRK1 group shares the highest degree of 

homology with Snf1 and AMPK. Like its yeast and mammalian counterpart, 

SnRK1 is best known for its role as a key metabolic regulator (Polge and 

Thomas, 2007). In contrast, SnRK2 and SnRK3 are unique to plants and are 

thought to be involved in abiotic stress signalling (Coello et al., 2011). 

 

There are 10 SnRK2 members in Arabidopsis, designated as SRK2I–SRK2J 

(Yoshida et al., 2002) or SnRK2.1–SnRK2.10 (Hrabak et al., 2003), and are 
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divided into 3 subclasses, I, II and III (Figure 6a). All SnRK2 members, 

except SnRK2.9, can be activated by osmotic stress as shown in Arabidopsis 

protoplast system (Boudsocq et al., 2004). Consistently, Arabidopsis decuple 

mutant lacking all 10 SnRK2s grew poorly under osmotic stress (Fujii et al., 

2011), revealing the importance of SnRK2s in osmotic stress signalling. 

However, not all SnRK2 members can be activated by ABA, suggesting that 

osmotic stress signalling consists of ABA-dependent and ABA-independent 

pathways. While SnRK2 subclass I members are not activated by ABA, 

subclass II members, represented by SnRK2.7 and SnRK2.8, are weakly 

activated by ABA. In contrast, the members of the subclass III are strongly 

activated by ABA (Boudsocq et al., 2004). 

 

Subclass III of the Arabidopsis SnRK2 family contains 3 kinases, namely 

SnRK2.2/SRK2D, SnRK2.3/SRK2I and SnRK2.6/SRK2E/OST1. This 

subclass of ABA-responsive kinases has been identified as the main positive 

regulators of ABA signalling. The physiological role of SnRK2.6 has been 

initially determined in guard cells. Loss-of-function mutations in SnRK2.6 

disrupted ABA-induced stomata closure in Arabidopsis (Mustilli et al., 2002; 

Yoshida et al., 2002). On the other hand, a snrk2.2 snrk2.3 double mutant 

showed strong ABA insensitivity in seed germination and root growth 

inhibition (Fujii et al., 2007). Consequently, triple mutants lacking SnRK2.2, 

SnRK2.3 and SnRK2.6 resulted in impairment in almost all ABA responses, 

indicating the centrality of these kinases to ABA signalling (Fujii and Zhu, 

2009; Fujita et al., 2009; Nakashima et al., 2009a).  
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SnRK2s contain a well-conserved kinase catalytic domain and a C-terminal 

regulatory region that encompasses 2 domains. Domain I, which is also known 

as SnRK2 box, is conserved within all SnRK2s. Domain II is a highly acidic 

region that is only conserved among the ABA-responsive members, and thus 

is also known as the ABA box (Belin et al., 2006; Yoshida et al., 2006) 

(Figure 6b). 

 

Many reports have demonstrated that phosphorylation is important for the 

activation of SnRK2s. Active recombinant SnRK2.6 is autophosphorylated 

and several phosphorylation sites have been identified, in which 

phosphorylation of S175 in the activation loop is critical for its kinase activity 

(Belin et al., 2006). Active SnRK2s are able to directly phosphorylate targets 

such as ion channels and transcription factors to elicit the ABA response 

(reviewed in sections 1.6.3 and 1.6.4). 

 

The group A PP2Cs ABI1, ABI2 and HAB1 have been shown to directly bind 

to and dephosphorylate SnRK2.6 (Vlad et al., 2009) and the ABA box domain 

of SnRK2.6 is important for such interaction (Yoshida et al., 2006). 

Altogether, these findings suggest that group A PP2Cs negatively regulate 

ABA signalling by repressing the class III SnRK2s, which are positive 

transducers of the ABA response. However, how ABA accumulation leads to 

SnRK2 activation had been unknown. 
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Figure 6. Classification and domain structure of Arabidopsis SnRK2. 

a) Diagram showing the classification of Arabidopsis SnRK groups and 
subclasses of the SnRK2s. b) Domain structure of Arabidopsis SnRK2. 
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1.6.3 ABA regulation of ion channels 

 

ABA-induced stomata closure appears to act through ion channels on guard 

cell membranes. One of these is the slow-type anion channel, SLAC1, shown 

to be essential in stomata closure in response to in response to various factors 

such as ABA and CO2 (Negi et al., 2008; Vahisalu et al., 2008). SLAC1 is 

phosphorylated and activated by SnRK2.6, and this activation can be inhibited 

by PP2C (Geiger et al., 2009; Lee et al., 2009). In addition, an inward-

rectifying potassium channel, KAT1, is also a target of SnRK2.6. ABA-

activated SnRK2.6 can phosphorylate Thr306 of KAT1 and such modification 

reduces KAT1 activity, suggesting that active SnRK2.6 negatively regulates 

KAT1 by phosphorylation to promote stomata closure (Sato et al., 2009). 

Therefore, SnRK2s are important regulators of ion channels in mediating 

ABA-induced stomata closure. 

 

 

1.6.4 ABA regulation of gene expression 

 

ABA accumulation in plant cells leads to changes in gene expression that 

generally contributes to drought stress tolerance. Transcriptome studies in rice 

and Arabidopsis have shown that exposure to ABA and various abiotic 

stresses result in changes to about 5–10 % of the genome, whereby more than 

half of these changes were common to drought, salinity and ABA treatments 

(Nakashima et al., 2009b; Shinozaki et al., 2003). ABA-induced genes code 

for proteins involved in stress tolerance such as dehydrins, enzymes that 
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detoxify reactive oxygen species (ROS) and regulatory proteins such as 

transcription factors, protein phosphatases and kinases. ABA-repressed genes 

are enriched for those encoding proteins associated with cell growth. 

 

Many cis-acting DNA elements have been identified by analysis of the 

promoters of ABA-responsive genes (Busk and Pages, 1998). These elements, 

designated as ABA-responsive elements (ABREs), commonly contain the 

PyACGTGG/TC consensus sequence belonging to the G-box family 

(CACGTG), which has been implicated in a wide range of gene expression 

mechanisms in plants (Menkens et al., 1995). ABA-responsive gene 

expression requires multiple ABREs or the combination of an ABRE with a 

coupling element (Gomez-Porras et al., 2007; Zhang et al., 2005).  

 

The ABRE-binding (AREB) proteins, or ABRE-binding factors (ABFs) were 

isolated by using ABRE sequences as bait in yeast one-hybrid screenings 

(Choi et al., 2000; Uno et al., 2000). The AREB/ABFs encode basic-domain 

leucine zipper (bZIP) transcription factors and belong to the group A 

subfamily, which is composed of nine homologues in the Arabidopsis genome 

that share a highly conserved C-terminal bZIP domain and three additional N-

terminal conserved regions designated as C1, C2 and C3 (Jakoby et al., 2002). 

These nine homologues can be divided into two groups, the ABI5 family 

(ABI5, EEL, DPBF2/AtbZIP67, DPBF4, and AREB3) which are mainly 

expressed in seeds and are involved in seed development and maturation 

(Bensmihen et al., 2005; Bensmihen et al., 2002; Finkelstein and Lynch, 2000; 

Kim et al., 2002), and the AREB/ABF family (ABF1, AREB1/ABF2, 
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AREB2/ABF4, and ABF3) that are mainly expressed in vegetative tissues 

under abiotic stress conditions (Choi et al., 2000; Fujita et al., 2005; Kang et 

al., 2002; Kim et al., 2004; Uno et al., 2000). While ABF1 is strongly induced 

by cold but not by osmotic stress (Kim, 2006), AREB1/ABF2, AREB2/ABF4 

and ABF3 are induced by dehydration, high salinity and ABA treatment 

during vegetative growth (Fujita et al., 2005). Overexpression of these factors 

enhances drought stress tolerance (Fujita et al., 2005; Kang et al., 2002; Kim 

et al., 2004) and triple mutation causes impaired stress-responsive gene 

expression (Yoshida et al., 2010), indicating that AREB1, AREB2 and ABF3 

are master transcription factors that regulate ABRE-dependent expression of 

stress-responsive genes. 

 

Several studies suggest that ABA-dependent phosphorylation of AREB/ABFs 

is needed for their full activation. AREB1 requires ABA for its full activation 

and its activity is regulated by ABA-dependent multi-site phosphorylation of 

the conserved domains (Furihata et al., 2006). ABA-activated SnRK2s, 

including SnRK2.2, SnRK2.3 and SnRK2.6, have been shown to 

phosphorylate AREB1 (Furihata et al., 2006). Loss of function of SnRK2.2 

and SnRK2.3 resulted in reduction in the phosphorylation of ABFs (Fujii et 

al., 2007). In the triple mutant lacking SnRK2.2, SnRK2.3 and SnRK2.6, 

ABA-induced gene expression was eliminated (Fujii and Zhu, 2009). These 

results suggest that SnRK2s are essential for ABA-induction of gene 

expression through the phosphorylation and activation of ABFs. However, the 

molecular events leading to ABA-dependent activation of SnRK2s remained 

unknown. Identification of ABA receptors is an important step to link our 
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understanding from ABA perception to SnRK2 activation. The search for 

ABA receptors have started with several controversial candidates, as reviewed 

below. 

 

 

1.6.5 Putative ABA receptor candidates 

 

1.6.5.1  Flowering Time Control Protein A (FCA) 

 

The first gene reported to be an ABA receptor is the FCA, an RNA-binding 

protein which controls flowering time in Arabidopsis (Razem et al., 2006). 

FCA shares sequence similarity with the barley protein ABAP1, which was 

reported to bind ABA with high affinity (Razem et al., 2004). However, FCA 

does not appear to have any function in classical ABA responses such as seed 

dormancy and stomata regulation, thus its role as an ABA receptor has been 

questionable (McCourt and Creelman, 2008). When later attempts failed to 

detect any interaction between ABA and FCA, doubts were raised about the 

quality of proteins and assay methods used in the earlier studies (Risk et al., 

2008). Both the ABAP1 and FCA reports were eventually retracted at the 

authors’ request following findings that the ABA-binding data could not be 

reproduced. 
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1.6.5.2  Magnesium chelatase H subunit (CHLH) 

 

The second putative ABA receptor is the CHLH/ABAR/GUN5, the H subunit 

of the magnesium-protophyrin IX chelatase that is involved in the first step of 

chlorophyll synthesis (Shen et al., 2006). In addition, CHLH has also been 

known to play a key role in retrograde signalling between chloroplast and 

nucleus under stressful conditions (Mochizuki et al., 2001). Reduction of 

CHLH levels through RNA interference resulted in ABA insensitivity whereas 

overexpression led to whole plant ABA hypersensitivity, suggesting its role as 

a positive regulator of the ABA response. Moreover, Arabidopsis CHLH was 

shown to bind ABA with high affinity, at a Kd of 32 nM (Shen et al., 2006). 

Despite so, there has been extensive debate about the role of CHLH in ABA 

signalling. The initial identification of broad bean CHLH as an ABA-binding 

protein employed an affinity resin that immobilized ABA at its carboxylate 

(Zhang et al., 2002), which is a potentially problematic approach given that 

ABA’s carboxylate is needed for its bioactivity. Barley’s CHLH does not bind 

ABA and its loss of function did not affect ABA response, suggesting that 

CHLH is not an ABA receptor in barley (Muller and Hansson, 2009). Another 

study of Arabidopsis CHLH failed to detect ABA binding by radioligand 

binding assay (Tsuzuki et al., 2011). Even though CHLH appears to be 

involved in the crosstalk between ABA signalling and chloroplast-nucleus 

retrograde signalling (Koussevitzky et al., 2007), ambiguous evidence remains 

for its function as an ABA receptor and further molecular explanations are 

required to understand how Arabidopsis CHLH mediates the ABA responses 

reported by Shen et al., 2006. 
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1.6.5.3  G-protein-coupled receptor 2 (GCR2) 

 

Mutational studies of the alpha subunit (GPA1) of heterotrimeric G protein, 

which GPCRs are usually associated with, has implicated Arabidopsis GPA1 

in ABA responses (Pandey and Assmann, 2004; Ullah et al., 2002) and these 

findings has contributed to speculations that GPCRs may be involved in ABA 

signal transduction. The third ABA receptor candidate, GCR2, has been 

proposed to be a G-protein-coupled receptor (GPCR) (Liu et al., 2007). 

Reduction and overexpression of GCR2 resulted in classic ABA insensitive or 

hypersensitive phenotypes, suggesting that GCR2 is a positive regulator of 

ABA signalling. However, like the previous ABA receptor candidates, the role 

of GCR2 in ABA signalling has been controversial. First of all, the identity of 

GCR2 as a GPCR was questionable and it has been suggested to be a plant 

homologue of the bacterial lanthionine synthetase rather than a membrane 

protein (Illingworth et al., 2008; Johnston et al., 2007). Furthermore, earlier 

findings of the role of GCR2 in ABA signalling have been refuted (Gao et al., 

2007; Guo et al., 2008) and subsequent binding assays did not detect ABA 

binding to GCR2 (Risk et al., 2009). 

 

 

1.6.5.4  GPCR-type G proteins (GTG1, GTG2) 

 

The speculation that the ABA receptor could be a GPCR has led to the 

identification of GTG1 and GTG2 as putative ABA receptors (Pandey et al., 

2009). In this study, the authors searched the Arabidopsis genome for 
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candidate GPCRs using bioinformatics and identified this unusual pair of 

proteins that possess features of both GPCRs and G-proteins. They also 

reported that gtg1 gtg2 double mutant is hyposensitive to ABA in seed 

germination, seedling growth and stomatal closure, but shows wild type 

response for ABA inhibition of stomatal opening. Direct physical interactions 

between GPA1 and GTGs were observed, in which the GDP-bound rather 

than the GTP-bound GPA1 activates ABA-binding to GTG. Radioligand 

binding assay showed that recombinant GTG1 and GTG2 were able to bind 

directly to ABA with Kd of 35.8 nM and 41.2 nM respectively. However, only 

1 % of the recombinant protein assayed binds ABA and the authors attributed 

such stoichiometry of binding to non-optimal conditions of protein 

purification, solubilization and renaturation. Unlike the previous ABA 

receptor candidates, the GTG data has so far not been refuted, although 

evidence that link GTGs to the core ABA signalling components such as the 

PP2Cs ABI1, ABI2 and HAB1, is still lacking. 

 

 

1.6.6 Discovery of PYLs as the ABA receptors 

 

Since the discovery of ABA, many details of its physiological roles, 

biosynthesis, metabolism and key components of its signal transduction has 

been established. Significant gaps in our knowledge of ABA signalling still 

exist and one of the most important being the identity of the protein receptor 

that directly bind the hormone and trigger the signalling events leading the 

ABA responses.  
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Forward genetics is most commonly used in the identification of hormone 

receptors, whereby mutants are identified by their hormone insensitive 

phenotypes. For the case of ABA, inhibition of seed germination by 

exogenous ABA application has been the most widely used assay in mutant 

screens. These screens have led to the identification of ABA insensitive 

mutants (Finkelstein, 1994; Koornneef, 1984), five of which has been 

extensively characterized. These five mutants are designated as abi1–abi5 for 

ABA insensitive and they carry mutations in the genes ABI1–ABI5. The ABI1 

and ABI2 genes encode PP2Cs (Leung et al., 1994; Leung et al., 1997; Meyer 

et al., 1994), while ABI3, ABI4 and ABI5 encode transcription factors 

involved in seed-specific ABA signalling pathway (Finkelstein and Lynch, 

2000; Finkelstein et al., 1998; Parcy et al., 1994). None of these genes 

identified by the classical forward genetics approach appear to have ABA 

binding or receptor like properties. 

 

As such, the use of alternative approaches have identified several putative 

ABA receptors as reviewed above, which reportedly bind ABA with high 

affinity in the nanomolar range (Kd of FCA, CHLH, GCR2, GTG1 and GTG2 

were reported to be 19 nM, 32 nM, 21 nM, 35.8 nM and 41.2 nM 

respectively). These attempts however have not led to unambiguous 

identification of convincing ABA receptor candidates that fit into the 

knowledge accumulated by ABA physiological, genetical and biochemical 

studies over the years (McCourt and Creelman, 2008). 
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The discovery of PYLs as candidate ABA receptors has been different from 

that of the earlier putative ABA receptors. Independent findings from several 

groups converged upon this novel class of ABA binding proteins, which fit 

elegantly in a model that connected the core components of the ABA signal 

transduction pathway. Here, four of the landmark studies that contributed to 

the discovery of the PYLs are reviewed. 

 

 

1.6.6.1  Chemical genetic screen using pyrabactin 

 

Genetic redundancy has been a major issue hindering the identification of 

ABA receptors by classical reverse genetics. To overcome this problem, Park 

et al., 2009 used a synthetic seed germination inhibitor, named pyrabactin, as a 

selective agonist of ABA. Pyrabactin’s effects on global gene transcription 

correlated highly with that of ABA in seeds, but the correlation is weaker in 

seedlings, indicating that pyrabactin is a highly selective ABA agonist that 

mediates a subset of ABA’s activities. Forward genetic screens for mutants 

resistant to pyrabactin identified the Pyrabactin Resistance 1 (PYR1) locus. By 

sequence analysis, 13 other PYR1-like (PYL) genes were identified and 

designated PYL1 through PYL13 (Figure 7). Using yeast two-hybrid assay, 

the authors detected interactions between multiple PP2Cs and several PYL 

members in the presence of ABA. They also demonstrated that PYR1 inhibits 

HAB1’s phosphatase activity in the presence of ABA, with an IC50 of 125 nM 

ABA. The binding of ABA to PYR1 has also been detected by heteronuclear 

single quantum coherence (HSQC) nuclear magnetic resonance (NMR) 
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experiments, which probe chemical shifts of protein amide–NH bonds in 

response to ligands. Collectively, these data suggest that PYLs are ABA 

receptors that upon ABA binding, inhibits PP2Cs by direct interaction. 

 

 

1.6.6.2  Identification of PYLs as PP2C interactors 

 

To identify the link between ABA perception and PP2Cs, Ma et al., 2009 used 

yeast two-hybrid to screen for Arabidopsis proteins interacting with ABI2. 

Using this approach, this group discovered an ABI2-interacting protein and 

named it Regulatory Component of ABA Response 1 (RCAR1). 

Subsequently, 13 structurally similar proteins were identified and named 

RCAR2 through RCAR14 (Figure 7). The 14 RCAR members discovered in 

this study turned out to be the same as the 14 PYL members identified by Park 

et al., 2009. By isothermal titration calorimetry (ITC), the interaction between 

RCAR1 and S-ABA was determined with an apparent Kd of ~0.66 μM. The 

binding affinity was about 10-fold higher in the presence of ABI2, suggesting 

the formation of a stable receptor ABA PP2C complex. RCAR1 was shown 

to interact with and inhibit the phosphatase activity of ABI1 and ABI2 in the 

presence of ABA, consistent with the PYL binding and inhibition of PP2C 

activity demonstrated by Park et al., 2009. 
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Figure 7. Phylogenetic tree of the 14 members of the Arabidopsis 
PYL/RCAR family.  

The members can be grouped into 3 subfamilies highlighted in pink, cyan and 
yellow respectively. Amino acid sequences of the 14 PYL proteins are aligned 
with ClustalW algorithm and Neighbour-joining method was used to construct 
phylogenetic tree using MEGA software (Tamura et al., 2011). 1000 bootstrap 
replicates were performed. Bootstrap values and phylogenetic distance scale 
are shown. The corresponding RCAR designation and AGI code is shown for 
each PYL. 
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In a similar approach, Santiago et al., 2009b identified PYL5, PYL6 and 

PYL8 in a yeast two-hybrid screen for HAB1 interacting proteins. Consistent 

with the findings of Park et al., 2009 and Ma et al., 2009, members of the PYL 

family inhibited the phosphatase activities of ABI1, ABI2 and HAB1 in an 

ABA-dependent manner. By ITC, the apparent Kd of S-ABA binding to PYL5 

in the absence and presence of HAB1 was determined to be 1.1 μM and 38 

nM respectively, supporting the formation of a stable trimeric complex as 

suggested by Ma et al., 2009. In addition, Santiago et al., 2009b observed that 

while certain PYL members such as PYR1 and PYL4 only interact with 

PP2Cs in the presence of ABA, the interaction of PYL5, PYL6 and PYL8 with 

HAB1 does not require ABA, although ABA enhances the binding affinity of 

PYL5 to HAB1. This finding suggests that differential roles between PYL 

members exist whereby a subset of the PYL proteins constitutively inhibits 

PP2Cs. 

 

Finally, in another independent study, Nishimura et al., 2010 screened for 

ABI1-interacting proteins in planta by coimmunoprecipitation followed by 

mass spectrometry and identified 9 of the 14 PYL members. Co-

immunoprecipitation experiments showed that ABA induces interaction 

between PYR1 and ABI1 in vivo within 5 minutes of ABA treatment. 

 

In summary, these findings collectively identified a group of highly similar 

proteins in Arabidopsis in which their ABA-binding properties relate to the 

interaction and inhibition of the PP2Cs that negatively regulate the ABA 

response. 
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1.6.6.3  Helix-grip fold receptors 

 

The 14 PYL members in Arabidopsis belong to the Bet v 1-fold/ START-

domain superfamily of proteins (Park et al., 2009). The proteins in this 

superfamily contain the helix-grip fold motif characterized by the presence of 

a central 7-stranded -sheet surrounded by N- and C-termini -helices, with 

the long C-terminal -helix packing tightly against the -sheet (Iyer et al., 

2001). The helix-grip fold creates a large ligand-binding pocket that can bind 

hydrophobic ligands such as hormones and lipids (Iyer et al., 2001; Radauer et 

al., 2008).  

 

The Bet v 1 is a major allergen in the pollen of white birch (Betula verrucosa). 

Members of the Bet v 1-superfamily include plant pathogenesis-related 

proteins (class PR-10) that function in microbial defence and abiotic stress 

tolerance (Liu and Ekramoddoullah, 2006). Some Bet v 1-fold proteins have 

also been shown to bind cytokinin and brassinosteroid hormones in vitro 

(Fernandes et al., 2008; Markovic-Housley et al., 2003; Pasternak et al., 

2006), thus it is not surprising that the PYL proteins can bind ABA. The Bet v 

1-fold proteins have been classed together with the steroidogenic acute 

regulatory (StAR)-related lipid transfer (START)-domain proteins (Iyer et al., 

2001; Ponting and Aravind, 1999). START domain is an evolutionary 

conserved motif of approximately 210 amino acids. A subclass of mammalian 

START domain (STARD) proteins has been shown to bind specifically to 

cholesterol (Lavigne et al., 2010). In plants, START domain proteins have 
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been implicated in both biotic and abiotic stresses (Cao et al., 2009; Fu et al., 

2009; Yu et al., 2008). 

 

 

1.6.7 Model of the core ABA signalling pathway 

 

With the new findings that PYLs bind ABA and inhibit PP2Cs, a model of the 

core ABA signaling pathway has been proposed, which links ABA recognition 

to transcriptional activation of ABA responsive genes (Figure 8). In this 

model, the ABA response under basal condition is kept silent by the PP2Cs 

that negatively regulate ABA response, including ABI1, ABI2 and HAB1. 

These phosphatases act by inhibiting the SnRK2s, including SnRK2.2, 

SnRK2.3 and SnRK2.6 that are positive regulators of the ABA signalling 

pathway. High levels of ABA induce PYLs, which are the proposed ABA 

receptors, to bind to and inhibit PP2Cs. This relieves the PP2C inhibition of 

SnRK2s, allowing the kinases to autophosphorylate and activate downstream 

effectors such as ion channels and ABF transcription factors resulting in the 

activation of ABA responses.  

 

This concept has been elegantly demonstrated by in vitro reconstitution of the 

core ABA signalling pathway. Coexpression of a set of the core ABA 

signalling components, PYL, PP2C, SnRK2 and ABF2 transcription factor, in 

plant protoplast is sufficient and necessary to induce the expression of ABA-

responsive reporter gene upon treatment with ABA (Fujii et al., 2009). In 

another study, in vitro reconstitution analyses performed with PYR1, ABI1 
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and SnRK2 showed that PYR1 inhibited the ABI1-mediated suppression of 

SnRK2 activity in an ABA-dependent manner (Umezawa et al., 2009), 

supporting the current model of the core ABA signalling pathway. 

 

Prior to mid 2009, the precise mode of ABA PYL interaction and the 

molecular mechanisms underlying the signal transduction process remained to 

be elucidated and had emerged as a focus in abiotic stress signalling research. 

 

 

Figure 8. Model of the core ABA signalling pathway.  

In the absence of ABA, PP2Cs inhibit SnRK2s, keeping the ABA response 
silent. ABA accumulation, induced by stress signals, activates PYLs to inhibit 
PP2Cs. SnRK2s can then become activated by autophosphorylation. Active 
SnRK2s mediate the ABA response by phosphorylation of downstream targets 
such as ABF transcription factors or the SLAC1 and KAT1 ion channels. 
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1.7 Aims, objectives and significance of the study 

 

The discovery of PYLs as potentially the bona fide ABA receptors that have 

been long sought after has provided significant advancement in the field of 

abiotic stress signalling. Several groups have independently demonstrated the 

ability of PYLs to bind ABA and inhibit PP2Cs, through unknown 

mechanisms. The observation that ABA binding to PYL5 and PYL9 (RCAR1) 

is enhanced by more than 10-fold in the presence of a PP2C (Ma et al., 2009; 

Santiago et al., 2009b) has led to an important but currently unresolved 

question: does ABA bind to a PYL PP2C coreceptor or does ABA bind to 

PYL first followed by secondary interaction with PP2C that stabilizes the 

ligand binding?  

 

Using X-ray crystallography approach, this study seeks to address the 

following aims: 

 

• To provide structural evidence for the role of the PYL family as the bona 

fide ABA receptors; 

• To elucidate the structural mechanisms of how ligand binding by PYL is 

transduced to its immediate downstream effector (i.e. inhibition of PP2Cs); 

• To identify the mechanistic basis of selective receptor responses towards 

pyrabactin. 
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The objectives of the experiments are to determine the crystal structures of 

PYLs in ligand-free, ABA-bound and PYL ABA PP2C complex forms. To 

do so, all members of the PYL family will be expressed as recombinant 

proteins initially in small scale to check for their expression levels and 

solubility. Soluble recombinant PYL proteins will be biochemically 

characterized for their ABA-dependent interaction and inhibition of 

representative PP2Cs, and expressed in large scale for crystallization. Analysis 

of the crystal structures will provide evidence for the role of PYLs as ABA 

receptors and insights into the mode of ABA binding and PP2C inhibition.   

 

Pyrabactin has been identified as a selective ABA agonist that activates only a 

subset of PYL members (Park et al., 2009). Thus, we seek to biochemically 

characterize PYL members for their pyrabactin-dependent activation, as well 

as to determine whether these receptors can be antagonized by pyrabactin. Our 

aim is to understand the molecular basis of how ABA receptors can be 

selectively activated or antagonized. To address this, our objectives are to 

determine and compare crystal structures of PYL pyrabactin complexes 

representative of pyrabactin-activated and pyrabactin-repressed 

conformations. These findings can be a basis for future design of specific 

ABA receptor agonists and antagonists useful for dissecting ABA biology as 

well as for agricultural applications. 

 

This study addresses the long-standing uncertainty in the identity of the ABA 

receptors. Our results will provide mechanistic explanations that link the 

newly discovered ABA receptors with well-established components of the 
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early steps in ABA signalling. This knowledge shall pave the way to further 

elucidation of the ABA signalling cascade, fuelling advancements in the field 

of abiotic stress signalling. 

 

The understanding of how ABA is perceived holds promises in improving 

drought hardiness in plants through specific control of ABA receptors by 

ligand design and/or receptor engineering. Given that agriculture consumes 

about 80 % of the world’s fresh water resource and that drought-induced crop 

loss is predicted to increase with global climate change, development in water 

efficiency and stress tolerance in plants will have valuable agricultural and 

economic impact worldwide. 

 

Also, the elucidation of how signalling components co-regulate in plants may 

lead to new discoveries in biomedical research related to human health and 

diseases. This intriguing notion stems from the fact that homologues of the 

components of the core ABA signalling pathway exist across kingdoms. The 

human homologues of these proteins have been implicated in various 

conditions including cancers, cardiovascular and metabolic disorders. 

However, how these proteins are regulated has not been fully known. Thus our 

mechanistic findings of ABA signal transduction in plants may also serve as a 

framework for future novel discoveries of analogous intracellular signalling 

mechanisms in humans. 
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2.1 Plasmid construction 

 

The full ORFs of all 14 members of the PYL family and that of the PP2Cs 

HAB1, ABI1 and ABI2 were obtained as cDNA plasmids from collaborator 

Dr Zhu Jiankang. The DNA sequences coding for the protein regions to be 

expressed (listed in Table 2, page 54) were amplified by PCR and cloned into 

E. coli expression vectors which contain 6xHis-GST (H6GST) or 6xHis-

SUMO (H6SUMO) sequences for the expression of N-terminus H6GST- or 

H6SUMO- tagged recombinant proteins. Proteins to be expressed with 

H6GST tag were cloned into the pET24a vector (Novagen) modified to 

contain a H6-tag (MKKGHHHHHHG) at the N terminus and a thrombin 

protease site between GST and the protein of interest. Proteins to be expressed 

with H6SUMO tag were cloned into the pSUMO vector (LifeSensors). PP2C 

proteins to be biotinylated for PYL-PP2C interaction assays were cloned into 

pETDuet1 (Novagen) derivative vector to be expressed as either H6-

thioredoxin-avitag-PP2C or avitag-MBP-PP2C in which the 14 amino acid 

avitag functions as a defined in vivo biotinylation site in E. coli (Smith et al., 

1998). The H6-thioredoxin-avitag- fusion construct contains H6-thioredoxin-

thrombin cleavage site- avitag fusion sequences in the MCS-1 and the E. coli 

biotin-ligase gene BirA in MCS-2. The avitag-MBP- fusion construct contains 

avitag-MBP followed by a six residue linker (NAAAEF) fused to the N-

terminal of the protein to be expressed in the MCS-1 and BirA in the MCS2. 
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2.2 Protein expression and purification 

 

2.2.1 Small scale expression of tagged recombinant proteins 

 

H6GST-, H6SUMO- and biotinylated MBP-tagged recombinant proteins were 

expressed in BL21 (DE3) cells transformed with the expression plasmids. 50 

ml bacterial cultures were grown at 16 °C to an OD600 of ~1.0 and induced 

with 0.1 mM IPTG for 16 hr. For biotinylated MBP-tagged protein, 40 μM of 

biotin was added upon induction. Cells were harvested by centrifugation and 

resuspension in 2 ml of extract buffer (H6SUMO-tagged proteins: 25 mM Tris 

pH 7.5, 150 mM NaCl, 25 mM imidzole and 10 % glycerol. H6GST- and 

biotin-MBP proteins: 20 mM Tris, pH 8.0, 200 mM NaCl, and 10 % glycerol.) 

All buffers used in the purification of PP2Cs contain additional 5 mM MgCl2. 

Lysis was performed using FastPrep-24 (MP Biomedicals) with 3 cycles of 20 

s homogenization at speed 6, with 2 mins of rest in between each cycle. Lysate 

supernatant were incubated with affinity beads (Ni-NTA agarose, glutathione 

sepharose and amylose resin for H6SUMO-, H6GST- and biotin-MBP- tagged 

proteins respectively) in 4 °C for 1 hr with constant rotation. Proteins bound to 

the beads were washed 3 times with extract buffer and eluted with 300 μl of 

elution buffer (H6SUMO-tagged proteins: 25 mM Tris pH 7.5, 150 mM NaCl, 

500 mM imidzole and 10 % glycerol. H6GST- tagged proteins: 25 mM Tris 

pH 8.0, 100 mM NaCl, 20 mM reduced glutathione and 10 % glycerol. Biotin-

MBP-tagged proteins: 50 mM Tris pH 8.0, 150 mM NaCl, 10 mM maltose 

and 10 % glycerol). Final protein concentrations were measured using 

standard Bradford assay or Qubit protein assay with the Qubit fluorometer 
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(Invitrogen). Proteins were aliquoted, flash frozen in liquid nitrogen and 

stored in -80 °C until used. The H6SUMO-tagged proteins were dialysed 

overnight at 4 °C in extract buffer without imidazole before storage. 

 

For the purification of biotin-PP2C from H6-thioredoxin-biotin-PP2C, cells 

grown in the presence of 40 μM biotin were harvested, resuspended in 100 ml 

extract buffer (20 mM Tris pH 8.0, 200 mM NaCl, 5 mM MgCl2 and 10 % 

glycerol) and passed three times through a French press with pressure set at 

1000 Pa. The lysate supernatant was loaded on a 50 ml Nickel HP column. 

The column was washed with 10 % elute buffer (20 mM Tris pH 8.0, 200 mM 

NaCl, 500 mM imidazole, 5 mM MgCl2 and 10 % glycerol) before eluting the 

H6-thioredoxin-biotin-PP2C in 100 % elute buffer. The fusion protein was 

dialyzed in extract buffer overnight and cleaved with thrombin to release the 

H6-thioredoxin tag. After cleavage, the biotin-PP2C was purified over 

monomeric avidin columns (Pierce) according to the manufacturer’s 

instructions. 

 

2.2.2 Large scale purification of untagged proteins 

 

H6GST- and H6SUMO-tagged proteins were expressed in BL21(DE3) cells 

transformed with the expression plasmid. 6 L of bacterial culture were grown 

at 16 °C to an OD600 of ~1.0 and induced with 0.1 mM IPTG for 16 hr. Cells 

were harvested, resuspended in 100 ml extract buffer (20 mM Tris pH 8.0, 200 

mM NaCl, and 10 % glycerol) and passed three times through a French press 

with pressure set at 1000 Pa. The lysate was centrifuged at 16,000 rpm in a 
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Sorvall SS34 rotor for 30 min, and the supernatant was loaded on a 50 ml 

Nickel HP column. The column was washed with 10 % buffer B (20 mM Tris 

pH 8.0, 200 mM NaCl, 500 mM imidazole, and 10 % glycerol) for 600 ml and 

eluted in two steps with 50 % buffer B for 200 ml, then 100 % buffer B for 

100 ml. The eluted H6GST-proteins were dialyzed in extract buffer and 

cleaved overnight with thrombin at a protease/protein ratio of 1:250 in the 

cold room. H6SUMO-tagged proteins were cleaved overnight with Ulp1 

SUMO protease at a protease/protein ratio of 1:1000 in the cold room. The 

cleaved H6GST or H6SUMO tags were removed by passing through a Nickel 

HP column, and the untagged protein was further purified by chromatography 

through a HiLoad 26/60 Superdex 200 gel filtration column in 25 mM Tris pH 

8.0, 200 mM ammonium acetate, 1 mM dithiotreitol and 1 mM EDTA. All 

buffers used in the purification of PP2Cs contain additional 5 mM MgCl2. 

 

2.3 Protein crystallization 

 

High throughout crystallization trials of each protein or complex were set up 

using commercial screens (Hampton Research) with a Phoenix robot (Art 

Robbins Instruments). Sitting drop vapour diffusion crystallization 

experiments were set up in 96-well intelli-plates (Rigaku) with 75 μl of 

condition solution in the reservoir and 0.2 μl of the protein, typically ~ 5 to 15 

mg/ml, added to an equal volume of the crystallization condition in the sitting 

drop well. Crystals were optimized by setting up hanging drop grid screens in 

24-well VDX plates (Hampton Research), varying the conditions that 

produced crystals in the initial screens. The conditions that produced crystals 
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in the initial screens and the optimized conditions that gave high resolution 

structures used in this study are listed in Table 1.  

Table 1. List of crystallization conditions. 

Protein/ 
Complex 

Initial condition Optimized condition 

PYL1 0.1 M Ammonium sulfate 
0.1 M Na-HEPES pH 7.5 
10 % PEG 4000 

0.1 M Ammonium sulfate 
0.1 M Na-HEPES pH 7.5 
10 % PEG 4000  
30 % Glycerol 

PYL2 0.056 M Sodium phosphate 
monobasic monohydrate 
1.344 M Potassium phosphate 
dibasic pH 8.2 

0.056 M Sodium phosphate 
monobasic monohydrate 
1.344 M Potassium phosphate 
dibasic pH 8.2 
5 % Butanediol 
(20 % Glycerol) 

PYL2–ABA 0.1 M HEPES pH 7.5  
2.0 M Ammonium sulfate 

0.1 M HEPES pH 7.5  
2.0 M Ammonium sulfate  
20 % Sorbitol 
(30 % Sorbitol ) 

ABI2 0.2 M Sodium formate 
14 % PEG 3350 
 

0.2 M Sodium formate 
18 % PEG 8000 
10 % Sucrose 
(29.5 % Sucrose)  

PYL2–ABA–
HAB1 

0.2 M Ammonium sulfate 
0.1 M BIS-TRIS pH 6.5 
25 % PEG 3350 

0.2 M Ammonium sulfate 
0.1 M BIS-TRIS pH 6.5 
15 % PEG 3350 
(35 % PEG 3350) 

PYL2–ABA–
ABI2 

0.1 M HEPES pH 7.5 
4 % PEG 8000  

0.1 M HEPES pH 7.0  
6 % PEG 8000  
10 % Sucrose 
(39 % Sucrose) 

PYL2–
pyrabactin 

2.0 M Ammonium sulfate 
0.1 M HEPES pH 7.5  

2.0 M Ammonium sulfate 
0.1 M HEPES pH 7.5 
10 % Glycerol 
(20 % Glycerol) 

PYL1–
pyrabactin–
ABI1 

0.2 M Ammonium sulfate 
0.1 M BIS-TRIS pH 5.5  
25 % PEG 3350 

0.2 M Ammonium sulfate 
0.1 M BIS-TRIS pH 5.5 
22 % PEG 3350 
(35 % PEG 3350) 

PYL2 A93F–
pyrabactin 

0.2 M Ammonium acetate pH 7.1 
20 % PEG 3350 
 

0.2 M Ammonium acetate pH 8.1 
22 % PEG 3350 
(40 % PEG 3350) 

PYL2 A93F–
pyrabactin–
ABI2 

0.1 M HEPES pH 7.5 
42 % PEG 200  

0.1 M HEPES pH 7.5 
10 % PEG 8000 
10 % Sucrose 
(35 % Sucrose) 

PYL2 A93F–
pyrabactin–
HAB1 

0.2 M Ammonium sulfate 
0.1 M TRIS pH 8.5 
25 % PEG 3350 

0.2 M Ammonium sulfate  
0.1 M TRIS pH 7.5 
23 % PEG 3350 
10 % Ethylene glycol 

Crystals grown in the optimized conditions were serially transferred to well buffer with 
increasing concentrations of cryo-protectant (final concentration shown in bracket) prior to 
flash freezing in liquid nitrogen. 
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2.4 Data collection and structure determination 

 

Datasets were collected with MAR300 and MAR225 CCD detectors (MAR 

Research) at the ID-D and ID-F lines of sector-21 (LS-CAT) at the Advanced 

Photon Source at Argonne National Laboratory (USA). The observed 

reflections were reduced, merged, and scaled with DENZO and SCALEPACK 

in the HKL2000 package (Otwinowski et al., 2003). All structures were solved 

by Dr Zhou XE as briefly described below.  

 

The first PYL structure, apo PYL2, was solved by molecular replacement 

using the known structure of Bet V I, a birch pollen allergen that contains a 

START domain (PDB code: 1bv1), as a starting model. The model for HAB1 

in the PYL2-ABA-HAB1 complex was built using the structure of PPM1B, a 

human PP2C that shares 38 % homology with the HAB1 PP2C core domain 

(PDB code: 2P8E) (Almo et al., 2007). All other structures were solved by 

molecular replacement using these PYL2 and HAB1 structures or 

subsequently determined structures as model. 

 

Molecular replacement was performed by using the Collaborative 

Computational Project 4 (CCP4) program Phaser (McCoy et al., 2007). 

Program O and Coot were used to manually fit the protein model (Emsley and 

Cowtan, 2004; Kleywegt and Jones, 1996). Model refinement was performed 

with CNS and the CCP4 program Refmac5 (Korostelev et al., 2002; 

Murshudov et al., 1999). The volumes of the ligand binding pocket were 

calculated with the program Voidoo by using program default parameters and 
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a probe with a radius of 1.4 Å (Kleywegt and Jones, 1994). Structure figures 

were prepared by using PyMOL (DeLano Scientific). The statistics of data 

collection and structure refinement are summarized in Table 3 (page 65) and 

Table 4 (page 88). 

 

2.5 Assays for the interactions between PYLs and PP2Cs 

 

Interactions between PYLs and PP2Cs were assessed by luminescence-based 

AlphaScreen technology (Perkin Elmer) as illustrated in Figure 9. Biotinylated 

PP2Cs were attached to streptavidin-coated donor beads, and H6-tagged PYL 

proteins were attached to nickel-chelated acceptor beads. The donor and 

acceptor beads were brought into proximity by the interactions between PYLs 

and PP2Cs, which were measured with and without S-(+)- or R-( )-abscisic 

acid, or pyrabactin. When excited by a laser beam of 680 nm, the donor beam 

emits singlet oxygen that activates thioxene derivatives in the acceptor beads, 

which releases photons of 520–620 nm as the binding signal. The experiments 

were conducted with 100 nM of PP2Cs and 100 nM of PYL proteins in the 

presence of 5 μg/ml donor and acceptor beads in a buffer of 50 mM MOPS, 

pH 7.4, 50 mM NaF, 50 mM CHAPS, and 0.1 mg/ml bovine serum albumin. 

The binding signals were measured as photon counts in a 384-well microplate 

using an Envision 2104 plate reader (PerkinElmer). The results were based on 

an average of three experiments with standard errors typically less than 10 % 

of the measurements.    
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Figure 9. Schematic representation of the Amplified Luminescent 
Proximity Homogenous Assay (ALPHA) Screen.  

H6-tagged PYL (PYL-H6) is immobilized on Ni-chelating acceptor beads and 
biotinylated PP2C (b-PP2C) on streptavidin-coated donor beads. Donor beads 
contain a photosensitizer that upon activation at 680 nm converts ambient 
oxygen to singlet oxygen. If acceptor beads are brought into close proximity 
of the donor beads by PP2C–PYL interaction, energy is transferred from 
singlet oxygen to thioxene derivatives in the acceptor beads resulting in light 
emission at 520–620 nm. 
 

 

2.6 Assays of PP2C phosphatase activity 

 

Recombinant PP2Cs and PYLs (concentrations vary in each experiment and 

are indicated in Figure legends) were pre-incubated in 50 mM imidazole, pH 

7.2, 5 mM MgCl2, 0.1 % -mercaptoethanol and 0.5 g/ml BSA for 30 min at 

room temperature. Reactions were started by addition of 100 M a 

phosphopeptide corresponding to amino acids 170 180 of SnRK2.6 

(HSQPKpSTVGTP). This peptide is phosphorylated at a single residue 

corresponding to Ser175 in SnRK2.6, whose phosphorylation is required for 

SnRK2.6 kinase activity (Mustilli et al., 2002). Phosphate release from pS175 

from the phosphopeptide was determined by colorimetric assay (BioVision). 



MATERIALS AND METHODS 
 

2.7 Radio-ligand binding assay 

 

2 μM H6GST-PYL2 were incubated with 250 μg of Ytrium silicate copper-

chelating scintillation proximity assay (SPA) beads (GE Healthcare) in a 

buffer of 50 mM MOPS, pH 7.4, 50 mM NaF, 50 mM CHAPS, and 0.1 mg/ml 

bovine serum albumin for 40 mins shaking on ice. H6GST-PYL2 bound to 

SPA was separated from free H6GST-PYL2 by centrifugation at 5200 g for 30 

s. Bead pellets were washed with 1 ml of the same buffer, then resuspended in 

50 μl of the buffer supplemented with 45 nM 3H-labelled ABA (GE 

Healthcare; mixture of S-/R- and cis-/trans-isomers), 1 μM unlabelled S-ABA 

and 10 μM HAB1 and incubated shaking for 1 hour at room temperature. 3H-

ABA-PYL2 binding brings the radioactive ABA into the immediate proximity 

of the scintillant embedded in the SPA beads resulting in the generation of 

light, which was quantified in a liquid scintillation counter. 

 

 2.8 Mutagenesis  

 

Primers for site-directed mutagenesis were designed using the QuikChange 

primer design program (Agilent Technologies). Mutagenesis PCR was 

performed using Finnzymes Phusion High-Fidelity DNA polymerase. Initial 

reaction was set up in 1x Phusion High-Fidelity buffer, 10 mM dNTP, 0.5 

units of the polymerase, 25 ng of template plasmid and 10 μM of primer, with 

the forward primer and reverse primer in separate reactions of 25 μl volume. 

This is to prevent the forward and reverse primers from preferentially 

annealing to each other rather than to the target template sequence, as the 
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primer pairs are completely complementary to each other. The first round of 

amplification was performed with the following steps: Initial denaturation at 

98 °C for 30 s, 5 cycles of denaturation, annealing and extension at 98 °C for 

10 s, 55 °C for 30 s and 72 °C for 2 min respectively and a final extension at 

72 °C for 5 min. After the 5 cycles of reaction, daughter strands containing the 

target mutation dominate in the reaction. The 2 reactions containing the 

forward and reverse primers separately were then combined and added with an 

additional 0.4 unit of the polymerase and subjected to the same amplification 

program as the initial step but with 12 cycles instead. At the end of the 

reaction, 2 μl of DpnI enzyme was mixed with 15 μl of the reaction and 

incubated at 37 °C for 2 hr to digest the dam methylated parental DNA. The 

digested product containing intact nascent mutant DNA was transformed into 

OmniMAX cells (Invitrogen) for clonal plasmid preparation. Mutations and 

all plasmid constructs were confirmed by sequencing prior to protein 

expression. Expression and purification of mutant proteins followed the same 

method as for the wild type proteins described above. 
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3.1 Preparation of recombinant proteins 

 

3.1.1 Amino acid sequence analysis 

 

For biochemical characterization of the ABA signalling proteins, we designed 

and generated recombinant H6-tagged PYL proteins and biotin-labelled PP2C 

proteins. To determine the protein regions to be expressed, full-length amino 

acid sequences of all 14 members of the PYL family were aligned to identify 

conserved regions, which may indicate the existence of important structural 

domains (Figure 10). Based on the sequence alignment, recombinant PYLs 

with N- and C- terminal truncations were designed to remove terminal flexible 

regions that may possibly pose problems in crystallization, while preserving 

regions containing conserved amino acids and hydrophobic residues, which 

could constitute to secondary structures. A mutation of C34A was introduced 

into PYL5 to avoid potential non-specific disulfide bond formation, which 

could result in protein aggregation.  

 

Of the 9 Arabidopsis group A PP2Cs, the 3 best characterized PP2Cs involved 

in ABA signalling, ABI1, ABI2 and HAB1 were used in this study. Full-

length amino acid sequences of the 9 group A PP2Cs were aligned to identify 

conserved regions (Figure 11). For each of the 3 PP2Cs in this study, the 

highly conserved C-terminal region containing the PP2C catalytic domain was 

expressed. The expressed regions of each PYL and PP2C protein and their 

corresponding theoretical isoelectric focusing point (PI) and molecular weight 

(MW) are listed in Table 2. 
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PYR1       ---------------------------MPSELTPEERSE----------LKNSIAEFHTY 23 
PYL1       MANSESSSSPVNEEENSQRISTLHHQTMPSDLTQDEFTQ----------LSQSIAEFHTY 50 
PYL2       ----------------------MSSSPAVKGLTDEEQKT----------LEPVIKTYHQF 28 
PYL3       -------MNLAPIHDPSSSSTTTTSSSTPYGLTKDEFST----------LDSIIRTHHTF 43 
PYL4       ---------MLAVHRPSSAVSDG-DSVQIPMMIASFQKRFPSLSR-----DSTAARFHTH 45 
PYL5       ------MRSPVQLQHGSDATNGF-HTLQPHDQTDGPIKRV-CLTRGMH-VPEHVAMHHTH 51 
PYL6       ------MPTSIQFQRSSTAAEAANATVRNYPHHHQKQVQKVSLTRGMADVPEHVELSHTH 54 
PYL7       ----------MEMIGGDDTDTEMYGALVTA---------------------QSLRLRHLH 29 
PYL8       -----------MEANGIEN---LTNPNQER---------------------EFIRRHHKH 25 
PYL9       ------------MMDGVEGGTAMYGGLETV---------------------QYVRTHHQH 27 
PYL10      -------------MNGDE------TKKVES---------------------EYIKKHHRH 20 
PYL11      ---------------------------------------------------------MET 3 
PYL12      ---------------------------------------------------------MKT 3 
PYL13      ---------------------------------------------------------MES 3 
 
PYR1       QLDPGSCSSLHAQRIHAPPELVWSIVRRFDKPQTYKHFIKSCSVEQNFEM-----RVGCT 78 
PYL1       QLGNGRCSSLLAQRIHAPPETVWSVVRRFDRPQIYKHFIKSCNVSEDFEM-----RVGCT 105 
PYL2       EPDPTTCTSLITQRIHAPASVVWPLIRRFDNPERYKHFVKRCRL-ISGDG-----DVGSV 82 
PYL3       PRSPNTCTSLIAHRVDAPAHAIWRFVRDFANPNKYKHFIKSCTIRVNGNGIKE-IKVGTI 102 
PYL4       EVGPNQCCSAVIQEISAPISTVWSVVRRFDNPQAYKHFLKSCSVIGGDGDN-----VGSL 100 
PYL5       DVGPDQCCSSVVQMIHAPPESVWALVRRFDNPKVYKNFIRQCRIVQGDGLH-----VGDL 106 
PYL6       VVGPSQCFSVVVQDVEAPVSTVWSILSRFEHPQAYKHFVKSCHVVIGDGRE-----VGSV 109 
PYL7       HCRENQCTSVLVKYIQAPVHLVWSLVRRFDQPQKYKPFISRCTVNG-DPEIG------CL 82 
PYL8       ELVDNQCSSTLVKHINAPVHIVWSLVRRFDQPQKYKPFISRCVVKG-NMEIG------TV 78 
PYL9       LCRENQCTSALVKHIKAPLHLVWSLVRRFDQPQKYKPFVSRCTVIG-DPEIG------SL 80 
PYL10      ELVESQCSSTLVKHIKAPLHLVWSIVRRFDEPQKYKPFISRCVVQGKKLEVG------SV 74 
PYL11      SQKYHTCGSTLVQTIDAPLSLVWSILRRFDNPQAYKQFVKTCNLSSGDGG------EGSV 57 
PYL12      SQEQHVCGSTVVQTINAPLPLVWSILRRFDNPKTFKHFVKTCKLRSGDGG------EGSV 57 
PYL13      S-KQKRCRSSVVETIEAPLPLVWSILRSFDKPQAYQRFVKSCTMRSGGGGGKGGEGKGSV 62 
                 * *   . : **   :* .:  * .*: :: *:  * :                 
 
PYR1       RDVIVISGLPANTSTERLDILDDERRVTGFSIIGGEHRLTNYKSVTTVHRFEKEN----- 133 
PYL1       RDVNVISGLPANTSRERLDLLDDDRRVTGFSITGGEHRLRNYKSVTTVHRFEKEEEEE-- 163 
PYL2       REVTVISGLPASTSTERLEFVDDDHRVLSFRVVGGEHRLKNYKSVTSVNEFLNQDSGK-- 140 
PYL3       REVSVVSGLPASTSVEILEVLDEEKRILSFRVLGGEHRLNNYRSVTSVNEFVVLEKDKKK 162 
PYL4       RQVHVVSGLPAASSTERLDILDDERHVISFSVVGGDHRLSNYRSVTTLHPSPISG----- 155 
PYL5       REVMVVSGLPAVSSTERLEILDEERHVISFSVVGGDHRLKNYRSVTTLHASDDEG----- 161 
PYL6       REVRVVSGLPAAFSLERLEIMDDDRHVISFSVVGGDHRLMNYKSVTTVHESEEDSDG--- 166 
PYL7       REVNVKSGLPATTSTERLEQLDDEEHILGINIIGGDHRLKNYSSILTVHPEMIDG----- 137 
PYL8       REVDVKSGLPATRSTERLELLDDNEHILSIRIVGGDHRLKNYSSIISLHPETIEG----- 133 
PYL9       REVNVKSGLPATTSTERLELLDDEEHILGIKIIGGDHRLKNYSSILTVHPEIIEG----- 135 
PYL10      REVDLKSGLPATKSTEVLEILDDNEHILGIRIVGGDHRLKNYSSTISLHSETIDG----- 129 
PYL11      REVTVVSGLPAEFSRERLDELDDESHVMMISIIGGDHRLVNYRSKTMAFVAADT------ 111 
PYL12      REVTVVSDLPASFSLERLDELDDESHVMVISIIGGDHRLVNYQSKTTVFVAAE------- 110 
PYL13      RDVTLVSGFPADFSTERLEELDDESHVMVVSIIGGNHRLVNYKSKTKVVASPEDM----- 117 
           *:* : *.:**  * * *: :*:: ::  . : **:*** ** *                 
 
PYR1       RIWTVVLESYVVDMPEGNSEDDTRMFADTVVKLNLQKLATVAEAMARNSGDGSGSQVT-- 191 
PYL1       RIWTVVLESYVVDVPEGNSEEDTRLFADTVIRLNLQKLASITEAMNRNNNNNNSSQVR-- 221 
PYL2       -VYTVVLESYTVDIPEGNTEEDTKMFVDTVVKLNLQKLGVAATSAPMHDDE--------- 190 
PYL3       RVYSVVLESYIVDIPQGNTEEDTRMFVDTVVKSNLQNLAVISTASPT------------- 209 
PYL4       ---TVVVESYVVDVPPGNTKEETCDFVDVIVRCNLQSLAKIAENTAAESKKKMSL----- 207 
PYL5       ---TVVVESYIVDVPPGNTEEETLSFVDTIVRCNLQSLARSTNRQ--------------- 203 
PYL6       KKRTRVVESYVVDVPAGNDKEETCSFADTIVRCNLQSLAKLAENTSKFS----------- 215 
PYL7       RSGTMVMESFVVDVPQGNTKDDTCYFVESLIKCNLKSLACVSERLAAQDITNSIATFCNA 197 
PYL8       RIGTLVIESFVVDVPEGNTKDETCYFVEALIKCNLKSLADISERLAVQDTTESRV----- 188 
PYL9       RAGTMVIESFVVDVPQGNTKDETCYFVEALIRCNLKSLADVSERLASQDITQ-------- 187 
PYL10      KTGTLAIESFVVDVPEGNTKEETCFFVEALIQCNLNSLADVTERLQAES-MEKKI----- 183 
PYL11      EEKTVVVESYVVDVPEGNSEEETTSFADTIVGFNLKSLAKLSERVAHLKL---------- 161 
PYL12      EEKTVVVESYVVDVPEGNTEEETTLFADTIVGCNLRSLAKLSEKMMELT----------- 159 
PYL13      AKKTVVVESYVVDVPEGTSEEDTIFFVDNIIRYNLTSLAKLTKKMMK------------- 164 
              : .:**: **:* *. :::*  *.: ::  ** .*.  :                   

 

Figure 10. Amino acid sequence alignment of PYLs.  

Multiple sequence alignment was performed using ClustalW2 (Larkin et al., 
2007) with EMBL-EBI online program (Goujon et al., 2010). Identical 
sequences, conserved substitutions and semi-conserved substitutions are 
denoted by symbols “*”, “:” and “.” respectively. Regions to be expressed are 
coloured whereas N- and C- terminal regions to be truncated are in grey. 
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ABI1       MEEVSPAIAG---------------------PFRPFSETQMDFTGIRLGKGYCNNQYSNQ 39 
ABI2       MDEVSPAVAV---------------------PFRPFTDP---HAGLR---GYCN------ 27 
HAB1       MEEMTPAVAMTLSLAANTMCES---SPVEITQLKNVTDAADLLSDSE-NQSFCNGGTECT 56 
HAB2       MEEISPAVALTLGLAN-TMCDSGISSTFDISELENVTDAADMLCNQK-RQRYSNGVVDCI 58 
AT2G29380  MAEICYEVVT---------------------DACP-SSVYESTP---------------- 22 
AT1G07430  MADICYEDET---------------------SACE-SRPLWSSRKWR------------- 25 
AT5G59220  MAEICYENET---------------------MMIE-TTATVVKKATT------------- 25 
ATPP2CA    MAGICCGVVG---------------------ETEP-AAPVDSTSRAS------------- 25 
AT5G51760  MTEIYRTIST---------------------GRGDDVSPTKCRERRR------------- 26 
           *  :                                                         
 
 
ABI1       DSENGDL--------MVSLPETSSCSVSGSHGSESRKV----------------LISRIN 75 
ABI2       ----GES--------RVTLPE-SSCSGDGAMKDSS---------------------FEIN 53 
HAB1       MEDVSELEEVGEQDLLKTLSDTRSGSSNVFDEDDVLSVVEDNSAVISEGLLVVDAGSELS 116 
HAB2       MGSVSEEKTLSE---VRSLSSDFSVTVQESEEDEPL---VSDATIISEGLIVVDARSEIS 112 
AT2G29380  ------------------------AHSRRRPR--------------------FQTVMHED 38 
AT1G07430  ----------------IGVQRFRMSPSEMNPT--------------------ASTTEEED 49 
AT5G59220  ----------------TTRRRERSSSQAARRRRMEIRR-----------FKFVSGEQEPV 58 
ATPP2CA    ----------------LRRRLDLLPSIKIVAD----------------------SAVAPP 47 
AT5G51760  ----------------RRIEMRRQAAVFGEPSSS----------------RNRDRTDMEV 54 
          
                                                                    
                                                                      _ 
ABI1       SPNLNMKESAAADIVVVDIS----------AGDEINGSD-------ITSEKKMISRTE-- 116 
ABI2       TRQDSLTSSSSA-MAGVDIS----------AGDEINGSDEFDPRSMNQSEKKVLSRTE-- 100 
HAB1       LSNTAMEIDNGRVLATAIIVGESSIEQVPTAEVLIAGVNQDTN----TSEVVIRLPDENS 172 
HAB2       LPDT-VETDNGRVLATAIILNETTIEQVPTAEVLIASLNHDVNMEVATSEVVIRLPEENP 171 
AT2G29380  WEK--NCKRSKQE---ALATRY------SSIPRSSRED----FSDQNVDVSS-------- 75 
AT1G07430  KSEGIYNKRNKQEEYDFMNCAS------SSPSQSSPEEESVSLEDSDVSISDGNSSVNDV 103 
AT5G59220  FVDGDLQRRRRRE--STVAAST------STVFYETAKEVVVLCESLSSTVVALP------ 104 
ATPP2CA    LEN--CRKRQKRE-TVVLSTLPGNLDLDSNVRSENKKARSAVTNSNSVTEAESFFS---- 100 
AT5G51760  YSSFDVPLRKQAR-RSEIGGLP------ADIGGFLAPPAASSCQKSEAPVWKGE------ 101 
             .                                                          
 
                            ______PP2C catalytic domain________________ 
           ___________ABI1, ABI2, HAB1 expressed region________________ 
ABI1       -----SRSLFEFKSVPLYGFTSICGRRPEMEDAVSTIPRFLQSSSGSMLDGR-----FDP 166 
ABI2       -----SRSLFEFKCVPLYGVTSICGRRPEMEDSVSTIPRFLQVSSSSLLDGRV-TNGFNP 154 
HAB1       NHLVKGRSVYELDCIPLWGTVSIQGNRSEMEDAFAVSPHFLKLPIKMLMGDHEGMSPSLT 232 
HAB2       NVARGSRSVYELECIPLWGTISICGGRSEMEDAVRALPHFLKIPIKMLMGDHEGMSPSLP 231 
AT2G29380  ---------------PRYGVSSVCGRRREMEDAVAIHPSFSSPKNSEFP----------- 109 
AT1G07430  AVIPSKKTVKETDLRPRYGVASVCGRRRDMEDAVALHPSFVR-KQTEFSRTR-------- 154 
AT5G59220  ----------DPEAYPKYGVASVCGRRREMEDAVAVHPFFSR-HQTEYSSTG-------- 145 
ATPP2CA    -------------DVPKIGTTSVCGRRRDMEDAVSIHPSFLQ-RNSENH----------- 135 
AT5G51760  ----------ETEDEPLYGIVSVMGRSRKMEDSVTVKPNLCKPEVNRQRP---------- 141 
                          *  *  *: *   .***:.   * :                     
           ____________________________________________________________ 
           ____________________________________________________________ 
ABI1       QSAAHFFGVYDGHGGSQVANYCRERMHLALAEEIAKEKPMLCD---GDTWLEKWKKALFN 223 
ABI2       HLSAHFFGVYDGHGGSQVANYCRERMHLALTEEIVKEKPEFCD---GDTWQEKWKKALFN 211 
HAB1       HLTGHFFGVYDGHGGHKVADYCRDRLHFALAEEIERIKDELCKRNTGEGRQVQWDKVFTS 292 
HAB2       YLTSHFFGVYDGHGGAQVADYCHDRIHSALAEEIERIKEELCRRNTGEGRQVQWEKVFVD 291 
AT2G29380  ---QHYFGVYDGHGCSHVAARCRERLHKLVQEELSSDMED----------EEEWKTTMER 156 
AT1G07430  ---WHYFGVYDGHGCSHVAARCKERLHELVQEEALSDK------------KEEWKKMMER 199 
AT5G59220  ---FHYCGVYDGHGCSHVAMKCRERLHELVREEFEADA--------------DWEKSMAR 188 
ATPP2CA    ----HFYGVFDGHGCSHVAEKCRERLHDIVKKEVEVMAS------------DEWTETMVK 179 
AT5G51760  ---VHFFAVYDGHGGSQVSTLCSTTMHTFVKEELEQNLEEEEEGSENDVVERKWRGVMKR 198 
               *: .*:****  :*:  *   :*  : :*                   .*   :   

 

 

Figure 11. Continued on next page. 
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           ____________________________________________________________ 
           ____________________________________________________________ 
ABI1       SFLRVDSEI-------ESVA-----------------PETVGSTSVVAVVFPSHIFVANC 259 
ABI2       SFMRVDSEI-------ETVAH---------------APETVGSTSVVAVVFPTHIFVANC 249 
HAB1       CFLTVDGEI-------EGKIGRAVVGSSD-KVLEAVASETVGSTAVVALVCSSHIVVSNC 344 
HAB2       CYLKVDDEV-------KGKINRPVVGSSDRMVLEAVSPETVGSTAVVALVCSSHIIVSNC 344 
AT2G29380  SFTRMDKEV--------VSWGDSVVTANCKCDLQTPACDSVGSTAVVSVITPDKIVVANC 208 
AT1G07430  SFTRMDKEV--------VRWGETVMSANCRCELQTPDCDAVGSTAVVSVITPEKIIVANC 251 
AT5G59220  SFTRMDMEV--------VALNADG-AAKCRCELQRPDCDAVGSTAVVSVLTPEKIIVANC 239 
ATPP2CA    SFQKMDKEVSQRECNLVVNGATRSMKNSCRCELQSPQCDAVGSTAVVSVVTPEKIIVSNC 239 
AT5G51760  SFKRMDEMAT-------STCVCGTSVPLCNCDPR--EAAISGSTAVTAVLTHDHIIVANT 249 
           .:  :*                                   ***:*.:::   :*.*:*  
           ____________________________________________________________ 
           ____________________________________________________________ 
ABI1       GDSRAVLCRGKTALPLSVDHKPDREDEAARIEAAGGKVIQWNGARVFGVLAMSRSIGDRY 319 
ABI2       GDSRAVLCRGKTPLALSVDHKPDRDDEAARIEAAGGKVIRWNGARVFGVLAMSRSIGDRY 309 
HAB1       GDSRAVLFRGKEAMPLSVDHKPDREDEYARIENAGGKVIQWQGARVFGVLAMSRSIGDRY 404 
HAB2       GDSRAVLLRGKDSMPLSVDHKPDREDEYARIEKAGGKVIQWQGARVSGVLAMSRSIGDQY 404 
AT2G29380  GDSRAVLCRNGKPVPLSTDHKPDRPDELDRIEGAGGRVIYWDCPRVLGVLAMSRAIGDNY 268 
AT1G07430  GDSRAVLCRNGKAVPLSTDHKPDRPDELDRIQEAGGRVIYWDGARVLGVLAMSRAIGDNY 311 
AT5G59220  GDSRAVLCRNGKAIALSSDHKPDRPDELDRIQAAGGRVIYWDGPRVLGVLAMSRAIGDNY 299 
ATPP2CA    GDSRAVLCRNGVAIPLSVDHKPDRPDELIRIQQAGGRVIYWDGARVLGVLAMSRAIGDNY 299 
AT5G51760  GDSRAVLCRNGMAIPLSNDHKPDRPDERARIEAAGGRVLVVDGARVEGILATSRAIGDRY 309 
           ******* *.  .:.** ****** **  **: ***:*:  : .** *:** **:***.* 
           ____________________________________________________________ 
           ____________________________________________________________ 
ABI1       LKPSIIPDPEVTAVKRVKEDDCLILASDGVWDVMTDEEACEMARKRILLWHKKNAVAGDA 379 
ABI2       LKPSVIPDPEVTSVRRVKEDDCLILASDGLWDVMTNEEVCDLARKRILLWHKKNAMAGEA 369 
HAB1       LKPYVIPEPEVTFMPRSREDECLILASDGLWDVMNNQEVCEIARRRILMWHKKNG----- 459 
HAB2       LEPFVIPDPEVTFMPRAREDECLILASDGLWDVMSNQEACDFARRRILAWHKKNG----- 459 
AT2G29380  LKPYVSCEPEVTITDRRDDD-CLILASDGLWDVVSNETACSVARMCLR----GGGRRQ-D 322 
AT1G07430  LKPYVTSEPEVTVTDRTEEDEFLILATDGLWDVVTNEAACTMVRMCLNRKS-GRGRRRGE 370 
AT5G59220  LKPYVISRPEVTVTDRANGDDFLILASDGLWDVVSNETACSVVRMCLRGKVNGQVSSSPE 359 
ATPP2CA    LKPYVIPDPEVTVTDRTDEDECLILASDGLWDVVPNETACGVARMCLRG--AGAGDDS-- 355 
AT5G51760  LKPMVAWEPEVTFMRRESGDECLVLASDGLWDVLSSQLACDIARFCLREETPSSLDLNRM 369 
           *:* :   ****   *   *  *:**:**:***: .: .* ..*  :              
           ____________________________________________________________ 
           ____________________________________________________________ 
ABI1       SLLADER--------------------RKEGKDPAAMSAAEYLSKLAIQRGSKDNISVVV 419 
ABI2       -LLPAEK--------------------RGEGKDPAAMSAAEYLSKMALQKGSKDNISVVV 408 
HAB1       -APPLAE--------------------RGKGIDPACQAAADYLSMLALQKGSKDNISIIV 498 
HAB2       -ALPLAE--------------------RGVGEDQACQAAAEYLSKLAIQMGSKDNISIIV 498 
AT2G29380  NEDP-------------------------AISDKACTEASVLLTKLALARNSSDNVSVVV 357 
AT1G07430  TQTPGRRSEEEGKEEEEKVVGSRKNGKRGEITDKACTEASVLLTKLALAKHSSDNVSVVV 430 
AT5G59220  REMTG-------------VGAGNVVVGGGDLPDKACEEASLLLTRLALARQSSDNVSVVV 406 
ATPP2CA    -----------------------------DAAHNACSDAALLLTKLALARQSSDNVSVVV 386 
AT5G51760  AQEDD---------------------NDGEQNPSRSVLAATLLTRLALGRQSSDNISVVV 408 
                                                   .  *:  *: :*:   *.**:*::* 
           ___ 
           _______________ 
ABI1       VDLKPRRKLKSKPLN 434 
ABI2       VDLKGIRKFKSKSLN 423 
HAB1       IDLKAQRKFKTRT-- 511 
HAB2       IDLKAQRKFKTRS-- 511 
AT2G29380  IDLRR---------- 362 
AT1G07430  IDLRRRRKRHVA--- 442 
AT5G59220  VDLRRDT-------- 413 
ATPP2CA    VDLRKRRNNQASS-- 399 
AT5G51760  IDLKNSSQ------- 416 
           :**:     

Figure 11. Amino acid sequence alignment of group A PP2Cs.  

Multiple sequence alignment was performed using ClustalW2 (Larkin et al., 
2007) with EMBL-EBI online program (Goujon et al., 2010). Identical 
sequences, conserved substitutions and semi-conserved substitutions are 
denoted by symbols “*”, “:” and “.” respectively. ABI1, ABI2 and HAB1 
regions expressed in this study are indicated by red line on top of the 
sequences. Blue line indicates the conserved PP2C catalytic domain. 
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Table 2. List of proteins in the study, their expressed regions and 
calculated properties. 

Expressed region Protein 
 Amino acid positions PI MW (Da) 

PYR1  
(RCAR11) 

9 182 6.08 20045.3 

PYL1  
(RCAR12) 

36 211 5.49 20506.6 

PYL2  
(RCAR14) 

14 188 5.84 19878.1 

PYL3  
(RCAR13) 

29 209 9.17 20556.1 

PYL4  
(RCAR10) 

17 201 5.94 20252.4 

PYL5 
(RCAR8) 

29 203 (C34A) 6.04 19716 

PYL6 
(RCAR9) 

31 215 5.65 20624.9 

PYL7 
(RCAR2) 

11 189 6.16 20301.8 

PYL8 
(RCAR3) 

7 184 6.26 20453.9 

PYL9 
(RCAR1) 

9 187 6.25 20267.8 

PYL10  
(RCAR4) 

5 178 6.07 19738.1 

PYL11  
(RCAR5) 

4 161 4.78 17500.4 

PYL12  
(RCAR6) 

4 159 4.61 17329.3 

PYL (RCAR) 

PYL13  
(RCAR7) 

4 164 9.12 17836.2 

ABI1 117 434 7.57 35059.14 

ABI2 101 423 8.06 35673.86 PP2C 

HAB1 172 511 6.60 37714.22 
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3.1.2 Small scale expression of recombinant proteins 

 

Each PYL protein, except PYL8 due to unavailability of the cDNA source at 

that point of time, was expressed as H6GST- and H6SUMO- fusion proteins 

with PYL regions indicated in Table 2. The recombinant proteins were 

expressed in E. coli and purified by standard glutathione sepharose or Ni-NTA 

agarose affinity chromatography and analysed by SDS-PAGE to determine 

their relative expression levels and solubility and to prepare these proteins for 

biochemical assays. PYR1 and PYLs 1 6 yielded relatively high levels of 

soluble proteins when expressed with both H6GST- and H6SUMO- tags, 

whereas PYLs 7 13, with the exception of H6GST-PYL10, expressed poorly 

with both tags (Figure 12). These observations are consistent with the 

expression and purification of recombinant PYLs reported in another study 

(Hao et al., 2011). Therefore, subsequent crystallization experiments and 

biochemicals analyses were focused on the more soluble PYR1 and 

PYL1 PYL6 proteins. 

 

Biotinylated recombinant PP2Cs with MBP tags were expressed in E. coli and 

purified by amylose affinity chromatography for biochemical assays (Figure 

13). 
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Figure 12. Small scale expression of recombinant PYLs. 

Elute fractions of recombinant H6GST- (red label) and H6SUMO- (blue label) 
PYLs purification. Red and blue arrows indicate the approximate sizes of 
H6GST-PYL (~40-45 kD) and H6SUMO-PYL (~37-40 kD) respectively. 
 

 

Figure 13. Small scale expression of recombinant PP2Cs. 

Elute fractions of biotin-MBP-PP2Cs purification. Arrow indicates the 
approximate sizes of the recombinant PP2Cs (~80 kD). An additional band of 
truncated product of ~37 kD, marked by asterisk (*) is also observed. 
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3.2 ABA-dependent interactions of PYLs with PP2Cs 

 

To assess the ABA-mediated interaction of PYLs with PP2Cs, H6 tagged- 

PYR1 and PYLs 1 6 were tested in AlphaScreen protein-protein interaction 

assay (illustrated in Materials and Methods, Figure 9) with biotinylated 

recombinant PP2Cs in the presence and absence of (+)-ABA or ( )-ABA. 

While the PYL members tested interacted with the ABA-signalling PP2Cs 

ABI1, ABI2 and HAB1, each PYL showed differential PP2C interaction 

depending on the absence or presence of ABA, the particular ABA 

stereoisomer used, and the PP2C probed (Figure 14). These observations 

suggest that functional variations may exist between different PYL members 

in PP2C binding and signalling.  

 

PYL2 interacted with HAB1 in an ABA-dependent manner, with a marked 

preference for the naturally occurring (+)-stereoisomer (Figure 15a). 

Consistently, PYL2 also inhibited HAB1 phosphatase activity with an IC50 of 

0.15 μM with (+)-ABA and 1.7 μM with ( )-ABA (Figure 15b). This 11-fold 

difference in stereoisomer selectivity is comparable to the 19-fold difference 

shown for PYL5 in another study (Santiago et al., 2009b). 
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Figure 14. AlphaScreen assay of PYL proteins interactions with PP2Cs.  

Recombinant H6-tagged PYL proteins were incubated with recombinant 
biotinylated PP2Cs ABI1 (top), ABI2 (middle), and HAB1 (bottom) in the 
presence and absence of 10 μM (+)-ABA or ( )-ABA. The interaction signals 
are shown as photon counts (n=3, error bars=SD). 
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Figure 15. PYL2 binds to and inhibits HAB1 in an ABA-dependent 
manner.  

a) ABA-dependent interaction of PYL2 with HAB1. AlphaScreens assay of 
interaction of 100 nM of recombinant H6-tagged PYL2 with 100 nM of 
biotinylated recombinant HAB1 at the indicated concentrations of (+)- and 
( )-ABA. The relative strengths of interactions are shown as photon counts 
(n=3, error bars=SD). b) ABA-dependent inhibition of HAB1 phosphatase 
activity by PYL2. Reactions contain 100 nM of biotin-HAB1 and 500 nM of 
PYL2 with the indicated concentrations of (+)- and ( )-ABA (n=3, error 
bars=SD). The IC50 values were derived from curve fitting based on a 
competitive inhibitor model for the binding of ABA-bound PYL2 to HAB1 
(R2=0.998 for (+)-ABA and 0.997 for ( )-ABA). 
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3.3 Large scale purification and crystallization of PYLs 

 

To prepare proteins for crystallization, H6GST-PYL2 was expressed from 6 L 

of E. coli and purified using standard nickel affinity chromatography in the 

initial large scale PYL preparation attempt. A total of 665 mg of H6GST-

PYL2 was obtained from pooled elute fractions with relatively good purity as 

seen in SDS-PAGE analysis (Figure 16a). Thrombin was added to pooled 

elute in a 1:250 protease to protein ratio to cleave off the H6GST tag after 

which the cleaved tag was removed by nickel affinity column. Proteolytic 

cleavage was highly inefficient and most of the fusion protein remained 

uncleaved (Figure 16b). Less than 20 mg of untagged PYL2 protein was 

recovered and further purified by size exclusion chromatography (SEC). The 

peak volume in SEC profile suggested that PYL2 eluted as a monomer (Figure 

16d). Pooling of peak SEC fractions yielded 7.6 mg of purified PYL2 (Figure 

16c), which was concentrated to 6.6 mg/ml for crystallization. 

 

The thrombin proteolytic cleavage of H6GST-PYL2 was highly inefficient, 

possibly due to presence of secondary structure at the N-terminal of PYL 

hindering the cleavage site. The inefficient proteolytic cleavage was also 

observed in the purification of PYR1 with H6GST-tag, which produced 

similar yields as PYL2. Therefore in the next round of large scale PYL 

preparation, PYL1 was purified from H6SUMO-tagged protein. Nickel 

affinity chromatography eluted 146 mg of H6SUMO-PYL1 protein (Figure 

17a), which cleaved efficiently in a 1:1000 protease to protein ratio (Figure 

17b). SEC peak volume gave a calculated molecular weight of 31 kD, which 
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may suggest that PYL1 eluted in a monomer/dimer equilibrium (Figure 17d). 

SEC peak fractions yielded 47 mg of purified PYL1 (Figure 17c), which was 

concentrated to 9 mg/ml for crystallization. 

 

Subsequently, PYL3 PYL6 and all future large scale preparations of PYL 

proteins were performed with H6SUMO-tagged proteins. 

 

High throughput crystallization screens were set up for apo PYR1 and 

PYL1 PYL6 by vapor diffusion method in 96-well sitting drop format using 5 

commercial screens from Hampton Research (Index HT, CrystalScreen HT, 

MemFac HT, PEGIon HT and PEGRx HT) as initial trials. Of these members, 

PYL1, PYL2 and PYL5 were able to crystallize, but only PYL1 and PYL2 

formed large crystals with and good surface in a number of conditions. 

Crystallization conditions were optimized for PYL1 and PYL2 to obtain better 

crystals for diffraction (Figure 18). PYL ABA complexes were prepared by 

adding 5 times molar excess of (+)-ABA to PYL1 and PYL2 and initial 

crystallization screens were carried out as above. Only PYL2 produced 

crystals in the presence of ABA (Figure 18). 
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Figure 16. Large scale purification of PYL2.  

SDS-PAGE of a) purification of H6GST-PYL2 by nickel affinity 
chromatography; b) proteolytic cleavage of H6GST tag by thrombin digestion; 
c) size exclusion chromatography (SEC) of untagged PYL2. d) SEC profile. 
The theoretical molecular weights (MW) of H6GST-PYL2, H6GST tag and 
untagged PYL2 are 45 kD, 25 kD and 20 kD respectively. 
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Figure 17. Large scale purification of PYL1.  

SDS-PAGE of a) purification of H6SUMO-PYL1 by nickel affinity 
chromatography; b) proteolytic cleavage of H6SUMO tag by Ulp1 SUMO 
protease; c) size exclusion chromatography (SEC) of untagged PYL1. d) SEC 
profile. The theoretical molecular weight (MW) of H6SUMO is 12 kD, but it 
migrates at about 15 18 kD. 
 
 
 
 
 
 

 

Figure 18. Crystals of the apo and ABA-complexed PYL receptors. 
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3.4 Molecular features of PYL ABA interaction 

 

To provide structural evidence for PYLs as ABA receptors and to identify the 

molecular mechanisms of ABA recognition, high resolution crystal structures 

of ligand-free PYL1 and PYL2 and that of ABA-bound PYL2 were 

determined at 2.40 Å, 1.95 Å and 1.85 Å respectively, with the statistics of 

structure refinement shown in Table 3. 

 

3.4.1 Overall structures of apo PYL1 and PYL2 

 

The structures of PYL1 and PYL2 exhibit the characteristic helix-grip fold of 

START domain proteins, marked by the existence of a central -sheet 

surrounded by N- and C-terminal -helices (Iyer et al., 2001) (Figure 19). The 

distinct features of the receptors are the presence of a long C-terminal -helix, 

3 shorter helices, a 7-stranded anti-parallel -sheet and a large pocket of 543 

Å3 between the C-terminal helix and the -sheet. PYL1 and PYL2 share 51% 

amino acid sequence identity and their overall structures are highly similar. 

The major differences observed between the PYL1 and PYL2 receptors are the 

relative positions of their N-terminal helices and the loop structure between -

strands 6 and 7, which is not resolved in the PYL1 structure. In contrast, their 

C-terminal -helices, central -sheets and ligand binding pockets overlap 

closely with each other (Figure 19c). 
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Table 3. Statistics of structure refinement for apo PYLs, ABI2 and ABA-
bound complexes. 

 
PYL1 
apo 

PYL2 
apo 

PYL2  
ABA 

ABI2 
apo 

PYL2  
ABA  
HAB1 

PYL2  
ABA  
ABI2 

PDB code 3KAY 3KAZ 3KB0 3UJK 3KB3 3UJL 
Data collection       

Space group P65 C2221 P6122 P3221 P212121 P212121 
Resolution (Å) 30-2.40 30-1.85 30-1.95 30-1.90 30-1.95 30-2.50 

Cell 
dimensions 

      

a, b, c (Å) 
126.76, 
126.76, 
61.41 

62.19, 
104.91, 
185.41 

61.27, 
61.27, 
255.10 

89.67, 
89.67, 
91.87 

60.32, 
64.46, 
143.90 

61.43, 
98.58, 
132.84 

, ,  (°) 
90, 90, 

120 
90, 90, 

90 
90, 90, 

120 
90, 90, 

90 
90, 90, 

90 
90, 90, 

90 
Total /Unique 

reflections 
499298 
/22235 

570933 
/49882 

852408 
/21765 

374836 
/34099 

511848 
/41807 

71996 
/25223 

Completeness 
(%) 

100.0 
(100.0) 

95.4 
(94.9) 

99.8 
(100.0) 

100.0 
(100.0) 

93.9 
(64.9) 

87.7 
(86.8) 

I/  
47.6 
(4.0) 

26.4 
(3.3) 

49.1 
(4.5) 

46.2 
(4.5) 

38.4 
(2.5) 

13.9 
(2.1) 

Redundancy 
22.5 

(21.5) 
11.4 

(11.9) 
39.2 

(33.5) 
11.0 

(11.0) 
12.2 
(6.5) 

2.9 (2.7) 

Rsym 
0.079 

(0.685) 
0.085 

(0.816) 
0.100 

(0.889) 
0.053 

(0.583) 
0.093 

(0.689) 
0.076 

(0.464) 

       
Refinement       

Resolution (Å) 30-2.40 30-1.85 30-1.95 30-1.90 30-1.95 30-2.50 
No. reflections 18156 46102 20100 31421 38149 23335 
No. residues 354 531 177 301 498 459 
No. solvent 
molecules 

170 321 128 131 324 69 

No. of non-H 
atoms 

2988 4508 1534 2450 4013 2652 

Rcryst 20.80% 20.60% 19.00% 16.50% 20.70% 21.40% 
Rfree 24.30% 23.70% 22.90% 19.60% 24.80% 24.20% 

RMSD Bonds 
(Å) 

0.021 0.024 0.027 0.006 0.023 0.022 

RMSD Angles 
(°) 

1.68 1.84 2.02 1.25 1.84 1.71 

Average B 
factor (Å2) 

60.51 36.46 35.45 59.3 38.72 48.3 

Notes: 
 
RMSD is the root-mean-square deviation from ideal geometry of protein. 
Values in parentheses are for highest-resolution shell.  
One crystal was used for each structure.  
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Figure 19. Structures of the apo ABA receptors.  

a) Structure of PYL1 with labelled positions of the 4 -helices and 7 anti-
parallel -strands. The unresolved loop region is shown in dotted line. b) 
Structure of PYL2 with the empty ligand binding pocket shown as mesh, 
flanked by the gate (pink) and latch (magenta) loops. c) Overlay of the apo 
PYL1 (orange) and PYL2 (grey) receptors. 
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3.4.2 Structure of ABA-bound PYL2 

 

The (+)-ABA-bound PYL2 crystallized as a monomeric receptor-ligand 

complex with 1:1 stoichiometry. The overall structure of the ligand-bound 

receptor resembles that of the apo receptor (Figure 20). ABA is clearly defined 

in the receptor pocket by a high resolution electron density map (Figure 21a). 

Analysis of the ligand-bound pocket revealed a network of intermolecular 

interactions between ABA and receptor pocket residues (Figure 21b). The 

carboxylate group of ABA forms a charged interaction with the side chain of 

receptor residue K64 and a network of water-mediated hydrogen bonds with 

residues E98, N173 and E147. The hydroxyl and ketone groups of the ABA 

also make direct or water-mediated polar interactions with the receptor, while 

its cyclohexene ring and hydrocarbon chain form many non-polar interactions 

in the mainly hydrophobic pocket. Involvement of the receptor pocket residues 

in ABA interaction was functionally validated by biochemical assays. 

Expectedly, mutations of these pocket residues reduced the ability of PYL2 in 

ABA binding and ABA-induced HAB1 interaction and phosphatase inhibition 

(Figure 22). 
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Figure 20. Structures of the ligand-free and ABA-bound PYL2.  

a) Structure of PYL2 with the empty ligand binding pocket shown as mesh, 
flanked by the gate (pink) and latch (magenta) loops. b) Structure of the ABA-
bound PYL2 with ABA shown as a ball model. The gate (orange) and latch 
(cyan) loops are indicated by arrows. c) Overlay of the apo (grey) and ABA-
bound (green) PYL2 structures. The latch (magenta for apo and cyan for 
ABA-bound) and the conformational change in the gate (pink for apo and 
orange for ABA-bound) are indicated by arrows. 
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Figure 21. Intermolecular interactions in the ABA-bound PYL2 pocket.  

a) A 2 Fo Fc electron density map of ABA and surrounding PYL2 pocket 
residues contoured at 1.0 .  The charged interaction between the ABA acid 
group and K64 is indicated by two arrows. b) Schematic presentation of the 
interactions between PYL2 pocket residues and the bound ABA.  Charged 
interactions and hydrogen bonds are indicated by arrows, hydrophobic 
interactions by solid lines with H-bond donors in blue and acceptors in red.  
The two orange-boxed residues, PYL2 H119 and HAB1 W385, contact ABA 
only upon formation of the trimeric PYL2 ABA HAB1 complex. 
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Figure 22. Mutational analysis of the ABA-binding pocket.  

Mutations in key ligand binding pocket residues of PYL2 reduces a) ABA 
binding as determined by scintillation proximity assay with 3H-labelled ABA 
(n=3, error bars=SD), b) HAB1 interaction determined by AlphaScreen assays 
(n=3, error bars=SD) and c) inhibition of HAB1 determined by phosphatase 
activity assays containing 100 nM of recombinant HAB1 and 500 nM of 
recombinant wild type or mutant PYL2 in the presence of 10 μM (+)-ABA 
(n=3, error bars=SD).  
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3.4.3 Basis for stereoselectivity 

The ABA-bound PYL2 structure reveals the basis for its preference for the 

natural (+)-stereoisomer. In the ABA-bound pocket, the monomethyl group of 

the ABA cyclohexene ring occupies a narrow region formed by residues F66, 

V87, L91, P92, F165 and V169, while the dimethyl group fits into a larger 

region formed by A93, S96 and V114 (Figure 23b). In case of the ( )-isomer, 

the cyclohexene ring will be flipped such that the positions of the monomethyl 

and dimethyl groups are interchanged (Figure 23a) and this would cause stereo 

collision between the dimethyl group and the narrow pocket that 

accommodates the monomethyl group. Therefore, the size and shape of the 

receptor’s pocket that accommodates the cyclohexene ring, together with the 

network of specific hormone-receptor interactions, contribute to its 

stereoselectivity. 

 

 

Figure 23. Stereoselectivity of the ligand binding pocket.  

a) Chemical structures of the S-(+)- and R-( )-ABA stereoisomers. Rotation 
around the chiral center results in a swap of the relative positions of the 
monomethyl (blue) and dimethyl (red) groups on the ring. b) The pocket 
topology of PYL2 surrounding the mono-methyl and the dimethyl groups of 
ABA shown with key PYL2 residues and the ligand binding pocket (mesh).  
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3.4.4 Conformational changes upon ABA binding 

 

Conformational differences between the ABA-bound and unbound PYL2 

structures reveal the involvement of 2 loop regions in hormone binding and 

signal transduction. These 2 loops, namely the gate (residues 89 93: SGLPA) 

and latch (residues 119 121: HRL) loops, guard the entrance of the ligand 

binding pocket. The most striking difference between the ligand-free and 

ligand-bound PYL2 structures is the conformational change of the gate loop 

upon ABA-binding (Figure 20), which closes the ABA-bound pocket and 

seals the bound ABA molecule from the exposure to the solvent (Figure 24a). 

While the backbone of the latch loop stays fairly rigid, the side chain of the 

E118 residue preceding the latch motif, which points into the ligand-free 

pocket, rotates ~150° outwards upon ABA-binding. This creates space for the 

closure of the gate loop onto the latch. In the closed conformation, the gate 

and latch residues form intramolecular interactions (Figure 24b), creating a 

new interface for PP2C interaction. 
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Figure 24. A gate and latch mechanism in ligand-binding.  

a) Conformational differences between apo PYL2 (grey molecule, pink gate, 
magenta latch) and ABA-bound PYL2 (green molecule, yellow gate, cyan 
latch). b) Interactions between gate (yellow) and latch (cyan) residues in the 
ABA-PYL2 structure. Distances between residues are indicated in Å.   
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3.5 Mechanism of ABA-induced PYL binding and inhibition of PP2C 

 

To unravel the mechanism of PP2C inhibition by the PYL proteins, each of 

the ABA-signalling PP2Cs ABI1, ABI2 and HAB1 was subjected to 

crystallization trials as apo proteins as well as in ternary complexes with 

PYL2 ABA. Because of the high binding affinity of PYL2 to HAB1 in the 

presence of (+)-ABA, the PYL2 ABA HAB1 complex was stable and 

formed crystals readily (Figure 25). A 1.95 Å resolution structure was 

determined and used for initial analysis and publication. In contrast, the apo 

PP2Cs did not form highly diffracting crystals as easily. Of the three PP2Cs 

tested, only ABI2 was able to form crystals that diffracted to high resolution 

after extensive crystallization trials. The structures of the apo ABI2 and the 

PYL2 ABA ABI2 complex, determined at 1.90 Å and 2.50 Å respectively, 

were obtained at a later time and supported our initial analysis based on the 

PYL2 ABA HAB1 structure. The statistics of structure refinement are shown 

in Table 3. 

 

Figure 25. Crystals of the apo PP2C and in complexes with the ABA-
bound PYL2 receptor. 
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3.5.1 Overall structure of apo PP2C 

 

The catalytic domain of ABI2 adopts a typical PP2C fold (Das et al., 1996), 

containing two five-stranded -sheets that are sandwiched by two pairs of 

anti-parallel -helices (Figure 26). The active site is located at the top edge of 

the two central -sheets and contains three Mg2+ ions. 

 

 

3.5.2 Structures of the PYL2 ABA PP2C complexes 

 

The overall structures of PYL2 ABA ABI2 and PYL2 ABA HAB1 are 

almost identical and both revealed monomeric complexes with 1:1:1 

receptor ligand PP2C stoichiometry (Figure 27). The PP2C in the apo 

structure and in both complexes are superimposable (Figure 26), indicating 

that PP2Cs have a fairly rigid fold and do not undergo obvious conformational 

changes in their interaction with PYL protein.  
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Figure 26. Structures of the PP2Cs.  

a) ABI2 in apo form, b) ABI2 in the PYL2 ABA ABI2 complex, c) HAB1 in 
the PYL2 ABA HAB1 complex and d) overlay of these PP2C structure with 
apo ABI2 in red, ABI2 in the PYL2 ABA ABI2 complex in magenta and 
HAB1 in the ternary complex in yellow. Magnesium ions are shown as 
spheres and the side chains of the conserved PYL2-interacting tryptophan 
residues are shown as sticks. 
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Figure 27. Structures of the PYL2 ABA PP2C complexes.  

a) Structure of the PYL2 ABA ABI2 complex. The ABI2 catalytic domain is 
coloured in magenta, its PYL2-interatcing domain in dark green showing the 
side chain of its conserved PYL-interacting tryptophan. PYL2 is shown in 
cyan with ABA as ball. Gate and latch loops are coloured pink and orange 
respectively. b) Structure of the PYL2 ABA HAB1 complex with HAB1 
catalytic domain in yellow and its PYL-interacting domain in green. PYL2 is 
shown in blue. Magnesium ions in the PP2Cs are shown as grey spheres. 
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3.5.3 A gate-latch-lock mechanism of signalling by ABA receptors 

 

Both ABI2 and HAB1 interact with PYL2 at the receptor’s closed gate-latch 

interface, revealing the importance of the closure of the gate loop upon ABA 

binding to form the interface for PP2C interaction. On the other hand, ABA-

bound PYL2 interaction with the PP2C sterically blocks the PP2C catalytic 

site, which explains the mechanistic basis of ABA-induced PYL inhibition of 

PP2Cs.  

 

Analysis of the PYL2 ABA HAB1 ternary interaction interface revealed a 

number of insightful features. Most strikingly, the indole ring of W385 of 

HAB1 inserts into the ABA-bound PYL2 pocket, making a water-mediated 

hydrogen bond with the ketone group of ABA (Figure 28a,b). This 

observation implies that HAB1 serves as a co-receptor that senses the binding 

of ABA into the PYL receptors. The gate and latch loops of the receptor 

undergo movements in response to HAB1 interaction. Most drastically, the 

side chain of H119, which faces outwards of the pocket in both apo and ABA-

bound PYL2 structures, points into the pocket and makes contacts with the 

dimethyl group of ABA’s cyclohexene ring in the HAB1-bound structure 

(Figure 28c). Correspondingly, the cyclohexene ring of ABA apparently shifts 

~1.3 Å, positioning its ketone group for the water-mediated interaction with 

the W385 of HAB1. In this configuration, the W385 of HAB1 functions as a 

molecular lock to stabilize the interaction interface, keeping the gate and latch 

in closed position. This could explain the higher ABA binding affinities of 

PYLs observed in the presence of PP2Cs (Ma et al., 2009; Santiago et al., 
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2009b). The intermolecular interactions between ABA-bound PYL2 and 

HAB1 are illustrated in Figure 29. The functional importance of the receptor 

gate has been validated by mutagenesis data (Figure 22). In addition, 

mutations of latch residues H119A and R120A compromised ABA-dependent 

PP2C interaction and phosphatase inhibition (Figure 30a,b), supporting the 

role of the latch loop in PP2C regulation. To further validate our structural 

observations, we screened a number of HAB1 mutants for their phosphatase 

activities in the absence and presence of PYL2 (Figure 30c). Notably, a triple 

mutation at the W385 region (Q384A/W385A/Q386A) resulted in loss of 

regulation by PYL2, as indicated by the comparable levels of phosphatase 

activity in the absence and presence of PYL2. Similarly, G246D mutation 

abolished its regulation by PYL2. The G246D mutation in HAB1 corresponds 

to the abi1-1 and abi2-1 mutations that have been well documented to cause 

dominant ABA-insensitivity (Robert et al., 2006), but the mechanisms have 

been previously unexplained. In our PYL2 ABA HAB1 structure, the 

receptor gate loop packs closely with residues D243 to G246 of HAB1. The 

distance of G246 to the gate loop is only 2.8 4.0 Å. Thus, mutation to a 

residue with larger side chain would result in collision with the gate loop, 

affecting PYL2 regulation, as supported by our phosphatase assay data. 

 

Altogether, we have elucidated the structural mechanisms of ABA binding and 

signal transduction by the PYL ABA receptor. In summary, ABA binding 

closes the receptor gate, forming the complementary gate-latch interface for 

PP2C interaction. PP2C docking further locks the gate and latch interface 
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through a conserved tryptophan residue. In this configuration, the phosphatase 

catalytic site is blocked, resulting in inhibition of the phosphatase activity. 

 

Figure 28. The HAB1 PYL2 interaction interface.  

Network of water-mediated interactions between key residues and the ketone 
group of ABA shown by a) a refined 2 Fo Fc electron density map contoured 
at 1.0 , and b) and an unbiased Fo Fc difference density contoured at 1.0 . c) 
Conformational changes induced by HAB1 docking. A close-up overlay of 
PYL2 ABA in the presence (blue) and absence (green) of HAB1. The latch is 
shown in cyan (-HAB1), and orange (+HAB1), the gate in yellow (-HAB1) 
and pink (+HAB1) and ABA in grey (-HAB1) and light pink (+HAB1). 
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Figure 29. DimPlot analysis of interactions in the PYL2 HAB1 interface. 

Interactions were mapped using DimPlot program in LigPlot software 
(Wallace et al., 1995) with cutoff distances for hydrogen bonds set at 2.70 Å 
for hydrogen-acceptor distances and 3.35 Å for donor-acceptor distances and 
2.9 3.9 Å for non-bonded distances. HAB1 residues involved in polar and 
hydrophobic interactions are labeled in pink and blue respectively. PYL2 
residues involved in polar and hydrophobic interactions are labeled in green 
and black respectively. Water molecules are labeled in purple and bond 
distances are indicated and shown by green dashed lines. 
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Figure 30. Mutational analysis of PYL2 and HAB1 interface.  

a) Functional analysis of mutations in PYL2 latch residues in HAB1 
interaction as determined by AlphaScreen (n=3, error bars=SD). b) Functional 
analysis of mutations in PYL2 latch residues in HAB1 inhibition determined 
by phosphatase activity assays containing 100 nM recombinant HAB1 and 
500 nM recombinant wild type or mutant PYL2 (n=3, error bars=SD). c) 
Functional analysis of HAB1 mutations by phosphatase activity assays 
containing 100 nM wild type or mutant recombinant HAB1 in the absence and 
presence of 500 nM PYL2 (n=3, error bars=SD).  
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3.6 Selective pyrabactin activation and antagonism of PYLs 

 

Pyrabactin (Figure 4) is a synthetic seed germination inhibitor whose activity 

correlates with some but not all of the effects of ABA, and is therefore a 

selective ABA agonist (Park et al., 2009). Agreeably, our data show that while 

ABA is a pan agonist of PYLs, pyrabactin selectively promotes the interaction 

of a subset of PYLs with PP2Cs (Figure 31a). Pyrabactin strongly promoted 

the interaction of PYR1 with all 3 PP2Cs, consistent with its original 

identification as a selective PYR1 agonist (Park et al., 2009). While pyrabactin 

promoted the interaction of PYL1, PYL3 and PYL4 to different extents with 

different PP2Cs, it failed to activate PYL2 to interact with any of the PP2Cs. 

Consistently, phosphatase activity assay showed selectivity of pyrabactin-

induced PYL inhibition of PP2Cs activity (Figure 31b). All of the PYLs tested 

were able to be activated by ABA to inhibit all 3 PP2Cs, implying that the 

inability of pyrabactin to induce PYL2 interaction and inhibition of PP2Cs 

was not due to inactive PYL2 protein (Figure 31b).  

 

Despite having high endogenous levels of ABA under unstressed conditions 

(Harris et al., 1988; McCourt and Creelman, 2008; Zhang et al., 2001) and that 

some PYL members can constitutively inhibit PP2Cs even in the absence of 

ABA (Santiago et al., 2009b), the ABA response in plants is kept silent under 

basal conditions. These observations suggest that ABA receptors could be 

inhibited under unstressed conditions, and such speculation prompted us to 

determine whether PYL2 could be antagonized by pyrabactin. Indeed, 

increasing concentrations of pyrabactin reversed the ABA-induced PYL2 
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interaction and inhibition of PP2Cs, establishing that pyrabactin is a selective 

PYL2 antagonist (Figure 32). 

 

Figure 31. Selective activation of PYL receptors by pyrabactin. 

a) Receptor interaction with PP2Cs by determined by AlphaScreen (n=3, error 
bars=SD) and b) receptor inhibition of PP2C determined by phosphatase 
activity assays containing 200 nM of recombinant PP2Cs and 2 μM of 
recombinant PYLs (n=3, error bars=SD). 
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Figure 32. Pyrabactin reverses the ABA-induced activation of PYL2. 

a) Pyrabactin inhibits the ABA-induced PYL2 interaction with PP2Cs as 
determined by Alphascreens interaction assay in the presence or absence of 10 
μM (+)-ABA and the indicated concentrations of pyrabactin (n=3, error 
bars=SD). b) Pyrabactin relieves the ABA-mediated PYL2 inhibition of PP2C 
activity as determined by phosphatase activity assays containing 200 nM 
recombinant PP2Cs, 600 nM PYL2, 10 μM (+)-ABA and the indicated 
concentrations of pyrabactin (n=3, error bars=SD). 
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3.6.1 Mechanism of pyrabactin-mediated receptor activation  

 

Pyrabactin, whose chemical structure does not resemble ABA (Figure 4), acts 

as an agonist in a subset of PYLs, including PYR1 and PYL1 (Figure 31). To 

understand how pyrabactin activates ABA receptors, we determined a 2.15 Å 

crystal structure of a PYL1 pyrabactin ABI1 ternary complex, representing a 

pyrabactin-activated ABA receptor complex structure (Figure 33a). The 

statistics of structure refinement are shown in Table 4. The overall structure of 

the PYL1 pyrabactin ABI1 complex resembles that of the 

PYL2 ABA HAB1 and PYL2 ABA ABI2 complexes, with the gate and 

latch loops in a closed conformation that is further stabilized by the docking of 

the conserved tryptophan residue W300 from ABI1. In the pyrabactin-

activated complex, PYL1 packs against the catalytic site of ABI1, showing a 

consistent mechanism of phosphatase inhibition as the ABA-activated ternary 

structure.  

 

Analyses of the receptor pocket revealed that pyrabactin forms a “ ”-shaped 

configuration and interacts with receptor pocket residues in a similar network 

of polar and hydrophobic interactions as observed in the PYL2 ABA structure 

(Figure 33b,c). In this configuration, pyrabactin mimics ABA in the ligand-

binding mode, with its naphthalene double ring overlapping with the 

cyclohexene ring of ABA, and its pyridyl nitrogen mimicking the carboxylate 

group of ABA in its interaction with a conserved lysine residue, K86 of PYL1, 

corresponding to K64 in PYL2 (Figure 33d). These interactions provide a 
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common mechanistic basis of ligand-recognition and receptor activation and 

can be useful for future designs of new ABA agonists. 

 

Figure 33. Structure of the PYL1 pyrabactin ABI1 complex.  

a) Overall structure of the complex. The ABI1 catalytic domain and PYL1-
interacting domain are shown in yellow and cyan respectively. The side chain 
of its conserved PYL-interacting tryptophan residue is shown as stick 
representation and magnesium ions as white spheres. PYL1 is shown in green 
with pyrabactin as ball representation in the PYL1 pocket shown as mesh. b) 2 
F0–Fc electron density map of bound pyrabactin and its surrounding residues 
contoured at 1.0 . c) Schematic representation of the interactions between 
pyrabactin and PYL1 binding pocket residues.  Charged interactions and 
hydrogen bonds are indicated by arrows, hydrophobic interactions by solid 
lines with hydrogen bond donors in blue and acceptors in red.  The position of 
pyrabactin relative to the closed gate is indicated. d) Overlay of pyrabactin 
(grey) with (+)-ABA (pink) in the PYL1 binding pocket. 
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Table 4. Statistics of structure refinement for pyrabactin-bound 
complexes. 

 
PYL2–
Pyrb 

PYL1–
Pyrb–
ABI1 

PYL2 
A93F–
Pyrb 

PYL2 
A93F–
Pyrb–
HAB1 

PYL2 
A93F–
Pyrb–
ABI2 

PDB code 3NMH 3NMN 3NMP 3NMT 3NMV 
Data collection      

Space group C2221 P1 C2221 P212121 P212121 
Resolution (Å) 30–1.85 30–2.15 30–2.10 30–2.55 30–2.10 

Cell dimensions      

a, b, c (Å) 
62.27, 

105.07, 
185.08 

59.98, 
66.71, 
72.60 

62.08, 
105.57, 
182.90 

62.08, 
105.57, 
182.90 

62.13, 
97.59, 
134.50 

, ,  (°) 90, 90, 90 
115.8, 

95.4, 105.6 
90, 90, 90 90, 90, 90 90, 90, 90 

Total /Unique 
reflections 

646811 
/51071 

140047 
/50236 

291389 
/35374 

164481 
/19661 

511848 
/41807 

Completeness 
(%) 

96.9  
(92.8) 

97.6  
(96.2) 

99.9  
(99.9) 

100.0 
(100.0) 

100.0 
(100.0) 

I/  32.2 (3.90) 49.1 (4.5) 27.6 (2.9) 15.9 (2.4) 32.4 (3.7) 
Redundancy 12.7 (12.8) 13.4 (2.3) 8.2 (8.4) 8.4 (8.6) 14.7 (14.6) 

Rsym 
0.100 

(0.706) 
0.098 

(0.752) 
0.093 

(0.725) 
0.164 

(0.793) 
0.102 

(0.764) 
      

Refinement      
Resolution (Å) 30-1.85 30-2.15 30-2.10 30-2.55 30-2.10 
No. reflections 18156 46283 32811 18181 25445 
No. residues 528 888 528 472 456 
No. solvent 
molecules 

354 101 273 137 172 

No. of non-H 
atoms 

4643 7243 4511 3877 3599 

Rcryst 19.1% 21.2% 23.0% 22.3% 19.4% 
Rfree 23.6% 25.5% 26.9% 26.0% 22.3% 

RMSD bonds 
(Å) 

0.018 0.021 0.022 0.018 0.023 

RMSD angles 
(°) 

1.71 1.73 1.66 1.44 1.74 

Average B 
factor (Å2) 

32.07 41.41 42.63 41.62 36.0 

Notes: 

Pyrb: Pyrabactin 
RMSD is the root-mean-square deviation from ideal geometry of protein. 
Values in parentheses are for highest-resolution shell.  
One crystal was used for each structure.  
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3.6.2 Mechanism of PYL2 antagonism by pyrabactin 

 

To understand the mechanism of PYL2 antagonism by pyrabactin, the 

structure of PYL2 in complex with pyrabactin was determined at 1.85 Å 

resolution (Figure 34a), with statistics shown in Table 4. As previous ligand-

bound structures, pyrabactin forms a network of polar and hydrophobic 

interactions with PYL2 pocket residues (Figure 34b). The sulfonamide group 

of pyrabactin mimics the carboxylate group of ABA, forming interactions with 

K64 and E98 of PYL2 (Figure 34b,c). The naphthalene ring of pyrabactin 

forms parallel packing interactions with its pyridine ring the phenol ring of 

Y124 of PYL2 (Figure 34c). 

 

In contrast, comparison of the pyrabactin-bound pockets of the PYL1 complex 

and PYL2 structures revealed a flip of ~180° in the orientation of pyrabactin 

between the two structures (Figure 34d). In this configuration, the gate loop of 

pyrabactin-bound PYL2 assumes an open conformation similar to the apo 

PYL2 structure, in contrast to the closed conformation of the active receptor 

complexes (Figure 34a). These observations indicate that pyrabactin occupies 

the ligand pocket in PYL2 but assumes a non-productive conformation that 

does not form the closed-gate conformation necessary for PP2C interaction.  
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Figure 34. The PYL2 pyrabactin structure.  

a) Overview of the PYL2–pyrabactin structure with pyrabactin as ball model 
in the PYL2 pocket shown as mesh. The gate and latch are shown in green and 
magenta respectively. b) Schematic representation of the interactions between 
pyrabactin and PYL2 binding pocket residues.  Charged interactions and 
hydrogen bonds are indicated by arrows, hydrophobic interactions by solid 
lines with hydrogen bond donors in blue and acceptors in red.  The position of 
pyrabactin relative to the open gate is indicated. c) 2 F0–Fc electron density 
map of bound pyrabactin and its surrounding residues contoured at 1.0 . d) 
Overlay of pyrabactin in the PYL2 antagonist (brown/ pale brown) and PYL1 
agonist (green/ pale cyan) structures. 
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3.6.3 I137V converts PYL1 to a pyrabactin-inhibited receptor 

 

To further understand the molecular features determining the selective 

receptor activation, receptor amino acid sequences were analyzed to identify 

residues responsible for the differential responses towards pyrabactin. It was 

observed that the V114 pocket residue in PYL2 corresponded to an isoleucine 

residue, I137 in PYL1. An overlay of the pyrabactin-bound pockets of these 

receptors suggested that PYL1 I137 clashes with pyrabactin in the antagonist 

structure, forcing the pyrabactin to flip into the agonist configuration (Figure 

35a). Thus we predicted that mutation of PYL1 I137V would allow pyrabactin 

to adopt the antagonist conformation.  

 

To test this, the I137V mutation was introduced into PYL1 habouring a 

A190V or V193I mutation. This is because pyrabactin is a weak agonist in 

wild type PYL1, while single A190V or V193I mutations in the receptor 

greatly enhanced pyrabactin activity (Figure 35b). Indeed, introduction of 

I137V into either PYL1 A190V or PYL1 V193I converted the pyrabactin-

activated receptor into pyrabactin-antagonized receptor, as demonstrated by 

the concentration-dependent pyrabactin inhibition of ABA-activated mutant 

PYL1 receptors (Figure 35c–f). 



RESULTS 
 

 

Figure 35. I137V converts PYL1 into a pyrabactin-inhibited receptor. 

a) PYL1 I137 clashes with the pyrabactin antagonist structure.  Overlay of 
pyrabactin in the PYL2 ligand binding pocket (brown) with the PYL1 ligand 
binding pocket (green).  I137 and the corresponding residue in PYL2, V114, 
are represented as stick models.  Their distances to pyrabactin in the PYL2 
antagonist structure are indicated. b) PYL1 A190V and V193I mutations 
increase the pyrabactin-mediated PYL1–ABI2 interaction. AlphaScreen 
interaction in the presence or absence of 10 M (+)-ABA, 100 M pyrabactin, 
or 5 μM (+)-ABA + 100 M pyrabactin (n=3, error bars=SD).  (c,e) 
Pyrabactin inhibits the ABA-stimulated interaction between PYL1 I137V and 
PP2Cs.  Alphascreen interactions with PYL1 A190V I137V (c) or V193I 
I137V (e) (n=3, error bars=SD).  (d,f) Pyrabactin relieves the ABA-stimulated 
inhibition of PP2C phosphatase activity by PYL1 A190V I137V (d) or V193I 
I137V (f). Reactions contained 200 nM recombinant PP2Cs and 600 nM 
PYL1 A190V I137V or V193I I137V (n=3, error bars=SD). 
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3.6.4 A93F converts PYL2 to a pyrabactin-activated receptor 

 

The next key question we sought to address is why pyrabactin binding does 

not activate PYL2. In the structure of the pyrabactin-bound PYL2, the 

pyridine group of the pyrabactin is positioned at a distance of 11 13 Å from 

the gate loop that is too far away to make interactions to keep the gate closed 

(Figure 34a). Therefore, to facilitate the closure of the gate, a mutation of 

A93F was designed to introduce a bulky residue in the gate loop of PYL2 to 

bridge the distance between the gate and the pyridine ring of pyrabactin. 

While pyrabactin did not induce PP2C interaction and inhibition in wild type 

PYL2, it activated PYL2 A93F to bind and inhibit ABI1 activity (Figure 36), 

suggesting that the A93F mutation converted PYL2 from a pyrabactin-

repressed to pyrabactin-activated receptor. 

 

To further understand how the A93F mutation switched the pyrabactin 

response of PYL2, the crystal structures of pyrabactin-bound PYL2 A93F, as 

well as ternary complexes of PYL2 A93F pyrabactin bound to ABI2 and 

HAB1 were determined at resolutions of 2.10 Å, 2.10 Å and 2.55 Å 

respectively. The structures of the PP2C-bound ternary complexes further 

provided evidence that pyrabactin acts as an agonist in PYL2 A93F. The 

overall structures of the ternary complexes resemble the active 

PYL2 ABA HAB1 and PYL1 pyrabactin ABI1 structures, with their gate 

and latch loops in closed conformation and the conserved tryptophan residues 

of the PP2Cs inserted in the pyrabactin-bound receptor pocket (Figure 37a,b). 

In these structures, the pyrabactin adopted an intermediate position between 
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the agonist and antagonist conformations, with both ring systems making 

interactions with the F93 residue to stabilize the gate in a closed conformation 

(Figure 37c). 

 

In the pyrabactin PYL2 A93F structure, the gate loop is unexpectedly in an 

open conformation, resembling that of the apo wild type PYL2 structure 

(Figure 37d). The latch however, assumes an active conformation observed in 

the active ternary complexes, with its H119 side chain flipped into the pocket, 

making contact with pyrabactin and E118 side chain flipped outside of the 

pocket to allow closure of the gate onto the latch upon PP2C docking (Figure 

37d). In this state, pyrabactin binding poised the mutant receptor to be 

activated upon PP2C binding, therefore providing the basis of pyrabactin 

agonism in the A93F mutant receptor. 

 

In summary, we have shown that members of the PYL ABA receptor family 

can be selectively activated or inhibited by pyrabactin and elucidated the 

structural basis of such agonism and antagonism. In addition, we have also 

identified single amino acid residues as molecular determinants of the receptor 

response towards pyrabactin and demonstrated the ability to switch the 

selective responses through receptor engineering. 
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Figure 36. A93F converts PYL2 to a pyrabactin-activated receptor. 

PYL2 A93F is activated by pyrabactin to bind and inhibit ABI1 as determined 
by a) AlphaScreen assay (n=3, error bars=SD) and b) phosphatase assay 
containing 200 nM ABI1 and 600 nM wild type or A93F mutant PYL2 (n=3, 
error bars=SD). 
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Figure 37. The PYL2 A93F pyrabactin agonist complex structures.  

Overview of the a) PYL2 A93F pyrabactin ABI2 and b) PYL2 
A93F pyrabactin HAB1 structures. c) Close-up view of pyrabactin in the 
PYL2 A93F–pyrabactin–ABI2 trimeric complex.  ABI2 with W290 is shown 
in yellow. d) Structure of pyrabactin in the PYL2 A93F ligand binding pocket 
(cyan) overlaid with the PYL2 wildtype structure (brown).  
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In this study, we present crystal structures of representative PYLs in apo- 

forms, ABA-bound form, in complex with ABA and PP2C, as well as the 

structure of an apo PP2C. These structures provided evidence for the role of 

PYL proteins in ABA perception and signal transduction, thereby answering 

the long-standing uncertainty in the identity of ABA receptors. Importantly, 

our structural findings highlighted a gate-latch-lock mechanism of ABA 

binding and signalling by the PYLs and PP2Cs, validated by extensive 

biochemical and mutagenesis data. In this model, the ligand binding pocket of 

PYL is surrounded by the gate and latch loops, whereby the gate is in an open 

conformation in the absence of ABA occupancy (Figure 38a). ABA binding 

results in closure of the gate onto the latch loop, forming the complementary 

interface for PP2C interaction. The PYL ABA PP2C interaction involves 

docking of a conserved PP2C tryptophan residue, which further locks the 

receptor gate and latch in a stable, closed position (Figure 38b). The 

involvement of PP2C in modifying the PYL ABA contact surface and 

forming a water-mediated contact with ABA suggested that PP2Cs can 

function as co-receptors to facilitate the interaction of PYL proteins with 

ABA, and established that these proteins together are bona fide ABA receptors 

that transduce plant stress signals. 
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Figure 38. Cartoon summary of the gate-latch-lock mechanism of ligand 
perception and signal transduction by the PYL ABA receptors. 

a) In the absence of ABA, the PYL gate loop is in an open conformation, 
hindering PP2C interaction. The active PP2C inhibits SnRK2 by 
dephosphorylating and blocking the kinase active site. b) The PYL gate is 
closed upon ABA binding, allowing it to inhibit PP2C by blocking the 
phosphatase active site. Upon PP2C binding, a conserved PP2C tryptophan 
residue (denoted by “W”) further locks the gate and latch in a closed position, 
stabilizing the PYL ABA PP2C complex interaction. This releases the 
SnRK2 from PP2C inhibition, allowing it to achieve full kinase activity by 
autophosphorylation. The active SnRK2 relays the ABA signal by 
phosphorylation of downstream effectors, such as the ABF transcription 
factor. c) In the agonist conformation, pyrabactin (pyrb) mimics ABA in its 
interaction with the receptor pocket, inducing closure of the PYL gate to 
promote PP2C inhibition. d) Pyrabactin acts as an antagonist in certain PYL 
members, where it occupies the receptor pocket in an orientation that does not 
induce closure of the PYL gate, thus hindering PP2C interaction. 
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Our analyses have been further supported by in vitro as well as in vivo data 

provided by our collaborators, demonstrating that mutation of key residues 

that form the gate and latch compromised the receptor activity (Melcher et al., 

2009). Functional studies of PYL2 with mutations in the gate and latch 

residues were performed using Arabidopsis protoplast assays, where ABA-

induction of gene expression can be reconstituted by coexpression of a set of 

components consisting of PYL, PP2C, SnRK2, ABF2 transcription factor and 

an ABA-responsive promoter reporter construct (Fujii et al., 2009). Mutations 

in the gate, latch and ligand-binding residues of PYL2 compromised the 

ability of PYL2 to activate the reporter in response to ABA (Figure 39a). 

 

In addition to the mutational studies of PYL2, functional studies of PYR1 with 

a mutated latch residue (H115A) were carried out. Consistent with the 

important role of this latch residue in the PYL2 ABA inhibition of PP2C, the 

PYR1 H115A protein was defective in ABA-mediated PP2C inhibition in 

vitro (Figure 39b) and was not able to interact with HAB1 in response to ABA 

(Figure 39c). Furthermore, in vivo studies showed that the PYR1 H115A 

failed to rescue the ABA-response defect of a quadruple pyr1/pyl1/pyl2/pyl4 

mutant in transgenic plants, while the wild type PYR1 did (Figure 39d). 

Together, these results provide further validation of the critical roles of the 

receptor gate and latch in ABA signalling. 
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Figure 39. Mutations in the PYR1 latch and gate affect ABA signalling in 

vitro and in vivo. 

a) Mutations in the PYL2 ligand binding pocket, gate and latch are defective 
in the reconstituted signalling pathway (n=3, error bars=SEM). b) HAB1 
phosphatase activity is abolished in H115A PYR1 (n=3, error bars=SD). c) 
The H115A PYR1 mutant is defective in ABA-mediated HAB1 interaction, as 
shown by yeast two-hybrid assay. AD, activation domain; BD, DNA binding 
domain. d) The H115A PYR1 mutant is defective in inhibiting the root growth 
of transgenic plants in response to ABA. A quadruple pyr1/pyl1/pyl2/pyl4 
mutant defective in root growth inhibition can be complemented by wild type 
PYR1, but not by PYR1 (H115A) (n=6–10, error bars=SD). Nature. 462:602–

8 (Melcher et al., 2009) 
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We further elucidated the mechanistic basis of selective PYL activation and 

antagonism by pyrabactin. The PYL1 pyrabactin agonist structure revealed 

that pyrabactin mimics ABA in which its interaction with the receptor gate 

induces a ‘closed-gate’ receptor conformation that enables receptor docking 

into the PP2C active site (Figure 38c). In the antagonist conformation, 

pyrabactin occupies the ABA-binding pocket but does not interact with the 

gate residues, lacking the interacting energy to pull the gate into the closed 

position and therefore leaving the gate in the inactive open conformation 

(Figure 38d). Here, we provide evidence for the phenomenon of ABA receptor 

antagonism and its underlying mechanism through combinatorial approaches 

of structural, biochemical and mutagenesis studies. 

 

Our results are coherent with a series of crystallographic studies of PYLs 

published in the same period. Collectively, the identification of PYLs as ABA 

receptors and the following structural studies of the molecular mechanisms of 

ABA perception and signal transduction by the PYLs has greatly advanced our 

understanding of hormonal regulation of plant growth and development and as 

such, has been nominated by Science Signaling as one of the signalling 

breakthroughs of the year 2009 (Adler, 2010). In the following sections, 

critical aspects of the core ABA signalling pathway provided by our data 

together with other relevant studies and their potential implications in 

agriculture as well as human health and diseases will be discussed. 
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4.1 Collective structural studies of the PYL ABA receptors 

 

In late 2009, five crystallographic studies providing evidence and mechanism 

of the PYL proteins as ABA receptors (Melcher et al., 2009; Miyazono et al., 

2009; Nishimura et al., 2009; Santiago et al., 2009a; Yin et al., 2009), 

including the study presented in this thesis (Melcher et al., 2009), were 

published in the same period (listed in Table 5). Collectively, these five groups 

derived crystal structures for PYR1, PYL1 and PYL2, all exhibiting the helix-

grip structure characteristic for START domain/ Bet v 1-fold proteins, in 

which a seven-stranded anti-parallel -sheet is surrounded by a long C-

terminal -helix and few smaller -helices. A large ligand-binding pocket 

forms between the C-terminal helix and -sheet and is guarded by two 

functionally important -loops that we have named the ‘gate’ and ‘latch’ loops 

(alternatively named Pro-Cap and Leu-Lock (Nishimura et al., 2009), CL2 and 

CL3 (Yin et al., 2009), and 3– 4 and 5– 6 lid loops (Miyazono et al., 

2009)) and whose amino acid sequences (SGLPA and HRL, respectively) are 

identical for all 14 members of the PYL family, except for PYL12 and PYL13 

(Figure 40). Comparisons of the apo and ABA-bound receptor structures 

revealed the critical role of ABA-induced conformational changes in these two 

loops in transmitting the hormone binding signal to downstream effectors 

(Melcher et al., 2009; Nishimura et al., 2009; Santiago et al., 2009a; Yin et al., 

2009). In addition to conformational changes in the gate and latch loops, 

Nishimura et al., 2009 has also identified a “recoil motif” (indicated in Figure 

40) in PYR1 that shifts towards the C-terminal helix upon ABA binding.

In the hormone-bound pocket, ABA forms a network of interactions with 
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conserved residues of PYR1, PYL1 and PYL2 (consolidated and listed in 

Table 6). Notably, single point mutation of the key lysine residue (K59Q in 

PYR1, K64A in PYL2), which anchors the carboxylate group of ABA to the 

deep end of the pocket opposite the entrance, impaired the receptor’s ability in 

ABA binding, PP2C interaction and PP2C inhibition (Melcher et al., 2009; 

Nishimura et al., 2009; Yin et al., 2009). 

 

Crystal structures of the PYL2 ABA HAB1 complex in our study (Melcher 

et al., 2009) and PYL1 ABA ABI1 complexes (Miyazono et al., 2009; Yin et 

al., 2009) showed that the ABA-bound receptors bind to the active site of the 

PP2Cs, thereby inhibiting the PP2C activity by blocking substrate access to 

the catalytic site. PYL interact with PP2C at the gate-latch interface induced 

by ABA-binding. In this interface, a conserved PP2C tryptophan residue 

(W385 in HAB1 and W300 in ABI1) forms a water-mediated contact with 

ABA and interacts with the receptor gate and latch loops, further locking the 

loops in a closed conformation. These observations provide structural 

explanations for the more than 10-fold increase in PYL’s ABA binding 

affinity in the presence of a PP2C (Ma et al., 2009; Miyazono et al., 2009; 

Santiago et al., 2009b; Yin et al., 2009). These structural studies also explain 

the previously characterized ABA-insensitive abi1-1 and abi2-1 mutations in 

which a glycine to aspartic acid change in the PP2C active site disrupts 

receptor-PP2C interactions (Ma et al., 2009; Park et al., 2009; Santiago et al., 

2009b; Sheen, 1998). In the PYL ABA PP2C structures, this glycine is in 

close proximity with the receptor gate, and replacement of the glycine 

hydrogen with the bulky side chain of aspartate sterically interferes with gate 
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interaction (Melcher et al., 2009; Miyazono et al., 2009; Yin et al., 2009). 

 

Table 5. Structural studies of PYLs in ABA signal transduction. 

Crystal Structures 
Aspect of Study 

Study 
Number# Apo 

Receptor 
Ligand-bound 

Receptor 
Receptor ligand  

PP2C complex 

1 PYR1 PYR1 ABA  

2 PYR1 PYR1 ABA  
3  PYL1 ABA PYL1 ABA ABI1 

PYL1 

4* 

PYL2 

 
PYL2 ABA 

 
PYL2 ABA HAB1 

ABA perception 
and receptor 

activation 

5 PYL2 PYL2 ABA PYL1 ABA ABI1 

6  
PYL1 pyr 

(AG) 
 

7  PYL2 pyr (AT)  

PYL2 pyr (AT) 

 

PYL1 pyr  
ABI1 (AG) 

 

PYL2 (A93F)  
pyr ABI2 (AG) 

 

8*  

PYL2 (A93F)  
pyr (AG) 

PYL2 (A93F)  
pyr HAB1 (AG) 

PYR1 
(P88S) pyr 

(AG) 
PYL2 pyr (AT) 

Selective receptor 
activation and 
antagonism by 

pyrabactin 

9  

PYL2 (V114I)  
pyr (AG) 

 

Ligand-
independent 

receptor activation 
10 PYL10  PYL10 HAB1 

Notes: 
 
#Study number 1-(Nishimura et al., 2009); 2-(Santiago et al., 2009a); 3-
(Miyazono et al., 2009); 4-(Melcher et al., 2009); 5-(Yin et al., 2009); 6-(Hao 
et al., 2010); 7-(Yuan et al., 2010); 8-(Melcher et al., 2010); 9-(Peterson et al., 
2010); 10-(Hao et al., 2011). 
 
Asterisks indicate publications that include the work presented in this thesis.  
 
The PYL pyr (pyrabactin) complexes representing agonist and antagonist 
conformations are denoted by AG and AT respectively. 
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Notes for Table 6: 
 
References: 1-(Nishimura et al., 2009); 2-(Santiago et al., 2009a); 3-
(Miyazono et al., 2009); 4-(Melcher et al., 2009); 5-(Yin et al., 2009); 6-
(Peterson et al., 2010); 7-(Hao et al., 2010); 8-(Yuan et al., 2010); 9-(Melcher 
et al., 2010). 
 
#In this study, only 3 key residues forming polar interactions were described, 
although hydrophobic interactions are also involved. 
 
Amino acids listed in the same rows correspond to the same residue positions 
in PYL alignment. Asterisks indicate the residues involved in pyrabactin-
selective receptor activation. 
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Figure 40. PYL functional motifs and residues in ABA receptor activity.  

Sequence alignment of the 14 Arabidopsis PYL members, showing motifs and 
residues involved in different aspects of the ABA receptor activity, 
collectively identified in various structural studies. 
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4.2 Development of novel ABA receptor agonists 

 

We have shown that pyrabactin selectively activates a subset of ABA 

receptors, including PYR1 and PYL1. Structures of pyrabactin-bound PYR1 

and PYL1 reveal that pyrabactin interacts with receptor residues through a 

similar network of polar and hydrophobic interactions as ABA (Table 6) (Hao 

et al., 2010; Melcher et al., 2010; Peterson et al., 2010). The sulfonamide 

group of pyrabactin mimics the carboxylate group of ABA and forms 

extensive interactions with the receptor. The mechanistic knowledge of how 

amphipathic modules function in receptor activation provides a rational model 

to screen for novel PYL agonists. To demonstrate the validity of this concept, 

Dr Xu Yong from our research team carried out an in silico approach to screen 

chemical libraries for molecules containing the naphthalene-1-sulfonamide 

group and computationally docked these compounds into the PYL1 ligand 

binding pocket (Melcher et al., 2010). Of the top docking matches, at least 4 

compounds efficiently activated PYR1 in in vitro assays with efficacies and 

EC50 values similar to that of pyrabactin (Figure 41). The success of this 

exercise provides proof of concept for future screening and design of potent 

ABA receptor ligands for understanding of ABA biology as well as for 

agriculture applications. 
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Figure 41. Identification of novel ABA receptor agonists.  

Compounds identified in computational screening induce PYR1-PP2C 
interaction as determined by AlphaScreen assay (a) and mediate PYR1 
inhibition of PP2Cs (b) with EC50 values as indicated (c). Nature structural & 

molecular biology. 17:1102-1108 (Melcher et al., 2010). 
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4.3 Identification of ABA receptor antagonism 

 

To understand how pyrabactin selectively antagonizes PYL2 activity, our 

group and two other groups have independently solved the structures of 

pyrabactin-bound PYL2 (Melcher et al., 2010; Peterson et al., 2010; Yuan et 

al., 2010). In all three studies, the gate loop of pyrabactin-bound PYL2 was 

found to be in the open conformation, in contrast to the closed, active 

conformation in PYL1 pyrabactin structure, consistent with the notion that 

gate closure is critical for PYL activation. The orientation of pyrabactin in 

PYL2 was also rotated relative to that in the agonist structures. However, the 

extent of pyrabactin rotation in the PYL2 pyrabactin structures varied in the 

different studies, suggesting that pyrabactin can adopt several unproductive 

orientations in PYL2. The ability of pyrabactin to antagonize PYL2 raises the 

possibility that physiological antagonists exist. It has been estimated that the 

endogenous concentration of ABA in unstressed conditions is 0.7 1.5 fg per 

guard cell pair (0.7 1.5 μM) (Harris et al., 1988; McCourt and Creelman, 

2008; Zhang et al., 2001), a concentration range that is sufficient to bind and 

activate several different recombinant PYL PP2C complexes (Ma et al., 2009; 

Melcher et al., 2009; Park et al., 2009; Santiago et al., 2009b). Moreover, 

several subtypes of PYLs show ABA-independent interactions with PP2Cs 

(Hao et al., 2011; Santiago et al., 2009b), but yet the ABA response is kept 

silenced in unstressed plants. Altogether, these observations lead to the 

intriguing hypothesis that physiological antagonists exist to inhibit the basal 

activity of ABA receptors. Thus, the identification of endogenous ABA 

receptor antagonists will be an exciting avenue for future research. 
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4.4 Ligand-independent receptor activation 

 

While some members of the PYL family, such as PYR1 and PYL1 PYL4, 

only interact with PP2Cs in the presence of ABA (Park et al., 2009), other 

members, including PYL5, PYL6 and PYL8 have been shown in yeast two-

hybrid assays to be able to interact with PP2Cs in the absence or presence of 

exogenous ABA (Santiago et al., 2009b). In agreement with these 

observations, we were able to detect and isolate the PYL5 HAB1 complex by 

size exclusion chromatography of a mixture of the individual recombinant 

proteins without exogenous ABA (Figure 42a,b). To study the mechanism of 

ABA-independent PYL activation, we crystallized PYL5 in apo form and in 

ligand-free complex with HAB1 (Figure 42c). However, these crystals 

diffracted poorly (3.5 Å and 6 Å respectively), which hindered further 

analysis. The ABA-independent mechanism was later published by another 

group based on the ligand-free PYL10 HAB1 structure (Hao et al., 2011). 

This study reported that PYL5 PYL10 (except the untested PYL7) were able 

to inhibit PP2Cs to some extent in the absence of any ligands. To determine 

whether receptor monomerization is associated with its constitutive activity, 

the oligomeric state of each PYL was characterized using static light scattering 

and analytical ultracentrifugation analyses. It was found that while the ABA-

dependent PYR1, PYL1 and PYL2 exist as dimers, PYL4 PYL10 are 

monomers in solutions. The PYL2 I88K mutant at the dimerization interface 

eluted as monomer in size exclusion chromatography and exhibited an 

increased constitutive activity compared to the wild type receptor, suggesting 

that monomeric state contributes to constitutive receptor activity. Analyses of 
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the ligand-free PYL10 HAB1 complex structure and amino acid sequence 

alignment suggested that bulky hydrophobic residues near the opening of the 

ligand binding pocket facilitate ligand-independent gate closure to allow 

formation of the active, closed conformation. A second mutation, V87L, 

which introduces a bulkier residue at the pocket opening in the PYL2 I88K 

mutant, further increases its constitutive activity, suggesting that both receptor 

monomeric state and the facilitated gate closing are involved in ligand-

independent activation of PYL. 

 

 

Figure 42. ABA-independent PYL5 HAB1 interaction.  

a) Size exclusion chromatography (SEC) profiles of PYL5 and HAB1 as 
individual proteins as well as a mixture of both proteins, in the absence of 
ABA. The lower peak elution volume observed in the PYL5 HAB1 mixture 
compared to that of each individual protein suggests complex formation 
between the two proteins. b) SDS-PAGE analysis of SEC of the PYL5 and 
HAB1 mixture, confirming the presence of both PYL5 and HAB1 proteins in 
the peak elute fractions. c) Crystals of the apo PYL5 and PYL5 HAB1 
complex. 
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4.5 Agricultural applications 
 

Although the 14 members in the PYL family share a high degree of sequence 

similarity, different ligand responses have been shown by the different PYLs, 

suggesting that functional differences exist between PYL members. Since the 

first reports of the identification of PYLs, several structural studies quickly 

followed that collectively identified the molecular determinants and 

mechanisms of the various aspects of PYL activity (consolidated in Figure 

40). These studies pave the way for future possibilities to achieve specific 

molecular control of abiotic stress tolerance responses through targeting at 

specific PYL activity.  

 

In the view of the rising problems of fresh water shortage and climatic 

changes, approaches to improve environmental stress tolerance in crops will 

have valuable impacts on agriculture, which will in turn benefit the livelihood 

of millions of people especially in developing countries. The direct application 

of ABA to plants in the fields has been used to improve drought stress 

tolerance (Hawkins et al., 1987). However, the feasibility of this method is 

limited by the high production cost and instability of ABA. Pyrabactin, on the 

other hand, shows greatest effects in seeds as it selectively activates a subset 

of ABA receptors that are highly expressed in seeds (Park et al., 2009), thus 

limiting its use in controlling stress tolerance in the field, where effects on 

vegetative tissues are more relevant. A pressing need is therefore to identify 

ABA agonists with broad range receptor activity.  

 

To address this, we suggest a combinatorial approach for future development 
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of ABA agonists that applies our molecular knowledge of ABA receptors in 

agricultural improvement. In this approach, potential agonists will be 

identified by computational screens of chemical libraries and tested in in vitro 

assays for their agonist efficacy. Chemical modifications of promising 

candidates will be performed based on the known ABA/pyrabactin-receptor 

interactions to improve agonist efficacy. On the other hand, a structure-guided 

approach will be used to design mutations in the PYL ABA receptor to 

complement the activity of each candidate agonist for improved efficacy. 

Transgenic Arabidopsis lines expressing the PYL mutations will be generated 

and tested with the respective agonist for drought tolerance. With its 

feasibility demonstrated in Arabidopsis, this orthogonal ligand-receptor 

approach can subsequently be evaluated in crop plants such as corn and rice. 

 

Our current knowledge of the molecular mechanisms of ABA signalling has 

been primarily based on the Arabidopsis model. To translate this knowledge 

into agricultural applications, efforts have been made to evaluate the relevance 

of the Arabidopsis model of ABA signal transduction in commercial crop 

plants. 

 

Homologues of the Arabidopsis PYLs, PP2Cs and SnRK2s have been 

identified in various crop plants. For instance, in the tomato (Solanum 

lycopersicum) genome, eight SlPYL, seven SlPP2C and eight SlSnRK2 have 

been isolated and transcriptional characterization suggested their functional 

roles in fruit development and dehydration tolerance (Sun et al., 2011). 

Similarly, in the sweet orange (Citrus sinesis) genome, six CsPYL, five 
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CsPP2C and two CsSnRK2 were identified and transcriptional analysis 

suggested the involvement of these genes in fruit ripening and water stress 

(Romero et al., 2012). The grape (Vitis vinifera) ABA signalling cascade 

consists of at least seven ABA receptors (VvRCAR) and six PP2Cs (VvPP2C), 

forming twenty-two combinations of receptor-PP2C interactions shown by 

yeast two-hybrid screens (Boneh et al., 2012). A rice (Oryza sativa) ABA 

signalling unit consisting of rice orthologues of PYL, PP2C, SnRK2 and 

OREB1, an ABRE-binding transcription factor, has been identified by 

interaction assays and reconstituted in transient gene expression assay (Kim et 

al., 2012). These findings suggest that the core ABA signal transduction 

pathway could be highly conserved across plant species. However, further 

studies will be necessary to characterize the unique properties of these core 

components, such as redundancy, in commercial crop species in order to 

translate the Arabidopsis-based knowledge into diverse agriculture 

applications. 

 

4.6 Elucidating the complete core ABA signalling pathway 

 

The data presented in this thesis has contributed to the mechanistic 

understanding of ABA-binding and PP2C inhibition by the PYL ABA 

receptors. To complete the elucidation of the core ABA signal transduction 

pathway, the immediate questions that follow are how SnRK2s are regulated 

by PP2Cs and how they are autoactivated. To address these questions, our 

group has further solved the crystal structures of two SnRK2s, SnRK2.3 and 

SnRK2.6, in an active and inactivate state respectively and that of a 
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PP2C SnRK2 complex. However, presentation of the full data is beyond the 

scope of this thesis. A summary of the main findings will be provided here. 

 

4.6.1 Regulation of SnRK2 by PP2C 

 

Our crystal structure of the HAB1 SnRK2.6 complex reveals striking 

similarity in PP2C recognition by SnRK2 and PYL (Soon et al., 2012). ABA-

induced PP2C inhibition leads to SnRK2 activation by autophosphorylation of 

the kinase activation loop (Belin et al., 2006; Boudsocq et al., 2007). In the 

HAB1 SnRK2.6 complex structure, this kinase activation loop docks into the 

active site of the PP2C while the conserved ABA-sensing tryptophan of the 

PP2C docks into the kinase catalytic cleft (Figure 43a), resembling the 

PYL ABA PP2C interaction (Figure 43b). In addition to steric inhibition by 

blocking the kinase active site, at sub-stoichiometric levels of PP2C, the 

phosphatase also inhibits SnRK2 activity by enzymatic dephosphorylation of a 

critical serine residue in the kinase activation loop (Soon et al., 2012). Thus, in 

the absence of ABA, PP2C binds to SnRK2 and inhibits the kinase activity in 

a two-step mechanism by dephosphorylating the activation loop serine and 

blocking the catalytic cleft (illustrated in Figure 43c). In the presence of ABA, 

the PYL ABA complex binds to and inhibits PP2C by physically blocking the 

PP2C active site. This releases the PP2C from inhibiting SnRK2, allowing 

activation of the kinase by activation loop autophosphorylation.  
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Figure 43. Mechanism of PP2C inhibition of SnRK2.  

a) Structure of the SnRK2.6 HAB1 complex. SnRK2.6 is shown in green, 
with its activation loop in blue. HAB1 is coloured pink and its PYL-
interaction loop in magenta. b) Overlay of the structures of SnRK2.6 HAB1 
and PYL2 ABA HAB1 complexes. c) Cartoon model for the two-step 
mechanism of the inhibition of SnRK2.6 activity by HAB1. Science. 335:85-

88 (Soon et al., 2012). 
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4.6.2 PP2C catalytic mechanism 

 

The SnRK2.6 HAB1 structure (Soon et al., 2012) mimics the post-reaction 

state of PP2C and offers an opportunity to examine the phosphatase catalytic 

mechanism (Zhou et al., 2012). The SnRK2.6 HAB1 interface contains a 

dominant density for a sulfate group that is coordinated by two Mg2+ ions, 

resembling the leaving phosphate product of PP2C (Figure 44a). 

 

The two Mg2+ ions, which are coordinated by conserved aspartic acid residues 

of the PP2C, bind to the phosphate group oxygens of phosphorylated S175 of 

the SnRK2.6, thereby increasing the partial positive charge of the phosphorus 

atom (Figure 44b). This facilitates a SN2 nucleophilic attack of the phosphate 

by a nearby water molecule. The conserved glutamate E203 partly 

deprotonizes the water molecule and increases its nucleophilicity for attacking 

the phosphorus atom. The conserved arginine R199 from the PP2C then binds 

to the leaving phosphate group by charge interaction and promotes the release 

of this group from the substrate molecule, SnRK2.6. 

 

4.6.3 Mechanism of SnRK2 autoactivation 

 

We then further pursued the mechanism of SnRK2 autoactivation upon relieve 

of its inhibition by PP2C. Our biochemical analyses show that while 

autophosphorylation of the activation loop serine is required for full kinase 

activation, SnRK2s with the serine mutated to alanine retains basal kinase 

activity (Ng et al., 2011).  
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Figure 44. HAB1 catalytic mechanism 

a) HAB1 catalytic site in the SnRK2.6 HAB1 structure, in which the sulfate 
group mimics the phosphate group cleaved from SnRK2.6 S175. This 
represents the functional correlate of the post-reaction status, at which the 
phosphate group has been transferred to HAB1 R199. Pink, HAB1; green, 
SnRK2.6. The sulfate ion is shown in ball presentation, the Mg2+-ions as solid 
gray balls. b) Schematic presentation of the reaction mechanism. Plant 

Signaling & Behavior. 7:581–588 (Zhou et al., 2012) 
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We solved the crystal structures of unphosphorylated SnRK2.3 and SnRK2.6, 

and observed that while the kinase domain of the SnRK2.3 structure adopts a 

closed conformation characteristic of active kinases, that of the SnRK2.6 

structure adopted an open conformation that is indicative of inactive kinases 

(Chen et al., 2009; Kornev et al., 2006; Rabiller et al., 2010) (Figure 45). This 

suggests that unphosphorylated SnRK2s can adopt conformational 

characteristics of both inactive and active kinases, in agreement with our 

biochemical detection of basal kinase activities. Detailed structural and 

mutational analyses indicated that intramolecular interaction between two 

domains, the SnRK2 box and regulatory C-helix, is important for kinase 

activity. Another feature we observed is that the close proximity of the 

activation loop serine and its adjacent threonine residue (S175 and T176 in 

SnRK2.6) to the catalytic center puts these residues in a favourable position 

for efficient phosphorylation which will lead to full kinase activation. 

Altogether, our data illustrate a two-step mechanism of SnRK2 autoactivation. 

The first step is an ABA-mediated release of SnRK2 from PP2C-inhibited 

state to a partially active state. The second step is by autophosphorylation of 

its activation loop to achieve full kinase activity, allowing it to relay the ABA 

signal into several distinct pathways by phosphorylation of different possible 

downstream effectors. 
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Figure 45. Structures of SnRK2.3 and SnRK2.6.  

a) Overview of the SnRK2.3 (red) and SnRK2.6 (green) structures. The 
SnRK2 box, which is a domain required for the kinase activity, is shown in 
cyan and the activation loop segment is shown in blue. b) Overlay of the 
SnRK2.3 (red) and SnRK2.6 (blue) structures, showing their closed and open 
conformations with respect to the relative positions of their SnRK2 boxes and 

C-helices. c) Overlays of SnRK2.3 (red) with the active Snf1 kinase domain 
(light blue) (PDB code 3DAE) and of SnRK2.6 (green) with the kinase 
domain of Snf1 in the inactive, open conformation (brown) (PDB code 2FH9). 
The SnRK2 boxes were omitted from the overlay for clarity. PNAS. 

108:21259-21264 (Ng et al., 2011). 
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4.7 Human homologues of the core ABA signalling proteins 

 

The START domain of the PYL ABA receptors, PP2C catalytic domain and 

SnRK kinase domain are highly conserved through evolution and homologues 

exists in many species including humans. This raises an interesting speculation 

that the mammalian form of these proteins may interact in a mechanism 

similar to the ABA signal transduction pathway in Arabidopsis. In this section, 

we discuss the potential relevance of the structural studies of the plant PYL, 

PP2C and SnRK to mammalian signalling pathway through the mammalian 

homologues of these components. 

 

4.7.1 START domain proteins 

 

Though absent in yeast and Archeae, the START domain is conserved through 

evolution and are found in bacteria, plant, flies, nematodes and mammals 

(Schrick et al., 2004). In humans, there are 15 START domain-containing 

proteins, designated STARD1 STARD15 (Soccio and Breslow, 2003). These 

proteins are generally known to be involved in lipid metabolism, lipid transfer 

and cell signalling. The 15 members can be grouped into six subfamilies based 

on their sequences and ligand similarities (Alpy and Tomasetto, 2005) (Figure 

46). In general terms, the subfamilies can be described as the cholesterol- and 

oxysterol-binding proteins (STARD1/D3 and STARD4/D5/D6 subfamilies), 

the phospholipid- and sphingolipid- binding proteins (STARD2/D7/D10/D11 

subfamily), the Rho-GAP domain-containing proteins (STARD8/D12/D13 

subfamily), the thioesterase domain-containing proteins (STARD14/D15 



DISCUSSION 
 

subfamily) and the STARD9 family consisting of a single member of 

unknown function. Within the cholesterol- and oxysterol-binding subfamily, 

the biological function of STARD1 has been well established as a regulator of 

cholesterol transport across mitochondrial membranes in steroidogenesis 

(Lavigne et al., 2010; Rone et al., 2009). The unique roles of the other 

members in this subfamily have not been clearly defined. The 

phospholipid/sphingolipid-binding proteins subfamily appear to have diverse 

functions from modulating liver insulin sensitivity to intermembrane ceramide 

transfer and tumour proliferation (Clark, 2012). Although the ligands have 

been identified for this subfamily, the significance of ligand binding to their 

functions remains unclear. Ligands for the remaining subfamilies have yet to 

be identified.  

 

To evaluate the degree of homology between Arabidopsis PYL proteins and 

human STARD proteins, the sequences of the START domains between these 

two groups of proteins were compared. The START domains of PYR1, PYL1 

and PYL2 shared between 3 12 % amino acid sequence identity with that of 

the 15 human STARD proteins (Table 7). Multiple sequence alignment reveals 

that the gate and latch sequences that are functionally important for ABA 

signal transduction in the PYLs are not conserved in the human STARD 

domains (Figure 47). 
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Figure 46. Phylogenetic tree and domain organizations of the 15 human 
START domain proteins.  

Figure taken from Journal of cell science. 118:2791-2801 (Alpy and 
Tomasetto, 2005). Abbreviations: Mt, mitochondrial targeting motif; 
MENTAL, MLN64 N-terminal domain; PH, pleckstrin homology domain; 
FFAT, two phenylalanines in an acidic tract motif responsible for ER 
targeting; RHOGAP, Rho-GTPase-activating-protein domain; SAM, sterile 
alpha motif; THIO, acyl-CoA thioesterase domain. 

Table 7. Percent amino sequence identity between START domains of 
Arabidopsis PYLs and human STARD proteins. 

 PYR1 PYL1 PYL2 
PYR1 100 77 53 
PYL1 77 100 50 
PYL2 53 50 100 

STARD1 8 8 6 
STARD2 8 8 5 
STARD3 12 11 10 
STARD4 10 10 9 
STARD5 7 8 7 
STARD6 6 6 4 
STARD7 6 7 7 
STARD8 7 9 8 
STARD9 9 8 12 

STARD10 3 3 6 
STARD11 6 8 5 
STARD12 6 8 7 
STARD13 7 11 7 
STARD14 5 5 7 
STARD15 8 5 8 

Analysis was performed using STRAP software (Gille and Frommel, 2001).
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PYL2      1      MSSSP.................AVKGLTDEEQKTLEPVIKTYHQFEPD.PTTCTSLITQRIH.APASVVWPLIR   
PYL1      1 MANSESSSSPVNEEENSQRISTLHHQTMPSDLTQDEFTQLSQSIAEFHTYQLG.NGRCSSLLAQRIH.APPETVWSVVR   
PYR1      1                            MPSELTPEERSELKNSIAEFHTYQLD.PGSCSSLHAQRIH.APPELVWSIVR   
STARD1    1       SDQELAYLQQGEEAMQKALGILSNQEGWKKESQQDNGDKVMSKVVP..DVGKVFRLEVVVD.QPMERLYEELV   
STARD2    1           SFSEEQFWEACAELQQPALAGADWQLLVETSGISIYRLLDKK..TGLYEYKVFGVLEDCSPTLLADIYM   
STARD3    1          EREYIRQGKEATAVVDQILAQEENWKFEKNNEYGDTVYTIEVP..FHGKTFILKTFLP.CPAELVYQEVI   
STARD4    1                              EEDKWRVAKKTKDVTVWRKPSEE..FNGYLYKAQGVID.DLVYSIIDHIR   
STARD5    1        MDPALAAQMSEAVAEKMLQYRRDTAGWKICREGNGVSVSWRPSVE..FPGNLYRGEGIVY.GTLEEVWDCVK   
STARD6    1                                                  SRK..FHGNLYRVEGIIP.ESPAKLSDFLY   
STARD7    1                              KEQRWEMVMDKKHFKLWRRPITG..THLYQYRVFGTYTDVTPRQFFNVQL   
STARD8    1               YMEENIQDLLRDAAERFKGWMSVPGPQHTELACRKAPDG.HPLRLWKASTEVA.APPAVVLHRVL   
STARD9    1                       HNLFSCQATAGWNYQGEEQAVQLYYKVFSP...TRHGFLGAGVVS.QPLSRVWAAVS   
STARD10   1                 DDQDFRSFRSECEAEVGWNLTYSRAGVSVWVQAVEMD.RTLHKIKCRMECCDVPAETLYDVLH   
STARD11   1           SQVEEMVQNHMTYSLQDVGGDANWQLVVEEGEMKVYRREVEENGIVLDPLKATHAVKGVTGHEVCNYFW   
STARD12   1       DDSADYQHFLQDCVDGLFKEVKEKFKGWVSYSTSEQAELSYKKVSEG.PPLRLWRSVIEVP.AVPEEILKRLL   
STARD13   1      EESGATFHTYLNHLIQGLQKEAKEKFKGWVTCSSTDNTDLAFKKVGDG.NPLKLWKASVEVE.APPSVVLNRVL   
STARD14   1        PWDPSNQVYLSYNNVSSLKMLVAKDNWVLSSEISQVRLYTLEDDK..FLS..FHMEMVVH.VDAAQAFLLLS   
STARD15   1        HWDISKQASLSDSNVEALKKLAAKRGWEVTSTVEKIKIYTLEEHD..VLS..VWVEKHVG.SPAHLAYRLLS   
 
                                                 Gate                          Latch 
                                                 *****                          *** 
PYL2     56 RFDN..PERYKHFVKRCRLISG.DGDVG.SVREVTVISGLPASTSTERLEFVD.DDHRVLSFRVVGGEHRLKNYKSVTS   
PYL1     78 RFDR..PQIYKHFIKSCNVSEDFEMRVG.CTRDVNVISGLPANTSRERLDLLD.DDRRVTGFSITGGEHRLRNYKSVTT   
PYR1     51 RFDK..PQTYKHFIKSCSVEQNFEMRVG.CTRDVIVISGLPANTSTERLDILD.DERRVTGFSIIGGEHRLTNYKSVTT   
STARD1   71 ERME.AMGEWNPNVKEIKVLQKIGKDTF.ITHELAAEAAGNLVGPRDFVSVRC.AKR..RGSTCVLAG.MATDFGNMPE   
STARD2   68 DSDY..RKQWDQYVKELYEQECNGETVV.YWEVKYPFPMS....NRDYVYLRQRRDLDMEGRKIHVILARSTSMPQLGE   
STARD3   68 LQPE.RMVLWNKTVTACQILQRVEDNTL.ISYDVSAGAAGGVVSPRDFVNVRR.IER..RRDRYLSSG.IATSHSAKPP   
STARD4   48 PGP..CRLDWDSLMTSLDILENFEENCC.VMRYTTAGQLWNIISPREFVDFSY.TVG..YKEGLLSCGISLDWD...EK   
STARD5   70 PAVGGLRVKWDENVTGFEIIQSITDTLC.VSRTSTPSAAMKLISPRDFVDLVL.VKR..YEDGTISSNATHVEHPLCPP   
STARD6   28 QTG..DRITWDKSLQVYNMVHRIDSDTF.ICHTITQSFAVGSISPRDFIDLVY.IKR..YEGNMNIISSKSVDFPEYPP   
STARD7   49 DTEY..RKKWDALVIKLEVIERDVVSGSEVLHWVTHFPYP..MYSRDYVYVRR..YSVDQENNMMVLVSRAVEHPSVPE   
STARD8   64 RERA....LWDEDLLRAQVLEALMPGVE.LYHYVTDSMAP..HPCRDFVVLRM.WRSDLPRGGCLLVSQSLDPEQPVPE   
STARD9   54 DPTV..WPLYYKPIQTARLHQRVTNSIS.LVYLVCNTTLCALKQPRDFCCVCV...EAKEGHLSVMAAQSVYDTSMPRP   
STARD10  63 DIEY..RKKWDSNVIETFDIARLTVNAD.VGYYSWRCPKP..LKNRDVITLRS.WLP...MGADYIIMNYSVKHPKYPP   
STARD11  70 NVDV..RNDWETTIENFHVVETLADNAIIIYQTHKRVWPASQRDVLYLSVIRKIPALTENDPETWIVCNFSVDHDSAPL   
STARD12  72 KEQH....LWDVDLLDSKVIEILDSQTE.IYQYVQNSMAP..HPARDYVVLRT.WRTNLPKGACALLLTSVDHDR.APV   
STARD13  73 RERH....LWDEDFVQWKVVETLDRQTE.IYQYVLNSMAP..HPSRDFVVLRT.WKTDLPKGMCTLVSLSVEHEEAQLL   
STARD14  68 DLRQ..RPEWDKHYRSVELVQQVDEDDA.IYHVTSP.ALGGHTKPQDFVILAS.RRKPCDNGDPYVIALRSVTLPTHRE   
STARD15  68 DFTK..RPLWDPHFVSCEVIDWVSEDDQ.LYHITCP.ILN.DDKPKDLVVLVS.RRKPLKDGNTYTVAVKSVILPSVPP   
 
 
PYL2    130 VNEFLNQD.SGKVYTVVLESYTVDIPEG........NTE.EDTKMFVDTVVKLNLQKLGVAATSAPMHDDE          
PYL1    153 VHRFEKEEEEERIWTVVLESYVVDVPEG........NSE.EDTRLFADTVIRLNLQKLASITEAMNRNNNNNNSSQVR   
PYR1    126 VHRFEK...ENRIWTVVLESYVVDMPEG........NSE.DDTRMFADTVVKLNLQKLATVAEAMARNSGDGSGSQVT   
STARD1  144 QKGVIRAEHGPTCMVLHPLAGSPSKTKL........TWL.LSIDLKGWLPKSIINQVLSQTQVDFANHLRKRLESH     
STARD2  140 RSGVIRVKQYKQSLAIESDGKKGSKVFM........YYF.DNPG..GQIPSWLINWAAKNGVPNFLKDMARACQNY     
STARD3  141 THKYVRGENGPGGFIVLKSASNPRVCTF........VWI.LNTDLKGRLPRYLIHQSLAATMFEFAFHLRQRISEL     
STARD4  118 RPEFVRGYNHPCGWFCVPLKDNPNQSLL........TGY.IQTDLRGMIPQSAVDTAMASTLTNFYGDLRKAL        
STARD5  145 KPGFVRGFNHPCGCFCEPLPGEPTKTNL........VTF.FHTDLSGYLPQNVVDSFFPRSMTRFYANLQKAVKQF     
STARD6  101 SSNYIRGYNHPCGFVCSPMEENPAYSKL........VMF.VQTEMRGKLSPSIIEKTMPSNLVNFILNAKDGIKAH     
STARD7  122 SPEFVRVRSYESQMVIRPHKSFDENGFD........YLLTYSDNPQTVFPRYCVSWMVSSGMPDFLEKLHMATLK      
STARD8  135 SG..VRALMLTSQYLMEPCG..LGRSRL........THI.CRADLRGRSPD.WYNKVFGHLCAMEVAKIRDSFPTL     
STARD9  127 SRKMVRGEILPSAWILQPITVEGKEVTR.......................VIYLAQVELGAPGFPPQLLSSFIKR     
STARD10 133 RKDLVRAVSIQTGYLIQSTG..PKSCVI........TYL.AQVDPKGSLPKWVVNKSSQFLAPKAMKKMYKACLKY     
STARD11 147 NNRCVRAKINVAMICQTLVSPPEGNQEISRDNILCKITYVANVNPGGWAPASVLRAVAKREYPKFLKRFTSYVQ       
STARD12 142 VG..VRVNVLLSRYLIEPCG..PGKSKL........TYM.CRVDLRGHMPE.WYTKSFGHLCAAEVVKIRDSFSN      
STARD13 144 GG..VRAVVMDSQYLIEPCG..SGKSRL........THI.CRIDLKGHSPE.WYSKGFGHLCAAEVARIRNSFQPL     
STARD14 142 TPEYRRGETLCSGFCLWREGDQLTKVSY........YNQ.ATPG                                     
STARD15 141 SPQYIRSEIICAGFLIHAIDSNSCIVSY........FNH.MSASILPYFAGNLGG..WSKSIEETAASCIQFLEN   

 

Figure 47. Multiple sequence alignment of the START domains of 
Arabidopsis PYL and human STARD proteins.  

Sequence alignment was performed by STRAP software (Gille and Frommel, 
2001). The gate and latch regions of the Arabidopsis PYLs are indicated on 
top of the asterisks. Conserved amino acids are coloured according to 
chemical property. 
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Crystal structures have been reported for the START domains of the human 

STARD1, STARD2, STARD5, STARD11, STARD13 and STARD14, 

representing 5 of the 6 human STARD subfamilies (Kudo et al., 2010; Kudo et 

al., 2008; Roderick et al., 2002; Thorsell et al., 2011). We examined the 

structures of these six human STARD domains and compared them to the 

Arabidopsis PYL2 structure. The human STARD structures exhibit the helix-

grip fold as expected, with their central -sheets and surrounding -helices 

generally overlapping with that of the PYL2 structure (Figure 48). However, 

regions in the human STARD structures corresponding to the PYL2 gate and 

latch loops do not superimpose with that of the PYL2 protein, as suggested by 

the multiple sequence alignment. Pairwise structural comparison of each 

human STARD with Arabidopsis PYL2 using DaliLite (Holm and Park, 2000) 

gave structural alignment scores (Z-scores) of ~8 12 (Table 8), indicating a 

low but significant degree of homology between the two groups of proteins. 

 

Table 8. Statistics of structural comparison between PYL2 and human 
STARD proteins. 

 

Pairwise structural alignment was performed using DaliLite (Holm and Park, 
2000). 
 

Pairwise alignment of PYL2 structure (PDB code 3KAZ) with 

STARD1 STARD2 STARD5 STARD11 STARD13 STARD14 

STARD PDB code 3P0L 1LN1 2R55 2E3M 2PSO 3FO5 

Z score 11.4 8.7 11.8 11.1 12.6 10.6 

Aligned residues 148 142 151 160 143 147 

RMSD (Å) 3.1 3.6 3.3 4.1 3 3.3 

% Sequence 
Identity 

8 13 11 7 12 10 
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Figure 48. Continued on next page. 
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Figure 48. Structures of human STARD proteins and their overlay with 
Arabidopsis PYL2.  

Each human STARD structure was aligned to PYL2 using FATCAT flexible 
structure alignment (Ye and Godzik, 2003). The gate and latch loops of PYL2 
are indicated by red and blue arrows respectively. 
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4.7.2 Human protein phosphatases 

 

4.7.2.1  Protein phosphatases classification 

 

Reversible protein phosphorylation regulated by the interplay of protein 

kinases and phosphatases is one of the fundamental mechanisms for 

controlling cellular signal transduction. While protein kinases, of which more 

than 500 subtypes have been identified in the human genome (Kostich et al., 

2002; Manning et al., 2002), has been extensively characterized, less than 100 

subtypes of protein phosphatases have been identified so far (Lammers and 

Lavi, 2007), with limited knowledge of their regulatory mechanisms (Lu and 

Wang, 2008). Protein phosphatases can be divided into three broad families 

based on their substrate specificity and conservation of their catalytic domains 

(Barford et al., 1998). The protein tyrosine phosphatases (PTP) family consists 

of phosphatases that specifically dephosphorylate phosphotyrosine residues, as 

well as a subfamily known as the dual specificity phosphatases (DSP) that are 

also able to dephosphorylate phosphoserine and phosphothreonine residues. 

The two other protein phosphatase families, namely the phosphoprotein 

phosphatases (PPP) and the metal-dependent protein phosphatases (PPM), are 

only able to dephosphorylate phosphoserine and phosphothreonine residues. 

Members of the PPP family are further classified into three subfamilies, PP1, 

PP2A and PP2B, and are known to function as multimeric complexes. The 

PPM family is solely represented by the PP2C subfamily and its members are 

known to function as monomers and depend on bivalent cations (Mn2+ or 

Mg2+) for their catalytic activity. 
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4.7.2.2  Human PP2Cs 

 

PP2C orthologues are found in virtually all organisms ranging from bacteria, 

yeasts and plants to nematodes, insects and mammals (Schweighofer et al., 

2004). In humans, 16 different PP2C genes have been identified so far, 

encoding at least 22 PP2C isozymes by alternative splicing (Lammers and 

Lavi, 2007). These members are predominantly implicated in the regulation of 

cell growth and cellular stress signalling. The most well characterized member 

of the human PP2C is PP2C  (PPM1A). A few years after its first 

identification in 1992 (Mann et al., 1992), the crystal structure of PP2C  has 

been solved, revealing a novel PP2C catalytic domain fold that is composed of 

a central -sandwich surrounded by -helices (Das et al., 1996). As the other 

PP2C members, PP2C  has been implicated in the regulation of important 

cellular metabolic, cell cycle and stress signalling pathways (Lammers and 

Lavi, 2007; Lu and Wang, 2008). 

 

The catalytic domains of human PP2Cs share about 16 36 % sequence 

identity with that of the Arabidopsis PP2Cs ABI1, ABI2 and HAB1 (Table 9), 

indicating a high degree of conservation across species. A number of 

conserved amino acids are seen in a multiple sequence alignment of these 

PP2C sequences (Figure 49). Comparison of our ABI2 structure with the 

PP2C domains of three known human PP2C structures, PPM1A, PPM1B and 

PPM1K, suggested that Arabidopsis and human PP2Cs are highly 

homologous, as indicated by the statistics of structural alignment (Z-scores > 
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30, RMSD < 2 Å) (Table 10). The PP2C domains of the Arabidopsis ABI2 

and human PP2Cs exhibit the common PP2C-fold that are superimposable 

(Figure 50), although the conserved tryptophan residue in Arabidopsis PP2Cs 

that interacts with PYL ABA is not seen in the corresponding regions in the 

human PP2Cs (Figure 49 and Figure 50). 

 

While a number of potential human PP2C targets have been reported, which 

includes AMP-activated protein kinase (AMPK), mitogen-activated protein 

kinases (MAPKs), cyclin-dependent protein kinases (CDKs) and Bcl-2/Bcl-

xL-associated death promoter (BAD) (Lammers and Lavi, 2007), little is 

known about how the PP2Cs are regulated (Lu and Wang, 2008). Given the 

high degree of homology between human and plant PP2Cs, we speculated that 

human PP2Cs could be regulated by START domain proteins in a mechanism 

similar to the ABA signal transduction pathway. To test this, we obtained 

cDNA of the START domains of all 15 human STARD genes by DNA 

synthesis and screened them against the catalytic domains of 5 selected human 

PP2Cs (PP2C , PPM1F, PPM1E, PPM1L and PPM1G) in mammalian two-

hybrid assays for any interactions. In this preliminary test, no significant 

interaction signals were detected between any STARD/PP2C pair (data not 

shown). It is possible that such regulatory mechanism does not exist in 

mammalian cells, or that the activating ligands are absent in the experimental 

conditions tested. Thus, for a more exhaustive evaluation, every possible 

STARD/PP2C combination could be tested in future high throughput screens 

with ligand libraries, such as lipid libraries. 
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Table 9. Percent amino sequence identity between Arabidopsis and 
human PP2C domains.  

 ABI1 ABI2 HAB1 
ABI1 100 87 63 
ABI2 87 100 63 

Arabidopsis 

PP2Cs 
HAB1 63 63 100 

PPM1A 35 37 34 
PPM1B 34 34 34 
PPM1G 31 30 32 
PPM1D 28 28 28 
PPM1L 35 34 35 
PPM1J 24 23 22 
PPM1M 28 29 30 
PPM1K 34 34 33 
PPM1F 33 34 30 
PPM1E 33 32 31 
ILKAP 31 30 29 
PHLPP 29 28 25 
PPM1H 30 31 30 
PPTC7 18 18 17 
PDP1 24 23 25 

Human 

PP2Cs 

PDP2 26 26 23 
Analysis was performed using STRAP software (Gille and Frommel, 2001). 

 
 
 
Table 10. Statistics of structural comparison between Arabidopsis and 
human PP2C domains.  

 
Pairwise alignment of Arabidopsis ABI2 structure 

(PDB code 3UJK) with human PP2Cs 
PPM1A PPM1B PPM1K Human PP2C 

PDB code 1A6Q 2P8E 2IQ1 
Z score 34 33.5 34.9 

Aligned residues 260 252 247 
RMSD (Å) 1.8 1.7 1.5 

% Sequence 
Identity 

38 38 35 

Pairwise structural alignment was performed using DaliLite (Holm and Park, 
2000). 
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                       ** *                                          * 
ABI1    1    YGFTSICGRRPEMEDAVSTIPRFLQSSSGSMLDGR.....FDPQSAAHFFGVYDGHGGSQ.....................   
ABI2    1    YGVTSICGRRPEMEDSVSTIPRFLQVSSSSLLDGRV.TNGFNPHLSAHFFGVYDGHGGSQ.....................   
HAB1    1     GTVSIQGNRSEMEDAFAVSPHFLKLPIKMLMGDHEGMSPSLTHLTGHFFGVYDGHGGHK.....................   
PPM1A   1   RYGLSSMQGWRVEMEDAHTAVIGLPSGLESWS.................FFAVYDGHAGSQ.....................   
PPM1B   1   RYGLSSMQGWRVEMEDAHTAVVGIPHGLEDWS.................FFAVYDGHAGSR.....................   
PPM1G                                                                                            
PPM1D   1                                                  VAFFAVCDGHGGRE.....................   
PPM1L   1    VAVYSIQGRRDHMEDRFEVLTDLANKTHP..................SIFGIFDGHGGET.....................   
PPM1J   1     GYAEVINAGKSRHNEDQACCEVVYVEGRRSVTGVPREPSRGQGLCFYYWGLFDGHAGGG.....................   
PPM1M   1                 EEEWLTLCPEEFLTG...................HYWALFDGHGGPA.....................   
PPM1K   1    VGCASQIGKRKENEDRFDFAQLTDEVLY.....................FAVYDGHGGPA.....................   
PPM1F   1  WLVSIHAIRNTRRKMEDRHVSLPSFNQLFGLSDPVNR............AYFAVFDGHGGVD.....................   
PPM1E   1  YETSIHAIKNMRRKMEDKHVCIPDFNMLFNLEDQEEQ............AYFAVFDGHGGVD.....................   
ILKAP   1   KGYVAERKGEREEMQDAHVILNDITEECRPPSSLITR..........VSYFAVFDGHGGIR.....................   
PHLPP   1  WSHGYTEASGVKNKLCVAALSVNNFCDNRE...................ALYGVFDGDRNVE.....................   
PPM1H                                                                                            
PPTC7                                                                                            
PDP1    1 ILGFDSNQLPANAPIEDRRSAATCLQTRGMLLGVFDGHAGCACSQAVSERLFYYIAVSLLPHETLLEIENAVESGRALLPILQW   
PDP2    1    FESNQLAANSPVEDRRGVASCLQTNGLMFGIFDGHGGHACAQAVSERLFYYVAVSLMSHQTLEHMEGAMESMKPLLPILHW   
 
 
 
ABI1   56 ...VANYCRERMHLALAEEIAKEKPMLCD..................................GDTWLEKWKKALFNSFLRVDS   
ABI2   60 ...VANYCRERMHLALTEEIVKEKPEFCD..................................GDTWQEKWKKALFNSFMRVDS   
HAB1   60 ...VADYCRDRLHFALAEEIERIKDELCK...............................RNTGEGRQVQWDKVFTSCFLTVDG   
PPM1A  45 ....VAKYCCEHLLDHITNNQDFK....................................GSAGAPSVENVKNGIRTGFLEIDE   
PPM1B  45 ....VANYCSTHLLEHITTNEDFRAAGKS...............................GSALELSVENVKNGIRTGFLKIDE   
PPM1G                                                                                            
PPM1D  15 ...AAQFAREHLWGFIKKQKGFTS.........................................SEPAKVCAAIRKGFLACHL   
PPM1L  43 ...AAEYVKSRLPEALKQHLQDYEK.....................................DKENSVLSYQTILEQQILSIDR   
PPM1J  60 ...AAEMASRLLHRHIREQLKDLVEILQDPSPPPLCLPTTPGTPDSSDPSHLLGPQSCWSSQKEVSHESLVVGAVENAFQLMDE   
PPM1M  29 ...AAILAANTLHSCLRRQLEAVVEGLVATQPP...........MHLNGRCICPSDPQFVEEKGIRAEDLVIGALESAFQECDE   
PPM1K  40 ...AADFCHTHMEKCIMDLLPKEK.............................................NLETLLTLAFLEIDK   
PPM1F  51 ...AARYAAVHVHTNAARQP.............................................ELPTDPEGALREAFRRTDQ   
PPM1E  51 ...AAIYASIHLHVNLVRQE.............................................MFPHDPAEALCRAFRVTDE   
ILKAP  52 ...ASKFAAQNLHQNLIRKFPKGDV.......................................ISVEKTVKRCLLDTFKHTDE   
PHLPP  44 ...VPYLLQCTMSDILAEELQKTK.............................................NEEEYMVNTFIVMQR   
PPM1H   1                                                          RFFTEKKIPHECLVIGALESAFKEMDL   
PPTC7   1                                                                     SNPIGILTTSYCELLQ   
PDP1   85 HKHPNDYFSKEASKLYFNSLRTYWQELID...............................LNTGESTDIDVKEALINAFKRLDN   
PDP2   82 LKHPGDSIYKDVTSVHLDHLRVYWQELLD...............................LHMEMG..LSIEEALMYSFQRLDS   
 
 
                                 * 
ABI1  103 EIE..............SVA..PETVGSTSVVAVVFP.SHIFVANCGDSRAVLCRGKT.......ALPLSVDHKPDREDE....   
ABI2  107 EIE..............TVAHAPETVGSTSVVAVVFP.THIFVANCGDSRAVLCRGKT.......PLALSVDHKPDRDDE....   
HAB1  110 EIEGKIGRAVVGSSDKVLEAVASETVGSTAVVALVCS.SHIVVSNCGDSRAVLFRGKE.......AMPLSVDHKPDREDE....   
PPM1A  89 HMRVMSE...........KKHGADRSGSTAVGVLISP.QHTYFINCGDSRGLLCRNRK.......VHFFTQDHKPSNPLE....   
PPM1B  94 YMRNFSD...........LRNGMDRSGSTAVGVMISP.KHIYFINCGDSRAVLYRNGQ.......VCFSTQDHKPCNPRE....   
PPM1G   1     MEG...........KEEPGSDSGTTAVVALIRG.KQLIVANAGDSRCVVSEAGK.......ALDMSYDHKPEDEVE....   
PPM1D  55 AMWKKLAEWP......KTMTGLPSTSGTTASVVIIRG.MKMYVAHVGDSGVVLGIQDDPKDDFVRAVEVTQDHKPELPKE....   
PPM1L  87 EMLEKLT.........VSYD....EAGTTCLIALLSD.KDLTVANVGDSRGVLCDKDGN......AIPLSHDHKPYQLKE....   
PPM1J 141 QMARERR..............GHQVEGGCCALVVIYLLGKVYVANAGDSRAIIVRNGE.......IIPMSREFTPETERQRLQL   
PPM1M  99 VIGRELE..............ASGQMGGCTALVAVSLQGKLYMANAGDSRAILVRRDE.......IRPLSFEFTPETERQRIQQ   
PPM1K  76 AFSSHAR.........LSADATLLTSGTTATVALLRDGIELVVASVGDSRAILCRK.GK......PMKLTIDHTPERKDE....   
PPM1F  87 MFLRKAK...........RER..LQSGTTGVCALIAG.ATLHVAWLGDSQVILVQQGQ.......VVKLMEPHRPERQDE....   
PPM1E  87 RFVQKAA...........RES..LRCGTTGVVTFIRG.NMLHVAWVGDSQVMLVRKGQ.......AVELMKPHKPDREDE....   
ILKAP  94 EFLKQAS...........SQKPAWKDGSTATCVLAVD.NILYIANLGDSRAILCRYNEESQ.KHAALSLSKEHNPTQYEE....   
PHLPP  80 KLGTAGQK..........LGGAAVLCHIKHDPVDPGGSFTLTSANVGKCQTVLCRNGK.......PLPLSRSYIMSCEEE....   
PPM1H  28 QIERERS..............SYNISGGCTALIVICLLGKLYVANAGDSRAIIIRNGE.......IIPMSSEFTPETERQRLQY   
PPTC7  17 NKVPLLG..................SSTACIVVLDRTSHRLHTANLGDSGFLVVRGGE............VVHRSDEQQH....   
PDP1  138 DISLEAQVGDPNSFLN.YLVLRVAFSGATACVAHVDG.VDLHVANTGDSRAMLGVQEEDGS..WSAVTLSNDHNAQNERE....   
PDP2  133 DISLEIQAPLEDEVTR.NLSLQVAFSGATACMAHVDG.IHLHVANAGDCRAILGVQEDNGM..WSCLPLTRDHNAWNQAE....   

 
 

Figure 49. Continued on next page.
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                                                                   ****  * *** 
ABI1  159 ..................AARIEAAG............................GKVIQWNGARVFGVLAMSRSIGDR......   
ABI2  165 ..................AARIEAAG............................GKVIRWNGARVFGVLAMSRSIGDR......   
HAB1  182 ..................YARIENAG............................GKVIQWQGARVFGVLAMSRSIGDR......   
PPM1A 150 ..................KERIQNAG..............................GSVMIQ.RVNGSLAVSRALGDFDYKCVH   
PPM1B 155 ..................KERIQNAG..............................GSVMIQ.RVNGSLAVSRALGDYDYKCVD   
PPM1G  58 ..................LARIKNAG..............................GKVTMDGRVNGGLNLSRAIGDHFYKRNK   
PPM1D 128 ..................RERIEGLGG......SVMNKSGVNRVVWKRPRLTHNGPVRRSTVIDQIPFLAVARALGDLWSYDFF   
PPM1L 147 ..................RKRIKRAG..........................GFISFN..GSWRVQGILAMSRSLGDYP.....   
PPM1J 204 LGFLKPELLGSEFTHLEFPRRVLPKELGQRMLYRDQNMTGWAYKKIELEDLRFPLVCGEGKKARVMATIGVTRGLGDHSLKVCS   
PPM1M 162 LAFVYPELLAGEFTRLEFPRRLKGDDLGQKVLFRDHHMSGWSYKRVEKSDLKYPLIHGQGRQARLLGTLAVSRGLGDHQLRVLD   
PPM1K 140 ..................KERIKKCG..........................GFVAWNSLGQPHVNGRLAMTRSIGDLD.....   
PPM1F 146 ..................KARIEALG............................GFVSHMDCWRVNGTLAVSRAIGDVF.....   
PPM1E 146 ..................KQRIEALG............................GCVVWFGAWRVNGSLSVSRAIGDAE.....   
ILKAP 161 ..................RMRIQKAG............................GNVRDG...RVLGVLEVSRSIGDGQ.....   
PHLPP 143 ..................LKRIKQHK..............................AIITEDGKVNGVTESTRILGYT......   
PPM1H  91 LAFMQPHLLGNEFTHLEFPRRVQRKELGKKMLYRDFNMTGWAYKTIEDEDLKFPLIYGEGKKARVMATIGVTRGLGDHDLKVHD   
PPTC7  67 .......................................................YFNTPFQLSIAPPEAEGVVLSDSP.....   
PDP1  214 ..................LERLKLEHP.........................KSEAKSVVKQDRLLGLLMPFRAFGDVKFKWSI   
PDP2  209 ..................LSRLKREHP.........................ESEDRTIIMEDRLLGVLIPCRAFGDVQLKWSK   
 
 
                                     * 
ABI1  191 ...........................YLKPSIIPDPEVTAVKR....VKEDDCLILASDGVWDVMTDEEACEMARKRILLWHK   
ABI2  197 ...........................YLKPSVIPDPEVTSVRR....VKEDDCLILASDGLWDVMTNEEVCDLARKRILLWHK   
HAB1  214 ...........................YLKPYVIPEPEVTFMPR....SREDECLILASDGLWDVMNNQEVCEIARRRILMWHK   
PPM1A 185 GK........................GPTEQLVSPEPEVHDIERS...EEDDQFIILACDGIWDVMGNEELCDFVRSRLEVTDD   
PPM1B 190 GK........................GPTEQLVSPEPEVYEILRA...EEDE.FIILACDGIWDVMSNEELCEYVKSRLEVSDD   
PPM1G  94 NL........................PPEEQMISALPDIKVLTLT....DDHEFMVIACDGIWNVMSSQEVVDFIQSKISQRDE   
PPM1D 188 SG...........................EFVVSPEPDTSVHTLD...PQKHKYIILGSDGLWNMIPPQDAISMCQDQEEKKYL   
PPM1L 180 ..........................LKNLNVVIPDPDILTFDLD...KLQPEFMILASDGLWDAFSNEEAVRFIKERLDEPHF   
PPM1J 288 ST........................LPIKPFLSCFPEVRVYDLTQYEHCPDDVLVLGTDGLWDVTTDCEVAATVDRVLSAYEP   
PPM1M 246 TN........................IQLKPFLLSVPQVTVLDVDQLELQEDDVVVMATDGLWDVLSNEQVAWLVRSFLPGNQ.   
PPM1K 175 ..........................LKTS.GVIAEPETKRIKLH...HADDSFLVLTTDGINFMVNSQEICDFVNQ.CHDPNE   
PPM1F 179 ...........................QKPY.VSGEADAASRAL....TGSEDYLLLACDGFFDVVPHQEVVGLVQSHLTRQ..   
PPM1E 179 ...........................HKPY.ICGDADSASTVL....DGTEDYLILACDGFYDTVNPDEAVKVVSDHLKEN..   
ILKAP 191 ...........................YKRCGVTSVPDIRRCQL....TPNDRFILLACDGLFKVFTPEEAVNFILSCLEDEKI   
PHLPP 173 ...........................FLHPSVVPRPHVQSVLLT....PQDEFFILGSKGLWDSLSVEEAVEAVRNVPDALAA   
PPM1H 175 SN........................IYIKPFLSSAPEVRIYDLSKYDHGSDDVLILATDGLWDVLSNEEVAEAITQFLPNCDP   
PPTC7  91 ................................DAADSTSFDVQLG.......DIILTATDGLFDNMPDYMILQELKKLKNSNYE   
PDP1  255 DLQKRVIESGPDQLNDNEYTKFIPPNYHTPPYLTAEPEVTYHRL....RPQDKFLVLATDGLWETMHRQDVVRIVGEYLTGM     
PDP2  250 ELQRSILERGFNTEALNIY.QFTPPHYYTPPYLTAEPEVTYHRL....RPQDKFLVLASDGLWDMLSNEDVVRLVVGHLAEADW   
 
 
 
ABI1  244 KN.......AVAGDASLLADERRKEGKDPAAMSAAEYLSKLAIQRGSK.......................DNISVVVVD    
ABI2  250 KN.......AMAGEA.LLPAEKRGEGKDPAAMSAAEYLSKMALQKGSK.......................DNISVVVVDL   
HAB1  267 KN.......GAP......PLAERGKGIDPACQAAADYLSMLALQKGSK.......................DNISIIVIDL   
PPM1A 242 ..............................LEKVCNEVVDTCLYKGSR.......................DNMSVILICF   
PPM1B 246 ..............................LENVCNWVVDTCLHKGSR.......................DNMSIVLVCF   
PPM1G 150 NG........................ELRLLSSIVEELLDQCLAPDTSGDGTG.................CDNMTCIIICF   
PPM1D 242 MG..........................EHGQSCAKMLVNRALGRWRQR..................MLRADNTSAIVICI   
PPM1L 235 GA.................................KSIVLQSFYRGCP.......................DNITVMVVKF   
PPM1J 348 NDHSR.........................YTALAQALVLGARGTPRDRGWRLPNNKL..........GSGDDISVFVIPL   
PPM1M 305 EDPHR.........................FSKLAQMLIHSTQGKEDS....LTEEGQ..........VSYDDVSVFVIPL   
PPM1K 228 AA.................................HAVTEQAIQYGTE.......................DNSTAVVVPF   
PPM1F 229 ...........................QGSGLRVAEELVAAARERGSH.......................DNITVMVVFL   
PPM1E 229 ...........................NGDSSMVAHKLVASARDAGSS.......................DNITVIVVFL   
ILKAP 244 QT..................REGKSAADARYEAACNRLANKAVQRGSA.......................DNVTVMVVRI   
PHLPP 226 AK..................................KLCTLAQSYGCH.......................DSISAVVVQL   
PPM1H 235 DDPHR.........................YTLAAQDLVMRARGVLKDRGWRISNDRL..........GSGDDISVYVIPL   
PPTC7 136 S.............................IQQTARSIAEQAHELAYDPN                                  
PDP1                                                                                            
PDP2  329 HKTDLAQRPANLGLMQSLLLQRKASGLHEADQNAATRLIRHAIGNNEYGEMEAERLAAMLTLPEDLARMYRDDITVTVVYF 

Figure 49. Multiple sequence alignment of the PP2C domains of 
Arabidopsis and human PP2C proteins.  

Sequence alignment was performed by STRAP software (Gille and Frommel, 
2001). The Arabidopsis PP2C residues involved in PYL interaction, based on 
PYL2-ABA-HAB1 structural analysis, are indicated by asterisks. The 
‘tryptophan lock’ residue conserved in Arabidopsis ABA signalling PP2Cs is 
indicated by a red asterisk. Conserved amino acids are coloured according to 
chemical property. 
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Figure 50. Structural similarity between Arabidopsis ABI2 and human 
PP2Cs.  

Structures of Arabidopsis ABI2 and human PP2Cs are shown on the left 
panels. Overlay of each human PP2C with ABI2 is shown on the right panels. 
On the upper right panel, all 4 PP2C structures are superimposed, with an 
arrow indicating the tryptophan side chain of the ABI2 that is critical for PYL 
interaction. 
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4.7.3 AMPK- The mammalian homologue of SnRK 

 

AMPK is a mammalian protein kinase that derived its name from its allosteric 

activation by AMP. Because of its important role in maintaining energy 

metabolism, AMPK has been described as a ‘fuel-gauge’ and ‘guardian of 

energy status’ (Hardie, 2003). The kinase is sensitive to an increase in cellular 

AMP:ATP ratio that is activated by metabolic stresses. Once activated, AMPK 

switches on ATP-producing catabolic pathways and inhibits ATP-consuming 

anabolic pathways (Hardie, 2007). AMPK exists as a heterotrimeric enzyme 

complex that consists of a catalytic  subunit and regulatory  and  subunits. 

Each subunit has multiple isoforms encoded by distinct genes ( 1, 2, 1, 2, 

1, 2, 3), enabling the formation of at least 12  heterotrimer 

combinations (Fogarty and Hardie, 2010).  

 

Orthologues of the mammalian AMPK is found in virtually all eukaryotes, 

including plants, fungi, nematodes and insects (Hardie, 2008). The orthologue 

of AMPK in budding yeast (Saccharomyces cerevisiae) is known as Snf1 

(sucrose nonfermenting) (Carling et al., 1994), a protein kinase best known for 

its role in carbon catabolite repression (Celenza and Carlson, 1986). In plants, 

there are 3 groups of Snf1-related protein kinases (SnRK1, SnRK2 and 

SnRK3). The SnRK1 gene was in fact first identified based on its ability to 

complement the snf1 mutation in yeast (Alderson et al., 1991). Of the 3 groups 

of plant SnRKs, SnRK1 is most closely related with Snf1 and AMPK , 

sharing 47 % amino acid sequence identity with the yeast and mammalian 

orthologues (Halford and Hey, 2009). The SnRK2 and SnRK3 groups have 
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diverged further in evolution and appear to be unique to plants. Even so, some 

homology still remains as they share 42 45 % amino acid sequence identity 

with the SnRK1, Snf1 and AMPK in the catalytic region (Halford and Hey, 

2009). 

 

In the mammalian AMPK, phosphorylation of a threonine residue (Thr172) in 

the  subunit activation loop is required for its activation (Stein et al., 2000), 

which is a common feature for many protein kinases. Calcium/calmodulin-

dependent protein kinase kinase-  (CaMKK ) and LKB1 are the best known 

kinases upstream of AMPK (Hawley et al., 2005; Woods et al., 2003). Protein 

phosphatases PP1, PP2A and PP2C have been shown to dephosphorylate 

AMPK Thr172 in vitro (Davies et al., 1994; Davies et al., 1995). However, the 

physiological relevance of these phosphatases in AMPK regulation remains to 

be determined. Other key issues that remain include the roles of the glycogen 

binding domain (GBD) and -subunit myristoylation in AMPK regulation. 

Obtaining the crystal structure of full-length heterotrimeric AMPK will 

provide insights into elucidating the mechanisms of AMPK regulation. The 

challenge, however, is that the full-length complexes are resistant to 

crystallization (Xiao et al., 2007). There has been a growing interest in AMPK 

as a potential target for treatment of metabolic disorders and cancers (Fogarty 

and Hardie, 2010). A more complete understanding of the molecular 

mechanisms of AMPK regulation will be useful for development of novel 

therapeutics targeting AMPK. 

 

In our studies of the mechanisms of SnRK2 autoactivation and regulation by 
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PP2Cs, we have successfully used protein engineering techniques to obtain 

highly diffracting crystals of SnRK2s (Ng et al., 2011) and SnRK2-PP2C 

complex (Soon et al., 2012), which initially failed to crystallize. Such 

techniques may be useful to facilitate crystallization of the full-length AMPK. 

Our findings of SnRK2-PP2C regulation by mutual packing of their catalytic 

sites (Soon et al., 2012) also leads to the speculation that such a mechanism 

may exist between AMPK-PP2C in mammals, that remains to be elucidated. 

Thus, the identification of signalling mechanisms in plants not only has 

ramifications in agricultural improvement but can also serve as a framework 

for novel discovery of analogous mechanisms in other species including 

humans. 

 

4.8 Conclusions and perspectives 

 

We have identified a gate-latch-lock mechanism of ABA binding and signal 

transduction by the PYL family of ABA receptors. Using our structural 

knowledge, we have also demonstrated how these receptors can be selectively 

activated or antagonized. Translation into agricultural applications will require 

further validation of the Arabidopsis model of the core ABA signalling 

pathway in commercial crop species. Downstream of PP2C regulation by the 

PYLs, we have further probed the structural mechanisms of SnRK2s 

activation and their inhibition by PP2Cs. Discovery of analogous mechanisms 

of regulation involving mammalian homologues of the PYL, PP2C and SnRKs 

will be an exciting avenue for future research. 
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