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Persistency and Stein’s Identity:

Applications in Stochastic Discrete Optimization Problems

Abstract. This thesis is motivated by the connection between stochastic discrete

optimization and classical probability theory. In a general stochastic discrete opti-

mization problem, Bertsimas et al. (2006) defined the notion of persistency, which is a

generalization of many well-known concepts in different fields, such as criticality index

in a project management problem and choice probability in a discrete choice prob-

lem. On the other hand, there is a classical covariance identity in probability theory,

namely Stein’s Identity, which describes the covariance between a function of a vector

of random variables and each individual random variable. If we view the stochastic

optimization as a function over the uncertain parameters in the problem, persistency

will appears as a critical component in the identity.

We exploit such connection to solve two classes of problems. The first is approxi-

mating the distribution of the optimal value of a mixed zero-one linear optimization

problem under objective uncertainty. A typical example is to approximate the dis-

tribution of the completion time of a project when its individual activity completion

times are stochastic. We propose a least squares approximation framework for the

problem. By linking the framework to Stein’s Identity, we show that the least squares

normal approximation of the random optimal value can be computed by solving the

corresponding persistency problem. We further extend our method to construct a

quadratic least squares estimator to improve the accuracy of the approximation, in

particular, to capture the skewness of the objective value. Computational studies show
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that the new approach provides much more accurate estimates compared to existing

methods, especially in predicting the variability of the project completion time.

The second problem is related to decision making under uncertainty. We propose

a new decision criterion for stochastic discrete optimization problem under objective

uncertainty, named quadratic regret. The proposed quadratic regret solution is se-

lected by minimizing the expected squared deviation of its performance from the best

alternative. We illustrate this decision criterion using the example of portfolio manage-

ment problem, where it is equivalent to tracking-error minimization. We develop a new

portfolio strategy that tracks the highest return from a set of benchmark portfolios.

By resorting to Stein’s Identity, we present a closed-form expression for the optimal

portfolio position and relate them to the persistency. The connection between persis-

tency and a common behavioural abnormality, probability matching, provides several

interesting insights to the investment behaviour, which partially justifies our modeling

framework. With the closed-form solution, we prove that our model has the flexibility

to generate the entire mean-variance efficient frontier if the benchmark portfolios are

two distinct mean-variance portfolios, a result similar to the Two-Fund Theorem. We

also show that the linear combination rule would be inferior to our portfolio if the

portfolio manager has a mean-variance utility with low risk aversion, which provides

further motivation to our approach. In comparison to the single-benchmark tracking-

error minimization approach, we show that the new model helps mitigate the agency

issues due to the use of single benchmark, and provide several insights on benchmark

selection for our multiple-benchmark model. We perform comprehensive numerical

experiments with various empirical data sets to demonstrate that our approach can

consistently provide higher net Sharpe ratio (after accounting for transaction cost),

higher net aggregate return, and lower turnover rate, compared to ten different bench-
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mark portfolios proposed in the literature, including the equally weighted portfolio.

Note that rather than solving the above two problems directly, we transform them

into the problem of estimating persistency values by connecting them to Stein’s I-

dentity. This approach allows us to conduct many in-dept analysis of the problems

as demonstrated above. Moreover, we can explore the existing results in persistency

estimation literature to help tackle the original problems. In the last part of this the-

sis, besides commenting on potential future research, we also discuss an approach to

refine the persistency estimation under normality assumption. Although most results

in the thesis are derived under the normality assumption on the uncertainty due to

the usage of Stein’s Identity, there are several extensions of Stein’s Identity to different

distributions such that our results can be carried over to other situations.

Thesis Advisor. Professor Teo Chung-Piaw, Department of Decision Sciences, NUS

Business School, National University of Singapore
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Chapter 1

Introduction

Consider the following general mixed zero-one linear programming (LP) problem:

Z (c̃) := max
x∈P

n∑
j=1

c̃jxj, (1.0.1)

where c̃ = (c̃1, . . . , c̃n)T is the random coefficient vector, and P is the domain of the

feasible solutions defined by

P := {x ∈ Rn : aTi x = bi, ∀i = 1, . . . ,m; xj ∈ {0, 1} , ∀j ∈ B ⊆ {1, . . . , n} ; x ≥ 0}.

Note that part of decision variables is bounded to be either 0 or 1, which is indexed

by the set B. We assume that P is nonempty and bounded so that E [Z (c̃)] is finite.

It is well-known that the general mixed zero-one LP problem is classified as NP-hard.

Nevertheless, it is one of the most useful tools to model the real world problems,

ranging from engineering systems to business applications, for example, telecommu-

nication networks, transportation systems, and production planning and scheduling,

etc. Unfortunately, most of the input parameters to the model would contain errors
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and/or noises either from estimation or prediction, and the most common approach

to describe such uncertainty is probability distribution. In this thesis, we focus on the

uncertainty inside the objective coefficient vector that follows a certain multivariate

distribution.

In the rest of this chapter, we first discuss the concept of persistency in the context

of our problem. Next, we review Stein’s Identity, and point out its connection to

persistency. Exploiting such connection between persistency and Stein’s Identity, we

solve two classes of problems in Chapter 2 and 3 by transforming them into persistency

problems1. In Chapter 4, besides some concluding remarks, we also discuss how to

solve the persistency problem better and consequently obtain better solution to the

original problems.

1.1 Persistency

Bertsimas et al. (2006) introduced the notion of the persistency of a binary decision

variable in Problem (1.0.1) as the probability that the variable is active (i.e., takes

value of 1) in an optimal solution to Problem (1.0.1). We generalize this concept to

include continuous variables as follows:

Definition 1.1. The persistency of the decision variable xj in Problem (1.0.1)) is

defined as E[xj (c̃)], where xj (c̃) denotes an optimal value of xj as a function of the

random vector c̃. If xj is a binary variable, then E[xj (c̃)] = P(xj (c̃) = 1).

Remark 1.2. When c̃ is continuous and spans the whole space of Rn, the support of c̃

over which Problem (1.0.1) has multiple optimal solutions has measure zero and x (c̃)

is unique almost surely2. In other situations, if there exist multiple optimal solutions
1The definitions of persistency and persistency problem are provided in the next section.
2Note that the feasible region of Problem (1.0.1) is a bounded polytope, so it has multiple optimal
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over a support of strictly positive measure, x (c̃) is defined to be an optimal solution

randomly selected from the set of optimal solutions at c̃.

The notion of persistency generalizes several popular concepts in different applica-

tion domains, e.g., “criticality index” in project networks and “choice probability” in

discrete choice models (cf. Bertsimas et al. (2006), Natarajan et al. (2009), Mishra

et al. (2012)). In the rest of the thesis, by persistency problem, we mainly mean

the problem of estimating the persistency values. Sometimes to avoid excessive ex-

position, we also include problem of estimating other stochastic parameters of the

problem Z (c̃) under the umbrella of persistency problem, which will be clear in the

respective contexts.

Note that there is a very similar but different concept in literature, which is com-

monly referred to as persistence. Brown et al. (1997) brought up the issue of persistence

and persistent modeling in optimization through a series of case studies. Although the

idea of persistence conveyed in their paper is very broad and different from the persis-

tency defined above, these two concepts are closely related through the issue of data

uncertainty and robust optimization. The authors pointed out that from the perspec-

tive of persistence, robust optimization seeks a baseline solution that will persist as

best as possible with a number of alternate forecast revisions. On the other hand,

persistency describes the degree of persistence of each individual decision variable in

an optimization problem with data uncertainty. Indeed, we can further generalize

Definition 1.1 to the persistency of a feasible solution, i.e., the probability that this

particular feasible solution is optimal. However, it is beyond the scope of this thesis,

solutions only when c̃ realized to be a normal vector of a surface of the polytope. Since the number
of facets is finite for a give polytope, the probability measure over all the normal vectors is zero. For
example, consider a polytope in R2, for any polytope, its normal vectors are just lines in R2. If c̃ is
continuous and spans the whole space of R2, the probability measure over all these lines is zero, since
the number of these lines is finite.
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and we will not elaborate further.

In our problem setting, persistency describes an important characteristic of a s-

tochastic optimization system, i.e., the impact of each individual random variable on

the final outcome of the optimization process. Knowing the persistency values not only

helps analyze the stochastic optimization systems, but also sheds some light on human

being’s decision making behaviour when interacting with such systems. As document-

ed in extensive literature of decision making under uncertainty, human beings exhibit

various predictably irrational decision patterns that deviate from those assumed by

the conventional expected utility theory, which is commonly regarded as rational be-

haviour. One of such behavioural abnormality is called probability matching, and it

is closely related to the concept of persistency we have described.

Probability matching refers to the suboptimal choice behaviour involving prob-

abilistic outcomes in repeated events. By suboptimality, we mean that the choice

decisions are consistently different from the strategy that maximizes the expected u-

tility. A representative experiment involves one subject who is asked to repeatedly

predict the outcome of two randomly flashing light bulbs. One of the light bulbs is red

and the other is green. In each round, only one of them will flash, and the subject is

asked to predict the colour of the flashing light bulb. The experiment is set up such

that in every round, the red light will flash with probability 70% and the green one

will flash with probability 30%. The subject is incentivized to maximize the number

of corrected predictions when the game is repeated for a large number of times. Under

such settings, it is obvious that the optimal strategy is to always predict the outcome

of the more probable event, in this case, the red light. However, the empirical evidence

suggests that people almost never choose the more probable outcome exclusively. More

specifically, people tend to match the relative frequencies of their predictions to the
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relative frequencies that the light bulbs flash. On average, people predict the red light

approximately 70% of the time. Probability matching has been observed in various

experiments under different settings. Although the exact behaviour of the subjects

depends on many parameters, e.g., the amount of incentives, the length of experi-

ments, etc., the pattern of probability matching appears to be quite robust. Similar

experiments were carried out on various animals, and many interesting observations

have been collected since 1950s. Typically, a rat or a monkey maximizes, i.e., they

tend to choose the more frequently rewarded stimulus on almost all trials (cf. Hickson

(1961), Wilson et al. (1964)). In the experiments with fish under the conditions in

which the rat maximizes, by contrast, random probability matching appears to be the

dominant behaviour (cf. Bullock & Bitterman (1961). The results with intermediate

forms, e.g., pigeon, show mixing behaviours (cf. Bullock & Bitterman (1962)). Vulka-

n (2000) summarized and tabulated most experimental results related to probability

matching on both human and animal subjects and provided a good review on the

related literature.

It is worthwhile to point out that probability matching is not only observed in

simple laboratory experiments, but also has many profound implications in real life

decision making processes, e.g., medical diagnosis (cf. Friedman et al. (1995)), and

law enforcement (cf. Guttel & Harel (2005)), etc. Moving beyond the binary choice,

researchers have consistently observed that people tend to adopt mix strategies in

more complex stochastic environment if they face the same problem repeatedly. Take

the newsvendor problem as an example: when the future demand of the newspaper

is uncertain, a newsvendor needs to decide how many copies of newspaper to order

every morning before knowing the actual demand that will be realized only after the

day ends. If the objective is to maximize the profit in the long run or the daily
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expected profit, there is a well-known formula for the optimal order quantity based

on a critical ratio and the demand distribution. Then the best strategy is to order

this optimal quantity every day. However, this is not how human beings are going

to behave, even in a laboratory setting under which all the environmental parameters

fit the theoretical assumptions exactly and the optimal newsvendor order quantity is

known to the subjects. It was observed in many experiments that the average order

quantities from a pool of subjects in a series of repeated newsvendor games tend to

fluctuate around a certain order level and form some distributions (cf. Schweitzer

& Cachon (2000), Moritz et al. (2013), etc.). Though the reasons behind probability

matching behaviour are still under intense debate, one of the most commonly accepted

explanation is that human beings try to achieve the best possible outcome and believe

that there is a way to perfectly predict the future. Besides understanding the origin of

the behaviour, it is also important to incorporate such behaviour in any models that

involve human decision making under uncertainty. There have been various attempts

to model probability matching, but most of the models so far remain relatively quite

preliminary and it was admitted that some ideas are extremely hard to formalize (cf.

Vulkan (2000)).

In most settings when probability matching occurs, persistency values are exact-

ly the underlying probabilities matched by the subjects. In the example of predicting

flashing light bulbs, for any perfect prediction sequence, the proportion of prediction of

red light is equal to the proportion of times that the red light flashes, which is around

70%. This is exactly the definition for persistency. In the context of the newsvendor

problem, persistency is exactly the demand distribution because the best possible re-

turn comes from a perfect prediction of demand, and when demand is known, ordering

the exact demand quantity maximizes the profit. Linking the theory of persistency



1.1. PERSISTENCY 27

to the empirical phenomenon of probability matching may provide a better way to

understand and model such probabilistic behaviour. Our first attempt is to analyze

a portfolio selection problem under the uncertainty from asset returns. We propose

a new decision criterion for decision making under uncertainty, namely least squares

regret, which is equivalent to the popular benchmark tracking criterion in portfolio

management practice. From the closed-form solution, we show that the persistency

forms a basic component of the final decision. Connecting to the behaviour of proba-

bility matching, we gain new insights on the reasons of the behaviour. On the other

hand, this also gives us a new way to model the behaviour, which is worth further

exploration. We leave detailed discussion to Chapter 3 and 4.

Having discussed the importance of persistency, next we briefly review the existing

generic methods for estimating the persistency. Note that since persistency is gen-

eralized from several popular concepts in different areas, there are specific methods

that take advantage of the special problem structures to estimate the persistency in

each area. We will leave the review of these specific methods to the place where the

application examples are discussed in the rest of this thesis.

The most intuitive generic approach would be the Monte Carlo simulation. How-

ever, since the general mixed zero-one linear optimization problems are NP-hard,

simulation may require tremendous effort or resources to achieve satisfactory results.

Moreover, the sensitivity of the approach to the samples generated also calls for other

efficient estimation method. Over the past few years, a substream of research in the

field of persistency estimation has yielded a series of semidefinite programming (SD-

P) models based on the connection between the moment cone and the semidefinite

cone. A common feature of these models is that they only assume the knowledge of

moment information of the uncertainty rather than the exact form of the distribu-
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tion. Hence, they are also referred as distributionally robust stochastic programming

(DRSP) models.

Bertsimas et al. (2006) introduced arguably the first generic computational ap-

proach to approximate the persistency by solving a class of SDPs called Marginal

Moment Model (MMM) under the assumption that the random vector c̃ is described

only through the marginal moments of each c̃j and all the decision Problem (1.0.1) are

binary. Natarajan et al. (2009) extended MMM to general mixed-integer LP problems,

but their model formulation is based on the characterization of the convex hull of the

binary reformulation, which is typically difficult to derive. Lasserre (2010) studied

the class of parametric polynomial optimization problems, which includes the mixed

zero-one linear programming problem as a special case. The author described the

uncertainty using a combination of joint probability measure on the parameters and

optimal solutions together with marginal probability measures on the parameters. A

hierarchy of semidefinite relaxations was proposed to solve the problem. However, the

size of the semidefinite relaxation grows rapidly, which makes solving the higher order

semidefinite relaxations numerically challenging. Mishra et al. (2012) presented a SDP

model named Cross Moment Model (CMM) for c̃ described by both the marginal and

cross moments. The formulation of CMM is based on the extreme point enumera-

tion of Problem (1.0.1). Hence, the size of CMM becomes exponential for general LP

problems. Inspired by a recent application of conic optimization on mixed zero-one

LP problems due to Burer (2009), Natarajan et al. (2011) developed a parsimonious

but NP-hard convex conic optimization model to estimate the persistency of a gen-

eral mixed zero-one LP problem when c̃ is described by both the marginal and cross

moments as well as nonnegative support. In this thesis, we mainly exploit this model

to estimate the persistency values. Therefore, we will review it in greater detail next.
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Natarajan et al. (2011) consider the following stochastic optimization problem:

ZP := sup
c̃∼(µ,Σ)+

E [Z(c̃)] ,

where c̃ ∼ (µ,Σ)+ means that the set of distributions of the random coefficient vector

c̃ is defined by the nonnegative support Rn
+, finite mean vector µ, and finite covariance

matrix Σ, i.e.,

c̃ ∈ {X̃ : E[X̃] = µ,E[X̃X̃T ] = Σ + µµT ,P(X̃ ≥ 0) = 1}.

Furthermore, this set is assumed to be nonempty. The distribution that attains the val-

ue of ZP is generally referred to as the worst case distribution. Natarajan et al. (2011)

proved that ZP can be solved as the following convex conic optimization problem:

ZC := max
∑n

j=1 Yj,j

s.t. aTi Xai − 2bia
T
i x+ b2

i = 0, ∀i = 1, . . . ,m

Xj,j = xj, ∀j ∈ B
1 µT xT

µ Σ + µµT Y T

x Y X

 �cp 0

i.e., ZP = ZC , where the decision variables are x ∈ Rn, X ∈ Rn×n, and Y ∈ Rn×n.

For a matrix A ∈ Rn×n, A �cp 0 means that A lies in the cone of completely positive

matrices of dimension n defined as

CPn :=
{
A ∈ Rn×n : ∃V ∈ Rn×k

+ , such that A = V V T
}
.

The linear program over the convex cone of the completely positive matrices is called
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a completely positive program (CPP), and ZC is a typical CPP. Since the model is a

CPP, and it captures the cross moment information, the authors named their model

as Completely Positive Cross Moment Model (CPCMM). Furthermore, they extended

CPCMM by relaxing the nonnegative support assumption on c̃. A key reason that

CPCMM is chosen for persistency estimation is its ability to capture correlations

among random coefficients with its compact formulation. We will illustrate more on

this point when discussing the specific applications later.

In the formulation of ZC , the variables x, Y and X attempt to encode the infor-

mation xj = E[xj(c̃)], Yi,j = E[c̃jxi(c̃)] and Xi,j = E[xi(c̃)xj(c̃)] under the worst case

distribution. Thus, through solving ZC , the optimal value of x is simply the persis-

tency under the worst case distribution, which provides an estimate of the persistency

under other distribution with the same moments.

An issue with CPCMM is that it is NP-hard to solve despite the fact that the

completely positive cone is closed, convex and pointed. Fortunately, there are various

hierarchies of tractable approximations for the completely positive cone, e.g., Bomze

et al. (2000), Parrilo (2000), and Klerk et al. (2002) etc. For all the computational

studies in this thesis, we solve a simple SDP approximation of the completely positive

constraint, i.e., A �cp 0 is relaxed to A � 0 and A ≥ 0, where A � 0 means that A is

positive semidefinite. Such relaxation is called doubly nonnegative relaxation.

1.2 Stein’s Identity

In this section, we will introduce Stein’s Identity, and briefly discuss its link to the dis-

crete stochastic optimization problem and persistency. Stein’s Identity is a well-known

theorem of probability theory that is of interest primarily because of its applications

to statistical inference and portfolio choice theory. The formal statement is presented
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next together with its proof for completeness.

Lemma 1.3. [Stein’s Identity] Let the random vector c̃ = (c̃1, . . . , c̃n)T be multivariate

normally distributed with mean vector µ and covariance matrix Σ. For any function

h(c1, . . . , cn) : Rn → R such that ∂h(c1, . . . , cn)/∂cj exists almost everywhere and

E[|∂h(c̃)/∂cj|] < ∞, ∀j = 1, . . . , n, denote ∇h(c̃) = (∂h(c̃)/∂c̃1, . . . , ∂h(c̃)/∂c̃n)T .

Then

Cov(c̃, h(c̃)) = ΣE[∇h(c̃)].

Specifically,

Cov (c̃k, h(c̃1, . . . , c̃n)) =
n∑
j=1

Cov (c̃k, c̃j) E

[
∂

∂c̃j
h(c̃1, . . . , c̃n)

]
, ∀k = 1, . . . , n.

Proof. The proof is consolidated from Stein (1972), Stein (1981) and Liu (1994).

The first result is the univariate version of Stein’s Identity (cf. Stein (1972) and Stein

(1981)).

Let c̃ follow a standard normal distribution, N (0, 1), and φ (c) denote the standard

normal density with the derivative satisfying φ′ (c) = −cφ (c). For any function h :

R→ R such that h′ exists almost everywhere and E[|h′(c̃)|] <∞,

E [h′ (c̃)] =

ˆ ∞
−∞

h′(c)φ (c) dc

=

ˆ ∞
0

h′(c)

[ˆ ∞
c

zφ (z) dz

]
dc+

ˆ 0

−∞
h′(c)

[ˆ c

−∞
−zφ (z) dz

]
dc

=

ˆ ∞
0

zφ (z)

[ˆ z

0

h′(c)dc

]
dz −

ˆ 0

−∞
zφ (z)

[ˆ 0

z

h′(c)dc

]
dz

=

(ˆ ∞
0

+

ˆ 0

−∞

)
[zφ (z) [h(z)− h(0)]] dz

=

ˆ ∞
−∞

zφ (z)h(z)dz

= E [c̃h (c̃)] ,
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where the third equality is justified by Fubini’s Theorem. Note that since E[c̃] = 0

and V ar(c̃) = 1, the equality proved above is essentially

Cov (c̃, h (c̃)) = V ar(c̃)E [h′ (c̃)] . (1.2.1)

Next, we present the generalization of the result to the multivariate case (cf. Stein

(1981) and Liu (1994)).

Let z̃ = (z̃1, . . . , z̃n)T , where z̃j’s are independent and identically distributed stan-

dard normal random variables. From Equation (1.2.1), it follows that for any function

ĥ : Rn → R satisfying the same conditions as h in the theorem,

E
[
z̃1ĥ (z̃)

∣∣∣ (z̃2, . . . , z̃n)
]

= E

[
∂ĥ (z̃)

∂z1

∣∣∣∣∣ (z̃2, . . . , z̃n)

]
.

Taking the expectation of both sides, we get

E
[
z̃1ĥ (z̃)

]
= E

[
∂ĥ (z̃)

∂z1

]
.

Using a similar argument for the remaining random variables, we can show that

Cov
(
z̃, ĥ (z̃)

)
= E

[
∇ĥ (z̃)

]
.

Note that the random vector c̃ can be written as c̃ = Σ1/2z̃ + µ. Consider ĥ (z̃) =

h
(
Σ1/2z̃ + µ

)
, then ∇ĥ (z̃) = Σ1/2∇h (c̃). Hence,

Cov (c̃, h (c̃)) = Cov
(

Σ1/2z̃, ĥ (z̃)
)

= Σ1/2E
[
∇ĥ (z̃)

]
= ΣE [∇h (c̃)] .

Therefore, the proof is completed.
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Briefly speaking, we can view the optimization problem in (1.0.1) as a mapping

on the random parameters, i.e., Z (c̃) is a function of c̃. Then Stein’s Identity can

be used to characterize the covariance between Z (c̃) and each c̃j under the normality

assumption on c̃. Under certain conditions, the gradient of E [Z (c̃)] is simply the

persistency, i.e., E[x (c̃)]. More details will be provided when we discuss the problems

in the next two chapters.

Lemma 1.3 holds under the normal uncertainty assumption on the random vari-

ables. Interestingly, there are many extensions of Stein’s Identity for other distributions

(cf. Adcock (2007), Barbour et al. (1992), Liu (1994), etc.), which allows the results

discussed in this thesis to be extended further. We will illustrate one such case in

the next chapter, where we take advantage of the Stein’s Identity under multivariate

skew-normal distribution.
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Chapter 2

Least Squares Distribution

Approximation
– Application in Project Management Prob-

lem
Abstract. This chapter addresses the following question: What is the best approx-

imation of the distribution of the completion time of a project network with random

activity durations? More generally, we consider any mixed zero-one linear optimiza-

tion problem under objective uncertainty, and develop an approach to approximate

the distribution of its optimal value when the random objective coefficients follow a

multivariate normal distribution. Linking our model to the classical Stein’s Identity,

we show that the least squares normal approximation of the random optimal value can

be computed by solving the corresponding persistency problem. We further extend our

method to construct a quadratic least squares estimator to improve the accuracy of the

approximation, in particular, to capture the skewness of the objective value. Compu-

tational studies show that the new approach provides more accurate estimates of the

first and second moments of project completion time compared to existing methods.
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2.1 Problem Overview

One of the fundamental problems in project management is to identify the project

completion time when the activity durations are random. It is well-known that a

project can be represented as a directed acyclic graph (DAG). We adopt the con-

ventional activity-on-arc representation of the project network, where arcs represent

activities and nodes represent the milestones that indicate the starting or ending of the

activities. The length of an arc is the duration of the activity represented by that arc.

Hence, if all the activities have deterministic durations, finding the project completion

time is as easy as finding the longest path in a corresponding DAG, which can be

solved as a linear programming (LP) problem1. However, when the activity durations

are stochastic, the analysis of the random project completion time becomes nontrivial.

It has long been the interest of both researchers and practitioners to estimate

the distribution of the project completion time. Over the past few decades, various

methods have been proposed to approximate this distribution (cf. Dodin (1985); Cox

(1995), etc.). Unfortunately, to the best of our knowledge, these approaches are derived

using ad hoc heuristics or work on specific problem instances. In this research, we

partially address this issue under the assumption that the activity durations follow a

multivariate normal distribution, and construct a normal distribution approximation

for the random project completion time that is optimal under the L2-norm. In fact,

our method applies to any general random mixed zero-one LP problem under objective

uncertainty:

Z (c̃) := max
x∈P

n∑
j=1

c̃jxj, (2.1.1)

where c̃ = (c̃1, . . . , c̃n)T is the random coefficient vector following a multivariate normal

1In fact, for the deterministic case, this problem can be solved in a more efficient way, which is
dynamic programming, in effort proportional to the number of arcs in the DAG.
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distribution with mean vector µ and covariance matrix Σ, denoted as c̃ ∼ N(µ,Σ),

and P is the domain of the feasible solutions (assumed to be bounded) defined by

P := {x ∈ Rn : aTi x = bi, ∀i = 1, . . . ,m; xj ∈ {0, 1} , ∀j ∈ B ⊆ {1, . . . , n} ; x ≥ 0}.

In the project management problem, P characterizes the incidence vector of paths in

the project network, and c̃j is the random duration of activity j. To give a precise linear

programming formulation of the project management problem, we index the variables

in two dimensions. Consider a DAG (V , E) with origin node s representing the starting

of the project and destination node t representing the ending of the project. For each

arc (i, j) representing an activity, let c̃i,j be the activity duration and xi,j be the flow

variable. Then the project completion time can be found by solving the following

linear programming problem:

max
∑

(i,j)∈E
c̃i,jxi,j

s.t.
∑

j:(i,j)∈E
xi,j −

∑
j:(j,i)∈E

xj,i =


1, if i = s

−1, if i = t

0, otherwise

xi,j ≥ 0, ∀ (i, j) ∈ E

Throughout this chapter, we use bold face letters to denote column vectors. We

use σj,k, j, k = 1, . . . , n, to denote the covariance between c̃j and c̃k, i.e., (j, k)−term

of the covariance matrix Σ. We also use σ2
j , j = 1, . . . , n, to denote the variance of

c̃j, i.e., the jth diagonal entry of Σ. We assume that c̃ is non-degenerate, i.e., the

covariance matrix Σ is symmetric positive definite (denoted as Σ � 0). Let xj (c̃)

denote an optimal value of xj as a function of the random vector c̃. Together with the
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normality assumption, we are sure that x (c̃) is unique almost surely.

There is by now a huge literature on finding the distribution of Z (c̃) for various

combinatorial optimization problems, including minimum assignment, spanning tree,

and traveling salesman problem (cf. Aldous & Steele (2003)). These problems are

notoriously hard, and often only partial results (e.g., asymptotic results with i.i.d

random variables) are known. Finding the exact distribution for the general mixed

zero-one LP problem appears to be almost impossible.

Back to the project management problem, under the Critical Path Method (CPM),

which is often used by the project management community, the random project com-

pletion time is estimated by replacing c̃j with its expected value µj, i.e., Z (µ) is used

to approximate the project completion time. In the classical Program Evaluation and

Review Technique (PERT), this is taken one step further where the distribution of the

project completion time is approximated by
∑n

j=1 βj c̃j =
∑n

j=1 βj(c̃j − µj) + Z(µ)2,

with

βj =

 1, if arc j is on the longest path when solving Z(µ),

0, otherwise.

Due to the simplicity of the approach, PERT has gained a lot of popularity, and the

random project networks are sometimes also called PERT networks. However, simply

using the distribution of one critical path to approximate the distribution of the project

completion time (or longest path) suffers from severe estimation errors. In particular,

PERT has been widely criticized for significant underestimation of the mean project

completion time and overestimation of the variability of the project completion time.

2Here we impose the conventional assumption that there is a unique optimal solution when we
compute Z(µ).
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This leads us to a natural estimation problem:

(P) min
α∈R,β∈Rn

E

(Z(c̃)− α−
n∑
j=1

βj(c̃j − µj)

)2
 ,

where α ∈ R, and β ∈ Rn are determined by minimizing the expected squared devia-

tion of the linear approximation from the true distribution. Problem (P) is the central

question addressed by this chapter. We are solving for the least squares normal ap-

proximation (or the best normal approximation in L2-norm) to the random project

duration, as an affine function of the individual task normally distributed activity du-

rations. We also refer to this as the least squares linear estimator. In this thesis, I use

these two terms interchangeably. We explicitly obtain the solution to this optimiza-

tion problem, and it turns out that the solution is closely related to the persistency

problem as reviewed in Chapter 1.

One critical drawback of the estimated distribution from solving Problem (P) is

that it is restricted to be normal, which is symmetric about the mean. However,

in most circumstances, Z(c̃) is skewed. PERT also suffers from a similar issue. To

strengthen the approximation, we propose to extend the estimator to include higher

order terms on c̃. In particular, we also find a quadratic estimator, Q(c̃), to the

distribution of Z(c̃) of the following form:

Q(c̃) = α +
n∑
j=1

βj(c̃j − µj) +
n∑

j1=1

n∑
j2=j1

γj1,j2(c̃j1 − µj1)(c̃j2 − µj2),

where α, βj and γj1,j2 are adjustable parameters. Interestingly, the least squares

quadratic estimator is also shown to be closely related to the persistency problem,

and shares some common components with the least squares linear estimator.

Outline of this chapter : In the next section, we review the related literature. In
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Section 2.3, we build our least squares linear approximation with an application to

maximum partial sum problem, followed by the least squares quadratic estimation in

Section 2.4. Two extensions are discussed in Section 2.5. In Section 2.6, we briefly

review the methods for persistency estimation in the context of project management.

In Section 2.7, we present the results from our computational studies and discuss the

performance of our estimators.

2.2 Literature Review

2.2.1 Distribution Problem

Our problem of interest has a long history, and it is related to the classical “distribu-

tion problem of stochastic linear programming” literature (cf. Ewbank et al. (1974),

Prekopa (1966) and the references therein). The distribution of the optimal value is of-

ten approximated by numerical methods such as the Cartesian integration method (cf.

Bereanu (1963)). These methods have been studied under the general framework when

the uncertain parameters may appear in the objective, constraint matrix, or the right

hand side of the LP problem. However, the total number of random variables are very

limited due to the numerical methods employed. In the case of project management,

finding the distribution of completion time in a PERT network is still an active area

of research with a rich literature (cf. Yao & Chu (2007) and the references therein).

Most of the work in this area has been focused on using some graphical approaches

to reduce the size of the graph and to reduce the complexity of estimating the distri-

bution of the project completion time (e.g., Dodin (1985)). Another line of research

tries to find a good normal approximation to the project completion time distribution

using Central Limit Theorem and moment estimation methods (e.g., Cox (1995)). We
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solve this problem and show that the best normal approximation to the completion

time distribution, under L2-norm, can be obtained by solving the related persistency

problem introduced by Bertsimas et al. (2006), and further studied in Natarajan et al.

(2009).

2.2.2 Correlation Issues

A recent paper by Agrawal et al. (2012) investigated the loss incurred by ignoring

correlations in a DRSP model and proposed a new concept called price of correlations

(POC). They showed that POC is bounded from above for a certain class of cost

functions, suggesting that the intuitive approach of assuming independent distributions

may actually work well for these problems. However, independence conditions can

be extremely difficult to capture as well. One of the negative results is given by

Hagstrom (1988), who showed that computing the expected value of the longest path

in a directed acyclic graph is #P-complete when the arc lengths are restricted to

taking two possible values and independent of each other. Perhaps a DRSP model

with correlation conditions is more tractable. On the other hand, Agrawal et al. (2012)

also show that for some cost functions, POC can be particularly large, indicating the

need of DRSP models to capture correlations. Fortunately, CPCMM partially fills this

gap, which in turns further strengthens our approximation method.

In the literature of project management, there is only limited sensitivity analysis

with correlated activity times. For example, Banerjee & Paul (2008) showed that in

the case of a project network with multivariate normal activity completion times and

a covariance matrix characterized by only nonnegative terms, the completion times of

activities are positively correlated. To the best of our knowledge, none of the previous

studies address the issues of correlated activities for the project management problem
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when approximating the distributions of the project completion times. Our research

contributes to fill this gap by assuming a general non-degenerate multivariate normal

distribution for the activity times when constructing the approximating distributions.

2.2.3 Statistical Timing Analysis

Indeed, there is another version of the stochastic longest path problem in the engi-

neering domain, which has gained much research interest in recent years. The problem

arises in analyzing signal delay in the digital circuit design, and it is known as “Sta-

tistical Timing Analysis” (STA). For a recent review on STA, please refer to Blaauw

et al. (2008). The problem that STA tries to address is to estimate the delay time

distribution of sending a signal through a digital circuit with various gates and con-

necting routes. There are many sources of uncertainty in delay times, and the delay

of the signals passing through a gate is usually modeled as a normal random vari-

able. The whole problem can be cast into a stochastic longest path problem in a

DAG, just like the project management problem. Correlations in STA come from var-

ious sources, e.g., sharing of common physical parameters, or proximity in physical

locations (a.k.a., spacial correlations), etc. There is a growing literature in STA to

model these correlations, e.g., Tsukiyama et al. (2001), Agrawal et al. (2003), Le et

al. (2004), Chang & Sapatnekar (2005), Zhan et al. (2005), Zhang et al. (2005), Li et

al. (2007), Khandewal & Srivastava (2007), Tang et al. (2012), etc. Commonly used

methods for STA are based on CPM, PERT and approximation methods develope-

d by Clark (1961). They are very similar to the approach adopted by Cox (1995)

from project management literature (cf. Blaauw et al. (2008)). Clark (1961) studied

the moment estimation problem for the maximum of a finite set of random variables

following a multivariate normal distribution. The method is iterative in the sense
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that max{c̃1, c̃2, c̃3} ∼= max{max{c̃1, c̃2}, c̃3}, where max{c̃1, c̃2} is assumed to be nor-

mal. Clark (1961) presented a set of analytical expressions to compute the moment

estimates by taking into account of correlations among the set of random variables.

More recently, several researchers in this field have begun to look beyond the simple

normality assumption and tried to model the delay time at the gate as a quadratic

function of normal random variables (cf. Zhang et al. (2005), Zhan et al. (2005),

Khandewal & Srivastava (2007), etc.). The key reason to extend to quadratic models

is to capture the skewness in the delay time distribution in the project management

problem. These methods usually try to estimate the coefficients of the quadratic func-

tion through moment matching equalities and topologically go through every node

in the network applying approximation techniques on “sum” and “max” operations.

Our approach is significantly different from them. By linking the problem to Stein’s

Identity, we can explicitly characterize the expression of the least square quadratic es-

timator. Besides the obvious theoretical elegance, our method is indeed more accurate

computationally, which we will illustrate using examples in Section 2.7.

Contributions

We summarize the key contributions of this work as below:

• We systematically study the distribution approximation problem under the least

squares framework and take into account correlations among the random coeffi-

cients.

• Linking our problems to Stein’s Identity, we explicitly derive the expressions of

both the least squares linear and quadratic approximations.

• We provide a new perspective to the distribution approximation problem by
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transforming it into the related persistency estimation problem, for which there

exist many well-established results to provide good estimates.

• In the context of project management problem, we show that knowing the criti-

cality indices of arcs is the key to estimate the variability in the project comple-

tion time.

• By comparing against existing methods through extensive numerical studies, we

demonstrate the superiority of bringing persistency into distribution approxima-

tion problem.

2.3 Least Squares Linear Estimator

As discussed before, our main idea is to approximate the distribution of Z (c̃) by a

normal distribution, W (c̃), with the following form:

W (c̃) = α +
n∑
j=1

βj (c̃j − µj) , (2.3.1)

where α and βj’s are adjustable parameters. Note that the linear estimator in Equation

(2.3.1) is also a normal distribution. The objective is to choose α and βj’s such that

the expected squared deviation between W (c̃) and Z (c̃) is minimized. In particular,

we aim to solve:

(P) min
α∈R,β∈Rn

E

(Z (c̃)− α−
n∑
j=1

βj (c̃j − µj)

)2
 ,

i.e., we want to find the least squares normal approximation to the distribution of

Z(c̃). It turns out that the solution to Problem (P) under the normality assumption
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of c̃ is related to the concept of persistency in a straightforward manner as shown in

the following theorem.

Theorem 2.1. When c̃ ∼ N(µ,Σ) and Σ � 0, the unique solution to Problem (P) is

α∗ = E [Z(c̃)] , β∗k = E [xk(c̃)] , k = 1, . . . , n.

Proof. It is obvious that Problem (P) is convex. Then the necessary and sufficient

optimality conditions of Problem (P) are

E

[
Z (c̃)− α∗ −

n∑
j=1

β∗j (c̃j − µj)

]
= 0, and

E

[(
Z (c̃)− α∗ −

n∑
j=1

β∗j (c̃j − µj)

)
(c̃k − µk)

]
= 0, ∀k = 1, . . . , n.

Hence, an optimal solution to (P), (α∗,β∗) should satisfy

α∗ = E [Z (c̃)] , and

E

[(
Z (c̃)− E [Z (c̃)]−

n∑
j=1

β∗j (c̃j − µj)

)
(c̃k − µk)

]
= 0, ∀k = 1, . . . , n.

Rearranging the second set of conditions, we get

Cov (c̃k, Z (c̃)) =
n∑
j=1

β∗jσj,k, ∀k = 1, . . . , n. (2.3.2)

The optimal objective value Z(c̃) satisfies the conditions in Stein’s Identity since

∂Z(c̃)/∂ck = xk(c̃) almost everywhere. By applying Stein’s Identity on c̃ and Z(c̃),
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we have

Cov (c̃k, Z(c̃)) =
n∑
j=1

σj,kE

[
∂Z(c̃)

∂c̃j

]
, ∀k = 1, . . . , n.

Observe that

E

[
∂Z(c̃)

∂c̃j

]
= E

[
∂

∂c̃j

(
n∑
k=1

c̃kxk(c̃)

)]

= E

[
n∑
k=1

c̃k
∂xk(c̃)

∂c̃j
+ xj(c̃)

]
= E [xj(c̃)] , ∀j = 1, . . . , n.

The last equality follows from our assumptions on c̃, i.e., normal and non-degenerate,

so that for all j, k = 1, . . . , n ∂xk(c̃)/∂cj exists almost everywhere and equals to zero

whenever it exists3. Thus, we get β∗j = E [xj(c̃)] , j = 1, . . . , n as one solution to

Equation (2.3.2), which is also unique since Σ is positive definite. Thus, the proof is

complete.

With Theorem 2.1, the problem of finding the least squares normal approximation

to the distribution of Z(c̃) is transformed into computing the persistency in Problem

(2.1.1) as well as estimating E[Z(c̃)]. From these results, we know that the mean of

estimated distribution W (c̃) is the same as the mean of Z(c̃). However, the variance

of W (c̃) is governed by the persistency values, and it is not necessarily equal to the

variance of Z(c̃). Indeed, the variance of W (c̃) is a lower bound of the variance of

3Note that ∂xk(c̃)/∂cj is not defined when there are multiple optimal solutions to Problem (2.1.1),
but in other situations, xk(c̃) does not change with a small perturbation of cj . Please refer to the
footnote in Remark 1.2 for the detailed discussion on the probability measure over the set of c̃ that
leads to multiple optimal solutions. Precisely, we should write the derivation process in integral form,
i.e., expressing all the expectations in integral form. Then it will be clear that ∂xk(c̃)/∂cj can only
be integrated over the support of c̃ where it is defined, and hence only zero values remain in the
integration expression for E[c̃k∂xk(c̃)/∂cj ].
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Z(c̃), i.e.,

V ar (W (c̃)) = V ar

(
n∑
j=1

E [xj (c̃)] c̃j

)
= (E [x (c̃)])T Σ (E [x (c̃)])

≤ V ar

(
n∑
j=1

xj (c̃) c̃j

)
= V ar (Z (c̃)) .

The inequality above is due to Cacoullos (1982), where equality holds if and only if

E[xj(c̃)] is constant for every j = 1, . . . , n. Note that although Cacoullos’ inequality,

V ar (g (c̃)) ≥ (E [∇g (c̃)])T Σ (E [∇g (c̃)]) ,

holds for any absolutely continuous real-valued function g (c̃) with finite variance, we

still need those properties of Z (c̃) and E [x (c̃)] as used in the proof of Theorem 2.1

to derive the above result. Though a lower bound, the variance of the least squares

linear estimator is significantly closer to the true variance than those estimated from

existing distribution approximation methods. We will illustrate this point using more

examples in Section 2.7.

Although Theorem 2.1 is established under the normality assumption on c̃, the

result can be generalized to other distributions given the knowledge of many extensions

of Stein’s Identity for other distributions (cf. Adcock (2007), Barbour et al. (1992),

Liu (1994), etc.). In particular, we will discuss an extension of Theorem 2.1 in Section

2.5.2 under the assumption that c̃ follows a multivariate skew-normal distribution,

which was originally developed in the finance area to capture the skewness in financial

data (cf. Adcock (2007)).

Remark 2.2. Empirically, instead of using the observed persistency values to estimate

the values for β, we can also use Cov(c̃j, Z(c̃))/σ2
j to estimate βj when c̃j’s are inde-
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pendent of each other (cf. Equation (2.3.2)). This is exactly the formula used in linear

regression. One such example is estimating the beta coefficient of a risky asset under

the capital asset pricing model (CAPM) in finance. This approach comes in handy

when only Z(c̃) is observed but not the optimal choices made, as is the case in linear

regression.

In the next example, we describe an immediate application of our result on an

important statistical problem: approximating the distribution of the maximum partial

sum of normal random variables. The problem is critical in many areas of application,

including hydrology and testing for a change-point (cf. Hurst (1951), James et al.

(1987), Conniffe & Spencer (2000)). Combining our result with some classical results

in probability theory, we present a closed-form expression for the least squares normal

approximation of the maximum partial sum of normal random variables, from which

many interesting statistics can be easily calculated, including its variance.

Example 2.3. Suppose c̃j’s (j = 1, . . . , n) are independent and identically distributed

(i.i.d.) normal random variables with zero mean and finite standard deviation σ . Let

S0 = 0 and

S̃k = c̃1 + · · ·+ c̃k, k = 1, . . . , n.

The problem is to estimate the distribution of S̃max := max
k∈{0,...,n}

S̃k, i.e., the maximum

partial sum of c̃j’s (or the maximum value of the random walk from c̃j’s). Note that

Smax = max∑n
k=0 yk=1,y≥0

n∑
k=0

Skyk = max∑n
k=0 yk=1,y≥0

n∑
k=1

(
k∑
j=1

cj

)
yk

= max∑n
k=0 yk=1,y≥0

n∑
j=1

(
n∑
k=j

yk

)
cj

(2.3.3)

Applying Theorem 2.1, we get the following expression of the least squares normal
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approximation to S̃max:

E
[
S̃max

]
+

n∑
j=1

(
n∑
k=j

E [yk (c̃)]

)
c̃j, (2.3.4)

where E[yk(c̃)] is the persistency in Problem (2.3.3), i.e., the probability that the

partial sum attains its maximum value at step k. The classical finite arcsine law (cf.

Andersen (1953)) states that this probability does not depend on the distribution of

c̃j provided that c̃j is symmetric around the mean 0:

E [yk(c̃)] =

 2k

k


 2n− 2k

n− k

 1

22n
, k = 1, . . . , n.

Observe that the variance of our approximation in Equation (2.3.4) is solely determined

by the second term through persistency. Hence, we get the following closed-form lower

bound to the variance of the maximum partial sum:

σ2

24n

n∑
j=1

 n∑
k=j

 2k

k


 2n− 2k

n− k




2

.

The above result expands the current literature by providing a different way to estimate

the variance of the maximum partial sum of i.i.d. normal random variables. Note

that there exists various methods in literature to compute or estimate E[S̃max], with

which we get a complete characterization of the least squares normal approximation as

shown in Equation (2.3.4). For instance, when µ = 0, σ = 1, i.e., c̃i’s are independent

standard normal random variables, Spitzer (1956) showed that

E
[
S̃max

]
=

n∑
k=1

1

k
E
[
S̃+
k

]
= E

[
c̃+

1

] n∑
k=1

1√
k
,
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where S̃+
k = max{0, S̃k}, and c̃+

1 = max{0, c̃1}.

Remark 2.4. Note that Brownian motion can be treated as the limit of symmetric

random walks. Hence, it is natural to use the results for Brownian motion to asymp-

totically approximate the distribution of the maximum partial sum. It is well-known

that the running maximum Mt = max{Bs : s ∈ [0, t]} of standard Brownian motion

Bt has the density 2φ(m/
√
t), where φ is the standard normal density function. How-

ever, this method is inaccurate except for very large samples (cf. Conniffe & Spencer

(2000)).

2.4 Least Squares Quadratic Estimator

In the previous section, we show how to approximate the distribution of Z(c̃) using a

linear estimator W (c̃). By “linear”, we mean that W (c̃) is a linear function in c̃. As

discussed in the introduction, to address the problem of skewness in Z(c̃), we propose

to extend our estimator to incorporate higher order terms on c̃. The estimator we

consider is denoted as Q(c̃) with the following form:

Q(c̃) = α +
n∑
j=1

βj(c̃j − µj) +
n∑

j1=1

n∑
j2=j1

γj1,j2(c̃j1 − µj1)(c̃j2 − µj2),

where α, βj’s and γj1,j2 ’s are adjustable parameters. Then the least squares quadratic

estimation problem can be formulated as:

(Q) min
α∈R,β∈Rn,Γ∈Rn×n

E
[(
Z(c̃)− α−

∑n
j=1 βj(c̃j − µj)

−
∑n

j1=1

∑n
j2=j1

γj1,j2(c̃j1 − µj1)(c̃j2 − µj2)
)2
]
,
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where the matrix Γ is defined in the way that makes our notation compact, Γj1,j2 :=

(1/2)γj1,j2 , for 1 ≤ j1 < j2 ≤ n, Γj1,j2 := (1/2)γj2,j1 , for 1 ≤ j2 < j1 ≤ n, and

Γj1,j2 := γj1,j2 , for j1 = j2 = 1, . . . , n.

Following a similar approach as in Section 2.3, we can also derive the solution to

Problem (Q). Interestingly, adding the quadratic term does not affect the solution of

β, which is still the persistency, as presented in the following theorem. Notation-wise,

we use “•” to denote the inner product of two matrices.

Theorem 2.5. When c̃ ∼ N(µ,Σ), a solution (α∗,β∗,Γ∗) to Problem (Q) can be

characterized as follows:

α∗ = E [Z(c̃)]− Σ • Γ∗, β∗k = E [xk(c̃)] , k = 1, . . . , n,

and Γ∗ is symmetric and satisfies the following system of (n2 + n)/2 linear equations:

n∑
j1=1

n∑
j2=j1

γ∗j1,j2 (σj1,k1σj2,k2 + σj1,k2σk1,j2)

=
n∑
j=1

(E [c̃k1xj (c̃)]− µk1E [xj (c̃)])σj,k2 , ∀1 ≤ k1 ≤ k2 ≤ n.

Proof. Since Problem (Q) is convex, its necessary and sufficient optimality conditions

are

E

[
Z(c̃)− α∗ −

n∑
j=1

β∗j (c̃j − µj)−
n∑

j1=1

n∑
j2=j1

γ∗j1,j2(c̃j1 − µj1)(c̃j2 − µj2)

]
= 0,

E

[(
Z(c̃)− α∗ −

n∑
j=1

β∗j (c̃j − µj)−
n∑

j1=1

n∑
j2=j1

γ∗j1,j2(c̃j1 − µj1)(c̃j2 − µj2)

)
(c̃k − µk)

]
= 0,

∀k = 1, . . . , n, and
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E

[(
Z(c̃)− α∗ −

n∑
j=1

β∗j (c̃j − µj)

−
n∑

j1=1

n∑
j2=j1

γ∗j1,j2(c̃j1 − µj1)(c̃j2 − µj2)

)
(c̃k1 − µk1) (c̃k2 − µk2)

]
= 0,

∀1 ≤ k1 ≤ k2 ≤ n.

Hence, an optimal solution (α∗,β∗,Γ∗) should satisfy

α∗ = E [Z(c̃)]− Σ • Γ∗,

E

[(
Z(c̃)− α∗ −

n∑
j=1

β∗j (c̃j − µj)

)
(c̃k − µk)

]

−E

[
n∑

j1=1

n∑
j2=j1

γ∗j1,j2(c̃j1 − µj1)(c̃j2 − µj2) (c̃k − µk)

]
= 0, ∀k = 1, . . . , n, and

E

[(
Z(c̃)− α∗ −

n∑
j=1

β∗j (c̃j − µj)

)
(c̃k1 − µk1) (c̃k2 − µk2)

]

−E

[
n∑

j1=1

n∑
j2=j1

γ∗j1,j2(c̃j1 − µj1)(c̃j2 − µj2) (c̃k1 − µk1) (c̃k2 − µk2)

]
= 0,

∀1 ≤ k1 ≤ k2 ≤ n.

From Isserlis’ Theorem, if random variable (z̃1, . . . , z̃n) follows a zero mean multivariate

normal distribution, then

E

[
n∏
i=1

z̃i

]
=

 0, if n is odd,∑∏
E [z̃iz̃j] , if n is even,

where
∑∏

means summing over all distinct ways of partitioning (z̃1, . . . , z̃n) into pairs

(cf. Isserlis (1918)). In particular, when n = 3, 4,

E [z̃1z̃2z̃3] = 0, and
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E [z̃1z̃2z̃3z̃4] = E [z̃1z̃2] E [z̃3z̃4] + E [z̃1z̃3] E [z̃2z̃4] + E [z̃1z̃4] E [z̃2z̃3] .

Applying Isserlis’ Theorem, we can reduce the optimality conditions into

α∗ = E [Z(c̃)]− Σ • Γ∗,

E

[(
Z(c̃)− α∗ −

n∑
j=1

β∗j (c̃j − µj)

)
(c̃k − µk)

]
= 0, ∀k = 1, . . . , n, (2.4.1)

and

E [(Z(c̃)− α∗) (c̃k1 − µk1) (c̃k2 − µk2)]

−
n∑

j1=1

n∑
j2=j1

γ∗j1,j2 (σj1,j2σk1,k2 + σj1,k1σj2,k2 + σj1,k2σk1,j2) = 0, ∀1 ≤ k1 ≤ k2 ≤ n.

(2.4.2)

Further simplifying Equation (2.4.1), we get

E [Z(c̃) (c̃k − µk)] =
n∑
j=1

β∗jσj,k, ∀k = 1, . . . , n.

Since E [Z(c̃) (c̃k − µk)] = Cov (c̃k, Z(c̃)), we arrive at the same conditions as E-

quation (2.3.2) in Theorem 2.1. Therefore, following the same argument, we have

β∗k = E [xk(c̃)] , k = 1, . . . , n, which is unique if Σ is positive definite.

Consider a part of the first term in Equation (2.4.2),

E [Z(c̃) (c̃k1 − µk1) (c̃k2 − µk2)] = E [Z(c̃)c̃k1 c̃k2 ]− µk1E [Z(c̃)c̃k2 ]

−µk2E [Z(c̃)c̃k1 ] + µk1µk2E [Z(c̃)]

= E [Z(c̃)c̃k1 c̃k2 ]− E [Z(c̃)c̃k1 ]µk2

−µk1 (E [Z(c̃)c̃k2 ]− E [Z(c̃)]µk2)

= Cov (Z(c̃)c̃k1 , c̃k2)− µk1Cov (Z(c̃), c̃k2) .
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It is straightforward to apply Stein’s Identity on Cov (Z(c̃), c̃k2) as we have done before,

i.e.,

Cov (Z(c̃), c̃k2) =
n∑
j=1

E [xj (c̃)]σj,k2 .

For the other term, Cov (Z(c̃)c̃k1 , c̃k2), we can also use Stein’s Identity,

Cov (Z(c̃)c̃k1 , c̃k2) =
n∑
j=1

E
[
∂Z(c̃)c̃k1
∂cj

]
Cov (c̃j, c̃k2)

=
n∑
j=1

E
[
c̃k1

∂Z(c̃)
∂cj

+ Z(c̃)
∂c̃k1
∂cj

]
σj,k2

=
n∑
j=1

E [c̃k1xj (c̃)]σj,k2 + E [Z(c̃)]σk1,k2 ,

where the last equality follows from the same argument as in the proof of Theorem

2.1. Therefore,

E [(Z(c̃)− α∗) (c̃k1 − µk1) (c̃k2 − µk2)] = E [Z(c̃) (c̃k1 − µk1) (c̃k2 − µk2)]− α∗σk1,k2

=
n∑
j=1

E [c̃k1xj (c̃)]σj,k2 + E [Z(c̃)]σk1,k2

−µk1
n∑
j=1

E [xj (c̃)]σj,k2

− (E [Z(c̃)]− Σ • Γ∗)σk1,k2

=
n∑
j=1

(E [c̃k1xj (c̃)]− µk1E [xj (c̃)])σj,k2

+σk1,k2Σ • Γ∗.

Substituting this into Equation (2.4.2), we get a system of (n2 +n)/2 linear equations

on Γ∗,

n∑
j=1

(E [c̃k1xj (c̃)]− µk1E [xj (c̃)])σj,k2 + σk1,k2Σ • Γ∗

−
n∑

j1=1

n∑
j2=j1

γ∗j1,j2 (σj1,j2σk1,k2 + σj1,k1σj2,k2 + σj1,k2σk1,j2) = 0, ∀1 ≤ k1 ≤ k2 ≤ n,
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which reduces to

n∑
j1=1

n∑
j2=j1

γ∗j1,j2 (σj1,k1σj2,k2 + σj1,k2σk1,j2)

=
n∑
j=1

(E [c̃k1xj (c̃)]− µk1E [xj (c̃)])σj,k2 , ∀1 ≤ k1 ≤ k2 ≤ n.

Thus, we complete the proof.

From Theorem 2.5, the problem of finding the least squares quadratic estimator

for the distribution of Z(c̃) is again transformed into a persistency problem, i.e., es-

timating E[x(c̃)], E[c̃x(c̃)T ], and E[Z(c̃)]. The additional requirement to estimate

E[c̃x(c̃)T ], i.e., the interaction between random coefficients and the optimal solution,

can be interpreted as the increased difficulty of adding the quadratic terms in the esti-

mation. However, as shown in Chapter 1, the estimation of E[c̃x(c̃)T ] can be obtained

as a by-product when we estimate the persistency using semidefinite programming

methods.

In general, Γ∗ may not be unique due to the correlation structures. However, when

c̃j’s are uncorrelated and not degenerate, we do have a simple and unique solution.

Corollary 2.6. When c̃j’s are uncorrelated and each follows a normal distribution

with σ2
j > 0, there is a unique solution to Problem (Q) as follows:

α∗ = E [Z(c̃)]− Σ • Γ∗,

β∗k = E [xk(c̃)] , k = 1, . . . , n,

γ∗k1,k2 =
E [c̃k1xk2 (c̃)]− µk1E [xk2 (c̃)]

σ2
k1

, ∀1 ≤ k1 < k2 ≤ n,

γ∗k,k =
E [c̃kxk (c̃)]− µkE [xk (c̃)]

2σ2
k

, ∀k = 1, . . . , n.

It would be interesting to know whether the least quadratic estimation is convex

in c̃. Unfortunately, Hertog et al. (2002) observed that the least squares quadratic
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approximation of a multivariate convex function in a finite set of points is not neces-

sarily convex even though it is convex for a univariate convex function. Similarly for

our problem, we cannot guarantee that the least quadratic estimation is convex. It is

however possible to enforce convexity through imposing a semidefinite constraint on

Γ, but the resulting problem will not exhibit a nice and explicit characterization of the

solution as the unconstrained version.

2.5 Extensions

In this section, we discuss two interesting extensions of our approximation models. The

first extension applies to the situation when only partial information on the random

coefficients is available, and the second extension addresses the case when the random

coefficient vector follows a multivariate skew-normal distribution.

2.5.1 Distribution Approximation Using Partial Information

In both least squares linear and quadratic approximations, we make use of all the

distributional information on the random coefficient vector c̃ in constructing the ap-

proximating distributions. What would happen if we only have the information on a

subset of the random coefficients? Suppose the set of random coefficients are divided

into two independent components, c̃ ∈ Rn1 and d̃ ∈ Rn2 , both of which follow mul-

tivariate normal distributions, and n1 + n2 = n. However, we only know the mean

and covariance of c̃, but not d̃. Let µc and Σc denote the mean vector and covariance

matrix of c̃, respectively, and assume Σc � 0. We use Z(c̃, d̃) to represent the optimal
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objective value as defined below:

Z
(
c̃, d̃
)

:= max
(x,y)∈P

n1∑
j=1

c̃ixi +

n2∑
k=1

d̃iyi,

where P is the domain of x and y defined by linear and nonnegative constraints as

well as some binary conditions.

With the limited information on c̃, we would like to find the least squares normal

approximation of Z(c̃, d̃), denoted as W c(c̃) of the following form:

W c (c̃) = α +

n1∑
j=1

βj(c̃j − µcj).

The least squares normal approximation problem with partial information is then

formulated as follows:

(Pc) min
α∈R,β∈Rn1

E

(Z (c̃, d̃)− α− n1∑
j=1

βj
(
c̃j − µcj

))2
 .

Surprisingly, the optimal parameters turn out to be independent on the moments

of the unknown component d̃ provided that d̃ is independent of c̃. Instead, they are

related only through persistency values.

Proposition 2.7. With the assumptions on c̃ and d̃ described as above, the unique

solution to Problem (Pc) is

α∗ = E
[
Z
(
c̃, d̃
)]
, β∗j = E

[
xj

(
c̃, d̃
)]
, j = 1, . . . , n1.

The proof of above proposition is a straightforward extension of that of Theorem

2.1. One only needs the independence assumption on c̃ and d̃ to simplify the deriva-
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tion, i.e., Cov(c̃j, d̃k) = 0, ∀ j = 1, . . . , n1, k = 1, . . . , n2. Indeed, the uncorrelated

assumption is sufficient, but for multivariate normally distributed random variables,

uncorrelatedness is equivalent to independence.

Besides the project management problem, another potential application of this

extended model is the choice prediction problem, where a manufacturer decides on

the design parameters of products and consumers make the purchasing decision after

observing the products by maximizing their utilities. The consumer’s utility function

certainly depends on some parameters that are observable to the manufacturer, like

the product design parameters and demographic characteristics. However, there might

also exist some private decision criteria only known by the consumer, so the resulting

purchasing behaviour will appear random to the manufacturer. Therefore, the manu-

facturer’s task is to predict the consumer’s choice based on limited information. Under

such settings, Z(c̃, d̃) can be interpreted as the random utility function of the con-

sumer, and c̃ represents the observable parameters, and d̃ represents the consumer’s

private decision criteria. The manufacturer wants to find the best prediction of the

consumer’s choice as the observable parameters change. Our result in Proposition 2.7

says that under some assumptions on the decision parameters, the least squares normal

approximation can be constructed by observing the consumer’s preference over those

observable parameters, E[xj(c̃, d̃)]. Such information can be obtained from carefully

designed surveys and conjoint analysis. Mishra et al. (2013) analyzed an automotive

design problem which falls in the category of our problem description, although they

treated the problem using a different model with different assumptions.

It is also possible to extend our least squares quadratic estimator for the partial
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information problem with the following distributional form:

Qc(c̃) = α +

n1∑
j=1

βj
(
c̃j − µcj

)
+

n1∑
j1=1

n1∑
j2=j1

γj1,j2(c̃j1 − µcj1)(c̃j2 − µ
c
j2

).

Defining Γ in the same manner as before, we present the solution to the least squares

quadratic estimation problem with partial information in the following proposition.

The detailed proof is omitted, since it is similar to that of Theorem 2.5.

Proposition 2.8. With the same assumptions on c̃ and d̃ as in Proposition 2.7,

the least squares quadratic estimator’s parameters (α∗,β∗,Γ∗) can be characterized as

follows:

α∗ = E
[
Z
(
c̃, d̃
)]
− Σc • Γ∗, β∗j = E

[
xj

(
c̃, d̃
)]
, j = 1, . . . , n1,

and Γ∗ is symmetric and satisfies the following system of (n2
1 +n1)/2 linear equations:

n1∑
j′1=1

n1∑
j′2=j1

γ∗j′1,j′2

(
Σc
j′1,j1

Σc
j′2,j2

+ Σc
j′1,j2

Σc
j1,j′2

)
=

n∑
j=1

(
E
[
c̃j1xj

(
c̃, d̃
)]
− µj1E

[
xj

(
c̃, d̃
)])

σj,j2 , ∀1 ≤ j1 ≤ j2 ≤ n1.

2.5.2 Multivariate Skew-Normal Distribution

To address the shape limitation of normal distribution, i.e., symmetry, another research

field currently under intense development is on skew-normal distribution. The idea

is to introduce a skewness shock to normally distributed random variables. For a

comprehensive review of this topic, please refer to Azzalini (2005). The idea of skew-

normal distribution attracts our attention because it allows a nice generalization of

Stein’s Identity contributed by Adcock (2007). Following our notation, suppose the

random vector c̃ can be expressed as c̃ = c̃N + λũ, where c̃N has a multivariate
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normal distribution with mean vector µ and covariance matrix Σ � 0, and ũ is a

normal random variable independent of c̃N with mean τ and variance 1 truncated

from below at zero, and λ ∈ Rn is a vector of skewness parameters, which may take

any real values. Then the probability distribution of c̃ is multivariate skew-normal

with parameters µ, Σ, λ, and τ , denoted as c̃ ∼ MSN(µ,Σ,λ, τ). Adcock (2007)

extended Stein’s Identity for c̃ ∼MSN(µ,Σ,λ, τ) as follows:

Lemma 2.9. [Extension of Stein’s Identity for MSN Distribution] Let c̃ be an n di-

mensional random vector that has the distribution MSN(µ,Σ,λ, τ). For any function

h(c1, . . . , cn) : Rn → R such that ∂h(c1, . . . , cn)/∂cj is continuous almost everywhere

and E[|∂h(c̃)/∂cj|] <∞, ∀j = 1, . . . , n. Then

Cov(c̃, h(c̃)) =
(
Σ + λλT

)
E [∇h(c̃)] + λ

(
E[h(c̃N)]− E [h(c̃)]

)
ξ(τ),

where c̃N ∼ N(µ,Σ), and ∇h(c̃) is as defined in Lemma 1.3, and ξ(τ) = φ(τ)/Φ(τ).

φ(.) and Φ(.) are the probability density function and cumulative distribution function

of the standard normal random variable, respectively.

With Lemma 2.9, we can easily extend our results in Theorem 2.1 for c̃ ∼MSN(µ,Σ,λ, τ).

The proof is a simple modification of that of Theorem 2.1 and hence omitted here.

Proposition 2.10. When c̃ ∼ MSN(µ,Σ,λ, τ) and Σ � 0, the unique solution to

Problem (P) is

α∗ = E [Z(c̃)] ,

β∗ = E [x(c̃)] + Σ−1λ
{
λTE [x(c̃)] +

(
E[Z(c̃N)]− E [Z(c̃)]

)
ξ(τ)

}
.

Again, we transform the distribution estimation problem into the related persis-

tency problem. The only difference is that we need to estimate one more parameter,
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E[Z(c̃N)], the expected objective value without skewness shock. Observe that when

λ = 0, we get back the solution to normally distributed c̃.

We do not generalize the quadratic estimator for the multivariate skew-normal

distribution because the purpose of introducing the quadratic terms can be partially

fulfilled by modeling the uncertainty with the skew-normal distribution. This not only

introduces skewness to the random coefficients, c̃, but also the final approximating

distribution, W (c̃).

2.6 Approximating Persistency Values

Theorem 2.1 and 2.5 transform the distribution approximation problems under the

least squares framework into the problems of estimating certain stochastic parameters,

i.e., E[x(c̃)], E[c̃x(c̃)T ], and E[Z(c̃)]. Note that we are not bound to use just one

method to estimate all these parameters. Indeed, we can choose any methods deemed

appropriate for each parameter. From this point of view, there is a huge literature

we can make use of to estimate these parameters, especially for E[Z(c̃)]. What we

show next is only one possible approach. To avoid the criticism of speculation, we only

choose some basic and generic estimation methods without sophisticated modifications

to tailor to our test problems. Hence, we leave plenty of room for users to improve the

approximation accuracy for specific applications and better demonstrate the power of

our least squares approximations.

In literature, the problem of estimating the expected objective value of a stochastic

optimization problem has been studied for a long time. In case of the project manage-

ment problem, the search for the expected project completion time started half century

ago (cf. Clark (1961), and Fulkerson (1962), etc.) and is still an active research topic

(cf. Yao & Chu (2007)). In all the numerical studies presented next, we choose to use
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the classical estimation method proposed by Clark (1961). The technique developed

in Clark (1961) forms the building block of most modern distribution approximation

methods, especially for the project management problem and statistical timing anal-

ysis. Note that we only use the original estimation methods from Clark (1961) to

estimate E[Z(c̃)] without considering any further extensions and refinements.

On the other hand, although the concept of persistency was only brought into the

optimization area since Bertsimas et al. (2006), it has long existed as criticality index

in the project management area. Similar to the case of approximating the distribu-

tion of the project completion time, the majority of the research work on estimating

criticality has been focusing on developing heuristics algorithms based on the topo-

logical properties of the project networks, and the uncertainty is usually treated by

discretization and/or stochastic dominance (cf. Dodin (1984), Dodin & Elmaghraby

(1985), etc.). More advanced method combines the strength of different approaches

to obtain new hybrid approach. For example, Bowman (1995) utilized the geometric

properties of the networks to reduce the computational requirement of simulation. The

common limitation of these methods is the lack of consideration of correlations among

different activity completion times.

Besides these specific estimation methods for the project management method,

there is a series of generic conic programming based models for persistency estimation

as reviewed before (cf. Natarajan et al. (2009), Lasserre (2010), Mishra et al. (2012),

Natarajan et al. (2011), Kong et al. (2013) etc.). By “generic” we mean that these

methods work on any optimization problems and do not exploit any specific problem

structure like the network flow in the project management problem. We will adopt

one of the conic programming method, CPCMM, to estimate E[x(c̃)] and E[c̃x(c̃)T ].

As reviewed in Chapter 1, the matrix decision variable encodes both information for
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E[x(c̃)] and E[c̃x(c̃)T ]. Besides its generic nature, another key reason that we choose

this model is its ability to capture correlations among random coefficients.

However, a key drawback of CPCMM is that it ignores the distributional infor-

mation. Hence, when c̃ is normally distributed, CPCMM only gives an upper bound

on E[Z(c̃)] and estimates of the persistency and E[c̃jxi(c̃)]. We will discuss some

ways to improve the persistency estimation in Chapter 4. In this stage, however, we

do not implement any improvement methods, because the persistency estimates from

CPCMM are good enough for most examples, and we want to keep the focus of this

chapter on distribution approximation rather than persistency estimation. As dis-

cussed in Chapter 1, computationally we will solve the doubly nonnegative relaxation

of the completely positive programs. Despite all these numerical inaccuracies, we will

show that our approximation methods are still practically attractive due to the use of

persistency in the approximation and the flexibility of our methods.

2.7 Computational Study

We divide the computational analysis in this section into two main parts. In the

first part, we assess the quality of our linear and quadratic estimations by assuming

the availability of exact persistency values. In the second part, we build approximat-

ing distributions based on the estimated persistency values discussed in the previous

section. For both parts, we mainly focus on the application in project management

problems, and the performance of our estimators are gauged against various exist-

ing methods. In particular, we are interested in comparing our methods with PERT.

All the computational studies are conducted in MATLAB environment, and LPs are

solved using CPLEX solver with YALMIP interface in MATLAB (cf. Löfberg (2004)).

SDPs are solved using SDPT3 solver (cf. Toh et al. (1999), Tutuncu et al. (2003)).
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Before presenting the results, we would like to discuss the performance measures first.

Note that all the examples studied in this section are simple test projects from the

literature, which are meant for illustration of the least squares approximation frame-

work. As reviewed in the previous section, there are many more sophisticated methods

available to improve the approximations in terms of both accuracy and efficiency for

larger problems. However, since it would digress the focus of the current chapter, we

opt not to go into details in this direction here and leave this issue to Chapter 4.

2.7.1 Performance Measures

For different instances of the project management problem, we try to compare our

approaches with as many existing approximation methods as possible, neglecting ap-

proaches that require the activity duration distribution to be discrete, e.g., bounding

distribution method by Kleindorfer (1971).

The key performance indicator we consider is the expected square deviation (ESD),

which is also the objective function we try to minimize in obtaining our least square ap-

proximations. Unfortunately, almost all the approximating distributions derived using

previous methods do not reside in the same probability space as Z(c̃), which makes it

impossible to compute the squared deviation from Z(c̃). This problem arises since the

traditional approaches solely focus on the distribution (like tail probabilities, etc.) but

overlook the approximation error between the approximated completion time and the

true completion time under a specific realization of the random activity durations. For

example, Cox (1995) assumed the project completion time to be normally distribut-

ed at first, and then tried to estimate the moments of the completion time. Hence,

we have to resort to other measures to compare the performance of different approx-

imation methods including descriptive statistics, like mean, standard deviation, and
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skewness. In addition, we also employ the following measure to quantify the distance

between two distributions:

Square Norm Distance(F,G) = SND(F,G) :=

ˆ 1

0

[
F−1 (y)−G−1 (y)

]2
dy

where F and G are the cumulative distribution functions of two distributions.

On the other hand, PERT approach simply considers the expected duration of each

activity when choosing the critical path (i.e., the path with longest expected comple-

tion time), and then use the mean and variance of this critical path to approximate

the mean and variance of the project completion time, respectively. Finally, resorting

to the Central Limit Theorem, PERT assumes that the project completion time is nor-

mally distributed (cf. MacCrimmon & Ryavec (1964)). When the project activities

follow a multivariate normal distribution, PERT uses the distribution of the critical

path to approximate the distribution of the project completion time. Thus, it admits

the computation of squared deviation.

2.7.2 With Exact Persistency Values

The purposes of this analysis are twofold. First, we would like to know how accurate

the least squares linear approximation can be and how the least squares quadratic ap-

proximation can improve the estimation accuracy. Using the exact persistency values,

we rule out the impact of errors from estimating persistency values, which might either

increase or decrease the accuracy of our least squares approximations and complicate

the analysis. Second, the results from such analysis serve as a benchmark for the fol-

lowing subsection where we discuss the approximations based on estimated persistency

values. It helps to decide how much estimation error in persistency values is tolerable

for constructing our approximating distributions.



66 CHAPTER 2. LEAST SQUARES DISTRIBUTION APPROXIMATION

By “exact”, we mean the persistency values are directly computed from simulation

(i.e., sample estimates of E[x(c̃)], E[c̃x(c̃)T ] and E[Z(c̃)]) rather than some persistency

estimation models. For small project management problems, simulation is still possible

because their deterministic versions are solvable in polynomial time.

With the following example, besides comparing the performance of different ap-

proximation methods, we also illustrate the importance of considering correlations

among activities.

Example 2.11. The project network consists of four nodes and five arcs as shown in

Figure 2.7.1. All activities are independent and normally distributed with mean and

variance both equal to one.

Figure 2.7.1: The project network in Example 2.11

The network in Example 2.11 is the “Wheatstone bridge” network from Lindsey

(1972), and later regarded as the “forbidden graph” by Dodin (1985), since it is the

basic evidence of graph irreducibility. Ord (1991) summarized the results for this

graph documented in literature with normally distributed activity durations, and also

provided the results from his discrete approximation method with a parameter k in-

dicating the number of discrete points used to approximate the normal distribution.

In fact, the approximated distributions obtained by Ord (1991) should be a discrete

distribution. However, we extend his theory in computing the square norm distance
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by assuming the final approximated distribution follows a normal distribution with

the moments derived from his original procedure. All these results are presented in

Table 2.7.1, where T denotes the project completion time, and σ(T ) denotes its stan-

dard deviation, and sk(T ) denotes its skewness. “Error on σ(T )” is computed as the

absolute relative error against the simulation result. The new result from our method

is also presented in Table 2.7.1 under “LSN” and “LSQ”, where “LSN” stands for “Least

Squares Normal” and “LSQ” stands for “Least Squares Quadratic”. We conducted 106

simulation runs to estimate the persistency values. To avoid repetition, the estimation

results of our least square approximations using estimated persistency values are also

included in this table labeled as “LSNe” and “LSQe”. We will not discuss those results

until next subsection.

Approximation Method E [T ] σ (T ) Error on σ(T ) sk (T ) ESD SND

106 simulation 3.516 1.39 - 0.28 - -

Numerical integration 3.483 1.47 5.76% 0 - 0.017

Ord (1991) k = 2 3.261 0.70 49.64% 0 - 0.543

k = 3 3.485 1.04 25.18% 0 - 0.128

k = 4 3.525 1.08 22.32% 0 - 0.101

k = 5 3.582 1.15 17.27% 0 - 0.068

k = 6 3.594 1.15 17.27% 0 - 0.069

Cox (1995) 3.639 1.69 21.58% 0 - 0.116

PERT 3.000 1.73 24.46% 0 0.973 0.395

LSN 3.515 1.27 8.63% 0 0.311 0.021

LSQ 3.515 1.36 2.16% 0.47 0.078 0.005

LSNe 3.518 1.26 8.80% 0 0.311 0.022

LSQe 3.519 1.44 3.76% 0.60 0.124 0.014

Table 2.7.1: Estimation results for Example 2.11

Theoretically, if we have exact persistency values, the mean estimates from both

least squares approximations should be the same as the true mean project completion

time. However, in simulation, the sampling errors are magnified through linear and

quadratic terms in the estimation formulas. Even though we use the sample mean
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project completion time from simulation as the value of α in least quadratic estimators,

the sampling errors from linear and quadratic terms make the final mean estimates of

our approximations different from that of simulation.

From Table 2.7.1, we can see that except the numerical integration approach and

our quadratic estimator, the least squares linear estimation gives the best estimate

for the standard deviation, in terms of absolute relative error. Regardless of the high

accuracy, the integration approach would be too tedious to be applicable for even

medium-size networks. This suggests that using persistency is a promising way to es-

timate the variability in the project completion time. Recall that in our approximation

model, the variance is solely determined by the persistency values, i.e., βj’s in Equa-

tion(2.3.1). Adding the quadratic terms not only helps capture the right direction of

skewness, but more interestingly, it also significantly improves the estimation on vari-

ance. The added variability comes from the quadratic components of the estimator, as

the linear term in the least squares quadratic estimation shares the same coefficients

as the least squares linear estimator, i.e., persistency. Overall, the least squares linear

approximation is remarkably effective with extremely low ESD and SND, and the least

squares quadratic approximation even pushes the SND below the numerical integra-

tion approach. Figure 2.7.2 plots the density and cumulative distribution functions

of PERT and our least squares estimations together with the simulation results. It

is obvious from the plots that both least square estimators fit closely with simulation

results. With the right skewness direction, the cumulative distribution function of the

quadratic estimator almost overlaps with that of simulation.

To demonstrate the impact of having correlated activities, let us consider a simple

variation of Example 2.11.

Example 2.12. Consider the same project network as in Example 2.11 with the same
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Figure 2.7.2: Distributions for Example 2.11

mean and variance for each activity, but the activities are correlated with each other.

The correlation matrix is randomly generated using MATLAB function “randcorr”.

Note that all the previous methods except PERT give the same approximations

since they ignore correlations among activities. The distribution approximated by

PERT is simply the distribution of the critical path, i.e., Path 1→ 2→ 3→ 4.

Table 2.7.2 summarizes the results for nine instances of Example 2.124. “SIMU”

stands for “simulation”, and the sample size for all the simulations is 106. Same as

before, the results from estimated persistency values are also included in the table to

save space but will only be discussed in the next subsection. First of all, it is observed

that both mean and variance of the project completion time can vary a lot from the

independent case, especially the variance. Similar to Example 2.11, the variance esti-

mates from both least square approximations cope nicely with the true variances. The

least squares quadratic estimator constantly produces standard deviation estimates

with less than 3% error. The skewness estimates from the least squares quadratic esti-

mator tend to be larger than the true values, but the direction is correct, which helps

improve ESD and SND substantially. The ESD of the least squares linear estimator is

4We have conducted this experiment for hundreds of random correlation matrices, and the findings
are the same as those discussed here. Thus, we only report nine instances here for succinctness.
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usually less than 30% of that from PERT, and the least squares quadratic estimator

offers a further 70% reduction. The improvement on SND is even larger.

For the example problems we studied above, the skewness in the optimum distri-

bution is not very strong. In order to better demonstrate the impact of the quadratic

estimator, we study a simple problem discussed by Zhan et al. (2005) in the next

example.

Example 2.13. Approximate the distribution of the maximum of two normal random

variables, N(0, 0.52) andN(1, 32). In this case, the persistency values can be accurately

obtained from integration.

The results are plotted in Figure 2.7.3, and the improvement from the quadratic

estimator is obvious. We can conclude that the advantage of adding quadratic terms

is larger if the true distribution is suspect to be very skewed.
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Figure 2.7.3: Distributions for Example 2.13

2.7.3 With Estimated Persistency Values

Consider Example 2.11 again, and we will construct our least squares approximating

distributions using estimated persistency values. As discussed above, we implement
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the estimation scheme from Clark (1961) to estimate the mean project completion

time, i.e., the parameter α in our models. For persistency estimates, we solve the

SDP relaxation of CPCMM reviewed in Section 2.6. The results are summarized in

Table 2.7.1 on Page 67, where we add a lower case letter “e” after “LSN” and “LSQ”

to indicate that the results are from estimated persistency parameters.

From the table, we can see that when estimated parameters are used instead of the

exact ones, the distributions constructed from our least squares method still perform

very well. For the least squares linear approximation, the estimated variance only

deteriorates a little bit, which highlights the accuracy of persistency estimates from

CPCMM and the power of using persistency in distribution approximation. Although

the estimation error on E[c̃x(c̃)T ] has some impact on the least squares quadratic

approximation, it still improves the performance from the least squares linear ap-

proximation. In particular, the variability estimate still outperforms the numerical

integration approach, and the SND is below the numerical integration approach and

much better than any other existing methods.

Next, we examine the approximating distributions with estimated persistency val-

ues using Example 2.12. New results are included in Table 2.7.2 on Page 70. Both

least squares approximations with estimated persistency parameters perform as well

as their counterparts with exact persistency parameters, and completely dominate

PERT. From ESD and SND, the least squares quadratic approximation suffers a bit

more from estimation errors since there are more parameters to estimate to construc-

t the distribution. Nevertheless, the least squares linear approximation offers a very

robust performance, given the fact that only n persistency values need to be estimated.

Now, let us revisit Example 2.13 with severe skewness in the optimum distribution.

We present the approximation results with both exact and estimated persistency values
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in Table 2.7.3. Although the estimation errors in the persistency parameters cause the

variance estimate from the least squares quadratic estimator to become worse, the right

skewness characterization still makes it better than the least squares linear estimation

in terms of lowest ESD and SND. To highlight the impact of quadratic estimators, we

also report the results from Clark’s approximation method, which computes the exact

moments including mean and variance in this simple setting. However, the failure

to capture skewness makes Clark’s method even worse than the least squares linear

approximation in terms of higher SND. This also gives prominence to the advantage

of our least squares approximation method over the traditional moment matching

methods, since Clark’s method in this case represents the perfect moment matching

methods, i.e., zero estimation errors in moments.

Approximation Method E [T ] σ (T ) Error on σ(T ) sk (T ) ESD SND

106 simulation 1.777 2.09 - 1.13 - -

PERT 1.000 3.00 43.54% 0 2.655 2.091

Clark (1961) 1.778 2.09 0.00% 0 - 0.463

LSN 1.778 1.90 9.21% 0 0.776 0.453

LSQ 1.779 2.07 1.23% 1.49 0.114 0.057

LSNe 1.777 1.98 5.48% 0 0.782 0.445

LSQe 1.777 2.23 6.50% 1.72 0.166 0.115

Table 2.7.3: Estimation results for Example 2.13

Before we end this section, we present a final example on STA considering cor-

relations between delays. The example is taken from Tsukiyama et al. (2001). As

we shall see later, the input values for this example are quite extreme. However, our

least squares approximation method can still provide accurate estimations, which also

demonstrate the robustness of the new approach.

Example 2.14. Consider the digital circuit and its network representation as shown

in Figure 2.7.4. All the delay times (i.e., arc lengths) follow normal distributions.
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Arc (1, 3) and (1, 4) have distributions of N(20, 1.42), while Arc (2, 3), (2, 4), (3, 5),

and (4, 5) follow N(10, 0.72). Arc (1, 2) is normally distributed with mean µ12 and

standard deviation σ12. Correlation exists only between Arc (3, 5) and Arc (4, 5), and

their correlation coefficient is denoted as ρ.

Figure 2.7.4: The digital circuit and its network representation in Example 2.14

For this example, we directly use the mean delay estimates from Tsukiyama et al.

(2001) as the value of α for our least squares approximations. Tsukiyama et al. (2001)

studied four scenarios of different input parameter values, i.e., µ12, σ12, and ρ. We

report our approximation results under different scenarios in Table 2.7.4.

As mentioned above, the numerical values are extreme in this example. The co-

efficients of variation for all the delay times are only 0.07. Furthermore, with the

normality assumption on delay times, PERT is expected to provide excellent approxi-

mation results, and the impact of correlations is minimal and hence difficult to capture.

From Table 2.7.4, we find that despite the extreme inputs, our least squares quadratic

approximation still gives the best estimate on the variance of circuit delay. Overall,

both least squares approximations perform much better than PERT in terms of lower

ESD and SND. Although the numerical errors cause the least squares quadratic ap-

proximation to have a higher SND than the least squares linear approximation, the

least squares quadratic approximation still provides the lowest ESD.
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Approximation Method E [T ] σ (T ) Error on σ(T ) sk (T ) ESD SND

µ12 = 10, σ12 = 0.7, ρ = 0.122

106 simulation 31.32 1.08 - 0.26 - -

PERT 30.00 1.21 12.28% 0 3.220 1.769

LSNe 31.34 0.86 20.74% 0 0.432 0.054

LSQe 31.34 1.18 8.93% 0.62 0.162 0.018

µ12 = 20, σ12 = 1.4, ρ = 0.800

106 simulation 40.43 1.66 - 0.01 - -

PERT 40.00 1.71 3.43% 0 0.585 0.191

LSNe 40.56 1.60 3.43% 0 0.124 0.020

LSQe 40.56 1.66 0.06% 0.26 0.073 0.026

µ12 = 40, σ12 = 2.8, ρ = 0.941

106 simulation 60.41 2.94 - 0.00 - -

PERT 60.00 2.97 0.96% 0 0.520 0.171

LSNe 60.57 2.91 0.96% 0 0.118 0.024

LSQe 60.57 2.94 0.07% 0.17 0.062 0.038

µ12 = 80, σ12 = 5.6, ρ = 0.980

106 simulation 100.40 5.67 - 0.00 - -

PERT 100.00 5.69 0.27% 0 0.500 0.158

LSNe 100.60 5.64 0.56% 0 0.132 0.041

LSQe 100.60 5.66 0.26% 0.18 0.122 0.097

Table 2.7.4: Estimation results for Example 2.14 with estimated parameters for least
squares approximating distributions

2.8 Conclusion

In this chapter, we show that the distribution approximation problem under least

squares framework and normality assumption can be transformed into the related per-

sistency problem. Extensive computational experiments are presented to demonstrate

the advantages of our approximation method, especially the benefits of introducing

persistency into the distribution approximation problem. Better estimation on persis-

tency values is then becoming critical and hence worth more exploration, especially

under the normality assumption.
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Chapter 3

Quadratic Regret Strategy

– Application in Portfolio Selection Problem

Abstract. We propose a new multiple-benchmark tracking-error model for portfolio

selection problem. The tracking error of a portfolio from a set of benchmark portfolios

is defined as the difference between its return and the highest return from the set

of benchmarks. We derive closed-form solution of our portfolio strategy, whose main

component is the sum of the benchmark portfolios weighted by their respective prob-

abilities of attaining the highest return among the portfolios in the benchmark. These

probabilities, also known as the persistency values, are less sensitive to estimation er-

rors in the means and covariances. These features help to stabilize the computational

performance of our portfolio strategy against estimation errors.

We use the proposed model to address several pertinent issues in active portfolio

management: (1) What are the benefits in tracking performance of multiple bench-

marks? We demonstrate that under suitable conditions, multiple-benchmark tracking-

error model can actually produce portfolio strategy that has less variability in portfolio

returns, compared to the portfolio strategy constructed using single benchmark model,

given a fixed target rate of returns. This addresses the agency issue in the investmen-
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t problem, as portfolio managers are more concerned with variability of the excess

returns above the benchmark, whereas the investors are more concerned with the vari-

ability of the total returns. (2) How and when to rebalance the portfolio allocation

when prices and asset returns change over time, taking into account transaction cost?

We show that our model can control for transaction cost by adding the buy-and-hold

strategy into the set of benchmark portfolios. This approach reduces drastically the

transaction volume of several popular static portfolio rules executed dynamically over

time.

Last but not least, we perform comprehensive numerical experiments with various

empirical data sets to demonstrate that our portfolio can consistently provide higher

net Sharpe ratio (after accounting for transaction cost), higher net aggregate return,

and lower turnover rate, compared to ten different benchmark portfolios proposed in

the literature, including the equally weighted portfolio (the 1/n strategy).

3.1 Problem Overview

In practice, an institutional investor often evaluates the performance of a portfolio

manager against a benchmark (e.g., an index fund). In active portfolio management,

the portfolio manager makes specific investment with the goal of outperforming the

benchmark, as his fees and compensations are directly linked to the excess returns

above the benchmark. For a given target rate of returns, the portfolio manager would

often seek to minimize the volatility of the deviation of the portfolio return from the

benchmark return, i.e., the tracking-error volatility. The portfolio selection models

that minimize the tracking-error volatility are referred to as benchmark tracking-error

models (cf. Roll (1992) and Jorion (2003)).
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Roll (1992) investigated the benchmark tracking-error model that minimizes the

tracking-error volatility subject to the full investment constraint and the constraint on

target expected return, i.e.,

min
eTx=1,µTx=K

E
[(
r̃Tp− r̃Tx

)2
]
.

where r̃ ∈ Rn is the random return vector of the financial assets; µ is the expect return

of the assets, i.e., µ = E[r̃]; e is the column vector with all entries equal to 1; K is the

target expected return; p is the benchmark portfolio; and x ∈ Rn is the investment

decision.

The deficiency with this tracking-error approach is however well-known. Roll (1992)

observed that the optimal trading decision (x−p) does not depend on the benchmark

at all. Furthermore, with this setup the portfolio manager will focus solely on the

tracking-error volatility but ignore the total portfolio risk. This creates an agency

problem, since the investor is more concerned with the latter. The tracking-error model

may thus produce seriously inefficient portfolios for the investor. To address these

issues, Roll (1992) proposed to constrain the portfolio’s beta; Jorion (2003) proposed

to constrain the portfolio’s total variance; and Alexander & Baptista (2008) proposed

to constrain the portfolio’s Value-at-Risk (VaR). However, most of these proposals are

difficult to implement in practice, and do not address directly the connection with the

benchmark based approach to portfolio management.

The choice of the proper benchmark is also a problem in practice. Poor active

portfolio management could lead to less than perfectly diversified portfolio, and incur

heavy transaction costs and assumes high total portfolio risk. El-Hassan & Kofman

(2003) observed from their empirical analysis that in reality, the selected benchmark

is often inefficient, and its expected return could fall below the expected return of
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the well-known minimum-variance portfolio. The immediate consequence is that dur-

ing bear market conditions the benchmark tracking-error models will call for a huge

amount of short selling, which can substantially increase the total portfolio risk. This

problem is compounded by the fact that tracking-error measurement does not differen-

tiate between over-performing and under-performing vis-à-viz the benchmark portfolio,

and hence the performance of the tracking-error model can be adversely affected by a

poorly selected benchmark.

To mitigate this problem of finding the right unique benchmark, one natural solu-

tion is to use multiple benchmarks to evaluate the performance of a portfolio manager.

By choosing benchmarks that can counter-balance the performance of each other in

different market environments, we can track the performance of our portfolio strat-

egy in a more accurate and reliable manner. The literature on multiple-benchmark

tracking-error strategy is however comparatively sparse. Wang (1999) extended the

single-benchmark tracking-error model to track multiple benchmarks simultaneously.

The tracking error of the portfolio with respect to a set of m benchmarks is defined

by a weighted sum of single-benchmark tracking errors, i.e.,

min
eTx=1,µTx=K

m∑
j=1

wjE
[(
r̃Tpj − r̃Tx

)2
]
,

where wj is the weight on the tracking error of the jth benchmark portfolio, pj, j =

1, . . . ,m. Rustem & Howe (2002) considered an alternative model. Their objective is

to minimize the maximum tracking-error volatility across all benchmarks, i.e.,

min
eTx=1,µTx=K

max
j∈{1,...,m}

E
[(
r̃Tpj − r̃Tx

)2
]
.

However, it is not clear how a portfolio manager should choose the weights in Wang’s
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model. The minimax approach, on the other hand, is often considered to be too

conservative. A more critical issue is that these models still rely on the evaluation of

single-benchmark tracking error and only combine them in the aggregate level. They

fail to distinguish between over-performing and under-performing vis-à-viz the selected

benchmarks, and that the performance of the different benchmarks may be correlated.

Hence they do not fully capture the concerns arising from the real investment activities

as discussed above.

In this chapter, we propose a new class of tracking-error models for multiple bench-

marks. This problem arises naturally when multiple natural benchmarks (e.g., risk-free

returns, S&P 500 index etc.) are readily available in the market that can be used to

evaluate the performance of the portfolio managers. It also arises when the portfolio

manager is managing funds for different clients, each with a unique benchmark that

will be used to evaluate the performance of the manager. Instead of managing different

pools of funds, one for each client, we explore the possibility of pooling the funds and

benchmarks together to derive a better portfolio strategy. Our target performance is

to match the highest return among all the benchmarks, i.e.,

ZB(r̃) := max
j∈{1,...,m}

r̃Tpj.

Note that since the asset returns are random, the highest benchmark return is also

random, and it depends on the realization of the asset returns. That is why we use the

notation ZB(r̃) to represent the highest benchmark return. Our multiple-benchmark

tracking error is defined as the difference between the portfolio return and the highest

return induced from the benchmark portfolios, i.e., r̃Tx − ZB (r̃). We are interested
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in finding a portfolio x whose tracking-error volatility is minimized, i.e.,

(T) min
x∈X

E
[(
ZB(r̃)− r̃Tx

)2
]
,

where X is a set of feasible portfolios. The constraints in the set X includes the full

investment constraint eTx = 1. It is possible to capture additional constraints on

the portfolio vector in the set X , e.g., target expected return constraint, short-sale

constraints, etc. Note that when there is only one benchmark portfolio, this reduces

to the single-benchmark tracking-error model of Roll (1992).

Intuitively, as the financial asset returns are very volatile, it is almost impossible

for a single benchmark to consistently perform well in every situation. Tracking the

best return from a set of benchmarks appears to be a more attractive and practical ob-

jective, as it addresses partially the concern of a particularly bad benchmark dragging

down the performance of the portfolio. The investor can also control the aggressiveness

of the active investment by choosing an appropriate pool of benchmarks that suit the

style and risk profile of the investor. Surprisingly, this approach can also be used to

address the agency issue concerning the conflicting objectives between the investor and

portfolio manager - the portfolio constructed using the multiple-benchmark tracking-

error model may actually resulted in lower total returns variability, compared to the

single benchmark approach.

Our definition of multiple-benchmark tracking error is similar to the definition of

external regret in the on-line portfolio selection and machine learning problems. In

those problems, the goal is to minimize the predictor’s cumulative loss with respect

to the best cumulative loss in a pool of “experts”, and the external regret measures

the difference between the predictor’s cumulative loss and that of the best expert

(cf.Stoltz & Lugosi (2005) and references therein). There are several key differences
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between the on-line portfolio selection problem and our problem. First, our problem

happens in a single period, but the on-line portfolio selection deals with multi-period

investment problem. Consequently, the objective for the on-line portfolio selection

problem is usually to maximize the wealth growth over a given number of periods, and

most research work in literature focused on providing bounds on the external regret.

In the on-line portfolio selection problem, the distribution of asset return is unknown

and must be gradually learned from investment activities, but in our problem, we

assume that all the distributional information is known before making the investment

decision. Last but not least, even though the on-line portfolio selection problem is a

multi-period investment problem, the impact of transaction costs was largely ignored in

this substream of literature. On the other hand, we pay a lot of attention on controlling

for transaction costs when analyzing our model, and also build an extension that can

explicitly penalize high transaction volumes. Although not purposely designed for

the multi-period problem, our model still demonstrates superior performance when it

is used in multiple periods and the estimation errors are properly controlled by the

unique feature of our model.

Remark 3.1. Note that Problem (T) can be interpreted as a quadratic regret mini-

mization model, where the regret is measured as the performance deviation from the

maximum benchmark return. Mathematically, Problem (T) is very similar to the dis-

tribution approximation problem discussed in Chapter 2. In this case, we want to find

a distribution given as a linear function of the random vector r̃ to approximate the

distribution of ZB(r̃), the outcome of an optimization system depending on r̃. The

linear coefficients, x, are obtained from minimizing the expected squared deviation of

the two distributions subject to some constraints. The main difference is the lack of

constant term in Problem (T), which makes the solution of x different from the persis-
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tency under the normality assumption. However, as we shall see later, persistency still

plays an important role in the optimal portfolio position. This not only leads to the

robustness of our portfolio, but also provides some insights to the regret minimization

model and probability matching behaviour, which we will illustrate further in Section

3.2.3 and 4.1.2.

Our main contributions in the chapter are as follows:

1. Under the assumption of a normally distributed return vector, we derive the

closed-form solution of our portfolio model without short-sale constraints, and

show that the optimal multiple-benchmark tracking-error portfolio relies on the

probabilities that the benchmarks attain the highest return. This helps to sta-

bilize the performance of our portfolio strategy in numerical experiments, as

those probabilities are generally less prone to estimation errors on means and

covariances.

2. Using two suitably chosen benchmarks, we prove that one can generate the entire

mean-variance efficient frontier using our model. This result is similar to the

well-known Two-Fund Theorem in classical portfolio theory.

3. We also compare the performance of our multiple-benchmark tracking-error mod-

el with the traditional single-benchmark tracking-error model, for fixed target

expected return K. While the portfolio manager focuses on minimizing the vari-

ability of the excess return against the benchmark(s), we show that the total

portfolio variance can be lower in the multiple-benchmark environment. We i-

dentify the environments under which the multiple-benchmark portfolio strategy

will dominate the single-benchmark approach in terms of lower total portfolio

variance at all levels of target expected return. This result exploits the fact
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that the variance of the returns of a linear combination of portfolio rules can be

smaller than the variance of the returns of each individual portfolio rule.

4. We also show that the portfolio strategy constructed using our multiple-benchmark

tracking-error model will be preferred over using simple linear combination of

the benchmark portfolios, in the environment when the portfolio managers have

mean-variance utility functions with low risk aversion parameters.

5. More importantly, we show that our portfolio strategy performs well even with

estimation errors and when transaction costs are properly accounted for 1. We

show that our model can be extended to penalize for transaction volumes. Alter-

nately, we can also simply incorporate the buy-and-hold strategy into the set of

benchmarks to reduce the transaction volumes. We show via extensive numer-

ical experiments that this approach can significantly reduce transaction costs

while not sacrificing the performance on returns. For instance, in the multi-

period empirical tests, when we combine the partial minimum-variance (PARR)

portfolio proposed by DeMiguel et al. (2009) with the buy-and-hold strategy as t-

wo benchmarks, our multiple-benchmark tracking-error portfolio incurs turnover

rates that are less than half of those from the PARR portfolio. In terms of

out-of-sample Sharpe ratio net of 50 basis point, our portfolio is significantly

higher than the PARR portfolio. Our strategy also beats the equally weight-

ed investment strategy (also known as the 1/n strategy) comprehensively when

transaction costs are properly accounted for.

Outline of the chapter : In the next section, we solve our multiple-benchmark

1The most common approach in existing literature is to include either a penalty term in the
objective function or a budget constraint in the portfolio models. For example, Brodie et al. (2009)
proposed to add an additional penalty term to the classical Markowitz mean-variance framework,
where the penalty is proportional to the sum of the absolute values of the portfolio weights.
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tracking-error model and analyze the properties of its solution. We present and discuss

the results of the numerical studies in Section 3.3 with a focus on including the buy-

and-hold strategy as a benchmark to beat the other benchmark portfolios, especially

the equally weighted portfolio. Finally, we provide some concluding remarks in Section

3.4.

3.2 Multiple-Benchmark Tracking-Error Portfolio

In this section, we will derive the solution to our model, i.e., Problem (T), and an-

alytically investigate its features. Especially, we will compare our portfolio with the

well-known Markowitz mean-variance efficient portfolio and the linear combination rule

proposed by Tu & Zhou (2011). An extension of out model to penalize transaction

cost is presented in the final part of this section.

To derive the closed-form solution of Problem (T), we first simplify the problem

by linking it to the concept of persistency and Stein’s identity.

3.2.1 Persistency and Stein’s Identity

In the context of the benchmark tracking problem, the persistency of a benchmark

portfolio refers to the probability that this portfolio outperforms the rest benchmark

portfolios. Formally, we present the definition next.

Definition 3.2. Define the m dimensional random vector

p(r̃) =
(
IZB(r̃)=r̃Tp1 , . . . , IZB(r̃)=r̃Tpm

)T
,

where the indicator function IZB(r̃)=r̃Tpj takes a value of 1 if the jth benchmark port-

folio produces the highest return in the set of benchmark portfolios and 0 otherwise.
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The persistency vector is an m dimensional vector whose jth component is the prob-

ability that the jth benchmark portfolio is the best performing portfolio in the set of

benchmark portfolios, i.e.,

E[p(r̃)] =
(
P
(
ZB(r̃) = r̃Tp1

)
, . . . ,P

(
ZB(r̃) = r̃Tpm

))T
.

Define the n × m benchmark portfolio matrix P = [p1, . . . ,pm]. The persistency

weighted benchmark portfolio is defined as the n dimensional vector PE[p(r̃)].

Remark 3.3. In this chapter, we assume that r̃ is a nondegenerate multivariate con-

tinuous random vector with a positive definite covariance matrix. The support of r̃

over which more than one benchmark attains the maximum return has measure zero.

Then p (r) is unique almost surely, and E[p (r̃)] satisfies
∑m

j=1 E[pj (r̃)] = 1.

As we will see later, the solution to the multiple-benchmark tracking-error mini-

mization problem is related to the persistency when the return follows a multivariate

normal distribution, i.e.,

(A) The random return vector, r̃, follows a multivariate normal distribution with a

finite mean, µ 6= 02, and a finite positive definite covariance matrix, Σ, denoted

as r̃ ∼ N(µ,Σ).

This result is established by appealing to Stein’s Identity in probability theory, as

discussed in Chapter 1.

3.2.2 Tracking-Error Minimization

Intuitively, if we treat ZB(r̃) as a function on r̃, we can apply Stein’s Identity to derive

the covariance between the individual asset return and the highest benchmark return.
2Note that the assumption of µ 6= 0 is required only for the model analysis, especially on efficient

frontiers. For our basic model, we can still obtain the solution when µ = 0.
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In particular, applying Stein’s Identity to Cov(ZB(r̃), r̃T ), we get

Cov(ZB(r̃), r̃T ) = (ΣPE[p(r̃)])T .

Then our problem can be simplified as shown in the next proposition.

Proposition. Under Assumption (A), the multiple-benchmark tracking-error portfolio

in Problem (T) can be found by solving the following convex quadratic minimization

problem:

(T′) min
x∈X

xT
(
Σ + µµT

)
x− 2

(
ΣPE[p(r̃)] + E[ZB(r̃)]µ

)T
x.

Proof. Expanding the expectation term in (T), we get the equivalent formulation as

follows:

min
x∈X

xT
(
Σ + µµT

)
x− 2E

[
ZB(r̃)r̃T

]
x+ E

[
(ZB(r̃))2] .

Since the last term is independent of x, we can exclude it from the minimization

problem. Note that

E[ZB(r̃)r̃T ] = Cov(ZB(r̃), r̃T ) + E[ZB(r̃)]E[r̃T ] = Cov(ZB(r̃), r̃T ) + E[ZB(r̃)]µT .

Using differentiation by parts, we get

E

[
∂ZB(r̃)

∂r̃l

]
= E

[
∂

∂r̃l

(
n∑
i=1

m∑
j=1

r̃iPi,jpj(r̃)

)]

= E

[
m∑
j=1

Pl,jpj(r̃) +
n∑
i=1

m∑
j=1

r̃iPi,j
∂pj(r̃)

∂r̃l

]
= P(l)E [p(r̃)] ,

where P(l) denotes the lth row of P , and Pi,j = pji , ∀i = 1, . . . , n, ∀j = 1, . . . ,m. The
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last equality follows from our assumption on r̃ so that ∂pj(r̃)/∂r̃l exists almost every-

where and equals zero wherever it exists. Applying Stein’s Identity to Cov(ZB(r̃), r̃T ),

we get

Cov(ZB(r̃), r̃T ) = (ΣPE[p(r̃)])T ,

and thus Problem (T′).

Remark 3.4. Suppose that the random vector r̃ is not normally distributed. It is

still possible to find the multiple-benchmark tracking-error portfolio by solving the

following convex quadratic programming problem:

min
x∈X

xT
(
Σ + µµT

)
x− 2E

[
ZB(r̃)r̃T

]
x.

This requires the estimation of E
[
ZB(r̃)r̃T

]
. The advantage of resorting to Stein’s

Identity for the multivariate normal distribution is twofold. First, by using Stein’s

Identity, we need to estimate (a) The persistency vector E[p(r̃)], and (b) The ex-

pectation of the highest benchmark return E[ZB(r̃)]. Estimation of the benchmark

portfolio that different experts believe will outperform the rest is inherently easier to

elicit from managers. Second, the transformed problem provides a simple characteri-

zation with a closed-form solution that allows for more in-depth analysis of the model.

We elaborate on this issue in the next several subsections.

By re-writing the expression in Proposition 3.2.2, we can reinterpret our model as

a variant of single-benchmark tracking-error model: Problem (T′) is equivalent to

min
x∈X

(x− PE [p (r̃)])T Σ (x− PE [p (r̃)]) +
(
E [ZB (r̃)]− µTx

)2
.

The first term is exactly the tracking-error volatility, measured against the persistency
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weighted portfolio. The second term penalizes the shortfall of the portfolio return

from the highest benchmark return. When there is a constraint that fixes the ex-

pected portfolio return, the second term will vanish in the minimization problem, and

our model reduces to a single-benchmark tracking-error model with the persistency

weighted benchmark portfolio as the only benchmark. In general, our model anchors

in the persistency weighted benchmark portfolio, and it is adjusted to recover the loss

in the expected portfolio return from the highest benchmark return. This result shows

that Problem (T) is related to the single-benchmark tracking-error literature in the

following ways:

• If we fixed a target expected return, Problem (T) reduces to a single-benchmark

tracking-error minimization problem, where the benchmark tracked is PE [p (r̃)],

the persistency strategy formed by the set of portfolio used as benchmarks.

• If we fixed a budget for the tracking-error volatility, i.e.,

(x− PE [p (r̃)])T Σ (x− PE [p (r̃)]) ,

then Problem (T) will find a strategy that has expected return as close as pos-

sible to the highest benchmark return. Our model therefore uses E [ZB (r̃)] to

anchor the selection of the portfolio strategy in the tracking-error model, to avoid

excessive risk, instead of limiting the total risk (variance of the returns), as com-

monly used. The selection of the benchmarks used in our model is thus crucial

to the performance of the portfolio strategy.
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3.2.3 Closed-Form Solution

In this subsection, we present the closed-form expression of the multiple-benchmark

tracking-error portfolio when the return vector r̃ satisfies the multivariate normality

assumption. To simplify the expression, we introduce three constants, A = µTΣ−1µ,

B = µTΣ−1e, and C = eTΣ−1e. These constants are also used to describe the closed-

form expression of the Markowitz mean-variance portfolio (cf. Steinbach (2001)). Note

that by Assumption (A), A > 0 and C > 0.

Theorem 3.5. Define the set of feasible portfolios as X =
{
x ∈ Rn : eTx = 1

}
.

Under Assumption (A), the optimal multiple-benchmark tracking-error portfolio in (T)

is given by

PE [p(r̃)] + Σ−1

(
Cµ−Be

(A+ 1)C −B2

)(
E [ZB(r̃)]− µTPE [p(r̃)]

)
. (3.2.1)

Proof. Since Problem (T′) is strictly convex, the first-order optimality conditions are

both necessary and sufficient. In particular, the Lagrangian of Problem (T′) is given

by

L(x, π) = xT
(
Σ + µµT

)
x− 2 (ΣPE [p(r̃)] + E [ZB(r̃)]µ)T x+ 2π

(
1− eTx

)
.

The first-order conditions yield

2
(
Σ + µµT

)
x∗ − 2 (ΣPE [p(r̃)] + E [ZB(r̃)]µ)− 2πe = 0,

and
n∑
i=1

x∗i = 1.
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Multiplying Σ−1 to both sides of the first set of equalities, we get

(
Σ−1µµT + In −Σ−1e

) x∗

π

 = Σ−1µE [ZB(r̃)] + PE [p(r̃)] , (3.2.2)

where In denotes the identity matrix of dimension n × n. Multiplying µT to both

sides, we have

(
µTΣ−1µµT + µT In −µTΣ−1e

) x∗

π

 = µTΣ−1µE [ZB(r̃)] + µTPE [p(r̃)] .

Making the substitution with A, B, and C and dividing both sides by (A+ 1), we get

(
µT − B

A+ 1

) x∗

π

 =
A

A+ 1
E [ZB(r̃)] +

µTPE [p(r̃)]

A+ 1
.

Subtracting E[ZB(r̃)] from both sides gives

(
µT 0

) x∗

π

− E [ZB(r̃)] =
µTPE [p(r̃)]− E [ZB(r̃)] + πB

A+ 1
. (3.2.3)

Back to Equation (3.2.2), we can rewrite it as follows:

Σ−1µ

( µT 0

) x∗

π

− E [ZB(r̃)]

+

(
In −Σ−1e

) x∗

π

 = PE [p(r̃)] .

(3.2.4)
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Substituting Equation (3.2.3) into (3.2.4), we have

(
In

Σ−1µB

A+ 1
− Σ−1e

) x∗

π

 = PE [p(r̃)]− µ
TPE [p(r̃)]− E [ZB(r̃)]

A+ 1
Σ−1µ.

(3.2.5)

Multiplying eT to both sides of the above equation, we get

eTx∗ +

(
B2

A+ 1
− C

)
π = eTPE [p(r̃)]− B

A+ 1

(
µTPE [p(r̃)]− E [ZB(r̃)]

)
.

Note that eTx∗ = eTPE [p(r̃)] = 1. Canceling these two terms from both side, we

have

π =
B

(A+ 1)C −B2

(
µTPE [p(r̃)]− E [ZB(r̃)]

)
.

Substituting the above formula for π into Equation (3.2.5), we get

x∗ = PE [p(r̃)] +
(
µTPE [p(r̃)]− E [ZB(r̃)]

)
Σ−1

(
Be− Cµ

(A+ 1)C −B2

)
,

which is the closed-form solution as shown in the theorem.

Define µp := µTPE [p(r̃)], the mean return of the persistency weighted portfolio.

It is well-known that if the returns of the portfolios in the set of benchmarks are

negatively correlated, then it is possible for the variance of the persistency portfolio

to be smaller than the variance of the individual portfolio. Our strategy builds on the

persistency portfolio, and adjusts for higher mean returns through the term,

Σ−1

(
Cµ−Be

(A+ 1)C −B2

)(
E [ZB(r̃)]− µTPE [p(r̃)]

)
.

In this way, we can ensure that the mean returns of our strategy is at least as good as
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the persistency weighted portfolio.

Proposition 3.6. Under Assumption (A), the expected return of our multiple-benchmark

tracking-error portfolio is not less than µp. In particular, when µ 6= e, the portfolio

has a strictly higher expected return than µp.

Proof. From the closed-form solution, the expected return of our multiple-benchmark

tracking-error portfolio is

µTPE [p(r̃)] +

(
1− C

(A+ 1)C −B2

)(
E [ZB(r̃)]− µTPE [p(r̃)]

)
.

Note that
E [ZB(r̃)]− µTPE [p(r̃)]

= E
[
ZB(r̃)− r̃TPE [p(r̃)]

]
= E

[
max

j∈{1,...,m}
r̃Tpj −

m∑
j=1

E [pj(r̃)]
(
r̃Tpj

)]
≥ 0.

If

1 ≥ C

(A+ 1)C −B2
, (3.2.6)

then

µTx ≥ µTPE [p(r̃)] = µp.

Now we shall show (3.2.6) holds. Let α = Σ−1/2e, and β = Σ−1/2µ. By Cauchy-

Schwartz Inequality,

B2 =
(
eTΣ−1µ

)2
=
(
αTβ

)2 ≤
(
αTα

) (
βTβ

)
=
(
eTΣ−1e

) (
µTΣ−1µ

)
= AC.
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We have
1

1 +
AC −B2

C

≤ 1,

i.e.,
C

(A+ 1)C −B2
≤ 1.

The equality holds if and only if µ is proportional to e, since Σ is positive definite and

so is Σ−1/2.

As with all tracking-error models in the literature, the improvement on mean re-

turns comes from an associated increase in risks. The variability of our portfolio returns

will be higher than the persistency weighted portfolio. Fortunately, with properly se-

lected benchmarks, the variability of the returns from the persistency portfolio can be

lower than the variability of the returns from each individual benchmark. Hence, the

performance of our portfolio strategy may still dominate the performance of some of

the benchmarks used in our model, in terms of both mean and variance of the portfolio

return. This partially explains the superior performance of our approach in numerical

experiments conducted in Section 3.3.

Remark 3.7. One interesting observation from the closed-form expression of the opti-

mal portfolio position is that it is anchored in the linear combination of the benchmark

portfolios weighted by their persistency values, E [p(r̃)]. Although probability match-

ing is usually observed in a multi-period setting with some mixed strategy, in a single

period problem with continuous decision, probability matching could appear as a deci-

sion that consolidates the mixed strategy according to its mixing probabilities. In this

sense, our model has some flavour of probability matching, where the investment deci-

sion tries to match the underlying probability of achieving the best possible benchmark

return. Furthermore, Simon (1956) has shown that probability matching behaviour
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“would be exhibited by a rational subject intent on minimaxing his regret”. Our re-

sult tells that probability matching strategy is optimal if the decision maker tries to

minimize his expected quadratic regret, which from another perspective reassures the

finding from Simon (1956) that connects the behaviour with regret criterion. This

in turn partially justifies that our multiple-benchmark tracking-error model may be a

good model that describes investor’s behaviour. For more discussion on the quadrat-

ic regret decision criterion and the probability matching behaviour, please refer to

Chapter 4.

3.2.4 Comparison with the Markowitz Mean-Variance Portfo-

lio

The pioneering work of modern portfolio theory by Markowitz (1952) quantified the

relationship between the expected return and risk of portfolios, which is measured

by the variance in portfolio returns. Markowitz introduced the notion of an efficient

portfolio as the portfolio with minimal variance at a given level of expected return.

The continuum of such portfolios forms an efficient frontier in the mean-variance space

of the portfolios.

In this subsection, we exploit the advantage of the closed-form solution and compare

our portfolio with the Markowitz mean-variance portfolio.

3.2.4.1 Optimal Portfolio Weights

Consider the Markowitz portfolio optimization model of the following form:

min
eTx=1

1

2
xTΣx− γµTx,
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where γ is the risk aversion parameter. The closed-form solution (cf. Steinbach (2001))

is

Σ−1

(
(1− γB)e+ γCµ

C

)
=

1

C
Σ−1e− γ

C
Σ−1 (Be− Cµ) .

Rearranging the closed-form expression of the multiple-benchmark tracking-error port-

folio in Theorem 3.5 helps to make the comparison more explicit as follows:

PE [p(r̃)] +
µTPE [p(r̃)]− E [ZB(r̃)]

(A+ 1)C −B2
Σ−1 (Be− Cµ) .

From these formulas, it is clear that both portfolios consist of two components: (a) a

baseline portfolio, and (b) an adjustment term with a common factor, Σ−1 (Be− Cµ).

The baseline portfolio of the Markowitz mean-variance portfolio is the minimum-

variance portfolio, Σ−1e/C, and the adjustment is related to the risk aversion pa-

rameter, γ. For the multiple-benchmark tracking-error portfolio, the baseline portfolio

is the persistency weighted benchmark portfolio. The adjustment term accounts for

the impact of the random return on the performance of the benchmark portfolios, in

other words, the selection of the best performer as the target expected return. The

multiple-benchmark tracking-error portfolio thus incorporates information on the rel-

ative performance of the competing portfolios in the market, which is absent in the

information set while deciding the Markowitz mean-variance portfolio. Please refer

Section 4.1.2 for more discussions on the interpretation of the adjustment term in the

optimal multiple-benchmark tracking-error portfolio from the perspective of probabil-

ity matching.

To provide some intuition on the difference between these two portfolios, consider

a simple example of investment between a risk-free asset and a risky asset.

Example 3.8. Suppose an investor has to decide a portfolio among two uncorrelated
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assets, one of which is risk-free with zero variance, and the other is risky with a variance

of 1. Both assets have zero-mean returns. In this case, the investor who follows the

Markowitz strategy will always choose the risk-free asset for any nonnegative risk

aversion parameter. On the other hand, suppose we choose two extreme strategies

as the benchmark portfolios – each strategy investing solely in one of the two assets.

The multiple-benchmark tracking-error portfolio we obtained is one that divides the

capital among the two assets with equal weights (under the normality assumption).

This is simply the equally weighted investment strategy often used by practitioners.

3.2.4.2 Volatility

It has been observed that the Markowitz mean-variance portfolio suffers from severe

volatility in portfolio returns due to estimation errors in mean and covariance (cf.

Michaud (1989) and Best & Grauer (1991)). Our multiple-benchmark tracking-error

portfolio tends to exhibit less volatility since the risk of estimation errors is mitigated

by the persistency values, which are more robust to estimate. This difference is indeed

observed in the numerical studies we did using the real data in Section 3.3. In what

follows, we use a set of simulated data to illustrate such difference. We include the

equally weighted portfolio (a.k.a. the 1/n portfolio) as a reference portfolio, since it is

known to be effective in minimizing volatility, in particular, for a large pool of assets.

In the experiment, we simulate the monthly returns of 48 risky assets under mul-

tivariate normality assumption. We use the estimated mean, variance and covariance

of the 48 Industry Portfolios from the Fama French online data library (in the period

from 1981 to 2010) as the underlying distributional parameters. We adopt a rolling

horizon method with an estimation window of 80 periods and investment horizon of

400 periods. In particular, we simulate 480 samples from the underlying distribution-
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al parameters, and use the first 80 sample points to obtain sample mean, variance

and covariance, based on which the portfolios are determined. Then the returns of

the portfolios are evaluated using the 81st sample point, which is an out-of-sample

return. Next, the whole process moves one period forward, i.e., now the sample mean,

variance and covariance are computed using sample points from the 2nd to the 81st

sample points, and the returns are calculated using the 82nd point. We continue such

experiment for 400 periods. The out-of-sample returns of the three portfolios over the

whole investment horizon are plotted in Figure 3.2.1. In this experiment, there were

48 benchmark portfolios, each corresponding to an individual industry portfolio.
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Figure 3.2.1: Out-of-sample returns of the 1/n, Markowitz mean-variance (MEAV),
and multiple-benchmark tracking-error (MBTE) portfolios over an investment horizon
of 400 periods

The out-of-sample return of the 1/n portfolio is stable and shows only slight fluctu-

ation over the course of the experiment. The Markowitz mean-variance portfolio how-
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ever exhibits much larger volatility. In comparison, our multiple-benchmark tracking-

error portfolio’s performance is close to that of the 1/n portfolio, with significantly

smaller fluctuations than the Markowitz mean-variance portfolio.

3.2.4.3 Efficient Frontier (In-Sample)

Next, we compare our multiple-benchmark tracking-error frontier with the mean-

variance efficient frontier. To give an immediate idea, we first plot the multiple-

benchmark tracking-error frontier and the efficient frontier assuming the full knowl-

edge on the distributional parameters of the random returns. Here, we consider the

following multiple-benchmark tracking-error model:

(T′′) min
eTx=1,µTx=K

E
[(
ZB(r̃)− r̃Tx

)2
]
,

which is a variant of Problem (T) with additional target expected return constraint.

Similarly, to obtain the mean-variance efficient frontier, we consider the Markowitz

model with a target expected return constraint as follows:

(M) min
eTx=1,µTx=K

1

2
xTΣx

We use an experiment to illustrate the different in the two frontiers. We simulate

the monthly returns of 10 risky assets under multivariate normality assumption. We

use the estimated mean, variance and covariance of the monthly returns of the 10

Industry Portfolios from the Fama French online data library (in the period from

1981 to 2010) as the underlying distributional parameters. We assume the complete

knowledge of means and variances of returns when solving (T′′) and (M). We consider

a sequence of target expected returns, K, from 0 to 0.2 with a step size of 0.0001.



3.2. MULTIPLE-BENCHMARK TRACKING-ERROR PORTFOLIO 101

For each K, we solve (T′′) and (M) to obtain our multiple-benchmark tracking-error

portfolio and the Markowitz mean-variance portfolio, respectively. Then we compute

the variance of the two portfolios. The continuum of such K-variance pairs constitutes

the frontier for each portfolio selection model, as plotted in Figure 3.2.2. Similarly, in

this experiment, the benchmark portfolios are chosen to be all the extreme portfolios

that invest solely in individual assets.
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Figure 3.2.2: Risk and return with known distributional parameters and simulated
data

Comparing the two frontiers in the risk-return plot, we observe a constant shift of

the multiple-benchmark tracking-error frontier from the mean-variance efficient fron-

tier. Note that a similar feature was observed for single-benchmark tracking-error

portfolios by Roll (1992). The magnitude of the shift corresponds to the magnitude of

the agency problem in this environment - when the portfolio manager focuses on min-
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imizing the variability of the tracking error, the resulting portfolio is often inefficient

and lies in the interior of the efficient frontier. We give an analytical expression for

the constant shift next.

Proposition 3.9. Under Assumption (A), the multiple-benchmark tracking-error fron-

tier obtained from solving Problem (T′′), is a constant shift from the mean-variance

efficient frontier. More specifically, the distance between the two frontiers at each level

of expected return is

E [p(r̃)]T P TΣPE [p(r̃)]− C

AC −B2

(
µTPE [p(r̃)]− B

C

)2

− 1

C
.

Proof. Similar to Theorem 3.5, we solve problem (T′′) and obtain the closed-form

solution as follows:

xMBTE = PE [p(r̃)] +
(
µTPE [p(r̃)]−K

)
Σ−1

(
Be− Cµ
AC −B2

)
. (3.2.7)

The corresponding portfolio variance is

σ2
MBTE = E [p(r̃)]T P TΣPE [p(r̃)]− C

AC −B2

(
µTPE [p(r̃)]

)2

+
2B

AC −B2
µTPE [p(r̃)] +

CK2 − 2KB

AC −B2
.

At the return level of K, the optimal Markowitz mean-variance portfolio is given by

xMEAV =
(A−BK) Σ−1e+ (CK −B) Σ−1µ

AC −B2
.

Its variance is

σ2
MEAV =

1

C
+

(KC −B)2

C (AC −B2)
. (3.2.8)
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At the expected return level of K, the difference in portfolio variances of the two

models is given by

σ2
MBTE − σ2

MEAV = E [p(r̃)]T P TΣPE [p(r̃)]− C

AC −B2

(
µTPE [p(r̃)]− B

C

)2

− 1

C
.

Note that the above difference is independent of K, which indicates that the multiple-

benchmark tracking-error frontier is a constant shift from the mean-variance efficient

frontier.

Note that the first term in the summand corresponds to the variance of the returns

of the persistency weighted portfolio strategy, and the term B/C corresponds to the

mean returns of the minimum variance strategy. We can assume that the mean returns

of each portfolio used in the set of benchmarks generate higher mean returns than the

minimum variance strategy. Hence,

(
µTPE [p(r̃)]− B

C

)2

corresponds to the square of the excess returns of the persistency weighted portfolio

strategy above the minimum variance strategy. We can now use this result to rank

the performance of the tracking-error models using different benchmarks.

Proposition 3.10. Under assumption (A), if

V ar(r̃TPE [p(r̃)])− C

AC −B2

(
µTPE [p(r̃)]− B

C

)2

≤ V ar(r̃Tpj)− C

AC −B2

(
µTpj − B

C

)2

,

then the frontier constructed from the multiple-benchmark tracking-error model (T′′)

dominates the frontier for the single-benchmark tracking-error model constructed using
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benchmark pj only.

The proof of Proposition 3.10 is omitted as it is straightforward from the above

analysis. This result can be used to identify complementary benchmark portfolio that

can help improve the performance of the single-benchmark tracking-error model using

pj. For instance, if there exists portfolio qj such that

• µTpj = µTqj,

• V ar(r̃Tpj) = V ar(r̃Tqj), and

• r̃Tpj and r̃Tqj are independent or negatively correlated,

then

V ar
(
r̃T (κpj + (1− κ)qj)

)
≤ κ2V ar(r̃Tpj) + (1− κ)2V ar(r̃Tqj) ≤ V ar(r̃Tpj),

for any κ in [0, 1]. Thus qj can be used in our multiple-benchmark model to improve

the performance of the single-benchmark tracking-error model. This result shows the

potential of the multiple-benchmark tracking-error model in reducing the impact of

the agency problem for the investor, as it can bring the frontier of the tracking-error

model closer to the mean-variance efficient frontier.

We can also show an interesting result similar to the famous Two-Fund Theorem,

which says that any affine combination of two distinct mean-variance efficient portfolios

is itself a mean-variance efficient portfolio.

Proposition 3.11. Under Assumption (A), when the set of benchmark portfolios con-

tains exactly two distinct mean-variance efficient portfolios, our multiple-benchmark

tracking-error frontier coincides with the mean-variance efficient frontier. Consequent-



3.2. MULTIPLE-BENCHMARK TRACKING-ERROR PORTFOLIO 105

ly, the multiple-benchmark tracking-error portfolio obtained from solving Problem (T)

falls on the mean-variance efficient frontier.

Proof. In order to prove this result, it suffices to show that the gap between the two

frontiers is zero.

Let p1 and p2 be two distinct portfolios on the mean-variance efficient frontier,

and they serve as the benchmark portfolios for our multiple-benchmark tracking-error

model. Their persistency values satisfy

E [p1(r̃)] + E [p2(r̃)] = 1.

From the Two-Fund Theorem, we know that the persistency weighted benchmark

portfolio,

E [p1(r̃)]p1 + E [p2(r̃)]p2 = PE [p(r̃)] ,

is also a mean-variance portfolio with expected return of µTPE [p(r̃)]. From Equation

(3.2.8), the variance of this portfolio is

E [p(r̃)]T P TΣPE [p(r̃)] =
1

C
+

(
µTPE [p(r̃)]C −B

)2

C (AC −B2)
.

By Proposition 3.9, the gap between the multiple-benchmark tracking-error frontier

and the mean-variance efficient frontier is

σ2
MBTE − σ2

MEAV

= E [p(r̃)]T P TΣPE [p(r̃)]− C

AC −B2

(
µTPE [p(r̃)]− B

C

)2

− 1

C

=
1

C
+

(
µTPE [p(r̃)]C −B

)2

C (AC −B2)
− C

AC −B2

(
µTPE [p(r̃)]− B

C

)2

− 1

C

= 0.
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Therefore, we have completed the proof.

Proposition 3.11 shows that our multiple-benchmark tracking-error model has the

flexibility to generate the entire mean-variance efficient frontier if the benchmark port-

folios are chosen properly. It is obvious from the proof that this result can be extended

to the case with more than two mean-variance efficient benchmark portfolios.

3.2.4.4 Efficient Frontier (Out-of-Sample)

For the purpose of completeness, we conduct further numerical analysis by drawing

the frontiers for both portfolios based on out-of-sample estimation in Figure 3.2.3.

We simulate 130 samples from the underlying distributional parameters same as the

previous experiment, and use the first 120 sample points to obtain sample mean,

variance and covariance. We consider the sequence of values for K as before. For each

K, we determine our multiple-benchmark tracking-error portfolio with the sample

mean and covariance, and calculate the out-of-sample mean return and variance using

the last 10 periods of data. By drawing such return-variance pairs for all K’s, we

get an out-of-sample multiple-benchmark tracking-error frontier. The out-of-sample

mean-variance efficient frontier is obtained in a similar way.

Although the theoretical frontier of the Markowitz mean-variance portfolio could

be more efficient in-sample, in the out-of-sample experiment, the estimation errors in

mean and variance leads to much less efficient Markowitz portfolios.

3.2.5 Comparison with the Linear Combination Rule

To improve the performance of the Markowitz mean-variance portfolio under estima-

tion errors, Tu & Zhou (2011) proposed to combine more sophisticated strategies with

the naive 1/n rule. They found that the optimal affine combination of the estimated
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Figure 3.2.3: Risk and return with out-of-sample estimates of distributional parameters
and simulated data

Markowitz portfolio and the 1/n portfolio often outperforms both portfolios in terms

of expected mean-variance utility. In order to derive the desired result, the authors

focused on the unconstrained version of the Markowitz model, i.e., without the require-

ment that the sum of portfolio weights equals to one. In a later study, Kirby & Ostdiek

(2012) pointed out the importance of research design in driving the performance of

the Markowitz portfolio. In particular, high target expected return will significantly

inflate the estimation errors and result in extremely risky position for the Markowitz

portfolio.

We investigate next the relationship between our multiple-benchmark tracking-

error model and the linear combination rule, for different ranges of the target expected
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return. Let p1 and p2 be two distinct portfolios with different expected return, i.e.,

µTp1 6= µTp2. The linear combination rule generates a series of portfolios of the form,

δp1 + (1− δ)p2,

where δ is the linear combination coefficient. To facilitate the comparison, for our mod-

el, we use the same two portfolios to construct our benchmark. Note that given a target

expected return, the linear combination coefficient rule can be uniquely determined.

Similarly, Equation (3.2.7) gives the closed-form solution of our multiple-benchmark

tracking-error portfolio at the target expected return K.

In general, the variance of the linear combination portfolio will usually increase at a

faster rate as the target expected return increases. On the other hand, as demonstrated

earlier, the frontier of our multiple-benchmark tracking-error portfolio is a constant

shift to the right from the mean-variance efficient frontier. As the target expected

return increases, we expect our portfolio to be more efficient, i.e., having smaller

variance than the solution produced by linear combination rule. We have the following

result.

Proposition 3.12. Under Assumption (A), the multiple-benchmark tracking-error

frontier will dominate the linear combination rule frontier when the target expected

return is high enough.

Proof. At the target expected return K, the linear combination coefficient is given by

δ =
K − µTp2

µT (p1 − p2)
.
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Then the linear combination portfolio has the closed-form expression as follows:

xLCR =
K

µT (p1 − p2)

(
p1 − p2

)
+

(
µTp1

)
p2 −

(
µTp2

)
p1

µT (p1 − p2)
.

To emphasize the portfolio variance’s dependence on the target expected return, we

denote the variance of the linear combination portfolio as σ2
LCR (K). Then

σ2
LCR (K) = xTLCRΣxLCR

= aLCRK
2 + bLCRK + cLCR,

where

aLCR = 1

[µT (p1−p2)]2
(p1 − p2)

T
Σ (p1 − p2) ,

bLCR = 1

[µT (p1−p2)]2
(p1 − p2)

T
Σ
((
µTp1

)
p2 −

(
µTp2

)
p1
)

+ 1

[µT (p1−p2)]2

((
µTp1

)
p2 −

(
µTp2

)
p1
)T

Σ (p1 − p2) , and

cLCR = 1

[µT (p1−p2)]2

((
µTp1

)
p2 −

(
µTp2

)
p1
)T

Σ
((
µTp1

)
p2 −

(
µTp2

)
p1
)
.

At the target expected return K, the multiple-benchmark tracking-error portfolio is

given by Equation (3.2.7), and its variance is

σ2
MBTE (K) = aMBTEK

2 + bMBTEK + cMBTE,

where

aMBTE =
C

AC −B2
,

bMBTE = − 2B

AC −B2
, and

cMBTE = E [p(r̃)]T P TΣPE [p(r̃)]− C

AC −B2

(
µTPE [p(r̃)]

)2

+
2B

AC −B2
µTPE [p(r̃)] .
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From Equation (3.2.8), the variance of the Markowitz mean-variance portfolio at target

expected return K is

σ2
MEAV (K) = aMEAVK

2 + bMEAVK + cMEAV ,

where
aMEAV =

C

AC −B2
,

bMEAV = − 2B

AC −B2
, and

cMEAV =
1

C
.

Observe that all three variances are quadratic functions of the target expected return,

and

aMBTE = aMEAV , bMBTE = bMEAV .

Before proving the main result, we will first establish two claims.

Claim 1. The multiple-benchmark tracking-error frontier intersects the linear combi-

nation rule frontier at the target expected return equal to the expected return of the per-

sistency weighted benchmark portfolio, i.e., when K = µT (E [p1(r̃)]p1 + E [p2(r̃)]p2).

When K = µT (E [p1(r̃)]p1 + E [p2(r̃)]p2), the linear combination portfolio is ex-

actly the persistency weighted benchmark portfolio, i.e., E [p1(r̃)]p1 + E [p2(r̃)]p2.

From Equation (3.2.7), the multiple-benchmark tracking-error portfolio is

xMBTE = E [p1(r̃)]p1 + E [p2(r̃)]p2

+
(
µT (E [p1(r̃)]p1 + E [p2(r̃)]p2)−K

)
Σ−1

(
Be− Cµ
AC −B2

)
= E [p1(r̃)]p1 + E [p2(r̃)]p2,

which is the same as the linear combination portfolio. Thus, Claim 1 is proved.

Claim 2. The quadratic coefficient in σ2
MBTE (K) is less than or equal to the quadratic
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coefficient in σ2
LCR (K), i.e., aMEAV ≤ aLCR.

Consider the following optimization problem:

(M0) min
eTx=0,µTx=K′

1

2
xTΣx.

The system of first-order optimality conditions reads


Σx∗ − λ1e− λ2µ = 0,

eTx∗ = 0,

µTx∗ = K
′
,

where λ1 and λ2 are Lagrange multipliers. From the first equation, we get

x∗ = λ1Σ−1e+ λ2Σ−1µ.

Substituting the above expression of x into the last two equations of the optimality

conditions, we have

 eTx∗ = λ1e
TΣ−1e+ λ2e

TΣ−1µ = λ1C + λ2B = 0,

µTx∗ = λ1µ
TΣ−1e+ λ2µ

TΣ−1µ = λ1B + λ2A = K
′
,

which yields

λ1 = − K
′
B

AC −B2
, and λ2 =

K
′
C

AC −B2
.

Therefore, the optimal solution is

x∗ =
K
′
C

AC −B2
Σ−1µ− K

′
B

AC −B2
Σ−1e,
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and the minimum objective value scaled by 2 is

x∗TΣx∗ =
(

K
′
C

AC−B2

)2

µTΣ−1ΣΣ−1µ+
(

K
′
B

AC−B2

)2

eTΣ−1ΣΣ−1e

− K
′2CB

(AC−B2)2
µTΣ−1ΣΣ−1e− K

′2BC
(AC−B2)2

eTΣ−1ΣΣ−1µ

=
(

K
′
C

AC−B2

)2

A+
(

K
′
B

AC−B2

)2

C − 2K
′2CB2

(AC−B2)2

= K
′2C2A−K′2CB2

(AC−B2)2

= C
AC−B2K

′2.

Observe that (p1 − p2) is a feasible solution to Problem (M0) with K
′
= µT (p1 − p2),

then it must satisfy

(p1 − p2)
T

Σ (p1 − p2) ≥ x∗TΣx∗

= C
AC−B2K

′2

= C
AC−B2

[
µT (p1 − p2)

]2
.

Rearrange the terms, we get

1

[µT (p1 − p2)]2
(
p1 − p2

)T
Σ
(
p1 − p2

)
≥ C

AC −B2
,

which is exactly aLCR ≥ aMEAV . Therefore, we have proved Claim 2.

Now in order to prove the proposition, we only need to discuss two cases following

Claim 2, aLCR = aMEAV and aLCR > aMEAV .

Case 1. aLCR = aMEAV .

By the definition of mean-variance efficient frontier, σ2
MEAV (K) ≤ σ2

LCR (K), for

any K, i.e.,

bMEAVK + cMEAV ≤ bLCRK + cLCR, ∀K.

Then we must have bMEAV = bLCR. Otherwise, the above inequality will be violated
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as K → +∞ if bMEAV > bLCR, or K → −∞ if bMEAV < bLCR. Consequently,

aMBTE = aMEAV = aLCR, and bMBTE = bMEAV = bLCR.

Furthermore, since the multiple-benchmark tracking-error frontier has an intersection

point with the linear combination rule frontier, it must be the case that

cMBTE = cLCR,

which implies that the multiple-benchmark tracking-error frontier coincides with the

linear combination rule frontier. i.e.,

σ2
LCR (K) = σ2

MBTE (K) , ∀K.

Case 2. aLCR > aMEAV .

Recall that aMBTE = aMEAV . Then aLCR > aMBTE. In this case, it is obvious that

there exists a constant K̄ such that

σ2
LCR (K) > σ2

MBTE (K) , ∀K ≥ K̄.

Combining Case 1 and Case 2, we complete the proof.

The above result shows that there exists a threshold such that once the target

expected return exceeds this threshold, the linear combination rule would be less effi-

cient than the multiple-benchmark tracking-error portfolio. In fact, from our numerical

tests, such threshold value is usually very small, and the performance of the linear com-

bination rule deteriorates significantly when the target expected return increases. We

use a numerical experiment to illustrate this effect.



114 CHAPTER 3. QUADRATIC REGRET STRATEGY

Following the same procedures as those in the previous subsection, we plot the

frontiers of the mean-variance, linear combination, and multiple-benchmark tracking-

error portfolios in Figure 3.2.4 using simulated data under the normality assumption.

In Figure 3.2.4, the mean, variance and covariance of the monthly returns of the 10

Industry Portfolios from the Fama French online data library (in the period from

1981 to 2010) are used as the underlying distributional parameters3. Same as Tu &

Zhou (2011), the 1/n portfolio and the global minimum-variance portfolio are used

to construct the linear combination portfolios, and as benchmarks for our multiple-

benchmark tracking-error portfolios. Figure 3.2.4(a) and 3.2.4(b) plot the same three

frontiers with different ranges of risk and return to provide a complete picture of these

curves. Figure 3.2.4(b) zooms in 3.2.4(a) vertically but zooms out horizontally at the

same time.

From the figures, although the linear combination rule does outperforms our model

in a range of target expected return, the range is indeed very narrow. Once outside the

range, the linear combination rule quickly loses its advantage. Note the values along

the x-axis in Figure 3.2.4(a) and 3.2.4(b). The variance of the linear combination

portfolio grows so fast as the target expected return increases that the other two

frontiers appear to be almost straight lines in the picture. In fact, the performance

of the linear combination rule is extremely sensitive to the expected return difference

between the two source portfolios, i.e.,
∣∣µT (p1 − p2)

∣∣. If the difference is very small,

at a high target expected return level, the linear combination rule must take very

extreme portfolio positions to achieve the desired target return, which usually involves

a tremendous amount of risk.

Remark 3.13. We can also interpret the above result from the perspective of utility

3We have tried various scenarios, and the outcomes are very similar to this example. Hence, we
only present the analysis for one example here.
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Figure 3.2.4: Risk and return with known distributional parameters and simulated
data
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theory. Suppose that the portfolio manager has the mean-variance utility of the form,

µTx− γ

2
xTΣx,

where γ is the risk aversion parameter. Then our multiple-benchmark tracking-error

portfolio will be preferred over the linear combination rule for relatively small γ,

i.e., less risk aversion. From the figures, the portfolio manager has to be extremely

risk averse for the linear combination rule to be better than the multiple-benchmark

tracking-error portfolio.

3.2.6 Transaction Cost

Transaction costs are often inevitable in real investment activities. As discussed before,

we can explicitly include the buy-and-hold strategy as a benchmark portfolio to control

the transaction volume. In this subsection, we show that our model is also capable of

handling transaction cost in the conventional way by adding a penalty term into the

objective function.

To facilitate the following exposition, we introduce some additional notation. Let

W denote the wealth at the beginning of the current investment period, and de-

fine x0 as the starting portfolio, i.e., the initial weights of capital on each asset. As

before, x represents the current investment decision. In this case, it can also be re-

ferred to as portfolio repositioning decision. The transaction volume is measured by∑n
i=1W |xi − x0

i | = WeT |x− x0|. However, the problem becomes non-smooth if we

directly work with the transaction cost that is linear in the transaction volume. To

make the problem more tractable and emphasize on avoiding high transaction volume,

we extend the basic model in Problem (T) by adding a penalty term on the quadratic
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transaction volume. The problem is formulated as follows:

(TC) min
eTx=1

E

(ZB(r̃)−
n∑
i=1

r̃ixi

)2
+ ν(x− x0)T (x− x0),

where ν ≥ 0 is a penalty parameter that captures the effect of the quadratic transaction

volume, W 2(x− x0)T (x− x0). Since ν is a constant, we can absorb W 2 into ν. The

new objective can be interpreted as an adjusted disutility function of the investor with

a penalty on the transaction volume, where ν characterizes the investor’s aversion to

high transaction volume. With such change, Problem (TC) remains a convex quadratic

programming problem, and we are able to establish its closed-form solution as shown

in the following theorem.

Proposition 3.14. Under Assumption (A), the closed-form solution to Problem (TC)

is given by

De

eTDe
+

(
In −

DJn
eTDe

)
D
(
µE [ZB(r̃)] + ΣPE [p(r̃)] + νx0

)
, (3.2.9)

where D =
(
Σ + µµT + νIn

)−1; In is the identity matrix; and Jn is the matrix in Rn×n

with all entries being 1.

Proof. Since the convexity is preserved in Problem (TC) by adding the quadratic

penalty term, the first-order optimality conditions are both necessary and sufficient to

characterize the solution. The Lagrangian of Problem (TC) is given by

L(x, π) = E
[
(ZB (r̃)− r̃Tx)2

]
+ ν(x− x0)T (x− x0) + 2π

(
1− eTx

)
.
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The first-order conditions yield

2E
[(
ZB (r̃)− r̃Tx∗

)
(−r̃)

]
+ 2ν(x∗ − x0)− 2πe = 0

and
n∑
i=1

x∗i = 1.

The first set of equalities can be rewritten as

(
Σ + µµT + νIn −e

) x∗

π

 = E[ZB (r̃) r̃] + νx0.

Applying Lemma 1.3, we have

(
Σ + µµT + νIn −e

) x∗

π

 = µE [ZB(r̃)] + ΣPE [p(r̃)] + νx0.

Since ν ≥ 0 and (Σ+µµT ) is positive definite, (Σ+µµT +νIn) is also positive definite.

In particular, it has an inverse. The we can multiple both sides of above equation by

(Σ + µµT + νIn)−1 and obtain

(
In −

(
Σ + µµT + νIn

)−1
e

) x∗

π


=
(
Σ + µµT + νIn

)−1
(µE [ZB(r̃)] + ΣPE [p(r̃)] + νx0) .

(3.2.10)

Multiplying eT to the above equality and simplifying using the fact that eTx∗ = 1, we

get

π =
1− eT

(
Σ + µµT + νIn

)−1
(µE [ZB(r̃)] + ΣPE [p(r̃)] + νx0)

eT (Σ + µµT + νIn)−1 e
.
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Substituting this expression of π into Equation (3.2.10), and simplifying the resulting

expression with a substitution of D =
(
Σ + µµT + νIn

)−1, we have

x∗ =
De

eTDe
+

(
In −

DJn
eTDe

)
D
(
µE [ZB(r̃)] + ΣPE [p(r̃)] + νx0

)
,

where Jn denotes the matrix in Rn×n with all entries being 1. Thus, we obtain the

closed-form solution to Problem (TC).

3.3 Numerical Studies

In this section, we will present some numerical studies based on real data to test the

performance of the models proposed in this chapter. We start by describing the setup

of these studies, including data sets, comparison portfolio strategies, methodology and

performance measures.

3.3.1 Data Sets

We evaluate the performance of our model in four empirical data sets listed in Table

3.3.1. The data sets we choose fall into two categories. The first three data sets

are portfolios representing the U.S. stock market, and the last one is comprised of

individual U.S. stocks. We present the analysis on the risk and return of these data

sets in Figure 3.3.1. The first graph in each panel shows the annualized mean return

and the second graph shows the annualized standard deviation of the returns. All the

sample points are used in the calculation. From the figure, we observe that the four data

sets demonstrate distinct risk and return characteristics, such as different spreads of

mean returns within the same data set, and different risk levels, etc.
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Annualized Mean Return Annualized Standard Deviation
10 Industry Portfolios (10Ind)
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Figure 3.3.1: Risk and return characteristics of the data sets
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Abbreviation Data Set and Description n Time Period Source

10Ind
Ten industry portfolios
representing the U.S. stock
market

10 07/1963
–12/2011 K. French

48Ind
Forty-eight industry
portfolios representing the
U.S. stock market

48 07/1963
–12/2011 K. French

25FF

Twenty-five Fama and
French portfolios of firms
sorted by size and
book-to-market

25 07/1963
–12/2011 K. French

8Stock

Eight U.S. stocks (Crude
Oil, J.P. Morgan Funds,
General Electric Company,
The Coca-Cola Company,
Johnson & Johnson,
International Business
Machines Corp., Gold
Ounce, AT & T Inc.)

8 08/1980
–01/2013 Bloomberg

Notes: “K. French” refers to the Kenneth R. French data library available online at
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

Table 3.3.1: Data sets used in empirical experiments

3.3.2 Portfolio Models

The portfolio strategy developed in this chapter depends on the group of bench-

mark portfolios that are being tracked. To evaluate the performance of the multiple-

benchmark tracking-error portfolio, we compare the performance of our portfolio a-

gainst that of its benchmarks as well as that of the 1/n portfolio. We choose the

buy-and-hold strategy in addition to another competitive portfolio as benchmarks.

All the benchmark portfolios are listed in Table 3.3.2.

The multiple-benchmark tracking-error portfolio is listed as Portfolio 0a and the

multiple-benchmark tracking-error portfolio with penalty on transaction volume is list-

ed as Portfolio 0b in Table 3.3.2. We use the closed-from solutions in Equation (3.2.1)
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No. Portfolio Selection Model Abbreviation
0a Multiple-benchmark tracking-error portfolio MBTE

0b Multiple-benchmark tracking-error portfolio with
penalty on transaction volume MBTEP

1 Equally-weighted (1/n) portfolio (DeMiguel et al.
(2007)) 1/n

2 Markowitz mean-variance portfolio with target
expected return (Markowitz (1952)) MEAV

3 Minimum-variance portfolio without short-sale
constraints MINU

4

Minimum-variance portfolio with covariance matrix
being a weighted average of sample covariance matrix
and the single-index covariance matrix (Ledoit & Wolf
(2003))

M1FAC

5

Minimum-variance portfolio with covariance matrix
being a weighted average of sample covariance matrix
and the diagonal covariance matrix (Ledoit & Wolf
(2003))

MIND

6
Minimum-variance portfolio with covariance matrix
being a weighted average of sample covariance matrix
and the identity matrix (Ledoit & Wolf (2003))

M1PAR

7 Minimum-variance portfolio with generalized
constraints (DeMiguel et al. (2007)) GMC

8 On-line portfolio using multiplicative updates
(Helmbold et al. (1998)) MUL

9
Minimum CVaR (Conditional Value-at-Risk) portfolio
(Rockafellar & Uryasev (2000), Rockafellar & Uryasev
(2004))

CVAR

10
Partial minimum-variance portfolio with k calibrated
by maximizing the portfolio return in previous period
(DeMiguel et al. (2009))

PARR

11 Buy-and-hold strategy B-N-H

Table 3.3.2: List of portfolio strategies considered

and Equation (3.2.9) to compute our multiple-benchmark tracking-error portfolios.

Portfolios 1–11 listed in Table 3.3.2 serve two purposes. First, a subset of these port-

folios are used as benchmark portfolios to compute the multiple-benchmark tracking-

error portfolios. Second, all of these portfolios serve as comparison portfolios to gauge
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the out-of-sample performance of our multiple-benchmark tracking-error portfolios.

The first comparison portfolio is the 1/n strategy, which simply assigns equal

weights to all the assets in the data set. The Markowitz mean-variance portfolio

(MEAV) relies on estimates of mean, variance and covariance of the returns, and is

computed from Problem (M). The target expected return is set to be the expected

return of the 1/n portfolio. Such target has been observed to be more appropriate

for the Markowitz model (cf. Kirby & Ostdiek (2012)). Then we consider the class

of minimum-variance portfolios, the first of which is the minimum-variance portfolio

without short-sale constraints (MINU). The next three minimum-variance portfolios

(M1FAC, MIND, and M1PAR) are formed using different covariance estimation tech-

niques as described in Ledoit & Wolf (2003) and Ledoit & Wolf (2004). The last

portfolio in this set (GMC) is adopted from DeMiguel et al. (2007). It is a com-

bination of the 1/n portfolio and the constrained minimum-variance portfolio. The

additional constraint is x ≥ ae with a = 1/(2n). We also consider the on-line portfolio

(MUL) using multiplicative updates as studied in Helmbold et al. (1998). The port-

folio that minimizes the Conditional Value-at-Risk (CVAR), a coherent risk measure,

is also included in our study. This portfolio is supposed to be very conservative and

would refrain from much risk. For detailed discussion on CVaR, the reader is referred

to Rockafellar & Uryasev (2000) and Rockafellar & Uryasev (2004). In addition, we

consider the minimum-variance portfolio with a constraint on the portfolio norm devel-

oped in DeMiguel et al. (2009). In particular, PARR is the partial minimum-variance

portfolio with k calibrated using cross-validation over portfolio variance, where k indi-

cates which of the n− 1 partial minimum-variance portfolios will yield the maximum

last period portfolio return. Finally, we consider the buy-and-hold strategy, which

makes no change in the allocation of capital in different assets. The initial portfolio
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for the buy-and-hold strategy is set to be the 1/n portfolio in all the experiments4.

3.3.3 Methodology

In each data set, we apply the rolling-horizon procedure to conduct the empirical

analysis. Consider the benchmark portfolios chosen from one of the two groups listed

in Table 3.3.2. The details of the methodology are summarized as follows:

1. Denote the total number of returns in the data set to be τ̂ . We choose a history of

length τ with τ < τ̂ , over which we conduct the estimation. In our experiments,

τ = 120, which corresponds to 10 years of monthly data.

2. Using the data in the estimation window, we estimate the parameters (µ, Σ,

E[ZB(r̃)], and PE[p(r̃)]), and compute the portfolios of investment strategies

listed in Table 3.3.2.

3. The performance of the portfolios are then evaluated. The details of these mea-

sures are discussed in the next subsection.

4. Roll forward the time horizon by adding the next data point of the data set and

dropping the first data point of the current estimation window.

5. By doing this repeatedly until the last time period, we obtain τ̂ − τ portfolio-

weight vectors for each strategy.

3.3.4 Performance Measures

Let t index the time periods with t = 1, . . . , τ̂ . We compute the portfolios at the

beginning of period t for t = τ + 1, . . . , τ̂ using past information from the previous τ
4We have tested various initial portfolio positions, and found that the results for the buy-and-hold

strategy are not sensitive to this initial condition.
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periods. Let r̃t denote the return for period t. For a portfolio strategy, we use xt to

represent the investment decision made for period t, and xt0 to represent the portfolio

position at the beginning of period t before the repositioning decision xt is made. The

performance measures are listed as follows:

1. In-sample tracking error :

1

τ̂ − τ

τ̂∑
t=τ+1

t−1∑
t′=t−τ

[(
r̃t
′
)T
xt − ZB

(
r̃t
′
)]2

.

2. Turnover rate:
1

τ̂ − τ

τ̂∑
t=τ+1

n∑
i=1

∣∣xti − xt0i ∣∣ .

3. Out-of-sample Sharpe ratio net of proportional transaction costs of 50 basis point

(net Sharpe ratio):
µ̂

σ̂
,

where

µ̂ =
1

τ̂ − τ

τ̂∑
t=τ+1

[(
1 +

(
r̃t
)T
xt
)(

1− 0.005
n∑
i=1

∣∣xti − xt0i ∣∣
)
− 1

]
,

and

σ̂ =

√√√√ 1

τ̂ − τ − 1

τ̂∑
t=τ+1

[(
1 + (r̃t)T xt

)(
1− 0.005

n∑
i=1

|xti − xt0i |

)
− 1− µ̂

]2

.
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4. Out-of-Sample Net Aggregate Return:



T∏
t=τ+1

(
1 + (r̃t)

T
xt
)(

1− 0.005
n∑
i=1

|xti − xt0i |
)
,

if
(

1 + (r̃t)
T
xt
)(

1− 0.005
n∑
i=1

|xti − xt0i |
)
> 0, ∀t = τ + 1,

0,

otherwise.

The out-of-sample net aggregate return measures the long-term wealth growth

of the portfolio strategies, where the second situation represents bankruptcy. It

is possible since the model allows short sales.

3.3.5 Normality Assumption

The closed-form solutions in the previous section are established under the assumption

that the return follows a multivariate normal distribution. We first check the validity

of the normality assumption by drawing the Quantile-Quantile plot (QQ plot) of the

Mahalanobis distance of the data from the first estimation window against that of a

multivariate normal distribution for each data set. For comparison, we use the sample

mean and sample covariance in place of their respective true values for the multivariate

normal distribution. The plots are presented in Figure 3.3.2.

From these QQ plots, we observe that the sample Mahalanobis distance of the risky

asset returns in all data sets demonstrate significant deviation from the normality as-

sumption with heavy tails. However, as we will see later, the discrepancies shown in the

QQ plots do not appear to be a major problem, and our multiple-benchmark tracking-

error portfolio demonstrates greater superiority in the out-of-sample performance even

though the normality assumption might not be completely satisfactory.
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Figure 3.3.2: QQ plots of the distributions of asset returns against multivariate normal
distribution

3.3.6 Results and Discussion

In this subsection, we first present results on the basic model, where the buy-and-

hold strategy is included in the set of benchmark portfolios to control the transaction

volume. Next, the results on the extended model, i.e., Problem (TC), are discussed.

3.3.6.1 Multiple-Benchmark Tracking-Error Portfolio with the Buy-and-

Hold Strategy as a Benchmark

We first report results on the tracking error for each data set to show that our portfolio

provides good tracking records of the highest benchmark return. Next, we use all

the other performance measures discussed before to evaluate the performance of our
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portfolio against its benchmarks. Finally, we discuss the results of the robustness tests

on net aggregate returns, where we consider random starting times and random lengths

of the investment horizon to gauge the out-of-sample performance of our portfolio

strategy. Since all the performance measures except the tracking error are computed

out-of-sample, we often drop the descriptive terms, “out-of-sample” and “in-sample”,

in the following discussion.

In all the experiments here, we use two benchmark portfolios to obtain our multiple-

benchmark tracking-error portfolio, one from Portfolio 1–10 in Table 3.3.2, and the

other is Portfolio 11 in Table 3.3.2, i.e., the buy-and-hold strategy. We report the

results of the first benchmark portfolio and the corresponding multiple-benchmark

tracking-error portfolio, as the buy-and-hold strategy for each single period only serves

the purpose of controlling for transaction volume.

Tracking Error

As the portfolio is constructed to track a set of benchmark portfolios, the first step

is to evaluate how closely our portfolio tracks the best return from the benchmark

portfolios. The results on tracking errors are summarized in Table 3.3.3. Comparing

the performance of the MBTE portfolio with that of its benchmark, we observe that the

tracking errors of the MBTE portfolio are always smaller than those of its benchmarks.

Note that the returns are not exactly normally distributed, so it is not guaranteed

that the MBTE portfolio would be the best even in terms of in-sample mean squared

tracking error. However, the results in Table 3.3.3 provide partial justification that

the MBTE portfolio might still perform well even when the normality assumption is

not completely satisfied.

To visualize the tracking error, we plot the percentage decrease in in-sample mean

squared tracking errors at every period from our portfolio compared to the PARR port-



3.3. NUMERICAL STUDIES 129

10
In
d

1/
n

M
B
T
E

PA
R
R

M
B
T
E

M
E
AV

M
B
T
E

M
IN

U
M
B
T
E

M
1F

A
C

M
B
T
E

3.
77

2E
-5

1.
69

6E
-5

2.
52

7E
-2

1.
23

2E
-2

6.
44

7
E
-4

2.
93

9E
-4

7.
12

0E
-4

2.
96

2E
-4

6.
91

2E
-4

2.
86

3E
-4

(4
4.

96
%

)
(4

8.
74

%
)

(4
5.

58
%

)
(4

1.
60

%
)

(4
1.

41
%

)
M
IN

D
M
B
T
E

M
1P

A
R

M
B
T
E

G
M
C

M
B
T
E

M
U
L

M
B
T
E

C
VA

R
M
B
T
E

6.
10

2E
-4

2.
52

0E
-4

5.
89

8E
-4

2.
43

3E
-4

1.
77

8E
-4

7.
77

8E
-5

3.
59

6E
-5

1.
60

8E
-0
5

1.
82

3E
-3

8.
20

5E
-4

(4
1.

30
%

)
(4

1.
25

%
)

(4
3.

75
%

)
(4

4.
72

%
)

(4
5.

00
%

)

48
In
d

1/
n

M
B
T
E

PA
R
R

M
B
T
E

M
E
AV

M
B
T
E

M
IN

U
M
B
T
E

M
1F

A
C

M
B
T
E

1.
31

9E
-4

2.
89

5E
-5

1.
27

0E
-1

3.
90

1E
-2

4.
85

0E
-3

1.
65

8E
-3

5.
32

8E
-3

1.
80

5E
-3

4.
66

8E
-3

1.
58

0E
-3

(2
1.

95
%

)
(3

0.
72

%
)

(3
4.

18
%

)
(3

3.
87

%
)

(3
3.

84
%

)
M
IN

D
M
B
T
E

M
1P

A
R

M
B
T
E

G
M
C

M
B
T
E

M
U
L

M
B
T
E

C
VA

R
M
B
T
E

4.
29

4E
-3

1.
40

3E
-3

4.
22

4E
-3

1.
38

8E
-3

6.
31

9E
-4

1.
74

6E
-4

1.
24

3E
-4

2.
74

9E
-5

5.
52

8E
-2

1.
51

5E
-2

(3
2.

68
%

)
(3

2.
86

%
)

(2
7.

63
%

)
(2

2.
12

%
)

(2
7.

40
%

)

25
F
F

1/
n

M
B
T
E

PA
R
R

M
B
T
E

M
E
AV

M
B
T
E

M
IN

U
M
B
T
E

M
1F

A
C

M
B
T
E

3.
62

6E
-5

1.
02

3E
-5

7.
64

7E
-2

2.
50

2E
-2

2.
63

0E
-3

9.
70

5E
-4

2.
94

9E
-3

9.
99

1E
-4

2.
68

4E
-3

9.
06

7E
-4

(2
8.

23
%

)
(3

2.
72

%
)

(3
6.

91
%

)
(3

3.
88

%
)

(3
3.

78
%

)
M
IN

D
M
B
T
E

M
1P

A
R

M
B
T
E

G
M
C

M
B
T
E

M
U
L

M
B
T
E

C
VA

R
M
B
T
E

2.
28

9E
-3

7.
83

3E
-4

2.
31

6E
-4

7.
91

5E
-4

2.
50

9E
-4

8.
12

9E
-5

3.
21

6E
-5

9.
35

7E
-6

9.
40

7E
-3

3.
30

4E
-3

(3
4.

22
%

)
(3

4.
17

%
)

(3
2.

40
%

)
(2

9.
09

%
)

(3
5.

12
%

)

8S
to
ck

1/
n

M
B
T
E

PA
R
R

M
B
T
E

M
E
AV

M
B
T
E

M
IN

U
M
B
T
E

M
1F

A
C

M
B
T
E

4.
06

4E
-4

1.
94

5E
-4

2.
18

4E
-2

1.
08

2E
-2

9.
71

8E
-4

4.
65

5E
-4

1.
84

3E
-3

9.
25

5E
-4

1.
89

1E
-3

9.
52

7E
-4

(4
7.

87
%

)
(4

9.
53

%
)

(4
7.

90
%

)
(5

0.
22

%
)

(5
0.

38
%

)
M
IN

D
M
B
T
E

M
1P

A
R

M
B
T
E

G
M
C

M
B
T
E

M
U
L

M
B
T
E

C
VA

R
M
B
T
E

1.
76

2E
-3

8.
87

3E
-4

1.
43

9E
-3

7.
21

8E
-4

1.
64

1E
-3

8.
22

7E
-4

3.
96

4E
-4

1.
89

1E
-4

2.
03

5E
-3

1.
00

4E
-3

(5
0.

36
%

)
(5

0.
16

%
)

(5
0.

14
%

)
(4

7.
71

%
)

(4
9.

31
%

)

N
ot
e:

T
hi
s
ta
bl
e
re
po

rt
s
th
e
in
-s
am

pl
e
tr
ac
ki
ng

er
ro
r
an

d
th
e
co
rr
es
po

nd
in
g
pe

rc
en
ta
ge

re
du

ct
io
n
in

in
-s
am

pl
e

tr
ac
ki
ng

er
ro
r
by

th
e
M
B
T
E

po
rt
fo
lio

(i
n
br
ac
ke
ts
).

Ta
bl
e
3.
3.
3:

C
om

pa
ri
so
n
on

in
-s
am

pl
e
tr
ac
ki
ng

er
ro
r



130 CHAPTER 3. QUADRATIC REGRET STRATEGY

folio in Figure 3.3.3. Our multiple-benchmark tracking-error portfolio is constructed

by using the buy-and-hold strategy and the PARR portfolio as benchmark portfolios.

The figure shows a significant difference in tracking errors between the two portfolios.

All the differences are positive, and on average, the in-sample tracking error of the

MBTE portfolio demonstrates a 40% to 60% reduction from that of the PARR port-

folio, which shows that the MBTE portfolio better tracks the highest return from the

group of benchmark portfolios. Figures for the other scenarios are similar, so only one

is reported here as an illustration.
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Notes: This figure plots the percentage decrease in the in-sample mean squared tracking
error at every period from the MBTE portfolio compared to the PARR portfolio.

Figure 3.3.3: Tracking-error difference between the PARR portfolio and the multiple-
benchmark tracking-error portfolio using the buy-and-hold strategy and the PARR
portfolio as benchmarks in the “10Ind” data set
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Turnover Rate

Table 3.3.4 reports the turnover rate and the corresponding percentage deduction

in turnover rate by the MBTE portfolio. From the table, we observe that the MBTE

portfolio has lower turnover rates than its respective benchmark portfolio in all cases

except for the GMC portfolio in the “48Ind” data set, where the GMC portfolio has a

slightly smaller turnover rate than the corresponding MBTE portfolio. This is exactly

the desired effect of introducing the buy-and-hold strategy as one of the benchmark

portfolios. In particular, the turnover rates of its corresponding MBTE portfolio are

only half as large as the turnover rates of the PARR portfolio across all the data sets.

The MBTE portfolio demonstrates a decrease in turnover rate of over 40% from the

MUL portfolio across all the data sets. In addition, the turnover rates of the respective

MBTE portfolio are at least 30% less than those of the 1/n and MEAV portfolios, and

the turnover rates of the respective MBTE portfolio are over 20% less than those of

the MIND, M1PAR, MINU, M1FAC, and CVAR portfolios.

Out-of-Sample Net Sharpe Ratio

Table 3.3.5 reports the out-of-sample net Sharpe ratio and the corresponding p-

value that the net Sharpe ratio of each benchmark strategy is smaller than that of

the respective multiple-benchmark tracking-error portfolio. The one-sided p-values

are computed based on the studentized circular block bootstrapping method used in

Ledoit & Wolf (2008). From the table, we observe that the MBTE portfolio consis-

tently dominates the benchmark portfolio used in its construction. In particular, the

MBTE portfolio has higher net Sharpe ratios than the 1/n portfolio and all the differ-

ences are significant at 0.005 level for all except the “8Stock” data set. Moreover, the

MBTE portfolio has higher net Sharpe ratios than the MUL portfolio across all the

data sets, and all the differences are significant at 0.05 level. The MBTE portfolio also
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outperforms the PARR portfolio across all the data sets, and the differences are signif-

icant at 0.005 level in all but the “8Stock” data set. Additionally, the MBTE portfolio

shows significant difference from the MEAV, GMC, M1FAC, and CVAR portfolios in

the “25FF” data set. It is worth noting that except the case when CVAR is used as

one benchmark, all the other MBTE portfolios have much higher net Sharpe ration

than the 1/n portfolio, independent of the choice on the benchmark portfolio, in all

the data sets we consider.

Net Aggregate Return

Table 3.3.6 reports the out-of-sample net aggregate return and the corresponding

percentage increment in net aggregate return by the MBTE portfolio. From the table,

we observe that the MBTE portfolios almost always dominate their respective bench-

mark portfolios over the whole investment period (07/1983–12/2011 for the “10Ind”,

“48Ind”, “25FF” data sets, and 08/2000–01/2013 for the “8Stock” data set). In par-

ticular, the MBTE portfolio shows great superiority over the PARR portfolio. The

net aggregate return of the MBTE portfolio is twice as large as that of the PARR

portfolio in the “10Ind” data set, nearly 10 times larger in the “48Ind” portfolio, and

37 times larger in the “25FF” data set. Furthermore, the MBTE portfolio outperforms

the CVAR portfolio by 88.6% in the “25FF” data set and the MINU portfolio by 38.6%

in the same data set. However, the net aggregate return of the MBTE portfolio does

not always outperform the GMC portfolio or the MUL portfolio, though the difference

is small (of order 0.1%) in these two cases.

After all, these aggregate returns only provide partial information as we only consid-

er one investment horizon. To demonstrate the robustness of the findings, we consider

random starting times and random lengths of the investment horizon. Some results

for the “48Ind” data set are provided in Figure 3.3.4 and 3.3.55.
5We have done similar tests on all the other data sets, and tried many other random starting points
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In both Figure 3.3.4 and 3.3.5, we observe that the net aggregate returns of our

multiple-benchmark tracking-error portfolios are constantly higher than or comparable

to those of the 1/n portfolio. Figure 3.3.4 shows that the shorter the investment

periods, the less difference in net aggregate returns between the MBTE portfolio and

the 1/n portfolio. When the investment activity is conducted for the whole 28 years, we

observe a clear difference between the net aggregate returns from these two portfolios.

Note that the MBTE portfolios in Figure 3.3.5 are obtained using the PARR and

buy-and-hold portfolios as benchmarks, which do not contain the 1/n portfolio, but

the performance of the 1/n portfolio at the same time periods are included for com-

parison. It is interesting to observe that although the PARR portfolio dominates the

1/n portfolio in terms of Sharpe ratio, when the transaction costs are considered, the

resulting performance of the PARR portfolio is usually worse than the 1/n portfolio.

However, if we put the PARR portfolio together with the buy-and-hold strategy in

the set of benchmark portfolios, our model yields a new portfolio that combines the

strength of both portfolios. The resulting portfolio provides a high level of return while

requiring much less transaction, and the net aggregate returns clearly outperform both

the 1/n portfolio and the PARR portfolio.

Remark 3.15. It is not so intuitive that why our model, which is a single-period mod-

el, performs very well in terms of long-run wealth growth. Interestingly, the approach

of minimizing the tracking-error volatility is closely related to a substream of on-line

portfolio selection models based on aggregate return maximization and the concept of

the universal portfolio, which is introduced by Cover (1991) and discussed further in

Helmbold et al. (1998). These portfolio selection models apply the logarithm trans-

form to the aggregate return and use the Taylor series expansion to approximate the

with random investment horizons. As the findings are similar, we only report part of the results here.
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objective function, provided that the portfolio return is sufficiently small, i.e.,

E
[
log
(
1 + r̃Tx

)] ∼= E

[
r̃Tx−

(
r̃Tx

)2

2

]
.

Then maximizing the approximate aggregate return is equivalent to minimizing

E
[(

1− r̃Tx
)2
]
,

i.e., using 1 as the benchmark when the returns are sufficiently small. This connection

partially explains why our model usually yields very high aggregate return over an

investment horizon even though it is a single-period model.

3.3.6.2 Multiple-Benchmark Tracking-Error portfolio with Penalty on Trans-

action Volume

We dedicate this part to evaluate the alternative way to control transaction volume

as proposed in Section 3.2.6, in which we penalize the transaction volume directly in

the objective function. In particular, we solve Problem (TC) to obtain the multiple-

benchmark tracking-error portfolio with a penalty on transaction volume (MBTEP).

We choose the 1/n, M1FAC, and CVAR portfolios as benchmarks. In choosing the

penalty parameter, ν, we use an in-sample calibration approach, where the turnover

of the multiple-benchmark tracking-error portfolio is restricted to be less than that of

the 1/n portfolio in the last period of estimation window. We fix W = 1 throughout

the investment horizon to facilitate the search of ν.

Table 3.3.7 presents a comparison between our multiple-benchmark tracking-error

portfolio (MBTEP) and the 1/n portfolio. From the table, we observe that the in-

sample tracking errors of the MBTEP portfolio are consistently smaller than that of the
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1/n portfolio across all the data sets. The net Sharpe ratios of our MBTEP portfolio

outperform the 1/n portfolio across all the data sets, and the difference is statistically

significant in all but the “8Stock” data set. Furthermore, over the whole investment

period of the data sets, the MBTEP portfolio tends to yield higher net aggregate

returns than the 1/n portfolio6. However, the turnover rates of the MBTEP portfolio

are always higher than those of the 1/n portfolio. This is expected as the in-sample

calibration of the penalty parameter might induce large out-of-sample turnovers.

Overall, the MBTEP portfolio provides better results than the 1/n portfolio. The

flexibility in choosing a value for the penalty parameter could be either a bonus or a

burden as determining the value is a judgment call of the portfolio manager. The de-

sired performance can only be induced by appropriately chosen penalty values. Adding

the buy-and-hold strategy into the set of benchmarks seems to be more natural and

effective in controlling the transaction volume.

3.4 Conclusion

We propose a new multiple-benchmark tracking-error model for portfolio selection.

The target return being tracked is the highest return from a set of given benchmark

portfolios. Our model differs from existing literature by directly capturing the concerns

arising from real investment activities. By resorting to Stein’s identity, we obtain

the closed-form expression for the optimal portfolio weights under the assumption

of normal return distribution. The closed-form solution reveals that persistency is

the basic component of the optimal portfolio, which partially explains the robustness

of our portfolio against the estimation errors, as the probability of one benchmark

6We have also conducted a robustness test in this case. As the results are similar as before, we do
not report it here.
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Data Portfolio Tracking Net Sharpe Turnover Net Aggregate
Set Model Error Ratio Rate Return

10Ind
1/n 0.1130 0.2260 0.0238 19.2912

MBTEP 0.09597 0.2364 0.0370 19.3359
(15.03%) (0.0460∗) (−35.68%) (0.23%)

48Ind
1/n 0.7323 0.1805 0.0306 15.0473

MBTEP 0.6160 0.2224 0.0723 18.5023
(15.89%) (0.0050∗∗∗) (−57.68%) (22.96%)

25FF
1/n 0.4768 0.1999 0.0174 20.5105

MBTEP 0.4149 0.2317 0.0365 29.8953
(12.97%) (0.0040∗∗∗) (−52.33%) (45.76%)

8Stock
1/n 0.02817 0.1807 0.0406 2.0784

MBTEP 0.01712 0.2126 0.0493 2.2427
(39.22%) (0.1169) (−17.65%) (7.91%)

Note: The number inside the brackets under “Tracking Error” column is the
corresponding percentage decrease in in-sample tracking error by the MBTE
portfolio from the 1/n portfolio. The number inside the brackets under “Net
Sharpe Ratio” column is the corresponding one-sided p-value that the net Sharpe
ratio of the 1/n portfolio is smaller than that of the respective MBTE portfolio.
Star symbols are included for p-values: (.∗) for significance at 0.05 level, (.∗∗) for
0.01, and (.∗∗∗) for 0.005. The number inside the brackets under “Turnover Rate”
column is the corresponding percentage deduction in turnover rate by the MBTE
portfolio from the 1/n portfolio. Negative numbers indicate increased turnover
rate. The number inside the brackets under “Net Aggregate Return” column is the
corresponding percentage increment in net aggregate return by the MBTE
portfolio from the 1/n portfolio.

Table 3.3.7: Comparison on the performance of the 1/n portfolio and the multiple-
benchmark tracking-error portfolio with penalty on transaction volume (MBTEP)

outperforming the rest are less prone to estimation errors on the expected returns of

the financial assets.

The closed-form solution allows us to conduct more in-depth analysis of our model,

especially, the comparison with the Markowitz mean-variance portfolio and the linear

combination rule proposed by Tu & Zhou (2011). In particular, we show that the

linear combination rule would be inferior to our portfolio if the portfolio manager has

a mean-variance utility with low risk aversion. This further strengthens the motivation



140 CHAPTER 3. QUADRATIC REGRET STRATEGY

of our multiple-benchmark tracking-error model. In addition, we prove that the entire

mean-variance efficient frontier can be generated from our model when two distinct

mean-variance portfolios are used as the benchmark portfolios, a result similar to the

well-known Two-Fund Theorem.

To address the common problem of whether to reposition the portfolio, our model-

ing framework allows a natural solution by including the buy-and-hold strategy as one

of the benchmark portfolios. Our numerical analysis shows that adding the buy-and-

hold strategy as a benchmark can significantly reduce the turnover rate, which might

be attractive to investors when transaction costs are considerable. When combining

the buy-and-hold strategy with other benchmarks, we demonstrate using the real data

sets that our portfolio has consistently provided higher net Sharpe ratio, higher net

aggregate return, and lower turnover rate compared to the benchmark portfolios, in

particular, the 1/n portfolio, a well-known tough benchmark to beat.
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Figure 3.3.4: Wealth growth of the multiple-benchmark tracking-error (MBTE) port-
folio using the 1/n and buy-and-hold portfolios as benchmarks, and the 1/n portfolio
with random starting times and evaluation periods in the “48Ind” data set
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Figure 3.3.5: Wealth growth of the multiple-benchmark tracking-error (MBTE) port-
folio using the PARR and buy-and-hold portfolios as benchmarks, the 1/n portfolio,
and the PARR portfolio with random starting time for evaluation period in the “48Ind”
data set



Chapter 4

Summary and Discussions

In previous chapters, we have shown how to transform two classes of problems into

the corresponding persistency estimation problems. In this chapter, we first review the

main results from the previous two chapters. Next, we will discuss several directions

for potential applications and future research. Last but not least, we will briefly discuss

how to improve the persistency estimation to wrap up the thesis.

4.1 Review and Discussions

4.1.1 Least Squares Distribution Approximation

In Chapter 2, we discuss the problem to estimate the distribution of the outcome from

a stochastic optimization system. When such optimization system can be represented

as a mixed zero-one linear programming problem with uncertainty in the objective

coefficients, i.e.,

Z (c̃) := max
x∈P

n∑
j=1

c̃jxj,
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where

P := {x ∈ Rn : aTi x = bi, ∀i = 1, . . . ,m; xj ∈ {0, 1} , ∀j ∈ B ⊆ {1, . . . , n} ; x ≥ 0},

we developed a least squares framework to approximate the distribution of its optimal

objective value. The approximating distribution could be a linear or a quadratic

function of the stochastic objective coefficients, i.e.,

W (c̃) = α +
n∑
j=1

βj (c̃j − µj) , or

Q(c̃) = α +
n∑
j=1

βj(c̃j − µj) +
n∑

j1=1

n∑
j2=j1

γj1,j2(c̃j1 − µj1)(c̃j2 − µj2).

The motivation to extend to a quadratic function is to capture the skewness in the op-

timal objective value. We illustrated the importance and effectiveness of the quadratic

approximation by several case studies. The parameters in the approximating func-

tions are chosen to minimize the expected squared deviation of the approximating

distribution from the true distribution of the optimal objective value, i.e.,

min
α∈R,β∈Rn

E

(Z (c̃)− α−
n∑
j=1

βj (c̃j − µj)

)2
 , or

min
α∈R,β∈Rn,Γ∈Rn×n

E
[(
Z(c̃)− α−

∑n
j=1 βj(c̃j − µj)

−
∑n

j1=1

∑n
j2=j1

γj1,j2(c̃j1 − µj1)(c̃j2 − µj2)
)2
]
.

When the objective coefficients follow a nondegenerate multivariate normal distri-

bution, we derived the closed-form expression of the approximating distribution by

resorting to Stein’s Identity. It turned out that persistency plays an important role in
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the optimal approximating distributions. In particular, for both linear and quadratic

approximations, the optimal linear parameters are just the persistency values, i.e.,

β∗j = E [xj(c̃)] , j = 1, . . . , n.

We also extended our analysis to other distributions of the random objective coeffi-

cients. In particular, we obtained the closed-form expression of the linear approxima-

tion when the random objective coefficients follow a multivariate skew-normal distri-

bution by exploiting the extension of the Stein’s Identity under such distribution.

We presented the application of these results in three problems: maximum par-

tial sum, project management, and statistical timing analysis. Exploiting the existing

results from literature, we derived the closed-form expression to approximate the dis-

tribution of the maximum partial sum for several special cases. In project management

problem, persistency is well-known by another name, criticality index. Our results on

the closed-form solutions tell that the criticality index can be also used to estimate

the variability in the project completion time. We demonstrated by numerical analy-

sis that the criticality index is very effective in capturing the variance of the project

completion time, and also that the overall approximation accuracy of our approach

is significantly higher than most existing methods. Moreover, our model differs from

the existing literature by its ability to capture correlations among activity completion

times, which can severely impact the project completion time. Finally, we illustrated

the application of our results in statistical timing analysis and tested the robustness

of our approximation method through a case with extreme distributional parameters.
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4.1.2 Quadratic Regret Strategy

Next, in Chapter 3, we discussed the problem of decision making under uncertainty,

and proposed a new decision criterion, named quadratic regret. In particular, we

sought to make a decision whose outcome has the minimum expected squared deviation

from the best possible alternative, when the outcome depends linearly on the decision

and the linear coefficients are stochastic. Mathematically, we considered the following

problem:

min
x∈P

E
[(
Z (c̃)− c̃Tx

)2
]
,

where P is the feasible space of the decision as defined before, and Z (c̃) denotes the

best possible outcome, i.e.,

Z (c̃) := max
y∈P

c̃Ty.

We illustrated this decision criterion using the example of portfolio management prob-

lem, where the portfolio manager needs to divide the capital into a pool of financial

assets before knowing the rates of return of all the assets. The objective is to maximize

the investment return while keeping the risk as low as possible. In the portfolio man-

agement problem, a popular strategy in practice is to track the outcome of a certain

benchmark portfolio. The deviation of the portfolio return from the benchmark return

is called tracking error, and the portfolio selection models that minimize the volatility

of the deviation are referred to as benchmark tracking-error models. We proposed a

new tracking-error model for portfolio selection that tracks multiple benchmarks. We

defined the tracking error under multiple benchmarks as the return deviation from the

highest possible return among the benchmark portfolios. In particular, we solved the

following problem:

min
x∈X

E
[(
ZB(r̃)− r̃Tx

)2
]
.
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where X is the set of feasible portfolios, and r̃ denotes the random asset return, and

ZB(r̃) represents the highest return from a set ofm benchmark portfolios, {p1, . . . ,pm},

i.e.,

ZB(r̃) := max
j∈{1,...,m}

r̃Tpj.

Under the assumption that the return follows a nondegenerate multivariate normal

distribution, we derived the closed-form expression of the optimal multiple-benchmark

tracking-error portfolio when X =
{
x ∈ Rn : eTx = 1

}
as follows:

m∑
j=1

E [pj (r̃)]pj + Σ−1

(
Cµ−Be

(A+ 1)C −B2

)(
E [ZB(r̃)]−

m∑
j=1

E [pj (r̃)]µTpj

)
,

where A = µTΣ−1µ, B = µTΣ−1e, and C = eTΣ−1e. Similar to the distribution

approximation problem, this was achieved by applying the Stein’s Identity. The closed-

form expression shows that the optimal multiple-benchmark tracking-error portfolio is

formed by the persistency weighted benchmark portfolio with an adjustment term. In

this case, the persistency of a benchmark portfolio, E [pj (r̃)], is the probability that

this benchmark portfolio yields the highest return among all the benchmark portfolios.

The closed-form solution suggests an interesting connection of our model to a well-

known behavioural abnormality, probability matching. It is evident from numerous ex-

periments that when making repeated decisions under uncertainty, rather than choos-

ing the strategy that maximizes the expected utility, human subjects tend to adopt

mixed strategies where the mixing probabilities converge to the probabilities of the

best possible option, i.e., persistency. In our portfolio selection problem setting, the

objective is to track the highest return from a pool of benchmarks. If the problem

is repeatedly presented to the portfolio manager, and the manager can only form the

portfolio exactly as one of the benchmarks, the probability matching theory would
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predict the manager to mix his or her choices over the periods, and the choice prob-

ability of a particular benchmark would match the probability that this benchmark

gives the highest return, which is exactly its persistency. However, in our case, the

investment decision is made only once, but allowed to be continuous. A natural ex-

tension from the probability matching theory would yield the decision that combines

the mixed strategies based on their mixing probabilities, which gives exactly the first

term in our closed-form solution. Moreover, as reported in many probability matching

experiments, the matching probabilities are usually not exactly the same as the per-

sistency values, and they are affected by several factors, like the amount of incentive,

etc. The adjustment term in the closed-form solution surprisingly describes such effect

to a certain extent. To see this, note that the term, E [ZB(r̃)]−
∑m

j=1 E [pj (r̃)]µTpj,

represents the shortfall of the expected return of the persistency weighted portfolio,∑m
j=1 E [pj (r̃)]pj, from the expected return of our target, E [ZB(r̃)]. Therefore, if the

ith asset has relatively higher expected return, i.e., µi is relatively larger, our optimal

portfolio will have a positive adjustment in the weight of the ith asset due to the ef-

fect from the term, Cµ − Be. For our model with target expected return constraint

(µTx = K), the optimal solution reads

m∑
j=1

E [pj (r̃)]pj + Σ−1

(
Cµ−Be
AC −B2

)(
K −

m∑
j=1

E [pj (r̃)]µTpj

)
,

which is also composed of the persistency weighted benchmark portfolio plus an adjust-

ment term. Note that this adjustment term is exactly the optimal solution to Problem

(M0) on page 111 with the target expected return K
′

= K −
∑m

j=1 E[pj(r̃)]µTpj.

Problem (M0) essentially finds the minimum-variance adjustment portfolio (eTx = 0)

with expected return K
′ (µTx = K

′). Therefore, the optimal multiple-benchmark

tracking-error portfolio at target expected return K is the persistency weighted bench-
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mark portfolio plus the minimum-variance adjustment to bring the expected return to

the level of K.

Overall, the closed-from expressions of our portfolios turn out to have an almost

perfect description from the perspective of probability matching behaviour. On the

other hand, this result also sheds some light on the emergence of the probability

matching behaviour. Our findings tell that if the subject makes the decision based

on minimizing the expected quadratic regret, his or her decision would exhibit the

pattern of probability matching. This partially coincides with some existing results

and conjectures that suggests the probability matching behaviour is closely related to

the mindset of regret minimization (cf. Simon (1956)).

Furthermore, the closed-form solution allows us to conduct more in-depth analysis

of our model, especially, the comparison with the Markowitz mean-variance portfo-

lio and the linear combination rule proposed by Tu & Zhou (2011). In particular,

we showed that the linear combination rule would be inferior to our portfolio if the

portfolio manager has a mean-variance utility with low risk aversion. This further

strengthens the motivation of our multiple-benchmark tracking-error model. In addi-

tion, we prove that the entire mean-variance efficient frontier can be generated from

our model when two distinct mean-variance portfolios are used as the benchmark port-

folios, a result similar to the well-known Two-Fund Theorem.

To address the common problem of whether to reposition the portfolio, our model-

ing framework allows a natural solution by including the buy-and-hold strategy as one

of the benchmark portfolios. Our numerical analysis showed that adding the buy-and-

hold strategy as a benchmark can significantly reduce the turnover rate, which might

be attractive to investors when transaction costs are considerable. When combining

the buy-and-hold strategy with other benchmarks, we demonstrated using the real
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data sets that our portfolio has consistently provided higher net Sharpe ratio, higher

net aggregate return, and lower turnover rate compared to the benchmark portfolios,

in particular, the 1/n portfolio, a well-known tough benchmark to beat.

4.2 Future Research

Besides the applications demonstrated in Chapter 2 and 3, the methodology developed

in this thesis could be applied to many other problem settings. In what follows, we

will discuss three areas of potential application.

4.2.1 Structural Calibration and Prediction

The first promising direction for future research will probe into the area of business

analytics. What was done in Chapter 2 is closely related to the regression analysis.

If we view Z (c̃) as the dependent variable, and c̃ as the independent variable, the

problem we tried to solve is to predict the dependent variable using a linear or a

quadratic function of the independent variable. The key differences with the traditional

multivariate linear regression are that in our case, we know that the dependent variable

is an optimization outcome of the independent variables, and that the independent

variables are allowed to be correlated. Thus, one potential research question is how

to calibrate the optimization model using the observed independent and dependent

variables without knowing the details of the optimization process, i.e., the functional

form of Z (c̃). A promising application is in the predictive modeling for consumer

choice, where only consumer’s past choices are observed but not the utility function

of the consumer. The problem is to calibrate the utility model in order to predict

consumer’s future choices.
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In another case, we can exploit the results in Chapter 2 to help improve the re-

gression analysis. Consider the example of predicting the service level in an clinic or a

hospital, where the patients have to wait in a queue for the service provided by the doc-

tors. In particular, we are interested in how long the patients will stay in the system,

i.e., the patient’s sojourn time in the system. Data available for such analysis usually

include patient’s characteristics (like demographic data, clinical conditions, etc.) and

the clinic’s or the hospital’s operational records (like queue length, arrival time, depar-

ture time, etc.). Typical approach is to apply the multivariate linear regression, and

try to predict the patient’s sojourn time using the available data. Then the conclusion

is drawn based on the statistical significance of related parameters. One of the most

important assumptions in the typical linear regression analysis is uncorrelated noise

terms, which unfortunately fails in this problem setting. The sojourn times of the

patients served by the same doctor are correlated through the service sequence. In

particular, the sojourn time of a patient will be affected by the sojourn time of the

previous patient, similarly for the noises in the sojourn times. Indeed, the relationship

between these two sojourn times can be expressed through a certain function involving

the maximum operator, which can be represented as an optimization process. There-

fore, the estimation method developed in Chapter 2 can be applied to simplify such

relationship by writing the sojourn time noise of a patient as a linear function of the

sojourn time noise of the previous patient and the idiosyncratic noise of this patient.

The parameters of the linear function can be easily estimated from data. With such

modification, we can refine the linear regression model, and hopefully improve the

prediction.



152 CHAPTER 4. SUMMARY AND DISCUSSIONS

4.2.2 Two-Stage Stochastic Programming

The methodology developed in the distribution approximation problem can be also ap-

plied to many two-stage stochastic optimization problems. In particular, if the second-

stage problem can be formulated as a mixed zero-one linear optimization problem with

uncertainty in the objective, we can use the results in Chapter 2 to approximate the

distribution of the second-stage costs. Armed with the distributional knowledge on

the second-stage cost, we can then conduct more in-depth risk analysis or parameter

calibration for the first-stage problem. Potential applications include various two-

stage problems in supply chain management as well as principal-agent models in game

theory.

For example, in many supply chain coordination models under the principal-agent

framework, the principal needs to design the contract in the first stage while some

parameters remain unknown to the principal, such as the demand information. In the

second stage, the uncertain parameters realize their values, and the agent learns these

values and responses optimally to the contract designed by the principal in the first

stage. The payoffs to the principal and the agent are then realized. The challenge for

the principal is to design the contract in the first stage such that his or her payoff is

maximized. Conventional objective adopted in literature is to maximize the principal’s

expected payoff. Such objective can be justified when the problem is repeated in many

periods and the principal is not allowed to redesign the contract in different periods.

However, the risk involved in the principal’s payoff makes the objective based on

expectation solely inefficient if the problem happens only once or a few times. The

difficulty of adopting different risk measures on the principal’s payoff partially comes

from the difficulty in assessing the distribution of the principal’s payoff, which depends

on the agent’s optimal response. If we can apply the results in Chapter 2 and construct



4.2. FUTURE RESEARCH 153

some approximating distributions for the principal’s payoff, we can certainly conduct

more risk analysis on the principal’s contract design. Consequently it will help the

principal design a better contract that tailors to his or her needs.

However, it might still be difficult to optimize the first-stage decision because of

the challenge to predict the change in the approximating distribution as the first-stage

decision changes. Nonetheless, the potential applications of the method in various

two-stage stochastic optimization problems are definitely worth future research.

4.2.3 Quadratic Regret Solution

Besides the portfolio selection problem, the concept of quadratic regret solution can be

brought into many other stochastic optimization problems. The connection between

this decision criterion with the probability matching behaviour through persistency

makes it worthwhile for further investigation. To provide a glimpse into the feature

of the quadratic regret solution in other problem settings, we present a preliminary

study on a stochastic shortest path problem in the next example.

Example 4.1. Consider the shortest path problem in the transportation network as

shown in Figure 4.2.1, where Node 1 is the origin and Node 3 is the destination. There

are three possible paths to reach Node 3 from Node 1. Denote the path using Arc

(1, 3) as Path A. Denote the two paths going through Node 2 as Path B and Path C.

The transportation times on Arc (1, 2) and either arc connecting Node 2 and 3 are

normally distributed with mean 5 and standard deviation 2, while the transportation

time on Arc (1, 3) is normally distributed with mean (10− ε) and standard deviation

2
√

2, where ε > 0. The transportation times on all the arcs are uncorrelated. Means

and variances of different paths are summarized in Table 4.2.1 for the case of ε = 0.1.

Thus, for any ε > 0, the path with the shortest expected transportation time is
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Figure 4.2.1: Transportation network in Example 4.1

Path Mean Variance Prob(Shortest) Prob(Longest) ESD
A (1→ 3) 9.9 8 40% 38% 11.10

B (1→ 2→ 3) 10 8 30% 31% 10.61
C (1→ 2→ 3) 10 8 30% 31% 10.61

Table 4.2.1: Stochastic parameters in Example 4.1 with ε = 0.1

Path A. Furthermore, since all the transportation times are normally distributed, the

transportation time of Path A is less than any other path in the usual stochastic order.

However, if we solve for the quadratic regret solution where the regret is measured as

the difference in transportation time between the path chosen and the shortest path,

then either Path B or Path C would be optimal for small ε. In addition, as ε → 0,

the fractional solution will converge to the persistency values of the arcs, i.e., the

probabilities that the arcs are on the shortest path.

To better understand the quadratic regret solution, Table 4.2.1 reports several s-

tochastic parameters of the problem when ε = 0.1. First of all, the quadratic regret

solution indeed has a smaller expected squared deviation from the shortest path. Al-

though Path A has larger probability of being the shortest, the collective probability

that either Path B or Path C is shortest is larger, i.e., 60%. Due to the positive

correlation between Path B and Path C as a result of a common arc, their individual

probability of being the longest is smaller than Path A. This shows that the quadratic

regret solution tends to be less aggressive on achieving the best result, but tries to

avoid the downside risk of being the worst decision.

The above example shows that the quadratic regret solution departs significantly
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from the expected utility solution and permits interesting probabilistic interpretations.

The quadratic regret model suits well in those decision making situations, where the

objective is to achieve reasonable good outcome and avoid the severe downside risk as

much as possible. The results from this preliminary study show that it is a promising

direction to pursue further analysis on the quadratic regret solution in both stochastic

combinatorial and continuous optimization problems.

4.3 Improving Persistency Estimation

One of the key messages in this thesis is problem transformation. Rather than solving

the two classes of problems directly, we transformed them uniformly to the persistency

estimation problems by appealing to Stein’s Identity. Then the solutions to the persis-

tency estimation problems can be used to build the solutions to the original problems.

Therefore, the quality of the solutions to the original problems now hinges on the

quality of the persistency estimates.

There are various ways to estimate persistency values. When we have enough his-

torical data, for example, in the case of the portfolio management problem, we can di-

rectly estimate the persistency values from the data. When we only have distributional

information on the uncertainties, we need to either perform a Monte Carlo simulation

or resort to some persistency estimation models. In Section 1.1, we reviewed several

generic SDP based models for persistency estimation. However, all those models are

distributionally robust models, which assume that the exact distributional information

of the uncertainty is unavailable and adopts the worst case analysis. This is not true

in our situation, where we know that the uncertainty follows a multivariate normal

distribution. There is certainly some accuracy lost when we use such distributionally

robust models to estimate the persistency under a normal distribution. Such accuracy
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lost will result in quality issues of the solution obtained for the original problems. As

observed in our numerical studies, the larger the problem size, the worse the solution

quality. Hence, there is a need to refine the persistency estimation models to capture

more distributional information. In this section, we will discuss a way to refine one

of the latest persistency estimation models in this category, CPCMM, developed by

Natarajan et al. (2011). The reason why we choose to focus on CPCMM is its ability to

capture correlations while maintaining a compact formulation. We have demonstrated

the importance to consider correlations in project management problems in Chapter

2. Let us first recall the result of CPCMM.

4.3.1 CPCMM Revisit

As reviewed in Section 1.1, CPCMM’s main result is using a deterministic conic opti-

mization model to find the tight upper bound on the expected optimal value of a mixed

zero-one linear programming problem when the cost coefficient vector is stochastic and

described by the first two moments and nonnegative support, i.e.,

ZP := sup
c̃∼(µ,Σ)+

E [Z(c̃)]

= ZC := max
n∑
j=1

Yj,j

s.t. aTi Xai − 2bia
T
i x+ b2

i = 0, ∀i = 1, . . . ,m

Xj,j = xj, ∀j ∈ B ⊆ {1, . . . , n}
1 µT xT

µ Σ + µµT Y T

x Y X

 �cp 0

where
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Z (c̃) := max c̃Tx

s.t. aTi x = bi, ∀i = 1, . . . ,m

xj ∈ {0, 1} , ∀j ∈ B ⊆ {1, . . . , n}

x ≥ 0

The optimal variables of the decision variables, x, Y and X, will provide estimates of

the stochastic parameters, E[x(c̃)], E[c̃x(c̃)T ] and E[x(c̃)x(c̃)T ], respectively. These

estimates are exact under some worst case distribution.

4.3.2 Relationship to Scenario Planning

In CPCMM, it is assumed that the moments and covariance parameters of the random

variables are known, and the only support information that is captured is nonnegativ-

ity. Then CPCMM constructs a set of scenarios, associated probability functions, and

solutions that attain the worst case performance objective under this set of scenarios.

The set of scenarios is completely determined by the optimization process. However,

in practice there are usually some typical scenarios that we know will happen with

relatively accurate probabilities. Next, we demonstrate how to extend CPCMM to

capture such specific scenarios when describing the uncertainty set for the random

variables. More specifically, suppose that there are N scenarios cs with probability ps,

s = 1, . . . , N , such that
∑N

s=1 ps = p ≤ 1. Furthermore, the conditional first and sec-

ond moments for the remaining scenarios are denoted by (µ,Σ)+. Then our problem

reduces to

ZS
P := (1− p) sup

c̃∼(µ,Σ)+
E [Z (c̃)] +

N∑
s=1

psZs (cs) ,

where Z (c̃) is defined as before, and
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Zs (cs) := max (cs)T xs

s.t. aTi x
s = bi, ∀i = 1, . . . ,m

xsj ∈ {0, 1} , ∀j ∈ B ⊆ {1, . . . , n}

xs ≥ 0

In this way, we can use a small set of scenarios with high probabilities to ensure

that the optimal solution constructed will not perform too badly for these typical

scenarios, and hence will not be overly conservative. Note that together with the

original result of CPCMM, we can easily reformulate ZS
P into a conic optimization

problem. In particular, applying CPCMM to the remaining scenarios, we can obtain

ZS
P = ZS

C := max (1− p)
n∑
j=1

Yj,j +
∑N

s=1 ps (cs)T xs

s.t. aTi Xai − 2bia
T
i x+ b2

i = 0, ∀i = 1, . . . ,m

Xj,j = xj, ∀j ∈ B ⊆ {1, . . . , n}
1 µT xT

µ Σ + µµT Y T

x Y X

 �cp 0

aTi x
s = bi, ∀i = 1, . . . ,m, ∀s = 1, . . . , N

xsj ∈ {0, 1} , ∀j ∈ B ⊆ {1, . . . , n} , ∀s = 1, . . . , N

xs ≥ 0, ∀s = 1, . . . , N

When p = 1 and ps = 1/N for all s, ZS
P reduces to the conventional stochastic op-

timization problem solved via the sample average approximation method. Hence, this

framework can be viewed as a bridge between the traditional stochastic optimization

and modern robust optimization.
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4.3.3 Capturing Normal Uncertainty

Now we will discuss how to utilize the above result to better describe the uncertainty

following a multivariate normal distribution. The idea is based on discretizing the

distribution and capturing different components of the sample points using different

approaches. We summarize the main ideas in the following steps:

1. Discretize the random variable by generating a set of samples from the multi-

variate normal distribution;

2. Determine a region around the mean vector with high density and partition the

region into N small grids;

3. For each grid s, s = 1, . . . , N , estimate its probability (ps) and conditional mean

(cs), and treat (ps, cs) as a specific scenario;

4. Remove the sample points inside the region from the set of samples;

5. Compute the probability (1−
∑N

s=1 ps) and conditional moments (µ, Σ) for the

rest sample points;

6. Use the results from Sections 4.3.2 to reformulate the following problem into a

conic optimization problem:

(
1−

N∑
s=1

ps

)
sup

c̃∼(µ,Σ)+
E [Z (c̃)] +

N∑
s=1

psZs (cs) ;

7. Solve the conic optimization problem and compute the persistency estimates

from its optimal solution.

It is obvious that two extreme cases of the above approach are sample average ap-

proximation method and CPCMM. There are several advantages of this intermediate
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method. Firstly, it captures much richer distributional information than the original

CPCMM so that the persistency estimates will be more accurate. Secondly, the for-

mulation can be maintained in a moderate size compared to the traditional sample

average approximation method. The method focuses on the most probable scenar-

ios around the mean for the multivariate normal distribution, and aggregates the less

probable events for the worst case analysis. In other words, it transforms the difficulty

from the large stochastic programming formulation into the conic constraint. Observe

that the optimal solution to Z (c̃) will not change if there is only a little perturbation

in c̃. Therefore, if the grid size is chosen properly, the optimal values of Zs (cs) from

those specific scenarios are just the conditional expectations of Z (c̃). Last but not

least, the computational effort will not increase too much compared to the original

CPCMM if N is not too large, as the conic constraint is the bottleneck when solving

the problem. Since improving the persistency estimation is not the focus of this thesis,

we leave these numerical studies and other issues to future research.
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