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Abstract

To improve domain-specific information retrieval, we have identified and ex-

amined two generic (domain-independent) but prominent problems in this area:

Resource Categorization and Text-to-Construct Linking.

The first problem refers to the categorization of domain-specific resources at

multiple granularities. This helps a search engine to better meet specific user

needs by highlighting task-relevant materials and organize its presentation of

search results by more pertinent metadata criteria.

The second problem refers to the resolution of domain-specific concepts to

their related domain-specific constructs. This allows constructs to properly in-

fluence relevance ranking in search results, without troubling users to input them

in potentially awkward construct syntax.

We observe correlations among various characteristics of domain-specific re-

sources, capturing them in a multi-layered graph. Following this graph, we carry

out our research on the two aforementioned problems as follows: For Resource

Categorization, we use the key information extraction problem in healthcare as a

case study on the categorization of correlated nominal facets. We exploit the cor-

relation between two categorizations at different granularities (i.e., sentence-level

and word-level) by propagating information from one to the other sequentially

or simultaneously. In addition, we use the readability measurement problem

as a case study on the categorization of ordinal facets. We exploit the corre-

lation between the readability of domain-specific resources and the difficulty of

domain-specific concepts through iterative computation. For Text-to-Construct

Linking, we tackle the linking of math concepts to their representations in math

expressions. We exploit the correlation between the observable characteristics of

vi
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a concept-expression pair and its relation type using supervised learning.

To demonstrate the applicability and usefulness of our research, we have im-

plemented two domain-specific search systems, one in the domain of math and

the other in healthcare. Both systems incorporate and extend our research find-

ings to handle domain-specific user needs. Our evaluation shows that both the

Resource Categorization and the Text-to-Construct Linking features are effective

in facilitating domain-specific search.
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Chapter 1
Introduction

As digital libraries and resources proliferate, how scholars find, access and

use information changes. Researchers, teachers, students and the general public

increasingly turn to online search engines for quick, indicative searches and even

for longer sessions of information gathering. Such searches often begin as general

keyword searches to large, publicly-available search engines.

However, such a search strategy works poorly for domain-specific information

retrieval (IR). Based on our preliminary user study of math search [Zhao et al.,

2008] and subsequent research, there are two key issues associated with this

search strategy in the context of finding relevant domain-specific resources:

First, users feel that general search engine results are disorganized. Different

types of resources in the results are mixed together without internal organization.

Many scholarly disciplines have a wide range of resources on the Web, where

topics are explained using different modes: a brief definition from a dictionary

page, a tutorial with examples and exercises, or a research paper with rigid

proofs. Each of these modes caters to different audiences, ranging from neophytes

to research specialists. In the domain of math, the topic of modular arithmetic

serves as a case in point: Simple examples can be explained to children in the

guise of clock arithmetic, but specialists’ needs in ring theory might start with

searches composed of identical keywords but are in fact looking for papers to keep

themselves abreast of cutting-edge research progress. As another example, in the

healthcare domain, registered practice nurses need information about a disease

or a healthcare practice of interest, whereas research nurses need to find studies

that validate certain healthcare practices for particular diseases. However, few

1



CHAPTER 1. INTRODUCTION

general search engines are able to recognize such modes and organize the results

accordingly. As a result, users must expend a lot of effort navigating through

the results to find the ones aligned to their needs.

Moreover, users also feel that there is a lack of support for applying selection

criteria on the search results in general search engines. In domain-specific IR,

users often have in mind a set of selection criteria that help to decide which

resources are the most suitable. Such criteria are mostly concerned with desirable

characteristics of the resources. The stronger those characteristics are in the

resources, the more likely they will be selected by the users. For example, due

to the technical nature of medical knowledge, articles in the medical domain

are often too specialized for the general public [Graber et al., 1999]. Therefore,

laymen prefer more readable articles, thus making readability one of the most

important selection criteria to be supported in medical search. Likewise, when

educators search for teaching resources, they apply multiple selection criteria,

such as the prestige of the sponsors, appropriateness for the target students’ age

range, and the degree of organization, to ensure that the selected resources are

of high quality. However, the automatic measurement of these characteristics,

which is the prerequisite for providing such support, is still in its early stage

(with the exception of readability). Therefore, the application of these selection

criteria is likely to remain a manual and time-consuming process for users. How

to automate this process is a challenge for researchers.

Second, while it is desirable to make domain-specific constructs searchable

and relevant in ranking, users still prefer to use text keywords over other input

modalities. Many scholarly disciplines have their own domain-specific constructs

to encode information. These constructs convey precise, detailed information

about knowledge in a domain. Examples include DNA sequences, molecular for-

mulas, music notation, and, in the domain of math, mathematical expressions.

These domain-specific constructs lead to two difficulties in current search tech-

nology. First, although they are comparatively better than natural language in

terms of compactness, expressiveness, and operative power, construct notation

is far more difficult to analyze and utilize in retrieval. For example, despite the

fact that a large amount of information is encoded as math expressions in math-

2



CHAPTER 1. INTRODUCTION

ematical documents, math expressions are seldom a factor in relevance ranking.

Second, inputting constructs can be troublesome and awkward. Even if we as-

sume that the first difficulty is solved, users hoping to use construct-aware search

may have a difficult time entering constructs to form queries. For example, in

math search, on-screen keyboards and equation editors can be used to construct

a math expression, but these are still at best awkward to use. Considering the

fact that math expressions are still mostly text-based, this problem is exacer-

bated in other domains where constructs also have a non-textual component

(e.g. molecular structures in chemistry or modern music notation).

These two issues surface in many domains and need to be addressed in the

corresponding domain-specific search engines. However, instead of treating these

problems with domain knowledge (which we believe is fruitful and many times,

necessary), in this thesis, we work towards finding suitable approaches to address

these problems without domain knowledge. We aim to further approaches for

domain-specific IR in a general, domain-independent manner – i.e., not requiring

expensive domain knowledge sources such as ontologies and knowledge bases –

so that the techniques can be ported to any domain easily. In this way, we can

improve domain-specific IR in general instead of only in a few specific domains.

We believe that the first issue can be addressed by Resource Catego-

rization, i.e., the automatic categorization of resources on both nominal (e.g.,

resource type) and ordinal (e.g., readability) facets. If automated, this catego-

rization would enable search engines to organize results for easier navigation and

provide better support for the application of selection criteria. For example, a

search on “modular arithmetic” will return several smaller lists of results, one for

each mode of resources, with options to rank the results in each list by relevance,

readability or quality. Novices can then filter out materials other than readable

tutorials, while researchers can route their interests directly to research papers.

In order to address the second issue, we examine a related yet somewhat

different problem: Text-to-Construct Linking, i.e., to link domain-specific

concepts together with domain-specific constructs, so that the constructs relevant

to concepts can be identified, analyzed and utilized as part of ranking. For

example, a search on “Pythagorean theorem” would be recognized as equivalent

3



CHAPTER 1. INTRODUCTION

to a search on x2 + y2 = z2 and resources containing this or other construct

variants would also be marked as relevant.

Upon close inspection, we have observed that both problems involve de-

termining certain characteristics associated with domain-specific resources at

different granularities. For example, in Resource Categorization, the key char-

acteristics can be larger, resource-level characteristics, such as resource type and

readability, as well as more fine-grained sentence- or word-level characteristics,

such as sentence or word type. As for Text-to-Construct Linking, the key charac-

teristics can be the relation type between a concept and a construct in a sentence.

Correlations exist among these characteristics, which can be exploited in solving

the aforementioned problems. For example, knowing the type of a sentence may

help to infer the word types within the sentence, and vice versa. We represent

these characteristics and correlations in a graph and use it to guide the problem

solving process for these problems.

Based on this graph, we exploit the following correlations using domain-

independent approaches to address the problems of Resource Categorization and

Text-to-Construct Linking:

• For Resource Categorization on nominal facets, we exploit the correlation

between two categorizations at different granularities (i.e., sentence- and

word-level) by propagating information from one to the other, sequentially

or simultaneously.

• For Resource Categorization on ordinal facets, we measure the readability

of domain-specific resources. To exploit its correlation with the difficulty

of domain-specific concepts, we use an iterative computation algorithm to

recursively estimate one from the other.

• For Text-to-Construct Linking, we link domain-specific concepts to their

related constructs using supervised learning. The correlation exploited in

this problem is the one between the observable characteristics of a concept-

construct pair and its relation type.

In the subsequent sections, we will detail our correlation graph, describe the

goals and contributions of our research, and outline the structure of this thesis.

4



CHAPTER 1. INTRODUCTION

1.1 Correlation Graph for Domain-specific Resources

Given our dissection of the two major tasks needed in catering to domain-specific

IR, what approaches are appropriate to address them? Ad hoc methodologies

can be applied to each specific domain but such methods would not capitalize

on the shared structures that we believe exist across different domains.

A methodology that has been used in wide variety of tasks to model structure

is graphical representation. Any characteristics and correlations can be naturally

represented as nodes and edges in a graph. Suitable computational mechanisms

can then be employed to exploit specific correlations as a way to determine

the characteristics of interest based on others. As such, we also capture the

characteristics of domain-specific resources and their correlations in a graph.

We define domain-specific resources as textual resources written for certain

domain-specific concepts in styles suitable for their purposes. They are one of

the most common targets of retrieval in domain-specific IR.

Although commonly retrieved as individual resources, they can also be viewed

as a hierarchy of segments. We define segments as parts which the resources are

divided into based on certain criteria. For example, when the resources are first

divided into sentences and then words, the resources can be viewed as a hierarchy

of two levels with sentences being the segments at the first level and words being

the segments at the second level.

Various characteristics can be associated with domain-specific resources, specif-

ically to the concepts for which the resources are written, the resources them-

selves as a whole and the segments in the resources. As a few examples, the

concepts for which the resources are written can be associated with difficulty,

which measures the amount of prerequisite knowledge required to understand a

concept. The resources themselves as a whole can be associated with resource

type, which is the genre of a resource defined based on the types of information

it contains and how such information is organized, readability, which measures

how difficult it is to understand a resource, and average sentence length, which

is the average number of words per sentence in a resource. The segments in

the resources can be associated with segment type, which we define as the type
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of information a segment contains or represents, and relation type, which is the

type of semantic relation that exists between two segments.

Many of these characteristics are correlated in the sense that knowing one of

the characteristics will help to infer another. For example, knowing the type of

a domain-specific resource helps to infer the types of the segments it contains

and vice versa, while knowing the readability of a resource can help to infer the

difficulty of the concepts it is written for and vice versa. Such correlations are

useful when we need to infer certain characteristics based on others.

The resulting graphical representation of such characteristics and correlations

is our correlation graph. It can be used to guide the research on many problems

in domain-specific IR pertaining to the indexing and retrieval of domain-specific

resources, including Resource Categorization and Text-to-Construct Linking.

We now go through the topology of our graph and describe its application

for problem solving in domain-specific IR.

1.1.1 Topology

We propose a topology of our correlation graph for domain-specific resources,

shown in the example in Figure 1.1. In this graph, the nodes in white repre-

sent observable characteristics associated with domain-specific resources, such

as word sequence and average sentence length, while the ones in grey represent

hidden characteristics, such as resource type and readability. These nodes take

on one or more values whose types and meanings vary depending on the charac-

teristics they are representing. For example, the values for the node representing

resource type can be nominal categories, such as tutorials and papers, while the

values for the node representing readability can be ordinal ranks, such as grade

levels. Edges are undirected, representing correlations among the characteristics.

The graph itself is divided into three layers: concept, resource and segment,

each representing a different aspect of domain-specific resources.

The concept layer represents the domain-specific concepts for which a re-

source is written. The nodes in this layer represent characteristics such as dif-

ficulty and concept type. For example, in terms of difficulty, addition and sub-

traction are easy since they can be learned with little math knowledge, whereas

6
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Figure 1.1: Example correlation graph for domain-specific resources. The nodes
represent characteristics associated with domain-specific resources. The colors of
the nodes (i.e., white or grey) indicate whether the corresponding characteristics
are observable or not. The edges are undirected and represent the correlations
between pairs of characteristics.

integration and differentiation are more difficult because they require a more

comprehensive domain background. As another example, in terms of type,

Fourier transform and Pythagorean theorem are examples of operation concepts

and theorem concepts, in math respectively. Likewise, diabetes and vitamin are

examples of disease concepts and substance concepts, in medicine respectively.

Since the focus of our graph is on domain-specific resources, we keep this layer

simple and do not model possible correlations among the characteristics of the

concepts. Therefore, there are no edges among the nodes in this layer.

The resource layer represents a domain-specific resource as a whole. The

nodes in this layer represent characteristics such as resource type, readability,

and average sentence length. These nodes are correlated with each other as

indicated by the edges among them. For example, the average sentence length

node is correlated with the readability node since average sentence length is
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indicative of the readability of a resource.

The segment layer represents the segments in a domain-specific resource.

Depending on the segmentation granularit(ies), this layer may contain multiple

levels. Each level corresponds to a different granularity. The levels collectively

form a hierarchy of segments. The nodes in each level represent characteristics

such as segment type, relation type, and word sequence in a segment. There

may also be correlations among the nodes within or across the levels in this

layer. For example, the word sequence in a sentence is indicative of its type

(e.g., example sentences usually start with the phrase “For example”). In the

medical domain, the type of a sentence may give evidence for specific word types

(e.g., a sentence describing the patients of a medical study is likely to contain

words that represent patient demographics).

The three layers in our graph do not exist in isolation. Rather, there are

many correlations among the characteristics from different layers. For exam-

ple, difficulty in the concept layer is correlated with readability in the resource

layer, as resources written for difficult concepts are generally less readable, while

concepts commonly described by less readable resources are more likely to be

difficult. As another example, between the resource and the segment layers, re-

source type and segment type are correlated. Knowing the resource type helps

to determine the possible segment types in a resource (e.g., a course website

usually contains information about textbooks on the concepts to be covered in a

course) and vice versa (e.g., a resource with plenty of definitions and examples

of concepts is more likely to be a tutorial than a resource hub).

The nodes, edges and layers as described above form our correlation graph

for domain-specific resources. For more detailed lists of example nodes and edges

in the graph, please refer to Appendix A.1.

1.1.2 Problem Solving with Correlation Graph

In our opinion, a fundamental problem in domain-specific IR is to facilitate

the information seeking process of domain-specific searchers by characterizing

domain-specific resources in the presence of domain-specific concepts and con-

structs, without relying on expensive domain knowledge sources.
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There are several reasons why we pose this as a fundamental problem:

First of all, IR of any type should aim to assist users in their information

seeking process. Domain-specific IR is no exception to this. Given the complexity

of domain-specific searchers, search systems that support these domains would

not work well without first understanding their needs and then catering to them.

Second, the characteristics of domain-specific resources are crucial in facili-

tating the domain-specific information seeking process. For example, character-

istics of the resources as a whole, such as resource type and readability, allow

supporting search systems to retrieve more relevant results and assist users in

determining suitable resources from such results more easily. As another exam-

ple, characteristics that may serve as domain knowledge (e.g., the relation types

between domain-specific concepts and constructs) can be utilized in ranking or

presented to users directly to satisfy their information needs. Therefore, it is

important to determine such characteristics in domain-specific IR.

Lastly, although domain knowledge sources make it easier to utilize domain

knowledge, they are costly to compile and their availabilities vary from domain

to domain. Hence, we cannot rely on them in niche or underresourced domains.

The two problems examined in our research (i.e., Resource Categorization

and Text-to-Construct Linking) are both instances of this fundamental problem:

The problem of Resource Categorization is to categorize resources on various

facets (i.e., characteristics of interest) at multiple granularities, such as resource

type, readability, sentence type and word type. It facilitates the information

seeking process by allowing search engines to organize results better and enabling

users to navigate through search results (e.g., filtering by resource type and

sorting by readability) to select suitable ones (e.g., checking whether the study

design described in a research article is valid) more easily.

The problem of Text-to-Construct Linking is to semantically relate domain-

specific concepts to constructs. It facilitates the information seeking process in

different ways, depending on the nature of the semantic relations of interest (e.g.,

connecting concepts with their construct representations saves users’ trouble of

inputting the constructs manually). The characteristic of interest in this problem

is the relation type of a pair of concept and construct.
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Table 1.1: Examples of Resource Categorization.

Name Problem Description

Genre Classification To categorize resources based on the informa-
tion they contain and how such information is
organized.

Information Extraction To categorize segments (e.g., sentences/words)
of resources based on the information they con-
tain/represent.

Concept/Construct
Recognition

To identify whether a word/symbol is part of a
domain-specific concept/construct.

Metric Measurement To measure the readability/specificity/cohesion
of resources.

Table 1.2: Examples of Text-to-Construct Linking.

Name Problem Description

Representation
Identification

To identify representations of domain-specific
concepts in constructs.

Operand Role Labeling To label the roles of constructs with respect to
the operations (represented by domain-specific
concepts) applied on them.

Co-reference Resolution To find the constructs referred to by domain-
specific concepts.

More examples of these problems can be found in Table 1.1 and 1.2.

A correlation graph can serve as a guide in solving these problems. Given

the characteristics of interest, the first step is to identify from the graph a set of

nodes that represent such characteristics. New nodes can be added in appropriate

layers as necessary. For example, to represent the specificity of a resource, a node

can be added in the resource layer.

The second step is to identify from the graph a set of edges that represent the

correlations to be exploited in determining the characteristics of interest. This

can be done by using the existing edges as a reference and/or performing a corpus

study. New edges can also be added among appropriate nodes as necessary. For

example, similar to readability, specificity should be correlated to the observable

characteristics and the resource type in the resource layer, as well as some hidden

ordinal characteristics in the concept layer. A corpus study on domain-specific

resources with simple correlation metrics, such as Pearson’s R, may reveal that

it is correlated with concept genericity (i.e., resources written for more generic

concepts are usually less specific) and hence edges can be added between the
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corresponding nodes in the respective layers.

Once the set of relevant nodes and edges has been decided, we select an

appropriate computational mechanism based on the nature of the characteristics

and correlations represented by the nodes and edges. Our correlation graph does

not impose a choice of computational mechanisms; we are free to choose a means

best suited to the characteristics of interest.

Take the problem of Resource Categorization as an example. We differentiate

the two cases where the facets to be categorized are nominal or ordinal. For the

former, we examine the categorization of two correlated nominal facets: sentence

type and word type. As represented in Figure 1.2, these two facets are correlated

to each other in sense that the type of a sentence determines the possible word

types in that sentence while the types of the words in a sentence serve as strong

indicators of the sentence type. Therefore, we have applied supervised learning

for this problem and compared various ways of combining the two categoriza-

tions together so that one could inform and improve the other. For the latter,

we examine the problem of readability measurement. As represented in Fig-

ure 1.3, the readability of domain-specific resources is correlated to the difficulty

of domain-specific concepts, since readable resources are commonly written for

easy concepts, while difficult concepts are commonly described by less readable

resources. To exploit this correlation, we iteratively compute the readability of

domain-specific resources based on the difficulty of domain-specific concepts and

vice versa.

Figure 1.2: Example set of nodes and edges for Resource Categorization on
nominal facets.
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Figure 1.3: Example set of nodes and edges for Resource Categorization on
ordinal facets.

As another example, for Text-to-Construct Linking, we are interested in re-

lating math concepts to their representations in expressions. Therefore, the

relation type between a concept and an expression is the center of attention in

this problem. As represented in Figure 1.4, relation type is correlated with the

observable characteristics of a pair of concept and expression. Since relation

type is also nominal, our approach is also based on supervised learning as we

have done for the first case of Resource Categorization.

Figure 1.4: Example set of nodes and edges for Text-to-Construct Linking.

1.2 Goals and Contributions

Our research aims to improve domain-specific IR in general without using expen-

sive domain knowledge sources. Within this broad aim, we achieve the following

three specific goals:

1. To identify prominent problems in domain-specific IR. These problems

should be sufficiently common yet addressing them should facilitate domain-

specific IR.

2. To address the identified problems in a generic manner so that different

instances of such problems in different domains can be addressed similarly.
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3. To incorporate the research findings into domain-specific search systems.

This helps to verify the usefulness of our research and improve domain-

specific IR in practice.

We have made the following contributions towards these goals:

• Identifying two prominent problems in domain-specific IR. We

identify Resource Categorization and Text-to-Construct Linking as two

prominent problems in domain-specific IR based on our user study. These

two problems are prevalent in many domains and shall be addressed to aid

the resource selection process and alleviate the need for construct input.

• Providing domain-independent approaches to address the two

prominent problems. We have observed correlations among various

characteristics of domain-specific resources and captured such information

in a multi-layered graph. Following this graph, we examine the problems

of Resource Categorization and Text-to-Construct Linking. By using con-

crete instances of these problems as case studies, we demonstrate that

Resource Categorization may benefit from 1) propagating information be-

tween two correlated classifications of nominal facets at different granu-

larities, and 2) iteratively computing the values of two correlated ordinal

facets based on each other. To address Text-to-Construct Linking, one

possible soution is to first detect the links between pairs of domain-specific

concepts and constructs, and then rank the constructs linked to the same

concept heuristically to find the suitable ones for display and retrieval.

None of these approaches rely on expensive domain knowledge sources and

hence they are largely domain-independent.

• Implementing two domain-specific search systems. To demonstrate

the applicability and usefulness of our research, we have also implemented

two domain-specific search systems, one for math and the other for health-

care, based on our research findings. These systems may serve as platforms

for domain-specific IR research and can be expanded into practical systems

for public use in future.
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1.3 Thesis Outline

The rest of this thesis is organized as follows.

In Chapter 2, we give an overview of the research in domain-specific IR,

detail the user study from which we identify the two problems examined in our

research, and review existing works on how graphical representations have been

applied in general and domain-specific IR.

In Chapter 3, we examine Resource Categorization on nominal facets. In

particular, we compare several ways to exploit the correlation between catego-

rizations at different granularities. This is done through a case study on the

problem of key information extraction in healthcare.

In Chapter 4, we continue our investigation in Resource Categorization but

shift our focus to ordinal facets. Using readability measurement for domain-

specific resources as a case study, we demonstrate that an iterative computation

algorithm can be employed to exploit the correlation between two ordinal facets

for better measurement accuracy.

In Chapter 5, we move on to the problem of Text-to-Construct Linking. We

approach this problem by a two-step process consisting of concept linking and

construct ranking. We carry out this part of research in math, linking concepts

to their expression representations.

In Chapter 6, we introduce the math and healthcare search systems we have

built. Both systems have incorporated features based on our research on Re-

source Categorization and Text-to-Construct Linking.

In Chapter 7, we conclude this thesis. We first recap the contributions of our

research and then point out possible directions for future research.
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Chapter 2
Background

We start our related work survey by reviewing domain-specific IR research.

We then detail our user study from which we derive the two primary problems

for this thesis’ focus. As we use a graphical perspective to find the common-

alities in domain-specific IR, in the end, we review the relevant literature on

graphical representations and related work that motivates our correlation graph

for domain-specific resources. We defer the reviews specific to the individual

research problems to their respective chapters.

2.1 Domain-specific IR

Domain-specific IR is a type of vertical search that focuses on a specific domain.

The term ‘domain’ here refers to a particular sphere of knowledge, influence, or

activity. Common examples of domains include (but are not limited to) general

sciences, such as math, medicine and bio-informatics, and humanities, such as

law, economics and music.

The main objective of domain-specific IR is to obtain domain knowledge

and/or resources that can be used to appreciate, learn or apply domain knowl-

edge. It overlaps somewhat with other types of vertical search when the resources

of interest are of particular media types (e.g., text webpage and videos) or genres

(e.g., tutorial and research paper); however, in domain-specific IR, the domain

knowledge in the resources should be the primary concern. For example, a search

for movies can be considered as domain-specific IR if the intention is to appre-

ciate the domain knowledge (e.g., cinematic techniques) in the movies; however,

if the search is just to obtain movies for personal enjoyment, it is not considered

15



CHAPTER 2. BACKGROUND

as domain-specific IR because in this case, the domain knowledge contained in

movies is not the primary focus.

There are several key elements that need to be taken into consideration in

domain-specific IR:

The first element is the presence of domain knowledge. We define domain

knowledge as the facts and information in a particular domain. It is referred to

by domain-specific concepts, encoded by domain-specific constructs, described

in domain-specific resources and captured in domain knowledge sources. Such

knowledge is also possessed and sought after by domain-specific searchers.

The second element is the presence of domain-specific concepts. We define

domain-specific concepts as the natural language phrases used to refer to pieces

of domain knowledge. For example, “operator” is a biological concept that refers

to a segment of DNA, while “ring theory” is a math concept that refers to the

study on a particular type of algebraic structures. It is important to be able

to recognize them from domain-specific resources and handle them specifically

for retrieval instead of treating them as normal text phrases. For example, a

search engine for biological information should recognize “operator” as a domain-

specific concept from a research article and know that it is related to the concept

“DNA”. When the concept “DNA” is used as a query, the domain-aware search

engine can then use this piece of information to infer that this article may be

relevant, too, even though it may not mention “DNA” explicitly. As another

example, a math search engine needs to recognize that “ring theory” is a difficult

concept even though it is a combination of two simple words, and that the

presence of this concept will decrease the readability of a resource.

The third element is the presence of domain-specific constructs. We de-

fine domain-specific constructs as the symbolic representations which encode

domain knowledge through a domain-specific way other than natural language.

For example, math expressions are domain-specific constructs in math since they

represent math knowledge through combinations of symbols such as numbers,

variables and operators. As another example, songs can be considered as domain-

specific constructs in music when interpreted as an arrangement of notes of

varying pitches, timbre and rhythm. These constructs need to be handled with
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specialized indexing and searching techniques so that they can be utilized in re-

trieval or even become the targets of retrieval themselves. For example, a math

search engine needs to be able to analyze the expression a2 + b2 = c2 syntacti-

cally and semantically to know that it is in the form of “the sum of squares of

two variables equals the square of another variable” and is a representation of

“Pythagorean theorem”. The resources that contain this expression can then be

returned when users search for expressions of the same form or resources about

Pythagorean theorem. Similarly, a music search engine may analyze a song to

know that it is in the style of jazz and return it in response to a search for

examples of jazz music. Note that domain-specific constructs are symbolic and

independent of how they are stored. For example, the expression a2 + b2 = c2

can be stored as a LaTeX expression or an image while songs can be stored as

mp3 or midi files, without affecting the knowledge encoded.

The fourth element is the presence of domain-specific resources. As defined

in Chapter 1, domain-specific resources are textual resources (e.g., a scholarly

article, a webpage, a formalized educational lesson module and a newspaper

clipping) written for certain domain-specific concepts (e.g., modular arithmetic

in math, bird flu in medicine and proteins in bio-informatics) in styles suitable

for their purposes (e.g., an introductory tutorial for beginners and a journal

information page for researchers). They are the targets of retrieval in most

domain-specific searches and domain-specific concepts and constructs frequently

appear in them as means to refer to and encode domain knowledge, respectively.

The fifth element is the presence of domain knowledge sources. We define

domain knowledge sources as domain knowledge compiled in an explicit way that

can be utilized directly. Examples of domain knowledge sources include ontolo-

gies, which list the concepts in a domain and indicate the relationships among

them, and knowledge bases, which use sets of rules to describe domain knowledge

in a logically consistent manner. They commonly serve as sources of information

which domain-specific search systems can tap on as they handle domain-specific

resources. For example, domain-specific search systems can make use of ontolo-

gies to recognize concepts from resources and decide whether to return a partic-

ular resource based on whether the concepts it contains are semantically related
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to the ones in the query. These sources can be very detailed and capture rich

nuances of domain knowledge (Element 1), and can be expensive to build and

invest in. For example, in medical domain, the UMLS Metathesaurus1 is a large,

multi-purpose, and multi-lingual thesaurus that contains millions of biomedical

and health related concepts, their synonymous names, and their relationships.

It was released more than ten years ago and is now still being updated twice a

year by the National Library of Medicine (NLM) under government support. To

be clear, in our thesis, we focus on investigating how to improve domain-specific

IR generically, without utilizing these resources, as their availabilities vary from

domain to domain.

The last key element is the presence of domain-specific searchers. We define

domain-specific searchers as the people who seek for domain-specific resources

and constructs, as well as the underlying domain knowledge. Their needs are

more specialized than general searchers, as they have different roles and exhibit

a wide spectrum of domain knowledge. For example, the needs and behaviours

of a primary school student will be quite different from the ones of a seasoned

researcher, although they may both start their search with the same keyword

“modular arithmetic”. The student may only need some simple animations il-

lustrating what modular arithmetic is, but ends up being overwhelmed by the

mixed results returned and cannot decide which results to pursue in more detail.

On the other hand, the researcher, with a stronger background in the domain, is

able to differentiate which results are likely to be relevant. He may even refor-

mulate the query using domain knowledge or switch to specialized search engines

as necessary. Given the domain as context, it becomes feasible and important

to analyze these user needs and behaviors and cater for them specifically.

These key elements interact and pose challenges in domain-specific IR.

For each domain, there will be specific retrieval needs that condition on the

specialized knowledge of the domain. Handling these intricacies is not the focus

of this thesis. Instead we focus on addressing the common problem patterns that

re-occur in many domains.

Based on our literature review on IR in specific domains, such as math,

1http://www.nlm.nih.gov/research/umls/knowledge sources/metathesaurus/
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medicine and music, we have noted three major challenges in domain-specific IR:

1) indexing and searching domain-specific resources, 2) indexing and searching

domain-specific constructs, and 3) query languages.

2.1.1 Indexing and Searching Domain-specific Resources

The indexing and searching of domain-specific resources is a major challenge in

domain-specific IR, due to the key elements involved.

Approaches for handling domain-specific concepts in domain-specific resources

commonly start with the identification of such concepts from the resources. The

domain knowledge sources involved could be lexica, thesaurii or ontologies which

list the concepts in a domain and possibly encode the relationships among them.

By taking into account the presence of such concepts in the resources and the

relationships among them as derived from the domain knowledge sources, the

retrieval process can then replace standard keyword search with concept-based

search, or augment standard searching techniques with the help of such concept

information. For example, [Meij et al., 2009] investigate language models based

on concepts instead of words for domain-specific IR, while [Hliaoutakis et al.,

2006] enhance the standard vector space model by introducing concept seman-

tic similarity scores derived from MeSH (Medical Subject Heading2) in medical

domain. A few other works, such as [Kim and Compton, 2001] and [Radhouani

et al., 2009], also explore organizing the resources according to concept ontologies

to allow for easier navigation to resources of related concepts.

Dealing with domain-specific constructs in domain-specific resources is more

tricky. It involves a number of tasks including identification, analysis, storage

and matching of constructs. To be more specific, first, the constructs need to be

identified from the resources. Afterwards, they are analyzed both syntactically

and semantically and then converted into suitable internal representations. In

the end, these internal representations are matched with the queries from users

during retrieval. All of them are non-trivial and domain-specific issues, such as

the nature of constructs (i.e., to deal with constructs with complex structures)

and notational variation (i.e., to determine whether two seemingly different con-

2http://www.nlm.nih.gov/mesh/
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structs are equivalent), make them even more challenging.

Taking the domain of math as an example, the identification of math ex-

pressions is done by symbol recognition and structural analysis based on super-

vised learning [Chan and Yeung, 2000]. The remaining three tasks are solved

collectively and the common approaches can be text-based or non-text-based.

Text-based approaches treat the math expressions as text and apply standard

IR techniques for both searching and indexing. Searching can be as simple as

token matching (e.g., MathWorld3 and Zentralbatt Math4) or pattern match-

ing [Kohlhase and Sucan, 2006]. Lucene, a high-performance text retrieval li-

brary, is also deployed for more sophisticated indexing and searching capabil-

ity [Miner and Munavalli, 2007]. On the other hand, MIaS (Math Indexer and

Searcher) [Sojka and Ĺı̌ska, 2011] and MathWebSearch [Kohlhase et al., 2012]

are two examples of non-text-based approaches. The former employs unification

algorithms to create more generalized versions of the expressions while the latter

parses the expressions into substitution trees (more commonly used in symbolic

math systems, such as theorem provers). Both methods abstract away the sur-

face symbols and hence are able to overcome the notational variation problem.

Similar research efforts can also be seen in other domains such as chemistry.

ChemxSeer [Mitra et al., 2007] indexes not only the chemical formula but also

the tables in chemistry resources so that they become searchable in the system.

In addition, categorization – the characterization of resources by type, orga-

nization, intended audience or other dimensions – is also necessary so that suit-

able resources can be selected to meet the needs of domain-specific searchers.

In general IR, this is commonly done in the guise of genre classification and

readability measurement. Nevertheless, the complex needs of domain-specific

searchers and the presence of domain-specific concepts also increase the com-

plexity of categorization. For example, [Price et al., 2007; Price et al., 2009]

show that, besides genre, identifying the semantic components, i.e., “segments

of text about a particular aspect of the main topic of the document and may

not correspond to structural elements in the document”, helps the retrieval of

3http://mathworld.wolfram.com/
4http://www.zentralblatt-math.org/zmath/en/
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health-related documents. As another example, [Yan et al., 2006] show that

readability measurement in domain-specific IR can be improved by taking into

account the scope of domain-specific concepts and their semantic relationships.

2.1.2 Indexing and Searching Domain-specific Constructs

In the domains where the domain-specific constructs are sufficiently complex,

they can become the targets of retrieval themselves. Songs in music IR serve as

a case in point, where users may want to search for songs from a music library

to learn more about music. The indexing and retrieval of such constructs can be

done based on their contents and/or additional information annotated on them.

Content-based approaches extract a feature vector/matrix for each construct,

match it with the one from the query to obtain a similarity score and then

perform ranking. The actual features extracted depend heavily on the nature of

the domain-specific constructs and vary from domain to domain.

Take music IR as an example, there can be low-level features, such as signal

parameters, Mel-Frequency Cepstral Coefficients (MFCCs), and psychoacoustic

information [McKinney and Breebaart, 2003], as well as high-level ones, such

as pitch [Zhu et al., 2001], timber [Scaringella, 2008] and rhythm [Foote et al.,

2002]. The computation of similarity can be as simple as distance measures [Lo-

gan and Salomon, 2001] but advanced statistical techniques (e.g., Independent

Component Analysis [Pohle et al., 2006] and Mean-Covariance Restricted Boltz-

mann Machine [Schlüter and Osendorfer, 2011]) are not uncommon. Similarly,

in artwork IR, [Zirnhelt and Breckon, 2007] use weighted k-Nearest Neighbour to

retrieve artworks based on color and texture features, while [Jiang et al., 2004]

extract non-objectionable semantics, such as warmth, contrast and saturation,

to allow users to query on such semantics explicitly.

If the constructs are annotated with information such as name, source and de-

scription, retrieval can leverage them to supplement knowledge gleaned from the

constructs’ content. For example, text-based retrieval methods can be applied

on metadata when users are able to specify their queries with suitable vocabu-
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laries (e.g., searching in Allmusic5 for songs and Artcyclopedia6 for artworks).

As another example, with the rapid growth of social networks, recommenda-

tion systems based on collaborative filtering (e.g., getting recommendations for

songs from last.fm7 and for movies from Rotten Tomatoes8) have also become

an excellent alternative for content-based retrieval systems.

In addition, it is also possible to categorize domain-specific constructs for

retrieval. For example, in music, two common facets for categorization are

genre (e.g., rock/jazz/hip-hop) [Scaringella et al., 2006] and mood (e.g., hap-

piness/anger/sadness) [Feng et al., 2003], while in photography, photos can be

categorized by scene (e.g., indoor/outdoor and manmade/natural) [Boutell and

Luo, 2005]. In general, machine learning approaches are prevalent [Scaringella

et al., 2006; Bosch et al., 2007] for this purpose.

2.1.3 Query Languages

Since domain-specific constructs are not based on natural language, it is a chal-

lenge in domain-specific IR to find a query language which is expressive enough

to specify the constructs for domain experts, yet accessible to lay users.

For domain-specific constructs that are largely text-based, such as math ex-

pressions and chemical formula, many types of solutions are available. The

simplest way is to write them in plain text (e.g., a2+b2=c2 and C2H4). This

is highly accessible but not very expressive. In contrast, specialized languages,

such as LaTeX9 (general-purpose), MathML10 (math) and CML11 (chemistry),

are very expressive yet much less accessible due to their steep learning curves.

Lastly, graphical user interfaces (e.g., onscreen equation editors) are somewhere

in between in the sense that they allow lay users to write complex constructs

using a predefined (usually limited) set of symbols and operators.

For domain-specific constructs that are not text-based, query by example is

5http://www.allmusic.com/
6http://www.artcyclopedia.com/
7http://www.last.fm
8http://www.rottentomatoes.com/
9http://www.latex-project.org/

10http://www.w3.org/Math/
11http://www.xml-cml.org/
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a popular approach (e.g., searching for songs by humming using Midomi12 and

finding visually similar photos using Google Image13).

2.2 User Study in Math

While we are able to identify the challenges in domain-specific IR through a

literature review, it is unclear to us what the desiderata for domain-specific

search systems are and whether the current research adequately satisfies these

desiderata. To better understand the desiderata and formulate our research

problems, we have conducted a user study in the domain of math.

Given this objective, we believe it is important to observe users’ actual seek-

ing process in situ and allow for more exploratory and productive tangential

discussions to take place immediately. Therefore, we choose to use a qualita-

tive, semi-structured interview rather than a quantitative survey instrument.

Therefore, the results we report here are necessarily preliminary and indicative,

but are descriptive and allow us to posit and justify our system design (to be

detailed in Chapter 6). Similar study design has been used by [Bishop, 1998],

among others. Using this format, we have interviewed 13 volunteer participants

including 2 undergraduates, 7 graduate students, 1 professor and 3 librarians,

all affiliated with the math department of NUS.

We have a checklist of topics (and associated probe questions) for discussion

during interviews. Except for the ones on simple demographics (e.g. their expe-

rience in searching for math resources), our questions loosely correspond to the

various stages of the Big6 Information Seeking Model [Eisenberg and Berkowitz,

1990]. These include what kind of resources they typically look for (Task Def-

inition), how they approach searching (Information Seeking Strategies), what

resource collections they use (Location and Access), as well as their expecta-

tions for a math search system (Evaluation).

We interviewed the subjects in their typical work environment so that we

could observe their natural seeking behaviors. After first introducing the goals

of our research and disclosing the interview conditions, we conducted the inter-

12http://www.midomi.com/
13http://www.google.com/imghp
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view according to our checklist. Participants were encouraged to discuss other

pertinent issues and demonstrate their seeking behaviors on a math topic of their

choice. On average the interviews lasted 30 minutes and were not recorded; how-

ever, summary notes were compiled during each interview. After each interview,

we open-coded the summary notes and consolidated our findings. We continued

interviewing and recruiting new participants while new findings were uncovered.

Our findings stabilized after ten interviews, so we concluded the study after a

final round of three more interviews.

2.2.1 Key Findings

Although there are many findings from our user study, in this subsection, we

choose to review only three of them which directly connect to the desider-

ata. They are, namely, keyword search, mathematical expression input and

user needs. For more details, please refer to our earlier work [Zhao et al., 2008].

Keyword Search

With regards to their own information seeking process, participants have re-

ported that they commonly search the Web using a general search engine query-

ing for math concepts. Compared to other information seeking approaches, such

as browsing and personal contacts, this approach is very popular because of its

short response time and high availability, as well as the variety of resources it

provides. On the other hand, the participants have complained about its inaccu-

racy and the lack of organization in the results. Such problems often drive them

to switch from general search engines to media-specific (e.g., Google Books14) or

domain-specific (e.g., MathWorld) ones. When pressed about how organization

may be improved, it is clear that standard IR topical clustering is not sought;

but clustering by purpose, by resource type or by audience level.

Mathematical Expression Input

As identified in our literature review on domain-specific IR, input and retrieval

of domain-specific constructs (i.e., math expressions in this case) is a focal point

14http://books.google.com/
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of current efforts. Although our participants have expressed general interest

in such facilities, when probed for specific applications, surprisingly, most are

unable to picture a scenario where expression search may be useful. The only

potential usage mentioned by an undergraduate is to find problem set solutions.

All other participants have doubts in the value of such facilities, either due to

the lack of mathematical expressions in their research domain, the inconvenience

of entering expressions, or the high specificity of math expressions.

When asked to hypothesize about how they would prefer to input math ex-

pressions, all participants have stated that they would prefer to input in LaTeX.

This is tied to familiarity, as it is the math expression authoring tool of choice.

These negative findings in our survey indicate that the current domain-

specific IR research focus may not really address the basic problems encountered

by users, and that a cognitive gap exists between users and researchers.

User Needs

What types of resources are our participants looking for? From our post-analysis,

we observe that all queries involved math concepts, and requirements on its con-

tent or style (i.e., format). We characterize these needs into two broad categories:

Information needs center on content (e.g., definition of complex numbers) while

resource needs seek resources in a particular format (e.g., articles on set the-

ory). This is similar to the observations in web query analysis [Broder, 2002].

Table 2.1 gives a complete list of the identified needs.

Table 2.1: Types of math user needs identified.

Information Name, definition, derivation, explanation, example, prob-
lem, solution, graph, chart, algorithm, application and re-
lated concept.

Resource Paper, tutorial, slides, course website, book, code, toolkit
and data.

By factoring together commonalities in our participants’ comments, two other

(usually tacit and unstated) facets of user needs have also emerged in helping

them to select relevant resources. Readability measures how difficult it is to

understand a resource. If a resource is too hard for users to understand, it is not
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helpful however relevant it is. Specificity measures the level of details at which

the concepts are discussed in a resource. Less specific resources are sufficient for

a general, indicative understanding of the target concepts while more specific

ones give a thorough, informative understanding of the mathematical basis of

the concepts. These two facets are often correlated but distinct.

2.2.2 Desiderata in Domain-specific IR

Given the evidence from our interviews, we feel that there is an unmet need for

a math search engine. Such a system should address user needs more directly

without additional burdens to the users.

Is the current work in math IR able to fill these gaps? Unfortunately, we do

not find this to be the case. According to the participants in our study, natu-

ral user-driven applications of the current math IR work may be limited, even

in cases where expert users (professors and graduate students) are concerned.

Moreover, current research efforts center around math expressions: their input

(as queries), indexing and retrieval. From our study, it is clear that users find

text input the most viable form of searching and specialized input modalities

for equations unwieldy. With this in mind, we identify two problems which we

feel domain-specific search systems should address: Resource Categorization and

Text-to-Construct Linking.

• Resource Categorization: Our study find that the participants feel

the general search engine results are disorganized and different types of

resources which are logically separate are presented together. This is not

specific to math. In almost any domain, there are various types of resources

written for the same concept with different purposes and audiences. For

example, for the same concept, a webpage may explain it with animations

for children, a tutorial may define it concretely and provide exercises to

help students learn it, a paper may address a research problem related to

it, while a resource hub may list down all the above as resources that are

related to it. All these may be returned in response to a keyword search on

the concept and lead to the organization problem as observed in math15.

15Similar concerns have been voiced out by the healthcare practitioners in the development
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Therefore, we believe a key need in domain-specific search is automatic

Resource Categorization. A domain-specific search engine must classify

resources automatically, ensuring that different needs requiring different

types of information or resources are satisfied, without distracting irrele-

vant search results. From our study, we believe that automatic classifica-

tion on facets such as readability is also helpful to narrow down relevant

resources. Such automatic faceted classification results need to be inte-

grated using a suitable, faceted searching/browsing user interface so that

the results can be organized as needed to facilitate resource selection.

• Text-to-Construct Linking: Domain-specific search engines will be more

compelling if they are domain-aware and able to leverage the domain-

specific constructs in a useful way. However, through our user require-

ments study, we conclude that the usability of such search methods is a

problem: General users find keyword search most effective and do not feel

that inputting equation is easy. While expert users may be satisfied with

specialized construct authoring languages, the general audience of math IR

engines would not find them accessible due to their steep learning curves.

Given the fact that domain-specific constructs are not written in natural

language, we believe similar usability problems also exist in other domains

since it usually takes more time and effort to learn how to formulate queries

with constructs and apply it during actual searches than using keywords

in natural language. Nevertheless, we believe this does not suggest that

construct retrieval is irrelevant; rather, the question is how we could make

the search and ranking of constructs relevant to users while maintaining

the usability of keyword search.

We believe a method to bridge this usability gap lies in automatically

relating domain-specific concepts and constructs. We propose that Text-to-

Construct Linking, i.e. the resolution of concepts to the related constructs

(e.g., Pythagorean theorem to a2+b2 = c2), will work as a form to retrieve

process of our healthcare search system. They are interested in finding full text research articles
that verify the effectiveness of a medical intervention on certain patients; however, many other
resources, such as webpages that explain it in plain words for laymen and textbooks that explain
its procedures in detail for students, are returned in the search results in a disorganized manner.
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constructs relevant to a concept. The constructs retrieved this way can

be presented to users as information and used to retrieve domain-specific

resources that contain similar constructs. All these can be done without

requiring users to input such constructs explicitly.

2.3 Graphical Representation

As mentioned in Chapter 1, both Resource Categorization and Text-to-Construct

Linking aim to determine the characteristics of domain-specific resources at dif-

ferent granularities by exploiting their correlations. Therefore, a suitable rep-

resentation for domain-specific resources should be able to naturally represent

such characteristics and correlations.

The simple bag-of-words model used in traditional IR does not meet this re-

quirement. It represents resources as unordered collections of words. Therefore,

it is unable to model them beyond word-level (e.g., unsuitable in representing

individual sentences). Moreover, since it disregards grammar and word order,

the context of words – useful in understanding information they represent – is

also lost. Therefore, it is not suitable for representing domain-specific resources.

Similarly, although the vector space model and the language model are more

expressive and capture more information (i.e., the importance of words through

term weighting and the language properties of resources as probability distribu-

tions, respectively) than the bag-of-words model, they are still largely limited to

capturing word-level information. Therefore, they are not suitable either.

As we look for better representations for domain-specific resources, graphi-

cal representations emerge as a suitable choice because the characteristics and

correlations can be naturally represented as nodes and edges in a graph.

2.3.1 Common Graphical Representations

A graphical representation is a graph structure containing nodes representing

elements to be modeled, and edges representing the relationships between them.

Given a collection of entities (e.g., resources and queries), a graph can be con-

structed and a suitable computational mechanism can be applied on the con-
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structed graph to derive the information of interest. For example, researchers

can be modeled as a graph in which nodes represent the researchers themselves

while the undirected edges among the nodes represent the fact that they have

co-authored papers. Similarly, webpages can be modeled as nodes with directed

edges from one to another representing the fact that the former contains a link

to the latter.

In these general graphical representations, the information of interest can

be captured as structural patterns or scores. Following the earlier example of

co-authorship graph, as is done in [Merlin and Persson, 1996], patterns such

as “most researchers have only a few coauthors, while a few have very many

hundreds or even thousands in some cases” and “biological scientists tend to

have significantly more coauthors than mathematicians or physicists” can be

recognized. On the other hand, as is done in the HITS algorithm [Kleinberg,

1999], a hub score and an authority score can be assigned to a node in webpage

graph to represent the value of the content of a webpage and the value of its

links to other webpages. These two scores can be iteratively computed as the

sum of all the authority scores of the nodes it points to and the sum of all

the hub scores of the nodes that point to it. These graphical representations

have been widely studied in the context of social network analysis [Carrington

et al., 2005], biological network analysis [Junker and Schreiber, 2008] and link

analysis [Thelwall, 2004].

Moreover, graphical representations admit a probabilistic interpretation when

their nodes represent random variables while their edges encode not only relation-

ships but also conditional independence between nodes. For example, Bayesian

networks [Pearl, 1985] have directed edges which are often used to (but not re-

quired to) represent the casual relationships between nodes (i.e., an edge from

node A to B denotes that A causes/influences B). A node in a Bayesian network

is conditionally independent of any other nodes given its Markov blanket which

consists of its parents (i.e., the nodes which have an edge pointing this node),

children (i.e., the nodes which are pointed to by an edge from this node) and

the children’s parents. In contrast, Markov networks [Kindermann and Snell,

1980] have undirected edges representing the dependencies between nodes (i.e.,
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an edge between node A and B denotes that A and B are mutually dependent).

A node in a Markov network is also conditionally independent of any other nodes

given its Markov blanket which in this case, consists of its neighbours.

In these probabilistic graphical representations, the information of interest

is encoded as the joint distribution of all the nodes in the network. Since both

Bayesian and Markov networks encode conditional independence, this joint dis-

tribution can be decomposed into a product form of probability distributions

(i.e., the conditional probabilities in Bayesian networks and the potential func-

tions in Markov networks). Therefore, they are highly compact representations

of the joint probability table. This advantage has made them very popular in

many different domains, such as bioinformatics [Friedman et al., 2000; Wei and

Li, 2007], medicine [Mani et al., 2005; Descombes et al., 1998] and decision

making [Jensen and Nielsen, 2007; Bhattacharjya et al., 2009].

In short, graphical representations provide a simple and sound framework

for representing elements and their relationships in any domain. When coupled

with suitable computational mechanisms, they can serve as tools for reason-

ing/computation as well.

2.3.2 Graphical Representations in General IR

In general IR, specifically web searches, general graphical representations are

often used to derive information about webpages based on hyperlinks. Besides

the HITS algorithm mentioned earlier, PageRank [Page et al., 1998] and SALSA

[Lempel and Moran, 2000] are two other well-known link analysis algorithms.

The former determines the importance of a webpage based on the intuition that

the number of backlinks of a webpage is a good indication of its popularity or

importance, while the latter combines the strength of PageRank and HITS by

incorporating the backlink information into the hub and authority computation.

Despite the success such algorithms have achieved, the graphical representations

behind them are only at resource- (i.e., webpage-) level and hence not detailed

enough for modeling domain-specific resources.

In contrast, probabilistic graphical representations have more to offer when it

comes to modeling the resources in detail. Bayesian networks made their debut
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in IR in the 1990s [Turtle and Croft, 1991; Fung and Favero, 1995] as a modeling

tool for the retrieval process. Such networks often consist of two levels: one level

for documents and the other for queries. While the direction of the edges differs

among works, all such representations basically model the relationships between

document and query features. Retrieval is then to rank the documents according

to their posterior probability of relevance given the query. These basically lay the

groundwork for IR using a Bayesian network methodology. Subsequently, work

has been done to further enhance the modeling of documents and queries: For

example, [Metzler and Croft, 2004] combine Bayesian networks with a language

model to allow for a rich, structured query language; the series of works by

de Campos and his colleagues [de Campos et al., 2000; Crestani et al., 2003;

de Campos et al., 2004] model the dependencies among the query terms and

the structural units of the documents by linking together the respective nodes

and forming them into subnetworks. [Tsikrika and Lalmas, 2004] also examine

the impact of hyperlink-based evidence on retrieval effectiveness when combined

with other content-based evidence.

In comparison, the introduction of Markov networks to IR occurred much

later. [Metzler and Croft, 2005] describe an IR model based on a two-level

Markov Random Field, one for query terms with several possible dependency

models (i.e., independent, sequential and full) and the other for documents with

dependencies to each of the query terms. Potential functions between query

terms can then be defined in a way similar to language models while the ones

between the documents and the query terms can be defined based on a variety

of textual and non-textual features. The notion of relevance in this framework

is the joint probability of the nodes in the graph having the values representing

the documents and the query terms. This model was extended by later works to

better handle queries [Metzler and Croft, 2007; Lease, 2009]. A notable exten-

sion of this model is to introduce another layer of nodes representing the topical

segments of the documents, as is done in [Lang et al., 2010] for the purpose

of query expansion. Along a similar line of thinking, in image retrieval, [Feng

and Manmatha, 2008] construct a Markov network with images represented as a

set of visual terms which are linked to individual query terms. This model was
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extended in [Llorente et al., 2010]. In their model, dependencies between terms

are modeled and the images are represented by any visual features instead of

just visual terms.

We note that the work to incorporate the documents’ structural information

into graphical representations thus far has been limited and has the potential

to be improved. So far only generic document structures such as sections and

paragraphs [Crestani et al., 2003] or topical segments [Lang et al., 2010] are

considered. Neither is suitable for domain-specific resources since the unit of

information in the resources do not necessarily conform the generic document

structure (e.g., the definition of a domain-specific concept may span over a few

sentences within a paragraph) while segmentation done by other (e.g., functional

and visual) criteria other than topics can be useful, too.

2.3.3 Graphical Representations in Domain-specific IR

The application of general graphical representations in domain-specific IR up to

the current date has been focused on citation analysis. Certain domain-specific

resources, such as papers, books and journals, are connected through citations

and hence can be translated into citation graphs. Based on these graphs, metrics

can be computed to measure the importance of domain-specific resources and

influence the ranking process. For example, the number of citations a paper

receives may serve as a quick indication of the importance of the paper, while

the impact factor [Reuters, 2012] measures the importance of journals as the

average number of citations received per paper published in that journal during

the two preceding years. Nevertheless, as is the case in general IR, these graphical

representations seldom go beyond resource-level.

As for probabilistic graphical representations, Bayesian networks have been

applied mainly to combine multiple pieces of evidences and model the uncer-

tainties in the retrieval process. As a few examples, [Schuller et al., 2003] use

Bayesian networks to integrate multimodal queries and contextual knowledge

for music retrieval. [Silveira and Ribeiro-Neto, 2004] use them to consolidate the

concept-based rankings which are generated by matching the related concepts of

the query to the ones in judical documents, while [Quellec et al., 2008; Quellec
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et al., 2011] use them to handle various sources of information, which might be

incomplete, uncertain and conflicting, for medical experts in diagnosis. On the

other hand, Markov networks are much less widely applied in domain-specific IR.

To our knowledge, [Yu et al., 2009] is the only work that applies Markov networks

in domain-specific IR. They examine transfer learning with Markov networks to

transfer useful prior knowledge from an existing dataset to a new dataset for

better retrieval performance. This should be useful for adapting domain-specific

search systems to new domains.

Nevertheless, little work has been done to explore how to model and uti-

lize the structure of domain-specific resources with graphical representations in

domain-specific IR. As far as we know, only the later works by de Campos [de

Campos et al., 2006; de Campos et al., 2008] apply Bayesian networks to retrieve

domain-specific resources (i.e., medical records and parliamentary documents);

however, the representations used in these works are still the generic ones.

2.3.4 Insights from other Areas

To get a better understanding of how resource modeling can be done, we have

looked towards other areas to find representations of domain-specific search and

resource structure. The user study we have described earlier has informed us

that domain-specific user needs center around both content (i.e., type of infor-

mation) as well as format (i.e., how the information is organized). Therefore, we

believe that there is a need to label segments of a resource according to the type

of information presented and the resource itself according to its format. Corre-

spondingly, the resource representation should further model resource segments

in addition to itself, as is confirmed by [Price et al., 2007; Price et al., 2009].

Relevant work in examining and categorizing fragments of webpages exists

in the area of information extraction. We note that several of these works

(e.g., [Schapke and Scherer, 2004; Wong et al., 2008]) use a layered probabilistic

network that models the generation of a webpage fragment starting from the

conceptual entity. Both insights have inspired us to come up with our proposed

layered graph to combine their strengths to make a generic yet well-structured

representation to handle the indexing and searching of domain-specific resources.
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2.4 Summary

Despite the fact that the research on IR with graphical representations has

started two decades ago, the document representation in these works did not

go beyond word- (concept-) level and was constrained by the generic document

structure. We believe this is a major limitation, as the findings from our user

study indicate that certain user needs require segments more fine-grained than

the document as a whole, but more coarse-grained than just the word-level. By

looking at works from other areas, we have confirmed our belief that the resource

representation should further model segments in addition to itself and noted that

relevant works in information extraction use a layered probabilistic framework

to model the generation of segments starting from conceptual entities. To draw

on the successes of these works, we have proposed to also use a layered graph in

modeling domain-specific resources as described in Section 1.1.
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Chapter 3
Resource Categorization on Nominal
Facets – A Case Study in Key
Information Extraction for
Evidence-based Practice

As pointed out in Chapter 2, domain-specific search engines should be able to

categorize domain-specific resources automatically so that specific user needs can

be satisfied by specific types of resources without distracting irrelevant results.

This problem of Resource Categorization is a broad topic in the sense that

it can be done at many different granularities and on many different facets. For

example, at the top level, resources can be categorized by resource type (i.e.,

the genre of a resource defined based on the types of information it contains and

how such information is organized) and readability (i.e., how difficult it is to

understand a resource). At the middle level, segments or sentences that compose

the resources can be categorized based on the types of information they contain

(e.g., definitions, examples and proofs). At the bottom level, words and domain-

specific constructs can be categorized according to the types of information they

represent (e.g., person names, locations and patient demographics) and their

forms (e.g., math variables/operators, chemical elements/compounds and DNA

codes/sequences) respectively.

To make our investigation into this problem more manageable, we have di-

vided it into two sub-problems: one for nominal facets and the other for ordi-

nal facets. The values of nominal facets are categories which are distinct from
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each other. A common way to handle these facets is to treat their values as

separate classes and apply supervised learning to perform the desired catego-

rization [Sebastiani, 2002]. At more fine-grained levels (i.e., sentence-level and

below), rule-based extraction is also popular [Sarawagi, 2008]. In contrast, the

values of ordinal facets are meant to establish an ordering. Therefore, tradi-

tional approaches for such facets simply compute some scores heuristically (e.g.,

the Flesch-Kincaid Reading Ease formula [Flesch, 1948]) to derive the ordering.

Although it is possible to treat them as nominal by using an ordered set of cat-

egories as values, the fact that they are relative and inexact in nature calls for a

different way of handling. Therefore, we focus on nominal facets in this chapter

and save the discussion on ordinal facets for the next chapter.

Resource categorization on nominal facets has been studied in various con-

texts but often only at one specific granularity level.

For example, genre classification [Lee and Myaeng, 2002] is performed at

resource-level, while named entity recognition [Nadeau and Sekine, 2007] and

bio-informatics information extraction [Tanabe and Wilbur, 2002] are at word-

level. Although classification at sentence-level is often employed in the context

of question answering [Demner-Fushman and Lin, 2007] and information ex-

traction [Sitter and Daelemans, 2003] to identify the sentences that contain the

information of interest, it is treated as a preprocessing step instead of part of

the main task in such contexts.

We believe this is a limitation in domain-specific IR, due to two reasons.

First, the categorization of domain-specific resources needs to be done at multiple

granularities. Only in this way would users be able to filter out unsuitable results

by coarse-grained facets and then select the most appropriate ones based on

fine-grained facets. In addition, more coarse-grained categorizations may serve

as a fallback when more fine-grained ones are unreliable or unable to capture

the desired information well. Second, without considering categorizations at

different granularities simultaneously, their correlations, which are often useful

in improving categorization performance, will be left unexploited.

Therefore, we choose to focus on investigating how to improve categorizations

of different granularities by exploiting the correlations among them. To this
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end, we use key information extraction for evidence-based practice in healthcare

as a case in point. The problem of key information extraction is to extract

information pertinent to evidence-based practice, such as patient demographics,

interventions, results and study design, from research articles in the form of

sentences and words. As such, there are two correlated categorizations to be

performed: one at sentence-level and the other at word-level.

Figure 3.1: Correlation graph fragment showing nodes and edges relevant to
segment and sub-segment type. The edges (i.e., correlations) bounded by the
dashed line box are examined in this chapter.

In our correlation graph (Figure 3.1), to categorize at these two levels is to

find the values for two nodes: segment (i.e., sentence) type and sub-segment

(i.e., word) type in the segment layer. As represented by the edges in the graph,

these two nodes are correlated with many other nodes including those above in

the resource layer or below the sub-segment level. Since our primary interest is

to examine how the categorizations of two different levels interact, we ignore the

correlations beyond these two levels. This leaves us six correlations as bounded

by the dashed line box shown in Figure 3.1. Without considering the correlation

between the two categorizations (i.e., treating the two categorization as inde-

pendent), the remaining correlations simply mean that the categorization of a

segment can be done based on the information from itself and its context as
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established by the types of its neighbours. This is suboptimal, as knowing the

segment type helps to determine the sub-segment type and vice versa.

For example, in key information extraction, knowing that a sentence de-

scribes patients in a medical study will increase the likelihood that the words in

this sentence represent patient demographics (e.g., age and sex) and vice versa.

Therefore, for this part of our research, we have treated these categorizations as

supervised classification problems and examined how to exploit their correlation

through propagating information between the classifications.

We believe the findings from our research can be applied to improve resource

categorization on other pairs of correlated nominal facets, such as resource type

and segment type. We will elaborate on this towards the end of the chapter.

The rest of the chapter is organized as follows. We start with a detailed de-

scription of the problem of key information extraction for evidence-based practice

in the domain of healthcare in Section 3.1, followed by a literature review in Sec-

tion 3.2 on entity extraction and key information extraction. Then we present

our models for exploiting the correlation between categorizations for key infor-

mation extraction in Section 3.3. We evaluate the performance of the models

with different settings and explore the effects of data filtering and feature selec-

tion in Section 3.4. We present directions for future research in Section 3.5 and

end with a discussion on Resource Categorization on nominal facets based on

our findings in Section 3.6.

3.1 Key Information Extraction for Evidence-based

Practice

Evidence-based practice (EBP) is the integration of best research evidence with

clinical expertise and patient values [Sackett et al., 2000]. EBP promotes the

synthesis and critical appraisal of healthcare literature to meet the information

needs of practitioners, and accelerates the adoption of research findings into

practice. It has become commonplace in healthcare in recent years.

Despite the growing popularity of EBP in healthcare, support for the gather-

ing and selection of applicable and valid research articles in today’s EBP collec-
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Table 3.1: Definitions of PICO elements.

Name Definition

Patient The description of the patient. It commonly consists of five
sub-elements: sex, co-morbidity, race, age and pathology (SCO-
RAP).

Intervention The intervention applied.

Comparison Another intervention examined as a comparison or control.

Outcome The outcome of the experiment.

Table 3.2: PICO elements of a sample clinical question.

Clinical Question: For a 54-year-old woman with periodontal disease,
how effective is the therapeutic use of doxcyline decrease gum bleeding
and recession compared to no treatment?

P 54-year-old (age) woman (sex) with periodontal disease (pathol-
ogy)

I Doxcyline

C No treatment

O Decrease gum bleeding and recession

tions can still be improved. Published guidelines [Sackett et al., 2000] recommend

that a clinical question needs to be established using PICO elements [National

Health and Medical Research Council, 1999] (i.e., patient, intervention, compar-

ison and outcome) as shown in Table 3.1 and 3.2. These identified elements can

serve as the criteria in determining the applicability of a research article.

Beyond the PICO elements, there is also a hierarchy in the strength of evi-

dence [National Health and Medical Research Council, 1999] for articles as shown

in Table 3.3. This hierarchy helps a reader to assess the validity of the research

articles, as stronger evidence (i.e., articles of a lower grade) is generally preferred.

However, common EBP collections seldom provide such information explic-

Table 3.3: Different levels of strength of evidence.

Grade Definition

I Systematic reviews of all relevant Randomized Controlled Tri-
als (RCTs)

II At least one properly designed RCT

III-1 Well designed pseudo-RCT

III-2 Cohort studies, case control studies, interrupted time series
without control

III-3 Comparative studies with historical control, two or more single-
arm studies or interrupted time series without control

IV Case series
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itly or allow users to filter for these criteria. Although users may be able to

perform keyword searches and limit their searches by gender, age and study de-

sign in PubMed1, they cannot specifically target keywords which match only the

text sections about PICO elements or strength of evidence. As such, users must

resort to reading the abstract or even the full text of an article to figure out

whether it is indeed applicable and valid.

Figure 3.2: Display of extraction results to assist the users in applicability and
validity assessment.

We believe the extraction of such information from articles is the key to

solve this problem. With such information extracted, additional features can

be implemented into search systems to support the assessment process. For

example, as illustrated in Figure 3.2, a system can display the key sentences of

a research article and highlight the keywords that reveal key information such

as intervention and study design in those sentences. Users can then assess the

applicability and validity of the articles immediately without the need to read

them in full. Moreover, this extraction has to be done automatically, since

manual extraction would be too labor intensive due to the large amount of

research articles available.

3.2 Literature Review

The automatic extraction of structured information from unstructured sources

has been an active area of research for more than two decades. According to the

taxonomy of information extraction proposed by [Sarawagi, 2008], this research

area can be categorized along five dimensions: the type of structure extracted,

the type of unstructured source, the type of input resources available for extrac-

tion, the method used for extraction and the output of extraction. Under these

1http://www.ncbi.nlm.nih.gov/pubmed
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dimensions, the problem of key information extraction is to extract and output

entities (i.e., words and sentences that help to determine the applicability and

validity of an article) from unstructured texts (i.e., research articles). For the

rest of this section, we first review the relevant methods and input resources for

the extraction tasks of similar nature, and then move on to the work specific to

key information extraction.

3.2.1 Entity Extraction from Unstructured Texts

The methods for entity extraction from unstructured texts can be broadly clas-

sified into two categories: rule-based and statistical.

Rule-based Approaches: As the name suggests, rule-based approaches rely

on a set of rules to perform extraction. Rules usually consist of two parts.

The first part is a contextual pattern which describes the properties and

context of the entities to be extracted in terms of textual features. As

summarized in [Muslea, 1999], early information extraction systems for

newspaper articles make use of lexical features (e.g., the words themselves),

phrase features (e.g., noun/verb/prepositional groups), voice features (e.g.,

active/passive) and word type features (e.g., physical object) to construct

complex patterns. The second part of the rules is the action to be taken

when the patten is matched, which is usually to identify series of words as

the entities to be extracted.

These rules can be hand-crafted by experts or learnt from an annotated

corpus. Hand-crafted rules are able to encode domain knowledge which is

hard to capture otherwise and feature widely in early systems [Hobbs et al.,

1997; Cunningham et al., 2002]. To alleviate the cost of domain knowledge,

rule-learning algorithms have been developed to induce the best set of rules

based on an annotated corpus and rule templates. The learning of rules

may start by instantiating very specific rules from the templates to cover

instances of the information to be extracted, followed by a generalization

process that removes some of the text features or replaces rules with more

general ones. This is bottom-up rule learning as is done in [Ciravegna,
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2001]. Alternatively, the learning can be done in a top-down manner.

In [Soderland, 1999], generic rules are made more specialized by adding

more text features or replacing them with more specific ones. Nevertheless,

these algorithms may still rely on existing hand-crafted rules as a better

starting point and involve experts in instance selection and rule refinement

for better results.

Despite the growth of statistical approaches, rule-based approaches remain

an active area of research and efforts have been made to improve them in

various aspects, such as scalability [Reiss et al., 2008], uncertainty man-

agement [Michelakis et al., 2009] and refinement process [Liu et al., 2010].

Statistical Approaches: In statistical approaches, the extraction of entities is

done by classifying whether a word is (part of) an entity to be extracted

using statistical models. The words in such approaches are commonly de-

scribed by a set of text features consisting of word features (e.g., the words

themselves), orthographical features (e.g., capitalization pattern), linguis-

tic features (e.g., part-of-speech tags) and dictionary features (e.g., whether

the word appears in the entity dictionary). Under this formulation, vari-

ous statistical models have been examined by different researchers. Hidden

Markov Models (HMMs), which naturally capture the dependency between

adjacent words, feature prominently in early research. For example, [Bikel

et al., 1997] use an Ergodic HMM with internal states representing named

entity classes. They calculate the most likely state for each word using the

Viterbi decoding algorithm. Later works employing HMMs in information

extraction focus on finding the suitable model structure [Seymore et al.,

1999] or employing more sophisticated variants of HMMs such as Hier-

archical HMMs [Skounakis et al., 2003]. Besides HMMs, Support Vector

Machines (SVMs) and Maximum Entropy modeling (MaxEnt) have also

been applied in [Isozaki and Kazawa, 2002] and [Chieu and Ng, 2002] for

their capability in handling large amount of features. [McCallum et al.,

2000] propose the Maximum Entropy Markov Model which combines the

strength of HMM and MaxEnt in capturing sequential dependency while
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offering more freedom in the choice of features. This leads to the current

state-of-the-art model, Conditional Random Fields (CRFs) [Lafferty et al.,

2001], which is able to take into account larger context (instead of just the

previous word) for individual input and construct a consistent sequence

of labels as the output. As a more recent trend, efforts have been made

to solve multiple related information extraction tasks together via joint

inference [McCallum, 2006; Poon and Domingos, 2007] so that the results

of one classification can be used to inform another and vice versa.

Both categories of approaches rely on the presence of an annotated corpus,

which is often expensive to obtain. To alleviate the tedium and cost of building

large corpora, semi-supervised learning [Nadeau, 2007; Carlson et al., 2010] and

unsupervised learning [Etzioni et al., 2005; Dalvi et al., 2012] methods have also

been studied for various entity extraction tasks.

Our approach for key information extraction is statistical, as such approaches

require less domain knowledge as compared to rule-based approaches (where

experts are involved in crafting and tuning the rules). This domain indepen-

dence allows our approach to be applied in different domains without having to

source for expensive domain knowledge and makes our findings more applicable

to domain-specific IR in general.

3.2.2 Key Information Extraction

In healthcare domain, the identification and utilization of PICO elements and

their variants have been studied extensively for various intents. Most of the

previous works in this area are based on supervised learning with natural lan-

guage processing techniques. For example, [Demner-Fushman and Lin, 2007]

perform sentence extraction on abstracts to obtain information for clinical ques-

tion answering. They consider the sentences for elements P, I and C to be more

recognizable by patterns due to the presence of medical concepts while the ones

for element O to have no predictable patterns. Therefore, they extract the for-

mer using hand-crafted patterns but employ linear regression of text features

for the latter. [Chung and Coiera, 2007] seek for a better understanding of the

structure of clinical abstracts by classifying their individual sentences into five
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classes – aim, method, participants, result and conclusion. [Kim et al., 2010]

explore the use of lexical, semantic, structural and sequential information with

CRFs, while [Boudin et al., 2010] test and combine multiple classifiers, such as

Decision Trees, SVM and Näıve-Bayes. Both of these later works improve the

accuracy of sentence classification.

In comparison, research on more fine-grained extraction of EBP information

is less common. Existing works usually start by classifying the sentences in ab-

stracts or articles to identify the possible locations of EBP information and then

proceed to extract the information from those locations. For example, [Bruijn

et al., 2008] make use of an SVM-based sentence classifier with n-gram features

and a rule-based pattern extractor to identify the key trial design elements from

clinical trial publications. [Chung, 2009] extracts interventions from method sen-

tences in RCTs using lexical and syntactical features.

The above works either focus on sentence extraction or use sentence extrac-

tion as a basis for keyword extraction. While individually important tasks, we

believe that the composition of both tasks together is synergistic and would

lessen the effort needed in applicability and validity assessment.

• Sentence extraction is important because not all key information is modeled

well by individual words. For example, research results are commonly

described in prose. It is difficult to extract only a few words to represent

the entire text. Extraction at sentence-level is ideal in this case. Even for

information such as patient demographics that can be represented by a few

words, sentence extraction still imparts evidence that the specific keywords

are being used in an appropriate context.

• Keyword extraction is also important because the recognized keywords

represent the exact information users need. With the extracted keywords

highlighted based on their classes for the ease of reading and assessment,

users may quickly locate the desired information from the sentences with-

out having to go through each of them in detail. Furthermore, keyword

extraction aims at a smaller unit of text and hence can be represented in

a more compact manner (e.g., keyword clouds) than sentences. This is
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Table 3.4: Classes for sentences.

Name Definition Example

Patient A sentence containing
information of the pa-
tients in a study.

A convenience sample of 24 critically
ill, endotracheally intubated children was
enrolled before initiation of suctioning
and after consent had been obtained.

Result A sentence containing
information about the
results of a study.

Large effect sizes were found for reduc-
ing PTSD symptom severity (d = −.72),
psychological distress (d = −.73) and in-
creasing quality of life (d = −.70).

Intervention A sentence containing
information about the
procedures of interest
and the ones as the
comparison/control in
a study.

Children 6 to 35 months of age received
0.25 ml of intramuscular inactivated vac-
cine, and those 36 to 59 months of age
received 0.5 ml of intramuscular inacti-
vated vaccine. (Note: This is also a pa-
tient sentence.)

Study Design A sentence containing
information about the
design of a study.

A prospective international observa-
tional cohort study, with a nested com-
parative study performed in 349 inten-
sive care units in 23 countries.

Research Goal A sentence contain-
ing information about
what a study aims to
achieve.

The aim of this study was to investi-
gate the balance between pro- and anti-
inflammatory mediators in SA.

useful in presenting more information within the limited screen estate.

3.3 Methodology

We cast the two extractions as a multi-granularity categorization task of two

levels, one at sentence-level and the other at word-level:

Key Sentence Classification: We use a five-class scheme as listed in Ta-

ble 3.4. The first three classes map to PICO elements: patient → P, intervention

→ I/C, and result → O. In addition, we also have a fourth class, study design,

which indicates the strength of evidence of a study for users, and a fifth class,

research goal, which helps them determine whether a study is likely to provide

useful information to the clinical questions they have in mind.

Keyword Classification: We use six classes for words as listed in Table 3.5.

The first four cover the SCORAP of patient demographics (as described in Ta-

ble 3.1): sex → S, condition → CO/P, race → R and age → A. The last two

are introduced to extract the names of intervention and study design.

45



CHAPTER 3. RESOURCE CATEGORIZATION ON NOMINAL FACETS –
A CASE STUDY IN KEY INFORMATION EXTRACTION FOR
EVIDENCE-BASED PRACTICE

Table 3.5: Classes for words.

Name Definition Example

Sex The sex of the patients. male, female

Age The age (group) of the patients. 54-year-old, children

Race The race of the patients. Chinese, Indian, Cau-
casian

Condition The condition of the patients, usu-
ally a disease name.

COPD, asthma

Intervention The name of the procedure applied
to the patients.

intramuscular inacti-
vated vaccine

Study Design The name of the design of the study. cohort study, RCT

These two classifications can be described by the nodes and edges in the seg-

ment layer of our correlation graph by instantiating the segment to be sentences

and the sub-segment to be words in the sentences as shown in Figure 3.3. If we

only consider the correlations at their respective levels, the types of sentences

and words can be determined by their features (i.e., observable characteristics)

and the types of their neighbours.

This translates into our baseline model, the independent model, as shown

at the top left corner of Figure 3.4. In this model, the two classifications are

performed independently of each other. The words in the same sentence are

categorized together and the type of a word is determined based on its features

and the types of the other words in the same sentence. In contrast, the sentences

are categorized individually based on their own features. We have decided not

to consider the types of neighbouring sentences because of two reasons. First,

taking the types of neighbouring sentences into consideration would require much

more sentences to be annotated and used for training. This would significantly

increase the time and effort needed. Second, it would also greatly increase the

complexity of one of the models we are going to introduce later. Therefore,

the correlation between the type of a sentence and the ones of its neighbours is

omitted from all our models.

Nevertheless, as discussed earlier, a suitable technique should address both

levels of classifications since they are equally important for the extraction of key

information. For this purpose, the correlation between these two classifications,

as represented by the edge between sentence type and word type in Figure 3.3,

needs to be exploited. These correlations can be observed through a closer
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Figure 3.3: Correlations exploited for Resource Categorization on nominal facets.

inspection of our classes:

Take the patient class from key sentence classification and the sex, age, race

and condition classes from keyword classification as an example. These two sets

of classification tasks are correlated: If a sentence is classified as a patient sen-

tence, its words are more likely to represent the patients’ sex, age, race and con-

dition. Likewise, if the words in a sentence have been categorized into one of the

sex, age, race, condition classes, this sentence is likely to be a patient sentence.

Similar correlations can be identified between the study design/intervention sen-

tence class and the corresponding keyword class.

A straightforward approach for exploiting this correlation is to perform the

classifications in sequence so that the results from the earlier classification can

be incorporated into the later one. This gives rise to the two pipelined models

we propose, as shown at the top right and bottom left corners of Figure 3.4.

In the sentence-first model, key sentence classification is performed first and the

resulting sentence class labels are added as evidence for keyword classification

(added to the feature vectors of keyword classification as additional features). In

the word-first model, this process is done in the opposite direction; i.e., keyword

classification is performed first and the resulting word labels are added to the

feature vectors of key sentence classification.

While these two models are able to incorporate information from the earlier

classification into the later one, there is no way for the earlier classification to

benefit from the later. Consequently, classification performance can improve on

one level but not both. To overcome this problem, we investigate a fourth, joint

47



CHAPTER 3. RESOURCE CATEGORIZATION ON NOMINAL FACETS –
A CASE STUDY IN KEY INFORMATION EXTRACTION FOR
EVIDENCE-BASED PRACTICE

Figure 3.4: Four models for multi-granularity Resource Categorization of two
levels.

model as shown at the bottom right corner of Figure 3.4. It is basically the

unrolled version of Figure 3.3 without the looping edge at the sentence type

node. In this model, the two levels of classifications are mutually informed

of each others’ results via joint inference. Therefore, the sentence labels now

may influence the prediction of the word labels and vice versa. While often

advantageous to performance, the joint model significantly increases the model

complexity of the classifier and the training time. Note that if the looping

edge were to be included in this model, the resulting model would have been

prohibitively expensive to train since it would have contained all the sentences

and words from the same article.

In addition, we observe from our inspection that the sentence classes are

not mutually exclusive. As shown in Figure 3.2 and the intervention sentence

example in Table 3.4, a sentence may contain more than one type of information.

We compare two common approaches to achieve this soft classification. The

first is to use train a multi-class classifier on super classes which are the supersets

of the existing classes, and classify the sentences into one of these super classes.
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Table 3.6: Features for key sentence classification.

Group Examples

Token n-grams (sequences of n words, where 1 ≤ n ≤ 3) of the sentence.

Sentence Length of the sentence and its position in the paragraph and in
the article.

Named
Entity

Whether the sentence contains person name, location name and
organization name.

MeSH Whether the sentence contains MeSH terms and their categories
among the 16 top categories of the MeSH tree.

Lexica Whether the sentence contain a word which appears in the
age/sex/race wordlist. All these wordlists contain common words
found in the corpus which indicate age, sex and race, respectively.

The classes a sentence belongs to are then all the classes that make up this par-

ticular super class. For example, if we only consider the patient and intervention

classes, a multi-class classifier can be trained on three super classes: patient,

intervention, and patient & intervention. The sentences that are classified into

these super classes will be considered to belong to the patient class, the inter-

vention class and both the patient and intervention classes, respectively. The

second method is to train one one-against-all classifier for each class: A sentence

belongs to a class as long as the corresponding classifier reports positive.

Factoring these two possible approaches into our models, we have eight can-

didate models in total.

We implement these models using Conditional Random Fields (CRFs), not

only because it is the state-of-the-art model for information extraction, but also

because its structure can be arbitrarily defined such that different instances from

different classification problems can be learned in the same model. This feature

allows us to build the necessary joint model. For accuracy concerns, we use

an exact inference algorithm: the junction tree algorithm, from the GRMM

package2 for the joint model. We use the MALLET package3 for the others.

The feature sets for key sentence classification and keyword classification can

be found in Table 3.6 and 3.7 respectively. Both feature sets consist of generic

text classification features, such as n-grams and named entity information, as

well as domain-specific features, such as MeSH terms and class-specific lexica.

As shown in our previous work [Zhao et al., 2010], all the listed features

2http://mallet.cs.umass.edu/grmm/
3http://mallet.cs.umass.edu/
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Table 3.7: Features for keyword classification.

Group Examples

Token The word itself, its stem and its part-of-speech tag.

Phrase Position of the word in the phrase and the head noun of the phrase
if it is a noun phrase.

Named
Entity

Whether the word is part of a person name, location name or
organization name in the sentence.

MeSH Whether the word is part of a MeSH term and the categories of
that term among the 16 top categories of the MeSH tree.

Lexica Whether the word appears in the age/race/sex wordlist. The
wordlists are the ones used in key sentence classification.

contribute positively to the two classifications. For example, token features are

crucial to key sentence classification as removing them can lead to significant

drop in performance, while MeSH and lexica features play important roles in

keyword classification by covering the vocabulary for the classes.

3.4 Evaluation

As part of our effort in developing a domain-specific search system for healthcare

(to be detailed in Chapter 6), we have collected 19,893 medical abstracts and full

text articles from 17 quality journal websites as recommended by the healthcare

practitioners from the Evidence-based Nursing Unit at the National University

Hospital. From this collection, 2,000 randomly selected sentences were annotated

for the evaluation of key sentence classification.

Within the resulting dataset, there are 220 (11%) sentences in the patient

class, 174 (8.8%) in intervention, 448 (22.5%) in result, 119 (6%) in study design,

71 (3.6%) in research goal and 1,329 (66.4%) other sentences not belonging to

any of the classes.

For the evaluation of keyword classification, 12,339 tokens (including words

and punctuation) from 360 sentences that belong to the patient, intervention

and study design classes were annotated. There are 72 (0.6%) words in the sex

class, 177 (0.9%) in age, 19 (0.2%) in race, 531 (4.3%) in condition, 607 (4.9%)

in intervention, 284 (2.3%) in study design and 10,651 (86.3%) other tokens not

belonging to any of the classes.

Considering the fact that the joint model is based on joint inference, which

50



CHAPTER 3. RESOURCE CATEGORIZATION ON NOMINAL FACETS –
A CASE STUDY IN KEY INFORMATION EXTRACTION FOR
EVIDENCE-BASED PRACTICE

is computationally expensive in general, we decide to first train the models only

on the sentences containing at least one type of key information to obtain a

preliminary sense on how the models perform. This is referred to as the reduced

dataset. Later, we evaluate the models on the full dataset, in which a large

amount of irrelevant sentences are present as noise, and examine the negative

impact of such noise on the classification performance. Lastly, we explore two

options: data filtering and feature selection, to alleviate this negative impact of

irrelevant sentences and present the final results.

We evaluate the performance of classifiers using the standard information

retrieval measures of precision, recall and F1-measure. 5-fold cross validation is

applied in all experiments to avoid overfitting.

3.4.1 Results and Discussions I: Reduced Dataset

The evaluation results for key information extraction using the eight candidate

models are listed in Table 3.8, for the reduced dataset. This dataset represents

an artificial case where we know a priori that a sentence does contain key infor-

mation and the key sentence classification stage is only used to determine which

of the five classes it belongs to.

The general classification performance, as shown in the results of the inde-

pendent models, indicates that the extractions are precise (P > 0.8) for most

sentence classes and some word classes. However, there is still much room for

improvement on recall for most classes. For key sentence classification, the high

precision suggests that a small portion of the sentences from each class can be

easily recognized, perhaps because they are written in a conventionalized style.

In contrast, the low recall signals that the majority of the sentences – especially

those in the intervention, study design and research goal classes – is still hard to

detect, possibly due to the variety of linguistic expressions, and the fact that cru-

cial information which determines the sentence’s class may be short (1-2 words)

in comparison to the length of whole sentence (sometimes on the order of 50 or

more words). In our opinion, this performance is acceptable in the context of

domain-specific IR as the limited screen estate in the search systems only allows

us to show a few sample sentences. For keyword classification, the problem of
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Table 3.8: Evaluation results of key information extraction on the reduced
dataset using independent (I), sentence-first (SF), word-first (WF) and joint
(J) models. (M) and (O) indicate whether the model is based on one multi-class
classifier or multiple one-against-all classifiers. The numbers in Bold indicate
the best P/R/F for a particular class among all the models.

Class\Model
I(M) I(O) SF(M) SF(O)

P R F P R F P R F P R F

Key Sentence Classification

Patient .81 .64 .71 .81 .75 .78

Same as
I(M)

Same as
I(O)

Intervention .74 .38 .50 .82 .47 .60
Result .83 .96 .89 .90 .95 .92
Study Design .93 .42 .58 .97 .59 .73
Research Goal .89 .47 .61 .95 .58 .72

Keyword Classification

Sex .91 .94 .93 .89 .92 .90 .91 .83 .87 .90 .86 .88

Condition .46 .33 .39 .45 .31 .36 .56 .36 .44 .60 .41 .49

Race .82 .47 .60 .80 .42 .55 .90 .47 .62 .82 .47 .60

Age .73 .55 .63 .71 .57 .63 .82 .43 .56 .73 .49 .59

Intervention .57 .33 .42 .59 .34 .43 .65 .28 .39 .77 .35 .48

Study Design .84 .73 .78 .85 .73 .78 .94 .47 .63 .90 .62 .74

Class\Model
WF(M) WF(O) J(M) J(O)

P R F P R F P R F P R F

Key Sentence Classification

Patient .86 .62 .72 .84 .72 .78 .75 .63 .69 .64 .90 .75

Intervention .81 .43 .56 .73 .55 .63 .34 .45 .46 .62 .59 .61

Result .82 .96 .89 .89 .96 .93 .83 .94 .88 .91 .91 .91

Study Design .96 .45 .61 .93 .70 .79 .65 .72 .54 .83 .76 .79

Research Goal .87 .45 .59 .95 .58 .72 .32 .46 .62 .86 .67 .76

Keyword Classification

Sex

Same as
I(M)

Same as
I(O)

.88 .69 .78 .88 .71 .79
Condition .43 .47 .45 .59 .36 .45
Race 0 0 0 1 .11 .19
Age .79 .43 .56 .76 .45 .57
Intervention .33 .35 .34 .57 .39 .47
Study Design .70 .71 .71 .91 .75 .82
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Table 3.9: Demographics of sentence classes in the multi-class models. P, I, Re,
SD and RG stand for patient, intervention, result, study design and research
goal respectively.

Single Classes (5) Duple Classes (8) Triple Classes (7) Quadruple Classes (2)

P 54 P/I 13 P/I/Re 23 P/I/Re/SD 1
I 16 P/Re 50 P/I/SD 9 P/I/SD/RG 13
Re 288 P/RG 13 P/I/RG 6
SD 18 P/SD 23 P/Re/SD 9
RG 23 I/Re 64 P/SD/RG 6

I/RG 2 I/Re/SD 7
I/SD 18 I/SD/RG 3

SD/RG 12

Total 399 Total 195 Total 63 Total 14

linguistic variation also plagues recall for some classes. For example, “children”,

“45-year-old” and “35 to 40 years of age” are all valid ways of expressing age

information. In addition, when the vocabulary size of a class is too large to be

effectively covered by medical dictionaries (e.g., condition and intervention), the

classification performance is also greatly compromised.

In terms of the relative performance between the multi-class and one-against-

all models, the results of the independent models show that the former has a

small advantage over the latter in keyword classification (+0.03 to +0.05 on

F1-measure for sex, condition and race) but the latter is better in key sentence

classification (+0.03 to +0.15 on F1-measure for all classes). The inferior perfor-

mance of the multi-class models on key sentence classification has lead to infe-

rior performance on keyword classification in the sentence-first and joint models,

while their advantages on keyword classification do not help them outperform

their one-against-all counterparts on key sentence classification in the word-first

model or the joint model.

To get a better idea of why the multi-class models do not perform well in key

sentence classification, we have carried out a post-hoc analysis on our corpus

which reveals the following demographics of the sentence classes in them as

shown in Table 3.9.

In total, there are 22 (5 single + 8 duple + 7 triple + 2 quadruple) sentence

classes in the multi-class models, 17 (8 + 7 + 2) of which are multiple classes (i.e.,

consisting of more than one single class). Among these multiple classes, 8 (47%)
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of them have less than 10 sentences, 7 (41%) have 10 to 30 sentences, while only 2

(12%) have more than 30 sentences. Moreover, as a result of putting the multi-

class sentences into their own multiple classes, 3 of the single classes, namely

intervention, study design and research goal now have less than 30 sentences. In

contrast, all the one-against-all models have more than 50 sentences as positive

examples for the binary classifier of each class. In other words, there are much

more classes but much fewer examples in each class in the multi-class models

than in the one-against-all models due to the existence of multiple classes in

the former. Considering the fact that the multi-class models actually perform

slightly better than the one-against-all models on keyword classification where

there is no multiple class, we believe the data sparsity caused by the multiple

classes is the main reason why the multi-class models perform worse than the

one-against-all models on key sentence classification.

While it is possible that the multi-class models may outperform the one-

against-all models with a larger corpus, based on our current experiments, the

one-against-all models do provide a natural way of handling soft-classification

without running into the data-sparsity problem, reduce the computational cost

by allowing the classifiers to be trained independently and in parallel, and have

shown promising results. Therefore, we believe such models are likely to be

practical solutions for Resource Categorization on nominal facets in domain-

specific IR and will focus on them only from this point onwards.

Lastly, when it comes to the relative performance of different ways to ex-

ploit the correlation between the two categorizations, the sentence-first model

outperforms the independent model on the challenging keyword classes such as

condition and intervention. However, it also harms the extraction of some of

the other keyword classes. Based on our error analysis, we have discovered that

when key sentence classification misclassifies a sentence as not containing any

key information, it misleads keyword classification into thinking that none of the

words in that sentence represent key information. This happens often due to the

low recall of key sentence classification. Similarly, in the word-first model, we

have also observed that when keyword classification fails to identify the keywords

which represent any key information, it misleads key sentence classification into
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Table 3.10: Time (in seconds) required for training the independent (I), sentence-
first (SF), word-first (WF) and joint (J) models on different percentages of the
reduced dataset (671 sentences). All the models are implemented using one-
against-all classifiers.

Percentage I SF WF J

1 0.21 0.17 0.16 15.80

5 0.50 0.50 0.49 184.45

10 1.31 1.33 1.29 369.95

20 3.18 3.20 3.15 794.67

40 8.19 8.11 8.05 1484.13

60 13.63 13.65 13.41 2639.48

80 20.16 20.90 20.00 3039.65

100 28.66 28.54 28.13 3970.60

thinking that the sentence does not contain any key information. Nevertheless,

the results from keyword classification are still useful to key sentence classifica-

tion. This can be seen from the results that the word-first model does improve

key sentence classification on most classes in spite of error propagation.

As for the joint model, it is comparable to the rest of the models when the

correlation between the sentence and the words is simple. For example, it per-

forms well for the two study design classes, largely because the study design

sentences are only concerned with study design words and vice versa. In com-

parison, it is less effective for the patient sentence class and the four related

word classes since the correlations among these five classes are more complex.

Nevertheless, it is the only model that can enhance key sentence classification

and keyword classification simultaneously. This nature eliminates the need to

decide the sequence of the classification tasks and thereby hindering the classi-

fication accuracy of the earlier task. However, despite all these advantages, its

computational cost is still a major drawback. While the other models can be

trained within a minute, the joint model requires up to about an hour.

To get a better understanding of the computational cost of the joint model,

we have measured the time required for training it using different percentages

of the reduced dataset. The results are as shown in Table 3.10. For comparison

purposes, the results for the other three models are also listed.

As can be observed from the table, the joint model does require much more

time to train than the other models; however, it scales linearly with the number

55



CHAPTER 3. RESOURCE CATEGORIZATION ON NOMINAL FACETS –
A CASE STUDY IN KEY INFORMATION EXTRACTION FOR
EVIDENCE-BASED PRACTICE

of sentences used for training just like the rest. Therefore, we consider it to be

expensive but not prohibitively so. With suitable optimization at the implemen-

tation level to lower the training cost per sentence, we believe it is still a viable

option for practical use.

3.4.2 Results and Discussions II: Full Dataset

As informative as the results on the reduced dataset are, they do not represent

the complete picture since both classifications need to be done on all sentences,

not just the ones that contain key information. Classification on the full dataset

constitutes a real-world trial for both classifiers, as the entire articles are pro-

vided. Table 3.11 shows the performance of the models when the full dataset is

substituted for the reduced dataset.

The 1,329 sentences added can be considered as noise since none of them

contain key information. The presence of such noise adds to the challenge for

both classifications and leads to lowered performance for all models in general.

Among all the results, only the precision for the intervention, study design and

research goal sentence classes are maintained, indicating that the some of the

sentences in these classes are still easily distinguishable even in the full dataset.

In the word-first model, the keyword classification results now negatively

impact key sentence classification. This is due to the many occurrences of key-

words outside of key sentences. The most adversely affected sentence class is

the patient class, because it is related to most (four) word classes, all of which

can no longer be reliably classified. In contrast, key sentence classification now

also functions as a filter for the sentences that do not contain any information

instead of just distinguishing the sentences of one class from others. With this

classification acting as a filter, it is less likely for the words in the newly added

sentences to be misclassified as representing key information. As a result, the

sentence-first model returns higher keyword classification performance than in

the reduced case. The joint model also suffers a drop in performance. In addi-

tion, the training process now requires about 2.5 hours4, while the rest of the

models can be trained within minutes.

4Still linear to the number of sentences in the training set.
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Table 3.11: Evaluation results of key information extraction on the full dataset
using independent (I), sentence-first (SF), word-first (WF) and joint (J) models.
All the models are implemented using one-against-all classifiers. The numbers
in Bold indicate the best P/R/F for a particular class among all the models.
The numbers in the brackets indicate the relative performance when compared
to the evaluation with reduced dataset (Table 3.8).

Class\Model
I SF WF J

P R F P R F P R F P R F

Key Sentence Classification

Patient
.75 .52 .61

Same as I

.67 .37 .48 .52 .71 .60
(-.06) (-.23) (-.17) (-.17) (-.35) (-.30) (-.12) (-.19) (-.15)

Intervention
.82 .34 .48 .58 .38 .46 .58 .50 .54
(0) (-.13) (-.12) (-.15) (-.17) (-.17) (-.04) (-.09) (-.07)

Result
.78 .63 .70 .78 .60 .68 .77 .58 .66
(-.12) (-.32) (-.22) (-.11) (-.36) (-.25) (-.14) (-.33) (-.25)

Study
Design

.97 .51 .67 .91 .65 .76 .84 .71 .78
(0) (-.08) (-.06) (-.02) (-.05) (-.03) (+.01) (-.05) (-.01)

Research
Goal

.97 .45 .62 .97 .42 .59 .79 .63 .70
(+.02) (-.13) (-.10) (+.02) (-.16) (-.13) (-.07) (-.04) (-.06)

Keyword Classification

Sex
.63 .63 .63 .74 .76 .76

Same as I

.68 .60 .64
(-.26) (-.29) (-.27) (-.16) (-.10) (-.12) (-.20) (-.11) (-.15)

Condition
.20 .11 .14 .53 .34 .42 .49 .34 .40
(-.25) (-.20) (-.22) (-.07) (-.07) (-.07) (-.10) (-.02) (-.05)

Race
.62 .42 .50 .83 .26 .40 1 .05 .10
(-.18) (0) (-.05) (+.01) (-.21) (-.20) (0) (-.06) (-.09)

Age
.56 .44 .49 .66 .42 .52 .62 .36 .46
(-.15) (-.13) (-.14) (-.07) (-.07) (-.07) (-.14) (-.09) (-.11)

Intervention
.46 .25 .32 .74 .26 .39 .49 .36 .42
(-.13) (-.09) (-.11) (-.03) (-.09) (-.09) (-.08) (-.03) (-.05)

Study
Design

.81 .64 .71 .93 .59 .72 .86 .71 .78
(-.04) (-.09) (-.07) (+.03) (-.03) (-.02) (-.05) (-.04) (-.04)
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3.4.3 Results and Discussions III: Full Dataset with Data Fil-

tering and Feature Selection

To reduce the noise due to the additional irrelevant sentences and lower the

training cost for the joint model, we have also investigated two additional di-

rections: performing data filtering as a preprocessing step to the models and

applying feature selection techniques in the training process.

Data Filtering

The idea of data filtering is to remove the negative examples while retaining

the positive ones so that both the skewness of data and the data size can be

reduced [Gliozzo et al., 2005]. In information extraction (e.g., [Roth and Yih,

2001; Sitter and Daelemans, 2003]), this is commonly done by using a binary

classifier to determine whether a segment of text (e.g., a sentence) is likely to

contain information of interest. If so, the segment will be processed further for

extraction; otherwise, it is filtered.

In our case, we build an additional classifier to filter out the sentences that

do not contain any key information. When an unseen sentence is given, this

filtering classifier is first applied to determine whether the sentence is unlikely

to contain any key information. If so, this sentence and the words in it will be

considered as not belonging to any of the sentence or word classes; otherwise the

sentence and the words in it will be further classified into the sentence and word

classes. With this filtering step, we use only the sentences that belong to at

least one of the sentence classes as training data (similar to the reduced dataset

case). In this way, the level of noise is minimized and the cost of training the

joint model is alleviated.

For consistency, we implement the filtering classifier as a binary classifier us-

ing the feature set for key sentence classification. Sentences not belonging to any

sentence classes are considered as positive examples, and the rest negative. As

shown in Table 3.12, the resulting classifier is able to filter out noise reasonably

well (recall for noise > 0.8) but it also incorrectly removes a portion of the key

sentences (recall for key sentence < 0.8). Nevertheless, as we are going to show

next, the benefit of applying data filtering is already evident with this filtering
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Table 3.12: Performance of the filtering classifier.

P R F

Noise .88 .87 .87

Key sentence .72 .75 .74

performance. Therefore, we apply this classifier as it is without optimization.

The results after applying data filtering, as shown in Table 3.13, are gener-

ally favorable. Improvements can be observed in both key sentence and keyword

classifications for most classes. Moreover, the improved keyword classification is

able to benefit key sentence classification once again, as indicated by the perfor-

mance of the word-first and joint models. Last but not least, with data filtering,

the joint model only needs to be trained on the reduced dataset. Therefore, the

computational resources required for this model remain manageable and unaf-

fected by the size of the full dataset.

Although the resulting performance is still not as good as ones from the

reduced dataset, data filtering is easy to implement and able to meet both of our

goals. Therefore, we consider it a good choice for key information extraction.

Feature Selection

Ideally, by selecting a good subset of relevant features, both the noise from irrele-

vant features and the dimensionality of the feature space are reduced. Therefore,

the resulting models will be more accurate and take less resources to train. As

such, we apply several common feature selection techniques onto the independent

model with different percentages of features to retain. The best combination of

technique and percentage is then applied to all models to assess its effect.

We have implemented three metrics for computing the importance of the

features as is done in [Yang and Pedersen, 1997]:

Document frequency is the number of training instances in which a feature

occurs. Features with low document frequency are considered to be non-

informative and can be removed.

Mutual information measures the dependence between a feature and a class

and is computed using the following formula: log (A×N)/((A+ C)× (A+B))5.

5A: the number of times a feature occurs in an instance from the positive class, B: the
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Table 3.13: Evaluation results of key information extraction on the full dataset
using independent (I), sentence-first (SF), word-first (WF) and joint (J) models
with data filtering. The numbers in Bold indicate the best P/R/F for a par-
ticular class among all the models. The numbers in the brackets indicate the
relative performance when compared to the evaluation with full dataset without
data filtering (Table 3.11).

Class\Model
I SF WF J

P R F P R F P R F P R F

Key Sentence Classification

Patient
.64 .64 .64

Same as I

.67 .60 .63 .49 .76 .60
(-.11) (+.12) (+.03) (0) (+.23) (+.15) (-.03) (+.05) (0)

Intervention
.70 .41 .51 .63 .48 .54 .53 .54 .55
(-.12) (+.07) (+.03) (+.05) (+.10) (+.08) (-.05) (+.04) (+.01)

Result
.68 .69 .68 .66 .69 .68 .72 .65 .69
(-.10) (+.06) (-.02) (-.12) (+.09) (0) (-.05) (+.07) (+.03)

Study
Design

.92 .55 .68 .90 .68 .78 .74 .71 .73
(-.05) (+.04) (+.01) (-.01) (+.03) (+.02) (-.10) (0) (-.05)

Research
Goal

.94 .47 .62 .94 .47 .62 .93 .56 .70
(-.03) (+.02) (0) (-.03) (+.05) (+.03) (+.14) (-.07) (0)

Keyword Classification

Sex
.67 .68 .68 .68 .69 .69

Same as I

.68 .61 .64
(+.04) (+.05) (+.05) (-.06) (-.07) (-.07) (0) (+.01) (0)

Condition
.38 .26 .31 .46 .35 .40 .52 .33 .41

(+.18) (+.15) (+.17) (-.07) (+.01) (-.02) (+.03) (-.01) (+.01)

Race
.72 .41 .53 .89 .42 .57 1 .11 .19

(+.10) (-.01) (+.03) (+.06) (+.16) (+.17) (0) (+.06) (+.09)

Age
.60 .53 .57 .68 .49 .57 .68 .54 .60

(+.04) (+.09) (+.08) (+.02) (+.07) (+.05) (+.06) (+.18) (+.14)

Intervention
.49 .32 .39 .65 .33 .44 .51 .39 .44

(+.03) (+.07) (+.07) (-.09) (+.07) (+.05) (+.02) (+.03) (+.02)

Study
Design

.76 .71 .73 .89 .62 .73 .85 .72 .78
(-.05) (+.07) (+.02) (-.04) (+.03) (+.01) (-.01) (+.01) (0)
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The main caveat of this measure is that it favors the features with lower

document frequency and hence is less reliable when the document frequency

of the features differs greatly.

Chi-square measures the dependence between a feature and a class by compar-

ing the correlation between them to the χ2 distribution with one degree of

freedom. The formula for this measure is as follows: N×(AD−CB)/((A+

C)× (B +D)× (A+B)× (C +D))6. This measure is a normalized value

and hence is comparable across all features. However, it is less reliable for

features with low document frequency because the comparison to the χ2

distribution would no longer be accurate in that case.

The computed metrics are used to select the top 25%, 50%, 75% of the

features for both classifications.

The performance of the independent model after feature selection using dif-

ferent techniques and selection percentages can be found in Table 3.14. (The

performance without feature selection is also listed for the ease of reference.)

The effects of feature selection techniques on key sentence classification are

mixed. On one hand, feature selection alleviates the problem of low recall we

have encountered earlier. The improvement in recall is substantial as less features

are selected (e.g., > 0.09 improvement on average with selection by document

frequency at 25%). On the other hand, however, this improvement is at the cost

of precision, which steadily deteriorates in the selection process. Consequently,

the resulting F1-measure is better than original but only slightly. As mentioned

previously, in the context of domain-specific IR, precision is more important

than recall. Therefore, feature selection on key sentence classification is not very

necessary for our purpose but it can still serve as a way to improve recall in

other tasks where a more balanced classification performance is preferred.

In terms of how the feature selection techniques perform with respective to

each other, mutual information turns out to be the weakest while document

number of times a feature occurs in an instance from the negative class, C: the number of
times a feature does not occur in an instance from the positive class, N: the number of training
instances.

6D: the number of times a feature does not occur in an instance from the negative class.
The rest are the same as the previous footnote.
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Table 3.14: Effects of feature selection techniques: document frequency (DF),
mutual information (MI), and chi-square (CHI), with different selection percent-
ages on the independent model. The numbers in Bold indicate the best P/R/F
for a particular class among all technique-percentage combinations.

Class\Selection
Method

DF-25% DF-50% DF-75% No Selection
P R F P R F P R F P R F

Key Sentence Classification

Patient .62 .61 .61 .69 .58 .63 .72 .55 .62 .75 .52 .61

Intervention .68 .42 .52 .75 .41 .53 .80 .36 .50 .82 .34 .48

Result .73 .69 .71 .78 .68 .72 .78 .65 .71 .78 .63 .70

Study Design .84 .63 .72 .90 .58 .70 .94 .56 .70 .97 .51 .67

Research Goal .83 .56 .67 .89 .56 .69 .92 .49 .64 .97 .45 .62

Keyword Classification

Sex .63 .60 .61 .63 .58 .60 .63 .61 .62 .63 .63 .63

Condition .12 .06 .08 .13 .06 .08 .18 .09 .12 .20 .11 .14

Race .54 .32 .40 .50 .32 .39 .67 .53 .59 .62 .42 .50

Age .59 .36 .44 .61 .48 .55 .56 .43 .48 .56 .44 .49

Intervention .46 .20 .28 .43 .26 .32 .42 .23 .30 .46 .25 .32

Study Design .75 .62 .68 .80 .62 .70 .81 .62 .70 .81 .64 .71

Class\Selection
Method

MI-25% MI-50% MI-75% No Selection
P R F P R F P R F P R F

Key Sentence Classification

Patient .63 .42 .50 .71 .36 .48 .71 .36 .48 .75 .52 .61

Intervention .76 .38 .50 .84 .34 .48 .84 .29 .43 .82 .34 .48

Result .69 .62 .65 .75 .59 .66 .76 .57 .65 .78 .63 .70

Study Design .80 .71 .75 .88 .65 .74 .90 .60 .72 .97 .51 .67

Research Goal .94 .48 .64 .97 .44 .60 1 .39 .57 .97 .45 .62

Keyword Classification

Sex .57 .82 .67 .57 .82 .67 .58 .82 .68 .63 .63 .63

Condition .25 .10 .15 .20 .07 .11 .22 .09 .12 .20 .11 .14

Race .54 .37 .44 .54 .37 .44 .54 .37 .44 .62 .42 .50

Age .56 .35 .43 .52 .28 .36 .54 .28 .37 .56 .44 .49

Intervention .51 .22 .31 .51 .21 .29 .53 .20 .29 .46 .25 .32

Study Design .80 .63 .71 .78 .65 .71 .82 .67 .74 .81 .64 .71

Class\Selection
Method

CHI-25% CHI-50% CHI-75% No Selection
P R F P R F P R F P R F

Key Sentence Classification

Patient .62 .61 .62 .67 .58 .62 .70 .56 .61 .75 .52 .61

Intervention .62 .41 .50 .73 .39 .51 .78 .37 .50 .82 .34 .48

Result .74 .69 .72 .77 .67 .72 .77 .65 .70 .78 .63 .70

Study Design .77 .74 .76 .83 .69 .75 .87 .66 .75 .97 .51 .67

Research Goal .72 .69 .71 .81 .59 .68 .85 .55 .67 .97 .45 .62

Keyword Classification

Sex .59 .75 .66 .63 .72 .67 .62 .67 .64 .63 .63 .63

Condition .19 .08 .11 .23 .10 .14 .22 .11 .14 .20 .11 .14

Race .56 .48 .51 .60 .47 .53 .63 .53 .57 .62 .42 .50

Age .53 .36 .43 .52 .35 .42 .55 .35 .42 .56 .44 .49

Intervention .49 .22 .30 .50 .21 .29 .49 .23 .32 .46 .25 .32

Study Design .78 .60 .68 .78 .59 .67 .77 .64 .70 .81 .64 .71
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frequency and chi-square have similar performance. This agrees well with the

findings from [Yang and Pedersen, 1997]. Moreover, since document frequency

is task-free (i.e., does not require any information about the number of classes

and the number of instances in each class), we consider it a suitable choice if

feature selection is to be applied on key sentence classification.

In contrast, applying feature selection in conjunction with keyword classifi-

cation has a negative effect on the performance on all evaluation metrics. This

may be due to the fact that the number of features for each word is already

small (∼7 on average) and hence applying feature selection would result in too

few features for the classifiers to work well.

Since feature selection is not effective on keyword classification, we choose

to apply the domain frequency technique with a selection percentage of 25% on

key sentence classification to illustrate how it affects the overall performance and

efficiency of the four models. The results are shown in Table 3.15.

Compared with the results in Table 3.11, it can be observed that the results

for keyword classification in the sentence-first and joint models are not as good

as the ones without feature selection. In other words, despite the improvement

in recall and overall performance in key sentence classification, it is still more

beneficial to keyword classification if key sentence classification is more precise.

In this way, keyword classification can rely on key sentence classification to know

what types of key information are present in the sentence.

In addition, since feature selection is not done on keyword classification,

keyword classification still has an negative impact on key sentence classification

as can be seen from the results in the word-first and joint models, which are no

better than the independent model with feature selection or the word-first and

joint models without feature selection.

Last but not least, the joint model does benefit from feature selection in

terms of efficiency. With a low selection percentage, it can be trained with the

same level of time as it would require with the reduced dataset.

To sum up, although feature selection may be used to improve recall on

key sentence classification and allow the joint model to be trained with less

computational resources, it is not applicable to keyword classification and the
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Table 3.15: Evaluation results of key information extraction on the full dataset
using independent (I), sentence-first (SF), word-first (WF) and joint (J) models
with feature selection (the top 25% by document frequency) on key sentence
classification. The numbers in Bold indicate the best P/R/F for a particular
class among all the models. The numbers in the brackets indicate the relative
performance when compared to the evaluation with full dataset without feature
selection (Table 3.11).

Class\Model
I SF WF J

P R F P R F P R F P R F

Key Sentence Classification

Patient
.62 .61 .61

Same as I

.55 .41 .47 .54 .70 .61
(-.13) (+.09) (0) (-.12) (+.04) (-.01) (+.02) (-.01) (+.01)

Intervention
.68 .42 .52 .50 .39 .44 .59 .42 .49
(-.14) (+.08) (+.04) (-.08) (+.01) (-.02) (+.01) (-.08) (-.05)

Result
.73 .69 .71 .73 .65 .69 .74 .58 .65
(-.05) (+.06) (+.01) (-.05) (+.05) (+.01) (-.03) (0) (-.01)

Study
Design

.84 .63 .72 .82 .71 .76 .75 .65 .70
(-.13) (+.12) (+.05) (-.09) (+.06) (0) (-.09) (-.06) (-.08)

Research
Goal

.83 .56 .67 .84 .54 .65 .77 .65 .70
(-.14) (+.11) (+.05) (-.13) (+.12) (+.06) (-.02) (+.02) (0)

Keyword Classification

Sex
.63 .63 .63 .66 .79 .72

Same as I

.68 .69 .67
(0) (0) (0) (-.08) (+.03) (-.04) (0) (+.09) (+.03)

Condition
.20 .11 .14 .44 .36 .40 .53 .35 .42
(0) (0) (0) (-.09) (+.02) (-.02) (+04) (+.01) (+.02)

Race
.62 .42 .50 .83 .26 .40 1 .11 .19
(0) (0) (0) (0) (0) (0) (0) (+.06) (+.09)

Age
.56 .44 .49 .61 .50 .56 .68 .37 .48
(0) (0) (0) (-.05) (+.08) (+.04) (+.06) (+.01) (+.02)

Intervention
.46 .25 .32 .59 .30 .40 .44 .30 .35
(0) (0) (0) (-.15) (+.04) (+.01) (-.05) (-.06) (-.07)

Study
Design

.81 .64 .72 .85 .65 .74 .81 .69 .74
(0) (0) (+.01) (-.08) (+.06) (+.02) (-.05) (-.02) (-.04)
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resulting performance is not as good as data filtering. Therefore, we still prefer

data filtering over feature selection for our purpose of noise reduction.

3.5 Future Work

Propagating results from one classification to another may do more harm than

good if the former cannot be done reliably. This is often referred to as cascading

error. As shown in our evaluation, both classifications may mislead each other

especially when their accuracy is not good enough or has been compromised

due to noise. Ideally speaking, joint inference is a natural way to address this

problem because the merging of two classifications into one effectively eliminates

the need for propagating results. Nevertheless, in the case where joint inference

is not a practical option, a threshold can be set using parameter optimization

techniques (e.g., grid search) and only those results whose confidence levels are

higher than the threshold are propagated from the earlier classification. This

would help to lower the chance of propagating errors into the later classification.

From a more fundamental point of view, it is important to improve individual

classifications before combining them. To this end, more sophisticated statistical

models (e.g., topic models [Steyvers and Griffiths, 2007]) can be investigated in

future to manage the endless possible variations of words and sentence structures.

In addition, although the joint model provides a natural way to propagate

information between classifications, it incurs a much higher training cost per

sentence than other models. Besides reducing the training data size by filtering

out irrelevant sentences, we plan to look for more efficient implementations of

joint inference algorithms and explore approximate inference algorithms to see

if the training cost can be lowered to a manageable level.

This part of our research is done for our domain-specific search system in

healthcare (to be detailed in Chapter 6). The extraction and display of key

information is the first step in the integration of extraction results into the search

process for this system. In future, we also plan to incorporate more sophisticated

designs, such as ranking the articles based on how well the query matches with

the extracted sentences instead of the whole articles, and filtering the articles
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based on the extracted keywords.

3.6 Discussion

The values of the nominal facets of domain-specific resources are usually cate-

gories which are distinct from each other. As indicated in our correlation graph,

correlations exist between such facets at multiple granularities. In this chapter,

we use the problem of key information extraction for evidence-based practice in

healthcare as a case study in exploiting such correlations.

In key information extraction, key sentences and keywords need to be ex-

tracted from research articles to facilitate applicability and validity assessment.

We cast these two extraction tasks as two classification steps and exploit their

correlation using models which differ in terms of how information is propagated

between them. Our results show that when the two classifications are performed

in series, the later classification does benefit from the earlier one. With the help

of joint inference, it is possible to propagate information in both directions, such

that both classifications simultaneously benefit from each other.

We believe our approach is not limited to healthcare or the specific problem

of dual categorizations at sentence-level and word-level. In almost any domain,

many other pairs of categories at different granularities are correlated in a similar

way and can be tackled likewise. For example, resource type and segment type

are correlated because knowing that a domain-specific resource is an encyclope-

dia page increases the likelihood that one of its segments contains definitions,

while knowing that most of the segments in a resource contain research paper

information increases the likelihood that it is a journal/conference webpage. We

can easily formulate the classifications accordingly and propagate information

between them using the proposed models.

Nevertheless, if the granularities of the two categorizations of interest differ

significantly (e.g., resource-level vs. word-level), it may be less useful to propa-

gate information between them since the correlation will be much weaker than

those whose difference in granularities is smaller (e.g., it would be difficult to

determine the type of a resource based on the types of its words and vice versa).
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In this case, adding an intermediate level may help to reduce the granularity

differences between categorizations and the correlations between them may be-

come strong enough to be exploited (e.g., a segment-level categorization can be

added between resource-level and word-level categorizations).

Aside from studying how the correlation between categorizations at differ-

ent granularities can be exploited, we have also noted and examined two issues

related to Resource Categorization on nominal facets.

The first issue concerns soft-classification, where instances may belong to

multiple classes. We have compared two approaches: The first is to use one single

multi-class classifier for all possible combinations of classes, and the second to

use one one-against-all classifier for each class. As observed in our experiments,

the former may run into data sparseness problem when there are many possible

combinations of classes and when few instances are available for most classes.

In contrast, the latter is less affected by this problem since all instances in each

class can be used to train the corresponding classifier. In addition, the former

only needs to train one classifier while the latter needs to train one for each

class and then merge the results of all the classifiers. Therefore, the latter is

more difficult to implement but allows the training process to be parallelized.

Therefore, to choose between these two approaches, as a way to handle soft-

classification in Resource Categorization on nominal facets, we find it important

to take note of 1) whether there are sufficient instances in each combination of

classes, and 2) whether the training process is costly. When data sparsity is not a

concern or a single multi-class classifier can be trained efficiently, the multi-class

classifier approach can be taken to simplify the implementation. Otherwise, the

one-against-all classifier approach can be used to lessen the adverse effect of data

sparsity or parallelize the training process.

The second issue concerns categorization noise. It is common for irrelevant

instances to outnumber relevant ones as the granularity of categorization in-

creases. For example, in our corpus, the ratio between sentences that contain

key information and those that do not is around 1:2, while the ratio at word-level

is 1:6. The presence of noise not only compromises the categorization perfor-

mance but also increases the computational resources required for training. We
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have compared two possible approaches to reduce the noise level in categoriza-

tion: data filtering and feature selection. Based on our results, we find that both

approaches are able to meet the goal of reducing noise and the computational

resources required for training; however, data filtering is easier to implement

and shows more favorable results, whereas feature selection is able to trade pre-

cision for recall with different selection thresholds but is less applicable when the

number of features in the instances is already small. Therefore, we believe data

filtering is a suitable choice for noise reduction in general. Nevertheless, in the

case where the number of features in the instances is large and recall is more

important, feature selection can be applied with appropriate selection thresholds

for the desired recall level.
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Chapter 4
Resource Categorization on Ordinal
Facets – A Case Study in Readability
Measurement

In this chapter, we examine another class of facets for Resource Categoriza-

tion – the ordinal facets. These facets establish an ordering of resources based on

whether a particular characteristic holds stronger in one than another. Common

examples of ordinal facets include: readability [DuBay, 1990], cohesion [Mcna-

mara et al., 2002] and quality [Wetzler et al., 2009]. Unlike nominal facets, the

values of ordinal facets merely indicate the rank of a resource among others.

The ordering established by ordinal facets is particularly useful in domain-

specific search systems for sorting the resources so that the ones which have

higher values in the desired characteristics can be presented to users first. For

example, in medical domain, laymen may be interested in viewing more read-

able results first, as many medical resources are too specialized for the general

public [Graber et al., 1999]. Similarly, uninformed information seekers often

prefer resources that are deemed more trustworthy to avoid getting inaccurate

or unreliable information. While it is still possible to establish the ordering by

performing categorization with an ordered set of labels, any approaches that are

able to establish the ordering, such as heuristic-based measurement and ranking,

can serve as a viable (and perhaps more natural) way to handle these facets.

Traditionally, ordinal facets are measured using heuristic formula. For ex-

ample, the Flesch-Kincaid Reading Ease (FKRE) formula [Flesch, 1948] and the

Dale-Chall readability formula [Dale and Chall, 1948] are the two most well-
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known formula for readability. As another example, the cohesion of a document

can be computed by various cohesion metrics (i.e., causal, intentional, tempo-

ral and spatial) as is done in Coh-metrix [Mcnamara et al., 2002]. With the

development of supervised learning, statistical models can be built based on

an annotated corpus and used to compute the values for these facets. For in-

stance, [Collins-Thompson and Callan, 2004] perform a 12-way classification for

readability using language models, while [Burstein et al., 2004] assign quality

scores to essays on a 6-point scale through linear regression. In the context of

domain-specific IR, research efforts have also been made to handle the domain-

specific concepts in the resources with the help of domain knowledge sources

(e.g., to derive document cohesion based on the amount of semantic relations

among the concepts for the computation of readability [Yan et al., 2006]). De-

spite the improvement in measurement accuracy, the cost of an annotated corpus

and domain knowledge sources in those approaches limits their applicability.

Therefore, in our research, we aim to discover a less expensive (and hence

more domain-independent) way of handling domain-specific concepts for the

measurement of ordinal facets.

To make our research concrete, we present a case study on readability mea-

surement. There are several reasons why we choose to examine readability.

First, not all ordinal facets are domain-dependent. For instance, trustwor-

thiness is often measured for domain-specific resources but the prestige (i.e., the

level of respects received) of their sources plays a much more important role in

the measurement process than domain knowledge. In comparison, readability is

more domain-dependent since domain-specific concepts have a strong influence

on how readable the resources are. Therefore, investigating this facet may yield

more insights on how to handle domain-specificness in a generic manner. Second,

while readability measurement for general materials has been well-researched,

readability for domain-specific resources has not. This gives us a solid founda-

tion for our work while giving us ample opportunity to improve. Last but not

least, readability is a major barrier hindering laymen’s understanding of the con-

tent in domain-specific resources. As such, an accurate measure of readability is

an important component for domain-specific accessibility.
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In our correlation graph (Figure 4.1), readability is represented as a node at

the resource layer, while its correlations with resource-level observable charac-

teristics, resource type and concept difficulty, are represented as edges to cor-

responding nodes. Given the fact that domain-specific concepts play a impor-

tant role in domain-specific readability measurement, our research examines the

correlation between resource readability and concept difficulty. Intuitively, this

correlation means that resources written for more difficult concepts are less read-

able while the concepts commonly described by less readable resources are more

difficult. We exploit this correlation using an iterative computation algorithm in-

stead of supervised classification to cater for the ordinal nature of both resource

readability and concept difficulty.

Figure 4.1: Correlation graph fragment showing nodes and edges relevant to
readability. The edge (i.e., correlation) bounded by the dashed line box is ex-
amined in this chapter.

We believe our approach is also applicable to other pairs of ordinal facets,

such as the specificity of the resources and the genericity of the concepts. We

will elaborate on this towards the end of the chapter.

The rest of the chapter is organized as follows. We first review the relevant

literature on readability research in Section 4.1. We then describe the intuition

behind our approach and how it is embodied in an iterative computation algo-

rithm in Section 4.2. We evaluate our algorithms in the domains of math and

medicine in Section 4.3 and point out a few possible directions for future research

in Section 4.4. Lastly, we relate our algorithm to several graph-based iterative

computation algorithms in Section 4.5 and end with a discussion on Resource

Categorization on ordinal facets based on our findings in Section 4.6.
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4.1 Literature Review on Readability Measurement

Readability measures indicate how difficult it is to understand a piece of text.

Therefore, they are commonly used by educators to select appropriate materi-

als for the target audience. Although they have been applied in many different

domains such as education [Flesch, 1948], military [Smith and Senter, 1967] and

healthcare [Lay and Florio, 1996], they are mostly generic, i.e., without the flex-

ibility to allow themselves to handle the special elements in any domain. Only

recently have researchers started working on domain-specific readability mea-

sures. In the following, we first review two major classes of generic readability

measures which are based on heuristics and supervised learning respectively, and

then move on to domain-specific readability measures.

4.1.1 Heuristic Readability Measures

According to a comprehensive review on classic readability studies [DuBay, 1990],

heuristic readability measures were first devised in the 1920s to facilitate the

selection of textbooks. They are usually expressed as a weighted sum of the

values of some features extracted from a piece of text. The features extracted

are the ones that correlate well with readability while their weights are computed

by linear regression.

Among all the text features, word features are considered as the strongest

predictor. As early as 1923, [Lively and Pressey, 1923] have already demonstrated

that the media of the index numbers of the words, as taken from [Thorndike,

1921] which ranks words by their frequencies in a sample text collection, correlate

well with readability. Since then, word features have always been a staple in

heuristic readability measures. For example, [Vogel and Washburne, 1928] use

the number of different words and the number of uncommon words, while [Gray

and Leary, 1935] employ the number of different, unfamiliar words.

Other features have been considered as well: [Vogel and Washburne, 1928]

also examine five other classes of features, including sentence structure, part of

speech, paragraph construction (e.g., the number of sentences), general structure

(e.g., the number of lines in a book) and physical makeup (e.g., weight and size
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of type). However, among these features, only the number of prepositions and

the number of simple sentences are found useful. [Gray and Leary, 1935] further

expand the exploration of features by examining 64 countable variables in four

categories: content, style, format and features of organization. They identify av-

erage sentence length, number of pronouns and number of prepositional phrases

as useful in addition to word features.

In 1948, two most succinct yet reliable readability measures were devised:

the FKRE formula [Flesch, 1948] and the Dale-Chall readability formula [Dale

and Chall, 1948]. Both consist of one sentence feature and one word feature.

They share average sentence length as the sentence feature but use the average

number of syllables per word and the percentage of words out of a predefined

list of 3,000 easy words as the word feature respectively.

Most of the later measures only simplify the computation process. For ex-

ample, the Automated Readability Index (ARI) [Smith and Senter, 1967] and

Coleman-Liau Index [Coleman and Liau, 1975] count characters in a word instead

of syllables, while the Simple Measure of Gobbledygook (SMOG) [McLaughlin,

1969] uses the number of polysyllables (i.e., words of more than three syllables)

as the only feature. Therefore, up to today, the FKRE and Dale-Chall formula

still stand as the state-of-the-art heuristic readability measures.

Although heuristic readability measures provide a quick and indicative way

to compute readability, they use only a small number of features to summarize

the characteristics of a piece of text. This is often an oversimplification, as much

information is lost in the process, such as the identity of the individual words

and the knowledge encoded in the text.

4.1.2 Supervised Learning Approaches

To perform readability measurement via supervised learning, one needs to anno-

tate a corpus of text documents with a set of values representing different levels

of readability as the training data. Once collected, features can be extracted

from the training data to build a model that captures the relationship between

the features and the values. Then the resulting model can be used to predict the

readability value of an unseen document based on its extracted features.
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Under this framework, many researchers have re-examined the utility of most

text features. Starting from word features, [Collins-Thompson and Callan, 2004]

construct one unigram language model for each of the 12 American grade levels

based on a corpus of webpages with grade-level annotations. These language

models capture the probability of a word occurring in the document of a certain

grade level. The readability of a new document is then predicted by finding the

language model that most likely generates all the words in it. Their evaluation

shows that this approach outperforms the traditional reading measure on web-

pages. [Leroy et al., 2008] adopt their approach for classifying health information

into three levels (basic, intermediate and advanced), achieving a high accuracy of

98%. Further along this line, [Schwarm and Ostendorf, 2005] explore the effect of

using higher order n-gram models (up to trigram) on classification performance

and show that it helps to minimize error rates.

Besides using higher order n-gram models, [Schwarm and Ostendorf, 2005]

also attempt to combine word features with other text features. They first

compute the perplexity scores which indicate how well the language model of

the document to be classified matches with the ones built from documents for

each of 12 grade levels. These perplexity scores are then used as the feature set

of a Support Vector Machine (SVM) classifier together with other text features,

such as FKRE score and out of vocabulary rate scores, as well as four parse

features, such as average parse tree height and average number of noun phrases.

Although the set of non-word features considered is not large, this classifier is

able to further minimize the error rates compared to the one based on trigrams.

An alternative approach to combine different types of features is to train one

classifier for each type and then fuse their predictions. For example, [Heilman

et al., 2007] extend [Collins-Thompson and Callan, 2004] by introducing a k-

Nearest Neighbour (kNN) classifier on grammatical features such as sentence

length and parse tree patterns. The predictions from the kNN classifier are

interpolated with the ones from the SVM classifier to produce a final prediction,

which is found to perform better than using either one of the classifiers alone.

Most recently, [Pitler and Nenkova, 2008] examine by far the largest set of

textual features. Their feature set includes word (unigram language model),
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syntactic (identical to the parse features in [Schwarm and Ostendorf, 2005]),

lexical cohesion (e.g., average cosine similarity between sentences), entity coher-

ence (e.g., the transition probability of an entity from being the subject in one

sentence to the object in the next) and discourse relations (i.e., language model

over discourse relations instead of words). Their results show that word features

and average sentence length are strong predictors but the strongest ones are

discourse features. Moreover, there is also a complex interplay between differ-

ent types of features. While successful, their study is a proof-of-concept; they

acknowledge that automatic extraction for such rich features does not yet exist.

Despite the fact that supervised learning approaches offer better accuracy

compared to heuristic measures, there are still a few issues that limit their util-

ity in domain-specific readability. First, all previous work require an annotated

corpus as the training data. This is costly to construct for domain-specific re-

sources, since it requires much domain knowledge to define the facet values and

perform the annotation accordingly. Second, although language modeling helps

to generate useful word features, it is largely ignorant of the domain-specific

concepts. It treats domain-specific concepts as a sequence of words without con-

sidering their semantics or the relationships among them. Therefore, it would

not be as effective for domain-specific readability measurement.

4.1.3 Domain-specific Readability Measures

To reduce the need for a corpus and better handle domain-specific concepts,

domain-specific readability measures have focused on identifying the difficulty of

such concepts with domain knowledge. Depending on the type of domain knowl-

edge utilized, these measures can be classified into the following two categories.

Wordlist-based Approaches: The wordlist-based approaches derive the dif-

ficulty of domain-specific concepts from domain wordlists. For example,

in the domain of consumer healthcare, [Kim et al., 2007] use the famil-

iarity scores from the Open Access and Collaborative Consumer Health

Vocabulary (OAC-CHV) as the estimated difficulty. A distance score is

computed based on how far an unseen document’s vocabulary differs from

known document samples. This score is combined with two other distance
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scores that are based on text length and syntactic features, to compute a

the final readability score. This approach correlates well with the heuristic-

based measures on most documents, while correctly identifying the difficult

documents which heuristic-based measures miss. However, whether the fa-

miliarity features work well compared to other features is left unexamined

in their study.

[Borst et al., 2008] associate difficulty with rarity. This is in turn estimated

by the size of generic English wordlists (12,000 to 264,000) in which a

medical term appears. Their hypothesis is that the smaller the wordlist

a word appears in, the more common (and thus less difficult) it is. The

complexity of the words in a document is summarized by their average

complexity and combined with the average sentence length to produce a

final score. An accuracy of 92% is achieved when applied to the two case

problem of distinguishing documents targeted at non-experts from ones

targeted at medical professionals.

Ontology-based Approaches: In contrast to the wordlist-based approach,

ontology-based approaches utilize an existing ontology of domain-specific

concepts to derive possible indicators for readability. [Yan et al., 2006]

introduce two additional components into the Dale-Chall Readability for-

mula for medical documents: document scope and document cohesion.

The document scope is based on the scope of the medical terms in the

document. The deeper the terms are in the MeSH hierarchy, the smaller

in scope (and hence more readable) a document is. On the other hand, the

document cohesion measures the relatedness of the medical terms in a doc-

ument. The more associations the terms have to each other with respect

to the ontology, the more cohesive (and hence more readable) a document

is. The combined formula is reported to be significantly better correlated

with the readability computed by heuristic readability measures.

In short, these measures address two issues of supervised learning approaches:

the need for a corpus and ignorance of domain-specific concepts. However, they

still require domain knowledge and incur substantial labor cost in constructing
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their annotated wordlist or ontology. These resources may not be available for

other domains. As a result, the applicability of such methods remains limited.

All these previous works have refined generic readability measures to be sensi-

tive to nuances within a domain by using manually crafted sources of information.

Is there a less expensive way to introduce domain-specific readability?

Our method addresses this need. It is based on iterative computation instead

of supervised learning and hence does not require definition of facet values or

annotation on a corpus. Moreover, it derives concept difficulty from a collection

of resources with the help of a concept list, both of which are easily available in

any domain. Therefore, our approach outperforms generic readability measures

yet remains domain-independent.

4.2 Methodology

Our method exploits the correlation between the readability of domain-specific

resources and the difficulty of domain-specific concepts by iterative computation.

In our correlation graph, this correlation is represented by the edge between

the difficult node in the concept layer and the readability node in the resource

layer as shown in Figure 4.2.

Figure 4.2: Correlation exploited for Resource Categorization on ordinal facets.

This correlation translates into a simple mutually recursive intuition on

domain-specific resources and concepts:

• A domain-specific resource A is less readable than another resource B if A

is written for more difficult domain-specific concepts than B.
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• A domain-specific concept A is more difficult than another concept B if A

is described by less readable domain-specific resources than B.

This intuition helps us solve cases where the generic readability measures

lead to incorrect conclusions for the difficulty of domain-specific concepts in

isolation. For example, let say we need to determine whether a resource written

for the concept “ring theory” is less readable than another one written for the

concept “Pythagorean theorem”. If we extract normal text features such as the

average number of syllables or the percentage of familiar words, “Pythagorean

theorem” would be incorrectly calculated as more difficult than “ring theory”.

However, if we examine a corpus of resources written for these two concepts, we

may discover that “ring theory” is also described by less readable pages about

advanced math concepts, such as “isomorphism theorem” and “abelian group”,

whereas “Pythagorean theorem” is described by more readable pages about basic

math concepts, such as “triangle” and “sine”. With this information, we can

decide that “ring theory” is more difficult than “Pythagorean theorem” and infer

that the resources written for “ring theory” are less readable than ones written

for “Pythagorean theorem”.

In this way, we can compute the readability of domain-specific resources and

the difficulty of domain-specific concepts based on each other.

Unrolling and instantiating the nodes and edges in Figure 4.2, we have a

bipartite graph as shown in Figure 4.3 with nodes representing the readability

of domain-specific resources and the difficulty of domain-specific concepts re-

spectively. Edges exist between pairs of readability and difficulty nodes if the

corresponding resource is written for the corresponding concept. Then we can

iteratively compute 1) the value of a readability node based on the values of

the adjacent difficulty nodes, and 2) the value of a difficulty node based on the

values of the adjacent readability nodes.

Under this iterative computation paradigm, we have experimented with two

different ways to compute the values. The first version is heuristic, which models

the values as real numbers and computes new values using simple heuristics.

Despite the simplicity of this approach, it readily delivers promising results.

The second version is probabilistic, which models the values with probability
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Figure 4.3: Correlation exploited for Resource Categorization on ordinal facets
(unrolled version).

distributions and computes new values using an adapted version of the Näıve

Bayes classification. This approach is able to achieve similar performance as

the heuristic version with less iterations and increase the expressiveness and

flexibility of our algorithm.

The input needed is minimal. Our method requires a list of domain-specific

concepts and a corpus of domain-specific resources. A key distinction of our

proposal from previous works is that both do not need to be annotated – a flat

list of concepts and a corpus of resources are all that is required.

This is an easy requirement to satisfy for most domains: A list of domain-

specific concepts is usually available in the form of a domain-specific dictionary,

an encyclopedia, or the index at the back of a textbook. Given such a list, a

domain-specific corpus can be constructed by downloading the top N (e.g., 100)

results of each of the listed concepts from a search engine. Conversely, if a list

of domain-specific concepts cannot be found but there are existing collections of

domain-specific resources, such collections can be taken directly as the corpus

while the list can be constructed by extracting key phrases [Witten et al., 1999]

or by simply listing all the noun phrases from it. Lastly, if neither of them

exists, one can manually select a small number of domain-specific concepts as a

seed list, and then collect a corpus of domain-specific webpages with the help a

search engine. One can then iteratively expand them by extracting phrases from

the corpus to expand the list and then using the expanded list to collect more

webpages for the corpus.

In any case, the amount of domain knowledge needed (i.e., knowing whether

a concept belongs to a specific domain) by our approach is significantly less
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than the amount needed by other domain-specific readability measures (i.e., to

define and assign facet values or to construct a concept ontology). Therefore, we

consider our approach to be less dependent on domain knowledge sources and

hence more domain-independent.

We describe our approach in detail in the next subsection.

4.2.1 Iterative Computation Algorithm

The first step of our method is to construct a resource-concept graph in the

style of the unrolled version of our correlation graph. This graph is bipartite,

containing two types of nodes, one representing concepts, the other representing

resources. Edges are added between a concept node and a resource node to

represent the occurrence of the former in the latter. After constructing this

graph, we start score computation by first assigning an initial readability score

to each resource node and a difficulty score to each concept node. We can then

iteratively update the readability scores for the resources based on the difficulty

scores of the associated concepts (and vice versa) until the termination condition

is met. The final scores at the resources nodes are their readability values.

The details of the graph construction and the two versions of score compu-

tation are as follows:

Graph Construction

Given a list of concepts and a collection of resources, the construction of the

graph proceeds as shown in Algorithm 4.1: We create a representing concept

node for each concept in the list (Line 2-5) and a representing resource node

for each resource in the collection (Line 6-9). We then add an edge between

a concept node and a resource node if the concept represented by the former

occurs on the resource represented by the latter (Line 10-13). This completes

the construction of graph and Figure 4.4 gives an example of a graph constructed

based on two resources and a list of concepts.
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Figure 4.4: Example of graph construction.

Algorithm 4.1 construct-graph(conceptList, corpus)

1: create graph G
2: for each concept c ∈ conceptList do
3: create concept node cNode
4: cNode.c = c
5: add cNode to G.C
6: for each resource r ∈ corpus do
7: create resource node rNode
8: rNode.r = r
9: add rNode to G.R

10: for each resource node rNode ∈ G.C do
11: for each concept node cNode ∈ G.C do
12: if occur(cNode.c, rNode.r) then
13: add edge (rNode,cNode) to G.E
14: return G

Score Computation

After graph construction, score computation can begin. Both heuristic and prob-

abilistic versions of this stage follow the same general flow and can be sub-divided

into three steps: initialization, iteration and termination. In the initialization

step, we assign an initial score to each resource node, representing its readability,

and to each concept node, representing its difficulty. Then we move on to the

iterative computation step in which the new score of each node is computed. At

the end of each iteration, we check whether the termination condition is met. If

so, the scores of the nodes will be updated a final time as the new scores and the
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computation terminates; otherwise, the update is followed by more iterations

until the termination condition is finally met. Upon termination, the scores the

resource nodes are the computed readability values.

The details of heuristic and probabilistic score computations are as follows:

Heuristic Score Computation

The pseudocode for the initialization step of heuristic score computation is

shown in Algorithm 4.2.

Algorithm 4.2 heuristic-initialize(G)

1: for each resource node rNode in G.R do
2: rNode.score = FKRE(rNode.r)
3: for each concept node cNode in G do
4: cNode.score = 0
5: for each resource node rNode in adj(rNode) do
6: cNode.score+ = rNode.score
7: cNode.score/ = size(adj(rNode))
8: normalize(G.R)
9: normalize(G.C)

We initialize the scores of the resource nodes using the FKRE formula (as

shown below) since it is one of the classic, widely-used heuristic readability

formula as described in Section 4.1.1.

scorerNode = FKRE(r) = 206.835− 1.015 ∗ avgSLr − 84.6 ∗ avgWLr (4.1)

where avgSLr and avgWLr stand for the average sentence length in words and

the average word length in syllables of the resource r respectively [Flesch, 1948].

For a concept node, we initialize its score as the average readability of all the

resources containing the concept (Line 3-7) as shown in the following equation.

scorecNode =

∑
rNode∈adjcNode

scorerNode

|adjcNode|
, (4.2)

where adjcNode stands for the collection of nodes adjacent to cNode.

We then proceed to the iterative computation step (Algorithm 4.3), in which

the new score of each node is computed as the average of the scores of the
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Algorithm 4.3 heuristic-iterate(G)

1: for each node n in G do
2: n.newScore = 0
3: for each node aNode in adj(n) do
4: n.newScore+ = aNode.score
5: n.newScore = n.newScore/size(adj(n)) + n.score
6: normalize(G.R)
7: normalize(G.C)

neighboring nodes plus its current score:

newScoren =

∑
aNode∈adjn scoreaNode

|adjn|
+ scoren, (4.3)

where adj(n) stands for the collection of nodes adjacent to the node n.

(Note: The scores are normalized after initialization and each of the iterative

computation step.)

Lastly, the termination check (Algorithm 4.4) is done by computing the

change in the ranks of the resource nodes based on their scores to see if it

stabilizes (i.e., smaller than the selected threshold). We take the square root of

the residual sum of squares (RSS) divided by the number of nodes as a measure

of change. Specifically, this change is computed using the following formula:

change =

√
(
∑

rNode∈R(newRankrNode − rankrNode)2)

|R|
(4.4)

where R stands for the collection of resource nodes in the graph.

Algorithm 4.4 terminate(G)

1: change = 0
2: RSS = 0
3: for each resource node rNode in G do
4: rNode.newRank = rank(rNode.newScore)
5: rNode.rank = rank(rNode.score)
6: RSS = RSS + (rNode.newRank − rNode.rank)2

7: change = (RSS/size(G.R))1/2

8: return (change < THRESHOLD)

An example of this heuristic score computation (normalization omitted for

clarity’s sake) can be found in Figure 4.5.

The convergence of heuristic score computation can be established in a way

similar to the proof of convergence for the HITS algorithm. For this purpose,
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Figure 4.5: Example of heuristic score computation. Normalization is omitted
for clarity’s sake.

we introduce the following alternative notations from linear algebra to describe

the computation process.

First, we index the resources with the integers in [1...|R|] where |R| is the

total number of resources. Then we represent the readability scores of all the re-

sources as the column vector X = {score(rNode1), ..., score(rNode|R|)}T where

score(rNodei) is the readability score for the resource node rNodei correspond-

ing to resource i. Since this vector changes over iterations, we use X0 to denote

the state of this vector after initialization and Xk for the state after iteration k.

Similarly, we index the concepts with the integers in [1...|C|] where |C| is

the total number of concepts. Then we represent the difficulty scores of all

concepts as the column vector Y = {score(cNode1), ..., score(cNode|C|)}T where

score(cNodei) is the difficulty score for the concept node cNodei corresponding

to concept i. We also use Y0 to denote the state of this vector after initialization

and Yk for the state after iteration k.

Second, we encode the adjacency information from the perspective of the

resources as a |R| × |C| matrix Ar. The entry aij in this matrix is: 1
|adj(rNodei)| ,

where |adj(rNodei)| stands for the number of nodes adjacent to the resource

node rNodei corresponding to resource i, if the concept node corresponding to

concept j is adjacent to rNodei, or 0 otherwise.
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Similarly, we encode the adjacency information from the perspective of the

concepts as a |C| × |R| matrix Ac. The entry aij in this matrix is 1
|adj(cNodei)| ,

where |adj(cNodei)| stands for the number of nodes adjacent to the concept

node cNodei corresponding to concept i, if the resource node corresponding to

resource j is adjacent to cNodei, or 0 otherwise.

For example, the adjacency information in Figure 4.5 can be encoded in the

following two matrices if the readability nodes correspond to resource 1, 2, 3 and

4 and the difficulty nodes correspond to 1, 2, and 3, both from left to right.

Ar =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0

1
2

1
2 0

0 1
2

1
2

0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.5)

Ac =

∣∣∣∣∣∣∣∣∣∣
1
2

1
2 0 0

0 1
2

1
2 0

0 0 1
2

1
2

∣∣∣∣∣∣∣∣∣∣
(4.6)

With the above notations, the initialization of readability scores and difficulty

scores can be expressed as Equation 4.7 and 4.8.

X0 = {FKRE(r1), ..., FKRE(r|R|)}T (4.7)

where FKRE(ri) is the FKRE score for resource i.

Y0 = AcX0 (4.8)

As shown in Equation 4.7, X0 is simply a vector containing the FKRE scores

of the resources. As for Y0, it is computed as Ac multiplied by X0 so that its

position i contains the dot product of row i in Ac and X0. Since row i in Ac

contains 1
|adj(cNodei)| at the positions corresponding to the resource nodes which

are adjacent to cNodei and 0 otherwise, the result is the sum of the readability

scores of the adjacent resource nodes multiplied by 1
|adj(cNodei)| , which is the

average readability scores of these nodes as described in Equation 4.2.
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Similarly, the iterative computation step can be expressed as follows:

Xk = ArYk−1 +Xk−1 (4.9)

Yk = AcXk−1 + Yk−1 (4.10)

As can be observed from these two equations, in the iterative computation

process, we are left-multiplying Xk−1 with Ac to get Yk, which is then left-

multiplied with Ar to get Xk+1. In other words, we effectively left-multiply Xk−1

with ArAc to get Xk+1. When such multiplication is performed repeatedly as k

approaches infinity, this is equivalent to the power iteration method [Wikipedia,

2012b] which states that the vector Xk converges to the dominant eigenvector

of the matrix ArAc. Therefore, the readability scores converge.

Probabilistic Score Computation

Although the heuristic score computation algorithm we have just introduced

serves as a simple yet effective way to perform the score computation, its main

caveat is that the scores are represented by single values. As a result, it lacks

the expressiveness required to model the case where the difficulty of a domain-

specific concept is a wide spectrum. For example, simple geometry can be taught

to primary school students through geometric shapes, while more challenging

aspects of geometry, such as differential geometry, are studied by university stu-

dents and math experts. Single values, as used in heuristic score computation,

would not be able to provide an accurate representation of these difficulty spec-

trums. Furthermore, the use of single values also loses some flexibility in choosing

suitable computational mechanisms. Many sophisticated computational mecha-

nisms, such as Bayesian-style treatments, Expectation Maximization and Belief

Propagation, fit naturally into the iterative computation paradigm. However,

since they are all probabilistic in nature. it is not possible to incorporate them

into heuristic score computation.

To overcome these limitations, in probabilistic score computation, we in-

troduce probability distributions to the nodes in the graph. They represent
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the probability of the domain-specific resources and concepts having particular

readability and difficulty values respectively. Correspondingly, instead of the

scores, these distributions are initialized, iteratively updated and used through

the computation process. It is only when single-valued scores are required (e.g.,

counting the number of resources at a particular readability level and ranking in

termination check) that they are converted into scores by taking expectations.

All the distributions are non-parametric because we expect the types of dis-

tributions to differ greatly depending on the types of the resources and concepts.

Under this formulation, we initialize these distributions through sampling (Al-

gorithm 4.5). For the readability distributions of domain-specific resources, we

first take MRS
(= 300) random samples of NRS

% (= 75) of the sentences in the

resources. Then we use the FKRE formula (Equation 4.1) to compute the read-

ability values of these samples, which in turn form the readability distributions

of the resources. More specifically, the probability of a domain-specific resource

at a particular readability level is calculated as follows:

Pr(rd) =
Mrd,r

MRS

(4.11)

where Mrd,r is the number of sentence samples taken from resource r with read-

ability rd and MRS
is the total number of samples.

The sampling for the difficulty distributions of domain-specific concepts is

similar: we take MCS
(= 300) samples of NCS

% (= 75) of the resources in

which the concepts appear. Then we take the average readability values of the

resources in each sample to form the difficulty distributions of the concepts. The

corresponding formula is as follows:

Pc(df) =
Mdf,c

MCS

(4.12)

where Mdf,c is the number of resource samples of concept c whose average read-

ability equals to df and MCS
is the total number of samples.

In the process of trying out different values for the number of samples and

proportion of resources sampled, we have observed that lowering sample pro-

portion (e.g., 25%) has a negative impact on the performance. In our opinion,
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this may be due to the fact that sampling too few sentences in a resource (or

too few resources for a concept) is not representative enough for the calculated

readability (or difficulty) to be reliable. In contrast, changing the number of

samples does not have much effect on the performance. Nevertheless, we have

decided not to use too small a value to allow for more varied distributions. This

is why we have chosen the values as mentioned above.

In addition, we quantize the calculated readability and difficulty to K (= 7)

levels and apply add-one smoothing on the resulting distributions to avoid the

data sparseness problem. Note that this choice of 7 as the number of levels of

quantization is meant to coincide with the number of readability levels in the

annotation of the data we have for evaluation. In practice, it can be tuned to a

suitable number which is sufficiently large such that the information loss due to

quantization is minimal and yet data sparsity is not an issue.

Algorithm 4.5 probabilistic-initialize(G)

1: K = 7
2: MRS

= 300
3: for each resource node rNode in G.R do
4: for x = 1 to MRS

do
5: sample = sampleSentence(rNode)
6: level = quantize(FKRE(sample),K)
7: rNode.distr[level] + +
8: for level = 1 to K do
9: rNode.distr[level]/ = MRS

10: rNode.distr = smooth–normalize(rNode.distr)
11: rNode.score = expectation(rNode.distr)
12: MCS

= 300
13: for each concept node cNode in G.C do
14: for x = 1 to MCS

do
15: sample = sampleNeighbour(cNode)
16: level = quantize(averageFKRE(sample),K)
17: cNode.distr[level] + +
18: for level = 1 to K do
19: cNode.distr[level]/ = MCS

20: cNode.distr = smooth–normalize(cNode.distr)
21: cNode.score = expectation(cNode.distr)

Afterwards, we employ an adapted version of the Näıve Bayes classification

to iteratively update the readability distributions of the resource nodes based on

the difficulty distributions of their neighboring concept nodes, and vice versa.

In standard Näıve Bayes classification [Manning et al., 2008], the probability
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of a document doc being in category cat is computed as:

P(cat|doc) = P(cat)
∏

1≤k≤ndoc

P(tk|cat) (4.13)

where P(cat) is the prior of the category cat and P(tk|cat) is the conditional

probability of the term tk occurring in a document of category cat.

Fitting this formula into our context, we can compute the updated probabil-

ity of a resource r being at readability level rd as:

P′
r(rd) = P(rd|r) = P(rd)

∏
c∈Cr

P(c|rd) (4.14)

where P(rd) is the prior of readability rd, Cr is the set of concepts occurring

in r, and P(c|rd) is the conditional probability of the concept c occurring in a

resource of readability rd.

The computation of readability priors is straightforward:

P(rd) =
Mrd,R

MR
(4.15)

where Mrd,R is the number of resources which are at readability level rd and MR

is the total number of resources.

However, since the conditional probability in Equation 4.14 only models the

occurrences of concepts, rather than their difficulty values, we replace it with

another conditional probability P(dfc|rd), which denotes the likelihood of a con-

cept c of difficulty df occurring in a resource of readability rd. This conditional

probability is calculated using the following formula:

P(dfc|rd) =
MRrd,Cdf

MRrd,C
(4.16)

where MRrd,Cdf
is the total count of the concepts at difficulty level df occurring

in the resources at readability level rd, and MRrd,C is the total count of all the

concepts occuring in the resources at readability level rd.

With this replacement, the computation for readability distributions becomes

dependent on the difficulty levels of the domain-specific concepts, which are in

turn determined by their difficulty distributions. The final formula for readability
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distribution computation is as follows:

P′
r(rd) = P(rd|r) = P(rd)

∏
c∈Cr

P(dfc|rd) (4.17)

where P(rd) is the prior of readability rd as defined in Equation 4.15, Cr is the

set of concepts occurring in r, and P(dfc|rd) is the conditional probability of a

concept c of difficulty df occurring in a resource of readability rd as defined in

Equation 4.16.

The computation of difficulty distributions closely mirrors its counterpart:

We first calculate the difficulty priors and the conditional probability of a

resource r of readability rd containing a concept of difficulty df as shown below:

P(df) =
Mdf,C

MC
(4.18)

where Mdf,C is the number of concepts which are at difficulty level df and MC

is the total number of concepts.

P(rdr|df) =
MCdf ,Rrd

MCdf ,R
(4.19)

where MCdf ,Rrd
is the total count of the resources at readability level rd contain-

ing the concepts at difficulty level df , and MCdf ,R is the total count of all the

resources containing the concepts at difficulty level df .

Then the updated difficulty distributions are computed as follows:

P′
c(df) = P(df)

∏
r∈Rc

P(rdr|df) (4.20)

where P(df) is the prior of difficulty df as defined in Equation 4.18, Rc is the

set of resources containing c, and P(rdr|df) is the conditional probability of a

resource r of readability rd containing a concept of difficulty df as defined in

Equation 4.19.

Similar to Equation 4.20, we also change the conditional probability to P(rdr|df)

so that the computation for difficulty distributions becomes dependent on the

readability distributions of domain-specific resources. The pseudocode for this

iterative computation step can be found in Algorithm 4.6.
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As for the termination condition check, we reuse the one from heuristic score

computation (Algorithm 4.4) since the change in ranking can still be computed

based on the scores of the domain-specific resources.

A proof for the convergence of probabilistic score computation is challenging

because Näıve Bayes classification does not lend itself to a closed-form analysis

(e.g., cannot be naturally described using linear algebra). Nevertheless, we be-

lieve it also converges due to the way the counting is done in the calculations

of priors and conditional probabilities. A sketch of our reasoning is as follows.

As mentioned earlier, we take the expectations of the distributions whenever

single-valued scores are required to be derived from the distributions. For exam-

ple, in the calculation of readability priors, the readability levels of the resources

are counted based on the expectations of their readability distributions (e.g., a

resource is counted as of readability level 4 if the expectation of its readability

distribution is close to 4). In this way, we influence the computation by injecting

the information that these expectations are considered to be “good” estimates

of the readability values. As a result, in the updated readability distributions,

the probabilities of the resources being at the corresponding readability levels

are increased while others decreased. This leads to the expectations of the dis-

tributions getting closer to those levels and the resources being counted again

towards those levels. As this process repeats, the readability distributions would

eventually be updated to a point where they capture such information well and

are no longer affected by it. At this point, the readability distributions converge

and so do the readability scores of the resources.

We have just described our iterative computation algorithm for readability

measurement given a list of concepts and a collection of resources. In the case

where new resources and concepts are added after the iterative computation is

completed for the existing resource collection and concept list, we can update the

graph structure accordingly, initialize the scores of the newly added nodes based

on their adjacent nodes, and then carry out further iterative computations on

the updated graph until the termination condition is (again) met. Alternatively,

we may re-run the algorithm on the enlarged resource collection and concept

list. This should provide more accurate estimation especially when the number
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of newly added resources and concepts is substantial.

There are already several well-established algorithms in web search for com-

puting quality scores for webpages such as PageRank, HITS, and SALSA. How-

ever, as far as we know, our work is the first to apply this methodology for

domain-specific readability measurement. We will relate our approach to the

existing graph-based iterative computation algorithms in Section 4.5.

4.3 Evaluation

The goal of our evaluation is to demonstrate the efficacy, robustness and domain

independence of our approach.

To accomplish this goal, we have performed three sets of experiments in two

different domains. We first evaluate our approach with a collection of math re-

sources and concepts to show its efficacy. Second, since a truly robust method

should work well without requiring much domain-specific resources and con-

cepts, we have also investigated into how many math resources and concepts our

method needs to achieve good performance. Last, we evaluate the performance

of our approach on medical documents to show its domain independence. We

discuss these evaluations in turn.

4.3.1 Experiments in Math

While our technique is minimally supervised, to properly assess the results, we

need to first compile a set of materials that have gold-standard readability an-

notations. To ensure fairness, we have sought additional annotators for our

main math corpus. The resulting construction, annotation and validation of the

ground truth have taken three man-months. We feel that this is a significant

investment and would be a data bottleneck for other comparative work. As

such, to encourage comparative work, we have made the resulting corpus and

judgments available for download1. Part of this corpus is also used in Chapter 5

to study the problem of Text-to-Construct Linking in math, and in Chapter 6

for the math search system we have built.

1http://wing.comp.nus.edu.sg/downloads/mwc
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Table 4.1: Math concepts used in corpus collection.

Type Concepts

Areas (12) Arithmetic, chaos theory, differential geometry,
discrete mathematics, geometry, linear algebra,
modular arithmetic, number theory, numerical
analysis, non-parametric statistics, set theory,
trigonometry.

Operations (3) Fourier transform, matrix diagonalization,
Monte Carlo method.

Theorems (4) Bayes’ theorem, De Morgan’s law, Pythagorean
theorem, ring isomorphism theorem.

Objects (8) Absolute value, bipartite graph, complex num-
ber, Dirichlet integral, fraction, function, non-
stationary time series, polynomial.

Our corpus of math resources is extended from our earlier work [Zhao et al.,

2008]. In total, we have chosen 27 common math concepts from MathWorld, cov-

ering different types of math concepts, such as areas (e.g., geometry and number

theory), operations (e.g., Fourier transform), theorems (e.g., Pythagorean theo-

rem) and objects (e.g., complex number), as listed in Table 4.1. We chose them

specifically to reflect the diversity of concepts in math and ensure the webpages

collected cover a wide spectrum of readability.

For each chosen math concept, we performed a Google web search2 and in-

corporated the math webpages from the first 100 results into our corpus. The

resulting corpus contains 2,381 webpages in total. To obtain the ground truth

readability judgments for evaluation, we asked 30 undergraduate students to

annotate the readability level for 120 randomly chosen, manually segmented

webpages from our corpus. Other dimensions of the webpages were also anno-

tated, but the discussion of these dimensions is out of the scope of this thesis,

and hence they are not mentioned further. The details of the readability levels

used can be found in Table 4.2.

Subjects were first shown an annotation guide explaining how to use our

annotation system and what the readability levels are. After reading the guide,

the subjects annotated each webpage by reading it and selecting an appropriate

readability level for it as shown in Figure 4.6. Each subject was asked to annotate

20 webpages in 45 minutes and was given a token remuneration as as appreciation

2On 21st Nov, 2008.
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Table 4.2: Readability levels for webpages.

Value Corresponding Education Background

1 Primary
2 Lower Secondary
3 Higher Secondary
4 Junior College (Basic)
5 Junior College (Advanced)
6 University (Basic)
7 University (Advanced)

for the effort. On average, each webpage was annotated by 5 to 8 subjects. We

took the average annotated values to establish the ground truth of readability.

Figure 4.6: Webpage annotation interface: Subjects select a readability level for
a webpage from the drop-down menu at the annotation panel.

Before the experiment, we needed to determine whether manual readabil-

ity annotation is indeed a feasible and reproducible task. To do so, we as-

sessed inter-annotator reliability by computing the pairwise inter-judge agree-

ment using Cohen’s Kappa coefficient [Cohen, 1960]. Cohen’s Kappa measures

the agreement between two annotators, accounting for chance agreement. Its

values range from 1.0 (complete correlation/agreement) to -1.0 (complete dis-

agreement/negative correlation). A zero value indicates no correlation. The av-

erage pairwise inter-judge agreement is 0.72, indicating substantial agreement.

We also applied Fleiss’ Kappa [Fleiss, 1971], a multi-rater agreement measure,
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to calculate the agreement among all the subjects. The result is similar (0.73).

Since the measured agreement is substantial but not strong (not above 0.80),

we manually examined the annotations to discover which levels were being con-

fused. We observed that although the subjects were able to determine what is

readable and what not, the exact values annotated might still differ slightly be-

tween subjects. This is shown by the fact that 67% of the disagreed readability

annotations have a standard deviation of less than 0.5. To eliminate these small

perturbations, we applied Spearman’s rho [Spearman, 1987], which converts the

values to rank order. The measured correlation is 0.93 (again, read on a −1.0 to

+1.0 scale). This indicates a strong correlation for rank order and confirms our

hypothesis that the general order of readability can be reliably distinguished.

After obtaining the gold-standard readability annotations, we proceed to

evaluate our approach by pairwise judgement accuracy. For each pair of web-

pages in the collection, we examine their readability scores from the subjects and

those from our system. A pairwise judgement is said to be correct if both scores

agree on whether one is more (or less) readable than the other. This metric is

chosen instead of precision, recall and F1-measure because it is more important

to be able to determine the relative order between pairs of documents rather

than assigning exact labels for ordinal facets like readability.

Not all the pairs of annotated readability values are used for the evalua-

tion. We ignored those whose difference is smaller than a threshold (0.5) – we

considered such pairs indistinguishable even by our subjects and hence not suit-

able to be included into evaluation. In total, there are 5,165 qualified pairwise

judgements for the annotated webpages.

Besides pairwise judgement accuracy, we also use Spearman’s rho to evaluate

how close the overall ranking produced by an approach is to the one established

by the ground truth.

General Evaluation

We run our system with the 2,381 webpages in our corpus and a list3 of 5,861

math concepts compiled from MathWorld. We present the results of our itera-

3Also used in Chapter 5 in our experiments on Text-to-Construct Linking.
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Table 4.3: Evaluation results on math webpages.

Pairwise Spearman

FKRE .72 .48
NB .72 .52
SVM .80 .70
MaxEnt .82 .67
HIC .87 .75
PIC .85 .73

tive computation algorithm with heuristic and probabilistic score computations

(denoted as HIC and PIC respectively) as well as four baselines in Table 4.3.

The four baselines include one standard heuristic measure (FKRE) and three

supervised learning approaches: NB4, SVM5 and MaxEnt6. The classifiers are

trained on the annotated webpages using only binary features indicating whether

a particular math concept appears on the webpage. We intentionally limit these

baseline classifiers to use the same inputs as our system, as we are only inter-

ested in how well they could make use of the concepts to perform readability

measurement. We also tried adding discretized versions of average word length,

average sentence length and FKRE score into the baselines’ feature sets, but this

did not manage to improve their performance. For all the supervised learning

approaches, we perform 5-fold cross validation to avoid overfitting.

As can be seen from Table 4.3, FKRE shows a modest amount of correlation

(0.72/0.48) on pairwise judgment accuracy and Spearman’s rho respectively).

This is similar to the results achieved by NB (0.72/0.52). In contrast, the two

other baselines, SVM and MaxEnt, perform much better, scoring 0.80/0.70 and

0.82/0.67 on the two metrics. However, our approach still outperforms all the

baselines: 0.87/0.75 for HIC and 0.85/0.73 for PIC.

Furthermore, although the two versions of score computation do not differ

much in terms of performance, PIC improves over its heuristic counterpart by re-

ducing the number of iterations required for convergence: The former takes only

7 iterations to terminate on average, while the latter takes 18. A close inspec-

tion on how the performance changes as the computation proceeds (Figure 4.7)

reveals that the measured pairwise judgment accuracy and Spearman’s rho after

4http://www.cs.waikato.ac.nz/ml/weka/
5http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
6http://maxent.sourceforge.net/
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Figure 4.7: Performance of HIC and PIC in the first five iterations.

the initialization step do not differ in both versions; however, PIC achieves much

better performance (+.08/+.16) right after the first iteration and quickly moves

to convergence. This indicates that the improvement in convergence speed is

due to the incorporation of Näıve Bayes classification, a stronger computational

mechanism than simple heuristics, into the score computation process. While

not directly contributing to the performance, the probabilistic formulation it-

self, without which the incorporation would not be possible, also deserves some

credits on this.

We believe these results strongly validate the efficacy of our method.

Evaluation with Selection Strategies

This second set of experiments is to verify the robustness of our approach. For

this purpose, we run our algorithm on subsets of webpages and concepts selected

by four different selection strategies: 1) selecting N webpages at random, 2)

selecting the top N webpages with the highest quality, as indicated by their ranks

in the search results from which they were collected, 3) selecting N concepts at

random, and 4) selecting the top N concepts with the greatest importance, as

indicated by their total TF.IDF (i.e., the sum of the TF.IDFs of a concept in all

webpages). The N mentioned in the selection strategies is set to five different

levels: 20%, 40%, 60%, 80% and 100%. The resulting performance of HIC and

PIC with these strategies is shown in Figure 4.8 to 4.11. For the experiments
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involving random selection, the average performance of five runs is shown.

Figure 4.8: Effects of webpage selection strategies on HIC.

Figure 4.9: Effects of webpage selection strategies on PIC.

Both heuristic and probabilistic score computations exhibit a similar nature

when coupled with the selection strategies. Two points are consistent and note-

worthy from the results: First, selecting more webpages only improves the per-

formance of our system slightly. Moreover, webpage selection by quality yields

no better results than random selection. In other words, our method can work

with a small set of webpages without any specific selection strategy7.

Second, when concepts are selected at random, increasing the number of con-

cepts also helps to improve the performance slightly. However, if the concepts

are chosen by importance, using fewer concepts, in fact, further boosts the per-

formance of our system. This indicates that the concepts with low TF.IDF do

7The results and conclusions presented here differ from our earlier publication [Zhao and
Kan, 2010] due to further optimization of our system.

98



CHAPTER 4. RESOURCE CATEGORIZATION ON ORDINAL FACETS –
A CASE STUDY IN READABILITY MEASUREMENT

Figure 4.10: Effects of concept selection strategies on HIC.

Figure 4.11: Effects of concept selection strategies on PIC.

99



CHAPTER 4. RESOURCE CATEGORIZATION ON ORDINAL FACETS –
A CASE STUDY IN READABILITY MEASUREMENT

Table 4.4: Evaluation results on math webpages with selection strategies.

Pairwise Spearman

HIC .87 .75
PIC .85 .73
HICS .89 .80
PICS .88 .78

not contribute positively to the performance and should be removed from the

graph using this selection strategy. Therefore, we have also incorporated the

concept selection by TF.IDF into our system and denoted this improved version

as HICS (HIC with Selection) and PICS (PIC with Selection). The resulting

performance is further improved to 0.89/0.80 for HIC and 0.88/0.78 for PIC, as

shown in Table 4.4.

In short, this experiment shows that our approach is robust enough to work

with a small set of domain-specific resources and concepts to achieve good per-

formance with simple, automatic selection strategies.

4.3.2 Experiment in Medical Domain

To verify the domain independence of our approach, we repeat our first ex-

periment in the medical domain following the same general methodology. We

first selected 27 medical concepts of different difficulty levels and types from

MeSH, such as diseases (e.g., diabetes), injuries (e.g., bruise), substances (e.g.,

vitamin), symptoms (e.g., snoring), therapies (e.g., blood transfusion) and pro-

cedures (e.g., bronchoscopy), as listed in Table 4.5. For each of these concepts,

we then downloaded the top 100 search results8 and consolidated the webpages

(2,642 in total) for our medical corpus. A subset of the corpus (946 pages) was

annotated using the same set of readability levels.

General Evaluation

We run our system with the 2,642 medical webpages in our corpus and a list of

22,792 medical concepts compiled from MeSH. The results are listed in Table 4.6.

In this experiment, there are 320,976 pairwise judgments.

8On 22nd Oct, 2009.
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Table 4.5: Medical concepts used in corpus collection.

Type Concepts

Diseases (13) Allergy, cancer, chronic fatigue syndrome,
dengue fever, dermatomyositis, diabetes,
erysipelas, farsightedness, hepatitis, HIV,
leukemia, osteoporosis, thrombocytopenia

Injuries (2) Bruise, pressure ulcer.

Substances (2) Aflatoxin, vitamin.

Symptoms (6) Cough, diarrhea, headache, lordosis, overweight,
snoring,

Therapies (2) Blood transfusion, foraminotomy.

Procedures (2) Bronchoscopy, magnetic resonance angiography

Table 4.6: Evaluation results on medical webpages.

Pairwise Spearman

Heuristic .63 .28
NB .73 .53
SVM .82 .70
MaxEnt .76 .60
HIC .74 .53
PIC .75 .55
HICS .75 .53
PICS .76 .57

The performance of our approach for the medical domain is modest in com-

parison to the math domain. On one hand, our system still performs much better

than the heuristic measure: For HIC, pairwise judgement accuracy and Spear-

man’s rho improve from 0.63/0.28 to 0.74/0.53 (0.75/0.53 after concept selection)

respectively. PIC also achieves similar improvement: 0.75/0.55 (0.76/0.57 after

concept selection). On the other hand, when compared to the supervised clas-

sifiers, our approach performs about the same as NB and MaxEnt but does not

manage to outperform SVM. Nevertheless, considering the fact that our approach

does not have access to the large amount (∼1000) of readability annotations as

the supervised classifiers do, we consider it as performing reasonably well and

believe this test does validate its domain independence.

4.4 Future Work

While we are satisfied with our approach, a detailed analysis on the experiment

results has revealed several potential areas for improvement:
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First, with the adapted version of Näıve Bayes classification as the computa-

tional mechanism, the difficulty distributions in probabilistic score computation

quickly converge to single difficulty levels. This convergence contradicts one of

the motivations for introducing the probabilistic formulation, which is to han-

dle the situation where the difficulty level of a concept varies greatly depending

on context. One possible solution to this problem is to split the concept nodes

based on the types of context as indicated by the associated resources. In this

way, each of the resulting nodes (with the corresponding subset of resources)

represents the concept in a particular type of context and their difficulty levels

can be readily represented by single values.

Second, as we did not preprocess the webpages to identify their main con-

tents, concepts that are presented as auxiliary information, such as navigation

links and advertisements, have added substantial noise to the graph construction

process. For example, the math concept “number theory” happens to appear

at the navigation panel of MathWorld. Consequently, all the 39 MathWorld

pages in our corpus, which make up about 10% of the pages containing the math

concept, are included into the difficulty computation for this concept. Similarly,

in the medical corpus, there is a webpage about snoring whose main content is

written for less than 20 medical concepts. However, it lists more than 100 medi-

cal concepts in its navigation bar. As a result, many unrelated medical concepts

have been added to the readability computation for this webpage. In both cases,

the accuracy of our approach is adversely affected. We believe that further pre-

processing to exclude certain sections of the webpages would significantly reduce

the number of errors.

Lastly, another factor that compromises our system is the relatively limited

spectrum of readability levels in the medical corpus, in comparison to math.

Although we have intentionally chosen concepts of different difficulty levels and

types, none of the retrieved webpages are targeted at primary school students.

This is rather different from the math scenario, where we can easily find highly

readable webpages full of games and animations that explain easy math concepts

to younger audiences. Without such webpages, our algorithm is limited in its

ability to discern and boost basic readability scores. This suggests that the

102



CHAPTER 4. RESOURCE CATEGORIZATION ON ORDINAL FACETS –
A CASE STUDY IN READABILITY MEASUREMENT

effectiveness of our algorithm in a particular domain is positively correlated to

the width of the readability spectrum.

4.5 Related Graph-based Iterative Computation Al-

gorithms

Our approach is inspired by other successful iterative graph algorithms which

have made their impact in digital libraries. We relate and contrast our approach

to three of them: PageRank, HITS and SALSA.

PageRank is a link analysis algorithm based on the intuition that the number

of backlinks is a good indication of popularity or importance. It works on a graph

which contains nodes representing webpages (or publications) and directed edges

representing the hyperlinks (or citations) from one node to another. The score of

a node is computed as the probability of visiting this node by following the edges

randomly. This algorithm has been very successful and widely used in areas such

as web search and citation analysis. However, in our problem, there are two types

of objects: resources and concepts, with edges representing occurrences. As such,

a node with more links means it is a resource that exhibits a larger number of

different concepts or a concept that has a higher domain frequency. Due to

the fact that the readability of a resource depends on the number of “difficult”

concepts instead of the number of different concepts, while the difficulty of a

concept tends to be inversely correlated with its domain frequency, we believe a

direct application of PageRank would not work for our problem.

HITS is more similar to our algorithm than PageRank in the sense that it also

keeps track of two separate hub and authority scores and uses them to compute

each other iteratively. The main difference between HITS and our approach is

that we consider two types of objects and attach the two readability and difficulty

scores separately. In addition, HITS constructs the graph online using a subset

of the documents from the corpus retrieved by a query, whereas our algorithm

constructs the graph offline with all the documents in the collection.

SALSA combines the strength of PageRank and HITS by incorporating the

backlink information into the hub and authority computation. However, the idea
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of using backlinks as an indication of readability or difficulty does not have a

good parallel in our application.

4.6 Discussion

The ordinal facets of domain-specific resources are different from their nominal

counterparts in the sense that their values are meant to establish an ordering.

As such, it is harder to define a set of facet values to be assigned to the resources

or used as labels for categorization as is done for nominal facets. Moreover, the

fact that the constraints placed on these facet values are often relative makes

categorization a less natural solution compared to other approaches, such as

heuristic-based measurement and ranking.

As a common example of ordinal facets, readability is no exception to these

properties. Furthermore, it is also one of the highly domain-specific ordinal

facets due to its correlation with domain-specific concepts. Therefore, we choose

it as the subject of investigation in our research.

Following our correlation graph, we associate resource readability with con-

cept difficulty and exploit the correlation between them using an iterative compu-

tation algorithm. As shown in our evaluation, this algorithm is effective, robust

and domain-independent.

Although initially developed for readability, we believe our approach also

works for other ordinal facets of domain-specific resources as long as some mod-

erately correlated ordinal facets can be identified for them. For example, we can

measure the specificity of a resource by checking the genericity of the concepts it

is written for. The intuition behind is that the more generic concepts a resource

is written for, the less likely it would be specific enough to cover every aspect

of them. On the other hand, the more often a concept is described in many

highly specific resources, the less likely this concept is a generic one since most

of it can be well explained within a single resource. As another example, we can

exploit the correlation between the trustworthiness of domain-specific resources

and the prestige of its sponsors. The intuition for this case is that a domain-

specific resource is trustworthy if it is from a prestigious source or cites many
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prestigious sources, while a source is prestigious if it produces many trustworthy

domain-specific resources or is cited by many of them.

In the case where only weakly-correlated ordinal facets and/or correlated

nominal facets exist for a targeted facet, our recommendation is to treat it as

a nominal facet and apply supervised learning so that all the correlated facets

can be taken into consideration. Nevertheless, our method can still be applied

to facilitate the computation of the correlated facets to indirectly improve the

measurement of the targeted facet. For example, [Wetzler et al., 2009] have

shown that “appropriateness for age range” and “has prestigious sponsors” are

two of the seven effective indicators for the quality of educational resources.

Although not directly applicable to the quality facet itself, our approach can

still be employed to estimate the readability of the resources and the prestige of

the sponsors to provide information for the computation of the two indicators.

To sum up, we have explored Resource Categorization on nominal and or-

dinal facets in the previous and this chapter respectively. Due to the extent of

this problem, we use two case studies, key information extraction and readability

measurement, to illustrate how our correlation graph can guide the categoriza-

tion process. We have also demonstrated how our approaches can be applied to

improve the categorization performance and yet remain domain-independent.
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Algorithm 4.6 probabilistic-iterate(G)

1: K = 7
2: for rd = 1 to K do
3: rdPriors[rd] = 0
4: for each resource node rNode in G.R do
5: rd = expectation(rNode.distr)
6: rdPriors[rd] + +
7: rdPriors = smooth–normalize(rdPriors)
8: for rd = 1 to K do
9: for df = 1 to K do

10: dfGivenRd[rd][df ] = 0
11: for each concept node cNode in G.C do
12: df = expectation(cNode.distr)
13: for each resource node rNode in adj(cNode) do
14: rd = expectation(rNode.distr)
15: dfGivenRd[rd][df ] + +
16: for rd = 1 to K do
17: dfGivenRd[rd] = smooth–normalize(dfGivenRd[rd])
18: for each resource node rNode in G.R do
19: for rd = 1 to K do
20: rNode.newDistr[rd] = rdPriors[rd]
21: for each concept node cNode in adj(rNode) do
22: df = expectation(cNode.distr)
23: rNode.newDistr[rd]∗ = dfGivenRd[rd][df ]
24: rNode.newDistr = smooth–normalize(rNode.newDistr)
25: rNode.newScore = expectation(rNode.newDistr)
26: for df = 1 to K do
27: dfPriors[df ] = 0
28: for each concept node cNode in G.C do
29: df = expectation(cNode.distr)
30: dfPriors[df ] + +
31: dfPriors = smooth–normalize(dfPriors)
32: for df = 1 to K do
33: for rd = 1 to K do
34: rdGivenDf [df ][rd] = 0
35: for each resource node rNode in G.R do
36: rd = expectation(rNode.distr)
37: for each concept node cNode in adj(rNode) do
38: df = expectation(cNode.distr)
39: rdGivenDf [df ][rd] + +
40: for df = 1 to K do
41: rdGivenDf [df ] = smooth–normalize(rdGivenDf [df ])
42: for each concept node cNode in G.C do
43: for df = 1 to K do
44: cNode.newDistr[df ] = dfPriors[df ]
45: for each resource node rNode in adj(cNode) do
46: rd = expectation(rNode.distr)
47: cNode.newDistr[df ]∗ = rdGivenDf [df ][rd]
48: cNode.newDistr = smooth–normalize(cNode.newDistr)
49: cNode.newScore = expectation(cNode.newDistr)
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Chapter 5
Text-to-Construct Linking

Plain prose text often falls short as a medium of communication in domain-

specific resources due to the complexity of the information to be encoded. For in-

stance, the definition of a quadratic equation in text is “an expression of the sec-

ond degree constructed from variables and constants, using only the operations

of addition, subtraction, multiplication, and non-negative integer exponents”.

This is considerably longer than its math expression counterpart ax2 + bx + c.

Similarly, the spatial structure of a chemical compound can be effectively sum-

marized as a structural formula instead of paragraphs of texts. As mentioned

in Chapter 2, in our research, we refer to such symbolic representations, which

encode domain knowledge through a domain-specific way other than natural

language, as domain-specific constructs. In practice, they are widely used in

domain-specific resources as a more efficient way to convey information.

Despite their superiority in conciseness, domain-specific constructs are hard

to deal with in domain-specific IR because they are both structurally and seman-

tically more complex than text. Syntactically, domain-specific constructs take on

both textual and graphical forms. For example, in chemistry, chemical formula

encode the type and number of the constituent element in a compound through

chemical symbols and numeric subscripts (e.g., C6H12O6), while structural for-

mula represent the spatial arrangement of atoms and bonds by specifying the

layout of the atoms and how they are connected to each other. Semantically, the

meaning of a symbol may differ greatly depending on the context. For example,

variables in math may be used to refer to any math concept – numbers, points,

angles and even whole propositions. Without proper annotation, sufficient do-
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main knowledge and a suitable internal representation, such information may be

lost during indexing. Consequently, there might not be sufficient information to

decide whether two constructs match, and thus retrieval performance may suffer.

Even if the indexing problem can be solved, domain-specific construct input is

still difficult and far less convenient. As mentioned in Section 2.1, more accessible

construct input methods, such as plain text and graphical user interfaces, are

limited in expressiveness, while more expressive methods, such as specialized

markup languages, have steep learning curves. Moreover, based on our user

study (detailed in Section 2.2), keyword search is most preferred due to its

simplicity and effectiveness.

To make the searching and relevance ranking of constructs relevant to users

while maintaining the usability of keyword search, a domain-specific search sys-

tem needs to be able to perform Text-to-Construct Linking (i.e., to resolve

domain-specific concepts to related domain-specific constructs). With this link-

ing ability, the search system may immediately return the linked constructs to

users and use them for retrieval.

Text-to-Construct Linking is partly a relation extraction problem in the sense

that we can consider a concept and a construct linked if a certain semantic

relation, such as the construct being a symbolic representation of the concept,

exists between them. Moreover, since one concept may be related to multiple

constructs, there is a need to perform construct selection to automatically decide

which constructs shall be presented to users and used in retrieval.

In our correlation graph (Figure 5.1), the relation extraction aspect of Text-

to-Construct Linking is captured by the nodes and edges in the segment layer.

The node of interest for this aspect is the relation type node for the sub-segments.

As indicated by the edge between this node and the one representing sub-segment

level observable characteristics, the type of relation exists between a concept-

construct pair can be determined based on its observable characteristics. There-

fore, our proposed approach is to apply supervised learning as a generic way

to combine various types of observable characteristics for the prediction of rela-

tion type. After extraction, we consolidate the extracted relations and perform
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Figure 5.1: Correlation graph fragment showing nodes and edges relevant to
relation type. The edge (i.e., correlation) bounded by the dashed line box is
examined in this chapter.

construct selection using a simple heuristic function in the style of TF.IDF.

We investigate the problem of Text-to-Construct Linking in the domain of

math. In this domain, the texts and constructs to be linked are math concepts,

such as absolute value and Pythagorean theorem, and math expressions, which

are combinations of numbers, math symbols and operators, such as 3
4 , a and

a2 + b2 = c2.

The motivation for using math as the target domain is two fold. Math

expressions are one of the most common types of domain-specific constructs,

and yet an efficient way of handling them has not been discovered so far. In

addition, they are frequently written inline and largely text-based. Therefore,

conventional relation extraction approaches are likely to be applicable to them

and the findings of our research would be more applicable to constructs of similar

nature (e.g., DNA sequences and molecular formula).

Although math expressions are commonly inline and textual, we believe our

approach can be extended to handle non-inline and/or graphical constructs. We

will elaborate on this towards the end of the chapter.

The rest of the chapter is organized as follows. In Section 5.1, we present our

literature review on relation extraction and describe the insights we have gained

through our corpus study. Then we formulate the problem of Text-to-Construct

Linking concretely in Section 5.2. We detail our approach in Section 5.3 and the

evaluation results in Section 5.4. Afterwards, we discuss the limitation of our

research and propose directions for future research in Section 5.5. We end with
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a discussion on Text-to-Construct Linking based on our findings in Section 5.6.

5.1 Background

This section consists of two parts. In the first part, we review existing work on

relation extraction. In the second, we detail our corpus study which helps to

formulate the problem of Text-to-Construct Linking in the domain of math.

5.1.1 Relation Extraction

Relation extraction is one branch of information extraction that identifies se-

mantic relations between extracted entities. It has been studied extensively and

applied on various types of texts, such as plain text [Agichtein and Gravano,

2000], news articles [Doddington et al., 2004], Wikipedia pages [Suchanek et al.,

2007] and research articles [Krallinger et al., 2011].

The relations of interest may be binary (i.e., relations between two entities)

or multi-way (i.e., relations among more than two entities, a.k.a, “events”). Two

recent examples are the slot-filling task in TAC ’11 [Entity Linking, 2011] which

targets 26 binary relations for persons (e.g., country of birth and member of)

and 16 for organizations (e.g., members and countries of headquarters), and the

GENIA event extraction task in BioNLP ’11 [Kim et al., 2011] which aims to

recognize 9 types of bio-molecular events (e.g., binding and localization) possibly

involving multiple proteins/entities at multiple sites.

The approaches for extracting binary relations can be broadly classified into

the following two categories:

Rule-based approaches: The rule-based approaches for binary relation ex-

traction are similar to the ones for entity extraction as mentioned in Sec-

tion 3.2, except that the patterns are defined around two entities and the

actions are to report the corresponding relations for the patterns matched.

A few examples of these approaches can be found in [Jayram et al., 2006;

Shen et al., 2007; Krishnamurthy et al., 2008]. Please refer to Section 3.2.1

for a review on the strengths, weaknesses, and issues of these approaches.

Statistical approaches: In statistical approaches, the extraction of relation
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is done by classifying whether the relation of interest exists between a

pair of entities using statistical models. There are two groups of methods

which differ in terms of how pairs of entities are modeled. The first group

of methods models each pair of entities individually as a vector of fea-

tures. The strength of this approach is that various types of features, such

as lexical features, syntactic features and semantic features [Kambhatla,

2004; GuoDong et al., 2005], can be easily cast into a unified framework

and employed to comprehensively describe the entities and the context

between/surrounding them. As shown in [Jiang and Zhai, 2007], which

systematically explore several types of features including entity attributes

(e.g. entity types), n-grams, constituency-based parse tree features (e.g.,

grammar productions) and dependency parse tree features (e.g., depen-

dency relations and paths), good performance can be readily achieved us-

ing only the basic features from each type. Nevertheless, the fact that

many statistical models assume the independence of features and these

features can only take on single values, leads to the difficulty in capturing

structured information, such as parse trees.

The second group of methods defines similarity between pairs of enti-

ties using a kernel function. With kernel-based classifiers such as SVM,

the classification of an unseen instance is done by finding out whether

the instance is more similar to the ones which are related by the given

relation than the ones which are not. In early works, the kernel func-

tions employed commonly make use of structured syntactic information,

such as constituency-based [Zelenko et al., 2002; Zhou et al., 2007] and

dependency-based [Culotta and Sorensen, 2004; Bunescu and Mooney,

2005] parse trees. Correspondingly, the similarity scores are usually com-

puted with graph algorithms, such as counting the number of common

subtrees [Zhou et al., 2007] and measuring the number of common proper-

ties on the shortest path between pairs of entities [Bunescu and Mooney,

2005]. Therefore, these methods naturally handle structured information

well. To allow more types and forms of information to be incorporated,

recent research also works on developing more complex kernel functions.
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For example, the composite kernel in [Zhang et al., 2006] combines an

entity kernel and a tree kernel through polynomial expansion, while the

context-sensitive convolution tree kernel in [Zhou et al., 2010] is specifi-

cally designed for a rich semantic relation tree structure which integrates

both syntactic and semantic information. While these complex kernels are

able to outperform the feature-based modeling methods, they require sub-

stantial efforts to engineer and it is unclear how applicable they are for

relation extraction problems of different settings or in other domains.

Similar to entity extraction, many approaches in these two categories are

supervised and their effectiveness is dependent on the availability of an annotated

corpus of suitable size. To alleviate this need and tap into the large amount of

unlabeled data from large text collections or the Web, non-supervised approaches

have also been an active area of research in relation extraction. For example,

two early rule-based systems, DIPRE [Brin, 1999] and Snowball [Agichtein and

Gravano, 2000], start with a seed collection of entity pairs for the relation to

be extracted. They then search in unlabeled text sources (e.g., the Web) for

sentences containing the entity pairs. Afterwards, they learn new rules from the

retrieved sentences and use the learned rules to extract new entity pairs from

the text sources. These entity pairs are then added to the seed collection and

the process repeats until some termination condition is met. Later systems, such

as KnowItAll [Etzioni et al., 2005] and TextRunner [Banko et al., 2007], make

use of generic patterns to extract candidate entity pairs. These candidate pairs

are then selected using domain-independent heuristics (e.g., pointwise mutual

information derived from search engine hit counts) or unsupervised classifiers

(e.g., a classifier that heuristically labels its own training data). In the end,

the selected pairs can be used to derive extraction patterns or provide statistics

for estimating whether an entity pair is a correct instance. In the case where

a relation database exists, distant supervision can be performed by harvesting

training data using the entity pairs from the database [Mintz et al., 2009].

Moving beyond binary relations, rule-based approaches are more popular be-

cause they handle multi-way relations naturally by defining patterns over multi-

ple entities and reporting that the relations of interest exist among the entities
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matched. For example, [Aone and Ramos-Santacruz, 2000] extract 61 types of

events using 50 generic event extraction patterns supported by lexico-syntactic

information. These patterns can be learnt automatically (e.g., [Piskorski et al.,

2007]). As a way to consolidate texts that contain similar events for better rule

learning and relation extraction, clustering can be applied as a preprocessing

step [Piskorski et al., 2008; Liu et al., 2008].

In contrast, in statistical approaches, multi-way relations need to be de-

composed to multiple binary relation classifications whose results need to be

combined. [McDonald et al., 2005] propose to factorize the complex relations

into a set of binary relations and train one classifier to extract all pairs of re-

lated entities. Based on the output of this classifier, a graph can be constructed

with nodes representing entities and edges representing whether the entities are

related. The original multi-way relation can then be recovered by finding the

maximum cliques in this graph. The main advantage of this method is that it

allows statistical approaches for binary relation classifications, which have been

studied extensively, to be applied onto multi-way relations.

Research of domain-specific relation extraction has been done predominantly

in the biomedical domain, for tasks such as gene-drug relation, protein-protein

interaction and bio-molecular event extraction. In general, both rule-based [Hak-

enberg et al., 2008] and statistical approaches [Riedel and McCallum, 2011; Tikk

et al., 2010] have been adopted equally, although the results in [Kim et al., 2011]

give some evidence that the latter approach leads to better performing systems.

Various domain-specific sources can be utilized in the extraction process. For

example, medical information databases (e.g., PharmGKB) can be used to per-

form distant supervision [Buyko et al., 2012] while lexica of problem-specific

trigger words (i.e., words that usually express interactions) can be used to avoid

extracting relations from irrelevant sentences [Bobic et al., 2012].

All the existing works in relation extraction focus on extracting relations

between two textual entities. As far as we know, no prior work has examined

the extraction of relations between text entities and domain-specific constructs.

Therefore, we carry out our own corpus study in math to get a better under-

standing of how concepts and constructs can be related and then formulate the
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Table 5.1: Wikipedia pages used in corpus study.

Title URL

Absolute value http://en.wikipedia.org/wiki/Absolute value

Bayes’ theorem http://en.wikipedia.org/wiki/Bayes’ theorem

Complex number http://en.wikipedia.org/wiki/Complex number

Fraction http://en.wikipedia.org/wiki/Fraction
(mathematics)

Fourier transform http://en.wikipedia.org/wiki/Fourier transform

Function http://en.wikipedia.org/wiki/Function
(mathematics)

Modular arithmetic http://en.wikipedia.org/wiki/Modular arithmetic

Polynomial http://en.wikipedia.org/wiki/Polynomial

Pythagorean theorem http://en.wikipedia.org/wiki/Pythagorean
theorem

Trigonometry http://en.wikipedia.org/wiki/Trigonometry

problem of Text-to-Construct Linking accordingly.

5.1.2 Insights from Corpus Study

We perform our corpus study on a sample of math resources from our math

corpus (as described in Section 4.3.1) from which we identify concepts and ex-

pressions as well as the possible types of relations between them.

We have randomly selected 10 Wikipedia pages from our corpus on 10 differ-

ent math concepts, such as absolute value and Fourier transform. The complete

list of the Wikipedia pages is presented in Table 5.1.

For each Wikipedia page, we identify the contained concepts and expressions

through the follwing semi-automatic process:

• First, we automatically tokenize all the text (including the alternative text

for images), assign POS tags to the tokens, and perform text chunking.

• Afterwards, for each phrase detected through the chunking process, we au-

tomatically check whether it contains a sub-phrase which appears in the

math concept list (same as the one described in Section 4.3.1). If so, this

phrase is marked as a candidate concept that can be linked to the ex-

pressions. For example, after chunking, noun phrases such as “a degree 0

polynomial” and ”ancient history” may be detected. Since “polynomial”

appears in the math concept list while neither “history” nor ”ancient his-
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Table 5.2: Semantic relations between concepts and expressions.

Name Definition Example Count

Representation The expression denotes the
math representation of the
concept.

A complex number is
a number which can be
put in the form z = a +
bi.

906
(59%)

Property The property of the expres-
sion is specified by the con-
cept.

For any real numbers
x and y, ...

294
(19%)

Argument The expression serves as
the argument of the con-
cept.

Divide 3 by 4... Sub-
stitute y with x2 + 1...

50
(3%)

Context The expression sets the
context of the concept.

The absolute value of
x...

176
(11%)

Co-reference The expression is referred
to by the concept.

...32 + 42 = 52. The
previous equation...

128
(8%)

tory” does, we mark the former as a candidate concept but not the latter.

• We then automatically mark all the non-word and non-punctuation text

tokens, as well as the LaTeX expressions in the alternative texts of the

expression images on the pages as math expressions.

• Lastly, we manually go through the pages to identify the concepts and

expressions that have been missed in the automatic marking process and

correct the errors in marking as necessary.

An example of the identified concepts and expressions on a page is as follows:

(The concepts are in Bold while the expressions are in italics.)

If we let c be the length of the hypotenuse and a and b be the lengths

of the other two sides, the theorem can be expressed as the equation:

a2 + b2 = c2.

In total, we have identified 8,121 concepts and 2,434 expressions from the

selected pages.

After the identification step, we examine how the concepts are semantically

related (i.e., linked) to the expressions, when applicable.

In our domain study of math, we have coded five distinct types of semantic

relations altogether, as summarized in Table 5.2.
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Among these five types of semantic relations, we find the representation re-

lation most important for domain-specific IR. It can be used to resolve concepts

to their representations and implement the features mentioned at the beginning

of this chapter. Therefore, the extraction of this relation is the focus of this

chapter and forms the basis of the problem of Text-to-Construct Linking.

The other relations are not directly relevant to domain-specific IR; however,

they are still useful in their own ways in other contexts. For example, they

can be useful in document understanding and expression analysis: The property

relation keeps track of the properties of the variables (e.g., whether a particular

variable is positive/negative). When these variables are used later in some other

expressions, these properties may serve as descriptions to individual variables

for the users or clues for deciding whether two variables are of the same nature

during indexing. As another example, while the argument relation is not very

common, it provides information about how one expression can be transformed

to another. By consolidating and analyzing such information, we will be able

to know whether two seemingly different expressions are equivalent (up to a

few steps of transformation) or indeed different. Such knowledge would allow

the search systems to cluster related expressions together during indexing and

improve the recall of retrieval. The context relation may seem uninformative

in isolation, but when coupled with the representation relation, can assist in

connecting related expressions. For example, in the sentence “The absolute

value of x is denoted as |x|.”, we would be able to correctly establish the fact

that |x| is related to x as a way to express its absolute value through the context

relation “The absolute value ↔ x” and the representation relation “The absolute

value ↔ |x|”. Last but not least, the main objective of the co-reference relation

is not to relate a concept to an expression or vice versa. Instead, it is meant to

introduce an expression into another part of a resource so that more relations

can be established for it. Therefore, the detection of this relation can be done

as a preprocessing step to facilitate the detection of other relations.

Aside from identifying and coding the possible semantic relation types, we

have also surveyed our dataset for two sets of statistics to characterize the nature

of the representation relation.
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Table 5.3: Multiplicity of the representation relation.

To None To One To Many

Concept 7,368 (91%) 652 (8%) 105 (1%)
Expression 1,554 (64%) 854 (35%) 27 (1%)

Table 5.4: Distance between related concepts and constructs.

Adjacent One to three
words apart

Four or more
words apart

396 (45%) 300 (34%) 189 (21%)

The first statistic collected we term multiplicity, which specifies how many

expressions are related to one concept in a sentence through the representation

relation and vice versa.

As shown in Table 5.3, most of the concepts (91%) are not related to any

constructs through the representation relation. This is expected since concepts

are often mentioned in text without their representations in expressions. In

contrast, more than one third of math expressions are related to exactly one

concept. This indicates, whenever an expression appears, there is a good chance

that the concept it represents can be found in the same sentence. Moreover,

it is possible (although unlikely) for one expression to be related to multiple

concepts. This happens when multiple names are introduced as different ways

to call the same expression.

We have also analyzed representation distance, which measures how far two

related concept and construct are apart from each other, in number of words.

As shown in Table 5.4, when a concept is related to an expression through

the representation relation, they are often (79% of the time) adjacent or within

one to three words apart. Given the close proximity of a concept and its related

expression, it is likely that distance information is useful in extracting the rep-

resentation relation. Note that we do not consider a concept and an expression

to be related by the representation relation if they are not in the same sentence.

In such cases, a text phrase would have been used to introduce the concept or

the expression into the sentence of the other. Therefore, co-reference resolution

is required to resolve the text phrase to the concept or expression it refers to

before relation extraction can be performed on the resulting pair of concept and
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expression in the same sentence.

5.2 Problem Formulation

Based on the findings from our corpus study, we formulate the problem of Text-

to-Construct Linking as follows:

Given a set of domain-specific resources (e.g., math webpages), in which

domain-specific concepts (e.g., math concepts) and constructs (e.g., expressions)

have been identified, for each identified concept, return a ranked list of constructs

which are the possible representations of this concept.

By formulating the problem in this way, we have scoped certain concerns

out of our research on Text-To-Construct Linking while including some others

as explained below:

With respect to limitations, we assume that the concepts and constructs

are already identified in the resources. Both identification tasks are in fact in-

stances of Resource Categorization on nominal facets at sub-segment level (i.e.,

classifying words/symbols based on whether they are part of a domain-specific

concept or construct). Therefore, as demonstrated in Chapter 3, these tasks can

be done through supervised learning and their correlations with categorizations

at segment-level (e.g., sentence-level) can be exploited as needed for better per-

formance. Alternatively, if a list of domain-specific concepts is available, the

concept identification task may also be done through word matching. Therefore,

we believe these tasks can be performed adequately with existing approaches

and hence they can be scoped out from this part of our research.

In addition, as mentioned at the beginning of the chapter, it is not uncommon

for a concept to have multiple representations. Some may be due the context in

which the concept is discussed (e.g., complex numbers represented in Cartesian

form or Polar form), while some others due to the level of details needed (e.g.,

a polynomial denoted as one single symbol or a sum of terms). These represen-

tations are not necessarily equally informative to users or useful in expression

retrieval. Therefore, the constructs for the same concept need to be ranked so

that the more informative/useful ones can be selected and utilized.
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5.3 Methodology

We address Text-to-Construct Linking in the domain of math in two stages:

The first stage is the concept linking stage. In this stage, we determine

whether a pair of concept and expression is related by the representation relation.

This is done by supervised learning.

The second stage is the construct ranking stage. In this stage, all the concept-

expression pairs identified in the previous stage are consolidated by concepts.

A TF.IDF-like utility score is then computed for each expression related to a

particular concept. In the end, all the expressions are ranked based on this

utility score to produce an ordered list of expressions for each concept.

An illustrated example of this process can be found in Figure 5.2.

Figure 5.2: Example of Text-to-Construct Linking in math.

5.3.1 Concept Linking

Given a collection of resources with concepts and expressions identified, we pro-

cess each of the resources in turn. For each pair of concept and expression within

the same sentence, we link them up if they are in a representation relation. This

process is summarized in Algorithm 5.1.
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Algorithm 5.1 link-concept(resources)

1: create pair list pairList
2: for each resource r ∈ resources do
3: for each sentence s ∈ r.sentences do
4: for each concept c ∈ s.concepts do
5: for each expression e ∈ s.expressions do
6: if is–linked(c,e) then
7: create pair pair
8: pair.concept = c
9: pair.expression = e

10: add pair to pairList
11: return pairList

The key component for this algorithm is the is-linked function in Line 5.

Given a concept and an expression, this function determines whether the repre-

sentation relation exists between them.

In our correlation graph, this binary decision is represented by the relation

type node at the sub-segment (i.e., concept/expression) level. As shown in

Figure 5.3, this decision can be made by exploiting the correlation between the

relation type node and its observable characteristic nodes.

Figure 5.3: Correlation exploited for Text-to-Construct Linking.

We propose to implement this function using supervised learning. Since only

the representation relation is considered, it is effectively a binary classification

problem and different sources of information (including distance information)

can be incorporated through features.

In total, four sources of information (listed in Table 5.5 as feature groups)

are considered. The first source describes the given concept and expression in

a textual, non-domain-specific manner. For the concept, we put in the stan-

dard text features, such as n-grams, head word and length. For the expression,

we also compute its n-gram features based on its symbols and put in a fea-

ture for its length. We incorporate information about how the concept and the

expression are relative to each other through a second feature group called rel-
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Table 5.5: Feature groups for concept linking.

Group Definition Examples

Concept &
Expression

Features that describe the
concept and the expression in-
dividually.

n-grams (sequences of n
words, where 1 ≤ n ≤ 3),
head word (for concept),
length.

Relative
Information

Features that describe how
the concept and the expres-
sion are relative to each other.

Distance, relative position, in-
between n-grams.

Preferential
Information

Features that describe a con-
cept (or expression) which is
closer to the expression (or
concept) being examined.

Existence, relative position,
and in-between b-grams of a
concept (or expression) which
is closer to the expression (or
concept) being examined.

Domain-specific
Knowledge

Features that describe the
concept and the expression,
as well as the constraints be-
tween them and the context
around them, in a domain-
specific manner.

Type of concept and ex-
pression, selection restriction,
domain-specific text cues, ex-
pression semantics.

ative information. Besides the distance, the relative position (i.e., whether the

concept is before or after the expression) and the n-grams of the text between

them also belong to this group. The third group, preferential information, cap-

tures whether other concepts (or expressions) are closer to the target expression

(or concept) currently being examined. This source of information is included

because a nearer (in words) concept (or expression) is likely to be preferred

given the fact that linked concept-expression pairs are usually very close to each

other. The fourth group contains features derived from domain-specific knowl-

edge, such as whether the types/meanings of the concept and expression coincide

and whether the concept-expression pair fits particular writing patterns in math

resources. These features are intended to provide more accurate representations

of the concept-expression pair, model the constraints between them and cap-

ture their contexts in a domain-specific manner. By introducing domain-specific

knowledge, we hope to assess whether it is worthwhile to utilize such features.

We evaluate this approach and perform a detailed analysis in Section 5.4.

121



CHAPTER 5. TEXT-TO-CONSTRUCT LINKING

5.3.2 Construct Ranking

Once the related concepts have been identified for each expression, we proceed to

the construct ranking stage. This stage is divided into three steps as summarized

in Algorithm 5.2.

The first step is to consolidate the expressions by related concepts. This

is done by grouping the concepts which share the same longest sub-phrase as

found in the math concept list. For example, “some polynomials” and “this

polynomial” will be grouped together since they share the same longest sub-

phrase of length 1 (“polynomial”); however, they will not be grouped with “zero

polynomial” since the latter by itself is a sub-phrase of length 2 that can be found

in the math concept list. Afterwards, all the expressions related to at least one

of the concepts in a group will be consolidated as a list of related expressions

for this group of concepts. The advantage of grouping concepts in this way is

that each concept group would be able to cover possible lexical variations of the

same math concept, while all the subtypes of this math concept will have their

own groups such that a search on the subtypes would not incorrectly retrieve

expressions related to the original math concept.

After consolidating the expressions, in the second step, we compute a utility

score for each expression exp in a particular list l based on its TF.IDF as follows:

utilityexp,l =
freq(exp,l)∑

list∈List occur(exp,list)
, (5.1)

where freq(exp,l) is the frequency of the expression exp in the list l and occur(exp,list)

is a binary function indicating whether the expression exp occurs in the list list.

The key idea for this utility score is that, if an expression frequently ap-

pears as the representation for a concept group but much less so (or never) for

other groups, then this expression should be a commonly-accepted representa-

tion unique to the concept group and hence a suitable candidate to be presented

to the user and used for further expression retrieval.

In the final step, we rank the expressions in the same list based on their

utility scores. For each concept identified in the given collection of domain-

specific resources, the ranked list of related constructs is then the one associated
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to the group which the concept belongs to.

Algorithm 5.2 rank-expression(conceptList, pairList)

1: create group list groupList
2: for each pair p ∈ pairList do
3: group = get–group(p.concept, conceptList, groupList)
4: add p.concept to group.concepts
5: add p.expression to group.expressions
6: for each group g ∈ groupList do
7: for each expression e ∈ g.expressions do
8: e.utility = utility(e, g, groupList)
9: for each group g ∈ groupList do

10: sort–by–utility(g.expressions)
11: return groupList

5.4 Evaluation

There are three main objectives for our evaluation: 1) to examine the utility

of generic approaches, 2) to assess the need for domain knowledge, and 3) to

identify the key challenges in Text-to-Construct Linking.

With these objectives in mind, for the concept linking stage, we evaluate our

approach using our annotated corpus, compare the differences in performance

due to the use of different groups of features, and perform a detailed error analysis

on the classification results. As for the construct ranking stage, we opt for a

qualitative analysis instead of a quantitative one due to the limited size of our

annotated corpus. Nevertheless, our manual inspection on the ranking results

has also yielded interesting findings in accordance with our objectives.

5.4.1 Concept Linking

We evaluate our approach for the linking function using all the concept-expression

pairs within the same sentence in our annotated corpus. We consider the concept-

expression pairs with representation relation (based on our annotation) as pos-

itive examples and the rest as negative examples. We then train and test a

CRF classifier on this set of data using 5-fold cross validation1 to obtain the pre-

liminarily results. We optimize the supervised learning approach by manually

selecting the features that contribute positively to performance (See Table 5.6

1The same for other experiments in this subsection that involve supervised learning.
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Table 5.6: Selected and rejected features for each feature group.

Group Selected Features Rejected Features

Concept &
Expression

Concept, concept. n-grams, con-
cept head, expression symbol

Concept length, expression n-
grams and expression length.

Relative
Information

Distance, relative position, n-
grams in between, words before.

Words after.

Preferential
Information

Existence, relative position of a
closer concept and the n-grams
between the expression and this
closer concept.

Existence, relative position of
a closer expression and the n-
grams between the concept and
this closer expression.

Domain-specific
Knowledge

Type of concept and expression,
domain-specific text cues, pat-
terns of concept and expression
types, selection restrictions.

Table 5.7: Evaluation results on concept linking.

P R F

Heuristics

Distance .36 .77 .49

Supervised learning (CRF)

Concept and Expression only .32 .36 .34
(up to) Relative Information .81 .80 .80
(up to) Preferential Information .82 .81 .81
All feature groups .84 .81 .82

Supervised learning (linear-kernel SVM)

All feature groups .81 .80 .80

Supervised learning (RBF-kernel SVM)

All feature groups .85 .84 .84

for the list of selected and rejected features). In addition, to examine the utility

of individual feature groups, we also introduce the feature groups one by one to

measure their impact on performance. Last but not least, since kernel functions

have been shown to be useful in achieving good performance, we have also ex-

perimented with two automatic kernel methods: linear and RBF kernel SVMs2.

The evaluation results, as measured by the standard IR metrics of precision,

recall and F1-measure on the positive class, are as shown in Table 5.7. For com-

parison, the performance of a simple heuristic-based approach, which considers

a concept and an expression to be linked if they are no more than three words

apart, is also listed.

The performance of the distance heuristic baseline garners 0.49 on F1-measure.

This is a plausible result as it only takes distance information into account. Nev-

2http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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ertheless, the low precision (0.36) and high recall (0.77) of this approach reflects

the fact that, while most linked concepts can be found within three words from

an expression, not all the concepts in this range are related to it.

In comparison, the supervised learning approaches (with all feature groups)

perform much better (≥ 0.80 on all metrics). By taking into account various

sources of information, they are able to detect the representation relation with

reasonable precision without sacrificing recall.

Among the three supervised approaches, RBF-kernel SVM slightly outper-

forms CRF (+0.01, +0.03 and +0.02 on the three metrics), which in turn slightly

outperforms linear-kernel SVM (+0.03, +0.01 and +0.02). This indicates that

a suitable kernel does have a positive effect on the extraction performance.

In terms of the contributions of individual feature groups, using only the

features from the concept & expression group results in worse performance than

distance-based heuristics. This confirms that distance information is rather im-

portant for this problem. Moreover, the selected features are mostly about the

concept and the only feature selected for expression is the symbol feature. In

other words, the structure of the expression, as represented by n-grams, do not

play a key role in determining whether it is linked to a concept.

With the inclusion of relative information, the performance of the super-

vised learning approach improves significantly, close to the performance with all

feature groups included. Among the three features selected for this group, the

distance feature contributes the most, followed by the in-between n-grams. This

is rather intuitive since the text between a concept and an expression (if any) is

usually indicative of the relation between them.

The contributions from the preferential information and domain knowledge

feature groups are minor. In the feature selection process, we have discovered

that it is useful to know whether a closer concept exists but not a closer ex-

pression. In addition, some domain knowledge features, such as the type of an

expression (e.g., number/variable), are also useful; however, it takes more time

to come up with and test these features than the ones in other feature groups

and the coverage of these features is very limited (i.e., only triggered for very

few pairs). Therefore, we find it not cost-effective to try to improve the accuracy
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through developing features based on domain knowledge.

To further understand the behavior of the learned models, we have performed

an error analysis on the linking outputs and made the following observations:

First of all, depending on the structure of the sentence, an expression may be

distant from its related concept due to the existence of additional syntactic com-

ponents. For example, in the sentence “fY (y|X = x) = L(x|y) is, as a function

of x, the likelihood function of x given Y = y”, the concept “the likeli-

hood function” should be linked to the expression “fY (y|X = x) = L(x|y)”.

However, the intervening syntactic clause “as a function of x” inflates the dis-

tance between them and creates a long-distance dependency that confuses the

classifier. Syntactic information is needed to correctly gauge the distance be-

tween them; however, parser accuracy may be compromised due to the presence

of math expressions. Therefore, domain-specific parsers are needed to obtain

reliable syntactic information for this problem.

Second, when coordinating conjunctions (e.g., “and” and “or”) are used to

relate multiple concepts to one expression or vice versa, the classifier is usually

able to link the pair whose distance is the smallest but misses the others. For

instance, in the sentence “For any real number a, the absolute value or

the modulus of a is denoted by |a|.”, the link between the concept the mod-

ulus and the expression |a| is often identifiable by the classifier but not the one

between the absolute value and |a|. To address this type of error, a prepro-

cessing step may be performed to identify these concepts/expressions and treat

those that are connected by the same coordinating conjunctions as one single

super concept/expression in the linking process. After the linking process, all

the links detected for the super concept/expression can then be assigned to all

its constituting members.

Last, another challenge for the problem is the lexical/syntactic variations of

the representation relation. In math resources, the concept can be mentioned

first before introducing the corresponding concept or vice versa. In both cases,

there are many possible wordings. To name but a few, for the first case, there

are “[Concept] is denoted as [Expression]”, “[Concept] is given by [Expression]”

and “[Concept] can be written as [Expression]”, while for the second case, there
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Table 5.8: Examples of rankings produced for groups of concepts.

Concept group Score Expression

Distance, the Euclidean
distance, the distance, the
standard Euclidean
distance

2.0
√

(x1 − x0)2 + (y1 − y0)2

1.0
√

(a1 − b1)2 + (a2 − b2)2 + · · ·+ (an − bn)2

0.25 c
0.14 b
0.12 a

Absolute value, absolute
Values, an absolute value,
the absolute value

2.0 |z|

1.0 |a| =

{
a, ifa ≥ 0

−a, ifa < 0,

0.33 r = |z| = 0
0.14 3

Conditional probability,
conditional probabilities

1.0 P (A|B)

0.5 1320
∫ 1
1/2 r

7(1− r)3 dr ≈ 0.887, P (B|A)

are “[Expression] is called [Concept]”, “[Expression] represents [Concept]”, and

“[Expression] denotes [Concept]”. As discussed in Section 3.5 for key information

extraction, we may also need to employ more sophisticated statistical models to

manage these variations.

To sum up, in our current study, supervised learning works well for the

concept linking stage. Encoding a certain degree of domain knowledge helps to

improve performance, but in this study proved to be cost-ineffective.

5.4.2 Construct Ranking

In our annotated corpus, there are 212 groups of concepts with at least one linked

expression. A few examples of such groups and their linked expressions can be

found in Table 5.8. On average, the number of unique expressions linked to each

group is 3.16. Due to this limitation in data size, our evaluation on construct

ranking is more qualitative in nature. We have examined these concept groups

and their linked expressions one by one and made the following observations on

the ranking process:

First of all, the grouping of concepts by longest matched entry in the concept

list generally works as intended. For example, the group on polynomials consists

of mostly textual variants of the concept, such as “a given polynomial”, “each

polynomial” and “such polynomials”, while special types of polynomials, such

as “zero polynomials” as listed in the concept list, are in their own groups.
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Nevertheless, we have also observed that certain specific subtypes of a common

concept, such as “Short-time Fourier transform” of “Fourier transform”, are

missing from our concept list and hence not separated into their own groups.

In our opinion, this can be addressed by merging (i.e., computing the union of)

multiple concept lists from different sources so that the coverage of the resulting

concept list is ensured.

Secondly, expression-TF.IDF is effective in demoting generic representations

(e.g., variables) of concepts to the bottom of the list while promoting more spe-

cific ones (e.g., formula) to the top. This is best observed in the concepts which

have representations in both formula and variables. For example, in the ranked

list produced for “distance”, the formula representation
√

(x1 − x0)2 + (y1 − y0)2

appears at the top followed by a few other variations, and at the bottom, the

single variable representations such as a and b. In our opinion, such generic

representations give little information about the concepts and may lead to the

retrieval of irrelevant materials since they can be used to refer to other concepts

as well. In contrast, the formula representations, which give detailed descrip-

tions of the concepts, are more informative to users and the resources containing

them are likely to be discussing about the same concepts due to their specificity.

Therefore, we believe the ranking produced by expression-TF.IDF helps to find

suitable expressions for display and expression retrieval.

Nevertheless, besides TF.IDF, other factors may also come into play in the

ranking process. For example, if users are looking for actual instances of concepts

for intuitive impressions or exact values for calculation, concrete expressions,

such as 2+3i for complex numbers or 3.14159 for the constant Pi, may be more

suitable than abstract ones, such as a + bi or π. In this case, the concreteness

of an expression matters. As another example, users with little background may

prefer simpler expression representations (e.g., triangle area as 1
2 ∗ b ∗ h), while

experts are able to understand and benefit from more complex ones (e.g., triangle

area as Heron’s formula
√

s(s− a)(s− b)(s− c)). To cater for this difference

in background, the complexity of expressions needs to be taken into account.

Therefore, in practice, there may be a need to create separate expression lists

with different ranking criteria for different scenarios.
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Lastly, as far as our research has progressed, deep domain knowledge does

not seem vital for construct ranking, although some shallow domain knowledge

may be useful. For instance, the computation of expression-TF.IDF would be

more accurate if we know how to normalize expressions written in different forms.

Similarly, the computation of expression concreteness and complexity may ben-

efit from knowing the basic types of math symbols (e.g., numbers, variables and

operators) and how they can be put together to form expressions. Nevertheless,

unlike the matching process in expression retrieval, the ranking process’ purpose

is primarily to establish a relative order, and does not need to be highly precise.

It is not mandatory to acquire much domain knowledge for this process.

5.5 Future Work

Due to manpower and time constraints, the corpus study is only done with a

small set of Wikipedia pages. Although these pages are of good quality, contain

abundant semantic relations, and provide textual forms for all the math expres-

sions, they only represent one form of domain-specific resources (encyclopedic,

targeted at intermediate to expert readers). To capture other textual variations

of the existing semantic relations and discover new ones, we need to include re-

sources of other types (e.g., research articles) or targeted at different audience

(e.g., elementary webpages). For this purpose, we can sample and analyze re-

sources from publicly accessible paper databases (e.g., ArXiv) and well-curated

educational websites (e.g., cut-the-knot.org).

In addition, as mentioned in the corpus study, other semantic relations can

improve domain-specific search systems – from backend (better indexing & re-

trieval of domain-specific constructs) to frontend (additional sources of infor-

mation for the user interface). While intentionally excluded from our current

research, the detection and utilization of these relations is certainly a promis-

ing direction for future research. As a general approach, we can find a suitable

feature set for each relation and apply supervised learning as is done for the rep-

resentation relation. For the argument and co-reference relations, we may borrow

techniques from semantic role labeling and co-reference resolution from natural
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language processing research, since the detection of such relations is essentially

the domain-specific version of these two problems. In terms of utilization, we

can replace the referring texts with constructs based on co-reference relations to

improve the detection performance or relate constructs through concepts based

on context relations. In contrast, the utilization of the property and argument

relations is less straightforward and commonly requires some degree of construct

analysis. For example, we need to be able to determine whether a construct

occurs in another, so that we can 1) take the identified properties of the for-

mer construct into consideration when analyzing or presenting the latter, or 2)

understand which part of the latter construct is affected by the transformation.

The utilization of these two relations is best studied as specialized research on

the constructs in the corresponding domain.

5.6 Discussion

The idea of Text-to-Construct Linking is to automatically identify the semantic

relations between domain-specific concepts and constructs, and make use of such

relations to facilitate domain-specific IR. Among the semantic relations identified

from our corpus study in math, we believe the representation relation (relating

a concept with its representation in constructs) is the most important since it

allows users to stick to keyword search while the search system incorporates

relevant domain-specific constructs in the retrieval process.

Using math expressions, which is an example of inline, text-based constructs,

we have shown that the representation relation can be extracted using a super-

vised learning approach and suitable expressions can then be selected automat-

ically using simple heuristics for display and expression retrieval.

Since we do not make any assumption on sentence structures or rely on deep

domain knowledge about the constructs, we believe our method for relation ex-

traction is portable to other domains as long as the constructs are written as part

of sentences. When porting our approach to other domains (or onto a different

set of math resources), we can also start with features that do not rely on domain

knowledge. After their utility have been exhausted, we can then conduct corpus
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studies to find out whether domain knowledge can taken into consideration in

a cost-effective way and design relevant features as necessary. In addition, as

a caveat of supervised learning in all forms, the cost and difficulty in obtaining

suitable annotations may limit the portability and scalability of our approach.

In our opinion, if it is still possible to obtain a small set of high quality anno-

tations, then bootstrapping with this set of annotations can be a viable option.

Otherwise, we can make use of some simple heuristics/rules to gather training

data. For example, we can consider a pair of concept and expression to be linked

if they are adjacent to each other or follow the lexical pattern “[Concept] is de-

noted as [Expression]”. This set of training data (with some manual selection if

possible) can then serve as the starting point for bootstrapping.

In the case where the constructs are not inline (e.g., stand-alone math ex-

pressions) and/or graphical (e.g., structural formula in chemistry), additional

preprocessing needs to be done to identify the mentions of the constructs in text.

The difficulty of this preprocessing step depends on whether the constructs are

referred to by labels or free text. The former case is straightforward since the

labels are unique and they usually follow some fixed style within a resource.

In contrast, the latter case is more tricky due to the possible variations of the

phrases used to make the reference. Nevertheless, once such mentions have been

identified, the referred constructs can be considered as inline (i.e., appearing at

the locations of the mentions) and treated accordingly. As an alternative, it is

also possible to treat such constructs as segments and identify other segments

(e.g., paragraphs or sentences) that are semantically related to them. This can

be done using a supervised learning approach similar to our current approach.

Afterwards, concepts can be derived from the identified segments (e.g., using

heuristic selection or topic modeling) as the ones linked to the constructs.

As for construct ranking, our current utility score is computed based on

construct-TF.IDF and hence it requires a way to decide whether two constructs

are the same such that the frequency of the constructs can be computed. This is

not a strong requirement since any domain-specific search system with construct

retrieval capabilities should have a function to compute the similarity between

two constructs. Based on this similarity function, we can then set a threshold

131



CHAPTER 5. TEXT-TO-CONSTRUCT LINKING

such that any two constructs with a similarity higher than this threshold are

considered to be the same. In this way, construct-TF.IDF can be computed and

construct ranking can be performed as described above. Therefore, we consider

our approach for construct ranking to be portable to other domains as well.

Nevertheless, in the case where the similarity between the constructs cannot

be computed, construct-specific metrics (e.g., concreteness and complexity) or

external information (e.g., quality of resources) can be used instead to produce

a construct ranking.
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Chapter 6
Integrating Domain-specific
Components into IR Applications

To demonstrate the applicability and usefulness of our research, we have

implemented two domain-specific search systems, one in the domain of math

and the other in healthcare. Both systems incorporate and extend the features

described in the previous chapters to handle domain-specific user needs. The

math system incorporates features based on Resource Categorization at resource-

level and sentence-level, as well as Text-to-Construct (i.e., Text-to-Expression)

Linking. As shown in our evaluation, this system is significantly more effective

for math search than a similar system without the aforementioned features. As

for the healthcare system, it also performs categorization at multiple levels (i.e.,

resource-level, sentence-level and word-level). While Text-to-Construct Linking

is not applicable in healthcare, this system is equipped with additional features

for better workflow integration.

The rest of this chapter is organized as follows. We detail our math sys-

tem and the evaluation we have performed on it in Section 6.1 and Section 6.2

respectively. We then move on to describe our healthcare system in Section 6.3.

6.1 Math Search System

The design of our math search system is directly motivated by our user study

with math seekers. As summarized in Section 2.2, they often turn to web searches

to fulfill their resource and information needs about math concepts, as it is quick,

convenient and able to provide a variety of resources and information. However,
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the lack of organization of results by resource type, information type and audi-

ence level often drives them to use specialized search engines. Such specialized

search engines are better equipped to handle domain-specific organization, but

less convenient and less accessible. Importantly, the fact that direct expression

search has not been well-received indicates that there is a usability gap between

the input mechanism (i.e., keyword search) and expression retrieval.

Therefore, the central idea of our search system is to improve the organization

of results using Resource Categorization at resource-level and sentence-level. We

also enable expression retrieval while retaining keyword search as the main input

mechanism. This is done by deprecating direct expression input by using Text-

to-Construct Linking to allow expression retrieval by standard keyword search.

The resulting system has the following two key features:

Feature 1: Automated categorization of resource type, information type and

readability. Our system automatically categorizes the resources into predefined

types and their component sentences into information types. It also computes

the readability of the resources and categorizes them accordingly on a discrete

5-point scale. Such information is displayed in the search results and can be

used for filtering and sorting. This feature allows users to focus on the resources

that not only satisfy their needs but also are suited to their math background.

Feature 2: Automated linking of keywords to their expression representations.

Our system keeps a list of math concepts and their expression representations

discovered from the resource collection through automated linking. The expres-

sions are presented to users and can be used for expression retrieval whenever

the corresponding math concept is used as the keyword for searching. In this

way, users can immediately be informed about the expression representations of

the keyword and search with them without having to enter them manually.

6.1.1 System Description

We now describe the architecture of our system and then explain the two key

features in detail.

The architecture of our system (Figure 6.1) consists of four stages:

Stage 1 We take all the webpages from our math corpus (2,377 in total, as
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Figure 6.1: Architecture of the math search system.

described in Section 4.3.1) as the resource collection for our system. This

collection can be replaced by periodic crawling later if the system is scaled

up for public use in future; however, for now, we use our math corpus as a

convenient collection since it already contains a variety of math resources

for the 27 chosen topics.

Stage 2 We then apply our machine-learned classifiers to categorize the re-

sources, compute their readability using our iterative approach, and link

math concepts to their expression representations.

Stage 3 We employ Lucene1, a freely-available text search engine library, to

index2 the resources with the results from categorization and linking.

Stage 4 Users access the organized resources through our search interface.

Feature 1: Automated categorization of resource type, information

type and readability. The webpages in the collection are of various types. To

facilitate filtering in the downstream user interface, we apply supervised learning

1http://lucene.apache.org/
2Normalization and stemming are done via the StandardAnalyzer class. Same for all other

systems mentioned in this chapter.
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Table 6.1: Math resource types for classification.

Resource Type Definition

Concept
Information

Explanatory texts on math concepts.

Exercises Exercises on math concepts.

Discussion Forum discussions on math concepts.

Paper Scholarly articles that describe research on math
concepts.

Visualization Applets, figures and diagrams that visualize as-
pects of math concepts.

Textbook Textbooks on math concepts.

Tool Software packages that facilitate the application of
math concepts.

Course Courses on math concepts.

Journal Journals on math concepts.

Research
Community

Events, conferences and researchers related to the
research on math concepts.

Hub Compiled links to resources on math concepts.

Others Any other types of resources.

to classify the webpages into one of the 12 categories as listed in Table 6.1.

Although by no means exhaustive, these categories are designed to meet the

common resource needs of math seekers as discovered in our user study (See

Table 2.1 for a list of resource needs).

We have annotated 1,068 webpages from our math corpus (i.e., all webpages

for 10 concepts and the ones in the top 30 search results for the remaining 17

concepts; discarding irrelevant webpages) as our training data. We then extract

three classes of features from the webpages: token (e.g., n-grams), webpage

(e.g., URL tokens and content length) and formatting (e.g., whether a word is

in bold/italics). Since we were able to clearly associate a single resource type to

each webpage, we train a multi-class CRF classifier on our annotated data instead

of multiple one-against-all classifiers. We then apply the resulting classifier onto

the remaining webpages to determine their resource type.

The resource type of the search results are displayed together with the context

of the matched keywords in the search interface. Users can also use the resource

type filter to filter results to a specific type.

Among different types of resources, concept information resources commonly

contain the most types of information (e.g., definitions, exercises, examples and
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Table 6.2: Math information types for classification.

Information Type Definition

Definition Sentences that contain definitions of math concepts.

Exercises Sentences that contain exercises on math concepts.

Examples Sentences that contain examples on math concepts.

Proof Sentences that contain proofs on math concepts.

Others Any other types of sentences.

proofs) sought by math seekers3. To save their trouble of reading through the

resources to locate such information, we further categorize the sentences of the

concept information resources into five categories as listed in Table 6.2.

The categorization process is similar to that of resource type. We have

annotated all the sentences in the 112 concept information webpages on Bayes’

theorem, complex numbers and modular arithmetic as our training data. We

then extract five classes of features from the sentences: token (e.g., n-grams),

sentence (e.g., length and position of the sentence), formatting (e.g., whether

a word is in bold/italic), concepts (e.g., appearances of math concepts), and

expressions (e.g., appearances of math expressions). We also train a hard, multi-

class CRF classifier for this categorization on our annotated data and apply it

onto all the sentences in the webpages which have been categorized as concept

information resources by the resource type classifier4.

The sentences belonging to the first four information types can be viewed

directly in the search results. Filtering on information type is also available for

users to focus on sentences containing specific types of information.

Last but not least, math resources targeted at different audience are written

at different levels of readability. To help users pick out the ones that are suited

to their level of knowledge, we compute the readability scores for the resources

as described in Chapter 4. The final scores are used directly for sorting and

converted into a discrete 5-point scale for display and filtering.

Feature 2: Automated linking of keywords to their expression rep-

resentations. We link math concepts to their expression representations as

3See Table 2.1 for the list of information needs.
4Unlike our work mentioned in Chapter 3, we do not employ joint inference to combine this

categorization with resource type categorization. The reason is that the categorization of other
types of resources would not benefit from information type categorization or vice versa since
we only target the information from the concept information resources.
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described in Chapter 5. When users perform keyword searches in our system,

the top five linked expressions are displayed. They can then choose any of the

linked expressions for expression retrieval.

Figure 6.2 shows the search interface of our system. It demonstrates how

Resource Categorization and Text-to-Construct Linking are employed: The cat-

egorization labels – resource type, information type and readability – are shown

as part of the search results. Tools for filtering and sorting are provided on

the left of the interface. The linked expressions are displayed above the search

results with checkboxes for users to choose which one(s) to search with.

6.2 Evaluation for the Math Search System

To evaluate whether all these features in our system are effective in helping

math seekers in their searches, we have conducted a system evaluation in which

participants are required to use our system or a baseline to perform some math-

related search tasks and share their opinions about these two systems.

We have carried out two versions of the evaluation with two different groups

of participants: a face-to-face version with students from National University of

Singapore (NUS), and an online version with Amazon Mechanical Turk5 (Mturk)

workers. The face-to-face version is qualitative in nature and similar to our ear-

lier user study. In this version, we observe participants’ actual search process in

situ and get them to share their opinions through a semi-structured interview.

In contrast, the online version is quantitative in nature. We put the two sys-

tems online for the Mturk workers to use to complete the search tasks. After

completing the tasks, the workers are required to fill in a survey which contains

the essential questions from the semi-structured interview. A summary of the

steps in both versions of the evaluation can be found in Figure 6.3. By having

both versions, we are able to obtain both qualitative and quantitative evaluation

results for our system.

We have prepared four search tasks (listed in Table 6.3). Each task pictures

a common scenario which calls for a search for math webpages for information

5https://www.mturk.com/mturk/welcome
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Figure 6.3: Steps in the face-to-face and online versions of the evaluation.

and resources. All these tasks are designed based on our user study and we

hypothesize that all of them can be facilitated by (at least) one of the features

in our system.

As a baseline, we prepared another system, which is basically our system with

the key features hidden. Both systems use the same Lucene backbone to index

the same collection of math webpages (our math corpus) and share the same

interface except that the information and controls related to the key features are

not present in the baseline.

The face-to-face version of the evaluation was conducted in a lab environment

in which a desktop computer was provided to the participants. After a short

briefing on the goal of our research and the flow of the experiment, we asked

the participants to complete one of the search tasks using one of the systems,

followed by a second search task using the other search system. For each task, we

asked the participants to find five suitable webpages and copy down the URLs

of these webpages. In addition, we also asked the participants to copy and paste

a fragment of each webpage or write a short comment for it to justify why it

is suitable for the task. This additional requirement added to the task realism

and provided information to us to decide whether the participants performed

the task carefully and correctly.

To ensure fairness, we presented the baseline first to half of the participants

and the math system first to the other half. To also simplify the study execution,

we always assigned tasks 1 and 3 together and tasks 2 and 4 together.
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No time limit was imposed on the tasks. On average it took the partici-

pants 15 minutes to complete a task. We proceeded to the interview after the

participant had completed both tasks.

We have a list of questions (both multiple choice and open-ended questions)

for discussion with the participants during interviews. Aside from simple demo-

graphics (e.g., their experience in searching for math resources), our questions

focus on four topics: 1) how they have performed the tasks, 2) what difficulty

they have encountered in performing the tasks, 3) how they have been assisted

by the features of the search systems, and 4) how the search systems can be

improved. This list of questions can be found in Appendix A.2.

On average the interviews lasted 20 minutes and were not recorded; however,

the answers from the participants were compiled during each interview. After the

interviews, we consolidated the answers for further analysis. All 81/ participants

were rewarded 15 Singapore dollars as a token of appreciation.

As for the online version, we posted the four search tasks as Human Intel-

ligence Tasks (HITs) in Mturk. The HITs contained information about goal of

our research, the flow of the experiment, as well as how to access our experiment

webpage to perform the evaluation. When interested Mturk workers visited the

experiment webpage from a HIT, they would see the detailed description of the

corresponding search task and a link to the search system they were supposed

to complete the task with. Since the workers were allowed to complete any of

the four tasks in any order, we did not explicitly enforce any order in which the

search systems were presented to them. Nevertheless, we did make efforts in

presenting both systems for each search task as equally often as possible.

For each task, the workers were also asked to find five suitable webpages

and copy the URLs of these webpages into a form on the experiment webpage.

After completing a task, the workers were asked to fill in a survey which covered

the same topics as the interview in the face-to-face version; however, to keep

the time needed to complete a HIT within a reasonable limit, the workers were

not required to provide justifications for the webpages they had found and the

survey only contained selected multiple choice questions from the interview. For

more information about the selected questions, please refer to Appendix A.2.
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Table 6.4: Numbers of evaluations completed on the math search system and
the baseline.

Version
Math Search System Baseline

Task 1 Task 2 Task 3 Task 4 Task 1 Task 2 Task 3 Task 4

Face-to-face 11 11 10 10 10 10 11 11

Online 28 26 37 21 33 34 35 25

Total 39 37 47 31 43 44 46 36

For quality assurance, we have implemented some validation and logging

mechanisms on the experiment webpage and the search systems to make sure

that 1) the participants have performed at least one search on the presented

system, 2) all the URLs entered belong to the webpages in our collection and at

least one of them should be suitable for the search task (according to our own

annotations), and 3) their responses to the questions in the survey match with

the search log (e.g., if they claimed to have utilized a particular math feature, one

or more entries in the search log should show that the corresponding feature had

been activated). The data which failed to meet at least one of these requirements

were considered invalid and discarded.

In total, 320 HITs were completed and 81 (25%) of them were discarded.

On average, it took the workers 10 minutes to complete a HIT and they were

rewarded 0.80 U.S. dollar for each completed HIT.

The protocols for both versions of the evaluation have been reviewed and

approved by the Institutional Review Board (IRB) in NUS6.

6.2.1 Results and Discussions

We have recruited 42 participants for the face-to-face version of the evaluation

and 138 (after excluding those who failed to meet the requirements) for the online

version. On average, each task was performed on each system 40.4 times. This

allows us to perform both qualitative and quantitative analysis on the results.

The detailed numbers are as shown in Table 6.4.

In terms of demographics (shown in Table 6.5), the NUS students have a

strong background in math. 95% of them know college-level calculus or beyond.

98% of them perform general search daily. 76% of them perform math search a

6Reference Code: 12-462E.
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Table 6.5: Demographics of the participants.

(a) Math Background NUS Mturk

Arithmetic only 0% 11%

High school algebra 0% 12%

High school algebra,
trigonometry, some
calculus

5% 30%

College calculus 17% 38%

College math beyond
calculus

78% 9%

(b) Experience in
General Search

NUS Mturk

A few times per
day or more

98% 49%

A few times per
week

2% 20%

A few times per
month

0% 13%

A few times per
year or less

0% 18%

(c) Experience in
Math Search

NUS Mturk

A few times per
day or more

7% 2%

A few times per
week

21% 8%

A few times per
month

48% 25%

A few times per
year or less

24% 65%

few times per month or more. In contrast, the math background of the Mturk

workers is more diverse and much weaker on average. Only 47% of them know

college-level calculus or beyond. They are also much less experienced with gen-

eral search and math search. Only 49% of them perform general search daily

and as much as 65% of them perform math search a few times per year or less.

Despite the difference in background and search experience, many partic-

ipants have prior experience in performing tasks similar to the ones they did

during the evaluation. As shown in Table 6.6, the ratio between the participants

who have performed task 1 (i.e., to search for information about a math concept

for learning purposes) and those who have not is 2.9:1, indicating that this is a

very common task. In comparison, the ratio for task 2 (i.e., to search for infor-

mation about papers that describe existing research on a math concept) is much

smaller (1.1:1) and the lowest among all; however, there are still about half of

the participants of this task who have prior experience in it. As for task 3 (i.e.,

to search for learning materials for audience without good math background),

and task 4 (i.e., to search for expression representations of a math concept), the
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Table 6.6: Participants’ experience in completing tasks similar to the ones in the
evaluation.

Task 1 Task 2 Task 3 Task 4
Yes No Yes No Yes No Yes No

NUS 30 9 18 19 27 20 16 15

Mturk 31 12 24 20 29 17 30 6

Total
(Ratio)

61 21 42 39 56 37 46 21
2.9:1 1.1:1 1.5:1 2.2:1

ratios are close to 1.5:1 and 2.2:1, both of which indicate that at least 60% of the

participants have performed similar tasks before. Although these ratios may be

biased (towards the high side) due to the possibility that some Mturk workers

may choose to complete only the tasks they have prior experience in, we believe

these ratios do verify that our tasks are common math search tasks.

To compare the two search systems quantitatively, in both versions of the

evaluation, we required the participants to give the following two ratings:

• The effectiveness of the search engine for completing the given task (on a

5-point scale with 1 being very ineffective and 5 being very effective)

• The perceived difficulty in completing the task using the given search en-

gine (on a 5-point scale with 1 being very easy and 5 being very difficult)

Between these two ratings, effectiveness is more important since, as men-

tioned at the beginning of this section, the objective of this evaluation is to

determine whether the key features are effective in helping math seekers in their

searches. As such, we apply two-tailed, unpaired Student’s t-test with p < 0.01

on the effectiveness ratings to determine the statistical significance of the dif-

ferences between the math search system and the baseline. The results are as

shown in Table 6.7 and Table 6.8.

The overall effectiveness rating for the baseline is 3.46, indicating that its

effectiveness is above normal (i.e., 3). It achieves the highest effectiveness rating

on task 1 (3.95). In our opinion, this shows that the baseline performs reasonably

well in helping the participants find the information and resources about a math

concept; however, considering the fact many participants have prior experience

in this task and the perceived difficulty is the lowest (2.23) among all tasks, we

believe that this relatively high effectiveness rating may be partly due to familiar-
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Table 6.7: Average effectiveness ratings of the math search system and the base-
line. The ratings are given on a 5-point scale, with 1 being very ineffective and
5 being very effective. M and B in the table stand for math search system and
baseline respectively. Bolded pairs of ratings for a particular task and partici-
pant group indicate that the difference between the two ratings are statistically
significant (p < 0.01).

Task 1 Task 2 Task 3 Task 4 Overall
M B M B M B M B M B

NUS 4.09 3.80 4.00 3.50 4.50 3.09 4.10 3.21 4.17 3.21

Mturk 4.11 4.00 4.19 3.29 4.00 3.62 4.29 3.24 4.15 3.54

Combined 4.10 3.95 4.14 3.34 4.11 3.35 4.23 3.20 4.32 3.46

Table 6.8: Average perceived difficulty ratings of the math search system and
the baseline. The ratings are given on a 5-point scale, with 1 being very easy
and 5 being very difficult. M and B in the table stand for math search system
and baseline, respectively.

Task 1 Task 2 Task 3 Task 4 Overall
M B M B M B M B M B

NUS 2.00 2.20 2.82 2.50 2.50 3.45 2.17 2.81 2.37 2.74

Mturk 2.29 2.24 2.65 3.09 2.22 2.63 2.43 2.68 2.40 2.66

Combined 2.21 2.23 2.70 2.95 2.28 2.82 2.37 2.72 2.39 2.68

ity with the task. As can be observed in task 2 and 4, which are two less familiar

tasks for both groups, the effectiveness ratings are also lower. In addition, the

two groups disagree on its effectiveness on task 3: NUS students find it normal

(3.09) while the Mturk workers still find its effectiveness above normal (3.62).

This disagreement can also be observed in the perceived difficulty ratings (3.45

for NUS students and 2.63 for Mturk workers). During our interviews with the

NUS students, we discovered that they found task 2 difficult because they were

having difficulty in thinking in the shoes of the lower secondary school students

to decide which webpages might be suitable. This was much less of a problem

for the Mturk workers because many of them had similar math background with

lower secondary school students. Nevertheless, the fact that the Mturk workers

have weaker background may also be the main reason why they find task 2 (i.e.,

finding research papers) most difficult.

In contrast, the math search system achieves 4.10 or above on effectiveness

ratings for all the tasks when we combined the two groups together. In other

words, it is all rounded and often rated higher than effective. When compared

to the baseline, its effectiveness ratings are consistently higher on all tasks. The
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Table 6.9: Average accuracy scores of the answers given by the participants.
The scores are awarded based on how many out of the 5 webpages found by
the participants are indeed suitable. Each unsuitable/partially suitable/suitable
webpage is worth 0/0.5/1 mark. M and B in the table stand for math search
system and baseline respectively.

Task 1 Task 2 Task 3 Task 4 Overall
M B M B M B M B M B

NUS 4.82 4.75 5.00 4.70 4.54 4.32 4.81 4.59 4.79 4.59

Mturk 4.67 4.52 3.03 1.91 4.01 3.81 4.02 3.82 3.94 3.52

Combined 4.72 4.57 3.62 2.54 4.12 3.93 4.28 4.06 4.19 3.78

differences between the two systems on effectiveness ratings are statistically sig-

nificant except for task 1 which the baseline already performs quite well for. The

math search system also leads to lower perceived difficulty ratings. We believe

these results are good validation that the math search engine better facilitates

math search than the baseline.

Since both effectiveness and perceived difficulty ratings are subjective mea-

sures, we have also evaluated both systems based on one additional objective

measure: accuracy. To judge accuracy, we manually checked through all the

answers given by the participants to assess whether they are unsuitable, par-

tially suitable or suitable. Each unsuitable/partially suitable/suitable webpage

contributes 0/0.5/1 mark to the accuracy score of the answers.

As shown in Table 6.9, the average accuracy scores of the math search system

are consistently higher than those of the baseline. In other words, the math

search engine indeed helped the participants to find more suitable webpages

than the baseline in all tasks.

In addition, by analyzing the answers from the interviews and surveys, we

have noted that a number of the participants did not notice the key features at

all when they performed a task using the math search system. When we probed

the NUS students for the reason during the interviews, some of them replied

that they were too used to reading the result titles, URLs and snippets that

they simply ignored anything else, while some others replied that they liked to

quickly move to read the contents of the webpages instead of spending time with

the search system. Therefore, we have noted that more work has to be done on

the interface so that the key features can optimally gain the user’s attention.
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Table 6.10: Numbers of participants who did not notice the key features in the
math search system.

Task 1 Task 2 Task 3 Task 4

NUS 1 (9%) 1 (9%) 1 (10%) 3 (30%)

Mturk 5 (18%) 4 (15%) 7 (19%) 5 (24%)

Total 6 5 8 8

Table 6.11: Adjusted numbers of evaluations completed on the math search
system and the baseline.

Version
Math Search System Baseline

Task 1 Task 2 Task 3 Task 4 Task 1 Task 2 Task 3 Task 4

Face-to-face 10 10 9 7 11 11 12 14

Online 23 22 30 16 38 38 42 30

Total 33 32 39 23 49 49 54 44

As these participants did not notice the key features at all and both systems

return the same results by default, we present the adjusted evaluation results

which factor out such participants. The adjusted numbers of evaluation com-

pleted, effectiveness ratings, perceived difficulty ratings and accuracy scores are

shown in Table 6.11 to 6.14. The same statistical significant test is also applied

on the adjusted effectiveness ratings.

After the adjustments, the gap between the math search system and the

baseline widens on all metrics. All the differences in effectiveness ratings (when

the two groups are combined) are now statistically significant. The gaps in

effectiveness ratings for task 2, 3 and 4 are 0.9, 1.0 and 1.16. In other words, on

these tasks, the math search system is around one level more effective compared

to the baseline. These results are clear indications that when the key features are

Table 6.12: Adjusted average effectiveness ratings of the math search system
and the baseline. The ratings are given on a 5-point scale, with 1 being very
ineffective and 5 being very effective. M and B stand for math search system
and baseline respectively. The participants who used the math search system but
failed to notice the key features are considered to have used the baseline instead.
Bolded pairs of ratings for a particular task and participant group indicate that
the difference between the two ratings are statistically significant (p < 0.01)

Task 1 Task 2 Task 3 Task 4 Overall
M B M B M B M B M B

NUS 4.10 3.82 4.00 3.45 4.50 2.50 4.10 3.21 4.17 3.25

Mturk 4.35 3.87 4.32 3.32 4.20 3.58 4.50 3.30 4.34 3.51

Combined 4.27 3.86 4.25 3.35 4.31 3.31 4.43 3.27 4.32 3.45
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Table 6.13: Adjusted average perceived difficulty ratings of the math search
system and the baseline. The ratings are given on a 5-point scale, with 1 being
very easy and 5 being very difficult. M and B stand for math search system and
baseline respectively. The participants who used the math search system but
failed to notice the key features are considered to have used the baseline instead.

Task 1 Task 2 Task 3 Task 4 Overall
M B M B M B M B M B

NUS 2.00 2.18 2.70 2.64 2.56 3.33 2.43 3.07 2.42 2.81

Mturk 2.26 2.26 2.57 3.03 2.03 2.69 2.44 2.63 2.32 2.65

Combined 2.18 2.24 2.61 2.94 2.15 2.83 2.43 2.77 2.34 2.70

Table 6.14: Adjusted average accuracy scores of the answers given by the par-
ticipants. The scores are awarded based on how many out of the 5 webpages
found by the participants are indeed suitable. Each unsuitable/partially suit-
able/suitable webpage contributes 0/0.5/1 mark to the accuracy score of the
webpages found. M and B stand for math search system and baseline respec-
tively. The participants who used the math search system but failed to notice
the key features are considered to have used the baseline instead.

Task 1 Task 2 Task 3 Task 4 Overall
M B M B M B M B M B

NUS 4.80 4.77 5 4.73 4.61 4.21 4.86 4.64 4.81 4.59

Mturk 4.65 4.55 3.45 1.79 4.20 3.71 4.19 3.76 4.12 3.46

Combined 4.70 4.60 3.94 2.45 4.29 3.82 4.39 3.89 4.33 3.69

noticed (and possibly made use of), they contribute greatly to the effectiveness

of the search system.

To perform a more detailed analysis on the key features, we divide them

into four sub features: Information Type Categorization (ITC), Resource Type

Categorization (RTC), Readability Categorization (RC) and Text-to-Expression

Linking (T2E). We further distinguish two types of implementation (passive/active)

for each sub feature in the math search system as shown in Table 6.15.

In passive implementations, the categorization and linking outputs are dis-

Table 6.15: Types of implementations of sub features

Sub feature Passive Implementations Active Implementations

Information Type
Categorization

Display of information type in
the search results (ITCp)

Filters for information
type (ITCa)

Resource Type
Categorization

Display of resource type in the
search results (RTCp)

Filters for resource type
(RTCa)

Readability
Categorization

Display of readability in the
search results (RCp)

Filters and sort options
for readability (RCa)

Text-to-Expression
Linking

Display of linked expressions
the search results (T2Ep)

Searching with linked
expressions (T2Ea)
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Table 6.16: Numbers of participants noticing and utilizing the sub features and
their effective ratings. The acronyms (e.g., ITCp and ITCa) refer to the type of
implementation of the sub features as listed in Table 6.15.

ITCp ITCa RTCp RTCa RCp RCa T2Ep T2Ea

NUS

Noticed 10 9 7 9 9 8 7 6

Utilized 7 3 6 5 7 6 7 6

Rating
(Micro-average)

4.14 5 4.17 4.67 4.71 4.83 4.57 5
4.40 4.39 4.77 4.77

Mturk

Noticed 22 16 22 20 29 26 13 14

Utilized 22 13 22 16 29 16 13 11

Rating
(Micro-average)

4.41 4.46 4.50 4.25 4.41 4.63 4.46 4.55
4.43 4.39 4.49 4.50

Combined

Noticed 32 25 29 29 38 34 20 20

Utilized 29 16 28 21 36 22 20 17

Rating
(Micro-average)

4.34 4.56 4.42 4.35 4.47 4.68 4.50 4.71
4.42 4.39 4.55 4.59

played directly in the search results; no extra effort (besides reading them) is

required from users. In contrast, in active implementations, the categorization

outputs are for filtering and sorting, while the linking outputs are for searching;

additional efforts in activating these features are required. In both versions of

the evaluation, we required the participants to answer whether they have noticed

and utilized the sub features and rate these features on their effectiveness. The

consolidated statistics are as shown in Table 6.16.

In general, all passive implementations are well-utilized: More than 90% of

the participants who noticed these implementations made use of them in com-

pleting the search tasks. According to our interviews with the NUS students,

almost all of them who noticed the additional information confirmed that it

helped them decide which webpages to read in more detail (task 1-3) and in-

creased their knowledge about the math concept they were searching for (task

4). Among those who noticed but did not utilize the implementations, the two

common reasons are: 1) They found the result title and snippet more important

and paid a lot more attention to them, and 2) they noticed and applied the ac-

tive implementations first (e.g., to filter out non-papers results in task 2 and less

readable results in task 3). Given the fact that all NUS students are heavy users
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of general search engines which do not display additional information, we be-

lieve the users of the math search system would be more aware of the additional

information if they were more familiar with the system.

In contrast, the percentages of participants who made use of the active im-

plementations after noticing them are much lower, ranging from 64% (task 1)

to 85% (task 4). Through our discussions with the participants, we observed

that, for those participants who do not commonly use active implementations,

they would consider using those implementations only when there are too many

(irrelevant) results even after some low-cost alternatives (e.g., adding keywords)

have been attempted. Therefore, we believe one way to increase the utilization

of active implementations is to lower their cost. For example, the system may

automatically enable some of the filters based on the query keywords (e.g., filter

out non-paper results when the keyword ‘paper’ is used in the query).

Nevertheless, the overall effectiveness ratings for all the sub features are 4.39

or above7, indicating that they are effective for completing the tasks.

6.2.2 Future Work

To sum up, our evaluation on the math search system shows that it outperforms

the baseline significantly in terms of effectiveness. It also helps to lower the

perceived difficulty of the common math search tasks and allow users to find more

suitable webpages. We have even received an appreciation email (Appendix A.3)

from a Mturk worker expressing his interest in using the system to find math

materials for his children (a scenario very similar to task 3 in the evaluation).

All math features are found to be effective for completed the tasks, despite

the fact that some of them are less utilized due to habitual behaviors and the

additional efforts required for utilization.

As such, an immediate direction for future research is to work on improving

the visibility of the math features and lower the cost of using them. For this

purpose, automated detection of what math features can be applied for a partic-

ular search based on queries and user behaviors would be important. With such

detection, the system may then prompt users on the suitable math features or

7See the bottom row of Table 6.16.
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trigger those features implicitly.

In addition, the current size of our math webpage collection is still too small

for public use. In future, we plan to expand the collection so that the system

would be more ready for further research, evaluation and deployment.

6.3 eEvidence System for Evidence-based Practice in

Healthcare

Recall from Section 3.1 that Evidence-based Practice (EBP) is defined as meeting

the information needs of practitioners with the synthesis and critical appraisal

of applicable and valid literature. The application of EBP can be divided into

two stages: 1) evidence gathering and selection, and 2) practice implementation

and outcome evaluation. The first stage is crucial because the quality of the

evidence gathered directly influences the downstream best practices.

To ensure proper gathering and selection of evidence in healthcare, most

EBP literature suggests an active search process that includes the formulation

of clinical questions, the search for evidence and the appraisal of evidence [Fi-

neout-Overholt et al., 2005; Brady and Lewin, 2007]: A clinical question is first

formulated using PICO elements [Melnyk and Fineout-Overholt, 2000] (i.e., pa-

tient, intervention, comparison and outcome). With this question in mind, key-

word searches on EBP collections [Oremann, 2007] (such as CINAHL, Medline

and Embase) are conducted to locate candidate articles. Lastly, the candidate

articles are appraised critically, on criteria such as applicability and validity.

Despite the fact that such a proactive process is useful, it is often too difficult

and time-consuming for the healthcare practitioners. This is due to two reasons:

First, EBP collections exist largely in isolation (i.e., are not connected with

each other and only searchable via their own interface) and commonly require

subscription. As a result, healthcare practitioners would not only need to per-

form searches in these resources one by one, but also initiate separate searches

for the articles which appear to be relevant but are not accessible from the cur-

rent collection. Several linking schemes have been developed to alleviate this
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difficulty. For example, Digital Object Identifiers (DOIs)8 make it possible to

quickly locate a digital copy of an article in a particular EBP collection; however,

without taking into account the location or the affiliation of the practitioners,

they often fail to resolve to a copy that the practitioners have access to (i.e., com-

monly known as the appropriate copy problem) [Beit-Arie et al., 2001]. More

recently, the OpenURL framework [Apps and MacIntyre, 2006] addresses this

limitation by building knowledge bases that contain the availability and acces-

sibility information of articles. Nevertheless, the main caveat of this scheme is

that it requires much effort to ensure that the metadata encoded in OpenURLs

are accurate and consistent [Chandler et al., 2011], and that the knowledge bases

are accurate, comprehensive and up-to-date [Wikipedia, 2012a]. Therefore, we

believe this difficulty in dealing with multiple isolated EBP collections with sub-

scription barriers is going to remain until a cost-effective solution is found.

Second, current search engines are limited in their capabilities for evidence

gathering and selection. While publicly-accessible generic search engines can

search different resource collections and find free materials, their search results

are hard to navigate through unless proper categorization is done to group the

resources by type. In contrast, specialized search engines are designed specifically

for medical search with comprehensive medical knowledge and metadata but

are often restricted in accessibility and meant to be used exclusively for one

particular healthcare EBP collection.

These difficulties are coupled with the fact that most healthcare practitioners

have to spend much of their time taking care of patients [Bond, 2005] and may

not be well-trained in searching. As a result, they are often unable to follow a

routine process to stay up-to-date with the literature.

An alternative to active search is to postpone the integration of current re-

search practices until later in the healthcare workflow and delegate the selection

process to an automated system. For example, some knowledge-based clinical

decision support systems link patient records to medical knowledge in knowledge

bases to facilitate downstream decision making [Bakken et al., 2008]. A major

problem with such systems is to ensure that the evidence in knowledge bases

8http://www.doi.org/doi handbook/
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always incorporates current research findings [Sim et al., 2001]. More recently,

meta-search systems such as InfoBot [Demner-Fushman et al., 2008] present in-

formation retrieved from five healthcare EBP collections based on the biomedical

terms extracted from the patient records. While these systems save the practi-

tioners’ trouble of searching through these resources individually, they lack the

flexibility to allow the practitioners to customize the search process or explore

evidence from other collections.

In summary, for evidence gathering and selection, active search is the rec-

ommended practice, but the isolation of EBP collections, as well as the choice

between generic and specialized search engine, often complicates the process and

makes it less desirable in the interest of time. In contrast, delegating the process

to automated systems helps to save time but such systems are challenging to

build and often lacking in flexibility and coverage.

Our search system for healthcare aims to address these limitations. It allows

healthcare practitioners to curate their own sets of relevant articles for EBP,

under an organized framework. In this section we discuss our framework’s three

key novel features:

Feature 1: Harvesting EBP articles by periodic crawling. Our system crawls

freely accessible EBP articles from the Web to create an EBP collection from

which practitioners can curate materials. This crawling ensures that our collec-

tion covers a variety of EBP articles and contains the latest research findings.

Feature 2: Automated article classification and key information extraction.

Automated classification of articles helps to filter out irrelevant documents and

separate the rest into different categories, assisting practitioners to zoom to

relevant articles quickly. Key information is additionally extracted to assist

practitioners in assessing the applicability and validity of candidate articles.

Feature 3: Dual active/passive user interface. Our system presents two in-

terfaces to cater for both active and passive search. It allows practitioners to

choose their preferred interaction mode based on their goal and time available.
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6.3.1 System Description

We will first describe the architecture of our system and then explain the three

key features in detail.

Figure 6.4: Architecture of the eEvidence system.

The architecture of our system (Figure 6.4) consists of four stages:

Stage 1 We use the Nutch crawler9 to conduct periodic crawls on manually

selected EBP collections to obtain a collection of EBP articles.

Stage 2 We then apply machine-learned classifiers and extractors to determine

the resources’ types and extract various information (e.g., patient demo-

graphics, study design, and year of publication) from them.

Stage 3 We again employ Lucene to index the resources together with the re-

sults from classification and extraction.

Stage 4 Users access the indexed information through either the search or read

interfaces, depending on their information seeking modes.

Feature 1: Harvesting EBP articles by periodic crawling. To construct

the resource collection for our system, we asked several healthcare practitioners

9http://lucene.apache.org/nutch/
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from National University Hospital to select a set of authoritative websites as

starting points for crawling. Among the 94 selected websites, our system then

crawls the contained webpages from the ones that permit crawling. This crawling

can be repeated periodically to ensure that the latest documents are ingested.

There are two reasons why we choose to construct our resource collection

by crawling: First, this method works with all web-accessible materials. There-

fore, our system has no problem harvesting resources of different types or from

different websites. This ensures comprehensive coverage of our resource collec-

tion. Second, periodical crawling addresses the freshness problem, alleviating

the problem of keeping the indexed collection up-to-date.

Feature 2: Automated article classification and key information ex-

traction. While crawling collects webpages from curated sites, not all pages of

a site are relevant, primary research. Irrelevant pages, such as tables of contents

and help pages, need to be filtered. Our system automatically accomplishes

this. In addition, for primary research articles, the system further subcatego-

rizes them as abstract-only or full-text articles. This information is propagated

into the downstream user interface, allowing users to choose which type to view.

Therefore, we apply supervised learning techniques to classify the webpages

into three categories: the abstract of a research article, the full text of a research

article and any other webpages (to be discarded).

To build the classifiers, we have randomly chosen and annotated 500 web-

pages from the harvested resources as our training data. The features extracted

are similar to the ones used for the resource type categorization of math web-

pages. CRF is again used as the learning methodology. This classifier is applied

onto the rest of the webpages to determine their types.

Moreover, through our discussion with practitioners, we have noticed that

the following information about the webpages also plays a part in the evidence

selection process. Therefore, after classification, we extract such information

from the webpages themselves and the crawl data:

Key sentences and keywords: These key sentences and keywords contain

and represent information pertinent to EBP. They allow users to judge
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the applicability and validity of the articles without having to read them

in full. The extraction of these key sentences and keywords is done as

described in Chapter 3.

Year of publication: Newer publications are preferred, as they present latest

findings. This is extracted from the webpages using regular expressions.

Time added: The system tracks when the resources are added so that it can

inform users about newly added resources since their last login. This in-

formation is obtained directly from crawl data.

URL: Besides serving as a link to the original resource, it also gives the prove-

nance of the resource, which has been shown to be useful in judging its

trustworthiness. This information is obtained directly from crawl data.

Feature 3: Dual active/passive user interface. Our system keeps users

updated with a passive read interface, which recommends relevant articles to

them periodically, based on their interests saved in a stored profile. A separate,

active searching interface allows them to pose queries to retrieve relevant articles.

The two modes are interlinked to allow seamless change of interaction modes.

Passive Read Interface: To make use of the read interface, healthcare prac-

titioners need to construct their user profiles. They key in their interests

using primary and secondary keywords. The primary keywords represent

the topics of interest (usually names of symptoms or diseases), while the

secondary keywords represent the relevant aspects of the topics. For exam-

ple, a healthcare practitioner who is interested in how cancer has affected

the quality of life of patients may put “cancer” as the primary keyword

and “quality of life” as the secondary keyword.

With their interests encoded into profiles, our system automatically presents

the latest relevant articles whenever they access the system via the read

interface. Figure 6.5 shows how the read interface highlights recent results

that have been added to the system since their last login. Filtering is also

enabled. If they are only interested in a particular type of articles or the
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ones published within a particular period of time, they can employ filters

to customize the results dynamically.

Aside from standard search engine snippet metadata, our system also shows

the pertinent extracted information – key sentences and keywords, year of

publication, article type and time added as shown in Figure 6.5 and 6.6 –

assisting users in selecting suitable articles.

Active Search Interface: This interface (Figure 6.7) caters for users who are

actively searching and is designed with similar conventions to generic search

engines, but with enhanced support for query formulation.

Similar to the profile keywords in the read interface, a query in the search

interface is a combination of primary keywords (used to search for articles

relevant to a certain topic) and secondary keywords (used to filter out arti-

cles that are irrelevant to the desired aspects of the topic). More complex

queries can be constructed by joining multiple subqueries with Boolean

operators. Users may also specify additional constraints (e.g., published

in recent 5 years) for the queries using filters.

All query-related information, such as keywords used, filters applied, time

of search and number of results returned are saved in the search history to

assist users in keeping track of the searches they have conducted.

6.3.2 Evaluation and Future Work

Due to the specialist nature of healthcare practitioners and their busy schedules,

it is difficult to recruit a sufficient number of them for quantitative evaluations

on our system. Therefore, we have chosen to engage those practitioners who

have assisted us in collecting EBP resources in qualitative evaluations instead.

As a start, we have asked them to informally evaluate our system by using it to

search for the EBP articles they are interested in.

The comments we have received from them are mostly positive and encourag-

ing. In particular, the classification and extraction feature was most appreciated

by them, as it allowed them to focus exclusively on the full text articles and

see the information relevant to EBP directly. This is a good verification that
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Figure 6.6: Display of extraction results in the eEvidence system to assist users
in applicability and validity assessment. The sentence in this figure is extracted
from the first result in Figure 6.5 and can be viewed through the “key text”
hyperlink at the end of the result. The types of information it contains are
shown on its left while the extracted keywords in it are highlighted based on
their types following the color scheme on its right. (Note that not all types of
keywords are present in this sentence.) The types of key sentences and keywords
extracted are described in detail in Chapter 3.

Figure 6.7: Query formulation tool in the search interface of the eEvidence
system.

Resource Categorization at multiple granularities is beneficial to domain-specific

searchers. In addition, the functions specifically designed to support their work-

flow had also attracted their attention. For example, they expressed interest in

the search history function in the search interface because the recorded informa-

tion would come in handy for writing the search methodology section in their

systematic review. Lastly, they also commented that they were able to find free

full text articles which were not found in other medical databases. This is a pos-

itive indication that harvesting EBP articles with crawling can be advantageous.

While these results are indicative rather than informative and comprehensive,

we believe they do suggest the usefulness of our system.
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The main challenge we are facing now is that the amount of articles in our

collection is still small compared to existing EBP collections. Currently we only

have the corpus for key information extraction, which consists of 19,893 medical

abstracts and full text articles, in our collection. Many other websites have been

recommended by the healthcare practitioners but most of them are not crawlable

due to their robot exclusion policy.

With the current collection, the healthcare practitioners noted that a more

thorough evaluation of the system is possible only if more documents can be

indexed so that they could accomplish a realistic, sizeable task – such as a

literature review on a concrete topic – with our system. As such, we plan to

work with NUS libraries to obtain more healthcare materials from the medical

databases they have subscribed to. With more materials in our collection, we

can then proceed to perform a full-fledged user evaluation to get a better idea

of whether our features, especially the extraction of key information, are indeed

helpful in facilitating the implementation of EBP.

6.4 Discussion

As demonstrated by the two domain-specific search systems we have built, the

findings from our research can be applied to support the information seeking

behaviors of domain-specific searchers. However, to perform full-fledged evalua-

tions on these systems and bring them to production, dataset expansion is one

of the most important directions for future work.
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Keyword search is ineffective in locating domain-specific resources. Our user

study has discovered two key issues pertinent to it in domain-specific IR. First,

different modes of domain-specific resources are not recognized, leading to disor-

ganized, hard-to-navigate search results in response to keyword searches. Second,

while it is desirable to make domain-specific constructs searchable and relevant

in ranking, users still prefer to use text keywords over other input modalities.

To improve domain-specific IR in general without expensive domain knowl-

edge sources, problems related to these issues need to be identified, examined

and then addressed in a generic manner. Moreover, the resulting findings need

to be translated into features for domain-specific search systems. Therefore, our

research has the following three specific goals as introduced in Chapter 1.

1. To identify prominent problems in domain-specific IR. These problems

should be sufficiently common yet addressing them should facilitate domain-

specific IR.

2. To address the identified problems in a generic manner so that different

instances of such problems in different domains can be addressed similarly.

3. To incorporate the research findings into domain-specific search systems.

This helps to verify the usefulness of our research and improve domain-

specific IR in practice.

In the following sections, we will recap the contributions we have made to-

wards these goals and then discuss about directions for future research.
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7.1 Contributions

Identifying Two Prominent Problems in Domain-specific IR. To address

the two issues with keyword search, we have identified two research problems that

are prominent in many domains:

• Resource Categorization refers to the problem of categorizing domain-

specific resources with respect to different facets at both coarse-grained

and fine-grained levels. Due to the explosive growth of domain-specific

resources, in almost any domain, there is a need to at least categorize the

resources at a coarse-grained level (e.g., resource-level) based on the intent

(e.g., learning-oriented vs. research-oriented) and the background (e.g.,

novice vs. expert) of the target audience. To cater for more specific needs,

such as applicability and validity assessment, more fine-grained catego-

rizations (e.g., at sentence-level and word-level) may be required as well.

Proper handling of this problem means that a search engine can better

meet specific user needs by directing task-relevant resources to users and

organize search results by more pertinent metadata criteria.

• Text-to-Construct Linking refers to the problem of resolving text key-

words to their relevant domain-specific constructs. This problem is preva-

lent in many domains where domain-specific constructs exist. Common

examples of domain-specific constructs include expressions (math), molec-

ular structures (chemistry) and DNA (biology). Proper handling of this

problem makes domain-specific constructs searchable by text keywords,

which in turn, can enable constructs to properly influence relevance rank-

ing in search results, without troubling users to input them in potentially

awkward construct syntax.

Providing Domain-independent Approaches to Address the Two Promi-

nent Problems. We have observed correlations among various characteristics

of domain-specific resources and captured such information in a multi-layered

graph as shown in Chapter 1. Following this graph, we examine the problems of

Resource Categorization and Text-to-Construct Linking, and seek for domain-
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independent approaches to address them.

For Resource Categorization, we use the key information extraction problem

for evidence-based practice in healthcare as a case study on the categorization

of correlated nominal facets. We have compared four different models for ex-

ploiting the correlation to inform the classification process. The joint inference

model works well in allowing two classification tasks to benefit from each other

at the same time; however, data filtering needs to be applied to alleviate its

computational cost and reduce the noise in training data. This utilization of

classification results at two different levels to inform each other is generically

applicable in any domain with correlated nominal facets to be categorized.

On the other hand, we use the readability measurement problem for domain-

specific resources as a case study on the categorization of ordinal facets. By

correlating the readability of domain-specific resources with the difficulty of

domain-specific concepts, we are able to use an iterative computation algorithm

to estimate their values from each other. This approach performs well even

when compared to supervised learning approaches, and can be ported to other

domains easily since it does not rely on expensive domain knowledge sources or

even an annotated corpus.

Modeling Text-to-Construct Linking is more complicated, as it requires to

link domain-specific concepts to relevant constructs in domain-specific resources,

and then select the better ones for display and retrieval. Through a corpus study

in math, we have identified a set of possible relations between domain-specific

(i.e., math) concepts and constructs (i.e., expressions) and collected statistics

that help to characterize the nature of the linking problem. We link concepts

to their representations in constructs through supervised classification and then

rank the linked constructs by construct-TF.IDF. Our results show that satis-

factory linking performance can be achieved with non-domain-specific features,

while construct-TF.IDF works well in selecting more specific and informative

constructs for display and retrieval. Since our approach for this problem does

not rely on expensive domain knowledge sources, it is also domain-independent

and can be adapted to perform Text-to-Construct Linking in other domains.

Implementing Two Domain-specific Search Systems. To demonstrate the
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applicability and usefulness of our research, we have implemented two domain-

specific search systems, one for math and the other for healthcare, based on the

findings from our research on Resource Categorization and Text-to-Construct

Linking. The math system incorporates the categorizations of resource type,

information type and readability, which allow for better organization of search

results. It also links math concepts to their expression representations, which

alleviates the need for expression input yet maintains the use of expressions for

display and retrieval. The healthcare system categorizes resources at multiple

granularities to extract key information for applicability and validity assessment

in evidence-based practice. In addition, it is equipped with features (e.g., dual

interface) for better workflow integration.

Our evaluation on the math system shows that it is significant more effective

than a general search baseline on four common math search tasks. It lowers the

perceived difficulty of the tasks and allows users to find more suitable webpages.

In addition, all the math features in the system have been rated as effective

or above. As for the healthcare system, it has received mostly positive and

encouraging comments during the informal evaluation; however, more documents

need to be indexed to allow for a full-fledged evaluation.

Both systems can serve as platforms for domain-specific IR research and be

expanded into practical systems for public use in future.

7.2 Future Work

Besides the possible ways to improve Resource Categorization and Text-to-

Construct Linking as listed in the respective chapters, we believe two major

directions for future research in domain-specific IR are as follows:

User-centric Development. As mentioned in Section 2.1, domain-specific

searchers have specialized needs because they have different roles and exhibit a

wide spectrum of domain knowledge. Without taking their needs into consider-

ation, domain-specific IR research may head into directions that are not imme-

diately useful in facilitating domain-specific search. Moreover, domain-specific

searchers are the ultimate judge of whether the problems they have encountered
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are addressed by the proposed approaches. Therefore, they need to be involved

at both the problem formulation and evaluation stages of domain-specific IR

research. Our user study in math and our experience in working with healthcare

practitioners have served as a good starting point for involving domain-specific

searchers into our research process. In future, we plan to maintain long-term

relationships with a pool of domain-specific searchers of diverse roles and back-

grounds so that we can understand and address their needs better.

Cross-domain Investigation. Our research in math and healthcare allows us

to identify two prominent problems and propose domain-independent approaches

for these problems. However, given the fact that many other domains exist and

each of them is special in its own way, it is likely that there are more variations

of the problems we have examined and other prominent problems to be tackled.

Therefore, it is important to continue this process with more domains so that

domain-specific IR can be improved in general instead of only in a few domains.

To this end, we hope to carry out cross-domain user studies and comparative

studies of domain-specific search systems in future to identify more common

problems in domain-specific IR. With such problems identified, we can then

work on finding domain-independent approaches for them by examining concrete

instances of these problems from several different domains all at once. Last but

not least, we would like to perform cross-domain evaluations to determine the

effectiveness and domain independence of the proposed approaches, as well as

to ascertain the need for specialization in dealing with a particular instance of

these problems in a specific domain.
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A.1 Examples of Nodes and Edges in the Correlation

Graph

Please see the next few pages for the tables of examples.
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A.2 Interview Questions1 for the Math Search Sys-

tem Evaluation

1Questions followed by the “[O]” symbol are also used in the online version of the evaluation.
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A.3 Appreciation Email from the Math Search Sys-

tem Evaluation

Sir,

The search engine you have developed is beautiful, fantastic and so on. It

is hardly possible to describe the beauty of your program.i have become a fan

of it. I often search for information for two of my kids - one in Class 6 and

another in Class 9. I know how difficult and time consuming it is to locate the

useful information. I have to find the links, go through each of them to find their

contents and then to assess whether it is of the required standard and so on.

I would remain ever grateful if you kindly provide me the link to the search

engine software and permit me to use it for my kids.

Hats off to you....

Thanking you in anticipation.....

[Name of sender omitted for privacy concerns.]
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A.4 Publications Resulting from this Ph.D Research

Zhao, J., Kan, M.-Y., and Theng, Y. L. (2008). Math information retrieval:

User requirements and prototype implementation. In JCDL ′08: Proceedings of

the Joint Conference on Digital Libraries, pages 187–196. ACM Press.

Zhao J. (2010). Towards a user-centric math information retrieval system.

Bulletin of IEEE Technical Committee on Digital Libraries, 4(2), IEEE Press.

Zhao, J. and Kan, M.-Y. (2010). Domain-specific iterative readability compu-

tation. In JCDL ′10: Proceedings of the Joint Conference on Digital Libraries.

ACM Press.

Zhao, J., Kan, M.-Y., Procter, P. M., Zubaidah, S., Yip, W. K., and Li, G. M.

(2010). Improving search for evidence-based practice using information extrac-

tion. In AMIA ′10: Proceedings of the American Medical Informatics Associa-

tion Annual Symposium.

Zhao, J., Kan, M.-Y., Procter, P. M., Zubaidah, S., Yip, W. K., and Li, G. M.

(2010). eEvidence: Information seeking support for evidence-based practice: An

implementation case study. In AMIA ′10: Proceedings of the American Medical

Informatics Association Annual Symposium.

Zhao, J., Bysani, P., and Kan, M.-Y. (2012). Exploiting classification correla-

tions for the extraction of evidence-based practice information. In AMIA ′12:

Proceedings of the American Medical Informatics Association Annual Sympo-
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