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ABSTRACT 

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease which 

potentially affects major organs during the disease course. Neuropsychiatric SLE 

(NPSLE) is one of the major manifestations of SLE which carries unfavourable impact 

on the quality of life, vocational outcome and survival of patients with SLE.  Cognitive 

dysfunction, which affects executive function, attention, learning and memory, is the 

commonest neuropsychiatric manifestation of SLE. Yet, cognitive impairment in lupus 

patients is often clinically unapparent and indeed, its functional neuro-pathogenesis 

remains unclear. Therefore, we attempted to approximate this knowledge gap by a series 

of studies reported in this thesis which can hopefully prompt further focussed research on 

the pathogenesis and clinical classification of cognitive dysfunction in SLE.  

In the first study, patients with new-onset SLE without neuropsychiatric 

symptoms and their matched healthy counterparts went through the modified 

computerized Wisconsin Card Sorting Test (WCST) while they were undergoing 

functional magnetic resonance imaging (fMRI) of the brain concomitantly. Although the 

SLE patients and healthy controls had comparable performance on the WCST, SLE 

patients demonstrated inferior strategic planning skills which resulted in compensatory 

recruitment of additional cortical regions to compensate for their inferiority in strategic 

planning. Surprisingly, their inefficient strategic planning skills and the subsequent 

compensatory recruitment of cortical regions which boosted their cognitive function for 

error detection and conflict monitoring persisted even after control of the disease. These 

findings prompted the second important mechanistic study.  
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While the activity of a few anatomical brain regions were found to be altered in 

lupus patients, further studies on potential functional neural circuits which mediate 

cognitive impairment in SLE would be pathologically relevant. In the second study, by 

applying the same fMRI scan and WCST paradigms as the first study to patients with 

new-onset lupus and healthy controls, the cortico-basal ganglia-thalamic-cortical circuit 

and amygdala-hippocampus coupling, which were involved in response inhibition and 

active forgetting-learning dynamics respectively, were found to be compromised in lupus 

patients when the demand for working memory and learning reached the maximum 

during the WCST. An increase in the activity of the contralateral cerebellar-frontal 

connection was found to compensate for the compromised cortico-basal ganglia-

thalamic-cortical circuit in the lupus patients in order to maintain their comparable 

WCST performance as their healthy counterparts. These findings confirmed that 

functional neural circuits were involved in mediating subclinical cognitive impairment in 

SLE and prompted us to perform the third study to investigate whether these 

dysfunctional circuits were associated with putative autoantibodies associated with 

cognitive dysfunction in SLE. 

In the third study, while SLE patients were found to have significantly higher 

levels of serum anti-NR2 antibodies than their healthy counterparts, no significant 

association was found between the levels of the antibodies and lupus disease activity, the 

frequency of NPSLE as well as the abnormal fMRI signals of the hippocampus and 

amygdala in the lupus patients. The results suggest that serum anti-NR2 antibodies alone 

is unlikely an optimal marker to detect subclinical impairment of learning and memory in 

SLE. 
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CHAPTER 1 

INTRODUCTION 

1.1 Systemic lupus erythematosus – an overview 

1.1.1 Clinical classification of the disease 

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with 

predilection for women during their reproductive age. SLE potentially affects any organ 

systems during the disease course. Amongst various organ systems, the dermatological, 

musculoskeletal, haematological, renal and neuropsychiatric systems are commonly 

involved (Tsokos, 2011). Besides specific organ involvement, non-specific symptoms 

such as fatigue, weight loss, fever, anxiety and mild cognitive impairment are often the 

main presenting symptoms of lupus and they pose diagnostic challenge especially at the 

early stage of the disease (Lahita, 2011). Indeed, patients with SLE are often suspected to 

have other conditions such as rheumatoid arthritis (RA), fever of unknown origin and 

fibromyalgia before seeing a specialist or an experienced clinician (Blumenthal, 2002; 

Harvey et al., 1954; Hoffman, 1978). Furthermore, the mean interval between onset of 

symptoms and diagnosis can lapse as long as 5 years, during which the prognosis could 

be adversely affected (Lahita, 2011).  

Perhaps due to the heterogeneity and complexity of SLE, the formal diagnostic 

criteria were not established until the American College of Rheumatology (ACR) defined 

the 11 criteria for the classification of SLE (Tan et al., 1982). This “1982 criteria” were 

subsequently revised on the 10
th

 criterion of immunologic disorder in 1997 by deleting 

positive LE cell preparation and adding abnormal serum level of IgG or IgM anti-

cardiolipin antibodies and positivity of lupus anticoagulant (Hochberg, 1997) (see Table 
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1.1). The presence of four or more criteria out of the 11 is required for formal 

classification for SLE. These criteria were demonstrated to have the sensitivity and 

specificity of as high as 96% (Gleicher, 1992). At the time when this thesis was being 

prepared, a new set of classification criteria for SLE has been validated and released by 

the Systemic Lupus International Collaborating Clinics (SLICC) (Petri et al., 2012). The 

SLICC classification criteria for SLE consist of 11 clinical and 6 immunological criteria. 

Patients must fulfill at least 4 criteria, including at least one clinical criterion and at least 

one immunological criterion or patients have biopsy-proven lupus nephritis with the 

simultaneous presence of antinuclear antibodies (ANA) or anti-double-strand DNA (anti-

dsDNA) antibodies before they fulfill the criteria (Petri et al., 2012). The SLICC 

classification criteria demonstrate significantly reduced misclassification and improved 

sensitivity in the derivation and the validation sets when compared to the 1997 ACR 

criteria (Petri et al., 2012). Given that lupus criteria might be acquired and accrued over a 

period of time, the Boston weighted criteria for the classification of SLE which include 

patients who meet less than 4 of the 11 ACR criteria identify 7% more lupus patients 

when compared with the 1997 ACR criteria (Costenbader et al., 2002).  

Table 1.1 The 1997 American College of Rheumatology Criteria for the 

classification of SLE 

Criterion Definition 

1. Malar Rash 

Fixed erythema, flat or raised, over the malar eminences, tending to 

spare the nasolabial folds 

2. Discoid rash 

Erythematous raised patches with adherent keratotic scaling and 

follicular plugging; atrophic scarring may occur in older lesions 
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3. Photosensitivity 

Skin rash as a result of unusual reaction to sunlight, by patient 

history or physician observation 

4. Oral ulcers 

Oral or nasopharyngeal ulceration, usually painless, observed by 

physician 

5. Arthritis 

Nonerosive arthritis involving 2 or more peripheral joints, 

characterized by tenderness, swelling, or effusion 

6. Serositis 

i. Pleuritis-convincing history of pleuritic pain or rub heard by 

a physician or evidence of pleural effusion 

ii. Pericarditis-documented by ECG or rub or evidence of 

pericardial effusion 

7. Renal disorder 

i. Persistent proteinuria greater than 0.5 grams per day or 

greater than 3+ if quantitation not performed 

ii. Cellular casts-may be red cell, hemoglobin, granular, 

tubular, or mixed 

8.Neurologic 

disorder 

i. Seizures-in the absence of offending drugs or known 

metabolic  derangements; e.g., uremia, ketoacidosis, or 

electrolyte imbalance 

ii. Psychosis-in the absence of offending drugs or known 

metabolic derangements, e.g., uremia, ketoacidosis, or 

electrolyte imbalance 

9. Hematologic 

disorder 

i. Hemolytic anemia-with reticulocytosis 

ii. Leukopenia-less than 4,000/mm
3
 total on 2 or more 

occasions 
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iii. Lymphopenia-less than 1 ,500/mm
3
 on 2 or more occasions 

iv. Thrombocytopenia-less than 100,000/mm
3
 in the absence of 

offending drugs 

10. Immunologic 

disorder 

i. Anti-DNA: antibody to native DNA in abnormal titer 

ii. Anti-Sm: presence of antibody to Sm nuclear antigen 

iii. Positive finding of antiphospholipid antibodies on: 

a) an abnormal serum level of IgG or IgM 

anticardiolipin antibodies, 

b) a positive test result for lupus anticoagulant using a 

standard method, or 

c) a false-positive test result for at least 6 months 

confirmed by Treponema pallidum immobilization 

or fluorescent treponemal antibody absorption test 

11. Antinuclear 

antibody 

An abnormal titer of antinuclear antibody by immunofluorescence 

or an equivalent assay at any point in time and in the absence of 

drugs 

known to be associated with “drug-induced lupus” syndrome 

Source: Hochberg, 1997; Tan et al., 1982 

1.1.2 Pathophysiology of SLE 

The etiology of SLE is not fully known. A number of factors such as genetics, 

epigenetics, female hormone, gender, immune dysregulation and environmental triggers 

have been hypothesized and tested, for an aim to explain the mechanisms of the 
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breakdown of immune tolerance and aberrant autoimmune responses in patients with 

SLE (Crispin et al., 2010; Tsokos, 2011).  

Genetics & Epigenetics 

The concordance rates of SLE observed in monozygotic twins (24-56%) and 

dizygotic twins (2-5%) imply that genetic predisposition plays a crucial role in the 

development of SLE (Deapen et al., 1992; Moser et al., 2009). While defects in a single 

gene contribute to around 1-2% of the cases of SLE, the strongest single-gene defect 

which confers a high risk for SLE is the homozygous deficiency of C1q and C4 (Moser et 

al., 2009; Sestak et al., 2011). Lack of C1q or C4 has been suggested to be associated 

with compromised elimination of apoptotic materials and autoreactive B cells due to 

defective phagocytosis which leads to the enhanced stimulation of alloreactive T cells 

and subsequent interferon (IFN) γ production by the myeloid dendritic cells (DC) 

(Castellano et al., 2007).  

In most cases, however, the higher risk of development of SLE is conferred by the 

cumulative effect of a number of SLE susceptibility genes and/or mutations rather than 

single gene defects. Early studies using candidate gene association analysis identified a 

number of at-risk genes for SLE including those encoding the major histocompatibility 

complex (MHC) class II (DR2 and DR3), tumor necrosis factor alpha (TNF α) and the 

early complement components (Sestak et al., 2011). With the recent advent of high-

throughput genotyping technology, several genome-wide association studies (GWAS) 

identify a number of chromosome loci and genes associated with the increased 

susceptibility of SLE (Graham et al., 2008; Han et al., 2009; Harley et al., 2008; Hom et 
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al., 2008; Kozyrev et al., 2008; Yang et al., 2010). Functional studies have revealed the 

mechanisms by which some of these chromosome loci or genes are linked to the 

predisposition of SLE. For example, integrin alpha M (ITGAM), also known as CD11b or 

complement receptor 3, is one of the important components involved in complement 

cleavage and clearance of immune complex. A single nucleotide polymorphism (SNP) in 

the third exon of ITGAM (rs1153679) was shown to increase nephritis and discoid in 

lupus patients (Kim-Howard et al., 2010). The signal transducer and activator of 

transcription 4 (STAT4) transmits signals from receptors for IFN and interleukin (IL) and 

contributes to autoimmune responses. Located in the third intron of  STAT4, rs7574865 

has consistently been found to correlate with younger age of SLE onset, increased 

frequency of nephritis and the presence of anti-dsDNA antibodies (Kawasaki et al., 2008; 

Palomino-Morales et al., 2008; Sigurdsson et al., 2008). Involved in immune signal 

transduction, tumor necrosis factor superfamily member 4 (TNFSF4) is mainly expressed 

on the antigen-presenting cells (APC). Increased expression of TNFSF4 influences the 

susceptibility of SLE via either extended interaction between T cells and APCs or 

altering the consequence of T cell activation (Cunninghame Graham et al., 2008). A 

tagging SNP (rs2205960) which is located upstream of TNFSF4 correlates with increased 

expression of TNFSF4 and increases the susceptibility of SLE (Chang et al., 2009; 

Cunninghame Graham et al., 2008; Han et al., 2009). In addition to gene polymorphisms, 

copy number variations of certain genes, such as C4 and toll-like receptor (TLR) 7, have 

been linked to the increased risk for the development of SLE (Blanchong et al., 2001; 

Kelley et al., 2007).  
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Besides the impact of genetics on the pathogenesis of SLE, epigenetic regulation 

of gene expression via DNA methylation and histone acetylation has been shown to be 

involved in the development of SLE. Hydralazine and procainamide, which inhibit DNA 

methylation, are capable of inducing lupus-like manifestations in healthy individuals 

(Ballestar et al., 2006). For instance, demethylation of cluster of differentiation (CD)11a 

and CD70 was shown to confer the susceptibility of SLE (Ballestar et al., 2006). In lupus 

T helper (Th) cells, the histone deacetylase inhibitor trichostatin A (TSA) has been found 

to restore the default expression of CD40 ligand (CD40L), resulting in the rebalance of 

IL-10 and IFN γ production (Mishra et al., 2001).   

 Female hormones & Gender 

SLE has a predilection for women of child-bearing age. The female-to-male ratio 

is approximately 9 to 1 in adult SLE patients although the gender gap approximates in 

pediatric and late-onset SLE patients. Pregnancy and hormonal replacement therapy may 

increase the chance of disease flare (Buyon et al., 2005; Petri, 1997; Ruiz-Irastorza et al., 

1996). These observations suggest that female hormones are likely to be involved in the 

pathogenesis of SLE. It has been postulated that the high estrogen to androgen ratio in 

females confers a higher risk for SLE through the inhibition of Th1 responses and 

upregulation of CD40L in T cells which favors the Th2 responses, leading to enhanced B 

cell responsiveness and autoantibody production (Mok & Lau, 2003). Of note, the X 

chromosome appears to contribute to the increased susceptibility of SLE independent of 

the physiological effects of female hormones. In genetically modified rodent models with 

the expression of XX, XO, or XXY, the presence of two X chromosomes confers 

elevated severity of SLE (Smith-Bouvier et al., 2008). This observation further supports 
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the role of CD40 in the pathogenesis of SLE because the CD40 gene is located on the 

chromosome X (Fuleihan et al., 1993). 

Immune dysregulation 

In SLE, T cells activation is aberrant, which is partially secondary to the alteration 

in T cell receptor signaling. CD3 complex is engaged in a fashion that leads to enhanced 

early signaling responses and consequent T cell activation (Crispin et al., 2008). The 

aggregation of lipid rafts on the cell surface membrane further amplifies the enhancement 

of T cell activation in patients with SLE (Li et al., 2007). Furthermore, cytokine 

physiology of lupus patients is dysregulated. For instance, IL-2, which is central to T cell 

activation and proliferation, is deficient in lupus T cells (Crispin et al., 2008). Insufficient 

production of IL-2 leads to defective activity of cytotoxic T cells, suppression of 

activation-induced cell death and  prolongation of the survival of autoreactive T cells in 

lupus patients (Crispin et al., 2010). As the chief member of the IL-17 family of 

cytokines, IL-17 demonstrates proinflammatory properties and functions on various types 

of immunocytes in that it is capable of inducing the production of proinflammatory 

cytokines and chemokines, resulting in recruitment of monocytes and neutrophils to the 

vicinity of inflammation (Korn et al., 2009). IL-17 is primarily produced by activated T 

cells and critically involved in immune response against various bacteria and fungi (Korn 

et al., 2009). Patients with SLE demonstrated elevated levels of serum IL-17 and the 

levels of serum IL-17 has been demonstrated to correlate with lupus activity (Doreau et 

al., 2009).  
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Low number and hyperactivity are predominant abnormalities observed in lupus 

B cells (Crispin et al., 2010; Scheinberg & Cathcart, 1974), although lymphopenia is not 

restricted to lupus B lymphocytes since reduced number of circulating T cells has also 

been observed in patients with SLE (Scheinberg & Cathcart, 1974; Schulze-Koops, 2004). 

The number of naïve B cells is reduced in a disease activity-dependent manner, whereas 

the number of plasma cells increases in the peripheral blood of SLE patients (Odendahl et 

al., 2000). In addition, autoreactive B cells can escape immune surveillance while passing 

through various immune tolerance checkpoints without being deleted (Kumar et al., 

2006), and this phenomenon may result in over-production of autoantibodies in patients 

with SLE (Crispin et al., 2010; Yurasov et al., 2006). Furthermore, the number of DNA-

binding B cells which correlate with disease activity, increases regardless of  antigen 

exposure (Jacobi et al., 2009). 

DCs play a critical role in the development of immune responses against infection 

and malignancies but the dysfunction of DCs may lead to amplification of immune 

responses in autoimmune conditions such as SLE (Crispin et al., 2010). The presence of 

IFN α, CD40L, free nucleosomes and autoantibody-DNA complex in lupus sera is able to 

induce differentiation and activation of normal DCs (Blanco et al., 2001; Decker et al., 

2005; Means et al., 2005). Quantitative and functional abnormalities of circulating 

plasmacytoid DCs (pDCs) and myeloid DCs (mDCs) have been revealed in patients with 

SLE (Ding et al., 2006; Gerl et al., 2010; Jin et al., 2010; Jin et al., 2008). Increased 

number of circulating pDCs was found in lupus patients (Jin et al., 2008). Lupus pDCs 

were demonstrated to reduce the differentiation of regulatory T cells and lead to altered 

cytokine profile as indicated by the persistently elevated production of IL-10 in SLE 
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patients (Jin et al., 2010). Furthermore, pDCs stimulate the production of type I IFN 

(Crispin et al., 2010), and upon exposure to IFN α, IFN-inducible genes including the Fas, 

TNF-related apoptosis-inducing ligand (TRAIL) and B cell activating factor (BAFF), 

which are significantly involved in lupus pathogenesis (de Veer et al., 2001), were found 

to be up-regulated in patients with SLE (Feng et al., 2006). On the other hand, the 

number of circulating mDCs was found to be reduced in lupus patients (Jin et al., 2008). 

Lupus mDCs are characterized by accelerated differentiation, maturation and increased 

secretion of proinflammatory cytokines which are reflected by the increased expression 

of DC differentiation marker (CD1a), maturation markers (CD86 and CD80) and IL-8 

respectively (Ding et al., 2006). Since lupus mDCs are capable of enhancing the 

proliferation and activation of allogeneic T cells in a more vigorous fashion than those of 

healthy individuals, such phenotypic abnormalities of mDCs might be functionally 

associated with the pathogenesis of SLE (Ding et al., 2006).  

Environmental triggers 

Smoking and ultraviolet light exposure were identified to be risk factors for the 

development of SLE (Furukawa et al., 1990; Simard et al., 2009). In addition, a number 

of organic and inorganic chemical agents such as aromatic amines (Reidenberg, 1981), 

trichloroethylene (Kilburn & Warshaw, 1992), insecticide (Beer et al., 1994), silicone 

(Press et al., 1992), gold (Robinson et al., 1986; Silverberg et al., 1970), mercury 

(Robinson et al., 1986) and cadmium (Ohsawa et al., 1988) were also suggested to be 

potential triggers of SLE. Epigenetic alterations observed in SLE might be attributed to 

medications and other potential environmental factors associated with lupus (Ballestar et 

al., 2006; Crispin et al., 2010). The possible role of viral infection in the development of 
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SLE has long been advocated (James & Robertson, 2012). Significantly higher 

seropositivity (Tsokos et al., 1983) and increased viral load of the Epstein-Barr virus 

(EBV) have been found in both pediatric and adult SLE patients (Kang et al., 2004). It 

has been suggested that molecular mimicry between viral proteins and certain self-

antigens enables specific immune responses to cross-react with self-antigens (Crispin et 

al., 2010; James & Robertson, 2012). For example, antibodies against Epstein-Barr 

nuclear antigen can cross-react with a few highly specific lupus-associated autoantigens 

such as Sm B/B', and Sm D1(James & Robertson, 2012; Poole et al., 2006). 

In summary, the complex interplay between genetics, epigenetics, female 

hormones, immune regulation and environment may pose impact on immune tolerance in 

a sequential or simultaneous manner, leading to the production of autoreactive 

lymphocytes, autoantibodies, immune complexes, and subsequent proinflammatory 

cytokines (see Figure 1.1). These cells and mediators initiate and perpetuate 

inflammation and potentially lead to damage of various organs and systems.  
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1.1.3 Management of SLE – brief overview 

Due to the broad array of symptoms and signs and organ involvement in patients 

with SLE, the choice of treatment strategy must be tailored based on individual clinical 

characteristics such as organs and systems involved, disease severity and damage and 

baseline organ function. Currently, nonsteroidal anti-inflammatory drugs (NSAIDs), 

antimalarial agents, glucocorticoids and various immunosuppressants such as 

cyclophosphamide, azathioprine, cyclosporine and mycophenolate mofetil are commonly 

prescribed to treat SLE patients (Tsokos, 2011). NSAIDs have been proved to be useful 

in lupus patients with mild disease such as arthralgia and mild serositis. In patients with 

more active disease, such as proliferative glomerulonephritis, neuropsychiatric and severe 

hematological manifestations, potent immunosuppressants such as cyclophosphamide, 

mycophenolate and cyclosporine in combination with glucocorticoids remain the 

mainstay of treatment for SLE (Ballinger, 2012). Recently, biologics such as rituximab 

and belimumab have been increasingly used in the treatment of SLE, particularly if 

patients fail to respond to conventional immunosuppressive agents. While further 

discussion on lupus management is beyond the scope of this thesis, it must be stressed 

that clinicians taking care of lupus patients should be vigilant of the development of 

organ damage of their patients because SLE per se and its treatment can lead to chronic 

damage accrual, such as osteoporosis, diabetes mellitus and cardiovascular disease 

(Demas et al., 2010). 

1.2 Neuropsychiatric SLE 

1.2.1 Epidemiology and clinical classification 



14 

 

Disturbance of the central (CNS) and peripheral nervous systems (PNS) has been 

identified in patients with SLE (Lahita, 2011). Many patients develop some forms of 

neuropsychiatric SLE (NPSLE) of varying severity and the presence of NPSLE correlates 

with duration of the disease (Aranow et al., 2010). Epidemiologic studies showed that the 

prevalence of neuropsychiatric events among patients with SLE ranged from 37 to 95% 

(Ainiala et al., 2001; Brey et al., 2002; Hanly et al., 2004; Sanna et al., 2003b; Sibbitt et 

al., 2002). Moreover, NPSLE has been identified as one of the two major factors which 

slows the improvement of survival in patients with SLE in the past 50 years (Mak et al., 

2012). However, the complexity and the relatively restricted accessibility to the nervous 

system render characterization and attribution of CNS involvement in SLE difficult. The 

criteria for classification of NPSLE classification had not been established until the ACR 

Ad Hoc committee designated 19 different neuropsychiatric manifestations attributable to 

SLE in 1999 (Anonymous, 1999). These ACR case definitions of NPSLE consist of 12 

CNS and 7 PNS manifestations (see Table 1.2). For each of these presentations, a 

summary of non-SLE causes and guidelines for ascertainment by laboratory tests and 

imaging techniques are provided to help determine the cause of neuropsychiatric events 

in patients with SLE.   

Although the ACR case definitions have improved the classification of NPSLE in 

clinical studies, their applications in clinical practice remains challenging. It is important 

to be aware that none of the defined syndromes are unique to SLE. Around two-thirds of 

neuropsychiatric events observed in lupus patients are attributable to non-SLE causes 

(Aranow et al., 2010). Effective application of the ACR criteria for NPSLE depends on 

the correct attribution of neuropsychiatric symptoms. Three particular conditions 
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including CNS infections, thrombotic thrombocytopenic purpura and posterior reversible 

encephalopathy syndrome require attention and exclusion where appropriate because 

these conditions may mimic CNS disease in patients with SLE (Aranow et al., 2010). 

Given the low specificity of ACR case definitions of NPSLE (Ainiala et al., 2001), 

classification based on anatomical location of neurological injury (Sanchez-Guerrero et 

al., 2008) and categorization into diffuse and focal diseases (Hanly, 2007) have been 

proposed. However, the clinical applicability of these alternative classification criteria 

requires further studies.  

Table 1.2 ACR case definitions of NPSLE 

Central nervous system Peripheral nervous system 

Aseptic meningitis Guillain–Barré syndrome 

Cerebrovascular disease Autonomic neuropathy 

Demyelinating syndrome Mononeuropathy 

Headache Myasthenia gravis 

Movement disorder Cranial neuropathy 

Myelopathy Plexopathy 

Seizure disorders Polyneuropathy 

Acute confusional state  

Anxiety disorder  

Cognitive dysfunction  

Mood disorder  

Psychosis  

Source: ACR, 1999 
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1.2.2 Common manifestations of NPSLE 

Although the reported frequency of overall neuropsychiatric events using the 

ACR case definitions varies (37-95%), similar frequency of neuropsychiatric events have 

been identified in different SLE cohorts, including cognitive dysfunction (55-80%), 

headache (20-72%), mood disorders (10-57%), seizure (6-51%), cerebrovascular disease 

(5-18%) and anxiety (4-24%) (Ainiala et al., 2001; Bertsias & Boumpas, 2010; Brey et al., 

2002; Hanly et al., 2004; Sanna et al., 2003b; Sibbitt et al., 2002). Of note, nearly half of 

all the 19 neuropsychiatric syndromes including cranial neuropathy, mononeuropathy, 

aseptic meningitis, movement disorders, demyelinating syndrome, Guillain–Barré 

syndrome, autonomic disorder, myasthenia gravis and plexopathy account for a 

frequency of less than 1% of patients with SLE (Bertsias & Boumpas, 2010).  

Headache 

The association between SLE and headache is debatable. Although headache 

(including migraine) is prevalent in SLE, a meta-analysis of epidemiological studies 

failed to demonstrate an increased frequency of headache in lupus patients in comparison 

with healthy subjects. Likewise, it was unable to demonstrate which subtypes of 

headache are more specific for SLE (Mitsikostas et al., 2004). Aspetic meningitis has 

been identified to cause headache in patients with SLE (Kanekura et al., 1993; Lancman 

et al., 1989). Anti-PL antibodies have been revealed to be associated with chronic 

headache in patients with SLE (Sanna et al., 2003a), but the association between anti-PL 

antibodies and migraine in patients with SLE remains inconclusive (Sanna et al., 2003a). 

It has been suggested that headache might be a common component of active lupus and it 
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likely results from non-SLE factors. With careful history taking and physical examination, 

lupus patients with headache might not require investigation more than that required for 

non-SLE individuals with headache (Bertsias & Boumpas, 2010; Lahita, 2011).  

Mood disorder & Anxiety 

Mood and anxiety disorders are common symptoms in SLE (Bachen et al., 2009; 

Mak et al., 2011; Miguel et al., 1994; Utset et al., 1994). Mood and anxiety disorders in 

lupus patients have been demonstrated to be associated with psychological and social 

factors but not with disease activity of lupus (Shortall et al., 1995). Cytokines, especially 

INF γ, have been revealed to be related to anxiety in lupus patients (Figueiredo-Braga et 

al., 2009). Since the features of mood disorder and anxiety observed in SLE patients do 

not differ from that in non-SLE conditions, it requires no additional assessment which is 

necessary for mood disorder and anxiety in non-SLE individuals.  

Seizures 

In patients with SLE, the majority of seizures occur as generalized seizures and 

only a minority of them is related to focal neurological events (Lahita, 2011). Seizures 

usually occur in lupus patients during active disease and only a minority of cases lupus-

related seizures persist as a chronic disorder (Lahita, 2011). The presence of stroke and 

anti-PL antibodies is associated with seizures (Mikdashi & Handwerger, 2004; Sanna et 

al., 2003b). Although electroencephalography (EEG) and brain magnetic resonance 

imaging (MRI) are the main investigations of choice to evaluate seizures in lupus patients 

(Bertsias & Boumpas, 2010), another potential cause of seizures such as drugs, metabolic 

disturbance, renal dysfunction, CNS infection and reversible posterior encephalopathy 
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are required to be excluded by appropriate investigation if necessary (Beleza, 2012). 

Further discussion of these investigations will be out of the scope of this thesis. 

Cerebrovascular disease 

Patients with SLE have been shown to have an increased risk for cerebrovascular 

events when compared to the age- and sex-matched general population (Esdaile et al., 

2001; Ward, 1999). Cerebrovascular accidents are broadly classified into ischemic and 

hemorrhagic stroke. More than 80% of cerebrovascular accidents in SLE patients are 

ischemic in nature, while the frequencies of multifocal disease, intracerebral hemorrhage 

and subarachnoid hemorrhage are between 3 and 12% (Bertsias & Boumpas, 2010). The 

management of cerebrovascular disease in SLE does not differ significantly from that of 

the non-SLE populations. An exception is that if lupus patients who suffer from stroke 

are positive for anti-PL and/or lupus anti-coagulant (LAC) antibodies for more than once 

at least 3 months apart, anticoagulation may be more beneficial than antiplatelet agents 

alone in reducing the probability of recurrent stroke (Furie et al., 2011).    

1.3 Cognitive dysfunction in SLE 

1.3.1 Overview 

Definition 

Cognition is the sum of intellectual functions including reception of external 

stimuli, information processing, learning, storage and expression that result in thought, 

which can be categorized into various domains including attention, memory, learning, 

reasoning, executive function, language, visuoperception, sensory-motor, judgment and 
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insight (Harrison & Ravdin, 2002; Kozora et al., 2008b). Individuals who have 

disturbance of any of these domains can be said to have cognitive dysfunction. 

Dysfunction in attention, information processing, learning and memory, visuospatial 

activities, executive function, abstract thinking and psychomotor speed are commonly 

described in the patients with SLE (Kozora et al., 2008b). The scale of cognitive 

dysfunction may be restricted to a certain cognitive domains or extended to a number of 

domains, depending on the properties of the pathogenic insults (Harrison & Ravdin, 

2002).   

Epidemiology 

The awareness of the high prevalence of cognitive dysfunction in SLE has been 

well established since the first study was reported by Carbotte and colleagues in the mid-

1980s (Carbotte et al., 1986). In their study, 62 female patients with SLE underwent a 

comprehensive test battery for assessment of cognitive function, which comprised the 

Wechsler Adult Intelligence Scale (WAIS), Wechsler Memory Scale, Consonant 

Trigrams, Rey Auditory-Verbal Learning Test, Rey-Osterrieth Complex Figure Drawing, 

Token Test, Trail Making Test, Stroop Color-Word Interference Test, Design Fluency 

Test, Benton Controlled Word Association Test, Animal Naming Test, Finger Tapping 

Test and Handedness Questionnaire (Carbotte et al., 1986). Sixty-six percent of the 62 

patients showed cognitive dysfunction, which was significantly higher than that in 

patients with rheumatoid arthritis (17%) and healthy individuals (14%) (Carbotte et al., 

1986).  Subsequent epidemiological studies in SLE have found that cognitive dysfunction 

is the commonest NPSLE manifestation, which ranges from 55% to 80% (Ainiala et al., 

2001; Bertsias & Boumpas, 2010; Brey et al., 2002; Hanly et al., 2004; Sanna et al., 
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2003b; Sibbitt et al., 2002). In addition, subclinical cognitive dysfunction was shown to 

occur between 11 and 54% of lupus patients in a comprehensive review of 14 cross-

sectional studies (Denburg & Denburg, 2003). Subclinical cognitive dysfunction was 

revealed in lupus patients without clinically overt neuropsychiatric symptoms who 

demonstrated poorer performance in cognitive tasks assessing attention, verbal memory 

and logical reasoning than healthy individuals (Kozora et al., 2008a; Kozora et al., 1996; 

Monastero et al., 2001).  

Impact of cognitive dysfunction of SLE on employment and quality of life 

Given the high prevalence of clinical and subclinical cognitive dysfunction in 

lupus patients, the impact of cognitive dysfunction on employment, functional outcome, 

and health-related quality of life (HRQoL) in patients with SLE has been extensively 

evaluated in a number of cross-sectional and cohort studies. HRQoL refers to specific 

aspects of quality of life that relates to an individual’s physical and psychosocial well-

being which includes the components of physical functioning, social functioning, role 

functioning, mental health and general health. Cognitive dysfunction has been identified 

as one of the major contributors to poor HRQoL in both pediatric and adult lupus patients 

(Kiani & Petri, 2010; Williams et al., 2011) and lupus patients were consistently shown 

to have significantly lower HRQoL scores when compared with age- and gender-matched 

healthy individuals (Sweet et al., 2004). Lupus patients, who demonstrate cognitive 

dysfunction particularly in the form of memory deficit, are more likely to report being 

incapable of working (Panopalis et al., 2007; Utset et al., 2006). In addition, memory 

impairment is correlated with the likelihood of unemployment in these patients 

(Panopalis et al., 2007). Furthermore, self-reported memory impairment and anxiety and 
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depressive symptoms, which are highly prevalent in SLE patients with the reported 

frequencies of around 51 and 74% respectively, have been identified to be two of the 

major factors associated with work disabilities (Mok et al., 2008).  

Lupus patients with cognitive dysfunction often pose challenges to their attending 

physicians regarding diagnosis and management. Cognitive dysfunction is not specific to 

SLE. A number of non-SLE causes of cognitive dysfunction have been identified to be 

present in patients with SLE, such as cerebral ischemia and hemorrhage, hypertension, 

endocrinopathies, fever, antidepressants, anxiety, depression, metabolic disturbances, 

pain, fatigue and sleep disturbance (Hanly & Harrison, 2005).  These factors must be 

addressed where appropriate and excluded before attributing cognitive dysfunction to 

SLE.  

1.3.2 Potential pathogenic mechanisms of cognitive dysfunction 

1.3.2.1 Autoantibodies 

ANA 

Findings from human studies regarding the relationship between the presence of 

ANA in the serum, cerebrospinal fluid (CSF) and occasionally neural tissue of patients 

with SLE have provided circumstantial evidence of how ANA is involved in the 

pathogenesis of neuropsychiatric syndromes in SLE (Bluestein et al., 1981; Hanly, 2005; 

Weiner et al., 2000a; Zvaifler & Bluestein, 1982). However, the association between 

ANA and cognitive dysfunction in SLE remains unclear (Denburg et al., 1987; Hanly et 

al., 1993; Papero et al., 1990). Direct involvement of ANA in cognitive dysfunction has 
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been revealed in animal studies, in which intracranial injection of ANA induced memory 

impairment, seizures and neuropathological alterations (Hanly, 2005). 

Anti-NR2 antibodies 

Anti-NR2 antibodies recognize the specific N-methyl-D-aspartate receptor 

(NMDAR) which consist of the NR2a and NR2b subunits and are most densely 

populated in the hippocampus and amygdala (Li & Tsien, 2009). Significantly higher 

levels of anti-NR2 antibodies have been found in the CSF of lupus patients with NPSLE 

compared to SLE patients without NPSLE and healthy individuals (Lauvsnes & Omdal, 

2012). Serum levels of anti-NR2 antibodies were also found to be higher in patients with 

NPSLE than those in SLE patients without neuropsychiatric syndromes and healthy 

controls in a number of studies, but results were inconsistent (Lauvsnes & Omdal, 2012). 

More information about anti-NR2 antibodies will be discussed in the subsequent section 

of this thesis.  

Anti-PL antibodies 

Anti-PL antibodies predominantly direct against anionic phospholipids and 

phospholipid-binding proteins, and are associated with focal neuropsychiatric syndromes, 

such as cerebrovascular accidents and focal seizures (Love & Santoro, 1990; Sanna et al., 

2003b). So far, anti-PL antibodies, in particular, anti-cardiolipin (aCL) antibody and LAC, 

have been extensively studied in patients with NPSLE (Colasanti et al., 2009). 

Pathogenic aCL antibody was able to cause cognitive dysfunction in rodent models (Sun 

et al., 1992; Ziporen et al., 2004). In patients with SLE, the association between aCL 

antibody and poor psychomotor speed, conceptual reasoning and executive function has 
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been demonstrated (Hanly et al., 1999; Lai & Lan, 2000; Menon et al., 1999). The effect 

of aCL antibody in cognitive dysfunction is possibly via thrombosis of intracranial 

vasculatures (Lahita, 2011) or microvasculopathy characterized by endothelial 

proliferation and fibrinoid necrosis (Hanly et al., 1992b). In addition, lupus patients who 

were positive for LAC yielded significantly higher risk for cognitive dysfunction when 

compared with those who were negative for LAC (Denburg et al., 1997). The association 

was suggested to be mediated via micro-thrombotic abnormalities or vasculopathy 

(Colasanti et al., 2009).  

  Anti-intermediate neurofilament alpha-internexin antibodies 

Intermediate neurofilament alpha-internexin (INA) forms the type IV intermediate 

neurofilament (IF) throughout the development of CNS and PNS and has only been 

found in the CNS of the adulthood in murine models (Fliegner et al., 1990; Lee & 

Cleveland, 1994; Yuan et al., 2006). Murine models immunized by INA of the human 

sequence were demonstrated to have lupus-like cognitive dysfunction and hippocampal 

neuronal death (Lu et al., 2010). Furthermore, in patients with NPSLE, INA has been 

identified as a potential autoantigen associated with neuropsychiatric symptoms (Kimura 

et al., 2008). High titers of anti-INA antibodies have been found in both sera and CSF of 

around 50% of 67 lupus patients with NPSLE in a recent study (Lu et al., 2010). 

Moreover, the levels of both CSF and serum anti-INA antibodies were associated with 

cognitive dysfunction in these patients assessed by the mini-mental state examination (Lu 

et al., 2010).  

1.3.2.2 Inflammatory mediators 



24 

 

Cytokines 

Cytokines function as inflammatory mediators. Early studies identified the 

associations between a number of pro-inflammatory cytokines in the CSF including IL-2, 

IL-6, IL-8, IL-10 and INF α and neuropsychiatric manifestations in patients with SLE 

(Gilad et al., 1997; Hanly, 2007; Shiozawa et al., 1992). Serum C-reactive protein, a non-

specific marker of inflammation, was demonstrated to correlate with poor performance in 

neuropsychological test that assessed executive function in patients with SLE (Shucard et 

al., 2007). Serum IL-6 which has been shown to be elevated in patients with active lupus, 

was demonstrated to be associated with learning impairment in lupus patients even after 

adjusting for depression and corticosteroid use (Kozora et al., 2001). It has been 

suggested that the association between IL-6 and cognitive dysfunction in patients with 

SLE might be mediated via neuronal and astrocytic degradation in the brain parenchyma 

(Fragoso-Loyo et al., 2007).  

Matrix metalloproteinases 

Matrix metalloproteinases (MMP), which belong to the family of endoperoxidases 

responsible for degrading extracellular matrix components (Birkedal-Hansen et al., 1993), 

are important inflammatory mediators of NPSLE. MMP-9 critically involves in the 

disruption of the blood-brain barrier (BBB), whereas the tissue inhibitor of 

metalloproteinases (TIMP) 1 plays a key role in stabilization of the BBB (Nagase et al., 

2006). Serum level of MMP-9 is elevated in patients with Guillain–Barré syndrome and 

is correlated with disease severity of lupus (Creange et al., 1999). Serum and CSF of 

MMP-9 levels were shown to be elevated in lupus patients with cognitive dysfunction 
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when compared with those without NPSLE (Ainiala et al., 2004; Trysberg et al., 2004). 

The association between cognitive dysfunction and increased levels of MMP-9 was 

suggested to be related to CNS damage induced by neuronal and astrocytic degradation, 

cerebral micro-vasculopathy, cerebral ischemia and disruption of the BBB (Ainiala et al., 

2004; Kozora et al., 2008b; Trysberg et al., 2004).  

1.3.2.3 Neuropeptides 

The role of vasopressin on cognition has been studied in rodent models and 

humans (Bennett et al., 1997; Zink & Meyer-Lindenberg, 2012). Animal studies 

demonstrated an association between vasopressin and attention and memory (de Wied & 

van Ree, 1982; Insel et al., 1999; Strupp & Levitsky, 1985). Murine models with deletion 

of a single nucleotide in the second exon of the vasopressin gene demonstrated deficits of 

attention and working memory (Colombo et al., 1992; Insel et al., 1999), although the 

mechanisms underlying these observations remain unknown. In humans, vasopressin has 

been suggested to affect emotional processing by modulating the activity and 

connectivity of a neural circuit connecting the medial prefrontal cortex and the amygdala 

(Zink et al., 2010). Increased hypothalamic expression of vasopressin was demonstrated 

in the MRL/lpr mouse model (Sakic et al., 1999) , which is an acceptable animal models 

for NPSLE (Gulinello & Putterman, 2011). Serum levels of vasopressin have been 

demonstrated to be increased in lupus patients with cognitive dysfunction but the 

mechanism underlying this observation remains unknown (Lapteva et al., 2006b).   

1.3.2.4 Genetics 
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The genetic association with neuropsychiatric manifestation in patients with SLE 

has been investigated in a number of studies (Johansson et al., 2005; May et al., 2002; 

Nath et al., 2002; Oroszi et al., 2006; Pullmann et al., 2004; Rood et al., 1999). 

Polymorphisms of the apolipoprotein E, IL-10, TNF α and systemic lupus erythematosus 

susceptibility 3 genes have been identified to be associated with overall neuropsychiatric 

events in SLE patients (May et al., 2002; Nath et al., 2002; Pullmann et al., 2004; Rood et 

al., 1999), but their association with specific aspects of NPSLE remains unknown. The 

Met66 allele of Val66Met polymorphism located within the brain-derived neurotrophic 

factor (BDNF) gene has been found to be associated with better psychomotor and motor 

function in patients with SLE, suggesting a protective effect of BDNF Met66 allele on 

specific cognitive domain in these patients (Oroszi et al., 2006). Moreover, cognitive 

dysfunction has been shown to be related to the AA and TT genotype of the Xbal A/G 

polymorphism in the first intron of the estrogen receptor alpha gene in patients with SLE 

(Johansson et al., 2005). Despite that the aforementioned findings support the potential 

impact of genetic association on cognitive dysfunction in SLE patients, neither have the 

identified gene polymorphisms in SLE patients been evaluated for their relationship with 

cognitive function in the general or non-SLE population, nor have these results been 

replicated in independent studies (Kozora et al., 2008b). Thus the role of genetic factors 

in lupus-related cognitive dysfunction still needs to be cautiously interpreted (Kozora et 

al., 2008b).  

Taken together, interactions of a number of factors including autoantibodies, 

inflammation mediators, neuropeptides and gene polymorphisms lead to insufficient 

elimination of antigen-autoantibody complexes, abnormal production of pro-



27 

 

inflammatory cytokines and the disturbance of the integrity of the BBB. These 

abnormalities may subsequently contribute to the pathogenesis of cognitive dysfunction 

in patients with SLE (Kozora et al., 2008b) (see Figure 1.2).  

 

1.3.3 Neuropsychiatric assessment of cognitive dysfunction in patients with SLE  

The ACR proposed a one-hour battery of comprehensive neuropsychological tests 

to aid clinicians and researchers to evaluate cognitive function in patients with SLE (see 

Table 1.3). This battery encompasses the evaluation of simple attention, complex 

attention, memory, visual-spatial processing, language, reasoning and/or problem solving, 

psychomotor speed and executive function (Anonymous, 1999). Disturbance of at least 

one of the eight domains is required to satisfy the ACR case definition for cognitive 

dysfunction (Anonymous, 1999), while the requirement for the involvement of three or 

more domains has been suggested to be defined as cognitive dysfunction by another 
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study (Ainiala et al., 2001).  The reliability and validity of the ACR neuropsychological 

battery have been tested and the threshold of cognitive dysfunction have been empirically 

determined in lupus patients in comparison with healthy individuals (Kozora et al., 2004). 

Despite the comprehensiveness of these tests, the clinical applicability of ACR case 

definition is restricted by multiple factors. For instance, these tests require specialized 

training of administers and are prone to practising effects, not mentioning that it takes at 

least 1 hour to be completed (Lahita, 2011). Thus far, this battery has been employed in a 

few studies (Harrison et al., 2005; Jung et al., 2012; Kozora et al., 2007; Kozora et al., 

2006), but it has yet to gain universal recognition. In addition, this battery cannot be 

utilized for clinical decision-making although it benefits population-based studies by 

offering standardization of the definition of cognitive dysfunction (Hanly & Fisk, 2011).         

Table 1.3 ACR one-hour neuropsychological battery for SLE 

North American adult reading test (to estimate premorbid IQ) 

Digit symbol substitution test 

Trail making test (Parts A and B) 

Stroop color and word test 

California verbal learning test 

Rey-Osterrieth complex figure test (with delayed recall) 

WAIS III Letter-number sequencing 

Controlled oral word association test (FAS) 

Animal naming 

Finger tapping 

Adapted from ACR, 1999 



29 

 

On the contrary, computer-based neuropsychological tests offer the advantages of 

being rapid and efficient in screening for cognitive dysfunction without special training 

of administers (Lahita, 2011).   The Automated Neuropsychological Assessment Metrics 

(ANAM), consisting of a modified version of standard neuropsychological tests which 

evaluate basic information processing speed, attention, learning and memory and 

executive function  (Bleiberg et al., 2000; Kane et al., 2007; Reeves et al., 2007), has 

been used in a number of studies addressing cognitive dysfunction in both pediatric and 

adult lupus patients (Antonchak et al., 2011; Benedict et al., 2008; Brey et al., 2002; 

Brunner et al., 2007; Hanly et al., 2010; Kane et al., 2007; McLaurin et al., 2005; Petri et 

al., 2008; Roebuck-Spencer et al., 2006). Furthermore, the ANAM is less dependent on 

the proficiency of English and reading ability as compared to the ACR proposed 

neuropsychological test battery. The ANAM has been demonstrated to possess strong 

agreements with the performance on the ACR proposed neuropsychological battery, 

especially the trail making test, stroop color and word test, and the digital symbol test 

(Roebuck-Spencer et al., 2006). However, practising effect has been suggested to 

confound the interpretation of ANAM (Bleiberg et al., 2004) and the ANAM may lack 

sufficient sensitivity to detect certain aspects of cognitive dysfunction such as impairment 

of memory, language and visuospatial function (Kozora et al., 2008b). 

Apart from the comprehensive battery tests, neuropsychological tests which 

assess individual cognitive skill including the N-Back for working memory, verb 

generation task for language, continuous performance task for attention, and the 

Wisconsin Card Sorting Test (WCST) for executive function, have been utilized to study 

cognitive dysfunction in patients with SLE (Cavaco et al., 2012; Dahl et al., 2006; 
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Fitzgibbon et al., 2008; Shucard et al., 2011). Combination of these tests with 

neuroimaging techniques such as functional magnetic resonance imaging (fMRI) may 

help to elucidate the pathogenic mechanisms of the impairment of specific cognitive 

domain, regardless of whether the cognitive impairment is clinically overt or unapparent.  

1.3.4 Neuroimaging studies of cognitive dysfunction in patients with SLE 

Various neuroimaging tools have been used to study a number of aspects of 

cognitive dysfunction in patients with SLE by assessing the anatomical structure and 

function of the brain. Structural neuroimaging, such as MRI and magnetization transfer 

imaging (MTI), as well as functional neuroimaging techniques including positron 

emission tomography (PET), single-photon-emission computed tomography (SPECT), 

magnetic resonance spectroscopy (MRS) and fMRI are most frequently employed in 

studies of SLE patients (Kozora et al., 2008b). 

The mechanism of the MRI technique is based on the fact that water is abundant 

in the tissue of human body  (Novelline & Squire, 1997). By utilizing the physical 

property of water molecules which contain hydrogen nuclei or protons, a powerful 

magnetic field is deployed to align the magnetization of the protons and a radio frequency 

field is used to alter the magnetization (Novelline & Squire, 1997). Under this 

circumstance, the protons generate a rotating magnetic field recorded by an MRI scanner 

and the images of the scanned region are constructed based on the relative difference in 

the water content of different tissues (Novelline & Squire, 1997). Conventional MRI is 

able to identify periventricular white matter hyperintensities, infarcts, hemorrhages, 

cerebral atrophy and small focal lesions in the brain (Abreu et al., 2005; Kozora et al., 
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1998; Sailer et al., 1997; West et al., 1995). However, neither the number of white matter 

hyperintensities nor the number and size of white matter lesions were found to be 

correlated with cognitive dysfunction in SLE (Abreu et al., 2005; Kozora et al., 1998).  

MTI is an MRI-related technique which quantifies the capacity that the proteins in 

myelin have to exchange magnetization with the surrounding water molecules (Gochberg 

& Gore, 2007). Magnetization transfer ratio (MTR) can be calculated from the MTI 

images and has been proven to be a sensitive marker for pathological changes in the grey 

matter and “disease burden” in the normal-appearing white matter in a number of 

neurological disorders such as schizophrenia, dementia and multiple sclerosis (MS) 

(Bosma et al., 2000; Dousset et al., 1997; Filippi & Rovaris, 2000; Gupta et al., 1999; 

Inglese et al., 2001; Symms et al., 2004). Moreover, MTR decreases with increasing 

histopathological changes in these neurological conditions (Symms et al., 2004). MTI 

studies in patients with SLE have identified brain atrophy (Bosma et al., 2000) and 

selective grey matter damage (Steens et al., 2004). In particular, association between low 

MTR peak height value of the brain parenchyma and cognitive dysfunction has been 

demonstrated in NPSLE patients, suggesting that cognitive dysfunction might be related 

to the histopathological changes of the brain parenchyma in these patients (Emmer et al., 

2008). 

PET is a nuclear imaging technique that involves fluorodeoxyglucose, fluoro-L-

dihydroxyphenylalanine, 16β-fluoro-5α-dyhidrotestosterone or 3-fluoro-3-

deoxythymidine which measures the metabolic activity of tissues reflected by regional 

glucose uptake (Miele et al., 2008; Young et al., 1999). Patients with SLE yield abnormal 

brain metabolism, especially at the parieto-occipital regions (Csepany et al., 1997; Kao et 



32 

 

al., 1999a; Kao et al., 1999b; Komatsu et al., 1999; Otte et al., 1997; Sailer et al., 1997; 

Weiner et al., 2000b). Associations between attention impairment and hypometabolism of 

the prefrontal, inferior parietal and cingulate areas were demonstrated in SLE patients 

with mood disorders (Komatsu et al., 1999).  

SPECT is another nuclear imaging technique which examines regional cerebral 

blood flow (CBF) following injection of a radioisotope into the bloodstream (Devous, 

2005). SPECT studies on patients with SLE revealed reduced regional CBF to the 

temporal, parieto-occipital and parietal regions of the brain (Driver et al., 2008; Handa et 

al., 2003; Kao et al., 1999a; Kao et al., 1999b; Waterloo et al., 2001). In particular, 

reduction of perfusion in the watershed areas of both frontal lobes has been demonstrated 

to be correlated with the severity of cognitive dysfunction in the SLE patients (Driver et 

al., 2008). In addition, significant association has also been found between cognitive 

dysfunction and reduced regional CBF to superior parietal lobe and superior frontal lobe 

in patients with SLE (Waterloo et al., 2001). 

MRS provides a noninvasive and quantitative regional measurement of different 

brain metabolites such as N-acetyl aspartate (NAA), choline (Cho), creatine (Cr) and 

lactate and has been widely used in evaluating CNS diseases (Gujar et al., 2005). 

Metabolic abnormalities can be visualized on MRS prior to the detection of structural 

lesions in SLE patients (Sibbitt & Sibbitt, 1993). Higher Ch:Cr ratio in the dorsolateral 

prefrontal regions and in the white matter of the frontal lobes have been found in SLE 

patients with cognitive dysfunction than those without (Filley et al., 2009; Kozora et al., 

2005). High Ch:Cr ratio is related to inflammatory process, demyelination and gliosis 

(Ross & Michaelis, 1994), and is associated with the impairment of executive function in 
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patients infected by the human immunodeficiency virus (Chang et al., 2002). Thus, the 

association between elevated Ch:Cr ratio and cognitive dysfunction in SLE is postulated 

to be mediated via early myelin injury and subsequent neuronal death due to 

inflammation in the white matter (Kozora et al., 2008b).   

fMRI has been used to assess cognitive dysfunction of SLE patients in a number 

of studies . Further information on fMRI will be discussed in subsequent sections. 

1.3.5 Management of cognitive dysfunction in SLE  

Identification followed by treatment of any underlying causes of cognitive 

dysfunction is the initial management strategy for cognitive dysfunction in patients with 

SLE (Hanly & Harrison, 2005) (see Figure 1.3). The treatment rationale is based on 

clinical experience and relevant data on other similar diseases because there is a paucity 

of data on pharmacologic therapy for cognitive dysfunction in SLE (Kozora et al., 2008a). 

So far, only one double-blind, placebo-controlled trial has been carried out to evaluate the 

effects of corticosteroids on cognition in lupus patients with mild cognitive dysfunction 

(Denburg et al., 1994). These SLE patients were treated with prednisone 0.5 mg/kg per 

day for 21 days. Overall drug benefit for improvement of cognition was demonstrated in 

5 out of 8 SLE patients who completed the trial and the beneficial effects persisted when 

these SLE patients continued to take glucocorticoids (Denburg et al., 1994). However, it 

remains uncertain whether the improvement in cognition could sustain if the 

glucocorticoids were tapered or when the treatment was withdrawn (Kozora et al., 2008b).  

In addition to glucocorticoids, the use of aspirin was shown to be associated with 

better cognitive performance in SLE patients positive for anti-PL antibodies but negative 
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for vascular thrombosis in an observational study (McLaurin et al., 2005). Future clinical 

data is required to support the use of antiplatelet and/or anticoagulant therapy for 

cognitive dysfunction in this subset of SLE patients (Kozora et al., 2008b).         

Cognitive rehabilitation programs have been attempted in stroke, dementia, 

traumatic brain injury and MS patients with cognitive dysfunction for retraining certain 

aspects of their impaired cognitive skills (Kozora et al., 2008b). SLE patients with self-

perceived cognitive dysfunction demonstrated improved self-efficacy, memory function 

and ability to perform daily activities after psycho-educational intervention (Harrison et 

al., 2005). 
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1.4 Executive function 

1.4.1 Assessment of executive function 

Executive function is conceptualized as a summary of cognitive functions 

including planning, working memory, attention, problem solving, verbal reasoning, 

response inhibition, mental flexibility and the initiation and monitoring of action (Chan et 

al., 2008), of which the majority is carried out by the prefrontal cortex (Koechlin & 

Summerfield, 2007; Miller, 2000; Wood & Grafman, 2003). Disturbance of normal 

executive function has been observed in a number of neurological, psychological and 

psychiatric disorders such as stroke (Zinn et al., 2007), Parkinson’s disease (Weintraub et 

al., 2005), attention deficit hyperactivity disorder (Marchetta et al., 2008), autism 

spectrum disorder (Hill, 2004), depression (Fossati et al., 2002) and schizophrenia (Kerns 

et al., 2008). Currently, several measurements including the clock drawing test, stroop 

task, WCST, Tower of Hanoi, category test, random number generation and Delis-Kaplan 

executive function system are available to evaluate executive function. Amongst all, the 

WCST is most widely adopted (Nyhus & Barcelo, 2009). The WCST is primarily 

administered and scored in both the standard (Grant & Berg, 1948) and shortened 

versions (Heaton. et al., 1993). The conventional standard version of the paper-based 

WCST comprises 4 reference cards and 128 response cards (Heaton. et al., 1993). 

Participants are required to match the response card to one of the 4 reference cards based 

on one of the three prevailing rules (color, number or shape) which can be identified by 

trial, error and feedback from administrator. Once the identity of the correct rule is 

known, participants are required to maintain this sorting principle for the next ten 

consecutive trials until rule shift is indicated by an incorrect match. There is no pre-
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determined time restriction on the conventional WCST and sorting continues until all 

cards are sorted or six correct sorting criteria are reached. The number of categories 

completed, perseverative errors and non-perseverative errors are commonly used to 

evaluate test performance (Nyhus & Barcelo, 2009). In addition, the WCST has been 

modified to be computer-based and applied in a number of functional imaging studies to 

investigate the component processes of executive function (Buchsbaum et al., 2005). 

1.4.2 The temporally dynamic components of executive function 

Executive function is postulated as a single unit by which the attention resources 

are allocated to support ongoing cognitive processes (Berman et al., 1986; Weinberger et 

al., 1986). This theory had been kept unchanged until evidence has emerged recently to 

support the notion that executive function consists of distinct yet interacting cognitive 

processes carried out by different cortical regions to achieve a common goal (Buchsbaum 

et al., 2005; Sylvester et al., 2003). Through creative modifications of the original WCST, 

neuroimaging studies have been attempting to dissect the presumed mental 

subcomponents of executive function and the brain involvement underlying these 

cognitive processes (Buchsbaum et al., 2005; Graham et al., 2009). The WCST rule shift 

has been found to be associated with activation at the posterior section of the inferior 

frontal sulcus (IFS) which facilitates the cognitive demand for response inhibition 

(Konishi et al., 1999a; Konishi et al., 1999b), whereas updating behavior in WCST is 

associated with  left-lateralized activation at the IFS (Konishi et al., 2002). A modified 

paradigm was designed to dissect the WCST into four experimental stages (receiving 

negative feedback, matching after negative feedback, receiving positive feedback and 

matching after positive feedback) and two control stages (control matching and control 
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feedback) (Monchi et al., 2001). It has been assumed in this modified test that the brain 

activities upon receiving negative feedback are related to rule shift, while the cortical 

involvement following positive feedback is associated with updating the cognitive set in 

memory or maintenance of the established rule identity (Monchi et al., 2001). Different 

prefrontal regions have been demonstrated to be involved in executive function in a 

stage-specific manner. However, this strategy is compromised by the presence of 

ambiguous cards, in which the participants might receive positive feedback without 

identifying the underlying rule, resulting in contamination of updating behavior with rule 

searching. For instance, when One Red Triangle is to be sorted, the One Red Star 

reference card is unable to confirm whether the sorting rule is “color” or ”number” even 

if the associated feedback is positive. This disadvantage is avoided by excluding the 

ambiguous cards and setting rational interval between card selection and feedback to 

facilitate the identification of associated cognitive processes (Graham et al., 2009). It was 

found that both caudates play a role in generating response without knowing the identity 

of the new rule, whereas the hippocampi serve the update and maintenance components 

of the established rule. Striatum-hippocampal interaction mediated via the medial cortical 

areas are found across the entire course of cognitive set-shifting, which casts critical 

insights into the temporally dynamic components of executive function (Graham et al., 

2009).   

1.4.3 Executive function in SLE 

Executive function has been evaluated by formal neuropsychological tests and the 

WCST in both pediatric and adult patients with SLE (Conti et al., 2012; Hanly et al., 

1992a; Loukkola et al., 2003; Monastero et al., 2001; Waterloo et al., 2002; Wyckoff et 
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al., 1995). Adult lupus patients with active disease demonstrated poorer performance on 

the WCST as reflected by the lower overall scores and more perseverative errors when 

compared to healthy individuals (Conti et al., 2012; Loukkola et al., 2003). Disturbance 

of visual memory was revealed in pediatric lupus patients assessed by the Wechsler 

Memory Scale (Wyckoff et al., 1995).  

The pathogenesis of the executive function deficit in SLE patients remains elusive. 

Serum aCL antibodies were suggested to be associated with reduction of executive skills 

in SLE patients (Conti et al., 2012; Hanly et al., 1999), possibly mediated by modulating 

neuronal function (Conti et al., 2012). Since functional neuroimaging can potentially 

unravel the basic neuropathophysiology of cognitive dysfunction, it prompts further 

research which employs fMRI to study cognitive function in patients with SLE. 

1.5 fMRI of the brain 

1.5.1 The basic principle of fMRI and blood-oxygen-level-dependent signal 

fMRI is a neuroimaging technique which has been developed recently to detect 

brain activities by measuring the relative changes in blood oxygenation and flow that 

occurs in response to neuronal activities (Huettel et al., 2004). Brain activation 

commonly presents as increased neural firing, axonal spiking, elevated synaptic 

transmission and active transport of calcium and potassium ions back and forth across the 

membranes of neurons (Frahm et al., 2004). All these processes are ATP-dependent. 

Since brain does not store glucose, it primarily relies on the oxidation of glucose from 

cerebral blood supply as the energy source. Thus, increase in blood flow conveys more 

glucose along with oxygenated hemoglobin (Hb) to regions where neuronal activity is 
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high. The amount of oxygen influx usually exceeds that of the oxygen consumed during 

glucose oxidation, resulting in a net decrease of deoxygenated hemoglobin (dHb) in the 

microvasculature around the active neurons (see Figure 1.4). Oxygenated Hb is 

diamagnetic with no unpaired electrons and magnetic movement, whereas dHb is 

paramagnetic with unpaired electrons and is 20% more susceptible to the magnetic field 

when compared to oxygenated Hb (Huettel et al., 2004). The different magnetic 

susceptibility of dHb results in dephasing of the magnetic resonance signals and 

darkening of the image in the voxels containing blood vessels with dHb in T2-weighted 

imaging (Ogawa & Lee, 1990; Ogawa et al., 1990b; Thulborn et al., 1982), while 

oxygenated Hb does not cause dephasing during the same imaging process (Ogawa et al., 

1990a). Using dHb as an endogenous contrast, different magnetic properties of 

oxygenated Hb and dHb lead to differences of the magnetic resonance signals of the 

blood determined by the degree of oxygenation under the magnetic field. Since the 

degree of blood oxygenation is correlated with the level of neural activities, these 

differences can be visualized as the blood-oxygen-level-dependent (BOLD) signals 

detected by fMRI scanning which reflects regional brain activities (Ogawa et al., 1990a; 

Ogawa et al., 1990b). Although fMRI does not measure neural activities directly, it has 

been proved, using optogenetic tool, that neuron activation elicits increased BOLD 

signals (Lee et al., 2010), which gives critical credit to use fMRI to record brain 

activation. 
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1.5.2 fMRI studies of neuropsychiatric disorders 

So far, fMRI has been widely applied to study the neural basis and pathogenesis 

of mental and behavioral changes associated with a number of neuropsychiatric disorders. 

For instance, in patients with Alzheimer’s disease (AD), compromised explicit memory 

encoding in the mesial temporal lobe and fusiform regions was revealed (Golby et al., 

2005). In combination with memory test and genetic markers for AD, fMRI data were 

shown to be able to predict memory decline in patients with AD (Bookheimer et al., 

2000). Resting-state fMRI assessing functional connectivity reveals uncoupling of the 

“hate circuit” involving the superior frontal gyrus, insula and putamen in patients with 

depression (Tao et al., 2011). As for schizophrenia, fMRI findings demonstrated that 

abnormal fronto–temporal lobe connections might be associated with cognitive 

dysfunction (Mitchell et al., 2001).   

Based on the abnormal BOLD signals revealed in patients with neurological or 

neuropsychiatric disorders, fMRI has been suggested to hold promise for the early 
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detection and differential diagnosis, predicting future change in clinical status, and as a 

marker of alterations in brain physiology related to neurotherapeutic agents (Dickerson, 

2007). The greatest potential of fMRI likely lies in the study of very early and preclinical 

stages of progressive neurological diseases at the point of subtle neuronal dysfunction, 

prior to overt anatomic pathology (Dickerson, 2007). 

1.5.3 fMRI studies on SLE 

At the time of writing this thesis, five fMRI studies have been published which 

addressed motor function and cognitive function in both pediatric and adult patients with 

SLE, in which two of them were conducted in SLE patients without neuropsychiatric 

syndromes. Using the resting-state fMRI procedure, altered brain activities in the 

cerebellum, posterior cingulate gyrus and the adjacent precuneus which are included in 

the default mood network were found in lupus patients without neuropsychiatric 

manifestations (Lin et al., 2011). Moreover, the fMRI signal changes in the cerebellum 

were positively correlated with lupus disease activity measured by the Systemic Lupus 

Erythematosus disease activity index (SLEDAI) (Lin et al., 2011). When SLE patients 

without NPSLE were stratified by disease duration and administered two functional 

paradigms which evaluated their working memory and emotional response, patients of 

short disease duration (≤ 2 years) demonstrated significantly better performance in 

working memory task when compared with those of longer disease duration ( ≥ 10 years) 

(Mackay et al., 2011). As for the functional brain signals, patients of short disease 

duration demonstrated significantly increased BOLD signals in the somatomotor, 

cingulate and prefrontal cortices and the Brodmann area (BA) 40 which belong to the 

working memory paradigm as well as in the amygdala and superior parietal area which 
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correspond to the emotional response paradigm when compared to those of longer disease 

duration (Mackay et al., 2011). No correlation was found between brain activation in the 

aforementioned regions and the SLEDAI and the SLICC damage index (Mackay et al., 

2011).  

In lupus patients with NPSLE, motor system and working memory were 

examined in two fMRI studies. Fourteen right-handed NPSLE patients and 14 matched 

healthy subjects underwent fMRI scan while they were performing a simple motor task in 

which participants were required to move the last four fingers of the right hand in a 

repetitive flexion-extension manner (Rocca et al., 2006). NPSLE patients showed 

significantly increased activation in the contralateral primary sensorimotor cortex, 

putamen and dentate nucleus which were included in classical sensorimotor regions, as 

well as cortical regions of the frontal and parietal lobes and visual system which were not 

frequently involved in motor function. These findings suggest that reorganization of 

cortical function seems to help maintain the normal motor function in NPSLE patients via 

increased activation of cortical regions normally subserving motor tasks and recruitment 

of extra pathways supporting more complex tasks (Rocca et al., 2006). A similar manner 

of cortical functional reorganization was demonstrated in another fMRI study which 

assessed working memory in patients with NPSLE (Fitzgibbon et al., 2008). While the 

performance of patients with NPSLE was the same as that of their healthy counterparts in 

the N-Back test, significantly increased brain activations in the supplementary motor area 

and both posterior inferior parietal lobules which subserve working memory were 

observed in patients with NPSLE (Fitzgibbon et al., 2008).  
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The fifth fMRI study involved ten childhood-onset SLE patients, of whom six 

showed cognitive dysfunction assessed by formal neuropsychological tests (DiFrancesco 

et al., 2007). Three paradigms including the verb generation task, continuous 

performance task and N-Back task were administered in these patients to assess their 

language, attention and working memory respectively. Compared to healthy controls, 

SLE patients failed to exhibit activation in the Wernicke’s area which is involved in the 

comprehension of spoken and written language (Holland et al., 2001), suggesting that 

childhood-onset SLE patients might have language deficit due to abnormal neural 

activities in the Wernicke’s area. During the continuous performance task, SLE patients 

demonstrated increased activation in the fusiform gyrus and visual association cortex, in 

which the activation patterns were similar to that associated with abnormal attention 

(Strakowski et al., 2004). Thus, the impairment of attention commonly observed in 

childhood-onset SLE was likely related to the abnormalities in fusiform gyrus and visual 

related cortex (DiFrancesco et al., 2007). When working memory was tested by the N-

Back task, SLE patients demonstrated activation in the anterior dorsolateral prefrontal 

and the visual association cortices which are involved in working memory (DiFrancesco 

et al., 2007), implying that the same cognitive demand might pose greater challenge to 

the SLE patients and require more cortical activities than healthy subjects to perform the 

same task  (Kozora et al., 2008b).  

Taken together the results of all the 5 fMRI studies in lupus patients to date, 

alterations of neural circuits underlying resting state, working memory and emotional 

response may occur in lupus patients even without clinically overt NPSLE. Recruitment 
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of additional cortical pathways is required for lupus patients to maintain comparable 

motor function and working memory as those of healthy individuals.  

1.6 NMDAR and the anti-NR2 antibodies 

1.6.1 Function of the NMDAR 

NMDAR is the receptor for the neurotransmitter glutamate and it serves as the 

predominant molecular device for controlling synaptic plasticity and memory function 

(see Figure 1.5) (Li & Tsien, 2009). As one of the major excitatory neurotransmitters, 

glutamate is present in most neurons in the brain. Stored in vesicles within the 

presynaptic neurons, glutamate is released with precise control to convey sensory 

information, respond to motor commands and mediate thought and memory that form 

cognition and emotion (Aranow et al., 2010). The NMDAR is a heterotetramer 

comprising four subunits: two NR1 subunits which have a binding site for glycine, and 

two of any four NR2A, NR2B, NR2C and NR2D subunits (Kutsuwada et al., 1992). 

NMDARs with the NR2A and NR2B subunits are mostly expressed in the hippocampus 

and the amygdala in the mammalian central nervous system (Ozawa et al., 1998) and are 

associated with learning and memory mediated by the hippocampus, and with emotional 

responses mediated by the amygdala (Aranow et al., 2010). In the hippocampus and 

amygdala, the NMDARs serve as voltage-gated calcium channels. Upon electrical 

stimulation to the neurons, glycine and glutamate bind to NR1 and NR2 of the NMDARs 

respectively to initiate the removal of magnesium ions which block the ion channel pore 

and the influx of calcium into the cells (Coan & Collingridge, 1985; Li & Tsien, 2009). 

Calcium influx depends on the duration of the “open state” of the ion channel. Excessive 
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calcium influx into the neurons leads to mitochondrion stress, activation of caspase 

cascades and eventual excitotoxic neuronal death (Laube et al., 1997; Lipton & 

Rosenberg, 1994). Interruptions of NMDAR by autoantibodies and antagonists against 

NMDAR have been suggested to be involved in autoimmune encephalitis, AD, seizures 

and schizophrenia (Chen & Lipton, 2006; Dalmau et al., 2007; Long et al., 2006). 

Moreover, NMDAR antagonists such as dizocilpine, phencyclidine and ketamine are able 

to cause drowsiness, halluncination, seizures and even coma (Ellison, 1995). 
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1.6.2 Nature of anti-NR2 antibodies 

The genes encoding a subset of IgG isotype anti-dsDNA antibodies extracted 

from lupus patients and spontaneous lupus mouse models demonstrate somatic mutations, 

which carry the signature characteristics of T cell-dependent, germinal center maturing B 

cell response induced by protein antigens (Aranow et al., 2010; Paul et al., 1990). R4A is 

a monoclonal murine anti-dsDNA antibody which deposits in the glomeruli and causes 

nephritis (Gaynor et al., 1997). R4A is capable of binding to the DWEYS consensus 

sequence which is present in the extracellular, ligand-binding domain of both rodent and 

human NR2A and NR2B subunits of the NMDAR (DeGiorgio et al., 2001). Enzyme-

linked immunosorbent assay (ELISA) and Western blot analysis showed that R4A could 

bind to NR2A and NR2B and was able to immunoprecipitate these two subunits from 

rodent brain lysate (DeGiorgio et al., 2001). Upon binding to the NMDAR, R4A 

functions to enhance NMDAR activation by prolonging the “open state” of the NMDAR 

associated ion channels which leads to higher calcium influx and triggers excitotoxic 

neuronal death (Aranow et al., 2010). Antibodies purified from the sera and CSF of lupus 

patients with progressive cognitive dysfunction using the same DWEYS consensus 

sequence in affinity chromatography  lead to exitotoxic effects on hippocampal neurons 

as R4A does, suggesting that cognitive dysfunction might be attributed to the presence of 

anti-NR2 antibodies in the CSF (DeGiorgio et al., 2001).   

1.6.3 Effects of anti-NR2 antibodies on cognition in murine models 

It has been demonstrated in murine models that when anti-NR2 antibodies were 

directly injected into the mouse brain, they bound to the hippocampal neurons and caused 
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hippocampus-dependent memory impairment (Aranow et al., 2010; DeGiorgio et al., 

2001), whereas anti-NR2 antibodies in the peripheral circulation caused neither brain 

pathology nor abnormal memory and learning in mice with an intact BBB (Kowal et al., 

2004).  However, when the integrity of BBB is compromised by lipopolysaccharide 

(LPS), the anti-NR2 antibodies in the circulation can gain access to the brain and 

preferably bind to the neurons in the hippocampi, leading to hippocampal neuronal death 

and persistent memory impairment (Kowal et al., 2006). These findings suggest that 

cognitive dysfunction mediated via anti-NR2 antibodies depend on the integrity of the 

BBB (Aranow et al., 2010; Diamond & Volpe, 2012). Furthermore, it has been 

demonstrated in rodent models that anti-NR2 antibodies affected the relevant neurons in a 

dose-dependent manner. Low concentration of anti-NR2 antibodies enhance excitatory 

postsynaptic potentials and cause transient cognitive dysfunction and emotional 

disturbance. High concentration of anti-NR2 antibodies can lead to neuronal death and 

irreversible cognitive dysfunction (Faust et al., 2010). Taken together, the findings in the 

murine model suggest that the anti-NR2 antibodies can affect cognitive function and 

emotional response upon their direct access to the brain, and the magnitude of these 

effects depend on the integrity of the BBB and the concentration of the antibodies in the 

CSF (Aranow et al., 2010; Diamond & Volpe, 2012).  

1.6.4 The role of anti-NR2 antibodies in SLE  

At the time of preparation of this thesis, 15 studies addressing the 

pathophysiology and potential clinical utility of anti-NR2 antibodies in human SLE were 

published (Arinuma et al., 2008; Fragoso-Loyo et al., 2008; Gono et al., 2011; Hanly et 

al., 2006; Hanly et al., 2008; Hanly et al., 2011; Hanly et al., 2012; Harrison et al., 2006; 
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Husebye et al., 2005; Kozora et al., 2010; Lapteva et al., 2006a; Omdal et al., 2005; Petri 

et al., 2010; Steup-Beekman et al., 2007; Yoshio et al., 2006). While these studies reveal 

significantly higher anti-NR2 antibodies in 10-35% patients with SLE when compared to 

those of the healthy individuals, the relationship between anti-NR2 antibodies and 

NPSLE remains inconclusive (Arinuma et al., 2008; Fragoso-Loyo et al., 2008; Gono et 

al., 2011; Hanly et al., 2006; Hanly et al., 2008; Hanly et al., 2011; Hanly et al., 2012; 

Harrison et al., 2006; Husebye et al., 2005; Kozora et al., 2010; Lapteva et al., 2006a; 

Omdal et al., 2005; Petri et al., 2010; Steup-Beekman et al., 2007; Yoshio et al., 2006). 

Three studies investigating CSF derived from SLE patients consistently demonstrated the 

association between anti-NR2 antibodies and seizures, acute confusional state, psychosis, 

severe refractory headache and cerebrovascular illnesses, and the levels of anti-NR2 

antibodies in the CSF were correlated with disease severity of SLE (Arinuma et al., 2008; 

Fragoso-Loyo et al., 2008; Yoshio et al., 2006). However, results of studies addressing 

the potential correlation between serum anti-NR2 and NPSLE have been inconsistent. 

While the results from three studies identified significant associations between serum 

anti-NR2 antibodies and cognitive impairment, depression and overall frequency of 

NPSLE (Gono et al., 2011; Lapteva et al., 2006a; Omdal et al., 2005), this association 

was refuted by a higher number of studies (Fragoso-Loyo et al., 2008; Hanly et al., 2006; 

Hanly et al., 2008; Hanly et al., 2011; Hanly et al., 2012; Harrison et al., 2006; Husebye 

et al., 2005; Kozora et al., 2010; Petri et al., 2010; Steup-Beekman et al., 2007).  

Thus, it has been advocated that when compared to CSF anti-NR2 antibodies, 

serum anti-NR2 antibodies alone may not be a sensitive marker to detect  

neuropsychiatric syndromes in patients with SLE (Lauvsnes & Omdal, 2012). Since  
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fMRI appears to be capable of detecting brain activities associated with cognitive 

dysfunction in a more sensitive manner (DiFrancesco et al., 2007; Fitzgibbon et al., 2008), 

it is likely to be an attractive strategy to use fMRI signals as surrogates to gauge the 

potential utility of serum anti-NR2 antibodies in order to detect cognitive dysfunction in 

patients with SLE, particularly if cognitive impairment is clinically unapparent. In 

addition, further studies addressing the clinical applicability of the combination of serum 

anti-NR2 antibodies and non-invasive assessment of the integrity of BBB to predict 

cognitive dysfunction in lupus patients may be another attractive research direction 

considering the role of BBB in the development of cognitive dysfunction and emotional 

disturbance associated with anti-NR2 antibodies in murine models (Diamond & Volpe, 

2012).  

1.7 Research questions and objectives of the thesis 

1.7.1 Objectives 

1) To assess the executive function in new-onset SLE patient and explore the 

potential changes in regional brain activation signals before and after achieving 

adequate disease control with the use of event-related fMRI. 

2) To explore the potential neural circuits involved in subclinical cognitive 

dysfunction in new-onset SLE patients without NPSLE by analyzing the cognitive 

set-shifting processes with the use of event-related fMRI. 

3) To explore the potential relationship between serum anti-NR2 antibodies and the 

BOLD signals of fMRI at the hippocampi and amygdala in SLE patients without 

clinically overt neuropsychiatric symptoms. 
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1.7.2 Hypothesis 

1) New-onset SLE patients have different regional brain activation patterns 

associated with executive function and such activation patterns change over time 

with adequate disease control. 

2) Specific neural circuits are involved in subclinical cognitive dysfunction in new-

onset SLE patients without clinically overt neuropsychiatric symptoms. 

3) Serum anti-NR2 antibodies are higher in SLE patients than healthy controls and 

the antibody level correlates with the BOLD signals of fMRI at the hippocampi 

and amygdala in SLE patients without clinically overt neuropsychiatric symptoms. 
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CHAPTER 2  

PATIENTS AND METHODS 

2.1 Recruitment of patients 

All patients in the studies reported in this thesis were recruited from the lupus 

clinic of the Division of Rheumatology, Department of Medicine, National University 

Hospital (NUH), Singapore between March 2008 and June 2012. All participating 

patients fulfilled the ACR classification criteria for SLE (Hochberg, 1997). All studies 

were approved by the National Healthcare Group Domain-Specific Review Board in 

Singapore. Written informed consent was obtained from the patients and healthy controls 

before recruitment.  

Study 3.1 Part A and Part B were conducted in the same 14 newly-diagnosed SLE 

patients. Seventeen newly-diagnosed patients with SLE were initially identified for the 

fMRI study, of whom one was ineligible as she presented with lupus psychosis and 

another two declined the invitation to participate due to work commitment.  These 14 

newly-diagnosed SLE patients were representative of the Singapore population in terms 

of the age of disease diagnosis (Jakes et al., 2012). Study 3.2 involved 12 out of the 14 

SLE patients from Study 3.1 as well as 52 SLE patients from other study cohorts 

recruited from the same medical center.  

2.2 Clinical evaluation and data collection 

Various demographic and clinical data were collected from clinical interview and 

medical record review depending on the objectives of individual study. Demographic 
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information included age, gender, ethnicity and education level. Clinical data consisted of 

clinical manifestation of SLE at the time of disease onset, disease duration of SLE, 

serological information, disease activity and disease damage score and details of 

pharmacological management. Disease activity was assessed at study entry and every 

clinic visit by the same attending physician. Disease damage was assessed annually and 

at the time of repeat fMRI scans by the same attending physician.    

2.3 Assessment of disease activity 

Disease activity of SLE was evaluated by the SLEDAI (Bombardier et al., 1992) 

(see Table 2.1). The validated index consists of 24 items with individual definition for 

each. Presenting items are scored and summed based on the predetermined weights for 

each item. Higher weights are designated to more life-threatening item. A cut-off score of 

3 or 4 is suggested to indicate active disease activity (Yee et al., 2011). Higher SLEDAI 

scores are shown to be associated with poor outcome in patients with SLE including 

death and tissue injury (Ibanez et al., 2011). The SLEDAI has been demonstrated to be a 

reliable tool for assessing lupus activity even when it is used by less experienced 

clinicians (Petri et al., 1992) and the reliability of the tool is not subject to geographic or 

cultural effects (Gladman et al., 1992, 1994). In addition, the SLEDAI has been revealed 

to be sufficiently sensitive to detect changes of disease activity over time (Gladman et al., 

1994) and is therefore useful in prospective and longitudinal studies. 
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Table 2.1 The Systemic Lupus Erythematosus Disease Activity Index 

Weight Descriptor Definition 

8 Seizures Recent onset. Exclude metabolic, infectious or drug 

cause 

8 Psychosis Altered ability to function in normal activity due to 

severe disturbance in the perception of reality. Include 

hallucination, incoherence, marked loose associations, 

impoverished though content, marked illogical 

thinking, bizarre, disorganized, or catatonic behaviour. 

Exclude uraemia or drug causes 

8 Organic brain 

syndrome 

Altered mental function with impaired orientation, 

memory or other intelligent function, with rapid onset 

fluctuating clinical features. Include clouding of 

consciousness with reduced capacity to focus, and 

inability to sustain attention to environment, plus at 

least two of the following: perceptual disturbance, 

incoherent speech, insomnia or daytime drowsiness, or 

increased or decreased psychomotor activity. Exclude 

metabolic, infectious or drug causes 

8 Visual disturbance Retinal changes of SLE. Include cytoid bodies, retinal 

haemorrhages, serious exudates or haemorrhages in 
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choroids, or optic neuritis. Exclude hypertension, 

infection or drug causes 

8 Cranial nerve disorder New onset of sensory or motor neuropathy involving 

cranial nerves 

8 Lupus headache Severe persistent headache; may be migrainous, but 

must be non-responsive to narcotic analgesia 

8  CVA New onset of cerebrovascular accident(s). Exclude 

arteriosclerosis 

8 Vasculitis Ulceration, gangrene, tender finger nodules, 

periungual, infarction, splinter haemorrhages, or 

biopsy or angiogram proof of vasculitis 

4 Arthritis More than 2 joints with pain and signs of 

inflammation (i.e. tenderness, swelling, or effusion) 

4 Myositis Proximal muscle aching/weakness, associated with 

elevated creatine phosphokinase/aldolase or 

electromyogram changes or a biopsy showing 

myositis 

4 Urinary casts Heme-granular or red blood cell casts 

4 Haematuria >5 red blood cells/high power field. Exclude stone, 

infection or other cause 



55 

 

4 Proteinuria >0.5gm /24 hours. New onset or recent increase if 

more than 0.5gm/24 hours 

4 Pyuria >5 white blood cells/high power field. Exclude 

infection 

2 New rash New onset or recurrence of inflammatory type rash 

2 Alopecia New onset of recurrence of abnormal, patchy or 

diffuse hair loss 

2 Mucosal ulcers New onset of recurrence of oral or nasal ulcerations 

2 Pleurisy Pleuritic chest pain with pleural rub or effusion, or 

pleural thickening 

2 Pericarditis Pericardial pain with at least 1 of the following: rub, 

effusion, or electrocardiogram confirmation 

2 Low complement Decrease in CH50, C3, or C4 below the lower limit of 

normal for testing laboratory 

2 Increased DNA 

binding 

> 25% binding by Farr assay or above normal range 

for testing laboratory 

1 Fever > 38ºC. Exclude infectious cause 

1 Thrombocytopenia < 100,000 platelets/mm
3
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1 Leukopenia < 3,000 white blood cells/mm
3
. Exclude drug causes 

 

2.4 Assessment of disease damage 

SLE-related damage was assessed by the Systemic Lupus International 

Collaborating Clinics / American College of Rheumatology damage index (SDI), which 

is the standard tool accepted by the ACR to evaluate damage in SLE (Gladman et al., 

1997). The reproducibility and reliability of SDI have been demonstrated in various 

international centers. Irreversible organ damage is scored by 41 items included in the SDI 

from the time of SLE onset. Damage item is individually defined and designated with a 

glossary of terms and the corresponding index. Damage which has been present for more 

than 6 months will be scored regardless whether it is caused by lupus, its treatment or 

concurrent diseases. Damage in the same organ system caused by repeat events is scored 

at most twice provided that a minimum of 6 months have lapsed between two consecutive 

events. The same lesion can be only scored once. Damage and the corresponding range 

has been defined for 12 organ systems, namely ocular (0-2), neuropsychiatric (0-6), renal 

(0-3), pulmonary (0-5), cardiovascular (0-6), peripheral vascular (0-5), gastrointestinal 

(0-5), musculoskeletal (0-6), skin (0-3), premature gonadal failure (0-1), diabetes mellitus 

(0-1) and malignancies (0-2). 

2.5 Laboratory evaluation 

2.5.1 Serological tests 
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The serological tests were performed in the standard laboratories of the NUH. 

Indirect immunofluorescence was used to detect the presence of ANA. ELISA would be 

performed subsequently if the indirect immunofluorescence for ANA was positive. Anti-

dsDNA antibody was assessed by a standard ELISA procedure (Bio-Rad, CA, USA). 

Three phospholipid-dependent coagulation tests including activated partial 

thromboplastin time (APTT), kaolin clotting time (KCT) and dilute Russell Venom Viper 

test (DRVVT) were used to screen for LAC. In both the KCT and DRVVT systems, the 

presence of an inhibitor was determined by mixing equal amount of normal plasma and 

lupus plasma. LAC positivity was confirmed via platelet neutralization experiments in the 

APTT and DRVVT tests. Anti-β2 glycoprotein I antibodies (both IgG and IgM) and aCL 

were assayed using standard ELISA procedures (Quanta Lite, CA, USA).  

2.5.2 Evaluation of brain activity by event-related fMRI 

2.5.2.1 Evaluation of executive function and event-related fMRI 

All SLE patients and healthy controls involved in the fMRI studies were 

instructed to perform the computer-based modified WCST (see Figure 2.1). Prior to the 

test, all participants underwent training to ensure satisfactory comprehension of the 

sorting criteria. During RS, four cards appeared along the top of a blue screen as 

reference and kept unchanged as the test ensued. On each trial, a candidate card which 

appeared at the central bottom of the blue screen was to be matched with one of the four 

reference cards based on one of the three rules (color, number, shape) randomly 

generated by the program (see Figure 2.2). Participants were given 4 seconds to respond, 

after which a bar would appear under the selected reference card, or else the words “too 
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late” would appear on the blue screen which signified trial termination. After the 4 

seconds’ selection time, fixation display of a white cross would appear at the center of the 

blue screen. After another 5 seconds, feedback would appear as “Right” or ”Wrong” on 

the screen, indicating correct or incorrect card selection respectively. The feedback 

stimuli would appear for 500 milliseconds during which FE was allowed, then the display 

would change to fixation until the inception of the next trial.  
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The identified rule kept unchanged randomly for 3 to 5 successive correct 

feedbacks until another rule was randomly generated. Appearance of first negative 

feedback (1st NF) after successive correct feedbacks signaled as a “shift” event for 

subjects to abandon previously prepotent rule and search for a new one. Subsequent 

negative feedback (2nd NF), if applicable, would serve as a “generate” event to identify 

the correct rule. The first positive feedback (1st PF) in a series of correct feedbacks was 

regarded as an “update” event to register the newly confirmed cognitive set in memory 

while subsequent positive feedback (2nd PF) served as a “maintain” event to keep the 

prevailing rule until a signal was received to shift to another rule.  

Each scanning session contained 5 runs and each run lasted for 8 minutes. During 

the performance of the WCST and concomitant imaging, the sequence of the “shift”, 

“generate”, “update” and “maintain” events was kept constant throughout the course of 

the WCST while the predefined time interval of the imaging sequence was independent 

of the WCST event sequence.  

2.5.2.2 Image acquisition 

Functional imaging was performed on a Siemens Symphony 1.5T MRI scanner 

(Siemens, Erlangen, Germany) sited at the Functional Imaging Center, level 1, NUH. A 

blipped gradient-echo echoplanar imaging sequence was applied for functional imaging: 

time repetition = 3000 ms, flip angle = 90°, field of view = 192 × 192 mm, pixel matrix = 

64 × 64. Each run contained 156 whole brain acquisitions in a plane parallel to the line 

between the anterior and posterior commissures on the sagittal scout images: 32 oblique 

axial slices, 3-mm thick, 0.3-mm gap between slices, descending interleaved slice 
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acquisition. T1-weighted anatomical reference images were acquired by a magnetization 

prepared rapid acquisition gradient echo sequence: pixel matrix = 256 × 256, field of 

view = 206 × 206 mm, 80 slices, 2mm thick in the coronal plane. 

2.5.2.3 Image processing 

Image processing and analyses were performed using the software Brain Voyager 

QX (Version 2.1, Brain Innovation, Netherlands). Preprocessing steps, including slice 

scan time correction, motion correction, spatial smoothing (8-mm full width half-

maximum) and linear trend removal, were performed prior to statistical mapping of brain 

activation during the fMRI paradigm. Subsequently, functional images were registered to 

the magnetization prepared rapid acquisition gradient echo images, followed by 

transformation of the realigned images into Talairach space. The Talairach transformation 

was achieved by first identifying the anterior commissures (AC), the posterior 

commissures (PC) and AC-PC plane in the anatomic images of each subject. Other 

fiduciary markers, including anterior point, posterior point, superior point, inferior point, 

right point and left point, were defined subsequently to generate transformation of 

anatomic images to a standard brain coordinate system. 

2.5.3 Measurement of anti-NR2 antibody 

Amidated and acetylated peptide of the sequence SVSYDDWDYSLEARV was 

synthesized (GenScript, NJ, USA) and used as a substrate of our home-made indirect 

ELISA for measuring the serum anti-NR2 antibodies (DeGiorgio et al., 2001; Husebye et 

al., 2005). The peptide has been demonstrated to have a purity of at least 95% assessed by 

high-performance liquid chromatography and it contains the pentapeptide consensus 
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sequence DWDYS which is the epitope recognized by the anti-NR2 antibodies 

(DeGiorgio et al., 2001; Gono et al., 2011). Maxisorp 96-well microplates (NUNC, NY, 

USA) were coated with 0.5 µg of the synthesized peptide in 100 µl phosphate-buffered 

saline (PBS) per well and kept overnight at 4 ºC. Plates were blocked with 3% fetal calf 

serum (Gibco, CA, USA) in PBS for 1 hour at 37 ºC and subsequently incubated with 

serum samples at the dilutions of 1:500 and 1:1000 in PBS for 2 hours at 37 ºC. The 

microplates were then washed with PBS-Tween and incubated with horseradish 

peroxidase-conjugated goat anti-human IgG (Abcam, Cambridge, UK) for 1 hour at 37 ºC, 

followed by another wash with PBS-Tween. One hundred microliters (µl) of tetramethyl 

benzidine (BD Biosciences, CA, USA) were subsequently added to each well. The 

reaction was terminated 10 minutes later by adding 2 N H2SO4. Optical density at 450 nm 

(OD450) was measured by a Multiskan FC ELISA Microplate Reader (Thermo Scientific, 

MA, USA). Since sample dilution at 1:500 worked most optimally for our immunoassays, 

the OD450 of serum samples at this dilution was reported. R4A monoclonal antibody 

(R4A mAb) was kindly provided by Dr Betty Diamond (The Feinstein Institute for 

Medical Research, Manhasset, NY, USA). The R4A mAb was serially diluted to serve as 

calibration for each plate (see Figure 2.3). 
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2.6 Statistical analysis  

All statistical analyses were calculated by the SPSS program (version 18 or 

version 20). Values in this thesis were reported as mean ± standard deviation (SD) unless 

otherwise specified. 

2.6.1 Comparison of continuous and categorical data 

Comparison of continuous variables between two groups was carried out by 

Students’t-test for independent samples when the data followed a normal distribution or if 

equal variance could be assumed, otherwise the Mann-Whitney U test would be used 

instead. Kurtosis and skewness were calculated to evaluate the normality of the data, of 

which the acceptable range for normal distribution was suggested to be between -1 to +1 

(Chan, 2003). The Levene’s test was used to test for equality of variance.  
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Comparison of categorical variables between two groups was executed by the χ
2
 

test. The Fisher’s exact test would be performed instead when the frequency of 

occurrence was low.  

2.6.2 Correlation analysis 

Bivariate correlation was used to analyze the relationship between the serum 

levels of anti-NR2 antibodies and clinical characteristics of patients with SLE.  

Statistical significance 

A two-tailed P value < 0.05 was defined as statistical significance for all statistical 

tests unless otherwise specified. 
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CHAPTER 3  

RESULTS 

Study 3.1-Part A  

A prospective functional MRI study for executive function in patients with systemic 

lupus erythematosus without neuropsychiatric symptoms 

INTRODUCTION 

Cognitive dysfunction, which primarily affects attention, reasoning, executive 

function, verbal memory, visual-spatial information processing and psychomotor speed  

(Bertsias et al., 2010; Hanly et al., 2005), has been recognized as one of the commonest 

NPSLE manifestations which may impose substantial physical, psychological and 

socioeconomic burden to patients and the community (Lau & Mak, 2009; Tam et al., 

2008). Cognitive dysfunction is often clinically subtle and difficult to be recognized and 

despite that a standard battery of neuropsychological assessments for identifying 

cognitive dysfunction in SLE patients is currently available (Anonymous, 1999) and 

studies involving anatomical MRI and MRS have revealed the presence of structural 

cerebral white and gray matter abnormalities in patients with lupus (Ainiala et al., 2005; 

Lapteva et al., 2006a; Luyendijk et al., 2011), these assessments are not able to address 

the potential mechanism cognitive dysfunction in SLE. 

fMRI has grown into the workhorse of brain imaging to study brain activation 

patterns associated with psychological tasks which probe specific aspects of cognition. 

While fMRI offers a non-invasive platform to evaluate abnormal brain activities in a 
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number of neurological conditions such as cerebrovascular disease, migraine and multiple 

sclerosis (Calautti & Baron, 2003; Filippi & Rocca, 2004; Rocca et al., 2003), its 

application to elucidate the neuropathological mechanism underlying cognitive 

dysfunction in SLE patients is rare. Two recent cross-sectional studies demonstrated 

increased brain activation in certain cortical regions associated with cognitive tasks 

assessing working memory, attention and language in certain cortical regions in SLE 

patients when compared with healthy controls (DiFrancesco et al., 2007; Fitzgibbon et al., 

2008). These observations contribute to our preliminary understanding that significant 

brain activation with compensatory recruitment of additional cortical regions is required 

for SLE patients to maintain a comparable neuropsychiatric performance as healthy 

individuals.  

Given that cognitive dysfunction can persist and even deteriorate over time in 

SLE patients (Cassano et al., 2007; Mok et al., 2006), it is imperative to study the 

functional brain pathology of cognitive dysfunction both prevalently and longitudinally in 

patients with new onset SLE, with an aim to elucidate the regions of abnormal brain 

activation and their changes over time. We therefore undertook this longitudinal study 

using event-related BOLD fMRI to assess executive function in new onset SLE patients 

and explore the changes in brain activation signals over time after adequate disease 

control with immunosuppressive therapy. 

PATIENTS AND METHODS  

Participants 
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Patients with newly diagnosed SLE based on the ACR revised classification 

criteria (Hochberg, 1997) were consecutively recruited from the Lupus Clinic, National 

University Hospital, Singapore. Healthy controls who were working in the the National 

University of Singapore were recruited and matched with SLE patients for age, sex, 

education level and intelligence quotient (IQ). Subjects were excluded if they were left-

handed, if they were not proficient in English, if they had a history of neurological 

disorder, if they had clinically significant anxiety and/or depressive symptoms, as rated 

and defined by the HADS with a score ≥ 8 respectively (Mak et al., 2011; Tam et al., 

2008), or if they had a concurrent or past history of psychiatric disorder or were using 

psychotropic medications. IQ was tested using the Wechsler Abbreviated Scale of 

Intelligence which consists of the assessment of verbal IQ, performance IQ and the full 

IQ by a certified clinical psychologist. Written informed consent was obtained before 

subject recruitment. 

Wisconsin Card Sorting Test  

Please refer to section 2.5.2.1 

The fMRI protocol and imaging processing  

Please refer to sections 2.5.2.2 and 2.5.2.3 

Statistical analysis of BOLD signals 

Beta-score maps were computed in the Talairach coordinate system by a random-

effects general linear model. This model was constructed with separate regressors relative 

to a fixation baseline for RS and FE. Each hemodynamic response function convolved 
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each regressor, peaking at 6 seconds after onset of card stimuli or feedback evaluation, 

respectively. Jittering of the fixation intervals between FE and the subsequent RS assisted 

in event deconvolution (Graham et al., 2009). Composite beta-score maps were 

constructed for each event for SLE patients and healthy controls to identify significant 

group-activation regions. The different activation patterns between patients and healthy 

controls and within patients were assessed for RS and FE events separately and 

statistically displayed in respective beta-score maps. Application of cluster threshold to 

activation patterns for each map assured significance of difference. 

Interpretation of activation signals 

Although the traditional neural efficiency hypothesis suggests that individuals 

who perform better in cognitive tasks exhibit less task-relevant cortical activities 

demonstrated by functional imaging (Gray et al., 2003), more recent studies have 

provided evidence which supports that brain activation patterns are dependent on the 

complexity of the neuropsychological tests. For example, higher BOLD activation signals 

during RS and lower activation during FE were demonstrated in individuals with average 

IQ when compared with those with higher IQ during the performance of the WCST. 

These observations suggested that individuals with average IQ had poorer strategic 

planning during the FE stage, which required compensatory recruitment of additional 

cortical regions for average-IQ individuals to maintain a comparable executive 

performance as those with higher IQ. Thus, we hypothesize that during the WCST, 

decreased brain activation during FE suggests poor strategic planning skills and prompts 

recruitment of extra cortical regions and neural pathways during RS to compensate for 

the deficient strategic planning skills in order to maintain executive responses.  
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Assessment of clinical and serological disease activity in SLE patients 

Clinical and serological disease activity of SLE was assessed using the SLEDAI 

and peripheral blood was obtained from patients on the day of fMRI scan. Serum was 

extracted by blood centrifugation and subsequently assayed for C3, C4 and anti-dsDNA 

levels by the standard laboratory of the hospital.  

All patients were invited to undergo the second event-related fMRI scans if they 

demonstrated inactive disease activity indicated by SLEDAI ≤ 4 points (Yee et al., 2011) 

and a minimum of 6 months had elapsed from the date of the first scan, coupled with a 

repeat of SLEDAI assessment and blood tests on the day of the second scans.  

RESULTS 

Demographic, clinical and results of WCST performance of new-onset SLE patients 

and healthy controls 

Fourteen patients with new-onset SLE and 14 matched healthy controls were 

recruited for the study. Table 3.1 lists the information on the demographics, clinical 

manifestation and disease activity index of individual lupus patients involved in this 

study. Twelve females were included in each group. The SLE patients and controls had 

comparable demographic characteristics in terms of mean age (39.38 ± 13.9 vs 34.07 ± 

14.4, year, P = 0.33), duration of education (14.43 ± 3.4 vs 13.43 ± 3.4, year, P = 0.45) 

verbal IQ (96.23 ± 15.6 vs 100.43 ± 11.0, P = 0.42), performance IQ (101.50 ± 19.8 vs 

104.86 ± 11.6, P = 0.59) and full IQ (99.31 ± 17.1 vs 103.14 ± 11.2, P = 0.49). 
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Table 3.1 Demographics, clinical manifestation and disease activity of SLE patients 

No. Age, 

Years 

Sex Education Clinical manifestation of SLE SLEDAI 

1 47 F Primary Joint pain, Raynaud’s and rashes 8 

2 30 F Undergraduate Joint pain and nephritis 14 

3 67 M Secondary Joint pain 12 

4 28 F Doctorate Joint pain and rashes 24 

5 54 F Undergraduate Joint pain and rashes 2 

6 49 F Secondary Nephritis 8 

7 34 F Secondary Nephritis, joint pain and rashes 8 

8 30 F Undergraduate Joint pain and rashes 10 

9 61 F Undergraduate Joint pain and rashes 8 

10 26 F Undergraduate Joint pain and rashes 8 

11 22 F Master Joint pain and pericarditis 12 

12 33 F Doctorate Rashes and nephritis 0 

13 34 M Diploma Rashes and nephritis 13 

14 37 F Undergraduate Nephritis and cutaneous vasculitis 12 

          Abbreviations: SLE, systemic lupus erythematosus; F, female; M, male; SLEDAI, systemic lupus  

          erythematosus disease activity index.  

The majority of the SLE patients had active disease on recruitment indicated by 

SLE markers including low serum C3, C4 and high anti-dsDNA levels with mean ± SD 

(range) as 70.46 ± 25.0 (28.00-103.00) mg/dL [normal range (NR): 85-185], 15.42 ± 10.9 

(3.00-38.00) mg/dL (NR: 10-50) and 132.50 ± 111.3 (1.00-250.00) IU (NR < 20) 

respectively. The mean ± SD (range) SLEDAI was 9.93 ± 5.7 (0-24.00). Both groups 

performed comparably in the WCST regarding the number of rules identified (19.54 ± 3.5 
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vs. 19.50 ± 3.0; P = 0.50), error per rule (3.04 ± 2.5 vs. 2.51 ± 0.7, P = 0.38), and reaction 

time on recruitment (1679.01 ± 411.3 ms vs. 1080.51 ± 228.8 ms, P = 0.11). 

Differences in brain activation signals between SLE patients and healthy controls 

Feedback evaluation  

During 2nd NF, 1st PF and 2nd PF, healthy controls demonstrated significantly 

increased brain activation in a number of cortical regions including the medial frontal 

gyri and precentral gyri (BA6), the insular (BA13) and the anterior cingulate gyri 

(BA24/32) when compared with the new-onset SLE patients. The precentral gyri and 

medial frontal gyri are located within the premotor and supplementary motor cortices 

respectively, which subserve planning of complex and coordinated motor movements, 

decision making, computation and reasoning. The anterior cingulate gyri are involved in 

response inhibition, error detection and conflict monitoring and processing. Insular is 

suggested to be associated with integration of sensory information, self-awareness and 

cognitive functioning.    

On the contrary, during the first NF when the rule shift was signaled, significantly 

elevated activation was revealed in the left middle, left superior, and right medial frontal 

gyri (BA10/11) and the right parahippocampal gyrus (BA34) in SLE patients when 

compared to healthy controls. These frontal gyri within BA10/11 have been suggested to 

be involved in cognitive branching (Walsh et al., 2009), during which previously running 

task is maintained in a pending state for subsequent retrieval and execution upon 

completion of the ongoing one. The right parahippocampal gyrus is mainly responsible 

for memory encoding and retrieval. 
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Response Selection 

During RS after 2nd NF, SLE patients demonstrated significantly enhanced 

activation in the right superior frontal gyrus (BA9) and both caudate bodies. Superior 

frontal gyrus of BA9 is located within dorsolateral prefrontal cortex which supports 

attention and working memory. The caudate body functions in event anticipation and 

formulation of response strategy for the ongoing trials.  

Of note, the right precentral gyrus (BA4), postcentral gyri (BA3) and both 

superior parietal lobes (BA5/7) were significantly less activated during the rest of the RS 

events in the SLE group when compared with those of healthy controls. These cortical 

regions within BA3, 4 and 5/7 are primarily involved in processing of sensory 

information, motor execution and spatial orientation for goal-oriented behavior 

respectively.  

A detailed summary of the signal differences during RS and FE events between 

SLE patients and healthy controls is detailed in Table 3.2.  

Table 3.2 Regional differences in brain activation between patients with new-onset 

SLE and matched healthy controls 

 
Brain region 

Talairach 
Hemisphere BA 

x y z 

RS after 1st NF       

  SLE < Control 1 Postcentral gyrus  38 -27 48 R 3 

 2 Precentral gyrus 47 -17 39 R 4 

 3 Superior parietal lobule  20 -44 56 R 5 

RS after 2nd NF       

  SLE > Control 4 Superior frontal gyrus 8 52 22 R 9 
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 5 Caudate body -10 8 16 L   

 6 Caudate body 10 8 16 R   

RS after 1st PF       

  SLE < Control 7 Superior parietal lobule -29 -53 59 L 7 

 8 Postcentral gyrus -30 -31 67 L 3 

       

1st NF       

  SLE > Control 9 Superior frontal gyrus  -23 60 10 L 10 

 10 Middle frontal gyrus -25 44 -11 L 11 

 11 Medial frontal gyrus 4 50 0 R 10 

 12 Parahippocampal gyrus 14 -6 -18 R 34 

2nd NF       

  SLE < Control 13 Precentral gyrus -50 -5 33 L 6 

 14 Precentral gyrus 50 -5 34 R 6 

 15 Insula -43 -4 11 L 13 

 16 Insula 41 -6 16 R 13 

1st PF       

  SLE < Control 17 Anterior cingulate gyrus 6 7 43 R 32 

2nd PF       

 SLE < Control 18 Anterior cingulate gyrus -5 -3 47 L 24 

 19 Anterior cingulate gyrus 6 -3 46 R 24 

 20 Medial frontal gyrus -4 -4 53 L 6 

 21 Medial frontal gyrus 5 -4 53 R 6 

Abbreviations: BA, Brodmann area; R, right; L, left; RS, response selection; FE, feedback evaluation; 

NF, negative feedback; PF, positive feedback 
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Prospective data on clinical disease activity and WCST performance in SLE 

patients 

WCST performance 

The WCST performance during the follow-up fMRI scan did not differ 

significantly from that during the first fMRI scan in patients with SLE regarding the 

number of rules identified (19.36 ± 5.8 vs 19.54 ± 3.5, P = 0.906), error per rule (3.04 ± 

2.5 vs 2.2 ± 0.4, P = 0.095) and reaction time (1679.01 ± 411.3 vs 1580.4 ± 347.4, P = 

0.17).  

Clinical and serological disease activity  

After a mean ± SD (range) of 504.92 ± 267.0 (196- 1088) days of treatment, 

disease activities in the SLE patients were adequately controlled as indicated by both the 

clinical and serological features. The mean SLEDAI decreased significantly (2.64 ± 1.4 

vs 9.93 ± 5.7, P < 0.001), whereas that of serum anti-dsDNA level tended to improve 

after disease control (83.42 ± 93.0 vs 132.5 ± 111.3, IU, P = 0.064). Serum C3 (89.08 ± 

17.8 vs 70.46 ± 25.0, mg/dL, P = 0.009) and C4 (20.67 ± 8.8 vs 15.42 ± 10.9, mg/dL, P = 

0.020) levels increased significantly, whereas daily prednisolone was significantly 

tapered (3.82 ± 3.5 vs 15.32 ± 18.4, mg/d, P = 0.023).  

Differences in brain activation signals in SLE patients during the first fMRI scan 

and the follow-up fMRI scan 

Feedback evaluation  
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All patients who had undergone the first fMRI scans underwent the follow-up 

scans after sufficient disease control. During the follow-up fMRI scan, reduced cortical 

activation in a number of brain regions during FE were persistently demonstrated in 

patients with SLE when compared to the first fMRI scan. During 1st NF, reduced 

activation was revealed in the left middle frontal gyrus (BA6), right cuneus (BA17) and 

both fusiform gyri (BA37) which functions in motor planning, pattern recognition of 

object and color processing and word recognition respectively, while no significant 

difference was noted during 2nd NF. During 1st PF, the right medial and superior frontal 

gyri and left precentral gyrus (BA6) and the right anterior cingulate gyrus (BA32) were 

demonstrated to be less activated. These regions within BA6 and BA32 are suggested to 

be associated with motor planning and error detection and conflict monitoring 

respectively. At the stage of 2nd PF, the left posterior cingulate gyrus (BA23), superior 

parietal lobule (BA5) and middle frontal gyrus (BA9) were revealed to have reduced 

neuronal activities, which subserve error detection and conflict monitoring, spatial 

orientation and response inhibition and attention sustaining.  

 Response selection 

After adequate disease control, SLE patients distinctively showed activation in 

both anterior cingulate gyri (BA32) during RS after 1st NF. Notably, significantly 

reduced brain activation was demonstrated during all four RS events in a number of 

cortical regions including the right superior and inferior parietal lobes (BA7, 40), left 

insula and lingual gyri, right fusiform gyrus, and both inferior and right middle frontal 

gyri (BA13/18/19/9), and right medial frontal gyrus (BA8). The aforementioned cortical 

regions located within BA7, 40, BA13/18/19/9 and BA 8 are suggested to serve the 
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function of spatial orientation, mid-level processing of visual information and governance 

of eye movement respectively.  

The BOLD signal differences between SLE patients at first fMRI scan and the 

follow-up fMRI scan is detailed in Table 3.3.  

Table 3.3 Regional differences in brain activation in SLE patients between the first 

fMRI scan and the follow-up fMRI scan  

 Brain region Talairach Hemisphere BA 

  x y z   

RS after 1st NF       

  Follow-up > First 1 Anterior cingulate -3 39 -6 L 32 

 2 Anterior cingulate 3 38 -5 R 32 

  Follow-up < First 3 Inferior frontal gyrus -48 5 30 L 9 

 4 Middle frontal gyrus 46 13 34 R 9 

RS after 2nd NF       

  Follow-up < First 5 Inferior frontal gyrus 45 4 33 R 9 

 6 Superior parietal lobule  21 -63 49 R 7 

 7 Insula -37 -21 7 L 13 

 8 Fusiform gyrus 34 -72 -11 R 19 

 9 Lingual gyrus -21 -73 -8 L 18 

RS after 1st PF       

  Follow-up < First 10 Inferior parietal lobule 36 -46 39 R 40 

RS after 2nd PF       

  Follow-up < First 11 Medial frontal gyrus 7 27 41 R 8 

1st NF       

  Follow-up < First 12 Middle frontal gyrus  -16 -9 58 L 6 
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 13 Fusiform gyrus -36 -57 -12 L 37 

 14 Fusiform gyrus 25 -48 -9 R 37 

 15 Cuneus 13 -81 9 R 17 

       

1st PF       

  Follow-up < First 16 Anterior cingulate 4 21 34 R 32 

 17 Medial frontal gyrus 9 10 53 R 6 

 18 Superior frontal gyrus 8 8 55 R 6 

 19 Precentral gyrus -32 -7 50 L 6 

2nd PF       

  Follow-up < First 20 Posterior cingulate gyrus -3 -11 33 L 23 

 21 Superior parietal lobule -13 -41 56 L 5 

 22 Middle frontal gyrus -45 7 34 L 9 

Abbreviations: BA, Brodmann area; R, right; L, left; RS, response selection; FE, feedback evaluation; 

NF, negative feedback; PF, positive feedback 
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DISCUSSION 

The present prospective event-related fMRI study found that patients with new-

onset SLE demonstrated inferior planning strategy which required compensation on 

response execution during the assessment of executive function when compared with 

healthy controls, even after achieving sufficient disease control. 

Less efficient strategic planning skills regarding planning of complex and 

coordinated motor movement, decision-making, computation and reasoning (BA6), error 

detection, conflict monitoring and processing (BA24/32), and integration of sensory 

information (BA13) (Craig, 2009; Phan et al., 2002) were revealed in new-onset SLE 

patients when compared with healthy individuals. Although our sample of SLE patients 

possessed better planning skills regarding cognitive branching (BA10/11) and memory 

encoding and retrieval (BA34) during FE as compared with the healthy controls, their 

overall inferior planning strategy resulted in compensatory recruitment of additional 

cortical regions that boosted attention, working memory (BA9), and event anticipation 

and strategy formulation , sensory information processing (BA3), motor execution (BA4), 

and spatial orientation (BA5/7) in order to perform comparably as healthy controls. 

After sufficient disease control, SLE patients continued to demonstrate poorer 

strategic planning skills regarding motor planning (BA6), response inhibition and 

sustaining of attention (BA9), error detection and conflict evaluation (BA23/32), pattern 

recognition of object (BA17), spatial orientation (BA5), and color information processing 

and word recognition (BA37) when compared to the time when their disease was active. 

These observations suggest that sufficient clinical and serological disease control of SLE 
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may not be able to improve the relevant strategic planning skill. Instead, recruitment of  

extra cortical areas was required to enhance response inhibition, error detection, and 

conflicting processing and monitoring (BA32) to maintain their executive functioning, 

despite the fact that they relied substantially less on spatial orientation (BA7/40), visual 

processing (BA9/13/18/19) and governance of eye movement (BA8) during RS. 

Although reduced dependence on spatial orientation and visual processing may be 

secondary to the beneficial effects of the clinical improvement of SLE, familiarization 

with the spatial and screen arrangement of the WCST task during their first scans may 

theoretically confound the interpretation. 

BOLD signal changes are sensitive to even very minute alterations of cerebral 

perfusion. As a systemic inflammatory condition, SLE may cause a global change in 

vascular reactivity and lower rate of cerebral blood flow (Giovacchini et al., 2010; 

Yoshida et al., 2007). It can be argued that the diffuse deactivation of BOLD signals 

documented in this study were due to poorer global cerebral perfusion. However, this 

theory cannot explain the observations that BOLD signals were selectively suppressed in 

a confined number of cortical regions as shown in this study. Thus, other factors such as 

potential pathology in certain critical connections between brain networks may contribute 

(DiFrancesco et al., 2007). In view of this, we carried out a mechanistic study to explore 

the potential malfunction of brain networks and connections and the results will be 

presented in Part B of this study. 

This study was limited by a small sample size. However, sample size of this 

magnitude has consistently been demonstrated sufficient sensitivity in detecting statistical 

significance in BOLD signals even in NPSLE naïve lupus patients (DiFrancesco et al., 
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2007; Fitzgibbon et al., 2008; Rocca et al., 2006). Second, the WCST was performed 

twice in our SLE patients and it can be argued that patients’ learning effect of WCST 

might confound the interpretation. However, it has been suggested that such learning 

effect is minimal even if the WCST is reapplied within 1 month. In addition, temporal 

stability has been shown in most variables probed with the WCST (Ingram et al., 1999). 

Nevertheless, if learning effect was operant in our patients, the performance during the 

follow-up scan would have likely improved. Third, the WCST does not cover the 

assessment of other aspects of cognition such as language and psychomotor speed. 

Finally, patients with clinically overt neuropsychiatric lupus or cognitive impairment 

were obviously not included because they might not be able to follow and perform 

sophisticated neuropsychological test. 

In summary, our results demonstrated that subclinical cognitive dysfunction 

persisted and worsened in patients with SLE despite sufficient disease control. This 

prompts future targeted research on potentially specific autoantibodies, cytokines, or 

neurotransmitter which direct against the involved brain regions. Moreover, emerging 

neuroscience studies focused more on neural circuit-level interaction between multiple 

cortical regions and cognition (Kapogiannis & Mattson, 2011; Ray & Strafella, 2012; 

Wilbrecht & Shohamy, 2010), potential neural circuits that might underlie the subclinical 

cognitive dysfunction in SLE patients would be explored in the Part B of this study.  
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Study 3.1-Part B  

Dysfunctional cortico-basal ganglia-thalamic circuit and altered hippocampal-

amygdala activity on cognitive set-shifting in non-neuropsychiatric systemic lupus 

erythematosus 

INTRODUCTION 

In the first part of Study 3.1 we have identified characteristic BOLD fMRI signal 

changes in a number of cortical brain regions in lupus patients without clinically overt 

neuropsychiatric manifestations. Evidence has recently suggested that cognitive 

dysfunction is likely related to abnormal sequential brain activities involving specific 

neural circuits. For instance, disturbance of executive function has been demonstrated to 

be associated with dysfunctional classic and extended executive circuits in schizophrenics 

(Eisenberg & Berman, 2010). The fronto-parietal and fronto-striatial-thalamic 

disconnections have been revealed to be associated with cognitive dysfunction in patients 

with mild cognitive impairment (Liang et al., 2011). Moreover, disturbance of the default 

mode network has been found in lupus patients without neuropsychiatric manifestations 

(Lin et al., 2011). Thus, it prompts to map the functional abnormalities occurring in 

potential neural circuits which mediate cognitive dysfunction in SLE patients by 

analyzing their sequential brain activation while they are going through various 

sequential stages of cognitive function test. We therefore undertook this fMRI study 

using the computerized modified WCST to explore the brain activities across all stages of 

cognitive set-shifting processes in patients with new-onset SLE without clinically overt 

neuropsychiatric symptoms. 
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PATIENTS & METHODS 

Participants 

Please refer to Participants of Study 3.1-Part A on Page 66-67 

Wisconsin Card Sorting Test 

Please refer to section 2.5.2.1 

Image acquisition and imaging processing  

Please refer to sections 2.5.2.2 and 2.5.2.3 

Statistical analysis of BOLD signal 

Beta-score maps were computed in the Talairach space using a random effects 

general linear model. This model was constructed with separate regressors relative to a 

fixation baseline, convolved with a canonical hemodynamic response function peaking at 

6 seconds after onset of card stimuli or feedback, for RS and FE. Jittering of the fixation 

intervals between FE and subsequent RS facilitated in event deconvolution (Graham et al., 

2009). Region of interest (ROI) was computed by analyzing the effect contrasts of the 

two categorical task factors, class (positive, negative) and order (first, subsequent) for 

both RS and FE. Significant clusters and peak voxels that survived the false-discovery 

rate (a statistical method to correct multiple comparisons) q < 0.05 were reported 

(Genovese et al., 2002). The cluster threshold was calculated by Cluster-level Statistical 

Threshold Estimator in the Brain Voyager QX software package.  
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RESULTS 

Participants and WCST performance 

We recruited 14 new-onset SLE patients and 14 matched healthy controls and 

they did not differ in age, sex, years of education and IQ. As far as the performance on 

the WCST is concerned, SLE patients and controls performed comparably in terms of the 

number of rules identified, the number of error per rule and the reaction time. The 

demographic information, clinical data and the WCST performance of the study 

participants have been presented in Part A of this study. 

Signals on fMRI during response selection after negative feedback versus response 

selection after positive feedback 

When rule shift was signaled, brain regions that demonstrated greater activation in 

RS after 1st NF when compared with RS after 1st PF (RS after 1st NF>RS after 1st PF) 

implied involvement in response inhibition of the previously prepotent rule and the need 

to search for a new rule. In healthy controls, significantly activated BOLD signals were 

found in both middle frontal gyri, left medial frontal gyrus, left inferior parietal lobule, 

right angular gyrus, right middle occipital gyrus, right middle temporal gyrus, left 

fusiform gyrus, right claustrum, right globus pallidus (GP) and both thalami. The GP and 

thalami, being the critical components of the cortico-basal ganglia thalamic-cortical 

circuit, were involved in response inhibition and change of behavioral set (Haber & 

McFarland, 2001; Stevens et al., 2007).  

Intriguingly, besides brain activation in various regions within the frontal and 

parietal lobes, our lupus patients demonstrated activation at the declive of the cerebellar 
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vermis while signals in the right GP and thalami were concomitantly absent. This striking 

finding implies the cortico-basal ganglia-thalamic-cortical circuit was dysfunctional in 

patients with SLE when response to prevailing rule was inhibited. On the other hand, 

these patients elicited activated BOLD signals in the right parahippocampal gyrus and left 

posterior cingulate in the condition contrast of RS after 1st NF < RS after 1st PF, which 

was absent in the healthy controls, implying that SLE patients required additional 

activities in these two regions to boost reconfiguration of response strategy for adapting 

to a new rule. Brain activation profile of healthy controls and SLE during RS after 1st NF 

versus after 1st PF is shown in Table 3.4 and Figure 3.1.  

Table 3.4 Region of interest during RS in healthy controls and patients with SLE 

 Brain Region 
Talairach 

Hemisphere BA 
x y z 

Healthy controls       

RS after 1st NF > RS after 1st PF 1 Middle frontal gyrus 41 25 30 R 9 

(Response inhibition) 2 Middle frontal gyrus -34 50 6 L 10 

 3 Medial frontal gyrus -1 19 45 L 8 

 4 Angular gyrus 32 -56 39 R 39 

 5 Inferior parietal lobule -37 -56 42 L 40 

 6 Middle occipital gyrus 30 -83 -3 R 18 

 7 Middle temporal gyrus 50 -32 0 R 21 

 8 Fusiform gyrus -37 -56 -9 L 37 

 9 Globus Pallidus 14 -2 3 R ― 

 10 Thalamus 12 -7 9 R ― 

 11 Thalamus -10 -8 9 L ― 

 12 Claustrum 29 19 0 R ― 
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RS after 1st NF < RS after 1st PF No significant voxels 

RS after 2nd NF vs. RS after 2nd PF No significant voxels 

       

Patients with SLE       

RS after 1st NF > RS after 1st PF 13 Superior frontal gyrus -31 55 15 L 10 

(Response inhibition) 14 Middle frontal gyrus 32 10 51 R 6 

 15 Middle frontal gyrus 29 49 3 R 10 

 16 Middle frontal gyrus -49 25 27 L 46 

 17 Superior parietal lobule -31 -68 51 L 7 

 18 Inferior parietal lobule 44 -56 45 R 40 

 19 Inferior parietal lobule -37 -50 42 L 40 

 20 Inferior parietal lobule -55 -47 48 L 40 

 21 Thalamus -16 -8 6 L ― 

 22 Claustrum 29 22 3 R ― 

 23 Declive 35 -62 -21 R ― 

 24 Declive 5 -74 -18 R ― 

RS after 1st NF < RS after 1st PF 25 Posterior cingulate -7 -47 21 L 30 

(Reconfiguration of response strategy) 26 Parahippocampal gyrus 23 -14 -15 R 28 

RS after 2nd NF vs. RS after 2nd PF No significant voxels 

Abbreviations: ROI, Region of Interest; RS, response selection; FE, feedback evaluation; SLE, systemic lupus 

erythematosus; BA, Brodmann Area; NF, negative feedback; PF, positive feedback; R, right; L, left; vs., versus. 
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Signals on fMRI during negative feedback versus positive feedback 

Brain regions that showed greater activation in 2nd NF in comparison to 2nd PF 

(2nd NF > 2nd PF) reflected involvement in generating identity of a new rule instead of 

keeping the prevailing one. In healthy controls, both middle frontal gyri, left medial 

frontal gyrus, precentral gyrus and both inferior parietal lobules were activated in this 

condition. In lupus patients, the right superior frontal gyrus, bilateral middle frontal gyri, 

right inferior parietal lobule, left superior parietal lobule, left cingulate gyrus and the right 

claustrum were activated instead. By contrast, brain regions that were activated in 2nd PF 

in comparison with 2nd NF (2nd PF > 2nd NF) signified their contribution to maintain 

the established rule rather than the generation of the identity of a new rule. In this 

condition, healthy controls had their right precentral gyrus, right precuneus, left inferior 

parietal lobule, left middle temporal gyrus and both hippocampi, left amygdala, right 

posterior cingulate, left anterior cingulate and left cingulate gyrus (limbic system) 

involved. Whereas in the lupus patients, limbic involvement in rule maintenance was 

demonstrated only in the right hippocampus and left anterior cingulate. Regions of brain 

activation in healthy controls and SLE for 2nd NF versus 2nd PF are described in Table 

3.5 and Figure 3.2.   
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Table 3.5 Region of interest during FE in healthy controls and patients with SLE 

 Brain Region 
Talairach 

Hemisphere BA 
x y z 

Healthy controls       

2nd NF > 2nd PF 1 Precentral gyrus -43 1 30 L 6 

(Generation of new rule identity) 2 Middle frontal gyrus 29 49 3 R 10 

 3 Middle frontal gyrus -37 50 3 L 10 

 4 Medial frontal gyrus -1 19 45 L 8 

 5 Inferior parietal lobule 35 -56 42 R 7 

 6 Inferior parietal lobule -43 -44 42 L 40 

2nd NF < 2nd PF 7 Precentral gyrus 32 -29 57 R 4 

(Maintenance of established rule) 8 Anterior cingulate -7 43 -6 L 32 

 9 Posterior cingulate 5 -50 18 R 30 

 10 Cingulate gyrus -10 -20 39 L 24 

 11 Precuneus  14 -44 51 R 7 

 12 Inferior parietal lobule -49 -26 27 L 40 

 13 Postcentral gyrus 56 -23 21 R 40 

 14 Middle temporal gyrus -52 -2 -9 L 21 

 15 Middle temporal gyrus -46 -59 9 L 39 

 16 Hippocampus 29 -29 -9 R ― 

 17 Hippocampus -27 -29 -9 L ― 

 18 Amygdala -19 -11 -13 L ― 

1st NF vs. 1st PF No significant voxels 

1st NF vs. 2nd NF No significant voxels 

1st PF vs. 2nd PF No significant voxels 
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Patients with SLE       

2nd NF > 2nd PF 19 Superior frontal gyrus 29 49 12 R 10 

(Generation of new rule identity) 20 Middle frontal gyrus 41 34 30 R 9 

 21 Middle frontal gyrus -31 58 6 L 10 

 22 Middle frontal gyrus -46 25 24 L 46 

 23 Cingulate gyrus -4 28 33 L 32 

 24 Superior parietal gyrus -37 -59 54 L 7 

 25 Inferior parietal gyrus 41 -53 45 R 40 

 26 Claustrum 29 19 0 R ― 

2nd NF < 2nd PF 27 Precentral gyrus  50 -2 6 R 6 

(Maintenance of established rule) 28 Paracentral lobule -19 -38 54 L 5 

 29 Anterior cingulate -7 31 -9 L 32 

 30 Hippocampus 29 -26 -12 R ― 

1st NF vs. 1st PF No significant voxels 

1st NF vs. 2nd NF No significant voxels 

1st PF vs. 2nd PF No significant voxels 

Abbreviations: ROI, Region of Interest; RS, response selection; FE, feedback evaluation; SLE, systemic lupus 

erythematosus; BA, Brodmann Area; NF, negative feedback; PF, positive feedback; R, right; L, left; vs., versus. 
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DISCUSSION 

In this study, we hitherto found that the cortico-basal ganglia-thalamic-cortical 

circuit, which is involved in response inhibition, was dysfunctional in lupus patients even 

if they did not manifest clinically overt neuropsychiatric symptoms. To compensate for 

the dysfunction of the circuit, the contralateral cerebellar and frontal areas were activated 

in lupus patients. Additionally, lupus patients showed altered activities at the amygdala 

and hippocampus while they attempted to maintain prepotent rules during cognitive set-

shifting.  

While healthy controls experienced the maximum demand for withholding 

previous prepotent rule and response inhibition throughout the cognitive set-shifting 

processes, they showed increased brain activations at the right middle frontal gyrus, right 

GP and both thalami in a synchronous pattern across the cognitive set-shifting processes 

(Figure 3.3A). The dorsolateral prefrontal cortex (DLPFC) is involved in working 

memory, in the switching of cognitive sets and in inhibitory control of the prepotent 

response (Garavan et al., 1999; Haber & McFarland, 2001). Since the right middle frontal 

gyrus belongs to the DLPFC, it implies that it participates in conditions which require 

functional working memory and switching of cognitive sets. Furthermore, it was 

previously proposed that response suppression required the functional integrity of the 

prefrontal cortex, basal ganglia and thalami. Functionally, these three regions form the 

cortico-basal ganglia-thalamic-cortical circuit that was believed to coordinate the function 

of the cortical regions involved (Alexander et al., 1986; Garavan et al., 1999; Li et al., 

2006; Logan & Cowan, 1984; Stevens et al., 2007).  
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The indirect pathway that connected these regions has been identified, in which 

the cortex, striatum, external segment of GP, subthalamic nucleus, internal segment of 

GP, thalami and cortex were involved sequentially to implement response suppression 

and change of behavioral set (Alexander et al., 1990). However, brain activation at the 

right GP and right thalamus in patients with SLE were not observed when the cognitive 

demand for inhibitory response control was dominating, implying that information flow 

from the striatum to the thalamus was compromised which resulted in the deficit of 

response control in SLE patients under this circumstance. Although the left thalamus was 

still activated in the lupus patients, the magnitude of the activation signal was lower than 

that of the healthy controls in the same region (Figure 3.3B).  

In addition, a number of lesion studies have shown that GP is one of the important 

neural components which mediate executive cognitive function (Haaxma et al., 1993; 

Strub, 1989). For example, patients with advanced Parkinson’s disease were unable to 

shift attention after bilateral pallidotomy (Scott et al., 2002). Likewise, disturbance of the 

metabolism in the thalamus was demonstrated in children with Sturge-Weber syndrome 

(Alkonyi et al., 2010), of which cognitive dysfunction is one of the commonest symptoms. 

Therefore, the absence of right GP and right thalamic activity in our lupus patients 

suggests that they had impaired response inhibition and reduced capability of behavioral 

change secondary to cortico-basal ganglia-thalamic-cortical circuit dysfunction. 

Of note, the absence of brain activation at the right GP and right thalamus 

aforementioned was coupled with an increase in brain activity at the declive of the right 

cerebellar vermis in lupus patients. A few anatomical, physiological and neuroimaging 

studies demonstrated that cerebellar damage led to impairment of executive function, 
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spatial cognition, language and personality change (Schmahmann, 2010). On the other 

hand, over-reliance on cerebellar activities was demonstrated in patients with 

schizophrenia, alcoholism and cocaine abuse during evaluation of working memory, 

verbal working memory and executive control, respectively (Desmond et al., 2003; 

Hester & Garavan, 2004; Meyer-Lindenberg et al., 2001; Schlosser et al., 2003). In our 

study, the increased activity in the right cerebellum was coupled with activation of the 

left prefrontal cortex (left superior frontal gyrus and middle frontal gyrus) in lupus 

patients. Such activation pattern is reminiscent of increased brain activation in the left 

frontal-right cerebellar circuit in alcoholics during verbal memory test (Desmond et al., 

2003), which is in keeping with the observations that cerebellar activation often occurs in 

conjunction with contralateral frontal lobe activation (Hester & Garavan, 2004). In our 

study, analysis of brain activities at the declive of the cerebellar vermis and the left 

middle and superior frontal gyrus revealed rather similar activation pattern during the 

course of cognitive set-shifting (Figure 3.3C), further implying the conjugated role of the 

right cerebellum and left frontal regions during different stages of cognitive set-shifting.  

Neural activities of the cerebellum, coupled with brain activation at the 

contralateral frontal areas, have been suggested to compensate for articulatory and 

inhibitory controls in alcoholics and cocaine abusers respectively in order to maintain 

normal cognitive function (Desmond et al., 2003; Hester & Garavan, 2004). Taken 

together with another recent finding of the cerebellum-basal ganglia interconnections in 

an anatomical study performed in primates (Bostan & Strick, 2010), we postulated that in 

patients with SLE, the increased right cerebellar and its coupled left prefrontal activities 

may serve to compensate for the dysfunction of inhibitory control secondary to the 
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compromised cortico-basal ganglia-thalamic-cortical circuit in order to maintain the 

performance of the set-shifting tasks. Concurring with the findings of other functional 

imaging studies, the compensatory activations that aided the dysfunctional cortico-basal 

ganglia-thalamic-cortical circuit which we found in our study clearly illustrated the 

adaptability and plasticity of the brain to recruit neural networks to serve those function 

which has been damaged. For instance, in order to maintain performance levels, 

generalized brain activations were demonstrated in subjects with age-related degeneration 

in motor performance of the hands (Ward & Frackowiak, 2003). Relevant to SLE, a few 

recent studies demonstrated generalized brain activations in lupus patients when they 

were performing neuropsychological tasks (DiFrancesco et al., 2007; Fitzgibbon et al., 

2008; Mackay et al., 2011). Importantly, compensatory BOLD signal intensity decreased 

in lupus patients with disease duration of longer than 10 years, suggesting that potential 

compensatory activations may decrease when irreversible neuronal damage has set in 

(Mackay et al., 2011). 
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When study participants were posed to a challenge to adapt to a new rule during 

cognitive-set shifting, SLE patients activated their right parahippocampal gyrus and left 

posterior cingulate in order to reconfigure their response strategy and to adapt to a new 

rule, while amongst the healthy controls, no significant brain activities in these two 

regions were observed. The altered activities of the posterior cingulate and 

parahippocampus were consistent with two recently published studies in SLE patients 

without NPSLE and in patients with schizophrenia (Garrity et al., 2007; Lin et al., 2011), 

which suggested the attenuation of intrinsic DMN, episodic memory problem and related 

cognitive deficits. The DMN is regarded as a resting state of brain function and involved 

in planning of future events and on-going information processing. 

Brain regions where involvement of new rule generation dominates that of the 

maintenance of an established rule were revealed during the condition contrast 2nd NF > 

2nd PF. In healthy controls, both hippocampi were deactivated in this contrast, indicating 

their involvement in maintaining an identified rule. Most brain regions that contributed 

more to rule generation than maintenance in SLE patients and healthy subjects 

overlapped, suggesting that brain activities underlying this cognitive process remained 

intact in lupus patients. Further analysis revealed that activities of both hippocampi 

initially decreased during the “generate” event when the identity of the new rule was 

unknown. Subsequently during the “update” and “maintain” events while the new rule 

was identified and maintained in memory, both hippocampi were activated. This finding 

was consistent with the putative role of the hippocampus in set-shifting in which 

decreased hippocampal activity at the generation event would facilitate active forgetting 

of the previous rule and shift to a new cognitive set, while the subsequent increased 
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hippocampal activity at the update and maintenance events would enhance learning of the 

new rule to guide ensuing trials (Graham et al., 2009). Interestingly, the left amygdala 

appeared to follow a synchronous activity pattern as both hippocampi across all stages of 

set-shifting (Figure 3.4A).  

The brain activation underlying FE has been proposed as a result of the response 

to reward or punishment of the feedback stimulus (Monchi et al., 2001). Hippocampal 

activities appear to be reinforced and maintained by the amygdala through generation of 

rewards (Joseph, 1996),  suggesting the coupled role of amygdala and hippocampus in 

set-shifting processes observed in our study. However, the involvement of the left 

hippocampus and left amygdala in rule maintenance was absent in our SLE patients, 

implying a compromise of the active forgetting-learning dynamics in set-shifting despite 

that the right hippocampus was still required to maintain the established rule in a pattern 

similar to that in healthy controls (Figure 3.4B). As in patients with SLE, altered 

amygdala and hippocampal activities within DMN were demonstrated in patients with 

depression and Alzheimer’s disease (Sheline et al., 2009; Zhou et al., 2010). These 

findings may signify a potential common pathological basis of the disrupted forgetting-

learning dynamics which involves the amygdala and hippocampi in patients with SLE, 

depression and dementia.  
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While further mechanistic evaluation is required to explain the BOLD signal 

changes especially those involved in hippocampus-amygdala coupling and the absence of 

BOLD signals in the hippocampus and amygdala in our patients with SLE, the well-

investigated anti-ribosomal P and anti-N-methyl-D-aspartate receptor (NMDAR) 

antibodies may be potentially contributory. A clinical study in the 1980s demonstrated 

that the serum titre of anti-ribosomal P antibodies was selectively raised in lupus patients 

with active psychosis although not all subsequent studies could replicate the associations 

between the antibodies and psychosis and depression in patients with SLE (Bonfa et al., 

1987). Nevertheless, induction of autoimmune depression in C3H/HeJ mice by 

intracerebroventricular injection of affinity-purified anti-ribosomal P antibodies revealed 

that the antibodies bound specifically to the pyramidal cell layer and dentate gyrus of the 

hippocampus and other areas of the limbic system which could be significantly 

counteracted by anti-idiotypic antibodies to anti-ribosomal P antibodies (Katzav et al., 

2007). The NMDAR are mainly expressed in the neurons of the hippocampi and 

amygdala. Under physiologic conditions, the neurotransmitter glutamate activates the 

receptors and mediates learning and memory by manipulating synaptic plasticity 

(Diamond, 2010). In animal models, antagonising the NR2 subunit of the NMDAR (anti-

NR2 antibody) led to impaired memory and learning (Diamond, 2010). Because anti-NR2 

is present in the serum and cerebrospinal fluid in NPSLE patients (Diamond, 2010), a 

potential pathogenic role of anti-NR2 antibody in cognitive dysfunction is advocated 

(Aranow et al., 2010). Indeed, anti-NR2 purified from lupus patients was able to induce 

cognitive impairment, memory deficit and hippocampal neurotoxicity in BALB/c mice 

(Kowal et al., 2006; Lapteva et al., 2006b). Recently, it has been shown that anti-NR2 
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antibody exerted its cytotoxic effect of the neurons by increasing intracellular calcium 

through inhibition of the binding capacity of zinc (Zn) in the Zn-binding site of the 

NMDAR which resulted in reduced cell viability (Gono et al., 2011). The potential 

relationship between serum anti-NR2 antibodies and the fMRI BOLD signals at the 

hippocampi and amygdala in these lupus patients will be explored in the subsequent study 

reported in this thesis. 

This study has a few limitations. First, the sample size is relatively small. 

However, sample size of this magnitude has consistently been demonstrating sufficient 

sensitivity of BOLD signals to achieve statistical significance (Graham et al., 2009; 

Monchi et al., 2001). Second, patients with SLE were given prednisolone treatment at the 

time of the fMRI scan, and the possible effects of medication on BOLD signals may 

confound our interpretation. Since the majority of patients underwent fMRI scan within 2 

months of the diagnosis of SLE with the average (±SD) exposure of initial 

immunosuppressive therapy of 36.86 ± 35.5 days (range: 8-143 days) prior to the scan, 

the effect of treatment on BOLD signals should be minimal. 

Taken together, our findings demonstrated that patients with SLE, even without 

clinically overt neuropsychiatric symptoms, had abnormal sequential brain activities 

involving the basal ganglia, hippocampi and amygdala, which indicated a compromised 

cortico-basal ganglia-thalamic-cortical circuit and hippocampus-amygdala coupling in 

comparison with healthy subjects. These results translate into potential compromise in 

response inhibition and the active forgetting-learning dynamics in lupus patients. 

Moreover, patients with SLE demonstrated over-reliance on the cerebellar-contralateral 
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frontal conjunction activities to compensate for the dysfunction of the compromised 

cortico-basal ganglia-thalamo-cortical circuit.  
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Study 3.2  

Serum anti-NR2 alone is not an ideal marker of subclinical working memory and 

learning deficits assessed based on abnormal functional brain signals in patients 

with systemic lupus erythematosus 

INTRODUCTION 

In Study 3.1, we have identified a number of cortical regions, networks and 

connections that are associated with subclinical neuropsychiatric symptoms in SLE 

patients. However, as an autoimmune disease, the immune mechanism underlying the 

abnormal neural activities in these cortical regions and networks of patients with SLE 

remains unclear. Autoantibodies, being a hallmark of SLE, have been extensively studied 

for an aim to explain the mechanism of cognitive dysfunction in patients with SLE but 

the results have been inconclusive (Colasanti et al., 2009; Hanly et al., 2008; Hanly et al., 

2011; McLaurin et al., 2005; Seaman et al., 1995). Anti-NR2 antibodies which direct 

against the NR2A and NR2B subunits of the NMDARs have been more consistently 

demonstrated to be capable of disturbing learning and memory, in both animal models 

and human studies (DeGiorgio et al., 2001). While a number of studies revealed 

significantly higher level of anti-NR2 antibodies in the CSF of lupus patients with 

neuropsychiatric symptoms (Arinuma et al., 2008; Fragoso-Loyo et al., 2008; Yoshio et 

al., 2006), the association between serum anti-NR2 antibodies and cognitive impairment 

remained inconsistent (Lauvsnes & Omdal, 2012). Furthermore, the potential use of 

serum anti-NR2 antibodies to detect subclinical impairment of learning and working 

memory indicated by abnormal BOLD fMRI signals is not thoroughly investigated.   
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In Part B of Study 3.1, we have found that when lupus patients were challenged 

with a high cognitive demand for learning and working memory, there was a complete 

absence of signals in the amygdala and left hippocampus, in contrast to their healthy 

counterparts whose signals in these brain regions were unaffected. Since the NMDARs 

are most densely populated in the hippocampi and amygdala and are involved in 

mediating learning and working memory, the discordant activities in the hippocampus 

and amygdala in lupus patients we found on fMRI are postulated to be related to the anti-

NR2 antibodies. Additionally, because our preceding Study 3.1 provided objective 

evidence of brain involvement in subclinical cognitive impairment, the fMRI signals are 

able to offer a reasonably sensitive reference to examine if serum anti-NR2 antibodies are 

clinically useful to detect the subclinical cognitive impairment in patients with SLE. 

Hence, we undertook this study which carries two aims. First, we aimed to confirm if the 

serum level of anti-NR2 antibodies in patients with SLE is higher than that of healthy 

individuals and whether it correlates with clinical and serological disease activity of SLE. 

Second, we attempted to explore the potential clinical applicability of serum anti-NR2 

antibodies in detecting subclinical neuropsychiatric manifestation of SLE by studying the 

relationship between serum anti-NR2 antibodies and the blood-oxygen-level-dependent 

(BOLD) signals of fMRI at the hippocampi and amygdala in lupus patients without 

clinically overt neuropsychiatric symptoms. 

PATIENTS AND METHODS 

Recruitment of study participants and clinical assessment of SLE 
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Patients who fulfilled the American College of Rheumatology classification 

criteria for SLE (Hochberg, 1997) were recruited between March 2008 and June 2012 

consecutively from the Lupus Clinic of the National University Hospital, Singapore. 

Healthy subjects matched with lupus patients for age (±4 years) and sex were recruited 

during the same study period for comparison.  The demographic data of the patients and 

healthy subjects were obtained during clinical interview and medical record review. 

Disease activity of the patients with SLE was measured by the Systemic Lupus 

Erythematosus Disease Activity Index (SLEDAI) (Yee et al., 2011). Peripheral blood 

samples were collected via venipuncture of the antecubital veins and the sera were 

assayed for complement (C3, C4) and anti-dsDNA levels in the standard laboratory of the 

hospital. Written informed consent was obtained from the subjects recruited for this study 

and the study was approved by the local ethics committee.  

Measurement of anti-NR2 antibody 

Please refer to section 2.5.3 

fMRI study 

During the recruitment period of this study, 14 new onset lupus patients and 14 

matched healthy controls were recruited in the preceding Study 3.1-Part B which 

investigated sequential brain activation during cognitive set-shifting. These 14 patients 

with new onset SLE had no history of neurological disorder and/or psychiatric disorder, 

clinically significant anxiety and/or depression and use of psychotropic medications. In 

addition, they were negative for antiphospholipid antibodies and lupus anticoagulants. 

The WCST paradigm, imaging acquisition, imaging processing and statistical analysis of 
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BOLD signal of this study are the same as those listed in the Method section of Study 

3.1-Part B. 

RESULTS 

Demographic and clinical features of patients with SLE and healthy controls 

We recruited 64 patients with SLE and 67 healthy controls. The age and gender 

proportion were comparable between the lupus and healthy control groups with matching. 

Amongst the lupus patients, the mean ± SD serum C3, C4 and anti-dsDNA levels were 

77.86 ± 31.0 mg/dl, 17.05 ± 11.5 mg/dl and 101.46 ± 85.9 IU respectively. The mean ± 

SD SLEDAI was 6.70 ± 5.7. Among the 64 SLE patients, 6 had history of 

neuropsychiatric features in which 4 had psychosis, 1 had seizures and 1 had 

cerebrovascular disease. Also, amongst the 64 lupus patients recruited, 12 of them 

without a history of NPSLE who participated and were analyzed in the fMRI study had 

no significant difference in terms of age, gender and the serum levels of C3, C4 and anti-

dsDNA and the SLEDAI when compared with those of the rest of the 52 patients with 

SLE. Table 3.6 summarizes the demographic and clinical information of patients with 

SLE and healthy subjects. Table 3.7 depicts the comparison of demographic information 

and clinical features between those patients who had and those did not have fMRI scan 

performed. 
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Table 3.6 Demographic and clinical features of study participants 

 

 

SLE (n = 64) Control (n = 67) P value 

Mean ± SD 

(range) 

[normal range] 

Number (%) 

Age, years 40.02 ± 13.8 41.12 ± 13.2 0.585 

Female, n 56 (87.5) 58 (86.6) 0.874 

C3, mg/dl 

77.86 ± 31.0  

(16.00 - 201.00) 

[85 - 185] 

― ― 

C4, mg/dl 

17.05 ± 11.5  

(2.00 - 48.00) 

[10 - 50] 

― ― 

Anti-dsDNA, IU 

101.46 ± 85.9  

(2.00 - 250.00) 

[< 20] 

― ― 

SLEDAI 

6.70 ± 5.7  

(0 - 26) 

― ― 

Disease duration, months 41.84 ± 61.6 ― ― 

Prednisolone, mg/day 13.47 ± 15.0 ― ― 

Rash 28 (43.8) ― ― 

Discoid rash 3 (4.7) ― ― 

Photosensitivity 14 (21.9) ― ― 

Oral ulcers 11 (17.2) ― ― 

Arthritis 35 (54.7) ― ― 

Serositis 5 (7.8) ― ― 
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Renal disorder 15 (23.4) ― ― 

Neurologic disorder*  6 (9.4) ― ― 

Haematological disorder 31 (48.4) ― ― 

Immunological disorder 57 (89.1) ― ― 

ANA positivity  63 (98.4) ― ― 

Abbreviation: SLE, systemic lupus erythematosus; SD, standard deviation; anti-dsDNA, anti-double strand 

DNA; SLEDAI, Systemic Lupus Erythematosus Disease Activity index; ANA, anti-nuclear antibodies. 

* Psychosis in four, seizure in one and cerebrovascular disease in one patients respectively  
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Table 3.7 Comparison of demographic and clinical features and anti-NR2 antibodies 

between SLE patients with and without fMRI scan 

 SLE with fMRI scan  

(n = 12) 

SLE without fMRI scan 

(n = 52) 

P value 

 Mean ± SD (range) 

[normal range] 

Number (%) 

 

Age, years 40.25 ± 14.3 39.96 ± 13.9 0.918 

Female, n 10 (83.3) 46 (88.5) 0.631 

C3, mg/dl 

67.17 ± 25.5 (28.00-117.00) 

[85 - 185] 

80.12 ± 31.6 (16.00-201.00) 

[85 - 185] 

0.132 

C4, mg/dl 

12.92 ± 9.0 (3.00-34.00) 

[10 - 50] 

17.92 ± 11.4 (2.00-48.00) 

[10 - 50] 

0.146 

Anti-dsDNA, IU 

123.58 ± 104.4 (2.00-250.00) 

[< 20] 

96.77 ± 80.6 (3.00-250.00) 

[< 20] 

0.535 

High anti-NR2 0 (0) 6 (11.5) 0.216 

SLEDAI 9.00 ± 7.0 (4-25) 6.17 ± 5.3 (0-26) 0.221 

Prednisolone, 

mg/day 

15.00 ± 16.1 13.12 ± 14.9 0.396 

Abbreviation: SLE, systemic lupus erythematosus; fMRI, functional magnetic resonance imaging; SD, 

standard deviation; anti-dsDNA, anti-double strand DNA antibodies; SLEDAI, Systemic Lupus 

Erythematosus Disease Activity Index 

Assessment of anti-NR2 antibodies in patients with SLE and healthy controls 

SLE patients demonstrated significantly higher levels of serum anti-NR2 

antibodies than that of the healthy controls (OD450 value: 0.147 ± 0.095 vs. 0.106 ± 0.080, 

P = 0.001) (see Figure 3.5). The proportion of patients with high anti-NR2 levels amongst 

the 12 lupus patients who participated in the fMRI study did not significantly differ from 

that of the rest 52 patients without undergoing fMRI (see Table 3.8). Additionally, the 

OD450 of anti-NR2 antibodies of these 12 patients ranged from 0.031 to 0.256, implying 
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that none of these 12 lupus patients who underwent the fMRI study had high anti-NR2 

level. When analyzed based on the high/low anti-NR2 cut-off value which is 0.266, six of 

the 64 (9.4%) of lupus patients were categorized into the high anti-NR2 group but none 

of them had neuropsychiatric manifestation (see the footnote of Figure 3.5). Conversely, 

the OD450 of anti-NR2 antibodies in 6 lupus patients with history of neurological and/or 

psychiatric disorders ranged from 0.0765 to 0.265, indicating their serum anti-NR2 

antibody levels were low.  
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Correlation between anti-NR2 antibodies, serum C3, C4 and anti-dsDNA antibodies 

The high and low anti-NR2 groups in the SLE patients did not significantly differ 

in terms of mean age, gender proportion, serum C3 and anti-dsDNA levels and the 

SLEDAI, although the serum level of C4 was higher in the high anti-NR2 group (P = 

0.003). No significant correlation was found between the serum anti-NR2 antibodies and 

serum anti-dsDNA antibodies, C3 and C4, and the SLEDAI when serum anti-NR2 

antibody titer was assessed as a continuous variable. The comparison of clinical features 

between patients of the high and low serum anti-NR2 groups is shown in Table 3.8.  

Table 3.8 Comparison of clinical characteristics between high and low anti-NR2 

group and correlation between anti-NR2 antibodies and clinical parameters in SLE 

patients 

 SLE (n = 64) P value 

 Mean ± SD (range) 

[normal range] 

Number (%) 

 High anti-NR2 (n = 6) Low anti-NR2 (n = 58) 

Age, years 46.67 ± 17.4 39.33 ± 13.4 0.336 

Female 6 (100) 50 (86.2) 0.597 

C3, mg/dl 

94.17 ± 13.6 (82.00-115.00) 

[85 - 185] 

76.14 ± 31.9 (16.00-201.00) 

[85 - 185] 

0.073 

C4, mg/dl 

30.33 ± 10.2 (21.00-48.00) 

[10 - 50] 

15.57 ± 5.7 (2.00-48.00) 

[10 - 50] 

0.003 

Anti-dsDNA, IU 

44.83 ± 33.8 (8.00-101.00) 

[< 20] 

107.42 ± 87.7 (2.00-250.00) 

[< 20] 

0.175 

SLEDAI 3.67 ± 3.9 (0-10) 7.02 ± 5.8 (0-26) 0.147 

Disease duration, 

months 

98.33 ± 141.0 36.00 ± 45.6 0.282 
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Prednisolone, 

mg/day 

5.83 ± 2.64 14.26 ± 15.5 0.464 

Anti-NR2  versus  Spearman’s correlation  

 C3 - 0.107 0.406 

 C4 0.077 0.557 

 Anti-dsDNA - 0.005 0.969 

 SLEDAI - 0.054 0.676 

 Prednisolone -0.062 0.625 

Beta score 

 (R Hippocampus) 
0.294 0.354 

 Abbreviation: SLE, systemic lupus erythematosus; SD, standard deviation; anti-dsDNA, anti-double strand    

DNA; SLEDAI, Systemic Lupus Erythematosus Disease Activity Index; R, right. 

WCST performance, abnormal neuronal activities at the hippocampus and amygdala and 

their association with anti-NR2 antibodies 

The 12 SLE patients and 14 healthy controls recruited for the Study 3.1 showed 

no significant differences in the number of rules identified (17.83 vs. 19.50, p = 0.462), 

number of error per shift (3.23 vs. 2.51, p = 0.820) and reaction time (1726.04 vs. 

1808.51, p = 0.705) regarding the performance of WCST. However, consistent with our 

findings in Part B of Study 3.1, only the right hippocampus was involved in the specific 

cognitive stage when learning and memory were most demanded during the WCST in the 

12 SLE patients who involved in the fMRI study (see Figure 3.6), whereas both 

hippocampi and the left amygdala were involved during the same cognitive stage in the 

healthy counterparts. These findings signified that the impairment of working memory 

and learning was subclinical in our SLE patients. However, no significant relationship 
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was found between the level of serum anti-NR2 antibodies and the beta score of neuronal 

activities at the right hippocampus in these 12 patients (Spearman’s =0.294, P = 0.354). 

 

DISCUSSION 

While it was found that the serum levels of anti-NR2 antibodies in patients with 

SLE were significantly higher than that of the age- and gender-matched healthy controls, 

we found no significant correlation between serum anti-NR2 antibodies and both clinical 

and serological markers of lupus disease activity. In addition, patients with clinically 

overt neuropsychiatric manifestation did not have high anti-NR2 antibody levels. 

Although no significant correlation was found between serum C4 and anti-NR2 

antibodies, serum C4 level was higher in the high anti-NR2 group than that of the low 
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anti-NR2 group. Mechanistically, unlike lupus nephritis where glomerular immune 

complex deposition and complement-dependent cytotoxicity are the main 

pathophysiological processes (Nangaku & Couser, 2005), anti-NR2 antibodies do not 

induce neuronal injury via immune complex formation because their Fab
1

2 fragments per 

se are capable of inducing neuronal death without the need for the Fc portion of the 

antibodies to activate the complement cascade (Diamond & Volpe, 2012). These findings 

strengthen the observations that the presence of anti-NR2 antibodies was unlikely related 

to the disease activity of SLE and immune-complex mediated neuronal injury (Diamond 

& Volpe, 2012; Gono et al., 2011; Kozora et al., 2010; Omdal et al., 2005).  

When anti-NR2 antibodies from the sera or CSF of patients with SLE were 

introduced into mice brains, these mice demonstrated neuronal death in the hippocampus 

or amygdala and subsequently memory deficit and emotion disturbance caused by anti-

NR2 antibodies (DeGiorgio et al., 2001; Huerta et al., 2006; Kowal et al., 2004). Since 

the NMDARs are highly expressed in the hippocampi and amygdala and are critical in 

learning and processing memory, it prompted us to examine whether serum anti-NR2 

antibody levels were altered in lupus patients who demonstrated subclinical impairment 

in memory and learning on fMRI. The 12 lupus patients without NPSLE did not have 

high serum level of anti-NR2 antibodies and no significant correlation was found 

between their serum anti-NR2 antibodies and the magnitude of function brain activation 

at the right hippocampus on fMRI. Although studies addressing the relationship between 

serum anti-NR2 antibodies and neuropsychiatric lupus manifestations revealed 

inconsistent results (Gono et al., 2011; Hanly et al., 2006; Hanly et al., 2008; Hanly et al., 

2011; Hanly et al., 2012; Harrison et al., 2006; Husebye et al., 2005; Kozora et al., 2010; 
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Lapteva et al., 2006a; Omdal et al., 2005; Petri et al., 2010; Steup-Beekman et al., 2007), 

all as-yet published studies consistently demonstrated a significant association between 

anti-NR2 antibodies in the CSF and NPSLE  (Arinuma et al., 2008; Fragoso-Loyo et al., 

2008; Yoshio et al., 2006). These data suggest that anti-NR2 antibodies in the CSF rather 

than those in the sera are more reliable in detecting neuropsychiatric syndromes in lupus 

patients.  

In murine models, mice with intact BBB showed no detectable brain pathology 

and they performed normally in behavioral and cognitive tasks even if the anti-NR2 

antibodies were present in the peripheral circulation (Wang et al., 2003). However, 

neuronal death at the hippocampi or amygdala and the resultant impairment of 

hippocampus-dependent memory and amygdala-related fear-conditioning were observed 

when anti-NR2 antibodies from lupus patients were introduced into the mice after a 

breach of the BBB by using lipopolysaccharide or epinephrine (Huerta et al., 2006; 

Kowal et al., 2006; Kowal et al., 2004). Given the evidence that the level of anti-NR2 

antibodies in the CSF is positively correlated with that in the serum of lupus patients and 

the BBB of lupus patients is potentially leaking as a result of active disease and 

glucocorticoid treatment (Appenzeller et al., 2005; Yoshio et al., 2006), the serum anti-

NR2 antibodies of our lupus patients might have penetrated the BBB and disturbed the 

neural mechanisms of working memory and learning as shown by the abnormal fMRI 

signals despite the potentially low level of the antibodies in the CSF. This phenomenon is 

not surprising because anti-NR2 antibodies at a very low concentration in the CSF (10 

µg/ml) could induce transient alterations of synaptic potentials (Faust et al., 2010). Thus, 

the integrity of BBB appears to be a crucial factor in the pathogenesis of NPSLE. 
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Importantly, anti-NR2 antibodies preferentially bind to NMDARs during their activated 

state whereby the cognitive demand for learning and memory is high (Faust et al., 2010). 

In our 12 patients who underwent fMRI, neuroplasticity alterations of the hippocampi and 

amygdala were demonstrated while the cognitive demand for learning and memory 

reached the maximum during the WCST, which was also the moment when the 

NMDARs reached the activated state and invited binding with anti-NR2.  

This study has a few limitations. First, fMRI scan was not performed in all of our 

lupus patients due to funding constraint and patients’ reluctance owing to commitment of 

the long scanning time. Nevertheless, the 12 lupus patients who underwent fMRI had 

comparable demographic and clinical characteristics when compared to the rest of the 

SLE patients of this study. Second, because our aim is to test the clinical applicability of 

serum anti-NR2 for detecting subclinical NPSLE, CSF was not obtained in our patients 

for analysis.  Thus, correlation between CSF and serum anti-NR2 levels could not be 

determined in our study. Third, as described previously in the conclusions of Study 3.1, 

medications such as glucocorticoids might affect BOLD fMRI signals despite the fact 

that it was practically challenging to match for disease activity and glucocorticoid doses 

in different groups.  

In summary, while we found significantly higher serum levels of anti-NR2 

antibodies in lupus patients in comparison with age- and sex-matched healthy controls, 

the presence of serum anti-NR2 antibodies in patients with SLE was unrelated to the 

clinical and serological disease activity of SLE. In addition, serum anti-NR2 antibodies 

are not associated with subclinical neuronal disturbance at the hippocampus and 

amygdala assessed based on fMRI. Taken together with the results of other studies 
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(Fragoso-Loyo et al., 2008; Hanly et al., 2006; Hanly et al., 2008; Hanly et al., 2011; 

Hanly et al., 2012; Harrison et al., 2006; Husebye et al., 2005; Kozora et al., 2010; Petri 

et al., 2010; Steup-Beekman et al., 2007), we conclude that serum anti-NR2 level alone is 

not an optimal biomarker to detect subclinical neuropsychiatric SLE. Since obtaining 

CSF in lupus patients without neuropsychiatric manifestations is hindered by practical 

and ethical issues, further studies assessing the clinical applicability of the combination of 

serum anti-NR2 level and non-invasive assessment of the integrity of BBB opens an 

attractive research direction which aims to detect and monitor subclinical 

neuropsychiatric manifestations in patients with SLE.  
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CHAPTER 4  

CONCLUSIONS 

4.1 Summary of the aims of this thesis 

Although cognitive dysfunction has been identified as one of the most prevalent 

neuropsychiatric manifestations of SLE (Lahita, 2011) which carries a negative impact on 

the health-related quality of life and vocational as well as societal aspects in patients with 

SLE (Kiani & Petri, 2010; Panopalis et al., 2007; Williams et al., 2011), the underlying 

neuropathophysiology remains elusive. The aims of this thesis are to unravel the 

anatomical and functional brain involvement in subclinical cognitive dysfunction by 

employing BOLD fMRI and explore the potential role of serum anti-NR2 antibodies in 

subclinical cognitive dysfunction in patients with SLE. The rationale of using fMRI 

signals as surrogates to gauge subclinical cognitive dysfunction is because this modality 

of investigation has been consistently shown to be a sensitive tool to detect subclinical 

brain involvement, both anatomically and functionally. It is hoped that through the series 

of studies reported in this thesis, researchers and clinicians can further understand the 

underlying pathophysiology of cognitive dysfunction in SLE so that more focused and 

pragmatic research can be planned and implemented in order to target certain anatomical 

regions and functional pathways of the brain in SLE. 

4.2 Summary of the results  

It was shown in Part A of the first study that while patients with new-onset SLE 

demonstrated comparable WCST performance as their matched healthy counterparts, 
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deficits in executive function was revealed in these lupus patients as indicated by their 

inferior strategic planning skills revealed by the BOLD fMRI signals. As a result, 

additional cortical regions which are involved in the execution of goal-directed tasks 

were recruited in these lupus patients in order to compensate for their inferior strategic 

planning skills. Surprisingly, their inefficient strategic planning skills and the subsequent 

compensatory mechanism which boosted error detection and conflict processing persisted 

even after adequate control of their lupus disease activity. These observations may be 

able to explain why cognitive function may continue to decline even after adequate 

control of lupus disease activity.  

With an aim to map potential dysfunctional neural pathways which mediate 

subclinical cognitive dysfunction in patients with SLE, the brain activities across 

different stages of cognitive set-shifting processes during the performance of the WCST 

in the new-onset SLE patients were explored by fMRI in Part B of the first study. During 

the condition when the cognitive demand for withholding previous prepotent rule and 

response inhibition was dominating, the cortico-basal ganglia-thalamic-cortical circuit 

was demonstrated to be involved in healthy individuals. On the contrary, the right GP and 

right thalamus within this circuit were dysfunctional in these lupus patients even if they 

had no clinically overt neuropsychiatric symptoms. To compensate for this compromised 

neural circuit, the contralateral cerebellum frontal connection was recruited in order to 

maintain comparable WCST performance as healthy individuals. During the condition 

when the subjects were actively forgetting the prevailing rule and attempting to maintain 

the identified rule, the healthy controls showed decreased activation at both the 

hippocampi and left amygdala. However, the involvement of the left hippocampus and 
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left amygdala in the same condition was absent in lupus patients, implying that the active 

forgetting-learning dynamics in lupus patients was disrupted. As for the potential 

implication in clinical practice, our findings suggest that physicians taking care of lupus 

patients may need to be aware of their potential reluctance to change their existing 

knowledge and adapt to new ones, such as in situations where pharmacological treatment 

and lifestyle need to be modified for optimizing disease control and preventing organ 

damage.   

In the second study, we found that the serum levels of anti-NR2 antibodies were 

significantly higher in patients with SLE than that of the healthy individuals. No 

correlation was revealed between serum anti-NR2 antibodies and clinical and serological 

lupus disease activity. Furthermore, no significant association was demonstrated between 

serum anti-NR2 antibodies and subclinical neuronal disturbance at the hippocampus and 

amygdala in SLE patients without clinically overt neuropsychiatric symptoms as revealed 

by the BOLD fMRI signals. These findings appear to suggest that serum anti-NR2 level 

alone is not an optimal marker for subclinical neuropsychiatric manifestation of SLE.    

4.3 Ethical consideration 

All these three studies have obtained approval from the institutional ethics 

committee before they were carried out. Ethical issues that were commonly raised in 

biomedical studies, especially in studies involving fMRI, were taken into account in our 

studies.  

Firstly, our fMRI studies were all conducted in adults with clinically normal 

cognitive function. Other individuals involved in Study 3.2 were adults as well. Thus, all 
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the studies presented here did not involve any vulnerable personnel, such as pregnant 

women or children. Secondly, written informed consent was sought from all participants 

in our studies. Thirdly, the fMRI scans were carried out using standard procedure in the 

Functional Imaging Center in NUH by certificated technicians. Lastly, the confidentiality 

and privacy of all study participants were carefully secured and all the results would be 

exclusively used in the research settings.         

4.4 Future work 

The dysfunctional cortico-basal ganglia-thalamic-cortical circuit and abnormal 

hippocampal-amygdala activities have been hitherto demonstrated in our new-onset non-

neuropsychiatric SLE patients. Evaluation of aforementioned neural circuits in the SLE 

patients after sufficient disease control might be helpful to give further insight into the 

pathogenesis of cognitive dysfunction in SLE patients. Furthermore, it might be helpful 

to identify the cortical regions and neural circuits of which the abnormal activities are 

capable of predicting cognitive dysfunction in SLE patients by prospectively following 

up the SLE patients involved in the fMRI study, assessing their cognitive function and 

stratifying them based on their cognitive function condition.    

Search for novel and specific mediators and antibodies against these neural 

pathways using rodent models would further enrich our knowledge of biological factors 

related to lupus cognitive impairment. In addition, our findings suggest that the serum 

titre of anti-NR2 antibodies alone is not a sensitive marker to detect subclinical cognitive 

dysfunction in patients with SLE although other studies have shown that its CSF 

equivalent is associated with neuropsychiatric manifestations in lupus patients. Given the 
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important role of the integrity of BBB in the pathogenesis of lupus cognitive dysfunction 

induced by anti-NR2 antibodies, further studies addressing the clinical applicability of the 

combination of serum anti-NR2 level and non-invasive assessment of the integrity of 

BBB is a relevant strategy to detect and monitor the subclinical neuropsychiatric 

symptoms in patients with SLE.  

4.5 Overall summary of this thesis 

In summary, patients with new-onset SLE without clinically overt 

neuropsychiatric symptoms demonstrated inferior strategic planning skills which required 

compensatory recruitment of additional cortical regions during the execution of goal-

directed task in order to maintain normal executive function at the time of diagnosis and 

after sufficient disease control. Additionally, SLE patients demonstrated dysfunctional 

neural circuits and connections that contribute to response inhibition and active 

forgetting-learning dynamics during cognitive set-shifting. Furthermore, SLE patients 

were demonstrated to have significantly higher level of serum anti-NR2 antibodies 

although the level of the antibodies did not correlate with clinical neuropsychiatric 

symptoms and were not associated with abnormal neural activities in the hippocampus 

and amygdala as demonstrated by the BOLD fMRI signals in those regions. These 

findings collectively suggest that anti-NR2 alone was not an optimal marker for clinical 

and subclinical neuropsychiatric manifestations in patients with SLE.       
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APPENDIX 1 

Permission to use Figure 1.1 
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APPENDIX 2 

Permission to use Figure 1.4 
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APPENDIX 3 

Permission to use Figure 1.5 
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APPENDIX 4 

Hospital Anxiety and Depression Scale 

Patients are asked to choose one response from the four given for each interview. They 

should give an immediate response and be dissuaded from thinking too long about their 

answers. The questions relating to anxiety are marked "A", and to depression "D". The 

score for each answer is given in the right column. Instruct the patient to answer how it 

currently describes their feelings. 

A I feel tense or 'wound up':  

 Most of the time 3 

 A lot of the time 2 

 From time to time, occasionally 1 

 Not at all 0 

 

D I still enjoy the things I used to enjoy:  

 Definitely as much 0 

 Not quite so much 1 

 Only a little 2 

 Hardly at all 3 

 

A I get a sort of frightened feeling as if something awful is about 

to happen: 

 

 Very definitely and quite badly  3 
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 Yes, but not too badly  2 

 A little, but it doesn't worry me  1 

 Not at all 0 

 

D I can laugh and see the funny side of things:  

 As much as I always could  0 

 Not quite so much now  1 

 Definitely not so much now  2 

 Not at all  3 

 

A Worrying thoughts go through my mind:  

 A great deal of the time  3 

 A lot of the time  2 

 From time to time, but not too often 1 

 Only occasionally 0 

 

D I feel cheerful:  

 Not at all  3 

 Not often  2 

 Sometimes  1 

 Most of the time 0 

 

A I can sit at ease and feel relaxed:  

 Definitely  0 
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 Usually  1 

 Not Often 2 

 Not at all 3 

 

D I feel as if I am slowed down:  

 Nearly all the time  3 

 Very often  2 

 Sometimes  1 

 Not at all 0 

 

A I get a sort of frightened feeling like 'butterflies' in the 

stomach: 

 

 Not at all  0 

 Occasionally  1 

 Quite Often  2 

 Very Often 3 

 

D I have lost interest in my appearance:  

 Definitely  3 

 I don't take as much care as should 2 

 I may not take quite as much care 1 

 I take just as much care as ever 0 
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A I feel restless as I have to be on the move:  

 Very much indeed  3 

 Quite a lot  2 

 Not very much  1 

 Not at all 0 

 

D I look forward with enjoyment to things:  

 As much as I ever did  0 

 Rather less than I used to  1 

 Definitely less than I used to  2 

 Hardly at all  3 

 

A I get sudden feelings of panic:  

 Very often indeed  3 

 Quite often  2 

 Not very often  1 

 Not at all  0 

 

D I can enjoy a good book or radio or TV program:  

 Often  0 

 Sometimes  1 

 Not often  2 

 Very seldom 3 
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Scoring (add the As = Anxiety. Add the Ds = Depression).  

The norms below will give you an idea of the level of anxiety and depression. 

0-7 = Normal 

8-10 = Borderline abnormal 

11-21 = Abnormal 

 

Adopted from: 

Zigmond A.S. and Snaith R.P. (1983). The hospital anxiety and depression scale. Acta 

Psychiatrica Scandinavica 67, 361-370. 
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APPENDIX 5 

Wechsler Abbreviated Scale of Intelligence Record Form 
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APPENDIX 6 

Order form of SVSYDDWDYSLEARV peptides 
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