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Abstract— Hypothesis testing is a well-established tool for hypothesis-drivermanner. A scientist must first formulate a
scientific discovery. Conventional hypothesis testing is carried du hypothesis based on his/her knowledge and experience, and
in ﬁ hyphOthesis‘dri‘ée“ mﬁ”?ﬁ“ ’iSCiel”gSt m“‘zt first formulate 4hen devise a variety of experiments to test it. This presant
a hypothesis based on his/her knowledge and experience, an , ) L
theg%evise a variety of experiments to ?est it. Givgn the rapid pOSS'bleqatCh'ZZS'tqaﬂon’ for it '_S often the case that people
growth of data, it has become virtually impossible for a person Want to find something from their data, but do not know what
to manually inspect all the data to find all the interesting to find. Even if a person has much domain knowledge and
hypotheses for testing. In this paper, we propose and develop aample experience, the data may still contain somethingulisef
data-driven system for automatic hypothesis testing and analys.  nat he/she is not aware of. For example, even an experienced

We define a hypothesis as a comparison between two or mored t t know all the risk factors of molex di
sub-populations. We use frequent pattern mining techniques to octormay no ow all the risk tfactors or a complex disease.

find sub-populations for comparison, and then pair them up for ~ With the rapid development and wide usage of computer
statistical testing. We also generate additional information for technologies, more and more data have been accumulated

further analysis of the hypotheses that are deemed significant. and stored in digital format. These data provide rich sairce
We conducted a set of experiments to show the efficiency of o making new discoveries. However, the sheer volume of

the proposed algorithms, and the usefulness of the generatedth dat ilabl d Kes it | ible f |
hypotheses. The results show that our system can help userst'€ dala available nowadays makes it Impossibie lor peopie

(1) identify significant hypotheses; (2) isolate the reasons behind t0 inspect all the data manually. As a result, lots of useful
significant hypotheses; and (3) find confounding factors that fon ~ knowledge may go undiscovered. This calls for the need of
Simpson’s Paradoxes with discovered significant hypotheses.  developing a system for automatic hypothesis testingdata-
driven manner.

Data mining is an important tool to transform data into

Hypothesis testing is a well-established tool for scientifiknowledge in a data-driven manner. Data mining does not
discovery. It enables scientists to distinguish resultg tep- start from a pre-conception or a specific question like hy-
resent systematic effects in the data from those that are ghathesis testing. Instead, it aims to automatically extrac
to random chance. Hypothesis testing involves a compariseseful information from large volumes of data via explorgto
of two or more sub-populations. One example hypothesisdearch, making it highly applicable for automatic knowledg
“Smokers are more vulnerable to the HIN1 flu than nomliscovery. In this paper, we develop a system for exployator
smokers”. To test this hypothesis, we need to compare the bgpothesis testing and analysis by building on and extendin
currence of HIN1 flu infection between two sub-populationgxisting data mining techniques. Given a dataset, we fataul
in this case, smokers and non-smokers. The outcome of layd test tentative hypotheses based on the attributes in the
pothesis testing can help people make decisions. For egamplataset, the nature of the attributes and the statisticheof t
knowing which group of people are more vulnerable to data. The space of all the possible hypotheses can be very
certain type of flu, doctors can vaccinate this group of peogarge. We employ techniques developed for frequent pattern
first to prevent the spread of the flu. Knowing under whatining to efficiently explore the space of tentative hypstd®e
situation a product is more likely to fail, engineers canalev  In many cases, it is not sufficient to just know whether
their efforts on investigating why the product fails undeatt a hypothesis is statistically significant. It is more ingtre
situation, and then improve the design of the product togmev ing and important to know the reasons behind significant
that from happening again. hypotheses. Therefore, we further analyze the hypotheses

Conventional hypothesis testing is usually carried out inthat are statistically significant and identify the factthst

I. INTRODUCTION
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. . PID Race | Gender| Age | Smoke| Stage| Treatmeni Responsg
contribute to the difference. Another reason for the need of Caucasan ™M 125 T Yes | 1T -y positive

1
further analysis of significant hypotheses is that some ef th 2 | Asian M | 40| No | 1 A positive
significant hypotheses generated by exploratory search may | 2 | A" | F |50 Yes | 2 B | negatve
be spurious since the exploration is not guided by domain
knowledge. We examine whether there are any confounding
factors that may lead to spurious hypotheses.

The rest of the paper is organized as follows. Section Il
formally defines the exploratory hypothesis testing and-ana
ysis problem. In Section lll, we develop efficient algorithm ) )
for automatic hypothesis testing and analysis by using afd Hypothesis formulation
extending well-established frequent pattern mining tégphes. We use the example dataset shown in Table | to illustrate
Experiment results are reported in Section IV. Section kow to formulate hypotheses. Each row in the dataset is the
describes related work. Finally, in Section VI, we concludmedical record of a patient. The last column is the response

N | Caucasian M 60 No 2 B negative

TABLE |
AN EXAMPLE DATASET

the paper with some closing discussions. of the patients to a certain treatment. One example hypisthes
is “Treatment A is more effective than treatment B”. The
1. PROBLEM DEFINITION two sub-populations under comparison are “patients urmherg

Ct([‘;eatment A” and “patients undergone treatment B”, and they
are compared on attribute “Response”. In this examplegther
re two types of attributes. One type of attributes, such as
reatment”, are used to define sub-populations, and we call

Hypothesis testing is a test of significance on a differen
A difference isstatistically significanif it is unlikely to have
occurred by chance. Hypothesis testing can be conducted,

n sub-populations, where > 1. Hypothesis testing involving ] . : .
only one sub-population compares the statistics of one Sl}B-em grouping attributes A grouping attribute cannot be

population with the parameters of the general populatio%c.mtmuous‘ The other type of attributes, such as "Response

However, the parameters of the general population are oftt%rritége ::é'?/tj;ecglﬂ mzlﬁrégf ;‘t'girgﬂf;nce of the differetsce

unknown. The results of hypothesis testing involving more oo : .
than two sub-populations are usually hard to interpretsit gttﬁll)vuiz :S(:ﬁ;azg.[’e(\gsea;ktﬁ;rgflTorfrfg;s rt10 Zﬁﬁggﬁ: target
not easy for users to tell which sub-population contribuies ) P y nyp 9

most to the difference. In the end. users still need to retsortlf the target attribute is a categorical attribute, we farthsk

pairwise comparisons to get a clear picture. Hence, we foc%%main users to choose a value that is the most interesting
on the case when=2 in this paper ' 10 them, and we call this valutarget attribute value We

The hypothesis testing process consists of four main steﬁ%zo ask domain users to specify the grouping attributes if

) ssible (if not, we simply use all the categorical attrésuin
1) State the relevant null and alternative hypotheses. T given dataset as grouping attributes). This should bg ea

null hypothesis is always “There is no difference.” angyr domain users since they usually have some rough ideas

the alternative hypothesis is “There is difference”™. o which attributes are of interest for comparison and which
2) Choose a proper statistical test based on the type afiffiputes can be used for grouping.

distribution of the attribute that the sub-populations are p sub-population is defined by a set of attribute-value pairs

compared on. An overview of the statistical tests anfle call an attribute-value paan item and a set of items

when should they be used can be found at [12]. pattern
3) Calculate the p-value using the chosen test. The p-valuépefinition 1 (Pattern): A pattern is a set of attribute-value
is the probability of obtaining a statistic at least agajrs (items), denoted a8 = (A = v, Ay =g, -+, A =

extreme as the one that was actually observed, givgm where 4; is an attribute { < i < k), v; is a value taken
the null hypothesis is true. The lower the p-valugy attributeA;, and 4; # Ajif i #j.
the less likely that the observed difference is due 9 an attribute-value paird = v appears in a patterd®,
random chance, thus the more statistically significant thg» say P containsattribute A. Each pattern defines a sub-
difference is. . population. For example, patterfEthnicGroup=Caucasian,
4) Decide whether to reject or accept the null hypothestSender= Malg defines the sub-population consisting of Cau-

based on the p-value. Conventionally, a p-value of 0.Q%sjan male patients. In the rest of this paper, when we say
is generally recognized as low enough to reject the nhttern P, we refer to the pattern itself; when we say sub-
hypothesis and accept the alternative hypothesis. population P, we refer to the sub-population defined By

In the rest of this section, we describe how to automaiéhe support of a patterR, is defined as the number of records

the testing process to test all the possible hypotheses irtantaining P, denoted asup(P). The support of patterd®

given dataset. We define two tasks, exploratory hypothesisequivalent to the size of sub-populatiéh

testing and hypothesis analysis, in the situation whenatget Given two patterng® and P/, if every item in P is also in

attribute, on which the significance of the difference iseds P’, then P is called asub-patternof P’, denoted as® C F’,

is categorical. It is straightforward to generalize theméfins and P’ is called asuper-patternof P, denoted as”’ O P.

to the situation when the target attribute is continuous. If P is a sub-pattern o’ and P has one less item thaR’,



Patterns sup Di

then we callP an immediate sub-patterof P’, and P’ an Treatment=A 1000 1) | —go

immediate super-patteraf P. Treatment=A, Response=positiy890 P1=esT0

. . Treatment=B 1000 @22) -83%

Irj hypothesis testing, users usually ;tudy one factor. at Treatment=B, Response=positi/830 p2=83%

a time. Hence, in this work, we require that the defin- (a) Statistics needed for calculating p-value usirfgtest
ing patterns of two sub-populations under comparison wiffe | Fypothesist [x>-score| pvalue]

by one and only one item. For example, comparing sub- [{{},Treatment = A[B, Response, positive) | 14.95 | 0.0001]
group {EthnicGroup= Caucasian, Gender=Malith sub- by prvatue
group{ EthnicGroup= Caucasian, Gender=Fenateaccept-
able, while comparing subgroupEthnicGroup=Caucasian,
Gender= Mal¢ with subgroup{EthnicGroup=Asian, Gender
=Femalg is less intuitive because even if the difference
between the two sub-populations is statistically significé
is hard for users to conjecture which attribute contributes C. Deciding the significance of the observed difference
the difference. Now we formally define tentative hypotheses
Definition 2 (Tentative hypothesis)et A;,.4.: be a cate-
gorical target attributey;.,4.¢ be the target attribute valué;
and P, be two patterns that differ by one and only one ite
denoted asP, = P U {Adiff = 1)1}, P, =PuU {Adiff =
va}. The tentative hypothesis on the two sub-populatio
defined by P, and P, is represented a&l = (P, Agiys =
v1|v2, Atarget, Vtarget). PatternP is called thecontextof H,
attribute Ay; ¢ ¢ is called thecomparing attributeof H and ,
P, and P, grce called the two sub-populations éf. The Hochberg's method .[3]‘ .
null hypothesis isp; = p», and the alternative hypothesis is Bonferroni correctpn [1]is one'of the mogt commonly us.ed
1 # pa, Wherep; — sup(PiU{zZLa?q];t):vagct}), i=1, 2. app_roaches for multiple comparisons. It aims at cqntrgllm
Based on the definition, ﬁyﬁothesis “Treatment A ifsam|ly-W|se error rate (FWER)—the probability of making one .
more effective than treatment B” can be represented [;more fals.e discoveries among aII_the hypotheses. The basi
- . Idea is that if we test dependent or independent hypotheses,
({}, Treatment = A|B, Response, positive). NV Lo ;
then one way of maintaining the family-wise error rate is to
test each individual hypothesis at a statistical signifiedievel
of 1/n times what it would be if only one hypothesis were
The selection of a proper statistical test depends on the tyasted. Bonferroni correction is computationally simpbeit
and distribution of the target attribute. An overview of thq can be very conservative and may inflate the rate of false
statistical tests and when should they be used can be foyngatives unnecessarily.
at [12]. Most of these tests can be integrated into our systemenjamini and Hochberg's method [3] controls false discov-
seamlessly. Given a statistical test, we usually need ta SG&y rate (FDR)—the expected proportion of falsely rejected
the dataset and collect some statistics for the calculatfon | hypotheses, which is less stringent than family-wisere
the p-value. rate. LetH,, H,, - - -, H,, be then hypotheses tested and they
Let us look at the example hypothest: “Treatment A are sorted in ascending order of p-value. Their correspandi
is more effective than treatment B”. The two sub-popul&tiorb_vames are, p2, -+, pn. TO control FDR at a level of,
are compared on attribute “Response” and it is nominal, éienge get the largest, denoted as:, for which p; < %’q, and
we choosey*-test with Yates’ correction[15]. The>-test is then regard all;, i=1, 2, -- -, k, as statistically significant.
a test for examining the association between two catedoricayye yse the above two methods in our system as follows.
attributes, and it requires four statistics to be collectee size \we ask users to specify a statistical significance threshold
of the two sub-populations under comparison, denotedas ;;, ;. alue for testing one single hypothesis, and output the
andn., and the proportion of the target attribute value in thﬁypotheses with p-value maz_pvalue. During the hypoth-
two sub-populations, denoted @g and p. The four values ggjs generation process, we count the total number of tests
0f2 H are shown in Table Il (a). Given the four values, thgeing performed, denoted as Bonferroni correction can be
x°-score is calculated as follows: easily applied by replacingraz_pvalue with maz_pvalue/n.
 (n1 +n2)(nanalpy — pa| — (n1 + n2)/2)? We then rank 'Fhe .hypotheses in ascending order of p-values,
= (1) and apply Benjamini and Hochberg’s method.
ning(nip1 + nep2)(ny + ng — nip1 — napa) L s o
Statistical significance vs. domain significanceSome-
The degree of freedom of this score is 1. Frgfiscore and times a statistically significant result can have little @ n
the degree of freedom, we can get the corresponding p-vatl@main significance. For example, given large sample sizes,
by looking up ax? distribution table. Table Il (b) shows thea difference in 5 beats per minutes in pulse rate in a clinical
x2-score and p-value off. trial involving two drugs can give a statistically signifita

TABLE Il
CALCULATING THE P-VALUE OF HYPOTHESIS"T REATMENT A IS MORE
EFFECTIVE THAN TREATMENTB”

Conventionally, a p-value of 0.05 is generally recognized
as low enough to reject the null hypothesis if one single
r,{{1ypothesis is tested. A p-value of 0.05 means that there is
d 0.05 probability that the null hypothesis is true but we are
ngongly rejecting it. Here we are testing large numbers of
hypotheses simultaneously, which may generate many false
positives [3]. We use two methods to control the number of

false positives, Bonferroni correction [1] and Benjaminda

B. Choosing a proper test and calculating the p-value

2
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difference whereas the average difference may hardly briAgis more effective than B. However, after we further divide
about a drastic metabolic change between the two groupi®e two sub-populations off into smaller subgroups using
The reason being that domain significance mainly depenaltribute “stage” , we find that treatment B is more effective
on the difference between the two means or proportiortban treatment A for both patients at stage 1 and patients at
while statistical significance also depends on standaat.dfr stage 2. This phenomenon is called Simpson’s Paradox [13],
standard error is small enough, a difference can be statiisti and it is caused by the fact that “stage” has associatiorts wit
significant even if it is not domain significant. Only domairboth treatment and response: doctors tend to give treatment
users can decide the level at which a result is regarded Aago patients at stage 1, and treatment B to patients at stage
domain significant. 2; patients at stage 1 are easier to cure than patients & stag
2. Attributes that have associations with both the comparin

) ) _attribute and the target attribute are calbeshfounding factors

In many cases, we are not only interested in knowing the ahove examples show that further investigation of

whether the difference between two sub-populations isifsign,y hotheses is often very useful, and it can be conducted by
cant, we are more interested in knowing the reasons behénd HR/iding the two sub-populations under comparison intorfine

difference. For example, given the failure rate of one mafiel g,pgroups, and then inspecting whether unexpected result i
a product is significantly higher than that of another motel, jpserved in pairs of the finer subgroups.
is important for engineers to know under what situations trffifference lift of items and attributes

first model is more likely to fail so that they can improve - . .
its design accordingly. Table Ill compares the failure rate To divide the two sub-populations of a hypothesisinto

. smaller subgroups, we can add more items into the coriext
of two models of the same product. Model A has a higher, : . .
. . of H. A simple way to measure the impact of an itein= v
failure rate than model B in general. However, after the two " . o
: - . , . t0 H is to see how much the difference is lifted.
sub-populations are further divided using attribute “tinfe finiti FrLift(A= . A
failure”, we find that model A has comparable failure rate Pefinition 3 (DiffLift(A=viH)): Let I = (P Aay; =

with model B at the time of “in-operation” and “outputting” 1102 Atargei’lvt”g@t> bea h)épothesselmrgz be categongal,
but has exceptionally high failure rate in the “loading” pha Py = PU{Agus; = v} and Py = P U {Agy; = va} be

This information is very useful since it helps engineersamar the t\_NO sub-populations aff, A = v be an item not inA,
down the problem. that is, A # Agifr, A # Aiarger aNd A = v ¢ P. After

adding itemA = v to P, we get two new sub-populations:

D. Hypothesis analysis

pairs of failure

sub-populations rates Pl = PU{A = v} and P, = P, U{A = v}. The

mocel=A oy lift of difference after addingA = v to H is defined as

— ! i / . .

model=A, time-of-failure=loading 6.0% D|ffL|ft(A:v|H):%, wherep; is the proportion ofv;,,ge:

model=B, time-of-failure=loading 1.9% : . I . .

model=A, time-of-failure=in-operation] 2.1% In sub—popqlat|onPi, and p; 1S the proportion Ofvtm“get n

model=B, time-of-failure=in-operation| 2.1% sub-populatlonP,{, =1, 2.

model=A, time-of-failure=outputting 2.0% I PP _ .

model=B. time-of-failure=outputting | 1.9% We can divide the values oID|ffL|ft(A—v\H) |r]to t.hree

ranges, and each range represents a different situation.

TABLE Il Situation 1: DiffLift(A=v|H)>1. The new difference is

AN EXAMPLE INTERESTING ATTRIBUTE" TIME-OF-FAILURE”. “ LOADING” Wider than the o|d difference and |t is a|so of the same
IS OF PARTICULAR INTEREST BECAUSE THE TWO MODELS SHOW A VERY  djrection as the old difference. The |arger mﬁl_rﬁ, the more

BIG DIFFERENCE interesting the item. For example, in Table IlI, tBeffLifts
of “time-of-failure=loading”, “time-of-failure=in-opetion”,
pairs of response | proportion of “time-of-call=outputting” are 2.05, 0, 0.05 respectivelience
sub-populations positive negative positive responsep-value _ . _ LT . . .
Treatment=A 890 110 89.0% 0.0001 time-of-failure=loading” is an very interesting item.
Treatment=B 830 170 83.0% i i ‘0 < Di i = < i i
TroationtoASEge=j 800 s o - Situation 2: 0 < D|ffL|ft(A v|H)__ 1. The new dlffgrence is
Treatment=B, Stage={l 190 10 95% of the same direction as the old difference, but it is narrowe
Treatment=A, Stage=p 90 30 75% 0.2542 than the old difference. The items satisfying this conditio
Treatment=B, Stage=p 640 160 80% . . o oo
usually are not very interesting, e.g., “time-of-failune=
TABLE IV operation” and “time-of-failure=outputting” in Table I
AN EXAMPLE SPURIOUS HYPOTHESISATTRIBUTE “STAGE” IS A Situation 3: DiffLift(A=v|H)< 0. The new difference is
CONFOUNDING FACTOR of the opposite direction of the old one. If the values of an

attribute all satisfy this condition, then we have a Simpson
Another reason for the need of further analysis of signiicaRaradox as in Table IV wheriffLift(stage=1H;)= —0.683
hypotheses is that some of the significant hypotheses gederand DiffLift(stage=2 H;) = —0.833.
via exploratory search may be spurious since the search iPefinition 4 (Simpson’s Paradox)Given a hypothesisi
not guided by domain knowledge. For example, hypothékis and an attributed not in H, if for every valuev of A, we have
in Table 1I(b) is actually a spurious hypothesis as shown DiffLift((A=v|H)< 0, then we sayH and A form a Simpson’s
Table 1V. The original hypothesi#&l indicates that treatment Paradox.



We define theDiffLift of an attributeA as the average of and m/ is the mean 0fA;,,4.: in sub-population?; and P/

the absoluteDiffLift of its attribute values. respectively;=1, 2. If A;qrge: iS Nnormally distributed, we can
Definition 5 (DiffLift(AH)): Let vy, vs,--- ,vx be the set use t-test to calculate p-values; otherwise, we can use Mann

of values taken by attributel. Then the difference lift of Whitney test.

A with respect toH is defined asDiffLift(A|H) = Generalization to hypotheses involving only one sample

i 1|D1ffLth(A vil )| or more than two samples.We can simply represent a

Contribution of items and attributes hypothesis involving one sample &5= (P, Atarget, Vtarget)-

In some casesDiffLift(A=v|H) is not sufficient to capture In this case, the statistics of sub-populatiéhis compared
all the information. Letn; be the size of sub-populatioR,, With the whole populationDiffLift and Contribution can be
n/ be the size of sub-populatiol, i=1, 2. If n/ is extremely defined accordingly. It is also straightforward to formelat
small compared with;, i=1, 2, then even iDiffLift(A=v |H) and test hypotheses involving more than two samples. A
is positive and very large, item = v can hardly have any hypothesis involving: (k > 2) samples can be represented as
material impact onH. We are more interested in findingd = (P, Adigs = vilva| -+ vk, Atarget; Vtarget). Statistical
those attribute values that have a big posifi#Lift((A=v|H), tests for more than two samples are also available. However,
and are also associated with a large number of records, 86 analysis of hypothesis involving more than two sampes i
that acting upon such attribute values, we are able to makélch more complicated. We leave it to our future work.
much bigger impact than acting upon attribute values that ar
associated with few records. F. Problem statement

If we divide sub-populatiorP; into several disjoint subsets . . . .
-Pop ! ) If the size of the two sub-populations under comparison is

Pi1, P2, -+, Pii, then the roportion of in P, can .
belex 1r2esse i 1k S nE’ P where t‘”’lgset the sllze of 100 small, statistical tests usually do not have enough powe
P B = 2i=1 ', Pliv e to detect the difference even if the difference is real. lenc

sub-populationP;, ny; is the size of subseP;; andp,; is the
proportion ofvig,ge: iN SubsetP;;. Hence’;ll’? (p1; — p1) can
be regarded as the overall contribution]Qf to P;, denoted
as C’ontribution(PM\Pl) We haveZl L (p — p1) =

testing hypotheses involving very small sub-populatioss i
often futile. To save computation cost, we put a minimum
support constraintnin_sup on the size of the two sub-
A Sk n populations. If the size of a sub-population is no less than
>ie1 mtp1i — pr=i5—+ = 0. The contribution ofA = v to Our system requires users to supply the following parame-
H is determined by which one is bigger, the contribution agrs: (1) a minimum support threshokdin_sup; (2) a maxi-
Pj to P, or the contribution ofP; to P. mum p-value thresholehaz_pvalue which indicates the level
Definition 6 Contribution(A =v|H)): Let H, A = v, of statistical significance if one single hypothesis iseds(3)
P;, p;, P} andp;, i=1, 2, be defined as in Definition 3. Thea minimum difference thresholdhin_dif f which reflects the
contribution of A = v to H is defined asContribution(A |evel of domain significance; (4) a target attributg,, ,.; and
=v[H) = (;2(p} — 1) — 72(p5 — p2))/(p1 — p2)- a target attribute value,q, get if Ararget is categorical; (5) a set
If Contribution(A = v|H) > 0, we sayA = v contributes of grouping attributes4, ,.pins, and the grouping attributes
positively to H; if Contribution(A = v|H) < 0, we say must be categorical. Users can set the parameters based on
A = v contributes negatively té¢7; otherwise, we sayl = v their requirements and domain knowledge. The last paramete
makes no contributes té/. We define theContribution of is optional. If users do not specify the grouping attributes
an attributeA as the average of the absoldientribution of then we use all the categorical attributes in the given éatas
its attribute values. as grouping attributes.
Definition 7 Contribution(A|H)): Let vy, vs,--- ,ux b€  Exploratory hypothesis testing. Given a datasef) and
the set of values taken by attributé. Then the contri- the above parameters, the hypothesis testing task aimsdto fin
bution of A to H is defined asContribution(A|H) = all the hypothese$l = (P, Agirr = v1|v2, Atargets Viarget)
i ICont”butwn(A vil H)| satisfying the following conditionst) Vitem A = vin P, A €
To help users have a better understanding of the discoverghouping: and Agirs € Agrouping- 2) sup(Py) > min_sup,
hypotheses, for each significant hypothe&ls we identify sup(P:) > min_sup, where P, = P U {Agys; = v},
those attributes and items that have either ffLift or high P = P U {Agisy = v2}. 3) p-valugH) < maz_pvalue.
Contribution, and generate a ranked list of these attribute®d If A;q.-gc¢ is categorical|py — po| > min_dif f, wherep;
and items. We also identify the attributes that can forms the proportion ofv;,ge; in sub-population?;, i=1, 2. If
Simpson’s Paradoxes witli/. Users can then browse theAiarge: IS CONtinuous, thenm; — mso| > min_dif f, where
generated information to find things that are interesting to; is the mean of4;,,4.; in sub-populationp;, i=1, 2.
them. Hypothesis analysisFor each significant hypothesis, the
hypothesis analysis task generates the following infoionat
for further analysis1) The set of Simpson’s Paradoxes formed
Generalization to continuous target attribute. When by H with attributes not inH. 2) The list of items not in
Ararger 1S CONtinuous, we can simply use, to replacep;, H ranked in descending order @iffLift(A = v|H) and
and m/ to replacep; in Definitions 2, 3 and 6, wheren; Contribution(A = v|H) respectively3) The list of attributes

E. Generalizations



not in H ranked in descending order ®iffLift(A|H) and is still extended if it has at least one frequent immediate su
Contribution(A|H) respectively. pattern. That is, a pattern is not extended only if all of its
immediate sub-patterns are infrequent. We explore theckear

[1l. AUTOMATIC HYPOTHESIS TESTING AND ANALYSIS space in a way such that the sub-patterns of a pattern are

. . . nerat fore th ttern itself. This explorationt
We generate hypotheses in two steps. First, we use emst%a erated before the patte s€ S explorationtegsa

frequent pattern mining techniques to generate large su

populations. Extensive efforts have been devoted to freugs Generating tentative hypotheses

pattern mining, and many efficient algorithms have been de—G_ h hesis I _ pA _

veloped [6]. Most of these algorithms can be used to gener@ﬁb iven a hypothesis - (P, Adig -
e

been used in mining frequent generators [10].

large sub-populations. In the second step, we pair the la V2, Atarget, Vtarger), the defining patterns of the two

sub-populations up to form tentative hypotheses. The num -populations off conftaln one more item than the context
ftern P, so they are immediate super-patterns raf We

of large sub-populations generated may be very large, so e .
need to store the patterns in a structure that supportseem"ﬁcigenerate tentative hypotheses as follows. For each fréquen

pattern retrieval. A suitable candidate for this task is @ke°- pattern P’_ we use it as a context and retrieve all of its
tree structure [11]. frequent immediate super-patterns. We then group these

In the rest of this section, we first present the hypoth%Jper-patterns o baseq on the attributes not }ﬂ Patterns
ses generation and analysis algorithms without restgcti at have the same attribute not hare placed n the same
roup. Patterns in the same group are then paired up to form

ourselves to any frequent pattern mining algorithm or a h Th d des for aenerating hvooth ;
structure for storing patterns, and then describe how the-C ypotheses. 1he pseudo-codes Tor generating hypotheses a
shown in Algorithm 1.

tree structure can be utilized to improve the efficiency e th

algorithms. Algorithm 1 GenHypotheses
Input: _
A. Finding large sub-populations P is the set of frequent patterns;

min_sup is the minimum support threshold;

Existing frequent pattern mining algorithms generate only max_pvalue is the maximum p-value threshold;
frequent patterns and their supports. Additional infoiorat ~ min-dif f is the minimum difference threshold;
are needed for calculating p-values and for analyzing Bigni  “Ytereet IS the target attribute; -
. g 2. wrarget IS the target attribute value;
icant hypotheses. We modified the frequent pattern MiNiRgsscription:
algorithm used in our system as follows. 1: for all frequent patter® in P do

We collect more statistics of the large sub-population®: Retrieve all frequent immediate super-patternsfdenoted
besides the support of the patterns defining them for the ass;

. ) . Let A= {Ai, Ay, -, A} be the set of attributes not iR.
calculation of p-values. Here we take the two commonly used Every pattem inS contains exactly one attribute

tests, x*-test and t-test, as examples. LBtbe a frequent 4. Group patterns irS into & groups based on the attributes in
pattern. Wheny?2-test is used, we need to collestip(P) A: Gi = {P'|P' € S, P’ contains A;},i=1,2,--- ,k;

and sup(P U {Atarget = Vtarget}) t0 get the proportion of 5:  for all =1 tok do _

Atarget = Vtarger IN SUb-populationP. When t-test is used, sf for_faltkpa::;_rﬁof patterg‘stpl' P in bG dol iofs and P >
we need to get the meanp and the standard deviation of Imme dijI" feiﬁgﬁe etween sub-populatiofis and P, >
Aiarger in sub-populationP. These two statistics are defined g. Calculate p-value off = {P, A; = v1|vz, Asarget,

. sup(P) ), 5542 P) (4, —m p)2 Vtarget }» WhereA; = v; is in P;, j=1, 2;
as follows:mp = 8u117(P) andsp = W 9: if p-value of H < max_pvalue then
ZSHP(P) v2 —sup(P)-m? . 10: Output H; .
= =1 su;(P)_pl £, wherev; is the A;4pge¢ value of 11 AnalyzeHypothesidf, A — {4;});

: Rank all the generated significant hypotheses in ascending order

. . . 12
thei-th record in sub-populatio®?. Hence we need to collect of their p-values;

sup(P), 5 2F) y; and 3257 F) 4.2 to calculatemp andssp.
All these information can be collected as we count the suppor o ] ] )
of patternP. No additional scan of data is needed. C. Generating information for hypothesis analysis

When analyzing a significant hypothedis, we divide the If a hypothesis is statistically significant, we generaferin
two sub-populations off into finer sub-populations by addingmation for its further analysis . The pseudo-codes are shown
an item to the defining patterns of the two sub-populations Algorithm 2. Given a significant hypothesid with two
The resultant patterns may not be frequent. Hence we needtib-populations?; and P, we retrieve the immediate super-
generate not only frequent patterns, but also some infrequeatterns of P, and P, (line 1-2). Let P/ be an immediate
patterns to make sure that all the information needed fsuper-pattern ofP;, i=1, 2. If P; and P, contain the same
analyzing a hypothesis is available. The generated infeguitem that does not appear in neithB; nor P, P} and P,
patterns are the immediate super-patterns of some frequemin a pair (P{, P;). We group these pairs based on the
patterns. In the original algorithm, a pattern is not exezhid attributes not inH (line 3). For each itemA = v that is
it is not frequent. In the modified version, an infrequentgrat not in H, DiffLift (A = v|H) and Contribution(A = v|H)




Algorithm 2 AnalyzeHypothesis

Input:

HypothesisH = {P, Aqiss = v1|v2, Atarget, Vtarget };
A={A,As,---, A} is the set of attributes not iff;

Description:

1:

2:

Retrieve the immediate super-patternsif = P U {Aqify =
v1}, denoted asS;;
Retrieve the immediate super-patternsif = P U {Aqify =
va}, denoted asS;

: Pair super-patterns aP; and P, and then group them int&

groups based on attributes it G; = {(P{, P;)|P| € S1, P €

belonging to the attributes before it. For example, iteims
andb, can be used to extend pattefs }, but they cannot be
used to extend patterfu; }. The set of items that can be used
to extend an patter® are called candidate extensions Bf
denoted agand_exts(P).

a a by by C1 C2

ﬂ\

Sa, P{ and P contain a same value of;}, i = 1,2,--- , k; biag  bidp Doy bpdp 12y Cadp Ciby Cibp ol CoBp Coby Coby

k) 1 b ) 7 1

4: for all =1 tok do

5. for all element(P}, P}) in G; do Cibia; cibiay ciboay cibya,  cobiay cobiay cobay cobpay

- )

6: Let v be the value of4; contained inP{ and P;

7 Calculate DiffLift (A = v|H) and Contribution(A = Fig. 1. An example search space tree with 3 attributes, andc. Each

v|H) using the statistics oPy, P», P{ and P%;
DIffLift (A, | H) — =veom(ay DI IL A= I,

attributez has two valuesz; andzz, r=a, b, ¢

The CFP-tree structure [11] is a prefix-trie structure. It is

[Dom(Ay)] ' - ; ; -
9 Contribution(A;|H)=2reRomAy Contrivution(i=vIH)], similar to the set-enumeration tree but it allows suffix stgr
10-  if Vo € Dom(Ay), DiffLift (A — U|}l’f)°’2(8i€,'1en " Figure 2(c) shows an example CFP-tree, and it stores the set
11: Output Simpson’s Paradox(, A;); of frequent patterns in the dataset shown in Figure 2(a). The

12:

Rank the attributes in descending order ®fffLift and
Contribution respectively;

dataset has four attributes;: b, c andd. The minimum support
threshold is set to 3. The set of frequent patterns are shown i

13: Rank the items in descending orderiffLift andContribution

respectively; Figure 2(b). For brevity, a frequent pattefey, i, -« -, im}

with supportn is represented agis - - - i, : n.

Each node in a CFP-tree consists of a number of entries.
Each entry contains exactly one item if the node has multiple
entires. An entry can contain multiple items if it is the only
entry of its parent. For example, node 7 in Figure 2(c) has

are calculated using the statistics®f, P,, P, U{A = v} and
P, U{A = v} (line 4-7). TheDiffLift and Contribution of
each attribute are calculated using that of its items (lir8).8
Simpson’s Paradoxes are generated basediffiift (line 10-

11). After all the information for analysis are generatea, wPMY one entry and this entry contains two itemsand a;.
then output lists of items and attributes ranked in desa:rgwdiA path starting from an entry in the root node represents one

order of DiffLift or Contribution (line 12-13). At line 8-10, or more frequent patterns and these patterns have the same

Dom(A;) is the set of values taken by attribute. support. LetE be an entry and? be a pattern repr.esented
by the path from root ta&. Entry E stores several pieces of

information: (1)n items @ > 1), (2) the support ofP and
Rther information for calculating p-values, and (3) a peint
pointing to the child node oF.

D. Implementation

The cost of the operations in Algorithm 1 and 2 is not hig
except the cost for retrieving immediate super-patternsetwh

the number of patterns generated is very large, the cost for Eiedeuntnemsets
I . . . a;:6,a,:3,b;:5,by:4,¢4:3,¢,:6,d,:4,d,:5
retrieving immediate super-patterns can be very high. Ve US 1] o, v..c, d, [6] 2.5, ¢, d,

. . e e b;a;:3,b,a;:3,c,a;:3,¢c,by:4,d by :4,
the CFP-tree structure [11] to speed-up this operationeHer [z a,.b,.c,.a, [7] a6, 1.0, dy2,:3, 16,13, 8,13, d pbyid, dpCy:3,
we introduce the basic features of the CFP-tree structae th [3| aibsci.d, [8f an by cod; ,b1a5:3, dqbra,3,d1bc, 3, d1c0a,:3,
are relevant to this work. For more details on the CFP-treg{4| & b1¢20: 9| & b1 ¢z da 4202273
structure, please refer to the original paper. B b2 Cods 010162243

CFP-tree is a very compact structure for storing pattetns. |
allows different patterns to share the storage of their yefi
as well as suffixes. It has been shown that a CFP-tree storing
all frequent patterns can be orders of magnitude smaller tha
its corresponding flat representation [11]. CFP-tree suppo ({
efficient exact match and subset/superset search, which are il
repeatedly used in our algorithms.

Given a databas®), the set of possible patterns in can 5

(c) A CFP-tree

(a) Dataset (b) Frequent patterngr{in_sup=3)

1 |a1:6|a2:3|b1:5 | b2:4|c1:3 | 02:6|d1:4| d,:5 |

8
a;:3|by:4(cy:3

be represented as a set-enumeration tree. Figure 1 shows an
example set-enumeration tree on a dataset with threewdésib

a, b and c. The three attributes are sorted lexicographically.
Each attributer has two valuesz; and zy, z=a, b, c. For Fig. 2. An example CFP-tree

brevity, we user; to represent itemx = x;, wherex=a, b, The CFP-tree structure allows different patterns to shage t
c and i=1, 2. A node in the set-numeration tree represerdgtorage of their prefixes as well as suffixes, which makes it
a pattern. Each pattern can be extended only by the itemsery compact structure for storing frequent patternsfixPre



sharing is easy to understand. For example, pattérsisi;}  searching for the immediate super-patterns of a pattere. Th
and {c2, b, } share the same prefip in Figure 2(c). Suffix former is used during the generation of large sub-popuiatio
sharing is not as obvious as prefix sharing. Suffix sharirigr checking whether an infrequent pattern has a frequent
occurs when a pattern has the same support as its preffinmediate sub-pattern. The latter is used for hypothesis ge
Let P be pattern. If there exists a candidate extengiayf eration and analysis. We convert both queries to exact match
P such thati occurs in every records containing, that A pattern P has|P| immediate subsets, so searching for the
is, sup(P U {i}) = sup(P), then for every other candidateimmediate sub-patterns of a pattdPncan be converted tiP|
extension’ of P, we havesup(PU{i}U{i'}) = sup(PU{#'}). exact matches. For imnmediate super-pattern queries, or@y o
In this case, patter®® U {i} and P share suffixes. In Figure additional item is allowed. Hence once there is a mismatch at
2(a), itemb; appears in every records containing pattgfn}. an entry, i.e., the item in the entry is the additional itehert
Therefore, patterngd;} and {d;,b;} share suffixes, which the subsequent searching in the subtree rooted at that entry
is node 7. Node 7 represents 6 patterfidi,co}, {d1,a1}, must be exact match.
{d1,ca,a1}, {d1,b1,¢2}, {d1,b1,a1}, {d1,b1,¢2,a1}. Algorithm 3 shows the pseudo-codes for exact match. When

Suffix sharing is implemented by singleton nodes in iis first called,P is the pattern to be searched, anthde is
CFP-tree. More specifically, if patterr3 and P J X, where the root node of the CFP-tree. At each node being visited, we
X C cand_exts(P), satisfy sup(P U X) = sup(P), then the need to search further in at most one subtree of the node, and
child node of P contains only one entry and the set of itemthis subtree is pointed by the rightmost entry whose item is
of the entry isX. For example, the child node dil;} is a contained in the pattern to be searched. For example, totsear
singleton node containing itet . If there are more than onepatternP = {cs,a,} in the CFP-tree in Figure 2(c), we only
singleton node on a path, then the space saved by suffix gharieed to visit the subtree pointed by itemin node 1 because
multiplies. The space saved by suffix sharing is dramatithe subtrees pointed by entries befexedo not containc,,
A CFP-tree storing a complete set of frequent patterns cand the entries aftet, contain items that are not if.
be orders of magnitude smaller than the corresponding f@gorithm 3 ExactMatch
representation [11]. Input:
Constructing a CFP-tree P is a frequent pattern;

Constructing a CFP-tree from a dataset is almost the same ascnode is the CFP-tree node currently being visited,;
mining frequent patterns from the dataset. The main diffeze Description: _
is the output format: a CFP-tree or a flat file. Since wek I crode is a singleton nodéhen

. 2. E=the entry ofcnode;
store patterns in a CFP-tree, we use the CFP-tree constiuctis. ose y Olenode

algorithm described in [11] to find large sub-populations.  4:  E=the rightmost entry ofnode whose item is inP;
Besides the two modifications described in Section IlI-5: Removes items of from P;

A, we made another modification to the original CFP-tree?i if i}tiﬁrﬁmtg}’the“

constru_ctlon algorl_thm. In the orlgmal algorithm, |temee_a_ . else if E.child is emptythen

sorted in descending order of their support. In the mod|f|e(g: return  NULL:

version, items that are of the same attribute are sorted #® else

be adjacent to each other, and their attributes are sortediin ExactMatchP, E.child);

ascending order of the number of distinct values. The benefit

of this sorting strategy is that in Algorithm 1 and 2, the

retrieved immediate super-patterns of a pattern are ajfread

grouped based on the attributes not in the pattern when theyn this section, we study the efficiency of the proposed

are retrieved. The cost for grouping them is thus saved. algorithms, and demonstrate the usefulness of the gederate

Query processing on the CFP-tree structure results via two case studies. We conducted the experiments o
The CFP-tree structure has an important property that mal&BC with 2.33Ghz Intel(R) Core(TM) Duo CPU and 3.25GB

it very suitable for exact match and subset/superset searchmemory. The operating system is Windows XP professional.
Property 1: Let cnode be a non-singleton CFP-tree nodéur algorithms were implemented in C++ and complied using

and E be an entry ofnode. The item of E can appear only Visual Studio 2005.

IV. A PERFORMANCESTUDY

in the subtrees pointed by entries affér R . #eontinuous | #categorical | A¢arget/

. X i atasets | #instances| attributes attributes Utarget
For example, in node 1 of Figure 2(c), iteea can appear adult 48842 6 9 class=50K
i H H mushroom 8124 0 23 class=poisonous
in the subtrees po_lnted by, and ds, but it cannot appear DrugTest a1 13 2 logALCT
in the subtrees pointed by, as, b1, bo and c¢;. Based on DrugTestl| 138 13 74 logAUCT
this property, a sub-pattern of pattern is either a prefixhef t
pattern or appears on the left of the pattern; a super-patier TABLE V
a pattern appears either in the subtree pointed by the patter DATASETS

or on the right of the pattern.
We need to perform two types of queries on a CFP-tree:We used four datasets in our experiments: adult, mushroom,
searching for the immediate sub-patterns of a pattern abdugTestl and DrugTestll. Table V shows some statistics of



these four datasets. Datasatkilt, andmushroomare obtained . crp grovn i - R T
. . . . -growth original &

from UCI machine learning repositohf(t p: / / ar chi ve.

i cs.uci.edu/ m /). DatasetdDrugTest |and DrugTest Il

g time (seconds)
N
&

5 | B e e e e

CFP-tree size (MB)
e

are two pharmacogenetics datasets that study the aseasiati £ . ) *\\
between mutations in several genes and drug responsete Sing® o . A R, e,
Nucleotide Polymorphisms (SNPs)—single DNA sequence ¢ a0 w0 wm S e e e
mutations—in the target genes were genotyped in volunteers e e
from several populatlons. (a) adult runtime (b) adult CFP-tree size
A. Mining efficiency T — » T —
, e e ol el
The performance of the CFP-tree construction algorithm, || g |
denoted as CFP-growth, is comparable to the start-of4the-a § | | N
- . . . S 80 8 %\
frequent pattern mining algorithms [11]. The first expemne £ «| | g N
studies the impact of generating infrequent patterns oeffire = |, i I
ciency of CFP-growth and the size of the generated CFP-tree. o ==& %" BRI
Figure 3 shows the results on datasatwlt and mushroom ™" et et
The target attributes are shown in the last column of Table V. ) .
9 (c) mushroomruntime (d) mushroomCFP-tree size

All categorical attributes except,,,q.; are used as grouping
attributes. Fig. 3.  Running time of the CFP-tree construction algorithmd ¢he size
Onadul the runing time is aimost the same for both case3 CFE16e 10 e o coersing Hhesuent st o o
while the CFP-tree size doubles when infrequent patter@s @figinal CFP-tree construction algorithm. “CFP-growthrefuent” refers to
included. Onmushroom the running time increases greatlythe modified algorithm. “CFP-tree original” refers to the Cf€ storing only
when infrequent patterns are included, but the size of thé_CFfrequent patterns. “CFP-tree infrequent” refers to the @€R storing both
. . . . frequent and infrequent patterns.
tree increases just slightly. The reason being thashroom
is much denser thaadult, and the average pattern length irhypothesis is below 0.1 second. The above results suggast th
mushroomis much longer than that iadult There is lots of it is possible to identify significant hypotheses and aralyz
sharing among patterns imushroom hence the increase inthem on demand given that frequent patterns and their im-
tree size is not obvious when infrequent patterns are irdud mediate infrequent super-patterns have been materiallesd
However, the CFP-tree constructed amushroomis much high efficiency of the algorithms for hypotheses generation
larger than that oradult, so the cost for subset checkingand analysis is attributed to the high efficiency of the CFP-
is much more expensive, which increases the running tinree structure in supporting superset queries.
significantly. We have also studied the size of the condition The last four columns of Table VI show the number of
databases generated during the mining process, and we fotesis performed and the number of significant hypotheses
that the size is almost the same in the two cases on bafmerated. On the two large datasatsshroonmandadult, most
datasets. of the significant hypotheses are still statistically sfigaint
In practice, we do not expect users generate very loadter correction using Bonferroni correction and Benjaraimd
patterns as the contexts of hypotheses because the contexishberg’s method. However, the opposite is observed on the
would be too specific. If we set a length limit to the patternswo DrugTest datasets, especially when Bonferroni caioect
the increase in running time and tree size should not eused. This is possibly because the number of records in the
dramatic when infrequent patterns are included. two DrugTest datasets is too small. This can be overcome by
We also compared the running time of CFP-growth withollecting more data.
FP-growth [7]. Oradult, FP-growth is faster than CFP-growth. The datasets used in our experiments are not very large. We
However, most of the time of CFP-growth is spent on data prexpect that our algorithms can run on much larger datasets be
processing such as mapping attribute values to items @rdgg cause our algorithms need to access the original dataskgts on
and converting the original dataset to a transaction datasa the large sub-population generation phase using frequen
On mushroom CFP-growth is faster than FP-growth whemattern mining techniques, and many efficient and scalable
min_sup is low even when CFP-growth generates infrequeatgorithms have been developed for frequent pattern mining
patterns. This is because mushroom is very dense and maihg CFP-tree storing the sub-populations may be large, but
patterns are generated. FP-growth has a much longer outytiat cost for retrieving patterns from a CFP-tree is not very
time than CFP-growth since it stores patterns in a flat formaensitive to the size of the CFP-tree. Hence the algoritlums f
The second experiment studies the efficiency of the dlypotheses generation and analysis are scalable withatespe
gorithms for hypotheses generation and analysis. Thettargethe size of the CFP-tree.
attribute on each dataset is shown in the last column of Table
V. Table VI shows that on all the four datasets, identifyin§: Case study I: DrugTestll
significant hypotheses took less than 1 second, and thegerera The objective of case study | is to demonstrate the ability
time for generating the information for analyzing one singlof the proposed system in identifying significant hypotlsese



Datasets | min_sup | min_diff GenH AnalyzeH | AvgAnalyzeT | #tests | #SignH | #SignHBC | #SignHFDRO0.05
adult 500 0.05 0.22 sec| 67.9 sec 0.016 sec 5593 4256 3758 4251
mushroom 500 0.1 0.55 sec | 141.18 sec 0.015 sec 16949 9323 9162 9323
DrugTestl 20 0.5 0.08 sec| 1.22 sec 0.061 sec 3627 20 0 0
DrugTestll 20 0.5 0.08 sec| 3.26 sec 0.034 sec 4441 97 0 97
TABLE VI

RUNNING TIME (MEASURED IN SECOND$ AND NUMBER OF SIGNIFICANT HYPOTHESES GENERATEDmaz_pvalue is set to 0.05 on all datasets.
“GenH”": time for testing all hypotheses; “AnalyzeH”: timeof analysis of all significant hypotheses; “AvgAnalyzeTVesage time for analyzing a single
hypothesis; “#test”: total number of tests performed; “48H": #significant hypotheses with p-valdemax_pvalue; “#SignH_BC": #significant
hypotheses with p-valsemaz_pvalue/#test (Bonferroni correction); “#SignHFDR0.05": #significant hypotheses when FDR is set at 0.0 @wgini and
Hochberg’s method).

ID Context | Comparing Groups sup | mean p-value
O Ethnic. Group=Japanese | 25 5.256

H Ethnic Group=Caucasian 22 4.750 < 0.001
(@) An example of significant hypotheses in datdseigTest 1T
Context | Extra Attribute Comparing Groups sup | mean

_ Ethnic Group=Japanese | 7 4.749

O SNP.OATPB.14=0 Ethnic Group=Caucasian 21 4.785
_ EthnicGroup=Japanese | 17 5.489

SNP.OATPB.14=1 Ethnic. Group=Caucasian 1 4.009

(b) The attribute with the highestontrbution with respect tofH .

TABLE VII
AN EXAMPLE OF A SIGNIFICANT HYPOTHESIS IDENTIFIED FROM DATAET DrugTestlIAND POSSIBLE REASONS BEHIND ITSNPOATPB 14 is a SNP at
locus 14 of gene OATPB.

and the reasons behind them. This experiment is conductgghothesis should be “white men earn more than white women

on DrugTestll We choose continuous attribute “logAUCT”on average”, and this hypothesis is also detected by ougrsyst

as the target attribute, and it measures the responses of (iHe in Table 7(a)).

individuals to the drug. Simpson’s Paradoxes are caused by confounding factors that
Table 6(a) shows an example significant hypothesis idemave associations with both the comparing attribute and the

tified from dataseDrugTestll HypothesisH; indicates that target attribute. In Table 7, the confounding factor isilatie

Japanese have higher logAUCT than Caucasian on averd@ex”. If a hypothesisH = (P, Agif; = v1|ve,

Table 6(b) shows the SNP with the highest contribution witdq,get, viargec) @and an attributed form a Simpson’s Paradox,

respect toH;. WhenSNP.OATPB_14=0, the two ethnic groups it suggests two things: one is that may be wrong, and the

have similar logAUCT values. However, Wh&NP.OATPB.14 other is thatH’ = (P, A = v1]| - - - |vk, Atargets Vtarget) May

=1, Japanese individuals have exceptionally high logAUCDge a more interesting hypothesis thdnwherevy, - - - , v are

and the number of Japanese wiBNP.OATPB.14=1 is quite the set of values taken by attribute

large.
V. RELATED WORK

C. Case study II: adult Exploratory hypothesis testing needs to explore a large

Case study Il is conducted on dataadtilt It demonstrates space of tentative hypotheses. We employ frequent pattern
the ability of the proposed system in finding interestinguining techniques for efficient exploration. Frequent gaitt
hypotheses and Simpson’s Paradoxes behind them. Attribotming was first proposed by Agrawat al[2] in 1993, and
“class” is chosen as the target attribute, and0OK” is chosen it has become an important problem in the data mining area
as the target value. since then. Many efficient algorithms have been proposed. A

Table 7(a) shows two example significant hypotheses dibequent itemset mining implementations repository hasnbe
served inadult Hypothesis H; implies that among white set up [6]attp://fim .cs. helsinki.fi/src/).Re-
people, craft repairers earn more than administratiorkslercently, Kirsch et al. [8] develop a methodology to identify
However, if we take a further look by dividing the instances ua thresholds* such that the set of patterns with support at
ing the “Sex” attribute, we observe the opposite phenomentEasts* can be flagged as statistically significant with a small
in both “male” white people and “female” white people. Thatalse discovery rate. Their work focuses on the statistical
is, as shown in Table 7(b), for both sexes, craft repairesgynificance of the frequency of the patterns. Our work gsidi
actually earn less than administration clerks. This Simisso the statistical significance of the difference between two-s
Paradox is caused by the fact that white men earn much mepulations.
than white women on average, and many more white menPattern and association rule mining algorithms often pro-
work as craft repairers than white women. Therefore, the trduce a large number of patterns/rules, and not all of them



ID Context Comparing Groups sup Pss50K p-value
_ . Occupation = Craft-repair | 3694 22.84% g
Hy | Race = White Occupation = Adm-clerical| 3084 | 14.23% <1.00€-08
o Sex=Male 19174 | 31.76%
Hy | Race =White | g, _romale 8642 | 11.90% | = L00E-08
a) Examples of significant hypotheses in datashilt
Context Extra Attribute | Comparing Groups sup P50k
Sex = Male Occupation = Craft-repair | 3524 23.5%

Occupation = Adm-clerical| 1038 24.2%
Occupation = Craft-repair | 107 8.8%
Occupation = Adm-clerical| 2046 9.2%
(b) A Simpson’s Paradox behind .

Race = White

Sex = Female

TABLE VIl
(A) EXAMPLES OF SIGNIFICANT HYPOTHESES IDENTIFIED FROM DATASE®Rdult (B) A SIMPSON S PARADOX BEHIND HYPOTHESISH7. COLUMN Ps 50k
IS THE PROPORTION OF INSTANCES WITH ANNUAL INCOME>50K.

are interesting. Various interestingness measures hage bsame paper, Freitas also proposes an algorithm to identify
proposed to capture the interestingness of patterns/fidegt Simpson’s Paradox based on the change of class labels. We
al.[14] and Genget al[5] surveyed various measures proposefind Simpson’s Paradox in a different situation, and we use
in the literature. Most existing pattern/rule interestings it to identify spurious hypotheses. Freitas gave the slestch
measures involve no comparison, and they look at one paf-his algorithms, but he did not discuss how to implement
tern/rule at a time. Exploratory hypothesis testing coraparthem efficiently. We give an efficient implementation of the
the difference between patterns/rules to find deviations. Wroposed algorithms. We believe that our techniques can als
also present the findings in the form of comparison (hypothke applied to Freitas’s work.
ses), which allows users to look at the data from anotherRecently, Liuet al[9] developed a system called Opportu-
perspective. Furthermore, we do not stop at simply comgarinity Map, which casts rule analysis as OLAP operations and
two patterns/rules. We also investigate the reasons behid general impression mining. Users can use OLAP operations to
difference and look at issues like Simpson’ Paradox. explore rules. The same group of authors later found that al-
An interesting hypothesis consists of two rules that athough the operations on rule cubes are flexible, each operat
significantly different. These two rules are usually rankad s primitive and has to be initiated by the user. Finding a@ie
apart using existing rule interestingness measures. Hencef actionable knowledge typically involves many operasgion
is very tedious and time-consuming for users to manualjhd intense visual inspections. To solve this problem, glein
identify interesting hypotheses from a large collectiomdés, al.[16] proposed the idea of identifying actionable knowledge
even when rules are ranked. The situation may get worga automated comparison. In their approach, users need
when some rules are discarded because they fail to passmanually select two attribute values to form two sub-
the interestingness threshold. Therefore, rule rankinthats populations for comparison, and the system then ranks all
cannot be directly used for exploratory hypothesis testing the other attributes based on their levels of interestiagne
An association ruleX — Y can be viewed as a specialwhat they do is similar to the hypothesis analysis step in our
case of hypothesis, i.e., it compares the proportiori af sub- approach, but the hypotheses in their system are provided by
populationX with that in the general population. When patteriisers manually instead of being generated automatically as
X contains multiple items, users can know the combined effaat our approach. They do not identify Simpson’s Paradoxes
of these items, but it is hard for them to conjecture whichither.
item contributes to the difference. In exploratory hypsthe

testing, we know explicitly which attribute is underlyinget VI. DISCUSSION ANDCONCLUSION
difference. The two approaches can be combined in order to
have a more comprehensive view of the data. In this paper, we have formulated the exploratory hypothesi

One work that is close to ours is the work of Freitatesting and analysis problem and proposed a data mining
[4]. Freitas's work compares the class label of a rule witapproach to solve the problem. Conventional hypothesis tes
that of its minimum generalizations (sub-patterns), angsusing allows just one or a few hypotheses to be tested at one
the proportion of the minimum generalizations that have tane, while exploratory hypothesis testing enables reteas
different class label as a surprisingness measure. Thaitsutdo use computational methods to examine large numbers of
of the work are still rules. It is difficult for users to conface hypotheses and to identify those that have a reasonable&han
with respect to which minimum generalization, the rule isf being true. In this fashion, human oversights and lirioteg
surprising. Another difference is that Freitas’s work camgs can be complemented by computers.
rules whose transaction sets have subset-superset nshis, This is our first attempt to connect hypothesis testing
while our work compares rules whose transaction sets hawee database concepts and terminology by building on and
no overlap. We also provide the statistical evidence of tlextending existing data mining techniques. Our approaitth st
results, which has been largely overlooked in the past. én thas to be improved in many aspects:



« Controlling false positive rate. Controlling false positive It is not our intention to replace conventional hypothe-
rate in multiple hypothesis testing is a hard problem. This testing with exploratory hypothesis testing. Instead,
problem deserves much more discuss than what have beetieve that the two approaches are complementary to each
done in the paper. We used Bonferroni correction [1] armther. Exploratory hypothesis testing can be employed to
Benjamini and Hochberg’s method [3] to control falsdéind potentially interesting things in the data quickly via
positive rate. These two methods are very simple but thextensive computation, which is tedious and time-consgmin
may inflate the number of false negatives unnecessarilyr scientists to do manually, especially with the largatsc
We will conduct an in-depth study of different correctiordatasets that are available nowadays. The generated cignifi
methods in our system. hypotheses can provide the starting points for scientists t

« Measures for hypothesis generation and analysidMe explore, but they are not confirmatory conclusions. To confir
used the absolute difference between two sub-populatidhese hypotheses, scientists still need to perform a rigoro

to measure the domain significance. Other measures @aluation using conventional hypothesis testing.

be used here as well. For example, odds ratio and relative
risk have been commonly used when the target attribute
is nominal. For hypothesis analysis, we have defined twB!
simple measures,ontribution andDiffLift, to measure

the impact of an item or an attribute to a hypothesisj?)
We do not claim that the measures used in the paper
are the best, but we believe that they do capture usefﬁl
information and can serve the purpose. In association
rule mining, many interestingness measures have been
proposed, but none of them is superior to all the othert!
in every aspect. The situation is the same here. It wiljs]
be difficult to find a measure that is better than all
other possible measures in every aspect. We can u
several measures together to get a more comprehensive
understanding of the data. [71
Avoiding obvious hypotheses.Some of the significant
hypotheses generated may be obvious to domain users.
If there are too many such hypotheses, then it will be
difficult for domain users to find things that are really[9
interesting to them. Prior domain knowledge can be used)
to filter these obvious hypotheses. We will study how to
let users supply their domain knowledge to our syste
conveniently. Nevertheless, our system allows users to
investigate the reasons behind hypotheses, which can hel
users to gain new insights into the cause of the hypothe#é
even if the hypotheses are obvious.

Concise representations of hypothese#.is well-known  [14]
that the complete set of frequent patterns contains a k)
of redundant information. Several concepts have been
proposed to remove the redundancy from the complete
set of frequent patterns, such as closed patterns, maxirt
patterns, generators, equivalent classes. The same thing
can be done for hypotheses. The techniques developed for
concise representations of frequent patterns can be em-
ployed and extended to represent hypotheses concisely.
Visualization of the generated hypotheseslt is very
important to organize and present the hypotheses properly
so that users can explore them to find interesting things
easily, especially when many significant hypotheses are
generated. Currently, we rank the hypotheses in ascending
order of their p-values and highlight the hypotheses with
Simpson’s Paradox. We will explore more sophisticated
methods to visualize the output in the future.
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