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Abstract— Hypothesis testing is a well-established tool for
scientific discovery. Conventional hypothesis testing is carried out
in a hypothesis-driven manner. A scientist must first formulate
a hypothesis based on his/her knowledge and experience, and
then devise a variety of experiments to test it. Given the rapid
growth of data, it has become virtually impossible for a person
to manually inspect all the data to find all the interesting
hypotheses for testing. In this paper, we propose and develop a
data-driven system for automatic hypothesis testing and analysis.
We define a hypothesis as a comparison between two or more
sub-populations. We use frequent pattern mining techniques to
find sub-populations for comparison, and then pair them up for
statistical testing. We also generate additional information for
further analysis of the hypotheses that are deemed significant.
We conducted a set of experiments to show the efficiency of
the proposed algorithms, and the usefulness of the generated
hypotheses. The results show that our system can help users
(1) identify significant hypotheses; (2) isolate the reasons behind
significant hypotheses; and (3) find confounding factors that form
Simpson’s Paradoxes with discovered significant hypotheses.

I. I NTRODUCTION

Hypothesis testing is a well-established tool for scientific
discovery. It enables scientists to distinguish results that rep-
resent systematic effects in the data from those that are due
to random chance. Hypothesis testing involves a comparison
of two or more sub-populations. One example hypothesis is
“Smokers are more vulnerable to the H1N1 flu than non-
smokers”. To test this hypothesis, we need to compare the oc-
currence of H1N1 flu infection between two sub-populations;
in this case, smokers and non-smokers. The outcome of hy-
pothesis testing can help people make decisions. For example,
knowing which group of people are more vulnerable to a
certain type of flu, doctors can vaccinate this group of people
first to prevent the spread of the flu. Knowing under what
situation a product is more likely to fail, engineers can devote
their efforts on investigating why the product fails under that
situation, and then improve the design of the product to prevent
that from happening again.

Conventional hypothesis testing is usually carried out in a

hypothesis-drivenmanner. A scientist must first formulate a
hypothesis based on his/her knowledge and experience, and
then devise a variety of experiments to test it. This presents a
possiblecatch-22situation, for it is often the case that people
want to find something from their data, but do not know what
to find. Even if a person has much domain knowledge and
ample experience, the data may still contain something useful
that he/she is not aware of. For example, even an experienced
doctor may not know all the risk factors of a complex disease.

With the rapid development and wide usage of computer
technologies, more and more data have been accumulated
and stored in digital format. These data provide rich sources
for making new discoveries. However, the sheer volume of
the data available nowadays makes it impossible for people
to inspect all the data manually. As a result, lots of useful
knowledge may go undiscovered. This calls for the need of
developing a system for automatic hypothesis testing in adata-
driven manner.

Data mining is an important tool to transform data into
knowledge in a data-driven manner. Data mining does not
start from a pre-conception or a specific question like hy-
pothesis testing. Instead, it aims to automatically extract
useful information from large volumes of data via exploratory
search, making it highly applicable for automatic knowledge
discovery. In this paper, we develop a system for exploratory
hypothesis testing and analysis by building on and extending
existing data mining techniques. Given a dataset, we formulate
and test tentative hypotheses based on the attributes in the
dataset, the nature of the attributes and the statistics of the
data. The space of all the possible hypotheses can be very
large. We employ techniques developed for frequent pattern
mining to efficiently explore the space of tentative hypotheses.

In many cases, it is not sufficient to just know whether
a hypothesis is statistically significant. It is more interest-
ing and important to know the reasons behind significant
hypotheses. Therefore, we further analyze the hypotheses
that are statistically significant and identify the factorsthat
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contribute to the difference. Another reason for the need of
further analysis of significant hypotheses is that some of the
significant hypotheses generated by exploratory search may
be spurious since the exploration is not guided by domain
knowledge. We examine whether there are any confounding
factors that may lead to spurious hypotheses.

The rest of the paper is organized as follows. Section II
formally defines the exploratory hypothesis testing and anal-
ysis problem. In Section III, we develop efficient algorithms
for automatic hypothesis testing and analysis by using and
extending well-established frequent pattern mining techniques.
Experiment results are reported in Section IV. Section V
describes related work. Finally, in Section VI, we conclude
the paper with some closing discussions.

II. PROBLEM DEFINITION

Hypothesis testing is a test of significance on a difference.
A difference isstatistically significantif it is unlikely to have
occurred by chance. Hypothesis testing can be conducted on
n sub-populations, wheren ≥ 1. Hypothesis testing involving
only one sub-population compares the statistics of one sub-
population with the parameters of the general population.
However, the parameters of the general population are often
unknown. The results of hypothesis testing involving more
than two sub-populations are usually hard to interpret. It is
not easy for users to tell which sub-population contributesthe
most to the difference. In the end, users still need to resortto
pairwise comparisons to get a clear picture. Hence, we focus
on the case whenn=2 in this paper.

The hypothesis testing process consists of four main steps:

1) State the relevant null and alternative hypotheses. The
null hypothesis is always “There is no difference.” and
the alternative hypothesis is “There is difference”.

2) Choose a proper statistical test based on the type and
distribution of the attribute that the sub-populations are
compared on. An overview of the statistical tests and
when should they be used can be found at [12].

3) Calculate the p-value using the chosen test. The p-value
is the probability of obtaining a statistic at least as
extreme as the one that was actually observed, given
the null hypothesis is true. The lower the p-value,
the less likely that the observed difference is due to
random chance, thus the more statistically significant the
difference is.

4) Decide whether to reject or accept the null hypothesis
based on the p-value. Conventionally, a p-value of 0.05
is generally recognized as low enough to reject the null
hypothesis and accept the alternative hypothesis.

In the rest of this section, we describe how to automate
the testing process to test all the possible hypotheses in a
given dataset. We define two tasks, exploratory hypothesis
testing and hypothesis analysis, in the situation when the target
attribute, on which the significance of the difference is tested,
is categorical. It is straightforward to generalize the definitions
to the situation when the target attribute is continuous.

PID Race Gender Age Smoke Stage Treatment Response
1 Caucasian M 45 Yes 1 A positive
2 Asian M 40 No 1 A positive
3 African F 50 Yes 2 B negative
.
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N Caucasian M 60 No 2 B negative

TABLE I

AN EXAMPLE DATASET

A. Hypothesis formulation

We use the example dataset shown in Table I to illustrate
how to formulate hypotheses. Each row in the dataset is the
medical record of a patient. The last column is the response
of the patients to a certain treatment. One example hypothesis
is “Treatment A is more effective than treatment B”. The
two sub-populations under comparison are “patients undergone
treatment A” and “patients undergone treatment B”, and they
are compared on attribute “Response”. In this example, there
are two types of attributes. One type of attributes, such as
“Treatment”, are used to define sub-populations, and we call
them grouping attributes. A grouping attribute cannot be
continuous. The other type of attributes, such as “Response”,
are the attribute on which the significance of the differenceis
tested, and we call themtarget attributes.

Given a dataset, we ask domain users to specify a target
attribute as the objective of the exploratory hypothesis testing.
If the target attribute is a categorical attribute, we further ask
domain users to choose a value that is the most interesting
to them, and we call this valuetarget attribute value. We
also ask domain users to specify the grouping attributes if
possible (if not, we simply use all the categorical attributes in
the given dataset as grouping attributes). This should be easy
for domain users since they usually have some rough ideas
on which attributes are of interest for comparison and which
attributes can be used for grouping.

A sub-population is defined by a set of attribute-value pairs.
We call an attribute-value pairan item, and a set of itemsa
pattern.

Definition 1 (Pattern):A pattern is a set of attribute-value
pairs (items), denoted asP = {A1 = v1, A2 = v2, · · · , Ak =
vk}, whereAi is an attribute (1 ≤ i ≤ k), vi is a value taken
by attributeAi, andAi 6= Aj if i 6= j.
If an attribute-value pairA = v appears in a patternP ,
we sayP containsattribute A. Each pattern defines a sub-
population. For example, pattern{EthnicGroup=Caucasian,
Gender= Male} defines the sub-population consisting of Cau-
casian male patients. In the rest of this paper, when we say
patternP , we refer to the pattern itself; when we say sub-
populationP , we refer to the sub-population defined byP .
The support of a patternP , is defined as the number of records
containingP , denoted assup(P ). The support of patternP
is equivalent to the size of sub-populationP .

Given two patternsP andP ′, if every item inP is also in
P ′, thenP is called asub-patternof P ′, denoted asP ⊆ P ′,
and P ′ is called asuper-patternof P , denoted asP ′ ⊇ P .
If P is a sub-pattern ofP ′ andP has one less item thanP ′,



then we callP an immediate sub-patternof P ′, and P ′ an
immediate super-patternof P .

In hypothesis testing, users usually study one factor at
a time. Hence, in this work, we require that the defin-
ing patterns of two sub-populations under comparison differ
by one and only one item. For example, comparing sub-
group {EthnicGroup= Caucasian, Gender=Male} with sub-
group{ EthnicGroup= Caucasian, Gender=Female} is accept-
able, while comparing subgroup{EthnicGroup=Caucasian,
Gender= Male} with subgroup{EthnicGroup=Asian, Gender
=Female} is less intuitive because even if the difference
between the two sub-populations is statistically significant, it
is hard for users to conjecture which attribute contributesto
the difference. Now we formally define tentative hypotheses.

Definition 2 (Tentative hypothesis):Let Atarget be a cate-
gorical target attribute,vtarget be the target attribute value,P1

andP2 be two patterns that differ by one and only one item,
denoted asP1 = P ∪ {Adiff = v1}, P2 = P ∪ {Adiff =
v2}. The tentative hypothesis on the two sub-populations
defined byP1 and P2 is represented asH = 〈P,Adiff =
v1|v2, Atarget, vtarget〉. PatternP is called thecontextof H,
attribute Adiff is called thecomparing attributeof H and
P1 and P2 are called the two sub-populations ofH. The
null hypothesis isp1 = p2, and the alternative hypothesis is
p1 6= p2, wherepi =

sup(Pi∪{Atarget=vtarget})
sup(Pi)

, i=1, 2.
Based on the definition, hypothesis “Treatment A is
more effective than treatment B” can be represented as
〈{}, T reatment = A|B, Response, positive〉.

B. Choosing a proper test and calculating the p-value

The selection of a proper statistical test depends on the type
and distribution of the target attribute. An overview of the
statistical tests and when should they be used can be found
at [12]. Most of these tests can be integrated into our system
seamlessly. Given a statistical test, we usually need to scan
the dataset and collect some statistics for the calculationof
the p-value.

Let us look at the example hypothesisH: “Treatment A
is more effective than treatment B”. The two sub-populations
are compared on attribute “Response” and it is nominal, hence
we chooseχ2-test with Yates’ correction[15]. Theχ2-test is
a test for examining the association between two categorical
attributes, and it requires four statistics to be collected: the size
of the two sub-populations under comparison, denoted asn1

andn2, and the proportion of the target attribute value in the
two sub-populations, denoted asp1 and p2. The four values
of H are shown in Table II (a). Given the four values, the
χ2-score is calculated as follows:

χ2
Y ates =

(n1 + n2)(n1n2|p1 − p2| − (n1 + n2)/2)2

n1n2(n1p1 + n2p2)(n1 + n2 − n1p1 − n2p2)
(1)

The degree of freedom of this score is 1. Fromχ2-score and
the degree of freedom, we can get the corresponding p-value
by looking up aχ2 distribution table. Table II (b) shows the
χ2-score and p-value ofH.

Patterns sup pi

Treatment=A 1000 (n1)
p1=89%

Treatment=A, Response=positive890
Treatment=B 1000 (n2)

p2=83%
Treatment=B, Response=positive830

(a) Statistics needed for calculating p-value usingχ2-test

HypothesisH χ2-score p-value
〈{}, Treatment = A|B, Response, positive〉 14.95 0.0001

(b) p-value

TABLE II

CALCULATING THE P-VALUE OF HYPOTHESIS“T REATMENT A IS MORE

EFFECTIVE THAN TREATMENTB”

C. Deciding the significance of the observed difference

Conventionally, a p-value of 0.05 is generally recognized
as low enough to reject the null hypothesis if one single
hypothesis is tested. A p-value of 0.05 means that there is
a 0.05 probability that the null hypothesis is true but we are
wrongly rejecting it. Here we are testing large numbers of
hypotheses simultaneously, which may generate many false
positives [3]. We use two methods to control the number of
false positives, Bonferroni correction [1] and Benjamini and
Hochberg’s method [3].

Bonferroni correction [1] is one of the most commonly used
approaches for multiple comparisons. It aims at controlling
family-wise error rate (FWER)—the probability of making one
or more false discoveries among all the hypotheses. The basic
idea is that if we testn dependent or independent hypotheses,
then one way of maintaining the family-wise error rate is to
test each individual hypothesis at a statistical significance level
of 1/n times what it would be if only one hypothesis were
tested. Bonferroni correction is computationally simple,but
it can be very conservative and may inflate the rate of false
negatives unnecessarily.

Benjamini and Hochberg’s method [3] controls false discov-
ery rate (FDR)—the expected proportion of falsely rejected
null hypotheses, which is less stringent than family-wise error
rate. LetH1, H2, · · · , Hn be then hypotheses tested and they
are sorted in ascending order of p-value. Their corresponding
p-values arep1, p2, · · · , pn. To control FDR at a level ofq,
we get the largesti, denoted ask, for which pi ≤ i

nq, and
then regard allHi, i=1, 2, · · · , k, as statistically significant.

We use the above two methods in our system as follows.
We ask users to specify a statistical significance threshold
max pvalue for testing one single hypothesis, and output the
hypotheses with p-value≤ max pvalue. During the hypoth-
esis generation process, we count the total number of tests
being performed, denoted asn. Bonferroni correction can be
easily applied by replacingmax pvalue with max pvalue/n.
We then rank the hypotheses in ascending order of p-values,
and apply Benjamini and Hochberg’s method.

Statistical significance vs. domain significance.Some-
times a statistically significant result can have little or no
domain significance. For example, given large sample sizes,
a difference in 5 beats per minutes in pulse rate in a clinical
trial involving two drugs can give a statistically significant



difference whereas the average difference may hardly bring
about a drastic metabolic change between the two groups.
The reason being that domain significance mainly depends
on the difference between the two means or proportions,
while statistical significance also depends on standard error. If
standard error is small enough, a difference can be statistically
significant even if it is not domain significant. Only domain
users can decide the level at which a result is regarded as
domain significant.

D. Hypothesis analysis

In many cases, we are not only interested in knowing
whether the difference between two sub-populations is signifi-
cant, we are more interested in knowing the reasons behind the
difference. For example, given the failure rate of one modelof
a product is significantly higher than that of another model,it
is important for engineers to know under what situations the
first model is more likely to fail so that they can improve
its design accordingly. Table III compares the failure rate
of two models of the same product. Model A has a higher
failure rate than model B in general. However, after the two
sub-populations are further divided using attribute “time-of-
failure”, we find that model A has comparable failure rate
with model B at the time of ’‘in-operation” and “outputting”,
but has exceptionally high failure rate in the “loading” phase.
This information is very useful since it helps engineers narrow
down the problem.

pairs of failure
sub-populations rates
model=A 4%
model=B 2%
model=A, time-of-failure=loading 6.0%
model=B, time-of-failure=loading 1.9%
model=A, time-of-failure=in-operation 2.1%
model=B, time-of-failure=in-operation 2.1%
model=A, time-of-failure=outputting 2.0%
model=B, time-of-failure=outputting 1.9%

TABLE III

AN EXAMPLE INTERESTING ATTRIBUTE “ TIME-OF-FAILURE”. “ LOADING”

IS OF PARTICULAR INTEREST BECAUSE THE TWO MODELS SHOW A VERY

BIG DIFFERENCE.

pairs of response proportion of
sub-populations positive negative positive responsep-value
Treatment=A 890 110 89.0% 0.0001
Treatment=B 830 170 83.0%
Treatment=A, Stage=1 800 80 90.9% 0.0807
Treatment=B, Stage=1 190 10 95%
Treatment=A, Stage=2 90 30 75% 0.2542
Treatment=B, Stage=2 640 160 80%

TABLE IV

AN EXAMPLE SPURIOUS HYPOTHESIS. ATTRIBUTE “ STAGE” IS A

CONFOUNDING FACTOR.

Another reason for the need of further analysis of significant
hypotheses is that some of the significant hypotheses generated
via exploratory search may be spurious since the search is
not guided by domain knowledge. For example, hypothesisH
in Table II(b) is actually a spurious hypothesis as shown in
Table IV. The original hypothesisH indicates that treatment

A is more effective than B. However, after we further divide
the two sub-populations ofH into smaller subgroups using
attribute “stage” , we find that treatment B is more effective
than treatment A for both patients at stage 1 and patients at
stage 2. This phenomenon is called Simpson’s Paradox [13],
and it is caused by the fact that “stage” has associations with
both treatment and response: doctors tend to give treatment
A to patients at stage 1, and treatment B to patients at stage
2; patients at stage 1 are easier to cure than patients at stage
2. Attributes that have associations with both the comparing
attribute and the target attribute are calledconfounding factors.

The above examples show that further investigation of
hypotheses is often very useful, and it can be conducted by
dividing the two sub-populations under comparison into finer
subgroups, and then inspecting whether unexpected result is
observed in pairs of the finer subgroups.
Difference lift of items and attributes

To divide the two sub-populations of a hypothesisH into
smaller subgroups, we can add more items into the contextP
of H. A simple way to measure the impact of an itemA = v
to H is to see how much the difference is lifted.

Definition 3 (DiffLift(A=v|H)): Let H = 〈P,Adiff =
v1|v2, Atarget, vtarget〉 be a hypothesis,Atarget be categorical,
P1 = P ∪ {Adiff = v1} and P2 = P ∪ {Adiff = v2} be
the two sub-populations ofH, A = v be an item not inH,
that is, A 6= Adiff , A 6= Atarget and A = v /∈ P . After
adding itemA = v to P , we get two new sub-populations:
P ′

1 = P1 ∪ {A = v} and P ′
2 = P2 ∪ {A = v}. The

lift of difference after addingA = v to H is defined as
DiffLift(A=v |H)=p′

1−p′

2

p1−p2
, wherepi is the proportion ofvtarget

in sub-populationPi, and p′i is the proportion ofvtarget in
sub-populationP ′

i , i=1, 2.
We can divide the values ofDiffLift(A=v |H) into three

ranges, and each range represents a different situation.
Situation 1: DiffLift(A=v|H)>1. The new difference is

wider than the old difference and it is also of the same
direction as the old difference. The larger theDiffLift , the more
interesting the item. For example, in Table III, theDiffLifts
of “time-of-failure=loading”, “time-of-failure=in-operation”,
“time-of-call=outputting” are 2.05, 0, 0.05 respectively. Hence
“time-of-failure=loading” is an very interesting item.

Situation 2: 0 ≤ DiffLift(A=v|H)≤ 1. The new difference is
of the same direction as the old difference, but it is narrower
than the old difference. The items satisfying this condition
usually are not very interesting, e.g., “time-of-failure=in-
operation” and “time-of-failure=outputting” in Table III.

Situation 3: DiffLift(A=v|H)< 0. The new difference is
of the opposite direction of the old one. If the values of an
attribute all satisfy this condition, then we have a Simpson’s
Paradox as in Table IV whereDiffLift(stage=1|H1)= −0.683
andDiffLift(stage=2|H1) = −0.833.

Definition 4 (Simpson’s Paradox):Given a hypothesisH
and an attributeA not in H, if for every valuev of A, we have
DiffLift(A=v |H)< 0, then we sayH andA form a Simpson’s
Paradox.



We define theDiffLift of an attributeA as the average of
the absoluteDiffLift of its attribute values.

Definition 5 (DiffLift(A|H)): Let v1, v2, · · · , vk be the set
of values taken by attributeA. Then the difference lift of
A with respect toH is defined asDiffLift(A|H) =
∑ k

i=1 |DiffLift(A=vi|H)|

k .
Contribution of items and attributes

In some cases,DiffLift(A=v |H) is not sufficient to capture
all the information. Letni be the size of sub-populationPi,
n′

i be the size of sub-populationP ′
i , i=1, 2. If n′

i is extremely
small compared withni, i=1, 2, then even ifDiffLift(A=v |H)
is positive and very large, itemA = v can hardly have any
material impact onH. We are more interested in finding
those attribute values that have a big positiveDiffLift(A=v |H),
and are also associated with a large number of records, so
that acting upon such attribute values, we are able to make
much bigger impact than acting upon attribute values that are
associated with few records.

If we divide sub-populationP1 into several disjoint subsets
P11, P12, · · · , P1k, then the proportion ofvtarget in P1 can
be expressed asp1 =

∑k
i=1

n1i

n1
p1i, wheren1 is the size of

sub-populationP1, n1i is the size of subsetP1i andp1i is the
proportion ofvtarget in subsetP1i. Hencen1i

n1
(p1i − p1) can

be regarded as the overall contribution ofP1i to P1, denoted
as Contribution(P1i|P1). We have

∑k
i=1

n1i

n1
(p1i − p1) =

∑k
i=1

n1i

n1
p1i − p1

∑ k
i=1 n1i

n1
= 0. The contribution ofA = v to

H is determined by which one is bigger, the contribution of
P ′

1 to P1, or the contribution ofP ′
2 to P2.

Definition 6 (Contribution(A = v|H)): Let H, A = v,
Pi, pi, P ′

i and p′i, i=1, 2, be defined as in Definition 3. The
contribution ofA = v to H is defined asContribution(A

= v|H) = (
n′

1

n1
(p′1 − p1) −

n′

2

n2
(p′2 − p2))/(p1 − p2).

If Contribution(A = v|H) > 0, we sayA = v contributes
positively to H; if Contribution(A = v|H) < 0, we say
A = v contributes negatively toH; otherwise, we sayA = v
makes no contributes toH. We define theContribution of
an attributeA as the average of the absoluteContribution of
its attribute values.

Definition 7 (Contribution(A|H)): Let v1, v2, · · · , vk be
the set of values taken by attributeA. Then the contri-
bution of A to H is defined asContribution(A|H) =
∑ k

i=1 |Contribution(A=vi|H)|

k .
To help users have a better understanding of the discovered

hypotheses, for each significant hypothesisH, we identify
those attributes and items that have either highDiffLift or high
Contribution, and generate a ranked list of these attributes
and items. We also identify the attributes that can form
Simpson’s Paradoxes withH. Users can then browse the
generated information to find things that are interesting to
them.

E. Generalizations

Generalization to continuous target attribute. When
Atarget is continuous, we can simply usemi to replacepi,
and m′

i to replacep′i in Definitions 2, 3 and 6, wheremi

and m′
i is the mean ofAtarget in sub-populationPi and P ′

i

respectively,i=1, 2. If Atarget is normally distributed, we can
use t-test to calculate p-values; otherwise, we can use Mann-
Whitney test.

Generalization to hypotheses involving only one sample
or more than two samples. We can simply represent a
hypothesis involving one sample asH = 〈P , Atarget, vtarget〉.
In this case, the statistics of sub-populationP is compared
with the whole population.DiffLift andContribution can be
defined accordingly. It is also straightforward to formulate
and test hypotheses involving more than two samples. A
hypothesis involvingk (k > 2) samples can be represented as
H = 〈P , Adiff = v1|v2| · · · |vk, Atarget, vtarget〉. Statistical
tests for more than two samples are also available. However,
the analysis of hypothesis involving more than two samples is
much more complicated. We leave it to our future work.

F. Problem statement

If the size of the two sub-populations under comparison is
too small, statistical tests usually do not have enough power
to detect the difference even if the difference is real. Hence
testing hypotheses involving very small sub-populations is
often futile. To save computation cost, we put a minimum
support constraintmin sup on the size of the two sub-
populations. If the size of a sub-population is no less than

Our system requires users to supply the following parame-
ters: (1) a minimum support thresholdmin sup; (2) a maxi-
mum p-value thresholdmax pvalue which indicates the level
of statistical significance if one single hypothesis is tested; (3)
a minimum difference thresholdmin diff which reflects the
level of domain significance; (4) a target attributeAtarget and
a target attribute valuevtarget if Atarget is categorical; (5) a set
of grouping attributesAgrouping, and the grouping attributes
must be categorical. Users can set the parameters based on
their requirements and domain knowledge. The last parameter
is optional. If users do not specify the grouping attributes,
then we use all the categorical attributes in the given dataset
as grouping attributes.

Exploratory hypothesis testing. Given a datasetD and
the above parameters, the hypothesis testing task aims to find
all the hypothesesH = 〈P,Adiff = v1|v2, Atarget, vtarget〉
satisfying the following conditions:1) ∀ itemA = v in P , A ∈
Agrouping, andAdiff ∈ Agrouping. 2) sup(P1) ≥ min sup,
sup(P2) ≥ min sup, where P1 = P ∪ {Adiff = v1},
P2 = P ∪ {Adiff = v2}. 3) p-value(H) ≤ max pvalue.
4) If Atarget is categorical,|p1 − p2| ≥ min diff , wherepi

is the proportion ofvtarget in sub-populationPi, i=1, 2. If
Atarget is continuous, then|m1 − m2| ≥ min diff , where
mi is the mean ofAtarget in sub-populationPi, i=1, 2.

Hypothesis analysis.For each significant hypothesisH, the
hypothesis analysis task generates the following information
for further analysis:1) The set of Simpson’s Paradoxes formed
by H with attributes not inH. 2) The list of items not in
H ranked in descending order ofDiffLift (A = v|H) and
Contribution(A = v|H) respectively.3) The list of attributes



not in H ranked in descending order ofDiffLift (A|H) and
Contribution(A|H) respectively.

III. A UTOMATIC HYPOTHESIS TESTING AND ANALYSIS

We generate hypotheses in two steps. First, we use existing
frequent pattern mining techniques to generate large sub-
populations. Extensive efforts have been devoted to frequent
pattern mining, and many efficient algorithms have been de-
veloped [6]. Most of these algorithms can be used to generate
large sub-populations. In the second step, we pair the large
sub-populations up to form tentative hypotheses. The number
of large sub-populations generated may be very large, so we
need to store the patterns in a structure that supports efficient
pattern retrieval. A suitable candidate for this task is theCFP-
tree structure [11].

In the rest of this section, we first present the hypothe-
ses generation and analysis algorithms without restricting
ourselves to any frequent pattern mining algorithm or any
structure for storing patterns, and then describe how the CFP-
tree structure can be utilized to improve the efficiency of the
algorithms.

A. Finding large sub-populations

Existing frequent pattern mining algorithms generate only
frequent patterns and their supports. Additional information
are needed for calculating p-values and for analyzing signif-
icant hypotheses. We modified the frequent pattern mining
algorithm used in our system as follows.

We collect more statistics of the large sub-populations
besides the support of the patterns defining them for the
calculation of p-values. Here we take the two commonly used
tests,χ2-test and t-test, as examples. LetP be a frequent
pattern. Whenχ2-test is used, we need to collectsup(P )
and sup(P ∪ {Atarget = vtarget}) to get the proportion of
Atarget = vtarget in sub-populationP . When t-test is used,
we need to get the meanmP and the standard deviationsP of
Atarget in sub-populationP . These two statistics are defined

as follows:mP =
∑ sup(P )

i=1 vi

sup(P ) and sP =

√

∑ sup(P )
i=1 (vi−mP )2

sup(P )−1

=

√

∑ sup(P )
i=1 v2

i −sup(P )·m2
P

sup(P )−1 , wherevi is the Atarget value of

the i-th record in sub-populationP . Hence we need to collect
sup(P ),

∑sup(P )
i=1 vi and

∑sup(P )
i=1 v2

i to calculatemP andsP .
All these information can be collected as we count the support
of patternP . No additional scan of data is needed.

When analyzing a significant hypothesisH, we divide the
two sub-populations ofH into finer sub-populations by adding
an item to the defining patterns of the two sub-populations.
The resultant patterns may not be frequent. Hence we need to
generate not only frequent patterns, but also some infrequent
patterns to make sure that all the information needed for
analyzing a hypothesis is available. The generated infrequent
patterns are the immediate super-patterns of some frequent
patterns. In the original algorithm, a pattern is not extended if
it is not frequent. In the modified version, an infrequent pattern

is still extended if it has at least one frequent immediate sub-
pattern. That is, a pattern is not extended only if all of its
immediate sub-patterns are infrequent. We explore the search
space in a way such that the sub-patterns of a pattern are
generated before the pattern itself. This exploration strategy
has been used in mining frequent generators [10].

B. Generating tentative hypotheses

Given a hypothesis H = 〈P,Adiff =
v1|v2, Atarget, vtarget〉, the defining patterns of the two
sub-populations ofH contain one more item than the context
pattern P , so they are immediate super-patterns ofP . We
generate tentative hypotheses as follows. For each frequent
pattern P , we use it as a context and retrieve all of its
frequent immediate super-patterns. We then group these
super-patterns ofP based on the attributes not inP . Patterns
that have the same attribute not inP are placed in the same
group. Patterns in the same group are then paired up to form
hypotheses. The pseudo-codes for generating hypotheses are
shown in Algorithm 1.

Algorithm 1 GenHypotheses
Input:

P is the set of frequent patterns;
min sup is the minimum support threshold;
max pvalue is the maximum p-value threshold;
min diff is the minimum difference threshold;
Atarget is the target attribute;
vtarget is the target attribute value;

Description:
1: for all frequent patternP in P do
2: Retrieve all frequent immediate super-patterns ofP , denoted

asS;
3: Let A = {A1, A2, · · · , Ak} be the set of attributes not inP .

Every pattern inS contains exactly one attribute inA;
4: Group patterns inS into k groups based on the attributes in

A: Gi = {P ′|P ′ ∈ S, P ′ contains Ai}, i = 1, 2, · · · , k;
5: for all i=1 to k do
6: for all pair of patternsP1, P2 in Gi do
7: if the difference between sub-populationsP1 andP2 ≥

min diff then
8: Calculate p-value ofH = {P, Ai = v1|v2, Atarget,

vtarget}, whereAi = vj is in Pj , j=1, 2;
9: if p-value ofH ≤ max pvalue then

10: OutputH;
11: AnalyzeHypothesis(H, A− {Ai});
12: Rank all the generated significant hypotheses in ascending order

of their p-values;

C. Generating information for hypothesis analysis

If a hypothesis is statistically significant, we generate infor-
mation for its further analysis . The pseudo-codes are shown
in Algorithm 2. Given a significant hypothesisH with two
sub-populationsP1 andP2, we retrieve the immediate super-
patterns ofP1 and P2 (line 1-2). Let P ′

i be an immediate
super-pattern ofPi, i=1, 2. If P ′

1 and P ′
2 contain the same

item that does not appear in neitherP1 nor P2, P ′
1 and P ′

2

form a pair (P ′
1, P

′
2). We group these pairs based on the

attributes not inH (line 3). For each itemA = v that is
not in H, DiffLift (A = v|H) and Contribution(A = v|H)



Algorithm 2 AnalyzeHypothesis
Input:

HypothesisH = {P, Adiff = v1|v2, Atarget, vtarget};
A = {A1, A2, · · · , Ak} is the set of attributes not inH;

Description:
1: Retrieve the immediate super-patterns ofP1 = P ∪ {Adiff =

v1}, denoted asS1;
2: Retrieve the immediate super-patterns ofP2 = P ∪ {Adiff =

v2}, denoted asS2;
3: Pair super-patterns ofP1 and P2 and then group them intok

groups based on attributes inA: Gi = {(P ′
1, P

′
2)|P

′
1 ∈ S1, P

′
2 ∈

S2, P ′
1 andP ′

2 contain a same value ofAi}, i = 1, 2, · · · , k;
4: for all i=1 to k do
5: for all element(P ′

1, P
′
2) in Gi do

6: Let v be the value ofAi contained inP ′
1 andP ′

2;
7: Calculate DiffLift (A = v|H) and Contribution(A =

v|H) using the statistics ofP1, P2, P ′
1 andP ′

2;

8: DiffLift (Ai|H) =
∑

v∈Dom(Ai)
|DiffLift(Ai=v|H)|

|Dom(Ai)|
;

9: Contribution(Ai|H)=
∑

v∈Dom(Ai)
|Contribution(Ai=v|H)|

|Dom(Ai)|
;

10: if ∀v ∈ Dom(Ai), DiffLift (Ai = v|H) < 0 then
11: Output Simpson’s Paradox (H, Ai);
12: Rank the attributes in descending order ofDiffLift and

Contribution respectively;
13: Rank the items in descending order ofDiffLift andContribution

respectively;

are calculated using the statistics ofP1, P2, P1∪{A = v} and
P2 ∪ {A = v} (line 4-7). TheDiffLift and Contribution of
each attribute are calculated using that of its items (line 8-9).
Simpson’s Paradoxes are generated based onDiffLift (line 10-
11). After all the information for analysis are generated, we
then output lists of items and attributes ranked in descending
order of DiffLift or Contribution (line 12-13). At line 8-10,
Dom(Ai) is the set of values taken by attributeAi.

D. Implementation

The cost of the operations in Algorithm 1 and 2 is not high
except the cost for retrieving immediate super-patterns. When
the number of patterns generated is very large, the cost for
retrieving immediate super-patterns can be very high. We use
the CFP-tree structure [11] to speed-up this operation. Here
we introduce the basic features of the CFP-tree structure that
are relevant to this work. For more details on the CFP-tree
structure, please refer to the original paper.

CFP-tree is a very compact structure for storing patterns. It
allows different patterns to share the storage of their prefixes
as well as suffixes. It has been shown that a CFP-tree storing
all frequent patterns can be orders of magnitude smaller than
its corresponding flat representation [11]. CFP-tree supports
efficient exact match and subset/superset search, which are
repeatedly used in our algorithms.

Given a databaseD, the set of possible patterns inD can
be represented as a set-enumeration tree. Figure 1 shows an
example set-enumeration tree on a dataset with three attributes
a, b and c. The three attributes are sorted lexicographically.
Each attributex has two values:x1 and x2, x=a, b, c. For
brevity, we usexi to represent itemx = xi, wherex=a, b,
c and i=1, 2. A node in the set-numeration tree represents
a pattern. Each pattern can be extended only by the items

belonging to the attributes before it. For example, itemsb1

andb2 can be used to extend pattern{c1}, but they cannot be
used to extend pattern{a1}. The set of items that can be used
to extend an patternP are called candidate extensions ofP ,
denoted ascand exts(P ).
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Fig. 1. An example search space tree with 3 attributesa, b, and c. Each
attributex has two values:x1 andx2, x=a, b, c.

The CFP-tree structure [11] is a prefix-trie structure. It is
similar to the set-enumeration tree but it allows suffix sharing.
Figure 2(c) shows an example CFP-tree, and it stores the set
of frequent patterns in the dataset shown in Figure 2(a). The
dataset has four attributes:a, b, c andd. The minimum support
threshold is set to 3. The set of frequent patterns are shown in
Figure 2(b). For brevity, a frequent pattern{i1, i2, · · · , im}
with supportn is represented asi1i2 · · · im : n.

Each node in a CFP-tree consists of a number of entries.
Each entry contains exactly one item if the node has multiple
entires. An entry can contain multiple items if it is the only
entry of its parent. For example, node 7 in Figure 2(c) has
only one entry and this entry contains two itemsc2 and a1.
A path starting from an entry in the root node represents one
or more frequent patterns and these patterns have the same
support. LetE be an entry andP be a pattern represented
by the path from root toE. Entry E stores several pieces of
information: (1)n items (n ≥ 1), (2) the support ofP and
other information for calculating p-values, and (3) a pointer
pointing to the child node ofE.
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(c) A CFP-tree

Fig. 2. An example CFP-tree

The CFP-tree structure allows different patterns to share the
storage of their prefixes as well as suffixes, which makes it
a very compact structure for storing frequent patterns. Prefix



sharing is easy to understand. For example, patterns{c2, a1}
and {c2, b1} share the same prefixc2 in Figure 2(c). Suffix
sharing is not as obvious as prefix sharing. Suffix sharing
occurs when a pattern has the same support as its prefix.
Let P be pattern. If there exists a candidate extensioni of
P such thati occurs in every records containingP , that
is, sup(P ∪ {i}) = sup(P ), then for every other candidate
extensioni′ of P , we havesup(P∪{i}∪{i′}) = sup(P∪{i′}).
In this case, patternP ∪ {i} and P share suffixes. In Figure
2(a), itemb1 appears in every records containing pattern{d1}.
Therefore, patterns{d1} and {d1, b1} share suffixes, which
is node 7. Node 7 represents 6 patterns:{d1, c2}, {d1, a1},
{d1, c2, a1}, {d1, b1, c2}, {d1, b1, a1}, {d1, b1, c2, a1}.

Suffix sharing is implemented by singleton nodes in a
CFP-tree. More specifically, if patternsP andP

⋃

X, where
X ⊆ cand exts(P ), satisfysup(P ∪ X) = sup(P ), then the
child node ofP contains only one entry and the set of items
of the entry isX. For example, the child node of{d1} is a
singleton node containing itemb1. If there are more than one
singleton node on a path, then the space saved by suffix sharing
multiplies. The space saved by suffix sharing is dramatic.
A CFP-tree storing a complete set of frequent patterns can
be orders of magnitude smaller than the corresponding flat
representation [11].
Constructing a CFP-tree

Constructing a CFP-tree from a dataset is almost the same as
mining frequent patterns from the dataset. The main difference
is the output format: a CFP-tree or a flat file. Since we
store patterns in a CFP-tree, we use the CFP-tree construction
algorithm described in [11] to find large sub-populations.

Besides the two modifications described in Section III-
A, we made another modification to the original CFP-tree
construction algorithm. In the original algorithm, items are
sorted in descending order of their support. In the modified
version, items that are of the same attribute are sorted to
be adjacent to each other, and their attributes are sorted in
ascending order of the number of distinct values. The benefit
of this sorting strategy is that in Algorithm 1 and 2, the
retrieved immediate super-patterns of a pattern are already
grouped based on the attributes not in the pattern when they
are retrieved. The cost for grouping them is thus saved.
Query processing on the CFP-tree structure

The CFP-tree structure has an important property that makes
it very suitable for exact match and subset/superset search.

Property 1: Let cnode be a non-singleton CFP-tree node
andE be an entry ofcnode. The item ofE can appear only
in the subtrees pointed by entries afterE.
For example, in node 1 of Figure 2(c), itemc2 can appear
in the subtrees pointed byd1 and d2, but it cannot appear
in the subtrees pointed bya1, a2, b1, b2 and c1. Based on
this property, a sub-pattern of pattern is either a prefix of the
pattern or appears on the left of the pattern; a super-pattern of
a pattern appears either in the subtree pointed by the pattern
or on the right of the pattern.

We need to perform two types of queries on a CFP-tree:
searching for the immediate sub-patterns of a pattern and

searching for the immediate super-patterns of a pattern. The
former is used during the generation of large sub-populations
for checking whether an infrequent pattern has a frequent
immediate sub-pattern. The latter is used for hypothesis gen-
eration and analysis. We convert both queries to exact match.
A patternP has |P | immediate subsets, so searching for the
immediate sub-patterns of a patternP can be converted to|P |
exact matches. For immediate super-pattern queries, only one
additional item is allowed. Hence once there is a mismatch at
an entry, i.e., the item in the entry is the additional item, then
the subsequent searching in the subtree rooted at that entry
must be exact match.

Algorithm 3 shows the pseudo-codes for exact match. When
it is first called,P is the pattern to be searched, andcnode is
the root node of the CFP-tree. At each node being visited, we
need to search further in at most one subtree of the node, and
this subtree is pointed by the rightmost entry whose item is
contained in the pattern to be searched. For example, to search
patternP = {c2, a1} in the CFP-tree in Figure 2(c), we only
need to visit the subtree pointed by itemc2 in node 1 because
the subtrees pointed by entries beforec2 do not containc2,
and the entries afterc2 contain items that are not inP .

Algorithm 3 ExactMatch
Input:

P is a frequent pattern;
cnode is the CFP-tree node currently being visited;

Description:
1: if cnode is a singleton nodethen
2: E=the entry ofcnode;
3: else
4: E=the rightmost entry ofcnode whose item is inP ;
5: Removes items ofE from P ;
6: if P is emtpythen
7: return E;
8: else if E.child is emptythen
9: return NULL;

10: else
11: ExactMatch(P , E.child);

IV. A PERFORMANCESTUDY

In this section, we study the efficiency of the proposed
algorithms, and demonstrate the usefulness of the generated
results via two case studies. We conducted the experiments on
a PC with 2.33Ghz Intel(R) Core(TM) Duo CPU and 3.25GB
memory. The operating system is Windows XP professional.
Our algorithms were implemented in C++ and complied using
Visual Studio 2005.

#continuous #categorical Atarget/
Datasets #instances attributes attributes vtarget

adult 48842 6 9 class=>50K
mushroom 8124 0 23 class=poisonous
DrugTestI 141 13 74 logAUCT
DrugTestII 138 13 74 logAUCT

TABLE V

DATASETS

We used four datasets in our experiments: adult, mushroom,
DrugTestI and DrugTestII. Table V shows some statistics of



these four datasets. Datasetsadult, andmushroomare obtained
from UCI machine learning repository(http://archive.
ics.uci.edu/ml/). DatasetsDrugTest I and DrugTest II
are two pharmacogenetics datasets that study the associations
between mutations in several genes and drug responses. Single
Nucleotide Polymorphisms (SNPs)—single DNA sequence
mutations—in the target genes were genotyped in volunteers
from several populations.

A. Mining efficiency

The performance of the CFP-tree construction algorithm,
denoted as CFP-growth, is comparable to the start-of-the-art
frequent pattern mining algorithms [11]. The first experiment
studies the impact of generating infrequent patterns on theeffi-
ciency of CFP-growth and the size of the generated CFP-tree.
Figure 3 shows the results on datasetsadult and mushroom.
The target attributes are shown in the last column of Table V.
All categorical attributes exceptAtarget are used as grouping
attributes.

Onadult, the running time is almost the same for both cases,
while the CFP-tree size doubles when infrequent patterns are
included. Onmushroom, the running time increases greatly
when infrequent patterns are included, but the size of the CFP-
tree increases just slightly. The reason being thatmushroom
is much denser thanadult, and the average pattern length in
mushroomis much longer than that inadult. There is lots of
sharing among patterns inmushroom, hence the increase in
tree size is not obvious when infrequent patterns are included.
However, the CFP-tree constructed onmushroomis much
larger than that onadult, so the cost for subset checking
is much more expensive, which increases the running time
significantly. We have also studied the size of the conditional
databases generated during the mining process, and we found
that the size is almost the same in the two cases on both
datasets.

In practice, we do not expect users generate very long
patterns as the contexts of hypotheses because the contexts
would be too specific. If we set a length limit to the patterns,
the increase in running time and tree size should not be
dramatic when infrequent patterns are included.

We also compared the running time of CFP-growth with
FP-growth [7]. Onadult, FP-growth is faster than CFP-growth.
However, most of the time of CFP-growth is spent on data pre-
processing such as mapping attribute values to items (integers)
and converting the original dataset to a transaction dataset.
On mushroom, CFP-growth is faster than FP-growth when
min sup is low even when CFP-growth generates infrequent
patterns. This is because mushroom is very dense and many
patterns are generated. FP-growth has a much longer output
time than CFP-growth since it stores patterns in a flat format.

The second experiment studies the efficiency of the al-
gorithms for hypotheses generation and analysis. The target
attribute on each dataset is shown in the last column of Table
V. Table VI shows that on all the four datasets, identifying
significant hypotheses took less than 1 second, and the average
time for generating the information for analyzing one single
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Fig. 3. Running time of the CFP-tree construction algorithm and the size
of CFP-tree with and without generating infrequent patterns that have at least
one frequent immediate sub-pattern. “CFP-growth original” represents the
original CFP-tree construction algorithm. “CFP-growth infrequent” refers to
the modified algorithm. “CFP-tree original” refers to the CFP-tree storing only
frequent patterns. “CFP-tree infrequent” refers to the CFP-tree storing both
frequent and infrequent patterns.

hypothesis is below 0.1 second. The above results suggest that
it is possible to identify significant hypotheses and analyze
them on demand given that frequent patterns and their im-
mediate infrequent super-patterns have been materialized. The
high efficiency of the algorithms for hypotheses generation
and analysis is attributed to the high efficiency of the CFP-
tree structure in supporting superset queries.

The last four columns of Table VI show the number of
tests performed and the number of significant hypotheses
generated. On the two large datasetsmushroomandadult, most
of the significant hypotheses are still statistically significant
after correction using Bonferroni correction and Benjamini and
Hochberg’s method. However, the opposite is observed on the
two DrugTest datasets, especially when Bonferroni correction
is used. This is possibly because the number of records in the
two DrugTest datasets is too small. This can be overcome by
collecting more data.

The datasets used in our experiments are not very large. We
expect that our algorithms can run on much larger datasets be-
cause our algorithms need to access the original datasets only
in the large sub-population generation phase using frequent
pattern mining techniques, and many efficient and scalable
algorithms have been developed for frequent pattern mining.
The CFP-tree storing the sub-populations may be large, but
the cost for retrieving patterns from a CFP-tree is not very
sensitive to the size of the CFP-tree. Hence the algorithms for
hypotheses generation and analysis are scalable with respect
to the size of the CFP-tree.

B. Case study I: DrugTestII

The objective of case study I is to demonstrate the ability
of the proposed system in identifying significant hypotheses



Datasets min sup min diff GenH AnalyzeH AvgAnalyzeT #tests #SignH #SignHBC #SignHFDR0.05
adult 500 0.05 0.22 sec 67.9 sec 0.016 sec 5593 4256 3758 4251

mushroom 500 0.1 0.55 sec 141.18 sec 0.015 sec 16949 9323 9162 9323
DrugTestI 20 0.5 0.08 sec 1.22 sec 0.061 sec 3627 20 0 0
DrugTestII 20 0.5 0.08 sec 3.26 sec 0.034 sec 4441 97 0 97

TABLE VI

RUNNING TIME (MEASURED IN SECONDS) AND NUMBER OF SIGNIFICANT HYPOTHESES GENERATED. max pvalue is set to 0.05 on all datasets.

“GenH”: time for testing all hypotheses; “AnalyzeH”: time for analysis of all significant hypotheses; “AvgAnalyzeT”: average time for analyzing a single

hypothesis; “#test”: total number of tests performed; “#SignH”: #significant hypotheses with p-value≤ max pvalue; “#SignH BC”: #significant

hypotheses with p-value≤ max pvalue/#test (Bonferroni correction); “#SignHFDR0.05”: #significant hypotheses when FDR is set at 0.05 (Benjamini and

Hochberg’s method).

ID Context Comparing Groups sup mean p-value

H1 {}
Ethnic Group=Japanese 25 5.256

≤ 0.001
Ethnic Group=Caucasian 22 4.750

(a) An example of significant hypotheses in datasetDrugTest II
Context Extra Attribute Comparing Groups sup mean

{}
SNPOATPB 14=0

Ethnic Group=Japanese 7 4.749
Ethnic Group=Caucasian 21 4.785

SNPOATPB 14=1
Ethnic Group=Japanese 17 5.489
Ethnic Group=Caucasian 1 4.009

(b) The attribute with the highestcontribution with respect toH1.

TABLE VII

AN EXAMPLE OF A SIGNIFICANT HYPOTHESIS IDENTIFIED FROM DATASET DrugTestIIAND POSSIBLE REASONS BEHIND IT. SNPOATPB14 is a SNP at

locus 14 of gene OATPB.

and the reasons behind them. This experiment is conducted
on DrugTestII. We choose continuous attribute “logAUCT”
as the target attribute, and it measures the responses of the
individuals to the drug.

Table 6(a) shows an example significant hypothesis iden-
tified from datasetDrugTestII. HypothesisH1 indicates that
Japanese have higher logAUCT than Caucasian on average.
Table 6(b) shows the SNP with the highest contribution with
respect toH1. WhenSNPOATPB 14=0, the two ethnic groups
have similar logAUCT values. However, whenSNPOATPB 14
=1, Japanese individuals have exceptionally high logAUCT,
and the number of Japanese withSNPOATPB 14=1 is quite
large.

C. Case study II: adult

Case study II is conducted on datasetadult. It demonstrates
the ability of the proposed system in finding interesting
hypotheses and Simpson’s Paradoxes behind them. Attribute
“class” is chosen as the target attribute, and “>50K” is chosen
as the target value.

Table 7(a) shows two example significant hypotheses ob-
served in adult. HypothesisH1 implies that among white
people, craft repairers earn more than administration clerks.
However, if we take a further look by dividing the instances us-
ing the “Sex” attribute, we observe the opposite phenomenon
in both “male” white people and “female” white people. That
is, as shown in Table 7(b), for both sexes, craft repairers
actually earn less than administration clerks. This Simpson’s
Paradox is caused by the fact that white men earn much more
than white women on average, and many more white men
work as craft repairers than white women. Therefore, the true

hypothesis should be “white men earn more than white women
on average”, and this hypothesis is also detected by our system
(H2 in Table 7(a)).

Simpson’s Paradoxes are caused by confounding factors that
have associations with both the comparing attribute and the
target attribute. In Table 7, the confounding factor is attribute
“Sex”. If a hypothesisH = 〈P,Adiff = v1|v2,
Atarget, vtarget〉 and an attributeA form a Simpson’s Paradox,
it suggests two things: one is thatH may be wrong, and the
other is thatH ′ = 〈P,A = v1| · · · |vk, Atarget, vtarget〉 may
be a more interesting hypothesis thanH, wherev1, · · · , vk are
the set of values taken by attributeA.

V. RELATED WORK

Exploratory hypothesis testing needs to explore a large
space of tentative hypotheses. We employ frequent pattern
mining techniques for efficient exploration. Frequent pattern
mining was first proposed by Agrawalet al.[2] in 1993, and
it has become an important problem in the data mining area
since then. Many efficient algorithms have been proposed. A
frequent itemset mining implementations repository has been
set up [6](http://fimi.cs.helsinki.fi/src/). Re-
cently, Kirsch et al. [8] develop a methodology to identify
a thresholds∗ such that the set of patterns with support at
leasts∗ can be flagged as statistically significant with a small
false discovery rate. Their work focuses on the statistical
significance of the frequency of the patterns. Our work studies
the statistical significance of the difference between two sub-
populations.

Pattern and association rule mining algorithms often pro-
duce a large number of patterns/rules, and not all of them



ID Context Comparing Groups sup P>50K p-value

H1 Race = White
Occupation = Craft-repair 3694 22.84%

≤1.00E-08
Occupation = Adm-clerical 3084 14.23%

H2 Race = White
Sex=Male 19174 31.76%

≤ 1.00E-08
Sex=Female 8642 11.90%

(a) Examples of significant hypotheses in datasetadult
Context Extra Attribute Comparing Groups sup P>50K

Race = White
Sex = Male

Occupation = Craft-repair 3524 23.5%
Occupation = Adm-clerical 1038 24.2%

Sex = Female
Occupation = Craft-repair 107 8.8%
Occupation = Adm-clerical 2046 9.2%

(b) A Simpson’s Paradox behindH1.

TABLE VIII

(A) EXAMPLES OF SIGNIFICANT HYPOTHESES IDENTIFIED FROM DATASETadult. (B) A SIMPSON’ S PARADOX BEHIND HYPOTHESISH1 . COLUMN P>50K

IS THE PROPORTION OF INSTANCES WITH ANNUAL INCOME>50K.

are interesting. Various interestingness measures have been
proposed to capture the interestingness of patterns/rules. Tanet
al.[14] and Genget al.[5] surveyed various measures proposed
in the literature. Most existing pattern/rule interestingness
measures involve no comparison, and they look at one pat-
tern/rule at a time. Exploratory hypothesis testing compares
the difference between patterns/rules to find deviations. We
also present the findings in the form of comparison (hypothe-
ses), which allows users to look at the data from another
perspective. Furthermore, we do not stop at simply comparing
two patterns/rules. We also investigate the reasons behindthe
difference and look at issues like Simpson’ Paradox.

An interesting hypothesis consists of two rules that are
significantly different. These two rules are usually rankedfar
apart using existing rule interestingness measures. Henceit
is very tedious and time-consuming for users to manually
identify interesting hypotheses from a large collection ofrules,
even when rules are ranked. The situation may get worse
when some rules are discarded because they fail to pass
the interestingness threshold. Therefore, rule ranking methods
cannot be directly used for exploratory hypothesis testing.

An association ruleX → Y can be viewed as a special
case of hypothesis, i.e., it compares the proportion ofY in sub-
populationX with that in the general population. When pattern
X contains multiple items, users can know the combined effect
of these items, but it is hard for them to conjecture which
item contributes to the difference. In exploratory hypothesis
testing, we know explicitly which attribute is underlying the
difference. The two approaches can be combined in order to
have a more comprehensive view of the data.

One work that is close to ours is the work of Freitas
[4]. Freitas’s work compares the class label of a rule with
that of its minimum generalizations (sub-patterns), and uses
the proportion of the minimum generalizations that have a
different class label as a surprisingness measure. The outputs
of the work are still rules. It is difficult for users to conjecture
with respect to which minimum generalization, the rule is
surprising. Another difference is that Freitas’s work compares
rules whose transaction sets have subset-superset relationships,
while our work compares rules whose transaction sets have
no overlap. We also provide the statistical evidence of the
results, which has been largely overlooked in the past. In the

same paper, Freitas also proposes an algorithm to identify
Simpson’s Paradox based on the change of class labels. We
find Simpson’s Paradox in a different situation, and we use
it to identify spurious hypotheses. Freitas gave the sketches
of his algorithms, but he did not discuss how to implement
them efficiently. We give an efficient implementation of the
proposed algorithms. We believe that our techniques can also
be applied to Freitas’s work.

Recently, Liuet al.[9] developed a system called Opportu-
nity Map, which casts rule analysis as OLAP operations and
general impression mining. Users can use OLAP operations to
explore rules. The same group of authors later found that al-
though the operations on rule cubes are flexible, each operation
is primitive and has to be initiated by the user. Finding a piece
of actionable knowledge typically involves many operations
and intense visual inspections. To solve this problem, Zhang et
al.[16] proposed the idea of identifying actionable knowledge
via automated comparison. In their approach, users need
to manually select two attribute values to form two sub-
populations for comparison, and the system then ranks all
the other attributes based on their levels of interestingness.
What they do is similar to the hypothesis analysis step in our
approach, but the hypotheses in their system are provided by
users manually instead of being generated automatically as
in our approach. They do not identify Simpson’s Paradoxes
either.

VI. D ISCUSSION ANDCONCLUSION

In this paper, we have formulated the exploratory hypothesis
testing and analysis problem and proposed a data mining
approach to solve the problem. Conventional hypothesis test-
ing allows just one or a few hypotheses to be tested at one
time, while exploratory hypothesis testing enables researchers
to use computational methods to examine large numbers of
hypotheses and to identify those that have a reasonable chance
of being true. In this fashion, human oversights and limitations
can be complemented by computers.

This is our first attempt to connect hypothesis testing
to database concepts and terminology by building on and
extending existing data mining techniques. Our approach still
has to be improved in many aspects:



• Controlling false positive rate.Controlling false positive
rate in multiple hypothesis testing is a hard problem. This
problem deserves much more discuss than what have been
done in the paper. We used Bonferroni correction [1] and
Benjamini and Hochberg’s method [3] to control false
positive rate. These two methods are very simple but they
may inflate the number of false negatives unnecessarily.
We will conduct an in-depth study of different correction
methods in our system.

• Measures for hypothesis generation and analysis.We
used the absolute difference between two sub-populations
to measure the domain significance. Other measures can
be used here as well. For example, odds ratio and relative
risk have been commonly used when the target attribute
is nominal. For hypothesis analysis, we have defined two
simple measures,Contribution andDiffLift , to measure
the impact of an item or an attribute to a hypothesis.
We do not claim that the measures used in the paper
are the best, but we believe that they do capture useful
information and can serve the purpose. In association
rule mining, many interestingness measures have been
proposed, but none of them is superior to all the others
in every aspect. The situation is the same here. It will
be difficult to find a measure that is better than all
other possible measures in every aspect. We can use
several measures together to get a more comprehensive
understanding of the data.

• Avoiding obvious hypotheses.Some of the significant
hypotheses generated may be obvious to domain users.
If there are too many such hypotheses, then it will be
difficult for domain users to find things that are really
interesting to them. Prior domain knowledge can be used
to filter these obvious hypotheses. We will study how to
let users supply their domain knowledge to our system
conveniently. Nevertheless, our system allows users to
investigate the reasons behind hypotheses, which can help
users to gain new insights into the cause of the hypotheses
even if the hypotheses are obvious.

• Concise representations of hypotheses.It is well-known
that the complete set of frequent patterns contains a lot
of redundant information. Several concepts have been
proposed to remove the redundancy from the complete
set of frequent patterns, such as closed patterns, maximal
patterns, generators, equivalent classes. The same thing
can be done for hypotheses. The techniques developed for
concise representations of frequent patterns can be em-
ployed and extended to represent hypotheses concisely.

• Visualization of the generated hypotheses.It is very
important to organize and present the hypotheses properly
so that users can explore them to find interesting things
easily, especially when many significant hypotheses are
generated. Currently, we rank the hypotheses in ascending
order of their p-values and highlight the hypotheses with
Simpson’s Paradox. We will explore more sophisticated
methods to visualize the output in the future.

It is not our intention to replace conventional hypothe-
sis testing with exploratory hypothesis testing. Instead,we
believe that the two approaches are complementary to each
other. Exploratory hypothesis testing can be employed to
find potentially interesting things in the data quickly via
extensive computation, which is tedious and time-consuming
for scientists to do manually, especially with the large-scale
datasets that are available nowadays. The generated significant
hypotheses can provide the starting points for scientists to
explore, but they are not confirmatory conclusions. To confirm
these hypotheses, scientists still need to perform a rigorous
evaluation using conventional hypothesis testing.
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