
A Statistical Approach to Grammatical Error

Correction

Daniel Hermann Richard Dahlmeier

NATIONAL UNIVERSITY OF SINGAPORE

2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48661039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Statistical Approach to Grammatical Error

Correction

Daniel Hermann Richard Dahlmeier

(Dipl.-Inform.), University of Karlsruhe

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

NUS GRADUATE SCHOOL FOR INTEGRATIVE

SCIENCES AND ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2013

Declaration

I hereby declare that the thesis is my original work and it has been written by me in its

entirety. I have duly acknowledged all the sources of information which have been

used in the thesis.

This thesis has also not been submitted for any degree in any university previously.

Daniel Hermann Richard Dahlmeier

25 May 2013

i

Acknowledgment

A doctoral thesis is rarely a single, monolithic piece of work. Typically it is the report

of an inquisitive journey with all its surprises and discoveries. At the end of the journey,

it is time to acknowledge all those that have contributed to it.

First and foremost, I would like to thank my supervisor Prof Ng Hwee Tou. His

graduate course at NUS first introduced me to the fascinating field of natural language

processing. With his sharp analytical skills and his almost uncanny accurateness and

precision, Prof Ng has always been the most careful examiner of my work. If I could

convince him of my ideas, I was certain that I could convince the audience at the

next conference session as well. Discussions with him have been invaluable for me

in sharpen my scientific skills.

Next, I would like to thank the other members of my thesis advisory committee,

Prof Tan Chew Lim and Prof Lee Wee Sun. Their guidance and feedback during the

time of my candidature has always been helpful and encouraging.

I would like to thank my friends at the NUS Graduate School for Integrative Sci-

ences and Engineering and the School of Computing for support, helpful discussions,

and fellowship.

Finally, I would like to thank my wife Yee Lin for her invaluable moral support

throughout my graduate school years.

ii

Contents

1 Introduction 1

1.1 The Goal of Grammatical Error Correction 3

1.2 Contributions of this Thesis . 3

1.2.1 Creating a Large Annotated Learner Corpus 3

1.2.2 Evaluation of Grammatical Error Correction 4

1.2.3 Learning Classifiers for Error Correction 4

1.2.4 Lexical Choice Error Correction with Paraphrases 5

1.2.5 A Pipeline Architecture for Error Correction 5

1.2.6 A Beam-Search Decoder for Grammatical Error

Correction . 6

1.3 Summary of Contributions . 6

1.4 Organization of the Thesis . 7

2 Related Work 8

2.1 Article Errors . 10

2.2 Preposition Errors . 12

2.3 Lexical Choice Errors . 15

2.4 Decoding Approaches . 16

3 Data Sets and Evaluation 18

3.1 NUS Corpus of Learner English . 18

3.1.1 Annotation Schema . 19

3.1.2 Annotator Agreement . 20

iii

3.1.3 Data Collection and Annotation 26

3.1.4 NUCLE Corpus Statistics . 27

3.2 Helping Our Own data sets . 31

3.3 Evaluation for Grammatical Error Correction 32

3.3.1 Precision, Recall, F1 Score . 33

3.4 MaxMatch Method for Evaluation . 35

3.4.1 Method . 36

3.4.2 Experiments and Results . 40

3.4.3 Discussion . 41

3.5 Conclusion . 42

4 Alternating Structure Optimization for Grammatical Error Correction 43

4.1 Task Description . 44

4.1.1 Selection vs. Correction Task 44

4.1.2 Article Errors . 45

4.1.3 Preposition Errors . 45

4.2 Linear Classifiers for Error Correction 45

4.2.1 Linear Classifiers . 46

4.2.2 Features . 47

4.3 Alternating Structure Optimization . 48

4.3.1 The ASO Algorithm . 48

4.3.2 ASO for Grammatical Error Correction 49

4.4 Experiments . 50

4.4.1 Data Sets . 50

4.4.2 Resources . 51

4.4.3 Evaluation Metrics . 51

4.4.4 Selection Task Experiments on WSJ Test Data 51

4.4.5 Correction Task Experiments on NUCLE Test Data 52

4.5 Results . 53

4.6 Analysis . 56

iv

4.6.1 Manual Evaluation . 57

4.7 Conclusion . 58

5 Lexical Choice Errors 59

5.1 Analysis of EFL Lexical Choice Errors 61

5.2 Correcting Lexical Choice Errors . 63

5.2.1 L1-induced Paraphrases . 64

5.2.2 Lexical Choice Correction with Phrase-based SMT 64

5.3 Experiments . 66

5.3.1 Data Set . 66

5.3.2 Evaluation Metrics . 67

5.3.3 Lexical Choice Error Experiments 67

5.4 Results . 68

5.5 Analysis . 70

5.6 Conclusion . 74

6 A Pipeline Architecture for Grammatical Error Correction 75

6.1 The HOO Shared Tasks . 76

6.2 System Architecture . 77

6.2.1 Pre- and Post-Processing . 79

6.2.2 Spelling Correction . 79

6.2.3 Article Errors . 80

6.2.4 Replacement Preposition Correction 82

6.2.5 Missing Preposition Correction 82

6.2.6 Unwanted Preposition Correction 83

6.2.7 Learning Algorithm . 84

6.3 Features . 85

6.4 Experiments . 87

6.4.1 Data Sets . 87

6.4.2 Resources . 93

v

6.4.3 Evaluation . 94

6.5 Results . 95

6.6 Discussion . 96

6.7 Conclusion . 98

7 A Beam-Search Decoder for Grammatical Error Correction 99

7.1 Introduction . 99

7.2 Decoder . 101

7.2.1 Proposers . 102

7.2.2 Experts . 103

7.2.3 Hypothesis Features . 104

7.2.4 Decoder Model . 105

7.2.5 Decoder Search . 109

7.3 Experiments . 115

7.3.1 Data Sets . 115

7.3.2 Evaluation . 118

7.3.3 SMT Baseline . 119

7.3.4 Pipeline Baseline . 119

7.3.5 Decoder . 123

7.4 Results . 124

7.5 Discussion . 126

7.6 Conclusion . 129

8 Conclusion 130

Bibliography 145

vi

Abstract

A large part of the world’s population regularly needs to communicate in English, even

though English is not their native language. The goal of automatic grammatical error

correction is to build computer programs that can provide automatic feedback about er-

roneous word usage and ill-formed grammatical constructions to a language learner.

Grammatical error correction involves various aspects of computational linguistics,

which makes the task an interesting research topic. At the same time, grammatical

error correction has great potential for practical applications for language learners.

In this Ph.D. thesis, we pursue a statistical approach to grammatical error correction

based on machine learning methods that advance the field in several directions. First,

the NUS Corpus of Learner English, a one-million-word corpus of annotated learner

English was created as part of this thesis. Based on this data set, we present a novel

method that allows for training statistical classifiers with both learner and non-learner

data and successfully apply it to article and preposition errors. Next, we focus on lex-

ical choice errors and show that they are often caused by words with similar transla-

tions in the native language of the writer. We show that paraphrases induced through

the native language of the writer can be exploited to automatically correct such errors.

Fourth, we present a pipeline architecture that combines individual correction modules

into an end-to-end correction system with state-of-the-art results. Finally, we present a

novel beam-search decoder for grammatical error correction that can correct sentences

which contain multiple and interacting errors. The decoder further improves over the

state-of-the-art pipeline architecture, setting a new state of the art in grammatical error

correction.

vii

List of Tables

3.1 NUCLE error categories. Grammatical errors in the example are printed

in bold face in the form [<mistake> | <correction>]. 21

3.2 Cohen’s Kappa coefficients for annotator agreement. 25

3.3 Example question prompts from the NUCLE corpus. 26

3.4 Overview of the NUCLE corpus . 27

3.5 Results for participants in the HOO 2011 shared task. The run of the

system is shown in parentheses. 40

3.6 Examples of different edits extracted by the M2 scorer and the official

HOO scorer. Edits that do not match the gold-standard annotation are

marked with an asterisk (*). 41

4.1 Best results for the correction task on NUCLE test data. Improvements

for ASO over either baseline are statistically significant (p < 0.01) for

both tasks. 56

4.2 Manual evaluation and comparison with commercial grammar checking

software. 57

5.1 Lexical errors statistics of the NUCLE corpus 61

5.2 Analysis of lexical errors. The threshold for spelling errors is one for

phrases of up to six characters and two for the remaining phrases. . . . 63

viii

5.3 Examples of lexical choice errors with different sources of confusion.

The correction is shown in parenthesis. For L1-transfer, we also show

an example of a shared Chinese translation. The L1-transfer examples

shown here do not belong to any of the other categories. 63

5.4 Results of automatic evaluation. Columns two to six show the number

of gold answers that are ranked within the top k answers. The last

column shows the mean reciprocal rank in percentage. Bigger values

are better. 69

5.5 Inter-annotator agreement. P (E) = 0.5. 69

5.6 Results of human evaluation. Rank and MRR results are shown for the

intersection (first value) and union (second value) of human judgments. 70

5.7 Examples of test sentences with the top 3 answers of the ALL and

BASELINE system. An answer judged incorrect by at least one judge is

marked with an asterisk (*). 71

5.8 Examples of sentences without valid corrections by the ALL model.

The top 1 suggestion of the system and the gold answer (in bold) are

shown in parenthesis. 72

6.1 HOO 2011 features for article correction. Example: “The cat sat on the

black door mat.” † : lexical tokens in lower case. 86

6.2 HOO 2011 features for for replacement preposition correction. Exam-

ple: “He saw a cat sitting on the mat.” †: lexical tokens in lower case. . 87

6.3 HOO 2012 features for article correction. Example: “The cat sat on the

black door mat.” † : lexical tokens in lower case, ‡: lexical tokens in

both original and lower case. 88

6.4 HOO 2012 features for replacement preposition correction. Example:

“He saw a cat sitting on the mat.” †: lexical tokens in lower case, ‡:

lexical tokens in both original and lower case. 90

ix

6.5 HOO 2012 features for missing preposition correction. Example: “He

saw a cat sitting the mat.”† : lexical tokens in lower case, ‡: lexical

tokens in both original and lower case. 91

6.6 HOO 2012 features for unwanted preposition correction. Example:

“The cat went to home.” . 91

6.7 Overview of the data sets in the HOO 2011 and HOO 2012 experiments. 93

6.8 HOO 2011. Overall F1 scores with (wb) and without bonus (w/o b)

on the HOO2011-DEVTEST data after pre-processing (PRE), spelling

(SPEL), article (ART), and preposition correction (PREP). 95

6.9 HOO 2011. Overall F1 scores with (wb) and without bonus (w/o b) on

the HOO2011-TEST data. 95

6.10 HOO 2012. Overall precision, recall, and F1 score on the HOO2012-

DEVTEST data after article correction (Det), replacement preposition

correction (RT), and missing and unwanted preposition correction (MT/UT). 96

6.11 HOO 2012. Individual scores for each error type on the HOO2012-

DEVTEST data. 96

6.12 HOO 2012. Overall precision, recall, and F1 score on the HOO2012-

TEST data after article correction (Det), replacement preposition cor-

rection (RT), and missing and unwanted preposition correction (MT/UT). 97

6.13 HOO 2012. Individual scores for each error type on the HOO2012-

TEST data. 97

7.1 Examples of a source sentence, generated hypothesis, and hypothesis

features. Most zero-valued scaled hypothesis features are omitted be-

cause of space constraint. 108

7.2 Overview of the HOO 2011 and HOO 2012 data sets. 117

x

7.3 Experimental results on HOO2011-TEST. Precision, recall, and F1

score are shown in percent. The best F1 score for each system is high-

lighted in bold. Statistically significant improvements (p < 0.01) over

the pipeline baseline are marked with an asterisk (∗). Statistically sig-

nificant improvements over the UI Run1 system are marked with a dag-

ger (†). All improvements of the pipeline and the decoder over the SMT

baseline are statistically significant. 127

7.4 Experimental results on HOO2012-DEVTEST. Precision, recall, and

F1 score are shown in percent. The best F1 score for each system is

highlighted in bold. Statistically significant improvements (p < 0.01)

over the pipeline baseline are marked with an asterisk (∗). 128

7.5 PRO tuning of the full HOO 2011 decoder model on HOO2011-TUNE 128

7.6 Example of PRO-tuned weights for article correction count features for

the full HOO 2011 decoder model. 128

xi

List of Figures

3.1 The WAMP annotation interface . 19

3.2 Histogram of error annotations per document in NUCLE. 28

3.3 Histogram of error annotations per sentence in NUCLE. 29

3.4 Error categories histogram for the NUCLE corpus. 30

3.5 The Levenshtein matrix and the shortest path for a source sentence “Our

baseline system feeds word into PB-SMT pipeline .” and a hypothesis

“Our baseline system feeds a word into PB-SMT pipeline .” 37

3.6 The edit lattice for “Our baseline system feeds (ε → a) word into PB-

SMT pipeline .” Edge costs are shown in parentheses. The edge from

(4,4) to (5,6) matches the gold annotation and carries a negative cost. . . 38

4.1 Accuracy for the selection task on WSJ test data. 53

4.2 F1 score for the article correction task on NUCLE test data. Each plot

shows ASO and two baselines for a particular feature set. 54

4.3 F1 score for the preposition correction task on NUCLE test data. Each

plot shows ASO and two baselines for a particular feature set. 55

7.1 Example of a search tree produced by the beam-search decoder. Some

hypotheses are omitted due to space constraints. 111

7.2 Example of a lattice for error correction. Unlike the decoder method,

the lattice cannot correct the misspelled word boyys to boy and subse-

quently correct the resulting noun number agreement error. 115

xii

Chapter 1

Introduction

In an increasingly globalized world, it has become a necessity for everyone to learn one

or more foreign languages. For anyone who is not from an English-speaking country,

this necessarily includes English which has become the lingua franca for people around

the world to communicate with one another if they do not speak the same language.

English is not only spoken in countries with a native English-speaking population but

is a global communication medium. The British Council estimated that in the year

2000, there were about one billion people learning English in the world. This number is

expected to further increase to around two billion (Graddol, 2006). This means that soon

around one third of the world’s population will be learning English and that speakers of

English as a foreign language (EFL) will greatly outnumber English native speakers. A

large percentage of these non-native English speakers will be coming from Asia.

However, learning a foreign language is difficult. It requires years of continuous

practice and corrective feedback from a proficient teacher. But even the most dedicated

teacher cannot attend to her students 24 hours a day, and many students in developing

countries do not have access to high quality language education at all. With the ubiqui-

tous presence of modern computers and their increasing role in teaching and education,

it seems attractive to utilize computers to help language learning students by providing

corrective feedback on grammatical errors in an automatic fashion. To accomplish this

task, the computer would have to be equipped with a set of rules that describe how to

1

correct the language learner. But language is extremely complex and constantly evolv-

ing. It is very difficult to explicitly write down the exact rules that define a grammatical

sentence. Manually engineered rules therefore cannot cover all the variety that is ob-

served in real language data. To make matters worse, every rule has its own exceptions,

as anyone who has studied a foreign language can attest.

The success of statistical approaches to natural language processing (NLP) offers a

different solution. Instead of trying to define all the rules of a language and then imple-

ment these rules in a computer algorithm, the statistical approach to natural language

processing lets a learning algorithm learn the rules from data. The “statistical revolu-

tion” that has taken place over the last two decades has resulted in great progress in

many areas of natural language processing. The goal of this thesis is to bring some of

this progress to grammatical error correction. To see why computers can at least poten-

tially succeed in learning a language, let us take a look at the following comparison by

Philipp Koehn (2006) to see how much exposure to a language a human can actually

get during a lifetime of studying and how much text data can be processed by computer

algorithms. The comparison was made in the context of statistical machine transla-

tion (SMT) but applies to language learning as well. If we assume that a human can

read 10,000 words a day, and she studies every day without interruption, she can read

about 3.5 million words a year, and about 300 million words during her lifetime. If we

compare this number to the amount of text that is available to computers in electronic

form today, 300 million words appear quite humble. Large text corpora used in natural

language processing already contain a few billion words and the World Wide Web is

estimated to contain over a trillion words. Thus, computers have access to much more

text than any human can read in a lifetime. Thus, the computer could at least in prin-

ciple be able to “learn” a language just by seeing millions and millions of examples.

While we focus solely on English in this thesis, the methods described in this thesis

have applicability to other languages as well.

2

1.1 The Goal of Grammatical Error Correction

So what specifically is the goal of automatic grammatical error correction? Casually

speaking, the goal of grammatical error correction is to build a machine which takes as

input text written by a language learner, analyzes the text to detect and correct any gram-

matical errors, and outputs a corrected, fluent version of the input, possibly together

with some explanation or analysis. As such, the task of grammatical error correction

can be thought of as “decoding” the learner input text to recover the text that the learner

wanted to express but was unable to construct properly. Grammatical error correction

involves various aspects of computational linguistics, like language modeling, syntax,

and semantics, which makes the task interesting and at the same time challenging from

a research perspective. At the same time, grammatical error correction has great poten-

tial for practical applications, such as authoring aids and educational software language

learning and assessment.

1.2 Contributions of this Thesis

Although considerable progress has been made in grammatical error correction, re-

search has been hampered by a number of obstacles. In this section, we describe the

contributions of this thesis to overcome some of these obstacles.

1.2.1 Creating a Large Annotated Learner Corpus

Statistical methods require data. The data is used to train statistical models and to eval-

uate the models’ predictions with respect to the human annotation on a held-out test set.

For most natural language processing tasks, the community has already created anno-

tated data sets, e.g., the Penn Treebank corpus (Marcus et al., 1993) for part of speech

tagging and parsing, or the data sets of the Workshop for Machine Translation (Callison-

Burch et al., 2012). Despite the growing interest in grammatical error correction, there

has been no large annotated learner corpus available for research in grammatical er-

ror correction until recently. The existing annotated learner corpora were all either too

3

small or proprietary and not available to the research community.

The first contribution of this thesis is the creation of the NUS Corpus of Learner

English (NUCLE). NUCLE consists of about 1,400 essays written by EFL university

students on a wide range of topics. It contains over one million words which are com-

pletely annotated with error tags and corrections. All annotations have been performed

by professional English instructors. The details of the corpus are described in Chapter 3.

NUCLE is the currently the largest annotated learner corpus that is freely available to

the community for research purposes.

1.2.2 Evaluation of Grammatical Error Correction

Research in natural language processing is driven by empirical evaluation of the algo-

rithms with regard to some metric of performance. The evaluation of grammatical error

correction is done by measuring the similarity between the corrections proposed by a

computer algorithm and a set of corrections proposed by a human expert. Unfortu-

nately, evaluation is complicated by the fact that different sets of corrections can result

in the same corrected sentence. In Chapter 3, we present a novel method for grammat-

ical error correction that takes the ambiguity of the corrections into account. We show

that this method solves problems in existing evaluation tools.

1.2.3 Learning Classifiers for Error Correction

As a result of the lack of learner data, the standard approach to grammatical error cor-

rection has been to train an off-the-shelf classifier to re-predict words in non-learner

text based on the surrounding context. Training classifiers on non-learner text does not

provide the same information that is found in annotated learner text. In particular, the

information on which words are typically confused with which other words cannot be

learned from the non-learner text as the data is assumed to be free of grammatical er-

rors. Learning classifiers directly from annotated learner corpora is not well explored,

as are methods that combine learner and non-learner text. In Chapter 4, we present

a novel approach to grammatical error correction based on Alternating Structure Op-

4

timization (ASO) (Ando and Zhang, 2005). The approach is able to train models on

annotated learner corpora while still taking advantage of large non-learner corpora. We

evaluate our proposed ASO method on the task of article and preposition error correc-

tion. Our experiments show that the proposed ASO algorithm significantly improves

over two baselines trained on non-learner text and learner text, respectively. It also out-

performs two commercial grammar checking software packages in a manual evaluation.

1.2.4 Lexical Choice Error Correction with Paraphrases

Virtually all existing approaches to grammatical error correction assume a fixed confu-

sion set of possible correction choices that is known beforehand. This works fine for

error categories like articles and prepositions, but for more general errors that involve

wrong word choices of nouns and verbs, it is much more difficult to define a suitable

confusion set. In Chapter 5, we present a novel approach for automatic correction of

lexical choice errors. The key observation is that words are potentially confusable for

an EFL student if they have similar translations in the writer’s native language, or in

other words if they have the same semantics in the native language of the writer. While

these types of transfer errors have been known in the EFL teaching literature, research

in grammatical error correction has mostly ignored this fact. In Chapter 5, we empir-

ically confirm that many lexical choice errors in the NUCLE corpus can be traced to

similar translations in the writer’s native language. Based on this result, we propose a

novel approach for automatic lexical choice error correction. The key component in our

approach is paraphrases which are automatically extracted from a parallel corpus of En-

glish and the writer’s native language. The proposed approach outperforms traditional

approaches based on edit distance, homophones, and WordNet synonyms on a test set

of real-world learner data in an automatic and a human evaluation.

1.2.5 A Pipeline Architecture for Error Correction

Research in grammatical error correction has typically concentrated on a single error

category in isolation. To build practical error correction applications, the components

5

for different error categories need to be combined into an end-to-end error correction

system. In Chapter 6, we present a general architecture for error correction that com-

bines separate correction steps into a pipeline of correction steps. The architecture is

evaluated in the context of two shared tasks and achieves state-of-the-art results.

1.2.6 A Beam-Search Decoder for Grammatical Error

Correction

Although the pipeline approach to error correction achieves state-of-the-art results, it

suffers from some serious shortcomings. Each classifier corrects a single word for a

specific error category individually. This ignores dependencies between the words in

a sentence. Also, by conditioning on the surrounding context, the classifier implicitly

assumes that the surrounding context is free of grammatical errors, which is often not

the case. Finally, the classifier typically has to commit to a single one-best prediction

and is not able to change its decision later or explore multiple corrections. Instead

of correcting each word individually, we would like to perform global inference over

corrections of whole sentences which can contain multiple and interacting errors. In

Chapter 7, we present a novel beam-search decoder for grammatical error correction

that extends the classification approach to a more general decoder framework similar

to the approaches common in statistical machine translation. The decoder performs an

iterative search over possible sentence-level hypotheses to find the best correct sentence

for the input sentence. We evaluate the decoder in the context of two shared tasks on

grammatical error correction and show that the decoder improves upon a state-of-the-art

pipeline model in both cases.

1.3 Summary of Contributions

In summary, the contributions of this thesis are as follows. First, the NUCLE learner

corpus, a fully annotated, one-million word corpus of learner English was created.

Second, we present an improved evaluation method for grammatical error correction.

6

Third, we develop a novel method to train statistical classifiers for error correction based

on alternating structure optimization. Fourth, we empirically show that lexical choice

errors are often linked to similar translations in the learner’s native language and that

paraphrases induced through the native language can be used to correct these errors.

Fifth, we present a pipeline architecture for error correction systems with state-of-the-

art results. Sixth, we develop a novel beam-search decoder for grammatical error cor-

rection that improves over the existing state-of-the-art results.

1.4 Organization of the Thesis

The remainder of this thesis is organized as follows. The next chapter gives an overview

of related work in grammatical error correction. Chapter 3 describes the NUCLE corpus

and other data sets for grammatical error correction, and evaluation metrics. Chapter 4

describes the alternating structure optimization algorithm for error correction. Chap-

ter 5 describes the lexical choice error correction work based on paraphrases. Chapter 6

describes the pipeline architecture for grammatical error correction. Chapter 7 describes

the beam-search decoder. Chapter 8 concludes the thesis.

7

Chapter 2

Related Work

Research can never be done in a vacuum in isolation from the body of existing knowl-

edge that has already been accumulated. Instead, every new scientific result has to be

presented in the context of the work that precedes it. A thorough review of related work

is therefore part of any serious scientific endeavor. “Standing on the shoulders of gi-

ants”, as Newton famously put it, allows us to see further than we could have otherwise.

The review also helps researchers to understand the problem at hand and serves as the

starting point for finding improvements of and alternatives to existing approaches. For

empirical disciplines like natural language processing, previously published methods

serve as a baseline to quantify the improvement of the presented methods. Finally, the

study of existing work should give credit to the academic community where credit is

due.

From its beginning, research in grammatical error correction has been closely linked

to the development of grammar checking tools for text processing. While the earliest

tools such as the Unix Writer’s Workbench (MacDonald et al., 1982) were based purely

on string matching algorithms, later systems, such as IBM’s Epistle (Heidorn et al.,

1982), already started using some form of linguistic analysis. The correction mech-

anisms of these early systems were based on logical re-write rules which were engi-

neered by human experts. The Microsoft NLP analysis system that underlies the gram-

mar checking functionality of Microsoft Word is based on such a rule-based framework

8

(Heidorn, 2000).

With the availability of large-scale computational grammars, parser-based methods

for detecting and correcting grammatical errors emerged (Heift and Schulze, 2007).

Early parser-based approaches to grammatical error correction tried to devise parsing

algorithms that are robust enough to parse learner text with grammatical errors and at

the same time provide sufficient information for correcting the grammatical errors. Ro-

bust parsing of text with grammatical errors can be achieved through different strategies,

for example by introducing special “mal-rules” to parse grammatically ill-formed con-

structions (Schneider and McCoy, 1998) or by relaxing parse constraints (Hagen, 1995;

Schwind, 1990). More recent work has tried to leverage statistical parsers learned from

syntactically annotated treebanks with automatically introduced errors (Foster, 2007).

Because early work in grammatical error correction was primarily based on manu-

ally engineered rules, it was not able to cover the full variety of grammatical errors that

are made by language learners. The advent of statistical NLP brought about a set of

new methods that could make predictions about words in context based on previously

observed training data. These algorithms were applicable to a wide range of tasks, such

as word sense disambiguation (WSD) (Gale et al., 1992; Ng and Lee, 1996; Lee and Ng,

2002), accent restoration (Yarowsky, 1994), context-sensitive spelling error correction

(Golding, 1995), and error correction (Knight and Chander, 1994).

In the remainder of this chapter, we give a more detailed overview about related sta-

tistical work on grammatical error correction. In particular, we focus on article errors,

preposition errors, lexical choice errors, and decoding-based methods in error correc-

tion. We also highlight the differences to our work presented in this thesis. A more

comprehensive survey of grammatical error correction for language learners can be

found in the excellent book by Claudia Leacock et al. (2010).

9

2.1 Article Errors

The seminal work on automatic grammatical error correction was done by Knight and

Chander (1994). They were motivated by the idea of automatic post-editing for low

quality English texts produced by either computers, e.g., machine translation systems,

or language learners. As a first step towards the goal of a general post-editor system,

they presented a system that automatically predicts which of the three articles a, an or

the should be used for an English noun phrase in a given context. The system used a

decision tree classifier trained on English noun phrase examples from the Wall Street

Journal. Each noun phrase is one training example. The noun phrase and its context are

represented by a set of binary feature functions, e.g., surrounding words, head word of

the noun phrase, part of speech tags, and the article used by the writer is the class label.

The idea to train a classifier to predict the correct English word given some feature

representation of the surrounding context has had a major influence on grammatical

error correction. Subsequent work on article corrections has changed the set of articles

to the indefinite article a, the definite article the, and the null article ε (meaning that

the noun phrase does not have an article). This confusion set covers article insertion,

deletion, and replacement errors. The distinction between the indefinite articles a and

an can easily be done with a set of rules in a post-processing step. Most work on

article correction has stayed with the classification approach and has been concerned

with designing better features and testing different classifiers, including memory-based

learning (Minnen et al., 2000), decision tree learning (Nagata et al., 2006), and logistic

regression (Lee, 2004; Han et al., 2006; De Felice, 2008). Gamon et al. (2008) divided

the three-way classification task into a binary presence vs. absence classification step

followed by a binary definite vs. indefinite classification. They also added an additional

language model filter step after the classification. Any proposed correction that received

a lower language model score than the original sentence was discarded.

All of the above works only use non-learner text for training. A shortcoming of

training on non-learner text is that the it assumes that all confusions between the ar-

ticles are equally likely. That assumption does not hold true in practice where some

10

confusions happen more frequently than others. Most importantly, the correct article

is in most cases the same as the article used by the writer, as grammatical errors are

typically sparse and most articles in a given learner text are correct. Therefore the ob-

served article used by the writer is an important feature. This observation was first

made by Rozovskaya and Roth (2010b). However, to train a classifier that uses the

“observed article” feature, it is necessary to have annotated learner data that contains

both the article chosen by the writer and the correct article chosen by a human expert,

e.g., an English teacher. This type of data is much more difficult to obtain than normal

non-learner corpora. Rozovskaya and Roth produced error annotations for a subset of

the International Corpus of Learner English (ICLE) (Granger et al., 2002) but the data

set was too small to directly utilize it to train classifiers. Instead, Rozovskaya and Roth

chose a different strategy. They used the learner corpus to derive frequency statistics

of learner errors and then introduced artificial errors in a larger non-learner corpus with

a frequency similar to the observed frequency in learner text. While this injects some

information from the learner corpus into the training process, their method for introduc-

ing artificial errors in learner text does not take into account the context of the article.

In practice, the context of an article has an effect on how likely a learner will confuse

two articles. For example, the article choice before pronouns or proper nouns is much

easier to learn than other more ambiguous contexts, like I am going on {a, the, ε} hol-

iday, where even native speakers might have to carefully consider the context before

making a decision. In the end, introducing artificial learner errors in native text in a

way that closely imitates learners’ behavior is just as difficult as correcting errors in

learner text. Artificially created learner errors might not represent the true distribution

of learner errors accurately.

There have been few approaches to learn classifiers directly from learner corpora.

Izumi et al. (2003) worked on automatic error correction for spoken texts from Japanese

learners. The learner data that they had available was too small to learn reliable clas-

sifiers for most error categories but they presented some results for article corrections.

They also explored adding additional corrected sentences or sentences with artificial er-

11

rors to the training data to address the data sparsity problem. This shows again the need

for a large annotated learner corpus. Almost no work has investigated ways to com-

bine learner and non-learner text for training. The only exception is Gamon (2010),

who combined features from the output of logistic-regression classifiers and language

models trained on non-learner text in a meta-classifier trained on learner text.

Finally, researchers have investigated article correction in connection with web-

based models in NLP (Lapata and Keller, 2005; Yi et al., 2008). These methods do not

use classifiers, but rely on simple N-gram counts or page hits from the Web.

We see that article error correction is still largely treated as a generic classification

problem of predicting the correct article for a noun phrase. Non-learner text has been

the main source of training data because it is cheap and readily available in large quan-

tities and because it is easy to create “fill-in-the-blanks” training examples by using the

original article as the class label without the need to perform any manual annotation. A

classifier is then trained to re-predict the original article based on the context. At the

same time, there has been work that suggests that learner text is a more valuable re-

source for training. Especially the original article used by the writer is a very valuable

feature because article errors are sparse and the correct article is in many cases the same

as the original article. In Chapter 4 of this thesis, we present an ASO learning algorithm

for grammatical error correction. The algorithm has the advantage that it can make use

of both the large amounts of non-learner text and the highly valuable, although limited,

learner text.

2.2 Preposition Errors

Work on preposition errors has followed the same classification approach that was pre-

sented for article errors above. One difference from article correction is that preposi-

tion error correction has mainly focused on replacement errors of prepositions where the

preposition written by the author needs to be replaced with another preposition, and less

on preposition insertion and deletion errors. The set of prepositions that are considered

12

for correction is fixed to a list of frequent English prepositions, typically between 10

and 36. The prepositions are the possible class labels for the classifier and the surround-

ing context of a preposition provides the features. The features for preposition errors,

of course, differ from the features for articles. The work by Chodorow et. al (2007)

is one of the first examples of a classifier-based approach to preposition correction.

They use a maximum entropy classifier and features from surrounding words, part of

speech tags, and chunks. Subsequent work aimed to improve their approach (Tetreault

and Chodorow, 2008b; Tetreault and Chodorow, 2008a), for example through the inclu-

sion of features from syntactic parse trees (Lee and Knutsson, 2008; De Felice, 2008;

Tetreault et al., 2010).

Features in natural language classification tasks are usually binary valued and sig-

nify the presence or absence of a particular contextual predicate, for example, the pres-

ence or absence of a particular N-gram. An alternative type of features is web-scale

N-gram features that were proposed by Bergsma et al. (2009) for a number of natural

language processing tasks. In contrast to binary features, web-scale N-gram features

consist of log-counts of N-grams in a web-scale corpus and take real values. By replac-

ing the target word in the center of the N-gram windows with different possible choice,

e.g., different prepositions, the counts for different target words can be computed. The

log-counts can be used as features in a standard supervised learning algorithm. Bergsma

et al. showed that web-scale N-gram features are very effective for predicting prepo-

sitions in non-learner text but they did not evaluate their method on real examples of

learner texts.

All of the above works have focused on preposition replacement errors. Gamon et

al. (2008) is one of the few approaches that considered preposition insertion, deletion,

and replacement errors. Using the same approach as presented for articles, they divided

the task into a binary presence-absence classification step, followed by a multi-class

preposition selection step, and a language model filter.

All of the above works only use non-learner text for training. This assumes that a

preposition is equally confusable with every other prepositions which is not true. The

13

information on how likely one preposition is confused with another preposition is a

piece of important information that is not available when training classifiers on non-

learner texts. Han et al. (2010) showed that training a preposition correction classifier

on annotated learner texts gives better performance than training on non-learner texts.

For their experiments, they used the Chungdahm English Learner Corpus, a corpus of

essays written by Korean students in language schools run by Chungdahm Learning Inc.

Although the Chungdahm corpus is very large (> 130 million words), it is only partially

annotated and is not available for research purposes because of its proprietary nature.

Rozovskaya and Roth (2010a) explore different strategies for injecting knowledge about

the fact that a preposition is not equally confusable with all other prepositions, includ-

ing restricting the confusion set to different subsets of prepositions and the generation

of artificial learner errors in non-learner texts based on statistics from learner corpora.

Almost no work has investigated ways to combine learner and non-learner text for train-

ing, with the notable exception of the meta-classification approach from (Gamon, 2010)

that combined features from the output of logistic-regression classifiers and language

models.

As we have already observed in the case of articles, preposition correction has

largely been treated as a generic classification problem of re-predicting the original

preposition in non-learner text. In the case of prepositions, the confusion set of possible

choices for the classifier is several times larger than in the case of articles. That makes

the task considerably harder than the article correction task. It is therefore not surprising

that preposition correction typically requires more training data to achieve comparable

classification performance. Our ASO algorithm presented in Chapter 4 has the advan-

tage of being able to use large amounts of non-learner text which is particularly useful

for the preposition correction task.

14

2.3 Lexical Choice Errors

Lexical choice errors have attracted comparatively less attention than article and prepo-

sition errors. The first problem when correcting lexical choice errors is that there is not

a fixed confusion set of candidates to choose from. One direction of research that is

concerned with lexical choice errors is collocation error correction. Collocations are

sequences of words that are conventionally used together in a particular way. Previous

work in collocation correction has relied on dictionaries or manually created databases

to generate collocation candidates (Shei and Pain, 2000; Wible et al., 2003; Futagi et

al., 2008). Other work has focused on finding candidates that collocate with similar

words, e.g., verbs that appear with the same noun objects form a confusion set (Liu

et al., 2009; Wu et al., 2010). The work presented by Chang et al. (2008) uses trans-

lation information to generate collocation candidates. That is similar to the approach

presented in this thesis. However, they do not use automatically derived paraphrases

from parallel corpora but bilingual dictionaries. Dictionaries usually have lower cover-

age, do not contain longer phrases or inflected forms, and do not provide any translation

probability estimates. Also, their work focuses solely on verb-noun collocation errors,

while the system presented in this thesis targets errors of arbitrary syntactic type.

Another direction on lexical choice correction is context-sensitive spelling error cor-

rection. Context-sensitive spelling error correction is the task of correcting spelling mis-

takes that result in another valid word, see for example (Golding and Roth, 1999). It has

traditionally focused on a small number of pre-defined confusion sets, like homophones

or frequent spelling errors. Even when the confusion sets were formed automatically,

the similarity of words in a confusion set has been based on edit distance or similar pho-

netics (Carlson et al., 2001). In contrast, in this thesis, we focus on lexical choice errors

that are related to similar semantics of the confused words instead of similar spelling or

pronunciation.

Synonym extraction (Wu and Zhou, 2003), lexical substitution (McCarthy and Nav-

igli, 2007) and paraphrasing (Madnani and Dorr, 2010) are related to lexical choice

correction in the sense that they try to find semantically equivalent words or phrases.

15

However, there is a subtle but important difference between these tasks and lexical

choice correction. In the former, the main criterion is whether the original phrase and

the synonym or paraphrase candidate are substitutable, i.e., both form a grammatical

sentence when substituted for each other in a particular context. In contrast, in lexical

choice correction, the primarily interest is to find candidates which are not substitutable

in their English context but appear to be substitutable in the native language of the

writer, i.e., one forms a grammatical English sentence but the other does not.

Lexical choice errors cover a much broader range of words and parts of speech

than closed set error classes like article and preposition errors. As a result, lexical

choice errors cannot easily be cast as a generic classification problem. The difficulty

of applying standard classification methods might be the reason why lexical choice

errors have not received more attention in grammatical error correction yet. In Chapter

5, we show an easy and intuitive method to derive the confusion set of a word based

on its translations in the native language of the writer. We further present an automatic

method for correcting lexical choice errors with the help of paraphrases induced through

the native language of the writer.

2.4 Decoding Approaches

The approaches that we have described so far can all be considered as part of the

classifier-based approach to error correction. Alternatively, error correction can be

viewed as a decoding problem that tries to “decode” the ungrammatical learner sen-

tence to find the grammatically correct sentence, similar to statistical machine transla-

tion (Koehn, 2010). This approach is more general and can correct whole sentences

with multiple and different errors. However, the decoding approach to error corrections

has received little attention. Brockett et al. (2006) used a statistical machine transla-

tion system to correct errors involving mass noun errors. Because no large annotated

learner corpus was available, the training data was created artificially from non-learner

text. Lee and Seneff (2006) described a lattice-based correction system with a domain-

16

specific grammar for spoken utterances from the flight domain. The work in (Désilets

and Hermet, 2009) used simple round-trip translation with a standard SMT system to

correct grammatical errors. Park and Levy (2011) proposed a noisy channel model for

error correction. Their motivation to correct whole sentences is similar to the motivation

that lead to the decoder presented in this thesis. But Park and Levy’s proposed genera-

tive method differs substantially from the discriminative decoder proposed in this thesis.

Their model does not allow the use of discriminative expert classifiers as our decoder

does, but instead relies on a bigram language model to find grammatical corrections.

Indeed, the authors point out that the language model often fails to distinguish gram-

matical and ungrammatical sentences.

In Chapter 7, we present a beam-search decoder framework that combines the strength

of existing classification approaches with a search-based decoding approach. The idea

that grammatical error correction should be seen as a sentence-level decoding task rather

than a word-by-word classification task is a novel contribution of this thesis. Although

some researchers have started to think in this direction, they have used existing generic

decoding frameworks like SMT decoding and lattice decoding to solve the problem.

While this sidesteps the non-trivial task of having to implement a decoding algorithm

from scratch, the generic models are not able to incorporate task-specific models, such

as existing classifier models for grammatical error correction. Our decoder model goes

beyond simple classification and proposes a new, general framework for grammatical

error correction. We see the beam-search decoder model as the most significant single

contribution of this thesis.

17

Chapter 3

Data Sets and Evaluation

In this chapter, we describe text corpora and evaluation measures for grammatical error

correction. Most importantly, we introduce the NUS Corpus of Learner English that

was created as part of this thesis. We also describe the data set of the Helping Our Own

(HOO) shared tasks. For evaluation, we describe the standard measures of precision,

recall, and F1 score and a novel method, called MaxMatch (M2), for computing these

scores for grammatical error correction.

3.1 NUS Corpus of Learner English

The biggest obstacle that has held back research in grammatical error correction until

recently has been the lack of a large annotated corpus of learner text that could serve

as a standard resource for empirical approaches to grammatical error correction (Lea-

cock et al., 2010). That is why we decided to create the first large, annotated corpus

of learner texts that is available for research purposes: the NUS Corpus of Learner En-

glish (NUCLE). The corpus was built in collaboration with the NUS Center for English

Language Communication (CELC). NUCLE consists of more than 1,400 student essays

from undergraduate students at NUS with over one million words which are completely

annotated with error tags and corrections. All annotations and corrections have been

performed by professional English instructors. To the best of our knowledge, NUCLE

is the first corpus of this size and quality that is available for research purposes. In this

18

Figure 3.1: The WAMP annotation interface

section, we describe the corpus in more detail.

3.1.1 Annotation Schema

Before starting the corpus creation, we had to develop a set of annotation guidelines.

This was done in a pilot study between May and July 2009 in which three instructors

from CELC participated. The instructors annotated a small set of student essays that

had been collected by CELC. The annotation was performed using the Writing, Anno-

tation, and Marking Platform (WAMP), an online annotation tool that was developed

by the NUS NLP group specially for creating the NUCLE corpus. WAMP allows the

annotators to work over the Internet using a web browser. Figure 3.1 shows a screen

shot of the WAMP interface. Annotators can browse through a batch of essays that has

been assigned to them and perform the following tasks:

• Select arbitrary, contiguous text spans using the cursor to identify grammatical

errors.

• Classify errors by choosing an error tag from a drop-down menu.

• Correct errors by typing the correction into a text box.

• Comment to give additional explanations if necessary.

19

We wanted to impose as few constraints as possible on the annotators. Therefore,

WAMP allows annotators to select arbitrary text spans, including overlapping text spans.

After some annotation trials, we decided to use a tag set which had been developed

by CELC in a previous study. Some minor modifications were made to the original

tag set based on the feedback of the annotators. The result of the pilot study was a

tag set of error categories and an annotation guide that described how errors should be

annotated. The tag set consists of 27 error categories which are listed in Table 3.1. It

is important to note that our annotation schema does not only label each grammatical

error with an error category, but it requires the annotator to provide a suitable correction

for the error as well. The annotators were asked to provide a correction that would fix

the grammatical error if the annotated word or phrase is replaced with the correction.

3.1.2 Annotator Agreement

How reliably can human annotators agree on whether a word or sentence is grammat-

ically correct? The pilot annotation project gave us the opportunity to investigate this

question in a quantitative analysis. Annotator agreement is also a common measure for

how “difficult” a task is and servers as a test whether humans can reliable perform the

annotation task with the given tag set. During the pilot study, we randomly sampled

100 essays for measuring annotator agreement. The essays were then annotated by our

three annotators in a way that each essay was annotated independently by two annota-

tors. Four essays had to be discarded as they were of very poor quality and did not allow

for any meaningful correction. This left us with 96 essays with double annotation.

Comparing two sets of annotation is complicated by the fact that the set of annota-

tions that corrects an input text to a corrected output text is ambiguous (see Section 3.4

below for details). In other words, it is possible that two different sets of annotations

produce the same correction. For example, one annotator could choose to select a whole

phrase as one error, while the other annotator selects each word individually. Our an-

notation guidelines asked annotators to select the minimum span that is necessary to

correct the error, but we do not enforce any hard constraints and different annotators

20

Error Tag Error Category Description / Example
Vt Verb Tense A university [had conducted | conducted] the

survey last year.
Vm Verb modal No one [will | would] bother to consider a nat-

ural balance.
V0 Missing verb This [may | may be] due to a traditional notion

that boys would be the main labor force in a
farm family.

Vform Verb form Will the child blame the parents after he [grow-
ing | grows] up?

SVA Subject-verb-agreement The boy [play | plays] soccer.
ArtOrDet Article or Determiner From the ethical aspect, sex selection technol-

ogy should not be used in [non-medical | a
non-medical] situation.

Nn Noun Number Sex selection should therefore be used for med-
ical [reason | reasons] and nothing else.

Npos Noun possessive The education of [mother’s | mothers] is a sig-
nificant factor in reducing son preference.

Pform Pronoun form 90% of couples seek treatment for family bal-
ancing reasons and 80% of [those | them] want
girls.

Pref Pronoun reference Moreover, children may find it hard to commu-
nicate with [his/her | their] parents.

Wcip Wrong colloca-
tion/idiom/preposition

Singapore, for example, has invested heavily
[on | in] the establishment of Biopolis

Wa Acronyms Using acronyms without explaining what they
stand for.

Wform Word form Sex-selection may also result in [addition | ad-
ditional] stress for the family.

Wtone Tone [Isn’t it | Is it not] what you always dreamed
for?

Srun Runons, comma splice [Do spare some thought and time, we can
make a difference! | Do spare some thought
and time. We can make a difference!]
(Should be split into two sentences)

Table 3.1: NUCLE error categories. Grammatical errors in the example are printed in
bold face in the form [<mistake> | <correction>].

21

Error Tag Error Category Description / Example
Smod Dangling modifier Knowing the pitfalls ahead, [the issue the ad-

ministration has to manage. | the issue the
administration has to manage cannot be un-
derestimated.] (Possible completion of sen-
tence)

Spar Parallelism The use of sex selection would prevent rather
than [contributing | contribute] to a distorted
sex ratio.

Sfrag Fragment Although he is a student from the Arts faculty.
Ssub Subordinate clause It is the wrong mindset of people that boys are

more superior than girls [should | that should]
be corrected.

WOinc Incorrect sentence form Why can [not we | we not] choose more intelli-
gent and beautiful babies?

WOadv Adverb/adjective posi-
tion

It is similar to the murder of many valuable lives
[only based | based only] on the couple’s own
wish.

Trans Link words/phrases In the process of selecting the gender of the
child, ethical problems arise [where | because]
many innocent lives of unborn fetuses are taken
away.

Mec Punctuation, capitaliza-
tion, spelling, typos

The [affect | effect] of that policy has yet to be
felt.

Rloc Local redundancy Currently, abortion is available to end a life only
[because of | because] the fetus or embryo has
the wrong sex.

Cit Citation Poor citation practice.
Others Other errors Any error that does not fit into any other cate-

gory, but can still be corrected.
Um Unclear meaning The quality of the passage is so poor that it can-

not be corrected.

Table 3.1: (continued)

22

can have a different perception of where an error starts or ends.

An especially difficult case is the annotation of omission errors, for example missing

articles. Selecting a range of whitespace characters is difficult for annotators, especially

if the annotation tool is web-based as whitespace is variable in web pages. We asked

annotators to select the previous and/or next word and include them into the suggested

correction. To change conduct survey to conduct a survey, the annotator could change

conduct to conduct a, change survey to a survey, or change the whole phrase conduct

survey into conduct a survey. If we only compare the exact text spans selected by the

annotators when measuring agreement, these different ways to select the context could

easily cause us to conclude that the annotators disagree when they in fact agree on the

corrected phrase. This would lead to an underestimation of annotator agreement. To

address this problem, we perform a simple text span normalization. First, we “grow”

the selected context to align with whitespace boundaries. For example, if an annotator

just selected the last character e of the word use and provided ed as a correction, we

grow this annotation so that the whole word use is selected and used is the correction.

Second, we tokenize the text and “trim” the context by removing tokens at the start

and end that are identical in the original and the correction. Finally, the annotations

are “projected” onto the individual tokens they span, i.e., an annotation that spans a

phrase of multiple tokens is broken up into multiple token-level annotations. Now,

we can compare two annotations at the token level in a meaningful way. Here is a

tokenized example sentence from the annotator agreement study with annotations from

two annotators.

Source : This phenomenon opposes the real .

Annotator A : This phenomenon opposes (the→ ε (ArtOrDet))

(real→ reality (Wform)) .

Annotator B : This phenomenon opposes the (real→ reality (Wform)) .

Annotator A and B agree that the first three words This, phenomenon, and opposes and

the final period are correct and do not need any correction. The annotators also agree

that the word real is part of a word form (Wform) error and should be replaced with

23

reality. However, they disagree with respect to the article the: annotator A believes

there is an article error (ArtOrDet) and that the article has to be deleted while annotator

B believes that the article is acceptable in this position.

The example has shown that annotator agreement can be measured with respect to

three different criteria: whether there is an error, what type of error it is, and how the

error should be corrected. Accordingly, we analyze annotator agreement under three

different conditions:

• Identification Agreement of tagged tokens regardless of error category.

• Classification Agreement of error category, given identification.

• Exact Agreement of error category and correction, given identification.

In the identification task, we are interested to see how well annotators agree on whether

something is a grammatical error or not. In the example above, annotators A and B

agree on 5 out of 6 tokens and disagree on one token (the). That results in an identi-

fication agreement of 5/6 = 83%. In the classification task, we investigate how well

annotators agree on the type of error, given that both have tagged the token as an error.

In the example, the classification agreement is 100% as both annotator A and B tagged

the word real as a word form (Wform) error. Finally, for the exact task annotators are

considered to agree if they agree on the error category and the correction given that they

both have tagged the token as an error. In the example, the classification agreement is

100% as both annotators give the same error category Wform and the same correction

reality for the word real. We use the popular Cohen’s Kappa coefficient (Cohen, 1960)

to measure annotator agreement between annotators. Cohen’s Kappa is defined as

κ =
Pr(a)− Pr(e)

1− Pr(e) (3.1)

where Pr(a) is the probability of agreement and Pr(e) is the probability of chance

agreement. We can estimate Pr(a) and Pr(e) from the double annotated essays through

maximum-likelihood estimation. For two annotators A and B, the probability of agree-

24

Annotator 1 Annotator 2 Kappa-iden Kappa-clas Kappa-exact
A B 0.4775 0.6206 0.5313
A C 0.3627 0.5352 0.4956
B C 0.3230 0.4894 0.4246

Average 0.3877 0.5484 0.4838

Table 3.2: Cohen’s Kappa coefficients for annotator agreement.

ment is

Pr(a) =
#agreed tokens
#total tokens

(3.2)

where #agreed tokens are counted as described in the last section and #total tokens is

the total number of tokens in the subset of jointly annotated documents. The probability

of chance agreement is computed as

Pr(e) = Pr(A = 1, B = 1) + Pr(A = 0, B = 0)

= Pr(A = 1)× Pr(B = 1) + Pr(A = 0)× Pr(B = 0) (3.3)

where Pr(A = 1) and Pr(A = 0) symbolize the events of annotator A tagging a token

as “error” or “no error” respectively. We make use of the assumption that both anno-

tators perform the task independently. Pr(A = 1) and Pr(A = 0) can be computed

through maximum-likelihood estimation.

Pr(A = 1) =
annotated tokens of annotator A

total tokens
(3.4)

Pr(A = 0) =
unannotated tokens of annotator A

total tokens
(3.5)

The probabilities Pr(B = 1) and Pr(B = 0) are computed analogously. The chance

agreement for this task is quite high, as the number of not annotated tokens is much

higher than the number of annotated tokens. The Cohen’s Kappa coefficients for the

three annotators and the average Kappa coefficient are listed in Table 3.2. We observe

that the Kappa scores are relatively low and that there is a substantial amount of vari-

ability in the Kappa coefficients; annotator A and B show a higher agreement with each

other than they do with annotator C. According to Landis and Koch (1977), Kappa

25

“Public spending on the aged should be limited so that money can be diverted to
other areas of the country’s development.” Do you agree?
Surveillance technology such as RFID (radio-frequency identification) should not
be used to track people (e.g. human implants and RFID tags on people or
products). Do you agree? Support your argument with concrete examples.
Choose a concept or prototype currently in research and development and not
widely available in the market. Present an argument on how the design can be
improved to enhance safety. Remember to consider influential factors such as
cost or performance when you summarize and rebut opposing views.
You will need to include very recently published sources in your references.

Table 3.3: Example question prompts from the NUCLE corpus.

scores between 0.21 and 0.40 are considered fair, and scores between 0.41 and 0.60 are

considered moderate. The average Kappa score for identification can therefore only be

considered fair and the Kappa scores for classification and exact agreement are moder-

ate. Thus, a first interesting result of the pilot study was that annotators find it harder

to agree on whether a word is grammatically correct than agreeing on the type of error

or how it should be corrected. As a summary the annotator agreement study shows that

grammatical error correction, especially grammatical error identification, is a difficult

problem.

3.1.3 Data Collection and Annotation

The main data collection for the NUCLE corpus took place between August and De-

cember 2009. We collected a total of 2,249 student essays from 6 English courses

at CELC. The courses are for students who need language support for their academic

studies. The essays were written as course assignments on a wide range of topics, like

technology innovation or health care. Some example question prompts are shown in

Table 3.3 Student would typically have to write two essays assignments during one

course. The length of each essay was supposed to be around 500 words, although most

essays were longer than the required length. From this data set, a team of 10 CELC

instructors annotated 1,414 essays with over 1.2 million words between October 2009

and April 2010. Due to budget constraints, we were unfortunately not able to perform

double annotations for the main corpus. Annotators were asked to label an error with

26

NUS Corpus of Learner English
Documents 1,414
Sentences 59,871
Average sentences per document 42.34
Word tokens 1,220,257
Average word tokens per document 862.98
Average word tokens per sentence 20.38
Word types 30,492
Error annotations 46,597
Average error annotations per document 32.95
Error annotations per 100 word tokens 3.82

Table 3.4: Overview of the NUCLE corpus

more than one error tag, if applicable. The results of the annotation exercise were a

total of 46,597 error tags. The essays and the annotations were released as the NUCLE

corpus through the NUS Enterprise R2M portal on 1 July 2011. The link to the corpus

can be found on the NLP group’s website1.

3.1.4 NUCLE Corpus Statistics

This section provides basic statistics about the corpus and the collected annotations.

These statistics already reveal some interesting insights about the nature of grammati-

cal errors in learner text. In particular, we are interested in the questions of how frequent

errors are in the corpus and the most frequent error categories. The basic statistics of

the NUCLE corpus are shown in Table 3.4. We can see that grammatical errors are very

sparse, even in learner text. In the NUCLE corpus there are 46,597 annotated errors

in a corpus with 1,220,257 word tokens. That makes an error density of 3.82 errors

per hundred words. In other words, over 96% of the word tokens in the corpus are

grammatically correct. This shows that the students whose essays were utilized for the

corpus already have a relative high proficiency of English. But it also means that per-

forming automatic grammatical error correction requires the computer algorithm to find

the proverbial needle in the hay stack of correct words, and once the needle is found

the algorithm still needs to determine the correct type of the error and the correction.

When we look at the distribution of errors across documents, we can make another in-
1http://nlp.comp.nus.edu.sg/corpora

27

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140 160 180 200

N
u
m

b
e
r

o
f
d
o
c
u
m

e
n
ts

Number of error annotations

Histogram: error annotation per document

Figure 3.2: Histogram of error annotations per document in NUCLE.

teresting observation. Figure 3.2 shows a histogram of the number of error annotations

per document. The distribution appears non-Gaussian and is heavily skewed to the left

while some documents have significantly more errors than the average document. That

means that although grammatical errors are rare in general there are also documents

with many error annotations. 32 documents have more than 100 error annotations and

the highest number of error annotations in a document is 194. The mode, i.e., the most

frequent value in the histogram, is 15 which is to the left of the average of 32.95. A

similar pattern can be observed when we look at the distribution of errors per sentence.

Figure 3.3 shows a histogram of the number of error annotations per sentence in NU-

CLE. For this histogram, only the error annotations which start and end within sentence

boundaries are considered. The histogram shows that 57.64% of all sentences have zero

errors, 20.48% have exactly one error, and 10.66% have exactly two errors, and 11.21%

of all sentences have more than two errors. Although the frequency decreases quickly

for higher error counts, the highest observed number of error annotations for a sentence

is 28.

28

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 5 10 15 20 25

N
u
m

b
e
r

o
f
s
e
n
te

n
c
e
s

Number of error annotations

Histogram: error annotation per sentence

Figure 3.3: Histogram of error annotations per sentence in NUCLE.

The skewed distribution of errors in the NUCLE corpus is an interesting observa-

tion. A possible explanation for the long tail of the distribution could be a “rich-get-

richer” type of dynamics: if a learner has made a lot of mistakes in her essay so far, the

chances of her making more errors in the remainder of the essay increases, for example

because she makes systematic errors which are likely to be repeated. However, the dis-

tributions do not seem to exhibit a classical power-law distribution either. Explaining

the cognitive processes that produce the observed error distribution is beyond the scope

of this thesis, but it would certainly be an interesting question to investigate.

So far, we have only been concerned with how many errors learners make over-

all. But it is also important to understand what types of errors language learners make.

Error categories that appear more frequently should be addressed with higher priority

when creating an automatic error correction system. Figure 3.4 shows a histogram

of error categories. Again, we can observe a skewed distribution with a few error

categories being very frequent and many error categories being comparatively infre-

quent. The top five error categories are wrong collocation/idiom/preposition (Wcip)

29

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

W
cip

Rloc
ArtO

rDet
Nn M

ec
Vt W

form
SVA
O

thers
Vform
Trans
Um Pref
Srun
Cit
W

O
inc

W
tone

Spar
Vm V0 Ssub
W

O
adv

Npos
Sfrag
Pform
Sm

od
W

a

Nu
m

be
r o

f a
nn

ot
at

io
ns

Error categories

Error categories

Figure 3.4: Error categories histogram for the NUCLE corpus.

with 7,312 instances or 15.69% of all annotations, local redundancies (Rloc) (6390

instances, 13.71%), article or determiner (ArtOrDet) (6004 instances, 12.88%), noun

number (Nn) (3955 instances, 8.49%), and mechanics (Mec) (3290 instances, 7.06%).

These top five error categories account for 57.83% of all error annotations. The next 5

categories are verb tense (Vt) (3288 instances, 7.06%) word form (Wform) (2241 in-

stances, 4.81%), subject-verb agreement (SVA) (1578 instances, 3.38%), other errors

that could not be grouped into any of the error categories (1532 instances, 3.29%), and

Verb form (Vform) (1416, 3.04%). Together, the top 10 error categories account for

79.66% of all annotated errors. A manual inspection showed that a large percentage of

the local redundancy errors involve articles that are deemed redundant by the annota-

tor and should be deleted. These errors could also be considered article or determiner

errors. For the Wcip errors, we observed that most Wcip errors are preposition errors.

This confirms that articles and prepositions are the two most frequent error categories

for EFL learners (Leacock et al., 2010). We will return to article and preposition errors

in the next chapter.

30

In this section, we have presented the NUS Corpus of Learner English. Apart from

being used in our own research on article and preposition errors (Section 4) and lexical

choice errors (Section 5), the corpus is being used in the CoNLL-2013 Shared Task on

grammatical error correction (Ng et al., 2013).

3.2 Helping Our Own data sets

The two Helping Our Own (HOO) shared tasks organized by Robert Dale and Adam

Kilgariff (Dale and Kilgarriff, 2011; Dale et al., 2012) were the first shared evaluation

campaigns for grammatical error correction. Both tasks released annotated data sets for

system development and evaluation.

The HOO 2011 data set consists of papers written by non-native authors of English

within the natural language processing community. The goal of HOO was to develop

authoring tools that help non-native English speaking members of the NLP community

to write better papers (hence the name of the shared task). The documents for HOO

2011 were extracted from 19 papers that had previously been published in a conference

or workshop organized by the Association for Computational Linguistics from the ACL

anthology. The criteria for selection were that the paper appeared to be written by a

non-native speaker (based on the first author name) and seemed to have a relatively

high amount of grammatical errors. Two parts of each paper (called fragments) were

annotated by two editors (although no double annotation was performed). One fragment

of each document was released with the training data, the other one was kept as part of

the test data. Each extracted fragment contains about 1,000 words. The 19 released

files in the training data contain about 22,00 words. The test data contains 18 files (one

fragment had to be excluded by the organizers) and about 18,000 tokens in total. The

HOO 2011 test data is available at shared task’s Google group2 after registration.

The HOO 2012 shared task shifted the goal of the task from error correction for

NLP researchers to grammar correction for language learners in general. Accordingly,

the domain of the data shifted as well. The training data in HOO 2012 is a subset of the
2http://groups.google.com/group/hoo-nlp/

31

Cambridge Learner Corpus FCE (First Certificate in English) data set that was made

available one year earlier by Yannakoudakis et al. (2011) from Cambridge University

Press. The FCE corpus contains exam essays written by students taking the First Certifi-

cate in English Examination. The FCE corpus consists of 1,244 documents with about

420,000 words. Of these, 1000 documents were selected as the HOO 2012 training data.

The rest was withheld to serve as test data in case the organizers would not be able to

obtain new, unseen test documents from Cambridge University press. Eventually, the

organizers succeeded to obtain a test set of 100 new, unseen documents. Although no

new training data was released, the complete FCE corpus could be used by participants

for training purposes. The HOO 2012 training and test data only contains annotations

for determiner and preposition errors which were the focus of the task.

3.3 Evaluation for Grammatical Error Correction

Progress in natural language processing research is driven and measured by automatic

evaluation methods. Automatic evaluation allows fast and inexpensive feedback dur-

ing development, and objective and reproducible evaluation during testing time. For

grammatical error correction, an automatic evaluation metric needs to automatically

compute some notion of similarity between the corrections proposed by a computer al-

gorithm and a gold-standard reference provided by a human expert. The more closely

the corrections of the algorithm match the human expert, the better the algorithm is.

A good evaluation metric should also be simple to compute and interpretable for the

human evaluator.

A naive way to evaluate grammatical error correction would be to compute accuracy

which is defined as the ratio of the total number of correct predictions by an algorithm

and the total number of predictions.

accuracy =
correct predictions
total predictions

(3.6)

Accuracy is a good evaluation metric when evaluating a task where every instance is

32

equally relevant to the evaluation score, for example, when testing how well an algo-

rithm can re-predict the original prepositions in non-learner text after all prepositions

were removed. However, for the evaluation of grammatical error correction algorithms

on learner text, accuracy is not well suited. Consider a preposition correction task with

100 prepositional phrases in the test set. Grammatical errors are sparse, so let us assume

that out of the 100 prepositional phrases ten contain a grammatical error. A simple “do

nothing” baseline that leaves all the prepositions unchanged would achieve 90% accu-

racy. Another hypothetical algorithm changes 20 prepositions: five preposition errors

are successfully corrected, another five preposition errors are detected but not success-

fully corrected, and another ten correct prepositions are accidentally changed to wrong

prepositions. The remaining 80 prepositions are kept unchanged. The second algorithm

would achieve (80 + 5)/100 = 85% accuracy, five percent less than the “do nothing”

baseline even though the second algorithm actually corrects half of the errors in the

test set. The high score for the “do nothing” baseline does not meet our intuition about

grammatical error correction, an algorithm that does nothing should receive a score of

zero, and an algorithm that corrects all the errors and leaves all other words unchanged

should achieve a perfect score. The reason for the unintuitive evaluation result is that

accuracy weighs all test instances equally. We would think that a correct preposition

that was left unchanged should contribute less to the score than a erroneous preposi-

tion that was successfully corrected. Because a large portion of the test instances in

grammatical error correction fall into the “no correction required” category, we need an

evaluation metric that takes this into account.

3.3.1 Precision, Recall, F1 Score

F1 score is a popular metric in natural language processing and information retrieval

that fulfills all of these criteria and is particularly suitable for situations where only a

subset of the instances is of interest. To define F1 score for error correction, we first

need to define the precision and recall of an error correction algorithm. The precision

of an algorithm is defined as the proportion of suggested corrections that agree with the

33

human annotator with respect to the total number of proposed corrections. It is easily

computed as the number of correct changes proposed divided by the total number of

proposed changes.

precision =
correct changes

total proposed changes
(3.7)

The recall of an algorithm is defined as the proportion of suggested corrections that

agree with the human annotator with respect to the total number of corrections in the

gold-standard reference. It is computed as the number of correct changes divided by

the total number of changes in the gold-standard reference.

recall =
correct changes

total changes in gold standard
(3.8)

There is typically a trade off between precision and recall. If an algorithm is very

conservative and only proposes corrections in cases where it is extremely confident, it

is more likely to get high precision but recall will be lower. If the algorithm is extremely

aggressive in proposing corrections, it is more likely to get higher recall at the expense

of lower precision. F1 score combines precision and recall into a single number. It is

defined as the harmonic mean between precision and recall.

F1 = 2× precision× recall

precision + recall
(3.9)

F1 score weighs precision and recall equally but in general, F score can be computed

with different weights for precision and recall (van Rijsbergen, 1979). Note that pre-

cision, recall, and F1 score only take into account those test instances where either the

algorithm predicted a correction or there is a correction annotated in the gold standard.

All instance that are not tagged as errors by either the algorithm or the gold standard do

not affect the evaluation. An algorithm that leaves all words unchanged will receive a

recall of zero and consequently an F1 score of zero, in line with our intuition. F1 score

is the most common metric for grammatical error correction as it is easy to understand,

intuitive, and interpretable (Leacock et al., 2010).

34

3.4 MaxMatch Method for Evaluation

To compute precision, recall, and F1 score, it is necessary for the evaluation method

to first determine what corrections the correction algorithm has actually performed. A

correction, or edit, minimally consists of a start and end position in the original text

and a word or phrase that should replace the original word or phrase used by the writer.

Unfortunately, this process is more complicated than one might expect because the set

of edit operations that transforms the original source sentence into the corrected system

output sentence is ambiguous. This is due to two reasons. First, the set of edits that

transforms one string into another is not necessarily unique, even at the token level.

Second, edits can consist of longer phrases which introduce additional ambiguity. To

see how this can affect evaluation, consider the following source sentence and system

hypothesis from the Helping Our Own 2011 (HOO 2011) shared task (Dale and Kilgar-

riff, 2011) on grammatical error correction:

Source : Our baseline system feeds word into PB-SMT pipeline.

Hypot. : Our baseline system feeds a word into PB-SMT pipeline.

The HOO evaluation script extracts the system edit (ε → a), i.e., inserting the article

a. Unfortunately, the gold-standard annotation instead contains the edits (word →

{a word, words}). Although the extracted system edit results in the same corrected

sentence as the first gold-standard edit option, the system hypothesis was considered to

be invalid. Even if the participants were asked to submit a set of system edits instead

of the corrected system output, the problem would still persist. Without knowing how

the text is annotated in the gold standard, it is impossible to know which of the possible

edits ((ε→ a), (a→ a word), (feeds→ feeds a), . . .) to submit.

In this section, we propose a method, called MaxMatch (M2), to overcome this

problem. The key idea is that if there are multiple possible ways to arrive at the

same correction, the system should be evaluated according to the set of edits that

matches the gold-standard as often as possible. To this end, we propose an algo-

rithm for efficiently computing the set of phrase-level edits with the maximum over-

35

lap with the gold standard. The edits are subsequently scored using F1 score. We test

our method in the context of the HOO 2011 shared task and show that our method

results in a more accurate evaluation for error correction. This method was first pre-

sented in (Dahlmeier and Ng, 2012b). The M2 scorer is available for download at

http://nlp.comp.nus.edu.sg/software/.

3.4.1 Method

We begin by establishing some notation. Let us consider a set of source sentences

S = {s1, . . . , sn} together with a set of hypotheses H = {h1, . . . ,hn} generated by an

error correction system. Let G = {g1, . . . ,gn} be the set of gold standard annotations

for the same sentences. Each annotation gi = {g1
i , . . . , g

r
i } is a set of edits. An edit is a

triple (a, b, C), consisting of:

• start and end (token-) offsets a and b with respect to a source sentence,

• a correctionC. For gold-standard edits, C is a set containing one or more possible

corrections. For system edits, C is a single correction.

Evaluation of the system output involves the following two steps:

1. Extracting a set of system edits ei for each source-hypothesis pair (si,hi).

2. Evaluating the system edits for the complete test set with respect to the gold

standard G.

The remainder of this section describes a method for solving these two steps. We start

by describing how to construct an edit lattice from a source-hypothesis pair. Then, we

show that finding the optimal sequence of edits is equivalent to solving a shortest path

search through the lattice. Finally, we describe how to evaluate the edits using F1 score.

Edit Lattice

We start from the well-established Levenshtein distance (Levenshtein, 1966), which is

defined as the minimum number of insertions, deletions, and substitutions needed to

36

Our baseline system feeds a word into PB-SMT pipeline .

0 1 2 3 4 5 6 7 8 9 10

Our 1 0 1 2 3 4 5 6 7 8 9

baseline 2 1 0 1 2 3 4 5 6 7 8

system 3 2 1 0 1 2 3 4 5 6 7

feeds 4 3 2 1 0 1 2 3 4 5 6

word 5 4 3 2 1 1 1 2 3 4 5

into 6 5 4 3 2 2 2 1 2 3 4

PB-SMT 7 6 5 4 3 3 3 2 1 2 3

pipeline 8 7 6 5 4 4 4 3 2 1 2

. 9 8 7 6 5 5 5 4 3 2 1

Figure 3.5: The Levenshtein matrix and the shortest path for a source sentence “Our
baseline system feeds word into PB-SMT pipeline .” and a hypothesis “Our baseline
system feeds a word into PB-SMT pipeline .”

transform one string into another. The Levenshtein distance between a source sentence

si = s1
i , . . . , s

k
i and a hypothesis hi = h1

i , . . . , h
l
i can be efficiently computed using a

two dimensional matrix that is filled using a classic dynamic programming algorithm.

We assume that both si and hi have been tokenized. The matrix for the example in this

section is shown in Figure 3.5. By performing a simple breadth-first search, similar

to the Viterbi algorithm, we can extract the lattice of all shortest paths that lead from

the top-left corner to the bottom-right corner of the Levenshtein matrix. Each vertex in

the lattice corresponds to a cell in the Levenshtein matrix, and each edge in the lattice

corresponds to an atomic edit operation: inserting a token, deleting a token, substituting

a token, or leaving a token unchanged. Each path through the lattice corresponds to a

shortest sequence of edits that transform si into hi. We assign a unit cost to each edge

in the lattice.

We have seen that annotators can use longer phrases and that phrases can include

unchanged words from the context, e.g., the gold edit from the example is

(4, 5,word, {a word, words}).

However, it seems unrealistic to allow an arbitrary number of unchanged words in an

edit. In particular, we want to avoid very large edits that cover complete sentences.

Therefore, we limit the number of unchanged words by a parameter u. To allow for

37

0,0 1,1
Our (1)

2,2
baseline (1)

3,3
system (1)

4,5feeds/feeds a (2)

4,4

feeds (1) 5,6
word (1)ε/a (1)

word/a word (-45)

6,7

into (1)

7,8
PB-SMT (1)

8,9
pipeline (1)

9,10
. (1)

system feeds/system feeds a (3)
feeds word/feeds a word (3)

word into/a word into (3)

Figure 3.6: The edit lattice for “Our baseline system feeds (ε → a) word into PB-SMT
pipeline .” Edge costs are shown in parentheses. The edge from (4,4) to (5,6) matches
the gold annotation and carries a negative cost.

phrase-level edits, we add transitive edges to the lattice as long as the number of un-

changed words in the newly added edit is not greater than u and the edit changes at

least one word. Let e1 = (a1, b1, C1) and e2 = (a2, b2, C2) be two edits corresponding

to adjacent edges in the lattice, with the first end offset b1 being equal to the second

start offset a2. We can combine them into a new edit e3 = (a1, b2, C1 + C2), where

C1 + C2 is the concatenation of strings C1 and C2. The cost of a transitive edge is the

sum of the costs of its parts. The lattice extracted from the example sentence is shown

in Figure 3.6.

Finding Maximally Matching Edit Sequence

Our goal is to find the sequence of edits ei with the maximum overlap with the gold

standard. Let L = (V,E) be the edit lattice graph from the last section. We change

the cost of each edge whose corresponding edit has a match in the gold standard to

−(u + 1) × |E|. An edit e matches a gold edit g iff they have the same offsets and e’s

correction is included in g:

match(e, g)⇔ e.a = g.a ∧ e.b = g.b ∧ e.C ∈ g.C (3.10)

Then, we perform a single-source shortest path search with negative edge weights from

the start to the end vertex.3 This can be done efficiently, for example with the Bellman-

Ford algorithm (Cormen et al., 2001). As the lattice is acyclic, the algorithm is guaran-

3To break ties between non-matching edges, we add a small cost ζ � 1 to all non-matching edges,
thus favoring paths that use fewer edges, everything else being equal.

38

teed to terminate and return a shortest path.

Theorem 1. The set of edits corresponding to the shortest path has the maximum over-

lap with the gold standard annotation.

Proof. Let e = e1, . . . , ek be the edit sequence corresponding to the shortest path and

let p be the number of matched edits. Assume that there exists another edit sequence e′

with higher total edge weights but p′ > p matching edits. Then we have

p(−(u+ 1)|E|) + q ≤ p′(−(u+ 1)|E|) + q′ (3.11)

⇔ (q − q′) ≤ (p′ − p)(−(u+ 1)|E|),

where q and q′ denote the combined cost of all non-matching edits in the two paths,

respectively. Because p′ − p ≥ 1, the right hand side is at most −(u + 1)|E|. Because

q and q′ are positive and bounded by (u + 1)|E|, the left hand side cannot be smaller

than or equal to −(u + 1)|E|. This is a contradiction. Therefore there cannot exist

such an edit sequence e′, and e is the sequence with the maximum overlap with the

gold-standard annotation.

Evaluating Edits

What is left to do is to evaluate the set of edits with respect to the gold standard. This

is done by computing precision, recall, and F1 score as defined in Equations 3.7, 3.8,

and 3.9 in the previous section. Let the set of system edits be {e1, . . . , en} and let the

set of gold edits be {g1, . . . ,gn} . Precision, recall, and F1 score for all sentences are

computed as

P =

∑n
i=1 |ei ∩ gi|∑n

i=1 |ei|
(3.12)

R =

∑n
i=1 |ei ∩ gi|∑n

i=1 |gi|
(3.13)

F1 = 2× P ×R
P +R

, (3.14)

39

Team HOO scorer M2 scorer
P R F1 P R F1

JU (0) 10.39 3.78 5.54 12.30 4.45 6.53
LI (8) 20.86 3.22 5.57 21.12 3.22 5.58
NU (0) 29.10 7.38 11.77 31.09 7.85 12.54
UI (1) 50.72 13.34 21.12 54.61 14.57 23.00
UT (1) 5.01 4.07 4.49 5.72 4.45 5.01

Table 3.5: Results for participants in the HOO 2011 shared task. The run of the system
is shown in parentheses.

where we define the intersection between ei and gi as

ei ∩ gi = {e ∈ ei | ∃ g ∈ gi(match(e, g))}. (3.15)

3.4.2 Experiments and Results

We experimentally test our M2 method in the context of the HOO 2011 shared task. We

test our method by re-scoring the best runs of the participating teams4 in the HOO 2011

shared task with the M2 scorer and comparing the scores with the official HOO 2011

scorer, which simply uses GNU wdiff5 to extract system edits. We obtain each sys-

tem’s output and segment it at the sentence level according to the gold standard sentence

segmentation. The source sentences, system hypotheses, and corrections are tokenized

using the Penn Treebank standard (Marcus et al., 1993). The character edit offsets are

automatically converted to token offsets. We set the parameter u to 2, allowing up to

two unchanged words per edit. The results are shown in Table 3.5. Note that the M2

scorer and the HOO 2011 scorer adhere to the same score definition and only differ in

the way the system edits are computed. We can see that the M2 scorer results in higher

scores than the official scorer for all systems, showing that the official scorer missed

some valid edits. For example, the M2 scorer finds 155 valid edits for the UI system

compared to 141 found by the official scorer, and 83 valid edits for the NU system (our

submission), compared to 78 by the official scorer. We manually inspect the output of

the scorers and find that the M2 scorer indeed extracts the correct edits matching the

4Except one team that did not submit any plain text output.
5http://www.gnu.org/s/wdiff/

40

M2 scorer . . . should basic translational unit be (word→ a word) . . .
HOO scorer . . . should basic translational unit be *(ε→ a) word . . .

M2 scorer . . . development set similar (with→ to) (ε→ the) test set . . .
HOO scorer . . . development set similar *(with→ to the) test set . . .

M2 scorer (ε→ The) *(Xinhua portion of→ xinhua portion of) the English
Gigaword3 . . .

HOO scorer *(Xinhua→ The xinhua) portion of the English Gigaword3 . . .

Table 3.6: Examples of different edits extracted by the M2 scorer and the official HOO
scorer. Edits that do not match the gold-standard annotation are marked with an asterisk
(*).

gold standard where possible. Examples are shown in Table 3.6.

3.4.3 Discussion

The evaluation framework proposed in this work differs slightly from the one in the

HOO 2011 shared task.

Sentence-by-sentence. We compute the edits between source-hypothesis sentence

pairs, while the HOO 2011 scorer computes edits at the document level. As the HOO

2011 data comes in a sentence-segmented format, both approaches are equivalent, while

sentence-by-sentence is easier to work with.

Token-level offsets. In this thesis, we consider the start and end of an edit as to-

ken offsets, while the HOO 2011 data uses character offsets. Character offsets make

the evaluation procedure very brittle as a small change, e.g., an additional whitespace

character, will affect all subsequent edits. Character offsets also introduce ambiguities

in the annotation, e.g., whether a comma is part of the preceding token.

Alternative scoring. The HOO 2011 shared task defines three different scores: de-

tection, recognition, and correction. Effectively, all three scores are F1 scores and only

differ in the conditions on when an edit is counted as valid. Additionally, each score is

reported under a “with bonus” alternative, where a system receives rewards for missed

optional edits. The F1 score defined in this chapter is equivalent to correction without

bonus. The MaxMatch method can be used to compute detection and recognition scores

and scores with bonus as well.

The M2 scorer has been adopted as the official scorer for the CoNLL-2013 shared

41

task on grammatical error correction (Ng et al., 2013).

3.5 Conclusion

In this chapter, we have presented the NUCLE learner corpus for grammatical error

correction that we developed as part of this thesis. The corpus is currently the largest

annotated learner data set that is available for research. We hope that this corpus will

be a valuable resource for researchers for the quantitative analysis of learner errors and

for training and testing better models on real, error-annotated text. We also described

the data sets from the two HOO shared tasks. Finally, we presented a novel method,

called MaxMatch (M2), for evaluating grammatical error correction. Our method com-

putes the sequence of phrase-level edits that achieves the highest overlap with the gold-

standard annotation. Experiments on the HOO data show that our method overcomes

deficiencies in the current evaluation method.

42

Chapter 4

Alternating Structure Optimization for

Grammatical Error Correction

Despite the growing interest in grammatical error correction, research has been hindered

until recently by the lack of a large annotated corpus of learner text that is available for

research purposes. As a result, the standard approach to grammatical error correc-

tion has been to train an off-the-shelf classifier to re-predict words in non-learner text.

Learning grammatical error correction models directly from annotated learner corpora

is not well explored, as are methods that combine learner and non-learner text. Further-

more, the evaluation of grammatical error correction has been problematic. Previous

work has either evaluated on artificial test instances as a substitute for real learner er-

rors or on proprietary data that is not available to other researchers. As a consequence,

existing methods have not been compared on the same test set, leaving it unclear where

the current state of the art really is. With the availability of the NUCLE corpus that

we have described in the last chapter, it is now possible to address these two problems:

developing learning algorithms that take advantage of learner and non-learner data, and

evaluating different methods on a large and publicly available set of real learner data.

In this chapter, we present a novel approach to grammatical error correction based

on Alternating Structure Optimization (ASO) (Ando and Zhang, 2005). The approach

is able to train models on annotated learner corpora while still taking advantage of large

43

non-learner corpora. We conduct an extensive evaluation for article and preposition

errors using six different feature sets proposed in previous work. We compare our

proposed ASO method with two baselines trained on non-learner text and learner text,

respectively. When these results were first published in (Dahlmeier and Ng, 2011b),

they were the first extensive comparison of different feature sets on real learner text. Our

experiments show that the proposed ASO algorithm significantly improves over both

baselines. It also outperforms two commercial grammar checking software packages in

a manual evaluation.

The remainder of this chapter is organized as follows. Section 4.1 describes the

tasks. Section 4.2 formulates grammatical error correction as a classification problem.

Section 4.3 extends this to the ASO algorithm. The experiments are presented in Sec-

tion 4.4 and the results in Section 4.5. Section 4.6 contains a more detailed analysis of

the results. Section 4.7 concludes this chapter.

4.1 Task Description

In this chapter, we focus on article and preposition errors, as they are among the most

frequent types of errors made by EFL learners.

4.1.1 Selection vs. Correction Task

There is an important difference between training on annotated learner text and train-

ing on non-learner text, namely whether the observed word can be used as a feature or

not. When training on non-learner text, the observed word cannot be used as a feature.

The word choice of the writer is “blanked out” from the text and serves as the correct

class. A classifier is trained to re-predict the word given the surrounding context. The

confusion set of possible classes is usually pre-defined. This selection task formula-

tion is convenient as training examples can be created “for free” from any text that is

assumed to be free of grammatical errors. We define the more realistic correction task

as follows: given a particular word and its context, propose an appropriate correction.

44

The proposed correction can be identical to the observed word, i.e., no correction is

necessary. The main difference is that the word choice of the writer can be encoded as

part of the features. The difference between the selection and correction task was first

described by Rozovskaya and Roth (2010b).

4.1.2 Article Errors

For article errors, the classes are the three articles a, the, and the null article ε. This

covers article insertion, deletion, and replacement errors. During training, each noun

phrase (NP) in the training data is one training example. When training on learner text,

the correct class is the article provided by the human annotator. When training on non-

learner text, the correct class is the observed article. The context is encoded via a set

of feature functions. During testing, each NP in the test set is one test example. The

correct class is the article provided by the human annotator when testing on learner text

or the observed article when testing on non-learner text.

4.1.3 Preposition Errors

The approach to preposition errors is similar to articles but typically focuses on prepo-

sition replacement errors. In this chapter, the classes are 36 frequent English preposi-

tions (about, along, among, around, as, at, beside, besides, between, by, down, during,

except, for, from, in, inside, into, of, off, on, onto, outside, over, through, to, toward, to-

wards, under, underneath, until, up, upon, with, within, without), which we adopt from

previous work (Tetreault, personal communication). Every prepositional phrase (PP)

that is governed by one of the 36 prepositions is one training or test example. We

ignore PPs governed by other prepositions.

4.2 Linear Classifiers for Error Correction

In this section, we formulate grammatical error correction as a classification problem

and describe the feature sets for each task.

45

4.2.1 Linear Classifiers

We use classifiers to approximate the unknown relation between articles or prepositions

and their contexts in learner text, and their valid corrections. The articles or prepositions

and their contexts are represented as feature vectors X ∈ X . The corrections are the

classes Y ∈ Y .

In this work, we employ binary linear classifiers of the form uTX where u is a

weight vector. The outcome is considered +1 if the score is positive and −1 otherwise.

A popular method for finding u is empirical risk minimization with least square regu-

larization. Given a training set {Xi, Yi}i=1,...,n, we aim to find the weight vector that

minimizes the empirical loss on the training data

û = arg min
u

(
1

n

n∑
i=1

L(uTXi, Yi) + λ ||u||2
)
, (4.1)

where L(ŷ, y) is a loss function. We use a modification of Huber’s robust loss function

similar to that used in (Ando and Zhang, 2005)

L(ŷ, y) =

−4ŷy : if ŷy < −1

(1− ŷy)2 : if − 1 ≤ ŷy < 1

0 : if ŷy > 1.

(4.2)

We fix the regularization parameter λ to 10−4. A multi-class classification problem

with m classes can be cast as m binary classification problems in a one-vs-rest arrange-

ment. We use the limited-memory, variable-metric method as implemented in the TAO

optimization software (Munson et al., 2012) for the optimization.

The prediction of the classifier is the class with the highest score

Ŷ = arg max
Y ∈Y

(uTYX). (4.3)

In earlier experiments, this linear classifier gave comparable or superior performance

compared to a logistic regression classifier.

46

4.2.2 Features

We re-implement six feature extraction methods from previous work, three for articles

and three for prepositions. The methods require different linguistic pre-processing:

chunking, CCG parsing, and constituency parsing.

Article Errors

• DeFelice The system in (De Felice, 2008) for article errors uses a CCG parser to

extract a rich set of syntactic and semantic features, including part of speech (POS)

tags, hypernyms from WordNet (Fellbaum, 1998), and named entities.

• Han The system in (Han et al., 2006) relies on shallow syntactic and lexical

features derived from a chunker, including the words before, in, and after the NP,

the head word, and POS tags.

• Lee The system in (Lee, 2004) uses a constituency parser. The features include

POS tags, surrounding words, the head word, and hypernyms from WordNet.

Preposition Errors

• DeFelice The system in (De Felice, 2008) for preposition errors uses a similar

rich set of syntactic and semantic features as the system for article errors. In our

re-implementation, we do not use a subcategorization dictionary, as this resource

was not available to us.

• TetreaultChunk The system in (Tetreault and Chodorow, 2008b) uses a chunker

to extract features from a two-word window around the preposition, including

lexical and POS N-grams, and the head words from neighboring constituents.

• TetreaultParse The system in (Tetreault et al., 2010) extends (Tetreault and

Chodorow, 2008b) by adding additional features derived from a constituency and

a dependency parse tree.

47

For each of the above feature sets, we add the observed article or preposition as an

additional feature when training on learner text.

4.3 Alternating Structure Optimization

This section describes the ASO algorithm and shows how it can be used for grammatical

error correction.

4.3.1 The ASO Algorithm

Alternating Structure Optimization (Ando and Zhang, 2005) is a multi-task learning

algorithm that takes advantage of the common structure of multiple related problems.

Let us assume that we have m binary classification problems. Each classifier ui is a

weight vector of dimension p. Let Θ be an orthonormal h × p matrix that captures the

common structure of the m weight vectors. We assume that each weight vector can

be decomposed into two parts: one part that models the particular i-th classification

problem and one part that models the common structure

ui = wi + ΘTvi. (4.4)

The parameters [{wi,vi},Θ] can be learned by joint empirical risk minimization, i.e.,

by minimizing the joint empirical loss of the m problems on the training data

m∑
l=1

(
1

n

n∑
i=1

L
((

wl + ΘTvl
)T

Xl
i, Y

l
i

)
+ λ ||wl||2

)
. (4.5)

The key observation in ASO is that the problems used to find Θ do not have to be same

as the target problems that we ultimately want to solve. Instead, we can automatically

create auxiliary problems for the sole purpose of learning a better Θ.

Let us assume that we have k target problems and m auxiliary problems. We

can obtain an approximate solution to Equation 4.5 by performing the following al-

gorithm (Ando and Zhang, 2005):

48

1. Learn m linear classifiers ui independently.

2. Let U = [u1,u2, . . . ,um] be the p×m matrix formed from the m weight vectors.

3. Perform Singular Value Decomposition (SVD) on U : U = V1DV
T

2 . The first h

column vectors of V1 are stored as rows of Θ.

4. Learn wj and vj for each of the target problems by minimizing the empirical risk:

1

n

n∑
i=1

L
((

wj + ΘTvj
)T

Xi, Yi

)
+ λ ||wj||2 .

5. The weight vector for the j-th target problem is:

uj = wj + ΘTvj.

The number of retained eigenvectors h is a parameter which could be chosen through

standard model selection techniques, like cross-validation. Ando and Zhang (2005)

show that the ASO algorithm is in practice insensitive to the exact value of h. They use

a fixed value h = 50 for all their experiments.

4.3.2 ASO for Grammatical Error Correction

The key observation in this chapter is that the selection task on non-learner text is a

highly informative auxiliary problem for the correction task on learner text. For ex-

ample, a classifier that can predict the presence or absence of the preposition on can

be helpful for correcting wrong uses of on in learner text, e.g., if the classifier’s confi-

dence for on is low but the writer used the preposition on, the writer might have made

a mistake. As the auxiliary problems can be created automatically, we can leverage the

power of very large corpora of non-learner text.

Let us assume a grammatical error correction task with m classes. For each class,

we define a binary auxiliary problem. The feature space of the auxiliary problems is

a restriction of the original feature space X to all features except the observed word:

49

X\{Xobs}. The weight vectors of the auxiliary problems form the matrix U in Step 2 of

the ASO algorithm from which we obtain Θ through SVD. As the number of auxiliary

problems is not very large in our case, we retain all eigenvectors, thus eliminating the

choice of the h parameter in practice. Given Θ, we learn the vectors wj and vj , j =

1, . . . , k from the annotated learner text using the complete feature space X .

This can be seen as an instance of transfer learning (Pan and Yang, 2010), as the

auxiliary problems are trained on data from a different domain (non-learner text) and

have a slightly different feature space (X\{Xobs}). We note that this method is general

and can be applied to any classification problem in grammatical error correction.

4.4 Experiments

4.4.1 Data Sets

The main corpus in our experiments is the NUS Corpus of Learner English (NUCLE)

that was presented in the last chapter. We use about 80% of the essays for training,

10% for development, and 10% for testing. We ensure that no sentences from the same

essay appear in both the training and the test or development data. The motivation

behind choosing as much as 80% of the essays for training is that we wish to have

as much data as possible available for training. For the development and test data, we

just require them to be large enough to allow for stable parameter tuning and statistically

significant conclusions, respectively. As the NUCLE corpus contains 1.2 million words,

the development and test set still contains several thousands of test instances which is

sufficient for stable parameter tuning and statistically significant test results.

On average, only 1.8% of the articles and 1.3% of the prepositions in NUCLE con-

tain an error. This figure is considerably lower compared to other learner corpora (Lea-

cock et al., 2010, Ch. 3) and shows that the writers in the NUCLE corpus have a rela-

tively high proficiency of English. We argue here that this makes the task considerably

more difficult. Furthermore, to keep the task as realistic as possible, we do not filter the

test data in any way.

50

In addition to NUCLE, we use a subset of the New York Times section of the Giga-

word corpus6 and the Wall Street Journal section of the Penn Treebank (Marcus et al.,

1993) for some experiments.

4.4.2 Resources

We pre-process all corpora using the following tools: we use NLTK7 for sentence split-

ting, OpenNLP8 for POS tagging, YamCha (Kudo and Matsumoto, 2003) for chunking,

the C&C tools (Clark and Curran, 2007) for CCG parsing and named entity recogni-

tion, and the Stanford parser (Klein and Manning, 2003a; Klein and Manning, 2003b)

for constituency and dependency parsing.

4.4.3 Evaluation Metrics

For experiments on non-learner text, we report accuracy, which is defined as the number

of correct predictions divided by the total number of test instances. For experiments on

learner text, we report F1 score between the correction proposed by the classifier and

the gold-standard annotations as defined in Chapter 3.

4.4.4 Selection Task Experiments on WSJ Test Data

The first set of experiments investigates predicting articles and prepositions in non-

learner text. This primarily serves as a reference point for the correction task described

in the next section. We train classifiers as described in Section 4.2 on the Gigaword

corpus. We train with up to 10 million training instances, which corresponds to about

37 million words of text for articles and 112 million words of text for prepositions. The

test instances are extracted from section 23 of the WSJ and no text from the WSJ is

included in the training data. The observed article or preposition choice of the writer

is the class we want to predict. Therefore, the article or preposition cannot be part of

6LDC2009T13
7www.nltk.org
8opennlp.sourceforge.net

51

the input features. The proposed ASO method is not included in these experiments, as

it uses the observed article or preposition as a feature which is only applicable when

testing on learner text.

4.4.5 Correction Task Experiments on NUCLE Test Data

The second set of experiments investigates the primary goal of this chapter: to automat-

ically correct grammatical errors in learner text. The test instances are extracted from

NUCLE. In contrast to the previous selection task, the observed word choice of the

writer can be different from the correct class and the observed word is available during

testing. We investigate two different baselines and our ASO method.

The first baseline is a classifier trained on the Gigaword corpus in the same way as

described in the selection task experiment. We use a simple thresholding strategy to

make use of the observed word during testing. The system only flags an error if the

difference between the classifier’s confidence for its first choice and the confidence for

the observed word is higher than a threshold t. The threshold parameter t is tuned on

the NUCLE development data for each feature set. In our experiments, the value for t

is between 0.7 and 1.2.

The second baseline is a classifier trained on NUCLE. The classifier is trained in the

same way as the Gigaword model, except that the observed word choice of the writer

is included as a feature. The correct class during training is the correction provided by

the human annotator. As the observed word is part of the features, this model does not

need an extra thresholding step. Indeed, we found that thresholding is harmful in this

case. During training, the instances that do not contain an error greatly outnumber the

instances that do contain an error. To reduce this imbalance, we keep all instances that

contain an error and retain a random sample of q percent of the instances that do not

contain an error. The undersample parameter q is tuned on the NUCLE development

data for each data set. In our experiments, the value for q is between 20% and 40%.

The ASO method is trained in the following way. We create binary auxiliary prob-

lems for articles or prepositions, i.e., there are 3 auxiliary problems for articles and 36

52

auxiliary problems for prepositions. We train the classifiers for the auxiliary problems

on the complete 10 million instances from Gigaword in the same ways as in the selec-

tion task experiment. The weight vectors of the auxiliary problems form the matrix U .

We perform SVD to get U = V1DV
T

2 . We keep all columns of V1 to form Θ. The target

problems are again binary classification problems for each article or preposition, but

this time trained on NUCLE. The observed word choice of the writer is included as a

feature for the target problems. We again undersample the instances that do not contain

an error and tune the parameter q on the NUCLE development data. The value for q is

between 20% and 40%. No thresholding is applied.

We also experimented with a classifier that is trained on the concatenated data from

NUCLE and Gigaword. This model always performed worse than the better of the

individual baselines. We believe that the reason is that the two data sets have different

feature spaces which prevents simple concatenation of the training data.

4.5 Results

The learning curves of the selection task experiments on WSJ test data are shown in

Figure 4.1. The three curves in each plot correspond to different feature sets. Accuracy

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

 1000 10000 100000 1e+06 1e+07

A
C

C
U

R
A

C
Y

Number of training examples

GIGAWORD DEFELICE
GIGAWORD HAN
GIGAWORD LEE

(a) Articles

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

 1000 10000 100000 1e+06 1e+07

A
C

C
U

R
A

C
Y

Number of training examples

GIGAWORD DEFELICE
GIGAWORD TETRAULTCHUNK
GIGAWORD TETRAULTPARSE

(b) Prepositions

Figure 4.1: Accuracy for the selection task on WSJ test data.

improves quickly in the beginning but improvements get smaller as the size of the train-

ing data increases. The best results are 87.56% for articles (Han) and 68.25% for prepo-

53

sitions (TetreaultParse). The best accuracy for articles is comparable to the best reported

results of 87.70% (Lee, 2004) on this data set.

The learning curves of the correction task experiments on NUCLE test data are

shown in Figure 4.2 and 4.3. Each sub-plot shows the curves of three models as de-

scribed in the last section: ASO trained on NUCLE and Gigaword, the baseline classi-

fier trained on NUCLE, and the baseline classifier trained on Gigaword. For ASO, the

x-axis shows the number of target problem training instances. The first observation

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

 1000 10000 100000 1e+06 1e+07

F
1

Number of training examples

ASO
NUCLE

GIGAWORD

(a) DeFelice

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

 1000 10000 100000 1e+06 1e+07

F
1

Number of training examples

ASO
NUCLE

GIGAWORD

(b) Han

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

 1000 10000 100000 1e+06 1e+07

F
1

Number of training examples

ASO
NUCLE

GIGAWORD

(c) Lee

Figure 4.2: F1 score for the article correction task on NUCLE test data. Each plot shows
ASO and two baselines for a particular feature set.

is that high accuracy for the selection task on non-learner text does not automatically

entail high F1 score on learner text. We also note that feature sets with similar perfor-

mance on non-learner text can show very different performance on learner text. The

second observation is that training on annotated learner text can significantly improve

performance. In three experiments (articles DeFelice, Han, prepositions DeFelice), the

NUCLE model outperforms the Gigaword model trained on 10 million instances. Fi-

54

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

 1000 10000 100000 1e+06 1e+07

F
1

Number of training examples

ASO
NUCLE

GIGAWORD

(a) DeFelice

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

 1000 10000 100000 1e+06 1e+07

F
1

Number of training examples

ASO
NUCLE

GIGAWORD

(b) TetreaultChunk

0.00

0.02

0.04

0.06

0.08

0.10

0.12

 1000 10000 100000 1e+06 1e+07

F
1

Number of training examples

ASO
NUCLE

GIGAWORD

(c) TetreaultParse

Figure 4.3: F1 score for the preposition correction task on NUCLE test data. Each plot
shows ASO and two baselines for a particular feature set.

nally, the ASO models show the best results. In the experiments where the NUCLE

models already perform better than the Gigaword baseline, ASO gives comparable or

slightly better results (articles DeFelice, Han, Lee, prepositions DeFelice). In those ex-

periments where neither baseline shows good performance (TetreaultChunk, Tetreault-

Parse), ASO results in a large improvement over either baseline. The best results are

19.29% F1 score for articles (Han) and 11.15% F1 score for prepositions (Tetreault-

Parse) achieved by the ASO model. The model that was trained on the concatenated

data from NUCLE and Gigaword achieved no improvement over the NUCLE and Gi-

gaword baselines. For articles, the F1 score was 14.32% using the Han feature set, and

for prepositions, the F1 score was 1.06% (TetreaultParse) and 2.10% (DeFelice).

55

4.6 Analysis

In this section, we analyze the results in more detail and show examples from the test

set for illustration.

Table 4.1 shows precision, recall, and F1 score for the best models in our exper-

iments. ASO achieves a higher F1 score than the Gigaword and NUCLE baselines.

We use the sign-test with bootstrap re-sampling for statistical significance testing. The

sign-test is a non-parametric test that makes fewer assumptions than parametric tests

like the t-test. The improvements in F1 score of ASO over either baseline are statisti-

cally significant (p < 0.01) for both articles and prepositions.

Articles
Model Prec Rec F1

Gigaword (Han) 10.33 21.81 14.02
NUCLE (Han) 29.48 12.91 17.96
NUCLE+Gigaword (Han) 11.24 19.72 14.32
ASO (Han) 26.44 15.18 19.29

Prepositions
Model Prec Rec F1

Gigaword (TetreaultParse) 4.77 14.81 7.21
NUCLE (DeFelice) 13.84 5.55 7.92
NUCLE+Gigaword (TetreaultParse) 3.84 0.62 1.06
NUCLE+Gigaword (DeFelice) 1.47 3.70 2.10
ASO (TetreaultParse) 18.30 8.02 11.15

Table 4.1: Best results for the correction task on NUCLE test data. Improvements for
ASO over either baseline are statistically significant (p < 0.01) for both tasks.

The difficulty in grammatical error correction is that in many cases, more than one

word choice can be correct. Even with a threshold, the Gigaword baseline model sug-

gests too many corrections, because the model cannot make use of the observed word as

a feature. This results in low precision. For example, the model replaces as with by in

the sentence This group should be categorized as the vulnerable group, which is wrong.

In contrast, the NUCLE model learns a bias towards the observed word and therefore

achieves higher precision. However, the training data is smaller and therefore recall is

low as the model has not seen enough examples during training. This is especially true

for prepositions which can occur in a large variety of contexts. For example, the prepo-

56

sition in should be on in the sentence ... psychology had an impact in the way we process

and manage technology. The phrase impact on the way does not appear in the NUCLE

training data and the NUCLE baseline fails to detect the error. The ASO model is able

to take advantage of both the annotated learner text and the large non-learner text, thus

achieving overall higher F1 score. The phrase impact on the way, for example, appears

many times in the Gigaword training data. With the common structure learned from the

auxiliary problems, the ASO model successfully finds and corrects this mistake.

4.6.1 Manual Evaluation

Articles
ASO System A System B

(1) Correct 4 1 1
(2) Both Ok 16 12 18
(3) Both Wrong 0 1 0
(4) Other Error 1 0 0
(5) False Flag 1 0 4
(6) Miss 3 5 6
(7) No Flag 975 981 971
Precision 80.00 50.00 20.00
Recall 57.14 14.28 14.28
F1 66.67 22.21 16.67

Prepositions
ASO System A System B

(1) Correct 3 3 0
(2) Both Ok 35 39 24
(3) Both Wrong 0 2 0
(4) Other Error 0 0 0
(5) False Flag 5 11 1
(6) Miss 12 11 15
(7) No Flag 1945 1934 1960
Precision 37.50 18.75 0.00
Recall 20.00 18.75 0.00
F1 26.09 18.75 0.00

Table 4.2: Manual evaluation and comparison with commercial grammar checking soft-
ware.

We carried out a manual evaluation of the best ASO models and compared their

output with two commercial grammar checking software packages which we call Sys-

57

tem A and System B. We randomly sampled 1000 test instances for articles and 2000

test instances for prepositions and manually categorized each test instance into one of

the following categories: (1) Correct means that both human and system flag an error

and suggest the same correction. If the system’s correction differs from the human but

is equally acceptable, it is considered (2) Both Ok. If the system identifies an error

but fails to correct it, we consider it (3) Both Wrong, as both the writer and the sys-

tem are wrong. (4) Other Error means that the system’s correction does not result in a

grammatical sentence because of another grammatical error that is outside the scope of

article or preposition errors, e.g., a noun number error as in “all the dog”. If the system

corrupts a previously correct sentence it is a (5) False Flag. If the human flags an error

but the system does not, it is a (6) Miss. (7) No Flag means that neither the human

annotator nor the system flags an error. We calculate precision by dividing the count of

category (1) by the sum of counts of categories (1), (3), and (5), and recall by dividing

the count of category (1) by the sum of counts of categories (1), (3), and (6). The re-

sults are shown in Table 4.2. The ASO method outperforms both commercial software

packages. This evaluation shows that even commercial software packages achieve low

F1 score for article and preposition errors, which confirms the difficulty of these tasks.

4.7 Conclusion

In this chapter, we have presented a novel approach to grammatical error correction

based on Alternating Structure Optimization. Our experiments for article and preposi-

tion errors show the advantage of the ASO approach over two baseline methods. The

ASO approach also outperforms two commercial grammar checking software packages

in a manual evaluation.

58

Chapter 5

Lexical Choice Errors

The de facto standard approach to grammatical error correction is to build a statistical

classification model that can pick the most likely correction from a confusion set of

possible correction choices. The way the confusion set is defined depends on the type

of error. For articles and preposition errors, which have attracted the most attention

in grammatical error correction, the confusion sets are based on the syntactic part of

speech of the word. Work in context-sensitive spelling error correction (Golding and

Roth, 1999) has traditionally focused on confusion sets with similar spelling ({dessert,

desert}) or similar pronunciation ({there, their}). In other words, the words in a confu-

sion set are deemed confusable because of orthographic or phonetic similarity.

In contrast, in this chapter, we investigate a class of grammatical errors where the

source of confusion is the similar semantics of the words, rather than orthography, pho-

netics, or syntax. In particular, we focus on lexical choice errors and collocation errors

in EFL writing. The term collocation (Firth, 1957) describes a sequence of words that

is conventionally used together in a particular way by native speakers and appears more

often together than one would expect by chance. The correct use of collocations is a

major difficulty for EFL students (Farghal and Obiedat, 1995). For the remainder of this

chapter, we will use the terms lexical choice error and collocation error interchangeable.

In this chapter, we present a novel approach for automatic correction of lexical

choice errors in EFL writing. Our key observation is that words are potentially confus-

59

able for an EFL student if they have similar translations in the writer’s first language

(L1-language), or in other words if they have the same semantics in the L1-language of

the writer. The Chinese word 看 (kàn), for example, has over a dozen translations in

English, including the words see, look, read, and watch. A Chinese speaker who still

“thinks” in Chinese has to choose from all these possible translations when he wants to

express a sentence like I like to watch movies and might instead produce a sentence like

*I like to look movies. Although the semantics of watch and look are similar, the former

is clearly the more fluent choice in this context. While these types of L1-transfer errors

have been known in the EFL teaching literature (Swan and Smith, 2001; Meng, 2008),

research in grammatical error correction has mostly ignored this fact. These results

were first published in (Dahlmeier and Ng, 2011a).

We first analyze lexical choice errors in the NUS Corpus of Learner English (NU-

CLE). Our analysis confirms that many lexical choice errors can be traced to simi-

lar translations in the writer’s L1-language. Based on this result, we propose a novel

approach for automatic lexical choice error correction. The key component in our ap-

proach are L1-induced paraphrases which we automatically extract from an L1-English

parallel corpus. Our proposed approach outperforms traditional approaches based on

edit distance, homophones, and WordNet synonyms on a test set of real-world learner

data in an automatic and a human evaluation. Finally, we present a detailed analysis of

unsolved instances in the data set to highlight possible directions for future work.

This work adds to a growing body of research that leverages parallel corpora for

semantic NLP tasks, for example in word sense disambiguation (Ng et al., 2003; Chan

and Ng, 2005; Ng and Chan, 2007; Zhong and Ng, 2009), paraphrasing (Bannard and

Callison-Burch, 2005; Liu et al., 2010a), and machine translation evaluation (Snover et

al., 2009; Liu et al., 2010b).

The remainder of this chapter is organized as follows. Section 5.1 presents our

analysis of lexical choice errors. Section 5.2 describes our approach for automatic

lexical choice error correction. The experimental setup and the results are described in

Sections 5.3 and 5.4, respectively. Section 5.5 provides further analysis. Section 5.6

60

Word tokens 1,220,257
Total number of errors 46,597
Lexical choice errors 2,747
Unique lexical choice errors 2,412
Avg. lexical choice error length (words) 1.17
Avg. correction length (words) 1.13

Table 5.1: Lexical errors statistics of the NUCLE corpus

concludes the chapter.

5.1 Analysis of EFL Lexical Choice Errors

While the fact that lexical choice errors can be caused by L1-transfer has been ascer-

tained by EFL researchers (Meng, 2008), we need to quantify how frequent lexical

choice errors can be traced to these types of transfer errors in order to estimate how

many errors in EFL writing one can potentially hope to correct with information about

the writer’s L1-language.

We base our analysis on the NUCLE corpus. The details of the corpus are described

in Chapter 3. Some statistics of the corpus with respect to lexical choice errors are

summarized in Table 5.1. Most of the students are native Chinese speakers. In this

chapter, we focus on errors which have been marked with the error tag wrong collo-

cation/idiom/preposition. As preposition errors are not the focus of this chapter, we

automatically filter out all instances which represent simple substitutions of preposi-

tions, using a fixed list of frequent English prepositions. In a similar way, we filter

out a small number of article errors which were marked as collocation errors. Finally,

we filter out instances where the annotated phrase or the suggested correction is longer

than 3 words, as we observe that they contain highly context specific corrections and are

unlikely to generalize well (e.g., for the simple reasons that these can help them→ sim-

ply to). After filtering, we end up with 2,747 lexical choice errors and their respective

corrections, which account for about 6% of all errors in the corpus. This makes lexical

choice errors the 7th largest class of errors in the corpus. Not counting duplicates, there

are 2,412 distinct lexical choice errors and corrections. Lexical choice errors represent

61

a particular challenge as the possible corrections are not restricted to a closed set of

choices and they are directly related to semantics rather than syntax. We analyzed the

lexical choice errors and found that they can be attributed to the following sources of

confusion:

Spelling: We suspect that an error is caused by similar orthography if the edit distance

between the erroneous phrase and its correction is less than a certain threshold.

Homophones: We suspect that an error is caused by similar pronunciation if the er-

roneous word and its correction have the same pronunciation. We use the CuVPlus

English dictionary (Mitton, 1992) to map words to their phonetic representations.

Synonyms: We suspect that an error is caused by synonymy if the erroneous word and

its correction are synonyms in WordNet (Fellbaum, 1998). We use WordNet version

3.0.

L1-transfer: We suspect that an error is caused by L1-transfer if the erroneous phrase

and its correction share a common translation in a Chinese-English phrase table. The

details of the phrase table construction are described in Section 5.2.1. We note that

although we focus on Chinese-English translations, this method is applicable to any

language pair where parallel corpora are available.

As CuVPlus and WordNet are defined for individual words, we extend the match-

ing process to phrases in the following way: two phrases A and B are deemed ho-

mophones/synonyms if they have the same length and the i-th word in phrase A is a

homophone/synonym of the corresponding i-th word in phrase B.

The results of the analysis are shown in Table 5.2. Tokens refer to running erro-

neous phrase-correction pairs including duplicates and types refers to distinct erroneous

phrase-correction pairs. As a lexical choice error can be part of more than one category,

the rows in the table do not sum up to the total number of errors. The number of errors

that can be traced to L1-transfer greatly outnumbers all other categories. The table also

shows the number of lexical choice errors that can be traced to L1-transfer but not the

other sources. 906 lexical errors with 692 distinct lexical choice error types can be at-

tributed only to L1-transfer but not to spelling, homophones, or synonyms. Table 5.3

62

Suspected Error Source Tokens Types
Spelling 154 131
Homophones 2 2
Synonyms 74 60
L1-transfer 1016 782
L1-transfer without spelling 954 727
L1-transfer without homophones 1015 781
L1-transfer without synonyms 958 737
L1-transfer without spelling,

homophones, 906 692
synonyms

Table 5.2: Analysis of lexical errors. The threshold for spelling errors is one for phrases
of up to six characters and two for the remaining phrases.

Spelling . . . it received critics (criticism) as much as complaints . . .
. . . budget for the aged to improvise (improve) other areas.

Homophones . . . diverse spending can aide (aid) our country.
. . . insure (ensure) the safety of civilians . . .

Synonyms . . . rapid increment (increase) of the seniors . . .
. . . energy that we can apply (use) in the future . . .

L1-transfer . . . and give (provide, 给予) reasonable fares to the public . . .
. . . and concerns (attention, 关注) that the nation put on
technology and engineering . . .

Table 5.3: Examples of lexical choice errors with different sources of confusion. The
correction is shown in parenthesis. For L1-transfer, we also show an example of a
shared Chinese translation. The L1-transfer examples shown here do not belong to any
of the other categories.

shows some examples of lexical choice errors for each category from the corpus. We

note that there are also lexical choice error types that cannot be traced to any of the

above sources. We will return to these errors in Section 5.5.

5.2 Correcting Lexical Choice Errors

Once we have identified the confusion sets, we could use standard techniques from

context-sensitive spelling correction, like linear classifiers, to choose the correct word

from a confusion set during test time. However, this has the drawback that we would

have to train a separate classifier for each confusion set which is impractical in our

case. Furthermore, words can appear in multiple confusion sets which would require

63

an additional step for picking the right confusion set during testing. In this section,

we propose an alternative approach for correcting lexical choice errors in EFL writing

based on paraphrasing.

5.2.1 L1-induced Paraphrases

We use the popular technique of paraphrasing with parallel corpora (Bannard and Callison-

Burch, 2005) to automatically find lexical choice candidates from a sentence-aligned

L1-English parallel corpus. As most of the essays in the NUCLE corpus are written

by native Chinese speakers, we use the FBIS Chinese-English corpus, which consists

of about 230,000 Chinese sentences (8.5 million words) from news articles, each with

a single English translation. We tokenize and lowercase the English half of the corpus

in the standard way. We segment the Chinese half of the corpus using the maximum

entropy segmenter from (Low et al., 2005). Subsequently, we automatically align the

texts at the word level using the Berkeley aligner (Liang et al., 2006; Haghighi et al.,

2009). We extract English-L1 and L1-English phrases of up to three words from the

aligned texts using the widely used phrase extraction heuristic in (Koehn et al., 2003).

The paraphrase probability of an English phrase e1 given an English phrase e2 is defined

as

p(e1|e2) =
∑
f

p(e1|f)p(f |e2) (5.1)

where f denotes a foreign phrase in the L1 language. The phrase translation probabili-

ties p(e1|f) and p(f |e2) are estimated by maximum likelihood estimation and smoothed

using Good-Turing smoothing (Foster et al., 2006). Finally, we only keep paraphrases

with a probability above a certain threshold (set to 0.001 in this work).

5.2.2 Lexical Choice Correction with Phrase-based SMT

We implement the approach in the framework of phrase-based statistical machine trans-

lation (SMT) (Koehn et al., 2003). Phrase-based SMT tries to find the highest scoring

translation e given an input sentence f . The decoding process of finding the highest

64

scoring translation is guided by a log-linear model which scores translation candidates

using a set of feature functions hi, i = 1, . . . , n

score(e|f) = exp

(
n∑
i=1

λihi(e, f)

)
. (5.2)

Typical features include a phrase translation probability p(e|f), an inverse phrase trans-

lation probability p(f |e), a language model score p(e), and a constant phrase penalty.

The optimization of the feature weights λi, i = 1, . . . , n can be done using minimum

error rate training (MERT) (Och, 2003) on a development set of input sentences and

their reference translations.

Because of the great flexibility of the log-linear model, researchers have used the

framework for other tasks outside SMT, including grammatical error correction (Brock-

ett et al., 2006). We adopt a similar approach in this work. We modify the phrase table

of the popular phrase-based SMT decoder MOSES (Koehn et al., 2007) to include lexi-

cal choice corrections with features derived from spelling, homophones, synonyms, and

L1-induced paraphrases.

• Spelling: For each English word, the phrase table contains entries consisting

of the word itself and each word that is within a certain edit distance from the

original word. Each entry has a constant feature of 1.0.

• Homophones: For each English word, the phrase table contains entries consist-

ing of the word itself and each of the word’s homophones. We determine ho-

mophones using the CuVPlus dictionary. Each entry has a constant feature of

1.0.

• Synonyms: For each English word, the phrase table contains entries consisting

of the word itself and each of its synonyms in WordNet. If a word has more than

one sense, we consider all its senses. Each entry has a constant feature of 1.0.

• L1-paraphrases: For each English phrase, the phrase table contains entries con-

sisting of the phrase and each of its L1-derived paraphrases as described in Sec-

65

tion 5.2.1. Each entry has two real-valued features: a paraphrase probability

according to Equation 5.1 and an inverse paraphrase probability.

• Baseline We combine the phrase tables built for spelling, homophones, and syn-

onyms. The combined phrase table contains three binary features for spelling,

homophones, and synonyms, respectively.

• All We combine the phrase tables from spelling, homophones, synonyms and

L1-paraphrases. The combined phrase table contains five features: three binary

features for spelling, homophones, and synonyms and two real-valued features

for the L1-paraphrase probability and inverse L1-paraphrase probability.

Additionally, each phrase table contains the standard constant phrase penalty feature.

The first four tables only contain lexical choice candidates for individual words. We

leave it to the decoder to construct corrections for longer phrases during the decoding

process if necessary.

5.3 Experiments

In this section, we empirically evaluate our approach on real lexical choice errors in

learner English.

5.3.1 Data Set

We randomly sample a development set of 770 sentences and a test set of 856 sentences

from the NUCLE corpus. Each sentence contains exactly one lexical choice error. The

sampling is performed in a way that sentences from the same document cannot end

up in both the development and the test set. In order to keep conditions as realistic as

possible, we make no attempt to filter the test set in any way.

We build phrase tables as described in Section 5.2.2. In practice, we only need to

generate phrase table entries for words and phrases which actually appear in the devel-

opment or test set. Paraphrases are extracted from the FBIS Chinese-English corpus.

66

For the language model, we use a 5-gram language model trained on the English Giga-

word corpus9 with modified Kneser-Ney smoothing.

5.3.2 Evaluation Metrics

We conduct an automatic and a human evaluation. The main evaluation metric is mean

reciprocal rank (MRR) which is the arithmetic mean of the inverse ranks of the first

correct answer returned by the system

MRR =
1

N

N∑
i=1

1

rank(i)
(5.3)

where N is the size of the test set. If the system did not return a correct answer for

a test instance we set 1
rank(i)

to zero. In the human evaluation, we additionally report

precision at rank k, k = 1, 2, 3 which we calculate as follows

P@k =

∑
a∈A score(a)

|A| (5.4)

where A is the set of returned answers of rank k or less and score(·) is a real-valued

scoring function between zero and one.

5.3.3 Lexical Choice Error Experiments

Automatic correction of lexical choice errors can conceptually be divided into two steps:

i) identification of wrong lexical choices in the input, and ii) correction of the identified

lexical errors. In this work, we focus on the second step and assume that the erroneous

lexical choice has already been identified. While this might seem like a simplification,

it has been the common evaluation setup in lexical choice error correction (see for

example (Wu et al., 2010)). It also has a practical application where the user first selects

a word or phrase and the system displays possible corrections.

In our experiments, we use the start and end offset of the lexical error provided

9LDC2009T13

67

by the human annotator to identify the location of the lexical choice error. We fix the

translation of the rest of the sentence to its identity. We remove phrase table entries

where the source phrase and target phrase are identical, thus practically forcing the

system to change the identified phrase. We set the distortion limit of the decoder to

zero to achieve monotone decoding. We previously observed that word order errors are

virtually absent in lexical choice errors in the NUCLE corpus. All experiments use the

same 5-gram language model from the Gigaword corpus to allow a fair comparison.

We perform MERT training with the popular BLEU metric (Papineni et al., 2002) on

the development set of erroneous sentences and their corrections. As the search space is

restricted to changing a single phrase per sentence, training converges relatively quickly

after two or three iterations. After convergence, the model can be used to automatically

correct new lexical choice errors.

5.4 Results

We evaluate the performance of the proposed method on the test set of 856 sentences,

each with one lexical choice error. We conduct both an automatic and a human evalua-

tion. In the automatic evaluation, the system’s performance is measured by computing

the rank of the gold answer provided by the human annotator in the N-best list of the

system. We limit the size of the N-best list to the top 100 outputs. If the gold answer is

not found in the top 100 outputs, the rank is considered to be infinity, or in other words

the inverse of the rank is zero. We also report the number of test instances for which

the gold answer was ranked among the top k, k = 1, 2, 3, 10, 100 answers. The results

of the automatic evaluation are shown in Table 5.4

For lexical choice errors, there are usually more than one possible correct answer.

Therefore the automatic evaluation underestimates the actual performance of the system

by only considering the single gold answer as correct and all other answers as wrong.

Therefore, we carried out a human evaluation for the systems BASELINE and ALL. We

recruited two English speakers to judge a subset of 500 test sentences. For each sen-

68

Model Rank = 1 Rank ≤ 2 Rank ≤ 3 Rank ≤ 10 Rank ≤ 100 MRR
Spelling 35 41 42 44 44 4.51
Homophones 1 1 1 1 1 0.11
Synonyms 32 47 52 60 61 4.98
Baseline 49 68 80 93 96 7.61
L1-paraphrases 93 133 154 216 243 15.43
All 112 150 166 216 241 17.21

Table 5.4: Results of automatic evaluation. Columns two to six show the number of
gold answers that are ranked within the top k answers. The last column shows the mean
reciprocal rank in percentage. Bigger values are better.

P(A) 0.8076
Kappa 0.6152

Table 5.5: Inter-annotator agreement. P (E) = 0.5.

tence, a judge was shown the original sentence and the 3-best candidates of each of the

two systems. We restricted the human evaluation to the 3-best candidates, as we believe

that answers at a rank larger than three will not be very useful in a practical application.

The candidates are displayed together in alphabetical order without any information

about their rank or which system produced them or the gold answer by the annotator.

The difference between the candidates and the original sentence is highlighted. The

judges were asked to make a binary judgment for each of the candidates on whether

the proposed candidate is a valid correction of the original or not. We represent valid

corrections with a score of 1.0 and non-valid corrections with a score of 0.0. Inter-

annotator agreement is reported in Table 5.5. The probability of agreement P (A) is the

percentage of times that the annotators agree, and P (E) is the expected agreement by

chance, which is 0.5 in this case. We obtain a Kappa coefficient of 0.6152. A Kappa co-

efficient between 0.6 and 0.8 is considered as showing substantial agreement according

to Landis and Koch (1977). To compute precision at rank k, we average the judgments.

Thus, a system can receive a score of 0.0 (both judgments negative), 0.5 (judges dis-

agree), or 1.0 (both judgments positive) for each returned answer. To compute MRR,

we cannot simply average the judgments as MRR requires binary judgments whether

an item is correct or not. Instead, we report MRR on the union and the intersection of

the judgments. In the first case, the rank of the first correct item is the minimum rank of

any item judged correct by either judge. In the second case, the rank of the first correct

69

Model Rank = 1 Rank ≤ 2 Rank ≤ 3 P@1 P@2 P@3 MRR
Baseline 43 | 141 69 | 201 83 | 237 18.40 16.68 15.36 12.13 | 36.60
All 137 | 245 176 | 303 204 | 340 38.20 32.87 29.30 33.16 | 57.26

Table 5.6: Results of human evaluation. Rank and MRR results are shown for the
intersection (first value) and union (second value) of human judgments.

item is the minimum rank of any item judged correct by both judges. The results for

the human evaluation are shown in Table 5.6. The best system ALL outperforms the

BASELINE approach on all measures. It receives a precision at rank 1 of 38.20% and

a MRR of 33.16% (intersection) and 57.26% (union). Table 5.7 shows examples from

the test set.

Unfortunately, comparison of our results with previous work is complicated by the

fact that there currently exists no standard data set for lexical choice error correction.

With the NUCLE corpus now publicly available, we hope that it will allow researchers

to more directly compare their results in future.

5.5 Analysis

In this section, we analyze and categorize those test instances for which the ALL sys-

tem could not produce an acceptable correction in the top 3 candidates. We manually

analyze 100 test sentences for which neither judge had deemed any candidate answer to

be a valid correction. Based on our findings, we categorize the 100 sentences into eight

categories which are shown below. Table 5.8 shows examples from each category.

Out-of-vocabulary (21/100) The most frequent reason why the system does not pro-

duce a good correction is that the erroneous lexical choice is out of vocabulary. These

lexical choice errors often involve compound words, like man-hours or carefully-nurturing,

or infrequent expressions, like copy phenomena, which do not appear in the FBIS paral-

lel corpus. We expect that this problem can be reduced by using larger parallel corpora

for paraphrase extraction.

Near miss (18/100) The second largest category consists of instances where the system

barely misses the gold standard answer. This includes cases where the extracted L1-

70

Original it must be clear, concise and unambiguous to prevent any off-track
Gold it must be clear, concise and unambiguous to avoid any off-track

All it must be clear, concise and unambiguous to avoid any off-track
it must be clear, concise and unambiguous to stop any off-track
it must be clear, concise and unambiguous to block any off-track

Baseline *it must be clear, concise and unambiguous to present any off-track
it must be clear, concise and unambiguous to forestall any off-track
*it must be clear, concise and unambiguous to lock any off-track

Original although many may agree that public spending on the eldery should
be limited . . .

Gold although many may argue that public spending on the eldery should
be limited . . .

All although many may believe that public spending on the eldery should
be limited . . .
although many may think that public spending on the eldery should
be limited . . .
although many may accept that public spending on the eldery should
be limited . . .

Baseline *although many may agreed that public spending on the eldery should
be limited . . .
*although many may hold that public spending on the eldery should
be limited . . .
*although many may agrees that public spending on the eldery should
be limited . . .

Table 5.7: Examples of test sentences with the top 3 answers of the ALL and BASELINE

system. An answer judged incorrect by at least one judge is marked with an asterisk
(*).

71

Out of vocabulary . . . many illegal copy phenomena (copy phenomena,
copies) in china.
. . . lead to reduced man-hours (man-hours, productivity)
as people fall sick . . .

Near miss . . . smaller groups of people, sometimes
even (more, only) individual .
. . . take pre-emptive actions (activities, measures) . . .

Function/auxiliary words . . . entertainment an eldery person can have (be, enjoy) .
. . . and the security issue is solved also (and, too)

Discourse specific . . . make other countries respect and fear
you (<question mark>, a country)
. . . will contribute nothing to the accident
(explosion, problem) .

Spelling errors this incidence (rate, incident) had also resulted
in 4 fatalities . . .
refrigerator did not compromise (yield, comprise)
of any moving parts . . .

Word sense . . . refers to the desire or shortage of a good
(better, commodity) and . . .
. . . members are always from different
majors (major league, specialities)

Preposition . . . can be an area worth investing (investing, investing in)
. . . in spending their resources (resources, resources on)

Others this might redirect (make sound, reduce) foreign
investments . . .
. . . a trading hub since british ’s (british ’s, british) rule.

Table 5.8: Examples of sentences without valid corrections by the ALL model. The top
1 suggestion of the system and the gold answer (in bold) are shown in parenthesis.

72

paraphrases do not contain the exact phrase required, e.g., the paraphrase table contains

even→ only get when the gold correction is even→ only, or the phrase table actually

contains the gold answer but fails to rank it among the top 3 answers. The first problem

could be addressed by modifying the phrase extraction heuristic to produce more fine-

grained phrase pairs. The second problem requires a better language model. Although

the language model is trained on the large English Gigaword corpus, it is not always

successful in promoting the correct candidate to the top. The domain mismatch between

the newswire domain of Gigaword and student essays could be one reason for this.

Function/auxiliary words (14/100) We observe that lexical choice errors that involve

function words or auxiliary words are not handled very well by our model. Function

words and auxiliary words in English lack direct counterparts in Chinese, which is why

the word alignments and therefore the extracted phrases for these words contain a high

amount of noise. As function words and auxiliaries are essentially a closed set, it might

be more promising to build separate models with fixed confusion sets for them.

Discourse specific (14/100) Some of the gold answers are highly specific to the par-

ticular discourse that they appear in. As our model corrects lexical choice errors at the

sentence level, such gold answers will be very difficult or impossible to determine cor-

rectly. Including more context beyond the sentence level might help to overcome this

problem, although it is not easy to integrate this larger context information.

Spelling errors (9/100) Some of the lexical choice errors are caused by spelling mis-

takes, e.g., incidence instead of incident. Although the ALL model includes candidates

which are created through edit distance, paraphrase candidates created from the mis-

spelled word can dominate the top 3 ranks, e.g. rate and frequently are paraphrases

of incidence. A possible solution would be to perform spell-checking as a separate

pre-processing step prior to lexical choice correction.

Word sense (7/100) Some of the failures of the model can be attributed to ambiguous

senses of the source phrase. As we do not perform word sense disambiguation, candi-

dates from other word senses can end up as the top candidates. Including word sense

disambiguation into the model might be able to help, although accurate word sense

73

disambiguation on noisy learner text is not easy.

Preposition (6/100) Some of the lexical choice errors involve preposition constructions,

e.g., the student wrote attend instead of attend to. Because prepositions do not have a

direct counterpart in Chinese, the L1-paraphrases do not model their semantics very

well. This category is closely related to the function/auxiliary word category. Again,

since prepositions are a closed set, it might be more promising to built a separate model

for them, like the one described in the last chapter.

Others (11/100) Other mistakes include lexical choice errors where the gold answer

slightly changed the semantics of the target word, e.g., redirect potential foreign in-

vestments→ reduce potential foreign investments, active-passive alternation (enhanced

economics → was economical), and noun possessive errors (british ’s rule → british

rule).

5.6 Conclusion

In this chapter, we have presented a novel approach for correcting lexical choice er-

rors in written learner text. Our approach exploits the semantic similarity of words in

the writer’s L1-language based on paraphrases extracted from an L1-English parallel

corpus. Experiments on real-world learner data show that our approach outperforms

traditional approaches based on edit distance, homophones, and synonyms by a large

margin.

74

Chapter 6

A Pipeline Architecture for

Grammatical Error Correction

The previous chapters have presented grammatical error correction approaches such

that each chapter focuses on a particular error category. An error correction system

that can only correct one type of error will be of limited use to a language learner in

a practical application. Instead, a practical error correction system has to be able to

correct the various types of errors that language learners make. Thus, development and

evaluation of more comprehensive end-to-end error correction systems is an important

step towards building a practical error correction system for language learners.

In this chapter, we present a pipeline architecture for end-to-end grammatical error

correction systems. The idea is simple: the system consists of a pipeline of sequential

correction steps. Each step corrects a single error type. The correction algorithm can

be a learning-based classifier or a rule-based approach. The proposed corrections after

every step are filtered using a language model and only corrections that strictly increase

the language model score are kept. The output of one step serves as the input to the next

step. The output of the last correction step is the final output of the system.

The architecture is evaluated in the context of the two Helping Our Own (HOO)

shared tasks which were the first public evaluation campaigns for end-to-end grammat-

ical error correction systems. Our group from NUS participated in both shared tasks

75

with systems that used the pipeline architecture described above. The NUS submission

achieved the second highest correction F1 score in the HOO 2011 shared task and the

highest correction F1 score in the HOO 2012 shared task. The results were published

as part of the proceedings of the HOO shared tasks in (Dahlmeier et al., 2011) and

(Dahlmeier et al., 2012), respectively.

The remainder of this chapter is organized as follows. The next section describes the

two HOO shared tasks. Section 6.2 describes the architecture of the systems in detail.

Section 6.3 describes the features used. Section 6.4 presents the experimental setup and

Section 6.5 the results. Section 6.6 provides further discussion. Section 6.7 concludes

the chapter.

6.1 The HOO Shared Tasks

HOO 2011

The Helping Our Own 2011 (HOO 2011) (Dale and Kilgarriff, 2011)10 shared task

was the first shared task for grammatical error correction. The organizers of the shared

task, Robert Dale and Adam Kilgariff, were motivated by the fact that for NLP re-

searchers, language is both the subject of their scientific work as well as a medium to

communicate their research. Scientific proceedings are routinely published in English

but many researchers are not native English speakers. Writing fluent English papers can

be challenging for them. At the same time, the NLP community has developed mature

algorithms to analyze English text. The natural conclusion for the organizers was to

suggest a shared task that would utilize this know-how to develop authoring tools that

help our own researchers to write better papers. That is why the shared task was called

“Helping Our Own”. In the shared task, participants were provided with a set of doc-

uments extracted from papers written by non-native speakers of English. The task was

to automatically detect and correct any type of grammatical error. The full set of error

categories included in the task can be found in (Nicholls, 2003). Participants could ei-

10The first HOO shared task was simply called “Helping Our Own (HOO)”. To avoid confusion with
the HOO 2012 shared task, we refer to the HOO shared task in 2011 as HOO 2011.

76

ther submit the corrected text produced by their system or a set of corrections (called

edits).

HOO 2012

The HOO 2012 shared task (Dale et al., 2012) changed the tasks from correcting the

writing of NLP researchers to the more general task of correcting the writing of EFL

students. The organizers further decided to restrict the task from correcting any type of

error to the correction of determiner and preposition errors, which are the most frequent

errors made by EFL students. In the HOO 2012 shared task, participants had to submit

a set of corrections. The submission of plain text output was not allowed. Evaluation in

both HOO shared tasks was done by computing precision, recall, and F1 score between

the system edits and a manually created set of gold-standard edits (corrections).

6.2 System Architecture

In this section, we describe the pipeline architecture of the NUS systems that partic-

ipated in the HOO 2011 and HOO 2012 shared tasks. Both systems target spelling,

article, and preposition errors in a pipeline of rule and classifier-based correction steps.

Each correction step takes one-sentence-per-line plain text as input and outputs a one-

sentence-per-line plain text in return. Both systems treat article and preposition cor-

rection as classification problems. We use linear classifiers to predict the correct word

from a confusion set of possible correction options. Separate classifiers are built for

article, preposition replacement, preposition insertion, and preposition deletion errors.

Each article or preposition correction step involves three internal steps:

1. Feature extraction

2. Classification

3. Language model filter

77

Feature extraction first analyzes the syntactic structure of the input sentences (POS tag-

ging, chunking, and parsing) and identifies relevant instances for correction (e.g., all

noun phrases (NP) for article correction). Each instance is mapped to a real-valued fea-

ture vector. Next, a classifier predicts the most likely correction for each feature vector.

Finally, the proposed corrections are filtered using a language model and only correc-

tions that strictly increase the language model score are kept. There is no additional

threshold parameter for the language model filter.

HOO 2011

For the HOO 2011 shared task, the NUS system consists of a sequential pipeline of

three processing steps:

1. Spelling correction

2. Article correction

3. Replacement preposition correction

HOO 2012

For the HOO 2012 shared task, the pipeline contains an additional step for preposition

insertion and deletion correction.

1. Spelling correction

2. Article correction

3. Replacement preposition correction

4. Missing and unwanted preposition correction

The details of each processing step are presented in the remainder of this section.

78

6.2.1 Pre- and Post-Processing

Sentence segmentation and tokenization are carried out on the input files in a pre-

processing step. In the case of the HOO 2012 shared task, we noticed that some

documents were written in all upper case. That has a negative effect on tagging and

classification accuracy. Therefore, in the HOO 2012 shared task, pre-processing addi-

tionally involves case normalization. We automatically identify and re-case upper-case

documents using a standard re-casing model from statistical machine translation. Re-

casing is modeled as monotone decoding (without reordering) involving translation of

an un-cased sentence to a mixed-case sentence. A post-processing step detokenizes the

final output after the last step and extracts the edit structures that encode the corrections.

The edit structures are the submission to the shared task.

6.2.2 Spelling Correction

The first correction step in the pipeline is spelling correction. Spelling correction is

performed first as spelling errors can have a negative effect on tagging and classifica-

tion accuracy. Although in HOO 2012, spelling errors were not part of the errors that

need to be corrected, spelling correction was still performed to improve the accuracy of

subsequent correction steps.

We use an open-source spell checker to correct spelling errors. Words are excluded

from spelling correction if they are shorter than a threshold (set to 4 characters in this

system), or if they include hyphens or upper case characters inside the word. For the

HOO 2011 shared task that contains texts from a specialized domain, we use an in-

domain spelling dictionary constructed from all words that appear at least ten times in

the ACL-ANTHOLOGY data set described in Section 6.4.1. For the HOO 2012 shared

task, all words that appear at least ten times in the HOO 2012 training data are added to

the standard spelling dictionary. Finally, all spelling corrections proposed by the spell

checker are filtered using a language model.

79

6.2.3 Article Errors

In HOO 2011 and HOO 2012, article errors are part of the larger class of determiner

errors. Determiner errors consist of three error types: replacement determiner (RD),

missing determiner (MD), and unwanted determiner (UD). In addition to the indefinite

and definite article and the null article (a, an, the, null article ε), determiner errors in-

clude other words like demonstratives (this, that) and possessives (my, her). In practice,

however, article errors account for the majority of determiner errors. We therefore focus

our efforts on errors involving only articles.

Correction as Classification

We treat article error correction as a multi-class classification problem. A classifier is

trained to predict the correct article from a confusion set of possible article choices {a,

the, ε}, given the sentence context. The article an is normalized as a and restored later

using a rule-based heuristic. During training, every NP in the training data generates

one training example. The class y ∈{a, the, ε} is the correct article that the classifiers

should learn to predict. When training on learner text, the correct article is either the

article annotated by the gold standard or the observed article used by the writer if the

article is not annotated (i.e., the article is correct). When training on non-learner text,

the text is assumed to be free of grammatical errors and the correct article equals the

observed article used by the writer. The surrounding context is represented as a real-

valued feature vector x ∈ X . The features of the classifiers are described in detail in

Section 6.3. If the classifier is trained on non-learner text, the features are only extracted

from the surrounding context. The article itself cannot be included in the features as it

would be fully predictive of the class. If the classifier is trained on annotated learner

text, the observed article can be used as a feature. However, as pointed out in Chapter 4,

one challenge in training classifiers for grammatical error correction on learner text is

that the data is highly skewed. Training examples without any error (i.e., the observed

article equals the correct article) greatly outnumber those examples with an error (i.e.,

the observed article is different from the correct article). As the observed article is

80

highly correlated with the correct article, the observed article is a valuable feature (Ro-

zovskaya and Roth, 2010b; Dahlmeier and Ng, 2011b). However, the high correlation

can have the undesirable effect that the classifier always predicts the observed article

and never proposes any corrections. To mitigate this problem, we re-sample the train-

ing data when training on learner text, either by oversampling examples with an error or

undersampling examples without an error. The sampling parameter is chosen through a

grid search so as to maximize the F1 score on the development data. After training, the

classifier can be used to predict the correct article for NPs from new unseen sentences.

During testing, every NP in the test data generates one test example. If the article

predicted by the classifier differs from the observed article and the difference between

the classifier’s confidence score for its first choice and the classifier’s confidence score

for the observed article is higher than some threshold parameter t, the observed article is

replaced by the proposed correction. The threshold parameter t is tuned through a grid

search so as to maximize the F1 score on the development data. In the HOO 2011 shared

task, we use a single threshold value per classifier. In the HOO 2012 shared task, we

use a separate threshold parameter value for each class which we found worked better

than using a single threshold value.

Language Model Filter

All corrections are filtered using a large language model. Only corrections that strictly

increase the normalized language model score of a sentence are kept. The normalized

language model score is defined as

scorelm =
1

|s| logPr(s), (6.1)

where s is the corrected sentence and |s| is the sentence length in tokens. The final set

of article corrections is applied to an input sentence (i.e., replacing the observed article

with the predicted article).

81

6.2.4 Replacement Preposition Correction

Replacement preposition correction (RT) follows the same strategy of multi-class clas-

sification and language model filtering as article correction but with a different confu-

sion set and different features. For the HOO 2011 shared task, the confusion set consists

of the prepositions about, among, at, by, for, in, into, of, on, to, and with. For the HOO

2012 shared task, we expanded the confusion set to the 36 prepositions from the prepo-

sition classifier presented in Chapter 411. These prepositions account for the majority of

preposition replacement errors in the HOO 2012 training data. During training, every

prepositional phrase (PP) in the training data which is headed by a preposition from

the confusion set generates one training example. The class y is the correct preposi-

tion, either as annotated in the gold standard (learner text) or as observed in the text

(non-learner text). During testing, every PP in the test data which is headed by a prepo-

sition from the confusion set generates one test example. Again, we apply a threshold

to bias the classifier towards the observed preposition. For HOO 2011, we use a single

threshold value. For HOO 2012, we use a separate threshold parameter value for each

preposition. Finally, we filter all corrections with a large language model.

6.2.5 Missing Preposition Correction

For our participating system in HOO 2012, the pipeline further corrects missing and

unwanted preposition errors for the seven most frequently missed or wrongly inserted

prepositions in the HOO 2012 training data. These preposition are about, at, for, in, of,

on, and to. While developing the system, we found that adding more prepositions did

not increase performance in our experiments.

We treat missing preposition (MT) correction as a binary classification problem. Al-

ternatively, missing preposition error correction could be treated as a multi-class prob-

lem, but we found that binary classifiers gave better performance in initial experiments.

For each preposition p, we train a binary classifier that predicts the presence or absence

11about, along, among, around, as, at, beside, besides, between, by, down, during, except, for, from,
in, inside, into, of, off, on, onto, outside, over, through, to, toward, towards, under, underneath, until, up,
upon, with, within, without

82

of that preposition. Thus, the confusion set consists only of the preposition p and the

“null preposition”. During training, we require examples of contexts where p should be

used and where it should be omitted. As prepositions typically appear before NPs, we

take every NP in the training data as one training example. If the preposition p appears

right in front of the NP (i.e., the preposition p and the NP form a PP), the example is

a positive example, otherwise (i.e., another preposition or no preposition appears be-

fore the NP) it is a negative example. During testing, every NP which does not directly

follow a preposition generates one test example. If the classifier predicts that the prepo-

sition p should have been used in this context with sufficiently high confidence and

inserting p increases the normalized language model score, p is inserted before the NP.

6.2.6 Unwanted Preposition Correction

Unwanted preposition correction (UT) is treated as a binary classification problem simi-

lar to missing preposition correction but with different training and test examples. When

training the classifier for preposition p, every PP where the writer used the preposition

p is one training example. If the gold-standard annotation labels p as unwanted, the

example is a positive example for deleting p, otherwise it is a negative example. During

testing, every PP with the preposition p generates one test example. If the classifier pre-

dicts that p should be deleted with sufficiently high confidence and deleting p increases

the normalized language model score, p is deleted. We found that separate classifiers

for missing and unwanted preposition correction gave slightly better results compared to

using a single classifier for both tasks. As the test examples for missing and unwanted

preposition correction of a preposition p are disjoint, both steps can be performed in

parallel. This also prevents the case of the system “contradicting” itself by first insert-

ing a preposition and later deleting it. We perform missing preposition correction and

unwanted preposition correction for each preposition in turn, before moving to the next

preposition.

83

6.2.7 Learning Algorithm

All correction steps except spelling correction use a linear classifier. There exist var-

ious learning algorithms to train linear classifiers. In the HOO 2011 task, we use the

empirical risk minimization batch algorithm with least square regularization that was

used in Chapter 4. This learning algorithm showed good performance compared to a

maximum entropy learning algorithm in earlier experiments. In the HOO 2012 shared

task, we changed the learning algorithm to confidence-weighted (CW) learning (Dredze

et al., 2008; Crammer et al., 2009), which has been shown to perform well for NLP

problems with high dimensional and sparse feature spaces. Instead of keeping a single

weight vector, CW learning maintains a distribution over weight vectors, parametrized

by a multivariate normal distribution N (µ,Σ) with mean µ and covariance matrix

Σ. In practice, Σ is often approximated by a diagonal matrix (Dredze et al., 2008).

CW is an online learning algorithm that proceeds in rounds over a labeled training set

((y1,x1), (y2,x2), . . . , (yn,xn)), one example at a time. After the i-th round, CW learn-

ing updates the distribution over weight vectors such that the i-th example is predicted

correctly with probability at least 0 < η < 1 while choosing the update step that mini-

mizes the Kullback-Leibler (KL) distance from the current distribution. The CW update

rule is:

(µi+1,Σi+1) = (6.2)

arg min
µ,Σ

DKL (N (µ,Σ)||N (µi,Σi))

s.t. Pr[yi|xi,µ,Σ] ≥ η.

Dredze et al. (2008) show that in the binary case, the CW update rule has a closed-form

solution. In the multi-class case, there exists no closed-form solution but the solution

can be efficiently approximated. We use sequential many-constraint updates (Crammer

et al., 2009) and the Variance approximation method (Dredze et al., 2008) to solve

the update equation. We set the “aggressiveness” parameter φ in the learning algorithm

to a default value 0.01 and do updates with 2 constraints. We run two epochs over the

84

training set which appears to be sufficient for the classifier to converge. Fine-tuning

any of these parameters did not show much effect in initial experiments. Finally, we

average the classifiers (Freund and Schapire, 1999) learned during training to form

the final classifier which is used for testing. The CW learning algorithm performed

slightly better than the empirical risk minimization batch learning algorithm while being

significantly faster during training.

6.3 Features

The choice of features can have an important effect on classification performance. For

the HOO 2011 shared task, we adopt the features proposed by Han et al. (2006) for

article correction and the features proposed by Tetreault and Chodorow (2008b) for

preposition replacement correction. These features include lexical and POS N-grams,

and chunk features which are commonly used features for grammatical error correction.

The feature sets were chosen because they had shown good performance in the ASO

classification experiments in Chapter 4.

For the HOO 2012 shared task, we extended and improved the feature sets. We

added additional features from the HOO 2011 system by Rozovskaya et al. (2011) and

dependency parse features based on the work of Tetreault et al. (2010) who showed that

parse features can further increase performance. For all the above features, the observed

article or preposition used by the writer is “blanked out” when computing the features.

However, we add the observed article or preposition as an additional feature for article

and replacement preposition correction. The features described so far are all binary-

valued, i.e., they indicate whether some feature is present in the input or not. Another

way is to construct real-valued N-gram features by counting the log frequency of surface

N-grams on the web or in a web-scale corpus (Bergsma et al., 2009). Web-scale N-

gram count features can harness the power of the web in connection with supervised

classification and have successfully been used for a number of NLP generation and

disambiguation problems (Bergsma et al., 2009; Bergsma et al., 2010). However, we

85

Feature Example
Lexical features
First word in NP† black
Word i before NP (i = 1, 2) {on, sat}
Word i after (i = 1, 2)† {black, door}
Word after NP period
Bag of words in NP† {black, door, mat}
POS features
First POS in NP JJ
POS i before NP (i = 1, 2) {IN, VBD}
POS after NP period
Bag of POS in NP {JJ, NN, NN}
Head word features
Head of NP† mat
Head POS NN
Head countable yes

Table 6.1: HOO 2011 features for article correction. Example: “The cat sat on the black
door mat.” † : lexical tokens in lower case.

are not aware of any previous application in grammatical error correction. Web-scale

N-gram count features usually use N-grams of consecutive tokens. The release of web-

scale parsed corpora like the WaCky project (Baroni et al., 2009) makes it possible to

extend the idea to dependency N-grams of child-parent tuples over the dependency arcs

in a dependency parse tree, e.g., {(child, node), (node, parent)} for bigrams, {(child’s

child, child, node), (child, node, parent), (node, parent, parent’s parent)} for trigrams.

We collect log frequency counts for dependency N-grams from a large dependency-

parsed web corpus and use the log frequency count as a feature. We normalize all

real-valued feature values to a unit interval [0, 1] to avoid features with larger values

dominating features with smaller values.

For the HOO 2011 shared task, the exact features for article correction and replace-

ment preposition correction are listed in Tables 6.1 and 6.2, respectively. For HOO

2012, the features used for article correction, replacement preposition correction, and

missing and unwanted preposition correction are listed in Tables 6.3, 6.4, 6.5, and 6.6,

respectively. The features were chosen empirically through experiments on the devel-

opment data.

86

Feature Example
Lexical and POS features
N-grams (N = 2, 3) {sitting_X, X_the, .. }
POS N-grams (N = 2, 3) {VBG_X, X_DT, .. }
Head word features
Head of prev VP† sitting
Head of prev NP† cat
Head of next NP† mat
Head prev NP + head next NP† cat+mat
POS head prev NP NN+NN

+POS head next NP
Head prev VP + head prev NP sitting+cat+mat

+ head next NP†
POS head prev VP VBG+NN+NN

+ POS head prev NP
+ POS head next NP

Table 6.2: HOO 2011 features for for replacement preposition correction. Example:
“He saw a cat sitting on the mat.” †: lexical tokens in lower case.

6.4 Experiments

In this section, we report experimental results of the pipeline systems for the HOO 2011

and HOO 2012 shared tasks. For each shared task, we report results on two different

data sets: a held-out development test split of the released training data and the official

test set. In both the HOO 2011 and the HOO 2012 shared task, we only submitted one

run of the system for evaluation although participants were allowed to submit multiple

runs.

6.4.1 Data Sets

HOO 2011

As we have described in Chapter 3, there were no large, publicly available learner cor-

pora available at the time the HOO 2011 task was announced. Fortunately for the NLP

domain, the ACL Anthology12 and the ACL Anthology Reference Corpus (ARC) (Bird

et al., 2008) represented a large, freely available resource for developing algorithms for

HOO 2011, even though the data is not annotated with grammatical errors. The HOO

2011 organizers selected a subset of 19 papers from the ACL Anthology which were

then annotated for grammatical errors. For system development, we randomly split the

files into a tuning set HOO2011-TUNE (9 files) and a held-out development test set

12http://www.aclweb.org/anthology-new

87

Feature Example
Lexical features
Observed article† the
First word in NP† black
Word i before (i = 1, 2, 3)† {on, sat, ..}
Word i before NP (i = 1, 2) {on, sat, ..}
Word + POS i before (i = 1, 2, 3)† {on+IN, sat+VBD, ..}
Word i after (i = 1, 2, 3)† {black, door, ..}
Word after NP period
Word + POS i after (N = 1, 2)† {period+period, .. }
Bag of words in NP† {black, door, mat}
N-grams (N = 2, .., 5)‡ {on_X, X_black, .. }
Word before + NP† on+black_door_mat
NP + N-gram after NP { black_door_mat+period, ..}

(N = 1, 2, 3)†
Noun compound (NC)† door_mat
Adj + NC† black+door_mat
Adj POS + NC† JJ+door_mat
NP POS + NC† JJ_NN_NN+door_mat
POS features
First POS in NP JJ
POS i before (i = 1, 2, 3) {IN, VBD, ..}
POS i before NP (i = 1, 2) {IN, VBD, ..}
POS i after (i = 1, 2, 3) {JJ, NN, ..}
POS after NP period
Bag of POS in NP {JJ, NN, NN}
POS N-grams (N = 2, .., 4) {IN_X, X_JJ, .. }
Head word features
Head of NP† mat
Head POS NN
Head word + POS† mat+NN
Head number singular
Head countable yes
NP POS + head† JJ_NN_NN+mat
Word before + head† on+mat
Head + N-gram after NP † mat+period, ..

(N = 1, 2, 3)
Adjective + head† black+mat
Adjective POS + head† JJ+mat
Word before + adj + head† on+black+mat
Word before + adj POS + head† on+JJ+mat
Word before + NP POS + head† on+JJ_NN_NN+mat
Web N-gram count features
Web N-gram log counts {log freq(on a black),
N = 3, .., 5 log freq(on the black),

log freq(on black),..}
Dependency features
Dep NP head-child† {mat-black-amod, ..}
Dep NP head-parent† mat-on-pobj
Dep child-NP head-parent† {black-mat-on-amod-pobj, ..}

Table 6.3: HOO 2012 features for article correction. Example: “The cat sat on the black
door mat.” † : lexical tokens in lower case, ‡: lexical tokens in both original and lower
case.

88

Feature Example
Preposition features
Prep before + head on+mat
Prep before + NC on+door_mat
Prep before + NP on+black_door_mat
Prep before + adj + head on+black+mat
Prep before + adj POS + head on+JJ+mat
Prep before + adj + NC on+black+door_mat
Prep before + adj POS + NC on+JJ+door_mat
Prep before + NP POS + head on+JJ_NN_NN+mat
Prep before + NP POS + NC on+JJ_NN_NN+door_mat

Verb object features
Verb obj† sat_on
Verb obj + head† sat_on+mat
Verb obj + NC† sat_on+door_mat
Verb obj + NP† sat_on+black_door_mat
Verb obj + adj + head† sat_on+black+mat
Verb obj + adj POS + head† sat_on+JJ+mat
Verb obj + adj + NC† sat_on+black+door_mat
Verb obj + adj POS + NC† sat_on+JJ+door_mat
Verb obj + NP POS + head† sat_on+JJ_NN_NN+mat
Verb obj + NP POS + NC† sat_on+JJ_NN_NN+door_mat

Table 6.3: (continued)

HOO2011-DEVTEST (10 files). The official HOO 2011 test data (HOO2011-TEST)

is completely unobserved during development. We create two training data sets from

the ACL Anthology: ACL-ANTHOLOGY includes all non-OCR documents from the

Anthology except the 2010 ACL conference and workshop proceedings as these over-

lap with the HOO data13. CL-JOURNAL contains all non-OCR documents from the

Computational Linguistics journal. In both cases, we filter out section headings, refer-

ences, tables, etc. The WEB 1T 5-GRAM CORPUS (Brants and Franz, 2006) is used to

build the language modeling filter for article and preposition correction. For spelling

correction, the language model filter is built from the ACL-ANTHOLOGY data set. In

both cases, we build 5-gram language models with Stupid Back-off smoothing (Brants

et al., 2007). The linear classifiers for article and preposition correction are trained on

the CL-JOURNAL data set. Threshold parameters are tuned on HOO2011-TUNE when

testing on HOO2011-DEVTEST, and on the complete HOO 2011 training data when

testing on HOO2011-TEST.

13Although the use of the HOO 2011 source documents was permitted, we believe that excluding them
is more realistic.

89

Features Example
Lexical and POS features
Observed preposition† on
Word i before (i = 1, 2, 3)† {sitting, cat, ..}
Word i after (i = 1, 2, 3)† {the, mat, ..}
N-grams (N = 2, .., 5)‡ {sitting_X, X_the, .. }
POS N-grams (N = 2, 3) {VBG_X, X_DT, .. }
Head word features
Head of prev VP† sitting
POS head of prev VP VBG
Head of prev NP† cat
POS head of prev NP NN
Head of next NP† mat
POS head of next NP NN
Head prev NP + head next NP† cat+mat
POS head prev NP NN+NN

+POS head next NP
Head prev VP + head prev NP sitting+cat+mat

+ head next NP†
POS head prev VP VBG+NN+NN

+ POS head prev NP
+ POS head next NP

N-gram before + {sitting+mat}
head of next NP (N = 1, 2)†

Web N-gram count features
Web N-gram log counts {log freq(sitting at),
N = 2, .., 5 log freq(sitting in),

.., log freq(sitting on),
.., log freq(sitting with), ..}

Web dep N-gram log counts {log freq(sitting-at),
N = 2, 3 log freq(sitting-in),

.., log freq(sitting-on),
.., log freq(sitting-with),

.., log freq(at-mat),
.., log freq(on-mat),

.., log freq(with-mat),
.., log freq(sitting-at-mat), ..

.., log freq(sitting-on-mat), ..}
Dependency features
Dep parent† sitting
Dep parent POS VBG
Dep parent relation prep
Dep child† {mat}
Dep child POS {NN}
Dep child relation {pobj}
Dep parent+child† sitting+mat
Dep parent POS+child POS† VBG+NN
Dep parent+child POS† sitting+NN
Dep parent POS+child† VBG+mat
Dep parent+relation† sitting+prep
Dep child+relation† mat+pobj
Dep parent+child+relation† sitting+mat+prep+pobj

Table 6.4: HOO 2012 features for replacement preposition correction. Example: “He
saw a cat sitting on the mat.” †: lexical tokens in lower case, ‡: lexical tokens in both
original and lower case.

90

Features Example
Lexical and POS features
Word i before (i = 1, 2, 3)† {sitting, cat, ..}
Word i after (i = 1, 2, 3)† {the, mat, ..}
N-grams (N = 2, .., 5)‡ {sitting_X, X_the, .. }
POS N-grams (N = 2, 3) {VBG_X, X_DT, .. }
Head word features
Head of prev VP† sitting
POS head of prev VP VBG
Head of prev NP† cat
POS head of prev NP NN
Head of next NP† mat
POS head of next NP NN
Head prev NP + head next NP† cat+mat
POS head prev NP NN+NN

+ POS head next NP
Head prev VP + head prev NP sitting+cat+mat

+ head next NP†
POS head prev VP VBG+NN+NN

+ POS head prev NP
+ POS head next NP

N-gram before + {sitting+mat, ..}
head of next NP (N = 1, 2)†

Web N-gram count features
Web N-gram log counts {log freq(sitting on the),
N = 3, .., 5 log freq(sitting the),

.. ,log freq(sitting on the mat),

.., log freq(sitting the mat), ..}

Table 6.5: HOO 2012 features for missing preposition correction. Example: “He saw
a cat sitting the mat.”† : lexical tokens in lower case, ‡: lexical tokens in both original
and lower case.

Features Example
Web N-gram count features
Web N-gram log counts {log freq(went to home),
N = 3, .., 5 log freq(went home),

.. ,log freq(cat went to home),
.., log freq(cat went home), ..}

Table 6.6: HOO 2012 features for unwanted preposition correction. Example: “The cat
went to home.”

91

HOO 2012

The HOO 2012 training data consists of 1,000 documents together with gold-standard

annotation. The documents are a subset of the 1,244 documents in the Cambridge

Learner Corpus FCE (First Certificate in English) data set (Yannakoudakis et al., 2011).

The HOO 2012 gold-standard annotation only contains edits for six determiner and

preposition error types and discards all other gold edits from the original FCE data set.

This can lead to “wrong” gold edits that produce ungrammatical sentences, like the

following sentence

There are a lot of possibilities (ε→ of) to earn some money ...

where the preposition of is inserted before to earn. The FCE data set contains another

edit (to earn→ earning) but this edit is not included in the HOO 2012 gold annotation.

This necessarily introduces noise into the training data as a classifier trained on this

data will learn that inserting of before to earn is correct. We sidestep this problem by

directly using the FCE data set for training, and applying all gold edits except the six

determiner and preposition error types. This gives us training data that only contains

those types of grammatical errors that we are interested in. Note that this only applies

to the training data. For the development and development test data, we use the HOO

2012 released data where the texts contain all types of errors and do not make use of

the annotations in the FCE data set. For system development, we randomly select 100

documents from the HOO 2012 training data as the development set (HOO2012-DEV)

and another 100 disjoint documents as the held-out development test set (HOO2012-

DEVTEST). We train classifiers on the remaining 1,044 documents of the FCE data set

(FCE(1044)), tune parameters on HOO2012-DEV, and test on HOO2012-DEVTEST.

For the final HOO 2012 shared task submission, we train classifiers on all FCE docu-

ments, except those 100 documents in HOO2012-DEV which are used for parameter

tuning. Finally, we fix all parameters and re-train the classifiers on the complete FCE

corpus (FCE(1244)). This allows us to make maximum use of the FCE corpus as train-

ing data. The official HOO 2012 test data (HOO2012-TEST), which is not part of the

92

Data set # Documents # Sentences # Tokens
HOO 2011
HOO2011-TUNE 9 462 10,691
HOO2011-DEVTEST 10 477 12,115
HOO2011-TEST 18 722 18,790
ACL-ANTHOLOGY 8,618 708,129 18,020,431
CL-JOURNAL 201 22,934 611,334
HOO 2012
FCE(1044) 1,044 22,434 339,902
FCE(1244) 1,244 28,033 423,850
HOO2012-DEV 100 2,798 42,347
HOO2012-DEVTEST 100 2,674 41,518
HOO2012-TEST 100 1,393 20,563

Table 6.7: Overview of the data sets in the HOO 2011 and HOO 2012 experiments.

FCE corpus, is completely unobserved during system development. The HOO 2011

and HOO 2012 data sets are described in more detail in Chapter 3.

Besides the FCE and HOO 2012 data sets, we use the following corpora for the HOO

2012 pipeline system. The Google Web 1T 5-gram corpus (Brants and Franz, 2006) is

used for language modeling and collecting N-gram counts, the PukWaC corpus from

the WaCky project (Baroni et al., 2009) is used for collecting web-scale dependency

N-gram counts, and the New York Times section of the Gigaword corpus14 and all

normal-cased documents in the HOO 2012 training data are used for training the re-

casing model. All data sets used in our system are publicly available. Table 6.7 gives

an overview of the data sets.

6.4.2 Resources

We use the following NLP tools and resources in the pipeline system. Sentence splitting

is performed with the NLTK toolkit.15 For spelling correction, we use the free software

Aspell16. We use the OpenNLP tools (version 1.5.2)17 for POS tagging, YamCha (ver-

sion 0.33) (Kudo and Matsumoto, 2003) for chunking, and the MaltParser (version

1.6.1) (Nivre et al., 2007) for dependency parsing. We use RandLM (Talbot and Os-
14LDC2009T13
15http://www.nltk.org
16http://aspell.net
17http://opennlp.apache.org

93

borne, 2007) for language modeling. The re-casing model for the HOO 2012 pipeline

is built with the MOSES SMT system (Koehn et al., 2007). The CuVPlus English dic-

tionary (Mitton, 1992) is used to determine the countability of nouns. The empirical

risk minimization algorithm was implemented by Chang Liu (Liu and Ng, 2007). The

learning algorithm was implemented by the thesis author. The source code for the CW

learning algorithm is available from the NUS NLP group website18.

6.4.3 Evaluation

Evaluation is performed by computing micro-averaged detection, recognition, and cor-

rection F1 score between the set of system edits and the set of gold-standard edits as

defined in Chapter 3 and the HOO 2011 and HOO 2012 overview papers (Dale and Kil-

garriff, 2011; Dale et al., 2012). The scores are computed over the entire test collections.

The official gold-standard edits are given in character offsets, while our system inter-

nally works with token offsets. Therefore, all token offsets are automatically mapped

back to character offsets for evaluation.

For individual error categories, the HOO 2011 overview paper only reports the “per-

centage of instances in each category that were detected, recognized and corrected”,

but not precision or F1 scores. Computing precision and F1 is complicated by the fact

that the HOO 2011 submission format does not require a system to “label” each pro-

posed correction with the intended error category. For the HOO 2012 shared task, each

correction had to be labeled with the appropriate error category, therefore calculating

precision, recall, and F1 score for each error category is straightforward. For the HOO

2012 shared task, we also report results for individual error categories.

For both shared tasks, evaluation on the official test sets is performed with respect

to two different gold standards: the original gold standard released by the task organiz-

ers and a revised version which was created in the shared tasks in response to change

requests from participating teams. For the HOO 2011 shared task, additionally each

score is reported under a “with bonus” alternative, where a system receives rewards for

18http://nlp.comp.nus.edu.sg/software

94

Step Detection Recognition Correction
wb w/o b wb w/o b wb w/o b

PRE 21.52 0.00 21.52 0.00 21.52 0.0
+SPEL 22.19 0.95 21.90 0.63 21.62 0.31
+ART 26.81 10.93 25.20 9.17 24.55 8.46
+PREP 29.73 13.54 27.63 11.23 26.57 10.08

Table 6.8: HOO 2011. Overall F1 scores with (wb) and without bonus (w/o b) on the
HOO2011-DEVTEST data after pre-processing (PRE), spelling (SPEL), article (ART),
and preposition correction (PREP).

Step Detection Recognition Correction
wb w/o b wb w/o b wb w/o b

PRE 13.39 0.00 13.39 0.00 13.39 0.00
+SPEL 14.57 1.36 14.20 0.97 14.02 0.78
+ART 24.94 14.73 23.30 13.05 19.80 9.34
+PREP 24.94 14.73 23.30 13.05 19.80 9.34

(a) Before revisions

Step Detection Recognition Correction
wb w/o b wb w/o b wb w/o b

PRE 15.53 0.00 15.53 0.00 15.53 0.00
+SPEL 16.63 0.93 16.29 0.93 16.11 0.75
+ART 27.18 15.52 25.45 13.73 22.09 10.14
+PREP 28.40 17.74 26.86 16.15 22.74 11.77

(b) After revisions

Table 6.9: HOO 2011. Overall F1 scores with (wb) and without bonus (w/o b) on the
HOO2011-TEST data.

missed optional edits. Scores are computed with the official scorer for the HOO 2011

and HOO 2012 shared tasks, respectively.

6.5 Results

HOO 2011

Tables 6.8 and 6.9 show the overall detection, recognition, and correction F1 scores

after each processing step on the HOO2011-DEVTEST and HOO2011-TEST set, re-

spectively. Each processing step builds on the output of the previous step. The single

biggest improvement in the score comes from the article correction step. The gap be-

tween the scores with and without bonus shows the large number of optional corrections

in the HOO 2011 data. Our pipeline system achieved the second highest F1 correction

score on the official HOO 2011 test set (Dale and Kilgarriff, 2011).

95

Step Recognition Correction
P R F1 P R F1

Det 62.26 12.68 21.06 54.09 11.01 18.30
+ RT 64.34 22.41 33.24 57.35 19.97 29.63
+ MT/UT 60.75 28.94 39.20 54.84 26.12 35.39

Table 6.10: HOO 2012. Overall precision, recall, and F1 score on the HOO2012-
DEVTEST data after article correction (Det), replacement preposition correction (RT),
and missing and unwanted preposition correction (MT/UT).

HOO 2012

Tables 6.10 and 6.12 show the overall precision, recall and F1 score of the system after

each processing step on the held-out HOO2012-DEVTEST set and the official HOO

2012 test set, respectively. All numbers are shown in percentages. We note that each

processing step improves the overall performance. Tables 6.11 and 6.13 show indi-

vidual precision, recall, and F1 score for each of the six error types, and for articles

(Det: aggregate of RD, MD, UD) and prepositions (Prep: aggregate of RT, MT, UT)

on the held-out HOO2012-DEVTEST set and the official test set HOO2012-TEST, re-

spectively. The final F1 correction score achieved by our pipeline system on the official

HOO 2012 test set is 28.70% before revision and 37.83% after revision, which are the

highest scores achieved by any participating team in the shared task (Dale et al., 2012).

Type Recognition Correction
P R F1 P R F1

RD 30.00 5.66 9.52 30.00 5.66 9.52
MD 69.67 41.67 52.15 59.02 35.29 44.17
UD 40.74 11.00 17.32 40.74 11.00 17.32
Det 62.26 27.73 38.37 54.09 24.09 33.33
RT 69.09 33.63 45.24 63.64 30.97 41.67
MT 53.25 35.34 42.49 49.35 32.76 39.38
UT 38.46 12.20 18.52 38.46 12.20 18.52
Prep 59.62 29.95 39.87 55.40 27.83 37.05

Table 6.11: HOO 2012. Individual scores for each error type on the HOO2012-
DEVTEST data.

6.6 Discussion

The main differences between the systems for the HOO 2011 shared task and the HOO

2012 shared task are the use of the CW learning algorithm, the use of web-scale N-gram

96

Step Recognition Correction
P R F1 P R F1

Det 57.76 14.79 23.55 48.28 12.36 19.68
+ RT 58.93 21.85 31.88 47.02 17.44 25.44
+ MT/UT 55.98 25.83 35.35 45.45 20.97 28.70

(a) Before revisions

Step Recognition Correction
P R F1 P R F1

Det 68.10 16.70 26.83 62.93 15.43 24.79
+ RT 71.43 25.37 37.44 63.10 22.41 33.07
+ MT/UT 69.38 30.66 42.52 61.72 27.27 37.83

(b) After revisions

Table 6.12: HOO 2012. Overall precision, recall, and F1 score on the HOO2012-TEST

data after article correction (Det), replacement preposition correction (RT), and missing
and unwanted preposition correction (MT/UT).

Type Recognition Correction
P R F1 P R F1

RD 33.33 2.56 4.76 33.33 2.56 4.76
MD 62.24 48.80 54.71 51.02 40.00 44.84
UD 33.33 9.43 14.71 33.33 9.43 14.71
Det 57.76 30.88 40.24 48.28 25.81 33.63
RT 61.54 23.53 34.04 44.23 16.91 24.47
MT 46.15 21.05 28.92 38.46 17.54 24.10
UT 40.00 13.95 20.69 40.00 13.95 20.69
Prep 53.76 21.19 30.40 41.94 16.53 23.71

(a) Before revisions

Type Recognition Correction
P R F1 P R F1

RD 100.00 8.33 15.38 66.67 5.56 10.26
MD 70.41 52.67 60.26 65.31 48.85 55.90
UD 46.67 11.29 18.18 46.67 11.29 18.18
Det 68.10 34.50 45.80 62.93 31.88 42.32
RT 78.85 27.52 40.80 63.46 22.15 32.84
MT 61.54 28.57 39.02 53.85 25.00 34.15
UT 60.00 23.08 33.33 60.00 23.08 33.33
Prep 70.97 27.05 39.17 60.22 22.95 33.23

(b) After revisions

Table 6.13: HOO 2012. Individual scores for each error type on the HOO2012-TEST

data.

97

count features, and the use of the observed article or preposition as a feature. The CW

learning algorithm performed slightly better than the empirical risk minimization batch

learning algorithm while being significantly faster during training. Adding the web-

scale N-gram count features showed significant improvements in initial experiments.

Using the observed article or preposition feature allows the classifier to learn a bias

against unnecessary corrections. We believe that the good precision scores are a result

of using this feature.

In our experiments with the HOO 2012 data, we tried adding additional training

data from other text corpora: the NUCLE corpus from Chapter 3 and the Gigaword

corpus. Unfortunately, we did not see any consistent improvements over simply using

the FCE corpus. The general rule of thumb that “more data is better data” did not seem

to hold true in this case. After the evaluation had completed, we also tried training on

additional training data and tested the resulting system on the official test set but did not

see improvements either. We believe that no improvements were obtained due to the

similarity between the training and test data, since all of them are student essays written

in response to question prompts from the Cambridge FCE exam.

6.7 Conclusion

In this chapter, we have presented a pipeline architecture for grammatical error correc-

tion that combines multiple correction steps into an end-to-end correction system. This

architecture was used in the NUS systems participating in the HOO 2011 and HOO

2012 shared tasks. Our systems achieves the second highest correction F1 score on the

HOO 2011 official test and the highest correction F1 score on the HOO 2012 official

test set among all participating teams.

98

Chapter 7

A Beam-Search Decoder for

Grammatical Error Correction

7.1 Introduction

The dominant paradigm that underlies most existing grammar correction systems today

is supervised classification. For each error category, a multi-class classifier is trained to

predict a word from a confusion set of possible correction choices, given some feature

representation of the surrounding sentence context. During testing, each classifier pre-

dicts the most likely correction for each test instance. If the prediction differs from the

observed word used by the writer and the classifier is sufficiently confident in its pre-

diction, the observed word is replaced by the prediction. Multiple correction steps are

combined in an ad-hoc manner. For example, in the pipeline architecture presented in

the last chapter, after correcting all errors of a particular category, the corrected output

is fed into the next correction step. The output of the last correction step is the final

output of the system. This approach has been followed by the vast majority of error

correction systems that have been proposed to date.

Although considerable progress has been made, the classifier-based approach suf-

fers from some serious shortcomings. Each classifier corrects a single word for a spe-

cific error category individually. This ignores dependencies between the words in a

99

sentence. Also, by conditioning on the surrounding context, the classifier implicitly as-

sumes that the surrounding context is free of grammatical errors, which is often not the

case. Finally, the classifier has to commit to a single one-best prediction and is not able

to change its decision later or explore multiple corrections. Instead of correcting each

word individually, it would be preferable to perform global inference over corrections

of whole sentences which can contain multiple and interacting errors.

An alternative paradigm is to view error correction as a statistical machine trans-

lation (SMT) problem from “bad” to “good” English. The system for correction of

lexical choice errors in Chapter 5 showed one way how a standard SMT system could

be used to correct grammatical errors. However, the system only focused on a single er-

ror category, lexical choice errors, and assumed that the identification of lexical choice

errors had already been performed. While the SMT approach can in principle correct

whole sentences and multiple error categories, a standard SMT system cannot easily

incorporate models for specific grammatical errors. It also suffers from the paucity

of error-annotated training data for grammar correction. As a result, applying a stan-

dard SMT system to error correction does not produce good results, as we show in this

chapter.

In this chapter, we present a novel beam-search decoder for grammatical error cor-

rection that combines the advantages of the classification approach and the SMT ap-

proach. Starting from the original input sentence, the decoder performs an iterative

search over possible sentence-level hypotheses to find the best sentence-level correc-

tion. In each iteration, a set of proposers generates new hypotheses by making incre-

mental changes to the hypotheses found so far. A set of experts scores the new hy-

potheses on criteria of grammatical correctness. These experts include discriminative

classifiers for specific error categories, such as articles and prepositions. The decoder

model calculates the overall hypothesis score for each hypothesis as a linear combina-

tion of the expert scores. The weights of the decoder model are discriminatively trained

on a development set of error-annotated sentences. The highest scoring hypotheses are

kept in the search beam for the next iteration. This search procedure continues until

100

the beam is empty or the maximum number of iterations has been reached. The high-

est scoring hypothesis is returned as the sentence-level correction. We evaluate our

proposed decoder in the context of the HOO 2011 and HOO 2012 shared task on gram-

matical error correction (Dale and Kilgarriff, 2011; Dale et al., 2012). Our decoder

improves upon a baseline system that uses the pipeline architecture presented in the last

chapter and establishes new state-of-the-art result on both data sets. Initial results of

this work on the HOO 2011 data were published in (Dahlmeier and Ng, 2012a).

The remainder of this chapter is organized as follows. Section 7.2 describes the

proposed beam-search decoder. Sections 7.3 and 7.4 describe the experimental setup

and results, respectively. Section 7.5 provides further discussion. Section 7.6 concludes

the chapter.

7.2 Decoder

In this section, we describe the proposed beam-search decoder and its components.

The task of the decoder is to find the best hypothesis (i.e., the best corrected sen-

tence) for a given input sentence. To accomplish this, the decoder needs to be able to

perform two tasks: generating new hypotheses from current ones, and discriminating

good hypotheses from bad ones. This is achieved by two groups of modules which we

call proposers and experts, respectively. Proposers take a hypothesis and generate a set

of new hypotheses, where each new hypothesis is the result of making an incremen-

tal change to the current hypothesis. Experts score hypotheses on particular aspects of

grammaticality. This can be a general language model score or the output of classifiers

for particular error categories, for example for article and preposition usage. The over-

all score for a hypothesis is a linear combination of the expert scores. Note that in our

decoder, each hypothesis corresponds to a complete sentence. This makes it easy to ap-

ply syntactic processing, like part-of-speech (POS) tagging, chunking, and dependency

parsing, which provides necessary features for the expert models. The highest scoring

hypotheses are kept in the search beam for the next iteration. The search ends when

101

the beam is empty or the maximum number of iterations has been reached. The highest

scoring hypothesis found during the search is returned as the sentence-level correction.

The modular design of the decoder makes it easy to extend the model to new error cate-

gories by adding specific proposers and experts without having to change the decoding

algorithm.

7.2.1 Proposers

The proposers generate new hypotheses, given a hypothesis. Because the number of

possible hypotheses grows exponentially with the sentence length, enumerating all pos-

sible hypotheses is infeasible. Instead, each proposer only makes a small incremental

change to the hypothesis in each iteration. A change corresponds to a correction of

a single word or phrase. We experiment with the following proposers in this chapter.

Additional proposers for other error categories can easily be added to the decoder.

• Spelling Generate a set of new hypotheses by replacing a misspelled word with

each correction proposed by a spellchecker.

• Articles For each noun phrase (NP), generate two new hypotheses by changing

the observed article. Possible article choices are a/an, the, and the null article ε.

• Preposition replacement For each prepositional phrase (PP), generate a set of

new hypotheses by changing the observed preposition. For each preposition, we

define a confusion set of possible corrections. Prepositions inserted by the de-

coder (see below) are not replaced.

• Preposition insertion For each NP that is not preceded by a preposition, generate

a set of new hypotheses by inserting a preposition before the NP. Skip NPs whose

preceding preposition has previously been deleted.

• Preposition deletion For each PP, generate a new hypothesis by deleting the

preposition.

102

• Punctuation insertion Insert commas, periods, and hyphens based on a set of

simple rules. Skip prepositions that have been inserted by the decoder.

• Noun number For each noun, change its number from singular to plural or vice

versa.

7.2.2 Experts

The experts score hypotheses on particular aspects of grammaticality to help the de-

coder to discriminate grammatical hypotheses from ungrammatical ones. We employ

two types of expert models. The first type of expert model is a standard N-gram lan-

guage model. The language model expert is not specialized for any particular type

of error. The second type of experts is based on linear classifiers and is specialized for

particular error categories. We use the following classifier experts in our work. The fea-

tures for the classifier expert models include features from N-grams, POS tags, chunks,

web-scale N-gram counts, and dependency parse trees. Additional experts can easily

be added to the decoder.

• Article expert Predict the correct article for a noun phrase. Pronouns and proper

nouns are excluded.

• Preposition replacement expert Predict the correct preposition for a preposi-

tional phrase. This expert does not score prepositions that were inserted by the

decoder.

• Preposition insertion expert Predict whether a particular preposition should be

inserted in front of a noun phrase or not. Noun phrases that already are part of a

prepositional phrase are skipped. We use a separate preposition insertion expert

for each preposition.

• Preposition deletion expert Predict whether a particular preposition in front of

a noun phrase should be deleted or not. If the original preposition used by the

writer has been replaced by the preposition replacement proposer, the original

103

preposition is considered as not deleted. We use a separate preposition deletion

expert for each preposition.

• Noun number expert Predict whether a noun should be in the singular or plural

form.

The outputs of the experts are used as hypothesis features in the decoder, as described

in the next section.

7.2.3 Hypothesis Features

Each hypothesis is associated with a vector of real-valued features which are indicators

of grammaticality and are computed from the output of the expert models. We call

these features hypothesis features to distinguish them from the features of the expert

classifiers. The simplest hypothesis feature is the log probability of the hypothesis

under the N-gram language model expert. To avoid a bias towards shorter hypotheses,

we normalize the probability by the length of the hypothesis:

scorelm =
1

|h| logPr(h), (7.1)

where h is a hypothesis sentence and |h| is the hypothesis length in tokens.

For the classifier-based experts, we define two types of features. The first is the

average score of the hypothesis under an expert model:

scoreavg =
1

n

n∑
i=1

(
uTf(xh

i , y
h
i)
)
, (7.2)

where u is the expert classifier weight vector, xh
i and yh

i are the feature vector and the

hypothesis class, respectively, for the i-th instance extracted from the hypothesis h (e.g.,

the feature vector and the article for the i-th NP in the hypothesis for the article expert),

and f is a feature map that computes the expert classifier features. The average score

reflects how much the expert model “likes” the hypothesis. The second expert score,

which we call delta score, is the maximum difference between the highest scoring class

104

and the hypothesis class in any instance from the hypothesis:

scoredelta = max
i,y

(
uTf(xh

i , y)− uTf(xh
i , y

h
i)
)
. (7.3)

Generally speaking, the delta score measures how much the model “disagrees” with the

hypothesis.

Finally, each hypothesis has a number of correction count features that keep track

of how many corrections have been made to the hypothesis so far. For example, there is

a feature that counts how often the article correction ε→ the has been applied. We also

add aggregated correction count features for each error category, e.g., how many article

corrections have been applied in total. The correction count features allow the decoder

to learn a bias against over-correcting sentences and to learn which types of corrections

are more likely and which are less likely.

7.2.4 Decoder Model

The hypothesis features described in the previous subsection are combined to compute

the score of a hypothesis according to the following linear model:

s = wTfE(h), (7.4)

where w is the decoder model weight vector and fE is a feature map that computes the

hypothesis features described above, given a set of experts E.

To illustrate the process of scoring a hypothesis, consider the following real example

from our HOO 2012 experiments described in Section 7.3. The original input sentence

I hope and I wish that the future will bring us a good moments of life where everybody

will have home and a warm, friendly family relationships. contains three article errors

and one preposition replacement error: deleting the indefinite article a before good mo-

ment and warm, friendly family relationships, inserting a before home, and changing

the preposition of to in. The best hypothesis sentence found by the decoder was I hope

and I wish that the future will bring us good moments in life where everybody will have

105

home and warm, friendly family relationships. which successfully corrects the prepo-

sition error and two of the three article errors. The associated hypothesis features are

computed as follows. The language expert score is the normalized log probability of the

hypothesis sentence. The article expert score is the sum of the article classifier scores

for the article the before the NP future and the null article before the NPs good moments,

life, everybody, home, and warm, friendly family relationships divided by the number

of NPs. The pronouns I and us are not considered. We note that the article expert clas-

sifier’s observed article feature is fixed to the article used by the writer in the original

sentence, even if the article proposer changes the article in the current hypothesis. The

preposition replacement expert average score is the preposition replacement classifier

score for the preposition in before life. As there is only one prepositional phrase, the

average consists of a single term in this case. The observed preposition feature for the

preposition expert classifier is the preposition used by the writer in the original sen-

tence, even if the preposition replacement proposer has changed the preposition. For

the preposition insertion experts, the average score is the average of the scores given

by the preposition insertion classifier for the “null preposition” before the NPs I, I, fu-

ture, us, good moments, everybody, home, and warm, friendly family relationships. The

NP life is not considered for preposition insertion as it already has a preposition. For

the preposition deletion experts, there is only the prepositional phrase of life that was

changed to in life. As the preposition of was not deleted but replaced with another

preposition, this prepositional phrase is an example for the of preposition deletion ex-

pert with the class label “no deletion” and the preposition deletion expert average score

is the preposition deletion classifier score for not deleting this preposition. The expert

delta scores are zero for all experts except for the preposition insertion expert for the

preposition to. The correction count features keep track of the two article corrections

and the one preposition replacement correction. All features are normalized to a unit

interval to avoid having features on a larger scale dominate features on a smaller scale.

106

We linearly scale all hypothesis features to a unit interval [0, 1]

score =
scoreorig − scoremin
scoremax − scoremin

. (7.5)

The minimum and maximum values for each feature are estimated from the develop-

ment data. The normalized features are combined with the decoder model weight vec-

tor wT to compute the over hypothesis score. The hypothesis features are shown in

Table 7.1. Note that due to the scaling, features that have zero values before the scaling

can be non-zero after scaling. The absolute value of the features are not important in

ranking the hypothesis, only the relative difference matters.

PRO Tuning

The weight vector w is tuned on a development set of error-annotated sentences using

the PRO ranking optimization algorithm (Hopkins and May, 2011).19 PRO performs

decoder parameter tuning through a pair-wise ranking approach. The algorithm starts

by sampling hypothesis pairs (hi,hj) from the N-best list of the decoder. The metric

score g(h) for each hypothesis induces a ranking of the two hypotheses in each pair.

The goal of the PRO algorithm is to find a weight vector w such that the hypothesis

scores rank the hypothesis pair in the same order as the metric scores:

g(hi) > g(hj)⇔ wTfE(hi) > wTfE(hj). (7.6)

The task of finding a weight vector that correctly ranks hypotheses can then be reduced

to a simple binary classification task.

g(hi) > g(hj) ⇔ wTfE(hi) > wTfE(hj)

⇔ wTfE(hi)−wTfE(hj) > 0

⇔ wT (fE(hi)− fE(hj)) > 0 (7.7)

19We also experimented with the MERT algorithm (Och, 2003) but found that PRO achieved better
results.

107

Original I hope and I wish that the future will bring us a good moments
of life where everybody will have home and a warm , friendly
family relationships .

Gold I hope and I wish that the future will bring us (a→ ε) good
moments (of→ in) life where everybody will have (ε→ a) home and
a→ ε) warm , friendly family relationships .

Hypothesis I hope and I wish that the future will bring us (a→ ε) good
moments (of→ in) life where everybody will have home and
(a→ ε) warm , friendly family relationships .

Hypothesis features Un-scaled Scaled
Language model expert scorelm -5.0294 0.8575

Article expert scoreavg 0.1019 0.3474
Article expert scoredelta 0.0 0.0

Article corrections 2 0.6667
Article corrections a→ ε 2 0.6667

Preposition replacement expert scoreavg 0.2800 0.6264
Preposition replacement expert scoreavg 0.0 0.0

Preposition replacement corrections 1 0.3333
Preposition replacement corrections of → in 1 0.3333

Preposition insertion expert (to) scoreavg 0.2319 0.6585
Preposition insertion expert (to) scoredelta 0.0109 0.0116
Preposition insertion expert (for) scoreavg 0.1897 0.8433
Preposition insertion expert (at) scoreavg 0.2423 0.8264

Preposition insertion expert (on) scoreavg 0.2665 0.7764
Preposition insertion expert (in) scoreavg 0.2261 0.6965
Preposition insertion expert (of) scoreavg 0.3108 0.7472

Preposition insertion expert (about) scoreavg 0.3009 0.8559
Preposition deletion expert (to) scoreavg 0.0 0.3355

Preposition deletion expert (for) scoreavg 0.0 0.1565
Preposition deletion expert (at) scoreavg 0.0 0.3239

Preposition deletion expert (on) scoreavg 0.0 0.4426
Preposition deletion expert (in) scoreavg 0.0 0.2439
Preposition deletion expert (of) scoreavg 0.0838 0.6045
Preposition deletion expert (of) scoreavg 0.0 0.1255

Hypothesis score 12.20408

Table 7.1: Examples of a source sentence, generated hypothesis, and hypothesis fea-
tures. Most zero-valued scaled hypothesis features are omitted because of space con-
straint.

108

For each hypothesis pair, a labeled training example is created from the difference fea-

ture vector fE(hi) − fE(hj). An example is labeled as a positive example if g(hi) >

g(hj) and as a negative example otherwise. To keep the training set balanced, a second

labeled example is created from the swapped hypothesis pair. The training set is used

as input to a standard linear classifier learning algorithm that returns a weight vector w

optimized on the above hypothesis pairs. The weight vector can theoretically directly

be used in the decoder for the next iteration. However, to explicitly tie the weight vector

in the t-th iterations to the weights of the previous t − 1-th iteration and to make the

tuning process more stable, the new weight vector w is interpolated with the weight

vector wt−1 from the previous iteration to form the new weight vector wt.

wt = λ ·w + (1− λ) ·wt−1 (7.8)

The tuning process continues until the maximum number of iterations is reached or

some early stopping criterion is met.

In this work, we use PRO to optimize the F1 correction score, which is defined in

Chapter 3. PRO requires a sentence-level score for each hypothesis. As F1 score is not

decomposable, we optimize sentence-level F1 score which serves as an approximation

of the corpus-level F1 score. Similarly, Hopkins and May optimize a sentence-level

BLEU approximation (Lin and Och, 2004) instead of the corpus-level BLEU score (Pa-

pineni et al., 2002). We observed that optimizing sentence-level F1 score worked well

in practice in our experiments.

7.2.5 Decoder Search

Given a set of proposers, experts, and a tuned decoder model, the decoder can be used

to correct new unseen sentences. This is done by performing a search over possible hy-

pothesis candidates. The decoder starts with the input sentence as the initial hypothesis,

i.e., assuming that all words are correct. It then performs a beam search over the space

of possible hypotheses to find the best hypothesis correction ĥ for an input sentence e.

109

The search proceeds in iterations until the beam is empty or the maximum number of

iterations has been reached. In each iteration, the decoder takes each hypothesis in the

beam and generates new hypothesis candidates using all the available proposers. The

hypotheses are evaluated by the expert models. For each newly generated hypothesis,

the decoder performs POS tagging, chunking, and dependency parsing, followed by fea-

ture extraction, and computation of the average and delta hypothesis features for each

classifier expert model. Finally, each hypothesis is scored using the decoder model.

As the search space grows exponentially, it is infeasible to perform exhaustive search.

Therefore, we prune the search space by only accepting the most promising hypotheses

to the pool of hypotheses for future consideration. If a hypothesis has a higher score

than the best hypothesis found in previous iterations, it is definitely added to the pool.

Otherwise, we use a simulated annealing strategy where hypotheses with a lower score

can still be accepted with a certain probability which depends on the difference between

the hypothesis score and the score of the best hypothesis, and the “temperature” of the

system. We lower the temperature after each iteration according to an exponential cool-

ing schedule. Hypotheses that have been explored before are not considered again to

avoid cycles in the search. From all hypotheses in the pool, we select the top k hypothe-

ses and add them to the beam for the next search iteration. The decoding algorithm is

shown in Algorithm 1. The decoder can be considered an anytime algorithm (Russell

and Norvig, 2010), as it has a current best hypothesis correction available at any point

of the search, while gradually improving the result by searching for better hypotheses.

An example of a search tree produced by the decoder is shown in Figure 7.1.

During the search, the expert model scores are re-computed for every hypothesis

because the features that are input to the expert models change when words in the hy-

pothesis are changed, for example a preposition can be part of the N-gram features that

feed into the article expert model. In general, we expect that “better” hypotheses should

receive higher scores from all hypothesis features, e.g., the score computed by the arti-

cle expert should increase indirectly if the preposition that is part of the feature input is

correct. In certain cases, however, there can be “cross talk” between the expert models

110

h
a
n
d
s→

h
a
n
d

I
n
→
F
or

O
n
→
A
bou

t

h
a
n
d
s→

h
a
n
d

I
n
→
A
t

I
n
→
I
n
to

O
n
→
B
y

I
n
→
O
f

I
n
→
A
t

I
n
→
F
or

th
e→

a
n

I
n
→
O
n

th
e→

a
n

I
n
→
F
or

ε→
a
n

I
n
→
A
t

O
n
→
T
o

I
n
→
W
ith

th
e→

ε

I
n
→
W
ith

ε→
th
e

I
n
→
W
ith

T
o

the
other

hand
..

score
=

6.32

A
b
ou

t
the

other
hand

..
score

=
9.71

F
or

other
hands

..
score

=
7.00

O
n

an
other

hand
..

score
=

2.48

O
n

other
hand

..
score

=
4.94

...
A

t
other

hands
..

score
=

5.34

A
t

the
other

hands
..

score
=

6.05

F
or

the
other

hands
..

score
=

9.05

W
ith

the
other

hands
..

score
=

5.25

In
the

other
h
an

d
,
they

m
ight

be
right

score
=

11.69

...

...

In
other

hands
,
they

m
ight

be
right

.
score

=
9.10

In
to

the
other

hand
..

score
=

5.47

F
or

the
other

hand
..

score
=

10.75

A
t

the
other

hand
..

score
=

9.40

In
an

other
hand

..
score

=
3.96

In
th

e
other

hands
,they

m
ight

be
right

.
score

=
9.63

In
an

other
..

score
=

-1.58

O
n

the
other

hand
,
they

m
ight

be
right

score
=

15.36

O
f

the
other

hand
..

score
=

8.94

In
other

h
an

d
..

score
=

8.29

...

W
ith

other
hands

..
score

=
6.31B

y
the

other
hand

..
score

=
5.80

W
ith

the
other

hand
..

score
=

8.69

Figure 7.1: Example of a search tree produced by the beam-search decoder. Some
hypotheses are omitted due to space constraints.

111

where a change that is bad according to one expert is good according to another ex-

pert. In our experiments, this happened for insertion and deletion of prepositions which

negatively influenced article corrections. For example, in the sentence, I am interested

in tennis, the article expert gives a higher score for keeping the null article before the

NP tennis than for inserting the article the, which is correct. However, the preposition

deletion expert gives a higher score for not deleting the preposition in when the article

the is inserted before tennis compared to the score for the original sentence, presumably

because of the frequent bigram in the. Although the article expert prefers the sentence I

am interested in tennis, the preposition deletion model overpowers the article expert to

produce the final output I am interested in the tennis, which is wrong. Ideally, we want

the preposition insertion and deletion experts to only score the presence and absence

of prepositions and not the choice of articles. To overcome this problem, we change

the way the preposition insertion and deletion hypothesis scores are computed. The

scores for these two experts are cached during the decoding process and are only up-

dated if a preposition was inserted or deleted. Otherwise, the previously cached scores

are used. Another challenge with preposition insertion and deletion is that the num-

ber of instances for the preposition replacement expert changes due to insertion and

deletion. To allow a fair comparison of preposition replacement expert scores between

hypotheses, prepositions inserted by the decoder are ignored by the preposition replace-

ment expert, and the preposition replacement classifier scores for deleted prepositions

are still included when computing the preposition replacement expert scores. In other

words, the number of prepositions considered for the preposition replacement expert

scores is kept constant.

The decoding algorithm shares some similarities with the beam-search algorithm

frequently used in SMT. There are, however, some differences between SMT decoding

and the grammar correction decoding algorithm presented here that are worth point-

ing out. In SMT decoding, every input word needs to be translated exactly once. In

contrast, in grammar correction decoding the majority of the words typically do not

need any correction (in the HOO 2011 data, for example, there are on average 6 errors

112

per 100 words). On the other hand, some words might require multiple corrections,

for example spelling correction followed by noun number correction. Errors can also

be inter-dependent, where correcting one word makes it necessary to change another

word, for example to preserve agreement. Our decoding algorithm has the option to

correct some words multiple times, while leaving other words unchanged. Another

difference concerns the hypothesis features. In phrase-based SMT, the features, e.g.,

phrase translation probability, are required to factor over the phrase segmentation of the

sentence, that means the features can be computed independently of the context of the

phrase (except for the language model). That makes it possible to pre-compute these

features for each phrase and store them in a phrase table. In our case, we want to condi-

tion on arbitrary features from the continuously changing hypothesis sentence without

making strong independence assumptions. While this makes it necessary to re-compute

features for each hypothesis, it allows us to include more expressive features like the

expert classifier scores. The decoding algorithm presented here is also different from

SMT lattice decoding (Dyer et al., 2008), which models different alternatives in the in-

put to the decoder, e.g., different word segmentation standards, and requires us to make

the same strong independence assumptions as phrase-based SMT itself.

A similar argument applies to confusion networks and lattice-based methods that

were developed in speech recognition (Jelinek, 1998). A lattice is a directed acyclic

graph that serves as a compact representation of a potentially exponential number of

hypotheses. A confusion network is a special case of a lattice where all paths through

the lattice have the same length. Lattices or confusion networks can be used for error

correction by taking the original sentence as the backbone of the lattice and adding

possible corrections of words or phrases as additional arcs in the lattice (Lee and Seneff,

2006). Each arc can be associated with one or more local feature values, e.g., the

probability of substituting a correction for the original word. The lattice is then decoded

with a language model to find the best path through the lattice. The words on the

path edges are the corrected sentence. The lattice is similar to the search graph that

is explored by a phrase-based SMT system during monotone decoding. Note that the

113

lattice decoding described here is different from SMT lattice decoding (Dyer et al.,

2008) where the words on the lattice edges do not form the output of the decoding but

the input to a subsequent translation step.

To illustrate the difference between lattice decoding and the beam-search decoder

presented here, consider the example shown in Figure 7.2. The input sentence All boyy

play football . contains a spelling mistake and a noun number error on the word boyy

which should be boys to be in agreement with the quantifier all and the verb play. The

lattice adds two possible correction arcs to the word: one for forming a plural noun and

one for correcting the spelling mistake. Although the lattice can correct the spelling

mistake, it cannot correct the same word again to fix the resulting noun number agree-

ment error. To correct the mistake, the lattice would have to add an arc boys. Generating

this arc would require to enumerate all combinations of individual corrections, e.g., all

combinations of spelling corrections and noun number corrections. This would result in

a very large number of edges. In contrast, the decoder can propose a spelling correction

from boyy to boy and subsequently propose a noun number correction from boy to boys.

Even if words which require multiple corrections may not be very frequent, the

ability to correct these mistakes is a principal advantage of the presented beam-search

decoding strategy. Another advantage of the decoder method is that the whole sentence

context is available and existing classifiers can easily be used to compute expert scores

for particular error categories. For example, it is easy to apply a classifier to score

the noun number form of boy using arbitrary features from the sentence context. For

the lattice, it is not possible to apply the same classifiers to compute edge features

as the context of an edge is not known beforehand. Even during the lattice decoding

process, only the left context is available. The right context, which contains important

information, like the head word of a following constituent, cannot be used to compute

features in lattice decoding.

114

All
Every

a

ε
the

boyys

boyy
boy

played
plays
play

a
ε
the

football
footballs

.

Figure 7.2: Example of a lattice for error correction. Unlike the decoder method, the
lattice cannot correct the misspelled word boyys to boy and subsequently correct the
resulting noun number agreement error.

7.3 Experiments

We evaluate the decoder in the context of the HOO 2011 and HOO 2012 shared tasks on

grammatical error correction. We compare our proposed method with a pipeline of rule-

based and classifier-based correction steps as it was described in the last chapter. For

the HOO 2011 shared task, we additionally include a baseline based on phrase-based

SMT. The details of the experimental setup differ slightly from the last chapter. For the

HOO 2011 shared task, we discard the HOO2011-DEVTEST set and directly evaluate

on the official HOO 2011 test set. For the HOO 2012 shared task, we only evaluate on

the HOO2012-DEVTEST set. The official HOO 2012 test data had to be deleted right

after the shared task due to copyright reasons. Thus, an evaluation on the official HOO

2012 test set was unfortunately impossible.

7.3.1 Data Sets

HOO 2011

For the experiments on the HOO 2011 data set, we split the HOO 2011 development

data into an equal sized training (HOO2011-TRAIN) and tuning (HOO2011-TUNE)

set. The split is performed on the sentence level. The first half of each document in the

development data is assigned to the training data, and the second half of each document

is assigned to the tuning data. Note that this differs from the previous chapter, where

the HOO 2011 development data was split on the file level. As a result the sentence and

token counts for the splits in Table 6.7 and Table 7.2 differ slightly. Splitting the data at

115

Algorithm 1 The beam-search decoding algorithm. e: original sentence, w: decoder weight
vector, P : set of proposers, E: set of experts, k: beam width, M : maximum number of itera-
tions, T, c: initial temperature and cooling schedule for simulated annealing (0 < c < 1).
procedure decode(e, w, P , E, k, M)

1: beam← {e}
2: previous← {e}
3: hbest ← e
4: sbest ← wTfE(hbest)
5: i← 0
6: while beam 6= ∅ ∧ i < M do
7: pool← {}
8: for all h ∈ beam do
9: for all p ∈ P do

10: for all h′ ∈ p.propose(h) do
11: if h′ ∈ previous then
12: continue
13: previous← previous ∪ {h′}
14: sh′ ← wTfE(h′)
15: if accept(sh′ , sbest, T) then
16: pool← pool ∪ {(h′, sh′)}
17: beam← ∅
18: for all (h, sh) ∈ nbest(pool, k) do
19: beam← beam ∪ {h}
20: if sh > sbest then
21: hbest ← h
22: sbest ← sh
23: T ← T × c
24: i← i+ 1
25: return hbest

procedure accept(sh, sbest, T)
1: δ ← sh − sbest
2: if δ > 0 then
3: return true
4: if exp(δ

T
) > random() then

5: return true else return false

the file level is generally the preferred option, but splitting each document and assigning

one part to the training and one part to the tuning set resembles how the training and

test data for the HOO 2011 task were created.

As in the last chapter, the official HOO 2011 test data (HOO2011-TEST) is used for

evaluation with both the original and the final official gold-standard annotations. The

final official gold standard includes changes made in response to objections made by

participants in the shared task after the test data was released. As a result, the final offi-

116

Data Set Sentences Tokens
HOO 2011
HOO2011-TRAIN 467 11,373
HOO2011-TUNE 472 11,435
HOO2011-TEST 722 18,790
ACL-ANTHOLOGY 943,965 22,465,690
HOO 2012
FCE(1044) 22,434 339,902
HOO2012-DEV 2,798 42,347
HOO2012-DEVTEST 2,674 41,518

Table 7.2: Overview of the HOO 2011 and HOO 2012 data sets.

cial gold-standard annotations could be biased in favor of specific systems participating

in the shared task.

We use the ACL Anthology as training data for the expert models. We crawl all

non-OCR documents from the Anthology, except those documents that overlap with

the HOO 2011 data.20 Section headers, references, etc. are automatically removed. The

Web 1T 5-gram corpus (Brants and Franz, 2006) is used for language modeling and

collecting web N-gram counts. Table 7.2 gives an overview of the data sets.

HOO 2012

For the experiments on the HOO 2012 data, we use the HOO 2012 training data with the

same data splits as in the previous chapter. 100 randomly selected documents from the

HOO 2012 training data are used as the development set (HOO2012-DEV) and another

100 disjoint documents are randomly selected and used as the held-out development

test set (HOO2012-DEVTEST). We train classifiers on the 1,044 documents of the FCE

data set (FCE(1044)), tune parameters on HOO2012-DEV, and test on HOO2012-

DEVTEST. The official HOO 2012 test data had to be deleted right after the HOO 2012

shared task and was not available for these experiments. All data sets for HOO 2011

and HOO 2012 are sentence segmented and tokenized. For the HOO 2012 data sets,

additional case normalization is carried out using a standard SMT re-casing model that

translates an un-cased sentence to a mixed-case sentence. As before, we use the Google

20In the previous chapter, we left out the complete 2010 ACL conference and workshops. In this
chapter, we only excluded the exact documents that appear in the HOO 2011 test data.

117

Web 1T 5-gram corpus (Brants and Franz, 2006) for language modeling and collecting

N-gram counts, the PukWaC corpus from the WaCky project (Baroni et al., 2009) for

collecting web-scale dependency N-gram counts, and the New York Times section of

the Gigaword corpus21 and all normal-cased documents in the HOO 2012 training data

for training the re-casing model.

7.3.2 Evaluation

We evaluate performance by computing precision, recall, and F1 correction score as

defined in Chapter 3 and the official HOO 2011 and HOO 2012 reports (Dale and

Kilgarriff, 2011; Dale et al., 2012). F1 correction score is simply the F1 score (van

Rijsbergen, 1979) between the corrections (called edits in HOO) proposed by a system

and the gold-standard corrections. For the HOO 2011 shared task, F1 correction score

is computed “without bonus” which means that no credit is given for leaving optional

corrections unchanged.

As described in Chapter 3, the evaluation of grammatical error correction is compli-

cated by the fact that the set of system edits between the test sentences and the system

outputs is ambiguous. The MaxMatch (M2) scorer presented in Chapter 3 overcomes

this problem through an efficient algorithm that computes the set of system edits which

has the maximum overlap with the gold-standard edits. We use the M2 scorer as the

main evaluation metric in the HOO 2011 experiments. Additionally, we also evaluate

with the official HOO 2011 scorer. For the HOO 2012, the shared task organizers gave

specific instructions on how to extract the system edits for determiners and prepositions.

As the task only evaluated these two error categories, computing the system edits was

less ambiguous. We found that the M2 scorer and the official HOO 2012 scorer resulted

in the same scores in our HOO 2012 experiments. We note that all scorers (the M2

scorer and the two HOO scorers) adhere to the same score definition and only differ

in the way the system edits are computed. For statistical significance testing, we use

sign-test with bootstrap re-sampling (Koehn, 2004) with 1,000 samples.

21LDC2009T13

118

7.3.3 SMT Baseline

For the HOO 2011 experiments, we build a baseline error correction system using the

MOSES SMT system (Koehn et al., 2007). Word alignments are created automati-

cally on “good-bad” parallel text from HOO2011-TRAIN using GIZA++ (Och and

Ney, 2003), followed by phrase extraction using the standard heuristic (Koehn et al.,

2003). The maximum phrase length is 5. Parameter tuning is done on the HOO2011-

TUNE data with the PRO algorithm (Hopkins and May, 2011) implemented in MOSES.

The optimization objective is sentence-level BLEU (Lin and Och, 2004). We note that

the objective function is not the same as the final evaluation F1 score. Also, the training

and tuning data are small by SMT standards. The aim for the SMT baseline is not to

achieve a state-of-the-art system, but to serve as the simplest possible baseline that uses

only off-the-shelf software.

7.3.4 Pipeline Baseline

The second baseline system for the HOO 2011 experiments is an improved version

of the pipeline of classifier-based and rule-based correction steps presented in the last

chapter. Each step takes sentence segmented plain text as input, corrects one particular

error category, and feeds the corrected text into the next step. No search or global

inference is applied. The correction steps are:

1. Spelling correction

2. Article correction

3. Replacement preposition correction

4. Punctuation correction

5. Noun number correction

The HOO 2012 pipeline is the same as the one presented in the last chapter. The pipeline

is briefly described here again for completeness and easy reference. The pipeline con-

119

tains steps for spelling correction, article correction, preposition replacement correc-

tion, and preposition insertion and deletion correction. It does not contain steps for

punctuation and noun number correction which are not evaluated in the HOO 2012

shared task.

1. Spelling correction

2. Article correction

3. Replacement preposition correction

4. Missing and unwanted preposition correction

At the end of every correction step, all proposed corrections are filtered using a 5-

gram language model from the Web 1T 5-gram corpus and only corrections that strictly

increase the normalized language model score of the sentence are applied.

We use the same NLP tools as before (repeated here for completeness): OpenNLP22

for POS tagging, YamCha (Kudo and Matsumoto, 2003) for constituent chunking, and

the MALT parser (Nivre et al., 2007) for dependency parsing. For language modeling,

we use RandLM (Talbot and Osborne, 2007). For spelling correction, we use GNU

Aspell23.

Article Correction

As described in the previous chapter, correction is cast as a multi-class classifica-

tion problem where a classifier tries to predict the correct word from a confusion set

of possible choices. As the learning algorithm, we choose multi-class confidence-

weighted (CW) learning (Crammer et al., 2009) which performed well in the experi-

ments in the last chapter. For article correction, the possible classes are the articles a,

the, and the null article ε. The article an is normalized as a and restored later using

a rule-based heuristic. We consider all NPs that are not pronouns and do not have a

non-article determiner, e.g., this, that. We use the features developed in the HOO 2012

22http://opennlp.sourceforge.net
23http://aspell.net

120

experiments in the previous chapter which include lexical and POS N-grams, lexical

head words (Rozovskaya et al., 2011), web-scale N-gram count features from the Web

1T 5-gram corpus following (Bergsma et al., 2009), and dependency head and child

features. During testing, a correction is proposed if the predicted article is different

from the observed article used by the writer and the difference between the confidence

score for the predicted article and the confidence score for the observed article is larger

than a threshold. Threshold parameters are tuned via a grid-search on the development

data. We tune a separate threshold value for each class.

For the HOO 2011 experiments, the article classifier is trained on over 5 million

instances from ACL-ANTHOLOGY. As the training data is non-learner text that is not

annotated with corrections, the article used by the writer cannot be used as a feature.

The threshold parameters are tuned on HOO2011-TUNE. For the HOO 2012 experi-

ments, the article classifier is trained on 79,000 instances from the FCE(1044) data set.

As the FCE data set is learner text that is annotated with corrections, the article used by

the writer is used as a feature.

Preposition Replacement Correction

Preposition replacement correction is analogous to article correction. It differs only

in terms of the classes and the features. For preposition correction, the classes are 36

frequent English prepositions24. The features are surrounding lexical N-grams, web-

scale N-gram counts, and dependency features which are the same as the features for

the HOO 2012 experiments described in the previous chapter. For the HOO 2011

experiments, the preposition classifier is trained on 1 million training examples from

the ACL-ANTHOLOGY. For the HOO 2012 experiments, the preposition classifier is

trained on 34 thousand instances from the FCE(1044) data set. The preposition used

by the writer is only used as a feature for the HOO 2012 experiments.

24about, along, among, around, as, at, beside, besides, between, by, down, during, except, for, from,
in, inside, into, of, off, on, onto, outside, over, through, to, toward, towards, under, underneath, until, up,
upon, with, within, without

121

Noun Number Correction

For noun number correction, the classes are singular and plural. The features are lexical

N-grams, web-scale N-gram counts, dependency features, the noun lemma, and a binary

countability feature. The noun number classifier is trained on over 5 million examples

from ACL-ANTHOLOGY. During testing, the singular or plural word surface form

is generated using WordNet (Fellbaum, 1998) and simple heuristics. Noun number

correction is only done for the HOO 2011 experiments.

Punctuation Correction

Punctuation correction is done using a set of simple rules developed on the HOO 2011

development data. Punctuation correction is only done for the HOO 2011 experiments.

Missing and Unwanted Preposition Correction

Missing and unwanted preposition correction use the same binary classifiers described

in the last chapter. For missing preposition correction, a binary classifier predicts

whether a particular preposition p should be inserted before a noun phrase. Similarly,

unwanted preposition correction is performed by binary classifiers that predict whether

a particular preposition p in the text should be deleted. In both cases, the confusion set

consists only of the preposition p and the “null preposition”. A separate binary classifier

is trained for each of the following seven prepositions: about, at, for, in, of, on, and to.

The features for missing and unwanted preposition correction are the same as described

in the previous chapter. For missing preposition correction, the features include sur-

rounding lexical and POS N-gram features, head word features, and web-scale N-gram

counts. For unwanted preposition correction, we only use web-scale N-gram count fea-

tures. Missing and unwanted preposition correction are only done for the HOO 2012

experiments.

122

7.3.5 Decoder

We experiment with different decoder configurations with different proposers and ex-

pert models. For the HOO 2011 experiments, the simplest configuration of the decoder

only has the spelling proposer and the language model expert. We then add the article

proposer and expert, the preposition replacement proposer and expert, the punctuation

proposer, and finally the noun number proposer and expert. We refer to the final con-

figuration with all proposers and experts as the full HOO 2011 decoder model. For

the HOO 2012 experiments, we start with a decoder that only performs spelling and

article correction. Then we add preposition replacement correction, and finally missing

and unwanted preposition correction. We refer to this configuration as the full HOO

2012 decoder model. Note that error categories are always corrected jointly and not in

sequential steps as in the pipeline.

To make the results directly comparable to the pipeline, the decoder uses the same

resources as the pipeline. As the expert models, we use a 5-gram language model

from the Web 1T 5-gram corpus with the Berkeley LM (Pauls and Klein, 2011)25 in the

decoder and the CW-classifiers described in the last section for the HOO 2011 and HOO

2012 experiments, respectively. The spelling proposer uses the same spellchecker as the

pipeline, and the punctuation proposer uses the same rules as the pipeline. The beam

width is set to 10. The maximum number of iterations is set to 10 for the HOO 2011

experiments and to 3 for the HOO 2012 experiments. In earlier experiments, we found

that larger values had no effect on the result. The simulated annealing temperature T

is initialized to 10 and the exponential cooling schedule c is set to 0.9. The decoder

weight vector is initialized as follows. The weight for the language model score and the

weights for the classifier expert average scores are initialized to 1.0, and the weights for

the classifier expert delta scores are initialized to −1.0. The weights for the correction

count features are initialized to zero.

For PRO optimization, we use the HOO2011-TUNE and HOO2012-DEV data, re-

spectively. We use the default PRO parameters from (Hopkins and May, 2011): we

25Berkeley LM is written in Java and was easier to integrate into the Java-based decoder than RandLM.

123

sample 5,000 hypothesis pairs from the N-best list (N = 100) for every input sentence

and keep the top 50 sample pairs with the highest difference in F1 score. The weights are

optimized using MegaM (Daumé III, 2004) and interpolated with the previous weight

vector with an interpolation parameter of 0.1. We normalize feature values to a unit

interval. We use an early stopping criterion that terminates PRO if the objective func-

tion on the tuning data drops. For the HOO 2011 data, the tuning data is highly skewed

as samples without errors greatly outnumber samples with errors. To balance the tun-

ing data, we give a higher weight to sample pairs where the decoder proposed a valid

correction. We found a weight of 20 to work well, based on initial experiments on the

HOO2011-TUNE data. For the HOO 2012 data, we found that re-weighting the sam-

ples was not necessary. Therefore, we do not re-weight the samples in the HOO 2012

experiments. We keep all these parameters fixed for all experiments.

7.4 Results

The complete results of the HOO 2011 and HOO 2012 experiments are shown in Ta-

ble 7.3 and Table 7.4, respectively. Each row contains the results for one error correction

system.

HOO 2011

For the HOO 2011 experiments, each system is scored on the original and official gold-

standard annotations, both with the M2 scorer and the official HOO 2011 scorer. This

results in four sets of precision, recall, and F1 scores for each system. The best result

in the H00 2011 shared task was achieved by the UI Run1 system by Rozovskaya et

al. (2011). We include their system as a reference point.

We make the following observations. First, the scores on the official gold-standard

annotations are higher compared to the original gold-standard annotations. We note

that the gap between the two annotations is the largest for the UI Run1 system which

confirms the suspected bias of the official gold-standard annotations in favor of partic-

124

ipating systems. Second, the scores computed with the M2 scorer are higher than the

scores computed with the official HOO 2011 scorer. With more error categories and

more ambiguity in the edits segmentation, the gap between the scorers widens. In the

case of the full HOO 2011 pipeline and decoder model, the HOO 2011 scorer even

shows a decrease in F1 score when the score actually goes up as shown by the M2

scorer. We therefore focus on the scores of the M2 scorer from now on. The SMT

baseline achieves 8.68% and 11.21% F1 score on the original and official gold stan-

dard, respectively. Although the worst system in our experiments, it would still have

claimed the third place in the HOO 2011 shared task. One problem is certainly the small

amount of training data. Another reason is that the phrase-based model is unaware of

syntactic structure and cannot express correction rules of the form NP → the NP .

Instead, it has to have seen the exact correction rule, e.g., house → the house, in the

training data. As a result, the model does not generalize well. The pipeline achieves

state-of-the-art results. Each additional correction step improves the score. Our pro-

posed decoder achieves the best result. When only a few error categories are corrected,

the pipeline and the decoder are close to each other. When more error categories are

added, the gap between the pipeline and the decoder becomes larger. The full HOO

2011 decoder model achieves an F1 score of 23.48% and 25.48% on the original and

official gold standard, respectively, which is statistically significantly better than both

the pipeline system and the UI Run1 system.

HOO 2012

For the HOO 2012 experiments, there is only one gold-standard annotation available

for evaluation.26 Evaluation is done with the M2 scorer and the official HOO 2012

scorer which give the same result in this case. The pipeline experiments are the same

as those presented in the last chapter on the HOO2012-DEVTEST data set. We repeat

the results here for easy comparison with the decoder results. Each correction step in

the pipeline improves the score. The decoder again achieves the best result, improving

26For the official HOO 2012 test set, there exist two gold standards (before and after revision) but not
for the development test set.

125

over the pipeline in every experiment. Although the improvements over the pipeline are

small, the improvements are statistically significant in all experiments. The full HOO

2012 decoder model achieves an F1 score of 35.83% on the development test set. With

this, the decoder improves over the state-of-the-art pipeline system that achieved the

highest correction score in the HOO 2012 shared task. The consistent improvement

of the decoder over the pipeline model on both data sets shows the advantage of the

decoder method.

7.5 Discussion

As pointed out in Section 7.2.5, the majority of sentences require zero or few correc-

tions. Therefore, the depth of the search tree is typically small. In our HOO 2011

experiments, for example, the average depth of the search tree is only 1.9 (i.e., 0.9

corrections per sentence) on the test set. On the other hand, there are many possible

hypotheses that can be proposed for any sentence. The breath of the search tree is

therefore quite large. In our HOO 2011 experiments, the decoder explored on average

99 hypotheses per sentence on the test set.

We found that PRO tuning is very important to achieve good performance for the de-

coder. Most importantly, PRO tunes the correction count features that bias the decoder

against over-correcting sentences thus improving precision. But PRO is also able to im-

prove recall during tuning. Table 7.5 shows the trajectory of the performance for the full

HOO 2011 decoder model during PRO tuning on HOO2011-TUNE. After PRO tuning

has converged, we inspect the learned weight vector and observe some interpretable pat-

terns learned by PRO. First, the language model score and all classifier expert average

scores receive positive weights, while all classifier expert delta scores receive negative

weights, in line with the initial intuition described in Section 7.2.3. Second, most cor-

rection count features receive negative weights, thus acting as a bias against correction

if it is not necessary. Finally, the correction count features reveal which corrections are

more likely and which are less likely. For example, article replacement errors are less

126

System M2 scorer HOO scorer
P R F1 P R F1

UI Run1 40.86 11.21 17.59 38.13 10.42 16.37
P R F1 P R F1

SMT 9.84 7.77 8.68 15.25 5.31 7.87
Pipeline P R F1 P R F1

Spelling 50.00 0.79 1.55 40.00 0.64 1.25
+ Articles 30.86 10.23 15.36 28.04 9.55 14.25
+ Preposition replacement 27.44 11.90 16.60 24.82 11.15 15.38
+ Punctuation 28.91 14.55 19.36 † 26.57 13.91 18.25 †
+ Noun number 28.77 16.13 20.67 † 24.68 14.22 18.04 †
Decoder P R F1 P R F1

Spelling 36.84 0.69 1.35 22.22 0.41 0.80
+ Articles 19.84 12.59 15.40 17.99 12.00 14.39
+ Preposition replacement 22.62 14.26 17.49 ∗ 19.30 12.95 15.50
+ Punctuation 24.27 18.09 20.73 ∗† 20.40 16.24 18.08
+ Noun number 30.28 19.17 23.48 ∗† 24.29 16.24 19.46 ∗†

(a) Original gold standard

System M2 scorer HOO scorer
P R F1 P R F1

UI Run1 54.61 14.57 23.00 50.72 13.34 21.12
P R F1 P R F1

SMT 23.35 7.38 11.21 15.82 5.30 7.93
Pipeline P R F1 P R F1

Spelling 50.00 0.76 1.49 40.00 0.61 1.20
+ Articles 34.42 10.97 16.64 31.78 10.41 15.68
+ Preposition replacement 30.54 12.77 18.01 27.90 12.04 16.82
+ Punctuation 32.88 15.99 21.51 30.63 15.41 20.50
+ Noun number 32.34 17.50 22.71 28.36 15.71 20.22
Decoder P R F1 P R F1

Spelling 36.84 0.66 1.30 22.22 0.42 0.83
+ Articles 22.45 13.72 17.03 ∗ 20.70 13.27 16.16
+ Preposition replacement 24.84 15.14 18.81 ∗ 21.36 13.78 16.74
+ Punctuation 27.13 19.58 22.75 ∗ 23.07 17.65 19.99
+ Noun number 33.59 20.53 25.48 ∗† 27.30 17.55 21.36 ∗

(b) Official gold standard

Table 7.3: Experimental results on HOO2011-TEST. Precision, recall, and F1 score are
shown in percent. The best F1 score for each system is highlighted in bold. Statistically
significant improvements (p < 0.01) over the pipeline baseline are marked with an
asterisk (∗). Statistically significant improvements over the UI Run1 system are marked
with a dagger (†). All improvements of the pipeline and the decoder over the SMT
baseline are statistically significant.

127

Pipeline P R F1

Articles 54.10 11.01 18.30
+ Preposition replacement (RT) 57.38 19.97 29.63
+ Missing/unwanted preposition (MT/UT) 54.84 26.12 35.39
Decoder P R F1

Articles 36.22 17.16 23.28 ∗
+ Preposition replacement (RT) 46.86 22.92 30.78 ∗
+ Missing/unwanted preposition (MT/UT) 45.73 29.45 35.83 ∗

Table 7.4: Experimental results on HOO2012-DEVTEST. Precision, recall, and F1

score are shown in percent. The best F1 score for each system is highlighted in bold.
Statistically significant improvements (p < 0.01) over the pipeline baseline are marked
with an asterisk (∗).

PRO iteration P R F1

1 14.13 20.17 16.62
2 19.71 20.85 20.27
3 23.12 21.03 22.02
4 24.35 20.85 22.47
5 25.53 20.51 22.75
6 26.27 20.34 22.93
7 27.25 20.68 23.52
8 26.73 19.83 22.77

Table 7.5: PRO tuning of the full HOO 2011 decoder model on HOO2011-TUNE

common in the HOO2011-TUNE data than article insertions or deletions. The weights

learned for the article correction count features shown in Table 7.6 reflect this.

In the HOO 2012 experiments, the improvements of the decoder over the pipeline

were smaller than in the HOO 2011 experiments. We believe that this is a result of the

restriction of the HOO 2012 task to only article and preposition errors. Articles and

prepositions interact less with each other than, for example, articles and noun number.

As the decoder’s strength lies in correcting sentences with multiple interacting errors,

the relative improvements over the pipeline baseline are smaller when fewer and less

Feature Weight
a→ the -1.3660
a→ ε 0.5253
the→ a -0.9997
the→ ε 0.0532
ε→ a 0.0694
ε→ the -0.0529

Table 7.6: Example of PRO-tuned weights for article correction count features for the
full HOO 2011 decoder model.

128

interacting error categories are chosen.

Although the decoder achieves state-of-the-art results, there remain many error cat-

egories which the decoder currently cannot correct. This includes, for example, verb

form errors (Much research (have → has) been put into . . .) and lexical choice er-

rors (The (concerned→ relevant) relation . . .). We believe that our decoder provides a

promising framework to build grammatical error correction systems that include these

types of errors in the future.

7.6 Conclusion

We have presented a novel beam-search decoder for grammatical error correction. The

model performs end-to-end correction of whole sentences with multiple, interacting

errors, is discriminatively trained, and incorporates existing classifier-based models for

error correction. Our decoder achieves an F1 correction score of 25.48% on the HOO

2011 test set and an F1 correction score of 35.83% on the HOO 2012 development test

set which outperforms the current state of the art on both data sets.

129

Chapter 8

Conclusion

In this thesis, we have made several contributions that advance grammatical error cor-

rection research. We started by motivating the need for automatic grammatical error

correction systems and why we believe that computers can achieve this goal. Next, we

presented the NUS Corpus of Learner English (NUCLE), a fully annotated one-million

word corpus of learner text which was built as part of this thesis. We hope that this

corpus will be a useful resource for grammatical error correction research in the future.

We have presented a novel method, called MaxMatch (M2), for evaluating grammati-

cal error correction that overcomes problems in current evaluation tools. In Chapter 4,

we presented a novel approach for training classifiers for grammatical error correction

based on Alternating Structure Optimization. Experiments for article and preposition

errors show the advantage of the ASO approach over two baseline methods and two

commercial grammar checking software packages. In Chapter 5, we presented a novel

approach for correcting lexical choice errors. Our approach exploits the semantic sim-

ilarity of words in the writer’s native language based on paraphrases extracted from a

parallel corpus. Experiments on real-world learner data have shown that our approach

outperforms traditional approaches based on edit distance, homophones, and synonyms

by a large margin. In Chapter 6, we presented a pipeline architecture for end-to-end

grammatical error correction systems. The NUS system submissions based on this ar-

chitecture achieved the second highest correction F1 score in the HOO 2011 shared task

130

and the highest correction F1 score in the HOO 2012 shared task. Finally, we presented

a novel beam-search decoder for grammatical error correction. The model performs

end-to-end correction of whole sentences with multiple, interacting errors, is discrimi-

natively trained, and incorporates existing classifier-based models for error correction.

The architecture of the decoder provides a new framework for how to build grammat-

ical error correction systems. Our decoder outperforms the state-of-the-art pipeline

approach on both the HOO 2011 and HOO 2012 shared task data.

While this thesis has advanced the current state of the art for grammatical error cor-

rection in several directions, grammatical error correction is still an emerging research

topic in natural language processing and much work remains to be done. For example,

most grammatical error correction research, including this thesis, restricts the context

of a grammatical error to a single sentence. It is obvious that certain types of gram-

matical errors, like co-reference and discourse, have a scope beyond a single sentence.

Extensions of existing grammatical error correction models to paragraph and document

contexts are needed to correct these types of errors. In addition, grammatical error cor-

rection systems are currently not able to say why something is an error and are not able

to justify their proposed corrections. If an algorithm could provide feedback to a lan-

guage learner as to why a particular word has to be used in that particular context, it

would increase trust in the system and enhance the learning experience of the learner.

In addition, the performance of current grammar correction systems still needs to be

improved further. While the methods presented in this thesis have shown state-of-the-

art performance, the final F1 scores for the decoder model, for example, are only in the

20% - 30% range, which still appears low in absolute terms. This raises the question

how much nearer this thesis has brought us to the vision of practical grammar correc-

tion systems for language learners. My answer to this question would be that we are

probably closer to seeing practical grammar correction systems than the numbers might

suggest. First, the upper bound for the grammar correction task is not 100% F1 score.

We have shown in Chapter 3 that grammatical error correction is a difficult task where

even trained annotators have problems to achieve good agreement. The upper bound for

131

grammar correction systems should therefore be the average F1 score of a human anno-

tator measured against the gold standard, which I believe would be considerably lower

than 100%. Future work is needed to investigate the human annotator agreement issue

and to quantify the upper bound for automatic error correction. Second, we have shown

in Chapter 4 that our classifiers already outperform commercial grammar checking soft-

ware. In other words, a practical system built on the results of this thesis would already

provide more accurate corrections than the existing solutions in the market. Finally, I

believe that grammatical error correction techniques will be used to assist humans in

tasks like proofreading and text editing, rather than outright replacing them. Just like

machine translation is not perfect but it is often good enough to get a first translation

for post-editing, grammatical error correction systems could be used to automatically

scan through a text and make the first round of corrections which would then be ex-

amined by a human editor. Despite these remaining obstacles, it is encouraging that

during the time that this thesis was done, we could see that interest in grammatical error

correction research was clearly picking up and that research systems approach the level

of accuracy where they start to become useful for practical applications where they can

improve people’s lives.

132

Bibliography

[Ando and Zhang2005] R.K. Ando and T. Zhang. 2005. A framework for learning

predictive structures from multiple tasks and unlabeled data. Journal of Machine

Learning Research, 6:1817–1853.

[Bannard and Callison-Burch2005] C. Bannard and C. Callison-Burch. 2005. Para-

phrasing with bilingual parallel corpora. In Proceedings of ACL, pages 597–604.

[Baroni et al.2009] M. Baroni, S. Bernardini, A. Ferraresi, and E. Zanchetta. 2009. The

WaCky wide web: A collection of very large linguistically processed web-crawled

corpora. Language Resources and Evaluation, 43(3):209–226.

[Bergsma et al.2009] S. Bergsma, D. Lin, and R. Goebel. 2009. Web-scale N-gram

models for lexical disambiguation. In Proceedings of IJCAI, pages 1507–1512.

[Bergsma et al.2010] S. Bergsma, E. Pitler, and D. Lin. 2010. Creating robust super-

vised classifiers via web-scale N-gram data. In Proceedings of ACL, pages 865–874.

[Bird et al.2008] S. Bird, R. Dale, B.J. Dorr, B. Gibson, M. Joseph, M.Y. Kan, D. Lee,

B. Powley, D.R. Radev, and Y.F. Tan. 2008. The ACL anthology reference cor-

pus: A reference dataset for bibliographic research in computational linguistics. In

Proceedings of LREC, pages 1755–1759.

[Brants and Franz2006] T. Brants and A. Franz. 2006. Web 1T 5-gram corpus version

1.1. Technical report, Google Research.

[Brants et al.2007] T. Brants, A.C. Popat, P. Xu, F. J. Och, and J. Dean. 2007. Large

language models in machine translation. In Proceedings of EMNLP, pages 858–867.

133

[Brockett et al.2006] C. Brockett, W.B. Dolan, and M. Gamon. 2006. Correcting ESL

errors using phrasal SMT techniques. In Proceedings of ACL, pages 249–256.

[Callison-Burch et al.2012] C. Callison-Burch, P. Koehn, C. Monz, M. Post, R. Sori-

cut, and L. Specia. 2012. Findings of the 2012 workshop on statistical machine

translation. In Proceedings of WMT, pages 10–51.

[Carlson et al.2001] A.J. Carlson, J. Rosen, and D. Roth. 2001. Scaling up context-

sensitive text correction. In Proceedings of IAAI, pages 45–50.

[Chan and Ng2005] Y.S. Chan and H. T. Ng. 2005. Scaling up word sense disambigua-

tion via parallel texts. In Proceedings of AAAI, pages 1037–1042.

[Chang et al.2008] Y.C. Chang, J. S. Chang, H.J. Chen, and H.C. Liou. 2008. An au-

tomatic collocation writing assistant for Taiwanese EFL learners: A case of corpus-

based NLP technology. Computer Assisted Language Learning, 21(3):283–299.

[Chodorow et al.2007] M. Chodorow, J. Tetreault, and N.R. Han. 2007. Detection of

grammatical errors involving prepositions. In Proceedings of the 4th ACL-SIGSEM

Workshop on Prepositions, pages 25–30.

[Clark and Curran2007] S. Clark and J.R. Curran. 2007. Wide-coverage efficient

statistical parsing with CCG and log-linear models. Computational Linguistics,

33(4):493–552.

[Cohen1960] J. Cohen. 1960. A coefficient of agreement for nominal scales. Educa-

tional and Psychological Measurement, 20(1):37–46.

[Cormen et al.2001] T. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. 2001. In-

troduction to Algorithms. MIT Press, Cambridge, MA.

[Crammer et al.2009] K. Crammer, M. Dredze, and A. Kulesza. 2009. Multi-class

confidence weighted algorithms. In Proceedings of EMNLP, pages 496–504.

134

[Dahlmeier and Ng2011a] D. Dahlmeier and H.T. Ng. 2011a. Correcting semantic

collocation errors with L1-induced paraphrases. In Proceedings of EMNLP, pages

107–117.

[Dahlmeier and Ng2011b] D. Dahlmeier and H.T. Ng. 2011b. Grammatical error cor-

rection with alternating structure optimization. In Proceedings of ACL:HLT, pages

915–923.

[Dahlmeier and Ng2012a] D. Dahlmeier and H.T. Ng. 2012a. A beam-search decoder

for grammatical error correction. In Proceedings of EMNLP, pages 568–578.

[Dahlmeier and Ng2012b] D. Dahlmeier and H.T. Ng. 2012b. Better evaluation for

grammatical error correction. In Proceedings of HLT-NAACL, pages 568–572.

[Dahlmeier et al.2011] D. Dahlmeier, H. T. Ng, and T. P. Tran. 2011. NUS at the HOO

2011 pilot shared task. In Proceedings of the Generation Challenges Session at the

13th European Workshop on Natural Language Generation, pages 257–259.

[Dahlmeier et al.2012] D. Dahlmeier, H. T. Ng, and E. J. F. Ng. 2012. NUS at the

HOO 2012 shared task. In Proceedings of the Seventh Workshop on Innovative Use

of NLP for Building Educational Applications, pages 216–224.

[Dale and Kilgarriff2011] R. Dale and A. Kilgarriff. 2011. Helping Our Own: The

HOO 2011 pilot shared task. In Proceedings of the Generation Challenges Session

at the 13th European Workshop on Natural Language Generation, pages 242–249.

[Dale et al.2012] R. Dale, I. Anisimoff, and G. Narroway. 2012. HOO 2012: A report

on the preposition and determiner error correction shared task. In Proceedings of the

Seventh Workshop on Innovative Use of NLP for Building Educational Applications,

pages 54–62.

[Daumé III2004] H. Daumé III. 2004. Notes on CG and LM-BFGS op-

timization of logistic regression. Paper available at http://pub.hal3.

name#daume04cg-bfgs, implementation available at http://hal3.name/

megam/.

135

[De Felice2008] R. De Felice. 2008. Automatic Error Detection in Non-native English.

Ph.D. thesis, St Catherine’s College, University of Oxford.

[Désilets and Hermet2009] A. Désilets and M. Hermet. 2009. Using automatic

roundtrip translation to repair general errors in second language writing. In Pro-

ceedings of MT-Summit XII.

[Dredze et al.2008] M. Dredze, K. Crammer, and F. Pereira. 2008. Confidence-

weighted linear classification. In Proceedings of ICML, pages 184–191.

[Dyer et al.2008] C. Dyer, S. Muresan, and P. Resnik. 2008. Generalizing word lattice

translation. In Proceedings of ACL:HLT, pages 1012–1020.

[Farghal and Obiedat1995] M. Farghal and H. Obiedat. 1995. Collocations: A ne-

glected variable in EFL. International Review of Appplied Linguistics, 33(4):315–

31.

[Fellbaum1998] C. Fellbaum, editor. 1998. WordNet: An electronic lexical database.

MIT Press, Cambridge,MA.

[Firth1957] J.R. Firth. 1957. Papers in Linguistics 1934-1951. Oxford University

Press, London.

[Foster et al.2006] G. Foster, R. Kuhn, and H. Johnson. 2006. Phrasetable smoothing

for statistical machine translation. In Proceedings of EMNLP, pages 53–61.

[Foster2007] J. Foster. 2007. Treebanks gone bad: parser evaluation and retraining

using a treebank of ungrammatical sentences. International Journal on Document

Analysis and Recognition, 10(3-4):129–207.

[Freund and Schapire1999] Y. Freund and R.E. Schapire. 1999. Large margin classifi-

cation using the perceptron algorithm. Machine learning, 37(3):277–296.

[Futagi et al.2008] Y. Futagi, P. Deane, M. Chodorow, and J. Tetreault. 2008. A compu-

tational approach to detecting collocation errors in the writing of non-native speakers

of English. Journal of Computer-Assisted Learning, 21:353–367.

136

[Gale et al.1992] W. Gale, K Church, and D. Yarowsky. 1992. Work on statistical

methods for word sense disambiguation. In Proceedings of the AAAI Fall Symposium

on Probabilistic Approaches to Natural Language, pages 54–60.

[Gamon et al.2008] M. Gamon, J. Gao, C. Brockett, A. Klementiev, W.B. Dolan,

D. Belenko, and L. Vanderwende. 2008. Using contextual speller techniques and

language modeling for ESL error correction. In Proceedings of IJCNLP, pages 449–

456.

[Gamon2010] M. Gamon. 2010. Using mostly native data to correct errors in learners’

writing: A meta-classifier approach. In Proceedings of HLT-NAACL, pages 163–171.

[Golding and Roth1999] A.R. Golding and D. Roth. 1999. A winnow-based approach

to context-sensitive spelling correction. Machine Learning, 34:107–130.

[Golding1995] A.R. Golding. 1995. A Bayesian hybrid method for context-sensitive

spelling correction. In Proceedings of the Third Workshop on Very Large Corpora,

pages 39–53.

[Graddol2006] D. Graddol. 2006. English Next. The English Company.

[Granger et al.2002] S. Granger, F. Dagneaux, E. Meunier, and M. Paquot. 2002.

The International Corpus of Learner English. Presses Universitaires de Louvain,

Louvain-la-Neuve, Belgium.

[Hagen1995] K.L. Hagen. 1995. Unification-based parsing applications for intelligent

foreign language tutoring systems. Calico Journal, 2(2):2–8.

[Haghighi et al.2009] A. Haghighi, J. Blitzer, J. DeNero, and D. Klein. 2009. Bet-

ter word alignments with supervised ITG models. In Proceedings of ACL-IJCNLP,

pages 923–931.

[Han et al.2006] N.-R. Han, M. Chodorow, and C. Leacock. 2006. Detecting errors

in English article usage by non-native speakers. Natural Language Engineering,

12(2):115–129.

137

[Han et al.2010] N.R. Han, J. Tetreault, S.H. Lee, and J.Y. Ha. 2010. Using an error-

annotated learner corpus to develop an ESL/EFL error correction system. In Pro-

ceedings of LREC, pages 763–770.

[Heidorn et al.1982] G.E. Heidorn, K. Jensen, L.A. Miller, R.J. Byrd, and

M. Chodorow. 1982. The Epistle text-critiquing system. IBM Systems Journal,

21(3):305–326.

[Heidorn2000] G.E Heidorn, 2000. Intelligent writing assistance, pages 181–207.

Handbook of Natural Language Processing. Marcel Dekker, New York.

[Heift and Schulze2007] Trude Heift and Mathias Schulze. 2007. Errors and Intelli-

gence in Computer-Assisted Language Learning. Routledge, London, UK.

[Hopkins and May2011] M. Hopkins and J. May. 2011. Tuning as ranking. In Pro-

ceedings of EMNLP, pages 1352–1362.

[Izumi et al.2003] E. Izumi, K. Uchimoto, T. Saiga, T. Supnithi, and H. Isahara. 2003.

Automatic error detection in the Japanese learners’ English spoken data. In Com-

panion Volume to the Proceedings of ACL, pages 145–148.

[Jelinek1998] F. Jelinek. 1998. Statistical methods for speech recognition. MIT press,

Cambridge, MA.

[Klein and Manning2003a] D. Klein and C.D. Manning. 2003a. Accurate unlexical-

ized parsing. In Proceedings of ACL, pages 423–430.

[Klein and Manning2003b] D. Klein and C.D. Manning. 2003b. Fast exact inference

with a factored model for natural language processing. Advances in Neural Informa-

tion Processing Systems (NIPS 2002), 15:3–10.

[Knight and Chander1994] K. Knight and I. Chander. 1994. Automated postediting of

documents. In Proceedings of AAAI, pages 779–784.

[Koehn et al.2003] P. Koehn, F.J. Och, and D. Marcu. 2003. Statistical phrase-based

translation. In Proceedings of HLT-NAACL, pages 48–54.

138

[Koehn et al.2007] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico,

N. Bertoldi, B. Cowan, W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Con-

stantin, and E. Herbst. 2007. Moses: Open source toolkit for statistical machine

translation. In Companion Volume to the Proceedings of ACL Demo and Poster Ses-

sions, pages 177–180.

[Koehn2004] P. Koehn. 2004. Statistical significance tests for machine translation

evaluation. In Proceedings of EMNLP, pages 388–395.

[Koehn2006] Philipp Koehn. 2006. Statistical machine translation: the basic, the novel,

and the speculative. Tutorial at EACL.

[Koehn2010] P. Koehn. 2010. Statistical Machine Translation. Cambridge University

Press, Cambridge, UK.

[Kudo and Matsumoto2003] T. Kudo and Y. Matsumoto. 2003. Fast methods for

kernel-based text analysis. In Proceedings of ACL, pages 24–31.

[Landis and Koch1977] J.R. Landis and G.G Koch. 1977. The measurement of ob-

server agreement for categorical data. Biometrics, 33(1):159–174.

[Lapata and Keller2005] M. Lapata and F. Keller. 2005. Web-based models for nat-

ural language processing. ACM Transactions on Speech and Language Processing,

2(1):1–31.

[Leacock et al.2010] C. Leacock, M. Chodorow, M. Gamon, and J. Tetreault. 2010.

Automated Grammatical Error Detection for Language Learners. Morgan & Clay-

pool Publishers.

[Lee and Knutsson2008] J. Lee and O. Knutsson. 2008. The role of PP attachment in

preposition generation. In Proceedings of CICLing, pages 643–654.

[Lee and Ng2002] Y.K. Lee and H.T. Ng. 2002. An empirical evaluation of knowledge

sources and learning algorithms for word sense disambiguation. In Proceedings of

EMNLP, pages 41–48.

139

[Lee and Seneff2006] J. Lee and S. Seneff. 2006. Automatic grammar correction for

second-language learners. In Proceedings of Interspeech, pages 1978–1981.

[Lee2004] J. Lee. 2004. Automatic article restoration. In Proceedings of HLT-NAACL,

pages 31–36.

[Levenshtein1966] V. Levenshtein. 1966. Binary codes capable of correcting deletions,

insertions, and reversals. Soviet Physics Doklady, 10(8):707–710.

[Liang et al.2006] P. Liang, B. Taskar, and D. Klein. 2006. Alignment by agreement.

In Proceedings of HLT-NAACL, pages 104–111.

[Lin and Och2004] C.-Y. Lin and F.J. Och. 2004. ORANGE: a method for evaluating

automatic evaluation metrics for machine translation. In Proceedings of COLING,

pages 501–507.

[Liu and Ng2007] C. Liu and H. T. Ng. 2007. Learning predictive structures for se-

mantic role labeling of NomBank. In Proceedings of ACL, pages 208–215.

[Liu et al.2009] A.L. Liu, D. Wible, and N.L. Tsao. 2009. Automated suggestions for

miscollocations. In Proceedings of the ACL 4th Workshop on Innovative Use of NLP

for Building Educational Applications, pages 47–50.

[Liu et al.2010a] C. Liu, D. Dahlmeier, and H.T. Ng. 2010a. PEM: a paraphrase eval-

uation metric exploiting parallel texts. In Proceedings of EMNLP, pages 923–932.

[Liu et al.2010b] C. Liu, D. Dahlmeier, and H.T. Ng. 2010b. TESLA: Translation

evaluation of sentences with linear-programming-based analysis. In Proceedings of

WMT and MetricsMATR, pages 354–359.

[Low et al.2005] J.K. Low, H.T. Ng, and W. Guo. 2005. A maximum entropy approach

to Chinese word segmentation. In Proceedings of the 4th SIGHAN Workshop, pages

161–164.

140

[MacDonald et al.1982] N.H. MacDonald, L.T. Frase, P.S. Gingrich, and S.A. Keenan.

1982. The writer’s workbench: Computer aids for text analysis. IEEE Transactions

on Communications, 30(1):105–110.

[Madnani and Dorr2010] N. Madnani and B.J. Dorr. 2010. Generating phrasal and

sentential paraphrases: A survey of data-driven methods. Computational Linguistics,

36(3):341–387.

[Marcus et al.1993] M.P. Marcus, B. Santorini, and M.A. Marcinkiewicz. 1993. Build-

ing a large annotated corpus of English: The Penn Treebank. Computational Lin-

guistics, 19(2):313–330.

[McCarthy and Navigli2007] D. McCarthy and R. Navigli. 2007. Semeval-2007 task

10: English lexical substitution task. In Proceedings of the 4th International Work-

shop on Semantic Evaluations (SemEval-2007), pages 48–53.

[Meng2008] J. Meng. 2008. Erroneous collocations caused by language transfer in

Chinese EFL writing. US-China Foreign Language, 6:57–61.

[Minnen et al.2000] G. Minnen, F. Bond, and A. Copestake. 2000. Memory-based

learning for article generation. In Proceedings of CoNLL, pages 43–48.

[Mitton1992] R. Mitton. 1992. A description of a computer-usable dictionary file

based on the Oxford Advanced Learner’s Dictionary of Current English.

[Munson et al.2012] T. Munson, J. Sarich, S. Wild, S. Benson, and L.C. McInnes.

2012. Tao 2.0 users manual. Technical Report ANL/MCS-TM-322, Mathematics

and Computer Science Division, Argonne National Laboratory.

[Nagata et al.2006] R. Nagata, A. Kawai, K. Morihiro, and N. Isu. 2006. A feedback-

augmented method for detecting errors in the writing of learners of English. In

Proceedings of COLING-ACL, pages 241–248.

141

[Ng and Chan2007] H.T. Ng and Y.S. Chan. 2007. SemEval-2007 task 11: English

lexical sample task via English-Chinese parallel text. In Proceedings of the 4th In-

ternational Workshop on Semantic Evaluations (SemEval-2007), pages 54–58.

[Ng and Lee1996] H.T. Ng and H.B. Lee. 1996. Integrating multiple knowledge

sources to disambiguate word sense: an examplar-based approach. In Proceedings

of ACL, pages 40–47.

[Ng et al.2003] H.T. Ng, B. Wang, and Y.S. Chan. 2003. Exploiting parallel texts

for word sense disambiguation: An empirical study. In Proceedings of ACL, pages

455–462.

[Ng et al.2013] H.T. Ng, S.M. Wu, Y. Wu, C. Hadiwinoto, and J. Tetreault. 2013. The

CoNLL-2013 shared task on grammatical error correction. In To appear in Proceed-

ings of the Seventeenth Conference on Computational Natural Language Learning.

[Nicholls2003] D. Nicholls. 2003. The Cambridge learner corpus: Error coding and

analysis for lexicography and ELT. In Proceedings of the Corpus Linguistics 2003

Conference, pages 572–581.

[Nivre et al.2007] J. Nivre, J. Hall, J. Nilsson, A. Chanev, G. Eryigit, S. Kübler,

S. Marinov, and M. Marsi. 2007. MaltParser: A language-independent system for

data-driven dependency parsing. Natural Language Engineering, 13(2):95–135.

[Och and Ney2003] F.J. Och and H. Ney. 2003. A systematic comparison of various

statistical alignment models. Computational Linguistics, 29(1):19–51.

[Och2003] F. Och. 2003. Minimum error rate training in statistical machine translation.

In Proceedings of ACL, pages 160–167.

[Pan and Yang2010] S.J. Pan and Q. Yang. 2010. A survey on transfer learning. IEEE

Transactions on Knowledge and Data Engineering, 22(10):1345–1359.

142

[Papineni et al.2002] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. 2002. BLEU:

A method for automatic evaluation of machine translation. In Proceedings of ACL,

pages 311–318.

[Park and Levy2011] Y. A. Park and R. Levy. 2011. Automated whole sentence gram-

mar correction using a noisy channel model. In Proceedings of ACL:HLT, pages

934–944.

[Pauls and Klein2011] A. Pauls and D. Klein. 2011. Faster and smaller N-gram lan-

guage models. In Proceedings of ACL:HLT, pages 258–267.

[Rozovskaya and Roth2010a] A. Rozovskaya and D. Roth. 2010a. Generating con-

fusion sets for context-sensitive error correction. In Proceedings of EMNLP, pages

961–970.

[Rozovskaya and Roth2010b] A. Rozovskaya and D. Roth. 2010b. Training paradigms

for correcting errors in grammar and usage. In Proceedings of HLT-NAACL, pages

154–162.

[Rozovskaya et al.2011] A. Rozovskaya, M. Sammons, J. Gioja, and D. Roth. 2011.

University of Illinois system in HOO text correction shared task. In Proceedings

of the Generation Challenges Session at the 13th European Workshop on Natural

Language Generation, pages 263–266.

[Russell and Norvig2010] S. Russell and P. Norvig, 2010. Artificial Intelligence: A

Modern Approach, chapter 27. Prentice Hall, Upper Saddle River, NJ.

[Schneider and McCoy1998] D. Schneider and K. McCoy. 1998. Recognizing syntac-

tic errors in the writing of second language learners. In Proceedings of COLING-

ACL, pages 1198–1204.

[Schwind1990] C.B. Schwind. 1990. Feature grammars for semantic analysis. Com-

puter Intelligence, 6:172–178.

143

[Shei and Pain2000] C.C. Shei and H. Pain. 2000. An ESL writer’s collocational aid.

Computer Assisted Language Learning, 13:167–182.

[Snover et al.2009] M. Snover, N. Madnani, B. Dorr, and R. Schwartz. 2009. Flu-

ency, adequacy, or HTER? Exploring different human judgments with a tunable MT

metric. In Proceedings of WMT, pages 259–268.

[Swan and Smith2001] M. Swan and B. Smith. 2001. Learner English: A Teacher’s

Guide to Interference and Other Problems. Cambridge University Press, Cambridge,

UK.

[Talbot and Osborne2007] D. Talbot and M. Osborne. 2007. Randomised language

modelling for statistical machine translation. In Proceedings of ACL, pages 512–

519.

[Tetreault and Chodorow2008a] J. Tetreault and M. Chodorow. 2008a. Native judg-

ments of non-native usage: Experiments in preposition error detection. In Proceed-

ings of the Workshop on Human Judgements in Computational Linguistics, pages

24–32.

[Tetreault and Chodorow2008b] J. Tetreault and M. Chodorow. 2008b. The ups and

downs of preposition error detection in ESL writing. In Proceedings of COLING,

pages 865–872.

[Tetreault et al.2010] J. Tetreault, J. Foster, and M. Chodorow. 2010. Using parse

features for preposition selection and error detection. In Proceedings of the ACL

2010 Conference Short Papers, pages 353–358.

[van Rijsbergen1979] C. J. van Rijsbergen. 1979. Information Retrieval. Butterworth,

Oxford, UK, 2nd edition.

[Wible et al.2003] D. Wible, C.H. Kuo, N.L. Tsao, A. Liu, and H.L. Lin. 2003. Boot-

strapping in a language learning environment. Journal of Computer-Assisted Learn-

ing, 19:90–102.

144

[Wu and Zhou2003] H. Wu and M. Zhou. 2003. Synonymous collocation extraction

using translation information. In Proceedings of ACL, pages 120–127.

[Wu et al.2010] J.C. Wu, Y.C. Chang, T. Mitamura, and J.S. Chang. 2010. Automatic

collocation suggestion in academic writing. In Proceedings of the ACL 2010 Con-

ference Short Papers, pages 115–119.

[Yannakoudakis et al.2011] H. Yannakoudakis, T. Briscoe, and B. Medlock. 2011. A

new dataset and method for automatically grading ESOL texts. In Proceedings of

ACL:HLT, pages 180–189.

[Yarowsky1994] D. Yarowsky. 1994. Decision lists for lexical ambiguity resolution:

Application to accent restoration in Spanish and French. In Proceedings of ACL,

pages 88–95.

[Yi et al.2008] X. Yi, J. Gao, and W.B. Dolan. 2008. A web-based English proofing

system for English as a second language users. In Proceedings of IJCNLP, pages

619–624.

[Zhong and Ng2009] Z. Zhong and H.T. Ng. 2009. Word sense disambiguation for all

words without hard labor. In Proceeding of IJCAI, pages 1616–1621.

145

