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Summary

Many computer vision algorithms, such as photometric stereo, shape from

shading and image matching, assume that cameras are accurate light mea-

suring devices which capture images that are directly related to the ac-

tual scene radiance. Digital cameras, however, are much more than light

measuring devices; the imaging pipelines used in digital cameras are well

known to be nonlinear. Moreover, the primary goal of many cameras is to

create visually pleasing pictures rather than to capture accurate physical

descriptions of the scene.

In this thesis, we present a study of the in-camera image processing

through an extensive analysis of an image database collected by captur-

ing images of scenes under different conditions with over 30 commercial

cameras. The ultimate goal is to investigate if image values can be trans-

formed to physically meaningful values and if so, when and how this can be

done. From our analysis, we found a glaring limitation in the conventional

imaging model employed to determine the nonlinearities in the imaging

pipeline (i.e. radiometric calibration). In particular, the conventional ra-

diometric models assume that the irradiance (RAW) to image intensity

(sRGB) transformation is attributed to a single nonlinear tone-mapping

step. However, this tone-mapping step alone is inadequate to describe

saturated colors. As a result, such color values are often mis-interpreted

by the conventional radiometric calibration methods.

In our analysis, we found that the color mapping component which in-

cludes gamut mapping has been missing in previous models of imaging

pipeline. In this thesis, we describe how to introduce this step into the

imaging pipeline based on Radial Basis Functions, together with calibra-

tion procedures to estimate the associated parameters for a given camera

model. This allows us to model the full transformation from RAW to



sRGB with much more accuracy than demonstrated by prior radiometric

calibration techniques.

Furthermore, an efficient nonuniform lattice regression calibration scheme

is also proposed in order to speed up the in-camera color mapping pro-

cess. The results demonstrate that this nonuniform lattice provides errors

comparable to using an RBFs, but with computational efficiency which is

an order of magnitude faster than optimized RBFs computation.

In addition, we demonstrate how our new imaging pipeline model can be

used to develop a system that converts an sRGB input image captured

with the wrong settings to an sRGB output image that would have been

recorded under different and correct camera settings. The results of real

examples show the effectiveness of our model.

This work, to our best knowledge, is the first to introduce gamut mapping

into the imaging pipeline modeling. The proposed model achieves a new

level of accuracy in converting sRGB images back to the RAW responses.

Acting as a fundamental modeling of in-camera imaging pipeline, it should

benefit many computer vision algorithms.
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Chapter 1

Introduction

In computer vision, digital cameras are used as input instruments for electronically

perceiving the scene. Many computer vision algorithms assume cameras are accurate

light measuring devices which capture images that are directly related to the actual

scene radiance. Fig. 1.1 shows a simple image formation process [21]. The intensities

in an output image are considered to be proportional (up to digitization errors) to

the scene irradiance reflected by the objects. Representative algorithms adopting this

assumption include photometric stereo, shape from shading, image matching, color

constancy, intrinsic image computation, and high dynamic range imaging.

Illumination (energy)
source

Imaging system

(Internal) image plane

Output (digitized) image

Scene element

Figure 1.1: The digital image formation process. (Image from [21].)
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Figure 1.2: Picture styles of Canon EOS DIGITAL cameras. (Snapshot from Canon
official site [5].)

However, digital cameras are much more than light measuring devices. This is

evident from the variety of complicated functions available on consumer cameras.

Typically, for a single-lens reflex (DSLR) camera, users can try to achieve desired ef-

fects when shooting by correctly setting options such as picture style1, white balance,

etc. A web page snapshot of preset picture styles available with Canon EOS DIGI-

TAL is shown in Fig. 1.2 [5], where portrait style is introduced as “for transparent,

healthy skin for women and children” and landscape style is introduced as “crisp and

impressive reproduction of blue skies and green trees in deep, vivid color”. White

balance is another option that dramatically affects the outputs. Fig. 1.3 demonstrates

1Picture style refers to the photofinishing feature of Canon cameras to produce optimized pictures
under specific scenes, such as portrait and landscape. Other camera manufacturers offer similar
photofinishing styles, e.g. Nikon’s “Image Optimizer” and Sony’s “Creative Style”. For simplicity,
we collectively refer to these functions as picture style.
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Chapter 1. Introduction

Incandescent Sunny Shade

Figure 1.3: Images of different white balance settings from a Nikon DSLR camera.

Figure 1.4: Different scene mode settings in a particular point-and-shoot camera
Lumix DMC-ZS8(TZ18).(Snapshot from [50].)

the images of an outdoor scene with different white balance settings from a Nikon

camera. While checking a point-and-shoot camera, we could even find more various

options about the scene mode as shown in Fig. 1.4.

These various image rendering options reveal the complexity of the in-camera

imaging pipeline, and also indicate that the primary goal of commercial cameras is to

create visually pleasing pictures rather than to capture accurate physical descriptions

3



Canon Nikon Sony

Figure 1.5: Color comparison between different cameras. The images are taken with
the same settings including aperture, exposure, white-balance and picture style. The
variation in the colors of the images is evident.

of the scene. Furthermore, each camera manufacturer has its own secret recipe to

achieve this goal. It is well known among professional photographers that the overall

color impressions of different cameras such as Canon and Nikon cameras are different.

Fig. 1.5 compares the images from Canon, Nikon and Sony cameras with the same

aperture, exposure, white balance and picture style shooting at the same indoor scene.

In these images, there exist noticeable color differences in balloon region, background

wall and skins.

Scene Pre-camera In-camera Image in sRGB

Figure 1.6: Summarization of image formulation process of a modern camera.
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Chapter 1. Introduction

Fig. 1.6 summarizes the image formulation process that a modern camera appears

to have. The scene irradiance transits through the lens, filtered by lens filter and

partially absorbed. The amount of light falling on the sensor is controlled by the

combination of shutter speed and aperture. These filtering or controls are in the

pre-camera process. While in the in-camera process, the image sensor responds to

the exposure and results in digital RAW pixel values. These RAW values are then

manipulated on board (referred to as in-camera), realizing the rendering functions as

mentioned above. Finally the color image in a standard color space such as sRGB

color space is produced.

Image senors, such as charge-coupled device (CCD) and complementary metal-

oxide-semiconductor (CMOS), convert photons into electronic voltage and finally the

analog data are converted into digital RAW values. These digital RAW values are

guaranteed to be linear [7] to the amount of incident light with the response properties

of the sensor compensated. They are the most reliable linear descriptions of the scene

from the shooting camera. Compared to the linear RAW values, the final color image

in sRGB is highly nonlinear. sRGB is the abbreviation of standard RGB color space

which is created by HP and Microsoft in 1996 for use on monitors, printers, and the

Internet. Due to the overwhelming domination of monitors in digital image display,

sRGB color space is the common color space supported by cameras in which the

final images are represented. More details about sRGB color space could be found in

Chapter 2.

Due to the variety of on-board processing, the natural question is what are the

pixel values of output images reflecting about the scene? Can these values be trans-

formed to physically meaningful values, ideally the RAW values, and if so, when

and how can this be done? In the next section, detailed objectives of this work are

specified.

1.1 Objectives

For the past decades, many researchers have been working on how to recover the

relative scene irradiance from images [40, 12, 23, 39, 24, 36, 37, 34, 32, 33, 7]. These

prior approaches has formulated the in-camera imaging pipeline as a mapping func-

tion, namely the response function of the camera, which maps the amount of light

5



1.1. Objectives

collected by the image sensor to image intensities. We refer to this group of work as

traditional imaging models.

In traditional imaging models, the focus has been on the response function esti-

mation per color channel. The models are extended to color images in a relatively

simple way. This results in unsatisfactory modeling of the in-camera processing. We

specify the gaps in the traditional imaging models as follows:

• Response function-based formulation is relatively an oversimplified model of the

in-camera imaging pipeline.

• Most of the current calibration techniques estimate the response function of

each channel independently, instead of treating the RGB as a whole. This may

lead to wrong conclusions when applied to color imaging.

• Many researchers accept the assumption that the response function is a fixed

property for a given camera model. However, some researchers [7] disagree with

that. This disagreement is due to the lack of systematic verification of the

assumption.

The main aim of the study presented in this thesis is to propose a general model

of in-camera imaging pipeline, so that a better understanding can be gained on the

behavior of a camera in producing color images from its RAW responses. The specific

objectives of this research were to:

• conduct thorough experiments to verify the assumption about the response

function over a number of cameras from different camera companies.

• propose a generic, more sophisticated, and more accurate model for color imag-

ing pipeline so that the main behavior of cameras in producing color images

could be well represented. The relative scene irradiance should be accurately

recovered from images by the inverse computation based on this model.

• develop another practical other than theoretically optimal representation for

the model to achieve efficient evaluations in real applications.

• apply our model to practical photography problems such as white balance (WB)

correction, and by this application, to further demonstrate the accuracy of our

model.

6



Chapter 1. Introduction

The mathematical model of the in-camera processing (RAW to sRGB) proposed

in this study should have significant impact on the imaging pipeline representation.

All main imaging steps could be found in our model as separate components. In this

way, it is shown clearly the fundamental differences between camera’s RAW images

and its sRGB outputs, which facilitates computer vision (CV) algorithm designers

to select the optimal inputs for their specific applications. Further more, since color

imaging is the basic means of obtaining vision information of the scene in CV, a

better modeling of the camera should contribute to the whole CV community, and

the ability of reversing sRGB back to RAW using our model should benefit those

applications that rely on the availability of physical scene irradiance.

In this work, we focus on examining the behavior of a camera under Manual mode.

It is understood that modern cameras are equipped with very powerful computing

systems. With such computing ability, many extra operations for enhancing the im-

age results can be performed on board. These extra operations are enabled when the

cameras are set to other more complicated modes, such as “auto mode” where the

camera automatically chooses the “optimal” settings and operations for users. These

operations bring additional complexities into the imaging pipeline. Focusing only on

“manual mode” enables us to conduct our experiments under full control. Further-

more, it also eliminates the extra disturbing elements. This elimination contributes to

the establishment of a compact model explaining the core processing of the imaging

pipeline. For more information about manual mode and other modes, please refer to

the section 2.3.3 scene dependency and camera settings of Chapter 2.

1.2 Contributions

In correspondence to the objectives, we made the following contributions:

• We collected more than 10,000 images (both sRGB and RAW if applicable) from

31 cameras ranging from DSLR cameras to point and shoot cameras under

different settings, including different picture styles and white balances, and

conducted analysis on the collected data to verify the assumption about the

response function being a fixed property of a certain camera (in other words,

being scene independent).

7



1.3. Road map

• We proposed a generic and accurate model for color imaging pipeline. The

critical step of gamut mapping was uniquely introduced and modeled as a Radial

Basis Functions [4, 6]. Both forward (RAW to sRGB) and backward (sRGB to

RAW) processes were modeled together with calibration procedures to estimate

the associated parameters for a given camera model. Our results achieved much

more accuracy than demonstrated by prior radiometric calibration techniques.

• Another compact and efficient representation of the imaging pipeline was pro-

posed in order to speed up the in-camera color imaging process for practical

applications. In this representation, we proposed a novel nonuniform lattice

regression method to fit the underlying transforming function from sRGB to

RAW and inverse.

• We demonstrated how our new imaging pipeline model can be used to develop

a system that converts an sRGB input image captured with the wrong settings

to an sRGB output image that would have been recorded under different and

correct camera settings. Those settings include white balance and picture style

settings.

1.3 Road map

In Chapter 2, more background information is provided. We describe our data

collection and analysis in Chapter 3. The details of our proposed in-camera imaging

model based on Radial Basis Functions and the experimental results are described in

Chapter 4. Chapter 5 presents the non-uniform lattice regression technique used in

formulating our model. Furthermore, applications of our model in photo editing are

exhibited in Chapter 6. Chapter 7 discusses and concludes the work.

8



Chapter 2

Background

This chapter presents technical background information about in-camera imaging

pipeline. In section 2.1, the general descriptions of stages in the pipeline are presented.

Related topics about color, color spaces and gamut mapping are discussed in section

2.2. Section 2.3 reviews previous work on radiometric calibration.

2.1 Camera pipeline

Although the on board processes may be different in different camera models, they

still follow a scheme of several generic stages. These stages include RAW responding of

image sensor, white balancing, demosaicing, sharpening, color space transformation,

color rendering, re-quantization and compression [7].

Scene radiance comes through the camera lens, followed by the color filters and

hits the camera’s image sensor, causing linear RAW responses. Generally, these

color filters above the photosensors are arranged according to a pattern named Bayer

pattern. Bayer pattern is a particular arrangement of the red, green and blue color

filters over a square grid of photosensors, where 50% of the filters are green filters, 25%

are red and the other 25% are blue. Fig. 2.1 shows an example of this pattern. Due to

the presence of color filters, for each pixel, only the response value of one color channel

is recorded. Therefore, demosaicing is needed to interpolate the missing values of each

pixel for all three channels to generate a full color image. White balancing is applied

to balance the three color components so that white objects appear white in the

image. Sharpening is used for enhancing image details.

9



2.2. Color representation and communication

Photosensors

Color �lters

Figure 2.1: An example of Bayer pattern.

Demosaicing, white balancing, and sharpening, are generally applied directly on

the RAW values which are in the cameras’ RAW space. This RAW space is almost

unique for each camera model. Those RAW values need to be transformed to standard

color spaces, for example, the CIE XYZ color space, and finally transformed to sRGB

or Adobe sRGB color space. Color rendering, which refers to how cameras modify

the tristimulus result from the previous stages in order to represent them in the final

output color space of limited gamut, is the most critical step in the imaging pipeline.

It determines the final appearance of the image colors. Finally, this image will be

quantized, compressed and then saved as a JPEG file.

These various stages affect the final output image to different extent. While sen-

sor’s RAW response, white balance, color space transformation, and color rendering

are critical elements in generating the final outputs, demosaicing, sharpening, re-

quantization, and compression are treated as introducing noise to the true values. In

this work, we investigate those critical elements in order to understand the relation-

ship between the final output image and the physical scene irradiance.

2.2 Color representation and communication

Before we examine the in-camera imaging pipeline of generating color images, we need

to understand “color”. Although color seems so familiar to us, the perception of color

in our mind involves complicated physical and neural processes. Therefore, before

discussing the representation and/or communication of color, we first investigate what
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Figure 2.2: Relative spectral sensitivities of S, M and L cones. Image from [52].

is color.

2.2.1 Tristimulus

Interestingly, color is not a characteristic of an object. The perception of color is

actually the neural system’s interpretation of the signals sensed by the eyes. On the

retina of the eyes, there are two kinds of light-sensitive photoreceptors: rods and

cones. While rods contribute to the perception of shades of gray only and perform

normally under very low light levels such as starlight, cones are the cells responsible

for our color perception in normal vision.

There are three types of cones, namely S, M and L cones with their spectral

sensitivities peaking at short, medium and long wavelengthes respectively. Fig. 2.2

shows the estimates of the effective sensitivities of the different cones. Their response
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ci to the incident light could be calculated as [52]:

ci =

∫ λmax

λmin

si(λ)l(λ)dλ, i = 1, 2, 3 (2.1)

where λ represents the wavelength, λmin and λmax denote the lower and upper bound

of the visible wavelengths, si(λ) is the sensitivity of the cone of the i-th type, i.e. the

curves in Fig. 2.2, and l(λ) represents the spectral distribution of the light incident

on the retina.

With sufficiently high sampling rate, Eq. 2.1 can be numerically written as

ci =
N−1∑
j=0

si(λj)l(λj)∆λ = sTi l, i = 1, 2, 3 (2.2)

where si = ∆λ ·


si(λ0)

si(λ1)
...

si(λN−1)

 and l =


l(λ0)

l(λ1)
...

l(λN−1)

 .

The set {λj}N−1
j=0 are uniformly spaced wavelengthes over the range [λmin, λmax] with

λj = λ0 + j∆λ. Note that {si}3
i=1 are cone sensitivity vectors which absorb the

influence of the scaling factor ∆λ. Eq. 2.2 can be further compactly written in

matrix-vector notation as

c = ST l, (2.3)

where c = [c1, c2, c3]T and S = [s1, s2, s3].

This 3×1 vector c is known as a tristimulus vector. The array of c’s from different

cones are the input for later neural processes. The final color perception formed in the

mind depends on many other factors, such as viewing condition, scene arrangement.

As an illustration of how sophisticated the human vision system is, an extended

checker shadow illusion originally published by Edward H. Adelson [1] is shown in

Fig. 2.3. We perceive the two grids A and B as different patches, but actually they are

identical in color, including the center brown dots. Although two same responses could

be treated as different colors when conditions differ, by associating the tristimulus

vector with a well defined standard condition, we could still uniquely specify a color
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A

B

Figure 2.3: Checker shadow illusion [1]. Grids A and B have the same intensity
although they are perceived to be different.

using vector c. This concept served as the inspiration of the standard color space.

In the next subsection, we discuss some color spaces based on this mathematical

representation of color.

2.2.2 Color spaces

In this subsection, the basis of color matching is first explained. Next, color spaces are

introduced and a linear relationship between different color spaces is further derived.

Finally, several example color spaces including CIE XYZ, CIE RGB, CIE xyY and

sRGB are briefly presented.

Color matching

From the previous subsection, we know that the tristimulus vector uniquely specifies

a color. Two spectra lA and lB have the same color, i.e. cA = cB, if the following

equation holds:

ST lA = ST lB. (2.4)

Since inherently the color vector is three dimensional, any given color/tristimulus

13
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c could be matched using linear combination of three color primaries, which is

c = ST l = STPa(l) (2.5)

and a(l)
.
= (STP)−1ST l (2.6)

where P = [p1,p2,p3] is the matrix of three color primaries p1, p2, and p3. In

definition, p1, p2, and p3 are colorimetrically independent, i.e. STp1, STp2, and

STp3 are linearly independent, which asserts the existence of (STP)−1. The 3 × 1

vector a(l) is the combination weights for the three primaries in matching the color

of spectrum l. This phenomenon of color matching by using three color primaries is

well known as trichromacy.

Color spaces and their relationships

Based on trichromacy, given three primaries, a 3D color space could be defined. A

point in this color space represents the color matched by the weighted combination

of the three primaries. Any spectrum l has its corresponding point a(l) in this space.

Specifically, the unit intensity monochromatic spectra {ei}Ni=1, (ei is a N-vector with a

one in the ith position and zeros elsewhere), have their corresponding points {ai|ai =

(STP)−1STei}Ni=1. With the help of ai’s, the corresponding point for spectrum l can

be calculated as:

a(l) = (STP)−1ST l

= (STP)−1ST [e1e2 . . . eN ]l

= [a1a2 . . . aN ]l

= AT l, (2.7)

where

A = [a1a2 . . . aN ]T = S(PTS)−1, (2.8)

and the columns of matrix A are referred to as the color-matching functions (CMFs)

associated with the primaries P. Furthermore, with simple derivation, the CMFs A
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and the primaries P are correlated to each other:

ATP = I. (2.9)

Assuming another set of primaries Q and the corresponding CMFs matrix B =

S(QTS)−1, the corresponding points in these two color spaces for spectrum l, aA(l)

and aB(l) respectively, are related as:

aA(l) = AT l = ATQ(BT l) = ATQaB(l), (2.10)

since

AT = (STP)−1ST = (STP)−1(STQ)(STQ)−1ST = ATQBT . (2.11)

From Eq. 2.10, we can see that the transformation between two color spaces of dif-

ferent primaries is a linear transformation, which is ATQ.

This primaries-based color space definition is natural in describing the color space

of output electrooptical devices, such as displays and projectors, and is convenient

as well in expressing transformations between spaces of different sets of primaries.

For those devices, the primaries are naturally the physical spectra produced by the

devices that are finally seen by human eyes. However, for the input optoelectronic

devices, such as scanners and digital cameras, which respond to the physical spectra

and generate digital images, it is not clear what the primaries are when we treat

the digital values as in a primaries based color space. The basic spectral property

of those devices are the spectral sensitivities, as analogous to the sensitivities of the

cones. However, the digital images should be finally seen on an output device, which

makes it a necessity to relate the color spaces of input devices to the primaries based

color spaces.

Let the spectral sensitivities of an input device be Sd. This can be related to the

cone sensitivities S using linear transformation plus a residual as follows:

STd = TST + ST∆, (2.12)

where T is a 3× 3 transformation matrix which is usually of full rank and S∆ is the

residual sensitivity matrix. Assuming T is invertible, the color of a spectrum l will
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be

c = ST l = T−1(STd − ST∆)l = T−1cd −T−1ST∆l, (2.13)

where cd = STd l is the digital response of the spectrum l of the device. From Eq. 2.13,

we can see that unless S∆ = 0, the correspondence between c and cd will be spectral

dependent and is hard to recover since the information after the sensing procedure is

only the convoluted response cd. This condition S∆ = 0 was introduced as the Luther

condition [38, 28] back in the 1927, which is rarely satisfied due to manufacturing

reasons. Therefore a certain color management technique is required to adjust the

colors to the “right” positions to account for the residual part. This will be further

explained in section 2.2.3. With the approximation S∆ = 0, the relation between the

color space of an input device and any other space of primaries P will be:

c = ST l = T−1STd l = STP((STP)−1T−1STd l), (2.14)

where we can see the corresponding CMFs is a linear combination of the sensitivities

SdT̃, where T̃ = T−T (PTS)−1. Since the primaries and the CMFs are correlated

to each other (see Eq. 2.9), we can directly treat Sd as the CMFs and calculate

its corresponding primaries as P̃ = Sd(Sd
TSd)

−1. Having P̃ as the primaries and

based on Eq. 2.11, in our proposed model in later chapters, a linear transformation

is adopted between the camera raw space and a standard color space.

Color space examples

One of the earliest mathematically defined and most widely used standard basic

color spaces is the CIE 1931 XYZ color space, which is derived from CIE RGB

color space by modifying its primaries so as to avoid negative RGB values. The

CMFs of CIE RGB color space were directly constructed from experiments where

each monochromatic test primary was matched by normal observers through the

adjustment of the combination amounts of the three CIE RGB primaries [56]. In this

way, the estimation of cone sensitivity matrix S, which is difficult to measure directly

, was avoided. Fig. 2.4 shows the CMFs of CIE RGB and CIE XYZ color spaces.

Note that there are negative values in the CMFs of CIE RGB color space, which do

not exist in that of CIE XYZ color space.
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Figure 2.4: (a) CIE RGB and (b) CIE XYZ color matching functions. Images from
[52].

In CIE XYZ color space, all perceivable colors are represented in the non-negative

region. With the normalization stated below, a more intuitive color space, which

divides the concept of color into brightness and chromaticity, is derived:

x =
X

X + Y + Z
,

y =
Y

X + Y + Z
,

z =
Z

X + Y + Z
= 1− x− y,

Y = Y, (2.15)

where x, y components specify the chromaticity and Y indicates the level of “bright-

ness”. This is the well known CIE xyY color space. With this space, chromaticities

alone could be easily plotted in 2D figure. Fig. 2.5 shows the chromaticity diagram.

In this diagram, the colored horseshoe-shaped region is the gamut of human vision.

Another color space extensively used for monitors, printers and the internet is the

standard RGB color space, in abbreviation, sRGB. It is also a common space in which

modern cameras represent their final digital images. The sRGB color space is well
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Figure 2.5: The CIE 1931 color space chromaticity diagram. The triangle indicates
the gamut of sRGB color space.

designed for monitor displays: it uses primaries of the ITU-R recommendation [31]

which is the same as in studio monitors; it defines a nonlinear mapping between the

intensity of each primary and the actual number recorded in order to compensate the

gamma response of a CRT monitor.

Accordingly, the transformation from CIE XYZ color space to sRGB color space

involves two steps:

1. Linear transformation

 Rlinear

Glinear

Blinear

 =

 3.2406 −1.5372 −0.4986

−0.9689 1.8758 0.04715

0.0557 −0.2040 1.0570


 X

Y

Z

 (2.16)
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where Rlinear, Glinear, Blinear are the intermediate parameters before nonlinear gam-

ma compensation. They are considered as in linear sRGB color space. Note that

in Eq. 2.16, X, Y and Z are normalized values by scaling the original XYZ with

a suitable value and then clipping them into the range [0, 1]. This determines the

maximum original XYZ values that sRGB can represent. The linear transformation

matrix reflects the original XYZ values which map to the white color in sRGB and

will change if another XYZ values are specified as the white color. In this Eq. 2.16,

the white color in sRGB corresponds to CIE standard illuminant D65 [48], i.e. the

chromatic x = 0.3127, y = 0.3290. Unlike CIE XYZ space, the range of each dimen-

sion of sRGB space is [0, 1] instead of [0,+∞).

2. Gamma compensation

For each channel Clinear ∈ {Rlinear, Glinear, Blinear}, the final Csrgb ∈ {Rsrgb, Gsrgb, Bsrgb}
is calculated as:

Csrgb =

{
12.92Clinear, Clinear ≤ 0.0031308

(1 + a)C
1/2.4
linear − a, Clinear > 0.0031308

(2.17)

where a = 0.055.

Due to the limit of dimension range (which is necessary in practice since negative

or infinite amount of light is impossible to produce) and its adopted primaries, the

possible colors represented by the sRGB space are inside the triangle shown in Fig. 2.5.

This set of colors is considered as the gamut of the sRGB color space.

Besides the aforementioned color spaces, many other color spaces have been pro-

posed for different purposes, such as CIELUV, CIELAB and Adobe RGB color spaces.

While these color spaces are important ones, they are out of the scope of this thesis.

2.2.3 Gamut mapping

As mentioned in the previous subsection, the gamut of a color space is the range

of colors that can be represented in that space by definition. It is determined by

the three primaries and the data range of each dimension. The gamut can also be

associated with a certain device. Ideally, the device has its primaries and dimension

range, which define the gamut. This may be subject to other factors such as viewing

condition. For example, the gamuts of printed image under low illumination and high

illumination are different. We consider the effects of those factors as modifying the
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Out of gamut 
Gamut A: 

Gamut B: 

Out of gamut 

(a) Gamut clipping  (b) Gamut compression  

Figure 2.6: A 1D illustration of the comparison between examples of (a) gamut
clipping and (b) gamut compression. This mapping is from a 1D gamut A to a 1D
gamut B.

primaries and/or dimension ranges.

When reproducing colors from one gamut/device to another, these gamuts proba-

bly mismatches to each other, which means their color representation abilities differ.

Therefore, gamut mapping is required in order to reproduce the colors in the target

gamut. In this case, if a color point of the original gamut is located outside the target

gamut, called out-of-gamut color, this color needs to be assigned to another color

point within the target gamut so that it can be reproduced as effectively as possible,

despite the mismatch.

The simplest way of assigning out-of-gamut colors to those within the gamut is

gamut clipping. Gamut clipping basically maps those out-of-gamut colors to the near-

est colors inside the target gamut and keeps those originally inside colors untouched.

It is a preferable approach where accurate reproduction [44] is the gamut mapping in-

tent, since it changes only the out-of-gamut colors due to gamut differences. However,

most of the cases desire perceptually pleasing reproduction which requires the map-

ping to be smooth and continuous in nature. In other words, the variation between

the colors, not the actual colors, should be preserved. In order to do that, gamut com-

pression algorithms are proposed to continuously compress the outside colors inside

or expand the inside colors toward the boundary of the target gamut. Unlike gamut

clipping, this compression is applied to all original colors. Fig. 2.6 shows the compari-

son between these two gamut mapping algorithms. Other gamut mapping algorithms

such as combining the aforementioned two approaches are possible. For example, a

composite gamut mapping algorithm could be developed with a core gamut defined

to be untouched and colors outside the core gamut being compressed [3].
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In the case of photography, while rendering the colors in the standard color space

such as sRGB color space from the RAW data of the image sensor, pleasant reproduc-

tion is the right choice. Furthermore, cameras, as color input devices, require gamut

mapping to compensate the color mismatches due to the unfulfillment of condition

S∆ = 0 (see Eq. 2.13). This compensation, although is not enough to completely solve

the spectral dependence issue, should be continuous in the working color space. We

show the importance of this gamut mapping step in modeling the in-camera imaging

pipeline in the following chapters.

2.3 Previous work

As mentioned in Chapter 1, there is little work about directly modeling the imaging

pipeline. In the traditional imaging models, radiometric calibration forms the critical

part of formulating the imaging pipeline. We briefly explain what radiometric cali-

bration is in subsection 2.3.1 and how it was solved traditionally in subsection 2.3.2.

The solving methods are classified into two categories according to the required in-

put: calibration from multiple images with different exposures and calibration from

a single image. Finally, a discussion about scene dependency and camera settings is

presented in subsection 2.3.3.

2.3.1 Radiometric calibration formulation

In radiometric calibration, the nonlinearity in the camera pipeline is captured by the

response function (f), which maps the relative amount of light collected by each sensor

pixel (irradiance e) to pixel intensities (I) of the output image. Mathematically:

Ix = f(ex), (2.18)

where x is the pixel location. Eq. 2.18 can be extended to deal with color as follows

[7]:  Irx

Igx

Ibx

 =

 fr(erx)

fg(egx)

fb(ebx)

 , (2.19)
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ex =

 erx

egx

ebx

 = TEx. (2.20)

The term T is a 3×3 transformation that captures both the transformation from the

camera’s color space (Ex) to a linearized standard color space, i.e. linearized sRGB

color space (ex) and white balancing.

The radiometric mapping f is the most critical part of the imaging pipeline and

is almost always nonlinear due to the design factors built into digital cameras for

a variety of reasons, including compressing the dynamic range of the imaged scene

(tone-mapping), accounting for nonlinearities in display systems (gamma correction),

mimicking the response of films, or to create aesthetic effects [24, 37]. When the

response function f is known, the image intensities can be inverted back to relative

scene radiance values. This inversion facilitates physics-based photometric analysis

of the scene. While knowing the response function, as Eq. 2.20 shows, the whole

imaging pipeline modeling could be completed by using the transformation T.

2.3.2 Radiometric calibration algorithms

Calibration from multiple images with different exposures

To estimate this response function, many conventional radiometric calibration algo-

rithms rely on multiple images of a scene taken with different exposures. Assuming

constant radiance, which implies constant illumination, a change in intensity is ex-

plained by a change in exposure. Given a pair of images with an exposure ratio of k′,

the response function f is computed by solving the following equation from intensity

values (I, I ′) at corresponding points:

f−1(I ′x)

f−1(Ix)
=
e′x
ex

= k′. (2.21)

22



Chapter 2. Background

In log domain, let g = logf−1 and K ′ = logk′, the Eq. 2.21 can be written as:

g(I ′x)− g(Ix) = K ′. (2.22)

The main difference among various calibration methods is the model used to

represent the response function. In the last few decades, many different models

have been proposed in order to have an accurate and practical estimation of the

response function. By assuming that the exposure ratios are known and the response

curve can be modeled as gamma curve, Mann and Picard (1995) [40] proposed

the problem and the perspective of recovering high dynamic range by combining

multiple exposed images. Although this method is limited due to the simplicity of

the function form, it has inspired more work following this direction. Debevec and

Malik (1997) [12] proposed a non-parametric model and represented f as a vector.

By imposing a smoothness constraint and assuming known exposure ratios, they

recovered this vector which maps the intensity from 0 to 255 back to relative scene

irradiance values. They also showed how high dynamic range (HDR) map can be

generated based on the radiance response function and how HDR can be applied to

generate realistic motion blur. In the work of Mitsunaga and Nayar (1999) [41], the

response function was modeled as a low degree polynomial. An iterative way was

employed to refine the function and rough exposure ratios. Grossberg and Nayar

(2004) [24] introduced a new model called the empirical model of response (EMoR)

which extracts the principle components for the response function from the database

of existing response functions using principle component analysis (PCA). This model

takes advantage of the knowledge about the shapes of response functions and thus

enables recovery of the curve from a few data samples. Other than the work in [33],

which explained the color as having the same response function for all three channels

but with different exposure level per channel, those methods mentioned above do not

deal with color and compute the response function independently per channel.

While different radiometric calibration methods vary in either how the response

function is modeled and/or computed, all methods share a common view that it is a

fixed property of a given camera model. In fact, this view was exploited to compute

the radiometric response function by applying statistical analysis on images down-

loaded from the web in [34]. One exception is the work in [49] where the response

function was modeled differently per image using a probabilistic approach. Another
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exception is the recent work in [7] where the goal was to provide an analysis of the

factors that contribute to the color output of a camera for internet color vision. They

proposed a 24-parameter model to explain the imaging pipeline and the parameters

are iteratively computed using available RAW data. Through their analysis, they

suggested that the color rendering function f is scene-dependent. They further sug-

gested that fixed nonlinearities per channel/camera as used in traditional radiometric

calibration are often inadequate.

The majority of models mentioned above were extended to color in relatively

simple ways. Furthermore, their main assumption that the response function is a

fixed property is challenged by the work in [7].

Calibration from a single image

If the process is scene dependent as mentioned in [7], traditional radiometric calibra-

tion assuming fixed response function would be inadequate since f is altered while the

exposure is changed. The only option would be to use single-image based radiometric

calibration methods.

Instead of using multiple images, Farid (2001) [14] treated the radiometric nonlin-

earity as a gamma correction and computed the gamma correction from a single image

through a minimization process. In this method, the fact that gamma correction in-

troduces specific higher-order correlations in the frequency domain was exploited.

Thus by detecting and minimizing these correlations, the gamma correction was esti-

mated. However this method also suffers from the limitation of a simple model which

is usually violated in practice.

In the work by Lin et al. (2004) [36], the color distributions of local edge regions

in a single image was used for computing the response function. In observation, the

measured colors across edges illustrate a non-linear distribution in color space while

they should have a linear distribution if only simple blending occurs. By linearizing

the non-linear distributions, they recovered the response function which is responsible

for the non-linearity. This idea was extended in Lin and Zhang’s subsequent work

which deals with a single grayscale image by using the histograms of edge regions (Lin

and Zhang, 2005 [37]). While the single image calibration algorithms are conceptu-

ally the best choice, they are sometimes unstable because they rely on edge regions,

which are sensitive to noise and may be distorted due to further processing such as
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sharpening onboard camera.

Gap

These calibration algorithms mentioned above are all based on formulating the cam-

eras response functions defined in Eq. 2.18 and 2.19, which are independent in dif-

ferent color channels. The nonlinearity is only explained by this channel independent

radiometric mapping f , without examining the effects from gamut mapping and color

manipulation, which act on color as a whole. However, the effects of these steps on the

final output are so significant that if ignored, the fitting errors will not be satisfying

(the results can be found in the later chapters, e.g. Fig. 4.5). Furthermore, the work

in [7] suggested that fixed nonlinearities per channel/camera as used in traditional

radiometric calibration are often inadequate and we have to adopt scene dependent

response functions to optimally reduce the fitting error.

2.3.3 Scene dependency and camera settings

Before moving forward, it is important to clarify the issue of scene dependency of

the in-camera imaging process. If the process is scene dependent as mentioned in [7],

traditional radiometric calibration would be inadequate and the only option would

be to use single-image based radiometric calibration methods. However, these single

image calibration algorithms are sometimes unstable due to their reliance on edge

regions, which are sensitive to noise and may altered by further sharpening.

There are generally two color rendering strategies with regards to how digital

cameras convert image sensor RAW responses to the final output: the photofinish-

ing model and the slide or photographic reproduction model [27]. The digital camera

community defines color rendering as the operations that apply the tone/color re-

production aims for the imaging system and change the state of the image from a

scene-referred image state to an output-referred image state [30]. Color rendering

transforms may include tone and gamut mapping to account for the dynamic range

and color gamut of the output color image encoding (e.g., sRGB, Adobe RGB), com-

pensation for differences in the input and output-viewing conditions, and other color

adjustments (e.g., selective hue, saturation) to account for color reproduction prefer-

ences of the human observer.

25



2.3. Previous work

The intent of the “photofinishing” color rendering operations is to produce a pleas-

ing image that is not solely dependent on the exposure received by the image sensor.

In this model, the imaging pipeline varies the color rendering based on the captured

scene, possibly in a spatially varying manner. The auto-mode in cameras will trigger

the photofinishing model as well as the optimizers such as Dynamic Lighting Op-

timizer on the Canon EOS550D and D-Range Optimizer in Sony α-200. Different

photofinishing methods can also be associated with scene modes, e.g. Party, Land-

scape, Nighttime, etc. This scene dependent processing usually results in a spatially

variant rendering, hence even one set of response functions per image, which are un-

varyingly applied to different regions of the image, would not solve the linearization

problem. For images produced under such settings, it is very difficult to convert image

values to physically meaningful values.

The photographic reproduction model, on the other hand, uses fixed color render-

ing. For most high-end cameras, it is possible to set the camera in this photographic

mode by turning the camera settings to manual and turning off all the settings per-

taining to photofinishing, such as Dynamic Lighting Optimizer. For the remainder

of this thesis it is assumed that the algorithms discussed are intended to work in the

photographic reproduction mode.

Being aware of the missing piece in the traditional formulation and facing the

suggestion of scene dependent response functions, we investigate the imaging pipeline

and propose a new model which incorporates the gamut mapping and color manipu-

lation. Based on this insight, we conducted thorough data collection and analysis in

the next chapter. The question that for a certain camera model, whether the response

function is a fixed property or not is also answered in Chapter 3 before we describe

the details of our new model in Chapter 4.
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Chapter 3

Data collection and analysis

In the previous chapter, we introduced technical background information about the

imaging pipeline and reviewed the related work on radiometric calibration. In this

chapter, we describe the collection step of the image data in section 3.1 and show the

key observations of our analysis in section 3.2.

3.1 Data collection

For the analysis, we collected more than 10,000 images from 31 cameras ranging

from DSLR cameras to point-and-shoot cameras. Images were taken in manual mode

under different settings including white balance, aperture, and shutter speed. Images

were also collected under different lighting conditions: indoor lighting and/or outdoor

cloudy condition. Images were captured three times under the same condition to check

the shutter speed consistency. RAW images were also saved if the camera supports

RAW and the RAW files were rendered using the software dcraw [9]. The command

used was dcraw -v -D -4 -T. We additionally use the database in [7] which includes

over 1000 images from 35 cameras. Cameras from most of the major manufacturers

are included as shown in Fig. 4.3. Although the cameras used for data collection are

not uniformly distributed among the manufacturers, they reflect the reality of certain

manufacturers being more popular than others.

The target objects for our dataset are two Macbeth ColorChecker charts, specif-

ically a 24-patch chart and a 140-patch chart. There are several reasons why these

color charts were used for our analysis. First, since the patches are arranged in a
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3.2. Data analysis

regular grid pattern, we can automatically extract colors from different patches with

simple registration. Second, measurements from different pixels within a patch can

be averaged to reduce the impact of image noise on the analysis. Finally, these color

charts include a broad spectrum of colors and different gray levels, which facilitate

radiometric calibration and color analysis.

3.2 Data analysis

Using the conventional radiometric model, pairs of intensity measurements at cor-

responding patches in two differently exposed images constitute all the necessary

information to recover the radiometric response function of a camera [23]. These

pairs can be arranged into a plot that represents the brightness transfer function

(BTF [33]), which can be formulated from Eq. 2.21 as

I ′x = τk(Ix) = f(k′f−1(Ix)), (3.1)

where τk is the BTF, f is the response function, and k′ is the exposure ratio. The

BTF describes how image intensity changes with respect to an exposure change under

a given response function. If the response function is a fixed property of a camera

and the model in Eq. 2.18 is valid, the BTF should be the same for all pairs of images

that share the same exposure ratio regardless of other camera settings and lighting

conditions. Notice that even if we consider the color transformation in Eq. 2.19, the

BTFs should still remain the same for the same exposure ratio as long as the color

transformation remains unchanged between images, i.e.:

f−1(I ′cx)

f−1(Icx)
= k′

t′cEx

tcEx

= k′, if tc = t′c. (3.2)

In the above equation, tc is a row of the color transformation T that corresponds to

the color channel c.

To validate the model in Eq. 2.18 and the assumption that the response f is a

fixed property of a camera, we compare the BTFs of different cameras under different

settings. Representative examples from two cameras are shown in Fig. 3.1 for clarity.

In the figure, each point represents the change in brightness for a given patch between

the image pair.
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Figure 3.1: Brightness transfer functions for Nikon D50 and Canon EOS-1D. Each plot
includes several BTFs with different exposure ratios (1.25 and 2.0), different lighting
environments (©: outdoors,4: indoors), and different white balance settings (cloudy
and fluorescent). The key observation from these plots is that the BTFs of sRGB
images with the same exposure ratio exhibit a consistent form aside from outliers and
small shifts. For better viewing, please zoom the electronic PDF.
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3.2. Data analysis

Through our analysis of the database, we made several key observations, which

can also be observed in Fig. 3.1. The BTFs of a given camera and exposure ratio

exhibit a consistent shape up to slight shifts and a small number of measurement

outliers. BTFs recorded in the green channel are generally more stable than in the

other channels and have a smaller amount of outliers. Also, the appearance of shifts

and outliers tends to increase with larger exposure ratios.

The shifts can be explained with the inconsistency of the shutter speed. In our

experiments, we control the exposure by changing the shutter speed1, and it is well

known that the shutter speeds of cameras may be imprecise [26]. In particular, we

have found that shutter speeds of cameras with high total shutter-usage count tend

to be less accurate, as observed from measurement inconsistency over repeated image

captures under the same setting. We should note that we can rule out the illumination

change as a cause because of our illumination monitoring from other cameras under

the same conditions capturing repeated images and the consistent BTFs result from

those other cameras. As these shifts also exist in RAW image BTFs, onboard camera

processing can also be ruled out.

We found that some outliers, though having intensity values well within the dy-

namic range of the given color channel, have a 0 or 255 intensity value in at least one

of the other channels. These clipped values at the ends of the dynamic range do not

accurately represent the true scene irradiance.

One significant reason for outliers observed is that when a camera’s color range

extends beyond that of the sRGB gamut, gamut mapping is needed to convert col-

ors from outside the sRGB gamut to within the gamut for the purpose of sRGB

representation [27, 30, 45]. The entire color which has one of its RGB components

deviated from the corresponding overall BTF curve is considered as an outlier. As

seen in Fig. 3.2, we can observe the vast majority of outliers in our dataset have high

color saturation levels and lie close to the boundary of the sRGB color gamut. This

gamut mapping essentially produces a change in color for points outside the sRGB

gamut, and if out-of-gamut colors are shifted in different ways between different ex-

posures, the color transformation becomes different (tc 6= t′c in Eq. 3.2) between the

two images. Thus, these points become outliers positioned off from the BTF. This

effect of gamut mapping becomes more significant with larger exposure ratios, since

1We use shutter speed to control exposure because changing the aperture could result in spatial
variation of irradiance due to vignetting and depth-of-focus.
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Chapter 3. Data collection and analysis

Canon EOS 1D Nikon D50

Figure 3.2: Positions of color points in the sRGB chromaticity gamut. Inliers (filled
with black) are surrounded by outliers (filled with white). Outliers (as observed in
Fig. 3.1) are color points with high saturation levels, and lie close to the boundary of
the sRGB gamut.

the out-of-gamut colors need a greater displacement in color space to move into the

sRGB gamut.

To summarize, the observations imply that factors such as shutter speed inaccu-

racies and gamut mapping have to be considered in order to compute the radiometric

response function accurately. Most importantly, the observations show that less sat-

urated colors can be modeled with the conventional radiometric model (Eq. 2.18)

and be linearized accurately. This confirms that the response is fixed for a certain

camera model. However, we have shown that the conventional model has an essential

limitation in representing the nonlinear color mapping in the imaging pipeline and

highly saturated colors will not be linearized accurately with the model in Eq. 2.18

by inverting f . We address this problem in the next chapter by proposing our new

model.
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Chapter 4

New in-camera imaging model

In the previous chapter, we examine the in-camera image processing through an

extensive analysis of an image database collected by capturing images of scenes under

different conditions with over 30 commercial cameras. From our analysis, we found

a glaring limitation in the conventional imaging model employed to determine the

nonlinearities in the imaging pipeline (i.e. radiometric calibration). In particular,

the conventional radiometric models assume that the irradiance (RAW) to image

intensity (sRGB) transformation is attributed to a single nonlinear tone-mapping

step. However, this tone-mapping step alone is inadequate to describe saturated

colors. As a result, such color values are often mis-interpreted by the conventional

radiometric calibration methods.

In this chapter, we propose our new model and describe how to introduce this

gamut mapping step into the imaging pipeline (section 4.1), together with calibration

procedures to estimate the associated parameters for a given camera model (sec-

tion 4.2). This allows us to model the full transformation from RAW to sRGB with

much more accuracy than demonstrated by prior radiometric calibration techniques.

Results are shown in section 4.3. Section 4.4 concludes this chapter.

32
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Figure 4.1: A new radiometric model: the color (gamut) mapping process h [30] is
added to overcome the limitation of the conventional model.
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4.1. Model formulation

4.1 Model formulation

Based on our observation, we introduce the following model for the imaging pipeline

inside digital cameras, which is illustrated in Fig. 4.1. Irx

Igx

Ibx

 =

 fr(erx)

fg(egx)

fb(ebx)

 ,

where

 erx

egx

ebx

 = h(TsTwEx). (4.1)

Ex = [Erx, Egx, Ebx]
T is the irradiance, which can be recorded as a RAW image in

certain digital cameras(We assume that the RAW value Ex is demosaicked (i.e. the

color filter array values are interpolated) and is linearly related to the actual irradiance

as shown in [7]. The RAW BTFs in Fig. 3.1 also show the linearity of Ex). In our

model, the RAW values are first white balanced by a 3×3 diagonal matrix Tw. Then

the white balanced RAW values, defined in the camera’s color space, are transformed

to the linear sRGB space by a 3×3 matrix Ts. Having the linear transformation

decomposed to Tw and Ts allows more flexibility in designing applications compared

to having a single transformation that combines both factors. Notice that the white

balance Tw could actually be applied at a different stage to the same effect, e.g. after

the color space transformation Ts and after the function h in Equation 4.1. We place

white balancing as the first operator in the imaging pipeline based on empirical data

from our experiments: in all cameras that we tested, the order in Eq. 4.1 yielded the

best results. Next, the nonlinear color gamut function h:R3 → R3 is applied and then

the final image in the nonlinear sRGB space is computed with the camera response

function f .

A noticeable difference between the new model in Eq. 4.1 and the conventional

model in Eq. 2.18 is the addition of color transformations, especially the nonlinear

color gamut mapping function h. In digital cameras, both tone mapping and gamut

mapping are employed to transform the colorimetry of the source image to one that

produces a visually pleasing image on the actual reproduction medium [27]. The tone

mapping by the camera response function f aims to compress the dynamic range
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Chapter 4. New in-camera imaging model

of the luminance recorded from the imaged scene. The gamut mapping (h) acts on

the color itself and brings the colors that are outside the sRGB gamut to within the

gamut. That is, when a camera’s color range extends beyond that of the sRGB gamut,

gamut mapping converts colors outside the sRGB gamut to inside the gamut for the

purpose of sRGB representation. The gamut mapping process is usually nonlinear

with greater transformation of more highly saturated colors near and beyond the

boundary of the gamut. In addition to color range compression, gamut mapping may

also include different transformations for some specific color ranges, e.g. to make the

sky more blue and to make skin tone more vivid. By incorporating this nonlinear

color mapping h in the pipeline, our model in Eq. 4.1 describes the in-camera imaging

more accurately than the conventional model. Note that in our new model, the color

space transformation Ts is fixed per camera model, the white balance parameter Tw

is fixed per white balance setting of a specific camera, and the response function f

and the color mapping h are fixed per picture style of a camera.

4.2 Model calibration based on Radial Basis Func-

tions (RBFs)

Converting a given sRGB image to its RAW representation requires knowledge of the

model parameter values in Eq. 4.1, namely of f , Ts, Tw, and h. To calibrate these

values, we assume that we are given a number of training images taken by the camera

under varied settings with different exposures, white balance, and picture styles. We

also assume that the RAW images associated with these training images are provided

as well 1. For each camera model, we compute the color space transform Ts, a matrix

Tw for each white balance preset, and f and h per picture style.

4.2.1 Camera Response Function Estimation

We first compute the camera response function f from a set of images taken with

varying exposures. At first glance, using a conventional radiometric calibration pro-

cedure does not look feasible due to the presence of h in Eq. 4.1. However, for color

points (p) that satisfy h(p) = p, the following equation holds between a pair of image

1For modern DSLR cameras, they can record both RAW and sRGB images per shooting.
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4.2. Model calibration based on Radial Basis Functions (RBFs)

intensity values varied by the exposure ratio k′:

f−1
c (I ′cx)/f

−1
c (Icx) = k′, c ∈ {r, g, b}. (4.2)

Eq. 4.2 represents the basic principle of traditional radiometric calibration methods,

and any of them can be used to compute f . Here, we use the method in [24] which

is based on a PCA model of camera responses:

gc(Icx) = log(f−1
c (Icx)) = g0(Icx) +

M∑
n=1

ηn(Icx)ξcn (4.3)

where g0 is the mean response function, ηn’s are the PCA basis functions of the

response curve in the log domain and ξcn’s are the PCA parameters. Given multiple

images with different exposures, the response function can be computed linearly by

putting the model in Eq. 4.3 into the log version of Eq. 4.2:

gc(I
′
cx)− gc(Icx) = K ′, (4.4)

where gc = log f−1
c and K ′ = log k′.

The key is then to find a set of points (p) that satisfy h(p) = p. In other words,

we need to find points that do not get transformed by the gamut mapping function.

Since the main purpose of the gamut mapping is to bring the color points outside the

gamut into the inside, we assume that colors with low saturation are not significantly

transformed by the gamut mapping. Therefore, we only use points with a saturation

value (S in HSV color space) below a threshold (β) to compute the response function.

Additionally, points with 0 or 255 in any of the color channels are rejected as outliers.

4.2.2 Color Transformation Matrix Estimation

After computing the camera response function f , we can convert the image values to

linearized sRGB values. Then the linear color transformation matrices Tw and Ts

are computed also by using the points with low color saturation that are not affected

by the gamut mapping. The white balance matrix Tw is a diagonal matrix defined

per white balance setting, and the color space transformation matrix Ts, which aligns

the camera’s color space with the sRGB space, is defined per camera. We compute
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Chapter 4. New in-camera imaging model

the Tw’s and Ts that minimize the following error function:

M∑
i=1

N∑
j=1

∥∥T−1
s Xij −Twi

Eij

∥∥2
, (4.5)

where M is the number of white balance settings, N is the number of color points used

for estimation, Xij is the linearized sRGB values computed from the inverse response

functions (Xij = [f−1
r (Ir,ij), f

−1
g (Ig,ij), f

−1
b (Ib,ij)]

T ), and Eij denotes the RAW image

values (Eij = [Er,ij, Eg,ij, Eb,ij]
T ) that correspond to Xij.

In the minimization Eq. 4.5, the backward space transformation matrix T−1
s has 9

unknowns and the M white balance diagonal matrices Tw’s have total 3M unknowns.

We need N ≥ (9 + 3M)/(3M) data points to solve the problem (number 3 in the

denominator is because one data point has 3 channels). The forward space trans-

formation Ts is then calculated as (T−1
s )−1. However, before showing the solving

method, we have to discuss the scale ambiguity between Tw’s and Ts first. Assume

T∗w’s and T∗s are the ground truth parameters, i.e.

(T∗s)
−1Xij −T∗wi

Eij = 0, for all i and j, (4.6)

then for any diagonal 3×3 matrix R, including all zero matrix R = 0, by multiplying

R to both sides of Eq. 4.6, we have R(T∗s)
−1Xij − RT∗wi

Eij = 0, which means

T−1
s = R(T∗s)

−1 and Twi
= RT∗wi

also minimize Eq. 4.5. In order to resolve the R’s

scale ambiguity, we fix one of the white balance matrices Twio
= I and solve for the

other unknowns. This Twio
is selected to correspond to the lighting condition under

which the input dataset for this optimization is taken. While the problem of Eq. 4.5

is a quadratic minimization problem, the unknowns can be calculated by setting the

first order partial derivative of Eq. 4.5 into zero and solving for the unknowns by

matrix calculations.

We note that few camera models such as the Canon EOS-1D and Nikon 200D

provide the white balancing scale factors for each channel (Tw) in its image metadata

(EXIF). For those cameras, we can compute the color space transformation Ts just

by incorporating Tw from this metadata into Eq. 4.5.
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4.2. Model calibration based on Radial Basis Functions (RBFs)

4.2.3 Color Gamut Mapping Function Estimation

With the camera response function f and the linear color transformations of Tw

and Ts computed, the last step in our calibration procedure is to solve for the color

gamut mapping function h in Eq. 4.1. The gamut mapping function is a key element

in defining the color characteristics of a camera. This nonlinear mapping can be

vastly different among cameras as shown in Fig. 4.4, making colors in one camera

more vivid and colors in another camera look softer. Designing a single parametric

model that can describe the gamut mapping functions on different camera models is

challenging. We therefore opted for a nonparametric approach to model the gamut

mapping function based on scatter point interpolation using radial basis functions

(RBFs).

Among several variants of RBFs, we adopt the following form [4, 6] to model the

inverse gamut mapping function h−1(X) = [h−1
r (X), h−1

g (X), h−1
b (X)]T :

h−1
c (X) = pc(X) +

N∑
i=1

λciφ(‖X−Xi‖), c ∈ {r, g, b}, (4.7)

where X = [f−1
r (Ir), f

−1
g (Ig), f

−1
b (Ib)]

T , color points Xi are the control (or center)

points of the RBFs, and N is the number of control points. The λci’s are the weights

for the basis function φ, and we chose φ(r) = r as the basis function. For the

polynomial term pc(X), we set it as a linear polynomial pc(X) = aTc X̃ where its

unknown coefficients ac = [ac1, ac2, ac3, ac4]T and X̃ = [1,XT ]T .

Using a gamut mapping based on RBFs is preferable in this problem. RBFs has

several advantages over the other scattered point interpolation methods [29], including

distance weighted [55, 53] or triangular interpolation methods [17, 47, 46, 15]. These

advantages include the following: RBFs accepts irregularly spaced data points as

its input, while does not require tessellation or tetrahedrization over the input data

points; RBFs extrapolates beyond the range of input data points naturally; RBFs is

proven to be the smoothest solution in interpolating the scattered data points [13];

and lastly RBFs do not require the function form of the interpolation surface to be

explicitly specified, only the the basis functional φ needs to be provided.

With data from the given sRGB-RAW image pairs and the computed matrices Tw

and Ts, the corresponding instance of a control point X′i is given by X′i = h−1(Xi) =

TsTwEi, where Ei is the RAW value of the control point. Note that all points
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Chapter 4. New in-camera imaging model

regardless of their saturation values are used in this stage in contrast to the previous

steps where only points with low saturation were used to compute for f and T’s.

From a set of control point pairs (Xi,X
′
i), the parameters of the RBFs for channel c

(c ∈ {r, g, b}) in Eq. 4.7, λc = [λc1, λc2, ..., λcN ]T and ac, are computed as follows [6]:(
D− 8NπρI P̃

P̃T 04×4

)(
λc

ac

)
=

(
P′

04×3

)
c

, (4.8)

where D is an N × N matrix with Dij = ‖xi − xj‖, P̃ is an N × 4 matrix with the

i-th row being X̃T
i , and P′ is an N × 3 matrix with the i-th row as X

′T
i . Operator

(·)c extracts the c column of a matrix. The parameter ρ balances smoothness of the

RBFs against fidelity to the data. This linear system of format Ax = b can be solved

directly based on the pseudoinverse: x = (ATA)−1ATb (use command ldivide in

matlab).

With the computed parameters, the inverse gamut mapping at any point (h−1(X))

is evaluated by Eq. 4.7 (Fig. 4.4). The overall performance of the RBF relies on the

selection of the control points. While we could use all possible points from the training

data as control points, this would be inefficient since the evaluation time grows with

the number of control points. Additionally, a larger number of control points could

also lead to over-fitting. We instead use a greedy algorithm similar to the one used

in [6] to select a small subset of control points from a large number of available points

that maintains the desired accuracy. The number of control points used in this work

varies from 3000 to 5000. As previously mentioned, the gamut mapping function

h is computed per camera picture style and the training data set for each picture

style contains images taken from all the white balance settings. Having data from

different white balance settings is necessary to have the color points well distributed

throughout the color space in the training data. In most of our experiments, we use

70 image pairs per picture style for the training: 7 different white balance settings

with 10 RAW-sRGB pairs per each setting.

4.2.4 Calibrating Cameras without RAW support

Thus far, computing the color transformations Tw, Ts, and h relied on having the

associated RAW image for each sRGB image in the training set. However, there are
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4.3. Experimental results

many cameras that do not provide RAW images, especially point-and-shoot cameras.

Therefore, a calibration scheme for cameras without RAW support is necessary to

broaden the applicability of our work.

For those cameras without RAW support, we use a RAW image of the same scene

from another camera as a reference. In this case, Eq. 4.1 changes to: erx

egx

ebx

 = h(TsTwTcE
′
x). (4.9)

The 3×3 matrix Tc is a transformation that approximates the transformation between

the color space of two different cameras. This linear approximation is justified by

the intent of camera manufactures to make the Luther condition satisfied (please

refer to Eq. 2.13). E′x contains the RAW values given by the reference camera. For

cameras without RAW images, the different color transformations are combined into

one transformation (Tzi = TsTwi
Tc), which is computed as the one that minimizes

the following error using quadratic programming:

M∑
i=1

N∑
j=1

∥∥T−1
zi

Xij − E′ij
∥∥2
. (4.10)

After computing the Tzi ’s, the gamut mapping function h is computed just as

explained in Section 4.2.3. While an image of a camera cannot be converted back to

its own RAW image with this approach, it can still be transformed to sRGB images

with different settings as described in the next section.

4.3 Experimental results

4.3.1 Radiometric Response Function Estimation

We first compare the performance of the response function estimation (Section 4.2.1)

against the conventional approach [24] upon which we have built our algorithm.

Fig. 4.2 shows an example of the outliers detected by our algorithm and the

response functions recovered by the two methods. The cross-talks are those points

with at least one of its RGB channels being 0 or 255. Note that the only difference
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Figure 4.2: A BTF, estimated response function, and linearization results for the
blue channel of Nikon D40 using our radiometric calibration algorithm with outliers
removed and a conventional method [24]. With our method, the outliers are effectively
removed for more accurate calibration.
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Figure 4.3: Inverse radiometric response functions for a set of cameras in the database
and mean linearization errors (δ in Eq. 4.11) for all cameras in the database. High
errors indicate the degree of color mapping in the in-camera image processing. Images
from cameras with high errors will not be linearized accurately with the conventional
radiometric model and calibration, hence a new imaging model is necessary. Using the
color mapping (h), the linearization errors converge very close to zero (the maximum
among the cameras in the database above is 0.004). Using the The bar colors indicate
different color channels.

between the two methods is the existence of the outlier removal procedure. There is

a significant difference in the estimations and the proposed algorithm for removing

the outliers clearly outperforms on the linearization results.

A few selected inverse response functions computed using our algorithm for some

cameras in our database are shown in Fig. 4.3. Note that the responses differ from the

sRGB gamma curve commonly used for linearization in some color vision work. For a

quantitative evaluation of the response estimation, we use the following measure per

channel to gauge the accuracy of linearization from Eq. 2.21:

δc =

√∑N
n=1

∑
x∈A ||k′nf−1(incx)− f−1(in′cx)||2

N |A|
, (4.11)

where N is the number of image pairs, A is the set of all image points, and |A| is the

size of the set A. To compute δ for each camera, we use all available sets of images in

the database for the particular camera, not just the ones used for calibration. This

is to verify that a response function computed under a specific condition can be used

to accurately linearize images captured under different settings such as the lighting
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NikonD40 Normal NikonD40 Vivid CanonEOS1Ds Standard CanonEOS1Ds Landscape

0.020

0.012

0.004

G G G G

R R R R

B B BB

Figure 4.4: (Left) Gamut mapping functions (h) display large variations depending
on the mode and the camera. The colors in the map indicate the color displacement
magnitude of the gamut mapping at a specific color (||[r, g, b]T − h([r, g, b]T )||). In-
teresting to note is that our estimate of the “Landscape” mode of Canon’s picture
style matches the description by Canon: “Landscape expresses hues from green to
blue more vividly than the Standard settings”. (Right) The gamut mapping function
is estimated with scatter point interpolation via radial basis functions. The rings and
white arrows show the interpolated color mapping function h and the colored dots
and arrows indicate control points.

condition and the white balance setting.

Fig. 4.3 (right part) plots the δ’s for all cameras in the database. We can see

that for many cameras in our database, the image can be linearized very well with

an average error of less than 1%. Note that outliers were included for the statistics

in Fig. 4.3. If we exclude outliers from the computation, δ converges almost to 0 in

many cameras. So the δ in Fig. 4.3 is related to the amount of outliers, or the degree

of color mapping h in the in-camera image processing. For the cameras with high δ’s,

the gamut mapping is applied to points well within the sRGB gamut as opposed to

other cameras where it applies only to points close to the boundary of the gamut.

4.3.2 Color Mapping Function Estimation

Next, we evaluate the performance of the color mapping function (h) estimation

and the overall accuracy of the new imaging model (Eq. 4.1). The 3D color mapping

functions (h) for the Nikon D40 and the Canon EOS-1D are shown as slices in Fig. 4.4.

The results confirm the existence of gamut mapping in the in-camera imaging process

and the need to include the color mapping function in the radiometric model. The
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Figure 4.5: Performance of mapping image values to RAW values (Canon EOS-1D)
with different techniques: using the technique in [7] with the independent polynomial
model per channel, using f and T in Eq. 4.1 without h, the all-channel 3D polynomial
model in [7], and the new method with h. Using our new model, images can be
mapped back to RAW accurately.
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Figure 4.6: Mapping images to RAW. Our method for mapping images to RAWs
works well for various cameras and scenes. The white points on the difference maps
indicate pixels with a value of 255 in any of the channels which are impossible to
linearize. The RMSE’s for the new method and the conventional method from the
top to the bottom are (0.006, 0.008), (0.004, 0.010), (0.003, 0.017), and (0.003, 0.007).
Notice that the errors are high in edges due to demosaicing. For Nikon cameras, the
difference in performance between the new method and the conventional method is
not as big as other cameras because the effect of the gamut mapping is not as severe
as the others (see Fig. 4.5 (a)).

45



4.3. Experimental results

performance of our new imaging model and its calibration procedures for converting

image values to RAW is shown in Fig. 4.5. In the figure, we compare the results from

four different techniques given a number of sRGB-RAW image pairs. The first method

is the implementation of the algorithm from [7] where f is modeled as a 6th order

polynomial per channel. The second method computes the RAW just from f and T,

which are computed as described in Section 4.2 without the color mapping function

h. Next, we computed f as a 3D polynomial function as described in [7]. Finally, the

last method computes RAW from Eq. 4.1 with the color mapping function included.

As can be seen, the image can be mapped backed to RAW accurately by including

the color mapping function in the radiometric model and approximating the mapping

function with radial basis functions. In addition, our results show that in-camera

color manipulation introduces nonlinearities that cannot be sufficiently modeled by a

3D polynomial function [7].

Fig. 4.6 shows the results of applying the calibrated model to convert images of

real scenes back to RAW responses for various scenes and cameras. The estimates

of RAW images are compared with the ground truth RAW images. Note that the

estimates are purely from the pre-calibrated values of f , h, and T and the ground

truth RAW images are used only for evaluation purposes. Using the new model and

the calibration algorithms introduced in Section 4.2, we can accurately convert the

image values to RAW values even for the highly saturated colors in the scene.

Our system is implemented in C++ and we have two implementations for evaluat-

ing the RBFs gamut mapping function h (Eq. 4.7). One implementation evaluates the

RBFs of each image on the fly and takes 15 seconds on average to compute the color

transfer, which includes the backward (h−1) RBFs evaluations. The running time of

this implementation can be shortened by using a fast RBFs evaluation method as

in [22]. The other implementation is based on lookup tables which saves computa-

tion time while increasing the amount of memory usage. The color transfer in the

experiments depends only on the color values (RGB) of each point in the image and

is therefore a deterministic process. This allows lookup tables to be built for both the

forward and the inverse process by sampling the RAW and the sRGB color space and

precomputing the color transfers for each of the sampled points. With the lookup

tables, photo refinishing takes less than a second.
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4.4 Conclusion

We have presented our new in-camera imaging model based on an extensive analysis

of a large image database. One of the key contributions is identifying the need for a

color (gamut) mapping step in the in-camera image processing model. The inclusion

of this step covers the limitations present in the conventional imaging model and

calibration methods. By considering color mapping in the imaging process, we achieve

much higher accuracy than previous approaches in the radiometric response function

estimation, and also realize the conversion of a given sRGB image to RAW using our

calibration scheme.

For calibration, we relied on a simple assumption that the colors with low satu-

ration are not affected by the gamut mapping. With this assumption, the response

function and the linear color space transformations were first computed by using the

points filtered by a threhold (β) on the color saturation level. While this simple ap-

proach provided satisfactory results for our rather controlled dataset (color charts),

a more robust approach based on an iterative scheme may reduce the reliance on a

hard threshold for more general databases of images.

Note that the color gamut mapping function h may not be invertible depending on

the gamut mapping method employed by the camera. For instance, many color points

will be mapped to a single color if a camera employs a clipping strategy. However, we

rarely observed such instances in our experiments (about 0.2% of total observations).

When such instances occurred, we chose the median value as the control point to

approximate the inverse.

While we estimate f and h separately during the calibration, one could also con-

sider combining the two functions into a single R3 → R3 function that directly maps

white balanced RAW values to nonlinear sRGB values. In principle, the radial basis

functions should be able to model this. However, in our experiments we obtained

better results when we used two separate functions. Our intuition is that this initial

linearization of the RGB space using the function f reduces the complexity of the

color mapping function h. This allows h to appear smoother and require less control

points for the scatter point interpolation. Modeling f separately from h is also de-

sirable since f can be still computed from multiple images and used for linearization

when RAW images are not available.

Recall that the underlying assumption for this work is that cameras are operat-
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4.4. Conclusion

ing under the photographic reproduction mode, which can be achieved by capturing

images in the manual mode and turning off features for scene dependent rendering.

We leave the investigation of what and how much scene dependent processing is

done in images under the photofinishing mode to the future work. The analysis on

the photofinishing mode together with the analysis done in this work will suggest a

direction for the internet color vision research [7, 25, 34, 35] in the future.
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Chapter 5

Non-uniform lattice regression for

in-camera imaging modeling

In the previous chapter, we proposed a new in-camera imaging model that included

a 3D color mapping function h based on radial basis functions (RBFs). Using an

RBFs model with several of thousand of control points provides a smooth gamut

mapping function, however, this design decision incurs a high computational cost. In

this chapter, we describe a method to construct a sparse lookup table (LUT) that is

effective in modeling the camera imaging pipeline that maps a RAW camera image

to its sRGB output or the inverse process. We show how to construct a LUT using a

novel nonuniform lattice regression method that adapts the LUT lattice to better fit

the underlying 3D function. Our LUT method offers not only a performance speedup

of an order of magnitude faster than RBFs, but also a compact mechanism to describe

the imaging pipeline.

While describing the method, we take the modeling of the forward imaging pipeline

only as the main target. The inverse process could be modeled with an effortless modi-

fication, since this LUT method is designed for any 3D function. The remainder of this

chapter is organized as follows: an introduction is presented in section 5.1. Section 5.2

gives a brief overview of the lattice regression and related work; Section 5.3 describes

our nonuniform regression algorithm; Section 5.4 demonstrates results obtained using

our LUT approach followed by the conclusion and discussion in Section 5.5.
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5.1. Introduction

5.1 Introduction

As mentioned before, while existing methods were overall effective in modeling the

color mapping process, some RGB colors could not be mapped well using the con-

ventional model based on per-channel tone-mapping. Our new model presented in

chapter 4 addressed this issue by proposing to add a 3D gamut-mapping function in

the imaging pipeline. This new imaging model was shown to be significantly more

accurate at modeling the color mapping process than conventional approaches. In ad-

dition, the introduction of the color-gamut mapping step made it possible to model

different picture styles (e.g. landscape, portrait, vivid, etc). The model is expressed

as:  Irx

Igx

Ibx

 =

 fr(erx)

fg(egx)

fb(ebx)

 ,

where

 erx

egx

ebx

 = h(TsTwEx). (5.1)

In this pipeline, the RAW sensor values Ex = [Erx, Egx, Ebx]
T are first white-balanced

by a 3×3 diagonal matrix Tw. Then the white-balanced RAW values, defined in the

camera’s color space, are transformed to the linear sRGB space by a 3×3 matrix Ts.

The color mapping function h (R3 → R3) is applied afterwards, followed by a final

compression by the radiometric response functions fc, c ∈ {R,G,B}. Fig. 5.1 shows

a diagram of this pipeline.

Due to the difficulty of using a general model, such as a polynomial, for the color

mapping function h, scatter point interpolation via radial basis functions (RBFs) was

used to model h. While the RBFs model was shown to be effective, it has a drawback

in terms of the computational cost because its evaluation requires computing distances

to all control points as illustrated in Fig. 5.1. Although a full-resolution look-up table

(LUT) could help in the speed up, this dense LUT required a large memory (over

220MB) and hours to generate.

In this chapter, we propose an improved method to significantly speed up the

in-camera color mapping process, i.e. how RAW sensor values are mapped to the
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Figure 5.1: The in-camera color processing pipeline. One significant performance bot-
tleneck is the use of RBFs to model the 3D gamut-mapping function. RBFs evaluation
requires computing distances to all control points in the RBFs. The contribution of
this chapter is to replace several steps in the imaging pipeline with a single sparse
LUT based on a nonuniform lattice layout.

standard RGB (sRGB) outputs. Specifically, we introduce a sparse 3D LUT which

defines a lattice of control points that are used to interpolate the color mapping.

This method requires no distance computation. Instead, it directly indexes the color

points to the appropriate LUT cells based on the lattice’s structure as illustrated in

Fig. 5.1. The general trade-off for using a LUT in lieu of a more complex function is

a reduction in accuracy due to the lower-resolution of the control points. To address

this issue, we have developed an adaptive lattice regression algorithm that modifies

the lattice layout in a nonuniform manner to produce a more accurate estimation

of the color mapping function. Moreover, we show that our nonuniform lattice re-

gression method is effective enough to combine the color transformations (Ts) and

radiometric functions (fc) into the LUT. Our nonuniform lattice regression method

gives performances comparable to the method based on the RBFs, but requires a

fraction of the time to evaluate.
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Figure 5.2: An overview of lattice regression using uniform node placement. The
lattice a is defined in the input space. Each lattice node, ai has a corresponding
output value bi. The idea of lattice regression is to compute the control points bi that
interpolate the training-data based on a given interpolation scheme which define the
weights wij.

5.2 Uniform lattice regression

Before describing our algorithm, we introduce the closely related uniform lattice re-

gression in this section. Given a set of RGB colors x in an input color space and a

set of points y in the output color space, a LUT is defined over the input color space

as a lattice a, which has vertices {a1, a2, ..., am}. This effectively divides the input

color space into cells with ai’s as the vertices. The corresponding values in the output

color space for the lattice a is denoted as b = {b1, b2, ..., bm}. The LUT is applied in

the following manner. An input point xi finds its corresponding cell in a and then

interpolates the output value ŷi. For linear interpolation, which is commonly used,

the output estimation is given as ŷi =
∑m

j=1 wijbj, where wij’s are the interpolation

weights satisfying the following: a) wij ≥ 0, the equality holds if aj is not a vertex

of the cell containing xi, b)
∑m

j=1 wijaj = xi and c)
∑m

j=1wij = 1. Fig. 5.2 shows a

diagram (drawn in 2D for sake of simplicity) of this type of LUT.

The unknown variables in this approach are the lattice output points b which must

be computed based on a set of training sample pairs (xi, yi), i = 1, 2, .., n. Assuming

a fixed space lattice a and linear interpolation function, the output b can be solved
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as [20]:

b̂ = arg min
b

n∑
i=1

(ŷi − yi)2

= arg min
b

n∑
i=1

‖
∑
j

wijbj − yi‖2
2

= arg min
b
‖Wb− y‖2

2. (5.2)

where W is the weighting matrix with its i-th row being [wi1, wi2, ..., wim] and y =

[y1, y2, ..., yn]T .

This basic approach assumes that the training set is well distributed over the input

space. Garcia and Gupta [18, 19] suggested adding a smoothness regularization on

b to achieve a more natural extrapolation when some cells contained limited number

of training samples.

Their proposed objective becomes [19]:

b̂ = arg min
b
‖Wb− y‖2

2 + λJK(b), (5.3)

where JK(b) = bTKb is the thin-plate regularizer with a m×m matrix K that depends

only on the type of interpolation basis function and lattice dimensions, and λ is a

weighting scalar.

The easiest design is to distribute ai’s equally in each dimension of the input

color space. While distributing ai equally enables a simple array-style access to the

cell needed to perform interpolation, it may waste vertex quota in the region where

the transformation is quite flat or allocates too few vertices in regions where the

transformation is complicated.

Therefore, nonuniform sampling strategies have been introduced. Most notable

are Chang et al. [8] and Monga et al. [42]. Although totally free placement of the latex

vertices enables the possibility of using less vertices, extra time is introduced during

evaluation for sub-volume access [54, 43]. Other approaches such as [8] tried to resolve

the sub-volume access using constrained vertices placement. However, this approaches

required the space transformation function or its high resolution approximation to be

known. In our case, only a sparse set of sample points are known. Moreover, none of

the above approaches mentioned can be easily regularized, which is important in our
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Figure 5.3: Our algorithm computes a node level transformation function that trans-
forms a regular lattice to a non-uniform lattice by moving the node levels along
different dimensions.

setting.

We propose our own simple, but effective, nonuniform lattice regression scheme

based on the objective of reducing fitting error.

5.3 Model formulation based on non-uniform lat-

tice regression

In our formulation, we use the term, node level, to denote how the lattice dimensions

are divided given the number of lattice nodes NL along each dimension. Since the

input and output spaces are normalized, the node levels for a given dimension spread

out in the range [0, 1]. For example, if NL is 6, the node levels, ui, for a uniform

lattice for a dimension will be 0, 0.2, 0.4, 0.6, 0.8, and 1. In our approach, NL is the

same for all three color channels., however, the algorithm can be easily extended to

have different NL for different channels.

The crux of our approach is to construct a node level transformation function,

g, using the smoothed error histogram of the sample points computed based on the

uniform lattice. For dimension c, the node level transformation function gc trans-

forms an input node level ui to another level along the lattice dimension, i.e. we are
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determining how to adjust the lattice grids to reduce the overall interpolation error

of the lattice. In essence, the function gc maps the uniform lattice node levels to

the non-uniform lattice node levels (see Fig. 5.3). The details of our formulation are

described in the following.

Uniform Lattice Initialization

Our algorithm first initializes a uniform lattice using the following equation:

b̂ = arg min
b
‖Wb− y‖2

2 + λS‖Sb‖2
2 + λAρ(b) + λKJK(b), (5.4)

which is extended from Eq. 5.3 by adding a first-order derivative smoothness regu-

larization ‖Sb‖2
2 and a boundary constraint ρ(b). This boundary constraint extension

is necessary since in our particular case, data samples are rare in a large portion of

the input color space especially near the boundary where the color saturation level

is very high. The first-order regularization matrix S = [SR;SG;SB], where each row

of N2
L(NL − 2) × m matrix Sc, c ∈ {R,G,B}, contains only three nonzero entries.

Assuming nodes ai1c and ai3c are neighbors to ai2c along the dimension c, there ex-

ists one row in Sc with the nonzero values −d(i3c,i2c)
d(i1c,i2c)+d(i3c,i2c)

, −d(i1c,i2c)
d(i1c,i2c)+d(i3c,i2c)

and 1 at

corresponding positions respectively, where d(i, j) is the distance between nodes ai

and aj. The boundary constraint is ρ(b) =
∑

c∈{R,G,B}((b1)2
c +

∑
i∈Υc

((bi)c − 1)2),

where Υc is the set of ai nodes whose c coordinates equal to 1. Operator (·)c extracts

the c coordinate of a vector or c column of a matrix. Here we also assume that a1

represents the origin [0, 0, 0]. In matrix form, ρ(b) =
∑

c∈{R,G,B} ‖Ac(b)c − ξ‖2
2, where

Ac is composed of standard unit row vectors corresponding to the elements of set Υc

except the last row being [1, 0, ..., 0] and ξ is vector [1, ..., 1, 0]T . Terms λS, λA, and

λK are weighting parameters.

With the notations W̃c = [W ;λSS;λAAc] and ỹc = [(y)c; 0;λAξ], Eq. 5.4, as an

quadratic optimization problem, can be solved in closed form per dimension:

b̂c = (W̃ T
c W̃c + λKK)−1W̃ T

c ỹc. (5.5)

The matrix K is only constructed once and is used again when constructing the

nonuniform lattice. The matrix K depends only on the lattice size and the interpola-

tion function adopted for the smoothness constraint. We select tricubic interpolation

for the smoothness constraint to construct K (see [19] for details).

55



5.3. Model formulation based on non-uniform lattice regression

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

0.005

0.01

0.015

0.02

0.025

0 200 400 600 800 1000

0.005

0.01

0.015

0.02

0.025
    Error histogram along R Channel
and its accumulated histogram (below)

  Adjusted histogram along R Channel
and its accumulated histogram (below)

(a) (b)

(c) (d)

Figure 5.4: Illustration of node level transformation function based on error his-
togram.

In Eq. 5.5, the weighting scalars λS = 0.1, λA = 0.01, and λK = 1e − 6 are

fixed in all our computations. We denote this initial uniform lattice as ao and the

corresponding output vertex set as bo, and W o is the weighting matrix of x in ao.

Node Level Transformation Function Formulation

In our formulation, the node level transformation function gc can be best explained

through its inverse function g−1
c that is constructed based on the error histogram

computed from the uniform lattice ao. The idea is that the error histogram indicates

the locations where the non-uniformity is most prominent and hence more dense

lattice nodes are needed.

From the initial uniform lattice, we can compute each sample error as eoi =
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‖(W o
i b

o)T − yi‖2
2 where W o

i is the i-th row of W o. The k-th (1 ≤ k ≤ Nbin, where

Nbin is the number of bins) bin of the normalized error histogram histc for channel

c ∈ {R,G,B} is computed as:

histc(k) =
1

Ec
·
∑
i∈Ωk

c

eoi , (5.6)

where Ec is the normalization factor such that
∑Nbin

k=1 histc(k) = 1 and Ωk
c contains

the indexes of all the sample points that are located in the k-th bin for color channel

c. In our experiments, we set Nbin = 1000.

Our approach uses the accumulative error histogram to construct the node level

transformation function. We found, however, that using the histc() computed above

is problematic as many bins are nearly empty (see Fig. 5.4(a)). This results in flat

regions in the accumulative error histogram (see Fig. 5.4(c)). To avoid this problem,

we use an adjusted version of the error histogram, hist∗c which is blended with a

constant (1− α) and smoothed by a Gaussian filter (see Eq. 5.7). Fig. 5.4(b) shows

the adjusted histogram.

hist∗c(k;α) = α ·Gauss(histc)(k) + (1− α)
1

Nbin

. (5.7)

For the sake of simplicity, the histogram is treated as a continuous function Θ

defined on [0, 1], where Θ(t;α) = Nbin · hist∗c(k;α) when t ∈ [ k
Nbin

, k+1
Nbin

). We finally

define the inverse of node level transformation function as follows:

g−1
c (v;α) =

∫ v

0

Θ(t;α)dt, (5.8)

where v is a node level. Since Θ incorporates both the error histogram and the

uniform term, the derived function g−1
c is able to guide the node level transformation

to the erroneous locations while maintaining some nodes in regions of small errors

through the control of the uniform term. The monotonically increasing property of

the accumulated histogram guarantees the existence of a node level transformation

function gc(u). In our implementation, v can be computed using a binary search over

g−1
c for a given u. Fig. 5.4(c) shows the accumulative histogram and the node level

transformation functions using the original histogram where α is set to 1. Fig. 5.4(d)

shows the accumulative histogram and the node level transformation functions using
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the adjusted histogram where α is set to 0.5. We can see the function in (d) has a

much slower accumulative error histogram function and the lattice levels are not too

skewed by the errors.

Nonuniform Lattice Construction The nonuniform lattice node levels Lc(α)

along the dimension c ∈ {R,G,B} can be obtained by transforming uniform node

levels using gc(u). The i-th node level Lc(i;α) is calculated as follows:

Lc(i;α) = gc(
i− 1

NL − 1
;α), i = 1, 2, ..., NL. (5.9)

Non-uniform lattice a(α) is then constructed as the Cartesian product of LR(α),

LG(α) and LB(α), and bc(α) = ((W̃α
c )T W̃α

c +λK)−1(W̃α
c )T ỹc, where W̃α

c = [Wα;λSS
α;λAAc]

with Wα representing the weighting matrix of x in a(α) and Sα the new regularization

matrix.

While we can set α to a fix value (0.5), we instead let our algorithm choose the

best α to blend the nonuniform and uniform arrangements. The value of α can be

optimized by solving the following minimization problem using the Trust-Region-

Reflective Optimization technique [10, 11]:

α̂ = min
α

n∑
i=1

‖(Wα
i b(α))T − yi‖2

2, (5.10)

where Wα
i is the i-th row of Wα. The final lattice is set to be a(α̂).

5.4 Experimental results

In this section, we show several comparisons of our nonuniform lattice regression

approach in terms of pixel errors and computation time compared to RBFs and

uniform lattice regression. All experiments were performed in Matlab and C++ code

using a PC with a dual-core 2.3Ghz processor and 3.25GB memory. We used the

RAW and sRGB images of MacBeth color charts for different camera models under

various settings, which were collected as described in Chapter 3. This calibration

data has 164 color samples per image with up to 10 different exposures and a number

of white-balance settings per picture style (e.g. landscape, portrait, standard, vivid,

etc). Color samples from the RAW images are first multiplied white-balance matrices.
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This gives us approximately 10,000 training samples per camera and picture style in

the form of xi → yi as described in Section 5.2.

We apply uniform lattice regression using the method based on Eq. 5.3. Nonuni-

form lattice regression is computed using the method described in Section 5.3. For

each method we compute lattices with resolutions of 13 × 13 × 13, 17 × 17 × 17,

and 24 × 24 × 24. The one-off computation time for the uniform lattice regression

at the highest resolution is approximately 7s, while our nonuniform lattice regres-

sion required approximately 120s. To evaluate the RBFs, we implemented a cached-

optimized method that can reuse colors that have already been computed.

Our results are shown in three tables for the following cameras: Nikon D7000 (Ta-

ble 1), Canon 1Ds Mark III (Table 2), Sony α200 (Table 3). The different techniques

are denoted as nonuniform lattice regression (NULR), uniform lattice regression (LR),

and RBFs. Each table shows the following normalized pixel error statistics: average

error, max error, 25% quartile (Q1) error, 50% quartile (Q2) or median error, and

the 75% upper quartile (Q3) error. We also show the running times in seconds (all

results computed using C++). The errors are computed on a variety of images with

different picture styles, exposure, white-balance settings, and resolutions. Note that

Sony α200 has only one picture style available.

We also show qualitative results in Fig. 5.5, which shows the different pixel er-

rors as a hotmap. Our quantitative and qualitative results demonstrate that our

nonuniform lattice regression approach provides a performance better than uniform

lattice regression and comparable to the results obtained with RBFs. In terms of

time complexity, our approach is an order of magnitude faster than using RBFs and

comparable to using a uniform lattice with a slight overhead of an indirect lookup

table to compensate for the nonuniform layout.

For completeness, we also tested this nonuniform lattice regression method in

the inverse process from sRGB to RAW, however, with some modification on the

regularization term about boundary constraint in Eq. 5.4. The term λA is set to 0, in

other words, the boundary constraint is dropped, since the sRGB output may already

hit the maximum value before RAW value gets fully saturated. In this comparison,

sRGB images from Canon EOS1D MarkIII and Nikon D7000 are transformed back

to their RAW images using the different methods. From the error maps, we can

see that our nonuniform lattice method produces comparable results as the RBFs

method. It is noted that the uniform lattice method also produces good results.

59



5.4. Experimental results
So

ny
 a

lp
ha

 2
00

Ca
no

n 
EO

S 
1D

s 
M

ar
k 

III
N

ik
on

 D
70

00

Ours

0.025

0.075

0.05

0.1

Ours
0.025

0.075

0.05

0.1

RBFsUniform latticeInput

RBFsUniform latticeInput

RBFsUniform latticeInput

RBFsUniform lattice OursGround truth

RBFsUniform lattice OursGround truth

RBFsUniform lattice OursGround truth

Ours
0.025

0.075

0.05

0.1

Figure 5.5: Several examples from different camera models showing the error maps
between our method, RBFs, and an LUT based on uniform lattice regression [19].
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Figure 5.6: Comparing the results of transforming images in sRGB back to their RAW
images. The input Canon image is of standard picture style and sunny white balance,
while the Nikon input image is of landscape picture style and shade white balance.
The error maps between our method, RBFs, and an LUT based on uniform lattice
regression [19] are shown, from which we can see that since the input space is not
very skewed, the uniform lattice method produces comparable results as our method
and RBFs. Noted that the intensities of RAW images are stretched for visualization
purpose.

That is because the input sRGB space is not skewed as much as the RAW space. The

distinguishable colors are distributed much more evenly in sRGB space than in RAW

space. Therefore our nonuniform arrangement of the lattice dose not provide much

benefit over a uniform lattice.
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NIKON D7000 (size 1632× 2464)
Error (pixel) Average Maximum Q3 75% Q2 50% Q1 25% Time (s)

Method Lattice Size
Example 1: Picture Style Normal, Exposure Time 1/15 sec, White Balance Tungsten
RBFs - 0.011790 0.060117 0.006792 0.011092 0.015686 24.2028
NULR 13× 13× 13 0.013215 0.061005 0.008769 0.012401 0.017094 0.8906

LR 13× 13× 13 0.058985 0.203733 0.032338 0.052467 0.076546 0.8281
NULR 17× 17× 17 0.012502 0.068935 0.007843 0.011765 0.016169 0.9219

LR 17× 17× 17 0.050673 0.223701 0.025415 0.041130 0.067126 0.8437
NULR 24× 24× 24 0.012172 0.064795 0.007843 0.011765 0.016169 0.9844

LR 24× 24× 24 0.037690 0.154939 0.017971 0.028818 0.047384 0.8437
Example 2: Picture Style Normal, Exposure Time 1/5 sec, White Balance Fluorescent
RBFs - 0.009282 0.062868 0.005546 0.008769 0.013006 30.5152
NULR 13× 13× 13 0.012030 0.066667 0.006792 0.011092 0.016169 0.8906

LR 13× 13× 13 0.041590 0.251470 0.019608 0.033735 0.051729 0.8437
NULR 17× 17× 17 0.011387 0.068487 0.005546 0.009606 0.014673 0.9062

LR 17× 17× 17 0.031173 0.211110 0.014673 0.023854 0.039411 0.8437
NULR 24× 24× 24 0.010408 0.086808 0.005546 0.008769 0.013006 0.9375

LR 24× 24× 24 0.022122 0.161405 0.008769 0.016638 0.027730 0.8437
Example 3: Picture Style Landscape, Exposure Time 1/8 sec, White Balance Tungsten
RBFs - 0.028220 1.006079 0.016169 0.021118 0.027730 7.3593
NULR 13× 13× 13 0.023837 0.446319 0.014673 0.020377 0.028006 0.8750

LR 13× 13× 13 0.051046 0.460162 0.021479 0.032575 0.077445 0.8281
NULR 17× 17× 17 0.021774 0.456353 0.013585 0.019212 0.025110 0.8906

LR 17× 17× 17 0.041038 0.455088 0.018394 0.028549 0.052320 0.8437
NULR 24× 24× 24 0.021427 0.510241 0.013006 0.018394 0.025110 0.9375

LR 24× 24× 24 0.029896 0.488373 0.016169 0.022866 0.036367 0.8437
Example 4: Picture Style Landscape, Exposure Time 1/15 sec, White Balance Sunny
RBFs - 0.021352 1.000653 0.014139 0.019608 0.025415 6.4687
NULR 13× 13× 13 0.019733 0.264437 0.012401 0.017538 0.024174 0.8594

LR 13× 13× 13 0.048376 0.224901 0.022866 0.039992 0.070588 0.8437
NULR 17× 17× 17 0.018589 0.268334 0.011765 0.016638 0.022528 0.8906

LR 17× 17× 17 0.040553 0.215829 0.019212 0.033735 0.057099 0.8281
NULR 24× 24× 24 0.018108 0.283766 0.011092 0.016169 0.021479 0.9687

LR 24× 24× 24 0.029612 0.232434 0.016169 0.025110 0.039411 0.8437

Table 5.1: Normalized pixel errors and evaluation time comparisons of RBFs, uniform
lattice regression (LR) and our nonuniform lattice regression (NULR) approach on
Nikon examples.
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CANON 1Ds MARK III (size 1872× 2808)
Error (pixel) Average Maximum Q3 75% Q2 50% Q1 25% Time (s)

Method Lattice Size
Example 1: Picture Style Standard, Exposure Time 1/15 sec, White Balance Cloudy
RBFs - 0.009156 0.114332 0.005546 0.008769 0.012401 17.7498
NULR 13× 13× 13 0.009829 0.114332 0.005546 0.008769 0.012401 1.0625

LR 13× 13× 13 0.045459 0.161595 0.026307 0.039411 0.059344 0.9531
NULR 17× 17× 17 0.009217 0.117057 0.00554 0.008769 0.012401 1.0937

LR 17× 17× 17 0.028856 0.126467 0.016169 0.026307 0.038822 0.9687
NULR 24× 24× 24 0.009011 0.114332 0.005546 0.008769 0.012401 1.1719

LR 24× 24× 24 0.018508 0.108819 0.009606 0.016638 0.025110 0.9687
Example 2: Picture Style Standard, Exposure Time 1/10 sec, White Balance Fluorescent
RBFs - 0.009908 0.103607 0.005546 0.008769 0.013006 20.2185
NULR 13× 13× 13 0.010629 0.103607 0.006792 0.009606 0.014139 1.0625

LR 13× 13× 13 0.048408 0.199769 0.022866 0.037818 0.059084 0.9531
NULR 17× 17× 17 0.010329 0.105007 0.006792 0.009606 0.014139 1.0937

LR 17× 17× 17 0.035407 0.174146 0.014673 0.026307 0.042418 0.9687
NULR 24× 24× 24 0.009949 0.105007 0.005546 0.008769 0.012401 1.1562

LR 24× 24× 24 0.019140 0.110988 0.011092 0.016638 0.024174 0.9844
Example 3: Picture Style Portrait, Exposure Time 1/15 sec, White Balance Tungsten
RBFs - 0.011571 0.175553 0.006792 0.011092 0.014673 22.5049
NULR 13× 13× 13 0.013200 0.170171 0.008769 0.012401 0.017094 1.0471

LR 13× 13× 13 0.060657 0.224422 0.028549 0.045901 0.084017 0.9846
NULR 17× 17× 17 0.011961 0.178421 0.007843 0.011765 0.016169 1.1252

LR 17× 17× 17 0.046053 0.169945 0.023854 0.036367 0.066320 0.9690
NULR 24× 24× 24 0.011522 0.170442 0.006792 0.011092 0.014673 1.1721

LR 24× 24× 24 0.029428 0.137423 0.017094 0.025110 0.034634 0.9690
Example 4: Picture Style Portrait, Exposure Time 1/5 sec, White Balance Fluorescent
RBFs - 0.011001 0.215722 0.005546 0.008769 0.014673 29.2521
NULR 13× 13× 13 0.012381 0.152084 0.006792 0.011765 0.016638 1.0469

LR 13× 13× 13 0.037227 0.327774 0.016169 0.027730 0.042599 0.9688
NULR 17× 17× 17 0.011451 0.156224 0.005546 0.009606 0.015686 1.0782

LR 17× 17× 17 0.026838 0.271269 0.009606 0.019608 0.034187 0.9688
NULR 24× 24× 24 0.011098 0.156961 0.005546 0.009606 0.015686 1.1407

LR 24× 24× 24 0.018117 0.168262 0.008769 0.014673 0.023854 0.9844

Table 5.2: Normalized pixel errors and evaluation time comparisons of RBFs, uniform
lattice regression (LR) and our nonuniform lattice regression (NULR) approach on
Canon examples.
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SONY α200 (size 1296× 1936)
Error (pixel) Average Maximum Q3 75% Q2 50% Q1 25% Time (s)

Method Lattice Size
Example 1: Picture Style Standard, Exposure Time 1/15 sec, White Balance Sunny
RBFs - 0.009144 0.043844 0.005546 0.008769 0.012401 12.9061
NULR 13× 13× 13 0.009999 0.069046 0.005546 0.008769 0.012401 0.5156

LR 13× 13× 13 0.061349 0.165358 0.041687 0.056693 0.077841 0.4531
NULR 17× 17× 17 0.009889 0.080559 0.005546 0.008769 0.012401 0.5156

LR 17× 17× 17 0.049572 0.181497 0.029866 0.043844 0.058298 0.4531
NULR 24× 24× 24 0.009811 0.127013 0.005546 0.008769 0.012401 0.5781

LR 24× 24× 24 0.028771 0.168855 0.016169 0.027730 0.036155 0.4687
Example 2: Picture Style Standard, Exposure Time 1/10 sec, White Balance Fluorescent
RBFs - 0.009816 0.063233 0.005546 0.008769 0.013006 13.9998
NULR 13× 13× 13 0.010954 0.065032 0.006792 0.009606 0.014139 0.5156

LR 13× 13× 13 0.053259 0.165498 0.035076 0.050980 0.070806 0.4687
NULR 17× 17× 17 0.010605 0.060117 0.006792 0.009606 0.014139 0.5312

LR 17× 17× 17 0.044052 0.181497 0.022528 0.036996 0.055459 0.4687
NULR 24× 24× 24 0.010498 0.062868 0.005546 0.009606 0.014139 0.5625

LR 24× 24× 24 0.028732 0.144673 0.014139 0.024174 0.035727 0.4844

Table 5.3: Normalized pixel errors and evaluation time comparisons of RBFs, uniform
lattice regression (LR) and our nonuniform lattice regression (NULR) approach on
Sony examples.

5.5 Conclusion

We have introduced a novel nonuniform lattice regression approach to compute a

sparse LUT for use in the camera imaging pipeline. Our approach is based on a

regular lattice design but introduces nonuniform spacing of the lattice layout. Our

algorithm adaptively adjusts the lattice sampling based on the error histogram to

capture the complexity of the 3D transformation functions. Our results demonstrate

that this nonuniform lattice provides errors comparable to the scheme that uses RBFs,

but with computational efficiency similar to a uniform lattice which is an order of

magnitude faster than the optimized RBFs computation. Moreover, the adaptive

lattice design allows us to incorporate more steps of the imaging process into the

LUT. This advantage comes from the benefit of being a local interpolation method

which is more robust in its ability to adapt to the training samples.
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Chapter 6

Application: photo refinishing

After the parameters of our in-camera imaging model based on RBFs or nonuniform

LUT are calibrated, this model could be used in image editing applications. Through

the calibration procedure, we inherently have camera-specific photofinishing informa-

tion pertaining to different white-balance and picture style settings. In this chapter,

we demonstrate how our new imaging pipeline model can be used to develop a system

that converts an sRGB input image captured with wrong settings to an sRGB output

image that would have been recorded under different and correct camera settings.

In essence, our model allows us not only to undo the onboard image processing, but

also to refinish an image in a camera-specific manner, producing a result that would

appear almost identical to the sRGB output that the camera would have produced

with the new settings. For example, given a JPEG image (sRGB) taken with a Canon

EOS-1D under a certain white balance and picture style, we can reproduce this pho-

tograph as it would appear from the same camera but with a different white balance

and picture style. To our knowledge, this is the first system capable of providing

such camera-specific refinishing abilities. Moreover, with minor modifications to our

approach, we can even allow the user to produce a photograph using another camera’s

settings.

Fig. 6.1 illustrates the procedure for transferring colors between different settings.

Given an input image I taken under a white balance wi and a picture style pi, a new

image I′ under a new white balance wo and a new picture style po can be generated
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Figure 6.1: Overview of the new imaging model of Eq. 5.1 and its application. The
parameters of the imaging process for different cameras and settings including the
white balance and the picture style are calibrated using training images. An sRGB
image under a certain setting can be transformed to RAW through reverse imaging,
and then to another sRGB image under a different setting through forward imaging
using the corresponding parameters.
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with k times the exposure of the original as follows: I ′r

I ′g

I ′b

 =

 fr,po(e
′
rx)

fg,po(e
′
gx)

fb,po(e
′
bx)

 , (6.1)

where

 e′rx

e′gx

e′bx

 = hpo

TsTwokT
−1

wi
T−1

s h
−1

pi


 f−1

r,pi(Irx)

f−1
g,pi(Igx)

f−1

b,pi
(Ibx)



 .

6.1 Manual Mode

Frequently the wrong settings that ruin a photo are manually set by the user, in

many cases by mistake. For those images taken under a manual mode, the input

settings for white balance (wi), picture style (pi), and exposure can all be read from

the EXIF data of the input image. The user then only has to select the exposure and

the choices for white balance and picture style among the camera presets to correct

an image. This correction procedure is intuitive because the user chooses the output

settings just as one would do when using a camera.

We also provide a feature which enables the user to change the white balance

setting of the output in a continuous manner rather than just selecting from preset

options. The white balance parameters (diagonal elements of Tw) are associated

with color temperature and thus can be ordered, e.g. tungsten (3200K), fluorescent

(4000K), daylight (5200K), and cloudy (6000K). The output white balance parameters

(Two) in Eq. 6.1 could then be computed by linear interpolation with respect to either

a user supplied color temperature or user scrolling between preset white balance

settings.

6.2 Auto White Balance Mode

In some cases, one may not like a photograph taken under the camera’s auto white

balance mode and wish to correct it. The problem with auto-mode images is that it is

difficult to recover the specific settings of the camera from the EXIF data. Therefore,

we cannot determine which white balance (wi) and picture style (pi) to use for Eq. 6.1.

For the auto-mode case, we rely on user assistance to convert an image to another
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setting. The user can either set the input or the output setting as he wishes and then

tune the other settings until he is satisfied with the final output image. The user

can choose any of the available picture styles for the camera and change the white

balance setting in a continuous manner using interpolation as explained previously.

6.3 Camera-to-Camera Transfer

Thus far, we have described how to transform an image to another image under

different settings but from the same camera. We can extend our framework to transfer

color between different cameras and their settings. One can imagine such a feature

being useful for many applications. For example, it could be used to compare color

differences between cameras to guide a person planning to purchase a new camera.

It can also be used to align colors of images from different cameras to create seamless

mosaics and texture maps.

While the information about sensor spectral sensitivity of the cameras is necessary

to accurately compute camera-to-camera color transfers, we approximate the color

space transformation between the color spaces of two cameras by a 3×3 matrix Tc.

The matrix Tc is computed using two aligned RAW images (E1,E2) of the same scene,

one for each camera:

Tc = argmin
T

∑
x

‖E2x −TE1x‖2 (6.2)

Then the color transfer between cameras is achieved similar to Eq. 6.1: e′rx

e′gx

e′bx

 = hpo
(
TsTwoTckT

−1

wi
T−1

s h
−1

pi
z
)
, (6.3)

z =

 f−1
r,pi

(Irx)

f−1
g,pi

(Igx)

f−1

b,pi
(Ibx)

 .
The transfer matrix Tc between two cameras can also be computed via transfor-

mations to a reference camera: Tc,1→3 = Tc,1→2Tc,2→3. Note that Tc is inherently

included in Tz in Section 4.2.4 and transferring color between cameras that do not

support RAW is not a problem.
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(a) Nikon D7000 (b) Canon EOS 1D
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0.15
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daylight cloudy tungsten fluorescent standard
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vivid
P L
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P S L S

Figure 6.2: Comparisons of different methods for correcting input images taken under
inappropriate settings (WB, picture style). Our photo refinishing technique recovers
images that are very close to the images from the cameras themselves (ground truth)
while the technique without consideration of gamut mapping h and the Photoshop
method do not effectively deal with the nonlinearities in the imaging process. The
scale for the error maps is the same for all the error maps shown. The RMSE’s for
the new method, the conventional method, and the Photoshop are (a) (0.02, 0.05,
0.06) and (b) (0.02, 0.1, 0.18).
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6.4 Refinishing results

Here we show the ability of our approach to refinish photographs using the extracted

parameter settings. For the sake of comparisons, we compare our method based on

RBFs with Photoshop and a version of our method based on RBFs without gamut

mapping (no h in Eq. 6.1) in Fig. 6.2.

(a) input images (b) our results (c) ground truth (d) Photoshop

S S S

S S S

P S S

Figure 6.3: More examples of our photo refinishing using images from Sony α-200,
Canon EOS-1D, and Nikon D200 (from top to bottom). The ground truth images
are actual images from the cameras themselves under the proper settings.

For the Photoshop results, we use the Camera RAW utility and choose the best

result either from the auto white balancing feature or the semi-auto feature in which

we chose a point in the image to be white. As can be seen from the error maps, our

photo refinishing technique can transfer colors between different settings accurately,

therefore provide a practical method to correct undesired visual errors in photographs

taken with the wrong camera settings. Meanwhile, the other two methods have

difficulties dealing with the nonlinearities in the imaging process. This is especially

visible in Canon’s Landscape mode which is shown to have greater nonlinearity in

Fig. 4.4. More examples for different cameras are shown in Fig. 6.3, and results
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for point-and-shoot cameras that do not support RAW (Section 4.2.4) are shown in

Fig. 6.4. Both cameras used for Fig. 6.4 were calibrated using a RAW image from a

Canon EOS1-D, and the results closely approximate the ground truth.

We should note that correction using Photoshop can yield visually satisfactory

results as can be seen from the second example of Fig. 6.4. However, the quality

of Photoshop results is unreliable since it can vary greatly depending on the scene

(e.g. distribution of color, especially white and gray colors) and camera settings.

Furthermore, we have found that Photoshop almost never reproduces accurate camera

specific images as our technique does.

Next, we show examples of transferring colors between cameras. In Fig. 6.5, three

images of a scene were taken, each with different cameras, namely Canon EOS-1D,

Sony α-200, and Nikon D40. All the cameras were under fluorescent white balance

and the standard picture style. Images from these cameras exhibit differences in

color, notably the color of the face and the balloon in the middle. The second and

the third rows of Fig. 6.5 are the results of transferring camera colors to the Nikon

and Sony cameras, respectively. As can be seen, the colors from different cameras

can be transferred and matched accurately using our framework (Section 6.3).

As the last example, we show the result of photofinishing an image taken under

auto white balance. As mentioned earlier, when a photograph is taken under the

auto mode, the input white balance Twi is unknown and the system relies on user

provided information on the unknown parameter. In Fig. 6.6, the user presumes

that the image was taken under “daylight” and the system produces images under

different white balance settings. In the end, using a slightly warmer color temperature

than daylight provides an image more satisfying than the auto white balanced image

(Fig. 6.6-d).
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S 

S 

S 

(a) input image 

(d) our result 

(b) camera image 

(c) Photoshop 

Figure 6.4: Photo refinishing result for a camera (Canon IXUS 860IS) without the
RAW support (see Section 4.2.4).
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(b) color transfers between cameras

Canon

Nikon

Sony

Nikon

Canon

Nikon
↓

Canon

Sony
↓

Sony

Sony

Nikon
↓

Nikon

Sony
↓

(a) original photographs

Figure 6.5: Transferring colors between cameras. (a) Original photographs from three
cameras (Canon EOS-1D, Sony α-200, and Nikon D40) display varying colors. (b)
Colors from different cameras can be matched by using the method described in
Section 6.3.
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(a) input (AWB) (b) output (3300K)

(c) output (4100K) (d) output (5500K)

Figure 6.6: (a) Input image taken under auto white balance. (b)-(d) The user specifies
daylight as the input WB and changes the output WB to different color temperatures.
Through this process, our system can produce an output image with warmer whites
in comparison to the input image.
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Chapter 7

Discussions and conclusions

This chapter concludes this thesis by summarizing the work described in previous

chapters, including data collection and analysis, our proposed model for in-camera

imaging pipeline using RBFs and nonuniform lattice regression, and the photofinish-

ing experiments. This is followed by a short description of possible future directions.

7.1 Summary

The primary objective of this study was to propose a general model of the in-camera

imaging pipeline. This proposed model was based on an extensive analysis of a large

image database, including thousands of images from more than 30 cameras. Such

analysis settled the uncertainty about the response function and led us to realize

the significance of the color (gamut) mapping that occurs in the in-camera image

processing. Our model formulated the imaging pipeline as steps including white

balancing, color space transformation, color mapping and tone mapping. While the

other steps are also mentioned in [7], the color mapping step was uniquely proposed in

this work. The inclusion of this step covers the limitations present in the conventional

imaging model and calibration methods. We also managed to formulate this key

step using radial basis functions (RBFs) and non-uniform look up table (LUT). By

considering gamut mapping in the imaging process, we can compute not only the

radiometric response function more accurately than previous approaches, but can

also convert a given sRGB image to RAW using our calibration scheme. Based on

the new model, we further introduced a new framework for refinishing photos, which
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enables one to correct photographs taken with wrong settings without the associated

RAW files. As shown in the result sections of Chapter 4 and 5 and application

Chapter 6, the accurate conversion results and the white balance (WB) correction

results illustrated the effectiveness and the preciseness of our model.

As one of the most important elements in the in-camera imaging processing model,

the response function is the critical yet not well validated part. We conducted a

thorough validation over 30 cameras from different camera companies (Chapter 3).

From the plotting results, it was shown that the response function is a fixed property

for a given camera model in the photographic reproduction mode [27], which was

achieved by capturing images in the manual mode and turning off features for scene

dependent rendering. However, in the photofinishing mode [27], the intent of which

is to produce a pleasing image, the response function varies spatially even within an

image, and of course across different images as well. This clearance helps us to define

the scope of our study.

In this study, we focused on examining the in-camera imaging pipeline under the

photographic reproduction mode. It is understood that any scene dependent tone

mapping algorithm [51, 2, 16] could be adopted to achieve spatial varying effects

of tone mapping in the photofinishing mode, which brings extra uncertainties and

complexities into the imaging pipeline. Focusing on photographic reproduction mode

enables us to establish a compact model explaining the core processing of the imaging

pipeline.

Since the gamut mapping function is a key element in defining the color charac-

teristics of a camera, every company has its own competing intellectually protected

technique. Designing a single parametric model which describes the gamut mapping

functions on different camera models is challenging. We first resolved this difficulty by

opting for a nonparametric approach and using RBFs to model the mapping function.

With this general formulation of the new model, where the gamut mapping function

was formulated with RBFs and the response function was formulated based on PCA,

we further developed a practical calibration algorithm to learn the parameters of the

model. The result section in Chapter 4, where the MSREs of the estimated RAW

responses are all below 0.006, showed the accuracy of the model and the effectiveness

of the calibration algorithm. Compared to the current calibration techniques, most

of which only estimate the response functions channel independently, our inclusion

of color mapping function in the imaging pipeline reveals how the cameras process
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the RGB colors as a whole. Furthermore, with the color mapping function calibrat-

ed for different picture styles and different cameras, researchers are able to examine

the differences between the color treatments of different picture styles and cameras.

The better understanding through comparison helps to develop more pleasing color

processing techniques.

However, RBFs is a global interpolation algorithm, which means the output de-

pends on all of the control points for any input. This results in high computational

cost of evaluating the 3D mapping function, since this RBFs approximation contains

several thousand control points. In order to reduce the cost, we further proposed a

local interpolation method of sparse lookup table that is effective in modeling the 3D

mapping function. We also described a novel nonuniform lattice regression method

that adapts the LUT lattice structure to better fit the underlying function. Since it is

a local interpolation method which is more robust to measurement errors of training

samples compared to RBFs, it can be used to model more complex function such

as the combination of color mapping and response functions. The results in Chap-

ter 5 shows that our method offers not only a performance speedup by an order of

magnitude faster than RBFs, but also a compact mechanism to describe the imaging

pipeline.

Although the focus of our nonuniform lattice regression method was the color

mapping pipeline in digital cameras, we believe that our approach’s ability to simplify

complex functions using a nonuniform lattice can be useful in other applications,

such as nonlinear image warping or 3D deformable registration. In addition, the

structure of the final nonuniform lattice provides insight into the comprehension of

the underlying warp, which may be useful for function analysis and/or to help guide

better or adaptive calibration methods.

Having the parameters of the proposed model calibrated, we applied our model

in the WB correction problem (Chapter 6), which is a practical problem faced by

photographers when the photo of the original shooting WB is unsatisfactory. With

the flexibilities provided by our model, photographers can adjust the WB of their

photos in a more intuitive way. The adjusted results are almost identical to what the

camera would have produced while shooting with the selected WBs.

This work, to our best knowledge, is the first to introduce gamut mapping into

the imaging pipeline modeling. The proposed model achieves a new level of accuracy

in converting sRGB images back to the RAW responses. (These RAW responses
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were shown to be linear to the physical scene radiance.) Acting as a fundamental

modeling of in-camera imaging pipeline, it has a significant impact on simulating the

behavior of a camera and will benefit many computer vision algorithms which rely

on the physical scene radiance.

7.2 Future directions

Several future research directions are discussed in the following:

Photofinishing mode investigation While this work targeted modeling the imag-

ing pipeline of photographic reproduction mode, it is worthy to investigate what and

how much scene dependent processing is performed in images under the photofinish-

ing mode. The analysis on the photofinishing mode together with the analysis in this

work will suggest a direction for the internet color vision research [7, 25, 34, 35] in

the future.

Transformation between different RAW spaces In our camera to camera

transfer application (see section 6.3), we related two RAW spaces of different cameras

with a 3× 3 linear transformation. However, this linear transformation is inadequate

in compensating the spectral sensitivity differences between the RAW spaces. A more

sophisticated model such as piecewise linear model will be preferable. This will be

useful in relating images from different cameras.

Identification of source camera from image itself In our work, it is shown

that scene colors are rendered differently by different cameras due to their differences

in image sensors and color managements. In this way, an image carries some specific

properties of its source camera. By differentiating the color rendering results of

common scene spectra such as those from blue sky, it may be possible to identify

the source camera from the image itself. This is an interesting area for future work.
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Appendix A

Calibration Interface

A.1 Scope

In this appendix, the calibration interface developed for calibrating color imaging

model based on different methods is introduced. This appendix is neither the expla-

nation of the underlying code nor the detailed operation manual. (Interested read-

ers are suggested to go to our project page http://www.comp.nus.edu.sg/~brown/

radiometric_calibration/ for more information.) However, it describes the main

functions of our interface.

A.2 User Interface

This section briefly describes the main window of our calibration interface. The main

functions of each part of the interface are introduced here. Moreover, the input and

output for this software are briefly specified.

A.2.1 Main Window

Fig A.1 shows the main window of our software. This interface is designed for data

analysis and manipulation. Therefore, various data visualization modes and con-

venient interaction ways are available. The layout of this interface can be further

introduced in parts as illustrated in Fig. A.2. As the labels overlaid on the top in-

dicate, this main window is composed of several parts including: 1. initialization
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Figure A.1: Main operation window of the interface.
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1
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Initialization and Data Saving
Plotting Mode Selection

Main Plotting Axes

Index Axes

Outlier Filtering

Model Parameter 
Computation

Outlier Groups
Data Loading

Figure A.2: Labeling of the different parts of the main interface window.

86



Appendix A. Calibration Interface

and data saving region, for preparing the initial data input into the software and

saving/loading the whole workspace; 2. plotting mode selection region, for chang-

ing the plotting mode of the main plotting axes; 3. main plotting axes region, for

showing/selecting the data points plotted according to the selected mode and the

computation model; 4. index axes region, for showing the index of the input data

point or selecting a data point of certain index; 5. outlier filtering region, for filtering

the outliers when estimating the response functions; 6. model parameter computa-

tion region, for estimating the optimal parameters of different models including RBFs

based model and non-uniform lattice regression model; 7. outlier groups region, for

selecting the preferred group among different outlier groups gathered by different s-

trategies (e.g. different saturation levels); 8. data loading region; for loading the data

into the software for post processing and analysis.

A.2.2 The input and output of the interface

As described in Chapter 3, we collected images of MacBeth color charts using many

cameras ranging from DSLR cameras to point-and-shoot cameras. (While our in-

terface supports recovering response functions for those cameras only having sRGB

images as their outputs, in this appendix, we focus on the cameras that support RAW

outputs, mainly the DSLR cameras only.) Images were taken in manual mode under

different settings including white balance, aperture, shutter speed, picture styles, and

also under different lighting conditions: indoor lighting and/or outdoor cloudy con-

dition. Both sRGB and RAW images are recorded when possible. Fig A.3 illustrates

the data collection settings.

The input data to the software is the sRGB and RAW colors extracted from each

sRGB and RAW image pairs. Each patch of the color chart gives one color point after

averaging over the patch region. Two sets of sRGB/RAW image pairs with different

exposures but same other settings are grouped as one brightness transfer pair with

corresponding exposure ratio. This brightness transfer pair is the data unit which

will be loaded in to the software.

This interface supports saving the whole workspace as a matlab data file which

could be loaded again next time. It is also able to save any plotting in the main

plotting axes as a figure. More importantly, the model parameters computed could

be saved in text files for further usage, for example, generating the results of real
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sRGB

RAW

(a) Capture settings (b) sRGB and RAW image pairs

Figure A.3: Input image data collection. Noted that both sRGB and RAW images
are color images, while in RAW format, color channels are arranged according to a
certain pattern such as Bayer pattern.

images shown in previous chapters.

A.3 Calibration Procedure

In this section, corresponding to our proposed in-camera imaging pipeline, the main

calibration procedure using our interface is described, including response function re-

covery, white balance and space transformation estimation, different gamut mapping

function calibrations based on RBFs and non-uniform lattice regression.

Having loaded the data sets into the interface, (the data sets are from one pic-
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(a) sRGB BTF mode

(b) RAW BTF mode (c) sRGB v.s. RAW mode

Figure A.4: Snapshots of different plotting modes at data loading step.
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ture style but of different white balances in order to calibrate the model parameters

for that particular picture style,) we could examine the data in different plotting

modes as shown in Fig. A.4. The color of the data point markers corresponds to the

color of their corresponding brightness transfer image pair listed in the data load-

ing region. Denoting the i-th brightness transfer sRGB and RAW image pair as

{Iix, Iiy, Jix, Jiy}, where I, J indicate sRGB image and RAW image respectively, and

x indicates the image with shorter exposure and y with longer exposure, the sRGB

BTF mode (Fig. A.4(a)) shows Iix v.s. Iiy; the RAW BTF mode (Fig. A.4(b)) shows

Jix v.s. Jiy; and the sRGB v.s. RAW mode (Fig. A.4(c)) shows Iix v.s. Jix and/or

Iiy v.s. Jiy at the data loading step. After model parameters getting estimated, the

meanings of the plotting modes might be changed according to the applications of

the models.

A.3.1 Response Function Recovery

As described in Chapter 4, the response function recovery method is based on the

work [24] which adopted PCA model to capture the space of camera response func-

tions. The parameters such as number of bases and data weighting could be tuned in

the model parameter computation region. Before fitting the coefficients of the PCA

model, we need to specify a suitable set of image pairs and remove the outliers for

response function recovery.

Image pair selection

Not all loaded data points are used in response function recovery, since skewed dis-

tribution of data points within the image intensity range will bias the fitting result.

What we want is a set of roughly evenly distributed data points. This could be done

through selecting several brightness transfer image pairs.

Outlier filtering and refinement

As mentioned in Section 4.2.1, in order to accurately recover the response functions,

we use only the points that do not get altered by the gamut mapping function,

which are the color points of low color saturation level. The affected color points

are considered as outliers in the response function estimation step. From the plot of
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Figure A.5: Outlier filtering for response function estimation.

sRGB BTF mode, those outliers probably fall off their brightness transfer function

(BTFs) curves. The majority of the outliers should be those of high saturation level.

With the help of the saturation level based filtering tool, we could get much cleaner

data as shown in Fig. A.5. The indices of outliers are shown in the index axes, with

corresponding patches marked by rectangles.

Further refinement could be done by either manually adding selected points in

the main plotting axes through clicking at the corresponding color point and “add”

button, or by removing the points certain distance far away from the initial brightness

transfer functions computed from response functions which are estimated using the

pre-refinement data points.

The interface also provides other views to show the inliers and outliers for analysis
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Figure A.6: Inliers and outliers shown in 2D CIE XYZ chromaticity diagram and 3D
CIE XYZ color space. The red dots are outliers and black dots are inliers.

purpose. Fig. A.6 shows the windows showing both the inliers and outliers (sRGB

color points) in 2D CIE XYZ chromaticity diagram and 3D CIE XYZ color space,

both with sRGB color space specified inside. When the space transformation from

RAW to sRGB is calibrated, the transformed RAW points could also be shown in

those figures, which is informative and helpful during data analysis period.

Response function estimation

With the current model set to “Resp. only”, by pressing the compute button, the

coefficients of PCA model will be computed by optimization. Fig. A.7 (a) shows

the BTFs in the sRGB BTF mode and Fig. A.7 (b) shows the reverse response

function in the sRGB v.s. RAW mode, both take the green channel as an example.

The linearization result only using response function could be plotted as shown in

Fig. A.8.
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(a) BTFs of green channel (b) Reverse response function of green channel

Figure A.7: Examples of BTFs and reverse response function.

A.3.2 White Balance and Space Transformation Estimation

When having the response functions calibrated, the white balance scales for each

white balance setting and the space transformation from RAW space to linearized

sRGB space are estimated from the data point correspondents: RAW color points

and linearized sRGB color points. Some DSLR cameras record white balance scales

in EXIF and those scales can be directly used. For others with unkown white balance

scales, our algorithm computes the optimal solution simultaneously for the white

balance scales and the space transformation matrix.

With the white balance and space transformation applied, the plotted points

(transformed RAW value of one color channel v.s. the corresponding sRGB value

of the same color channel) should fall on the response function of its corresponding

color channel, if the gamut mapping function dose not affect the color points involved

in this plotting. Fig. A.9 shows an example, where (a) plots only inliers and (b) plots

both inliers and outliers.
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Figure A.8: Linearization result of green channel using response function only. Noted
that those filtered outliers are also included in this plotting.
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(a) Inliers only (b) Inliers and outliers

Figure A.9: Transformed RAW v.s. sRGB intensity.
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(a) RAW to sRGB (b) sRGB to RAW

Figure A.10: Transformed RAW v.s. linearized sRGB calibrated using RBFs method.

A.3.3 Gamut Mapping Function Calibration

In this subsection, the gamut mapping function calibration based on two proposed

methods is introduced. We follow the settings of the previous chapters, where RBFs

based method only models the gamut mapping function, while the non-uniform lattice

regression method models the whole pipeline except the white balance scales. Our

software could be easily extended to deal with the modeling of the whole pipeline

except the white balance scales based on RBFs method or model only the gamut

mapping function based on lattice regression method.

RBFs based Method

As a global interpolation method, RBFs method works better in modeling a simpler

underlying function. Here, only the gamut mapping function is modeled using RBFs.

All loaded data points are used to calculate the RBFs parameters, i.e. no outliers

any more in this step (the fully saturated color points which contain 255 in any one
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Figure A.11: Different views of the same gamut mapping function slice, from RAW
to sRGB.

of RGB channels are still excluded in this step). Set the current model to “warp

model” and press compute button, the algorithm automatically collects the set of

control points and computes the model coefficients. Fig. A.10 shows the result of the

calibration of the whole pipeline in both direction: from RAW to sRGB and from

sRGB back to RAW, with gamut mapping function included. From this figure, we

can see that the transformed RAW value almost equals to its corresponding linearized

sRGB values in both cases.

The gamut mapping function is illustrated in Fig. A.11. The slice indicated by

the blue triangle is mapped to the curved surface in the RAW to sRGB direction.

The black dots are the control points of the RBFs.

Non-uniform Lattice Regression Method

Non-uniform lattice regression method treats the whole pipeline except the white

balance scales as one function. In this case, the response function and the space

transformation are not required to be computed in advance. Set the current model
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(a) RAW to sRGB (b) sRGB to RAW

Figure A.12: Transformed RAW v.s. linearized sRGB calibrated using non-uniform
lattice regression method.

to “lattice” and press compute button, the algorithm automatically computes the

model parameters for a lattice of a pre-specified size. Fig. A.12 shows the result of

the calibration of the whole pipeline in both direction: from RAW to sRGB and from

sRGB back to RAW, with gamut mapping function included.

The mapping function captured by the lattice model is illustrated in Fig. A.13.

As an example, the mapping destinations (from RAW to sRGB color space) of the

lattice vertices located on the plane whose blue channel equals to 0.021 are plotted

in Fig. A.13 (a). The mapping destinations (from sRGB to RAW color space) of the

lattice vertices located on the plane whose blue channel equals to 0.754 are plotted

in Fig. A.13 (b).
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(a) RAW to sRGB (b) sRGB to RAW

Figure A.13: The illustration of mapping destinations assigned to the lattice vertices
on certain plane whose blue channel equals to the numbers indicated by the titles.

A.4 Summary

This appendix describes the main functions our interface provides. This calibration

interface is a helpful tool for data analysis and an efficient instrument for calibrating

the in-camera imaging pipeline. It is also a general framework extendable to incorpo-

rate more models for the calibration. We have also added several other models which

are not described here, such as polynominal model and uniform lattice regression

method. The source code can be downloaded from our project page. Interested users

can develop their work further based on the current version.

99


	 Summary
	 List of Tables
	 List of Figures
	1 Introduction
	1.1 Objectives
	1.2 Contributions
	1.3 Road map

	2 Background
	2.1 Camera pipeline
	2.2 Color representation and communication
	2.2.1 Tristimulus
	2.2.2 Color spaces
	2.2.3 Gamut mapping

	2.3 Previous work
	2.3.1 Radiometric calibration formulation
	2.3.2 Radiometric calibration algorithms
	2.3.3 Scene dependency and camera settings


	3 Data collection and analysis
	3.1 Data collection
	3.2 Data analysis

	4 New in-camera imaging model
	4.1 Model formulation
	4.2 Model calibration based on Radial Basis Functions (RBFs)
	4.2.1 Camera Response Function Estimation
	4.2.2 Color Transformation Matrix Estimation
	4.2.3 Color Gamut Mapping Function Estimation
	4.2.4 Calibrating Cameras without RAW support

	4.3 Experimental results
	4.3.1 Radiometric Response Function Estimation
	4.3.2 Color Mapping Function Estimation

	4.4 Conclusion

	5 Non-uniform lattice regression for in-camera imaging modeling
	5.1 Introduction
	5.2 Uniform lattice regression
	5.3 Model formulation based on non-uniform lattice regression
	5.4 Experimental results
	5.5 Conclusion

	6 Application: photo refinishing
	6.1 Manual Mode
	6.2 Auto White Balance Mode
	6.3 Camera-to-Camera Transfer
	6.4 Refinishing results

	7 Discussions and conclusions
	7.1 Summary
	7.2 Future directions

	Bibliography
	A Calibration Interface
	A.1 Scope
	A.2 User Interface
	A.2.1 Main Window
	A.2.2 The input and output of the interface

	A.3 Calibration Procedure
	A.3.1 Response Function Recovery
	A.3.2 White Balance and Space Transformation Estimation
	A.3.3 Gamut Mapping Function Calibration

	A.4 Summary


