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Abstract

Machine learning is concerned with automating information discovery from data for

making predictions and decisions, with statistical learning as one major paradigm. This

thesis considers statistical learning with structured data and general loss functions.

For learning with structured data, we consider conditional random fields (CRFs).

CRFs form a rich class of structured conditional models which yield state-of-the-art

performance in many applications, but inference and learning for CRFs with general

structures are intractable. In practice usually only simple dependencies are consid-

ered or approximation methods are adopted. We demonstrate that sparse potential

functions may be an avenue to exploit for designing efficient inference and learning al-

gorithms for general CRFs. We identify two useful types of CRFs with sparse potential

functions, and give efficient (polynomial time) exact inference and learning algorithms

for them. One is a class of high-order CRFs with a particular type of sparse high-order

potential functions, and the other is a class of factorial CRFs with sparse co-temporal

potential functions. We demonstrate that these CRFs perform well on synthetic and

real datasets. In addition, we give algorithms for handling CRFs incorporating both

sparse high-order features and sparse co-temporal features.

For learning with general loss functions, we consider the theory and algorithms of

learning to optimize F-measures. F-measures form a class of non-decomposable losses

popular in tasks including information retrieval, information extraction and multi-label

classification, but the theory and algorithms are still not yet quite well understood due

to its non-decomposability. We first give theoretical justifications and connections be-

tween two learning paradigms: the empirical utility maximization (EUM) approach

learns a classifier having optimal performance on training data, while the decision-

theoretic approach (DTA) learns a probabilistic model and then predicts labels with

maximum expected F-measure. Given accurate models, theory suggests that the two

approaches are asymptotically equivalent given large training and test sets. Empiri-

cally, the EUM approach appears to be more robust against model misspecification,

whereas given a good model, the decision-theoretic approach appears to be better for

handling rare classes and a common domain adaptation scenario. In addition, while

previous algorithms for computing the expected F-measure require at least cubic time,

we give a quadratic time algorithm, making DTA a more practical approach.
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Notations

The following are notational conventions followed throughout the thesis, unless other-

wise stated. They mostly follow standard notations in the literature, and thus may be

consulted only when needed.

Abbrevations

Various notational details are often omitted to ease reading, as long as such omission

does not create ambiguity.

For example, in a summation or integration notation, the range of summation or

integration is often omitted if it is clear from the context. In particular, in notations

like
∑

x or
∫
f(x)dx, if the range of x is not explicitly mentioned, then it is assumed

to be the universe of discourse for x.

Probability

A random variable is generally denoted by a capital letter such as X, Y, Z, while their

domains are often denoted by X , Y , Z and so on. An instantiation of the random

variable is denoted by the corresponding lower case letter.

P (X) represents a probability distribution on the random variable X. It is the

probability mass function (pmf) if X is discrete, and is the probability density function

(pdf) if X is continuous. P (x) denotes the value of P (X) when X is instantiated as

x. EX∼P (X) denotes the expectation of a random variable X following distribution

P , which is often abbreviated as E(X) if P is clear from the context. A notation like

EX1(f(X1, X2)) indicates taking expectation with respect to X1 only.

P (Y |X) represents a conditional probability distribution of Y given X, which is

either a pmf or a pdf depending on whether Y is discrete or continuous.

Given a joint distribution P (X1, . . . , Xn) for random variables X1, . . . , Xn, and a

subset S of {X1, . . . , Xn}, PS is used to denote the marginal distribution derived from
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P (X1, . . . , Xn) for random variables in S. If S1, S2 ⊆ {X1, . . . , Xn}, then PS1|S2 de-

note the conditional distribution derived from P (X1, . . . , Xn) for random variables in

S1 given S2. The subscripts are often omitted when it is clear from the contexts

which random variables are considered. For example, given P (X1, X2), the condi-

tional distribution PX1(x1)
def
=
∑

x2
P (x1, x2) is often written as P (X1). Similarly,

PX1|X2(x1|x2) = P (x1,x2)
P (x2)

is often written as P (X1|X2).

Linear algebra

A matrix is generally denoted by capital letters like A,B,C. The entries in the matrix

is often named using the corresponding lower case letter indexed with its row and

column numbers as the subscript. For example, if A is a matrix, then we often use aij

to denote the entry in the i-th row and j-th column. Alternatively, an n ×m matrix

where the (i, j)-th entry is aij can be written as (aij)n,m, or simply (aij) if n,m are

clear from context. The determinant, inverse and transpose of a matrix A are denoted

by |A|, A−1 and AT respectively. The (i, j)-minor of A, that is, the matrix obtained

by deleting the i-th row and the j-th column of A, is generally denoted by Aij.

A vector is a column vector unless otherwise stated, and is often denoted by bold-

faced lower case letters.

Some common notations

R the set of real numbers

||x||p the `p norm of the vector x

diag(a1, . . . , an) n× n diagonal matrix with ai’s as the diagonal entries

I(·) the indicator function which is 1 if · is true, and 0 otherwise

N(µ,Σ) normal distribution with mean µ and covariance matrix Σ

N(x;µ,Σ) (2π)−k/2|Σ|−1/2e−
1
2

(x−µ)TΣ−1(x−µ), the pdf for a k-dimensional nor-

mal distribution N(µ,Σ)

∇f gradient of f ; subscript may be added to indicate the gradient with

respect to a subset of variables with others fixed



Chapter 1

Introduction

Statistical methods have become a franca lingua in machine learning. In classifical sta-

tistical learning, sound theoretical principles (Vapnik, 1998) and effective algorithms

(Hastie et al., 2005) have been developed for problems like classification, regression

and density estimation. In recent years, the widespread use of machine learning as

an enabling technology for automating information discovery for decision making and

prediction has led researchers and practitioners to work on increasingly more complex

data with complex performance measures. Various interesting problems and challenges

have emerged. This thesis is motivated by the goal of moving towards a more general

statistical framework for dealing with complex data and performance measures. Its

contribution consists of identifying subclasses within the useful but useful generally

intractable family of conditional probability distributions called Conditional Random

Fields (CRFs). Efficient exact inference and learning algorithms are developed for

handling these dependencies. In addition, theoretical and empirical analysis and com-

parisons are done on algorithms for maximizing a popular class of performance mea-

sures, F-measures, which are non-decomposable and poses different theoretical and

algorithmic challenges as compared to performance measures like accuracy.

For learning with structured data, a traditional approach is to reduce the problems
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to classification problems. Such problems include parts of speech tagging (Brill, 1994),

coreference resolution (Soon et al., 2001) and relation extraction (Zelenko et al., 2003).

Such a reduction generally loses useful dependencies between the instances, and do not

perform as well as models incorporating structural dependencies. However, modeling

structures generally lead to difficult computational problems. In particular, learning

and inference are generally intractable (Istrail, 2000) for an important class of struc-

tured statistical models, Markov random fields (MRFs) (Kindermann and Snell, 1980)

and its conditional version, conditional random fields (CRFs) (Lafferty et al., 2001).

Two approaches are thus often used in practice: include only simple local dependencies,

or apply efficient approximation methods.

Incorporating only simple local dependencies can risk significant loss of information.

For example, consider linear-chain CRFs Lafferty et al. (2001), a popular model using

only simple pairwise dependencies, and satisfying the Markov property that knowledge

of the previous label is irrelevant to the next label once the current label is known. This

makes computationally efficient algorithms feasible. In many cases, linear-chain CRFs

serve as a reasonable approximation to reality, for example, when inferring the parts

of speech of a sentence. However, in other applications, performance can be improved

if higher order dependencies are considered. For example, in inferring handwritten

characters within words, knowledge of the previous few characters can provide a lot

of information about the identity of the next character. Such dependencies can be

captured using high-order CRFs, an extension of linear-chain CRFs to capture the

higher order dependencies. However, the time complexity of typical inference and

learning algorithms for high-order CRFs are exponential in the order, and quickly

becomes infeasible.

Another example requiring modeling beyond simple pairwise dependencies is se-

quence multi-labeling, which involves labeling an observation sequence with multiple

dependent sequences. For example, in activity recognition, we may be interested in
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labeling a sequence of sensor inputs with whether a person is exercising at each time

instance, and with whether the person is listening to music at each time instance. In

this case, there are dependencies not only between consecutive time instances, but also

across the two different activities as people often exercise and listen to music at the

same time. These dependencies can be captured using factorial CRFs (FCRFs) (Sut-

ton et al., 2007). However, with increasing number of chains, inference and learning

for FCRFs become computationally intractable without additional assumptions.

While approximation algorithms serve as practical means to deal with complex

dependencies given limited computation time, their behavior can be hard to predict.

For example, loopy belief propogation is often used as an approximate inference method

for graphical models, and have been shown to work well for various problems, but

they can produce results which oscillates and are not truly related to the correct ones

(Murphy et al., 1999).

In this thesis, we demonstrate that expressiveness and exactness can be achieved

at the same time in some cases. The key observation is that certain useful complex

dependencies are sparse. For example, in handwritten character recognition, the num-

ber of character patterns is very small as compared to all character combinations. In

the case of sequence multi-labeling, the number of co-temporal patterns may also be

relatively small. Another interesting example of sparse complex dependency is the set

of co-temporal patterns predicted by classifiers in sequence multi-labeling. For such

sparse models, the sufficient statistics required in inference and learning can be repre-

sented compactly and evaluated efficiently. In our case, we identify a class of sparse

high-order CRFs and a class of sparse FCRFs for which we design exact polynomial

time inference and learning algorithms. While the techniques used are different for

sparse high-order CRFs and sparse FCRFs, we give an algorithm to handle CRFs with

sparse higher order features in the chains and sparse co-temporal features. The time

complexity of the algorithm can grow exponentially in the number of chains, as in the

3



case of naive generalizations of linear-chain algorithms for FCRFs, but can be efficient

if the number of chains using high-order features is small.

Besides the interests in developing better means for modeling data, there has also

been an increasing interests in and extensive use of general loss functions, other than

traditional performance measures like accuracy and square loss. For example, when

the dataset is imbalanced (i.e. some classes are rare in comparison to other classes),

then predicting the most common classes will often result in high accuracy. In this

case, one class of commonly used utility functions are the F-measures, which measure

the performance of a classifier in terms of its ability to obtain both high recall (re-

cover most of the instances in the rare classes) and high precision (instances predicted

to be in the rare classes are mostly truly rare). A main difference between accuracy

and F-measures is that while accuracy can be expressed as a sum of the contribution

from the instances, F-measures cannot. We call accuracy as a decomposable utility

function and F-measure a non-decomposable utility function. The study of the theory

and algorithms of F-measures are attractive due to their increasing popularity in infor-

mation retrieval (Manning et al., 2009) information extraction (Tjong Kim Sang and

De Meulder, 2003), and multi-label classification (Dembczynski et al., 2011). Another

type of commonly used non-decomposable utility function is the AUC (Area under the

ROC Curve) score (Fawcett, 2006). However, non-decomposability poses new theo-

retical and algorithmic challenges in learning and inference, as compared to those for

decomposable losses.

In this thesis, we study only the simplest setting for non-decomposable utility/loss

function, that of labeling binary independent identically distributed examples. We

also focus mainly on the F-measure. We give theoretical justifications and connec-

tions between different types learning algorithms. We also give efficient algorithms

for computing optimal predictions, and carry out empirical studies to investigate the

performance of different algorithms.
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1.1 Contributions

We first demonstrate that under realistic sparsity assumptions on features, it is possible

to design efficient exact learning and inference algorithms to handle dependencies be-

yond pairwise dependencies in CRFs. We consider sparse high-order features (features

depending on several consecutive labels) for labeling observations with a single label

sequence, and sparse co-temporal features for labeling observation with multiple label

sequences. Our inference and learning algorithms are exact and have polynomial time

complexity. Both types of features are demonstrated to yield significant performance

gains on some synthetic and real datasets. The techniques used for exploiting sparsity

in high-order CRFs and FCRFs are different, and we discuss an algorithm combining

these two techniques to perform inference and learning for CRFs with sparse high order

features in the chains and sparse co-temporal features. The main insight in our results

is that natural sparse features form an avenue that can be exploited to yield efficient

algorithms. In our case, we exploit sparsity by modifying existing algorithms to derive

compact representations for quantities of interests.

We then consider learning with non-decomposable utility functions, focusing on

F-measures. We first demonstrate that F-measures and several other utility functions

are non-decomposable, thus the classical theory for decomposable utility functions

no longer applies. We then give theoretical justifications and connections between

two learning paradigms for F-measures: the empirical utility maximization (EUM)

approach learns a classifier having optimal performance on training data, while the

decision-theoretic approach (DTA) learns a probabilistic model and then predicts labels

with maximum expected F-measure. For the EUM approach, we show that it learns

an optimal classifier in the limit, and we justify that a simple thresholding method

is optimal. For the DTA approach, we give an O(n2) time algorithm for computing

the predictions with maximum expected F-measure. Given accurate models, theory

suggests that the two approaches are asymptotically equivalent given large training and
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test sets. Empirically, the EUM approach appears to be more robust against model

misspecification, and given a good model, the decision-theoretic approach appears to

be better for handling rare classes and a common domain adaptation scenario.

There are also various small contributions in the background material on statisti-

cal learning and the exponential families, which are motivated by questions that can

make the discussion more self-contained, but of which I was not aware of any pub-

lished answer. Whenever possible, I gave my own solutions – though sometimes only

high-level ideas were given. Example questions include how the quality of an estimated

distribution affect its prediction performance, how irrelevant attributes affect the final

hypothesis learned and the convergence rate, what is the quality of the linear clas-

sifier learned by using the square loss or the exponential loss as the surrogate losses

for the 0/1 loss, whether the well-known consistency result for maximum likelihood

estimation of generative distributions holds for conditional distributions. Examples or

technical derivations are also given whenever possible. Certain technical derivations

are simplified, generalized or with new results given. In particular, simplified proofs

are given for Wolpert’s no free lunch theorem and Hammersley-Clifford theorem. A

discussion is given on an alternative definition of entropy. A derivation on conditional

exponential family as maximum entropy models is given under general equality and

inequality constraints. There is also a result on the independence property of Markov

random fields.

1.2 Outline

Chapter 2 is on the statistical framework of decision and learning, and Chapter 3

is on log-linearity and Markov property in undirected graphical models. They lay

the foundation to the main contribution of this thesis, namely, the sparse high-order

CRF in Chapter 4, the sparse FCRF in Chapter 5, and the theory and algorithms
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for F-measures in Chapter 6. I hope the first two chapters will also make the thesis

as self-contained as possible. While most things in these two chapters are old, they

have been organized and presented differently, with some new results as mentioned in

previous section. They also reflect questions which I asked when I started studying

machine learning, but did not manage to find answers easily. The following is a more

detailed outline of each chapter.

Chapter 2 presents the statistical framework of decision and learning. The insights

from the results presented in this chapter shaped many aspects of the thesis, which will

be too many to enumerate. For example, the principle of using regularization has been

elaborated in detail, and used freely in later chapters as a standard practice to achieve

stability, to incorporate prior domain knowledge, or to control the tradeoff between

quality of fit to data and the complexity of hypothesis. The No-Free-Lunch theorems

motivated the exploration of what algorithms work better under specific assumptions

in the theoretical analysis of F-measures. This chapter first starts with the princi-

ples of decision and learning in a statistical setting. The principles are demonstrated

to provide language and tools for systematic interpretation, design, and analysis of

machine learning algorithms. The design of learning machines is then decomposed as

representation, approximation, learning and prediction, with each component analyzed

based on the basic principles. The importance of prior knowledge in machine learning

is discussed.

The discussion focuses on answering two questions: (a) Are there unifying principles

behind the particularities of distinct learning algorithms? (b) What are the limitations

of machine learning? While most results presented are well-known, I hope the presen-

tation shows a unified and systematic framework towards the design and analysis of

machine learning algorithms, and highlights some generalization difficulties in machine

learning.

Chapter 3 presents the theory of log-linear models (or exponential families) and
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MRFs. Log-linearity and Markov property combine together to yield parametric mod-

els for which efficient inference and learning are possible, and our sparse models fall

within the framework of log-linear CRFs. The focus is on the principles leading to

such models, and the principles of inference and learning. This includes the derivation

of the exponential families as maximum entropy models, the derivation of MRFs and

CRFs as a consequence of a Markov property on graphs, computational difficulties for

inference with exponential families, and maximum likelihood parameter estimation.

Chapter 4 presents new efficient (polynomial time) exact inference and learning

algorithms for exploiting a type of sparse features in high-order CRFs for sequence

labeling and segmentation. We discuss the effect of omitting inactive features and

provide a justification for using only seen label patterns in features. Sparse high-order

CRFs are shown to perform well on synthetic and real datasets. Conditions favoring

the sparse features are discussed.

Chapter 5 presents new efficient (polynomial time) exact inference and learning

algorithms for exploiting a type of sparse co-temporal features in factorial CRFs for

jointly labeling and segmentation of sequences. Sparse factorial CRFs are shown to

perform well on synthetic and real datasets. We also discuss an inference algorithm for

CRFs with both sparse co-temporal features and sparse high-order features.

Chapter 6 presents results on learning with non-decomposable utility functions, fo-

cusing on F-measures. We first demonstrate that F-measures and several other utility

functions are non-decomposable, thus the classifical theory for decomposable utility

functions no longer apply. Theoretical justifications and connections for the EUM ap-

proach and the DTA approach for learning to maximize F-measures. Given accurate

models, theoretical analysis suggest that the two approaches are asymptotically equiv-

alent given large training and test sets. Empirically, the EUM approach appears to

be more robust against model misspecification, and given a good model, the decision-

theoretic approach appears to be better for handling rare classes and a common domain
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adaptation scenario.

Chapter 7 concludes the thesis by summarizing the contributions, and highlight-

ing problems for which the solutions can lead to deeper understanding on exploiting

structural sparsity and learning to optimize non-decomposable utility/losses.
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Chapter 2

Statistical Learning

Machine learning is concerned with automating information discovery from data for

making predictions and decisions. Since the construction of the Perceptron (Rosen-

blatt, 1962) as the first learning machine in the 1960s, many learning algorithms have

been proposed, including decision trees, maximum entropy classifiers, support vector

machines, boosting, graphical models, for various problems. Two questions are funda-

mental in understanding and designing machine learning algorithms.

First, are there unifying principles behind the particularities of apparently quite

distinct algorithms such as decision trees, logistic regression, support vector machines

and artificial neural networks? This is a question one usually ask when confronted with

the particularities of different machine learning algorithms. For example, why is the

particular form logistic regression used, other than that linear functions are simple?

Is naive Bayes purely based on the frequentist perspective of estimating marginals by

frequencies? Why should parameters of logistic regression be estimated by maximizing

likelihood although no choice of parameters can yield a model identical to the true

one?

Second, what are the limitations of machine learning? A truly general-purpose

learning machine is one equipped with some basic functionalities like speech or image
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processing capabilities, and learns to perform new tasks such as playing chess, solving

calculus problems, helping programmers to debug. However, human learning is still

far from being perfectly understood, and the sense of learning in machine learning was

and is still very domain specific – while it is easy for a child to learn to play new board

games like chess, a computer can learn to play chess only if there is a program that

is built for this particular task. Although it is still not very well understood what

machines cannot learn, a sense of what machines need to learn is essential.

This chapter presents fundamental ideas in machine learning, mainly from a sta-

tistical perspective, and directed to answer the above two problems. Most results

presented are well-known, my aim is to present them in the most general form or in

a simplified form, and provide comprehensive discussions on some problems. There

are also some new examples and new results. I hope the presentation shows a unified

and systematic framework towards the design and analysis of machine learning algo-

rithms, and highlights some generalization difficulties in machine learning. Certainly,

every model has its own limitations, and the framework of statistical learning makes

assumptions which may not be satisfied by the data which one works with. But the

general principle is that with suitable assumptions on data and a precise performance

measure, in principle one can derive conclusions about an algorithm’s performance.

Here is an outline of this chapter. Section 2.1 provides a very brief overview of

machine learning and discusses the role of data generation mechanisms and perfor-

mance measures in the design of machine learning algorithms. Section 2.2 presents the

assumptions on data generation mechanisms and the performance measures used in

statistical decision and learning. Basic principles for statistical decision and learning

are described and illustrated with several classical learning algorithms. Section 2.3

presents the design of a learning system as solving four subproblems: representation,

approximation, estimation and prediction. Difficulties and techniques for each sub-

problem are discussed, mostly based on the statistical framework set up in Section 2.2.
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Section 2.4 discusses theoretical results on the necessity of prior knowledge for design-

ing learning algorithms that are guaranteed to learn the true laws. Section 2.5 discusses

problems that remain to be solved.

2.1 Introduction

2.1.1 Overview

Since the ancient times, the idea of artificial intelligence captured and continue to

capture the imagination of men. For example, Homer described in the Iliad the Golden

Servants, which were intelligent and vocal automatons created by Hephaestus out of

metal. Leibniz attempted to construct a universal representation of ideas, known as

the alphabet of human thought, which can reduce much reasoning to calculations.

Wolfgang von Kempelen built and showcased a sensational fake chess playing machine

called the Turk. Mary Shelley described in Frankenstein a human created intelligent

monster. And modern science fiction writers imagined intelligent robots.

It is not yet fully understood what makes humans intelligent, but learning seems

to be essential for acquiring abilities to perform intelligent activities, ranging from

speech to games and scientific discovery. Learning is also adopted as the solution to

build reliable systems working in uncertain and noisy environments, such as household

assistant robots, dialog-based expert systems, and automatic component design in

manufacturing industry. It is infeasible to hardcode the behavior of these systems for

all possible circumstances.

But the first learning machine, the Perceptron, was only constructed in the early

1960s by Rosenblatt. Its design simulated human neural network, and was used for

the task of recognizing handwritten characters (Rosenblatt, 1962). Many successful

learning systems have been built since then, for tasks such as automatic driving, play-

ing board games, natural language processing, spam detection, credit card fraudulence
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analysis. A number of deployed systems are described in (Langley and Simon, 1995).

These successes are empowered by the discovery of general learning methods, such as

artificial neural networks (Anthony and Bartlett, 1999; Haykin, 1999), rule induction

(Quinlan, 1993), genetic algorithms (Goldberg, 1994), case-based learning (Aamodt

and Plaza, 1994), explanation-based learning (Ellman, 1989), statistical learning (Vap-

nik, 1998), and meta-learning algorithms such as bagging (Breiman, 1996) and boosting

(Freund and Schapire, 1997). At the same time, theoretical developments have yielded

insightful interpretations, design techniques, and understanding of the properties, con-

nections and limitations of learning algorithms. Notable theoretical models of learning

include statistical learning (Vapnik and Chervonenkis, 1971), Valiant’s PAC-learning

(Valiant, 1984), and the inductive inference model studied by Solomonoff (Solomonoff,

1964) and Gold (Gold, 1967).

Machine learning is now used to help understanding the nature and mechanism of

human learning, and as a tool for constructing adaptive systems which automatically

improves performance with more experience. Machine learning is a cross-discipline

field, drawing motivation from cognitive science, deriving its problems from areas like

natural language processing, robotics, computer vision, and uses as its tools for mod-

eling and analysis disciplines like logic, statistical science, information theory, and

complexity theory.

However, machine learning is still a young field. Despite significant progresses to-

wards the understanding and automation of learning, there are still many fundamental

problems that need to be addressed, and the construction of an effective learning system

is still highly nontrivial and often a very laborious task.

2.1.2 The Concept of Machine Learning

Machine learning is any algorithmic process which yields improved performance as the

amount of available data grows. While the problems solved by machine learning range
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from pattern recognition, regression to clustering, and many different algorithms have

been designed for solving these problems, the design of an effective learning algorithm

requires consideration over two key factors: the nature of data generation mechanisms

and the performance measures used. This is particularly so when one engineers a

general algorithm to work for a particular problem.

A data generation mechanism generates observations of a collection of variables.

Learning problems are often categorized by the nature of the data generation mecha-

nisms, and learning algorithms of very different nature are designed in each case. For

example, based on whether the labels are always observed in training data, labeling

problems (such as labeling whether an email is a spam, or labeling the parts of speech

tags for a sentence) can be categorized as supervised learning (all labels observed) (Kot-

siantis et al., 2007), semi-supervised learning (some labels observed) (Zhu, 2005), and

unsupervised learning (no label observed) (Ghahramani, 2004). Based on the relation-

ship between the generation mechanisms for training and test data, learning can be

classified as single-task learning (identical mechanisms), domain-adaptation (same set of

variables but different mechanisms), and transfer learning (different sets of variables for

the generation mechanisms).

The simplest and most commonly used performance measures for learning algo-

rithms are empirical measures defined on data samples, such as accuracies. However,

in general, if algorithm A has better empirical performance than algorithm B on a

test sample, it does not mean A always performs better than B on other samples,

in particular, on the unseen examples; and in the worst case, B may perform better

than A. Nevertheless, for certain cases, empirical measures do reveal useful information

about learning algorithms. For example, for classification on i.i.d. instances, if A has

better accuracy than B on a very large test set, then it is very likely that A has higher

accuracy than B on another large test set. In this case, one may compare algorithms

based on their expected accuracies, for which small confidence intervals can often be
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inferred with high confidence if there are sufficiently many test examples. In any case,

when comparing the performance of two machine learning algorithms, one should be

aware of the information revealed by the empirical measures, and bear in mind there

may be subtle considerations as above.

2.2 Statistical Decision and Learning

Statistical methods have become a franca lingua in machine learning due to their theo-

retical generality and empirical successes. They are based on probabilistic assumptions

on the data generation mechanisms. We first present the principles of statistical de-

cision and learning, then use some classic learning algorithms to illustrate how they

provide a general framework for interpreting and analyzing learning algorithms. The

example algorithms discussed include one regression algorithm (linear least squares

regression), two classification algorithms (naive Bayes and nearest neighbor), and one

domain adaptation algorithm (instance weighting). For each algorithm, we describe the

method, show how statistical learning and decision theory can be applied to interpret

it. Performance guanrantees and alternatives are discussed whenever possible.

2.2.1 Principles

A.Statistical decision. Statistical decision theory is concerned with making optimal

predictions on data generated according to a given distribution. While the objective

of a decision problem can be maximizing certain utility or minimizing certain risk, we

focus on risk minimization here. Similar principles and results can be stated for utility

maximization.

The general principle of statistical decision is as follows. Let P be a distribution

on (X × Y)∗ 1, where X is the set of possible observations (or inputs), and Y is the

1That is, P is a distribution on sequences of elements from X × Y
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set of possible outcomes (or outputs, or labels). Intuitively, given test observations

x1, . . . , xn ∈ X , the goal is to predict s1, . . . , sn ∈ Y which minimize a task-specific loss

function L(s1, . . . , sn, y1, . . . , yn) on the average case, where y1, . . . , yn ∈ Y are the true

outcomes. Formally, given x1, . . . , xn, predict

arg min
s1,...,sn

EY1,...,Yn|x1,...,xn∼P (L(s1, . . . , sn, Y1, . . . , Yn)), (2.2.1)

where the expectation is over Y1, . . . , Yn drawn according to the conditional distribution

of the true outcomes for x1, . . . , xn according to P .

Typically, we consider predictions of a rule h : X → Y on a stream of independent

and identically distributed (i.i.d.) test points x1, x2, . . ., using a decomposable loss

function L(s1, . . . , sn, y1, . . . , yn)
def
=
∑n

i=1 L(si, yi). L(si, yi) will be called a loss function

in such setting, and we use P to denote the distribution on X ×Y instead of (X ×Y)∗.

In this case, the performance metric of h can be formalized as its expected risk

R(h)
def
= E(L(h(X), Y )) =

∑
x,y

P (x, y)L(h(x), y) (2.2.2)

The goal is to find a function h∗ which minimizes R(h). h∗ is called the Bayes optimal

prediction rule and R(h∗) is called the Bayes risk .

When X is a metric space and Y is finite, it is useful to describe a prediction rule

using the concept of decision boundary. For any prediction rule h, X is partitioned into

sets consisting of elements mapping to the same y value. The union of the boundaries

of such sets, if exist, is called the decision boundary of h. The decision boundary of h∗

is called the Bayes decision boundary .

We illustrate the above concepts in the following example.

Example 1. Consider classifying any x ∈ R2 to a y ∈ {0, 1}, where the joint distri-
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bution P (X, Y ) is as follows:

P (X, Y ) = π(Y )f(X|Y ),where

π(0) = π(1) =
1

2
,

f(X|0) = N [(0, 0), diag(1, 1)],

f(X|1) = N [(1, 1), diag(1, 1)]

Using the 0/1 loss L01(y1, y2) = I(y1 6= y2), the Bayes decision boundary is given by

x1 + x2 = 1

The Bayes risk can be shown to be given by

1− Φ(
√

2/2) = 1− 1√
2π

∫ √2/2

−∞ e−x
2/2 ≈ 1− 0.7602 = 0.2398

In general, let X be a random n dimensional vector, Y be a random variable taking

values 1, . . . , K. If P (Y = k) = 1
K

, and P (X = x|Y = k) is the normal distribution

N(µk, I), then the Bayes decision boundary is the Voronoi diagram for µ1, . . . , µK . 2

B.Statistical learning. In statistical learning, the distribution P is now unknown but

fixed. The data generation process is generally assumed to generate i.i.d. sequence

{(x1, y1), . . . , (xn, yn)} drawn from P . The task is to learn a good prediction rule from

data.

There are three main approaches in statistical learning: risk minimization (Vapnik,

1998), density estimation, and Bayesian learning (Lindley, 1972). In the following,

let D = {(x1, y1), . . . , (xn, yn)} be a set of training examples, x = (x1, . . . , xn) and

y = (y1, . . . , yn).

The risk minimization approach assumes a hypothesis space H consisting of all
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candidate prediction rules, and uses the training data to select a hypothesis which has

potentially smallest risk. Formally, the empirical risk of a hypothesis h onD is defined as

Rn(h)
def
= 1

n

∑n
i=1 L(h(xi), yi). Note that Rn(h) is a random variable. A natural criterion

for risk minimization is the Empirical Risk Minimization (ERM) principle, which selects

the hypothesis with minimal empirical risk:

hn
def
= arg min

h∈H
Rn(h) (2.2.3)

The density estimation approach first uses the training data to compute an esti-

mate P̃ (X, Y ) for the joint distribution P (X, Y ) or an estimate P̃ (Y |X) for the condi-

tional distribution P (Y |X). Then prediction is made to minimize the risk with respect

to the estimated distribution P̃ (Y |X). Given a class of candidate joint distribution

{P (X, Y |θ) : θ ∈ Θ}, where θ is an index, the maximum likelihood (ML) distribution

is often used as the estimate:

P̃n(X, Y ) = arg max
θ∈Θ

∏
i

P (xi, yi|θ) (2.2.4)

Similarly, for the conditional case, the maximum likelihood estimate (MLE) is

P̃n(Y |X) = arg max
θ∈Θ

∏
i

P (yi|xi, θ) (2.2.5)

In Bayesian learning, there is a prior distribution P (θ) on the set {P (X, Y |θ : θ ∈

Θ} of possible data distributions. Given training data D, and test examples x′ =

(x′1, . . . , x
′
m), the posterior distribution P (y′|x′, D) for y′ = (y′1, . . . , y

′
m) is then used

for making predictions. If joint distributions are considered, the posterior distribution

is computed using the Bayes rule as follows:

P (y′|x′, D) =
∫
θ
P (y′,x′, D|θ)P (θ)dθ/P (x, D) (2.2.6)
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Similarly, for conditional distributions, the posterior distribution is computed as fol-

lows:

P (y′|x′, D) =
∫
θ
P (y′,y|x′,x, θ)P (θ)dθ/P (y|x) (2.2.7)

For all the above approaches, generalization can occur only if the set of hypotheses

is not too expressive. For example, consider classifying points in R2. If all possible

classifiers are allowed, then for any classifier, there are infinitely many other classifiers

which agree with it on the training data, but differ drastically from it on unseen points.

The choice of the hypothesis space depends on prior knowledge about the problem. A

consequence of the restricted set of hypotheses is that it may not always be possible

to construct from data a sequence of hypotheses that converges to the Bayes optimal

hypothesis.

The above three approaches are have their own advantages and disadvantages but

precise comparisons on their performance cannot be made without further assumptions.

We make a few remarks on some general connections.

First, only the risk minimization approach is directly concerned with minimizing

risk, thus in principle, it is at least as good as the other two approaches in terms of

the ability to minimize risks. We elaborate on this by comparing the risk minimization

approach and the density estimation approach. If the hypothesized set of densities is

P , and for P ∈ P , the Bayes optimal prediction rule is hP , then we can form H = {hP :

P ∈ P}, and apply the risk minimization on H. If P ∗ is the optimal density in P (it

does not matter how optimality is defined), and h∗ is a hypothesis in H with minimum

risk, then R(h∗) ≤ R(hP ∗). Thus in the limit, the risk minimization approach is at

least as good as the density estimation approach if the risk of the estimated hypothesis

from H eventually converge to R(h∗). However, the risk minimization approach is not

necessarily preferred, because it can lead to difficult computational problems.

Second, the density estimation approach and Bayesian learning requires training

once only even though we may be interested in several different loss functions, while
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for the risk minimization approach, training need to be done for each loss function.

Third, when the training set size is large enough, the posterior distribution in

Bayesian learning is often close to the maximum likelihood distribution. When the

training set size is small, the relative performance of Bayesian learning and density

estimation mainly depend on the quality of the prior.

2.2.2 Least Squares Linear Regression

A.Method. Regression is the estimation of the functional relationship between an

observation variable X in Rd and a real output variable Y .

Suppose a set of (X, Y ) pairs, (x1, y1), . . . , (xn, yn) are collected from experiments

and plotted as in Fig 2.1(a). Y appears to be approximately linear in x. The least

squares criterion chooses the best fitting line Y = aX + b as the one minimizing the

residual sum of squares

R(a, b)
def
=

n∑
i=1

(axi + b− yi)2. (2.2.8)

The minimum of R occurs at (a∗, b∗) which are solutions to the equations

∂ R
∂a

=
∑n

i=1 2(axi + b− yi)xi = 0, and ∂ R
∂b

=
∑n

i=1 2(axi + b− yi) = 0.

Solving the equations, we have

a∗ = Ẽ(XY )−Ẽ(X) Ẽ(Y )

Ẽ(X2)−Ẽ(X)2
, and b∗ = Ẽ(Y ) Ẽ(X2)−Ẽ(X) Ẽ(XY )

Ẽ(X2)−Ẽ(X)2
= Ẽ(Y )− a∗ Ẽ(X),

where Ẽ(X) = 1
n

∑n
i=1 xi, Ẽ(X2) = 1

n

∑n
i=1 x

2
i , Ẽ(Y ) = 1

n

∑n
i=1 yi, Ẽ(XY ) = 1

n

∑n
i=1 xiyi.

While the case for d = 1 seems complicated, least squares linear regression in fact

has an elegant general solution. To simplify notations, let xi denote the vector obtained

by prefixing the original xi by 1. Let X be the n × (d + 1) matrix with xTi as its ith

row, then a hyperplane for the original data can be written as a function f(x) = xTβ

where β ∈ Rd+1. The residual sum of squares for f(x) = xTβ can be written as

R(β) = ||Xβ −Y||22. (2.2.9)
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Using basic calculus, when XTX is nonsingular, the minimum of R(β) occurs at

β̃ = (XTX)−1XTY. (2.2.10)

Geometrically, ||Xβ−Y||2 is the Euclidean distance between Xβ and Y, thus it is

minimized when Xβ̃ is the projection of Y on the column space of X.
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Figure 2.1: (a) The scatter plot for 2D linear regression. (b) The scatter plot for

nearest neighbor classification.

B.Interpretation. A typical loss function for regression is the quadratic loss

Lquad(x, y, h) = (y − h(x))2. (2.2.11)

The Bayes optimal regression function is

hquad(x) = E(y|x). (2.2.12)
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This can be seen by observing that

E[(h(X)− Y )2] = EXEY |X [(h(X)− Y )2]

= EX [(h(X)− E(Y |X))2 + EY |X((Y − E(Y |X))2)].

Least squares linear regression is an ERM algorithm with the loss function being the

quadratic loss and the hypothesis space being the hyperplanes in Rd.

There is a well-known equivalence between least squares regression and maximum

likelihood estimation. Suppose Y = f(X) + ε, where f ∈ H, ε is independent of X and

ε ∼ N(0, σ). Let εi = yi − h(xi), then the joint distribution of ε1, . . . , εn is given by

the pdf ph(ε1, . . . , εn) = Πn
i=1

1√
2πσ

e−
ε2i
2σ2 = Πn

i=1
1√
2πσ

e−
(yi−h(xi))

2

2σ2 . Thus maximizing the

likelihood ph(ε1, . . . , εn) over {ph : h ∈ H} is the same as minimizing the quadratic loss∑n
i=1(yi − f(xi))

2 over H.

C.Performance guarantee. The estimate β̃ = (XTX)−1XTY can be shown to converge

to the Bayes optimal parameter in general.

The expected risk for a hyperplane h(x) = βTx is

R(β) = E[(βTX − Y )2]

= E[(βTX)2 − 2(βTX)Y + Y 2]

= E(βTXXTβ − 2βTXY + Y 2)

= βTE(XXT )β − 2βTE(XY ) + E(Y 2).
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Assume E(XXT ) is nonsingular 2, then the minimizer of R(β) is

β∗ = E(XXT )−1E(XY ). (2.2.13)

Using the law of large numbers, it is easy to show that

β̃
P→ β∗. (2.2.14)

See (Hastie et al., 2005, Chap. 3) for more details on least squares linear regression.

D.Alternatives. Certainly, other loss functions may be chosen for regression. An

example is the absolute error loss L1(x, y, h) = |h(x) − y|. The corresponding optimal

regression function is h1(x) = median(Y |x). However, quadratic loss is computa-

tionally more attractive because it has a closed-form solution, and it is numerically

easier to minimize because the minimum can be found numerically using simple gra-

dient descent methods. The latter property is particularly useful when dealing with

high-dimensional sparse data.

We can use the density estimation approach for regression as well. We show the

following performance bounds in terms of how accurate the density estimate is, as

measured by the `1 distance between the estimate and the true distribution. Recall

that for two continuous distributions P1 and P2 with pdf’s f1 and f2 respectively on a

random variable Z, the `1 distance between them is
∫
Z
|f1(z)−f2(z)|dz, and is denoted

by ||P1 − P2||1.

Proposition 2. Let P̃ (X, Y ) be an estimation for P (X, Y ), h(x) = EP̃ (Y |x) and

2For nondegenerate P (X), E(XXT ) is singular iff the components of X are linearly dependent.
Let X = (X1, . . . , Xd). If E(XXT ) is singular, then there exists a nonzero vector c = (c1, . . . , cd) such
that E(XXT )c = 0, thus cTE(XXT )c = 0, that is,

∑
i,j cicjE(XiXj) = 0. Since

∑
i,j cicjE(XiXj) =

E(
∑
i,j cicjXiXj) = E((

∑
i ciXi)

2),
∑
i ciXi = 0 for all (X1, . . . , Xd) such that P (X1, . . . , Xd) > 0.

On the other hand, if there exists a nonzero vector c = (c1, . . . , cd) such that
∑
i ciXi = 0 for all

(X1, . . . , Xd) satisfying P (X1, . . . , Xd) > 0, then it is easy to show that the row vectors of E(XXT )
are linearly dependent, thus E(XXT ) is singular.
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hquad(x) = EP (Y |x). If |Y | ≤ C for some constant C, and quadratic loss is used, then

R(h)− R(hquad) ≤ 2C2||PX,Y − P̃X,Y ||1. (2.2.15)

If only an estimate P̃ (Y |X) is given for P (Y |X), then

R(h)− R(hquad) ≤ 2C2 sup
x
||P̃Y |x − PY |x||1. (2.2.16)

Proof. By definition, we have

R(h)− R(hquad) = EP ((EP̃ (Y |X)− EP (Y |X))2).

Let f(x, y), f̃(x, y) be the density functions of P and P̃ respectively, then we have

EP ((EP̃ (Y |X)− EP (Y |X))2)

=
∫
X
f(x)[

∫
Y
yf̃(y|x)dy −

∫
Y
yf(y|x)dy]2dx

=
∫
X
f(x)[

∫
Y
y(f̃(y|x)− f(y|x))dy]2dx

≤
∫
X
f(x)[

∫
Y
|y||f̃(y|x)− f(y|x)|dy]2dx

≤
∫
X
f(x)C2[

∫
Y
|f̃(y|x)− f(y|x)|dy]2dx

≤
∫
X
f(x)[C2

∫
Y
|f̃(y|x)− f(y|x)|dy

∫
Y
|f̃(y|x) + f(y|x)|dy]dx

=
∫
X
f(x)2C2[

∫
Y
|f̃(y|x)− f(y|x)|dy]dx

= 2C2EX∼PX ||P̃Y |X − PY |X ||1.
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Now observe that

EX∼PX ||P̃Y |X − PY |X ||1

=
∫
X×Y |f(x)f̃(y|x)− f(x)f(y|x)|dxdy

=
∫
X×Y |

f(x)

f̃(x)
f̃(x, y)− f(x, y)|dxdy

=
∫
X×Y |

f(x)−f̃(x)

f̃(x)
f̃(x, y) + f̃(x, y)− f(x, y)|dxdy

≤
∫
X×Y |

f(x)−f̃(x)

f̃(x)
f̃(x, y)|dxdy +

∫
X×Y |f̃(x, y)− f(x, y)|dxdy

=
∫
X
|f(x)− f̃(x)|dx+ ||PX,Y − P̃X,Y ||1

≤ 2||PX,Y − P̃X,Y ||1.

Hence we have R(h)− R(hquad) ≤ 2C2||PX,Y − P̃X,Y ||1.

For the case when only P̃ (Y |X) is given as an estimate for P (Y |X), note that

from the proof above, we have R(h) − R(hquad) ≤ 2C2EX∼PX ||P̃Y |X − PY |X ||1 ≤

2C2 supx ||P̃Y |x − PY |x||1. �

2.2.3 Nearest Neighbor Classification

A.Method. Consider the task of predicting the labels for points in R2. Assume labeled

sample points are shown in Fig 2.1(b). It appears that points with the same label are

grouped together. A simple prediction method is to set the label of a test point x to

be the majority of the labels for NNk(x), the set of k training points closest to x.

The method of nearest neighbor (NN) classification can be applied for high dimen-

sional data as well.

B.Interpretation. Classification problems generally uses 0/1 loss:

L01(x, y, h) = I(h(x) 6= y) (2.2.17)
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The Bayes optimal classifier is

h01(x) = arg max
y∈Y

P (y|x) (2.2.18)

The NN classification rule can be interpreted as a nonparametric density estimation

approach, in which the distribution P̃ (y|x) for labels in NNk(x) as an approximation

for P (y|x).

C.Performance guarantee. While nearest neighbor estimate is very simple in form, it

was shown that if k is allowed to vary with n such that k(n) → ∞ and k(n)/n → 0,

then E(x,y)∼P (|P̃ (y|x)− P (y|x)|)→ 0 irrespective of what P is (Stone, 1977).

We give a general bound for the performance of the density estimation approach

for classification.

Proposition 3. Let P̃ (X, Y ) be an estimate for P (X, Y ), h(x) = arg maxy P (y|x) and

h̃(x) = arg maxy P̃ (y|x), then for 0/1 loss,

R(h̃)− R(h) ≤ 2||P̃ − P ||1. (2.2.19)

Proof. Let yx = h(x) = arg maxy P (y|x) and ỹx = h̃(x) = arg maxy P̃ (y|x), then for
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each x, we have P (h(x)|x) ≥ P (h̃(x)|x), P̃ (h̃(x)|x) ≥ P̃ (h(x)|x), thus

R(h̃)− R(h) =
∑

x{[1− P (ỹx|x)]− [1− P (yx|x))]}P (x)

=
∑

x[P (yx|x)− P (ỹx|x)]P (x)

≤ ∑
x I[yx 6= ỹx][P (yx|x)− P (ỹx|x) + P̃ (ỹx|x)− P̃ (yx|x)]P (x)

=
∑

x I[yx 6= ỹx]{[P (yx|x)− P (yx|x)] + [P̃ (ỹx|x)− P̃ (ỹx|x))]}P (x)

≤ ∑
x I[yx 6= ỹx][|P (yx|x)− P̃ (yx|x)|+ |P̃ (ỹx|x)− P (ỹx|x))|]P (x)

≤ ∑
x ||P̃Y |x − PY |x||1P (x)

≤ 2||P̃ − P ||1

�

The above bound is a loose one. In fact, even if P̃ does not converge to P , h and

h̃ can still be identical.

D.Alternatives. The density estimation method in NN classification does not exploit

any knowledge that is particular about the distribution being learned. For example,

from Figure 2.1(b), it appears that for each class y, we can assume P (X|y) is a Gaussian

distribution with pdf N(x;µ,Σ). Since P (x, y) = P (y)P (x|y), then it just remains

to estimate P (y)’s, µy’s, and Σy’s from the given data. This is Fisher’s method of

discriminant analysis.

2.2.4 Naive Bayes Classifier

A.Method. Given a set of training examples (x1, y1), . . . , (xn, yn), where each obser-

vation xi ∈ A1 × . . .× Ak, and each label yi ∈ Y for finite sets A1, . . . , Ak, Y . Assume

the data is generated by a distribution P (A1, . . . , Ak, Y ) satisfying P (a1, . . . , ak|y) =
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Πk
i=1P (ai|y). This implies

P (a1, . . . , ak, y) = P (y)
k∏
i=1

P (ai|y) (2.2.20)

Let #(A) denote the number of times that event A happens in the training ex-

amples. Let Ny = #(Y = y), Ny,i,v = #(Y = y, Ai = v). From the frequentist

interpretation of probability, we should estimate P (y) and P (ai|y) using

P̃ (y) = Ny/
∑

y′ Ny′ , (2.2.21)

P̃ (ai|y) = Ny,i,ai/
∑

a′i
Ny,i,a′i

. (2.2.22)

Now given an instance (a1, . . . , ak), predict arg maxy∈Y P̃ (y|a1, . . . , ak). This is

computed by noting that it is the same as arg maxy∈Y P̃ (y)
∏k

i=1 P̃ (ai|y).

B.Interpretation. Naive Bayes classifier is an example of parametric density estimation

approach. Let p be a distribution on X × Y , the log loss

Llog(x, y, p)
def
= − ln p(x, y) (2.2.23)

is commonly used for estimating probability densities because the p with minimal risk

is 3

plog(x, y) = P (x, y). (2.2.24)

The probability estimation procedure of Naive Bayes is an ERM algorithm in which

the loss function is the log loss, and the probability distributions are those satisfying

p(a1, . . . , ak, y) = p(y)Πk
i=1p(ai|y). Thus each p is parameterized by p(y)’s and p(ai|y)’s.

3 Consider a continuous distribution P (X) on a random variable X with pdf f(x). Let g(x) be
an arbitrary pdf for X. Using the inequality ln y ≤ y − 1, we have E(− ln g(X)) − E(− ln f(X)) =

E(− ln g(X)
f(X) ) ≥ E(−( g(X)

f(X) − 1))) =
∫

( g(x)f(x) − 1)f(x)dx =
∫

(g(x)− f(x))dx = 1− 1 = 0.
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We have

pn = arg min
p
Rn

= arg min
p

1

n

∑n
i=1− log p(xi, yi)

= arg max
p

Πn
i=1p(xi, yi)

= arg max
p

Πy∈Y p(y)NyΠy∈Y Πk
i=1Πai∈Aip(ai|y)Ny,i,ai

Now the p(y) parameters should be selected to maximize Πy∈Y p(y)Ny . Note that if

p1 + . . . + pm = 1, pi, fi ≥ 0 for 1 ≤ i ≤ m, with
∑m

i=1 fi > 0, then the maximum

of Πm
i=1p

fi
i occurs when pi = fi∑m

j=1 fj
. Thus the maximum of Πy∈Y p(y)Ny occurs at

p(y) = Ny∑
y′ Ny′

. 4 Similarly we have p(ai|y) =
Ny,i,ai∑
a′
i
Ny,i,a′

i

.

C.Performance guarantee. The law of large numbers guarantees that the estimated

parameters of Naive Bayes converge in probability to the marginals of the underlying

distribution. Using Hoeffding’s inequality, we can also derive simple convergence rate.

It should be noted that even though the Naive Bayes assumption is usually not

true in practice, it works very well in various applications. This is probably not so

surprising after all if one notes that the estimated distribution need not be the same

as the true distribution in order to produce the same classification rule.

2.2.5 Domain adaptation

We consider the problem of domain adaptation as another application of statistical

learning theory.

Suppose we have two distributions Ps and Pt on X × Y . Let L be an arbitrary

loss function. If Ps(x, y) > 0 whenever Pt(x, y) > 0, then the minimizer ht of Rt(h) =

4by convention, 00 is defined to be 1.
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E(X,Y )∼Pt(L(X, Y, h)) is the same as the minimizer hws of

Rw
s (h) = E(X,Y )∼Ps(w(X, Y )L(X, Y, h)),

where w(x, y) = Pt(x,y)
Ps(x,y)

(with the convention that w(x, y) = 1 if Ps(x, y) = 0).

Hence, with w and training examples from Ps, then one can obtain the minimizer

of E(X,Y )∼Pt(L(X, Y, h)).

This result can be useful with additional assumptions that make it possible to

estimate w. One such assumption is that Ps(y|x) and Pt(y|x) are identical. In this

case, w(x, y) = Pt(x)
Ps(x)

. Estimating Pt(x) and Ps(x) is generally a simpler problem than

learning the joint densities in practice. For example, with sufficiently many samples, the

neighborhood sizes can be used as density estimates. Alternatively, more sophisticated

density models may be estimated independently from data. For example, in natural

language processing, these densities may be estimated based on some language models.

Another assumption that can simplify w is that Ps(x) = Pt(x). In this case,

w(x, y) = Pt(y|x)
Ps(y|x)

. However, estimating w by estimating Pt(y|x) and Ps(y|x) is not

useful and sound in practice, because if Pt(y|x) can be estimated accurately, it can be

used for prediction directly; if it cannot be estimated accurately, then it is unlikely that

using it to estimate other quantities can lead to good performance with any guarantee.

If Ps and Pt are very similar, then it may be better to just use hs as an approximation

for ht, rather than trying to learn w. Suppose the loss function is bounded by C, and

let ε = ||Ps − Pt||1. Then the minimizer hs of E(X,Y )∼Ps(L(X, Y, h)) is at most 2Cε

worse than ht on Pt, because Rt(hs) − Rt(ht) = Rt(hs) − Rs(hs) + Rs(hs) − Rt(ht) ≤

Rt(hs)− Rs(hs) + Rs(ht)− Rt(ht) = 2C||Ps − Pt||1.

2.3 Components of Learning Machines

In general terms, a learning system usually consists of the following components:
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(a) Representation: Choose a representation function r which converts an observa-

tion X to r(X). Here an observation is simply what is available to a learning

system, and can be the raw data or some preprocessed data. r is any transfor-

mation which converts X in a form the system will deal with, which is generally

a mapping from X to real vectors.

(b) Approximation: Choose a hypothesis space H which is likely to contain the true

law between r(X) and Y . Depending on the learning problem, the hypothesis

space H can contain very different objects. For example, in density estimation

H contains distributions, while in regression, it contains functions.

(c) Learning/Estimation: Use the training data to obtain knowledge about the opti-

mal hypothesis between r(X) and Y . Examples of what we mean by knowledge

include estimated densities in the density estimation approach, and estimated

decision rules in the ERM approach.

(d) Prediction: Use the knowledge learned to infer values of unknown variables.

For example, using estimated densities or decision rules for predicting labels in

classification.

The performance of a system can be analyzed in terms of the error of each compo-

nent. Consider using the risk minimization approach to learn a prediction rule mapping

observation X to outcome Y . Let R∗ = arg minh E(L(h(X), Y )), where h ranges over

arbitrary functions from X to Y . Let R∗r = arg minh E(L(h(r(X)), Y )), where h ranges

over arbitrary functions from r(X) to Y . Let R∗r,H = arg minh∈H E(L(h(r(X)), Y )).

Let Rn = E(L(hn(r(X)), Y )), where hn is the hypothesis output by the learner on n

i.i.d. training examples. Let R̃n,m be the empirical risk of hn on m i.i.d. test examples.

The error of a learning algorithm can be decomposed as follows:

(a) Representation error R∗r −R∗.

(b) Approximation error R∗r,H −R∗r .

(c) Learning/Estimation error Rn −R∗r,H.
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(d) Prediction variation R̃n,m −Rn.

We illustrate the above errors using a simple example.

Example 4. Suppose the underlying distribution is

P (X1, X2, Y ) = P (X1, X2)P (Y |X1, X2), where

P (X1, X2) = U([−a, a]× [−b, b]),

P (Y |X1, X2) = I(Y = f(X1, X2) = 1 +X1 +X2
1 +X2).

Consider regression of Y against X using quadratic loss. We have R∗ = 0 because

P (Y |X1, X2) is deterministic.

If the representation function is chosen as r(X) = X1, then the minimizer corre-

sponding to R∗r is h∗r(X1) = E(Y |X1) = 1 +X1 +X2
1 . It follows that

R∗r =
∫ a
−a

∫ b
−b(y − 1− x1 − x2

1)2 1
4ab
dx2dx1

=
∫ a
−a

∫ b
−b x

2
2

1
4ab
dx2dx1

=
b2

3

The representation error is thus R∗r −R∗ = b2

3
.

Now consider only linear functions of r(X) as hypotheses. The expected risk for

h(X1) = α + βX1 is given by

∫ a
−a

∫ b
−b(y − α− βx1) 1

4ab
dx2dx1

=
∫ a
−a

∫ b
−b(1 + x1 + x2

1 + x2 − α− βx1)2 1
4ab
dx2dx1

=
a4

5
+
a2

3
(1− β)2 + (1− α)2 +

2a2

3
(1− α) +

b2

3
.

The minimum occurs at (α, β) = (1, 1). Thus R∗r,H = a4

5
+ b2

3
, and the approximation
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error is R∗r,H −R∗r = a4

5
.

The estimation error is a random variable. It is possible to compute its distribution,

but we shall skip the tedious computations here. 2

In the next few sections, we discuss the problems involved and techniques used in

representation, approximation, estimation and prediction.

2.3.1 Representation

In practice, an observation X is often mapped to an attribute vector (r1(X), . . . , rd(X)),

where each attribute ri(X) takes real values, categorical values (ordered or unordered),

or binary values. A more general representation scheme considers features, which are

functions of X and Y , used to explicitly capture the correlation between X and Y . Note

that in the literature, features are often used to refer to attributes as well. What we call

feature here is also often called a joint feature map in the literature (Tsochantaridis

et al., 2004). We shall use these two terms strictly in the senses defined here, that

is, attributes are functions of observations only, while features are functions of the

observation and the output.

Effectiveness of a representation is domain-dependent, and is a major component

in applied machine learning. For example, the TF-IDF representation (Spärck Jones,

1972) is empirically effective for text classification and have also been justified in various

theoretical models (Robertson, 2004). In addition, effectiveness of a representation

depends on the hypothesis space chosen as well. For example, when learning functions

of the form f(x) = a sinx+ bex + ce−x where a, b, c are parameters, if x is represented

as (sin x, ex, e−x), then linear regression suffices, but the representation x alone is not

useful for linear regression.

As a rule of thumb, it is wise to include any information which may be rele-

vant in the representation first. Not including relevant information lowers the up-
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per bound on the performance of a system, while including irrelevant information

generally can be overcome by other means in later steps. For example, with suffi-

ciently many data, the effect of irrelevant information such as noises in the obser-

vation, redundant attributes or features, can generally be overcome. Formally, con-

sider random noises X ′ generated independently of the original observation X, then

minh E(L(h(X,X ′), Y )) = minh E(L(h(X), Y )). But including irrelevant information

comes with the price of potential overfitting, especially when there is little data. For ex-

ample, suppose Y = βX+ε, where ε ∼ N(0, σ2). With n additional random attributes,

training on n examples can always be done with 0 empirical loss, no matter how Y is

distributed. This means that the coefficients can be far from the optimal. Thus the

convergence can be arbitrarily delayed using more irrelevant random attributes.

Once an initial set of potentially useful features is chosen, a more effective represen-

tation can be constructed in various ways, such as subset selection (Guyon and Elisseeff,

2003), basis expansion, the kernel trick, principal component analysis (Pearson, 1901),

multidimensional scaling (Bronstein et al., 2006), Isomap (Tenenbaum et al., 2000),

locally linear embedding (Roweis and Saul, 2000). We briefly describe some of these

methods below.

Subset selection is generally done to remove irrelevant features, which can easily

cause overfitting when little data is available. For computational reasons, this is often

done greedily by either induction or filtering. Induction starts with an empty set of

attributes or features, and augments it by repeatedly adding promising ones from the

candidate sets. Filtering starts with all candidates, and repeatedly removes those that

can be dropped without hurting performance. A comprehensive introduction to feature

selection can be found in (Guyon and Elisseeff, 2003). A voting algorithm to select

relevant features and examples is given in (Blum and Langley, 1997). Efficient feature

induction algorithms have been studied for various models like maximum entropy mod-

els (Berger et al., 1996), Markov random fields (Della Pietra et al., 2002), Conditional
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random fields (McCallum, 2003).

Basis expansion transforms an observation x to an attribute vector (h1(x), . . . , hm(x)),

where each hi is prespecified and called a basis function. Such input transform is equiv-

alent to transformations on the hypothesis space. For example, consider regression on

(x, y) pairs from Rd ×R. Consider the basis functions hi(x) = xi for 1 ≤ i ≤ d, and

hij(x) = xixj, then performing linear regression using the new basis representation is

equivalent to using quadratic functions as the hypothesis space.

The kernel trick is applied to algorithms which require the evaluation of inner prod-

ucts of instances only. It replaces the inner product 〈xi, xj〉 = xTi xj by some other

inner product k(xi, xj). k is usually called a kernel function. Classic examples include

kernel PCA and SVMs. See (Schölkopf and Smola, 2002) for more details.

Principal component analysis (PCA) (Pearson, 1901) looks for directions along which

maximum amount of data variation can be explained, and then project data into these

directions, in the hope that irrelevant information will be throwed away. Formally,

given points x1, . . . ,xn ∈ Rd, the variance of the projections of them on a unit vector

v is given by

1

n

∑n
i=1[vT (xi − x)]2 = vTΣv

where Σ = 1
n

∑n
i=1(xi − x)(xi − x)T is the empirical covariance matrix. Thus we want

to maximize vTΣv subject to the constraint that ||v||22 − 1 = 0. The Lagrangian and

its derivative with respect to v are

L(v, λ) = vTΣv − λ(||v||22 − 1)

∇vL = 2Σv − 2λv

Thus v is an eigenvector of Σ. In addition, vTΣv = vtλv = λ. Hence the directions

which explain most variations of the data are the eigenvectors corresponding to the
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largest eigenvalues.

2.3.2 Approximation

Expressiveness and tractability are two key factors involved in choosing or designing

hypothesis spaces. Expressiveness is often used to refer to the variety of hypotheses

included in the hypothesis space. A hypothesis space should be chosen such that it is

expressive enough to account for reality, but not too expressive that it is impossible

to infer which hypothesis is most likely to produce the training data. Tractability is

whether the model can be efficiently learned and applied for prediction.

The empirical measure on expressiveness of a hypothesis space is that it should

be able to fit the training data reasonably well, assuming the training data contains

sufficient information for a hypothesis that fits well on it to be defined.

The theoretical measure is much more involved. The key idea is that expressiveness

should be measured by the projection of the hypothesis space on finite samples. If given

any set of observations x1, . . . , xn, and for any possible sequence of outputs y1, . . . , yn,

there exists a hypothesis that fits the training data well, then the hypothesis space is

able to fit noise well. Such a hypothesis is expected to be too expressive, and it is hard

to obtain any performance guarantee. We shall make this precise in next section.

Another kind of expressiveness required is the ease of integrating domain knowledge

in the model. For example, it is easy to incorporate arbitrary dependencies in discrim-

inative models like maximum entropy models, while it is hard to do so in generative

models like Naive Bayes.

When choosing or designing a hypothesis space, generally there is a tradeoff in

expressiveness and tractability. An expressive model is often associated with compu-

tational difficulties in learning and prediction, and strong assumptions on the targets

have to be made in order to make learning and prediction tractable. For example,

naive Bayes classifier avoids modeling all the observations by making independence
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assumptions which allow the model to be decomposed into a small number of factors,

where each factor can be estimated separately in reasonable accuracy even with a small

number of examples.

Certainly, there are other considerations when choosing and designing a hypothesis

space. For example, interpretability may be required in some situations, and we also

want to avoid models requiring heavy engineering, such as heavy tuning of model

parameters.

2.3.3 Estimation

In this section, we discuss learning techniques which have guarantee on performance

measures such as generalization error, stability to perturbation in data, and computa-

tional efficiency.

A.ERM and generalization. As we have seen, ERM is a generic learning algorithm

that includes many learning algorithms as special instances. ERM may be informally

justified as follows: for a hypothesis h, as more i.i.d. training examples become avail-

able, h’s empirical risk on the sample should converge to its true risk, by the law of

large numbers. Thus minimizing empirical risk over a large sample is expected to be

a good approximation as minimizing the true risk. However, it should be noted that

the above intuition breaks down when the hypothesis space includes all possible func-

tions. Hence the hypothesis space cannot be too expressive. Vapnik (1998) introduced

a measure on the expressiveness of a hypothesis space, and obtained a very general

sufficient condition for ERM to be consistent. We describe Vapnik’s result for 0/1

loss below. For more on statistical learning theory, see (Vapnik, 1999) for a concise

overview, (Vapnik, 1995) for a more detailed overview and (Vapnik, 1998) for technical

details.

Let H be a set of functions from X to Y . Each h ∈ H corresponds to a function

gh(x, y) = L(h(x), y). Note that if P is the true distribution on X × Y , then R(h) =
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E(x,y)∼P (gh). The set G = {gh : h ∈ H} is called the loss class for H. The projection of

G on data points D = {z1, . . . , zn} ⊆ X×Y is GD = {(g(z1), . . . , g(zn)) : g ∈ G}. If 0/1

loss is used, then GD is a finite set containing at most 2n elements, and N(z1, . . . , zn)
def
=

|GD| measures how rich the G is on D. H(n) = E(lnN(z1, . . . , zn)) is called the VC

entropy .

Theorem 5. (Vapnik, 1998) If limn→∞
H(n)
n

= 0, then ERM is consistent. That is, if

hn is the hypothesis produced by ERM on n training examples, and h∗ is the minimum

risk hypothesis in H, then R(hn)
P→ R(h∗).

Consistency does not imply fast convergence rate. In order to guarantee fast con-

vergence rate, a more stringent criterion is needed. Let Hann(n) = ln E(N(z1, . . . , zn)),

then Hann(n) ≥ H(n). Hann(n) is called the annealed VC entropy .

Theorem 6. (Vapnik, 1998) P(suph |R(h)−Rn(h)| > ε) ≤ 4 exp((Hann(2n)
n

− ε2)n).

Thus if limn→∞
Hann(n)

n
= 0, then ERM has a fast convergence rate.

A distribution independent result on convergence rate can be derived from the

above result. Define the growth function of H as

G(n) = ln sup
z1,...,zn

N(z1, . . . , zn). (2.3.1)

Then G(n) ≥ Hann(n) for any distribution, thus it follows that

Theorem 7. (Vapnik, 1998) P(suph |R(h)−Rn(h)| > ε) ≤ 4 exp((G(2n)
n
− ε2)n).

In addition, the condition

lim
n→∞

G(n)

n
= 0, (2.3.2)

is a necessary and sufficient condition for consistency of ERM for any distribution.

For the density estimation approach for learning, it should be noted that while

consistency provides theoretical guarantee for convergence to the best model in the
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hypothesis space, it is not always necessarily to be consistent. For example, the DOP

estimation algorithm for constructing parse trees is biased and inconsistent, but works

pretty well in practice (Johnson, 2002). Wainwright analyzed a case in which an

inconsistent method is provably beneficial (Wainwright, 2006).

B.Regularization and stability. Hadamard considered a problem as meaningful only if

it is well-posed. To be precise, take a problem as a binary relation between two sets. In

the case that (U, ρU) and (Z, ρZ) are two metric spaces, then R is a well-posed problem

on the pair (U, ρU), (Z, ρZ) if R is a subset of U × Z such that

(a) (Existence) For any u ∈ U , there exists at least one z such that uRz,

(b) (Unique) For any u ∈ U , there is at most one z such that uRz, and

(c) (Stability) For any ε > 0, there exists δ > 0 such that whenever ρU(u1, u2) < δ,

it follows that ρZ(z1, z2) < ε for any z1, z2 such that u1Rz1 and u2Rz2.

(U, ρU) represents the problem space, and (Z, ρZ) represents the solution space.

However, it is found later that many natural problems are ill-posed. In particular,

the problem of density estimation is ill-posed. When a problem is ill-posed because

of violation of (b) or (c), Tikhonov introduced the regularization technique to perturb

an ill-posed problem to a well-posed problem (Tikhonov, 1963). The technique can be

used to obtain a solution that can be made arbitrarily close to a solution of the original

problem.

Example 8 (Regularized linear regression). For least squares linear regression, when

the attributes are highly correlated, XTX is close to a singular matrix, and the es-

timator β̃ = (XTX)−1XTY is unstable. In addition, if one attribute is the linear

combination of others, then XTX is singular and the formula is no longer valid, al-

though R(β) still has a minimum.
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Tikhonov reformulated the problem by minimizing

Rλ(β) = R(β) + λβTβ, (2.3.3)

where λ > 0 is a constant. The minimum occurs at

β̃λ = (XTX + λI)−1XTY. (2.3.4)

The RHS is always defined because XTX + λI is nonsingular. 5 In addition, if β∗ is a

minimizer of R(β), then we have R(β∗) ≤ R(β̃λ) < Rλ(β̃λ) ≤ Rλ(β
∗) = R(β∗)+λβ∗Tβ∗.

Hence, when λ→ 0, Rλ(β̃λ)→ R(β∗). 2

Certain seemingly ad hoc methods can be interpreted as regularization. For exam-

ple, it is well-known that initializing the event counts when estimating parameters in

naive Bayes can be interpreted as regularization.

Example 9 (Regularized naive Bayes classifier). In naive Bayes classifier, given an

instance (a1, . . . , ak), if some P̃ (ai|y) = 0, then P (y|a1, . . . , ak) = 0, and thus the

instance will not be predicted to be in class y no matter how strong the other attributes

suggest that the instance is in class y. In addition, when P (y) is small, underestimation

of P (y) and P (ai|y)’s can make it very unlikely to classify an instance in class y. This

motivates using
Ny,i,ai+α∑
a′
i
[Ny,i,a′

i
+α]

as the estimator for P (ai|y) and Ny+α∑
y′ [Ny′+α]

as the estimator

for P (y), where α > 0 is a constant. The above method of initializing the counts by c

is called Laplace correction.

It is easy to verify that Laplace correction corresponds to adding the regularization

term − log
∏

y p(y)
∏

y

∏
i

∏
ai
p(ai|y) to the empirical log loss 1

n

∑n
i=1− log p(xi, yi).

Note that this term is smaller when the class distribution p(Y ) and the attribute value

5Assume otherwise, then there exists nonzero vector c such that . (XTX + λI)c = 0, thus
cT (XTX+λI)c = 0. However, cT (XTX+λI)c = (Xc)T (Xc)+λcT c ≥ 0+λcT c > 0, a contradiction.
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distributions P (Ai|y)’s are closer to uniform. So while the empirical log loss represents

preference over models which fits the data well, the new term represents preference

over uniform distributions.

The above regularization term can be seen as a special case of using a Dirichlet

distribution as the prior on the parameters. Let pi denote the probability of the i-th

class, and py,i,j denote the probability that the i-th attribute takes its j-th possible

value given that the class is y. Assume these parameters follow Dirichlet distributions

with the density functions

f(p1, . . . , pc;α1, . . . , αc) = B(α1, . . . , αc)
c∏
i=1

pαi−1
i

f(py,i,1, . . . , py,i,ni ;αy,i,1, . . . , αy,i,ni) = B(αy,i,1, . . . , αy,i,ni)
c∏
j=1

p
αy,i,j−1
y,i,j , 1 ≤ i ≤ k

Then it is clear that Laplace correction corresponds to the case when all αi values are

set to α + 1. 2

In general, ERM can be regularized by minimizing

Rn(h) +
λr(h)

n
(2.3.5)

instead of Rn(h), where r(h) is a suitable nonnegative function of h, λ > 0 a constant.

As n tends to infinity, the regularization term vanishes and regularized ERM converges

to ERM. There are several ways to interpret regularization.

(a) Regularization can be interpreted as trading off the complexity of a hypothesis

and its quality of fit. In this case r(h) is treated as a complexity measure.

(b) A related interpretation is that regularization can be treated as searching for the

best-fitting hypothesis among hypothesis with a bounded complexity. This is an

application of Lagrangian duality theory: There exists a non-increasing function
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s(λ) such that for any λ > 0, minh Rn(h)+ λr(h)
n

is the same as minr(h)≤s(λ) Rn(h).

(c) In some cases, regularization can also be interpreted in the Bayesian framework as

specifying a prior distribution on the hypothesis, and searching for the maximum

a posteriori (MAP) hypothesis. To be precise, it is assumed that P ((x, y)|h) ∝

e−L(h(x),y) and P (h) ∝ e−λr(h). Thus the posterior is given by

P (h|(x1, y1), . . . , (xn, yn)) =
P (h)

∏n
i=1 P ((xi, yi)|h)

P ((x1, y1), . . . , (xn, yn))
∝ e−λr(h)−

∑n
i=1 L(h(x),y)

Hence maximizing P (h|(x1, y1), . . . , (xn, yn)) is the same as minimizing Rn(h) +

λr(h)
n

.

Stability of regularized ERM implies that the learned hypothesis is insensitive to per-

turbation or irregularity in data. In practice, regularization is useful for combating

overfitting – a situation in which the selected hypothesis fits the training data so well

that its performance on test data is not as good as a hypothesis that fits less well on

training data.

C.Smooth Approximations and efficiency. In practice, ERM can be intractable (Feld-

man et al., 2009). In such cases, it is useful to minimize a smooth (continuous and

differentiable to some order) approximation instead. Besides smoothness, it is desirable

that such approximations are convex, or bound the empirical risks.

Example 10 (Classification as regression). Suppose Y = {−1, 1} and X = Rd+1,

where the first coordinate of the observation is 1. Consider using linear functions as

classifiers, that is, each classifier h is of the form h(x) = wTx. In this case, finding an

hyperplane with minimal 0/1 loss is intractable.

If we consider the problem as a regression problem, then we can train with quadratic

loss. However, using square loss can cause the estimation error on the training data to

be arbitrarily close to 1
2

even if the training data is separable. To see this, suppose the

training data consists of (−x,−1), n copies of (−1,−1), n copies of (1, 1) and (x′, 1).
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least squares parameter is given by βT = x+x′+2n
(2n+1)(x2+x′2)+2xx′+4n(n+1)

x− x′
2n+ 2

. Choose

positive x and x′ such that x′ > x + 2n + 2, then (−x,−1), (−1,−1) and (x′, 1) are

classified correctly, while (1, 1) is not. Thus the error is n
2n+1

.

A better loss function is the exponential loss. Note that h makes a mistake on

xi iff yih(xi) < 0. Thus the classification error is Rn(h) =
∑n

i=1 I(yih(xi) < 0) ≤∑n
i=1 e

−yih(xi) =
∑n

i=1 e
−yiwTxi . Thus R̂n(h) =

∑n
i=1 e

−yiwTxi is an upper bound of

Rn(h). Compared to Rn(h), R̂n(h) has the nice property of being smooth, and can be

easily minimized using standard optimization algorithms. In practice, using exponen-

tial loss works well. 2

Note that the second method minimizes an upper bound of the original objective.

We conclude this section by pointing out that the technique of smooth approx-

imation is what makes efficient training of neural networks possible. Rosenblatt’s

perceptron consisted of a network of linear unit, but training was only done for the last

output unit. It was only in the 1970’s, Werbos (1974) proposed an efficient training

method, the backpropagation algorithm, which replaces the thresholded output of each

internal unit by a smooth non-linear function of the unthresholded output.

2.3.4 Prediction

The risk minimization approach generally learns a prediction rule which is easy to

evaluate. For the density estimation and the Bayesian approach, making decisions

using Eq. 2.2.1 can be computationally challenging because the required probability

values can be hard to compute (which is generally true for the Bayesian approach),

or the loss may not be decomposable. In this case approximate inference methods or

surrogate loss functions or simple decision rules are used instead. Chapter 6 discusses

a particular non-decomposable loss, F-measures, for which efficient algorithms exist.
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2.4 The Role of Prior Knowledge

The learning algorithms presented so far are designed to work for scenarios following

certain assumptions, and it is expected that when the assumptions are violated, they

may perform poorly. For example, least squares linear regression relies on the assump-

tion that the relationship between X and Y is approximately linear, and Naive Bayes

classifier relies on the independence of the attributes. These assumptions are made

after observing some sample data or need to be explicitly given as prior knowledge.

Is it possible to design a machine learning algorithm that are guaranteed to gener-

alize well on arbitrary data?

Consider a simple example. Suppose X = {1, 2, . . . , N}, and Y = {0, 1} and the

objective is to learn an unknown target function f from X to Y . If the following

training data is observed (1, 0), (2, 1), (3, 0), (4, 1), (5, 0), (6, 1), then we are likely to

guess that the function is f(x) = I(x is even). However, based on the training data

alone, all consistent functions from X to Y are not distinguishable on unseen data. To

be precise, assume that any of the 2N functions from X to Y is equally likely to be the

true function, and suppose the training data consists of (x1, y1), . . . , (xn, yn), then for

any consistent function h from X to Y , the expected number of errors on unseen x’s

is a constant. That is, if h(x1) = f(x1), . . . , h(xn) = f(xn), then P(h(x) 6= f(x)|x /∈

{x1, . . . , xn}) is a constant independent of h.

The above simple example thus demonstrates that in some sense generalization

beyond training data necessarily requires some prior knowledge. There are many results

which support the insight that for various measures of generalization, without any

knowledge on the underlying distribution, it is impossible to design a learning algorithm

which necessarily generalizes well using observed data only. These results are often

called No-Free-Lunch (NFL) theorems.

44



2.4.1 NFL for Generalization beyond Training Data

Wolpert investigated how a learner can generalize beyond training data for the case

where there are finitely many possible observations and outputs, and proved NFL theo-

rems which demonstrate that without prior knowledge, all learners are indistinguishable

in terms of generalization ability beyond training data (Wolpert, 1996a). The learning

problem considered by Wolpert is as follows.

For learning, the learner is presented with a sequence D consisting of (X, Y ) pairs

generated i.i.d. from P (X, Y ) = π(X)f(Y |X), where X and Y are the observation

and output variables respectively, both having finitely many possible values, π(X) is a

fixed (but unknown) distribution, and f(Y |X) is an unknown conditional distribution.

The set of all possible f is thus the Cartesian product of |X| unit simplexes.

For prediction, the learner is presented with queries drawn i.i.d. from π(X), filtering

queries observed in D – thus the queries are off-training-set (OTS) queries. In addition,

given an instantiation d of D, the queries follow the distribution P (q|d) = I(q /∈

dX)π(q)/
∑

q′ /∈dX π(q), where dX is the set of X values appeared in d. The true output

yF for a query q follows the distribution P (yF |f, q) = f(yF |q).

A learner L is modeled as a probability distribution PL(h|d), where h is a distri-

bution on X × Y . The output yH of L on a query q ∈ X can be represented using a

distribution PL(yH |d, q).

Intuitively, the learner’s objective is to minimize the average-case error. The error

on a single prediction is measured using a loss function L(yH , yF ), where yH is the

predicted output, and yF is the true output generated by the true law f . For a fixed

f , an algorithm’s ability to generalize beyond training data can be represented by the

distribution PL(c|f, d) of its loss c. One possible formulation of the average-case loss is

to use PL(c|f, d) averaged over all possible f , that is
∫
f
PL(c|f, d)df/

∫
f
df . This average

gives equal weights to all f , and is thus called the uniform f -average of PL(c|f, d).

If L is the 0/1 loss, then the uniform f -average of PL(c|f, d) is δ(c, 1) |Y |−1
|Y | , where
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δ(a, b) = I(a = b) is the Dirac delta function. First note that

P (c|f, d) =
∑

q,yH ,yF
PL(c, yH , yF , q|f, d)

=
∑

q,yH ,yF
P (q|f, d)P (yF |f, d, q)P (yH |f, d, q, yF )P (c|f, d, q, yF , yH)

=
∑

q,yH ,yF
P (q|d)P (yF |f, q)PL(yH |d, q)δ(c, L(yF , yH)) (2.4.1)

From the above formula, we have

∫
f
PL(c|f, d)df =

∫
f

∑
q,yH ,yF

P (q|d)P (yF |f, q)P (yH |d, q)δ(c, L(yF , yH))df

=
∑

q,yH ,yF
P (q|d)P (yH |d, q)δ(c, L(yF , yH))

∫
f
P (yF |f, q)df (2.4.2)

Consider s(yF , q) =
∫
f
P (yF |f, q)df . It is symmetric in the yF values, and the q

values, thus s has the same value for all (yF , q) pairs. In addition,
∑

yF
s(yF , q) =

∫
f
df .

Thus s(yF , q) = 1
|Y | . Hence

∫
f
PL(c|f, d)df =

∑
q,yH ,yF

P (q|d)P (yH |d, q)δ(c, L(yF , yH))
∫
f
df

=
∑

q P (q|d)
∑

yH
P (yH |d, q)

∑
yF
δ(c, L(yF , yH))

∫
f
df

= δ(c, 1) |Y |−1
|Y |

∫
f
df

In general, if there exists a function Λ such that Λ(c) =
∑

yF
δ(c, L(yF , yH)) for any

yH , then the uniform f -average of PL(yF |f, d) is Λ(c)
|Y | . This can be shown by following

the above proof closely.

Theorem 11. (Wolpert, 1996a) Suppose there exists Λ such that Λ(c) =
∑

yF
δ(c, L(yF , yH))

for any yH . For any learner L, the uniform f -average of PL(c|f,m) is Λ(c)/|Y |.

Proof. First note that PL(c|f,m) =
∑

d PL(c, d|f,m) =
∑

d PL(d|f,m)PL(c|f, d,m) =∑
d PL(d|f,m)PL(c|f, d).

For any f and d, split f into fdX consisting of all f(Y |x)’s for x ∈ dX , and f�dX
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consisting of f(Y |x)’s for x /∈ dX . The assumptions in the generation of d and the

generation of the true outputs on queries imply that PL(d|f,m) depends only on fdX

and PL(c|f, d) only depends on f�dX . The proof for
∫
f
PL(c|f, d)df = Λ(c)

|Y |

∫
f
df can be

easily adapted to show that
∫
fdX

PL(c|f, d)dfdX = Λ(c)
|Y |

∫
fdX

dfdX . Hence

∫
f
PL(c|f,m)df =

∑
d

∫
fdX ,f�dX

PL(d|fdX ,m)PL(c|f�dX , d)df�dXdfdX

=
∑

d

∫
fdX

PL(d|fdX ,m)[
∫
f�dX

PL(c|f�dX , d)df�dX ]dfdX

=
∑

d

∫
fdX

PL(d|fdX ,m)Λ(c)
|Y |

∫
f�dX

df�dXdfdX

=
Λ(c)

|Y |
∑

d

∫
fdX ,f�dX

PL(d|f,m)df�dXdfdX

=
Λ(c)

|Y |
∑

d

∫
f
PL(d|f,m)df

=
Λ(c)

|Y |
∫
f

∑
d PL(d|f,m)df

=
Λ(c)

|Y |
∫
f
df

�

The above NFL theorem actually hold under more general circumstances. A careful

analysis of the proof of Theorem 11 will convince us that Theorem 11 holds as long

as the data generation process guarantees that PL(d|f,m) depends only on fdX and

PL(c|f, d) only depends on f�dX for any f and d.

Wolpert also showed a similar NFL theorem holds for P (c|d), the quantity of inter-

est in Bayesian analysis. To be precise, P (c|d) = Λ(c)
|Y | , if P (f) is uniform, PL(d|f,m)

depends only on fdX and PL(c|f, d) only depends on f�dX for any f and d. This

can be seen by observing that P (c|d) =
∫
f
P (f, c|d)df =

∫
f
P (f |d)P (c|d, f)df =∫

f
P (d|f)P (f)

P (d)
P (c|d, f)df =

∫
f
P (d|f)P (c|d, f)df/[P (d)

∫
f
df ]. Using the same decom-

position of f in the proof above, the denominator can be evaluated to Λ(c)
|Y | P (d)

∫
f
df .

Thus P (c|d) = Λ(c)
|Y | .
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2.4.2 NFL for Expected Risk and Convergence Rate on Finite

Samples

We briefly discuss two more NFL theorems for binary classification below.

A learning algorithm L is a map from training examples (X1, Y1), . . . , (Xn, Yn) to a

function L(X1, Y1, . . . , Xn, Yn) : X → Y . Let RL(n) = E(L01(X, Y,L(X1, Y1, . . . , Xn, Yn)).

Note that the expectation is taken with respect to X1, Y1, . . . , Xn, Yn, X, Y .

It is known that there are many learning algorithms such that limn→∞RL(n) = R01

for any distribution P on X × Y , where R01 is the Bayes risk. Such algorithm is said

to be Bayes risk consistent.

The first result says that any generalization algorithm can have arbitrarily bad

performance on a finite sample.

Theorem 12. (Devroye, 1982) Let X = Rd and Y = {0, 1}. For any learning algo-

rithm L, for any n, for any ε > 0 there exists a distribution P on X × Y such that

R01 = 0 but RL(n) ≥ 1
2
− ε.

The second result says that any Bayes risk consistent algorithm can have arbitrarily

slow convergence rate.

Theorem 13. (Devroye, 1982) Let X = Rd and Y = {0, 1}. For any learning al-

gorithm L, for any R∗ ∈ [0, 1
2
], for any positive sequence an converging to 0, there

exists a distribution P on X × Y such that R01 = R∗ and for infinitely many n,

RL(n) ≥ min{R∗+an,
1
2
}.

Thus for binary classification, only distribution-dependent results can be obtained

for good performance guarantees on finite sample and fast convergence rate to Bayes

risk.
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2.4.3 Implications of NFL Theorems

We have seen NFL theorems demonstrating that in various cases, without sufficient

prior knowledge, no learning algorithm can have guaranteed better performance than

others.

But the the implication on the limitations of machine learning should not be taken

too pessimistically. The scenarios considered in the NFL theorems do not cover all

possible learning problems. For example, Wolpert’s NFL theorems are for finite X

and Y . In addition, Wolpert also demonstrated that under certain scenarios, there

are cases for which one learning algorithm can have better performance compared to

another (Wolpert, 1996b).

While the NFL theorems stress the necessity of prior knowledge for good perfor-

mance guarantee, and thus the importance of designing learning algorithms by starting

from realistic assumptions, it does not imply that useful knowledge cannot be obtained.

Consider how scientists discover laws of nature. Initially there is no prior knowledge

known to the scientists, but with the combination of logical reasoning and scientific

experiments, no one can now deny that science has provided significant understanding

of the true laws of nature. While in most cases there is no way to prove that a hy-

pothesis is the true law, logical reasoning and experiments help us to reinforce certain

beliefs and reject some others, and we learn useful knowledge which may serve as prior

knowledge.

2.5 Looking ahead

General models and methods have been developed for humans to explore when con-

structing systems which can automate learning. But heavy human intervention is

required in specifying the goals, representation and learning mechanism. A higher

level of automated learning is to construct machines that can learn how to learn, that
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is, systems that have certain capability of discovering useful representations, choosing

suitable hypothesis spaces, experimenting with estimation methods and then perform-

ing automatic prediction. Ideally, humans should only provide feedbacks on whether

the systems is doing the right thing, rather than specifying all the details.

There are still many problems to solve to reach such a level of automation. The

machines need to be equipped with mechanisms to recognize various raw inputs and

represent them in a suitable way. Currently, it is difficult for machines to learn the

semantics of new forms of raw data. For example, while it is relatively easy to prede-

fine some representation to perform symbolic integration, and a machine can solve an

integration problem which humans specify in its internal format, it is difficult to ask

the machine to solve the same problems if humans use a different system of notations.

Leibniz’s idea of universal representation of ideas is attractive here, but it should be

noted that even such a universal representation can be found, and humans can use it as

a standard method to communicate with the learning systems, it is unlikely to be use-

ful in practice. We human beings often find certain representations are often superior

than some others for given problems, and suitable representations often make problem

solving much easier. Similar observations are abound in computer science. In addition,

expressiveness often comes with the price of being computationally intractable.

Current programming languages do not facilitate programming such systems. They

are limited in their abstraction power. We often need to code the same ideas in

slightly different forms, such as writing many slightly different codes to perform cross-

validation, or performing training and testing. While true learning generally requires

self-correction, it is difficult for a program to correct itself once errors or bugs are

detected.

We conclude this chapter by remarking that this short discussion is necessarily

incomplete, but we hope the discussions have outlined a framework to systematically

interpret, develop, and analyze machine learning algorithms.
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Chapter 3

Log-Linearity and Markov Property

Log-linearity and Markov property are two important properties behind parametric

statistical models having efficient learning and inference. The exponential family is a

class of very expressive log-linear model for which domain knowledge can be easily in-

tegrated. Popular examples of unconditional exponential families include Naive Bayes

classifiers and Markov chains, and popular examples of conditional exponential fami-

lies include logistic regression, maximum entropy classifiers, and log-linear conditional

random fields. Markov property in graphs leads to factorized models (the Bayesian

networks and the Markov random fields), for which efficient inference algorithms ensue

as a consequence of the Markov property. Our work on sparse models fall within the

framework of log-linear conditional random fields.

This chapter presents principles leading the exponential family and Markov ran-

dom fields, and the basic principles of inference and learning. Most results for log-linear

MRFs/CRFs can be derived from the fact that they are both maximum entropy (Max-

Ent) models and Markov models. For example, the MaxEnt principle is what results

in the linear form and learning by maximum likelihood estimation. The Markov as-

sumption results in a factorization which facilitates the design of efficient inference

algorithms.
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Here is the outline of this chapter. Section 3.1 introduces the concept of uncon-

ditional and conditional exponential families, and their basic properties. Section 3.2

shows that conditional exponential families are exactly the MaxEnt models. Section 3.3

discusses the computational difficulty of making predictions for conditional exponential

families in general. Section 3.4 gives a general account on the theory and algorithms

for maximum likelihood estimation, and describes the application of the method for

the exponential forms. Section 3.5 discusses MRFs and CRFs.

3.1 Exponential Families

We shall mainly describe the results for discrete distributions, but it is often easy to

see that similar results hold for continuous distributions.

3.1.1 The Exponential Form

Exponential families (Fisher, 1934; Darmois, 1935; Pitman, 567-579; Koopman, 1936)

play a significant role in the study of probability distributions. It unifies many appar-

ently very different distributions, such as Gaussian distributions, exponential distribu-

tions, binomial distributions, into a common form that allows various properties to be

stated and derived in simple terms.

The density functions of exponential families take a simple exponential form. Let

f(X|θ) denote a pdf parametrized by θ, where θ is in a subset Θ of Rd. Then {f(X|θ) :

θ ∈ Θ} is called an exponential family if there exist functions η, T, A,B such that

f(x|θ) = eη(θ)·T (x)+A(x)−B(θ) (3.1.1)

η is a vector-valued function of θ, and it is called the natural parameter of the exponential

family. Unless otherwise stated, we shall now assume η(θ) = θ.
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While the density function involves T,A,B, it suffices to specify T and A to

determine the exponential family. This is because from Eq. 3.1.1, it follows that

eB(θ) =
∑

x e
θ·T (x)+A(x). Z(θ) = eB(θ) is called the partition function, and B(θ) is called

the log partition function.

To evaluate the density function, the partition function need to be determined first.

Generally there is no simple closed form expression for the partition function, and some

clever algorithms need to be designed to evaluate the summation efficiently.

A useful property of the partition function is the following

∇ lnZ(θ) = E(T (X)|θ) (3.1.2)

This can be seen by noting that

∇Z(θ) = ∇eB(θ) =
∑

x T (x)eθ·T (x)+A(x) = Z(θ)
∑

x T (x)eθ·T (x)+A(x)−B(θ)

Thus it follows that the gradient of the log-likelihood is

∇ ln f(x|θ) = E(T (X)|θ)− T (x) (3.1.3)

The exponential families has an interesting characterization: For a distribution

family such that the domain of X does not depend on θ, it has a sufficient statistic

with bounded dimension iff it is an exponential family (Koopman, 1936). In addition,

it is easy to show that T (x) is a sufficient statistic.

A.Markov models with states and observations. An important class of exponential

families is the Markov models.

Let S be a set of states, and O be a set of observations. A Markov model generates

a sequence of state-observation pairs as follows:

(a) Sample a state s1 from a fixed state distribution PS, and then sample an obser-
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vation o1 from a conditional distribution PO|S(·|s1).

(b) From t = 2 onwards, first sample a state st from a fixed transition distribution

PS|S(·|st−1), then sample an observation ot from PO|S(·|st).

A Markov process is generally used to generate finite sequences. Let s0 = ∅, then the

probability that a length T sequence (〈s1, o1〉, . . . , 〈sT , oT 〉) is generated is given by

P (〈s1, o1〉, . . . , 〈sT , oT 〉) =
∏T

t=1 P (st|st−1)P (ot|st). (3.1.4)

The above probability can be written in an exponential form:

P (〈s1, o1〉, . . . , 〈sT , oT 〉) =
∏

s,s′ e
#(s,s′) lnP (s′|s)∏

s,o e
#(s,o) lnP (o|s). (3.1.5)

where #(s, s′) and #(s, o) denote the number of times transition from s to s′ and

outputting o in state s are observed respectively in the given sequence.

Markov models with states unobserved are called hidden Markov models (HMMs)

and have been widely used in machine learning. See (Rabiner, 1989)

3.1.2 The Conditional Version

A family of parametric conditional distribution {f(y|x, θ) : θ ∈ Θ} is called a conditional

exponential family if there exists functions T,A,B such that

f(y|x, θ) = eη(θ)·T (x,y)+A(x,y)−B(x,θ) (3.1.6)

Again, unless otherwise stated, we shall consider the case when η(θ) = θ.

Similar to the unconditional case, a conditional exponential family is specified by T

and A. Z(x, θ) = eB(x,θ) is called the partition function, and B(x, θ) the log partition
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function.

∇θ lnZ(x, θ) = E(T (x, y)|x, θ) (3.1.7)

For each given x, f(·|x, θ) is an exponential family, thus an exponential fam-

ily can be viewed as a conditional one with only one possible x value. On the

other hand, for a exponential family {g((x, y)|θ) : θ ∈ Θ}, the associated family

of conditional distributions {g(y|x, θ) : θ ∈ Θ} is a conditional exponential fam-

ily. To be precise, if g((x, y)|θ) = eη
T (θ)T (x,y)+A(x,y)−B(θ), then the associated condi-

tional distribution of Y given X has pdf g(y|x, θ) = eη
T (θ)T (x,y)+A(x,y)−B(x,θ), where

B(x, θ) = ln
∑

y e
ηT (θ)T (x,y)+A(x,y).

We give several examples of conditional exponential distributions below.

Example 14 (Logistic regression). Let X be a random vector in Rn, and Y be a

discrete random variable taking values {1, . . . , K}. Logistic regression perform density

estimation using conditional distributions of the form

P (y|x) =


eβ

T
y x/(1 +

∑K−1
i=1 eβ

T
i x), y < K;

1/(1 +
∑K−1

i=1 eβ
T
i x), y = K.

(3.1.8)

Clearly the distribution used is of exponential form.

The particular form of the conditional distribution can be derived in a general

framework for constructing linear decision boundaries. Assume a class y is associ-

ated with a function δy(x) called the discriminant function of class y, and suppose the

prediction rule is arg maxy δy(x). To make sure the decision boundaries are linear, it

suffices to make sure that for any two class i, j, the decision boundary for δi(x) > δj(x)

is a hyperplane. For example, if each δi(x) is linear, then the decision boundaries are

linear. If we want each δi(x) to represent a probability value that x is in class i, then

linear functions do not work. But we can require ln δi(x) − ln δK(x) = βTi x for each
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i < K. In this case, δi(x) = δK(x)eβ
T
i x. Using the constraint

∑K
i=1 δi(x) = 1, we have

δK(x) = 1/(1 +
∑K−1

i=1 eβ
T
i x), and δi(x) = eβ

T
y x/(1 +

∑K−1
i=1 eβ

T
i x) for i < K. 2

Example 15 (Conditional random fields (Lafferty et al., 2001) for sequence labeling).

Let X be the set of observations, Y be the set of labels. Let x ∈ X ∗ and y ∈ Y∗

denote an observation sequence and a label sequence respectively. The problem of

sequence labeling involves predicting label sequences for given observation sequences.

An example is to label a sequence of words with the POS (part-of-speech) tags. Let

| · | be the function which maps a sequence to its length. Let f1, . . . , fm, be real-

valued functions of the form fi(x,y, t) (defined when |x| = |y|, and 1 ≤ t ≤ |x|), and

λ = (λ1, . . . , λm). A CRF induces the following probability distribution

P (y|x, λ) = exp(
∑

i

∑
t λifi(x,y, t))/

∑
y′ exp(

∑
i

∑
t λifi(x,y

′, t)) (3.1.9)

This is a conditional exponential family with λ as the natural parameter, and

(
∑

t f1(x,y, t), . . . ,
∑

t fm(x,y, t)) as the sufficient statistic. 2

Example 16 (Distributions on trees). Let G be a set of undirected connected graphs.

Let G, T be random variables denoting a graph from G, and a spanning tree of the

graph respectively. Let f1, . . . , fm be real-valued functions of the form f(G, e), where

G ∈ G, and e is an edge of G, λ = (λ1, . . . , λm) be a real vector. A conditional

exponential family of T given G with parameter λ is the following

P (T |G, λ) = exp(
∑

i

∑
e∈T λifi(G, e))/

∑
T ′ exp(

∑
i

∑
e∈T ′ λifi(G, e))(3.1.10)

We can similarly define conditional exponential families of directed trees on directed

graphs, or distributions on other classes of subgraphs, such as forests, if needed. 2

56



3.2 Maximum Entropy Modeling

The exponential families can be characterized as a class of maximum entropy models.

Maximum entropy modeling is a framework for estimating probability distributions

under constraints derived from prior knowledge or data. There are two key develop-

ments behind this framework. One is Shannon’s formulation of entropy as a measure

on the uncertainty on probability distributions (Shannon, 1948), and Jaynes’s Maxi-

mum Entropy Principle, which states that the most noncommittal probabilistic models

satisfying given constraints should be preferred (Jaynes, 1957a,b). The maximum en-

tropy principle is a generalization of Laplace’s Principle of insufficient reason, which

states that a uniform distribution should be preferred unless there is a reason to think

otherwise. We shall explain these two developments below.

3.2.1 Entropy as a Measure of Uncertainty

Shannon’s formulation of the measure of uncertainty in a probability distribution is a

very surprising and aesthetically pleasing one. He showed that there is a unique (up to

a positive multiplicative constant) such measure that is consistent with some intuitive

properties on such measure.

Theorem 17. (Shannon, 1948) There exists a unique (up to a positive multiplicative

constant) real function H of discrete probability distributions satisfying the following

properties:

(a) (Continuity) For any discrete probability distribution p, H is nonnegative and

continuous at p. 1

1To make the notion of continuity precise, we need to define a metric space for discrete distributions.
The can be done as follows. The set of discrete distributions can be defined as the set D of non-negative

sequences having finitely non-zero elements summing to 1. For any p1, p2 ∈ D, let `1(p1, p2)
def
=
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(b) (Monotonicity) For any positive integer n, A(n) = H( 1
n
, . . . , 1

n
) is monotonically

increasing in n.

(c) (The composition law) H satisfies

H(p11, . . . , p1n1 , . . . , pk1, . . . , pknk) = H(w1, . . . , wk) +
∑k

i=1wiH(pi1
wi
, . . . ,

pini
wi

),

where wi =
∑ni

j=1 pij.

In fact, H(p1, . . . , pk) = −C∑i pi log pi.

Proof. By the composition law, we have

H(
1

mn
, . . . ,

1

mn
) = H(

1

n
, . . . ,

1

n
) +

∑n
i=1

m
nm
H( 1

m
, . . . , 1

m
),

that is, A(mn) = A(m) + A(n), and thus A(nm) = mA(n).

For any positive integers n, k, we have 2bk lognc ≤ nk ≤ 2dk logne, thus A(2bk lognc) ≤

A(nk) ≤ A(2dk logne), bk lognc
k

A(2) ≤ A(n) ≤ dk logne
k

A(2). Let k → ∞, then we have

A(n) = A(2) log n = C log n.

Let n1, . . . , nk be positive integers, and n = n1 + . . . + nk, then by the composi-

tion law, H( 1
n
, . . . , 1

n
) = H(n1

n
, . . . , nk

n
) +

∑k
i=1

ni
n
H( 1

ni
, . . . , 1

ni
). Thus H(n1

n
, . . . , nk

n
) =

A(n)−∑k
i=1

ni
n
A(ni) = C log n−∑k

i=1
ni
n
C log ni = −C∑k

i=1
ni
n

log ni
n

.

Hence H(p1, . . . , pk) = −C∑i pi log pi for all positive rational pi’s. By the continu-

ity of H, this holds for all non-negative real pi’s �

We show that the composition law can be varied to give other sensible uncertainty

measures.

Proposition 18. Under the same conditions as in Theorem 17, but with the composi-

tion law (c) replaced by H(p11, . . . , p1n1 , p21, . . . , p2n2 , . . . , pk1, . . . , pknk) = H(w1, . . . , wk)+∑∞
i=1 |p1(i)− p2(i)|, then (D, `1) is a metric space for discrete distributions.
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∑k
i=1 w

α
i H(pi1

wi
, . . . ,

pini
wi

), where wi =
∑ni

j=1 pij. Then for any α > 1, there is a unique

solution of the form H(p1, . . . , pk) = C(1−∑k
i=1 p

α
i ).

Proof. Let A(n) = H( 1
n
, . . . , 1

n
), then for all positive integers n,m, A(nm) = A(n) +

1
nα−1A(m) and A(nm) = A(m) + 1

mα−1A(n). Let m = 2 and C = 2A(2), then

C > 0, and from the above two equations we have A(n) = C(1 − 1
nα−1 ), where

C = A(2)/(1 − 1
2α−1 ). Let n1, . . . , nk be positive integers which sum to n, then

H( 1
n
, . . . , 1

n
) = H(n1

n
, . . . , nk

n
) +
∑k

i=1(ni
n

)αH( 1
ni
, . . . , 1

ni
). Hence H(n1

n
, . . . , nk

n
) = C(1−

1
nα−1 )−∑k

i=1(ni
n

)αC(1− 1
nα−1
i

) = C(1−∑k
i=1(ni

n
)α. Thus H(p1, . . . , pk) = C(1−∑k

i=1 p
α
i )

for all positive rational numbers p1, . . . , pk. By continuity, this holds for all nonnegative

real p1, . . . , pk. �

An interesting particular case is when C = 1 and α = 2, then the corresponding

entropy function is the probability that two independent draws from a categorical

distribution parametrized by (p1, . . . , pk) have distinct outcomes.

3.2.2 The Principle of Maximum Entropy

The MaxEnt principle states that among all consistent distributions, prefer the one

having maximum entropy. Informally, the most noncommittal consistent model is pre-

ferred. A model chosen according to the MaxEnt principle will be called a MaxEnt

model.

As a simple illustration, suppose a random variable Z takes only n possible out-

comes, then any distribution on Z corresponds to a point in the n dimensional unit

simplex, that is, a tuple (p1, . . . , pn) such that p1, . . . , pn ≥ 0 and p1 + . . .+pn = 1. If no

other constraints are imposed, then the MaxEnt model can be easily shown to be the

uniform distribution ( 1
n
, . . . , 1

n
). If the constraint

∑n
i=1 ipi = c (c a constant between

1 and n) is imposed, then the MaxEnt model is given by pi = eλi/
∑n

j=1 e
λj, where λ
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satisfies (n− c)e(n+1)λ − (n− c+ 1)enλ + cenλ − (c− 1) = 0. Note that when c = n+1
2

,

then λ = 0 and we obtain the uniform distribution again; Let c → 1, then we obtain

the distribution (1, 0, . . . , 0); Let c→ n, then we obtain the distribution (0, . . . , 0, 1).

For the case when we are interested in learning the conditional distribution of a

random variable Y given another random variable X and the distribution of X, the

MaxEnt principle then states that among all consistent conditional distributions, prefer

the one having maximum conditional entropy. We consider several useful conditional

exponential families and show that each corresponds to a class of MaxEnt models.

3.2.3 Conditional Exponential Families as MaxEnt Models

We now derive conditional exponential families as MaxEnt models. Our derivation is

in a more general setting than that in (Berger et al., 1996).

We shall only consider the case (X, Y ) can have only finitely many values. The

possible values of Y may depend on X (as in Example 15), and the set of these values

will be denoted by Y (X). Let π denote the distribution of X, p denote a conditional

distribution of Y given X, f1, . . . , fm denote real-valued functions of X and Y , and

(x1, y1), . . . , (xn, yn) denote a sequence of observed (X, Y ) pairs.

π and p determine a joint distribution P (X, Y ) of X and Y . The expected value

of fi with respect to P (X, Y ) is given by E(fi) =
∑

x π(x)
∑

y p(y|x)fi(x, y). The

conditional entropy of Y given X with respect to P (X, Y ) is given by H(Y |X) =

−∑x∈X,y∈Y π(x)p(y|x) ln p(y|x). H(Y |X) will be written as H(p) to emphasize that

it is viewed as a function of p.
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maximize H(p)

subject to
∑

y∈Y p(y|x) = 1, ∀x ∈ X (3.2.1)

p(y|x) ≥ 0, ∀x ∈ X, ∀y ∈ Y (x)

E(fi) = ci, ∀i

where ci’s are constants, which are generally derived from the observation and output

pairs or some prior knowledge. ci is often chosen to be Ẽ(fi) = 1
n

∑
i fi(xi, yi), which is

the empirical mean of fi. Assume Slator’s condition is satisfied, that is, there exists a p

in the set D of distributions satisfying all the constraints, such that p is in the relative

interior of D and all the inequality constraints hold strictly for p. Using standard

Lagrangian duality method (cf. (Boyd and Vandenberghe, 2004, Chap. 5)), it can be

shown that the MaxEnt model must be of exponential form.

Theorem 19. The solution of Problem 3.2.1 is given by p(y|x) = e

∑
i λifi(x, y)
Zx(λ)

, where

λ = (λ1, . . . , λm), Zx(λ) =
∑

y′ e
∑

i λifi(x, y
′), with λ being the unique minimizer of∑

x π(x) lnZx(λ)−∑i λici.

Proof. First consider the relaxed problem without the nonnegativeness constraint on

p(y|x). The Lagrangian of the relaxed problem is

L(p, λ, µ) = −∑x,y π(x)p(y|x) ln p(y|x) +
∑

i λi(E(fi)− ci) +
∑

x µx(
∑

y p(y|x)− 1)

where λ is the vector consisting of all λi’s, and µ is the vector consisting of all µx’s.
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We now solve for the dual function g(λ, µ)
def
= supp L(p, λ, µ). We have

∂L
∂p(y|x)

= −π(x)(ln p(y|x) + 1) + π(x)
∑

i λifi(x, y) + µx = 0

⇒ p(y|x) = e
µx−π(x)
π(x) e

∑
i λifi(x, y)

The above p, which will be denoted by pλ,µ, is the only solution for ∇pL = 0 in the

domain of L(·, λ, µ), and since L(p, λ, µ) is strictly ∩-convex in p, pλ,µ must be the

unique maximizer of L(·, λ, µ).

Clearly Slator’s condition is satisfied for the relaxed problem and the constraints

are convex, strong duality holds as a consequence of Slator’s theorem. That is, the

maximum of the primal problem is minλ,µ g(λ, µ), and if (λ, µ) is a minimizer of g,

then pλ,µ is a maximizer of the relaxed problem.

To simplify minλ,µ g(λ, µ), note that strong duality also implies that if (λ, µ) mini-

mizes g, then pλ,µ is primal feasible, that is, it satisfies all primal constraints. Consider

the primal constraint
∑

y′ p(y
′|x) = 1, then it follows

e−
µx−π(x)
π(x) = Zx(λ)

def
=
∑

y′ e
∑

i λifi(x, y
′)

⇒ pλ,µ(y|x) =
e
∑

i λifi(x, y)

Zx(λ)

Substituting this expression back into g(λ, µ) = L(pλ,µ, λ, µ), then g(λ, µ) = h(λ)
def
=∑

x p(x) lnZx(λ)−∑i λici. Hence the maximum of the primal is minλ h(λ).

Note that h has a unique minimizer due to its strict ∪-convexity.

The proof is completed by noting that the above solution for the relaxed problem

satisfies the nonnegativeness constraints, thus it is also the the solution for the original

problem. �

An alternative approach in the above is to consider the primal constraint E(fi) = ci
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in our attempt to derive a simpler expression for minλ,µ g(λ, µ) and pλ,µ, but these

constraints do not help us to reduce the number of variables. However, these constraints

are implicitly used, as they are equivalent to λ being the minimizer of h(λ). Thus we

can either characterize the parameter of the conditional exponential distribution as the

solution of an optimization problem or the solution of a system of equations. These

two views lead to two types of numerical algorithms for the MaxEnt parameter.

In practice, π(x) may not be given and the empirical distribution π̃(x) is used for

π(x). In this case, there is an interesting connection between MaxEnt principle and

ML estimation, which can be obtained as an immediate corollary of the above result.

Corollary 20. If π(x) = π̃(x), then the solution of Problem 3.2.1 is given by the dis-

tribution p(y|x) = e

∑
i λifi(x, y)
Zx(λ)

with λ chosen to maximize ln
∏

i p(yi|xi)+
∑

j λj(cj−

Ẽ(fj)). In particular, when ci = Ẽ(fi) for each fi, then λ is chosen to maximize the

log-likelihood L({(xi, yi)}|λ) = ln
∏

i p(yi|xi).

Thus for this case, the MaxEnt principle corresponds to using conditional exponen-

tial distributions as the model, and maximum likelihood estimation as the estimation

method.

The following corollary states the equivalence of MaxEnt models and conditional

exponential distributions.

Corollary 21. Let pexpλ (y|x) = e

∑
i λifi(x, y)
Zx(λ)

. Let c = (c1, . . . , cm), and pmec be the

MaxEnt model for Problem 3.2.1. Let C be the set of (c1, . . . , cm) such that Prob-

lem 3.2.1 has a solution. Then

(a) For every c ∈ C, there exists a unique λ ∈ Rm such that pmec = pexpλ .

(b) For every λ ∈ Rm, there exists a unique c ∈ C such that pexpλ = pmec .

Proof. (a) follows from Theorem 19 directly. For (b), given λ, the corresponding c is

given by ci =
∑

x π(x)
∑

y p
exp
λ (y|x)fi(x, y). �
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When Y is a discrete random variable, then we can use the MaxEnt model to classify

an instance x into class arg maxy p(y|x). This is the MaxEnt classifier. The difference

between this MaxEnt distribution and the distribution used for logistic regression is

that there is a reference class K in logistic regression, while every class is treated

equally in MaxEnt. Let fi,y(x, y
′) = x(i)I(y = y′), where x(i) is the value of the i-th

attribute of x, 1 ≤ i ≤ d and 1 ≤ y < K. The MaxEnt formulation for the distribution

in logistic regression is

maximize H(p)

subject to
∑

y∈Y p(y|x) = 1, ∀x ∈ X (3.2.2)

p(y|x) ≥ 0, ∀x ∈ X, ∀y ∈ Y

E(fi,y) = ci, ∀1 ≤ i ≤ d,∀1 ≤ y < K

Remark 22. (a) If we use H(X) = 1 −∑x p
2(x) as the measure of entropy, then the

nonnegativeness constraints cannot be ignored now. A dual variable need to be intro-

duced for each nonnegativeness constraint. The resulting dual problem involves many

more variables and is much harder to solve, while using Shannon’s entropy formula we

can derive an elegant distribution parametrized by a small number of variables.

(b) The exponential family derived above does not have a term equivalent to the

term A(x, y) in the definition for conditional exponential family. To introduce such a

term, it suffices to replace H(p) in Problem 3.2.1 by H(p) + E(A). Such modification

on the objective can be interpreted as imposing a constraint E(A) = a but with its

corresponding dual variable being forced to 1.

If A(x, y) = ln q(x, y) for some distribution q of X and Y , then −H(p) − E(A)

is KL(p||q) =
∑

x π(x)
∑

y p(y|x) ln p(y|x)
q(y|x)

, which is the conditional entropy (or KL-

divergence) of p relative to q. Note that if q is fixed, then KL(p||q) has minimum

value 0 when p = q. Thus in this case, the objective encodes the preference for a
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model which is closest to a given distribution q under given constraints. Maximizing

H(p) corresponds to the special case of minimizing KL(p||q) with q being the uniform

distribution.

If π(x) = π̃(x) and ci = Ẽ(fi), then the parameters are again estimated by maxi-

mizing the likelihood.

A.Example: Maximum Entropy Markov Models. We consider estimating a conditional

analogue of the generative Markov model. Let X = (O1, . . . , OT ) be a random obser-

vation sequence, and Y = (S1, . . . , ST ) the corresponding label sequence, where T may

be different for different observed (X, Y ) pairs. The conditional analogue considered

is a distribution of the form

P (Y |X) = P (S1, . . . , ST |X) =
∏T

t=1 P (St|St−1, X)

Given n observed (X, Y ) pairs (x1, y1), . . . , (xn, yn), a conditional distribution of Y

given X can be obtained by first estimating for each so, the conditional probability

P (s|so, x) of current state s given previous state so and observation sequence x, then

combining them using Eq. 1. Let f1, . . . , fm be real-valued functions of X, t and S,

where t is a position variable.

Consider estimating P (s|so, x) for a fixed so. For a sequence y, let y(t) denote

the t-th element of y. For estimating P (s|so, x), an observation variable Z is a pair

(xi, t) such that yi(t − 1) = so. Let π(Z) denote the distribution of Z, and p(s|Z) be

the conditional distribution to be estimated. π(Z) and p(s|Z) gives a joint distribu-

tion P (Z, S), and the conditional entropy is H(p) = −∑z π(z)
∑

s p(s|z) ln p(s|z). A
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MaxEnt formulation is as follows.

maximize H(p)

subject to
∑

s∈S p(s|z) = 1, ∀z ∈ Z (3.2.3)

p(s|z) ≥ 0, ∀z ∈ Z, ∀s ∈ S

E(fi) = ci, ∀i

Applying Theorem 19 and Corollary 20, we can show the following.

(a) The solution for Problem 3.2.3 is of the form p(s|x, t) = e

∑
i λifi(x, t, s)
Zx,t(λ)

, where

λ = (λ1, . . . , λm), Zx,t(λ) =
∑

s′ e
∑

i λifi(x, t, s
′), with λ being the unique mini-

mizer of
∑

x,t π(x, t) lnZx(λ)−∑i λici.

(b) When π(x, t) = π̃(x, t), and ci = Ẽ(fi) for each fi, then λ is (a) is equivalently

the unique maximizer of the log-likelihood L({〈(xi, t), yi(t)〉 : yi(t−1) = so}|λ) =

ln
∏

yi(t)=so
p(yi(t)|xi, t).

By constraining each fi(x, t, s) to depend on x(t) and s only, the above model is

then reduced to the Maximum Entropy Markov Models (MEMM) (McCallum et al.,

2000).

B.Example: Conditional random fields. Now we show that the CRFs in Example 15

can be derived as a MaxEnt model. As in previous section, X and Y denote a random

observation and a random label sequence respectively. Let (x1,y1), . . . , (xn,yn) be n

observed (X, Y ) pairs, f1, . . . , fm be real-valued functions of X, Y , and t, where t is a

position variable. Y (X) is the set of label sequences of the same length as X.

Let π(X) denote the distribution of X, and p(Y |X) be the conditional distribu-

tion to be estimated. π(X) and p(Y |X) gives a joint distribution P (X, Y ), and the

conditional entropy is H(p) = −∑x π(x)
∑

y∈Y (x) p(y|x) ln p(y|x). Let f̄i(x,y)
def
=
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∑|x|
t=1 fi(x,y, t). A MaxEnt formulation is as follows.

maximize H(p)

subject to
∑

y∈Y (x) p(y|x) = 1, ∀x ∈ X (3.2.4)

p(y|x) ≥ 0, ∀x ∈ X, ∀y ∈ Y (x)

E(f̄i) = ci, ∀i

Now Theorem 19 can be applied directly to yield the CRFs in Example 15.

C.Example: Conditional distributions on trees. As another example, we point out

that the solution to the following problem is of the form in Example 16.

maximize H(p)

subject to
∑

t∈T (G) p(T |G) = 1, ∀G ∈ G (3.2.5)

p(T |G) ≥ 0, ∀G ∈ G,∀T ∈ T (G)

E(f̄i) = ci, ∀i

where f̄i(G, T )
def
=
∑

e∈T∈T (G) fi(G, e).

D.Inequality Constraints. So far only linear equality constraints have been discussed.

When linear inequality constraints are considered, we will see an interesting connection

between the MaxEnt model and regularization. We return to Problem 3.2.1, and

consider the following variant, which replaces the equality constraint on expectation
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by inequality constraints.

maximize H(p)

subject to
∑

y∈Y p(y|x) = 1, ∀x ∈ X (3.2.6)

p(y|x) ≥ 0, ∀x ∈ X, ∀y ∈ Y

E(fi) ≥ li, ∀i

E(fi) ≤ ui, ∀i

Proposition 23. (a) The solution for Problem 3.2.6 is p(y|x) = e
∑

i λifi(x, y)/Zx(λ),

where Zx(λ) =
∑

y′ e
∑

i λifi(x, y
′), and λ minimizes h(λ) =

∑
x π(x) lnZx(λ) −∑

i min(λili, λiui).

(b) When π(x) = π̃(x), li = Ẽ(fi) − wi
n

, ui = Ẽ(fi) + wi
n

(each wi is a positive

constant), λ in (a) is equivalently the maximizer of
∑

i ln p(yi|xi)−
∑

iwi|λi|.

Proof. We sketch the main steps in the derivation of the solution.

The Lagrangian for the relaxed problem without the nonnegativeness constraints is

L(p, λ̂, λ̆, µ) = −∑x,y π(x)p(y|x) ln p(y|x)+
∑

i λ̆i(E(fi)−li)+
∑

i λ̂i(ui−E(fi))+
∑

x µx(
∑

y p(y|x)−1)

where λ̂i ≥ 0, λ̆i ≥ 0 for all i.

First setting ∇pL = 0 to find the dual function, and then applying strong duality

and the constraints
∑

y p(y|x) = 1 to eliminate µ in the dual function, the solution to

the relaxed problem is then found out to be p(y|x) = e
∑

i(λ̆i − λ̂i)fi(x, y)/Zx(λ̂, λ̆),

where Zx(λ̂, λ̆) =
∑

y′ e
∑

i(λ̆i − λ̂i)fi(x, y′), and λ̂, λ̆ are nonnegative vectors minimiz-

ing g(λ̂, λ̆) =
∑

x π(x) lnZx(λ̂, λ̆)−∑i λ̆ili +
∑

i λ̂iui.

Let λ = λ̆ − λ̂, then p(y|x) as a function of λ, and g(λ̂, λ̆) =
∑

x π(x) lnZx(λ) −∑
i λili +

∑
i λ̂i(ui − li), where λ is unconstrained, and λ̂i ≥ max(0,−λi). For fixed

λ, g(λ̂, λ̆) has minimum h(λ) =
∑

x π(x) lnZx(λ) −∑i min(λili, λiui). Hence the λ
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component in the minimizer of g is the same as the minimizer of h.

Now Proposition 23 follows easily. �

3.3 Prediction

As in general, predictions for exponential families can be difficult even for simple loss

functions due to the rich structures that X and Y can assume and the rich dependencies

that can be present for X and Y . As an illustration, consider prediction using 0/1 loss,

then we need to compute a most likely Y for any given X. We construct an exponential

family such that if it is possible to do so in polynomial time, then SAT can be solved

in polynomial time. Let X be a random set of clauses with 3 literals, and for any x,

Y (x) denotes a random assignment to the corresponding set of variables. Let x denote

a set of clauses {c1, . . . , cn}, y denote an assignment (u1, . . . , um) to the corresponding

set of variables, and f(y|x, λ) ∝ exp(λ
∑n

i=1 I(y satisfies ci)). Choose λ = 1, then there

is a satisfying assignment iff a most likely y is a satisfying assignment. The above

reduction is clearly a polynomial-time reduction. Thus if we can find a most likely y

for any x in polynomial time, then SAT can be solved in polynomial time.

In general, we can give a polynomial time reduction from an arbitrary NP problem

to the problem of computing a most likely Y for a given X for a particular conditional

exponential family. Let Σ be a finite alphabet, and L ⊆ Σ∗ be a language in NP.

By definition, there exists a finite alphabet Ξ, a language L′ ⊆ Σ∗ × Ξ∗ in P and a

polynomial p such that L = {x : ∃(x, y) ∈ L′ such that |y| ≤ p(|x|)}, where | · | is the

length function. Let X = Σ∗, Y (x) = Ξp(|x|), and f(y|x, λ) ∝ exp(λI((x, y) ∈ L′)).

Choose λ = 1, then x is in L iff a most likely value y for x satisfies (x, y) ∈ L′. Thus we

have a polynomial time reduction from the membership problem of L to the problem of

computing a most likely value for any x for the conditional exponential family f(y|x, λ).
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Many other problems for conditional exponential families are computationally hard.

In particular, even evaluating the pdf are generally difficult. This is often due to the

difficulty of computing the partition function, which can require summation over ex-

ponentially many y’s. A general intractability result on computing partition functions

was established by Sorin Istrail’s (Istrail, 2000).

Approximation methods are often applied in such cases. These include sampling

methods (cf. (Andrieu et al., 2003)) and variational approximation methods (cf. (Jor-

dan et al., 1999; Wainwright and Jordan, 2008)).

3.4 Learning

3.4.1 Maximum Likelihood Estimation

Given a family of distributions, the problem of learning is to find a member which

is closest to the true distribution, using data generated by the true distribution. For

parametric families, this is called parameter estimation. Thus a parameter estimation

method is a mapping from observed data to a parameter, and will often be called an

estimator . In practice, a parametric family is often misspecified , that is, it does not

contain the true distribution.

For some special cases, the parameters have intuitive interpretations which allow

them to be estimated from data using simple computation procedures. For example,

the parameters in naive Bayes have simple frequentist interpretations which suggest

estimating them using empirical frequencies. Another example is that the parameters

µ and σ2 in the normal distribution f(x;µ, σ2) = 1√
2πσ

e−
(x−µ)2

2σ2 , are the expectation and

variance of X respectively, thus we can estimate them using the empirical mean and

variance.

For general cases, including the exponential families, there are no simple closed-form

estimation formula, but there is a general criterion due to Fisher, which he proposed
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and consolidated from 1912 to 1922, during which he gave three different justifications

to the method ((Fisher, 1912, 1921, 1922); see (Aldrich, 1997) for a detailed account on

the development of the principle). This is Fisher’s maximum likelihood (ML) estimator,

or MLE . We shall use MLE to denote ML estimation, ML estimate as well, and the

meaning will be clear from context.

For a generative distribution f(x|θ), let L(x1, . . . , xn|θ) be the joint probability

that x1, . . . , xn are observed. L is regarded as a function of θ and called the like-

lihood function. Then the MLE is defined as θML = arg maxθ L(x1, . . . , xn|θ). If

x1, . . . , xn are generated independently, then L(x1, . . . , xn|θ) =
∏n

i=1 f(xi|θ). For a

conditional distribution f(y|x, θ), the likelihood function L(y1, . . . , yn|x1, . . . , xn, θ) is

defined as the joint probability of observing y1, . . . , yn given x1, . . . , xn. It is often eas-

ier to work with the log-likelihood function `(x1, . . . , xn|θ) def
= lnL(x1, . . . , xn|θ), and

`(y1, . . . , yn|x1, . . . , xn, θ)
def
= lnL(y1, . . . , yn|x1, . . . , xn, θ).

An information theoretic interpretation of the MLE p from a family F , is that p

minimizes the KL-divergence KL(p̃||p), where p̃ is the empirical distribution.

The Naive Bayes estimates are actually the MLEs. We have also given a justification

of using log loss (thus ML) in Section 2.1 as well, where we argue that log loss can be

used because the minimizer of E(ln p(x, y)) is the true distribution.

Many other important estimators maximize variants of likelihood. For example,

a maximum a posterior (MAP) estimator maximizes a regularized likelihood instead

of the likelihood. A pseudo-likelihood estimator replaces the true likelihood with an

approximation (Besag, 1975). A composite likelihood estimator maximizes a weighted

product of marginal or conditional probabilities (Lindsay, 1988).

MLE has been proved to possess natural properties that are desirable for estimators.

Wald showed that MLE is consistent in the sense that it almost surely converges to

the true parameter (Wald, 1949). Le Cam further showed that under weak regularity

conditions, MLE is asymptotically normal (Le Cam, 1953). The misspecified case were
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first considered by Berk (Berk, 1966, 1970) and Huber (Huber, 1967). Berk showed

that the MLE still converges to a limit, and Huber shows under very general conditions

that MLE converges to a limit and is asymptotically normal. White showed under more

intuitive but more restrictive conditions MLE consistency and asymptotic normality

hold (White, 1982). The results for the well-specified case can be viewed as a special

case of the misspecified case. These results are summarized in the theorem below.

Theorem 24. (White, 1982) Let x1, x2, . . . , xn be i.i.d. observations drawn according

to some distribution g(X), {f(x|θ) : Θ} be a parametric family with Θ being a subset of

Rd, and l(x1, . . . , xn|θ) = 1
n

∑n
i=1 ln f(xi|θ) be the average log-likelihood function. Let

An(θ) = (
∂2l

∂θi∂θj
)ij, A(θ) = (E(

∂2 ln f

∂θi∂θj
))ij, Bn(θ) = (

∂l

∂θi

∂l

∂θj
)ij, B(θ) = (E(

∂ ln f

∂θi

∂ ln f

∂θj
)ij

Assume E(ln f(x|θ)) has a unique maximizer θ∗, and for all x1, . . . , xn, l always has a

(not necessarily unique) maximizer θn, then under some weak conditions 2, the following

hold

(a) (Consistency) θn
a.s.→ θ∗, that is, θn → θ∗ for almost every sequence (xi).

(b) (Asymptotic normality)
√
n(θn−θ∗) d→ N(0, C(θ∗)), that is

√
n(θn−θ∗) converges

in distribution to N(0, C(θ∗)), where C(θ) = A(θ)−1B(θ)A(θ)−1.

Moreover, let Cn(θ) = An(θ)−1Bn(θ)An(θ)−1, then Cn(θn)
a.s.→ C(θ∗) element by

element.

We point out that we can use the above results for unconditional distribution

to obtain corresponding results for conditional distributions. The idea is that for a

family of conditional distributions {f(y|x, θ) : θ ∈ Θ}, we can consider the family

{gf ((x, y)|θ) : θ ∈ Θ}, where gf ((x, y)|θ) = π(x)f(y|x, θ), then apply the results above

to this family.

2See the cited paper for the list of conditions needed.
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We mention two more properties of MLE. MLE is parametrization invariant, that

is, if a family is parametrized by η = s(θ) and ηml is an MLE given i.i.d. observa-

tions x1, . . . , xn, then when the family is reparametrized using θ, the MLE θml given

x1, . . . , xn satisfies ηml = s(θml). In addition, if a sufficient statistic t exists for the

parameter θ, then the MLE is a function of t.

Remark 25. As discussed in Section 2.1, the parameters can also be chosen using the

optimization approach, but note that in this case we are no longer estimating densities.

Remark 26. When the model is misspecified, systematic errors can occur. In this case,

it may be useful to try to reduce systematic errors. For example, suppose in binary

classification problem, if the probabilities are always biased towards + due to misspec-

ification, then using the MAP classification rule may not be a good choice. Instead, it

may be better to use a thresholded classification rule like ht(x) =


+, P (+|x) > t;

−, otherwise.

,

where t is some threshold value that is learned from data.

3.4.2 MLE for the Exponential Forms

A.Basic Equations. Consider an exponential family with pdf f(x|θ) = eθ
TT (x)+A(x)−B(θ).

The log-likelihood function `(x1, . . . , xn|θ) is ∩-convex, thus it has a unique maximizer,

which is the solution to ∇` = 0, where ∇` is given below.

∇`(x1, . . . , xn|θ) =
∑n

i=1(T (xi)− E(T (x)|θ)) (3.4.1)

For the conditional exponential family, the analogue of the above equation is

∇`((x1, y1), . . . , (xn, yn)|θ) =
∑n

i=1(T (xi, yi)− E(T (xi, y)|θ)) (3.4.2)

B.Incomplete data. Similar result can be derived for the case of incomplete data.
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Let Z be a function of X, and let X(z) denote the set of x’s which are mapped to z,

then the pdf of Z is f(z|θ) =
∑

x∈X(z) f(x|θ). The gradient of log-likelihood function

is given by

∇`(z1, . . . , zn)|θ) =
∑n

i=1(E(T (x)|zi, θ)− E(T (x)|θ)) (3.4.3)

Eq. 3.4.1 can be seen as a special case of the above equation. However, the log-likelihood

function is no longer ∩-convex, thus it may have several maximizers, and a solution to

the above equation is not necessarily a global maximizer.

The conditional version of Eq. 3.4.4 is given by

∇`((x1, z1), . . . , (xn, zn))|θ) =
∑n

i=1(E(T (xi, y)|zi, θ)− E(T (xi, y)|θ)) (3.4.4)

where Z is a function of Y .

C.Factorizable models. In practice, the random variables can have very complex struc-

ture, and the functions T and A, can be very complex and thus make it computationally

intractable to compute the above expectations directly. But for many interesting cases,

it is possible to design some models which can capture real-world information suffi-

ciently well and yet computationally tractable. One of the most common method is to

decompose T as a sum of factors which depend on local structures. Formally, consider

a conditional exponential family with pdf f(y|x, θ) = eθ·T (x,y)+A(x,y)−B(x,θ). Suppose

T (x, y) =
∑

α∈I(x,y) T (x, α) for some set I(x, y) and function T (x, α). I(x, y) is called

a structural index set, and f is said to be factorizable over I. To illustrate, the distri-

bution on trees in Example 16 is factorizable over I(G, T ) chosen to be the edge set of

T . To see this, note that the distribution corresponds to T (G, T ) =
∑

e∈I(G,T ) T (G, e),

A(G, T ) = 0, where T (G, e) = (f1(G, e), . . . , fm(G, e)).

For a factorizable model, the expectation of T (xi, y) can be decomposed.

E(T (xi, Y )|θ) =
∑

α∈I(xi) µ(α|xi)T (xi, α) (3.4.5)
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where I(xi) = ∪yI(xi, y), and µ(α|xi) =
∑

α∈I(xi,y) f(y|xi, θ) is called the marginal of

the structural index α. Thus the problem of computing the expectation of T (xi, y)

is reduced to the problem of computing the probability that I(xi, y) includes some

structural index α. For the distributions on trees, this amounts to computing the

probability that a tree contains an edge e.

The above discussion also applies for the case when the data is incomplete.

With suitably chosen structural indices, the marginals of the structural indices can

be easy to compute. For example, see (Lafferty et al., 2001) and (Koo et al., 2007).

3.4.3 Algorithms for Computing Parameter Estimates

As in the case after Theorem 19, there are two different ways to characterize MLEs.

One is to see them as solutions to systems of equations, and the other is to see them

as solutions to an optimization problem. When they are seen as solutions to a system

of equations, they can be found by using Newton-Raphson’s method to solve the equa-

tions. When they are seen as solutions to a optimization problem, they can be found

using typical optimization algorithms. These include various gradient based algorithms

such as generalized iterative scaling (Darroch and Ratcliff, 1972), Quasi-Newton algo-

rithms (such as the L-BFGS (Liu and Nocedal, 1989) algorithm, a memory-limited

Quasi-Newton method), and stochastic gradient descent algorithms (Bottou, 2004).

When the data is incomplete, the Expectation-Maximization (EM) algorithm (Demp-

ster et al., 1977) is often employed for maximizing the likelihood. Formally, let Z be

a function of X, let x1, . . . , xn be i.i.d. observations generated using f(X|θ), and

z1, . . . , zn be the corresponding Z values. In general, there are several values of X that

correspond to the same Z value. To find a local maximizer θ for the joint probabil-

ity P (z1, . . . , zn|θ), the EM algorithm starts with an arbitrary initial weight θ0, then

iterates over the following two steps

• E step: Q(θ|θm) =
∑

x1,...,xn
P (x1, . . . , xn|z1, . . . , zn, θm) lnP (x1, . . . , xn|θ), where
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summation is over x1, . . . , xn consistent with z1, . . . , zn.

• M step: θm+1 = arg maxθQ(θ|θm).

The expectation step finds the expectation of the complete log-likelihood with re-

spect to the distribution of x1, . . . , xn according to θm. The E step can be performed

using sampling methods. The M step can be relaxed by requiring θm+1 to satisfy

Q(θn+1|θn) ≥ Q(θn|θn) only, and the algorithm is called a generalized EM (GEM) algo-

rithm. This inequality is sufficient to guarantee that P (z1, . . . , zn|θm) is non-decreasing

as m increases.

3.5 Conditional Random Fields

Log-linear CRFs are an important subclass of conditional exponential families. They

have been used with empirical successes in various sequence labeling problems, includ-

ing labeling words in sentences with its type in named-entity recognition problems

(Tjong Kim Sang and De Meulder, 2003), handwriting recognition problems (Taskar

et al., 2003), deciding whether each DNA base in a DNA sequence is part of a gene in

gene prediction problems (Culotta et al., 2005), table extraction (Pinto et al., 2003),

and object recognition (Quattoni et al., 2004). A main reason for the popularity and

empirical successes of CRFs is the flexibility to incorporate arbitrary dependencies on

the observations. Such dependencies may be non-independent and overlapping. Such

flexibility is not present in generative models like Markov models, in which strong

independence assumptions are required.

We first discuss the connections between CRFs and several other models, showing

that CRFs can be used as a very general class of models that possesses the modeling

power of MaxEnt classifiers, MEMMs, naive Bayes and Markov chains.

We then describe CRFs as models on variables which can be specified by two equiv-

alent views: a model satisfying independence relationships that can be conveniently
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described as Markov assumptions associated with a graph, or a model possessing a

density function which are products of factors defined on subsets of the variables. This

perspective allows conditional independence to be easily discovered with the help of

graphs. This is useful because conditional independence properties are useful for us-

ing sampling techniques such as Gibbs sampling to compute marginals. In addition,

this perspective makes it convenient to study general efficient marginal computation

algorithms. For example, the message passing algorithm (or belief propagation, or

sum-product algorithm) (Huang and Darwiche, 1996) is a general algorithm which can

be conveniently described using the graphical structures.

3.5.1 Connections with Other Models

We have seen some special cases of CRFs. MEMMs are CRFs with the parameters

for different components estimated separately. MaxEnt classifiers are obtained by

restricting sequence length to 1. Logistic regression can be obtained as a special case

of the MaxEnt classifier by choosing fi,K(x, y) = 0 for all i in the MaxEnt classifiers.

Another special case of the MaxEnt classifier is the majority vote algorithm which

predicts the most common class for any x in the training data, but randomly predict

a class if x is not seen before. To see this, for each x in the training data, construct

a feature fx′,y′(x, y) = I(x = x′ and y = y′) for each class y. Setting the parameter for

fx′,y′ as λx′,y′ = ln p̃(y′|x′), then we obtain the majority vote algorithm.

The conditional distribution of Markov models is a family of CRFs with the pa-

rameters being constrained to be non-positive. If i.i.d. observations are generated by

a Markov model, and CRFs are learned using MLE, then the CRFs converge to the

true conditional distribution. Since naive Bayes and MaxEnt classifiers (or logistic

regression) are obtained from Markov models and CRFs respectively by restricting the

sequence length to be 1, the same remark holds for them.

Note that logistic regression or MaxEnt classifiers have linear decision boundaries
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in the attribute space, thus they are generally different from decision trees constructed

using the same set of attributes. However, using the paths in the decision tree as

features, then there is a MaxEnt model which is equivalent to the decision tree.

3.5.2 Undirected Graphical Models

CRFs can be characterized as distributions satisfying certain conditional independence

assumptions.

The key idea is the following way to visualize a probability distribution over a col-

lection of random variables: Decompose the distribution into factors which contain as

few random variables as possible, and construct a graph with the random variables

as nodes, and link every pair of random variables that are in the same factor. This

graphical representation turns out to be convenient for deriving conditional indepen-

dences about the given distribution. One simple conditional independence that is easy

to verify is that a variable is conditionally independent of other variables given its

neighbors. Hammersley and Clifford showed the surprising result that distributions

satisfying such conditional independences can be expressed as products of factors over

the cliques (Hammersley and Clifford, 1971).

A.Factorization over Cliques and Markov Independence. Let X = {X1, . . . , Xn} be

a set of random variable. Let V = {1, . . . , n}, and G = (V,E) be an undirected graph

with V as the vertex set and E as the edge set. For any I ⊆ V , V can be partitioned

into three disjoint set, I itself, I’s boundary or Markov blanket ∂I consisting of vertices

which are not in I but connected to at least one vertex in I, and � I = V − I − ∂I.

Let XI denote the subset of X with index set I. Let Z denote a subset of X. The

boundary ∂Z of Z is X∂I , where I is the index set of Z. A probability distribution

P over X is said to be Markovian for Z on G if P (Z|X − Z) = P (Z|∂Z). If P is

Markovian for any Z ⊆ X, then P is said to be Markovian on G, and (P,G) is called a

Markov random field (MRF).

78



Throughout this section, we shall only deal with positive distributions. Hammersley

and Clifford proved the following fundamental result for Markov random fields: (P,G)

is an MRF iff P is the product of factors defined over the cliques of G.

Theorem 27. (Hammersley-Clifford (Hammersley and Clifford, 1971)) Let C be the

set of cliques of G. Then (P,G) is an MRF iff there exist positive functions {gC(XC) :

C ∈ C} such that P (X) =
∏

C∈C gC(XC).

We present a simplified proof based on (Hammersley and Clifford, 1971). The

Markovian property can be stated as an invariant property of the log-likelihood function

L(X) = logP (X), as follows. For each Xi, we arbitrarily choose one of its values as its

reference value. For any instantiation z of some Z ⊆ X, zI denotes the instantiation

obtained from z by setting values of random variables with indices in I to their reference

values. Define a normalization operator NI by NI(R(x)) = R(xI) for all x, where R

is an arbitrary function on X. We overload the notation xI : If x is mentioned as an

instantiation for X, then xI denotes its instantiation for random variables with indices

in I, otherwise xI denote an instantiation for XI . The meaning will be clear from the

context. In addition, if I1 and I2 are disjoint, then xI1 ∪ xI2 denotes the combined

instantiation for XI1∪I2 . The invariant property we need is as follows.

Proposition 28. P (X) is Markovian for XI on G iff L(X) is an invariant of NI +

N�I −NI∪�I for any I ⊆ V .

Proof. Note that P (X) is Markovian for XI on G iff for any instantiation x of X, we

have

P (xI , x∂I , x�I)

P (x∂I , x�I)
=
P (xI , x∂I , x

�I
�I)

P (x∂I , x�I�I)
,
P (xII , x∂I , x�I)

P (x∂I , x�I)
=
P (xII , x∂I , x

�I
�I)

P (x∂I , x�I�I)
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These two equations are equivalent to

P (xI , x∂I , x�I)/P (xII , x∂I , x�I) = P (xI , x∂I , x
�I
�I)/P (xII , x∂I , x

�I
�I)

⇔ L(xI , x∂I , x�I)− L(xII , x∂I , x�I) = L(xI , x∂I , x
�I
�I)− L(xII , x∂I , x

�I
�I)

⇔ L(x)−NIL(x) = N�IL(x)−NI∪�IL(x)

⇔ L(x) = (NI +N�I −NI∪�I)L(x).

�

We now give the proof for Theorem 27 below.

Proof. (⇐=) Suppose P (X) is of the form
∏

C gC(XC), then for any I ⊆ V , for any

x, P (x) is the product of
∏

C∩I=∅ gC(xC) and
∏

C∩I 6=∅ gC(xC). The first factor does

not depend on xI , while the second factor depends on xI∩∂I because the completeness

of C and C ∩ I 6= ∅ implies that every vertex of C is either in I or ∂I. Thus the

second factor can be written as
∏

C⊆I∪∂I gC(xC). Hence for any x∂I , x�I , for any two

instantiations xI , x
′
I of XI , we have

P (xI , x∂I , x�I)/P (x′I , x∂I , x�I) =
∏

C⊆I∪∂I gC((xI ∪ x∂I)C)/
∏

C⊆I∪∂I gC((x′I ∪ x∂I)C)

Using the above equation, we have

P (xI |x∂I , x�I) = P (xI , x∂I , x�I)/
∑

x′I
P (x′I , x∂I , x�I)

=
∏

C⊆I∪∂I gC((xI ∪ x∂I)C)/
∑

x′I

∏
C⊆I∪∂I gC((x′I ∪ x∂I)C).

Note that the above equation shows that the value of P (xI |xV−I) does not depend

on x�I . Hence P (XI |XV−I) = P (XI |X∂I).
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(=⇒) Suppose (P,G) is an MRF then

L =
∏

i∈V [N{i} +N�{i} −N{i}∪�{i}]L

=
∏

i∈V [N�{i}(1−N{i}) +N{i}]L

=
∑

I⊆V
∏

i∈I [N�{i}(1−N{i})]
∏

i∈V−I N{i}L. (3.5.1)

If I is not a clique of G, then there exists i, j ∈ I which are not neighbors. In

this case, we have N�{i}(1 − N{j})L = (N�{i} − N{j}N�{i})L = (N�{i} − N�{i})L = 0.

However N�{i}(1−N{j}) appears in the product term for I, thus the product term for

I vanishes.

Hence, L =
∑

C⊆V
∏

i∈I [N�{i}(1 − N{i})]
∏

i∈V−C N{i}L. In addition, observe that∏
i∈V−C N{i})L(x) = L(xV−C) depends on xC only, thus

∏
i∈I [N�{i}(1−N{i})]

∏
i∈V−C N{i}L

is equal to some function hC(XC). It follows that L(X) =
∑

C⊆V hC(XC) and P (X) =∏
C⊆V e

hC(XC). The proof is completed by letting gC(XC) = hC(XC), �

B.Additiveness of local Markovian property. Hammersley and Clifford (1971) showed

that if P is Markovian for all Xi on G, then P is Markovian on G. We prove the

following additiveness property for being locally Markovian. The above result follows

as a simple consequence.

Proposition 29. If P is Markovian at I1, . . . , Ik on G, then P is Markovian at I1 ∪

. . . ∪ Ik on G.
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Proof. Let NI1,I2 denote NI1 +NI2 −NI1∪I2 . If I1, I2 ⊆ I, then � I ⊆� I2, and

NI1,�INI2,�I2

= (NI1 +N�I −NI1∪�I)(NI2 +N�I2 −NI2∪�I2)

= (NI1∪I2 +XXXXNI1∪�I2 −
XXXXXXNI1∪I2∪�I2) + (N�I∪I2 +N�I2 −NI2∪�I2)

−(NI1∪I2∪�I +XXXXNI1∪�I2 −
XXXXXXNI1∪I2∪�I2)

= NI1∪I2 +N�I∪I2 +N�I2 −NI2∪�I2 −NI1∪I2∪�I

= (NI1∪I2 +H
HHN�I −NI1∪I2∪�I) + (ZZNI2 +N�I2 −NI2∪�I2)− (ZZNI2 +H

HHN�I −NI2∪�I)

= NI1∪I2,�I +NI2,�I2 −NI2,�I .

For any I1, I2 ⊆ I, we have

(NI,�I −NI1,�I)NI2,�I2 = NI∪I2,�I +NI2,�I2 −NI2,�I − (NI1∪I2,�I +NI2,�I2 −NI2,�I)

= NI,�I −NI1∪I2,�I .

Now let I = I1 ∪ . . .∪ Ik. If P (X) is Markovian for all Ij on G, then L(X) is invariant

of NIj ,� Ij for all j, and thus we have

NI,�IL− L = (NI,�I −N∅,I)L

= (NI,�I −N∅,I)
∏
i∈I

N{i},�{i}L

= (NI,�I −NI,�I)L

= 0.

�

C.Conditional random fields. Hammersley-Clifford’s theorem clearly holds for con-

ditional distributions of a collection of variables as well. A CRF is then defined as a
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pair (P,G) where P (Y |X) satisfies the conditional Markov property with respect to

G. Note that this definition includes the CRFs in Example 15 as special cases.

D.Connections to directed graphical models. For directed graphical models, the

Markov blanket of a node consists of its parent, its children and any other parents

of its children. The Markov blanket of a set of nodes I is the union of the Markov

blankets of its elements but with nodes in I removed. The proof of Proposition 28

only requires the Markov blanket of a set to be disjoint with it, thus it holds for di-

rected graphical models as well. Similarly, the proof of Proposition 29 only requires

the definition of Markov blanket to satisfy the additional property that � I ⊆� I1

whenever I1 ⊆ I, but this property holds for the directed case as well, thus it also

holds that the property of being locally Markovian is additive. There is also a factor-

ization result similar to that of Hammersley and Clifford: Let G be a DAG, and P be

a positive distribution. Then P is Markovian on G iff there exists positive probability

functions f(xi|Pa(Xi)) such that P (X) =
∏n

i=1 f(Xi|Pa(Xi)). However, the proof of

Theorem 27 does not have an immediate analogue in this case.

3.5.3 Inference

We are often interested in computing the most likely configuration for all variables or

single variables for MRFs or CRFs. There is a well-known connection between the

most likely configuration for all variables and the most likely configurations for single

variables.

Proposition 30. Suppose P (X1, . . . , Xn|t, θ) ∝ eθ·T (X1,...,Xn)/t, where t is often called

a temperature parameter. Assume there is a unique most likely global configuration at

temperature t = 1, and denote it by

(x∗1, ..., x
∗
n) = arg max

x1,...,xn
P (x1, . . . , xn|t = 1, θ), (3.5.2)
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Denote the most likely (breaking ties arbitrarily) configuration for a single variable at

temperature t as

x′i,t = arg max
xi

P (xi|t, θ). (3.5.3)

Then when t > 0 is sufficiently small, x∗i = x′i,t for all i.

The above result implies that if we have an algorithm to compute the marginals

for single variables, then by making the temperature small enough, we can recover the

most likely global configuration.

For the case when the graphical structure is a linear chain, computing the most

likely configurations for all the variables and single variables can be done efficiently. In

this case, the distribution can be written as (omitting the observed variables for the

case of CRFs)

P (X1, . . . , Xn) = Cϕ1,2(X1, X2)ϕ2,3(X2, X3) . . . ϕn−1,n(Xn−1, Xn), (3.5.4)

where C is some constant. Thus we have

P (xn) = C
∑

x1,...,xn−1
P (x1, . . . , xn)

= C
∑

x2,...,xn−1
[
∑

x1
ϕ1,2(x1, x2)]ϕ2,3(x2, x3) . . . ϕn−1,n(xn−1, xn)

= C
∑

x2,...,xn1
α2(x2)ϕ2,3(x2, x3)]ϕ3,4(x3, x4) . . . ϕn−1,n(xn−1, xn)

= C
∑

x3,...,xn1
[
∑

x2
α2(x2)ϕ2,3(x2, x3)]ϕ3,4(x3, x4) . . . ϕn−1,n(xn−1, xn)

= C
∑

x3,...,xn1
α3(x2)ϕ3,4(x3, x4) . . . ϕn−1,n(xn−1, xn)

. . .

= Cαn(xn).

The marginal P (Xn) can now be expressed as

P (xn) = αn(xn)/
∑

x′n
αn(x′n). (3.5.5)
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In the above equations, α1(x1) = 1, and for t > 1,

αt(xt) =
∑

xt−1
αt−1(xt−1)ϕ(xt−1, xt). (3.5.6)

αi’s are called the forward variables and a more intuitive definition of it is

αt(xt) =
∑

x1,...,xt−1
ϕ1,2(x1, x2) . . . ϕt−1,t(xt−1, xt). (3.5.7)

The above algorithm is known as the variable elimination algorithm (Zhang and Poole,

1994). The time complexity is O(nm2) if each variable can take at most m values.

Variable elimination can be used to compute all P (Xi)’s separately in a total of

O(n2m2) time. This can be sped up using the forward-backward algorithm (Rabiner,

1989). Define the backward variable

βt(xt) =
∑

xt+1,...,xn
ϕt,t+1(xt, xt+1) . . . ϕn−1,n(xn−1, xn), (3.5.8)

Then we have a similar DP algorithm to compute the backward variables by noting

that βn(xn) = 1 and

βt(xt) =
∑

xt+1
ϕ(xt, xt+1)βt+1(xt+1). (3.5.9)

It is easy to verify that

P (xt, xt+1) = Cαt(xt)ϕt,t+1(xt, xt+1)βt+1(xt+1). (3.5.10)

Marginalizing away one of the variables, then we get the required marginals. The time

complexity is O(nm2).

The most likely configurations for all variables can be found by replacing the sum

operators using max operators in variable elimination.

Inference for general graphical structure is known to be NP-hard (Istrail, 2000),
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but inference over tree structures can be done using belief propagation (Pearl, 1982).

For general graphical structure, the junction tree algorithm (a.k.a. the clique tree

algorithm) can be used to convert the inference problem to one for a tree structure. See

(Huang and Darwiche, 1996) for a procedural guide for the case of Bayesian networks,

and (Kschischang et al., 2001) for a presentation of the algorithm using factor-graphs.

Alternatively, loopy belief propagation can often be used to give good probability

estimates as well (Yedidia et al., 2003).
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Chapter 4

Sparse High-order CRFs for

Sequence Labeling

As we have pointed out in Section 3.5, CRFs have been successfully applied in various

problems, including named-entity recognition, handwriting recognition, gene predic-

tion, table extraction, and object recognition. However, inference for general CRFs

are intractable. While a significant part of the modeling power of CRF depends on its

flexibility to incorporate arbitrary structural dependencies, the complexity of general

inference algorithms blows up quickly as the complexity of structural dependencies

being captured increase. For example, consider order k dependencies, which are de-

pendencies between k+ 1 consecutive labels. While capturing high-order dependencies

between consecutive characters in handwritting recognition (Kassel., 1995) is useful,

a general inference algorithms like the junction tree algorithm has time complexity

exponential in the maximum order (Huang and Darwiche, 1996). Another example

where structural dependency is useful is in labeling multiple activities (Patterson et al.,

2005). There are often patterns in which activities can happen, for example, one ac-

tivity may exclude another, or imply another. But capturing such dependencies leads

to computationally hard problems. For example, FCRFs can be used to capture such
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dependencies, but the time complexity scales exponentially as the number of activities

increases. Thus although structural dependencies among labels is an important source

of information, and CRFs can be used to capture arbitrary dependencies of the la-

bels on the observations, typically only first-order dependencies, that is, dependencies

between adjacent labels are considered.

Since restricting the kind of dependencies a model uses can lead to significant loss

of information, approximation algorithms have often been used to handle complex de-

pendencies. However, while approximation algorithms have been successfully applied,

they have also been seen to give results which are not really related to the true ones

Murphy et al. (1999). This motivates us to search for efficient exact algorithms for

sub-classes of CRFs. In particular, in this chapter and the next, we shall demonstrate

that such efficient exact algorithms exist for two classes of CRFs with sparse potential

funtions.

This chapter presents efficient inference and learning algorithms for high-order

CRFs, that is, CRFs with high-order dependencies. The algorithms exploit the obser-

vation that generally the set of observed label patterns is sparse, that is, the number

of observed label patterns is much smaller than the number of possible patterns. The

time complexity scales polynomially in the number of observed label patterns. The

results presented here describes and extends our previous work on high-order CRFs

(Ye et al., 2009).

Here is an outline of this chapter. Section 4.1 first reviews some related works

on capturing long-range dependencies. Section 4.2 presents the form of high-order

features used. Section 4.3 discusses the effect of omitting inactive features in a CRF,

and provides a justification for using only seen label patterns in high-order features.

Section 4.4 derives efficient algorithms for computing marginals and Viterbi parses for

sparse high-order CRFs. Section 4.5 presents how maximum likelihood learning can

be done by using gradient descent algorithms. Section 4.6 describes some extensions of
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the algorithms presented. Section 4.7 demonstrates that high-order features can lead

to substantial performance improvements for some problems and discuss conditions

under which high-order features can be effective.

4.1 Long-range Dependencies

A CRF can be used to capture arbitrary dependencies among components of x and y, in

practice, this flexibility of the CRF is not fully exploited as inference in Markov models

is NP-hard in general (Istrail, 2000), and can only be performed efficiently for special

cases such as linear chains. As such, most applications involving CRFs are limited

to some tractable Markov models. This observation also applies to other structured

prediction methods such as structured support vector machines (Taskar et al., 2003;

Tsochantaridis et al., 2004).

A commonly used inference algorithm for CRF is the clique tree algorithm (Huang

and Darwiche, 1996). However, with a feature depending on k consecutive labels,

the running time will be exponential in k. When only a small number of patterns

are used, our algorithm achieves efficiency by maintaining only information related

to a few occurred patterns, while previous algorithms maintain information about all

(exponentially many) possible patterns.

Long distance dependencies can also be captured using hierarchical models such as

Hierarchical Hidden Markov Model (HHMM) (Shai Fine and Tishby, 1998) or Prob-

abilistic Context Free Grammar (PCFG) (Jelinek et al., 1992). The time complexity

of inference in an HHMM is O(min{nl3, n2l}) (Shai Fine and Tishby, 1998; Murphy

and Paskin, 2002), where n is the number of states and l is the length of the sequence.

Discriminative versions such as hierarchical CRF has also been studied (Truyen et al.,

2008). Inference in PCFG and its discriminative version can also be efficiently done in

O(ml3) where m is the number of productions in the grammar (Jelinek et al., 1992).
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These methods are able to capture dependencies of arbitrary lengths, unlike k-order

Markov chains. However, to do efficient learning with these methods, the hierarchical

structure of the examples need to be provided. For example, if we use PCFG to do

named entity recognition, we need to provide the parse trees for efficient learning; pro-

viding the named entity labels for each word is not sufficient. Hence, a training set that

has not been labeled with hierarchical labels will need to be relabeled before it can be

trained efficiently. Alternatively, methods that employ hidden variables can be used

(e.g. to infer the hidden parse tree) but the optimization problem is no longer convex

and local optima can sometimes be a problem. Using high-order features captures less

expressive form of dependencies than these models but allows efficient learning without

relabeling the training set with hierarchical labels.

Qian et al. (2009) independently presented algorithms for a larger class of sparse

high-order CRFs, which can require exponential time, and they did not identify a class

of high-order CRFs with polynomial time algorithms. Their algorithm relies on group-

ing the states and the transitions with the same potential functions, and performing

inference on the grouped states. Our algorithm also uses grouping to yield a compact

representation for efficient inference, but exploits the structure of the particular form

of high-order features for such grouping.

4.2 High-order Features

We shall use x, y, z (with or without decorations) to denote respectively an observation

sequence of length T , a label sequence of length T , and an arbitrary label sequence.

The function |·| denotes the length of any sequence. The set of labels is Y = {1, . . . , n}.

If z = (y1, . . . , yt), then zi:j denotes (yi, . . . , yj). When j < i, zi:j is the empty sequence

(denoted by ε). Let the features being considered be f1, . . . , fm. Each feature fi is
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associated with a label sequence zi, called fi’s label pattern, and fi has the form

fi(x,y, t) = I(yt−|zi|+1:t = zi)gi(x, t). (4.2.1)

We call fi a feature of order |zi|−1. To illustrate, consider the problem of named entity

recognition. The observations x = (x1, . . . , xT ) may be a word sequence; gi(x, t) may

be an indicator function for whether xt is capitalized or may output a precomputed

term weight if xt matches a particular word; and zi may be a sequence of two labels,

such as (person, organization) for the named entity recognition task, giving a feature

of order one.

Recall that a CRF defines conditional probability distributions P (y|x) = Zx(y)/Zx,

where Zx(y) = exp(
∑m

i=1

∑T
t=|zi| λifi(x,y, t)), and Zx =

∑
y Zx(y). The normalization

factor Zx is called the partition function. Most of the time we shall be concerned with

only a fixed sequence x, thus we often simply write Z(y) and Z for Zx(y) and Zx. The

same convention applies to notations defined later.

4.3 Sparsity

The effectiveness of our algorithms for high order CRFs relies on two assumptions.

One is that the set of observed label patterns is sparse, that is, the number of observed

label patterns is much smaller than the number of possible label patterns. The other is

that omitting unseen label patterns does not have adverse effect on performance. The

first assumption generally holds for real datasets. We discuss the second assumption.

An attribute or a feature is said to be inactive if its value is always 0 in the training

data, and active otherwise. Recall that as defined in Section 2.3.1 an attribute is a

function of the observation, while a feature is a function of both the observation and

label. Hence omitting inactive attributes and omitting inactive features are not the

same, because one attribute may correspond to different features. For example, in
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logistic regression, the i-th attribute is associated with features of the form fi,y′(x, y).

If an attribute is inactive, then the models learned with and without the attribute

are often the same. For example, this is true for SVMs, and the generalized representer

theorem says that this is true for a large class of algorithms (Schölkopf et al., 2001).

For the case of CRFs, it is also easy to show that if training is done by maximizing

likelihood regularized with a Gaussian prior, then features using an inactive attribute

will have weight 0. Hence omitting inactive attributes lead to a more compact model

without hurting performance.

However, omitting an inactive feature generally do not lead to the same models. For

CRFs, the weights of inactive features in an MLE are negative-infinity. Hence, inactive

features cannot be activated in the most probable explanations, that is, Viterbi parses,

determined by such MLEs. On the other hand, omitting a feature is equivalent to

forcing its weight to be 0. If the MLE for a CRF with inactive features omitted is used

to determine the Viterbi parse of a sequence, then inactive features may be active.

So using maximum likelihood estimation, the sparse model tolerates the activation of

inactive features, while the nonsparse model does not.

In the case our high-order features, using unobserved label patterns in the features

forbids these label patterns from occurring in the Viterbi parses. This can easily cause

overfitting, especially when there are only a few examples. Omitting inactive features

avoids this problem.

Certainly, the above discussion does not guarantee that omitting inactive features

leads to a model with better performance. In addition, with regularization, the possi-

bility of overfitting caused by using unobserved label patterns is reduced.

In practice, we observed that omitting inactive features may or may not lead to

better performance, but generally the difference is not large, so whether we should use

a sparse model or a dense one may not be the most important – the more important

thing is to first choose good features based on domain knowledge. Then one can use
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a sparse model if computation resource is limited, since omitting inactive features can

effectively reduce the time and space complexity.

4.4 Viterbi Parses and Marginals

In this section, we describe the algorithms for computing the partition function, the

marginals and the most likely label sequence for high-order CRFs. We give rough poly-

nomial time complexity bounds to give an idea of the effectiveness of the algorithms.

These bounds are pessimistic compared to practical performance of the algorithms. It

can also be verified that the algorithms for linear chain CRF (Lafferty et al., 2001) are

special cases of our algorithms when only zero-th and first order features are considered.

We shall work with three sets: the pattern set Z, the forward-state set P and the

backward-state set S. The pattern set, Z, is the set of distinct label patterns used in

the m features. The forward-state set, P , consists of all labels and all proper prefixes

(including ε) of label patterns. Similarly, S consists of the labels and all proper suffixes

(including ε) of label patterns. Unless otherwise stated, p / s (decorated or not) denotes

an element of P /S.

We can use the forward / backward states to induce partitions of label sequences as

follows. For p ∈ P , a label sequence z is said to be in the forward state p, denoted by

z
p
∈ p, if p is the longest element in P such that z ends with p. We adopt the notation

p
∈ to highlight the fact that each forward state p can be considered as the set of all

label sequences which are in p. Similarly, for s ∈ S, a label sequence z is said to be

in the backward state s, denoted by z
s∈ s, if s is the longest element in S such that z

starts with s. The following proposition shows that the set of forward/backward states

indeed induce a partition of the label sequences.

Proposition 31. Any z is in one and only one forward / backward state.

Proof. Consider the forward state set P . For any z, consider the set of all p ∈ P
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such that z ends with p. This set is nonempty because z ends with ε. In addition

all elements in this set are of different lengths, thus there is a unique longest element.

That is, z is in one and only one forward state.

The backward case is similar. �

We define state transition functions for the forward and backward states:

T p(p, y)
def
= p′ if py

p
∈ p′, (4.4.1)

T s(s, y)
def
= s′ if ys

s∈ s′, (4.4.2)

where piy and ys denote concatenations of two strings. By Proposition 31, we know

that p′ and s′ exist and are unique. Equivalently,

Proposition 32. T p and T s are well defined on P × Y and S × Y respectively.

We will generally drop the p and s in the notations
p
∈,

s∈, T p, T s, as it is usually

clear whether we are working with forward states or backward states.

Finally, the subsequence relationship defined below are used when combining for-

ward and backward variables to compute marginals. Let z ⊆ z′ denote that z is a

subsequence of z′, z ⊂ z′ denote that z is a subsequence of z′2:|z′|−1. The addition of

subscript j in ⊆j and ⊂j indicates that z ends at position j in z′ as well.

In the following, we consider how to compute several key quantities for a fixed

observation sequence x.

4.4.1 The Forward and Backward Variables

We now define forward vector α and backward vector β and give dynamic programming

algorithms for computing them. We shall first describe the algorithm for the forward

vector. The algorithm for the backward vector is similar.
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A forward variable is the sum of scores of all partial sequences of the same length

and in the same forward state. Formally, consider a label sequence y for x, define the

prefix score function

P (y, t)
def
= exp(

m∑
i=1

t∑
t′=|zi|

λifi(x,y, t
′)). (4.4.3)

Note that if z = y1:t = y′1:t, then P (y, t) = P (y′, t), thus we can define P (z) = P (y, t).

The forward variable α(t,p) is defined as α(t,p)
def
=
∑
|z|=t,z∈p P (z). Each vector α(t, ·)

is of dimension |P|.

The key ingredients to the DP algorithm for computing α are the following two

properties.

Proposition 33. (a) (Factorization) If z ∈ p, then

P (zy) = Ψp(|zy|,py)P (z), where (4.4.4)

Ψp(t, z)
def
= exp(

∑
zi is a suffix of z λigi(x, t)) (4.4.5)

(b) (Transition) For any z and y, if z ∈ p, then zy ∈ T (p, y).

Proof. (a) Let y be an arbitrary length |x| label sequence extending zy, t = |zy|, then

by the definition of the prefix score function,

P (zy)/P (z) = exp(
∑m

i=1 λifi(x,y, t)).

By the definition of fi in Eq. 4.2.1, fi(x,y, t) is 0 if zi is not a suffix of zy, and it is

equal to gi(x, t) otherwise. Hence

P (zy)/P (z) = exp(
∑

zi is a suffix of zy λigi(x, t)).
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Suppose zi is a suffix of zy but not a suffix of py. Let p′ be the sequence obtained

by removing last label of zi, then p′ is a forward state, but z ends with p′ and p′ is

longer than p. Hence z is not in the forward state p, a contradiction. Thus zi must

be a suffix of py, and

P (zy)/P (z) = exp(
∑

zi is a suffix of py λigi(x, t)).

(b) Consider the set of forward states which zy ends with. None of such forward state

can be longer than py because otherwise p is no longer the longest forward state z

ends with. Hence all these forward states must be suffixes of py, and the longest one

must be T (p, y). �

From the above two properties, we can derive the following DP algorithm for α.

Theorem 34. The forward variable satisfies α(0, ε) = 1, α(0,p) = 0 for all p 6= ε. In

addition,

α(t,p) =
∑

p′y∈p Ψp(t,p′y)α(t− 1,p′), for 1 ≤ t ≤ T, (4.4.6)

where the summation is over all p′, y such that p′ ∈ p.

Proof. By definition of α, we have the base case formula α(0, ε) = 1, and α(0,p) = 0

for all p 6= ε.

For the recurrence formula, consider any z such that |z| > 0 and z ∈ p. Let z = z′y,
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and z′ ∈ p′, then by Proposition 33, p′y ∈ p. Hence

α(t,p) =
∑
|z|=t,z∈p P (z)

=
∑

p′y∈p
∑
|z′|=t−1,z′∈p′ P (z′y)

=
∑

p′y∈p
∑
|z′|=t−1,z′∈p′ Ψ

p(t,p′y)P (z′)

=
∑

p′y∈p Ψp(t,p′y)
∑
|z′|=t−1,z′∈p′ P (z′)

=
∑

p′y∈p Ψp(t,p′y)α(t− 1,p′)

�

The backward case is similar, but we describe the key steps for the sake of com-

pleteness and preciseness. Define suffix score

S(y, t)
def
= exp(

m∑
i=1

T∑
t′=t+|zi|−1

λifi(x,y, t
′)). (4.4.7)

If z = yt:T = y′t:T , then S(y, t) = S(y′, t), thus we can define S(z) = S(y, t). The

backward variable β(t, s) is defined by

β(t, s)
def
=

∑
z:|z|=T+1−t,z∈s

S(z). (4.4.8)

Let Ψs
x(t, s)

def
= exp(

∑
zi is a prefix of s λigi(x, t+ |zi| − 1)). by definition, β(T + 1, ε) = 1,

and β(T + 1, s) = 0 for all s 6= ε. The recurrence for β is

β(t, s) =
∑

ys′∈s Ψs(t, ys′)β(t+ 1, s′) for 1 ≤ t ≤ T. (4.4.9)

Once α or β is computed, then Z can be easily obtained:

Z =
∑

p α(T,p) =
∑

s β(1, s). (4.4.10)
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Time Complexity: Assume that each evaluation of the function gi(·, ·) can be per-

formed in unit time for all i. 1 All relevant values of Ψp
x that are used can hence

be computed in O(m|Y||P|T ) time. In practice, this is pessimistic, and the compu-

tation can be done more quickly. For all following analyses, we assume that Ψp has

already been computed and stored in an array. Now all values of α can be computed

in Θ(|Y||P|T ) time. Similar bounds for Ψs and β hold.

4.4.2 Viterbi Decoding

As in the case of HMM (Rabiner, 1989), Viterbi decoding (calculating the most likely

label sequence) is obtained by replacing the sum operator in the forward backward

algorithm with the max operator.

Formally, let

δ(t,p)
def
= max
|z|=t,z∈p

P (z). (4.4.11)

By definition, δ(0, ε) = 1, and δ(0,p) = 0 for all p 6= ε. The recurrence is given by

δ(t,p) = max
p′y∈p

Ψp(t,p′y)δ(t− 1,p′), for 1 ≤ t ≤ T. (4.4.12)

We use Φ(t,p) to record the pair (p′, y) chosen to obtain δ(t,p),

Φ(t,p) = arg max
p′y∈p

Ψp(t,p′y)δ(t− 1,p′). (4.4.13)

Let p∗T = arg maxp δ(T,p), then the most likely path y∗ = (y∗1, . . . , y
∗
T ) has y∗T as

the last label in p∗T , and the full sequence can be traced backwards using Φ(·, ·) as

1This is acceptable in many cases, but not necessarily true. For example, if x is a sequence of
words and we define g(x, t) as the number of words in x at most some edit distance away from the
t-th word, then computing g(x, t) takes time linear in the length of the sentence and the length of the
t-th word if the standard DP algorithm is used.
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follows

(p∗t , y
∗
t ) = Φ(t+ 1,p∗t+1), for 1 ≤ t < T. (4.4.14)

Time Complexity: Either Ψp or Ψs can be used for decoding; hence decoding can

be done in Θ(|Y|min{|P|, |S|}T ) time.

4.4.3 Marginals

We need to compute marginals of label sequences and single variables, that is, compute

P (yt−|z|:t = z|x) for z ∈ Z ∪ Y . Unlike in the traditional HMM, additional care need

to be taken regarding features having label patterns that are super or sub sequences

of z. We define

W (t, z) = exp(
∑

(i,j):zi⊂jz λigi(x, t− |z|+ j)).

This function computes the sum of all features that may activate strictly within z.

For any z, if |z| > 1, then let z− = z2:|z| and z− = z1:|z|−1. If |z| = 1, then let

z− = z− = z. If p ends with z− and s starts with z−, define [p, z, s] as the sequence

p1:|p|−|z−|zs(|z−|+1):|s|, and

O(t,p, s, z) = exp(
∑

z⊆zk,zk⊆i[p,z,s] λkgk(x, t− |p|+ i− 1)).

O(t,p, s, z) counts the contribution of features with their label patterns properly con-

taining z but within [p, z, s].

Proposition 35. Let z ∈ Z ∪ Y. For any y such that y1:t ends with z, there exist

unique p, s such that p ends with z−, s starts with z−, y1:t−1 ∈ p, and yt−|z−|+1:T ∈ s.

In addition, Z(y) = 1
W (t,z)

P (y, t− 1)S(y, t− |z−|+ 1)O(t,p, s, z).

Multiplying by O counts features that are not counted in P (y1:t−1)S(yt−|z|+2:T )
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while division by W removes features that are double-counted. By Proposition 35, we

have

P (yt−|z|+1:t = z|x) =

∑
p ends with z−, s starts with z− α(t− 1,p)β(t− |z−|+ 1, s)O(t,p, s, z)

ZW (t, z)
.

Time Complexity: Let L denote the maximum order of the features, then both

W (t, z) and O(t,p, s, z) can be computed in O(|p||s|) = O(L2) time. Let c(Z) denotes

the sum all products |p||s| over triplets (p, z, s) satisfying z ∈ Z, p ends with z−, and

s starts with z−, then P (yt−|z|+1:t = z|x) can be computed in time O(c(Z)). A simple

upper bound for c(Z) is L2|P||S|.

4.5 Training

Given a training set T , the model parameters λi’s can be chosen by maximizing the

regularized log-likelihood LT = ln Π(x,y)∈T P (y|x)−∑m
i=1

λ2i
2σ2
reg

, where σreg is a param-

eter that controls the degree of regularization. Note that LT is a ∩-convex function of

λ1, . . . , λm. Let Fi(x,y) =
∑

t fi(x,y, t), then its maximum is achieved when

∂LT
∂λi

= Ẽ(Fi)− E(Fi)−
λk
σ2
reg

= 0,

where

Ẽ(Fi) =
∑

(x,y)∈T

Fi(x,y), (4.5.1)

is the empirical average of Fi, and

E(Fi) =
∑

(x,y)∈T

∑
|y′|=|x|

P (y′|x)Fi(x,y
′), (4.5.2)
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is the expected value of Fi. Given the gradient and value of LT , we use the L-BFGS

optimization method (Liu and Nocedal, 1989), for maximizing the regularized log-

likelihood, as it has been demonstrated to be a superior method for optimizing CRFs

(Sha and Pereira, 2003).

The function LT can now be computed because we have shown how to compute

Zx, and computing the value of Zx(y) is straightforward, for all (x,y) ∈ T . For

the gradient, computing Ẽ(Fi) is straightforward, and E(Fi) can be computed using

marginals computed in previous section:

E(Fi) =
∑

(x,y)∈T

∑
t

P (y′t−|zi|+1:t = zi|x)gi(x, t). (4.5.3)

Time Complexity: Computing the gradient is clearly more time-consuming than

LT , thus we shall just consider the time needed to compute the gradient. Let l =∑
(x,y)∈T |x|. We need to compute at most |Z|l marginals, thus total time needed to

compute all the marginals is O(L2|Z||P||S|l). Given the marginals, we can compute the

gradient in O(mL) time. The running time for each iteration is O((L2|Z||P||S|+m)l).

4.6 Extensions

We briefly discuss several extensions of the above algorithms.

4.6.1 Generalized Partition Functions

We demonstrate that our algorithm for computing a very general class of quantities

which generalizes the partition function, and will thus be called the generalized parti-

tion.

In the following, we assume a fixed set of features, and use ~λ, with or without

decorations, to denote a feature weight vector. We consider a fixed observation sequence
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x. In previous section we have omitted the weight vector in the notations since only

one weight vector is considered. Here we shall explicitly include the weight vector.

For example, we write Z(y) as Z(y;~λ). For integers a, b, we define the generalized

partition function

Za,b(~λ1, ~λ2)
def
=
∑

y[Z(y;~λ1)]a[lnZ(y;~λ2)]b (4.6.1)

The generalized partition function can be used to compute various important quanti-

ties. We first illustrate this, and then give an O(|b|3|Y|min(|P|, |S|)T ) time algorithm

to compute it.

The usual partition function Z(~λ) is just Z1,0(~λ,~λ). It is easy to verify the following

formula which express entropy, conditional entropy, and expected feature sum in terms

of the generalized partition functions, and thus they can be efficiently computed.

(a) (Entropy) Given an observation sequence, the entropy H(Y |x, ~λ) for its label

sequence distribution as given by a CRF with parameter ~λ is

−∑y p(y|x;~λ) ln p(y|x;~λ) = lnZ(~λ)− Z1,1(~λ,~λ)

Z(~λ)
. (4.6.2)

The entropy can be used as a regularizer for semi-supervised learning (Jiao et al.,

2006; Mann and McCallum, 2007), or used for example selection in active learning

(Kim et al., 2006). To use it with gradient methods for training, we also show

how the gradient of entropy can be computed efficiently. First we have (Mann

and McCallum, 2007)

∂H(Y |x, ~λ)

λi
(4.6.3)

= −∑y(Fi(x,y)− Fi(x))p(y|x, ~λ) ln p(y|x, ~λ) (4.6.4)

= −∑y Fi(x,y)p(y|x, ~λ) ln p(y|x, ~λ) + Fi(x)H(Y |x, ~λ), (4.6.5)
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where Fi(x) = E(Fi(x,y)|x, ~λ). We have shown how to compute Fi(x) and

H(Y |x, ~λ), thus the second term can be computed. For the first term, note that

−∑y Fi(x,y)p(y|x, ~λ) ln p(y|x, ~λ) (4.6.6)

= −∑y

∑
t fi(x,y, t)p(y|x, ~λ) ln p(y|x, ~λ) (4.6.7)

= −∑t fi(x,y, t)
∑

y p(y|x, ~λ) ln p(y|x, ~λ) (4.6.8)

= −∑t gi(x, t)
∑

yends with zi at t p(y|x, ~λ) ln p(y|x, ~λ). (4.6.9)

Thus it suffices to compute all H(Y |x, ~λ, Y ends with zi at t) for all different zi

and t values. This can be computed using the same method as for computing the

entropy, but restricting the possible values for those |zi| labels ending at t.

(b) (KL-divergence) The KL-divergence between two CRFs with ~λ1 and ~λ2 as the

parameters is given by

∑
y p(y|x;~λ1) ln p(y|x;~λ1)

p(y|x;~λ2)
= Z1,1(~λ1,~λ1)−Z1,1(~λ1,~λ2)

Z(~λ1)
− [lnZ(~λ1)− lnZ(~λ2)]. (4.6.10)

(c) (Expected feature sum) Let ~λ′ be the unit vector with the kth component being

1, then

E(Fk(x,y, t;~λ)|x) = Z1,1(~λ,~λ′)/Z(~λ). (4.6.11)

Using the above equation, we can compute the gradient of the loglikelihood func-

tion in O(m|Y|min{|P|, |S|}T ) time.

We now sketch how to compute the generalized partition function. First, note that

Za,b(~λ1, ~λ2) = Z1,b(a~λ1, ~λ2), thus it suffices to consider the case when a = 1. Define

the generalized forward vector

αb(t,p;~λ1, ~λ2) =
∑
|z|=t,z∈p P (z;~λ1)[lnP (z;~λ2)]b. (4.6.12)
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Then the generalized partition function can be computed as

Z1,b(~λ1, ~λ2) =
∑

p αb(T,p;~λ1, ~λ2). (4.6.13)

Hence it suffices to compute the generalized forward vector. For simplicity of notation,

we write Ψp as Ψ in the following.

Theorem 36. For b ≥ 0 and t > 0, we have

αb(t,p;~λ1, ~λ2) =
∑

i

(
b
i

)∑
p′y∈p Ψ(t,p′y;~λ1)[ln Ψ(t,p′y;~λ2)]b−iαi(t− 1,p′). (4.6.14)

Proof. The proof is similar to that of Theorem 34.

αb(t,p;~λ1, ~λ2)

=
∑
|z|=t,z∈p P (z;~λ1)[lnP (z;~λ2)]b

=
∑

p′y∈p
∑
|z′|=t−1,z′∈p′ P (z′y;~λ1)[lnP (z′y;~λ2)]b

=
∑

p′y∈p
∑
|z′|=t−1,z′∈p′ Ψ(t,p′y)P (z′)[lnP (z′;~λ2) + ln Ψ(t,p′y;~λ2)]b

=
∑

p′y∈p
∑
|z′|=t−1,z′∈p′ Ψ(t,p′y)P (z′)

∑
i

(
b
i

)
[lnP (z′;~λ2)]i[ln Ψ(t,p′y;~λ2)]b−i

=
∑

i

(
b
i

)∑
p′y∈p

∑
|z′|=t−1,z′∈p′ Ψ(t,p′y)[ln Ψ(t,p′y;~λ2)]b−iP (z′)[lnP (z′;~λ2)]i

=
∑

i

(
b
i

)∑
p′y∈p Ψ(t,p′y)[ln Ψ(t,p′y;~λ2)]b−i

∑
|z′|=t−1,z′∈p′ P (z′)[lnP (z′;~λ2)]i

=
∑

i

(
b
i

)∑
p′y∈p Ψ(t,p′y;~λ1)[ln Ψ(t,p′y;~λ2)]b−iαi(t− 1,p′;~λ2).

�

Take b = 0, and ~λ1 = ~λ2, then we obtain the recurrence formula in Theorem 34.

Using the above recurrence, assuming all Ψ values can be retrieved in unit time, we

can compute α0, α1, α2, . . . , αb successively in a total of O([12 + 22 + . . . + (b +

1)2]|P||Y|T ) = O(b3|P||Y|T ) time. We can similarly define the backward version to
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achieve O(b3 min{|P|, |S|}YT ) time.

4.6.2 Semi-Markov features

For semi-Markov CRFs using zeroth and first order features, and high-order semi-

Markov features of the form

f(x,y, t) = I(y1:t has a suffix matching p,while y1:t+1 does not),

where p is a label pattern such as a+b+c+ (here a+ is the regular expression denoting

that there is at least one a), can be efficiently trained and decoded. See (Nguyen et al.,

2011) for more details.

4.6.3 Incorporating constraints

We can modify the forward and backward algorithm to compute more general partition

functions, by setting U appropriately in the following modification of Eq. 4.4.6

α(t,p) =
∑

p′y∈p Ψp(t,p′y)α(t− 1,p′)U(p′y, t). (4.6.15)

To illustrate, suppose x is only labeled at certain positions, with those unlabeled po-

sitions marked by ∅, and let y denote this incomplete label sequence. To compute

the partition function
∑
|z| = |x| and z agrees with y on labeled positions Z(z), we just need to set

U(x,p′y, t) = I(yt:t = ∅ or yt:t = y). This can be used for performing training on par-

tially labeled data, and for computing marginals. Note that this method also provides

a method to compute marginals.

Similar modification can be done on the Viterbi algorithm for decoding under var-

ious types of constraints.
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4.7 Experiments

We first use a synthetic dataset to study conditions under which high-order features

can potentially be useful, then we use a handwritten character recognition dataset

to demonstrate that incorporating simple high-order features can lead to impressive

performance improvement on a real problem. 2

4.7.1 Labeling High-order Markov Chains

We use high-order Markov chains to generate synthetic data to investigate conditions

under which high-order features are useful.

We randomly generate an order k Markov model with n states s1, . . . , sn as follows.

To increase pattern sparsity, we allow at most r randomly chosen possible next state

given the previous k states. This limits the number of possible label sequences in each

length k + 1 segment from nk+1 to nkr. The conditional probabilities of these r next

states are generated by randomly selecting a vector from uniform distribution over

[0, 1]r and normalizing it. Each state si generates an observation (a1, . . . , am) such

that aj follows a Gaussian distribution with mean µij and standard deviation σ. Each

µi,j is independently randomly generated from the uniform distribution over [0, 1]. In

the experiments, we set n = 5, r = 2 and m = 3.

The standard deviation, σ, has an important role in determining the characteristics

of the data generated by this Markov model. If σ is very small as compared to most

µij’s, then using the observations alone as features is likely to be good enough to

obtain a good classifier of the states; the label correlations becomes less important for

classification. However, if σ is large, then it is difficult to distinguish the states based

on the observations alone and the label correlations, particularly those captured by

higher order features are likely to be helpful. In short, the standard deviation, σ, is

2The results presented are better than those in (Ye et al., 2009) due to a bug in the decoding
algorithm.
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used to control how much information the observations reveal about the states.

We use the current, previous and next observations, rather than just the current

observation as features, exploiting the conditional probability modeling strength of

CRFs. For higher order features, we simply use all indicator features that appeared in

the training data up to a maximum order. We considered the case k = 2 and k = 3,

and varied σ and the maximum order. The training set and test set each contains

500 sequences of length 20; each sequence was initialized with a random sequence of

length k and generated using the randomly generated order k Markov model. Training

was done by maximizing the regularized log likelihood with regularization parameter

σreg = 1. The experimental results are shown in Figure 4.1.
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Figure 4.1: Accuracy as a function of maximum order on the synthetic data set.

Figure 4.1 shows that the high-order indicator features are useful in this case. In

particular, we can see that it is beneficial to increase the order of the high-order features

when the underlying model has longer distance correlations. As expected, increasing

the order of the features beyond the order of the underlying model is not helpful. The

results also suggest that in general, if the observations are closely coupled with the

states (in the sense that different states correspond to very different observations),

then feature engineering on the observations is generally enough to perform well, and

it is less important to use high-order features to capture label correlations. On the

other hand, when such coupling is not clear, it becomes important to capture the label
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correlations, and high-order features can be useful.

4.7.2 Handwriting Recognition

We used the handwriting recognition data set from (Taskar et al., 2003), consisting of

around 6100 handwritten words with an average length of around 8 characters. The

data was originally collected by Kassel. (1995) from around 150 human subjects. The

words were segmented into characters, and each character was converted into an image

of 16 by 8 binary pixels. In this labeling problem, each xi is the image of a character,

and each yi is a lower-case letter. The experimental setup is the same as that used

in (Taskar et al., 2003): the data set was divided into 10 folds with each fold having

approximately 600 training and 5500 test examples and the zero-th order features for

a character are the pixel values.

For higher order features, we again used all indicator features that appeared in

the training data up to a maximum order. The average accuracy over the 10 folds

are shown in Figure 4.2, where strong improvements are observed as the maximum

order increases. Figure 4.2 also shows the total training time and the running time per

iteration of the L-BFGS algorithm (which requires computation of the gradient and

value of the function at each iteration). The running time appears to grow no more

than linearly with the maximum order of the features for this data set. Note that our

results shows a significant improvement (around 8%) over previously reported best,

which is around 88% (Taskar et al., 2003; Qian et al., 2009).
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Figure 4.2: Accuracy (left) and running time (right) as a function of maximum order

for the handwriting recognition data set.

4.8 Discussion

Our algorithms rely on the sparsity of the patterns that the high-order potential func-

tions will activate, and once we know these patterns, the time complexity can be

estimated exactly to see whether the algorithms will run in feasible time. In our ex-

periments, we used indicator features of all label patterns that appear in the training

data. For real applications, if the pattern sparsity assumption is not satisfied, but

certain patterns do not appear frequently enough and are not really important, then

it is useful to see how we can select a subset of features with few distinct label pat-

terns automatically. One possible approach would be to use boosting type methods

(Dietterich et al., 2004) to sequentially select useful features.

An alternative approach to feature selection is to use all possible features and

maximize the margin of the solution instead. Generalization error bounds (Taskar

et al., 2003) show that it is possible to obtain good generalization with a relatively

small training set size despite having a very large number of features if the margin is

large. This indicates that feature selection may not be critical in some cases.
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It should also be possible to use kernels within the approach here. On the hand-

written character problem, Taskar et al. (2003) reports substantial improvement in

performance with the use of kernels. Use of kernels together with high-order features

may lead to further improvements. However, we note that the advantage of the higher

order features may become less substantial as the observations become more power-

ful in distinguishing the classes. Whether the use of higher order features together

with kernels brings substantial improvement in performance is likely to be problem

dependent.

Although the technique for handling sparse high-order features can be easily gen-

eralized to handle simple sparse high-order semi-Markov features, it is not clear how

these algorithms can be extended to handle general high-order semi-Markov features in

which the dependency between the labels and the observations are coupled. An exam-

ple of such feature is the first segment contains the word Peter, and the second segment

contains the word palace. For a feature like this, we can refine the states to memorize

partial information like whether the previous segment contains the word Peter. How-

ever, this method is ad hoc and requires tailoring the algorithm each time a different

type of dependency is introduced, for example, all the segments shares a common word.

In addition, the number of states can grow quickly as the number of features grow.

This is an avenue that should be explored for further research on exploiting sparsity.
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Chapter 5

Sparse Factorial CRFs for Sequence

Multi-Labeling

We continue our discussion on sparse CRFs in this chapter by presenting sparse FCRFs

for capturing both temporal and co-temporal constraints. This can be useful in se-

quence multi-labeling problems, such as multiple activity recognition, as pointed out

in previous chapter.

Section 5.1 first motivates FCRF as a model useful for capturing both temporal and

co-temporal dependencies, and outlines the contribution in our sparse FCRFs . Sec-

tion 5.2 reviews some related works. Section 5.3 describe sparse FCRFs. Section 5.4

presents our exact efficient inference algorithms for sparse FCRFs. Section 5.5 de-

scribes the training algorithm used. Section 5.6 demonstrates that our sparse FCRFs

can effectively capture and exploit both temporal and co-temporal dependencies, on

synthetic datasets and an activity recognition dataset, as compared to varous baselines.
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5.1 Capturing Temporal and Co-temporal Depen-

dencies

Sequence multi-labeling, or labeling an observation sequence with multiple correlated

label sequences, arise in various domains. For example, sequence multi-labeling is

required for labeling sentences with noun-phrase chunking tags and parts-of-speech

(POS) tags in natural language processing (Sutton et al., 2007), and for labeling video

frames with multiple concepts in multimedia (Li et al., 2010).

Sequence multi-labeling can be done by building a multi-label classifier for each

observation, or building an independent sequence labeler for each individual label se-

quence. However, a multi-label classifier does not fully exploit temporal correlations,

and independent sequence labelers do not fully exploit co-temporal (spatial, in the case

of the video annotation) dependencies. An approach to capture both temporal and co-

temporal dependencies is to solve the sequence labeling problems one after another by

feeding the output of an earlier stage as the input to the next one. This is commonly

done in the pipelining approach used in natural language processing, but errors in the

earlier stages can cascade down the pipeline.

Factorial conditional random field (FCRF) (Sutton et al., 2007) is a joint condi-

tional probabilistic model which has the advantage of capturing both temporal and

co-temporal dependencies without suffering from cascading errors. However, inference

becomes computationally intractable in a FCRF as the number of label sequences in-

creases. In this chapter, we consider sparse factorial conditional random field (SFCRF):

the class of FCRFs with co-temporal potential functions which are constant except at

a small number of co-temporal label patterns. Such models are beneficial when we

have useful information to incorporate at only a few possible patterns at each tempo-

ral location but do not wish to rule out the possibility of the sequence being labeled

with other labels at those locations. In particular, we can use the class of SFCRF to
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combine the output of a few algorithms, where the combined outputs of the algorithms

may not necessarily contain the true co-temporal label pattern. We give a polynomial

time exact inference algorithm for computing marginals for SFCRFs, and show that

it can be scaled to problems with many label sequences. Our algorithm is a forward-

backward algorithm, but in contrast to the usual forward-backward algorithms, we do

not maintain a fixed-sized table for the sufficient statistics (the information contained

in the part of the sequence that has been processed). Instead, a sum product repre-

sentation, which grows linearly with the part of the sequence that has been processed,

is used for each entry in the usual tabular representation.

We evaluate SFCRFs on a synthetic dataset and an activity recognition dataset,

against two methods: a multi-label classifier that uses only co-temporal information,

and independent sequence labelers. We use MaxEnt classifiers and CRFs as the under-

lying models, with different decoding methods. On the synthetic dataset, SFCRF is

competitive with or better than the best of the two methods under different noise con-

ditions or with distribution shift. On the activity recognition dataset, SFCRFs obtains

significantly better performance than the two approaches. We further compare the

running time of the new algorithm with the running time of an approximate inference

algorithm on the activity recognition dataset. Interestingly, the new exact inference

algorithm is significantly faster than the tree reparameterized loopy belief propagation

algorithm (TRP/BP) (Wainwright et al., 2001), both when TRP/BP is used on the

SFCRF model and when it is used on a FCRF model with pairwise potentials.

5.2 Related Works

We discuss related works on modeling for sequence multi-labeling and works on ex-

ploiting sparsity in potential functions for efficient inference and learning.

Sequence multi-labeling models are generally extensions of sequence labeling mod-
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els. Factorial hidden Markov model (FHMM) (Ghahramani and Jordan, 1997) is an

extension of hidden Markov models (HMM) (Rabiner, 1989), and have been applied

to joint noun-phrasing chunking and POS tagging (Duh, 2005). However, as a gen-

erative model, capturing arbitrary dependencies between labels and observations is

difficult in FHMM. FCRFs (Sutton et al., 2007) extends linear-chain conditional ran-

dom fields (CRFs) (Lafferty et al., 2001), and has the advantage of being able to

incorporate arbitrary dependencies between labels and observations without signifi-

cantly increasing the inference and learning cost. SVMs (Tsochantaridis et al., 2004)

have also beeen extended for sequence multi-labeling (Li et al., 2010). All the above-

mentioned works noted the computational difficulty of handling complex co-temporal

dependencies between the labels, and used approximate inference algorithms, such as

tree reparametrized loopy belief propagation algorithm (TRP/BP) Wainwright et al.

(2001) (used in (Sutton et al., 2007)), graph-cut algorithms for optimizing binary MRFs

(Rother et al., 2007) (used in (Li et al., 2010)).

Note that within the context of this work, sparsity means that the logarithm of

the co-temporal potential functions are mostly zero in their domains, and should be

differentiated from works on parameter sparsity (such as works on `1 regularization)

which seeks to eliminate the effects of entire potential functions. It should also be

differentiated with the simple method of restricting the possible labels at each time

step to a small number of possibilities. This method gives an efficient algorithm but

gives zero probability to labels that are not in the allowed set. In contrast, SFCRF

assigns non-zero probability to every possible label sequence and is more robust, as we

show in the experiments.

Sparse potential functions, as used in this paper, have been previously exploited

for improving the efficiency of inference. Qian et al. (2009) gave a forward-backward

algorithm for a class sparse high-order CRFs by performing inference on groups of

states and transitions with same potential function. The time complexity of their
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algorithm is not polynomial in the worst case. Ye et al. (2009) considered high-order

CRFs which are in a subclass of those considered in (Qian et al., 2009), and derived

polynomial time forward-backward inference algorithms by grouping forward variables

and backward variables using the locations at which the potential functions are active.

Nguyen et al. (2011) extended the algorithm in (Ye et al., 2009) to give a polynomial

time inference algorithms for high-order semi-Markov CRFs. In this paper, we use

a different approach towards exploiting sparse co-temporal potential functions. At a

high-level, our algorithm is the same as the standard forward-backward algorithm. The

novelty lies in the use of a sum-product representation for the forward and backward

values, instead of the use of a fixed sized table. Given this representation, we are able

to efficiently compute all the marginals required for inference and learning.

5.3 Sparse Factorial CRFs

Let x = (x1, . . . , xT ) be an observation sequence, and let yi = (yi1, yi2, . . . , yiT ) be

the i-th label sequence. We shall use yi:j to denote the sequences yi,yi+1, . . .yj. For

general CRFs with K label sequences, we have features of the form fi(x,y1:K , t), with

the weight for fi being λi. The weight for y1:K is defined as

Z(x,y1:K) = exp(
∑

i

∑
t λifi(x,y1:K , t))

Then the CRF associated with the label sequences is

P~λ(y1:K |x) = Z(x,y1:K)/Z(x)

where Z(x) =
∑

y′1:K
Z(x,y′1:K).

For FCRFs, the features are of the following three possible forms: zeroth-order fea-

ture fki(x, ykt, t), first-order feature gki(x, yk,t−1:t, t), and co-temporal feature qi(x, y·t, t),
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where yk,a:b = (yk,a, yk,a+1, . . . , yk,b), and y·t = (y1t, . . . , yKt).

We can group the factors in Z(x,y1:K) based on the label variables they depend

on, and write it in the form

Z(x,y1:K) =
∏

k,t φ
(t)
k (ykt)

∏
k,t ψ

(t)
k (yk,t−1, ykt)

∏
t θ

(t)(y·t), (5.3.1)

where

φ
(t)
k (yk,t) = exp(

∑
i λkifki(x, ykt, t)),

ψ
(t)
k (yk,t−1, yk,t) = exp(

∑
i λ
′
kigki(x, yk,t−1:t, t),

θ(t)(y·t) = exp(
∑

i µiqi(x, y·,t, t)).

Here λki, λ
′
ki and µi are the weights for fki, gki and qi respectively. φ(t), ψ(t) and θ(t)

are called the potentials associated with the their argument variables. For a given

sequence, x is constant and we omit it from the potential notations.

Our sparse FCRFs make use of only sparse co-temporal features: at each time step,

all the qi’s are non-zero only for a small number of co-temporal patterns. This implies

that, for any t, the log potential function log θ(t)(·) is non-zero for only a small number

of values in its domain.

We describe three types of sparse co-temporal features, assuming a given attribute

s(x, t). First, consider a small pre-defined set P = {q1, . . . ,qm} of co-temporal pat-

terns. These patterns can be used to construct a set of sparse pattern features

qi(x, z, t) = Iz = qis(x, t) (5.3.2)

where I(·) is the indicator function. A large weight for qi indicates that qi is more

likely to occur at each time slice.

Next, we consider the case where we have several prediction algorithms {A}, and
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each A outputs a small set Pt(A) of likely co-temporal patterns at time slice t (such

as the most likely few co-temporal patterns predicted by a probabilistic co-temporal

pattern classifier A). We can define features of the following form

qA(x, z, t) = Iz ∈ Pt(A)s(x, t). (5.3.3)

In this case, Pt(A) can be time-varying and is used to exploit the predictions of the

algorithms. A large weight for qA indicates that patterns in Pt(A) are more likely to

occur at time slice t.

The above two types of features can be combined to yield features of the following

form

qi,A(x, z, t) = Iz = qiIqi ∈ Pt(A)s(x, t). (5.3.4)

This may be useful, for example, when we want to restrict the patterns from the

algorithm, A, to also belong to the patterns observed in the training set.

In the following, for simplicity of presentation, assume all label variables take values

from the same finite set Y . Let n = |Y|. We also assume there are m co-temporal

patterns q1, . . . ,qm from YK such that for each qi, qi(x, y·t, t) 6= 0 only if y·t equals to

some qj. Our algorithms can be easily generalized to the case when the set of patterns

is time-varying. The requirement for our algorithms to work efficiently is only that a

small set of patterns can be active at each time slice.

5.4 Inference

We consider computing marginals of the form P(yit|x), P(yi,t−1, yi,t|x), or P(y·t|x). First

note that direct generalization of the forward-backward algorithm (see Rabiner, 1989)

needs to deal with nK states, and the forward and backward variables need O(n2KT )

time to compute. Using the computed forward and backward values, computing a single
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P(y·t|x) requires O(1) time (given the partition function), computing a single P(yit|x)

requires O(nK) time, and computing a single P(yi,t−1, yi,t|x) requires O(n2K) time. All

the marginals of the above forms can be computed in a more efficient manner in a total

time of O(n2KKT ). We present exact polynomial-time algorithms for computing any

single marginal of the above forms for SFCRF, and show in Section 5.5 that this leads

to a polynomial time learning algorithm.

Using the notation in Eq. 5.3.1, if y′1, . . . ,y
′
K are sequences of the same length used

to label the first few observations, we define their prefix weight Zp(x,y′1:K) as

Zp(x,y′1:K) =
∏

i,t≤|y′1|
φ

(t)
i (y′i,t)

∏
i,t≤|y′1|

ψ
(t)
i (y′i,t−1, y

′
i,t)
∏

t≤|y′1|
θ(t)(y′·t), (5.4.1)

where | · | denotes the length of a sequence.

Let z = (z1, . . . , zK) ∈ YK . Define the forward variable

α(t, z) =
∑
|y1|=...=|yK |=t,y·t=z Z

p(x,y1:K) (5.4.2)

We have Z(x) =
∑

z α(T, z).

Lemma 37. α(t, z) can be represented in sum-product form as

α(t, z) =
∑1+mt

i=1 u
(t)
1,i(z1) . . . u

(t)
ki (zk). (5.4.3)

It takes O(mKT ) time to compute a single value of α(t, z). In addition, given the

sum-product representation of α(t, z), it takes O((n2 + m)mtK) time to compute that

of α(t+ 1, z). Hence, all α(t, ·)’s can be computed in O((n2 +m)mT 2K) time.

Proof.(Lemma 37) We give a constructive inductive proof below. The case t = 0 is
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trivial by setting

u
(0)
j,1(zj) = 1,

α(0, z) = u
(0)
1,1(z1) . . . u

(0)
K1(zK),

Now we demonstrate how to construct a sum-product representation for α(t+ 1, z)

using a sum-product representation for α(t, z). This is done by first multiplying in φ

and ψ potentials, then multiplying in the θ potentials. For 1 ≤ i ≤ 1 + mt, we first

take the factors from the chains into account by defining

u
(t+1)
k,i (zk) =

∑
z′k
u

(t)
k,i(z

′
k)ψ

(t+1)
k (z′k, zk)φ

(t)
k (zk)

These factors can be computed in O(n2mtK) time. We define the following forward

variables, leaving the co-temporal potentials unaccounted for,

α′(t+ 1, z) =
∑1+mt

i=1 u
(t+1)
1,i (z1) . . . u

(t+1)
Ki (zK)

We have α(t+ 1, z) = α′(t+ 1, z) for all z not equal to any qi. It is easy to verify that

α(t+ 1, z) = α′(t+ 1, z) + α′(t+ 1, z)(θ(t+1)(z)− 1)

The second term vanishes for all z except at m positions q1, . . . ,qm. For i = 1 to m,

we can construct u
(t+1)
j,1+mt+i such that u

(t+1)
1,1+mt+i(z1) . . . u

(t+1)
K,1+mt+i(zK) is equal to α′(t +

1,qi)(θ
(t+1)(qi)− 1) when z is equal to qi and vanishes otherwise, then

α(t+ 1, z) =
∑1+m(t+1)

i=1 u
(t+1)
1,i (z1) . . . u

(t+1)
K,i (zK)

For the m additional terms, clearly each value of α(t, z) can be computed in O(mtK)

time, and creating each new product term takes O(nK) time. Thus introducing these
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terms take O(m2tK +mnK) time. Hence the total time to construct the sum-product

representation for α(t + 1, z) given that of α(t, z) is O(n2mtK + m2tK + mnK) =

O((n2 + m)mtK). The total time to compute all sum-product representations is thus

O(
∑

t(n
2 +m)mtK) = O((n2 +m)mT 2K). �

Note that if the chains are independent, then the time required for computing

the forward variables is O(n2TK). Thus the blowup in time complexity of the above

algorithm is by a factor of n2+m
n2 mT .

Using the above sum-product representation, we can compute the partition function

in polynomial-time, and thus the likelihood as well.

Proposition 38. Z(x) can be computed in O((n2 +m)mT 2K) time.

Proof. Given the sum-product representation in Proposition 37, the partition function

can be computed in O(nmTK) time using variable elimination as follows:

Z(x) =
∑

z α(T, z)

=
∑1+mT

i=1 (
∑

z1
u

(T )
1,i (z1)) . . . (

∑
zK
u

(T )
K,i(zK))

Since the sum-product representation takes O((n2 + m)mT 2K) to compute, the total

time is O((n2 +m)mT 2K). �

To compute the marginals, we first define the backward variable β(t, z) as the sum

of suffix weights for all combinations of suffix label sequences starting from position

t, with the label variables at position t being z = (z1, . . . , zk). We can similarly show

that β(t, z) can be represented in a sum-product form as

β(t, z) =
∑1+m(T−t+1)

i=1 v
(t)
1,i(z1) . . . v

(t)
ki (zk). (5.4.4)
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Given the forward and backward variables, we can obtain the sum of weights of

sequences agreeing at the same time slice or two consecutive time slices.

Lemma 39. (a) Let S(t, z) be the sum of the weight of all label sequences y1, . . . ,yK

for x such that the time t slice is z, then

S(t, z) =
α(t, z)β(t, z)

φ(t)(z1) . . . φ(t)(zk)

(
1

θ(t)(z)
− 1

)
+
∑

i

∑
j

∏
k

u
(t)
k,i(zk)v

(t)
k,j(zk)

φ(t)(zk)

Note that the first term vanishes for all (z1, . . . , zk) except at m positions q1, . . . ,qm.

(b) Let z′ = (z′1, . . . , z
′
K). Let S(t, z′, z) be the sum of the weight of all label sequences

y1, . . . ,yK for x such that the time t− 1 and t slices are z′ and z respectively, then

S(t, z′, z) =
∑

i

∑
j

∏
k u

(t−1)
k,i (z′k)v

(t)
k,j(zk)ψ

(t)(z′k, zk)

Using variable elimination on S(t, z) and S(t, z′, z), and normalizing with the par-

tition function, we can compute marginals for one variable, and marginals for two

variables respectively. The marginals for a time slice can be directly obtained by nor-

malizing S(t, z) with the partition function.

Proposition 40. Given the sum-product representations of the forward and backward

vectors,

(a) {P(ykt|x) : 1 ≤ k ≤ K, 1 ≤ t ≤ T} can be computed in O(nm2T 3K) time.

(b) {P(yk,t−1yk,t|x) : 1 ≤ k ≤ K, 1 ≤ t ≤ T} can be computed in O(n2m2T 3K) time.

(c) {P(y·t = qi|x) : 1 ≤ i ≤ m, 1 ≤ t ≤ T} can be computed in O(m3T 3K) time.

If the sum-product representations are not given, then the total time needed to find all

the above marginals is O(max(n2,m)m2T 3K).

Unfortunately, the above sum-product representation does not easily carry over

to an algorithm for Viterbi decoding – applying the max operator to a sum-product
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representation seems to destroy the sum-product representation at the next step. We

outline how an algorithm for computing the marginals can be used to approximate

Viterbi decoding by using the standard temperature argument.

Proposition 41. (Wainwright and Jordan, 2008, p.196) Let Y1, . . . , Yl be an arbitrary

set of discrete random variables, and suppose P (Y1, . . . , Yl|t, ~λ) ∝ e
~λ·T (Y1,...,Yl)/t, where

t is called a temperature parameter. Denote the most likely (breaking ties arbitrarily)

configuration for a single variable at temperature t as

y′i,t = arg max
yi

P (yi|t, ~λ). (5.4.5)

Then when t > 0 is sufficiently small, y′i,t is part of a most likely configuration of the

variables.

Proposition 41 can be used to compute a most likely configuration by sequentially

setting the value of a single variable and re-doing the inference to find new marginals

at a sufficiently small temperature. If the most likely variable configuration is unique,

then the most likely configuration for a single variable will also be unique and sequential

setting of the variables is not required.

5.5 Training

Model parameters yielding high likelihood on training data indicates good fit, but

overfitting may occur. Regularized maximum likelihood is more often used for training.

Formally, let T denote the training set, Tx denote the observation sequences in T , then

~λ = (λi) is chosen to maximize

L(~λ) = ln
∏

x∈Tx P (y1:K |x)−∑i
λ2i

2σ2
reg
,
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where the term −∑i
λ2i

2σ2
reg

is the Gaussian regularizer with σreg controlling the degree

of regularization. Note that L(~λ) is a ∩-convex function of ~λ, and its maximum is

achieved when

∂L
∂λi

= Ẽ(fi)− E(fi)−
λk
σ2
reg

= 0

where

Ẽ(fi) =
∑

x∈Tx
∑

t fi(x,y1:K , t)

E(fi) =
∑

x∈Tx
∑

y′1:K
P (y′1:K |x)

∑
t fi(x,y

′
1:K , t)

Here, Ẽ(fi) is the empirical sum of the feature fi in the observed data, and E(fi)

is the expected sum of fi according to the model specified by ~λ. While there are

various algorithms for maximizing the regularized log-likelihood of CRFs, the L-BFGS

algorithm (Liu and Nocedal, 1989) has been shown to demonstrate good performance

(Sha and Pereira, 2003). We omit details on the L-BFGS algorithm, and simply treat

it as a black box which requires computation of the gradient and value of L(~λ).

The regularized log-likelihood L(~λ) can be easily computed because computing

Z(x,y1:K) is straightforward and Z(x) can be computed using Proposition 38. For

the gradient, computing Ẽ(fi) is straightforward, and E(fi) can be computed using

marginals computed in previous section:

E(fki)=
∑

x∈Tx
∑

t

∑
y′kt
P (y′kt|x)fki(x, y

′
kt, t) (5.5.1)

E(gki)=
∑

x∈Tx
∑

t

∑
y′k,t−1,y

′
k,t
P (y′k,t−1y

′
k,t|x)gki(x, y

′
k,t−1:t, t) (5.5.2)

E(qi)=
∑

x∈Tx
∑

t

∑
y′·t
P (y′·t|x)qi(x,y

′
·t, t) (5.5.3)

Note that for the last equation, y′·t ranges over q1, . . .qm, because for other values of

y′·t, the feature takes value 0.
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5.6 Experiments

In this section, we evaluate SFCRFs on a synthetic dataset and an activity recogni-

tion dataset. We compare SFCRFs performance with various baseline algorithms to

demonstrate that SFCRFs can be an effective model, and we show that with sufficient

sparsity, our exact inference algorithm is much faster than a loopy belief propagation

algorithm.

The following baseline models are used. MEdisj trains a MaxEnt classifier for each

individual label and predicts the most like label. It exploits neither the temporal nor

co-temporal correlations. CRFdisj trains a linear-chain CRF for each label sequence

and predicts the most like sequences. This baseline exploits the temporal correlations

but not the co-temporal ones. MEpat trains a MaxEnt classifier using all the observed

co-temporal patterns in the training set as a label set, where each label indicates a

co-temporal pattern – in this case, if there are m observed patterns in the training

set, it trains on a label set of size m. This exploits the co-temporal correlation but

not the temporal correlations. CRFpat use all observed co-temporal labels as states

in the CRF. It exploits both temporal and co-temporal correlations but assigns zero

probability to sequences that contains co-temporal patterns that are never seen in the

training set.

For ME pat and CRF pat, decoding can be done in various ways. CRFml
pat predicts

the most likely pattern at each time slice, CRF vtb
pat predicts the most likely pattern

sequence, and CRFmd
pat first marginalizes the distribution of the patterns to obtain the

distributions for each label, then predicts the most likely value of each label. To be

precise, given a co-temporal pattern distribution P (y = pi)’s, we compute P (yk = 1)

as
∑

pi,k=1 P (y = pi), and then predict most likely yk’s. In this way, it is able to predict

pattern that has never been seen in the training set, even though CRFpat assigns zero

probability to those patterns. We use the same marginalization technique for MEml
pat

and MEmd
pat.
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5.6.1 Synthetic Datasets

We first use a synthetic dataset to study how the time complexity of SFCRF scales as

K increases, then use two synthetic dataset to demonstrate that SFCRFs are able to

exploit both temporal and co-temporal dependencies in a way better than the baselines.

A. Scaling of time complexity We generate a synthetic dataset with small number

of co-temporal patterns. The patterns consists of those K binary patterns with exactly

one 1. A random Markov transition model with K states, where each state correspond

to one of these binary patterns is used to generate the label sequences. Only a dummy

observation with value 1 is observed. We generate 60 training and 140 test sequences

of length 10. We used Gaussian regularizer for all models with σ2
reg = 1.
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Figure 5.1: Logarithm of the

per-iteration time (s) in L-

BFGS for our algorithm and

the naive algorithm.

For FCRF, we consider a sparse FCRF and a dense

one. For the SFCRF, the features used are: (a) For

each chain, include all the observations from the chains

as zero-th order features and all label transitions as

first order features at current time slice; (b) The co-

temporal features are the sparse pattern features defined

in Eq. 5.3.2, with P consisting of the K co-temporal pat-

terns, and s(x, t) be the 3K observed real random vari-

ables together with one attribute having constant value

1. The dense FCRF used all the 2K co-temporal pat-

terns instead of just those K seen patterns. Inference

in the dense FCRF is done using the exponential-time

forward-backward algorithm discussed in Section 5.4.

Both SFCRF and the dense FCRF predict the most likely label at each position.

We first observe the time required for one iteration of computing the regularized log-

likelihood and its gradient, using our new algorithm and the exponential-time forward-

backward algorithm. The timings are averages from several runs and are plotted in log
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scale for K from 2 to 10 in Figure 5.1. As expected, our algorithm shows a log-shape

curve and the naive algorithm shows a linear curve. The SFCRF algorithm starts to

become faster when around 7 chains are used, indicating that the constants in the

running time are practically reasonable.

B. Capturing co-temporal information to deal with noisy observations We

used the same Markov transition model as above, with 10 chains but only 4 states

corresponding to 4 label patterns. The 4 patterns have their first 8 bits randomly

chosen, but the last two bits are constructed as the xor bit of the first 8 bits and its

complement. For the observation model, a label y ∈ {0, 1} in the k-th sequence uses a

Gaussian N(4(y, y, y), 4kI3) to generate the observations. Thus observations for chains

with higher indices are noisier, and the observations by themselves do not provide suffi-

cient information on the last two bits. Thus for this dataset, co-temporal dependencies

are expected to be useful, and independent classifiers or taggers that depend only on

temporal correlations are not expected to perform as well. The label accuracies for the

algorithms are shown in Table 5.1. Approaches exploiting co-temporal dependencies

perform better, and SFCRF is able to perform slightly better than algorithms that use

only co-temporal information.

Table 5.1: Accuracies of the baseline algorithms and SFCRF using noisy observation.

MEdisj MEml
pat MEmd

pat CRFdisj CRFmlpat CRFvtbpat CRFmdpat SFCRF

Acc 88.42 90.40 90.18 89.20 93.20 92.95 93.28 93.87

C. Using temporal information to predict unseen patterns We used the same

Markov transition model as in B, but with only two states corresponding to two ran-

domly chosen complementary patterns. Furthermore, each label y use N(4(y, y, y), I3)

to generate observations giving strong information about the labels. In the test set,

the two patterns in the training set are replaced with two different randomly chosen

complementary patterns. As the labels have changed, the co-temporal information be-
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comes useless in the test set. However, the temporal correlation learned in the training

set remains useful, as the underlying 2-state Markov transition model and observa-

tion model given the label remains the same. In this case, we expect the independent

chains to perform well and the co-temporal pattern based algorithms to perform badly.

The results, as shown in Table 5.2, indicate that this is indeed the case. SFCRF is

able to perform almost as well as CRFdisj indicating that it is able to back off to the

independent CRFs when encountering novel patterns not seen in training.

Table 5.2: Accuracies of the baseline algorithms and SFCRF on test set with different

label patterns.

MEdisj MEml
pat MEmd

pat CRFdisj CRFmlpat CRFvtbpat CRFmdpat SFCRF

Acc 73.59 59.63 59.63 99.41 59.63 59.63 59.63 98.26

5.6.2 Multiple Activities Recognition

We evaluated SFCRFs on the activity recognition data set from (Patterson et al., 2005).

The dataset consists of 10 sequences of roughly half an hour of activities. At each time

step, a person can be performing one or several activities among 11 activities (for

example, making soft boiled eggs while making tea). The observations are the RFID

labels of the objects being touched, and each observation is labeled with one or several

activities that the subject is performing. We first combined the data into 1 data set,

then collapsed identical consecutive observation-label pairs into one. Then we broke

the long activity sequence into sequences, breaking the sequence whenever all current

activities stop or the sequence length is 30 – note that since only first-order transitions

are captured in the usual models, breaking long sequences into short ones will not

cause significant loss of information in general. A total of 30% of the data is used for

training, and the remaining 70% used for testing.

We considered the following features: (a) Observations within windows of size 3 as
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zero-th order features, and all label transitions as first order features for each chain; (b)

Co-temporal features using the patterns predicted by any of some chosen algorithms

using the observations within windows of size 3 as input, that is, we used features of

the type in Eq. 5.3.3, which are defined as

qA(x,y1:K , t) = Iy·t = p(A,x, t)s(x, t), (5.6.1)

where p(A,x, t) is the pattern predicted by algorithm A at time t, and s(x, t) is an

observation within windows of size 3, or a constant 1. We give results for using a single

qA feature for each baseline algorithm A, and using all qA features. We performed 10-

fold cross-validation to select the best regularization parameter from σ2
reg = 0.1, 1, 10.

We measured the following performance measures for our algorithm: Acc, the label

accuracy; #eval, the number of function and gradient evaluations used by L-BFGS;

Ttot, the total running time for training in seconds; and Teval, the running time per

evaluation. We also compared our exact inference algorithm with tree reparameterized

loopy belief propagation algorithm (TRP/BP) (Wainwright et al., 2001). The imple-

mentation in GRMM (Sutton, 2006) was used. Both GRMM and our code are written

in Java, and the experiments are run on Linux OS using single threads. Since TRP/BP

runs faster with pairwise potentials, we also consider a FCRF Pair, which does not

have the co-temporal pattern features, but has all the pairwise potentials for labels

within the same time slice. TRP/BP is a randomized algorithm, thus we run it using

five randomly selected seeds, and for each of the performance measures, we report the

average over those five runs.

The results are shown in Table 5.3. For each baseline algorithm A, except CRFdisj,

the FCRF with sparse co-temporal features from A outperforms A significantly ac-

cording to McNemar’s test (Dietterich, 1998). The failure to improve CRF disj is not

surprising as CRF disj does not really provide new co-temporal information for SFCRF.
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Table 5.3: Accuracies of the evaluated algorithms on the activity recognition dataset.

MEdisj MEmlpat MEmdpat CRFdisj CRFmlpat CRFvtbpat CRFmdpat All Pair

Baseline

Acc 91.71 91.30 91.82 92.41 91.84 92.84 91.35 - -

FCRF

Acc 93.02 93.17 93.28 92.11 93.75 93.41 92.97 94.13 -
#eval 29 28 31 29 30 32 29 29 -
Ttot(s) 158 164 171 149 169 165 155 1335 -
Teval(s) 5 6 6 5 6 5 5 45 -

GRMM

Acc 93.13 93.05 93.06 92.19 93.24 93.09 93.03 92.82 92.07
#eval 48.4 46.8 33.8 46 56.4 49.2 57.2 66.8 55.4
Ttot(s) 31289 28275 26715 37654 45221 45046 37957 51275 6537
Teval(s) 652 596 789 821 774 904 671 759 119

In addition, using all qA features yields the best performance of 94.13%. This shows

sparse co-temporal features can be very useful, and our algorithms make integrating

the outputs of several algorithms efficiently doable. We further investigate the reason

SFCRF is able to outperform the baselines. We found that the training set contains

30 distinct patterns and the test set contains 33 distinct patterns but only 15 of the

patterns are in both sets. Hence, it seems likely that SFCRF is able to exploit the pat-

terns when they have been seen before, and back off to the linear chains on patterns

that have never been seen in the training set.

In terms of accuracies, our exact algorithm and the approximate algorithm in

GRMM are very close, indicating that the approximation is mostly sufficient for the

problem. However, our algorithm is faster than the approximate algorithm when there

is enough sparsity, even though it is doing exact inference. It is even faster than Pair.
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5.7 Extensions

5.7.1 Incorporating Pattern Transitions

A feature which is informative in our synthetic dataset but not captured in our SFCRF

is the transition between co-temporal patterns. Our method can be extended to handle

such sparse correlations without changing the asymptotic complexity in inference.

We now describe how to capture transitions between co-temporal patterns when

the co-temporal patterns are sparse. Consider features of the form ri(x, y·,t−1:t, t). The

corresponding potential functions are defined by

γ(t)(y·,t−1, y·,t) =
∏

i ri(x, y·,t−1, y·,t, t) (5.7.1)

We say ri’s are sparse if γ(t) is nonzero for a small number of co-temporal pattern pairs.

For simplicity of presentation, we shall assume γ(t)(y·,t−1, y·,t) 6= 0 iff both y·,t−1 and

y·,t ∈ P = {q1, . . . ,qm}. As in the construction of the sum-product representation for

α in Proposition 37, the auxiliary function α′(t+ 1, z) is obtained by incorporating the

potentials from the chains into α(t, z). Our sparsity assumption again guarantees that

α(t + 1, z) = α′(t + 1, z) for all z /∈ P . We then handle those z ∈ P by adding two

correction terms

α(t+ 1, z) = α′(t+ 1, z) + C1(z) + C2(z),

where

C1(z) = α′(t+ 1, z)(θ(t+1)(z)− 1),

C2(z) =
∑

z′∈P α(t, z′)ϕ(t+1)(z)ψ(t+1)(z′, z)θ(t+1)(z)(γ(t+1)(z′, z)− 1).

Here ϕ(t+1)(z) =
∏

k ϕ
(t+1)(zk) and ψ(t+1)(z′, z) =

∏
k ψ

(t+1)(z′k, zk). All required C1(z)
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and C2(z) values, and the associated m new terms can again can be computed in

O(m2tK) time. Thus Proposition 37 still holds.

The backward variable can be similarly computed. Given the forward and backward

variables, S(t, z) can still be computed using the same formula in Proposition 39, but

the formula for S(t, z′, z) need to be changed to

S ′(t, z′, z) =
∑

i

∑
j

∏
k u

(t−1)
k,i (z′k)v

(t)
k,j(zk)ψ

(t)(z′k, zk),

S(t, z′, z) = S ′(t, z′, z) + (γ(t)(z′, z)− 1)S ′(t, z′, z).

Without the first-order co-temporal pattern features, S(t, z′, z) has at least (1+m)(1+

m(T − 1)) product terms. Now we will need to create m2 additional product terms

in the sum-product representation of S(t, z′, z). This does not change the asymptotic

complexity of evaluating S(t, z′, z). Proposition 40 still holds.

5.7.2 Combining Sparse High-order and Co-temporal Features

We can extend sparse FCRFs by incorporating high-order features in the chains. We

shall call such CRFs as high-order FCRFs (HFCRFs). The following paragraphs briefly

describe how inference can be done for HFCRFs.

The key idea is to replace the states for each chain as the high-order feature states

as in previous chapter. For simplicity of presentation, we assume the chains share the

same pattern set Z, and the maximum order is L. Thus they have the same forward-

state set P . Let z = (z1, . . . , zk), where each zi is an element in P . Define the forward

variable

ᾱ(t, z) =
∑

|y1|=...=|yk|=t,y1t∈z1,...,yKt∈zK

Zp(x,y1, . . . ,yk). (5.7.2)

We have Z(x) =
∑

z α(T, z). For z = (z1, . . . , zk), let e(z) denote the vector (y′1, . . . , y
′
n)

where y′i is the last label of zi. z is said to be consistent with qi if e(z) = qi. Let M
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denote the number z’s consistent with some qi. The Ψp factors (see Section 4.4) for

the k-th chain will be denoted by Ψp
k.

Proposition 42. ᾱ(t, z) can be represented in sum-product form as

ᾱ(t, z) =
1+mt∑
i=1

u
(t)
1,i(z1) . . . u

(t)
ki (zk). (5.7.3)

In addition, assuming all Ψ factors have already been evaluated, then given the sum-

product representation of α(t, z), it takes O(n|P|MtK) time to compute that of α(t +

1, z). Hence, all α(t, ·)’s can be computed in O(n|P|MT 2K) time.

Proof. We focus on the recursive case. Similar to the the case without high-order

features, we first add in the potentials for the chains, then create new terms to handle

the θ potentials.

Assume the following sum-product representation for α(t, z) is given

ᾱ(t, z) =
1+mt∑
i=1

u
(t)
1,i(z1) . . . u

(t)
ki (zk).

For 1 ≤ i ≤ 1+mt, we first take the factors from the chains into account by defining

u
(t+1)
k,i (zk) =

∑
z′ky∈zk

u
(t)
k,i(z

′
k)Ψ

p
k(t+ 1, z′ky).

Now we define the following forward variables, leaving the co-temporal potentials un-

accounted first,

ᾱ′(t+ 1, z) =
1+mt∑
i=1

u
(t+1)
1,i (z1) . . . u

(t+1)
Ki (zK).

We have ᾱ(t+ 1, z) = ᾱ′(t+ 1, z) for all z not consistent with any qi. Hence

ᾱ(t+ 1, z) = ᾱ′(t+ 1, z) + ᾱ′(t+ 1, z)(θ(t+1)(e(z))− 1).
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Introducing a new term for each z consisting with some qi completes our argument.

The time-complexity bound follows easily from the above argument. �

To compute the marginals, we use the method in Section 4.6 to constrain the

labels and evaluate the sum of the weights of sequences consistent with the constraint.

Normalizing the sums by the partition function gives us the marginals. For example,

to evaluate the marginal P (y·t = qi|x), we only allow the candidate labels at time slice

t to be the same as qi in the above algorithm. Since we need to evaluate T (K|Z|+m)

marginal values, and running the above algorithm once takes O(n|P|MT 2K) time, the

total time to compute all the marginals is O((K|Z|+m)n|P|MT 3K)).

It should be noted that M can be exponential in K. For example, if there is a

co-temporal pattern qi such that for each chain k, the number of forward states ending

with qi(k) is at least 2, then the number of z consistent with qi is at least 2K already.

Nevertheless, the above algorithm can still be applied if only a few chains use high-order

features.

5.8 Discussion

We have demonstrated that SFCRFs can be used to capture useful temporal and co-

temporal dependencies together. Our experimental results shows that provided with

one or several baseline algorithm(s), SFCRFs can be used to obtain signficantly better

performance over them, thus serving as a principled and exact way to combine the

outputs of several learning algorithms. Currently we deal with long sequences by

chunking them. Although this may be justified because most models only include

up to first-order dependencies, it will be interesting to have algorithms that handle

the original sequences. Our algorithms can be extended to handle high-order features

described in Chapter 4 from a constant number of chains in polynomial time as well.
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Current works on sparse features use very different techniques (Qian et al., 2009; Ye

et al., 2009; Nguyen et al., 2011), and a general exact method for exploiting sparse

potential functions for inference will be interesting.
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Chapter 6

Optimizing F-measures

Classical classification theory and algorithms are mainly concerned with maximizing

accuracy. However, accuracy is inadequate in various settings and alternative perfor-

mance measures have been proposed and popularized. For example, when the dataset

is imbalanced (i.e. some classes are rare in comparison to other classes), then predicting

the most common classes will often result in high accuracy. In this case, one class of

commonly used utility functions are the F-measures, which measure the performance

of a classifier in terms of its ability to obtain both high recall (recover most of the

instances in the rare classes) and high precision (instances in the common classes pre-

dicted to be in the rare classes are mostly truly rare). Another popular performance

measure for classifiers is the AUC (Area under the ROC Curve) score (Bradley, 1997).

These popular measures share a characteristic which distinguishes them from ac-

curacy: They cannot be expressed as sums of independent contributions from the

instances, while accuracy can. We say that such utility or loss functions are non-

decomposable, and performance measures like accuracy are said to be decompos-

able. Classical theory of classification (Vapnik, 1998) cannot be applied for non-

decomposable performance measures. It is no longer clear whether algorithms like

ERM or its regularized version are still consistent. In addition, non-decomposability
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also poses new algorithmic challenges in learning and inference. For example, ERM

is generally hard, and decision-theoretic optimal prediction cannot be computed sepa-

rately for each instance.

We do not have general theory and algorithms for learning and inference with non-

decomposable performance measures yet. In this chapter, we formalize the notion of

non-decomposability, and provide some general results. However, we shall only explore

the simplest setting where training and test data are i.i.d. instances generated by

the same distribution, and we focus on learning and inference with F-measures, and

presents theoretical justifications and connections between two learning paradigms for

optimizing F-measures: the empirical utility maximization (EUM) approach learns a

classifier having optimal performance on training data, while the decision-theoretic

approach (DTA) learns a probabilistic model and then predicts labels with maximum

expected F-measure. The results presented here describe and extend our previous work

on optimizing F-measures (Ye et al., 2012).

In Section 6.1, we review previous works on learning to optimize F-measures and

categorize them into the EUM approach and the DTA approach. We then describe the

differences between these two approaches.

In Section 6.2, we formalize the notion of non-decomposability and demonstrate

that several popular performance measures are non-decomposable. We then establish

a consistency result for empirical maximization of F-measures, together with bounds

on the rate of convergence. This provides some insights into the factors affecting the

convergence rate in EUM. In particular, our bounds suggest that rare classes require

more data for performance guarantee, which is consistent with our intuition. We then

show that thresholding the true conditional distribution on a large i.i.d. test set can

perform as well as the best instance classifier, justifying the popular hybrid approach of

learning a conditional distribution followed by learning a threshold. We also show that

an EUM-optimal classifier and a DTA-optimal classifier are asymptotically equivalent
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if the probability measure for any set of instances with the same conditional probability

of being relevant is negligible.

In Section 6.3, we give a new O(n2) time algorithm for computing optimal predic-

tions, assuming independence of labels. Our algorithm can compute optimal predic-

tions on tens of thousand instances within seconds, significantly faster than previous

algorithms which require hours or more. 1

In Section 6.4, we compare EUM and DTA on synthetic and real datasets. Our

theoretical results are useful in explaining the experimental results. Empirically, EUM

seems more robust against model misspecification, but given a good model, DTA seems

better for handling rare classes on small datasets and a common scenario of domain

adaptation.

6.1 Two Learning Paradigms

F-measures (van Rijsbergen, 1974) or F-scores have been commonly used in tasks

in which it is important to retrieve elements belonging to a particular class correctly

without including too many elements of other classes. F-measures are usually preferred

to accuracies as standard performance measures in information retrieval (Manning

et al., 2009), particularly, when relevant items are rare. They are also popular in

information extraction tasks such as named entity recognition (Tjong Kim Sang and

De Meulder, 2003) where most of the elements do not belong to a named class, and in

multi-label classification (Dembczynski et al., 2011).

Various methods have been proposed for optimizing F-measures. They fall into

two paradigms. The empirical utility maximization (EUM) approach learns a classifier

having optimal F-measure on the training data. Optimizing the F-measure directly is

often difficult as the F-measure is non-convex. Thus approximation methods are often

used instead. Joachims (2005) gave an efficient algorithm for maximizing a convex

1Code available at http://www.comp.nus.edu.sg/∼yenan/.
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lower bound of F-measures for support vector machines, and showed it worked well

on text classification. Jansche (2005) gave an efficient algorithm to maximize a non-

convex approximation to F-measures using logistic regression models, and showed it

works well on a text summarization problem. A simpler method is to optimize the

F-measure in two stages: First learn a score function using standard methods such

as logistic regression or support vector machines, then select a threshold for the score

function to maximize the empirical F-measure. Though simple, this method has been

found to be effective and is commonly applied, for example, in text categorization

(Yang, 2001).

The decision-theoretic approach (DTA), advocated by Lewis (1995), estimates a

probability model first, and then computes the optimal predictions (in the sense of

having highest expected F-measure) according to the model. This method has not

been commonly applied for F-measures, possibly due to the high computational com-

plexity of existing algorithms for the prediction step. Assuming the independence of

labels, Lewis showed that, in the optimal prediction, the probabilities of being positive

for irrelevant items are not more than those for relevant items. He also gave a bound

for expected F-measures, which can be computed in O(n) time, but can be very loose.

Based on Lewis’s characterization, Chai (2005) gave an O(n3) time algorithm to com-

pute optimal predictions, and he gave empirical demonstration for the effectiveness of

DTA. Apparently unaware of Chai’s work, Jansche (2007) solved the same problem

in O(n4) time. For the general case when the labels are not necessarily independent,

Dembczynski et al. (2011) gave an O(n3) time algorithm given n2 + 1 parameters of

the label distribution, but the parameters can be expensive to compute. They also

showed that the independence assumption can lead to bad performance in the worst

case, but on the practical datasets used in their experiments, methods assuming the

independence assumption are at least as good as those not assuming independence.

We have only discussed works on binary classification. There are also algorithms for
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optimizing F-measures for tasks with structured output (Tsochantaridis et al., 2005;

Suzuki et al., 2006; Daumé et al., 2009) and multilabel tasks (Fan and Lin, 2007; Zhang

et al., 2010; Petterson and Caetano, 2010).

Optimality in EUM and DTA are different. EUM considers only instance classifiers

(functions mapping instances to labels), and roughly speaking, an optimal classifier is

an instance classifier having highest F-measure on a very large test set among all in-

stance classifiers. On the other hand, DTA considers set classifiers (functions mapping

sets of instances to sets of labels), and an optimal classifier in DTA is a set classifier

having maximum expected F-measure among all set classifiers. Optimality in these

two approaches are also achieved differently using different learning objectives. Un-

less otherwise stated, optimal classifiers refer to EUM-optimal classifiers, and optimal

predictions refer to predictions by DTA-optimal classifiers.

6.2 Theoretical Analysis

Let X and Y denote the input and output random variables. We assume there is a fixed

but unknown distribution P (X, Y ) that generates i.i.d. (X, Y ) pairs during training and

testing. We use X and Y to denote their domains as well. In the following, unless

otherwise stated, Y = {0, 1}, with 0 for the negative or irrelevant class and 1 for the

positive or relevant class. I(·) is the indicator function.

Let Dn = {(x1, y1), . . . , (xn, yn)} be a set of n (possibly non-i.i.d.) examples, and

let x and y denote (x1, . . . , xn) and (y1, . . . , yn) respectively. If the predicted labels are

s = (s1, . . . , sn), then precision p(s,y) is the number of true positives over the number

of predicted positives, and recall r(s,y) is the number of true positives over the number

of positives. Fβ-measure (van Rijsbergen, 1974) Fβ(s,y) is a weighted harmonic mean
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of precision and recall. Formally,

Fβ = (1 + β2)/(β2/r(s,y) + p(s,y)), (6.2.1)

where the precision p(s,y) and the recall r(s,y) can be expressed as

p(s,y) =
∑

i siyi/
∑

i si, (6.2.2)

r(s,y) =
∑

i siyi/
∑

i yi. (6.2.3)

Thus, an equivalent expression for Fβ is

Fβ(s,y) =
(1 + β2)

∑
i siyi

β2
∑

i yi +
∑

i si
. (6.2.4)

It is easy to verify that F0 is the precision and F∞ is the recall. F1 is most frequently

used in practice. Henceforth, we assume β ∈ (0,∞).

6.2.1 Non-decomposability

We first formalize the notion of non-decomposability, then demonstrate that F-measures

and AUC are non-decomposable. In addition, we show that a performance mea-

sure, normalized discounted cumulative gain (NDCG) (Järvelin and Kekäläinen, 2002),

which is popular in information retrieval, is non-decomposable. In this section, the la-

bels and predicted values are not necessarily binary.

Definition 43. A utility function is a nonnegative real-valued function U(s,y), and

U is said to be decomposable if there exist a g : N→ R and a non-negative real-valued

function u on Y × Y such that for any s,y

U(s,y) =
1

g(n)

∑
i

u(si, yi). (6.2.5)
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If a utility function is decomposable, then

g(n)

n
U(s,y) =

1

n

∑
i

u(si, yi), (6.2.6)

thus we can study its properties by applying classical statistical learning theory de-

scribed in Section 2.3. But as we shall demonstrate below, there are interesting non-

decomposable utility functions, and thus their properties cannot be obtained by direct

application of classical statistical learning theory.

Proposition 44. Fβ is non-decomposable.

Proof. Assume Fβ is decomposable, then there exists g and u such that

Fβ(s,y) =
1

g(n)

∑
i

u(si, yi).

Consider the following quantities

U1 = Fβ((1, 1, 1), (1, 1, 1)) = 1,

U2 = Fβ((0, 1, 1), (1, 1, 1)) = 2(1 + β2)/(3β2 + 2),

U3 = Fβ((1, 1, 0), (1, 1, 0)) = 1,

U4 = Fβ((0, 1, 0), (1, 1, 0)) = (1 + β2)/(2β2 + 1).

Decomposability implies that

U1 − U2 = (u(1, 1)− u(0, 1))/g(3) = U3 − U4.

However, we have

U1 − U2 = β2/(3β2 + 2) < β2/(2β2 + 1) = U3 − U4,
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a contradiction. Hence Fβ is non-decomposable. �

Various binary classifiers are obtained by thresholding a score function, that is,

a function mapping each instance to a real number. For example, for probabilistic

classifiers such as naive Bayes or logistic regression, the score for an instance is its

probability of being positive, and a threshold of 0.5 is often used to maximize expected

accuracy. Another example is the support vector machines, which uses a bias term to

threshold the inner product of the attribute vector and the weight vector. The perfor-

mance of such classifiers depend on the threshold. The receiver operating characteristic

(ROC) curve, which is obtained by varying the threshold, is often used as a graphical

tool for the analysis of their performance. One of the commonly used summary for

the ROC curve is the area under the curve (AUC). There are a number of learning

algorithms which can be used to optimize AUC (Cortes and Mohri, 2004; Joachims,

2005). Agarwal et al. (2005) studies the consistency properties for AUC.

We demonstrate that AUC is non-decomposable in the following. AUC is equivalent

to the probability that a randomly chosen positive instance has higher score than a

randomly chosen negative instance (Hanley, 1982). Thus it measures how good a score

function is at distinguishing the positive and negative classes. Let si be the score of

the i-th instance, and yi ∈ {0, 1} be the label of the i-th instance, then AUC can be

expressed as

AUC(s,y) =

 ∑
yi=1,yj=0

I(si > sj) +
1

2

∑
yi=1,yj=0

I(si = sj)

 /
∑
yi=1

1
∑
yj=0

1. (6.2.7)

Proposition 45. AUC is non-decomposable.
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Proof. Assume AUC is decomposable. Consider the following quantities

U1 = AUC((0, 1, 3), (0, 1, 1)) = 1,

U2 = AUC((2, 1, 3), (0, 1, 1)) = 0.5,

U3 = AUC((0, 1, 3), (0, 0, 1)) = 1,

U4 = AUC((2, 1, 3), (0, 0, 1)) = 1.

Decomposability implies that U1 − U2 = U3 − U4, but this is false, a contradiction.

Hence AUC is non-decomposable. �

In information retrieval, the perceived value of the retrieved items depend on the

relevance of the items and the ranks of the items. NDCG measures the performance of

retrieval algorithms for the case when relevance scores are available. Given a collection

of n items, let y = (y1, . . . , yn) be their relevance scores, and let s = (s1, . . . , sn) be

the ranks of them as given by a retrieval algorithm. The discounted cumulative gain

(DCG) at rank p is given by

DCGp(s,y) =
∑
i

yi
d(si)

I(si ≤ p), (6.2.8)

where d(r) is the discount factor for rank r and is often chosen to be d(1) = 1, d(r) =

log(r) for r ≥ 2. Since the value of DCGp(s,y) depends on the scale for the relevance

scores, the normalized DCG (NDCG) is often used instead. NDCG is obtained by

dividing DCG by the maximum possible DCG.

NDCGp(s,y) = DCGp(s,y)/max
s′

DCGp(s
′,y). (6.2.9)

Proposition 46. NDCGp is non-decomposable.
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Proof. Assume otherwise, consider some n > p, then we should have

NDCGp((1, 2, . . . , n), (1, 10, . . . , 10n))−NDCGp((1, 2, . . . , n), (2, 10, . . . , 10n))

= NDCGp((1, 2, . . . , n), (1, . . . , 10n−1, 20n))−NDCGp((1, 2, . . . , n), (2, 10, . . . , 10n−1, 20n)),

but this is not the case, a contradiction. �

6.2.2 Uniform Convergence and Consistency for EUM

Consider an arbitrary classifier θ : X 7→ Y . Let Fβ,n(θ) denote the Fβ score of θ on

Dn. Let pij,n(θ) be the empirical probability that a class i instance is observed and

predicted as class j by θ; that is,

pij,n(θ) =
n∑
k=1

I(yk = i ∧ θ(xk) = j)/n. (6.2.10)

Then we have

Fβ,n(θ) =
(1 + β2)p11,n(θ)

β2(p11,n(θ) + p10,n(θ)) + p11,n(θ) + p01,n(θ)
. (6.2.11)

Let pij be the probability that a class i instance is predicted as class j by θ, that is,

pij(θ) = E(I(Y = i ∧ θ(X) = j)), (6.2.12)

Under the i.i.d. assumption, for large i.i.d. sample, the law of large numbers implies

that pij,n(θ)’s converge to pij(θ)’s. Thus Fβ,n(θ) is expected to converge to

Fβ(θ) =
(1 + β2)p11(θ)

β2π1 + p11(θ) + p01(θ)
, (6.2.13)
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where πY denotes P (Y ). Hence we can define this to be the Fβ-measure of the classifier

θ. The above heuristic argument is formalized below. We often omit θ from the

notations whenever there is no ambiguity.

Lemma 47. For any ε > 0, lim
n→∞

P(|Fβ,n(θ)− Fβ(θ)| < ε) = 1.

Proof. By the law of large numbers, for any ε1 > 0, η > 0, there exists an N

(depending on ε1 and η only) such that for all n > N , for any i, j

P(|pij,n − pij| < ε1) > 1− η/3, (6.2.14)

Note that only pij,n is a random variable in the above inequality. Using the union bound,

it follows that with probability at least 1− η, the following hold simultaneously,

|p11,n − p11| < ε1, |p10,n − p10| < ε1, |p01,n − p01| < ε1.

Let a = (1 + β2)p11, b = β2π1 + p11 + p01, ε1 = bε/(1+β2)
2a
b

+2ε+1
, then when the above

inequalities hold simultaneously, it is easy to verify that 2(1 + β2)ε1 < b, and

a

b
− ε ≤ a− (1 + β2)ε1

b+ 2(1 + β2)ε1

<
(1 + β2)p11,n

β2(p11,n + p10,n) + p10,n + p01,n

,

a

b
+ ε ≥ a+ (1 + β2)ε1

b− 2(1 + β2)ε1

>
(1 + β2)p11,n

β2(p11,n + p10,n) + p10,n + p01,n

.

That is, Fβ(θ)− ε < Fβ,n(θ) < Fβ(θ) + ε.

Hence for any ε > 0, η > 0, there exists N such that for all n > N , P(|Fβ,n(θ) −

Fβ(θ)| < ε) > 1− η. �
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By using a concentration inequality, such as the Hoeffding’s inequality, in place of

the law of large numbers, we can obtain a bound on the convergence rate.

Lemma 48. Let r(n, η) =
√

1
2n

ln 6
η
. When r(n, η) < β2π1

2(1+β2)
, then with probability at

least 1− η, |Fβ,n(θ)− Fβ(θ)| < 3(1+β2)r(n,η)
β2π1−2(1+β2)r(n,η)

.

Proof. Let η = 6e−2nε21 , then ε1 = r(n, η). Using Hoeffding’s inequality, for any i, j,

P(|pij,n − pij| < ε1) > 1− η/3. (6.2.15)

Let ε1 = β2

1+β2
π1ε

3+2ε
, then ε = 3(1+β2)ε1

β2π1−2(1+β2)ε1
= 3(1+β2)r(n,η)

β2π1−2(1+β2)r(n,η)
. From β2π1 ≤ b and

a
b
≤ 1, it follows that ε1 ≤ bε/(1+β2)

2a
b

+2ε+1
. Similarly as in the proof for Proposition 47, we

have P(|Fβ,n(θ)− Fβ(θ)| < ε) > 1− η. �

Lemma 48 leads to the following sample complexity bound.

Corollary 49. Let ε, η > 0, then when n > 1
2
( β2

1+β2
π1ε

3+2ε
)−2 ln 6

η
, with probability at least

1− η, |Fβ,n(θ)− Fβ(θ)| < ε.

The above bounds are not the tightest. For example, Lemma 48 still holds when

3(1+β2)r(n,η)
β2π1−2(1+β2)r(n,η)

is replaced by the tighter bound
(1+β2)(2Fβ(θ)+1)r(n,η)

β2π1+p1(θ)−2(1+β2)r(n,η)
, where p1(θ) is

the probability that θ classifies an instance as positive. In practice, the tighter bound

is not useful for estimating the performance of a classifier, because it contains the

terms Fβ(θ) and p1(θ). For the same reason, the tighter bound is also not useful in the

uniform convergence that we seek next.

We now show that training to maximize the empirical Fβ is consistent, using VC-

dimension (Vapnik, 1995) to quantify the complexity of the classifier class.

Theorem 50. Let Θ ⊆ X 7→ Y , d = V C(Θ), θ∗ = arg maxθ∈Θ Fβ(θ), and θn = arg maxθ∈Θ Fβ,n(θ).

Let r̄(n, η) =
√

1
n
(ln 12

η
+ d ln 2en

d
). If n is such that r̄(n, η) < β2π1

2(1+β2)
, then with proba-

bility at least 1− η, Fβ(θn) > Fβ(θ∗)− 6(1+β2)r̄(n,η)
β2π1−2(1+β2)r̄(n,η)

.
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Proof. Let η = 12ed ln 2en
d
−nε21 , then ε1 = r̄(n, η). Note that the VC dimension for class

consisting of loss functions of the form I(y = i ∧ θ(x) = j) is the same as that for Θ,

and the same remark applies for the the class consisting of loss functions of the form

I(θ(x) = y). By (3.3) in (Vapnik, 1995), for any i, j

P(sup
θ
|pij,n(θ)− pij(θ)| < ε1) > 1− η/3. (6.2.16)

By the union bound, with probability at least 1 − η, the inequalities supθ |p11,n(θ) −

p11(θ)| < ε1, supθ |p10,n(θ) − p10(θ)| < ε1, supθ |p01,n − p01| < ε1, hold simultaneously.

Let ε1 = β2

1+β2
π1ε

3+2ε
, then following the proof of Lemma 48,

Fβ(θn)− Fβ(θ∗)

= Fβ(θn)− Fβ,n(θn) + Fβ,n(θn)− Fβ(θ∗)

≥ Fβ(θn)− Fβ,n(θn) + Fβ,n(θ∗)− Fβ(θ∗)

≥ −2ε = − 6(1 + β2)r̄(n, η)

β2π1 − 2(1 + β2)r̄(n, η)
.

�

The above bound indicates that for smaller π1 and β, more samples are probably

required for convergence to start occurring. When r(n, η) < β2π1
4(1+β2)

, the difference

between Fβ,n(θ) and Fβ(θ) is at most 6(1+β2)
β2π1

r(n, η).

We generalize the technique of obtaining the above consistency proof, and formalize

it as a theorem for general loss functions below.

Theorem 51. Let Θ be a set of functions from X to Y , Suppose L(θ) is a loss function

satisfying the following conditions

(a) (Well-composed) L(θ) = L(L1(θ), . . . , Lk(θ)) for some functions L1(θ), . . . , Lk(θ)

such that each Li satisfies P(|Li,n(θ)− Li(θ)| < t(Θ, n, η)) > 1− η.
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(b) (Continuity) |L(l′1, . . . , l
′
k)−L(l1, . . . , lk))| < g(maxi |l′i−li|) for all possible (l′1, . . . , l

′
k)

and (l1, . . . , lk).

If θ∗ is a minimizer of L(θ), then with probability at least 1 − η, L(θn) − L(θ∗) <

g(t(Θ, n, η
k
)).

6.2.3 Optimality of Thresholding in EUM

We now consider a common EUM approach: learning a score function and then using

a fixed threshold on the score function. This threshold is obtained by optimizing the

F-measure on the training data.

Assume we know the true conditional distribution P (Y |X). Consider the class T

of probability thresholding classifiers of the form Iδ(x) = I(P (1|x) > δ), and the class

T ′ containing I′δ(x) = I(P (1|x) ≥ δ). 2 T ∪ T ′ has VC dimension 1, so empirical

maximization of F-measure for this class is consistent. Although T ∪ T ′ does not

contain all possible classifiers on X, an optimal classifier can be found in this class.

Let t∗ = arg maxh∈T ∪T ′ Fβ(h).

Theorem 52. For any classifier θ, Fβ(θ) ≤ Fβ(t∗).

Proof. Let θ be an arbitrary classifier. If θ /∈ T ∪T ′, then when all x ∈ X are mapped

to the number axis using x→ P (1|x), there must be some set B of negative instances

which break the positive instances into two sets A and C. Formally, there exist disjoint

2 Any θ ∈ T can be approximated by members in T ′ with arbitrary close Fβ , and vice versa, but
T ′ may contain θ′ such that Fβ(θ) 6= Fβ(θ′) for all θ ∈ T , implying T ′ 6= T . For example, suppose
X = [0, 1], P (X = 0.5) = 0.5, P (X) is uniform on [0, 1] − {0.5}, and P (1|X) = X, then T does not
contain a classifier which has the same Fβ as I′0.5.
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subsets A, B and C of X such that

A ∪ C = {x : θ(x) = 1},

θ(B) = {0},

sup
x∈A

P (1|x) ≤ inf
x∈B

P (1|x) ≤ sup
x∈B

P (1|x) ≤ inf
x∈C

P (1|x).

Without loss of generality we assume P (A), P (B), P (C) > 0. Define

a = P (A), x = E(P (1|X)
∣∣X ∈ A),

b = P (B), y = E(P (1|X)
∣∣X ∈ B),

c = P (C), z = E(P (1|X)
∣∣X ∈ C),

then x ≤ y ≤ z. Note that the expectation is taken with respect to X. Let θB and θC

be the same as θ except that θB(B) = {1} and θC(A) = {0}. Thus we have

Fβ(θ) =
(1 + β2)(ax+ cz)

β2π1 + a+ c
,

Fβ(θB) =
(1 + β2)(ax+ by + cz)

β2π1 + a+ b+ c
,

Fβ(θC) =
(1 + β2)cz

β2π1 + c
.

We show that either Fβ(θB) ≥ Fβ(θ) or Fβ(θC) ≥ Fβ(θ). Assume otherwise, then

Fβ(θ) > Fβ(θB),

which implies that

ax+ cz > (β2π1 + a+ c)y.

In addition,

Fβ(θ) > Fβ(θC),
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which implies that

(β2π1 + c)x > cz.

From the above two inequalities, we have

ax+ cz > (β2π1 + c)x+ ax > cz + ax,

a contradiction. Hence it follows that we can convert θ to a classifier θ′ such that

θ′ ∈ T ∪ T ′, and Fβ(θ) ≤ Fβ(θ′) ≤ Fβ(t∗). �

Thresholding is often applied on a score function f : X 7→ R, rather than on the

true conditional distribution. For example, output of a support vector machine is

commonly thresholded. Let fδ(x) = I(f(x) > δ) and f ′δ(x) = I(f(x) ≥ δ). Function f

is called an optimal score function if there is a δ such that Fβ(f ′δ) = Fβ(t∗). We give

a sufficient condition for a score function to be optimal. A score function f is rank-

preserving if it satisfies f(x1) > f(x2) iff P (1|x1) > P (1|x2) for all x1, x2 ∈ X. The

sufficient condition relates rank-preservation to optimality:

Theorem 53. A rank-preserving function is an optimal score function.

Proof. Immediate from the proof of Theorem 52. �

By Theorem 53, we can sidestep learning the true distribution and instead try to

learn a function which is likely to be rank-preserving. An optimal score function may

not be rank-preserving. For example, we can swap the scores of x’s above the optimal

threshold.
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6.2.4 An Asymptotic Equivalence Result

We now investigate the connections between EUM-optimal classifiers and DTA-optimal

classifiers when the true distribution P (X, Y ) is known. By definition, a DTA-optimal

classifier is expected to be better than an EUM-optimal classifier if tested on many i.i.d.

test sets. We shall give an asymptotic equivalence result for EUM-optimal classifiers

and DTA-optimal classifiers on large i.i.d test sets. In light of Theorem 52, we only

need to consider an optimal probability-thresholding classifier as a representative EUM-

optimal classifier.

In the following, let x = (x1, . . . , xn) ∈ Xn be an i.i.d. sequence of observations.

For any classifier θ, let θ(x) = (θ(xi))i. All expectations, denoted by E(·), are taken

under the conditional distribution P (y|x). The following theorem says that for an

arbitrary classifier θ, when n is large enough, then for any x, the expected F-measure

of θ(x) is close to Fβ(θ).

Theorem 54. For any classifier θ, any ε, η > 0, there exists Nβ,ε,η such that for all

n > Nβ,ε,η, with probability at least 1− η, |E[Fβ(θ(x),y)]− Fβ(θ)| < ε.

Proof. This follows closely the proof for Lemma 55. �

In fact, such approximation holds uniformly for the class T .3

Lemma 55. For any ε, η > 0, there exists Nβ,ε,η such that for all n > Nβ,ε,η, with

probability at least 1− η, for all δ ∈ [0, 1], |E[Fβ(Iδ(x),y)]− Fβ(Iδ)| < ε.

Proof. pi(δ) = E(I(Iδ(X) = i)) denotes the probability that an observation is

predicted to be in class i, and pj|i(δ) = E(P (j|X)
∣∣Iδ(x) = i) denotes the prob-

ability that an observation predicted to be in class i is actually in class j. Let

ni(δ) =
∑

k I(Iδ(xk) = i), nji(δ) =
∑

k I(yk = j ∧ Iδ(xk) = i), then p̃i(δ) = ni
n

and

3Both Lemma 55 and Theorem 56 hold for T ∪ T ′ as well. We consider T to simplify the presen-
tation.
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p̃j|i(δ) =
nji(δ)

ni(δ)
are empirical estimates for pi(δ) and pj|i(δ) respectively. We will also

need to use p̃′j|i(δ) = 1
ni

∑
i P (j|x)I(Iδ(x) = i) as the empirical estimate of pj|i(δ) based

on x only. Note that p̃i(δ)’s and p̃′j|i(δ)’s are random variables depending on x only, and

p̃j|i(δ)’s are random variables depending on x and y. In the following, we shall drop δ

from the notations as long as there is no ambiguity. Let Fβ(δ) denote the Fβ-measure

of Iδ(x). We have

Fβ(δ) =
(1 + β2)p1p1|1

β2(p1p1|1 + p0p1|0) + p1

, (6.2.17)

Fβ(Iδ(x),y) =
(1 + β2)p̃1p̃1|1

β2(p̃1p̃1|1 + p̃0p̃1|0) + p̃1

. (6.2.18)

The main idea of the proof is to first show that

(a) there is high probability that x gives good estimates for pi(δ)’s and p1|i(δ)’s for

all δ, and then show that

(b) for such x, there is high probability that x,y give good estimates for pi(δ)’s and

p1|i(δ)’s, thus

(c) Fβ(Iδ(x),y) has high probability of being close to Fβ(δ), and its expectation is

close to Fβ(δ) as a consequence.

(a) We first show that for any t > 0, with probability at least 1− 12eln(2en)−nt4 , we

have for all δ, for all i,

|p̃i(δ)− pi(δ)| ≤ t2, |p̃i(δ)p̃′1|i(δ)− pi(δ)p1|i(δ)| ≤ t2. (6.2.19)

To see this, consider a fixed i. Let fδ(x) = I(Iδ(x) = i), F = {fδ : 0 ≤ δ ≤ 1},

gδ(x) = I(Iδ(x) = i)P (1|x), and G = {gδ : 0 ≤ δ ≤ 1}. Note that the expected

value and empirical average of fδ and gδ are pi(δ), p̃i(δ), pi(δ)p1|i(δ) and p̃i(δ)p̃
′
1|i(δ)

respectively. In addition, both F and G have VC dimension 1. Thus, by Inequality

(3.3) and (3.10) in (Vapnik, 1995), each of the following hold with probability at least
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1− 4eln(2en)−nt4 ,

∀δ[|p̃1(δ)− p1(δ)| ≤ t2]), (6.2.20)

∀δ[|p̃i(δ)p̃′1|i(δ)− pi(δ)p1|i(δ)| ≤ t2]. (6.2.21)

Now observing that |p̃1(δ)− p1(δ)| ≤ t2 implies |p̃0(δ)− p0(δ)| ≤ t2, and applying the

union bound, then with probability at least 1− 12eln(2en)−nt4 , (6.2.19) holds.

(b) Consider a fixed x satisfying that for some δ, for all i, |p̃i(δ) − pi(δ)| ≤ t2 and

|p̃i(δ)p̃′1|i(δ) − pi(δ)p1|i(δ)| ≤ t2, we show that if t < 1, then with probability at least

1− 4e2nt3 ,

∀i|p̃i(δ)p̃1|i(δ)− pi(δ)p1|i(δ)| ≤ 5t. (6.2.22)

Consider a fixed i. If pi ≤ 2t, then

|p̃ip̃1|i − pip1|i| ≤ p̃ip̃1|i + pip1|i ≤ p̃i + pi ≤ 5t.

If pi > 2t, then |p̃′1|i − p1|i| ≤ t, 4 and we also have p̃i > 2t − t2 > t, that is ni > nt.

Note that p̃1|i is of the form 1
ni

∑ni
i=1 Ii where the Ii’s are independent binary random

variables, and the expected value of p̃1|i is p̃′1|x, then applying Hoeffding’s inequality,

with probability at least 1−2e−2nt·t2 , we have |p̃1|i− p̃′1|i| ≤ t. When pi > 2t, |p̃i−pi| ≤

t2 < t, and |p̃1|i − p̃′1|i| ≤ t, we have

p̃ip̃1|i − pip1|i ≥ (pi − t)(p1|i − 2t)− pip1|i

≥ 2t2 − 2pit− p1|it ≥ −5t,

p̃ip̃1|i − pip1|i ≤ (pi + t)(p1|i + 2t)− pip1|i

≤ 2pit+ p1|it+ 2t2 ≤ 5t.

4This can be seen by observing that if p̃′1|i−p1|i > t, then p̃ip̃
′
1|i−pip1|i ≥ pi(p̃′1|i−p1|i)−|p̃i−pi| >

2t · t− t2 = t2, a contradiction. Similarly, the other case can be shown to be impossible.
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That is, |p̃ip̃1|i−pip1|i| ≤ 5t. Combining the above argument, we see that (6.2.22) holds

with probability at least 1− 4e2nt3 .

(c) If for some δ, x satisfies |p̃i− pi| ≤ t2 < t and x,y satisfies (6.2.22), then by Eq.

6.2.18,

Fβ(Iδ(x),y) ≥ (1 + β2)(p1p1|1 − 5t)

β2(p1p1|1 + 5t+ p0p1|0 + 5t) + p1 + t

≥ Fβ(δ)− γ1t,

where γ1 is some positive constant that depends on β and π1 only. The last inequality

can be seen by noting that for a, b, d, t ≥ 0, c > 0, we have a−bt
c+dt
≥ a

c
− ad+bc

c2
t, and

observing that in this case a = (1+β2)p1p1|1 ≤ (1+β2)π1, b = 5+5β2, c = β2π1 +p1 ≥

β2π1, and d = 10β2 + 1.

Similarly, if t < 1
2

β2π1
10β2+1

, then

Fβ(Iδ(x),y) ≤ (1 + β2)(p1p1|1 + 5t)

β2(p1p1|1 − 5t+ p0p1|0 − 5t) + p1 − t

≤ Fβ(δ) + γ2t,

where γ2 is some positive constant that depends on β and π1 only. The last inequality

can be seen by noting that for a, b, d ≥ 0, c > 0, c > 2dt, we have a+bt
c−dt ≤ a

c
+ 2ad+bc

c2
t,

and observing that in this case a = (1 + β2)p1p1|1 ≤ (1 + β2)π1, b = 5 + 5β2, c =

β2π1 + p1 ≥ β2π1, d = 10β2 + 1, and c > 2dt.

Now it follows that for an x satisfying (6.2.19), then for any δ ∈ [0, 1], for any

t < 1
2

β2π1
10β2+1

, with probability at least 1− 4e−nt
3
, |Fβ(Iδ(x),y)− Fβ(δ)| ≤ max(γ1, γ2)t.

Hence

|E[Fβ(Iδ(x),y)]− Fβ(δ)| ≤ 4e−nt
3 · 1 + max(γ1, γ2)t.
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For any ε > 0, further restrict t to be the maximum satisfying t ≤ ε
2 max(γ1,γ2)

, and let

this value be denoted by t0, then t0 depends on β, ε (and π1). Now the second term

in the above inequality is less than ε/2. The first term is monotonically decreasing

in n and converges to 0 as n → ∞. Now take Nβ,ε,η to be the smallest number such

that for n = Nβ,ε,η, the first term is less than ε/2, and 12eln(2en)−nt4 < η, then for any

n > Nβ,ε,η, with probability at least 1− η, |Ey∼P (·|x)[Fβ(Iδ(x),y)]− Fβ(δ)| < ε. �

The above uniform approximation result leads to the following asymptotic equiva-

lence result.

Theorem 56. Let s∗(x) = maxs E[Fβ(s,y)], where maximization is over s satisfying

{P (1|xi) | si = 1} ∩ {P (1|xi) | si = 0} = ∅. Let t∗ = arg maxt∈T Fβ(t). Then for any

ε, η > 0,

(a) There exists Nβ,ε,η such that for all n > Nβ,ε,η, with probability at least 1− η,

E[Fβ(t∗(x),y)] ≤ E(Fβ(s∗(x),y)) < E[Fβ(t∗(x),y)] + ε. (6.2.23)

(b) There exists Nβ,ε,η such that for all n > Nβ,ε,η, with probability at least 1− η,

|Fβ(t∗(x),y)− Fβ(s∗(x),y))| < ε. (6.2.24)

Proof. (a) By Lemma 55, when n > Nβ, ε
2
,η, with probability at least 1− η, x satisfies

that for all δ,

|Ey∼P (·|x)[Fβ(Iδ(x),y)]− Fβ(δ)| < ε/2.

Consider such an x. The lower bound is clear because s = Iδ∗ satisfies {P (1|xi) : si =

1} ∩ {P (1|xi) : si = 0} = ∅. For the upper bound, by Theorem 57 and the definition
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of s∗(x), we have s∗(x) = Iδ′(x) for some δ′. Thus

E[Fβ(s∗(x),y)] < Fβ(δ′) + ε/2

≤ Fβ(δ∗) + ε/2

< E[Fβ(Iδ∗(x),y)] + ε.

(b) From the proof for Lemma 55, for any t > 0, with probability at least 1 −

12eln(2en)−nt4 , we have for all δ, for all i, x satisfies (6.2.19), that is,

|p̃i(δ)− pi(δ)| ≤ t2, |p̃i(δ)p̃′1|i(δ)− pi(δ)p1|i(δ)| ≤ t2.

In addition, if t < 1
2

β2π1
10β2+1

, then for such x, for any δ, with probability at least 1−4e2nt3 ,

|Fβ(Iδ(x),y)− Fβ(δ)| < γt,

where γ is a constant depending on ε (and π1). Note that there exists δ′ such that

Iδ′(x) = s∗(x). Using the union bound, with probability at least 1− 8e−2nt3 ,

|Fβ(Iδ′(x),y)− Fβ(δ′)| < γt,

|Fβ(Iδ∗(x),y)− Fβ(δ∗)| < γt. (6.2.25)

Hence we have

E(Fβ(Iδ′(x),y) ≤ (1− 8e−2nt3)(Fβ(δ′) + γt) + 8e−2nt3 ,

E(Fβ(Iδ∗(x),y) ≥ (1− 8e−2nt3)(Fβ(δ∗)− γt).
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Combining the above two inequalities with E(Fβ(Iδ′(x),y) ≥ E(Fβ(Iδ∗(x),y), we have

Fβ(δ∗)− Fβ(δ′) ≤ 2γt+
8e−2nt3

1− 8e−2nt3
.

For those y satisfying (6.2.25), we have

|Fβ(Iδ′(x),y)− Fβ(Iδ∗(x),y)|

= |Fβ(Iδ′(x,y)− Fβ(δ′)|+ |Fβ(δ′)− Fβ(δ∗)|

+ |Fβ(δ∗)− Fβ(Iδ∗(x),y)|

< 4γt+
8e−2nt3

1− 8e−2nt3
.

Combining the above argument, we have with probability at least (1−12eln(2en)−nt4)(1−

8e−2nt3) that |Fβ(s∗(x),y)− Fβ(t∗(x),y)| < 4γt+ 8e−2nt3

1−8e−2nt3
.

Now choose t = ε
8γ

, then for sufficiently large n, we can guarantee that with prob-

ability at least 1− η, |Fβ(s∗(x),y)− Fβ(t∗(x),y)| < ε. �

Part (a) says that the t∗(x) and s∗(x) have almost the same expected Fβ, and Part

(b) says that for a large i.i.d. test set (x,y), t∗ and s∗ have almost identical Fβ.

The constraint on s ensures that instances with the same probability of being

positive are placed in the same class. In general, optimal predictions may not satisfy

this constraint (Lewis, 1995). However, if the underlying distribution satisfies that

P (P (1|X) = δ) = 0 for any δ, then the above result is essentially this: given P , an

optimal prediction and the prediction using the optimal threshold are asymptotically

equivalent. This is demonstrated empirically in Section 6.4.
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6.3 Algorithms

We first discuss approximations to EUM, then discuss DTA and present a new efficient

prediction algorithm.

6.3.1 Approximations to the EUM Approach

Exact empirical optimization of F-measures for a parametric family is difficult due to its

complex piecewise linear nature, and typically only approximations of the F-measures

are maximized. We discuss three methods.

In view of the optimality of probability thresholding classifiers, it is natural to first

learn an estimate p(Y |X) for P (Y |X), and then learn an optimal threshold δ. If p(Y |X)

is chosen from a parametric family using the maximum likelihood (ML) principle,

then under very general conditions, the learned distribution follows an asymptotically

normal convergence to the model with smallest KL-divergence to the true distribu-

tion (White, 1982) (See Section 3.4). Thus when the model family is well-specified,

the resulting classifier is asymptotically optimal. We call this the MLδapproximation.

Strictly, this is a combination of the conditional probability estimation and F-measure

optimization of the threshold, and the convergence rate in Theorem 50 does not apply.

Jansche (2005) learned a logistic regression model p(Y |X,φ) by maximizing the em-

pirical Fβ in Eq. 6.2.1, but with each binary decision si replaced by the predictive prob-

abilities pi = p(1|xi, φ). The eventual classifier uses the rule h(x) = I(p(1|x, φ) > 0.5).

It is unknown whether this method is consistent or whether it follows any asymptotic

convergence. There is also no apparent reason to use 0.5 as the threshold, so we shall

optimize the threshold on the training data in addition to estimating φ. We call this

the Fδ approximation.

We considered learning a rule h(x) = I(p(1|x, φ) > δ) directly, where φ, δ are pa-

rameters, by approximating the empirical Fβ in Eq. 6.2.1 using si = Iγ(p(1|xi, φ)− δ),
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where Iγ(t) = 1/(1 + e−γt) approximates I(t > 0) for large γ. However, this seemed to

overfit easily, and it rarely yielded better performance than the MLδ and Fδ approxi-

mations in our preliminary experiments. We will not consider it further.

6.3.2 Maximizing Expected F-measure

Given a utility function U(s,y), the decision-theoretic optimal prediction for x maxi-

mizes Ey∼P (·|x)(U(s,y)). In general, the true distribution P is not known and is esti-

mated. The approach that involves first estimating true distributions using maximum

likelihood (ML) and then making decision-theoretic optimal predictions will be called

the MLE approach. We discuss the two steps in MLE, then we present an efficient

algorithm for computing the optimal predictions.

First, the asymptotic convergence of ML (White, 1982) implies the MLE approach

is asymptotically optimal when estimating with sufficient training examples in a well-

specified family. In practice, we will not know whether the model family is well-

specified. Nevertheless, as we shall see in Section 6.4.1, the MLE approach can yield

results indistinguishable from the optimal if the model family is misspecified but con-

tains a reasonable approximation to the true distribution.

Second, for arbitrary utility function U , computing the expectation can be com-

putationally difficult. But for the case when the utility function is an F-measure, and

P (y|x) =
∏n

i=1 P (yi|xi), efficient algorithms can be designed by exploiting the following

characterization of an optimal prediction. Let pi = P (1|xi).

Theorem 57. (Probability Ranking Principle for F-measure, Lewis 1995) Suppose

s∗ = maxs E(Fβ(s,y)). Then min{pi | s∗i = 1} ≥ max{pi | s∗i = 0}.

Thus the decision-theoretic optimal prediction contains the top k instances that

are most likely to be positive for some k ∈ {0, . . . , n}. This reduces the number of

candidate predictions from 2n to n+ 1.
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We shall use Lewis’s result to first give a new O(n3) time algorithm for computing

the optimal predictions, then improve it to O(n2) when β2 is rational, which is often

the case. We then illustrate the O(n2) algorithm for the case when β2 = 1.

A Cubic Time Algorithm

Let Fβ;k(y) be the Fβ-measure when the first k instances are predicted as positive,

then we have

Fβ;k(y) = (1 + β2)
∑k

i=1 yi/[k + β2
∑n

i=1 yi]. (6.3.1)

Let fβ;k be the expected Fβ-measure when the first k instances are predicted as positive,

that is

fβ;k =
∑

y P (y)Fβ;k(y), (6.3.2)

and let Si:j be the number of true positive instances from the i-th to the j-th instances

(inclusive), that is

Si:j =

j∑
l=i

yl. (6.3.3)

For y’s satisfying S1:k = k1 and Sk+1:n = k2, their Fβ’s are (1 +β2)k1/(k+β2(k1 +k2)),

and the probability this happens is P (S1:k = k1)P (Sk+1:n = k2), thus

fβ;k =
∑

0≤k1≤k
0≤k2≤n−k

P (S1:k = k1)P (Sk+1:n = k2)(1 + β2)k1

k + β2(k1 + k2)
. (6.3.4)

One can show that P (S1:k = i) and P (Sk+1:n = i) are the coefficients of xi in∏k
j=1[pjx + (1 − pj)] and

∏n
j=k+1[pjx + (1 − pj)] respectively. Thus, each fβ;k can be

computed in O(n2) time using O(n) space. Hence computing all fβ;k’s takes O(n3)

time and O(n) space.
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A Quadratic Time Algorithm

For rational β2, we can improve the computation to O(n2) time and O(n) space. The

key is to note that

fβ;k =
k∑

k1=0

(1 + β−2)k1P (S1:k = k1)s(k, kβ−2 + k1), (6.3.5)

where s(k, α) =
∑n−k

k2=0 P (Sk+1:n = k2)/(α+k2). For rational β, the s values required

for the fβ;k’s are shared. To compute s, use s(n, α) = 1/α, and

s(k − 1, α) = pks(k, α + 1) + (1− pk)s(k, α), (6.3.6)

which follows from P (Sk:n = i) = pkP (Sk+1:n = i− 1) + (1− pk)P (Sk+1:n = i).

To sum up the above discussion, the pseudo-code for the quadratic time algorithm

is given in Algorithm 1, with q/r as the reduced fraction of β2.

Algorithm 1 Compute fβ;1, . . . , fβ;n, where β2 = q/r

1: For 0 ≤ i ≤ n, set C[i] as the coefficient of xi in [p1x+ (1− p1)] . . . [pnx+ (1− pn)];

2: For 1 ≤ i ≤ (q + r)n, S[i]← q/i;
3: for k = n to 1 do
4: fβ;k ←

∑n
k1=0(1 + r/q)k1C[k1]S[rk + qk1];

5: Divide C by pkx+ (1− pk);
6: for i = 1 to (q + r)(k − 1) do
7: S[i]← (1− pk)S[i] + pkS[i+ q];

Correctness can be seen by observing that at line 3, S[i] = s(k, i/q), and C[k1] =

P (S1:k = k1). In practice, polynomial division can be numerically unstable, and it is

preferred to precompute all the C[i]’s using O(n2) time and space first.

Illustration for β2 = 1

We illustrate the computations done for the quadratic time algorithm for β2 = 1.
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First we can compute all required P (S1:k = k1) values as in Figure 6.3.2. We start

from the first row, and then each subsequent row can be obtained using values from

previous rows only. Each entry is the weighted sum of entries with edges pointing to

it. Some weights are labeled on the edges.

1

P1,0 P1,1

.

.

. · · · · · ·

Pn,1 Pn,2 · · · Pn,n

1− p1 p1

1− p2 p2

1− pn pn

Figure 6.1: Computing all required Pk,k1 = P (S1:k = k1) values.

Then we compute all the required s values as in Figure 6.3.2 with s(n, i) = 1/i.

s(n, 1) s(n, 2) · · · s(n, 2n− 2) s(n, 2n− 1) s(n, 2n)

s(n− 1, 1) s(n− 1, 2) · · · s(n− 1, 2n− 2) s(n, 2n− 1)

... · · · · · ·

s(1, 1) s(1, 2)

1− pn pn

1− pn−1
pn−1

1− p1 p1

Figure 6.2: Computing all required s(·, ·) values.
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Now the fβ;k values can be computed as follows:

fβ;n = 0P (S1:n = 0)s(n, n) + 2P (S1:n = 1)s(n, n+ 1) + . . .+ 2nP (S1:n = n)s(n, 2n),

. . .

fβ;2 = 0P (S1:2 = 0)s(2, 2) + 2P (S1:2 = 1)s(2, 3) + 4P (S1:2 = 2)s(2, 4),

fβ;1 = 0P (S1:1 = 0)s(1, 1) + 2P (S1:1 = 1)s(1, 2).

6.4 Experiments

We empirically demonstrate that EUM can be more robust against model misspecifica-

tion, but DTA can be better for rare classes on small datasets and a common scenario

of domain-adaptation. We use a synthetic dataset, the Reuters-21578 dataset, and four

multilabel classification datasets.

6.4.1 Mixtures of Gaussians

We consider a mixture of Gaussians on D dimensions (shown in Figure 6.3): P (X, Y ) =

πYN(X;µY ,ΣY ), with Σ1 = Σ0 = ID, µ1 = (S +O)1/
√

4D and µ0 = −(S −O)1/
√

4D,

where S and O are non-negative constants Thus S is the distance between the cen-

ters. We shall vary S, O, D, π1 and the number of training examples Ntr.
5 All

instances are i.i.d. The optimal F1 achievable by a classifier θ can be computed (see

Eq. 6.2.13), and it depends only on S and π1. Ntr determines how close the estimated

distribution is to the optimal model; and the number of test examples, Nts, affects the

gap in the performance between the thresholding method and the expectation method

(Theorem 56).

5These parameters are mainly chosen for simplicity of computation, but the conclusions hold for
dataset of similar characteristics as described in the sections below.
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π1N (µ1, ID)

(1− π1)N (µ0, ID)
0

S

O

1

Figure 6.3: Mixture of Gaussians used in the experiments.

We train logistic regression (LR) models using three different attribute vector rep-

resentations: R0 consists of the coordinates only, R1 is R0 with an additional dummy

attribute fixed at 1, and R2 is R1 with additional all degree two monomials of the coor-

dinates. LR with R2 includes the true distribution. The methods compared are MLδ,

Fδ, MLE, Truthδ and TruthE, where last two methods use the true model P (X, Y ) for

thresholding and expectation.

MLE MLδ Fδ

Setting R0 R1 R2 R0 R1 R2 R0 R1 R2 TruthE Truthδ Theory

Default 97.87 97.84 96.02 97.84 97.87 96.15 97.62 97.55 96.37 97.87 97.91 97.72

S=0.4 66.86 66.86 63.77 66.32 66.31 63.55 66.03 66.09 65.72 66.39 65.82 66.88

D=100 94.12 94.14 88.05 94.09 94.08 87.86 95.96 95.98 88.23 97.53 97.53 97.72

Ntr=100 95.43 95.48 91.36 94.78 94.69 91.33 95.55 95.34 91.57 97.80 97.36 97.72

π1=0.05 75.19 90.79 84.07 91.84 90.17 84.21 92.36 89.56 85.21 92.72 92.26 91.73

O=50 66.01 67.83 96.10 65.44 89.29 96.10 97.04 96.88 97.41 97.87 97.91 97.72

Table 6.1: Performance of different methods for optimizing F1 on mixtures of Gaussians

The first column in Table 6.1 lists the parameter settings. For the row headed by

Default, we use D = 10, S = 4, O = 0, Ntr = 1000, Nts = 3000, and π1 = 0.5. This
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dataset is low dimensional, almost noiseless, balanced and has sufficiently many train

and test instances.6 Each of the remaining rows uses the same set of parameters, except

for the one parameter indicated on the first column. LR with R0 or R1 contains a good

approximation to the true distribution for all settings except π1 = 0.05 and O = 50.

For π1 = 0.05, the class is imbalanced and such imbalance cannot be modelled without

the dummy attribute. Thus R0 will not give a good model, but R1 will. For O = 50,

the centers are far from the origin, and this makes both R0 and R1 inadequate for

density estimation.

In Table 6.1, the F1 results for TruthE, Truthδ and Theory (the theoretical optimal

F1 for a classifier, computed using Eq. 6.2.13) are similar. These are expected according

to Theorem 56. Most other scores are close to the optimal scores. For MLE and MLδ,

these scores are expected due to the presence of a good approximation to the true

distribution in the model family, and the asymptotic convergence property of MLδ and

MLE given sufficiently many examples, as discussed in Section 6.3. For Fδ, although

we lack its theoretical convergence to an optimal classifier, the results suggest that

such convergence may hold.

The scores obtained using R2 are generally lower than scores obtained using R0

and R1 under the settings Default, S = 0.4, D = 100, and Ntr = 100, though R2 gives

a well-specified model class while R1 and R0 do not. Thus, a well-specified model class

is not necessarily better. This is because a misspecified model class with a small VC

dimension can converge to the optimal model within the class using fewer samples than

a well-specified model class with a higher VC dimension. To choose a class of the right

complexity, one may follow the structural risk minimization principle (Vapnik, 1995).

This requires bounds like those in Lemma 48 and Theorem 50. However, the given

bounds cannot be used because they only apply for large samples.

The gaps between R2 scores and the optimal score for Default is significantly smaller

6We have verified that the sizes are large enough to give the same conclusions for other i.i.d. data
of the same sizes.
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than the gaps for S = 0.4, D = 100, Ntr = 100, and π1 = 0.05. This suggests that

higher noise level, higher model class complexity, smaller training size, and smaller

positive ratio make it harder to learn a good classifier. Note that Theorem 50 already

suggests that in EUM, smaller positive ratio can make learning more difficult.

For the setting π1 = 0.05, using R0, MLE performs poorly, while MLδ is close to

optimal. MLE’s poor performance is expected due to poor quality of the learned

distribution, and MLδ’s performance can be justified by Theorem 53: the thresholding

method can remain optimal when the score function is rank-preserving but not close to

the true probability distribution. For the setting O = 50, both MLE and MLδ perform

poorly using R0, but MLδ is much better than MLE using R1. Thus although MLδ

can still be severely affected by model misspecification, it is still relatively robust. In

addition, for π1 = 0.05 and O = 50, Fδ has much higher or at least comparable scores

than MLE and MLδ. This suggests that if the model class is severely misspecified, then

EUM can be more robust than DTA.

We also compare MLE and MLδ on small test sets with Nts = 100 (Theorem 56 only

holds for large test set size). We observed similar performances from MLδ and MLE

when π1 is high, but MLE seems significantly better than MLδ when π1 is small. To

illustrate, Table 6.2 gives the results when the same setting as π1 = 0.05 in Table 6.1

is used to generate the data. It shows that, with a sufficiently accurate model, MLE

can be better than MLδ and Fδ on rare classes.
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(b) True π1 = 0.5
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(c) True π1 = 0.9

Figure 6.4: Effect of the quality of probability model on the decision-theoretic method.
The x-axes are the π1 values for the assumed distribution, and the y-axes are the
corresponding 1− F1 and KL values.

MLE MLδ Fδ

R0 R1 R2 R0 R1 R2 R0 R1 R2 TruthE Truthδ

Mean 36.70 63.00 58.80 60.78 62.01 58.31 61.40 59.98 53.16 63.32 60.71

Std. dev. 13.04 20.67 21.49 23.69 21.34 21.87 22.18 22.04 23.02 20.46 23.72

Table 6.2: The means and standard deviations of the F1 scores in percentage, computed

using 2000 i.i.d. trials, each with test set of size 100, for mixtures of Gaussians with

D = 10, S = 4, O = 0, Ntr = 1000 and π1 = 0.05.

Effect of Model Quality

We also perform experiments to study the effect of incorrect probability models on

MLE. We use the Default setting in the previous section, with π1 = 0.5 and S = 4

changed to S = 2, as the true distribution, to generate a set of 3000 i.i.d. test in-

stances. We make optimal predictions using an assumed distribution which is the

same as the true one except that we vary π1. For each π1, we compute the F1 and
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the Kullback-Leibler-divergence (KL) from the true to the assumed distribution on the

test set. These are plotted in Figure 6.4(b), where 1− F1 is plotted instead of F1.

Figures 6.4(a) and 6.4(c) plot for similar experiments, but using 0.1 and 0.9 as the true

π1 instead. Our choice of S = 2 instead of S = 4 for the true distribution has made the

difference between the true and assumed distributions more pronounced in the plots.

Comparing the curves for KL and 1− F1 within each figure, we see that the F-measure

of DTA is roughly positively correlated with the model quality. The plot for 1− F1

in Figure 6.4(a) exhibits higher curvature around the true π1 than those in the other

two figures. This suggests that if the true distribution has a small positive ratio, the

performance is more sensitive to model quality.

Domain Adaptation

In domain adaptation, the test distribution differs from the training one. One common

scenario is when P (X) changes but P (Y |X) does not. Using the mixture of Gaussians

with D = 10, S = 4, O = 0 and π1 = 0.5, we generate 5000 i.i.d. training instances, and

5000 test instances with P (Y |X) < 0.5. The F1 scores for Truthδ, TruthE, MLδ and

MLE (using R1) are 21%, 38%, 11% and 36% respectively. Similar results are obtained

under similar settings. Under such conditions, DTA is more robust than EUM.

6.4.2 Text Classification

We evaluate on the Reuters-21578 dataset7 using the ModApte partition, which has

9603 training documents and 3299 test documents. We train two models: the standard

multinomial näıve Bayes (NB) model and a LR model, using word occurrence counts

and a dummy attribute fixed at one. Both models are regularized. For NB, we use

the Laplace corrector with one count for class and word counts. For LR, we use the

Gaussian norm on the parameters. We use only those topics with at least C positive

7Available at http://www.daviddlewis.com/resources/testcollections/reuters21578/.
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instances in both the train and test sets, and we vary C. Table 6.3 reports macro-F1

scores (the F1 averaged over topics), where ML.5 uses 0.5 to threshold the probabilities,

Näıve Bayes Logistic regression

C ML.5 MLδ MLE ML.5 MLδ Fδ MLE

1 17.4 17.7 17.7 35.8 36.6 37.3 39.9

10 29.8 30.1 30.2 55.1 56.4 57.2 57.6

50 69.9 69.1 70.1 75.2 75.7 76.6 75.6

100 73.7 73.5 73.7 75.5 75.9 76.5 75.8

Table 6.3: Macro-F1 scores in percentage on the Reuters-21578 dataset, computed for

those topics with at least C positive instances in both the training and test sets. The

number of topics down the rows are 90, 50, 10 and 7.

In Table 6.3, although NB generally does not provide good probability estimates,

MLE is still at least comparable to ML.5 and MLδ. With LR, MLE is a few per-

cents better for rare classes. Chai (2005) used Gaussian process and obtained similar

conclusion.

6.4.3 Multilabel Datasets

We evaluate on four standard multilabel classification datasets.8 We train regularized

LR, with the regularization parameter for each class selected using two fold cross

validation. Macro-F1 scores are shown in Table 6.4. The bracketed scores are obtained

by choosing the regularization parameter giving a model with minimum empirical KL

divergence on the test data. Each bracketed score is higher than its non-bracketed

counterpart, thus models closer to the true one perform better for both MLE and MLδ.

8These are available at http://mulan.sourceforge.net/.
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Comparing the scores for MLE with those for MLδ and Fδ, bracketed or not, we see

that MLE performs better, especially for smaller C, suggesting MLE is better for rare

classes.

C T MLδ MLE Fδ

yeast (1500 train, 917 test)

1 14 47.14 (47.54) 48.16 (48.47) 46.61

50 13 50.76 (50.34) 51.38 (51.71) 50.19

300 5 73.79 (73.31) 73.52 (73.74) 73.71

medical (645 train, 333 test)

1 32 48.88 (51.93) 51.48 (53.91) 48.45

10 12 84.81 (84.49) 85.19 (85.84) 86.01

50 2 87.62 (88.78) 90.12 (88.99) 91.56

scene (1211 train, 1196 test)

1 6 68.80 (70.50) 68.57 (70.80) 69.05

100 6 68.80 (70.50) 68.57 (70.80) 69.05

enron (1123 train, 579 test)

1 52 19.70 (25.53) 21.61 (26.45) 19.24

10 26 35.26 (38.00) 38.76 (39.74) 35.86

50 9 59.21 (59.82) 60.15 (60.44) 61.60

Table 6.4: Macro-F1 scores in percentage on four multilabel datasets, computed for

those T labels with at least C positive instances in both the training and test sets.
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6.5 Discussion

We gave theoretical justifications and connections for optimizing F-measures using

EUM and DTA. We empirically demonstrated that EUM seems more robust against

model misspecification, while given a good model, DTA seems better for handling rare

classes and a common domain adaptation scenario.

A few important questions are unanswered yet: existence of interesting classifiers

for which EUM can be done exactly, quantifying the effect of inaccurate models on

optimal predictions, identifying conditions under which one method is preferable to

another, and practical methods for selecting the best method on a dataset. Results

presented here only hold for large data sets, and it is important to consider the case

for small number of instances. Experiments with and analyses of other methods may

yield additional insights as well.
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Chapter 7

Conclusion

This thesis is motivated by the search for a more general framework towards statis-

tical learning in the context of increasing need in dealing with structure in data and

increasing popularity in performance measures other than those well-understood de-

composable losses such as accuracy and square loss. Its main contributions consist

of exact polynomial time inference and learning algorithms for a class of sparse high-

order CRF and a class of sparse FCRFs, and the theory and algorithms for optimizing

F measures, a class of popular non-decomposable performance measures. There are

various directions along which the works can be further developed to move towards a

general framework for handling structures and non-decomposable losses. We discuss a

few below.

First, both types of sparse CRFs are special cases of CRFs with sparse potential

functions, and they have their own limitations as pointed out in the discussions at

the end of Chapter 4 and Chapter 5. Designing efficient algorithms for general CRFs

with sparse potential functions will give us a tool to handle a rich class of structural

dependencies.

Second, it will be interesting to have efficient methods to detect or generate sparse

structures (as compared to `-1-type algorithms). For example, for our high-order CRFs,
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if the number of patterns is large, how to select only the most important ones so as

to get a good sparse approximation? Our FCRFs allow the exploitation of sparsity of

patterns of the outputs of reasonable baselines, and can be viewed as an automatic way

of converting a problem with dense structures to one with sparse structures. However

this may not work in general, for example, using baseline outputs is not likely to work

very well for high-order CRFs, because our high-order CRFs use all patterns occurring

at all time steps, so we may still have many patterns.

Third, is it possible to exploit algorithms for sparse models to better handle dense

models? This is actually related to the question above. A simple approach is to first

reduce a dense model to a sparse one, such as ignoring potential functions with small

weight, so as to have a sparse model. After that, inference can be done with respect

to the sparse model, and the results can then be used in learning. This is something

that can be carried out as a preliminary study.

Fourth, our investigation on non-decomposable performance measures focus on F-

measures. Connections to results on other types of non-decomposable performance

measures, such as AUC, should be examined to see whether more general theory and

algorithms are possible.

Last, this thesis has not explored how we can deal with both structures in data

and non-decomposable losses at the same time. Attempts to try to efficiently compute

predictions with maximal F-measure for a collection of sequences using CRFs as the

underlying model turn out to be much more challenging. Results along this line will

be very interesting.
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Index

0/1 loss, 6

absolute error loss, 8

annealed VC entropy, 21

attribute, 12

Basis Expansion, 18

Bayes decision boundary, 6

Bayes optimal prediction rule, 6

Bayes risk, 6

boundary, 46

conditional exponential family, 28

decision boundary, 6

discriminant analysis, 9

domain adaptation, 3

empirical risk, 7

Empirical Risk Minimization, 7

ERM, 7

estimator, 37

expectation, iii

expected risk, 6

exponential family, 27

features, 12

growth function, 21

iid, 6

instantiation, iii

kernel function, 19

kernel trick, 19

Laplace correction, 23

Least Squares Linear Regression, 4

likelihood function, 38

log loss, 10

loss function, 6

MAP, 38

marginal distribution, iii

Markov blanket, 46

Markov model, 27

Markov random field, 46

Markovian, 46

maximum a posterior, 38

Maximum Entropy Principle, 29

maximum likelihood, 38

misspecified, 37

ML, 38

MLE, 38

multitask learning, 3

Naive Bayes Classification, 5

natural parameter, 27

Nearest Neighbor Classification, 4

nonparametric, 5

off-training-set, 14

parametric, 5

partition function, 27

probability density function, iii

probability mass function, iii
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quadratic loss, 7

random variable, iii

residual sum of squares, 4

semi-supervised learning, 3

single-task learning, 3

Statistical decision theory, 5

statistical learning theory, 6

supervised learning, 3

transfer learning, 3

uniform f -average, 15

unsupervised learning, 3

VC entropy, 21

well-posed, 21
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