
Towards Smart Assistants in
Two-Party Collaboration

NGUYEN DINH TRUONG HUY

Bachelor of Computer Science, Honors

National University of Singapore

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2012

ii

Acknowledgements

This dissertation would not have been completed without the support and en-

couragement of many people. I would like to reserve this section to express my

gratitude to all of them.

Firstly, I would like to thank my thesis advisors, Prof Leong Tze-Yun and

Prof Lee Wee-Sun, for having spent many years patiently showing me how to do

research. Every meeting with them enlightens me in various ways. Prof Leong

taught me how to identify meaningful problems, formulate them and brainstorm

about possible approaches, while Prof Lee often showed me how to work out

the theoretical analysis of many algorithms. Personally, I am deeply indebted

to Prof Leong for trying her best in finding financial sources to fund my work,

allowing me to focus on drafting new research, instead of survival, ideas. This

thesis is not possible without you two.

I owe a great deal to Dr. Tomi Silander for sparing his time in providing his

precious critique on my paper and dissertation drafts. All meetings with him are

not without a mixed feeling between anxiety and excitement. On the one hand,

I know he would not hesitate in telling me that my prose is in bad shape, but on

the other hand, it is such a joy to learn a great deal about presenting and crafting

research stories with this guy. Awesome work, Tomi!

I have to thank Chu Duc Hiep, Dinh Thien Anh and Truong Duc Thang

(the names are obviously in alphabetical order to avoid any personal bicker-

ing/nagging) for spending this ordeal with me. Our random discussions were

iii

so random, but you have no idea how much they lighted up my days. Now that

I think about it, I believe the fact that you guys suck in Pro Evolution Soccer

(does not matter which version really, PES 6, 2008, 2009 or 2010, the list goes

on...) accounts a lot for those fond memories. And in FIFA, too.

I owe Le Thi Diem Thu, my Heo Map, much more than I have ever told her.

Her faith in me is a constant source of energy that fuels my determination in this

long and windy journey. Now that I am ready to turn a new page of my life, I am

glad that we can finally walk the road together. It has been an eternity enduring

this hardship without you beside me.

Last but not least, I want to thank my family for having made my journey

especially memorable. Dad, Mom, there have been moments when I wanted to

quit everything altogether just because of you, but I went on anyway because

I know this accomplishment is something that both of you will be so proud of.

Hai, my long journey left you alone in the mess and trust me, I know, through

first hand experiences, how desperate that could be. Now that you have your

little family to care for, I wish you all the best things in this world. I will always

have your back.

iv

Publications

• Truong-Huy D. Nguyen, Tomi Silander, Wee-Sun Lee, and Tze-Yun

Leong. Bootstrapping Simulation-based Algorithms with a Suboptimal

Policy. Submitted and under review.

• Truong-Huy D. Nguyen, Wee-Sun Lee, and Tze-Yun Leong. Boot-

strapping Monte Carlo Tree Search with an Imperfect Heuristic. In Pro-

ceedings of the Twenty-Third European Conference on Machine Learning

(ECML/PKDD 2012), Bristol, UK, September 2012.

• Truong-Huy D. Nguyen, David Hsu, Wee-Sun Lee, Tze-Yun Leong,

Leslie P. Kaelbling, Tomas Lozano-Perez, and Andrew Grant. CAPIR:

Collaborative Action Planning with Intention Recognition. In Proceed-

ings of the Seventh Artificial Intelligence and Interactive Digital Enter-

tainment International Conference (AIIDE 2011). AAAI, AAAI Press,

2011.

• Truong-Huy D. Nguyen and Tze-Yun Leong. A Surprise-Triggered

Adaptive and Reactive (STAR) Framework for Online Adaptation in Non-

stationary Environments. In Christian J. Darken and G. Michael Young-

blood, editors, Proceedings of the Fifth Artificial Intelligence and Interac-

tive Digital Entertainment International Conference (AIIDE 2009), pages

82-87. AAAI Press, 2009.

v

vi

Table of Contents

1 Introduction 1
1.1 The Video Game Domain . 2
1.2 Problem Description . 4

1.2.1 Decision Making Elements 6
1.3 Objectives . 8
1.4 Contributions . 8
1.5 Thesis Outline . 10

2 Background 15
2.1 Automated Action Planners in Games 16

2.1.1 Hierarchical Task Networks 17
2.1.2 Goal-Oriented Action Planner 19
2.1.3 Limitations . 21

2.2 Markov Decision Process . 22
2.2.1 Formulation . 22
2.2.2 Solving MDPs . 24
2.2.3 Simulation-based Approximate Approach 26

2.3 Partially Observable Markov Decision Process 28
2.3.1 Formulation . 28
2.3.2 Solving POMDPs . 29

2.4 Decision-theoretic Approaches in Multi-agent Settings 30
2.4.1 Multi-agent MDP . 30
2.4.2 Decentralized MDP . 31
2.4.3 Interactive POMDP . 32

2.5 Chapter Summary . 32

3 Lead-Assistant Collaboration 35
3.1 Applicable Domains . 36

3.1.1 Collaborative Games 37
3.2 The general formulation . 39

vii

3.3 Simplifications . 42
3.3.1 Related work . 42
3.3.2 Problem Specifications 43
3.3.3 Action Planning given Subgoal: Hidden Behavior MDP 45
3.3.4 Subgoal Tracking: Changing Goal MDP 47

3.4 Problems of assuming global optimality 49
3.5 Chapter Summary . 51

4 CAPIR - Collaborative Action Planning with Intention Recognition 53
4.1 Related work . 54

4.1.1 Action Understanding as Inverse Planning 54
4.1.2 Plan Recognition in Game AI Research 55
4.1.3 Decision-theoretic framework of Assistants 56

4.2 Assumptions and Simplifications 57
4.3 CAPIR - Formulation . 58

4.3.1 Subgoal MDPs . 58
4.3.2 Human Subgoal Behavior 60
4.3.3 Goal Change Model 61

4.4 CAPIR - Algorithm . 62
4.4.1 Solving Subgoal MDP 62
4.4.2 Belief Update . 63
4.4.3 Decision-theoretic Action Selection 64

4.5 CAPIR - System Implementation 65
4.5.1 Architecture . 66
4.5.2 State Space Reduction with Location Abstraction 67
4.5.3 Workflow . 68

4.6 Experiments and Analysis . 70
4.6.1 Experiment platform 70
4.6.2 Numerical experiments with behavior scripts 71
4.6.3 Human subject study 73

4.7 Discussion . 77
4.8 Chapter Summary . 78

5 Bootstrapping Monte Carlo Tree Search with an Imperfect Heuris-
tic Policy 81
5.1 Upper Confidence Bound Applied to Trees 84

5.1.1 Enhancement methods 86
5.2 UCT-Aux: Algorithm . 87
5.3 Experiments . 91

viii

5.3.1 Experiment in the Obstructed Sailing domain 91
5.3.2 Experiment in the Sheep Farmer domain 95

5.4 Discussion . 98
5.4.1 When does UCT-Aux not work? 100
5.4.2 Combination of UCT-Aux, UCT-I and UCT-S 102

5.5 Chapter Summary . 102

6 Bootstrapping Sparse Sampling and Forward Search Sparse Sam-
pling with a Suboptimal Policy 105
6.1 Introduction . 105
6.2 Definitions . 107

6.2.1 Regret of a policy . 107
6.2.2 Sampling π to estimate V∗(s) 107

6.3 Bootstrap Sparse Sampling with Aux 109
6.3.1 Sparse Sampling (SS) 109
6.3.2 SS-Aux: Sparse Sampling with π-guided Auxiliary Arms 113

6.4 Bootstrap Forward Search Sparse Sampling 116
6.4.1 Forward Search Sparse Sampling (FSSS) 116
6.4.2 FSSS-Aux: FSSS with π-guided auxiliary arms 119

6.5 Experiments in Sheep Farmer 122
6.5.1 Sheep Farmer . 122

6.6 Chapter Summary . 127

7 Conclusion 129
7.1 Contributions . 130
7.2 Limitations of CAPIR . 131
7.3 CAPIR Beyond Modern Video Games 131

7.3.1 Challenges . 132
7.4 Future work . 133

Appendix 143
A Proof of Lemma 6.1 . 143
B Proof of Lemma 6.2 . 144
C Using value function’s estimation in Belief Update and Action

Selection . 148
C.1 Value estimation using UCT 148
C.2 Pseudo Q-value estimation 149
C.3 Belief Update with Pseudo Q-value estimation 150
C.4 Action Selection with Pseudo Q-values 152

ix

D Game levels used for experiments 153
E Performance Charts in Sheep Farmer 154

x

Abstract

Towards Smart Assistants in Two-Party Collaboration

Nguyen Dinh Truong Huy

In this work, we build a framework for smart assistants in two-party col-
laboration, which depicts the scenario where the AI planner takes the role of a
subordinate helping the lead agent achieve a set of common objectives, or sub-
goals. The main difficulties in acting smart in such a setting are (1) to understand
the hidden intention of the lead agent, and (2) to select the most appropriate ac-
tions. As shown analytically in the first part of the thesis, these two challenges
are both PSPACE-complete.

To address these challenges, we model each subgoal as a Markov Decision
Process (MDP). The solutions of these MDPs dictate how the team should be-
have to achieve each subgoal. By assuming that the lead agent is optimal at
the subgoal level, we can estimate his expected behavior as part of the optimal
subgoal solution. This allows an efficient way to track the lead’s intention using
Bayesian inference, based on observations of his action history. We then use
utility-theoretic maximization to select actions for the assistant. The approach
is shown to yield near-human level assistance while incurring a running time
that scales quadratically to the number of subgoals.

In real-life domains, we need to solve large MDPs when the subgoal mod-
els yield prohibitively large state spaces. In such cases, the aim is to obtain
high-quality estimations of the subgoal solutions quickly. To achieve this goal,
we propose to use simulation-based algorithms bootstrapped by offline-learnt
heuristic policies. A simple yet novel technique to enhance the performance
of state-of-the-art algorithms such as Sparse Sampling (SS), Forward Search
Sparse Sampling (FSSS) and Upper Confidence Bound applied in Trees (UCT)
is proposed and evaluated. We demonstrate that the technique outperforms some
commonly used enhancements when coupled with suitable heuristics. The re-
sults and insights on the approximate solutions for large state-space MDPs are
relevant to the planning community in general.

Equipped with the online approximate algorithms, our framework for intel-
ligent collaborative assistance can operate in complex situations, which often
yield high-dimensional models. Although the domain of focus in this work is
the genre of collaborative games, our proposed problem formulation and solu-
tion framework are intended to be general and may still be applicable in other
domains such as robot assistance.

xi

xii

List of Tables

5.1 Transition probability of wind directions. 93
5.2 The average number of tree nodes for UCT variants in Ob-

structed Sailing when coupled with StochasticOptimal.0.2. . . . 101

xiii

xiv

List of Figures

1-1 Collaborative Hunters, a sample game that requires the protag-
onists, Farmer and Dog, to surround the wolves and kill them.
The Farmer is the human-controlled lead agent, while Dog is
the assistant NPC and wolves are antagonist NPCs. 5

2-1 General form of task networks expressing decomposition meth-
ods. Each method instance defines one way of decomposing a
non-primitive tasks into other task. Each operator instance de-
fines the action and effects of a primitive task. 17

2-2 Example of HTN planning. The action plan for the initial task
of Build House is constructed after two steps of decomposition.
The first step applies one method instance of Build House and
the second applies that of Construction. 19

2-3 The plan formulation process. 20

2-4 A generative model of an MDP. 24

3-1 Two collaborative games we are using for illustrative purpose.
In Collaborative Hunters, The protagonists, Farmer and Dog in
the bottom right corner, need to kill all three wolves to pass the
level. In Sheep Farmer, they need to herd the sheep into its pen
while trying to protect it from being killed by the wolves. 38

3-2 If the dog’s assumption about the farmer being globally opti-
mal is wrong, they fail to collaborate and could get caught in
an infinite circle movement around the map, counter-clockwise
from (a) to (c), (d), (b) then back to (a); the dotted lines are the
assumed movements of the farmer if he were globally optimal. . 50

(a) . 50

(b) . 50

(c) . 50

(d) . 50

xv

4-1 Subgoal formulation in Collaborative Hunters. 59
4-2 A probabilistic state machine, modeling the transitions between

subgoals. 61
4-3 GameWorld’s components. 65
4-4 Region-based abstraction; some sample regions for the players

are shown as dark boxes. 68
4-5 CAPIR’s action planning process. (a) Offline subgoal Planning,

(b) in-game action selection using Intention Recognition. 69
4-6 Map layout for scalability test; this is a sample starting state of

level 3 with five wolves. 71
4-7 Average scores of Random, CAPIR and UCT dog, with standard

error of the mean as error bars, when coupled with three human
behavior models. 74
(a) NearestGhost Human . 74
(b) RandomGhost.0.9 Human 74
(c) UCT Human . 74

4-8 Qualitative comparison between CAPIR and human assistant.
The y-axis denotes the number of ratings. 76

4-9 Average time, with standard error of the mean as error bars,
taken to finish each level when the partner is CAPIR or human.
The y-axis denotes the number of game turns. 76

4-10 Average score, with standard error of the mean as error bars,
achieved at the end of each level when the partner is CAPIR or
human. 77

5-1 A sample UCT search tree with two valid actions a0 and a1 at
any state. Circles are state nodes and rectangles are state-action
nodes; solid state nodes are internal while dotted are leafs. . . . 85

5-2 Sample search tree of UCT-Aux. 88
5-3 Obstructed Sailing sample map with a randomized map config-

uration. 92
5-4 SailingTowardsGoal produces near-optimal estimates/policies in

good cases but misleads the search control in others. 93
5-5 Performance comparison of UCT, UCT-S, UCT-I, UCT-IS and

UCT-Aux when coupled with the heuristic SailingTowardsGoal;
y-axis is the reward average. 94

5-6 Task decomposition in Sheep Farmer. 96
5-7 Performance comparison of Random, GoalAveraging, UCT, UCT-

S, UCT-I, and UCT-Aux when coupled with Goal Averaging. . . 98

xvi

5-8 Performance histograms of heuristics in Obstructed Sailing. The
returned costs of a heuristic are allocated relatively into bins that
equally divide the cost difference between Random and Optimal
agents; x-axis denotes the bin number and y-axis the frequency. . 99

5-9 Bad case of UCT-Aux when coupled with StochasticOptimal.0.2. 100
5-10 Combination of UCT-Aux with UCT-I/S/IS in Obstructed Sailing.102

6-1 The look-ahead tree of Sparse Sampling; each state node (cir-
cles) estimates VS S

h while its state-action children (rectangles)
estimate QS S

h for each height h. 110
6-2 The look-ahead tree of SSπ. 112
6-3 The look-ahead tree of SS-Aux. 114
6-4 SS variants in Obstructed Sailing with heuristic SailsToGoal.

The charted lines denote the average accumulated reward (neg-
ative cost). 115

6-5 FSSS and SS variants in Obstructed Sailing with heuristic Sail-
sToGoal; the charted lines denote the average accumulated re-
ward (negative cost). We use 1000 random maps of size 20 by
20 with starting position at (5, 5) and goal at (15, 15), and the
obstacles are placed with probability 0.4 at each grid square.
The Aux versions of FSSS and SS respectively outperform the
host algorithm. 121

6-6 Aux algorithms in Obstructed Sailing when coupled with Sto-
chOpt0.2. 123

6-7 Aux algorithms in Obstructed Sailing when coupled with Sail-
sToGoal. 123

6-8 Task decomposition in Sheep Farmer. 124
6-9 SS, FSSS and UCT variants in Sheep Farmer with GoalAveraging-

heuristic. The charted lines denote the average accumulated re-
ward of the algorithms in 200 experiments as function of plan-
ning time. 126

D-1 Collaborative Hunters map layouts in Chapter 4. 153
D-2 Sheep Farmer map layouts in Chapter 6. 153
E-3 SS, FSSS and UCT variants in Sheep Farmer with GoalAverag-

ing heuristic. The charted lines denote the average accumulated
reward of the algorithms in 200 experiments as function of plan-
ning time. 154

xvii

xviii

Chapter 1

Introduction

A desire to make our environment actively attend to our needs lies in the heart

of pervasive or ubiquitous computing (ubicomp) [63], an emerging interdisci-

plinary research domain. Ubicom can be informally described as comprising of

“machines that fit the human environment instead of forcing humans to enter

theirs” [78]. An example of a ubicomp environment is a smart space [66, 41],

which can be “an enclosed area such as a meeting room or corridor”. This

enclosed region has computing capabilities embedded in the the building infras-

tructure and is able to automatically customize the space’s conditions to satisfy

the occupant’s need. For instance, if the occupant enters a smart room tired, the

cooling and lighting of the room should be adjusted accordingly to comfort him.

The smartness could extend to other objects in the room as well. While ubiq-

uitous computing is a wide concept, encompassing components in many fields

such as systems design and engineering, systems modeling, and user interface

design, it can benefit greatly from advancements in artificial intelligence. In

fact, the existence of an autonomous smart assistant, be it virtual or physical,

can benefit almost any current system. A doctor in the surgery room can use

some help from a robot assistant that execute tasks quickly and with high preci-

sion. A patient at night could rely on a robot nurse to attend to his urgent need,

1

such as getting some water in the middle of the night or at least alarming a cen-

tralized team of human nurses when unexpected incidents occur. An explorer

with a hand-held device that tells him relevant and vital information about the

surrounding, based on his current condition and intention, could anticipate and

plan his trip better, thereby avoiding unanticipated dangers.

In this work, our aim is to create a smart assistant and assess it in the mod-

ern game domain. One main reason for this choice of benchmark domain is the

controlled experiment environments offered by games. Video games provide a

much safer medium for hypothesis testing and validation than other domains

such as the health care environments. Moreover, simulated game worlds are

perfect ecosystems that can be altered and examined quickly, as compared to

real-life setting with physical entities and agents. Consequently, a thorough

verification of our proposed approach can be done through the means of sim-

ple computer simulations instead of reconstructing a physical scenario over and

over again. Moreover, any advancement in game AI can instantly improve the

quality of modern video games, which constitute one of the fastest growing and

most profitable entertainment industries in the world at the moment. This di-

rectly translates to significant financial gain. That said, our proposed problem

formulation and solution framework are intended to be general and may still be

applicable in other domains such as robot assistance.

1.1 The Video Game Domain

The game industry is one of the fastest growing entertainment industries in the

world; in 2011, it is allegedly worth more than $100 billion dollars [35]. In par-

ticular, in January 2011, “Call of Duty: Black Ops”, the latest installment of US

game publisher Activision’s most successful franchise, set a five-day record sale

of $650 million dollars for any movie, book or video game ever released [16].

2

Creating games that deliver premium entertainment experience has never been

more profitable.

Rapid improvements in computer graphics have raised the expectation bar of

gamers by presenting them virtual environments filled with aesthetically genuine-

looking objects and entities. In recently released games, forests look stagger-

ingly real with waterfalls and beautiful reflections; from a close distance, all vir-

tual characters look like they are wearing the complexion of their real-life coun-

terparts. Inevitably, with such entities populating the game world, the gamers

cannot expect any less than comparably natural behavior of the non-player char-

acters (NPCs). However, this is where many AI authoring techniques currently

employed in modern video games fall short. In particular, many recent games

are still released with ally or opponent NPCs exhibiting buggy AI behavior [20].

For instance, in the final boss encounter of the game Assassin’s Creed: Broth-

erhood1, released in 2010, the boss sometimes appears lying dead on the floor,

offering no chance for the protagonist to attack him. As a result, the guards

can continuously attack the protagonist infinitely2. AI systems that are able to

produce bug-free and human-like NPCs are therefore highly demanded.

Traditionally the behavior of NPCs in games is hand-crafted by program-

mers using techniques such as Scripting [23], Hierarchical Finite State Ma-

chines (HFSMs) [29] and Behavior Trees [15]. These techniques are simple

and straight-to-the-point, i.e., if designed correctly, the NPCs will behave ex-

actly as intended by the programmers. As a result, they are the most widely

used AI techniques at the moment. However, in complex environments of mod-

ern games, due to the large number of game states, programmers adopting these

techniques have to solve the non-trivial tradeoff between comprehensiveness and

production cost. The comprehensiveness of an AI system is determined by the

ratio of situations in which the NPC behaves as intended by the programmers

1http://assassinscreed.uk.ubi.com/brotherhood/
2http://assassinscreed.wikia.com/wiki/Bugs/Assassin%27s Creed: Brotherhood

3

over all possible scenarios. If an NPC exhibits buggy behavior in too many

scenarios, the AI system is not comprehensive enough. However, it is costly

in terms of human labor to ensure adequate comprehensiveness; as the number

of different scenarios in a game increases, so does the amount of human hours

spent on both designing and testing phases. As a result, games that are released

prematurely to meet deadlines usually feature AI characters that exhibit poor

behavior. To alleviate some of the difficulties of having to anticipate all pos-

sible scenarios, planning-based techniques such as Hierarchical Task Networks

(HTNs) [43] and Goal-Oriented Action Planner (GOAP) [55] specify goals for

the NPCs and use planning algorithms to search for appropriate actions while

in-game, or online.

1.2 Problem Description

In classical multi-agent setting the planner is tasked to compute collaborative ac-

tions for a subset of agents in order to optimize some common reward criterion.

In this work, we will focus on two-party collaboration, in which the planner is to

control only one member, i.e., the assistant, in a team of two agents. The other

member, i.e., the lead agent, is assumed to play the role of a mastermind and

act according to a hidden agenda that is not influenced by the planner’s course

of actions. It, however, may be impossible for the lead agent to complete the

goals without the assistant’s aid; therefore, coordination is almost obligatory to

satisfactorily achieve the objectives. Besides the two agents, the environment

is populated with other entities, the interaction with which gives our agents re-

wards or inflicts penalties.

In this formulation, the lead agent decides the action plan for the team, and

the assistant needs to identify this hidden plan, which is not explicitly conveyed,

and selects actions that are most appropriate to achieve the common objectives.

4

For generality, we assume that no lead action directly communicates the inten-

tion to the assistant. In many cases, this requirement is desired due to geo-

graphical/communicative limitations or in order to conceal the team plan from

opponent agents. The main difficulties in assisting the lead agent in such a set-

ting are (1) to understand his intention, and (2) to select actions that are most

helpful to the lead agent in achieving his hidden goal.

Figure 1-1: Collaborative Hunters, a sample game that requires the protago-
nists, Farmer and Dog, to surround the wolves and kill them. The Farmer is the
human-controlled lead agent, while Dog is the assistant NPC and wolves are
antagonist NPCs.

For instance, let us consider a game called Collaborative Hunters. In this

game, the assistant (illustrated as a dog) has to help the lead agent (the sheep

farmer) kill several wolves in a maze-like environment. A wolf will run away

from the farmer or the dog when they are within its vision limit, otherwise it

will move randomly. Since wolves can only be inflicted damage by the farmer,

the dog’s role is strictly to round them up. A sample game map is shown in

Figure 1-1. Note that collaboration is often truly required in this game - without

rounding up a wolf in order to cut off its escape paths, attacking a wolf can be

quite difficult. The challenges for the assistant dog in this case are to identify the

wolf the farmer is targeting, i.e., his hidden intention, and how to select actions

5

that are most helpful in stopping that wolf from running away.

1.2.1 Decision Making Elements

In its decision making process, an AI assistant needs to take into account the

following elements: the state in which its team operates, the team’s capabilities

(actions) and their effects, and the terminal states when the team coordination

is over. Besides, in a finite-horizon setting, the assistant must also take note of

the time limit that the coordination is allowed to last. We will describe these

decision-making elements in detail below.

State captures essential information about the environment that is pertinent to

the decision making process. For instance, in the game described in Fig-

ure 1-1, the most important elements are the characters’ positions. Be-

sides these fully observable elements, the lead agent’s intention is also

important; with the same state configuration, depending on the target that

the farmer is pursuing, the dog has to select different assistive actions.

Assistant action space includes all the valid actions that the AI assistant could

do. For instance, in the aforementioned game, the assistant action space

contains movement actions {no move, up, down, left, right}, which indi-

cates that at any point of time, the dog has the choice to move in any

of four directions or stay at the same position. It is worth noting that this

formulation is not constrained to grid-based games; it is a matter of conve-

nience to use this particular game type for illustration purpose. Therefore,

in other game settings, for example Role Playing Games, we could have

something like chase peasant or eat bone in the assistant action space.

Lead action space contains all possible actions that the lead agent could ex-

ecute. For example, in Collaborative Hunters, besides movement ac-

6

tions, the farmer’s action space contains an attacking move that allows

the farmer to shoot a nearby wolf.

Action effect informs the assistant about two aspects of consequence when a

team action is executed in a given state: how the state is transformed and

how desirable (rewarding) it is. Note that since NPCs not belonging to

the team are completely out of control, their actions, which also influence

the outcome of the team’s action, are usually assumed to be part of the

environment dynamics. For instance, when a wolf is within the attacking

range of the farmer, any joint action that includes the attacking move from

the farmer inflicts damage to the wolf. If the wolf is dead after that move,

the team is rewarded certain points.

Terminal states define the end of the assistance. These states make up a subset

of the state space, in which certain variables must have some specific

desired values. For instance, in the game above, terminal states include

all the states in which all wolves are exterminated.

Subgoals denote the possible targets or intentions the lead agent may be pur-

suing at any point of time. In Collaborative Hunters, as the objective is

to exterminate all wolves in the map, the lead agent can be targeting some

wolf at any point of time. Each wolf is therefore a possible subgoal.

Horizon defines the maximum time that coordination experience lasts, which

can be infinitely long in infinite-horizon setting.

In this setting, the assistant’s objective is to sequentially select an action that

maximizes the team’s expected return when the game episode is over, either by

reaching a terminal state or when the time limit elapses in the finite-horizon

case.

7

1.3 Objectives

Motivated by recent theoretical advancements in sequential action planning, we

want to devise a unified framework for smart autonomous assistants, with the

primary assisted target being a human lead. As such, the framework needs to

account for a variety of suboptimal behaviors such as mind switch or bounded

rationality [71]. One important performance indicator often overlooked by cur-

rent research is the ability to perform in conditions with limited computational

resources. Many theoretical results only consider asymptotic behavior. Aiming

at a practical implementation of assistance, the focus in our work is to evalu-

ate the solution when only limited resources are allocated, for instance when

algorithms are only allowed to run for a fixed amount of time.

1.4 Contributions

The main content of this thesis describes the components of our framework for

smart assistants, namely Collaborative Action Planning with Intention Recog-

nition (CAPIR). In realistic settings, the framework often has to deal with large

planning problems, so a significant part of the thesis is devoted for the investiga-

tion of combining an offline learnt heuristic with an online planning algorithm

to solve large state-space Markov Decision Processes (MDPs). In summary, our

work constitutes the following contributions:

1. A novel problem formulation of two-party coordination which accounts

for human-like elements of behavior such as mind switch and bounded

rationality (optimal only at subgoal levels).

2. A general framework for smart assistants that scales well with the number

of subgoals.

8

3. A novel enhancement technique, to bootstrap simulation-based algorithms

in approximately solving large state-space MDPs; specifically, we de-

scribe enhancements to

(a) Upper Confidence Bound applied in Trees (UCT) with convergence

analysis and experiment results.

(b) Sparse Sampling (SS) with non-trivial improvement bounds and em-

pirical evidence.

(c) Forward Search Sparse Sampling (FSSS) with empirical evidence.

4. A complete implementation of the CAPIR framework. The engine, ready

for use by game programmers, supports two modes of deployment

• Client-Server: The AI planner resides on a centralized server and

gaming devices connect to the server for AI-related computation.

• Standalone: The AI planner runs on gaming devices.

Publications

Portions of the work in this thesis have appeared in international peer-reviewed

conferences [50, 51] or are under review [53]. Aimed at devising smart as-

sistants in realistic domains, a general description of the framework, together

with preliminary human subject evaluation, was first presented by Nguyen et

al. [50] at the Artificial Intelligence and Interactive Digital Entertainment Inter-

national Conference (AIIDE) in 2011. The approach is based on decomposing

the global task into subgoals, each of which is modeled as an MDP. In investigat-

ing the framework in more complex settings in which the subgoal MDPs have

large state spaces, we found the need to adopt approximate methods to solve

these MDPs. In the latter stage of the project, the focus was on bootstrapping

simulation-based algorithms so that a reasonable approximation can be achieved

9

quickly. The analysis on enhancing UCT in solving large state-space MDPs

was reported at the 23rd European Conference on Machine Learning (ECML

2012) [51], while the analysis with SS and FSSS has been submitted and is cur-

rently under review [53]. In our implementation of the framework, to estimate

the behavior of the lead agent, we adopted an adaptive mechanism to dynami-

cally switch between the cheap offline-learnt policy and the computationally de-

manding, albeit more accurate, online policy. This is a derivative of our earlier

work on cost-effective adaptation in non-stationary environments [52], reported

at AIIDE in 2009.

1.5 Thesis Outline

This thesis describes the work revolving around the development of the CAPIR

framework and engine, and it is organized into seven main chapters besides this

introduction.

Chapter 2: Background

Since our motivation is derived from the very practical demand of modern video

games, i.e., collaborative games, in Section 2.1 we introduce the prominent

planning approaches in game AI and their limitations in implementing smart

assistants. Next, we will briefly present an overview on decision-theoretic for-

mulations, starting with the classical Partially Observable Markov Decision Pro-

cess (POMDP) and its subclass MDP. Built on the success of POMDPs and

MDPs, there have been various attempts to extend these formulations to the

multi-agent settings such as Multi-agent MDP (MMDP), Decentralized POMDP

(Dec-POMDP) and Interactive POMDP (I-POMDP). An overview on these ap-

proaches is presented in Section 2.4.

10

Chapter 3: Formalization of Lead-Assistant Collaboration

In Chapter 3, we formalize the Lead-Assistant Collaboration problem using the

formalism of MMDP, which exposes two key challenges to the assistant planner.

The first challenge is caused by the lack of knowledge on what the lead agent

will do when he targets a certain subgoal, while the second challenge is due

to the drifting intention of the lead agent. As presented in Chapter 3, these

challenges are both PSPACE-complete.

Chapter 4: CAPIR framework

To solve the challenges identified in the previous chapter, in Chapter 4, we pro-

pose two important assumptions on the lead agent’s behavior. As a result, we

can devise a general framework, namely Collaborative Action Planning with

Intention Recognition (CAPIR), to solve a subset of the Lead-Assistant Collab-

oration problems. Inspired by recent research in action understanding in the

field of cognitive science [4, 3], we avoid the first issue by assuming that the

lead agent is optimal only at the subgoal level and tackle the second issue by

tracking the likely target using Bayesian inference. In this chapter, the details of

the framework are presented, together with qualitative and quantitative assess-

ments in Collaborative Hunters. An evaluation with human subjects shows that

the resultant AI system exhibits near-human performance in assisting human

players.

Chapter 5 - Bootstrapping UCT

In the CAPIR framework, each subgoal is modeled as an MDP, the solution of

which constitutes the knowledge necessary for intention tracking and utility-

theoretic action selection. When the resultant formulation yields a state space

with overwhelming size, we cannot use exact methods such as Value Iteration

11

to solve it. In such case, we can use simulation-based algorithms, bootstrapped

with heuristics, to approximate the optimal policies of large subgoal MDPs on-

line.

Chapter 5 introduces a novel yet simple method to bootstrap Upper Con-

fidence Bound applied in Trees (UCT) [44], a highly practical algorithm, and

shows that the resultant algorithm UCT-Aux outperforms the state-of-the-art

bootstrapping methods when coupled with suitable heuristics. The proposed

Aux method however suffers from a worst case behavior, inherited from the

original UCT algorithm due to the use of optimal bandit-based controls, such

as UCB1 [2], for exploration. In particular, if the coupled heuristic is not “ex-

treme”, a characteristic that might not be known a priori, UCT-Aux requires

super-exponential time before its convergence to the optimal policy starts.

Chapter 6 - Bootstrapping SS and FSSS

To alleviate the UCT-Aux’s worst case behavior, we examine the application

of the Aux bootstrapping method in other simulation-based algorithms that do

not exhibit similar worst case behavior. In particular, Chapter 6 shows that the

bootstrapped version of Sparse Sampling (SS) [42], SS-Aux, yields guaranteed

improvement in theoretical terms, and that FSSS-Aux, the bootstrapped For-

ward Search Sparse Sampling (FSSS) [75] algorithm, empirically outperforms

UCT-Aux in a long run, even when UCT-Aux is coupled with preferable heuris-

tics. On the other hand, the greediness of UCT-Aux allows it to converge faster

to locally optimal values. Therefore, if ample computing resources is available,

FSSS-Aux should be adopted; otherwise, UCT-Aux should be preferred.

12

Chapter 7: Conclusions

Finally, in Chapter 7, we summarize the results reported in this dissertation and

discuss possible extensions of the CAPIR framework together with future work.

13

14

Chapter 2

Background

Traditionally the behavior of NPCs in games is hand-crafted by programmers

using techniques such as scripting [23], hierarchical Finite State Machines (HF-

SMs) [29] and Behavior Trees [15]. These techniques are simple and straight-to-

the-point, i.e., if designed correctly, the NPCs will behave exactly as intended by

the programmers. However, in complex environments of modern games, due to

the large number of game states, programmers adopting these techniques have to

solve the non-trivial tradeoff between comprehensiveness and production cost.

In order to ensure that the behavior of the NPC is comprehensive, the program-

mer might end up with a huge script which dictates the NPC’s behavior in all

possible scenarios. While anticipating all of these scenarios is a daunting task,

scripting the behavior for just one such scenario may require substantial work

too, especially in complex environments where many virtual entities interact

in an intricate manner. Factoring this with the number of scenarios, the hu-

man labor needed to create a script-based AI system for a video game explodes

quickly with the complexity of the game. As video games cannot be released

before their AI system is completed, the lengthy process of constructing such

system significantly increases the production cycle length, thus cost.

To alleviate some of the difficulties of having to anticipate all possible sce-

15

narios, planning-based techniques such as Hierarchical Task Networks (HTNs)

[43] and Goal-Oriented Action Planner (GOAP) [55] specify goals for the NPCs

and use planning algorithms to search for appropriate actions while in-game, or

online. We devote the first part of this chapter, Section 2.1, to a quick review

of these planning-based game AI authoring techniques. We will also discuss

their limitations in constructing a smart assistant for collaborative game envi-

ronments.

To address this assistance problem, our formulation and proposed architec-

ture builds on the success of decision-theoretic formalisms in sequential deci-

sion making. Therefore, in subsequent sections, we provide an overview of

planning frameworks from single agent setting (Section 2.2 and 2.3) to multi-

agent setting (Section 2.4).

2.1 Automated Action Planners in Games

The authoring of NPC behavior via planning yields several benefits that make

it an attractive alternative to the more commonly used non-planning techniques

such as scripts or Finite State Machines; most notable benefits include unexpect-

edness handling, code reusability/maintenance, and data-implementation sepa-

ration [56]. There are two lines of work that implement automated planning in

games and are currently in active use: Hierarchical Task Networks (HTNs) and

Goal-Oriented Action Planner (GOAPs). These two approaches build on the

original idea of STRIPS planning [27] which computes a sequence of actions to

transform the world to a desired state.

In STRIPS, states are expressed in the form of a set of literals. The search

space consists of operators in the form of (pre, del, add) where pre is the set of

preconditions for the operator to be applicable, while del and add update the set

of state literals as the result of applying the operator. STRIPS planning refers

16

to the construction of action plans by sequentially adding actions (operators) to

the final plan. Depending on the direction of adding (from initial state, from

goal state, or arbitrarily), it is called forward-chaining, backward-chaining or

plan-space search.

2.1.1 Hierarchical Task Networks

Hierarchical Task Networks (HTNs), termed Procedural Nets [65] when devised

in the 1970s, are offline crafted abstract structures that are used to guide the

process of online STRIPS planning. Instead of sequential construction of action

plan, HTN algorithm uses expert knowledge encoded in these HTNs to resolve

an initial task to primitive subtasks that are directly executable.

Non-­‐primi)ve	
 task	

Method	
 instance	

precondi)on	

Primi)ve	
 task	

operator	
 instance	

precondi)on	
 effects	
 S0	
 S1	

Primi)ve	
 task	

operator	
 instance	

precondi)on	
 effects	
 S2	

Resultant Plan

Figure 2-1: General form of task networks expressing decomposition methods.
Each method instance defines one way of decomposing a non-primitive tasks
into other task. Each operator instance defines the action and effects of a prim-
itive task.

There are two types of tasks in HTNs: non-primitive and primitive. Non-

primitive tasks are decomposed into lists of other tasks, further enhanced by

restrictions such as precedence of tasks, variable binding or mutual exclusion.

Primitive tasks are directly executable. Each non-primitive task could have more

17

than one method instances (Figure 2-1).

The planning process takes as input one or more initial tasks. It then repeat-

edly decomposes the partially ordered tasks into simpler tasks until all tasks are

primitive (Figure 2-2). If there are restriction conflicts detected at any point of

time, the process backtracks and tries new decomposition steps.

For example, suppose a character wants to build house and his knowledge

base consists of two pieces of knowledge: one task breakdown for Build House

and one for Construction (Figure 2-2a). When the task problem with the initial

state of (Money, Land) and the desired goal state of (House) is fed into the

planner, the non-primitive tasks are repeatedly broken down from Build House

to the valid plan in Figure 2-2b.

HTNs, being much more modular than Behavior Trees or HFSMs, could be

reused in game titles with similar settings. Typically method instances of higher-

level tasks are more abstract and reusable than those at the lower levels. For

instance, the decomposition method of Build House, as expressed in Figure 2-2,

could be used without change in any game that requires the human player to

build cities. The method instance of Construction, however, could require some

change to fit each actual game.

Characteristics. Unlike hand-crafted scripts, HTN planning allows dy-

namic generation of plans that are most suitable for the current circumstances.

However, it relies completely on the correctness of predefined task networks that

encode the prior knowledge. Naive HTN planning is known to be undecidable

if the set of task networks has tasks that form recursive calls (cycle). It is easy

to avoid the infinite looping, for example by limiting the number of actions in a

plan, but that does not improve the quality of the returned plan: the NPC would

still act in a looping manner. In a huge project, where the design of an AI system

spans months or even years and is performed by many individual programmers,

the effort to maintain the consistency of the task network set grows quickly with

18

Build	
 House	

Get	

Permit	

Construc3on	

Hire	

Builder	

Pay	
 Builder	

Build	

Founda3on	

Build	
 Walls	

Build	

Frame	

Build	

Interior	

Build	
 Roof	

(a) Hierarchical Task Networks
Get	

Permit	

Hire	

Builder	

Pay	
 Builder	

Build	

Founda3on	

Build	
 Walls	

Build	

Frame	

Build	

Interior	

Build	
 Roof	

(b) Resultant plan

Figure 2-2: Example of HTN planning. The action plan for the initial task
of Build House is constructed after two steps of decomposition. The first step
applies one method instance of Build House and the second applies that of Con-
struction.

the scale of the project.

2.1.2 Goal-Oriented Action Planner

Goal-Oriented Action Planning or GOAP [57] is a planning architecture that

combines the power of A*, an effective search technique widely used in games,

and the modularity of operators in STRIPS. This technique dynamically chains

operators in the action space in real time, using search algorithms such as A*,

by matching their preconditions and effects to direct the subject NPC’s behavior

(Figure 2-3).

While HTN is a way to bootstrap STRIPS planning with prior knowledge’s

19

Start	
 State	

Goal	
 State	

Build	

Founda0on	

Build	

Frame	
 Build	
 Roof	

Build	
 Walls	

Feed	
 Dog	

Read	

Newspaper	

Buy	
 a	
 Chair	

Mow	
 Lawn	

Figure 2-3: The plan formulation process.

guidance in the form of task networks, GOAP is a slight expansion of traditional

STRIPS to make it practical for real-time games such as F.E.A.R. [57]. At

the core, GOAP is STRIPS planning: The system uses a search algorithm to

construct action sequences that transform the game world from an initial state

to a desired goal state. However, various modifications are introduced in GOAP:

1. Cost per Action. This works as an additional directorial layer. If the game

designers want an NPC to prefer acting in one way more than the other,

they can decrease the cost for those actions.

2. No Add/Delete Lists. Using fixed-sized arrays to represent the precondi-

tions and effects removes the need to handle data structures of variable

sizes, thus speeds up the planning process considerably.

3. Procedural Preconditions. This helps overcome the limitations intro-

duced by fixed-sized arrays when they could not capture all the informa-

tion needed for the precondition matching process. Additional checking

can be done in an external routine.

4. Procedural Effects. Since the effects of actions in real-time games are not

instantaneous as in STRIPS, the updating of world states is done gradually

20

as the action plan is executed.

Other than STRIPS planning, GOAP also uses other techniques that do not

relate to action planning but give positive impressions of squad coordination

such as intention vocalization. For instance, in troop attack, when an enemy AI

soldier realizes he is the last surviving member of his squad, he says something

along the line of “I need reinforcements.” As the game progresses, the player

surely encounters more and more enemies, thus interpreting what he heard as a

squad order that other fellow soldiers of the first soldier have complied to.

2.1.3 Limitations

As compared to traditional scripting, FSMs and Behavior Trees, HTN and GOAP

provide more elegant tools in authoring NPC behavior via the use of online plan-

ning. However, while particularly good in creating opponent NPCs, there are a

few fundamental limitations of these solutions in creating smart assistants for a

human player.

The first drawback is that these solutions do not explicitly condition their

behavior on the human’s intention. As a result, it is implicitly assumed that

the appropriate reaction of the assistant is deterministic given the current game

state. Whenever the game is in that state, the NPC behaves the same way. In

fact, they do not account for any hidden or only partially observable element in

the decision making process.

Another limitation is that since the solution is stringed from many solu-

tion fractions, the AI system still needs a significant amount of domain-specific

expert knowledge to build. In HTN, the task networks need to be designed of-

fline, and in GOAP, it is the space of possible actions that the programmer has

to construct before game start. Especially in GOAP, selecting an appropriate

action space that well trades between speed and behavior variety is an art. Fur-

21

thermore, ill-tested actions with incorrect preconditions and effects constitute

potential bugs that can surface in unanticipated scenarios.

Adopting decision-theoretic research approaches can alleviate these draw-

backs. Firstly, decision-theoretic solutions explicitly account for partially ob-

servable elements such as human intent in selecting actions. Specifically, the

Partially Observable Markov Decision Process formulation conditions the out-

put actions on the belief of latent elements. Secondly, the solver of these for-

mulations compute the optimal course of actions for different level layouts from

the knowledge of only basic, level-independent capabilities of the agent. AI au-

thoring becomes completely descriptive instead of imperative, freeing the game

programmers from having to transfer their domain-specific expertise to the AI

system. We will next present an overview of these decision-theoretic planning

formulations, starting with Markov Decision Processes.

2.2 Markov Decision Process

Many sequential decision making problems in practical settings can be formu-

lated naturally as Markov Decision Processes (MDPs) [9]. In this formulation,

the agent, or the planner, is assumed to have a complete perception of the fac-

tors relevant to his decision making. However, despite the full knowledge about

the current state, the outcomes of the agent’s actions are typically stochastic. In

the MDP framework, the planning task is reduced to an optimization problem

in which the agent’s aim is to maximize its long-term accumulated reward.

2.2.1 Formulation

A Markov Decision Process characterizes a planning problem with tuple (S , A,

T,RD, γ), in which

• S is the state set,

22

• A is the action set,

• T (s, a, s′) = P(st+1 = s′ | st = s, at = a) is the probability of the agent

moving to state s′ when action a is taken in state s at time t. Alterna-

tively, we may refer to T (s, a) = T (s, a, ∗) as the respective probability

distribution; this distribution is assumed to be time-independent.

• RD(s, a, s′) is the probability distribution of the immediate reward re-

ceived after the state transition from s to s′ triggered by action a. In many

cases, it suffices to execute planning with the knowledge of the expected

reward R(s, a, s′) = E[RD(s, a, s′)] instead of the full distribution. We can

further denote R(s, a) =
∑

s′ T (s, a, s′)R(s, a, s′) as the expected reward of

executing action a in state s.

• γ ∈ [0, 1] is the discount factor to downplay temporally remote rewards.

As formulated above, each MDP model satisfies the Markov property: the

effect of an action (the next state distribution and the immediate reward) only

depends on the current state.

Simulator or generative model of an MDP

In modeling a problem as an MDP it may be overly complicated to obtain exact

numerical mappings between state-action pairs and resultant rewards R(s, a) as

well as next states’ probabilities T (s, a). A simulator, or generative model, of

an MDP is a low-cost alternative to the explicit representation. While the full

specification of transition and reward functions is akin to a transparent box, a

simulator plays the role of a black box that takes as input a state-action pair

(s, a) and outputs a valid next state and reward with probability governed by the

distribution associated with (s, a) (Figure 2-4).

Intuitively, the availability of the transition and reward functions entails the

simulator, but not the other way round. For instance, in modern video games,

23

Simulator	

Figure 2-4: A generative model of an MDP.

which always provide a simulator of the game virtual world, it is much easier

and faster to get a next state sample than to compute the probability of landing

in that state. Specifically, in order to sample a next state, the simulator can

sequentially apply each player’s action on the given state and update the state

according to the actions’ effect using some random number generator, while

collecting the accumulated reward or cost. In contrast, obtaining the transition

probabilities requires the collation of much more information about the game

components’ dynamics.

2.2.2 Solving MDPs

A policy π is a possibly stochastic function that returns an action π(s) ∈ A for

every state s ∈ S . In infinite-horizon, discounted MDPs, the value function V

and the action value function Q of a policy π measure the expected long-term

utility of following π, starting from a state, e.g., s0:

Vπ(s0) = E
T

 ∞∑
i=0

γiR(si, π(si))

 , and (2.1)

Qπ(s0, a) = R(s0, a) + γ E
s′∼T (s0,a)

[
Vπ(s′)

]
(2.2)

The objective of solving MDPs is to obtain a policy π∗ with the maximum

expected values in all the states, i.e., V∗(s) ≥ Vπ(s),∀π, s. A common approach

24

is to first compute the optimal Q-function Q∗ without the knowledge of the op-

timal policy π∗, and then construct the corresponding π∗(s) = argmaxa Q∗(s, a).

Value Iteration [9] is an efficient algorithm that adopts this approach.

Value Iteration

If we have the optimal value function V∗, the optimal Q-function can be con-

structed as follows:

Q∗(s, a) =
∑

s′
T (s, a, s′)(R(s, a) + γV∗(s′)),

which then entails the optimal policy by taking the action that has highest Q∗-

value at any state.

For obtaining the optimal value function V∗, a simple and effective algorithm

was proposed by Bellman in 1957 [9]. This value iteration algorithm maintains

a value function V(s) and iteratively updates the value of each state using the

Bellman equation

Vt+1(s) = max
a

∑
s′

T (s, a, s′)(R(s, a) + γVt(s′))

 .
This algorithm is guaranteed to converge to the optimal value function V∗(s),

which gives the expected cumulative reward of running the optimal policy from

state s.

Policy Iteration

Policy Iteration [38] computes the optimal policy by directly searching in the

policy space for the best performing one. Starting with some initial policy, its

steps alternate between policy evaluation and policy improvement. Policy eval-

25

uation computes the value of a policy π by solving the equations1

V(s) = R(s, π(s)) + γ
∑
s′∈S

T (s, π(s), s′)V(s′), (2.3)

while policy improvement induces a new policy based on the value function

obtained in the previous step

π(s)← argmax
a

R(s, a) + γ
∑
s′∈S

T (s, a, s′)V(s′)

 .
The algorithm terminates when π converges, at which point π is guaranteed to

be optimal.

Intractability

Note that aforementioned exact algorithms require a running time that scales

proportionally with the MDP’s state space size. Therefore, the key issue that

hinders them from being widely used in solving real-life planning tasks is the

large state space that is often required to model realistic problems.

Typically in game domains, a state needs to capture all the essential aspects

of the current configuration, thus may include a large number of state variables.

For instance, in a maze game with size m (number of valid positions) consisting

of n characters, the set of states is of size Θ(mn).

2.2.3 Simulation-based Approximate Approach

Both exact algorithms, Value Iteration and Policy Iteration, require polynomial

time with respect to the size of the state space [59, 64]. However, this means

that for complex planning tasks modeled as MDPs with very large or even in-

finite (continuous) state spaces, these exact algorithms require a long running

1One way to solve this linear system is by iteratively applying the operator (2.3) at all states
until convergence.

26

time. In many real life domains where only limited resources are allocated, this

computational demand may be undesirable.

It is worth noting that the long running time requirement of these algorithms

originates from the fact that they both take an exhaustive approach. The opti-

mal action for every state is computed before execution time, just in case such a

state will be encountered during the actual deployment of the policy. However,

in complex domains such as video games, usually only a fraction of the possible

states are ever encountered. With that insight, one alternative in solving MDPs

is to adopt a “lazy” approach towards finding optimal actions. This approach

does not compute the optimal actions beforehand, but does it “lazily” by com-

puting only for a given current state. The optimal action is then executed to

transit to a new state before the process is started all over again. Adopting this

idea, simulation-based approaches constitute a highly practical class of algo-

rithms which approximate the action values “lazily”. These algorithms estimate

the Q-values of actions starting from a given current state by collecting reward

statistics from a randomly sampled look-ahead tree that covers only a small

fraction of the state space around the current state. The branching factor and

depth of the tree can be constrained to suit the allocated computing resources,

trading precision for computation. Simulation-based algorithms have recently

achieved noticeable successes when applied in practical domains [31, 28, 5].

Among the members of this class, three algorithms stand out as notable repre-

sentatives, namely Sparse Sampling (SS), Upper Confidence Bound applied in

Trees (UCT) and Forward Search Sparse Sampling (FSSS).

SS, proposed by Kearns et al. [42], is the first reported algorithm that pro-

duces near-optimal solutions with no dependence on the problem’s state space

size, given only a generative model of the MDP. Its theoretical characteristics

provide a solid foundation and inspiration for UCT and FSSS; more in-depth

analysis of SS is presented in Chapter 6.

27

UCT [44], one of the most successful simulation-based algorithms, is an

improvement over SS by adaptively sampling the neighborhood. The algorithm

makes better use of computing resources by focusing tree expansion towards re-

gions that are more likely to be optimal, thus more relevant to the value approx-

imation. UCT leads to some recent advancements in solving notoriously hard

problems such as the board game Go [31, 19] or Real Time Strategy Games [5].

More details on UCT are provided in Chapter 5.

Finally, FSSS [75] is another recent successor of SS that has been instrumen-

tal in a state-of-the-art reinforcement learning framework when dealing with

large domains. We will discuss FSSS more thoroughly in Chapter 6.

2.3 Partially Observable Markov Decision Process

Partially Observable Markov Decision Processes (POMDPs) [40] are general-

izations of MDPs. They formulate the general case in which the planner only

has partial perception of the state. As a result, the action policy operates on

the space of state beliefs instead of states. This modification increases the gen-

erality of the framework, but at the cost of reducing its practicality: while the

problem of finding optimal policies for MDPs is P-complete, the respective de-

cision problem extended to POMDPs is already PSPACE-hard [59].

2.3.1 Formulation

Formally, a POMDP is described by a tuple (S , A,T,RD, γ,O,Ω, b0), in which

(S , A,T,RD, γ) are the same as those described in the MDP formulation, and

• O is the set of observations,

• Ω(a, s′, o) = P(ot+1 = o | at = a, st+1 = s′) defines the probability of re-

ceiving observation o when action a, taken at time t, causes the transition

28

to next state s′, and

• b0 is the initial state distribution, or belief, with b0(si) being the proba-

bility that the agent starts in state si, i = 1..|S |, i.e., 0 ≤ b0(si) ≤ 1, and∑|S |
i=1 b0(si) = 1.

As mentioned above, since there is no direct access to the state, the agent

needs to base his decision on state beliefs. Given the observation o after taking

action a when believing b, the state belief can be updated to b′ using Bayes rule

as follows

b′(s′) =
Ω(a, s′, o)

∑
s∈S T (s, a, s′)b(s)

Z
, (2.4)

with Z being the normalizing constant independent of s′.

2.3.2 Solving POMDPs

A policy π in POMDP is a function that returns an action π(b) ∈ A for every state

belief b. The objective of solving a POMDP is to obtain a policy π∗ that maxi-

mizes the expected long-term reward with respect to the initial belief. Since the

state belief b as updated in 2.4 is a sufficient statistic about the current state, the

POMDP is equivalent to a continuous state “belief MDP”, whose state space is

the belief space and the rest of the components can be constructed from com-

ponents of the original POMDP. As shown by Kaelbling et al. [40], the solution

of this belief MDP is also the optimal policy for the original POMDP. More

in-depth discussions on the conversion and adapted value iteration routines to

compute the optimal policy of the belief MDP is beyond the scope of this thesis.

Interested readers may consult the original paper by Kaelbling et al. [40].

Finding the optimal policies in general POMDPs is PSPACE-hard. There-

fore, recent advancements are largely in the realms of approximate approaches [62,

72, 45, 70].

29

2.4 Decision-theoretic Approaches in Multi-agent

Settings

In previous sections, we have discussed decision-theoretic formulations for single-

agent planning tasks formulated as MDPs and POMDPs. This section is devoted

to a background review on numerous attempts to extend MDP and POMDP to

the multi-agent setting. These formalisms build the foundation for our Lead-

Assistant Collaboration formulation in Chapter 3.

2.4.1 Multi-agent MDP

Multi-agent MDP (MMDP) [11] models a fully cooperative team-work setting

in which all agents work towards the same goal. This is a straightforward exten-

sion of MDP by conditioning the rewards and transformations of world states on

the actions of multiple agents instead of one as in the case of MDP. Specifically,

an MMDP can be defined as a tuple (I, S , Ai,T,RD, γ) where

• I is the set of agents, identified by i ∈ 1, 2, ..., n with |I| = n.

• S is the set of states.

• Ai is the set of agent i’s actions. For convenient reference, we denote

A = ×n
i=1Ai and joint action −→a ∈ A.

• T (s,−→a , s′) = P(st+1 = s′ | st = s,−→a t = −→a) is the probability of the agent

being in state s′ when joint action −→a is taken in state s at time t,

• RD(s,−→a , s′) is the probability distribution of the immediate reward re-

ceived by the team after transiting to state s′ from state s by executing the

joint action −→a .

• γ ∈ [0, 1] is the discount factor.

30

Since the agents are taken as acting on behalf of one individual, solving an

MMDP results in a joint action policy that maps each state to an action vector

which each agent can extract its own part to execute in coordination with the rest

of the team. In other words, the planner assumes a centralized perspective of

planning with the assumption that all agents will strictly follow the joint action

policy. In practice, this assumption is often violated when the assembled team

consists of heterogeneous members that come from different backgrounds, such

as ad hoc team setting [73] or the Lead-Assistant Coordination problem studied

in this thesis.

2.4.2 Decentralized MDP

Decentralized MDP (Dec-MDP) [10] takes the team coordination problem as

formulated by MMDP one significant step further. While MMDP assumes that

each team member has a complete view of the global state, Dec-MDP considers

the case when each agent only has partial information about the state. Dec-MDP

imposes that the state is jointly observable, i.e., by combining the agents’ partial

views of the world, the full state is completely recovered, hence, completely

observable albeit decentralized. Consequently, the key challenge in this class of

problems is in terms of information collation.

The general Dec-MDP formulation is known to be NEXP-complete even

when there are only two agents in the team, in contrast to MDP’s P-completeness

and POMDP’s PSPACE-hardness [59, 49]. Note that while it is unclear whether

P,NP and PSPACE are distinct, it is known that NEXP , NP [69], thus Dec-

MDP is truly intractable. Moreover, if we assume that EXP , NEXP, the

problems require super-exponential time to solve in the worst case.

Therefore, most research on this problem concentrates on subclasses of Dec-

MDP. For instance, most works solve the Dec-MDP subclass in which limited

communication for plan synchronization is allowed [54, 77, 7, 6] or the agents

31

are related only through the reward function, and not the transition function

(transition independence) [7, 6]. In our formulation of Lead-Assistant Collabo-

ration, the assistant is assumed to have a complete view of the global state, thus

constituting a different set of challenges.

2.4.3 Interactive POMDP

Departing from the assumption that the agents are fully cooperative in MMDP

and Dec-MDP, Gmytrasiewicz and Doshi [33] proposed a decision-theoretic

framework, Interactive POMDP (I-POMDP), for sequential planning in envi-

ronments populated with other, possibly adversarial, agents.

The key innovation of I-POMDP is that the framework accounts for the rea-

soning processes that govern other agents’ behavior by maintaining a belief over

both physical states and models of other agents. Similar to that in POMDP,

Bayes’ rule is used to update this interactive belief given current belief, last

executed action, and the newest observation. The authors also showed that im-

portant properties of POMDPs, such as convergence of value iteration, the rate

of convergence, and piece-wise linearity and convexity of the value functions

carry over to the framework [33].

Unfortunately, the generality of the framework is traded for a huge sacrifice

in terms of practicality: the largest simulated problem examined has only 36

physical states [25].

2.5 Chapter Summary

In this chapter, we have provided an overview on planning techniques that al-

leviate the laboriousness of hand-crafted scripts, hierarchical FSMs and Behav-

ior Trees in constructing NPC behavior. However, while particularly good in

creating opponent NPCs, these approaches cannot appropriately deal with un-

32

observable elements that are inherent to a human player’s behavior such as his

intention. Moreover, the design of such system still requires significant expert

knowledge in designing the solution space. We therefore shifted our focus to

decision-theoretic approaches such as MDPs, POMDPs and their generaliza-

tions in mult-agent setting (MMDP, I-POMDP and Dec-MDP), which address

these problems naturally. By characterizing NPCs as utility-theoretic entities,

these formulations produce agents that condition their behavior on all the hidden

elements, including the human intention. Moreover, the behavior is computed

automatically without requiring any prior knowledge about the solution.

In chapter 3, we are going to describe in detail and formulate the problem of

Lead-Assistant Collaboration, using the formalism of Multi-agent MDP. Since

the crucial component of the formulation that informs the planner about the

lead’s behavior is not available before execution time, even with simplifying

assumptions, two major challenges remain for the planner: the lead’s intention

and his goal-oriented behavior. As proven analytically, these challenges are still

very hard: each of them is by itself a PSPACE-complete problem. Therefore,

as will be elaborated in subsequent chapters, further assumptions, inspired by

recent findings in cognitive science about human-like reasoning, are proposed

to make the problem tractable yet relevant to many practical domains.

33

34

Chapter 3

Lead-Assistant Collaboration

In this chapter, we will first describe the decision problem of Lead-Assistant

Collaboration and its applicable domains. We then go on to formulate the prob-

lem as an optimal decision making problem, which is subsequently proven to be

PSPACE-hard. For practical use, this general mathematical formulation will be

later constrained and implemented in Chapter 4 as our CAPIR-framework and

engine.

In the literature of multi-agent coordination there is usually no assump-

tion on the number of involved agents. However, with this generality comes

low practicality: since the number of decision making elements grows linearly

with the number of involved agents, we often encounter the so-called Curse of

Dimensionality that makes coordination problems intractable even in trivially

small domains. In this work, we focus on the coordination of two agents. This

constrained setting allows us to identify many core issues of coordination, es-

pecially when one of the agents is a human. These insights allow us to impose

further simplifications and assumptions on the general problem to devise prac-

tical solutions for two-agent collaboration.

In this work, we use the modern game domain, specifically collaborative

games, as our motivation and testbed. In fact, as presented in the following

35

section, by emphasizing the team-work aspect of game playing, this genre has

recently attracted much attention and received highly critical acclaim from both

critics and gamers alike; more details will be presented in Section 3.1.1.

3.1 Applicable Domains

The problem of Lead-Assistant collaboration is a special case of two-party col-

laboration which depicts the cooperation of two agents in achieving common

objectives. One of the agents takes the role of a lead agent that with more

power or authority plays the role of a leader and mastermind. The other agent,

the assistant, is less capable and its purpose is to help the lead agent to carry out

the tasks. The lead agent is assumed to know the optimal way to solve the tasks,

but this usually involves assistant’s aid; in some cases, it may be impossible for

the lead-agent to achieve the goal without the help of the assistant.

This type of collaboration occurs in many domains that require coordination

to complete common objectives. For example, when coordinating robot rescue

teams operating in remote and dangerous regions, instead of giving all robots

equal rights and influence to the overall action plan, we may assign one robot as

the team captain and all the other as its subordinates; this role can be reassigned

if needed, such as in times when the current captain runs out of energy. By

having biased relationships, we can centralize the decision making process and

avoid many complications arising when all members of the team are given the

same share of responsibility in establishing a common action plan. For instance,

since the captain has the final word on what the plan is like, the communication

cost expended in order to agree on one common action plan is greatly reduced.

Although the formulation and analysis here can be applied in many realistic

domains, in this work, we use the domain of modern collaborative games as our

primary medium of illustration. In fact, motivated by recently growing interest

36

in collaborative games, there is a genuine demand in this domain for smart AI

assistants.

3.1.1 Collaborative Games

The idea of having a partner while completing game objectives is not new. It

has in fact been the key element for many classic titles dated as far back as

the 1990s such as the series Contra by Konami, which features single and two-

player modes whereby players control Rambo-styled characters to attack en-

emies’ bases. However, the “team” here has almost always comprised of all

human players or all computer agents, each member of which could lead his

own path as there is no apparent need to rely on the others. Only recently has

the idea been revisited with a stricter concept of cooperation: the players must

rely on their teammates’ unique abilities in order to overcome challenges and

proceed the game. For instance, Collaborative Hunters, the game described in

Figure 3-1a, pits two players against running Wolves through a maze of escape

paths. If the two protagonists are unable to work out a collaborative plan to sur-

round these wolves, perhaps one by one, they could run out of time fruitlessly.

Commercial examples of Collaborative game genre include the critically ac-

claimed game series Left 4 Death1 by Valve Corporation and Army of Two2 by

Electronic Arts. Recently, the title Lara Croft and the Guardian of Light3, fea-

turing collaboration as a key game mode, released on Xbox, has been placed at

#14 in the top 25 Xbox Live Arcade titles of all times. Another representative

worth mentioning is the new installment of the stealth game series Assassin’s

Creed, namely Assassin’s Creed: Brotherhood4, which includes a multi-player

coop game mode that pits at least three teams of human players against one

1http://www.l4d.com
2http://games.ea.com/armyoftwo/home.jsp
3http://http://www.laracroftandtheguardianoflight.com/
4http://assassinscreed.uk.ubi.com/brotherhood/

37

another in a cat-and-mouse play style; this game mode essentially earned them

the Best Multi-player Game title at Electronic Entertainment Expo 2010 in Los

Angeles [30]. Typically, this game type pits a small group of players against

challenges that they need to solve collaboratively in order to advance to next

stages. We expect coop game modes with smarter AI teammates will show new

doors of game play to the game industry, which is estimated at over $100 billion

US dollars as of June 2011 [35].

We are looking specifically into applying decision-theoretic research tech-

niques in two-player collaborative games such as Lara Croft or Army of Two.

One player-character is supposedly controlled by a human gamer while the

other’s behavior is dictated by our action planner. Each of them could have

different sets of capabilities and most if not all of the tasks require their team-

work to complete; without a partner, it could be impossible to achieve the game

objectives.

We will next introduce a couple of coop games that will be used as illustra-

tive examples in subsequent chapters.

(a) Collaborative Hunters (b) Sheep Farmer

Figure 3-1: Two collaborative games we are using for illustrative purpose. In
Collaborative Hunters, The protagonists, Farmer and Dog in the bottom right
corner, need to kill all three wolves to pass the level. In Sheep Farmer, they
need to herd the sheep into its pen while trying to protect it from being killed by
the wolves.

38

Example Game 1: Collaborative Hunters

A sample of our targeted class, which is going to be used for illustrative purpose,

is described in Figure 3-1a. In this game, called Collaborative Hunters, the

assistant (illustrated as a dog) has to help the lead agent (the farmer) kill several

wolves in a maze-like environment. A wolf will run away from the agent or

assistant when they are within its vision limit, otherwise it will move randomly.

Since wolves can only be inflicted damage by the farmer, the dog’s role is strictly

to round them up. Note that collaboration is often truly required in this game -

without surrounding a wolf with both players in order to cut off its escape paths,

capturing a wolf can be quite difficult.

Example Game 2: Sheep Farmer

Sheep Farmer is an extension of Collaborative Hunters. In this game (Figure 3-

1b), the AI-controlled dog has to help the human player to herd one Sheep NPC

into its pen in a maze filled with Wolves. Sheep is pursued by Wolves but is able

to defend itself by running away from Wolves while being chased, although

at the same speed as Wolves’. Any of these NPCs will move away from the

protagonists when they are within the vision limit. If the Wolves are next to

the Sheep, they will kill the Sheep instantly, which means the end of the game.

The protagonists’ task is therefore more complicated than the previous game:

they must carry out the task while protecting the sheep from Wolves’ threats

by blocking Wolves’ runway or killing them. Killing Wolves or successfully

herding the Sheep into its pen gives them some reward.

3.2 The general formulation

In the following formulation of the problem, we will use Collaborative Hunters

as illustration, with the Dog being the assistant and Farmer the lead agent.

39

We will next formalize the setting in which the lead-assistant behavior takes

place, using the formalism of Multi-agent MDP. A Lead-Assistant Collaboration

problem can be formulated as a tuple (S , A, A′,T,RD, γ), in which

• the finite state space S contains all the possible configurations of perti-

nent elements of the world. These states are often defined as vectors of

state attribute values (state variable values). Each state in Collaborative

Hunters is defined by the locations of Farmer, Dog and all wolves and the

number of times each wolf has been hit by the Farmer.

• the action sets A and A′ contain actions agents can take to change the

state of the world. We denote the actions available to the lead agent by A,

and the assistant’s actions by A′. Farmer and Dog each has four move-

ment actions (north, south, east and west) that change the locations of

the agents. The Farmer is further endowed with a Shoot action to attack

wolves.

• the transition function T (s, a, a′, s′) = P(st+1 = s′ | st = s, at = a, a′t =

a′) defines how the performed actions are likely to change the state of

the world. The next state may not depend deterministically on actions

but there may be some stochasticity due to other (possibly unmodeled)

forces. Therefore, the T (s, a, a′, s′) is defined as a conditional probability

that action pair (a, a′) in state s will lead to state s′. Farmer and Dog move

deterministically but a wolf may move to a random direction if there are

no agents near it.

• the reward distribution RD(s, a, a′, s′) defines a distribution of immedi-

ate rewards the lead-assistant team receives after the state transition from

s to s′ triggered by the action pair (a, a′). In Collaborative Hunters, a

non-zero reward is given only if the wolf is killed in that move. When

finding the optimal behavior of of the team, we do not usually need to

40

know the whole reward distribution RD but it is sufficient to know only

the expected rewards R(s, a, a′, s′) = E[RD(s, a, a′, s′)].

• the discount factor γ ∈ [0, 1] is to favor rewards received in the near future.

All the aspects of the task environment listed above are assumed to be known

to both the lead agent and the assistant. The lead agent follows a possibly

stochastic behavior model (or policy) πL : S → A (or, in case of stochastic

policy, πL : S → P(A)). Note that while the lead policy πL may be based on the

lead agent’s idea about the desirable team policy πT : S → A×A′ (or its stochas-

tic version), there is generally no constraint on how the lead agent selects its ac-

tions. The assistant’s choices of supportive actions, however, are conditioned by

the history of observed lead-agent actions. Denoting Θ as the set of all possible

lead-agent action histories, the problem can now be formalized in our frame-

work as a problem of finding the assistance policy π′ : (S ,Θ) → A′ that for

all states s0 maximizes the expected future reward V(s0) = E[
∑∞

t=0 γ
tR(st, at =

πL(st), π′(st, θt), st+1)], where θt = (s0, a0, s1, a1, ..., st, at) ∈ Θ is the lead agent

action history; the expectation is taken with respect the transition dynamics T

and the lead agent policy πL. If we knew the behaviour model πL, the optimal

π′ could be computed in theory by first considering the lead action to be part

of the state space and augmenting the transition model T and expected reward

model R with πL, and then solving the resulting Markov Decision Process using

standard techniques such as value iteration. In our case, however, the lead agent

is often human and the behaviour model is unknown. The optimization problem

then involves an expectation over an unknown distribution policy πL.

In practical domains, there is usually little clue as to what the lead agent

policy πL is like. For instance, in playing modern video games, gamers usually

join in with different play styles or preferences. In the same circumstances,

some aggressive gamers prefer to attack all in, while some others could choose

41

a more defensive approach. We will next show that without the knowledge about

how the lead agent behaves, the problem of finding an optimal assistant policy

is computationally very hard. This will later motivate us to make simplifying

(but still realistic) assumptions about the lead agent’s behavior so that a good

supportive assistant policy can be determined.

3.3 Simplifications

In a general setting, when the lead agent’s behavior model wildly varies and

might not be cooperative, it is impossible to devise an assistance plan. To

better-define the collaboration problem, certain assumptions about the problem

settings must be made.

3.3.1 Related work

In a previous work [26], Fern and Tadepalli addressed a subclass of Lead-

Assistant Collaboration by imposing two key assumptions. Firstly, the lead

agent is presumably firm about his intended target; from the beginning to the

end of the experience, he only sticks to one goal and and never changes it

halfway through. Under this assumption, the assistance task is formulated as

a Hidden Goal MDP (HGMDP), the goal of which is to identify the lead agent’s

unchanged intention throughout the course of the experience. To further reduce

the hardness of the problem, the authors next assumed that the objectives can be

completed by the lead agent without any help from the AI assistant; the assis-

tant’s role is strictly to speed up the process of completing intended tasks. As

a result, the assistant’s actions are never detrimental: they are either helpful or

useless to the lead agent. This additional assumption leads to a subclass of HG-

MDP, namely Helper Action MDP (HAMDP). Although more restricted than

HGMDP, the hardness of HAMDP is however not reduced; both HGMDP and

42

HAMDP were shown to be PSPACE-complete.

Nonetheless, the above restrictions on the domains and lead behavior al-

low the authors to devise an efficient policy which yields a bounded number

of unhelpful actions. In exchange for the theoretical guarantee, the assump-

tions, however, limit their solution’s practicality. Specifically, not allowing the

lead agent to change his mind during the experience (in HGMDP) confines the

formulation to short and trivial coordination situations. The solution is there-

fore inapplicable to more complex domains such as video games, in which each

gaming experience usually spans over a long period of time and the involved

players change their minds all the time. Besides, assuming that the helper’s ac-

tions do not impede the lead agent’s progress (in HAMDP) plays down the role

of team spirit, as the lead agent alone can achieve the goal. In collaborative

games whereby game objectives must be completed by the whole team, such

assumption is not appropriate.

3.3.2 Problem Specifications

In order to formulate coordination problems in which the team emphasis in prob-

lem solving is retained and the lead can change his mind during task execution,

we make the following restrictions or specializations on our targeted class of

Lead-Assistant Collaboration. The setting can be considered as a generalization

of that scoped in Fern and Tadepalli’s work [26].

Firstly, let us assume that the assistant is aiding a lead agent whose behavior

consists of a set of subgoals’ behavior models. As such, there are many possible

ways for the agents together to achieve the main objective but that each of these

ways can be decomposed as a sequence of subgoals. In this case at each time

point there is a set of subgoals the agents may choose to pursue. Secondly, we

generally assume that the environment is fully observable to both agents, but the

assistant does not directly know the subgoal the lead-agent would like to pur-

43

sue. The lead-agent is also free to change the subgoal he is pursuing at any given

time. The assistant has to infer what subgoal the lead-agent is pursuing in order

to maximally support the lead-agent. To make this general problem non-trivial

and applicable to a wider class of real-life domains, we assume that the lead-

agent can not explicitly communicate its subgoal or the desired assistive actions

to the assistant, but that the assistant has to infer the most supportive actions

based on the current situation including the observed actions of the lead-agent.

This assumption is due to the fact that in many settings, especially when there

is time pressure, communicating the intention is not feasible. For example, in a

smart home for the elderly, the human-lead, in this case the elder person, would

not be able to communicate his desire or even current status when undergoing

a stroke. The robot caregiver, if conditioning its behavior on the, albeit mini-

mal, explicit commands from the lead, will fail to timely react to this emergency

situation. Similarly in the setting of virtual assistants in video games, during a

quick base attack, which is prone to possibly unexpected counter-actions from

the enemy, there is no time for the lead player to explain any change of plan to

his AI subordinates. The assistants have to figure it out by themselves, by ob-

serving how their leader is behaving. Besides, in cases when the lead agent can

communicate his intention to the assistant, the problem becomes easier, since

the assistant does not need to track the lead’s intention anymore. Lastly, we lift

Fern and Tadepalli’s assumptions that the lead agent can finish the episode by

himself, i.e., without any help from the assistant, and that the lead agent has to

stick to one fixed subgoal throughout the episode.

In this setting, the assistant encounters two main challenges while aiding the

lead agent: (1) tracking the drifting subgoal the lead-agent is pursuing (Sub-

goal Tracking), and (2) determining what to do once the intended subgoal has

been identified (Action Planning given Subgoal). Taking the decision-theoretic

approach, we can use the framework of Markov Decision Processes to formu-

44

late the first challenge as a Changing Goal MDP (Section 3.3.4) and the second

as a Hidden Behavior MDP (Section 3.3.3). Changing Goal MDP models the

scenario when the hidden element in the assistant’s decision making is the lead

agent’s drifting intention, such as whether the lead agent is trying to get a drink,

go to bed, or get a book. In contrast, Hidden Behavior MDP models the scenario

when there is ambiguity in achieving a known goal, e.g., the assistant knows ex-

actly that the lead agent wants to read a book, but the information on how he will

achieve it is fuzzy (hidden behavior). For instance, in order to read a book, the

lead agent could follow the trajectory of grasping a chair before taking a book

from the shelf to read at a table, or taking the book from the shelf and reading it

while in bed.

In the following sections, we will show that each of the challenges identified

above, i.e., Subgoal Tracking and Action Planning given Subgoal, in our setting

is PSPACE-complete.

3.3.3 Action Planning given Subgoal: Hidden Behavior MDP

If the assistant knows the subgoal the lead-agent is pursuing it has to perform

actions that support reaching the goal. However, just knowing the goal is not

enough for selecting the most supportive actions; the assistant also needs to

know what the lead-agent is going to do in order to achieve the goal.

The field of Player Modeling directly addresses this problem by first assum-

ing that the lead agent’s behavior model takes certain structure and then learning

the parameters online [37]. This approach has its challenges, like how to choose

an appropriate model structure, and how to most efficiently learn the parameters

with minimal training data to ensure quality performance as quickly as possible.

In general, different problem domains tend to require different player models.

Aiming at a more general and automatic solution, we have chosen to pursue a

decision theoretic approach.

45

We are interested in the problem of selecting assistant actions that are most

beneficial given only observations about the lead-agent’s actions, thus without

full knowledge of lead-agent’s behavior model. Adopting the Partially Observ-

able MDP (POMDP) formalism, we will show that even a simple case of this

problem in which the assistant knows beforehand a candidate set of possible

behavior models of the lead-agent is very hard. The problem of finding the opti-

mal behavior of an assistant can be formulated as an POMDP defined by a tuple

M =< S , A, A′,T,R,Ξ, IΞ > in which

• S is the state space, while A and A′ are the lead and assistant action sets.

• T (s, a, a′, s′) = P(st+1 = s′ | st = s, at = a, a′t = a′) is the conditional

probability that action pair (a, a′) in state s will lead to state s′.

• R(s, a, a′, s′) is the expected immediate reward received after the state

transition from s to s′ triggered by the action pair (a, a′).

• Ξ is the candidate set of lead-agent’s behavior models. A lead-agent be-

havior model ξ ∈ Ξ defines the probability distribution ξ(A | s) of lead

actions issued in state s. Note that this information about possible lead

behaviors is known by the assistant at decision time.

• IΞ is the initial belief distribution over members of Ξ.

In a so called finite-horizon episodic setting, the objective is to find a policy

π′ : S × Θ → A′ that determines the assistant action for each state and lead-

agent action history in a way that maximizes the expected discounted reward

ET

[∑h
t=0 γ

tR(st, at, π(st, θt), st+1)|IΞ

]
in which h is the horizon length. We call

this formulation the Hidden Behavior MDP (HBMDP).

Given a HBMDP M, a horizon h = O(|M|) with |M| being the encoding

length of M and a reward target r, the short-term reward maximization prob-

46

lem asks whether there exists an action policy for the assistant that achieves an

expected discounted rewards of at least r.

Theorem 3.1. The short-term reward maximization problem for HBMDPs is

PSPACE-complete.

Proof. Each HBMDP problem can be trivially converted to a partially observ-

able MDP, hence it is in PSPACE. Since HBMDP extends Hidden Goal MDP

(HGMDP) of Fern and Tadepalli [26] by allowing the assistant’s actions to

be harmful, it is straightforward to reduce from HGMDP to HBMDP. Since

HGMDP is PSPACE-hard, so is HBMDP, which means HBMDP is indeed

PSPACE-complete. �

Theorem 3.1 shows that collaboration with a partner is a difficult problem if

the partner’s behavioral strategy is unknown a priori.

3.3.4 Subgoal Tracking: Changing Goal MDP

While the Hidden Behavior MDP concerns with how a collaboration plan can

be computed if the lead agent’s behavior is unknown, the following formulation

characterizes the challenge in guessing which subgoal the lead agent is pursuing,

by observing his actions. Unlike in HBMDP, in this setting, we assume that for

each subgoal the lead agent only adopts one behavior model, which is known a

priori by the assistant.

The Changing Goal MDP (CGMDP) problem can be described by a tuple

< S ,G, A, A′,T,R,Γ,Π > in which

• S is the state space, G the goal set, and A and A′ respectively the lead

agent’s and assistant’s action sets.

• T (s, a, a′, s′) is the probability that action pair (a, a′) in state s at time t

will lead to state s′ at time t + 1; T models the environment’s dynamics.

47

• Γ(g′|g, s) is the probability that the lead agent decides to pursue g′ in the

next time slice given current state s and goal g; it captures the “mind

change” of the agent due to environment-related factors. We assume the

lead agent is not influenced by its assistant’s actions.

• For the lead agent’s behavior, Π(s, g) is the distribution over A. For each

action a ∈ A, Best Assistant Actions(s, g|a) ⊂ A′ is a subset of assis-

tant actions that are deemed most efficient when coupled with the agent’s

action a in advancing the progress towards goal g.

• R(s, g, a, a′) rewards the assistant based on the usefulness of a′ when cou-

pled with a in achieving goal g at state s; R(s, g, a, a′) = 1 if a′ ∈ Best

Assistant Actions(s, g|a) and 0 otherwise.

Similar to the Action Planning problem, in a finite-horizon episodic set-

ting, the assistant’s objective is to maximize the expected discounted reward

E
[∑h

t=0 γ
tR(st, gt, at, a′t)

]
in which h is the horizon length. We call this formula-

tion the Changing Goal MDP (CGMDP).

Given a CGMDP M, a horizon h = O(|M|) with |M| being the encoding

length of M and a reward target r, the short-term reward maximization problem

asks whether there exists an action policy for the assistant that achieves an ex-

pected discounted rewards of at least r. In the following theorem, we show that

this general formulation is hard even under fairly restricted setting.

Theorem 3.2. Short-term reward maximization for CGMDPs with deterministic

environment and no mind change is PSPACE-complete.

Proof. The proof follows closely that of Theorem 1 for Hidden Goal MDP

in [26], since CGMDP with no mind change is actually Hidden Goal MDP

(HGMDP), the proposed formulation of assistance by Fern and Tadepalli. By

showing that CGMDP is in PSPACE and reducing QSAT to CGMDP, it follows

that CGMDP is PSPACE-complete. �

48

In deterministic environments with a lead agent that does not change his

goal, the problem’s hardness comes mainly from the inability of the assistant

to interpret the lead agent’s goal based on his behavior. This usually happens

when different subgoals are not well-separated, so that pursuing them results in

similar action sequences.

3.4 Problems of assuming global optimality

For two-party collaboration in which each agent only has partial control and

influence on the final result, inaccurate assumptions may lead to a failure to

complete the task. In Collaborative Hunters, one obvious approach is to assume

that the farmer is globally optimal, i.e., always executes the lead action that is

part of some optimal action pair at any state. This assumption leads to a fully

observable planning problem for the dog since there is no hidden element in

the lead’s behavior. The problem is reduced to a classic planning problem for a

single agent, whose actions are now the cross product of the dog and farmer’s

action sets. The dog’s actions are then extracted from the resultant optimal pol-

icy5. If the human controlling the farmer is indeed globally optimal, the dog’s

behavior would be perfect as a collaborator. However, this seemingly natural

approach poses a major issue due to the strong assumption on how the human-

controlled agent behaves. Human’s expertise in a domain is known to influence

their perception about problems in that domain [18, 68]. Novices usually per-

ceive problems on the basis of “surface structure”, thus exhibiting behavior that

tends to optimize obvious or short-term goals. Experts on the other hand are

able to grasp deeper and more complex principles to solve the problems on a

larger scale [68]. Conditioning the assistant’s behavior on a globally optimal

lead model is therefore inadequate, especially in complex settings with many

5In cases when there are multiple equally optimal action pairs for a state, the dog’s selected
action can be conditioned on the observed lead actions to break ties.

49

intertwining objectives.

Moreover, assuming one rigid, fixed behavior model such as global optimal-

ity to assist can be counter-productive when the environment can change beyond

the assistant’s anticipation. For example, suppose at training phase, a robot as-

sistant is briefed to prioritize the objective of helping the lead to collect rare

gems G1 over that of gems G2. While deployed in a remote area, such as Mars,

it may so happen that this ranking changes, due to the reverse in actual demand

of G1 and G2, which can then be conveyed to the lead agent. The lead agent

therefore has access to information that potentially changes the team’s strategy;

an assistant that relies on a perfect model obtained at design phase will fail to

deliver in such dynamic settings.

(a) (b)

(c) (d)

Figure 3-2: If the dog’s assumption about the farmer being globally optimal is
wrong, they fail to collaborate and could get caught in an infinite circle move-
ment around the map, counter-clockwise from (a) to (c), (d), (b) then back to (a);
the dotted lines are the assumed movements of the farmer if he were globally
optimal.

In the context of collaborative games with many objectives such as our Col-

laborative Hunters game, the assumption can be detrimental due to the wrong

50

idea of the assistant about the lead’s behavior. Figure 3-2 shows an example of a

case where wrong assumption of global optimality leads to a failure to complete

the task. Suppose that Farmer cannot attack a wolf if it is not in an adjacent posi-

tion. In the depicted scenario, the dog perseveres to chase two wolves nearest to

it because during planning time, it knows that a globally optimal farmer would

turn around to attack the wolves currently pursued by his dog; that is the best

action plan for them. However, if the farmer behaved otherwise, i.e., stubbornly

following the wolf nearest to him due to his sub-optimality, they would fail to

collaborate and get caught in an infinite circle movement around the map.

In fact, the assumption of subgoal behavior subsumes that of globally opti-

mal behavior, by considering the global goal as just another subgoal of the lead

agent in the set of all possible subgoals. This formulation therefore gives the as-

sistant more flexibility in determining the best course of assistive actions, able

to collaborate with different human lead types of different expertise levels.

3.5 Chapter Summary

As discussed in this chapter, the problem of Lead-Assistant Collaboration when

assisting a self-interest agent could be extremely hard. In particular, two key

problems that are inherent to a globally suboptimal lead agent, i.e. unpredictable

behavior and hidden intention, are both PSPACE-complete.

In Chapter 4, we will make further assumptions to render the problem more

tractable. Inspired by recent research advancements in action understanding in

the field of cognitive science, we avoid the issue of unpredictable lead behavior

by assuming that the lead agent is optimal at subgoal level and tackle the issue

of hidden intentions by tracking the likely lead target using Bayesian inference.

51

52

Chapter 4

CAPIR - Collaborative Action

Planning with Intention

Recognition

As presented in Chapter 3, finding the optimal assistant behaviour when the lead

agent policy is unknown is computationally demanding and often impossible

in practice. Without reasonable assumptions on the lead agent’s behavior, the

assistant has to face at least two PSPACE-hard problems. In order to apply these

formulations in realistic domains, we need to reduce the problems’ complexity

with further simplifications. Assuming the lead agent behaviour to be globally

optimal leads to an easier computational task but even after this restriction the

time and space requirements may be prohibitive. Furthermore, in case of human

lead agents, the assumption of global optimality in complex tasks may be overly

optimistic, in which case the assistant behaviour is based on a wrong model. In

order to apply these formulations in realistic domains, we need to reduce the

problems’ complexity with some simplifications

In this chapter, we elaborate our assumptions and restrictions on the gen-

eral formulation in implementing a framework of assistants. The proposed

53

framework, namely Collaborative Action Planning with Intention Recognition

(CAPIR) [50], adopts the simplified formulations, which model the lead agent as

being optimal at the subgoal level and changing subgoals according to a given

finite state machine. The lead’s targeted subgoal is then tracked online and

decision-theoretic action selection is applied to choose suitable assistive actions

to execute at game time. Our evaluation with human subjects shows that the

framework yields near-human assistance in the two-player game Collaborative

Hunters.

4.1 Related work

Our work is an interdisciplinary product that lies at the junction of various re-

search topics such as action understanding (cognitive science), plan recognition

and planning under uncertainty.

4.1.1 Action Understanding as Inverse Planning

The idea of interpreting an agent’s intention by reasoning on his actions has

been explored in the field of cognitive science. Taking the planning approach,

our work draws its motivation from a cognitive scientific line of works on ac-

tion understanding using inverse planning, which interprets an agent’s inten-

tion by reasoning on his actions under the assumption of rational behavior. It

is an inverse process based on the popular “belief-desire psychology” which

posits that intentional agents’ beliefs and desires are the causes of their behavior

([24], [36], [61], [76]). Dennett [24] argues that this relation is governed by the

principle of rationality: intentional agents are expected to choose most efficient

actions that satisfy their desires, given their beliefs of the world.

Recently, Baker et al. [3] have conducted experiments to confirm the va-

lidity of simple rational models of actions in representing the human intention

54

inference. The process is called inverse planning, due to the fact that it can be

considered the reverse of action planning given a certain intention/desire under

specific beliefs of the world. The rational models of actions and goal track-

ing mechanism they used in their experiments are well-aligned with what we

propose in our approach

1. The human behavior model is constructed using optimal action plans re-

sulted from MDP solvers.

2. The agent’s intention is tracked using Bayes’ theorem.

The experiments show that human subjects’ judgments match the outcomes

of the aforementioned model in inferring the intention of an entity based on its

actions. In other words, the model successfully performs near-human interpre-

tation of an intentional agent’s behavior. This exciting result hints that if this

approach is adopted for modern video games, we could create NPCs with the

ability to understand players “the human way”.

The work however only addresses the situation when the human actor can

complete the task alone without any help, focusing more on the reasoning aspect

instead of the action aspect. Our focus, on the other hand, is in capitalizing the

assistant’s understanding about the human partner’s intention to select meaning-

ful cooperative actions.

4.1.2 Plan Recognition in Game AI Research

One important part of our work is related to the problem of Intention/Plan

Recognition. Since plan recognition was identified as a problem on its own

right in 1978 [67], there have been various efforts to solve its variant in differ-

ent domains. In the context of modern game AI research, Bayesian-based plan

recognition has been inspected using different techniques such as Input Output

Hidden Markov Models [34], Plan Networks [58], text pattern-matching [47],

55

n-gram and Bayesian networks [48] and dynamic Bayesian networks [1]. All

of these research attempts focus on constructing the most comprehensive data

structure to capture the behavior of a subject in each particular domains, so that

the subject’s hidden plan can be inferred.

The major difference that sets apart these lines of works from our own is

that we focus more on the reasoning process and action selection, which comes

after plan recognition. Research in Plan Recognition therefore compliments our

framework in that their intention tracking models could be used in place of our

belief update component. On the other hand, as far as we know, our work is

the first to use a combination of precomputed MDP action policies and online

Bayesian belief update to solve the plan recognition problem in a collaborative

game setting.

4.1.3 Decision-theoretic framework of Assistants

Related to our work in the collaborative setting is the work reported by Fern

and Tadepalli [26] who proposed a decision-theoretic framework of assistance,

which builds on similar principles as those of the cognitive scientific counter-

part. By assuming that the lead agent has a priori chosen to follow a task in

a predefined set and never changes this hidden intention, they also model each

task as an MDP, the optimal policy of which constitutes the behavior model of

the lead agent if he selects that task (Principle of Rationality). Bayes’ rule is

used to track the hidden intention.

Similar to the work on Action Understanding using Inverse Planning [3],

there are however fundamental differences between their targeted problem and

ours. Firstly, they assume the task can be completed by the main subject without

any help from the AI assistant. This is not the case in many cooperative games

that present scenarios in which the effort from one lone player would amount

to nothing and a good collaboration is necessary to close down on the enemies.

56

Secondly, they assume a static human intention model, i.e. the human only has

one goal in mind from the start to the end of one episode, and it is the assis-

tant’s task to identify the sole intention. This restriction allows them to devise

a myopic policy that has a bounded expected regret. If the human is allowed

to change goals during the episode, such result is not possible. In contrary, our

framework allows for a more dynamic human intention model and does not im-

pose a restriction on the freedom of the human player to change his mind mid

way through the game. This helps ensure our AI’s robustness when inferring the

human partner’s intention.

4.2 Assumptions and Simplifications

In order to make the task of finding the assistant behaviour computationally

feasible under plausible assumptions about the lead agent behaviour, we suggest

adopting following simplifications and assumptions:

• The task can be decomposed (by a domain expert) into a set of subgoals.

• the lead agent follows only one behavior model per subgoal; this signif-

icantly reduces the complexity of collaborating given subgoal (Hidden

Behavior MDP) and allows efficient computation of the assistant’s action

offline in design phase.

In the current implementation, we further assume that the agent’s behavior

is optimal at the subgoal level to avoid the phase of encoding a suitable agent

model; this assumption can be safely lifted if such an expert elicitation is afford-

able.

Moreover, in order to further reduce the size of the state space for each

subgoal, we implement a simple form of attention by ignoring aspects of the

state that do not significantly affect the decision making pertinent to the subgoal.

57

For instance, in the Collaborative Hunters game, subgoal formulation ignores

the presence of NPCs that are not part of the subgoal (Figure 4-1). The MDP

for a subgoal consists of only two players and a small set of wolves and hence

is likely to have manageable complexity.

In game domains such as Collaborative Hunters, the lead agent is often con-

trolled by a human player with the assistant accompanying him; therefore, in

subsequent sections, we are going to refer to the lead agent as human player

interchangeably.

4.3 CAPIR - Formulation

By assuming that the lead agent is optimal at the subgoal level, we do not have

to deal with the issue of the lead agent changing his behavior while complet-

ing subgoals, as modeled by HBMDP. CAPIR models the assistant’s planning

problem with three components: Subgoal MDPs, Human Subgoal Behavior and

Goal Change Model. These components are used to track the drifting intention

of the lead agent (CGMDP), and to select the most assistive actions when the

hidden intention is inferred.

4.3.1 Subgoal MDPs

Following the MDP formulation proposed in Section 3.3.3, under the assump-

tion of the human player adopting optimal behavior at subgoal level, the assis-

tant’s subgoal planning task can be described by tuple (S , A,T,RD, γ) in which

• S is a finite set of game states. In single wolf subgoal, the state consists

of the positions of the human player, the assistant and the wolf, together

with the number of hits it has taken.

• A is a finite set of action pairs available to the players; each action a ∈ A

58

could be a compound action of both players. If the human player and the

assistant, each has 4 moves (north, south, east and west), A would consist

of the 16 possible combination of both players’ moves.

Figure 4-1: Subgoal formulation in Collaborative Hunters.

• T (s, a, s′) = P(st+1 = s′|st = s, at = a) is the probability that action a in

state s at time t will lead to state s′ at time t + 1. The human and assistant

move deterministically in Collaborative Hunters but the wolf may move

to a random position if there are no agents near it.

• RD(s, a, s′) is the probability distribution of the immediate reward re-

ceived after the state transition from s to s′ triggered by action pair a. In

our computation, we will use the expected immediate reward R(s, a, s′) =

E[RD(s, a, s′)] instead of the distribution RD. In Collaborative Hunters,

a non-zero reward is given with certainty when the wolf is killed in that

move.

• γ ∈ [0, 1] is the discount factor.

59

Note that if a different model for human behavior is furnished, the formu-

lation could be adjusted by merging the human behavior into the planning en-

vironment’s dynamics; we would have a classic single-actor MDP formulation

with a smaller action space.

The objective is to obtain a policy π that maximizes the expected cumulative

reward
∑∞

t=0 γ
tR(st, π(st), st+1) where 0 < γ < 1 is the discount factor.

4.3.2 Human Subgoal Behavior

This model is used at run time for intention tracking; we assume an optimal

human at subgoal level but make it more realistic by using soft-max to model

the action probability. Specifically, we assume

P(a|gi, s) =
emaxa′Q∗i (s,a,a′)/τ

Z
(4.1)

where Z is the normalizing constant and gi ∈ G, the set of subgoals; Q∗i is

the Q-function obtained after Subgoal MDP for goal gi is solved, and τ > 0 a

temperature parameter. As such, the human player is assumed to (noisily) know

the best response from the assistant and only need to play his part in choosing

the action that constitutes the most valued action pair.

Note that τ dictates how noisy the human player’s behavior model is; high

values of τ translate to a completely random behavior, while low values (τ →

+0) means a deterministic model. A slightly different view is that τ reflects the

assistant’s assumption on the expertise level of the lead in solving subgoals gi.

In our implementation, we fix the value of τ such that CAPIR behavior can cater

to most average players (τ = 10 in Collaborative Hunters); future work can be to

investigate how τ can be dynamically changed according to the player’s subgoal

expertise.

60

4.3.3 Goal Change Model

We use a probabilistic state machine to model the human’s mind change for in-

tention recognition and tracking. At each time instance, the player is likely to

continue on the subgoal that he or she is currently pursuing. However, there

is a small probability that the player may decide to switch subgoals. This is

illustrated in Figure 4-2, where we model a human player who tends to stick

to his chosen sub-goal, choosing to solve the current subgoal 80% of the times

and switching to other sub-tasks 20% of the times. The transition probability

distributions of the nodes need not be homogeneous, as the human player could

be more interested in solving some specific subgoal right after another subgoal.

For example, if the wolves need to be captured in a particular order, this con-

straint can be encoded in the state machine. The model also allows the human

to switch back and forth from one subgoal to another during the course of the

game.

Figure 4-2: A probabilistic state machine, modeling the transitions between
subgoals.

In this work, we assume that the goal change model is given to us at the de-

sign phase and does not change over time. However this is not strictly required;

if the model can be learnt at game time, it is totally valid to use this model for

belief update at each time step because the assistant does not need to know this

model before game start.

Note that if necessary, there are some ways to compute the model online

without having to meticulously hand-craft it at the design phase. The simplest is

61

to keep the model fixed and state-independent. For example, Figure 4-2 denotes

that the lead agent always has 20% chance to deflect his pursuit to other goals,

regardless of how close he is to completing his current intended goal. A slightly

more complex approach is to keep track of the lead agent’s personal preference

in pursuing goals and use this information to construct the model in real time.

The lead agent’s preference can be conditioned on many game-specific factors

such as line-of-sight distance (e.g. nearer goals might be preferred) or goal

types (e.g. for certain violence-seekers, killing monsters might be preferred over

saving civilians). The inter-goal transition probabilities are then learnt while

in game as functions of the pertinent factors, before normalized to make the

complete model. Since this technique is domain-specific, its investigation is

beyond the scope of this thesis.

4.4 CAPIR - Algorithm

Typically, the subgoal MDP is small and could be solved offline. The resultant

optimal policies are loaded into memory during game time so that the assistant

can select actions with highest utility and reason about the possibly drifting

hidden intention of the human player.

4.4.1 Solving Subgoal MDP

An MDP can be effectively solved using Value Iteration [9]. The algorithm

maintains a value function V(s), where s is a state, and iteratively updates the

value function using the equation

Vt+1(s) = max
a

∑
s′

T (s, a, s′)(R(s, a, s′) + γVt(s′))

 .
62

This algorithm is guaranteed to converge to the optimal value function V∗(s),

which gives the expected cumulative reward of running the optimal policy from

state s.

The optimal value function V∗ can be used to construct the optimal action

by taking action a∗ in state s such that a∗ = argmaxa
{∑

s′ T (s, a, s′)V∗(s′)
}
. The

optimal Q-function is constructed from V∗ as follows:

Q∗(s, a) =
∑

s′
T (s, a, s′)(R(s, a, s′) + γV∗(s′)).

The function Q∗(s, a) denotes the maximum expected long-term reward of an

action a when executed in state s instead of just telling how valuable a state

is, as does V∗. In Subgoal MDP, A is the set of compound actions, so Q∗(s, a)

corresponds to Q∗(s, ahuman, aassist) for each a ∈ A.

Intractability

When the Subgoal MDPs yield state spaces of large size, Value Iteration could

be prohibitively expensive to run, even at offline phase. In such case, approx-

imate methods that trade accuracy for feasibility constitute a viable choice.

These methods will be discussed in details in Chapter 5 and 6.

4.4.2 Belief Update

The belief at time t, denoted Bt(gi|θt), where θt is the game history, is the condi-

tional probability of that the human is performing subgoal i. The belief update

operator takes Bt−1(gi|θt−1) as input and carries out two updating steps.

First, we obtain the next subgoal belief distribution, taking into account the

goal change model’s transitions T (gk → gi)

Bt(gi|θt−1) =
∑

j

T (g j → gi)Bt−1(g j|θt−1), (4.2)

63

where T (g j → gi) is the switching probability from subgoal j to subgoal i.

Next, we compute the posterior belief distribution using Bayesian update,

after observing the human action a and subgoal state si,t at time t, as follows:

Bt(gi|at = a, st, θt−1) =
1
Z

Bt(gi|θt−1)P(at = a|gi, si,t) (4.3)

where Z is a normalizing constant. Absorbing current human action a and cur-

rent state into θt−1 gives us the game history θt at time t.

Complexity

This component is run in real time, and thus its complexity dictates how respon-

sive our AI is. We are going to show that it is O(|G|2), with G being the set of

subgoals.

The first update step as depicted in Equation 4.2 is executed for all subgoals,

thus of complexity O(|G|2).

The second update step as of Equation 4.3 requires the computation of P(at =

a|gi, si) (Equation 4.1), which takes time O(|A|) with A being the set of action

pairs. Since Equation 4.3 is applied for all subgoals, that sums up to O(|G||A|)

for this second step.

In total, the complexity of our real-time Intention Recognition component is

O(|G|2 + |G||A|), which will be dominated by the first term O(|G|2) if the action

set is smaller than the set of subgoals.

4.4.3 Decision-theoretic Action Selection

Given a belief distribution on the human players targeted subgoals as well as

knowledge to act collaboratively optimally in each of the subgoals, the assistant

64

chooses the action that maximizes its expected reward.

a∗assist = argmaxa′

∑
i

Bt(gi|θt)Q∗i (st, ahuman, a′)


in which ahuman is the observed human action and a′ ranges over all assistant

actions.

4.5 CAPIR - System Implementation

CAPIR was implemented as a toolkit for designing two-player collaborative

games. Each game level is a GameWorld object that holds references to two

Players and multiple SubWorld objects. State update is carried out in each indi-

vidual class and collated at GameWorld (Figure 4-3). The engine is written in

C++, so for the time being games using the engine will need to have their AI

module implemented in C++ as well. Allowing AI description via scripts, i.e.,

Lua or Python, will be future work.

	

Figure 4-3: GameWorld’s components.

65

4.5.1 Architecture

GameWorld

This is the base class for a game level. In GameWorld, there are two Player

objects, at least one of which is controlled by a human player, and multiple

SubWorld objects that hold subsets of the NPCs. The game objective is typically

to interact with these NPCs in such a way that gives the players the most points

in the shortest given time. The players are given points in major events such

as successfully killing a monster-type NPC or saving a civilian-type NPC. Each

SubWorld implements the scope of a subgoal and is responsible for updating

the dynamics of the NPCs in the respective subgoal. A SubWorld reaches its

terminal in the current state if the state attributes pertinent to its NPCs have

certain values, e.g., all NPCs’ hit points are zero.

At each game clock tick, GameWorld updates a game state vector by apply-

ing the human player’s action on the current state first. The assistant’s action

planning module is then run to produce an assistant action, taking into account

the observed human action. Finally, after the players’ actions are applied, some

SubWorlds could have ended; the remaining ones will update the game state

with their respective NPCs’ dynamics, e.g., wolves run away from nearby play-

ers. The game episode ends when all SubWorlds are in terminal states.

SubWorld, NPC and SpecialLocation

Each SubWorld holds references to a number of NPCs, which are subclasses an

NPC base class. An NPC can be declared as having

• one or many movement actions,

• none or many special actions which affect anything other than its location,

and

66

• none or many properties such as Hit Point, Power and Inventory.

The default behavior of a NPC is to move away from the players upon sight-

ing and acting randomly otherwise. However, each type of NPCs can be ex-

tended to have its own kind of behavior.

Besides NPCs, SubWorld could be responsible for updating the state of some

immobile in-game items such as doors, guns or shovels, encoded by SpecialLo-

cation classes. These items could be interacted by the NPCs in this SubWorld

or the players and could be shared among different SubWorlds.

Player

This class describes essential attributes and abilities the players possess. Each

of the two players could have different sets of abilities and characteristics. In

general, Players

• are capable of making one or many movement actions,

• are capable of making none or many special actions, and

• have none or many properties.

Special actions are non-movement action such as attacking or casting a spell

and are only available depending on the current state.

4.5.2 State Space Reduction with Location Abstraction

In the current implementation of CAPIR engine, we use an abstraction scheme

to further reduce the size of Subgoal MDPs’ state space.

We observed that regardless of how the NPCs behave, when they are far

away from the players, we do not need to know the exact positions of the players,

but a rough idea on where they are suffices for planning what actions to take.

Only when the players and NPCs are nearby is detailed location information

67

Figure 4-4: Region-based abstraction; some sample regions for the players are
shown as dark boxes.

required. For instance, Figure 4-4 depicts a situation in which the farmer needs

to continually move right while the dog could stand by and wait regardless of

where they are in the occupied corridors. Therefore, we formulate Subgoal

MDPs with abstract states, in which the protagonists’ regions are stored instead

of exact positions. Each region is defined as contiguous sets of grid squares, in

which a player has the same set of valid actions regardless of its location in the

region. For instance, in Figure 4-4, when in the current region, Farmer can only

move left, right or stay still. When the players are near to the NPCs, relative

positional information is added.

This abstraction scheme helps reduce the state space of each subgoal from

O(m2+n) to as low as O(R2+n)1, in which m is the total number of unobstructed

grid squares in the map, n is the number of NPCs in the subgoal and R is the

number of regions.

4.5.3 Workflow

At the planning stage, for each SubWorld, an MDP is generated and a collab-

oratively optimal action policy is computed accordingly (Figure 4-5). These

1The actual size could be larger because abstract states may need to store relative position,
i.e., left, right, top and bottom, when the characters are nearby, together with non-position
attributes.

68

policies, represented as subgoals’ Q-functions, are used by the AI assistant at

run time to determine the most appropriate action to carry out.

Figure 4-5: CAPIR’s action planning process. (a) Offline subgoal Planning, (b)
in-game action selection using Intention Recognition.

During game time, upon observing the human player’s action in the current

state, the assistant updates its belief on the human’s hidden intended subgoal ac-

cording to the process described in Section 4.4.2. It then uses the updated belief

to select the action with highest expected Q-value described in Section 4.4.3.

After the game state is updated by GameWorld, the game clock ticks to the next

moment and the cycle goes on until the game is over or time is up.

69

4.6 Experiments and Analysis

In these experiments, we want to assess how CAPIR’s performance varies as

the number of subgoals increases; the tests are done with respect to three com-

putational models of lead behavior. Next, we conduct a human subject study to

investigate how CAPIR fares in direct comparison with an expert human partner.

4.6.1 Experiment platform

In this set of experiments, the player’s aim is to kill three wolves in a maze, with

the help of the assistant dog.

The wolves stochastically run away from any protagonists if they are near

the players. Specifically, if a wolf is within K steps away from either or both

player, it respectively moves away from either or both of them with probability

p and performs some random action with probability 1 − p. At each game step,

the protagonists could move to an adjacent free grid square or stay at the same

place; additionally the human player could shoot any wolf if one is found within

K −1 steps away, in which case the wolf’s hit point (HP) is reduced by one unit.

This condition forces the players to collaborate in order to score well. Each wolf

has two HP units and once they are depleted due to the farmer’s attacks, the wolf

is killed, yielding a reward of 5 points. This score is discounted with factor 0.99

so that quicker kills are preferred. The game ends when all wolves are killed or

when a limit of 300 game steps is reached.

In the current game instance, we set K = 3 and p = 0.9 so that the game,

though an experiment platform, is still fun to play. If K is too high, the player

can attack wolves from far away, so he does not need to move around too much

to pursue the wolves; the action element of the game becomes minuscule. Con-

versely, if K is set too low, the pursuit of wolves can be tedious because the

player needs to get real close to the wolves before any damage can be inflicted.

70

The perseverance probability p should be sufficiently close to 1 to ensure eva-

sion behavior of the wolves. However, with p ' 1, the game becomes too

predictable, reducing the surprise factor that partly contributes to the fun of the

game.

Figure 4-6: Map layout for scalability test; this is a sample starting state of level
3 with five wolves.

4.6.2 Numerical experiments with behavior scripts

In this first set of benchmark experiments, we want to assess how CAPIR per-

forms with increasing number of subgoals as a scalability test. CAPIR is com-

pared with two agents, i.e., Random and Approximately Globally Optimal,

when tasked to control the Dog.

• The random Dog uniformly selects an action in the action set {no move,

N, E, S ,W} to execute at each time step.

• The approximately globally optimal Dog assumes that the human player

is globally optimal, viewing the game as a single large MDP in which

the planner controls both the Dog and the Farmer (i.e., the action set is

the cross product of the lead and assistant’s actions). The task is then

71

solved approximately; at each time step, the assistant action is extracted

from the computed policy’s output to execute. Since the formulated task

is high-dimensional, we use an approximate algorithm called UCT [44]

to estimate the globally optimal policy2. This Dog model is henceforth

referred to as the UCT Dog.

Note that we could not come up with a suitable Dog model to sensibly assist

the human lead in this domain using traditional game design techniques such

as HFSMs or scripting 3. The attempts usually resulted in sub-standard behav-

ior, level-dependent, and especially laborious. We therefore could not conduct

meaningful comparison tests of our approach with Dog models constructed us-

ing these techniques.

We couple the above assistants with three human models, two heuristic

scripts based on subgoals’ optimal policies and one globally near-optimal model.

1. NearestGhost human picks the nearest alive wolf to pursue and persis-

tently chases that wolf until it is killed.

2. RandomGhost.0.9 human uniformly picks an alive wolf and maintains it

as the main target with probability 0.9 at every step; this model imple-

ments the human’s mind change.

3. UCT human is similar to UCT Dog but instead of one second of planning

per step, it runs UCT for 2000 playouts per step. On our machine powered

by Intel Xeon CPU 2.83GHz, depending on the map size and number of

NPCs in the map, it can take up to 30 seconds to finish one step of plan-

2UCT is a state-of-the-art algorithm to approximate an optimal policy in an online fashion;
more details on UCT will be furnished in Chapter 5. In this experiment setup, the approximately
globally optimal Dog’s behavior is constructed by running UCT algorithm one second per game
step to compute the estimated optimal action pairs.

3As far as we know, commercial games with strong emphasis on cooperative puzzle solv-
ing such as Lara Croft and the Guardian of Light, which is in the same genre as our game
Collaborative Hunters, has yet to deliver computer-aided, collaborative single player mode.

72

ning for this human model (the program is compiled with optimization

but not parallelization).

We examine the collaboration of agent pairs in five map levels of the same

size, but with increasing number of wolves, respectively 1, 2, 5, 10 and 20

wolves; the map layout is shown in Figure 4-6. Simulations are run with 100

randomized starting configurations per level, and the average statistics are shown

in Figure 4-7.

Among three human models, CAPIR cooperates very well with all of them

when the number of wolves or subgoals is relatively small (up to 5). When the

number of wolves is larger, i.e., 10 and 20, CAPIR is better than the baseline

Random agent but is slightly outperformed by the UCT agent. Note that to

deliver the charted performance, the computation time per move taken by both

Random and CAPIR agents is negligible in all levels, i.e., < 1ms while UCT

requires one second of planning for every move.

Clearly, when the number of subgoals is small, the subgoal density is sparse,

thus the human’s behavior is more pronounced and it is easier to track which

subgoal he is pursuing. Conversely, when the number of subgoals is large, the

same action sequence performed by the human player has a high chance to be

optimal for multiple subgoals at the same time. In this situation the assistant is

confused and its performance drops until the subgoals either are better separated

or reduce in number.

In a nutshell, CAPIR performs well in scenarios in which the subgoals are

well separated and the human behaviors among subgoals do not significantly

overlap.

4.6.3 Human subject study

In order to evaluate the performance of our AI system, we conducted a hu-

man experiment using Collaborative Hunters. We chose five game levels (Ap-

73

(a) NearestGhost Human

(b) RandomGhost.0.9 Human

(c) UCT Human

Figure 4-7: Average scores of Random, CAPIR and UCT dog, with standard er-
ror of the mean as error bars, when coupled with three human behavior models.

pendix D) with roughly increasing state space size and game play complexity to

assess how the technique can scale with respect to these dimensions. The twenty

participants are all graduate students at the School of Computing, NUS, seven

of whom rarely play games, ten once to twice a week, and three more often.

The participants were requested to play five levels of the game as Farmer

74

twice, each time with a helping Dog controlled by either CAPIR or a member

of our team, the human expert in playing the game. The identity of the dog’s

controller was randomized and hidden from the participants. After each level,

the participants were asked to compare the assistant’s performance between two

trials in terms of usefulness, without knowing who controlled the assistant at

which turn. When we match the answers back to respective controllers, the

comparison results take on one of three possible values, being the AI assistant

performing “better”, “worse” or “indistinguishably” to the human counterpart.

The AI assistant is given a score of 1 for a “better”, 0 for an “indistinguishable”

and -1 for a “worse” evaluation.

Qualitative evaluation

For simpler levels 1, 2 and 3, our AI was rated to be better or equally good

more than 50% the times. For level 4, our AI rarely got the rating of being in-

distinguishable, though still managed to get a fairly competitive performance.

Subsequently, we realized that in this particular level, the map layout is confus-

ing for the dog to infer the human’s intention; there is a trajectory along which

the human player’s movement could appear to aim at any one of three wolves.

As presented in Section 3.3.4, when this happens, observing the human action

sequence alone is not enough to infer the hidden subgoal. In that case, the dog’s

initial subgoal belief plays a crucial role in determining which wolf it thinks the

human is targeting. Since the dog’s belief is always initialized to a uniform dis-

tribution, that causes the confusion. If the human player decides to move on a

path that is easier to tell apart the subgoals, the AI dog is able to efficiently assist

him, thus getting good ratings instead. In level 5, our AI gets good ratings only

for less than one third of the times, but if we count “indistinguishable” ratings

as satisfactory, the overall percentage of positive ratings exceeds 50%.

75

0	

2	

4	

6	

8	

10	

12	

1	
 2	
 3	
 4	
 5	

-­‐1	

0	

1	

Figure 4-8: Qualitative comparison between CAPIR and human assistant. The
y-axis denotes the number of ratings.

Quantitative evaluation

Besides qualitative evaluation, we also recorded the time taken for participants

to finish each level (Figure 4-9). Intuitively, a well-cooperative pair of players

should be able to complete Collaborative Hunters’s levels in shorter time.

0	

20	

40	

60	

80	

100	

120	

1	
 2	
 3	
 4	
 5	

AI	

Human	

Figure 4-9: Average time, with standard error of the mean as error bars, taken to
finish each level when the partner is CAPIR or human. The y-axis denotes the
number of game turns.

Similar to our qualitative result, in levels 1, 2 and 3, the AI controlled dog

is able to perform at near-human level in terms of game completion time. Level

4, which takes the AI dog and human player more time on average and with

higher fluctuation, is known to cause confusion to the AI assistant’s inference of

the human’s intention and it takes a larger number of game turns before the AI

realizes the true target, whereas our human expert is quicker in closing down on

the intended wolf. Level 5, larger and with more escape points for the wolves

76

but less ambiguous, takes the protagonist pair (AI, human) only 4.3% more on

average completion time.

0	

2	

4	

6	

8	

10	

12	

1	
 2	
 3	
 4	
 5	

AI	

Human	

Figure 4-10: Average score, with standard error of the mean as error bars,
achieved at the end of each level when the partner is CAPIR or human.

The average scores charted in Figure 4-10 give us more details on the behav-

ior of CAPIR. Note that while CAPIR’s finish time is usually longer than that of

human assistant, its score is not worse than the counterpart’s. Because each wolf

kill is discounted, longer game episodes with similar rewards hint that CAPIR

assistant pursues single wolves more often than helping the human agent to herd

wolves first and kill them all together. This is expected due to the formulation.

4.7 Discussion

CAPIR relies on the solutions of subgoal MDPs for intention tracking; these

solutions are assumed to be available while in game. A subgoal MDP usually

includes only the most crucial aspects pertinent to the decision making process

in that subgoal, hence having manageable complexity. Nonetheless, as the num-

ber of factors related to the subgoal increases, the MDP’s state space could grow

exponentially and overwhelm even state-of-the-art exact solvers. In such cases,

approximate methods such as Monte Carlo Tree Search (MCTS) [22] can be

used instead. However, while these methods yield running time that is inde-

pendent of the state space’s size, they introduce inaccuracy in estimating the

77

optimal policy and are resource-demanding. This is an unavoidable limitation

of our framework, as we rely on research advancements in tackling large state-

space MDPs.

Another limitation of the framework occurs when dealing with too many

subgoals, as exposed in the first set of experiments. When the same actions of

the lead agent are simultaneously optimal in multiple subgoals, the assistant can

be confused about the identity of the true target. In fact, it is not trivial to cor-

rectly obtain such knowledge in this case, because clearly the lead agent could

be aiming at any of the candidate targets. Dynamic coalition and segregation

of subgoals could be the key to address this limitation, which we will leave as

future work.

4.8 Chapter Summary

We have described a general decision theoretic approach for constructing smart

assistants in collaborative games. Using the MDP formulation to characterize

subgoal behavior and intention recognition to infer the subgoal that the lead

agent is targeting, the proposed CAPIR framework empirically exhibits near

human-level assistance. Moreover, the framework is also very economical in

computational demand, requiring a running time scalable with respect to the

number of subgoals,

One challenge for the applicability of our framework in practical domains is

when dealing with large state-space subgoal MDPs. The subgoal MDP is meant

to model subtasks that are relatively independent from one another; therefore,

when the NPCs in the game interact in a more intricate manner, the formulation

has to group these NPCs into one large subgoal. For instance, in Sheep Farmer,

the wolves have the capability to attack and kill the sheep; if we split the sheep

from wolf worlds, the MDPs would be unable to model this interactivity. Conse-

78

quently, the dog may even force the sheep into deadly configurations in which it

tries to group wolves and sheep together, oblivious to the fact that sheep should

not wander too close to wolves. In the next chapter, we directly address this

issue by applying algorithms that are specifically designed for large-state space

MDPs and bootstrapping them with heuristic policies to obtain reasonable be-

haviors as fast as possible.

79

80

Chapter 5

Bootstrapping Monte Carlo Tree

Search with an Imperfect Heuristic

Policy

An important component of CAPIR framework includes the Subgoal MDPs’

optimal action-pair policies. If the MDPs yield state spaces with reasonably

small size, classical solutions such as Value Iteration and Policy Iteration could

be used to compute the exact solution at design time, i.e., offline. These algo-

rithms are very efficient, requiring only linear time in the size of the state space.

However, as the size of the MDP grows, so do these algorithms’ running time,

rendering them infeasible for large to infinite state-space MDPs. Unfortunately,

when applying CAPIR formulation in collaborative games, it is not rare to en-

counter large state-space MDPs, especially when the NPCs impact each other

in an involved manner. For instance, in a game of Sheep Farmer, because a wolf

can kill a nearby sheep, thereby effectively ending the game, we need to model

subtasks that consist of two players, the sheep and surrounding wolves when

these NPCs are close to one another. As such, if there are 100 free grid squares

on the map, the state space of a subgoal MDP can consist of about 300 millions

81

states. As the players have totally 30 compound actions, storing the optimal Q-

function of such MDPs alone requires tens of gigabytes of memory at execution

time, if using tabular representations. In reality when only limited resources are

available, this demand is undesirable.

It is worth noting that the immense resource requirement of exact algo-

rithms, such as Value and Policy Iteration, originates from the fact that they

take an exhaustive approach. The optimal action for every state is computed

before execution time, just in case such a state will be encountered during the

actual deployment of the policy. However, in complex domains such as video

games, usually only a fraction of the possible states are ever encountered. With

that insight, one alternative in solving MDPs is to adopt a “lazy” approach to-

wards finding optimal actions. This approach does not compute the optimal

actions beforehand, but does it “lazily” by finding the optimal actions only for

a given current state. The optimal action is then executed to transit to a new

state before the process is restarted with the new state at root. Adopting this

idea, simulation-based approaches constitute a highly practical class of algo-

rithms which approximate the action values “lazily”. These algorithms estimate

the Q-values of actions starting from a given current state by collecting reward

statistics from a randomly sampled look-ahead tree that covers only a small

fraction of the state space around the current state. The branching factor and

depth of the tree can be constrained to suit the allocated computing resources,

trading precision for computation. Simulation-based algorithms have recently

achieved noticeable successes when applied in practical domains [31, 19, 28, 5].

Among the members of this class, Upper Confidence Bound applied in Trees

(UCT) [44], a Monte Carlo Tree Search (MCTS) [13] flavor, is behind some no-

ticeable advancements in solving notoriously hard problems such as the board

game Go [31, 19], General Game Playing [28] or strategy games [5].

While offering many attractive theoretical properties such as near-optimal

82

guarantees [42] and polynomial convergence rates [44], the analyzed behavior

of these algorithms is in asymptotic terms. Moreover, their empirical evalua-

tion often disregards the time constraint in performance assessment. In practice

when there is a constraint on computing resources, e.g., the video game domain

in which characters need to react in real time, we might not be able to observe

this behavior. In fact, Kearns et al. [42] showed that given access to only a gener-

ative model of the MDP, in the worst case, a vanilla simulation-based algorithm

must run exponentially long to achieve a certain proximity to the optimal so-

lution. Therefore, when deployed in practical setting, these algorithms must

leverage on heuristics to arrive at quality solutions within spatial and temporal

constraints [12, 31, 28, 19].

In this chapter, we consider the problem of using an offline-learnt heuristic to

improve the approximated value function computed by UCT, thereby reducing

the time required to find an approximately optimal action. To this goal, there are

two widely adopted approaches in the literature, both of which use the heuristic

to bias exploration. While the first method is to initialize the search tree with

with heuristic values, i.e., biasing initial exploration [12, 31, 28, 19], the second

method is to use the heuristic directly for exploration [31, 19]. As intended,

these two methods could greatly influence the search control by guiding explo-

ration into more promising state regions. However, when the heuristic function

does not accurately reflect the prospect of the states, it could feed the algorithm

with false information, thereby leading the search into regions that should be

kept unexplored otherwise. To alleviate this potential problem of a heuristic,

we propose a novel enhancement technique, which aims to get fast convergence

to optimal values at states where the heuristic policy is optimal, while retaining

similar approximation as the original UCT at other states. Our new technique,

Aux, empirically outperforms the aforementioned methods in two experiment

benchmarks, one of which is Sheep Farmer, our target domain.

83

The rest of the chapter is structured as follows. We first give a brief overview

of UCT and its popular enhancements before presenting UCT-Aux, our en-

hanced UCT version. Next, we describe two experiments for comparing the

agents’ performance and analyze the results. We also identify the common

properties of the heuristics used in two experimental domains and provide some

insights on why UCT-Aux works well in those cases. Finally, we conclude by

discussing the possible usage of UCT-Aux.

5.1 Upper Confidence Bound Applied to Trees

UCT [44] is an anytime algorithm that approximates the state-action value in

real time using Monte Carlo simulations. It was inspired by Sparse Sampling

[42], the first near-optimal policy whose runtime does not depend on the size

of the state space. The approach is particularly suitable for solving planning

problems with very large or possibly infinite state spaces. Algorithm 1 details

the steps taken by UCT.

The algorithm searches forward from a given starting state, building up a

tree whose nodes alternate between reachable future states and state-action pairs

(Figure 5-1). State nodes are called internal if their child state-action pairs have

been expanded and leaf otherwise. Starting with a root state, the algorithm

iteratively rolls out simulations from this root node; each time an internal node

is encountered, it is regarded as a multi-armed bandit and UCB1 [2] is used to

determine the action or arm to sample, i.e., the edge to traverse. In particular,

Algorithm 1 UCT(s, t)
1: Input: state s, number of rollouts t
2: Output: an action
3: for t times do
4: UCT-Rollout(s, 0) {Depth 0 at root}
5: end for
6: return BestAction(s, 0)

84

Algorithm 2 UCT-Rollout (s, d)
1: Input: state s, depth d
2: if Terminal(s) then
3: return 0
4: end if
5: if Leaf(s, d) then
6: return RunEpisode(s, Random)
7: end if
8: if ∼HasChildren(s, d) then
9: Children(s, d)← {}

10: for all a ∈ A do
11: Children(s, d)← Children(s, d) ∪{(s, a)}
12: end for
13: end if
14: (s, a, type)← SelectChild(s, d) {Selects the child with highest UCB1}
15: (s′, r)← SimulateAction(s, a)
16: q← r + γ UCT-Rollout(s′, d + 1)
17: UpdateValue(s, a, q, d)
18: return q

a1

S0	

S3	
 S1	
 S2	

S4	
 S5	

a0

a1

S6	
 S7	

a0

a1

a0

S0,a0	
 S0,a1	

S1,a0	
 S1,a1	
 S3,a0	
 S3,a1	

Figure 5-1: A sample UCT search tree with two valid actions a0 and a1 at any
state. Circles are state nodes and rectangles are state-action nodes; solid state
nodes are internal while dotted are leafs.

at an internal node s, the algorithm selects an action (Algorithm 2, line 14)

according to

πUCT (s) = argmax
a

QUCT (s, a) + 2Cp

√
log n(s)
n(s, a)

 , (5.1)

in which

85

• QUCT (s, a) is the estimated value of state-action pair (s, a), taken to be the

weighted average of its children’s values.

• Cp > 0 is a suitable hand-picked constant.

• n(s) is the total number of rollouts starting from s.

• n(s, a) is the number of rollouts that execute a at s.

At the chosen child state-action node, the simulator is randomly sampled

for a next state with accompanying reward (Algorithm 2, line 15); new states

automatically become leaf nodes. From the leaf nodes, rollouts are continued

using random sampling until a termination condition is satisfied, such as reach-

ing terminal states or simulation length limit. Once finished, the returned reward

propagates up the tree (Algorithm 2, line 17), with the value at each parent node

being the weighted average of its child nodes’ values; suppose the rollout exe-

cutes action a at state s and accumulates reward R(s, a) in the end.

• at state-action nodes, n(s, i) = n(s, i) + 1 and QUCT (s, a) = QUCT (s, a) +

1
n(s,a) (R(s, a) − QUCT (s, a))

• at state nodes, n(s) = n(s) + 1.

Typically one leaf node is converted to internal per rollout, upon which its child

state-action nodes are generated. When the algorithm is terminated, the root’s

arm with highest QUCT (s, a) is returned1 (Algorithm 1, line 6).

5.1.1 Enhancement methods

In vanilla UCT, new state-action nodes are initialized with uninformed default

values and random sampling is used to finish the rollout. Given a source of prior

knowledge, Gelly and Silver [31] proposed two directions to bootstrap UCT:

1In practice, returning the arm with highest n(s, a) is also a common choice.

86

1. Initialize new action-state nodes with n(s, a) = nprior(s, a) and QUCT (s, a) =

Qprior(s, a), and

2. Replace random sampling by better-informed exploration guided by πprior.

We refer to these two algorithms as UCT-I (UCT with new nodes initialized

to heuristic values) and UCT-S (UCT with simulations guided by πprior); UCT-

IS is the combination of both methods. UCT-I and UCT-S can be further tuned

using domain knowledge to mitigate the flaw of a bad heuristic and amplify the

influence of a good one by adjusting the dependence of the search control on the

heuristic at internal nodes. In this work, we do not investigate the effect of such

tuning to ensure a fair comparison between techniques when employed as is.

In the same publication [31], the authors proposed another bootstrapping

technique, namely Rapid Action Value Estimation (RAVE), which we do not

examine in this work. The technique is specifically designed for domains in

which an action from a state s has similar effect regardless of when it is executed,

either at s or after many moves. RAVE uses the All-Moves-As-First (AMAF)

heuristic [14] instead of QUCT (s, a) in Equation 5.1 to select actions. Many

board games such as Go or Breakthrough [28] have this desired property. In our

experiment domains, RAVE is not applicable, because the actions are mostly

directional movements, e.g., {N, E, S ,W}, thus tied closely to the state they are

performed at.

5.2 UCT-Aux: Algorithm

Given a heuristic policy π, we propose a new algorithm UCT-Aux that follows

the same search control as UCT except for two differences.

1. At every internal node s, besides |A(s)| normal arms with A(s) being the

set of valid actions at state s, an additional arm labeled by the action π(s)

87

is created (Figure 5-2).

2. When this arm is selected by Equation 5.1, it stops expanding the branch

but rolls out a simulation using π; value update is carried out from the

auxiliary arm up to the root as per normal.

a1

S0	

S3	
 S1	
 S2	

S4	
 S5	

a0

a1

S6	
 S7	

a0

a1

a0

S0,a0	
 S0,a1	

S1,a0	
 S1,a1	
 S3,a0	
 S3,a1	

π(s0)

S0, π(s0)	

	

π(s3)

S3, π(s3)	

	

π(s1)

S1, π(s1)	

	

Figure 5-2: Sample search tree of UCT-Aux.

The method aims to better manage mixed-quality heuristics. If the heuristic

π’s value estimation at a state is good, we expect the added arm to dominate

the distribution of rollouts and quickly give a good estimate of the state’s value

without the need to inspect other arms. Otherwise, the search control will focus

rollouts in ordinary arms, thus retaining similar approximation as vanilla UCT.

The pseudo code for a UCT-Aux rollout is detailed in Algorithm 3; UCT-Aux

is run by invoking the UCT algorithm (Algorithm 1) with the rollout routine at

Line 4 being UCT-Aux-Rollout instead of UCT-Rollout.

Convergence Analysis

We will show that regardless of the added policy’s quality, UCT-Aux converges

in finite-horizon MDPs2. The proof follows closely that of UCT analysis by

2As mentioned in [44], for use with discounted infinite-horizon MDPs, the search tree can
be cut off at the effective ε0-horizon with ε0 being the desired accuracy at root.

88

Algorithm 3 UCT-Aux-Rollout (s, d, π)
1: Input: state s, depth d, heuristic policy π
2: if Terminal(s) then
3: return 0
4: end if
5: if Leaf(s, d) then
6: return RunEpisode(s, Random)
7: end if
8: if ∼HasChildren(s, d) then
9: Children(s, d)← {}

10: for all a ∈ A do
11: Children(s, d)← Children(s, d) ∪{(s, a, type = Normal)}
12: end for
13: â← π(s) {Adds an auxiliary arm}
14: Children(s, d)← Children(s, d) ∪{(s, â, type = Aux)}
15: end if
16: (s, a, type)← SelectChild(s, d) {Selects the child with highest UCB1}
17: if type = Aux then
18: q← RunEpisode(s, π)
19: else
20: (s′, r)← SimulateAction(s, a)
21: q← r + γ UCT-Aux-Rollout(s′, d + 1)
22: end if
23: UpdateValue(s, a, q, d)
24: return q

treating the auxiliary arms as any other ordinary arms. As a recap, UCT con-

vergence analysis revolves around the analysis of non-stationary multi-armed

bandits with reward sequences satisfying some drift conditions, which is proven

to be the case for UCT’s internal nodes with appropriate choice of bias sequence

Cp
3. In particular, the drift conditions imposed on the payoff sequences go as

follows:

• The expected values of the averages Xin = 1
n

∑n
t=1 Xit must converge for all

arms i with n being the number of pulls and Xit the payoff of pull t. Let

µin = E[Xin] and µi = limn→∞µin.

• Cp > 0 can be chosen such that the tail inequalities P(Xi,n(i) ≥ µi +ct,n(i)) ≤

3Empirically, Cp is often chosen to be an upper bound of the accumulated reward starting
from the current state.

89

t−4 and P(Xi,n(i) ≤ µi − ct,n(i)) ≤ t−4 are satisfied for ct,n(i) = 2Cp

√
ln t
n(i) with

n(i) being the number of times arm i is pulled up to time t.

We will first prove the statement that all internal nodes of UCT-Aux have

arms yielding rewards satisfying the drift conditions.

Suppose the horizon of the MDP is D, the number of actions per state is

K and the heuristic policy is deterministic (κ = 1); this can be proven using

induction on D. Note that i.i.d. payoff sequences satisfy the drift conditions

trivially due to Hoeffding’s inequality.

• D = 1: Suppose the root has already been expanded, i.e., become internal.

It has K +1 arms, which either lead to leaf nodes (ordinary arms) or return

i.i.d. payoffs (auxiliary arm). Since leaf nodes have i.i.d. payoffs, all arms

including the auxiliary satisfy drift conditions. Therefore, the statement

is true for D = 1.

• D > 1: Assume the statement is true for all horizon up to D − 1. This

means all internal state nodes under the root have arms satisfying the drift

conditions, e.g., s1 and s3 in Figure 5-2. Consider any ordinary arm of the

root node (the added arm’s payoff sequence is already i.i.d.), for instance,

(s0, a1). Its payoff average is the weighted sum of payoff sequences in all

leafs and state-action nodes on the next two levels of the subtree, i.e., leaf

s2, arms (s3, a0), (s3, a1) and (s3, π(s3)), all of which satisfy drift conditions

due to either the inductive hypothesis or producing i.i.d. payoffs. Theorem

4 by Kocsis and Szepesvari [44] posits that the weighted sum of payoff

sequences conforming to drift conditions also satisfies drift conditions;

therefore, all arms originating from the root node satisfy drift conditions.

As a result, the theorems on non-stationary bandits by Kocsis and Szepes-

vari [44] hold for UCT-Aux’s internal nodes as well. Therefore, we can obtain

similar results to Theorem 6 as shown by Kocsis and Szepesvari [44], with the

90

difference being statistical measures related to the auxiliary arms such as µaux

and ∆aux. As such, the new algorithm’s probability of selecting a suboptimal

arm converges to zero as the number of rollouts tends to infinity.

5.3 Experiments

We compare the performance of UCT-Aux against UCT, UCT-I, UCT-S and

UCT-IS in two domains: Obstructed Sailing and Sheep Farmer. Obstructed

Sailing extends the benchmark Sailing domain by placing random blockage in

the map; the task is to quickly move a boat from one point to a destination on

a map, disturbed by changing wind, while avoiding obstacles. Sheep Farmer

features a two-player maze game in which the players need to herd a sheep

into its pen while protecting it from being killed by two wolves in the same

environment.

5.3.1 Experiment in the Obstructed Sailing domain

The Sailing domain [74], originally used to evaluate the performance of UCT,

features a control problem in which the planner is tasked to move a boat from

a starting point to a destination under disturbing wind conditions as quickly as

possible. In our version, there are several obstacles placed randomly in the map

(see Figure 5-3).

In this domain, the state is characterized by tuple 〈x, y, b,wprev,wcurr〉 with

(x, y) being the current boat position, b the current boat posture or direction,

wprev the previous wind direction and wcurr the current wind direction. Directions

take values in {N, NE, E, SE, S, SW, W, NW}, i.e. clockwise starting from North.

The controller’s valid action set includes all but the directions against wcurr, out

of the map or into an obstacle. After each time step, the wind has roughly equal

probability to remain unchanged, switch to its left or its right, as depicted in

91

Figure 5-3: Obstructed Sailing sample map with a randomized map configura-
tion.

Table 5.1.

Depending on the relative angle between the action taken and wcurr, a cost

from one to four minutes is incurred. More specifically, the cost is one if the

boat is sailed in the same direction as the wind (O degree angle), two with angle

22.5 , three 45, and four for 77.5. It is prohibited to sail against the wind.

Additionally, changing from a port to a starboard tack or vice versa causes a

tack delay of three minutes. In total, an action can cost anywhere from one to

seven minutes, i.e., Cmin = 1 and Cmax = 7. We model the problem as an infinite-

horizon discounted MDP with discount factor γ = 0.99 and horizon D = 300 to

make sure the search is long enough for value estimation.

Choice of heuristic policies

A simple heuristic for this domain is to select a valid action that is closest to

the direction towards goal position regardless of the cost, thereafter referred to

as SailingTowardsGoal. For instance, in the top subfigure of Figure 5-4b, at the

92

N NE E SE S SW W NW
N 0.4 0.3 0 0 0 0 0 0.3
NE 0.4 0.3 0.3 0 0 0 0 0
E 0 0.4 0.3 0.3 0 0 0 0
SE 0 0 0.4 0.3 0.3 0 0 0
S 0 0 0 0.4 0.2 0.4 0 0
SW 0 0 0 0 0.3 0.3 0.4 0
W 0 0 0 0 0 0.3 0.3 0.4
NW 0.4 0 0 0 0 0 0.3 0.3

Table 5.1: Transition probability of wind directions.

starting state marked by “S”, if current wind is not SW, SailingTowardsGoal

will move the boat in the NE direction; otherwise, it will execute either N or E.

(a) Good case (b) Bad case

Figure 5-4: SailingTowardsGoal produces near-optimal estimates/policies in
good cases but misleads the search control in others.

This heuristic is used in UCT-I and UCT-IS by initializing new state-action

nodes with the minimum cost incurred when all future wind directions are fa-

vorable for desired movement. Specifically,

nS TG(s, a)← 1

QS TG(s, a)← C(s, a) + Cmin
1 − γd(s′,g)+1

1 − γ

with C(s, a) being the cost of executing action a at state s, Cmin = 1 and d(s′, g)

the minimum distance between next state s′ and goal position g. For UCT-S, the

random rollouts are replaced by π(s) = argmaxa QS TG(s, a).

93

Heuristic quality. This heuristic works particularly well for empty spaces,

producing near-optimal plans if there are no obstacles. However, it could be

counterproductive when encountering obstacles. In the bottom subfigure of Fig-

ure 5-4b, if a rollout from the starting position is guided by SailingTowardsGoal,

it could be stuck oscillating among the starred tiles, thus giving inaccurate esti-

mation of the optimal cost.

Setup and results

The trial map size is 30 by 30, with fixed starting and goal positions at (2, 2) and

(27, 27) respectively (Figure 5-3). We generated 100 random instances of the

map, where obstacles are shuffled by giving each grid tile p = 0.4 chance to be

blocked. Each instance is tried five times, each of which with different starting

boat postures and wind directions.

10
3

10
4

10
5

−300

−250

−200

−150

−100

−50

Rollouts

Optimal
Random
SailToGoal
UCT
UCT−S
UCT−I
UCT−IS
UCT−Aux

Figure 5-5: Performance comparison of UCT, UCT-S, UCT-I, UCT-IS and UCT-
Aux when coupled with the heuristic SailingTowardsGoal; y-axis is the reward
average.

All UCT variants (UCT, UCT-I, UCT-S, UCT-IS and UCT-Aux) use the

same Cp = Cmax/(1 − γ) = 700 and the search horizon4 is set to be 300; an

4The search horizon is chosen to be long enough so that the cost accumulated after the

94

optimal path should not be very far from 60 steps as most actions move the boat

closer to the goal. The exact optimal policy is obtained using Value Iteration.

Note that the performance of Optimal agent varies because of the randomization

of starting states (initial boat and wind direction) and map configurations.

Given the same number of samplings, UCT-Aux outperforms all competing

UCT variants, despite the mixed quality of the added policy SailingTowards-

Goal when dealing with obstacles (Figure 5-5). Note that without parameter

tuning, both UCT-I and UCT-S are inferior to vanilla UCT, but between UCT-I

and UCT-S, UCT-I shows faster performance improvement when the number of

samplings increases. The reason is because when SailingTowardsGoal produces

inaccurate heuristic values, UCT-I only suffers at early stage while UCT-S en-

dures misleading guidance until the search reaches states where the policy yields

more accurate heuristic values. The heuristic’s impact is stronger in UCT-S than

UCT-I: UCT-IS’s behavior is closer to UCT-S than UCT-I.

5.3.2 Experiment in the Sheep Farmer domain

The following experiment is conducted in the Sheep Farmer domain that is an

extension of the Collaborative Hunters game. The game features two players

(a farmer and a dog) whose task is to herd a sheep into its pen while protecting

it from being killed by two wolves in a maze-like environment. All wolves and

sheep run away from the players within a certain distance, otherwise the wolves

chase the sheep and the sheep runs away from wolves. Wolves can only be

attacked by the Farmer, when they are within three grid squares away from the

Farmer (Figure 5-6).

Both protagonists have 5 movement actions (no move, N, S, E and W) while

Farmer has an additional action to inflict damage on a nearby wolf, hence a total

of 30 compound actions. The two players are given rewards for successfully

horizon has small effect to the total cost.

95

killing wolves (5 points) or herding sheep into its pen (10 points). If the sheep

is killed, the game is terminated with penalty -10. The discount factor in this

domain is set to be 0.99.

Figure 5-6: Task decomposition in Sheep Farmer.

Choice of heuristic policies

The game can be seen as having three subtasks, each of which is the task of

killing a single wolf or herding a single sheep, as shown in Figure 5-6. Each of

these subtasks consists of only two players and one NPC, hence has manageable

complexity and can be solved exactly offline using Value Iteration.

A heuristic Q-value can be obtained by taking the average of all individual

subworlds’, or subtasks’, Q-values, as an estimate for one state-action pair’s

value. Specifically, at state s the GoalAveraging (GA) heuristic yields

nGA(s, a)← 1

QGA(s, a) =
1
m

m∑
i=1

Qi(si, a)

in which si is the projection of s in subtask i, m is the number of subtasks, i.e.

96

three in this case, and Qi(si, a) are subtasks’ Q-values. The corresponding GA

policy can be constructed as πGA(s) = argmaxa QGA(s, a).

Heuristic quality. GA works well in cases when the sheep is well-separated

from wolves. However, when these creatures are close to each other, the pol-

icy’s action estimation is no longer valid and could yield suboptimal results.

The under-performance is due to the fact that the heuristic is oblivious to the

interactivity between subtasks, in this case, wolf-killing-sheep scenarios.

Setup and results

The map shown in Figure 5-6 is tried 200 times, each of which with a different

random starting configurations. We compare the means of discounted rewards

produced by the following agents: Random, GoalAveraging, UCT, UCT-I, UCT-

S, and UCT-Aux. The optimal policy in this domain is not computed due to the

prohibitively large state space, i.e., 1045 ∗ 32 ≈ 1011 since each wolf has at most

two health points. All UCT variants have a fixed planning depth of 300. In our

setup, one second of planning allows roughly 200 rollouts on average, so we

do not run simulations with higher numbers of rollouts than 10000 due to time

constraint. Moreover, in this game-related domain, the region of interest is in

the vicinity of 200 to 500 rollouts for practical use.

As shown in Figure 5-7, UCT-Aux outperforms the other variants, especially

early on with small numbers of rollouts. UCT-S takes advantage of the heuristic

GoalAveraging better than UCT-I, which yields even worse performance than

vanilla UCT. Observing the improvement rate of UCT-S we expect it to ap-

proach UCT-Aux much sooner than others, although asymptotically all of them

will converge to the same optimal value when enough sampling is run and the

search tree is sufficiently expanded; the time taken could be prohibitively long

though.

97

10
3

10
4

−10

−5

0

5

10

15

Rollouts

Random
GoalAverage
UCT
UCT−S
UCT−I
UCT−Aux

Figure 5-7: Performance comparison of Random, GoalAveraging, UCT, UCT-S,
UCT-I, and UCT-Aux when coupled with Goal Averaging.

5.4 Discussion

Although UCT-Aux shows superior performance in the experiments above, we

observe that the chosen heuristic policies share a common property that is cru-

cial for UCT-Aux’s success: they “make it or break it”. In other words, at most

states s, their action value estimate Qπ(s, a) is either near-optimal or as low as

that of a random policy Qrand(s, a).

Specifically, in Obstructed Sailing, if following SailingTowardsGoal can

bring the boat from a starting state to goal position, e.g., when the line of sight

connecting source and destination points lies entirely in free space, the resul-

tant course of actions does not deviate much from the optimal action sequences.

However when the policy fails to reach the goal, it could be stuck forever. For

instance, Figure 5-4b depicts one such case; once the boat has reached either

one of three starred tiles underneath the goal position, unless at least three to

five wind directions in a row are E, SailingTowardsGoal results in oscillating

the boat among these starred tiles. The resultant cost is therefore very far from

optimal and could be as low as the cost incurred by random movement.

98

0 5 10 15 20

0

200

400

600

800

1000

1200

Rollouts

SailTowardsGoalAgent
StochasticOptimal0.2

Figure 5-8: Performance histograms of heuristics in Obstructed Sailing. The
returned costs of a heuristic are allocated relatively into bins that equally divide
the cost difference between Random and Optimal agents; x-axis denotes the bin
number and y-axis the frequency.

In contrast, an example of a heuristic that is milder in nature is the policy

StochasticOptimal.0.2 which performs optimal actions with probability 0.2 and

random actions the rest of the time. This policy is also suboptimal but almost

always yields better value estimation than random movement; it is not as “ex-

treme” as SailingTowardsGoal. Figure 5-8, which charts the performance his-

tograms of StochasticOptimal.0.2 alongside with SailingTowardsGoal, shows

that a majority of runs with SailingTowardsGoal yield costs that are either opti-

mal or worse than that of Random.

Similarly, GoalAveraging in Sheep Farmer is also extreme: By ignoring the

danger of Wolves when around Sheep, it is able to quickly herd the Sheep in the

Pen or kill nearby Wolves (good), or end the game prematurely by forcing the

Sheep into Wolves’ zones (bad). We hypothesize that one way to obtain extreme

heuristics is by taking near-optimal policies of the relaxed version of the origi-

nal planning problem, in which aspects of the environment that cause negative

99

effects to the accumulated reward are removed. For instance, SailingTowards-

Goal is in spirit the same as the optimal policy for maps with no obstacle, while

GoalAveraging should work well if the wolves do not attack sheep.

As UCT-Aux is coupled with heuristic policies with this “extreme” charac-

teristic, rollouts are centralized at auxiliary arms of states where π(s) is near-

optimal, and distributed to ordinary arms otherwise. Consequently, the value

estimation falls back to the default random sampling where π produces inaccu-

rate estimates instead of relying entirely on π as does UCT-S.

5.4.1 When does UCT-Aux not work?

Figure 5-9 charts the worst-case behavior of UCT-Aux when the coupled heuris-

tic’s estimate is mostly better than random sampling but much worse than that

of the optimal policy, e.g. the heuristic StochasticOptimal.0.2 in Obstructed

Sailing.

10
3

10
4

10
5

−300

−250

−200

−150

−100

−50

Rollouts

Optimal
Random
SO0.2
UCT
UCT−S
UCT−I
UCT−IS
UCT−Aux

Figure 5-9: Bad case of UCT-Aux when coupled with StochasticOptimal.0.2.

The reason behind UCT-Aux’s flop is the same as that of UCT, i.e., due

to the “over-optimism” of UCB1, as described in [21]. At each internal node,

samples are directed into suboptimal arms that appear to perform the best so far,

100

exponentially more than the rest (Theorem 1 [44]) when convergence has not

started. Even though each arm is guaranteed to be sampled an infinite number of

times when the number of samplings goes to infinity (Theorem 3 [44]), the sub-

polynomial rate means only a tiny fraction of samplings are spent on attempting

bad-looking arms. As a result, in a specially designed binary tree search case,

UCT takes at least Ω(exp(exp(...exp(2)...))) samplings before the optimal node

is discovered; the term is a composition of D − 1 exponential functions with D

being the number of actions in the optimal sequence.

Samplings 500 2000 5000 20000 50000 200000
UCT 268.4 1134.6 2694.5 11041.7 27107.4 107107
UCT-S 268.9 1157.3 2733.2 11212.7 27851.2 109308
UCT-I 279.2 1200.7 2805 11519.4 28123.8 111418
UCT-IS 278.6 1209.2 2834.8 11704.4 28872.5 113682
UCT-Aux 159.2 447.8 889.5 1981.3 3117.9 5970.11

Table 5.2: The average number of tree nodes for UCT variants in Obstructed
Sailing when coupled with StochasticOptimal.0.2.

UCT-Aux falls into this situation when coupled with suboptimal policies

whose estimates are better than random sampling: At every internal node, it

artificially creates an arm that is suboptimal but produces preferable reward

sequences when compared to other arms with random sampling. As a result,

the auxiliary arms are sampled exponentially more often while not necessar-

ily prescribing a good move. Table 5.2 shows some evidence of this behavior:

Given the same number of samplings, UCT-Aux constructs a search tree with

significantly less nodes than other variants (up to 20 times). That means many

samplings have ended up in non-expansive auxiliary arms because they were

preferred.

101

5.4.2 Combination of UCT-Aux, UCT-I and UCT-S

UCT-Aux bootstraps UCT in an orthogonal manner to UCT-I and UCT-S, thus

allowing combination with these common techniques for further performance

boost when many heuristics are available. Figure 5-10 charts the performance

of such combinations in Obstructed Sailing. UCT-Aux variants use Sailing-

TowardsGoal at the auxiliary arms while UCT-I/S variants use StochasticOp-

timal.0.2 at the ordinary arms. UCT-Aux-S outperforms both UCT-Aux and

UCT-S at earlier stage, and matches the better performer among the two, i.e.

UCT-Aux, in a long run.

10
3

10
4

10
5

−160

−150

−140

−130

−120

−110

−100

−90

−80

Rollouts

Optimal
UCT
UCT−Aux
UCT−S
UCT−Aux−S
UCT−Aux−I
UCT−Aux−IS

Figure 5-10: Combination of UCT-Aux with UCT-I/S/IS in Obstructed Sailing.

5.5 Chapter Summary

In this chapter, we have introduced a simple technique to bootstrap UCT with

an imperfect heuristic policy in solving large-state space subgoal MDPs. It was

shown to be able to leverage on the well-performing region while avoiding the

bad regions of the policy, empirically outperforming other state-of-the-art boot-

strapping methods when coupled with the right kind of policy, i.e, the “extreme”

102

kind. Our conclusion is that if such property is known beforehand about a cer-

tain heuristic, UCT-Aux can be expected to give a real boost over the origi-

nal UCT, especially in cases with scarce computational resource; otherwise, it

would be safer to employ the currently prevalent methods of bootstrapping. As

such, a different mentality can be employed when designing heuristics specifi-

cally for UCT-Aux: instead of safe heuristics that try to avoid as many flaws as

possible, the designer should go for greedier and “riskier” ones. Lastly, since

UCT-Aux is orthogonal to other commonly known enhancements, it is a flexible

tool that can be combined with others, facilitating more options when incorpo-

rating domain knowledge into the vanilla MCTS algorithm.

Even though we have a rough idea about when to use which enhancement

method to bootstrap UCT, the worst case analysis of UCT-Aux exposed one

weakness that is inherent to UCT: they can be very slow in escaping local op-

tima, e.g., exponentially slow in the case of UCB1. The main reason is that

such multi-armed bandit policies usually guarantee to sample highly rewarding

arms significantly more often than others. Consequently, the algorithm might

distribute more samplings into an overly explored branch than necessary. This

drawback does not exist in other simulation-based algorithms that do not use

bandit policies for adaptive sampling. In Chapter 6, we are going to investi-

gate the possibility of combining offline-learnt heuristics with such algorithms

as Sparse Sampling [42] and Forward Search Sparse Sampling [75].

103

104

Chapter 6

Bootstrapping Sparse Sampling

and Forward Search Sparse

Sampling with a Suboptimal Policy

6.1 Introduction

As presented in the previous chapter, in finding the optimal policies of large

state-space subgoal MDPs in CAPIR, approximate methods that “lazily” com-

pute action values online are preferred over exhaustive algorithms, e.g., Value It-

eration, that require prohibitively long running time. However, given only a gen-

erative model of the MDP, these approximate algorithms may still be too slow

to reach adequate estimation. This limitation renders them unsuitable for sce-

narios where real-time behavior is required, such as video games. In such cases,

heuristics can be used so that better estimation can be obtained quicker. As de-

tailed in Chapter 5, the Aux method is an interesting enhancement technique

to bootstrap the state-of-the-art simulation-based algorithm UCT with a heuris-

tic policy. Experiment results have shown that in Sheep Farmer, the method

outmatches other widely used enhancement techniques in bootstrapping UCT.

105

Given a heuristic in the form of an imperfect policy π, the method adds an

additional arm at every internal node of the search tree. This special arm is

labeled by the action suggested by π and once selected, rolls out the rest of

the sampling episode using π. When coupling with heuristic policies that are

“extreme”, UCT-Aux outperforms commonly used techniques such as UCT-S,

UCT-I and UCT-IS. However, the same performance is not guaranteed with non-

extreme heuristics; in fact, these heuristics cause UCT-Aux to suffer the worst

case performance of UCT, which takes super exponential transitory time to dis-

cover the optimal course of actions. This cost is unavoidable without significant

change to the original action selection policy UCB1, which lies at the heart of

UCT.

To avoid the worst case performance of UCT, we will next investigate how

the Aux method behaves when applied in bootstrapping two well-known algo-

rithms, namely Sparse Sampling (SS) [42] and Forward Search Sparse Sampling

(FSSS) [75]; as far as we know, our work is the first to investigate the problem

of bootstrapping these simulation-based algorithms. SS was the first algorithm

to produce near-optimal policies while yielding a running time independent of

the size of the state space; it can be said that SS is the backbone of many mod-

ern simulation-based algorithms. The problem with SS is practicality, since SS

could require planning steps that are prohibitively long, i.e. exponential in the

horizon time. Its successor FSSS, one of the state-of-the-art sparse sampling al-

gorithms, takes an anytime approach, i.e., it can be terminated anytime and yield

better approximation if more resources are allocated. FSSS is thus more prac-

tical while having a similar performance guarantee to that of SS. Moreover, the

algorithm is shown to directly address the worst case scenarios of UCT; the run-

ning time of FSSS never exceeds that of SS, i.e., exponential in the horizon time,

as opposed to the super-exponential time as required by UCT in the worst case.

Intuitively, the Aux method aims at speeding up the value estimation of SS and

106

FSSS when the heuristic policy is near-optimal, while leaving them unaffected

otherwise. We will provide empirical evidence that both SS-Aux and FSSS-Aux

outperform their respective vanilla versions by converging faster to near-optimal

policies in two benchmark domains, Obstructed Sailing and Sheep Farmer. We

will also demonstrate how SS-Aux and FSSS-Aux exhibit better convergence

rates than UCT-Aux with FSSS-Aux eventually outperforming UCT-Aux.

6.2 Definitions

In this section, we would like to formally define the regret of a policy and de-

scribe how we intend to use a heuristic policy to estimate a state’s value using

rollouts.

6.2.1 Regret of a policy

Given a policy π of a planning problem M = (S , A,T,R, γ), we can define its

performance guarantee as follows:

Definition 1. A policy π is called ε-optimal if its regret, maxs∈S (V∗(s) − Vπ(s)),

is at most ε.

If the reward function of MDP M is bounded, i.e., there exists Rmax such that

R(s, a, s′) ≤ Rmax,∀s, a, s′, we obtain that for any policy π, |V∗(s) − Vπ(s)| <
2Rmax

1 − γ
= 2Vmax,∀s ∈ S . Therefore, when we discuss about an ε-optimal policy,

it is implicitly understood that 0 ≤ ε < 2Vmax.

6.2.2 Sampling π to estimate V∗(s)

Most simulation-based algorithms aim to approximate the optimal value V∗(s)

for the current state s. The Aux enhancement’s key idea is to opportunistically

select the higher between the value estimation of the core algorithm and that of

107

the heuristic policy at each tree node; the latter is the main source of estimation

improvement on the host algorithm when it yields higher estimation.

We will now study the regret in approximating V∗(s) if we simply simulate

a sub-optimal policy π for B times for L steps, and use the average accumulative

reward as an estimate. In such an estimate, the total estimation error stems

from three sources: (1) the true regret of π, (2) the length L of rollouts, and

(3) the limited number B of samples. The following lemma bounds the error in

estimating V∗(s) using π guided rollouts.

Lemma 6.1. Let π be an ε0-optimal policy, Xπ,L,i be the accumulative reward of

π-guided rollout i from state s and V̄π
B,L(s) = 1

B

∑B
i=1 Xπ,L,i. For all ε1 > 0, with

probability at least 1 − ε1,

|V∗(s) − V̄π
B,L(s)| ≤ ε0 + γLVmax + O

Vmax

√
ln(1/ε1)

B

 .
Proof Sketch. By using triangle inequality we get

|V∗(s) − V̄π
B,L(s)| ≤ |V∗(s) − Vπ(s)| + |Vπ(s) − Vπ

L(s)| + |Vπ
L(s) − V̄π

B,L(s)|

with Vπ
L(s) = E(Xπ,L,i) for all i. By definition, the first term is bounded by ε0.

The second term is the expected estimation error for Vπ due to simulating π

only for L steps; this is bounded by γLVmax. Finally, using Hoeffding inequality

for B i.i.d. and bounded values Xπ,L,i, we bound the last term with probability

at least 1 − ε1. Collectively, the estimation error of V̄π
B,L(s) is the sum of three

aforementioned terms with probability at least 1 − ε1. The detailed proof with

numerical derivations can be found in Appendix A. �

By increasing the values of B and L, we can get as close as desired to the

(−ε0,+ε0) vicinity of a state’s value with high probability, at the cost of longer

running time that scales with BL.

108

6.3 Bootstrap Sparse Sampling with Aux

The Sparse Sampling (SS) [42] algorithm estimates the best action to take in

a state s0 based on a set of random simulations of policy “rollouts” or action

execution sequences. The approach is motivated by the observation that for

discounted reward functions the knowledge about rewards and transition proba-

bilities in a vicinity of the current state suffices for decision making; events far

in future are irrelevant due to the discount factor γ. Consequently, a sufficiently

extensive simulation of the near future would adequately represent the expected

rewards and transition probabilities.

6.3.1 Sparse Sampling (SS)

The SS algorithm (Algorithm 4 called with h = H and aux=False) estimates

the state-action values Q∗(s0, a) of the optimal policy by constructing a look-

ahead tree rooted at s0 at level H (see Figure 6-1). Starting from s0, it simulates

each of the k = |A| possible actions C times in the depth-first postorder down

to level 0 where all values VS S
0 (s) are set to some default value, e.g., 0. After

the subtrees at level h − 1 have been sampled, the node values are backed up

to level h by QS S
h (s, a) = R(s, a) +

γ

C

∑C
c=1 VS S

h−1(s′c), where s′c denotes a state at

level h − 1 that was obtained when simulating action a in state s the cth time.

The V-values of states at each level are based on the same level Q-values by

VS S
h (s) = argmaxa QS S

h (s, a).

As detailed above, the value-estimates of leaf nodes in a SS look-ahead

tree were bluntly set to zero. In general, given a leaf value estimation VS S
0 (s)

that is ε0-optimal, i.e., ∀s, |V∗(s) − VS S
0 (s)| ≤ ε0, the value estimation error at

the root node s0 is composed of two factors: one due to the limited sampling

parametrized by H and C, and one due to the leaf error ε0. The following lemma

shows that as H and C increases, with C kept at some magnitude larger than H,

109

Algorithm 4 SS (s, h, aux)
1: Input: state s, height h, boolean flag aux
2: if h = 0 or Terminal(s) then
3: VS S

0 (s)← 0
4: else if ¬ Visited(s, h) then
5: Visited(s, h)← true
6: for all a ∈ A do
7: for C times do
8: s′ ∼ T (s, a)
9: QS S

h (s, a)+= 1
C R(s′, a) +

γ

C SS(s′, h − 1, aux)
10: end for
11: end for
12: VS S

h (s)← maxa QS S
h (s, a)

13: if aux = true and V̄π
L,B(s) > VS S

h (s) then
14: VS S

h (s)← V̄π
L,B(s)

15: end if
16: end if
17: return VS S

h (s)

… … …

avg

max s

k
C C

V (leaf) = 0

a1 ak

H+1

Figure 6-1: The look-ahead tree of Sparse Sampling; each state node (circles)
estimates VS S

h while its state-action children (rectangles) estimate QS S
h for each

height h.

and ε0 approaches 0, the algorithm’s regret εS S = maxs |V∗(s) − VS S (s)| goes to

0.

Lemma 6.2. Consider SS with leaf nodes’ values being ε0-optimal, i.e. ∀s, |V∗(s)−

VS S
0 (s)| ≤ ε0. We have

εS S ≤ TS S (H,C) +
γHε0

1 − γ

110

with TS S (H,C) =
2γHVmax

1 − γ
+

Vmax

(1 − γ)2

√
H
C

ln
kC
γ

.

In the bound, the first error term TS S (H,C) is due to limited sampling, while

the second one partly depends on the quality of leaf estimation ε0. If high values

of H,C are affordable, the leaf estimation plays little role in the algorithm’s

quality.

Specifically, Kearns et al. [42] showed that by setting the leaf values to 0,

i.e., leaf regret ε0 = Vmax, and H and C dependent on ε > 0 as follows

H = dlogγ(λ/Vmax)e, (6.1)

C =
V2

max

λ2

(
2H ln

kHV2
max

λ2 + ln
Rmax

λ

)
, (6.2)

with

λ = ε(1 − γ)2/4,Vmax = Rmax/(1 − γ) (6.3)

in which ε > 0 is the desired regret, the resultant estimation of the algorithm is

ε-optimal. It follows that the running time of SS is at most O((kC)H), i.e.,

(
k

ε(1 − γ)

)O
(

1
1−γ ln

(
1

ε(1−γ)

))
.

With the following theorem, Kearns et al. further showed that this is not

very far from the best possible running time given only a simulator [42].

Theorem 6.1. LetA be any algorithm that is given access only to a generative

model for an MDP M, and inputs s (a state in M) and ε. Let the policy imple-

mented byA satisfy |VA(s)−V∗(s)| ≤ ε simultaneously for all states s ∈ S . Then

there exists an MDP M on which A makes at least Ω(2H) = Ω((1/ε)(1/ ln(1/γ)))

calls to the generative model.

111

Effectively the theorem 6.1 posits that Sparse Sampling’s running time is

reasonably near the shortest possible if given only a generative model of the tar-

geted planning problem. This result suggests that efforts might be better spent

on devising algorithms that take advantage of other sources of knowledge be-

sides a simulator.

SSπ: Sparse Sampling with leafs evaluated using heuristic simulations

Given a heuristic policy π, one can propose a method to bootstrap SS by replac-

ing trivial leaf nodes’ values (zero) with π-estimates as detailed in Section 6.2.2,

i.e., by using the empirical average of B simulated rollouts of length L (Figure 6-

2). This naive bootstrapping technique, namely SSπ, poses two key issues.

s0

kC

H

V (leaf) =
1

B

BX

i=1

X⇡,L,i

Figure 6-2: The look-ahead tree of SSπ.

Firstly, SSπ requires a significantly longer running time than vanilla SS,

specifically incurring time LB(kC)H in evaluating (kC)H leaf nodes (LB calls

to the simulator at each leaf node). Although the multiplicative factor LB is

asymptotically dominated with L and B being fixed constants, in practice with

limited resource, the overhead cost could result in a much shorter tree height

afforded, negatively impacting the root’s estimation.

Secondly, intriguingly, the estimation of SSπ could be worse than that of

112

vanilla SS. The reason is that while the estimation Vlea f (s) = 0∀s yields a regret

of at most Vmax, the regret of a bad policy π could be greater Vmax. For instance,

consider the case when π is so bad that it always selects an action with reward

−Rmax at every state, while the optimal action would yield reward Rmax. Under

this policy π, the expected value of any state would be very close to 2Vmax. In

such case, it is much better to use the trivial value of 0 instead of relying on

π-estimation.

As detailed in the following section, the Aux method is able to avoid these

issues of SSπ. The resultant algorithm SS-Aux retains the same performance

guarantee as SS if the coupled heuristic is overly suboptimal, while having an

assured performance boost otherwise. In all cases, SS-Aux yields a running

time similar to SS’s with the overhead cost being a negligible additive term.

6.3.2 SS-Aux: Sparse Sampling with π-guided Auxiliary Arms

Given a deterministic heuristic policy π, the proposed algorithm, called SS-Aux

(Algorithm 4 called with aux=True), adds one auxiliary arm into each internal

state node of the look-ahead tree1. The auxiliary arm stemming from s is la-

beled by the action a = π(s) (Figure 6-3) and it does not expand to subtrees as

do its siblings, but its value is computed as the average of accumulated rewards

returned by π-guided simulation traces as described in Section 6.2.2. The aux-

iliary arm is treated equally to its ordinary siblings, i.e., the value of the parent

node is computed by taking the maximum of all child nodes’ estimated values.

Note that the number of auxiliary arms increases exponentially with the height

of the tree if these arms are added to every internal node. Therefore, in order

to manage the incurred extra cost, we can stop adding auxiliary arms below a

certain height Ĥ with Ĥ < H.

1The method can be generalized to stochastic policies by adding κ auxiliary arms to each
state node s, with κ being the number of actions a such that P(π(s) = a) > 0.

113

H − 3
B L

kC a⇡(s)

Figure 6-3: The look-ahead tree of SS-Aux.

Unlike SS which completely relies on the value estimation of expanded sub-

trees, whenever the heuristic π appears to yield higher estimated value than any

of its siblings, the parent node’s value is estimated by this heuristic value in-

stead. Eventually, this improved estimation propagates and contributes to the

root’s value. Intuitively, if the heuristic is good at states that are near the root on

the optimal path, the improvement is instantiated early in the process. Conse-

quently, SS-Aux can be run with shorter height H, saving computing resources.

While the required running time of SS is (kC)H, that of SS-Aux is (kC)H +

LB(kC)H−Ĥ = (kC)H(1 + LB/(kC)Ĥ). Depending on the resources allocated, Ĥ

can be adjusted so that LB/(kC)Ĥ is negligible, in which case the running time

of SS-Aux is asymptotically equal to that of SS.

Experiments with Obstructed Sailing

In this section we demonstrate empirically how SS-Aux performs as compared

to SS. The experiments are run in the Obstructed Sailing domain as described in

Section 5.3.1. In order to show the convergence behavior of SS, which is rela-

tively impractical in large domains due to its exhaustive nature, the experiment

uses maps of small size, i.e., 10 by 10, with starting position at (2, 2) and the

goal position at (7,7). The algorithms are pitted in 1000 different random maps

114

for which the benchmarked optimal policy is obtained by Value Iteration [8].

Instead of setting a fixed value for the tree height H in SS-algorithms, we

implement them using Iterative Deepening with respect to H. These online

versions of SS are allocated a certain amount of time for each planning step,

starting out with an initial small value of H. Upon termination, if there is still

time for planning, H is increased and the algorithm is restarted. However, the

sampling width factor C is kept fixed. Even though the theoretical bound is

established with C larger than H, empirically a value for C roughly reflecting

the stochasticity of the domain suffices.

(a) Map 10x10

50 100 200 500 1000 5000
−40

−35

−30

−25

−20

Rollouts

Optimal

SS

SS−Aux

(b) Average discounted accumulated reward

Figure 6-4: SS variants in Obstructed Sailing with heuristic SailsToGoal. The
charted lines denote the average accumulated reward (negative cost).

The coupled π-heuristic is called SailsToGoal (STG). It selects a valid ac-

tion closest to the direction towards goal position regardless of the cost [51].

This heuristic is particularly good for maps with few obstacles, producing near-

optimal plans for many states, but counterproductive with highly obstructed

maps, since it is often stuck in dead ends and corners that surround the goal

position. On average, STG yields an accumulated cost of 78.22, far from the

optimal cost of 24.89. Nonetheless, when STG is used to bootstrap SS, the re-

sultant planner SS-Aux completely dominates vanilla SS (Figure 6-4) and STG.

As the planning time increases, the performance gap reduces; after all we expect

115

both SS and SS-Aux to converge to the optimal value eventually.

6.4 Bootstrap Forward Search Sparse Sampling

SS-Aux suffers from the impracticality of SS due to unfocused sampling which

allocates a fixed amount of computation for every tree branch and node. As a

result, SS requires a long running time before delivering any meaningful approx-

imation. The problem is more pronounced in domains that are highly stochastic

and where discount factor is close to 1.

There have been many attempts such as Heuristic Sampling [60], Adaptive

Sampling [17] and Upper Confidence Bound applied in Trees (UCT) [44] to

improve the practicality of the forward sampling approach. All the forward

sampling methods use a similar tree-like structure as SS, so there is potential

to enhance them using the Aux method. The latest in this series is the Forward

Search Sparse Sampling (FSSS) [75] that tries to smartly allocate the compu-

tation to promising branches of the look-ahead tree in order to more quickly

approximate the optimal policy in large domains. In this section, we investigate

the application of the Aux method to enhance FSSS.

6.4.1 Forward Search Sparse Sampling (FSSS)

FSSS is the latest successor of SS that is able to combine the performance guar-

antee of SS with the selective sampling [75]. Instead of directly forming point

estimates of the Q- and V-values in a look-ahead tree, it maintains interval es-

timates that allow it then to guide the sampling to the promising and/or unex-

plored branches of the look-ahead tree based on the upper bounds and widths of

the intervals. The algorithm is detailed in Algorithms 5 and 6 with the boolean

flag aux set to false.

Similar to SS, FSSS also constructs a tree of height H and branching factor

116

Algorithm 5 FSSS-Aux(s, t, aux)
Input: state s, number of rollouts t, boolean aux
Output: estimated lower bound for state s
for t times do

L̂← FSSS-Aux-Rollout(s,H, aux) {H is the maximum height}
end for
return L̂

Algorithm 6 FSSS-Aux-Rollout (s, h, aux)
Input: state s, height h, boolean aux
if h = 0 or Terminal(s) then

Lh(s),Uh(s)← 0, 0
return 0

end if
if ¬Visited(s, h) then

Visited(s, h)← true
for all a ∈ A do

Lh(s, a),Uh(s, a)← Vmin,Vmax

Childrenh(s, a)← {}
Counth(s, a, ∗) ← 0 {Count stores the number of times a state s′ is en-
countered at depth h when action a is executed at state s }
for C times do

s′ ∼ T (s, a)
Counth(s, a, s′)← Counth(s, a, s′) + 1
Childrenh(s, a)← Childrenh(s, a) ∪ {s′}
Lh−1(s′),Uh−1(s′)← Vmin,Vmax

end for
end for
if aux = true then {Adds auxiliary arm}

â← π(s)
Lh(s, â),Uh(s, â)← EstimateQ(s, â, π)

end if
end if
a∗ ← argmaxa Uh(s, a)
s∗ ← argmaxs′ Counth(s, a∗, s′)(Uh−1(s′) − Lh−1(s′))
FSSS-Aux-Rollout(s∗, h − 1, aux)
Lh(s, a∗)← R(s, a∗) +

γ

C

∑
s′ Counth(s, a∗, s′)Lh−1(s′)

Uh(s, a∗)← R(s, a∗) +
γ

C

∑
s′ Counth(s, a∗, s′)Uh−1(s′)

Lh(s)← maxa Lh(s, a)
Uh(s)← maxa Uh(s, a)
return Lh(s)

k. However, instead of constructing the whole tree in one go, FSSS traverses the

tree from root down using simulated episodes of length H called trials. At each

117

state node s of the trial, the algorithm expands the state by simulating all the k

actions C times. Instead of then recursing to all next states like SS, the FSSS

picks the action a∗ with a highest upper-bound for Q(s,a) and selects the next

state s∗ with the widest interval for V(s’) among the states s′ that were obtained

by simulating a∗ at s. The selected state s∗ is then expanded until the leaf node

is reached and the interval bounds of V- and Q-values are updated recursively

on the path from leaf to root. When there is an action at the root with the Q

lower bound greater than all other arms’ upper bounds, i.e., the action is surely

more highly rewarding than its siblings, the algorithm terminates.

As such, FSSS may also skip subtree expansions at branches where no fur-

ther exploration would be helpful. When no pruning occurs, FSSS requires at

most (kC)H trials. However, its running time may be up to O(H(kC)H).

Proposition 6.4.1. The running time of FSSS is bounded by O(H(kC)H).

Proof. At each non-leaf state node, expansion samples the simulator kC times,

thus incurring a cost of O((kC)H) in total. In one FSSS trial, selection and update

take O(H), so since there are at most (kC)H trials, altogether these two actions

cost O(H(kC)H). The total running time is therefore dominated by O(H(kC)H).

�

This means that in the worst case FSSS may require longer running time

than SS. However, since the running time of FSSS is only at most exponential

to the horizon time, its worst case behavior is much better than UCT’s, which

incurs a running time that grows super-exponentially to the horizon time in the

worst case.

When applied in practical domains that require real-time behavior, a major

drawback of FSSS is that it could be less responsive than UCT due to the time

requirement for each rollout. Even though FSSS is anytime, at early stage of the

search tree construction when there are only few nodes, its rollout could take

118

as much as O(kCH) as compared to O(H) of UCT. As we know from the SS

analysis, the branching factor kC is usually much larger than H; in particular,

the choice of C,H in [42] is such that C = Θ

(
H2

γ2H

)
. As such, UCT could be

more responsive than FSSS in real-time domains.

6.4.2 FSSS-Aux: FSSS with π-guided auxiliary arms

Similar to SS-Aux, we add one auxiliary arm at every internal state node of the

tree up to a certain depth. At each of these auxiliary arms, the lower and upper

bounds are computed using B π-guided rollouts of length L. The procedure

is detailed in Algorithm 6 with the aux-flag set to true and EstimateQ(s, a, π)

being the empirical averaging estimation of π-guided simulations. Similar to

the behavior of SS-Aux, it is straightforward to show that in the worst case,

when auxiliary arms do not help to prune any branch, FSSS-Aux yields the

same estimation as that of FSSS. In the good case when the heuristic policy

is near-optimal, we expect many state nodes have their lower-upper bound gap

closed faster. Additionally, when the algorithm is terminated prematurely due

to resource constraints and the heuristic policy achieves good approximation,

FSSS-Aux could leverage on this improvement and yield an improvement over

vanilla FSSS. In fact, the following proposition states that, after terminating,

FSSS-Aux is as good as SS-Aux, while the guarantee of FSSS remains the same

as that of SS [75].

Proposition 6.4.2. At termination, the action chosen by FSSS-Aux is the same

as that chosen by SS-Aux.

Proof. At termination of FSSS-Aux, there are two scenarios. The first scenario

is when there is no pruning possible, in which case FSSS-Aux expands the same

tree as SS-Aux. The output action is therefore the same as that returned by SS-

Aux. The other scenario is when FSSS-Aux terminates before expanding the

119

full tree. By convention, this is when there is no point in further tightening the

bound gaps because one arm surely has higher value than the rest, as its lower

bound exceeds the upper bounds of other arms. This means the selected arm is

guaranteed to yield the highest estimated value possible with respect to the fully

expanded tree, which is exactly the one selected by SS-Aux. �

Complexity-wise, the number of trials required by FSSS-Aux has the same

bound as that of FSSS.

Proposition 6.4.3. The total number of trials of FSSS-Aux before termination is

bounded by the number of leaves in the tree.

Proof. The proof is identical to that of Proposition 3 by Walsh et al. [75], by

noting that every trial of FSSS-Aux has to end at a node with zero bound gap.

If such a node is not a leaf, it would not be selected in the first place, because

it cannot be the node with widest bound gap. As such, every trial must end at a

leaf node, i.e., the number of FSSS-Aux rollouts is bounded by the number of

leaves in the tree. �

Similar to the situation with SS-Aux, the additional time required by FSSS-

Aux is that of evaluating auxiliary arms. With suitable values of Ĥ, this incurred

cost is negligible, rendering the running time of FSSS-Aux being asymptotically

comparable to that of vanilla FSSS, i.e. O(H(kC)H). Nevertheless, in the good

case, when the heuristic policy is near-optimal, we expect the algorithm to ter-

minate faster and produce a better approximation than FSSS, as the heuristic

helps discover the optimal arm earlier. In fact, as depicted in Figure 6-5, FSSS-

Aux quickly discovers a near-optimal policy for Obstructed Sailing.

120

10
1

10
2

10
3

10
4

10
5

−100

−90

−80

−70

−60

−50

−40

Rollouts

Optimal
FSSS
FSSS−Aux
SS
SS−Aux

Figure 6-5: FSSS and SS variants in Obstructed Sailing with heuristic SailsTo-
Goal; the charted lines denote the average accumulated reward (negative cost).
We use 1000 random maps of size 20 by 20 with starting position at (5, 5) and
goal at (15, 15), and the obstacles are placed with probability 0.4 at each grid
square. The Aux versions of FSSS and SS respectively outperform the host
algorithm.

Comparison with UCT-Aux

As analyzed in Section 5.4.1, UCT-Aux experiences its worst case behavior

when coupled with a non-extreme heuristic, such as the policy StochOpt0.22 in

Obstructed Sailing. In such cases, the algorithm wastes too many exploratory

samples on auxiliary arms, and converges very slowly to the optimal policy.

This behavior is inherent to all UCT variants, due to the over-optimism of the

upper bound formula UCB1. In contrast, as FSSS and SS do not explore with

such optimistic mentality, we expect them to be immune to such behavior.

To study this hypothesis, we compared the performance of UCT, FSSS and

SS with their respective Aux-boostrapped versions when coupling with SO0.2,

the unfavored heuristic of UCT-Aux. Note that since SS does not use rollouts to

adjust its anytime behavior and each FSSS rollout typically takes more time to

2This heuristic performs optimal actions with probability 0.2 and random actions for the rest,
which renders it always suboptimal but better than mere random walks.

121

complete than UCT rollouts, to ensure fairness in comparison, the algorithms’

performance is assessed with respect to allocated time per planning step, instead

of the number of rollouts as in Chapter 5. The results as charted in Figure 6-6

and 6-7 are averaged over 1000 runs with 200 randomized starting configura-

tions, in maps of size 20 by 20.

As shown in Figure 6-6a, UCT-Aux performs worse than its host algorithm,

while FSSS-Aux and SS-Aux’s performance is not affected as much, when com-

bined with SO0.2. In fact, FSSS-Aux can even capitalize on the slight better-

ment of SO0.2, completely dominating vanilla FSSS in the chosen time alloca-

tions (Figure 6-6c). On the other hand, when coupled with suitable heuristics,

i.e., SailsToGoal in this domain, UCT-Aux’s performance is comparable to that

of FSSS-Aux (Figure 6-7); both algorithms outperform SS-Aux in early stages

of the experiments.

6.5 Experiments in Sheep Farmer

In this section, we investigate how the proposed algorithms work in solving

large subgoal MDPs in the collaborative game of Sheep Farmer.

6.5.1 Sheep Farmer

The setting is similar to that described in Chapter 5, i.e., with a farmer, a dog,

two wolves and a sheep, in a subgoal MDP. The planner controls the farmer and

his dog (farmer-dog team) to herd a sheep into a pen and kill two wolves in a

maze-like environment. All wolves and sheep run away from the farmer and dog

when close to them, otherwise the wolves chase the sheep and the sheep runs

away from wolves. Both farmer and dog have 5 moves (no-move, N, S, E and

W) but the farmer has an additional action to inflict damage on a nearby wolf,

hence a total of 6 × 5 = 30 joint actions. The farm-team is given 5 points for

122

10
2

10
3

10
4

−250

−200

−150

−100

−50

0

Rollouts

Optimal
UCT
UCT−Aux
FSSS
FSSS−Aux
SS
SS−Aux

(a) UCT-Aux stumbles with SO0.2

10
2

10
3

10
4

−90

−80

−70

−60

−50

−40

Rollouts

Optimal

SS

SS−Aux

(b) SS-Aux

10
2

10
3

10
4

−80

−70

−60

−50

−40

Rollouts

Optimal

FSSS

FSSS−Aux

(c) FSSS-Aux

Figure 6-6: Aux algorithms in Obstructed Sailing when coupled with Sto-
chOpt0.2.

10
2

10
3

10
4

−90

−80

−70

−60

−50

−40

Rollouts

Optimal
UCT
UCT−Aux
FSSS
FSSS−Aux
SS
SS−Aux

Figure 6-7: Aux algorithms in Obstructed Sailing when coupled with SailsTo-
Goal.

123

successfully killing wolves and 10 points for herding sheep into its pen. In the

event that the sheep is killed, the game ends with penalty -10. We used discount

factor γ = 0.99.

Figure 6-8: Task decomposition in Sheep Farmer.

We ran SS, FSSS and UCT side by side with their respective bootstrapped

versions using the Aux method3 in the map shown in Figure 6-8. The optimal

policy in this domain was not computed due to the prohibitively large state space

of size 1045 ∗ 32 ≈ 1011 (each wolf has two health points). For fairer compar-

ison, SS agents were implemented using the iterative deepening approach with

respect to height H of the look-ahead tree. Each algorithm was allocated a fixed

amount of time per planning step; due to time constraints, we did not run simu-

lations with more than 50 seconds per planning step. In a real time game domain

like this, the region of interest is typically from less than 1 to 5 seconds. The

experiment was run 200 times, each with a different random starting position of

the characters.

3The implementation of UCT-Aux is the same as that described in Chapter 5.

124

Heuristic policy: GoalAveraging

The heuristic policy used for auxiliary arms is the same as that used in the ex-

periments of Chapter 5, i.e., GoalAveraging (GA). This heuristic adopts the task

decomposition scheme of CAPIR, treating each NPC as one subtask MDP, and

selects the action that maximizes the average of all subtask Q-values. Note that

GA ignores the interaction between NPCs, i.e., wolves attacking sheep, and can

be detrimental if the animals are in close proximity. Nonetheless, when the

sheep is far away from the wolves, GA can be quite effective by prioritizing

actions that lead to high rewards in each individual subtask. GA is therefore an

“extreme” type, suitable for coupling with UCT-Aux.

Experiment results

We run the simulation-based algorithms in five maps (Appendix D) with increas-

ing state space sizes. Figure 6-9 shows how the average accumulated rewards of

SS, FSSS and UCT variants, the Random-action policy and our GoalAveraging-

heuristic vary with respect to the allocated planning time, in map 6 (Figure 6-8).

The charts for map 1 to 5, which show similar results and characteristics in

performance, can be found in the Appendix E.

When coupled with a relatively poor (average reward -4) heuristic πGA, both

SS and FSSS improve over their original vanilla versions. Moreover, while

vanilla FSSS exhibits much slower convergence to the optimal policy than SS

does, FSSS-Aux convincingly dominates all other methods. Between two state-

of-the-art algorithms UCT and FSSS, UCT-Aux shows improvements much ear-

lier than FSSS-Aux, but is eventually outperformed by the latter. This result is

the evidence of how different UCT and FSSS choose to explore the state space.

UCT’s guarantee to examine highly rewarding branches exponentially more

often than others has two effects on UCT-Aux’s behavior

125

10
2

10
3

10
4

−5

0

5

10

Rollouts

Random

GA

FSSS

FSSS−Aux

SS

SS−Aux

UCT

UCT−Aux

Figure 6-9: SS, FSSS and UCT variants in Sheep Farmer with GoalAveraging-
heuristic. The charted lines denote the average accumulated reward of the algo-
rithms in 200 experiments as function of planning time.

1. UCT-Aux quickly disregards the heuristic by wasting very few rollouts on

auxiliary arms if they yield low rewards.

2. UCT-Aux hastily concentrates rollouts into non-expansive auxiliary arms

if they appear to yield better rewards than random movement.

While the first characteristic is good, the second one is not desirable because it

slows down the process of discovering the globally optimal action plan. Nonethe-

less, the technique is useful if the supplied heuristic is “extreme”, so that when

the heuristic yields good reward, it is assured that the resultant reward is near-

optimal.

On the contrary, FSSS sends simulations into most promising and uncertain

regions of the search tree, where the actions’ upper bounds are high and the

lower-upper bound gaps are wide. This approach slows down the process of

discovering highly rewarding branches of vanilla FSSS as compared to that of

UCT, but plays a crucial role in making FSSS-Aux safer than UCT-Aux, as it

keeps exploring and improving even when a local minimum is discovered by the

heuristic, as long as there are still uncertain regions in the search tree.

126

6.6 Chapter Summary

In this chapter, we examined the Aux technique of bootstrapping simulation-

based algorithms SS and FSSS with a suboptimal heuristic policy. When cou-

pled with suitable heuristics, the technique was shown to yield empirical im-

provement over the host algorithm in approximating the optimal action policy

when competing in the same conditions of resource allocation. Among the boot-

strapped algorithms, we observed that FSSS-Aux, inheriting a more conserva-

tive approach in exploration from FSSS than that of UCT, is the preferred al-

gorithm in solving large state-space MDPs where abundant computing resource

is available. On the other hand, in cases when the allocated resource is scarce,

UCT and its variants are able to discover a reasonably near-optimal solution

more quickly. UCT-Aux, however, must be adopted with care because its per-

formance can vary greatly depending on the coupled heuristic, be it either “ex-

treme” or non-extreme. This chapter also concludes our work in solving large

state-space MDPs by combining offline-learnt heuristics with online approxi-

mate algorithms, the aim of which is to solve large subgoal MDPs that CAPIR

may encounter when deployed in practical domains.

127

128

Chapter 7

Conclusion

In this thesis, we detailed a framework for autonomous agents that caters for

a special class of two-party coordination, namely the Lead-Assistant Collabo-

ration. This type of coordination is present in many real-life applications that

require automated assistance to a leading agent; oftentimes this agent is a human

being. This self-interest human agent, i.e., the lead, wants to achieve some ob-

jectives with the aid of an autonomous AI assistant in an environment whereby

direct and explicit commands are not desirable.

For example, the assistant could be a smart software playing the role of a

personal virtual assistant, such as Siri on the Apple iPhone1, whose mission is

to turn phone users’ experience from a unidirectional, commanding mode to in-

formal, human-like conversations. The aim of the assistant is therefore to invoke

correct electronic commands (e.g. open up the right software with appropriate

prompts for input) through informal chats. This possibly confusing mode of

communication, while not directly expressing the intention of the user, can be

used by the virtual assistant software as cues to figure out the user’s concealed

demand. In another scenario, the human expert can be the leader in a team of

two, tasked to achieve some objective in an area whereby communication is pro-

1http://www.apple.com/ios/siri/

129

hibitive due to energy constraint (Mars Rovers) or the presence of competitors

(spy team). In such settings, it is detrimental to assume a fixed behavior model

of the lead agent, such as the globally optimal model. The reason is (1) because

the human agent is usually prone to suboptimal behavior due to his bounded

rationality and change of interest (mind switch), and (2) due to possible changes

in objective ranking. As a result, the lead agent’s behavior has great potential to

deviate from any fixed model. Without accounting for such dynamics of the lead

agent’s behavior, the assistant could select actions that aim to achieve a different

goal than that of the lead agent, rendering the collaboration a failure.

7.1 Contributions

In the general form, the Lead-Assistant Collaboration problem poses two major

challenges that were proven to be extremely hard for the state-of-the-art tech-

nologies. In particular, the challenges, which are caused by two unobservable

factors, i.e., the hidden intention and the behavior model of the lead agent, are

both PSPACE-complete.

To achieve a practical system, we simplify the problem by modeling the lead

agent’s behavior as being optimal only at the subgoal levels. As such, each sub-

goal is modeled as an MDP, which can be solved either offline using traditional

approaches such as Value Iteration, or online using simulation-based algorithms

such as UCT. The formulation allows an efficient way to track the hidden inten-

tion using inverse planning by estimating the lead agent’s intention based on his

action history. The resultant framework, namely Collaborative Action Planning

with Intention Recognition (CAPIR), is scalable with respect to the number of

subgoals. Our qualitative and quantitative empirical evaluation demonstrate that

the implementation of the framework can produce a smart assistant whose be-

havior is comparable to a human-controlled expert assistant in conditions close

130

to real-time requirement (one second of computation per planning step). Note

that while many decision-theoretic frameworks in multi-agent settings such as

I-POMDP and Dec-POMDP provide theoretically sound solutions, they deal

mostly with asymptotic behavior.

7.2 Limitations of CAPIR

CAPIR solves only a subclass of multi-agent coordination problems. As pre-

sented in Chapter 4, we actually trade generality for practicality with the frame-

work, imposing assumptions such as the lead agent is not within the planner’s

control, and that the lead is optimal at subgoal level. While such assumptions

limit the scope and relevance of our work in more general settings, they make

it easier, or rather more tractable, to reason for collaborative actions within the

limitation of computing resources. As a matter of fact, what we strive for in

this work is not an optimal assistant, but rather a most helpful one. If the lead

agent decides to abandon all subgoals but one, we do not want the assistant to

contemplate on the global goal; it should delve right into helping the lead to

achieve that chosen subgoal.

7.3 CAPIR Beyond Modern Video Games

Although our investigation with the CAPIR framework is framed within the

domain of modern video games, this choice of application domain is due to the

inherently exploratory nature of research, and not the limitation of the approach.

While the demand for a smart assistant in video games is already pressing, as

argued in Chapter 1, one crucial factor that contributes to our decision is the con-

trolled simulated environments offered by games. Different testing conditions

can be setup simply by writing some code lines, instead of manually construct-

131

ing physical scenes, which is both costly and time-consuming. As formulated

in Chapter 3 and 4, the generality of the problem formulation allows our CAPIR

solution to be applicable to other real life scenarios such as creating smart spaces

populated by smart virtual and physical autonomous agents. However, since our

trial setting is simulated and fully controlled, there are some considerations and

challenges in deploying CAPIR for real life domains.

7.3.1 Challenges

The crucial challenge when constructing smart assistants in general, and when

applying CAPIR framework specifically, is to ensure real-time quality behav-

ior. While “real-time” imposes the pressure of time on the planning process,

“quality” translates to an efficient mechanism to track the human intent so that

appropriate actions can be issued.

Real-time performance is the next stage of research, especially in the field of

artificial intelligence, after having built theoretical foundations for the solutions.

In fact, a smart assistant for a human being in the real world is often useless if

it takes hours to come up with a good aiding move. With CAPIR, real-time be-

havior translates to an efficient formulation of the planning tasks such that the

operators (belief update and action selection) can be executed quickly. While

these operators only take time that is quadratically proportional to number of

subgoals, the bottleneck here is the computation of subgoal optimal policies or

their approximation. Domain-specific expert knowledge is therefore needed to

formulate the subgoal MDPs such that their optimal policies can be computed

exactly offline as much as possible. Ideally, there should be as few as one sub-

goal, which is the global task, whose optimal policy is approximated online.

In the worst case when the subgoal MDPs cannot be reduced to a manageable

level, CAPIR’s performance relies directly on research advancements in sequen-

tial decision making, in particular the problem of solving large-sized/continuous

132

MDPs.

In order to select the most relevant assistive actions in a multi-intention set-

ting, the CAPIR framework assumes that the exhaustive set of subgoals is fur-

nished by the designer. In practice, subgoals could usually be organized in a

hierarchy structure, in which those at the top levels can be decomposed into

those lying at lower levels. Extracting an appropriate set of subgoals from this

hierarchy could be troublesome. In many situations, this set could differ greatly

from one person to another, and may even dynamically change as one gets more

and more hand-on experience with the task and environment. The more familiar

a person is at handling some types of tasks, the larger each of his possible sub-

goal gets. In other words, he can look at the tasks from a grander perspective

than the first-timers can. Since our current CAPIR implementation only handles

the tasks with stationary sets of subgoals, in real life, the possible dynamics of

the lead agent’s improved expertise, which indirectly changes the set of sub-

goals at execution time, could undermine the performance of CAPIR assistants.

Tackling this challenge is left as a possible extension for the framework.

7.4 Future work

As an interdisciplinary product, CAPIR can lead to many derivative works as

extensions on the results we report in this thesis.

One possible direction is to generalize CAPIR to the case of multi-agent

coordination in which there are more than two agents involved. The idea is to

maintain the biased relationship between agents by having a set of lead agents,

each member of which is assisted by one or many members in the set of as-

sistants. Among lead agents, there could be further hierarchical categorization,

i.e., some lead agents are assistants of other lead agents, and so on. As a result,

we could obtain a tree structure to represent the behavior dependencies among

133

the team members, since the assistants need to condition their behavior on their

immediate lead.

Another interesting line of future work is to incorporate abstraction into the

framework; at the current state, CAPIR operates on flat MDP representations2.

In solving MDPs, state abstraction is an attractive option for reducing the di-

mensionality, thus state space’s size, and has been investigated extensively in

the planning community [32, 39, 46]. Therefore, if we could leverage on this

body of research work, allowing CAPIR to deal with higher-dimensional do-

mains, the frameworks’ practicality would improve significantly.

Lastly, as mentioned in Section 7.3.1, CAPIR assumes the mind switch

model of the lead agent and the set of subgoals are hand-crafted by domain

experts; currently the framework relies on the intuition of experts, not having

a guideline on how these CAPIR components should be constructed. Cogni-

tive scientists could therefore leverage on the implemented engine and use it as

an experiment platform to learn about the human mind’s dynamics and behav-

ior when dealing with integrable and decomposable options. Conversely, such

psychological results can be transferred back into the engine to create a com-

putational assistant that reasons with more dynamics, understanding the human

mind better.

With many directions to carry on, we hope this work could inspire further

research attempts in creating an ultimate AI entity: an assistant that can assist

us intelligently in complex environments.

2Location abstraction implemented in CAPIR exploits the corridor characteristic of maze-
like environments and is not generalizable to other domains.

134

Bibliography

[1] David W. Albrecht, Ingrid Zukerman, and Ann E. Nicholson. Bayesian
models for keyhole plan recognition in an adventure game. User Modeling
and User-Adapted Interaction, 8(1):5–47, March 1998.

[2] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of
the multiarmed bandit problem. Machine Learning, 47(2):235–256, May
2002.

[3] Chris L. Baker, Rebecca R. Saxe, and Joshua B. Tenenbaum. Action Un-
derstanding as Inverse Planning. Cognition, 113(3):329–349, December
2009.

[4] Chris L. Baker, Joshua B. Tenenbaum, and Rebecca R. Saxe. Goal In-
ference as Inverse Planning. In Proceedings of the Twenty-Ninth Annual
Conference of the Cognitive Science Society, pages 779–784, 2007.

[5] R. K. Balla and A. Fern. UCT for tactical assault planning in real-time
strategy games. In 21st International Joint Conference on Artificial Intel-
ligence, pages 40–45, 2009.

[6] R. Becker, S. Zilberstein, V. Lesser, and C. V. Goldman. Solving transition
independent decentralized markov decision processes. Journal of Artificial
Intelligence Research, 22(1), 2004.

[7] Raphen Becker, Shlomo Zilberstein, Victor Lesser, and Claudia V. Gold-
man. Transition-independent decentralized Markov decision processes.
In Proceedings of the Second International Conference on Autonomous
Agents and Multi Agent Systems, pages 41–48, Melbourne, Australia,
2003.

[8] Richard Bellman. Dynamic Programming. Princeton University Press,
Princeton, NJ, March 1957.

[9] Richard Bellman. A Markovian Decision Process. Indiana Univ. Math. J.,
6:679–684, 1957.

[10] Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilber-
stein. The Complexity of Decentralized Control of Markov Decision Pro-
cesses. Mathematics of Operations Research, 27(4):819–840, 2002.

135

[11] Craig Boutilier. Sequential Ooptimality and Coordination in Multiagent
Systems. In Proceedings of the Sixteenth International Joint Conference
on Artificial Intelligence, volume 1 of IJCAI’99, San Francisco, CA, USA,
1999. Morgan Kaufmann Publishers Inc.

[12] B. Bouzy and B. Helmstetter. Monte-Carlo Go developments. Advances
in computer games, 10:159–174, 2004.

[13] Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lu-
cas, Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez,
Spyridon Samothrakis, and Simon Colton. A Survey of Monte Carlo Tree
Search Methods. IEEE Transactions on Computational Intelligence and
AI in Games, 4(1):1–43, March 2012.

[14] B. Brügmann. Monte Carlo Go. Physics Department, Syracuse University,
Tech. Rep, 1993.

[15] Alex J. Champandard. Behavior Trees for Next-Generation Game AI. In
Game Developers Conference, 2007.

[16] Edwin Chan. ”Call of Duty: Black Ops” sets record for Activi-
sion. Available via http://games.yahoo.com/blogs/plugged-in/call-duty-
black-ops-sets-record-activision-278.html, January 2011.

[17] Hyeong S. Chang, Michael C. Fu, Jiaqiao Hu, and Steven I. Marcus. An
adaptive sampling algorithm for solving markov decision processes. Op-
erations Research, 53(1):126–139, January 2005.

[18] William G. Chase and Herbert A. Simon. Perception in chess. Cognitive
Psychology, 4(1):55–81, January 1973.

[19] G. Chaslot, C. Fiter, J. B. Hoock, A. Rimmel, and O. Teytaud. Adding
expert knowledge and exploration in Monte-Carlo Tree Search. Advances
in Computer Games, pages 1–13, 2010.

[20] Peter Chubb. Assassin’s Creed 3 Review Fails to Mention Bugs. Available
at http://www.inentertainment.co.uk/20121029/assassins-creed-3-review-
fails-to-mention-bugs/, October 2012.

[21] Pierre-Arnaud Coquelin and Rémi Munos. Bandit algorithms for tree
search. In Proceedings of the 23rd Conference on Uncertainty in Artifi-
cial Intelligence, pages 67–74, July 2007.

[22] R. Coulom. Efficient selectivity and backup operators in Monte-Carlo Tree
Search. In Proceedings of the 5th International Conference on Computers
and Games, pages 72–83. Springer-Verlag, 2006.

[23] M. Cutumisu, C. Onuczko, M. McNaughton, T. Roy, J. Schaeffer, A. Schu-
macher, J. Siegel, D. Szafron, K. Waugh, M. Carbonaro, and Others.
ScriptEase: A generative/adaptive programming paradigm for game script-
ing. Science of Computer Programming, 67(1), 2007.

136

[24] Daniel C. Dennett. The Intentional Stance (Bradford Books). A Bradford
Book, reprint edition, March 1989.

[25] Prashant Doshi and Piotr J. Gmytrasiewicz. Monte Carlo Sampling Meth-
ods for Approximating Interactive POMDPs. Journal of Artificial Intelli-
gence Research, 34(1):297–337, March 2009.

[26] Alan Fern and Prasad Tadepalli. A computational decision theory for inter-
active assistants. In Advances in Neural Information Processing Systems
(NIPS-2010), 2010.

[27] Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the
application of theorem proving to problem solving. Artificial Intelligence,
2(3-4):189–208, 1971.

[28] Hilmar Finnsson and Yngvi Björnsson. Simulation-based approach to
General Game Playing. In AAAI’08: Proceedings of the 23rd National
Conference on Artificial Intelligence, pages 259–264. AAAI Press, 2008.

[29] Daniel Fu and Ryan Houlette. The Ultimate Guide to FSMs in Games,
volume 2 of AI Game Programming Wisdom, pages 283–302. Charles
River Media, Massachusetts, USA, first edition, 2004.

[30] GameTrailers. Best of E3 2010 Awards Video Game, Best Multiplayer
Game. Available at http://www.gametrailers.com/video/best-multiplayer-
best-of-e3/701203, June 2010.

[31] Sylvain Gelly and David Silver. Combining online and offline knowledge
in UCT. In ICML ’07: Proceedings of the 24th International Conference
on Machine Learning, pages 273–280, New York, NY, USA, 2007. ACM.

[32] Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and
model minimization in Markov decision processes. Artificial Intelligence,
147(1-2):163–223, 2003.

[33] Piotr J. Gmytrasiewicz and Prashant Doshi. A Framework for Sequen-
tial Planning in Multi-Agent Settings. Journal of Artificial Intelligence
Research, 24(1), July 2005.

[34] Kevin Gold. Training goal recognition from low-level inputs in an action-
adventure game. In Proceedings of The Artificial Intelligence and Interac-
tive Digital Entertainment Conference (2010). AAAI Press, 2010.

[35] Tom Goldman. Videogame Industry Worth Over $100 Billion World-
wide. Available at http://www.escapistmagazine.com/news/view/103064-
Videogame-Industry-Worth-Over-100-Billion-Worldwide, August 2010.

[36] Alison Gopnik and Andrew N. Meltzoff. Words, thoughts, and theories.
MIT Press, Cambridge, MA, 1998.

137

[37] Ryan Houlette. Player Modeling for Adaptive Games. Charles River Me-
dia, December 2003.

[38] Ronald A. Howard. Dynamic Programming and Markov Processes.
MIT˜Press, Cambridge, Massachusetts, 1960.

[39] Nicholas K. Jong and Peter Stone. State Abstraction Discovery from Ir-
relevant State Variables. In Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence (IJCAI 2005), pages 752–757.
Citeseer, 2005.

[40] Leslie P. Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Plan-
ning and acting in partially observable stochastic domains. Artificial Intel-
ligence, 101(1-2):99–134, May 1998.

[41] R. H. Katz, D. Long, M. Satyanarayanan, and S. Tripathi. Workspaces in
the Information Age. Report of the NSF Workshop on Workspaces in the
Information Age, October 1996.

[42] Michael Kearns, Yishay Mansour, and Andrew Y. Ng. A sparse sampling
algorithm for near-optimal planning in large Markov Decision Processes.
Machine Learning, 49(2):193–208, November 2002.

[43] John-Paul Kelly, Adi Botea, and Sven Koenig. Offline Planning with Hi-
erarchical Task Networks in Video Games. In Proceedings of the Fourth
Artificial Intelligence and Interactive Digital Entertainment Conference,
2008.

[44] Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo Plan-
ning. In Johannes Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou,
editors, Proceedings of the 17th European conference on Machine Learn-
ing, volume 4212 of ECML’06, pages 282–293, Berlin, Heidelberg, 2006.
Springer-Verlag.

[45] H. Kurniawati, D. Hsu, and W. S. Lee. SARSOP: Efficient point-based
POMDP planning by approximating optimally reachable belief spaces. In
Proc. Robotics: Science and Systems, 2008.

[46] Lihong Li, Thomas J. Walsh, and Michael L. Littman. Towards a Unified
Theory of State Abstraction for MDPs. In Proceedings of the Ninth In-
ternational Symposium on Artificial Intelligence and Mathematics, pages
531–539, 2006.

[47] Michael Mateas and Andrew Stern. Writing Façade: A case study in pro-
cedural authorship. Second Person: Role-Playing and Story in Games and
Playable Media, pages 183–208, 2007.

[48] Bradford Mott, Sunyoung Lee, and James Lester. Probabilistic goal recog-
nition in interactive narrative environments. In Proceedings of the Twenty-
first National Conference on Artificial Intelligence (AAAI-06), volume 21,
pages 187–192. AAAI Press, 2006.

138

[49] M. Mundhenk, J. Goldsmith, C. Lusena, and E. Allender. Complexity
of finite-horizon Markov decision process problems. Journal of the ACM
(JACM), 47(4), 2000.

[50] Truong-Huy D. Nguyen, David Hsu, Wee-Sun Lee, Tze-Yun Leong,
Leslie P. Kaelbling, Tomas Lozano-Perez, and Andrew H. Grant. CAPIR:
Collaborative Action Planning with Intention Recognition. In Proceedings
of the Seventh Artificial Intelligence and Interactive Digital Entertainment
International Conference (AIIDE 2011). AAAI, AAAI Press, 2011.

[51] Truong-Huy D. Nguyen, Wee-Sun Lee, and Tze-Yun Leong. Bootstrap-
ping Monte Carlo Tree Search with an Imperfect Heuristic. In Proceedings
of the 23rd European Conference on Machine Learning (ECML 2012),
September 2012.

[52] Truong-Huy D. Nguyen and Tze-Yun Leong. A Surprise Triggered Adap-
tive and Reactive (STAR) Framework for Online Adaptation in Non-
stationary Environments. In Christian J. Darken and G. Michael Young-
blood, editors, Proceedings of the Fifth Artificial Intelligence and Interac-
tive Digital Entertainment International Conference (AIIDE 2009), pages
82–87. AAAI Press, 2009.

[53] Truong-Huy D. Nguyen, Tomi Silander, Wee-Sun Lee, and Tze-Yun
Leong. Bootstrapping Simulation-based Algorithms with a Suboptimal
Policy. Manuscript submitted for publication, April 2013.

[54] J. M. Ooi and G. W. Wornell. Decentralized control of a multiple access
broadcast channel: Performance bounds. In Decision and Control, 1996.,
Proceedings of the 35th IEEE, volume 1. IEEE, 1996.

[55] Jeff Orkin. Applying Goal-Oriented Action Planning to Games. AI Game
Programming Wisdom, 2:217–228, 2003.

[56] Jeff Orkin. Symbolic representation of game world state: Toward real-time
planning in games. In Proceedings of the AAAI Workshop on Challenges
in Game Artificial Intelligence, pages 26–30. AAAI Press, 2004.

[57] Jeff Orkin. Three states and a plan: the A.I. of F.E.A.R. In Game Devel-
opers Conference, volume 2006. Citeseer, 2006.

[58] Jeff Orkin and Deb Roy. The restaurant game: Learning social behavior
and language from thousands of players online. Journal of Game Devel-
opment, 3(1):39–60, 2007.

[59] Christos Papadimitriou and John N. Tsitsiklis. The complexity of Markov
Decision Processes. Mathematics of Operations Research, 12(3):441–450,
August 1987.

139

[60] Laurent Péret and Frédérick Garcia. On-line search for solving markov
decision processes via heuristic sampling. In Ramon L. de Mántaras and
Lorenza Saitta, editors, The 16th European Conference on Artificial Intel-
ligence (ECAI 2004), pages 530–534, 2004.

[61] Josef Perner. Understanding the Representational Mind. The MIT Press,
Cambridge, MA, 1991.

[62] Joelle Pineau, Geoff Gordon, and Sebastian Thrun. Point-based value it-
eration: An anytime algorithm for POMDPs. In Proceedings of the Eigh-
teenth International Joint Conference on Artificial Intelligence (IJCAI’03),
pages 1025–1032, August 2003.

[63] S. Poslad. Ubiquitous computing: smart devices, environments and inter-
actions. Wiley, 2011.

[64] Martin L. Puterman and Moon C. Shin. Modified policy iteration algo-
rithms for discounted Markov decision problems. Management Science,
24(11), 1978.

[65] Earl D. Sacerdoti. A Structure for Plans and Behavior. PhD thesis, Stan-
ford University, 1975.

[66] M. Satyanarayanan. Pervasive Computing: Vision and Challenges. IEEE
Personal Communications, 8(4), 2001.

[67] C. F. Schmidt, N. S. Sridharan, and J. L. Goodson. The plan recognition
problem: An intersection of psychology and artificial intelligence. Artifi-
cial Intelligence, 11(1-2):45–83, August 1978.

[68] Alan H. Schoenfeld and Douglas J. Herrmann. Problem perception and
knowledge structure in expert and novice mathematical problem solvers.
Journal of Experimental Psychology: Learning, Memory, and Cognition,
8(5):484–494, 1982.

[69] Joel I. Seiferas, Michael J. Fischer, and Albert R. Meyer. Separating Non-
deterministic Time Complexity Classes. Journal of the ACM (JACM),
25(1):146–167, January 1978.

[70] David Silver and Joel Veness. Monte-Carlo Planning in Large POMDPs.
In Proceedings of the Conference on Neural Information Processing Sys-
tems (NIPS 2010), December 2010.

[71] Herbert A. Simon. Models of Man: Social and Rational. John Wiley &
Sons, Inc., New York, 1st edition / 1st printing edition, January 1957.

[72] Trey Smith and Reid Simmons. Heuristic search value iteration for
POMDPs. In UAI ’04: Proceedings of the 20th conference on Uncer-
tainty in artificial intelligence, pages 520–527, Arlington, Virginia, United
States, 2004. AUAI Press.

140

[73] Peter Stone, Gal A. Kaminka, Sarit Kraus, and Jeffrey S. Rosenschein.
Ad hoc autonomous agent teams: Collaboration without pre-coordination.
In Proceedings of the Twenty-Fourth Conference on Artificial Intelligence,
July 2010.

[74] R. Vanderbei. Sailing strategies: An application involving
stochastics, optimization, and statistics (SOS). Available via
http://orfe.princeton.edu/˜rvdb/sail/sail.html, 1996.

[75] Thomas J. Walsh, Sergiu Goschin, and Michael L. Littman. Integrating
sample-based planning and model-based reinforcement learning. In Pro-
ceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence
(AAAI-10), 2010.

[76] Henry W. Wellman. The child’s theory of mind. Learning, development,
and conceptual change. MIT Press, 1990.

[77] P. Xuan and V. Lesser. Multi-agent policies: from centralized ones to
decentralized ones. In Proceedings of the First International Joint Confer-
ence on Autonomous Agents and Multi Agent Systems, pages 1098–1105.
ACM, ACM Press, 2002.

[78] Judy York and Parag C. Pendharkar. Human-computer interaction issues
for mobile computing in a variable work context. International Journal of
Human-Computer Studies, 60(5), 2004.

141

142

APPENDIX

A Proof of Lemma 6.1

Lemma 6.1. Let π be ε0-optimal with ε0 ≥ 0. For all ε1 > 0, with probability at

least 1 − ε1,

|V∗(s) − Ṽπ
B,L(s)| ≤ ε0 + γLVmax + O

Vmax

√
ln(1/ε1)

B



Proof. By using triangle inequality we get

|V∗(s) − Ṽπ
B,L(s)| ≤ |V∗(s) − Vπ(s)| + |Vπ(s) − Vπ

L(s)| + |Vπ
L(s) − Ṽπ

B,L(s)|

with Vπ
L(s) = E(Xπ,L,i) for all i. We are going to bound each term on the right

hand side.

Firstly, since π is ε0-optimal, by definition,

|V∗(s) − Vπ(s)| ≤ ε0. (7.1)

Secondly, since the second term is the expected estimation error for Vπ due

143

to simulating π only for L steps, it is bounded as follows

|Vπ(s) − Vπ
L(s)| = E

 ∞∑
i=0

γiR(si, π(si))

 − E L−1∑
i=0

γiR(si, π(si))


= E

 ∞∑
i=L

γiR(si, π(si))


≤

∞∑
i=L

γiRmax = γLRmax

∞∑
i=0

γi =
γLRmax

1 − γ
= γLVmax (7.2)

Lastly, applying Hoeffding’s inequality on B i.i.d. and bounded values Xπ,L,i,

for all T > 0, we obtain

P(|Vπ
L(s) − Ṽπ

B,L(s)| ≤ T) ≥ 1 − 2 exp
(
−

2T 2B2

4V2
maxB

)
= 1 − 2 exp

(
−

BT 2

2V2
max

)

By setting ε1 = 2 exp
(
−

BT 2

2V2
max

)
, which is equivalent to T = Vmax

√
2
B

ln
2
ε1

, we

have

P
|Vπ

L(s) − Ṽπ
B,L(s)| ≤ Vmax

√
2
B

ln
2
ε1

 ≥ 1 − ε1 (7.3)

Combining 7.1, 7.2 and 7.3, we obtain the PAC estimation error of V̄π
B,L(s)

as presented by the lemma. �

B Proof of Lemma 6.2

Lemma 6.2. Consider SS with leaf nodes’ values being ε0-optimal, i.e., |V∗(s)−

VS S
0 (s)| ≤ ε0,∀s. We have

εS S ≤ TS S (H,C) +
γHε0

1 − γ
(7.4)

with TS S (H,C) =
2γHVmax

1 − γ
+

Vmax

(1 − γ)2

√
H
C

ln
kC
γ

.

144

The proof follows closely the analysis of SS by Kearns et al. [42] with free

variables being C,H and λ; the recitation is purely for completeness.

The estimation error comes from two sources of inaccuracy. The first is that

we use only a finite sample of size C to approximate the next state distribution.

The second is due to propagated error in the tree, i.e., instead of using true

optimal values V∗(s), we use the estimation from lower levels to estimate the

value of a node. In essence, the proof shows how the leaf error ε0 propagates to

the root with respect to C and H.

Step 1: PAC bound of limited sampling

Let us define an intermediate random variable U∗(s, a) that captures the in-

accuracy due to the limited sampling as follows

U∗(s, a) = R(s, a) +
γ

C

C∑
i=1

V∗(si),

where si are drawn from the next state distribution T (s, a). The next lemma by

Kearns et al. shows that with high probability, the difference between U∗(s, a)

and Q∗(s, a) is at most λ.

Lemma 7.1. For any state s and action a, with probability at least 1− e−λ
2C/V2

max

we have

|Q∗(s, a) − U∗(s, a)| = γ

∣∣∣∣∣∣∣ Es′∼T (s,a)
[V∗(s′)] −

1
C

∑
i

V∗(si)

∣∣∣∣∣∣∣ ≤ λ,
where si are drawn from the next state distribution T (s, a).

The proof is immediate from Chernoff-bound, and the lemma applies for any

of λ > 0.

Step 2: PAC bound of propagated error

Under SS algorithm, let Vn(s) be the estimated value of a state s at height n

145

(root is at height H) and Qn(s, a) that of pair (s, a). As such,

Qn(s, a) = R(s, a) +
γ

C

C∑
i=1

Vn−1(si),

where Vn−1(s) = maxa Qn−1(s, a). We set Q0(s, a) = V0(s) = Vlea f (s)∀s, a with

Vlea f being our ε-optimal estimation. Next, we define a parameter βn that will

eventually bound the difference between Q∗(s, a) and Qn(s, a).

Let λ be some positive number. Define the series βn recursively as β0 = ε0

and βn+1 = γ(λ + βn). Solving for βH, we obtain

βH =

 H∑
i=1

γiλ

 + γHε0 = λγ
1 − γH

1 − γ
+ γHε0 ≤

λ

1 − γ
+ γHε0 (7.5)

The next lemma shows that the error in the estimation at height n is at most

βn. Intuitively, the error due to finite sampling contributes λ, while the errors in

estimation at height n− 1 contribute βn−1. Discounted by γ, the error at height n

is then γ(λ + βn−1) = βn by definition.

Lemma 7.2. With probability at least 1 − (kC)ne−λ
2C/V2

max we have |Q∗(s, a) −

Qn(s, a)| ≤ βn and |V∗(s, a) − Vn(s, a)| ≤ βn.

Proof. The proof is by induction on n. It trivially holds for n = 0. Now, for

n ≥ 1

|Q∗(s, a) − Qn(s, a)| = γ

∣∣∣∣∣∣∣ Es′∼T (s,a)
[V∗(s′)] −

1
C

∑
i

Vn(si)

∣∣∣∣∣∣∣
≤ γ


∣∣∣∣∣∣∣ Es′∼T (s,a)

[V∗(s′)] −
1
C

∑
i

V∗(si)

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣ 1
C

∑
i

V∗(si) −
1
C

∑
i

Vn(si)

∣∣∣∣∣∣∣


≤ γ(λ + βn−1) = βn.

For the last inequality to hold, we require all C estimates to be good, for each

146

of the k actions. This means the probability of a bad estimate increases by a

factor of kC, for each n. By Lemma 7.2, the probability of a single bad esti-

mate is bounded by e−λ
2C/V2

max . Therefore the probability of some bad estimate is

bounded by 1 − (kC)ne−λ
2C/V2

max .

Denoting a∗ = argmaxa Q∗(s, a) and ã = argmaxa Qn(s, a), by definition we

have

V∗(s) = max
a

Q∗(s, a) = Q∗(s, a∗) ≥ Q∗(s, ã), and

Vn(s) = max
a

Qn(s, a) = Qn(s, ã) ≥ Qn(s, a∗), thus

V∗(s) − Vn(s) ≤ Q∗(s, a∗) − Qn(s, a∗) ≤ βn, (7.6)

Vn(s) − V∗(s) ≤ Qn(s, ã) − Q∗(s, ã) ≤ βn (7.7)

Due to the PAC bound on Qn, each of the inequalities 7.6 and 7.7 hold with

probability at least 1− (kC)neλ
2C/V2

max . Since |V∗(s)−Vn(s)| takes the larger value

between the two, we obtain that |V∗(s) − Vn(s)| ≤ βn with the aforementioned

probability. �

Effectively, the lemma shows that with high probability, the estimation error

for Q∗(s0, a) at the root is small.

Step 3: From PAC bound to Regret

The following Lemma (the proof is in [42]) links this PAC bound to the

regret of a stochastic policy’s expected value.

Lemma 7.3. Assume that π is a stochastic policy so that π(s) is a random vari-

able. If for each state s, the probability that Q∗(s, π∗(s)) − Q∗(s, π(s)) < λ

is at least 1 − δ, then the discounted infinite horizon return of π is at most

(λ + 2δVmax)/(1 − γ) from the optimal return, i.e., ∀s,V∗(s) − Vπ(s) ≤ (λ +

2δVmax)/(1 − γ).

147

Applying this lemma to the PAC estimation error βH of the root’s actions

leads to

V∗(s) − VS S (s) ≤
βH + 2Vmax(kC)He−λ

2C/V2
max

1 − γ
(7.5)
≤

λ

(1 − γ)2 +
γHε0

1 − γ
+

2Vmax

1 − γ
(kC)He−λ

2C/V2
max (7.8)

for all state s and any λ > 0.

By definition, εS S = maxs∈S |V∗(s) − VS S (s)|; therefore the inequality (7.8)

applies for εS S as well. Setting λ = Vmax

√
H
C ln kC

γ
and substituting this into the

inequality above, yields the posited bound. (QED)

C Using value function’s estimation in Belief Up-

date and Action Selection

CAPIR framework relies on subgoal optimal action values or their estimates

to reason about the lead agent’s intention and compute most assistive actions.

However, in real-time applications with large state-space subgoal MDPs such as

MMORPGs, approximate algorithms usually are not allocated enough time to

produce near-optimal estimates, which exposes the CAPIR engine to the risk of

inadequately assessing actions’ prospects. In this Section, we propose a tech-

nique that is used in CAPIR engine implementation to deal with this problem.

We use UCT and its behavior to motivate our solution, but a similar reasoning

can apply with any approximate algorithm.

C.1 Value estimation using UCT

As a recap, UCT guarantees to converge on choosing the optimal arm at the

root node. However, that does not mean that the value estimations of other arms

148

are close to their respective true value. Recall that at any point of time, UCT

guarantees to sample the most promising-looking arm exponentially more often

than the rest. As such, seemingly suboptimal arms are allocated just a small

fraction of the total number of rollouts, most of which are the results of random

sampling episodes. Moreover, the weighted averaging poses a great discrepancy

when compared with the true values because most of the episodes do not follow

the optimal traces.

Therefore, we cannot directly use UCT’s approximated values in our belief

update and action selection steps due to the large inaccuracy. The only piece

of information gained from UCT is a rough idea on whether an arm is optimal

or not based on the its ranking when compared with sibling arms; the ranking

criterion can be its sampling frequency or its estimated value. We can use this

ranking data to construct pseudo Q-values and thus human action probabilities

in the assistant’s planning.

C.2 Pseudo Q-value estimation

In designing heuristics, it is usually desirable to obtain an evaluation function

Ĥ(s0, a) for all state-action pairs (s0, a). For instance, in CAPIR, our Belief

Update and Action Selection operators require numerical estimates of the op-

timal Q values of each subgoal MDP. However, in many cases, we can only

get pseudo Q-value estimation instead, which is some source of information on

actions’ prospects but not in the form of Ĥ(s0, a), such as when

1. The estimated behavior is in the form of a policy. For instance, at any

state, we know a set of recommended actions to execute, but not their

values. Allowing the game designers to suggest suitable actions instead of

elaborating action values makes the process of designing heuristics much

more hassle-free or oftentimes, feasible at all.

149

2. The estimated Q-values only helps in telling apart the most rewarding ac-

tion but inaccurate preference among other actions. As presented above,

this is what happens with UCT; since it guarantees to sample the most

rewarding tree branch exponentially more often than the rest, badly per-

forming actions do not receive enough trials to establish a ranking order

between themselves. As a result, QUCT (s0, a) for all badly performing a

are worthless.

C.3 Belief Update with Pseudo Q-value estimation

We could replace the action probability P, which is computed using exact Q-

values, in the update operator by a binary function

P̂(ah|gi, s) =


βi

Z
if QUCT (ah, aai, s, gi) ≥ QUCT (aUCT

h , aUCT
ai , s, gi) − ε

1
Z

otherwise

with

• ah a lead agent (human) action and aai an assistant action,

• (aUCT
h , aUCT

ai) the most sampled arm (action pair) or one with highest esti-

mated value at root s in subgoal gi,

• ε some small positive number, and

• βi > 1 being the factor that the lead agent is more likely to take an action

that has the highest estimated value over other actions in subgoal i. Note

that different subgoals can have different values of βi, which can reflect

how obvious an optimal action in subgoal i is to the lead agent.

• Z being the normalizing term such that
∑

ah
P̂(ah|gi, s) = 1,∀i.

150

If the furnished piece of information is in the form of a policy, i.e., the set of

actions A∗ the lead agent is likely to execute in every state given his goal, we

can set P̂(ah|gi, s) =
β

Z for all actions ah ∈ A∗ and P̂(ah|gi, s) = 1
Z otherwise, in

each subgoal i.

The two-step belief update in Section 4.4.2 now goes as follows.

1. Belief drift due to Goal Change Model

Bt(gi|θt−1) =
∑

j

T (g j → gi)Bt−1(g j|θt−1) (7.9)

where T (g j → gi) is the switching probability from subgoal j to subgoal

i.

2. Bayesian update upon action observation

Bt(gi|at = ah, st, θt−1) = αBt(gi|θt−1)P̂(ah|gi, si,t) (7.10)

where α is a normalizing constant.

This technique of updating belief requires a longer history to infer the lead

agent’s intention switch since the situational urgency captured by the true action

value Q is not retained. Among bad moves, there could be further ordering as

there are usually one or a few moves that are deadly, and other mediocre moves

that do not lead to any progress; the technique ignores the action’s badness and

lumps all of them into the category of “suboptimal” actions. For instance, in

Collaborative Hunters, the human action to attack a wolf when it is nearby is

usually the best possible action; among the movement actions, those that go

away from the attackable wolf are usually not as good as those towards the

attackable wolf because they will allow the wolf some space to flee.

On the other hand, by disconnecting from the concept of action values, the

technique allows more flexibility in modeling the lead agent’s behavior. In the

151

previous chapters, the lead agent is assumed to be optimal at the subgoal levels

and his behavior is constructed by solving the resultant subgoal MDPs in which

the planner controls both players. This does not allows customization of the lead

agent’s behavior, unless the designers want to work on the reward function di-

rectly, which might lead to unexpected complications. It is easier and friendlier

to game programmers if the lead agent’s behavior can be described by script-

ing. As such, what is given to the belief update function at each state is a set of

possible actions that the designers consider reasonable or expectable under the

current circumstances; there is no information on what value the actions carry.

In many cases the concept of action “value” could be hard to define or solicited.

While the belief update process described in Section 4.4.2 depends heavily on

the exact Q function, this belief update technique detailed above can receive the

set of reasonable human actions and classifies them as approximately optimal.

The belief is updated accordingly using Formulas 7.9 and 7.10.

C.4 Action Selection with Pseudo Q-values

If the optimal Q values are available, the assistant chooses the action that maxi-

mizes its expected reward as follows

a∗assist = argmaxaai

∑
i

Bt(gi|θt)Q∗i (st, ah, aai)


Similarly to how Belief Update deals with UCT’s estimated values and policy-

based heuristics, we can replace Q∗ by Q̂ constructed as

Q̂i(st, ah, aai) =


ξi if QUCT (ah, aai, s, gi) ≥ QUCT (aUCT

h , aUCT
ai , s, gi) − ε

1 otherwise

with all variables as explained in the Belief Update section and ξi > 1.

152

D Game levels used for experiments











Figure D-1: Collaborative Hunters map layouts in Chapter 4.











Figure D-2: Sheep Farmer map layouts in Chapter 6.

153

E Performance Charts in Sheep Farmer

10
2

10
3

10
4

−5

0

5

10

15

Rollouts

Random

GA

FSSS

FSSS−Aux

SS

SS−Aux

UCT

UCT−Aux

(a) Level 1

10
2

10
3

10
4

−10

−5

0

5

10

15

Rollouts

Random

GA

FSSS

FSSS−Aux

SS

SS−Aux

UCT

UCT−Aux

(b) Level 2

10
2

10
3

10
4

−10

−5

0

5

10

15

Rollouts

Random

GA

FSSS

FSSS−Aux

SS

SS−Aux

UCT

UCT−Aux

(c) Level 3

10
2

10
3

10
4

−10

−5

0

5

10

Rollouts

Random

GA

FSSS

FSSS−Aux

SS

SS−Aux

UCT

UCT−Aux

(d) Level 4

10
2

10
3

10
4

−6

−4

−2

0

2

4

6

8

10

Rollouts

Random

GA

FSSS

FSSS−Aux

SS

SS−Aux

UCT

UCT−Aux

(e) Level 5

Figure E-3: SS, FSSS and UCT variants in Sheep Farmer with GoalAverag-
ing heuristic. The charted lines denote the average accumulated reward of the
algorithms in 200 experiments as function of planning time.

154

