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Abstract 

The pile group effect is an important factor affecting the performance of pile 

foundations and superstructure under earthquake loading.  While this topic has 

been widely studied over the past fifty years, most of the research was carried out 

using single piles or small pile groups.  However, the pile foundations for tall 

structures and buildings typically consist of a much larger number of piles spaced 

quite closely together.  Under such conditions, pile-soil-pile interaction effects 

during seismic excitation are likely to be significant.  To date, such interaction 

effects have not been systematically studied for large pile groups.    

In this study, the development of a parallel dynamic finite element program for 

nonlinear geotechnical analysis is first presented.  The program is then used to 

perform large-scale finite element analyses involving large piled foundation 

systems constructed in predominantly soft clay ground conditions subjected to 

earthquake excitation.     

The research comprises four major components: (1) the setting up of a network PC 

cluster and the development of a parallel finite element code for large-scale 

dynamic simulations; (2) the implementation of the key features for seismic finite 

element modelling, such as the hysteretic soft soil model with cyclic degradation 

and the use of solid elements with stress integration for calculating the pile 

bending moments; (3) parametric studies of the large-scale soil-pile-structure 

system leading to semi-analytical solutions for the maximum bending moments in 

the pile group under earthquake loading; (4) extended studies to examine the 
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influence of the superstructure, uneven soil stratigraphy and earthquake motion 

characteristics on the large-scale pile group effects. 

To perform the large-scale simulations, a PC cluster is set up using a high-speed 

local network to connect multiple multi-core personal computers.  Details of the 

network configuration and hardware specifications are presented. The 

development of the parallel dynamic finite element program is described, with 

emphasis on the choice of iterative solver, method of domain decomposition, and 

the use of message passing techniques for distributed memory computing.   The 

developed code was successfully tested on several large-scale models of varying 

sizes, yielding speed-up factors that attest to the computational efficiency and the 

high performance potential of this numerical tool.   

The finite element program is validated using measured data from centrifuge 

shaking table tests involving small 2x2 pile groups.  Also, the computed results are 

shown to compare favourably with those obtained from ABAQUS 3-D simulations 

of the same problem.  Following this, larger finite element models of 3x3 pile 

groups up to 9x9 pile groups are set up and analysed to study the effect of pile 

spacing and pile group size.  The computed results show that pile-to-pile 

interaction effects are significant up to a spacing of about nine diameters, while the 

effects of pile group size is less obvious although the larger pile group generally 

induces a larger response.   Finally, analyses are also carried out on a large-scale 

soil-pile-structure model with a 9x21 pile foundation that is representative of 

typical high-rise building flats and their foundations in Singapore.  The computed 
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accelerations, displacements and pile bending moments are discussed. 

Furthermore, comparisons of the computed raft accelerations and pile bending 

moments are also made with the results obtained using an equivalent linear elastic 

soil model and a simplified pseudo-static approach. 

Additional finite element analyses of the large-scale soil-pile-superstructure model 

are extended to study the influence of different pile size, soft soil layer thickness, 

soft soil stiffness, superstructure mass and peak ground acceleration. The 

influence of each factor on the pile foundation response is discussed. By processing 

the results using dimensional analysis and data fitting, three semi-empirical 

dimensionless expressions for estimating the maximum bending moments and the 

critical pile length are obtained.   Using these estimated moments and the critical 

pile length, together with the general trends of the computed bending moment 

profiles obtained from all the analyses, a simplified bending moment envelope is 

proposed for seismic pile foundation design. 

Additional issues related to the influence of the superstructure, presence of uneven 

soil geometries and different earthquake motions are considered, and their effects 

on seismic soil-pile foundation-structure response are examined.   

 

Key words: parallel finite element simulation, seismic interaction, pile 

foundation, amplification, bending moment 
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Chapter 1 Introduction 

1.1 Background 

Piles and pile groups are commonly used to support tall buildings founded on soft 

grounds and reclaimed land.  Under normal conditions, they may be subjected to 

lateral loads and moments due to wind loadings or structural eccentricity.  During 

an earthquake, additional bending moments are developed in the piles due to 

inertial loads applied by the superstructure to the pile head, as well as due to the 

response and deformation of the surrounding soil.  Both inertial loads and soil 

deformation are directly related to the ground acceleration developed during the 

seismic event.  

It is very difficult, if not impossible, to inspect the existing pile foundations that 

support many of the buildings and infrastructure in Singapore to assess if they 

have been adversely affected by the recent tremors arising from the far-field 

earthquakes in Sumatra.  The problem is further compounded by the interaction 

and reflection of stress waves between the soil and the piles, which creates a 

complex stress field that cannot be studied using simplified analytical approaches. 

In cities such as Bangkok and Jakarta, the problem is likely to be even more 

pertinent since the seismic hazard is greater. 

1.2 Pile Foundation Failures during Earthquakes 

Cases of damage and failure of piles during earthquake events have been noted. 

For instance, Mizuno (1987) studied 28 cases of serious pile foundation damage 
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during earthquake in Japan from the 1923 Kanto earthquake to the 1983 Nihonkai-

Chubu earthquake and classify the pile damage cases into five categories as due to 

soil lateral displacement, embankment movement, soil liquefaction, soil ground 

vibration and inertial forces from the superstructure. Meymand (1998) 

summarized pile performance in the past ten strong earthquakes, from 1906 San 

Francisco Earthquake to 1995 Hyogoken-Nanbu Earthquake, and divided the 

possible reasons causing pile foundation damage into six classes, as shown in 

Figure 1-1. 

In this study, based on the pile damage characteristics and position, the pile 

foundation failure cases are classified into five models and reviewed as following: 

(1) Bending or Shearing failure of pile head 

For loose, cohesionless saturated soils, the seismic vibration may induce 

liquefaction in the soil around the pile. In the case of cohesive soil, softening or 

stiffness degradation may occur, especially near the pile head. The loss of lateral 

soil support and large structural inertial loads could result in excessive bending 

moment and shear force at the pile head. During the 1962 Niigata Earthquake, pile 

bending damage under the NHK building were incurred due to liquefaction, as 

shown in Figure 1-2 (Yoshida and Hamada, 1991). In addition, pile shearing 

damage were also incurred under the Nigata Family Courthouse, as shown in 

Figure 1-3 (Hamada, 1991). In the 1978 Off-Miyagi Prefecture Earthquake, 

Sugimura (1981) noted that the most heavily damaged piles were those located 

around the structure’s perimeters. This suggests that rocking due to inertial loads 
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from the structure might have overstressed the piles. However, this may also be 

due to large pile group interaction effects which results in the perimeter piles being 

subjected to larger moments than the inner piles. 

(2) Bending failure at the soil layer interface 

Bending damage in piles has also been attributed to large fixed-end or soil support 

moment at and around the interface between hard soil and soft soil layers. After 

the 1964 Niigata Earthquake, Fukouka (1966) excavated piles under Yachiyo 

Bridge and found that precast reinforced concrete piles developed horizontal 

cracks along the length of the piles, as shown in Figure 1-4.  

(3) Pile cap failure 

Pile foundation damage has also been attributed to inadequate structural 

provisions at the pile-to-cap connection, which may render the pile-cap structure 

incapable of sustaining the additional axial forces, shear forces and bending 

moments from the pile during earthquake. This may in turn lead to the pile 

punching through or detaching from the cap. During the 1964 Alaskan Earthquake, 

the Kenai River Bridge collapsed with piles punched through concrete deck, as 

shown in Figure 1-5 (Ross et al., 1973). During the 1989 Loma Prieta Earthquake, 

the pile-supported Highway 1 bridge across the Struve Slough collapsed, as several 

of the piles punched through the roadway (Seed et al., 1990). During the 1995 Kobe 

Earthquake, a ramp structure at the Higashi-Kobe mainland ferry pier supported 

on pile foundations collapsed due to poor or nonexistent connection details 

between steel piles and cap (Sitar et al., 1995).  
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(4) Excessive horizontal displacement 

Local horizontal ground movement during seismic vibration may drive the pile 

foundation to experience excessive horizontal displacement and loss of 

functionality, especially for bridge piles located beside the rivers. During the 1906 

San Francisco Earthquake, lateral spreading caused a timber-pile supported 

railroad bridge to collapse, as shown in Figure 1-7 (Wood, 1908). Similarly, after 

the 1964 Niigata Earthquake, the pile extracted from the Showa Bridge foundation 

was found to have undergone about 1m permanent deformation, as shown in 

Figure 1-8 (Iwasaki, 1972a). Finally, during the 1964 Alaskan Earthquake, 

abutments laterally spreading toward the channel resulted in compression of the 

span driving the stringers through the bulkheads and arching the deck over the 

piers, at several railroad bridges between Portage and Seward, as shown in Figure 

1-9 (Mccullouch and Bonilla, 1967). 

(5) Excessive pile settlement or tensile pull-out 

If the soils along the length of the pile soften due to liquefaction or strain softening, 

the shaft friction may reduce significantly and could result in excessive settlement 

or tensile pull-out failure. For instance, during the 1964 Niigata Earthquake, the 

pile-supported Sakae-bridge settled 330cm due to liquefaction, as shown in Figure 

1-10 (Kawakami and Asada, 1966a). In another case, according to Girault (1986), 

25 buildings on mat foundations supported by friction piles experienced large 

settlements (up to 130cm) and tilting, during the 1985 Mexico City Earthquake. 

The mechanism for these settlements was relaxation of the negative skin friction 
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on the pile due to partial loss of shear strength during cyclic loading of the sensitive 

clays. 

1.3 Current design method and analysis state of pile foundation 

under earthquake loading 

1.3.1 Requirements and approaches in construction codes 

Based on the previous survey reports, most current building codes emphasize the 

need to design pile foundations for earthquake loading. However, in many cases, 

no specific design or analytical methods are given. 

Eurocode 8 (British Standards Institution., 2006) requires that the piles be 

designed to resist the inertia forces from the superstructure and kinematic forces 

arising from the deformation of the surrounding soil. It recommends that, in 

principle, the piles should be designed to remain elastic, but could be allowed to 

develop a plastic hinge at the pile head when the elastic design criterion could not 

be fulfilled. Clause 5.4.2(3) reads “Analyses to determine the internal forces along 

the pile, as well as the deflection and rotation at the pile head, shall be based on 

discrete or continuum models that can realistically (even if approximately) 

reproduce: the flexural stiffness of the pile; the soil reactions along the pile, with 

due consideration to the effects of cyclic loading and the magnitude of strains in 

the soil; the pile-to-pile dynamic interaction effects (also called dynamic “pile-

group" effects); the degree of freedom of the rotation at/of the pile cap, or of the 

connection between the pile and the structure.” Hence, Eurocode 8 acknowledges 

that the effects of soil-pile interaction on piles should be assessed for conditions 
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involving (a) sharply different soil stiffness, (b) the support of important structures, 

and (c) the presence of moderate to high seismicity. 

The 2009 International Building Code (IBC, 2009) does require the engineer or 

designer to consider soil-structure interaction. Chapter 18, "Soils and 

Foundations", provides minimal design guidance for foundations in seismic design 

categories C through F. Specific requirements for additional seismic reinforcement 

are given. In essence, the IBC partially addresses pile integrity under kinematic 

and inertial loading, but does not explicitly account for the influence of the pile 

foundation on the ground motions imparted to the superstructure. In chapter 16, 

“Structural Design Requirements”, both response spectrum and time history 

analyses are considered for seismic design; however, no provisions are provided to 

account for soil-structure interaction.  

The Japan Road Association’s Seismic Design Specifications of Highway Bridge 

(1996) adopts the lessons learnt from the 1995 Kobe earthquake, and addresses the 

classification of ground conditions and inertia forces applied to substructures. The 

code provides detailed guidelines for considering the decrease in bearing capacity 

of weak cohesive soil, besides the assessment of liquefaction potential (Unjoh and 

Terayama, 1998).  

The Chinese Building Design Code (GB2001) does not require consideration of 

soil-structure interaction in general seismic structural analyses except for high-rise 

reinforced concrete buildings with box-shaped foundations constructed in Type III 

or IV soft soils with 8 or 9 seismic fortification intensity. For the pile foundation 
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design, it requires the checking of horizontal and vertical bearing capacity of a 

single pile subjected to earthquake load. The characteristic value of the seismic 

bearing capacity can be increased by 25% for piles in non-liquefied sites and 

reduced for piles in liquefied sites.  Besides, the code requires that piles in 

liquefiable zones be installed with a minimum embedment into a stable layer, but 

it neglects the potential damage arising from soil stiffness contrast. 

The Indian Seismic Code Recommendations (IS-1893: 2002) do not mention soil-

structure interaction in design practice. According to the code, the lateral 

resistance of the soil shall be ignored for laterally loaded piles installed in 

liquefiable soils. The effect of soft soils is not considered in the code (Banerjee, 

2009).  

1.3.2 Current state-of-practice for seismic soil-pile interaction design 

Due to the unavailability of standardized and validated analysis techniques, 

practicing engineers usually ignore or greatly simplify the effects of soil-pile-

structure interaction in their analyses. The approach commonly adopted for 

dealing with this complex problem spans two disciplines, geotechnical and 

structural engineering. Depending on the background and training of the engineer, 

some simplification or idealization is typically made either for the structure or the 

soil.  For example, a geotechnical engineer might simply model a complex 

superstructure as an oscillator, while the structural engineer would often idealize 

the nonlinear soil-pile system as a set of springs. In doing so, the nonlinear 

interaction effects of the soil-pile-structure system are neglected. 
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Hadjian et al. (1992) conducted a national survey of design practices in the United 

States related to the seismic response of pile foundations. The reports revealed that 

geotechnical engineers usually provided load-deflection diagrams to structural 

engineers for structural analyses. Group effects were treated with empirical or 

elastic/static interaction solutions, and did not consider the dynamic nature of the 

problem.  

Several methods for the analyses of piles subjected to seismic loadings were 

presented at the ASCE technical workshop on the lateral response of pile 

foundations conducted in San Francisco in 1994. Two methods were outlined to 

analyze pile response due to earthquake loading: (i) imposing the maximum 

displacement from the free-field ground response on the pile and calculating the 

bending moment and shear force along the pile; (ii) using a nonlinear dynamic 

finite element method to model both piles and soil. Meymand (1998) commented 

that the first approach was conservative in that it does not account for soil-pile 

interaction.  

Kramer (1993) conducted an investigation on the seismic response of the I-90 

bridge foundations crossing the Mercer Slough in Bellevue, Washington. A series 

of field tests were conducted in which the pile head was subjected to static and 

dynamic loading, and the impedance of the pile group was estimated. Following 

that, three-dimensional finite element analyses were performed to estimate the 

pile bending moments. G&E Engineering System (1994) conducted a seismic study 

for the east span of the San Francisco-Oakland Bay Bridge. Although the 
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superstructure was analyzed with a high degree of nonlinearity, the foundation was 

simply simulated using elastic springs. Abghari and Chai (1995) attempted to 

couple the substructure and superstructure components of the soil-pile-

interaction problem by modeling a single pile extracted from a pile group that 

incorporated the superstructure contribution to that pile. A SHAKE91 (Idriss et al., 

1990) site response analysis was carried out, and the resultant free-field 

displacement time history was applied to nodal points of the dynamic soil-pile 

interaction code PAR.  

Recently, Puri and Prakash (2008) summarized the common methods currently in 

use for design of piles subjected to earthquake loading as the force or limit 

equilibrium analysis, and the displacement or p-y analyses.  

The preceding discussion reveals that the nonlinear seismic interaction among soil, 

pile foundation and superstructure is not adequately considered in current 

engineering practice. In contrast, very simple pseudostatic methods are used to 

determine the design parameters. The inertial interaction between structure and 

pile foundation, kinematic interaction between piles and soils, seismically induced 

pore-water pressure and nonlinear response of soil are neglected in the practical 

designs.  

1.3.3 Previous studies of pile foundations under earthquake loading 

The seismic soil-pile-structure interaction has been widely studied with different 

approaches, including laterally loaded pile tests in the field (Brown et al., 2001; 

Snyder, 2004), 1-g shaking table tests (Meymand, 1998; Shirato et al., 2008) and 
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centrifuge shaking table tests (Wilson, 1998; Kagawa et al., 2004), analyses using 

beam-on-dynamic Winkler foundation approach (Lok, 1999; Goh and O'rourke, 

2008), pseudostatic approach (Tabesh and Poulos, 2001; Elahi et al., 2010), and 

finite element analyses (Lu et al., 2005; Lu, 2006). 

Brown et al. (2001) and Agarwal et al. (2010) conducted full-scale field tests on 

single pile and small pile groups with lateral static loading and dynamic loading, 

in both soft cohesive and cohesionless soils.  Back-analysis of the measured results 

were performed to determine site-specific p-y curves and damping characteristics. 

Besides, the phenomenon of soil stiffness reduction due to pile group effect has 

been observed in the field tests, and is commonly accounted for using the concept 

of a p-multiplier. More details and literatures about lateral loading field tests are 

reviewed in section 2.2. However, in almost all the field tests, the pile is loaded at 

the pile head, which is distinctively different for the mechanism of seismic loading. 

Hence, the field tests could not impart the kinematic effect of soil movement on 

the piles.  

Meymand (1998) and Ueng (2010) performed soil-pile interaction tests on the 

shaking table with a laminar box under 1-g condition. The artificial and measured 

earthquake motion was fed into the model at its base and then allowed to freely 

transmit upward. This method could imitate the process and mechanism of seismic 

soil-pile-structure interaction, including the inertia interaction, kinematic 

interaction, nonlinear properties and radiation damping in the model system. 

More details and literatures about 1-g shaking table tests are reviewed in section 
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2.3.1. However, the shaking table tests have a principal drawback that they are 

conducted in 1-g condition and cannot capture the realistic soil stress field. 

In order to overcome the drawback of 1-g shaking table tests, Kagawa et al. (2004) 

and Ilankatharan (2008) conducted high-g shaking table tests using the 

geotechnical centrifuge, which could replicate the increased gravitational stress 

field and a more realistic soil strength profile (Banerjee, 2009). The test results 

revealed significant kinematic interaction between the soil and piles, inducing 

large bending moments at pile head.  More details and literature about centrifuge 

shaking table tests are reviewed in section 2.3.2. However, due to the space 

constraints associated with centrifuge testing, only single pile or small-scale pile 

groups have been studied.  

Due to the significant resources and length of time required for physical testing, 

especially field tests and shaking table tests, such approaches are not widely used. 

Hence, theoretical and numerical studies are often adopted. Lok (1999) and Varun 

et al. (2012) developed the beam-on-dynamic-Winkler-foundation method to 

simulate soil-pile interaction under earthquake loading. The nonlinear springs and 

dashpots are used to model near-field soil and replicate the kinematic interaction 

between the soil and pile. More details and literature about the beam-on-dynamic-

Winkler-foundation method are reviewed in section 2.4.1. However, inertia effects 

of the near-field soil are usually neglected in this method. Furthermore, this 

method ignores the pile-soil-pile interaction and pile group effect; hence it only 

could be used for single piles or large-spacing pile groups. 
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Based on the beam-on-dynamic-Winkler-foundation method, Tabesh and Poulos 

(2001) and Elahi et al. (2010) proposed a pseudostatic approach to analyze the 

seismic response of pile foundations by using static calculation. The kinematic 

forces from the soil movement and inertia forces from the superstructure are 

uncoupled and applied on the pile foundation separately. The kinematic and 

inertia effects are explicit and easy to discuss.  This method may be extended to 

pile groups via the use of p-multipliers. More details and literature about the 

pseudostatic approach are reviewed in section 2.4.2. However, the pseudostatic 

approach does not consider the dynamic characteristics of the pile foundation and 

the interaction between the pile foundation and the near-field soil. Besides, the 

evaluation of the spring stiffness coefficients and p-multiplier is still highly 

empirical. Hence, this method yields only approximate solutions for the maximum 

pile force and lateral displacement. 

The most rigorous approach to analyze seismic soil-pile-structure interaction is the 

finite element method. It could perform seismic soil-pile-structure simulation of 

pile groups in a fully coupled way, without carrying out separate or independent 

calculations of the superstructure or site response (e.g. Lu et al., 2005; Uzuoka et 

al., 2007). It is possible to simulate any arbitrary soil profile and to study three-

dimensional effects (e.g. Huang et al., 2004; Uzuoka et al., 2007). Both 

liquefaction of sand and softening of clay can be replicated with suitable soil 

constitutive models (e.g. Lu, 2006; Banerjee, 2009). The potential gap that may 
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form between the pile and soil also can be simulated with interface elements (e.g. 

Lu et al., 2005; Chang, 2007).  

All these previous studies are limited to single piles or small pile groups, with the 

exception of Lu (2006).   On the other hand, most high-rise buildings invariably 

have large pile foundations with dozens or hundreds of piles. Accordingly, the 

complexity of the problem will increase as the pile group size increases (Lu, 2006; 

Shirato et al., 2008).  Besides, in areas where soil profiles are variable or highly 

non-uniform over the length of the building, pile lengths will vary along the 

building and different parts of the same building may be subjected to different 

amplification and phase effects of the propagating wave, leading to differential 

motion. Hence, large-scale analyses that can capture the large pile group response 

are required. 

As previously stated, the response of large pile groups cannot be easily studied 

using either physical tests or the beam-on-dynamic-Winkler-foundation. The 

finite element method, theoretically, can model large pile foundations; however, 

large-scale simulation requires huge computational resources. Lu (2006) 

developed a parallel finite element program to simulate the pile-supported wharf 

system, which contains 16 piles with 364,800 degree-of-freedom. However, such a 

problem scale is still not enough to simulate a large pile foundation typically 

constructed to support a high-rise building. 

Furthermore, many issues related to the response of large pile group systems, such 

as pile group effects associated with pile spacing and the number of piles, are still 
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not well understood. According to Gohl (1991)’s shaking table tests, the pile-to-pile 

interaction is significant for pile spacings of up to six pile diameters, while Kagawa 

(1983a)’s study indicated that the pile-to-pile interaction may be significant up to 

thirty pile diameters. Brown et al. (2001) and Shirato et al. (2008) pointed out that 

the piles in larger pile groups generally experience larger bending moments 

compared to those in small pile groups. However, the relationship between the pile 

bending moment and the group size has not been discussed systematically. More 

details about previous studies of seismic pile foundation will be discussed in 

Chapter 2. 

1.4 Research objectives and thesis organization 

In this study, the large-scale problem of soil-pile group-structure interaction in soft 

clay during seismic events will be studied numerically, using a specially developed 

parallel finite element program which runs on a PC cluster. 

The main objective of the study is to provide an approach for analyzing large-scale 

pile foundations and their interaction with the surrounding soil and the supported 

superstructure under earthquake loading.  The analysis incorporates nonlinear soil 

properties, pile-soil-pile interaction in a group, as well as the inertia interaction 

between the pile foundation and superstructure.  

For carrying out the large-scale simulations, the whole calculated domain is 

required to reduce the lateral boundary influence while the small element size is 

required to simulate piles and surrounding soil, which will cause a huge finite 
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element model with large number of degree of freedom. At the meantime, a large 

number of time step due to the conflict of long-duration and small time steps is 

required for seismic simulation.  Hence, the calculation work is a big challenge to 

large-scale finite element simulation for seismic soil-pile foundation interaction, 

which is beyond the capacity of normal personal computers. The parallel 

computation is necessary.  In this study, a parallel nonlinear finite element 

program for dynamic analysis was developed and a network cluster of personal 

computers was set up which allows the code to be run on distributed memory.  In 

this way, it is possible to circumvent or reduce the time and memory constraints 

that have hindered the analyses of large soil-pile-structure systems involving more 

than a million degrees of freedom, short of doing so on a supercomputer.   

In addition, based on the results from the large-scale analyses, the research also 

seeks to develop a rational framework for designing pile foundations under seismic 

loading. 

This PhD thesis consists of seven chapters. Chapter 2 reviews the previous studies 

for seismic soil-pile interaction. Through a detailed discussion of current literature, 

it will be demonstrated that more research is needed on large-scale soil-pile 

interaction. 

Chapter 3 describes the software and hardware development needed to carry out 

the large-scale numerical analyses.  The details of the nonlinear finite element 

program for the dynamic analysis of geotechnical problems are presented, with 

special focus on the parallel features and how they are implemented.  The 
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specifications and set-up of the networked PC cluster are also discussed.  The 

performance and efficiency of the parallel finite element code is examined by 

comparing its results and computational performance with those obtained using 

the commercial software ABAQUS.  

Several issues related to the modeling of seismic soil-pile-structure problems are 

discussed in Chapter 4. These include the soil constitutive model, the method of 

simulating the pile, and the lateral boundary conditions for simulating free-field 

soil response at a distance from the structure.  With these implementations, the 

finite element program is then validated using centrifuge test measurements.  

Subsequently, pile group effects arising from pile spacing and pile group size are 

discussed.  Finally, a large-scale finite element model of a soil-pile-structure 

system is set up, analyzed and the results discussed and compared with those 

obtained using a linear elastic dynamic analysis and a pseudostatic analysis. 

A comprehensive suite of parametric studies is performed in Chapter 5 to study the 

influence of soft clay depth, pile diameter, structural mass, soil stiffness and peak 

ground acceleration on the pile foundation response.  Using the results of the 

parametric studies, a framework is proposed for estimating the maximum bending 

moments at both the pile head and the lower interface between the clay and the 

underlying hard soil.  An expression for estimating the depth of the pile inflection 

point is also proposed. 

In Chapter 6, further analyses are carried out to study the influence of the 

superstructure’s natural period, uneven soil stratigraphy, and the earthquake types.   
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Finally, some important conclusions and findings are presented in Chapter 7, and 

recommendations are made for further studies in this area.   
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Figure 1-1 Potential failure modes for pile group foundations subjected to seismic 

shaking (Meymand, 1998) 

 

Figure 1-2 Pile damage due to bending, at (a) Niigata Family Court-house and (b) 

NHK Building during the Niigata Earthquake (Hamada, 1991) 
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Figure 1-3 Pile damage due to shearing, at Niigata Family Courthouse during the 

1964 Niigata Earthquake (Hamada, 1991) 

 

Figure 1-4 Cracked Precast Reinforced Concrete Piles from Yachiyo Bridge during 

the 1964 Niigata Earthquake (Fukuoka, 1966) 
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Figure 1-5 Placer River main crossing. (a) Looking north at bridge; stringers and 

deck have collapsed to stream-bed, (b) Lateral displacement of 

superstructure; concrete deck penetrated by timber piles (Ross et al., 

1973) 

 

 

Figure 1-6 Pile damaged due to excessive bending moment induced by 

superstructure inertial forces during the 1995 Kobe Earthquake 

(Tokimatsu et al., 1996) 
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Figure 1-7 Collapse of timber pile supported railroad bridge at Moss Landing due 

to lateral spreading during the 1906 San Francisco Earthquake 

(Wood, 1908) 

 

Figure 1-8 Collapse of Showa Bridge due to large lateral deformation during the 

1964 Niigata Earthquake (Iwasaki, 1972b) 



Large-scale Finite Element Simulation of Seismic Soil-Pile foundation-Structure 
Interaction 

 

22 
 

 

Figure 1-9 Net compression or extension (in inches) versus length of bridges (in 

feet) (Mccullouch and Bonilla, 1967) 

 

 

 

Figure 1-10 Damage of Sakae Bridge due to excessive settlement during the 1964 

Niigata Earthquake (Kawakami and Asada, 1966b) 
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Chapter 2 Previous Studies on Seismic Soil-Pile 

foundation-Structure Interaction 

2.1 Introduction 

Besides post-earthquake surveys, other approaches have also been used to study 

seismic soil-pile-structure interaction, including field tests, laboratory tests and 

numerical simulation. These approaches will be reviewed in the first part of this 

chapter. Since this study focuses on the effects of earthquakes on pile groups, 

previous works on pile groups will be examined in more detail herein. Several 

issues related to earthquake effects on pile group will then be summarized 

specifically.  

2.2 Full-scale Field Tests 

As summarized in Table 2-1, numerous static, cyclic and dynamic field tests on pile 

groups have been conducted (e.g.  Scoot et al., 1982; Brown et al., 1987; Crouse 

and Cheang, 1987; Blaney and O'neill, 1989; Lam and Cheang, 1995; Rollins et al., 

1998; Rollins et al., 2003; Snyder, 2004). Most of the full-scale pile tests were 

conducted to determine the stiffness and damping characteristics of pile and soil 

by the application of dynamic loading on the pile head, rather than to assess pile 

response with earthquake excitation from bedrock. None of the field tests 

replicated earthquake loadings since the dynamic loads are usually applied at the 

pile head, the only exception being Rollins et al. (2005), who used shallow-buried 

explosives. Neither of these types of loading represents earthquakes. In earthquake 
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situation, the seismic waves propagate upwards from the bedrock causing motion 

in the entire soil layer. As Banerjee (2009) noted, the soil around the piles does not 

just support the piles, they also exert inertial loading on the piles. Pile head loading 

cannot replicate this effect. 

Secondly, the pile groups tested are generally quite small, typically 3x3 or less. This 

is not surprising since the amount of energy needed to excite larger pile groups is 

likely to be prohibitively large. These two limitations underline the two major 

difficulties of conducting field tests on piles for earthquake response, namely 

difficulty in simulating bedrock excitation and supplying enough energy to excite 

large pile groups. Finally, large-scale field tests require significant cost, time and 

effort. Hence, the number of parameters which can be varied is usually limited. 

2.3 Shaking Table Pile Tests 

Shaking table test of model piles is a useful approach to understand soil-pile 

interaction effects under earthquake loading (Meymand, 1998; Boulanger et al., 

1999; Kagawa et al., 2004; Yao et al., 2004; Ilankatharan et al., 2006; Chang, 2007; 

Ilankatharan, 2008; Shirato et al., 2008; Banerjee, 2009), in which pile 

foundations with structures could be easily constructed and tested. Furthermore, 

both kinematic and inertial interaction might be studied. However, the 1-g shaking 

table tests have several principal limitations, including the difficulty to fully satisfy 

all scale modelling criteria, replicating realistic soil stress fields, and the boundary 

effects of test containers (Meymand, 1998). In addition, because of the limitation 



Chapter 2 Previous Studies on Seismic Soil-Pile Group-Structure Interaction 

 

25 
 

of space, shaking table tests are often limited to testing single piles or small pile 

groups. 

2.3.1 1-g Shaking Table Pile Tests 

Large-scale 1-g shaking table tests have some advantages over field tests. Firstly, 

they can reasonably replicate the seismic interaction between soil and piles. The 

specimens are excited from the base which could reproduce the earthquake 

bedrock excitation. The instrumentation can be installed more readily. As 

summarized in Table 2-2, numerous 1-g shaking table studies have been conducted 

on pile groups (e.g. Mizuno et al., 1984; Stanton et al., 1988; Gohl, 1991; Kagawa 

et al., 1994; Makris et al., 1997; Meymand, 1998; Jakrapiyanun, 2002; Tokimatsu 

et al., 2005; Shirato et al., 2008; Chau et al., 2009; Ueng, 2010). However, it is 

also well-recognized that 1-g model tests cannot replicate the stress levels 

encountered in a large-scale prototype. In particular, for earthquake simulation, 

inertial effects are likely to be unrepresented in 1-g models. To see why this is so, 

consider a 1/Nth-scale 1-g model. The volume, and thus the mass of the model, is 

1 𝑁3⁄  times that of the prototype. On the other hand, overburden effective stress 

level in the model is only 1/N times that of the prototype. Assuming that modulus 

varies as the square root of the effective stress, model modulus is 1 √𝑁⁄  times of 

the prototype. Hence, the modulus decreases at a slower rate than the mass of the 

model as the scale factor N is increased, and inertial effects are usually under-

represented in a reduced scale 1-g model. For this reason, soil behavior is unlikely 

to be representative of that in a prototype. 
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In order to reduce the influence of scale factors, most 1-g shaking table tests used 

large-sized shaking table and container, so that small-scale factors can be 

employed. For example, the soil specimen in Shirato et al. (2008)’s test was 3.1m 

in height, and the sand layer in Tao et al. (1998)’s test was over 5m in height. 

However, while large-sized shaking table tests might be suitable for sandy soil, they 

present some problems when used for studying clay response. Depending on its 

permeability, the consolidation time for clay in a large container may be very long, 

taking up to several years in some cases. In some cases, a large pre-load may be 

applied to speed up the consolidation (e.g. Meymand, 1998).  However, once the 

consolidation load is removed, the clayey soil will swell.  When this happens during 

the pile tests, the soil is in the process of swelling, rather than a state of equilibrium. 

This gives rise to the difficulty of defining a representative state of the stress during 

the test, as pointed out by Meymand (1998). It is a well-recognized problem with 

large-size laboratory testing, and highlights the importance of good quality control 

of the models (Kagawa et al., 2004). 

Even with large-size 1-g shaking tables, the number of piles which can be installed 

in the group remains small owing to the difficulty of constructing large pile groups, 

especially in a confined space. Most pile groups in 1-g shaking table tests are 2x2 

piles (e.g. Mizuno et al., 1984; Meymand, 1998; Tokimatsu et al., 2005; Chau et 

al., 2009) and 3x3 piles (e.g. Li et al., 2007; Shirato et al., 2008). It appears that 

the largest reported pile group used in a 1-g shaking table test was 6x6 piles (Sakajo 

et al. (1995)). However, Sakajo et al. (1995)’s tests were conducted in sandy soil 
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and his focus on pile group resistance to liquefaction. Moreover, group size effects 

associated with a much larger pile group, e.g. more than 100 piles, was not 

investigated.   

2.3.2 Centrifuge Shaking Table Pile Tests 

Compared with field test and large-scale shaking table test, centrifuge testing 

requires much fewer resources. It’s also easy to reproduce a geostatic stress 

gradient in the soil specimens that is representative of prototype conditions. 

Furthermore, clay beds in the centrifuge tests can reach a state of geostatic 

equilibrium under the elevated g-level within a reasonably short time of between 1 

to 2 days.  This method is widely used for earthquake studies (e.g. Gohl, 1991; 

Wilson, 1998; Boulanger et al., 1999; Curras et al., 2001; Kagawa et al., 2004; 

Chang, 2007; Ilankatharan, 2008; Banerjee, 2009), as summarized in Table 2-3.  

However, most of these tests were conducted on sandy soils. The notable 

exceptions are Curras et al. (2001) who tested pile groups in soft clay bed overlying 

sand and Banerjee (2009) who tested widely spaced 2x2 pile groups in soft clay 

beds. However, Banerjee (2009)’s focus was on single piles, and his widely spaced 

piles connected to a stiff raft were configured essentially to enforce a fix-head 

condition, which is otherwise very difficult to realize for single piles in model tests.  

Owing to the limited space in a centrifuge model, which is usually even smaller 

than that of a 1-g shaking table model, only small pile groups can be tested. This 

constraint is particularly acute if the pile groups are to be kept sufficiently far from 

the sides of the container to minimize boundary effects. For example,  the 
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centrifuge tests reported by Curras et al. (2001) were based on small 3x3 pile 

groups.  The centrifuge measurements were compared with those obtained from 

dynamic beam on nonlinear Winkler foundation analyses.  Apart from adopting a 

p-multiplier of 0.7 to account for pile group effects, following Brown et al. (1988), 

there was no discussion on how the seismic pile responses were affected by the 

group effects.   

2.4 Theoretical and Numerical Studies 

The foregoing review of previous experimental work highlighted the difficulties of 

studying seismic-soil-pile interaction using field and laboratory tests. Field tests 

are often limited to dynamic pile load tests applied through the pile heads or pile 

caps. These are not exactly seismic soil-pile interaction tests. The pile groups 

studied are also relatively small owing to the limited amount of energy which can 

be supplied. Laboratory 1-g and high-g shaking table tests, on the other hand, do 

not suffer from energy limitation since the sizes of the models are much smaller 

than those in field tests. However, they do suffer from limited working space. 1-g 

model shaking tables are often larger than centrifuge-mounted shaking tables, but 

1-g models are also correspondingly larger because of the necessity to increase 

model size in order to reduce scale distortion. For all these reasons, field and 

physical model tests on pile groups with more than about 9 piles are very rarely 

done. As a result, some researchers have resorted to other means of studying 

seismic soil-pile interaction problems using analytical and numerical approaches.  
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In this section, a review of the key theoretical and numerical studies related to 

seismic soil-pile interaction is presented. 

2.4.1 Beam-on-Dynamic-Winkler-Foundation Approach 

The beam-on-Winkler foundation approach has been used extensively for static 

and dynamic modelling of soil-pile interaction. A common variant of this is the use 

of the p-y relations, first proposed by Mcclelland and Focht (1956). They employed 

triaxial tests to estimate the subgrade reaction modulus of the soil surrounding the 

pile at various depths. Subsequent studies which used this approach are 

summarized in Table 2-4. 

For seismic soil-pile analysis using the beam-on-Winkler foundation approach, the 

soil around the pile is divided into the far-field and near-field. The far-field soil 

behaviour is simulated assuming the earthquake motion at the bedrock is 

transmitted through the soil as vertically propagating shear waves under free field 

conditions, that is, the pile is not considered. For a simple elastic medium, such 

free-field motion could be calculated analytically based on the theory of one-

dimensional S-wave propagation.  For more complex problems involving 

nonlinear soil behaviour, computer programs such as SHAKE91 (Idriss and Sun, 

1992), SRANG (Kagawa, 1980) and DEEPSOIL (Hashash et al., 2001) can be used. 

The near-field soil, whose motions are affected by the pile, is modelled using 

springs or spring-dashpot assemblies.  The pile is modelled as a series of beam 

elements.  The motion of pile and simplified superstructure could be calculated 

using the finite difference method (e.g. Matlock et al., 1978; Kagawa, 1983b) or 
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finite element method (e.g. Badoni and Makris, 1996). The main difference among 

these studies lies in the determination of the spring and dashpot properties. 

In the early days, only linear elastic springs were used to model the near-field soil 

(e.g. Meem et al., 1937).  While such elastic parameters are relatively simple and 

easy to determine, such an approach was too simplistic for characterizing the 

complex nonlinear nature of soil behaviour. Later, an assemblage of nonlinear 

springs and linear dashpots was used to represent the inelastic soil supports (e.g. 

Matlock et al., 1978). This was then followed by the use of nonlinear 𝑝 − 𝑦 curves 

derived from lateral pile head loading tests or tri-axial tests to simulate the 

stiffness of near-field soil.  The results from such analyses were compared with 

measurements from shaking table tests (e.g. Kagawa, 1983b; Nogami et al., 1992; 

Kavvadas and Gazetas, 1993; Chacko, 1995). More recently, elastic-plastic springs 

in parallel were used to reproduce soil hysteresis, shear modulus degradation and 

the gap formation between soil and pile (Lok, 1999).  

However, there are still several disadvantages related to the beam-on-dynamic-

Winkler-foundation approach. These are as follows: 

(1) The spring or spring-dash assembly works individually and cannot 

reproduce the interaction between the different soil layers.  

(2) The existing model captures the kinematic effect of the near-field soil on the 

pile response, but does not account for the inertial loading on the pile due 

to soil motion.  
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(3) The approach was developed based on single pile response, and hence could 

not account for pile group effects under earthquake loading. Pile group 

analysis is typically carried out using the equivalent pier concept, in which 

the pile group is modelled as a single pile whose stiffness is scaled by the 

number of piles in the group (e.g. Lok, 1999). The reduction of soil 

resistance due to soil-pile interaction is incorporated into the method using 

p-y efficiency factors. 

2.4.2 Pseudostatic Approach 

The pseudostatic approach (e.g. Castelli and Maugeri, 2009; Elahi et al., 2010) is 

essentially an extension of the beam-on-Winkler-foundation approach, wherein 

free-field soil displacement is first computed, often using a one-dimensional base 

excitation code such as SHAKE91 (Idriss and Sun, 1992). The instantaneous 

maximum displacement profile obtained from SHAKE91 is then applied to the 

free-field nodes of the soil springs and dashpots, with the nodes at the other end 

connected to the beam elements representing the pile. The static pile 

displacements, bending moments and shear forces are then calculated based on 

the prescribed displacements.  Pile group effects are usually accounted for using p-

multipliers or efficiency factors. The pseudostatic approach can, to some extent, 

reveal the mechanisms of seismic interaction among soil-pile-structure, and has 

been widely studied (e.g. Byrne et al., 1984; Abghari and Chai, 1995; Wilson, 1998; 

Tabesh and Poulos, 2001; Liyanapathirana and Poulos, 2005; Goh and O'rourke, 

2008; Castelli and Maugeri, 2009; Elahi et al., 2010). Several such studies are 

summarized in Table 2-6.  
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One of the main issues with this approach is the evaluation of the spring stiffness 

coefficients. Several methods were proposed to determine these coefficients, such 

as the static Mindlin’s solution (e.g. Tabesh and Poulos, 2001), modified API’s 

(1993) recommended p-y curves (e.g. Wilson, 1998), horizontal subgrade reaction 

(e.g. Castelli and Maugeri, 2009), theoretical idealization of the elastic-perfectly-

plastic model (e.g. Elahi et al., 2010). All these methods are based on the pile 

response when subjected to lateral loading at the pile head. In some studies, the p-

y spring values are back-deduced from shake table tests (e.g. Rovithis et al., 2009). 

However, as discussed previously, inertial effects from the soil are likely to be 

under-represented in 1-g shake table tests. Hence, the p-y spring constants from 1-

g shake table tests may not be representative of large-scale prototype behaviour. It 

is well-recognized that experimentally fitted p-y curves are much more 

representative of real situations than idealized or theoretical p-y curves. In static 

pile load tests under field conditions, the p-y curves can be readily obtained from 

lateral loading applied at the pile head. Under earthquake conditions, pile response 

is affected by loadings from super-structural as well as soil kinematic and inertia 

effects.  As the latter contributions may occur over large segments of the pile length, 

earthquake loading conditions cannot be adequately simulated by merely head-

loading a pile via a shaker at the pile top (Banerjee, 2009). Hence, earthquake p-y 

curves are not readily deduced from field tests. Instead, they are often obtained 

from shake table tests. In such cases, scale distortion may, in some cases, limit the 

usefulness of such p-y curves. 
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The inertial effects of the soil are also difficult to evaluate. In fact, it is uncertain if 

they are caused by the far- or near-field soil. Banerjee (2009) showed that ground 

surface motion of the soil in the vicinity of the pile is different from that of either 

the pile or the free-field soil. Similarly, p-multipliers are often adopted from static 

scenarios (e.g. Brown et al., 1987) or else back-deduced from model tests (e.g. 

Shirato et al., 2008). 

2.4.3 Finite Element Method 

The finite element method provides a powerful, rigorous, and flexible approach for 

seismic soil-pile-structure interaction problems. It can account for seismic soil-

pile-structure interaction and pile group effects in a fully coupled way, without 

requiring independent calculations of superstructure or site response (e.g. Lu et 

al., 2005; Uzuoka et al., 2007). In principle, it is possible to simulate any arbitrary 

soil profile and to study three-dimensional effects (e.g. Huang et al., 2004; Uzuoka 

et al., 2007). Both liquefaction of sand and softening of clay could be reproduced 

with suitable soil constitutive models (e.g. Lu, 2006; Banerjee, 2009). The 

potential gap between pile and soil also could be simulated with interface elements 

(e.g. Lu et al., 2005; Chang, 2007). Hence, this method has been widely used in 

research and practical design (e.g. Ahn and Gould, 1989; Guin and Banerjee, 1998; 

Lok et al., 1998; Huang et al., 2004; Lu et al., 2005; Lu, 2006; Chang, 2007; Huang 

et al., 2008; Lu et al., 2008; Banerjee, 2009; Chau et al., 2009; Mahboubi and 

Panaghi, 2010), and several typical cases are summarized in Table 2-5.  
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In practice, however, there are still several limitations associated with the use of  

the finite element method. First, it uses a finite computation domain to simulate 

the semi-infinite soil media, which will introduce several truncated surfaces at the 

boundaries of the model. Each truncated boundary surface will reflect or absorb 

vibrational energy, which may distort the calculations and adversely affect the 

results. In order to overcome this problem, Estorff and Firuziaan (2000) used 

boundary elements on the boundaries of the finite element domain, to simulate a 

semi-infinite medium. This approach was also adopted by Rizos and Wang (2002).  

Kim et al. (2000) formulated a three-dimensional transmitting boundary to reduce 

the influence of the reflected energy from lateral boundaries on the foundations. A 

similar absorbing boundary was proposed by Komatitsch and Tromp (2003). 

Javan et al. (2008) extended Kim’s work to a new transmitting boundary for the 

dynamics saturated porous media.  In another way, Wang et al. (2009) used an 

artificial boundary with spring and dashpots to analyze saturated porous media. 

However, all these artificial boundary approaches are frequency-dependant, and 

cannot absorb or transmit all passing energy in the time domain calculation. To 

date, there are still no transmitting boundaries which have good broadband energy 

absorption characteristics. 

Another shortcoming of the finite element method is the large amount of 

computational resources required for large-scale problems involving big soil 

domains and complex foundations. As this method involves the calculation of the 

displacement degrees of freedom for all the nodes and strains/stresses for all the 
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integration points in the model at each time step, it may result in a long 

computational time when carrying out dynamic analysis involving thousands of 

time steps or more.  Also, a very large memory is needed to store the temporary 

data generated during the calculations, especially for three-dimensional 

simulation and solid-fluid coupling simulation. In the early days of such 

computations, only small models with coarse meshes could be calculated (e.g. 

Trochanis et al., 1988), as shown in Figure 2-7. Maheshwari et al. (2004b) 

proposed a successive-coupling incremental scheme to reduce the calculation size, 

as shown in Figure 2-9.  In this method, the motions at the pile cap and the forces 

produced from the column bases are transmitted from one substructure to another 

when moving to the next time step. In order to simulate larger models, a parallel 

computational approach was incorporated into the finite element method. In this 

approach, the whole computation was divided into smaller parts and distributed 

to multi processors or computers (Lu, 2006). However, the maximum number of 

degrees-of-freedom in Lu (2006) studies was only about 364,800, because he used 

a sparse matrix solver which was not readily parallelizable. 

The third drawback of the finite element method is that the results may depend 

significantly on the details of the algorithm such as the shape function, locations 

of integration points, integration quadrature, time-stepping method, strain and 

stress-retrieval algorithm as well as error correction algorithm, amongst others. 

These may not be transparent to the users, especially when using commercial 

software whose proprietary source codes are not made available. Hence, when 

using commercial software as a black box, one should not take for granted the 
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robustness of the computations and correctness of the results. For this reason, 

finite element computations often require validation before practical use.  For 

example, Lu et al. (2005) used shaking table tests and Banerjee (2009) used 

centrifuge tests to evaluate their finite element calculations.  

2.5 Earthquake research at the National University of Singapore  

To address the limitation associated with the above design approach, and to better 

understand the fundamental mechanisms underlying seismic soil-pile-raft 

interaction, a research program was initiated at the National University of 

Singapore (NUS) in the late 1990s to study the seismic response of soft soil deposits 

and their interaction with foundation systems.  Initial studies were carried out 

using sand and clay beds without any piles or structures present (Niu, 1997; Zhao, 

1999) 

Banerjee (2009) extended this work by carrying out experimental and numerical 

studies on the seismic response of pile-raft foundations constructed in soft soils.  

His work began with the laboratory characterization of the dynamic properties of 

the Malaysian Kaolin clay used in the experiments, focusing on the strain-

dependent modulus reduction behavior, the strain-dependent damping ratio and 

the degradation effects under repeated cycling.  A strain-dependent hyperbolic-

hysteretic soil model was then proposed which incorporates the observed features 

of strain-softening and cyclic degradation.    
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Centrifuge experiments were then carried out by Banerjee to evaluate the seismic 

response of single piles installed in Kaolin clay beds.  In his experiments, the piles 

were arranged in a 2×2 layout and a connected to a raft with prototype dimensions 

of 12.5m × 7.5m × 0.5m.  To minimize interaction effects between the piles, the 

pile spacings were set at 11 and 6 diameters in the directions parallel and 

perpendicular to the strongbox shaking respectively.  The results thus obtained 

may be considered representative of a single pile case.  The loadings from 

superstructure were also considered by adding plates on top of the raft. 

Banerjee (2009) also carried out 3-D finite element analyses that incorporate the 

hyperbolic hysteretic soil model to model the centrifuge experiments of the pure 

clay beds, as well as those containing the pile-raft systems.  The results showed 

that the measured raft response and the bending moments in the pile could be 

reasonably captured by the 3-D analyses.  The validated 3-D model was then used 

to carry out additional finite element analyses in which different soil, pile and 

earthquake parameters were systematically varied.  The numerical results were 

compiled into a database for calibrating a semi-empirical relationship which 

estimates the maximum bending moment in the pile based on a series of 

dimensionless terms.  

The piles used by Subhadeep (2009) have prototype diameters of 0.9m and pile 

lengths of 13m.  Ma (2010) carried out additional centrifuge tests to examine the 

performance of more flexible piles with 0.5m diameters.   
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2.6 Summary of Pile Group Effects under Earthquake Loading 

Although pile groups have been quite widely studied in the literature (e.g., Blaney 

and O'neill, 1989; Toki et al., 1991; Sakajo et al., 1995; Meymand, 1998; Rollins et 

al., 1998; Lu, 2006; Uzuoka et al., 2007; Banerjee, 2009; Basile, 2010), the 

discussion about pile group effects under earthquake loading is still quite scarce.  

Hence, there are still many unclarified issues related to earthquake effects on pile 

groups, especially for large-scale pile groups involving 100 piles or more. 

Only small pile groups have been studied to date. As previously stated, field and 

model tests are limited to small pile groups, due to input energy and container size 

constraints. Most finite element studies to date, with the exception of Lu (2006), 

are also limited to small groups owing to time and resource constraints. 

Pseudostatic approaches are more computationally economical, but require some 

assumptions with regard to the p-y values and p-multipliers, or the back-deduction 

of such information from model tests. P-multipliers remain controversial in their 

usage and validity.  Previous studies also indicated that group interaction effects 

are more pronounced for pile groups with a larger number of piles (e.g. Kagawa, 

1983c). While small pile groups may be commonly found in bridge piers and 

highway infrastructure, large high-rise buildings are often supported on large base 

slabs with tens or hundreds of piles.  

The influence of pile spacing on group effect is still unclear. Kagawa (1983a) 

performed a series of parametric studies using integral equation method (Kagawa, 

1981) and found that pile-to-pile dynamic interaction was pronounced at spacing 
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ratios of up to 30 for the lateral vibration mode. However, Gohl (1991) conducted 

1-g shaking table tests and centrifuge shaking table tests on 1x2 pile group with 

different pile spacings and orientations. He reported that, for inline shaking, pile-

to-pile interaction effects are significant within a spacing of three pile diameters, 

dissipate rapidly from three to six diameters, and can be neglected beyond six pile 

diameters. For out-of-line shaking, interaction effects are only significant within 

three pile diameters.  

Other pile-group related research considered only a fixed pile spacing in the group 

and did not examine the effect of spacing (e.g., Meymand, 1998; Wilson, 1998; 

Dungca et al., 2006; Lu, 2006; Ilankatharan, 2008; Banerjee, 2009). 

Many high-rise buildings have lengths or width of up to 50m. For instance, the flats 

built by the Housing and Development Board (HDB) in Singapore for public 

housing are often in the form of long slabs.  The wavelength of the shear wave in 

soft marine clay is typically in the order of about 70m. In areas where soil profiles 

are variable over the length of the building, pile lengths will vary along the building 

and different parts of the same building may be subjected to different amplification 

and phase excitations of the wave, leading to differential motion along the length 

of the building. Such whole-building response has not been well-studied. Similarly, 

foundations of buildings with more complex footprint shapes have also not been 

studied. Experimental and analytical tools for such problems are still not readily 

available. 
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Nikolaou et al. (2001) developed a simple formula to calculate the maximum 

bending moment of a single pile in layered soil subjected to harmonic SH seismic 

waves. Banerjee (2009) proposed a semi-analytical solution for the maximum 

bending moment of a single pile subjected to earthquake loading and structural 

inertial loading.  Tabesh and Poulos (2007) proposed a series of design charts for 

single piles in clay subjected to earthquake loading. The charts can be used for the 

determination of the maximum bending moment and shear force in the pile.  

However, all these methods are for single pile response. 

From the preceding discussion, it can be seen that no well-established design 

framework for earthquake response of large pile groups exists at present. Towards 

this end, the objective of this study is to investigate the performance of large soil-

pile-structure systems in order to better understand the seismic interaction 

mechanisms between the soft clay, the pile group, and the superstructure. The 

study scope consists of the following: 

(a) Developing and implementing an efficient, highly parallelized earthquake code 

for the analysis of large pile groups on a discrete memory PC cluster, so as to 

achieve a cost-effective and highly scalable way of solving very large finite element 

problems. 

(b) Using this code to conduct detailed parametric studies involving the effects of 

pile group size, pile-to-pile spacing, pile stiffness and structural mass on the 

foundation performance. 
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(c) Conducting detailed parametric studies on the raft response and pile bending 

moments for stiff rafts supported on very large pile groups. 

(d) Using dimensional analysis to derive simple relations for estimating the 

maximum bending moments and the moment distribution along the pile, based on 

the results of (c). 

(e) Using the parallel code to examine some scenarios involving non-uniform or 

uneven soil stratigraphy and different earthquake motions.  
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Table 2-1 List of full-scale field pile tests 

Reference Brief description Main conclusion Remarks 
Scott et al. 
(1982) 

Both horizontal forced vibration and ring-
down tests were conducted on a steel pipe 
pile in silty sand 

Liquefaction was observed in the soil 
surrounding the pile. Damping and 
resonant frequencies were found to be 
dependent on the level loading 

One of the first to conduct 
liquefaction test around pile 

Crouse and 
Cheang (1987) 

Quick-release vibration tests were 
performed at the Quwamish substation. 
The foundation consisted of a concrete 
pile cap with eight vertical and eight 
battered piles. All piles were embedded in 
12.2m of loose sand overlying stiff glacial 
till.  

The experimental and analytical results 
indicated that there was a lack of 
interaction between the pile cap and the 
supporting soil. The damping in this 
foundation model was shown to be 
substantially less than the one in the same 
foundation without piles. 

The quick-release vibration test is 
easy to conduct and could provide 
some fundamental information 
about pile foundation. 

Brown et al. 
(1987) and 
Brown et al. 
(1988) 

Two-way, cyclic, lateral loading was 
conducted on a large-scale group. The 
piles were arranged in a 3 × 3 pattern 
spaced at three-time diameter in both 
directions. The sub-surface profile 
consisted of stiff, over consolidated clay to 
a depth of 13.1m with water above the 
ground surface.  

The depth of the maximum bending 
moment increased from front row to back 
row. The bending moments were greater for 
the piles in the group than the single pile 
and occurred at greater depths. The front 
and middle row experienced similar 
maximum bending moments whereas the 
back row was lower in magnitude (see in 
Figure 2-1). 

It provided a convenient way of 
expressing the soil resistance 
rduction due to group effect, “p-
multiplier”. 

Blaney and 
O'neill (1989) 

A series of lateral dynamic loading tests 
on a single pile and a 3×3 group of steel 
pipe piles. All piles were driven into 
overconsolidated clay at centre-to-centre 
spacing of 3 times the pile diameter. The 
piles used were 0.237m in diameter and 
13.7m in length. The load was applied 
horizontally through the pile head using 
an inertial mass vibrator. 

Comparing the response of the pile group 
and a single pile, the equivalent per-pile 
response of the group was found to exhibit 
lower damping and more flexibility than a 
single pile. The deflected shape of the group 
piles at the system first mode resonance 
frequency resembled the single pile shape 
under static and dynamic load. 

The fundamental characteristics 
of dynamic interaction between 
pile groups and soil was 
investigated. That could be used 
to evaluate the numerical 
simulation. 

Kobori et al. 
(1991) 

An extensive series of tests on a pile group 
were conducted with different pile cap 
contact/embedment conditions. It 

The results indicated the backfill 
embedment has strong influence on group 
stiffness. 

The forced vibration tests were 
actuated by dynamic loading on 
the pile caps. 



Large-scale Finite Element Simulation of Seismic Soil-Pile foundation-Structure Interaction 

 

44 
 

consisted of horizontal forced vibration 
tests and earthquake observations. 

Lam and 
Cheang (1995) 

Slow-cyclic loading tests and fast-rate 
vibratory loading test were conducted on 
the same full-scale piles. The piles were 
61cm in diameter and 10m in length, and 
were submerged in sand site. 

For the lower loading amplitude, the 
loading rate didn’t influence the 𝑝 − 𝑦 
curves; but for the higher loading 
amplitude, the pile stiffness tested from fast 
vibratory test was much lower than the one 
from slow cyclic tests. 

The difference between cyclic 
loading tests and vibratory tests 
should be paid attention to, 
especially for the sandy site. 

Rollins et al. 
(1998) 

A static lateral load test was conducted on 
a 3x3 pile group with a 2.82 spacing ratio. 
The pile head is connected with a joint. 
The soil consisted of soft to medium-stiff 
clays overlaying dense sand. 

The deflection of pile group was more than 
twice of the single pile, applying the same 
average loading. Bending moments for piles 
in a group were much larger than the 
isolated single pile. 

The pile group effects were 
discussed based on the test 
results. These tests typically 
involved only one cycle of 
loading. 

Snyder (2004) Statnamic load test on 15-pile group were 
carried out in soft Salt Lake City clay 
which prevents the development of high 
compressive and tensile stresses that can 
potentially damage the test pile (see in 
Figure 2-2). 

The average group load was 10 to 15% lower 
than the single pile load for deflections up 
to 38 mm, and approximately 20% lower 
for higher deflections. Maximum bending 
moments in the trailing rows were as much 
as 40% larger than the single pile, but 
occurred at similar depths. The maximum 
bending moments in the lead row occurred 
at shallower depths than the single pile and 
trailing rows. 

The statnamic load test was 
conducted after 15 static cyclic 
loading tests on the same piles 
which caused gaps between soil 
and pile. So the results from 
statnamic load test may not 
reflect the virgin pile group. 

Rollins et al. 
(2005) 

Lateral loading test was conducted on a 
full-scale pile group following blast-
induced. The 3x3 pile group at 3.3 pile 
diameter spacing was driven into loose to 
medium dense sand. Another single pile 
test was conducted for comparison. 

In contrast to pre-liquefaction tests, group 
interaction effects were insignificant after 
liquefaction. The lateral resistance of each 
pile in the group was similar and about the 
same as that for the single pile test. 

It provided information about soil 
resistance and pile group effect 
for post-liquefaction. 

Agarwal et al. 
(2010) 

Two, quarter scale, two-column, bridge 
bents were constructed. Two NEES mobile 
shakers were used to excite the surface of 
the ground and excite the bent cap, 
respectively. The loading histories used 
included (a) stepped sine, (b) chirp, and 
(c) fixed shine, for both shakers (see in 
Figure 2-3).  

The response of the structure when excited 
directly was essentially the same as that 
when the ground was excited. However, the 
observed natural frequencies when the 
structure was excited directly were slightly 
less than those observed in when the 
ground was shaken. 

The natural period of pile-soil 
system was discussed. 
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Table 2-2 Summary of 1-g shaking table pile tests 

Reference Brief description Main conclusion Remarks 
Mizuno et al. 
(1984) 

A 2x2 pile group with 1/30 similitude 
ratio embedded in two-layered clay was 
oscillated with records of Off Miyagi 
Prefecture Earthquake (1978) and 
Central Chiba Prefecture Earthquake 
(1980). The height of the building was 
ignored in the modeling. The cast-in-
place piles were modeled with steel pipe 
pile with 71.7cm length. Pile head was 
fixed and its tip was hinged 

The soil deformations may cause large 
bending moment in the pile. The bending 
moment at the interface of two layers is 
larger than that at the same depth of the 
one-layered subsoil. Effects of soil 
movement on piles during earthquake 
should be taken account into design of 
lateral resistance of piles. 

The effects of the building inertia 
force and the soil movement on 
piles in the system was 
emphasized. The pile group was 
not clearly illustrated and the 
effects of pile group were not 
discussed. 

Stanton et al. 
(1988) 

The shaking table tests were conducted 
in University of Washington. The model 
pile was made of stainless steel tubing 
with 114mm length and 3.2 mm outer 
diameter. The specimen sand was 
contained in a flexible cylindrical shear 
bag with 122mm height and 122mm 
diameter. Sinusoidal base motions were 
used for tests. 

The response of piles embedded in a soil 
deposit subjected to base excitation is 
controlled by the characteristics of the 
complete soil profile. To predict the 
response accurately the variation in shear 
modulus with depth must be accounted for, 
but a single value of damping for the whole 
soil mass is adequate.  

The sand specimen might be too 
low to reflect the real stress 
status. 

Gohl (1991) Single and pile group (2 × 2) were 
subjected to sinusoidal and random 
earthquake excitation using University of 
British Columbia Earthquake Laboratory 
shaking table. C-109 Ottawa sand, an 
average particle size 0.4mm and a 
coefficient of uniformity 1.5, a peak 
friction angle 33°, was prepared as 
foundation in a rigid container bolted to 
the shake table. The model pile was 
hollow aluminum tubing with an outer 
diameter 6.35mm.  

The seismic interaction between piles is 
significant during inline shaking for centre 
to centre pile spacing of up to six pile 
diameters, while during offline shaking, pile 
to pile interaction could be ignored for all 
practical purposes.  

Although two 25mm thick 
Styrofoam pads were placed at 
each end of the container, the 
wave reflection from the sides of 
the rigid box still have significant 
influence to the results. 

Meymand 
(1998) 

The shaking table tests were performed 
on the earthquake simulator at the 

Tests evaluating pile raft performance and 
the effects of impounded water souring the 

The clay specimen may not be 
consolidated when the tests were 
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Pacific Earthquake Engineering Research 
Center. A flexible wall container confines 
soil column 2.29m in diameter up to 
2.13m in height. Single pile and pile 
group were driven into the soil after the 
soil was preloaded. Besides the seismic 
motion test, static lateral load tests, 
hammer blow test, sinesweep test were 
also conducted at the same piles. 
Earthquake records were input both in 
one direction and in two directions. 

soil-pile gap and degrading resistance were 
somewhat inconclusive. The influences of 2-
D shaking were seen to be minimal, as 
structural inertial forces tended to resolve 
the motion to a strong axis for the simple 
single degree of freedom models tested. 

done. The consolidation degree 
has vital influence on the stiffness 
and strength of clay. Without 
suitable consolidation, the soil 
specimen may not reflect real 
properties. The pile and pile 
group were too close to the 
container wall which may 
influence the seismic response of 
piles (see in Figure 2-4). 

Tao et al. (1998) A real-size pile embedded in a sand layer 
with a thickness of over 5m was 
subjected to simulated seismic shaking 
using a large-scale shaking table. The 
model pile was a steel pipe with outer 
diameter of 0.32m and length of 6m, and 
was pinned to the laminar shear box. 

The 𝑝 − 𝑦 relationships were estimated 
using the strain gage data, and it was found 
that the 𝑝 − 𝑦 stiffness, 𝑝/𝑦, was 
approximately equal to the Young’s 
modulus of soil. 

It might be the largest-scale 
shaking table test, with equal size 
to prototype pile. However, it just 
conducted a single pile with free 
head and didn’t illustrate and 
discuss the bending moment of 
pile.  

Jakrapiyanun 
(2002) 

The model piles of the pile group were 
made of aluminum with an outer 
diameter of 57.15mm, an inner diameter 
of 55.37mm, and a length of 863.6mm. 
The spacing between each pile is 
171.45mm (3 pile diameters). The pile 
group was a skin-bearing foundation: the 
pile tips were neither fixed nor pinned to 
the container. To increase skin friction, 
sand was glued to the aluminum piles. 
The aluminum plates were welded to the 
pile head as pile cap, and the 
superstructures were inserted into the 
pile cap to investigate the inertia effect. 

Horizontal soil-foundation stiffness is lower 
due to gap at pile gap level. The soil-pile cap 
stiffness is significant to total lateral soil-
foundation stiffness. Pile cap side-soil 
contact has less influence to the rotational 
stiffness than pile cap base-soil contact. The 
soil-foundation-structure interaction effect 
could extend up to 35%, even for relatively 
low input motions. 

The thesis mainly discussed about 
dynamic soil-shallow foundation-
structure interaction and pile 
foundation shaking test was 
conducted and discussed 
simplified. 

Wada et al. 
(2002) 

A method was proposed to use two 
groups of piles supporting the building. 
One group has long-flexible piles for the 
building gravity weight and the other 
group has short-stiff piles resisting the 

The decrease in shear force distribution 
factor obtained from the horizontal stiffness 
of the support piles and the capacity of the 
earthquake resistant piles to absorb 
additive energy in their vicinity decreases 

The proposed method should be 
very useful for pile foundation 
design to earthquake force. 
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lateral forces due to earthquake ground 
motion. A small shaking table test of soil-
pile-structure interaction was used to 
verify the idea. The shaking table tests 
performed for 16 cases with different pile 
conditions, subjected to 3 earthquake 
ground motions. 

the bending moment in the support piles 
and decreases the input power of 
earthquake to the superstructure. 

Tokimatsu et al. 
(2005) 

A series large shaking table tests were 
conducted on pile-structure models with 
a foundation embedded in dry and 
liquefiable sand deposits. A2x2 steel pile 
group that supported a foundation with 
or without a superstructure was used. 
Each pile had a diameter of 165.2, and 
their tips were connected to the 
container base with pin joints and their 
heads were fixed to the foundation that 
was embedded in the ground. 

If the natural period of the superstructure, 
𝑇𝑏, is less than that of the ground, 𝑇𝑔, the 

ground displacement tends to be in phase 
with the inertial force from the 
superstructure, increasing the shear force 
transmitted to the pile. In contrast, if 𝑇𝑏 is 
greater than 𝑇𝑔, the ground displacement 

tends to be out of phase with the inertial 
force, restraining the pile stress from 
increasing, as shown in Figure 2-5. 

The results and discussion made 
it possible to estimate maximum 
pile bending moment from 
superstructure and earth pressure 
separately. 

Shirato et al. 
(2008) 

The experiments were conducted using a 
4𝑚 × 4𝑚 large-scale shaking table and a 
large flexible shear stack housed in 
Public Works Research Institute, Japan. 
The pile-group comprised a 3 × 3 box 
arrangement of nine steel piles. The piles 
were hollow steel pipes with a round-
cornered rectangular section with 
0.125𝑚 width and 3𝑚 length, and the 
nominal center-to-center distance was 
2.5-times the pile diameter. The pile 
head was embedded into the pile cap and 
pile base was fixed on pinned supporting 
device. The soil specimen used was dry 
sand with internal friction angle 40.9°. 
Sinusoidal waves and an earthquake 
record from Kobe Earthquake (1995) 
were used as input. 

The soil resistance intensities of the piles in 
different row differ markedly, even at the 
same displacement level, while those of the 
piles in the same row were very similar. The 
positive and negative amplitudes of soil 
resistance were different which rose from 
the group effect. The shape of single pile 
𝑝 − 𝑦 curve was soften together with the 
decrease in the ultimate soil resistance, 
accounting for the group effects on the 
lateral load transfer between soil and pile. 
The corner piles were expected to be less 
affected than other piles. The group 
efficiency decreases with increasing 
displacement level, and generally tends to 
converge to constant values at a 
displacement level of approximately of 5% 
of the pile diameter. 

The paper proposed and validated 
a method that it’s used measured 
bending moments to calculated 
soil resistance. With the soil 
resistance time history, the 𝑝 − 𝑦 
curves were discussed in details. 
The group effects and group 
efficiency were discussed and a 
method was proposed to 
incorporate the group effect 
during large earthquakes into any 
hysteretic 𝑝 − 𝑦 curve models. 
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Ueng (2010) Liquefaction model tests were conducted 
using a large biaxial laminar shear box 
on the shaking table. Clean Vietnam 
silica sand and Mailiao sand with silt 
were used. A single pile was placed inside 
the shear box to evaluate the pile 
performances and soil-pile interaction. 
The pile was fixed at the bottom of the 
shear box to simulate the condition of a 
pile foundation embedded in rock, and 
additional rigid steel adapters were fixed 
to pile head to simulate the inertia force 
from the superstructure. 

Under small amplitude shakings, the pile 
response with small inertia force from 
superstructure was dominated by the 
kinematic force from the soil motion, but 
the one with a larger inertia force was 
mainly governed by the inertia force from 
the superstructure. Under large amplitude 
shakings, after the whole specimen 
liquefaction, the pile motions reduced in 
amplitude and remained steady to smaller 
vibrations of the same frequency as that of 
the input motion while the soil motions 
diminished. 

The bending moment along the 
pile was measured but was not 
illustrated or discussed. 
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Table 2-3 Summary of centrifuge shaking table pile tests 

Reference Brief description Main conclusion Remarks 
Gohl (1991) Both two and four (2 × 2) pile tests were 

conducted at Caltech centrifuge, 
operating at 60𝑔. The soil container was 
0.56𝑚 𝑙𝑒𝑛𝑔𝑡ℎ × 0.18𝑚 𝑤𝑖𝑑𝑒𝑡ℎ ×
0.25𝑚 ℎ𝑒𝑖𝑔ℎ𝑡, with rigid wall. The 
specimen soil was Nevada 120 sand, with 
average particle size 0.13mm and 
coefficient of uniformity 1.6. The model 
pile was mad of 9.52mm outer diameter 
stainless steel tube. A mass was screwed 
to the pile head to simulate the influence 
of a superstructure. Sinusoidal motion 
and earthquake records were input via an 
electro-hydraulic system. 

The location of maximum bending in a 
model pile tested in the 1-g shaking table is 
much greater relative to its diameter than 
that was observed for similar intensities of 
shaking on the centrifuge. For inline 
shaking, interaction effects are stronger 
than predicted using elastic theory for close 
pile spacing less than about 3 pile 
diameters. For larger pile spacing, 
interaction effects die off at a much quicker 
rate than predicted using elastic theory. 

The study conducted and 
compared 1-g shaking table test 
and centrifuge test. 

Wilson (1998) A series of dynamic centrifuge test of pile 
supported structures were conducted on 
UC Davis centrifuge at a centrifugal 
acceleration of 30g. The soil profile 
consisted of two horizontal soil layers. 
The lower layer was dense sand while the 
upper layer was medium dense sand or 
normally consolidated clay. Foundation 
models included single pile foundations, 
four-pile group and nine-pile group. The 
pile tips were about 5.5 pile diameters 
above the container base.  

It was found that changing the pore fluid 
viscosity by a factor of 10 to better 
simultaneously model dynamic and 
consolidation processes had apparently 
little effect on the seismic soil-structure 
interaction. The measured time histories of 
bending moments along pile and 
accelerations of soil profile and pile were 
used to back-calculate 𝑝 − 𝑦 curves.  

The study conducted quite 
comprehensive tests on dynamic 
response of pile foundations in 
soft clay and liquefying sand 
during strong shaking. However, 
it focused solely on the behavior 
of single-pile-supported structure, 
and seldom analyzed the pile-
group-supported structures 
recorded. 

Boulanger et al. 
(1999) 

The centrifuge tests included two 
different single-pile-supported structures 
subjected to nine different earthquake 
events with peak accelerations ranging 
from 0.02 to 0.7g. Models were tested in 
a flexible shear beam container with a 
centrifugal acceleration of 30g at UC 

The measured acceleration and bending 
moment were used to evaluate a dynamic 
beam on nonlinear Winkler foundation 
analysis method for analyzing seismic soil-
pile-structure interaction. It obtained 
reasonably good agreement between 

The results of the centrifuge tests 
provided experimental support 
for the use of dynamic 𝑝 − 𝑦 
analysis methods in seismic soil-
pile-structure interaction 
problems. 
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Davis centrifuge. The soil profile 
consisted of soft clay overlying dense 
sand. 

calculated and recoded response for 
structural models in all earthquake events. 

Curras et al. 
(2001) 

Centrifuge model tests on the seismic 
response of a pile-group-supported 
structure were conducted on the 9m 
radius centrifuge at UC Davis. Single and 
nine-pile group were founded in a profile 
of soft clay over dense sand.  The pile 
group consisted of nine pile spaced at 
four diameters on center in a 3x3 gird. 
Each pile was equivalent to a 0.67m 
diameter steel pipe pile. Nine different 
earthquake motions having peak base 
accelerations of 0.02 − 0.7𝑔 were input 
from the shaking table. 

The dynamic centrifuge model tests were 
used to evaluated a beam on nonlinear 
Winkler foundation analysis method for 
soil-pile-structure interaction. Reasonable 
agreement was obtained between calculated 
and recorded responses in all nine 
earthquakes when the interpolated 
recorded soil profile motions were used. 

The results of the centrifuge tests 
provided experimental support 
for the use of dynamic BNWF 
analysis methods in seismic soil-
pile-structure interaction 
problems involving pile groups. 

Kagawa et al. 
(2004) 

The authors conducted three cases using 
centrifuge shaking table test to simulate 
large-scale shaking table test(Tao et al., 
1998) about free field response and soil-
pile-structure interaction. The centrifuge 
test treated the large-scale models as 
their prototypes. The sand from Lake 
Kasumigaura with mean particle 
diameter of 0.31mm and coefficient of 
uniformity of 3.0 was used. 

It’s found that carefully designed performed 
centrifuge tests could reproduce the key 
features of the response of the large-scale 
models. However, there were still some 
differences between the results from the 
two types of tests. The small-strain dynamic 
magnification factors of the sand layers 
were smaller in centrifuge models. The 
excess pore water pressure in the two 
systems was redistributed differently. And 
the response of the piles and the structural 
models were not in good agreement. 

It might be the first study to 
involve extensive comparisons 
between the results from large-
scale and dynamic centrifuge tests 
on geometrically similar soil-pile-
structure models. 

Chang (2007) A series of eight dynamic centrifuge 
model experiments of pile foundations in 
liquefied and laterally spreading soil 
profiles was performed on UC Davis 
centrifuge. Soil profiles consisted of non-
liquefiable clay crust overlying saturated 
loose sand over dense sand. A simple 
superstructure supported on a group of 
six prototype 1.17m diameter pipe piles. 

It mainly studied the large crust load of 
lateral spreading crust on the pile 
foundation, and its relation with the inertial 
loads from the superstructure mass and pile 
cap mass. It was found that the crust load 
was a major driving force with low-
frequency components, and it might act 
with inertial loads simultaneously on the 
pile cap.  

The tests illustrated the dynamic 
loading of pile-supported 
structures in laterally spreading 
ground during earthquake 
shaking, and distilled the complex 
dynamic behavior into simple 
concepts for equivalent-static 
design methods. 
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A sequence of scaled earthquake records 
was applied to the model base. 

Ilankatharan 
(2008) 

Three series of centrifuge test about 
seismic soil-pile-bridge interaction were 
conducted in UC Davis. The model 
included four identical two-pile bents. All 
model piles were made of aluminum 
tubes of 19.05mm diameter. The soil 
used was dry Nevada sand, 80% relative 
density. Step displacement waves, 
frequency sweeps and scaled records of 
the 1994 Northridge Earthquake were 
input base. 

A difference in prototype bent spacing 
between the centrifuge and 1-g shaking 
table models in addition to the interaction 
between the 1-g shake table bridge model 
caused some discrepancies between 
centrifuge results and 1-g shaking table 
result. There were also differences in 
spectral ratios that may be attributable to 
different energy dissipation mechanisms in 
centrifuge and 1-g shaking table tests. 

One part of NEES collaborative 
research project to study soil-
foundation-structure interaction. 
Agarwal et al. (2010) conducted 
field tests with quarter scale 
bridge, Johnson (2006) 
conducted 1-g shaking table test 
for two-span bridge with a 
quarter scale. 

Banerjee (2009) The shaking table tests for both pure 
kaolin clay beds and clay-pile-raft 
systems were conducted on NUS 
centrifuge.  Remolded kaolin clay with 
inter friction angle 25° was placed and 
consolidated in a laminar box. The pile 
foundation consists of four piles and a 
steel pile cap. The piles were 1.8cm in 
diameter and 26cm in length. The pile-
to-pile spacing is six and eleven times of 
pile diameter in two directions. Three 
earthquake accelerations of 0.022g-0.1g 
were input from shaking table. 

The centrifuge test results indicated that the 
bending moment increase almost linearly 
with the scaled earthquake ground motion, 
and increase with the flexural rigidity of the 
pile material and additional mass on the 
pile raft. The measured acceleration and 
bending moment were used to validate 
finite element simulation on seismic clay-
pile-raft interaction. 

The tests indicated the influence 
of clay softening on the 
predominant period amplification 
of free-field ground motion and 
pile foundation during 
earthquake.  
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Table 2-4 Summary of beam-on-dynamic-Winkler-foundation approaches 

Reference Brief description Main conclusion Remarks 
Meem et al. 
(1937) 

A method was proposed for the analysis 
of Feagin’s test data. The interaction 
between soil and pile were represented 
by elastic springs and the spring constant 
was assumed to be constant with depth. 

The method could solve deflections, 
moments and shears in the piles. With the 
calculation results, Chang firstly introduced 
the concept of critical pile length. 

Although the method is too 
simple to indicate the nonlinear 
characteristics of soil, it’s still 
widely used today because its 
parameter is easy to determine. 

Matlock et al. 
(1978) 

A dynamic analysis for lateral soil-pile 
behavior was developed and implement 
in a beam-column computer program, 
SPASM (Seismic Pile Analysis with 
Support Motion). The single pile was 
discrete and restricted to linearly elastic. 
The superstructure was also simulated 
with increased stiffness beam, as shown 
in Figure 2-6.  

The method was used to simulate three 
example and the results appeared to be 
consistent and reasonable in all respects. 

It was a fully coupled method for 
analysis of single pile response. It 
was evaluated by Gohl (1991) with 
centrifuge shaking tests. 

Gohl (1991) Besides carried out a fully coupled 
analysis of single pile response using 
SPASM, the author also developed a 
computer model (PGDYNA) to analyze 
the dynamic response of a superstructure 
supported by a pile group. 

The computed results indicated that 
prediction of pile group response were 
complicated by uncertainties in the degree 
of radiation damping to be expected in the 
system and by an inadequate knowledge of 
what effective input motions should be used 
in the analysis. The effects of kinematic 
interaction appeared to be more 
pronounced for pile groups than for single 
piles. 

The kinematic interaction effects 
were neglected in PGDYNA, 
which appeared reasonable for 
small pile groups. However, for 
large pile groups, the effects of 
kinematic interaction could cause 
a significant reduction in effective 
motions transmitted to the pile 
group. 

Kavvadas and 
Gazetas (1993) 

A versatile beam-on-dynamic-Winkler-
foundation model was developed and 
calibrated. The estimation of the spring 
stiffness was based on 3D finite element 
results. The viscosity of the associated 
Winkler dash-pots was used to reproduce 
the radiation and hysteretic damping of 
the system. 

The model was used to simulate a free-head 
pile embedded in a multi-layered soil profile 
subjected vertically-propagating S-waves. 
The results indicated that the pile bending 
moment depends on the stiffness contrast of 
soil layers, pile rigidity, and excitation 
frequency. 

Based on the results, a closed-
form expression for pile bending 
moment at the interface of two 
layers soil was derived which is 
quite useful for seismic pile 
design. However, it ignored the 
inertia effects of structure and 
pile foundation. 
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Lok (1999) A coupled model for the analysis of the 
seismic soil-pile-superstructure 
interaction was formulated, implemented 
and calibrated. The model included three 
parts, hysteretic model for site response 
analyses, nonlinear one-dimensional 
element for near field response, and the 
beam on nonlinear Winkler foundation 
model for the soil-pile-superstructure 
system. 

The model was evaluated against the large-
scale shaking table test by Meymand (1998). 
The calculated spectral accelerations of the 
superstructures, the pile bending moments 
and 𝑝 − 𝑦 curves were comparable to the 
experimental data. The model was also 
applied to the analysis of pile groups using 
the equivalent pier concept and provided 
reasonably agreements with the observed 
responses of small pile group. 

The proposed model could 
reproduce experimental shear 
modulus degradation and 
damping curves for clays, silts, 
and sands. It also had the 
capability to deal with the gap 
between pile and soil. 

 

Table 2-5 Summary of Finite Element Methods 

Reference Brief description Main conclusion Remarks 
Kuhlemeyer 
(1979) 

An efficient finite element solution for 
static and dynamic pile response. A 
homogeneous soil profile was used for 
dynamic loading. 

 Linear elastic model was used for 
soil and pile. 

Trochanis et al. 
(1988) 

Three-dimensional analysis for single 
pile subjected lateral cyclic loading was 
performance with ABAQUS. 27-node 
quadratic isoparametric elements were 
used to model pile and soil, and 18-node 
thin-layer interface elements were placed 
around pile elements. Pile was elastic 
while soil was idealized as Drucker-
Prager plastic material, as shown in 
Figure 2-7. 

The results indicated that the inelastic soil 
behavior could affect the pile response 
significantly. Pile-soil separation and 
inelastic soil deformation were the crucial 
factors for lateral loading simulation. Based 
on the results, a simplified Winkler type 
model was developed. 

Both slippage and gapping were 
considered at the soil-pile 
interface by using interface 
element with Coulomb’s friction 
theory. 

Wu (1994) Based on a simplified 3-D wave equation, 
a quasi-3D finite element computer 
program PILE3D was developed for the 
analysis of non-linear response of pile 
foundations in the time domain. It 
simulated the 3D dynamic response by 
displacements in the horizontal shaking 

Single pile and small pile group subject 
strong seismic shaking were simulated and 
validated with centrifuge tests. The analyses 
could reproduce the stiffness reduction and 
damping increment of the pile foundations 
with the increased level of shaking. 

The method could greatly save 
computing space and computing 
time for the finite element 
analysis, and widely used by the 
author and others (e.g. Wu and 
Finn, 1997a; Wu and Finn, 1997b; 
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direction, and neglected the 
displacements in the vertical direction 
and in the horizontal cross-shaking 
direction, as shown in Figure 2-8. The 
soil non-linearity was modeled using a 
modified equivalent linear method and 
yielding was taken into account.  

Finn, 2005; Maiorano et al., 
2009). 

Maheshwari et 
al. (2004b) 

Single pile and 2-pile group embedded in 
clay subjected either harmonic or 
transient bedrock motions were 
simulated,  a three-dimensional finite 
element program. The analyses involved 
a subsystem model and a successive-
coupling incremental scheme, as shown 
in Figure 2-9. 

Soil nonlinearity increased the responses at 
low and moderate frequencies, but at high 
frequencies, its effect could be negligible. 
The pile effect could reduce the effect of soil 
nonlinearity, and decrease the peak values 
of the pile foundation response. 

The proposed successive-coupling 
incremental scheme could reduce 
the required computation space, 
which makes it possible to use 
small computer simulate relative 
large-scale problem. 

Lu et al. (2005) A shaking table model tests was 
simulated, three-dimensional finite 
element model, with ANSYS. Contact 
elements were used at soil-pile interface. 

The comparison of calculated and test 
results indicated that the modeling 
calculation was rational. The bending 
moment is the largest at the corner pile, 
moderate at the middle pile in the side row, 
and smallest at the center pile.  

The calculation was validated 
with the corresponding shaking 
table test. A small pile group with 
9 piles was simulated and the pile 
group effect was briefly discussed. 

Lu (2006) A parallel finite element program was 
developed with incremental plasticity 
and coupling solid-fluid formulation. A 
large-scale simulation on pile-supported 
wharf system was conducted on a 
supercomputer, as shown in Figure 2-10.   

Large-scale modeling on parallel computers 
was an effective way to simulate the 
dynamic soil-structure interaction. It could 
provide a better understanding of seismic 
behavior. 

Parallel calculation was used in 
finite element analysis. It makes 
possible to simulate large-scale 
and complex soil-pile-structure 
interaction. The pile-supported 
wharf system was simulated very 
well, but the results were not 
discussed in details. 

Chang (2007) A two-dimensional nonlinear dynamic 
finite element model was developed on 
the OpenSees platform and calibrated 
with centrifuge shaking table tests. The 
saturated soil was modeled as a two-
phase material with 𝑢 − 𝑝 formulation 
based on the Biot theory. The dynamic 
soil-pile interactions were modeled with 

The comparison indicated that the dynamic 
finite element analysis agreed well with the 
centrifuge tests for the overall soil and 
structural responses. The influences of 
liquefaction, pile stiffness structural mass 
and period, crust strength and 
displacement, and base motion were 
studied. 

The developed two-dimensional 
finite element model with spring 
interface elements could capture 
the important mechanisms of 
load transfer and illustrate soil-
pile interaction. However, it’s 
quite difficult to determine the 
many parameters. 



Chapter 2 Previous Studies on Seismic Soil-Pile Group-Structure Interaction 

 

55 
 

zero-length nonlinear springs (see in 
Figure 2-11 and Figure 2-12). 

Uzuoka et al. 
(2007) 

The damage process of a pile-group 
supported building in reclaimed land was 
simulated using three-dimensional finite 
element analysis. The coupling 𝑢 − 𝑝 
formulation was used to simulate the 
pore water pressure increment and 
liquefaction process. 

 pile yields before the complete liquefaction 
of reclaimed layer. The pile curvatures were 
mainly affected by inertial effects of 
superstructure before complete liquefaction, 
while the kinematic effect of foots on pile 
curvatures was considerable after complete 
liquefaction (see in Figure 2-13). 

The liquefaction process and 
post-liquefaction were simulated, 
and evaluated against field 
records. The building was 
simplified and only twelve piles 
were modeled.   

Javan et al. 
(2008) 

Explicit dynamic finite element method,  
pile groups in saturated porous media, 
based on 𝑢 − 𝑤 formation. A centrifuge 
shaking table test model (Wilson, 1998) 
was simulated and compared with 
measured data. 

The effect of transmitting boundary was 
discussed by comparing the simulation 
using and without using transmitting 
boundary were compared 

A new transmitting boundary was 
used to avoid wave reflection 
towards the structure. 

Banerjee (2009) Centrifuge model tests for soil-pile-raft 
system were back-analyzed using 
ABAQUS. Hyperbolic-hysteretic 
constitutive model was developed to 
model the dynamic properties of soft 
clay.  

The computed results were evaluated with 
experimental observations. The numerical 
model could reasonably replicate the 
centrifuge tests. Based on the parametrical 
studies, a semi-analytical solution for the 
maximum bending moment was proposed. 

The pile spacing is about eleven 
times of diameter, and the pile 
group effect was ignored. The 
detailed discussion on pile 
bending moment and the closed-
form solution are very useful to 
study the seismic performance of 
pile foundation.  

Dezi et al. 
(2009) 

soil-structure kinematic interaction, 
single piles and pile groups, embedded in 
layered soil deposits, using elasto-
dynamic Green’s functions. 

Rigid caps were modeled by constraining 
the displacements of the pile heads to those 
of a rigid body. The foundation impedances 
and the foundation input motion for the 
inertial interaction analysis of generic 
spatial superstructures. 

The dynamic response of the soil-
foundation system was evaluated 
and the stress resultants due to 
the ground motion in each pile 
were calculates. 

Maheshwari and 
Sarkar (2011) 

A finite element program was developed 
in MATLAB to model three-dimensional 
soil-pile-structure system. A 2x2 pile 
group in liquefiable soil was simulated. 

Once the soil medium gets liquefied, the 
effect of relative rigidity of pile and soil 
loses its significance for the dynamic 
stiffness of the soil-pile system. 

A simple model has powerful 
function. 
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Table 2-6 Summary of Pseudostatic Approaches 

Reference Brief description Main conclusion Remarks 
Byrne et al. 
(1984) 

A method was proposed to determine the 
pile response subjected to free-field soil 
displacement. The free-field 
displacement was applied to the pile via 
a series of springs. Then the pile was 
analyzed with Euler beam theory. 

The method was used to analyze a casing 
within a caisson-retained island subjected 
to severe ice loading. The reasonable results 
showed the proposed method had promise.  

Although this method did not 
take the inertial effects into 
account, it provides a 
methodology to analyze pile 
response which is widely used for 
pseudo static approaches. 

Abghari and Chai 
(1995) 

A pseudo static method was proposed to 
analyze a simplified soil-pile-structure 
interaction. The pile was subjected to 
maximum free field soil displacements 
and the part of superstructure inertial 
forces. The initial forces were calculated 
from the product of mass and spectral 
acceleration.  

The pseudo static analysis could reasonably 
provide maximum pile bending moment 
and shear force, with maximum soil 
displacement plus 50% superstructure 
inertial forces. 

The conclusion was based on only 
one simulation, which might lack 
persuasion. Actually, it’s needed 
to further discuss how much 
structure inertial forces should be 
accounted for. 

Wilson (1998) Based on centrifuge test results, pseudo 
static analyses were conducted and 
compared with the recodes. The 
measured superstructure inertial forces 
were applied to the pile and measured 
soil deformations at the snapshot were 
applied to the ends of the 𝑝 − 𝑦 springs. 
Baseline sets of 𝑝 − 𝑦 springs were 
established using API(1993) 
recommended curves and the p-
multipliers were calibrated via 
repeatedly analyses.  

When the superstructure inertial loads 
were typically larger than the kinematic 
loads from soil profile displacements, the 
pseudo static analyses could give 
reasonable results for design. However, it’s 
not clear for cases of large kinematic 
loading. 

In the study, the measured 
inertial loads and soil 
deformations were available for 
input. However, in other cases, 
the estimation of inertial loads 
and soil deformation should be 
very challenging. 

Tabesh and 
Poulos (2001) 

Abghari and Chai (1995)’s method was 
developed to take the superstructure 
natural period into account. The lateral 
force was obtained from multiplication of 
cap-mass and the spectral acceleration 
corresponding to the structure natural 
period. 

When the structure mass is small and the 
pile response is determined by the free-field 
movement, the method could give accurate 
result; on the contrary, when the pile 
response is dominant by cap-mass, the 
method would give underestimated results.   

All calculations are based on 
elastic theory, and the nonlinear 
behavior of the soil is not 
considered. 
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Liyanapathirana 
and Poulos 
(2005) 

Pseudo static approach was developed 
for analysis of pile in liquefying soil. The 
influence of soil liquefaction was 
considered in both stages. At first stage, 
the free-field response analysis was 
based on effective stress. And the 
nonlinear springs based on degraded soil 
stiffness was used to connect pile and 
free-field soil. 

The computed results of several examples 
could agree well with the results from 
another dynamic method, which might 
indicated the proposed pseudo static 
method had promise in practical 
applications. And the method was 
evaluated with the pile performance 
observed in a centrifuge test and a real 
earthquake. 

The method did not take the 
superstructure natural period 
into account, and all the cases to 
verify the method were free head 
piles or light head piles, so it 
should be careful to use this 
method for analysis of piles with 
heavy head. 

Castelli and 
Maugeri (2009) 

Liyanapathirana and Poulos (2005)’s 
method was developed to calculate the 
response of single pile and pile group. A 
hyperbolic p-y relationship was proposed 
based on horizontal subgrade reaction. 
And an empirical factor was used to 
simulate the influence of pile group effect 
on p-y curves. 

Among all factors influencing pile bending, 
the most important is the pile deflection, 
especially when the soil is homogeneous or 
the stiffness ratio of the soil layers is low. 
The maximum moments can be also 
underestimated if a linear elastic analysis is 
carried out instead of a nonlinear analysis, 
to take into account that the lateral pile 
response to static and dynamic loading is 
typically nonlinear. 

The proposed method could 
successfully provide the response 
of a single pile and pile group 
during earthquake. 

(Elahi et al., 
2010) 

Tabesh and Poulos (2001)’s work was 
extended for elastoplastic pseudo static 
analysis of pile group. The static pile-
soil-pile interaction was reproduced 
using a matrix of soil-displacement-
influence factors. An elastic-perfectly-
plastic model was used for p-y curves to 
illustrate soil yielding behavior (see in ). 
The method was developed a computer 
program, PSPG, and was verified with 
centrifuge tests results and instrumented 
real pile-supported structure. 

When the inertial force is larger than the 
kinematic force, group effects have less 
contribution to pile group response. While 
if kinematic force becomes dominant, 
group effects have more influence on the 
response. The proposed method was 
reliable when the pile cap natural period 
was larger than twice period of maximum 
spectral acceleration of surface motion. 

It provided an efficient approach 
to study the seismic soil-pile 
group-structure interaction using 
static pile-soil-pile influence 
factors. It should be cautious to 
use this method when the natural 
period of structure is close to the 
one of the field. 
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Figure 2-1 p-y multipliers for group effects (Brown et al., 1988) 

 

Figure 2-2 The layout of statnamic  lateral load tests(Snyder, 2004) 
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Figure 2-3 Harmonic excitation using shaker from Thumper (Agarwal et al., 

2010) 

 

Figure 2-4 Layout of multi test in one soil specimen (Meymand, 1998) 
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Figure 2-5 Soil-pile-structure model series in shaking table tests (Tokimatsu et 

al., 2005) 

 

(a) Simulation of structure-pile-soil system 
(b) Typical observed cyclic reaction-deflection characteristics 

Figure 2-6 The diagrammatic sketch for beam-on-dynamic-Winkler foundation 

approach(Matlock et al., 1978) 



Chapter 2 Previous Studies on Seismic Soil-Pile Group-Structure Interaction 

 

61 
 

 

Figure 2-7 Finite element mesh in early days (Trochanis et al., 1988) 
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Figure 2-8 The principle of quasi-3D dynamic pile-soil interaction (Wu, 1994) 

 

Figure 2-9 Schematic of successive-coupling scheme (Maheshwari et al., 2004b) 
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Figure 2-10 Final deformation of pile-supported wharf model (Lu, 2006) 

 

Figure 2-11 Schematic of soil-pile 𝑝 − 𝑦 springs connections (Chang, 2007) 
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Figure 2-12 Interface elements between non-liquefiable soil and liquefiable soil 

(Chang, 2007) 

 

Figure 2-13 the computed deformation of soil-pile-structure system and the 

distribution of excess pore water pressure (Uzuoka et al., 2007) 
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(a) Variation of moment distribution along the piles 
(b) Focused on top 2m piles’ length 

Figure 2-14 Range of maximum moments along different piles in the group (Elahi 

et al., 2010) 
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Chapter 3 Parallel Finite Element Method Using a PC 

Cluster   

 3.1 Introduction 

As discussed in Chapter 2, most dynamic soil-structure interaction problems 

analyzed to date are relatively small scale, involving individual foundations, pile 

group or small clusters of these (e.g., Cai, 1995; Chu, 2006; Tafreshi, 2008). The 

largest dynamic soil-structure problem known to be attempted is a fully-coupled 

effective stress analysis which examined the effect of stone columns for mitigation 

of liquefaction hazards (Elgamal et al., 2008).  This was solved using the 

ParCYCLIC code, which used a parallel sparse direct solver and was implemented 

on Itanium 64 processors.  However, the model considered by Elgamal et al. (2008) 

only involved 8 pile caps, each with 2 2  piles, resulting in 90,780 degrees-of-

freedom for the total soil-pile-cap system. This is unlikely to be sufficient for 

modeling a very large pile group system. 

In contrast, if one thinks of an urban environment such as a public housing estate 

in Singapore, where many blocks of high-rise flats are built by the Housing and 

Development Board (HDB) within a limited plot of land, each HDB block is likely 

to have much more than 8 pile caps with 2x2 or 3x3 pile configuration. Hence, the 

foundation is likely to consist of a large number of piles closely spaced together.  

With the closer spacing of the foundation elements, small element sizes will be 

required. While one can of course analyze each pile group separately, this will 
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ignore any “whole-building” effects. To see how such “whole-building” effects can 

arise, one need to take a historical perspective. 

In conventional earthquake design philosophy, pioneered largely by Seed et al. 

(1975), the building is considered to be much lighter in mass than the surrounding 

ground. As a result, soil-structure interaction effects are largely insignificant, and 

the design was based largely on site-response effects; hence “green-field” ground 

motion was used as base input for earthquake structural analysis. However, with 

larger and more massive buildings, several new considerations enter into the 

picture. Firstly, interaction effects will increase in importance and may not be 

negligible. Secondly, the shear wave velocity in soft Singapore marine clay is about 

70m/s to about 150m/s(Leong et al., 2003). If one considers a frequency of 1Hz, 

which is well within earthquake frequency range, then the corresponding shear 

wave length ranges from about 70m to 100m. For a frequency of 2Hz, the shear 

wave length ranges from about 35m to 75m. On the other hand, the shear wave 

length in the bedrock is of the order of kilometers. If one considers a long slab-type 

of HDB flat as an example, the length of building is still much shorter than the 

shear wave length in bedrock, but it is of the same order of magnitude as the shear 

wave length, and therefore Rayleigh wave length, in soft marine clay. Thus, such 

buildings sitting on top of soft marine clay strata may distort during an earthquake, 

especially if the sub-soil profile is non-uniform.  Such a phenomenon cannot be 

captured in small-scale analysis of individual pile or pile group. 
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In addition, the lateral boundaries of the finite simulation domain not only have to 

support static earth pressure, but should also simultaneously absorb the reflected 

waves from the pile foundation while imposing the base excitation from bedrock. 

The need to satisfy these often conflicting boundary conditions is a big challenge 

for finite element simulation and will be discussed in detail in the next chapter. In 

order to decrease the influence of the lateral boundary condition, the calculated 

domain is always required to be much larger than the soil domain of interest, which 

will further increase the computational workload.  Furthermore, compared with 

several or dozens of time steps for static simulation, the number of time steps for 

seismic simulation is usually in the order of several thousands.  

All these requirements put large-scale soil-structure interaction analysis beyond 

the capability of conventional finite element calculations. The finite element model 

for the whole building with large soil domain will be huge, which means that a large 

amount of memory is required for the analysis. The amount of random access 

memory (RAM) needed is likely to be well beyond the range of normal desktop PCs 

and even workstations. Another daunting challenge is the computational time 

required for a typical earthquake event simulation, which will likely take up to 

several weeks or months or even more, on a normal desktop computer.  

This section discusses the development of a parallel computation scheme based on 

a class of Krylov sub-space iterative solvers. The feature of this class of solvers is 

that they do not need the global matrices to be assembled, thereby yielding 

significant savings in memory requirement. Furthermore, as will be shown below, 
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the algorithm is easily parallelizable using Message Passing Interface (MPI) 

protocol, hyper-threading using OpenMP or even a combination of both.  

3.2 Literature Review on Parallel Computation 

Parallel computing has already been in used in computational studies over the past 

two decades (e.g. Erhel et al., 1991; Yagawa et al., 1991; Gullerud and Dodds, 2001; 

Sato et al., 2001; Sihota, 2004; Liu et al., 2007; Petropoulos, 2008; Stavroulakis 

and Papadrakakis, 2009). Most of the earlier works deal mainly with vector and 

shared memory machines (e.g., George et al., 1986; Adeli and Kamal, 1992; 

Gummadi and Palazotto, 1997). While memory management in such machines is 

relatively straightforward, such machines suffer from the disadvantage that they 

are not readily scalable. In recent years, the trend in parallel computing has been 

towards distributed memory computing such as cluster computing with high speed 

data network to facilitate data interchange, which can be easily up-scaled by adding 

nodes onto the data highway. Such distributed parallel computing schemes usually 

involve some form of domain decomposition process wherein the domain is broken 

down into sub-domains, each of which is then analyzed by a node or a processor. 

Distributed parallel computing had been used in dynamic geophysical problems 

such as those dealing with the propagation of seismic waves through the Earth’s 

crust (e.g. Komatitsch and Tromp, 2001; Kashiyama et al., 2002; Komatitsch et al., 

2003). However, most of these implementations are based on explicit time 

integration schemes. In dynamic soil-structure interaction problems, explicit time 

integration schemes often cannot be applied because mass lumping gives rise to 
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unacceptable phase errors (Guin and Banerjee, 1998) and damping is often strain 

rate-, rather than velocity-, dependent (Yang, 1992). 

Hsieh (2004) implemented a variant of the Domain Decomposition Method with 

the sparse direct solver on ABAQUS 5.8 to simulate tunnel heading excavation. 

The finite element domain in his analysis was 150m long x 80m wide x 30m deep 

and involved about 380,000 degrees-of-freedom. Domain decomposition was 

implemented explicitly by sub-dividing the entire domain into separate sub-

domains. Data interchange between sub-domains was implemented using message 

passing interface (MPI) protocol. With Windows XP or Vista 64-bit operating 

systems and 8GB RAM, such a problem can now be solved on a single high-end 

personal computer.     

Peng et al. (2004), Lu (2006) and Elgamal et al. (2008) used the ParCYCLIC code 

to study large-scale liquefaction problems using the Blue Horizon and Datastar 

supercomputers. The ParCYCLIC code employs a parallel row-oriented direct 

sparse solution solver which was developed by Law and Mackay (1993) and is 

based on explicit domain decomposition with MPI. The largest problem solved by 

their algorithm involved approximately 365,000 degrees-of-freedom, which is of 

the same order of magnitude as that of Hsieh (2004).  

In recent years, Krylov subspace iterative algorithms have been increasingly used 

for large finite element problems (e.g. Lee et al., 2002; Phoon et al., 2002; Phoon 

et al., 2003; Phoon, 2004; Chen and Phoon, 2009). For very large problems on a 

single computer, Krylov subspace algorithms such as preconditioned conjugate 
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gradient (PCG) and quasi-minimal residual (QMR) methods have been 

demonstrated to be significantly faster than direct solution methods, and the 

speed-up increases with the size of the problem (e.g. Wang, 1996; Phoon, 2004; 

Chen, 2006). In addition, Krylov subspace algorithm can be readily implemented 

on an element-by-element basis, thereby obviating the assembly of the global 

stiffness matrix and its accompanying memory requirements. Thus, for a given 

random-access memory (RAM) size, much larger problems can be solved using an 

element-by-element implementation of Krylov subspace methods than direct 

solution algorithms (Wang, 1996). 

MPI-based implementation of pre-conditioned conjugate gradient (PCG) solver 

using element-by-element (EBE) scheme has also been used in geotechnical 

analysis (e.g., Gullerud and Dodds, 2001; Liu et al., 2007). Gullerud and Dodds 

(2001)’s study was conducted on an SGI/Cray Origin 2000 supercomputer.  They 

used a dual-level mesh decomposition scheme, with a coarse-level decomposition 

using the METIS graph-partitioning software to sub-divide the domain into sub-

domains, each sub-domain being assigned to a processor. A second fine-level 

decomposition sub-divides every sub-domain into blocks of elements for parallel 

computing on each processor. Liu et al. (2007)’s parallel PCG scheme was 

implemented on a cluster of 36 nodes, each being a shared memory machine 

consisting of four PIII Xeon 700MHz processors. MPI was used for data 

interchange between processors. Liu et al. (2007) also used the METIS software to 

sub-divide the domain. Both Gullerud and Dodds (2001) and Liu et al. (2007) 
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utilized a system of identifying shared nodes so that only information on shared 

nodes are exchanged between processors.  

In spite of the similarity of their approaches, Gullerud and Dodds (2001) and Liu 

et al. (2007) obtained very different speedup efficiency values, defined herein as 

the ratio of the speedup to the number of processors used. Using 48 processors, 

Gullerud and Dodds (2001) obtained a maximum speedup efficiency of about 71% 

using a PCG solver with diagonal pre-conditioner. With a direct sparse solver, the 

speedup efficiency decreases drastically to below 24%. Liu et al. (2007)’s 

diagonally-preconditioned PCG solver, on the other hand, was only able to obtain 

a speedup efficiency of about 70% with 4 processors. With 16 processors, their 

speedup efficiency fell to about 43%, in simulating Ertan arch dam-foundation 

system with 20,879 nodes and 17,980 elements. 

This comparison shows that while speedup is indeed achievable, in principle, with 

parallel computing on cluster machines, the level of efficiency which can be 

achieved with different algorithms do differ significantly. As shown above, some of 

these differences are explainable in terms of the solution algorithm, but other 

differences are not so readily explained. Possible reasons include differences in 

hardware platform, especially data interchange speed between processors, detailed 

procedures and programming with respect to data interchange and even the degree 

of optimality in domain sub-division using METIS. In terms of hardware 

comparison, Liu et al. (2007)’s cluster is probably newer but not much information 

was provided on the speed of the data highway. 
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3.3 Computer Resources and Architecture 

3.3.1 Setup of PC cluster in EIT lab, NUS 

The current PC cluster in the NUS Civil Engineering Educational and Information 

Technology (EIT) laboratory comprises 128 desktop computers that are linked 

using a Myri-10G Modular Switch, as shown in Figure 3-1.  All computers have 64-

bit architecture and operating systems, but were bought in three batches with 

different specifications, listed in Table 3-1. 64-bit representation was used to 

improve precision and access more memory. The operating system, Windows HPC 

server 2008, is installed on all computers and Linux Fedora is also installed on 

some of the computers, which allow users to choose the OS respectively. This study 

uses only the Windows HPC Server 2008 operating system. 

The processors on all PCs are standard Intel CORE processors with quad-core 

architecture. The use of standard PC allows scaling up to be achieved with minimal 

incremental cost. Each core is an individual calculation unit, and could process 

scientific calculation separately. All four cores on the same processor share the 

same memory and could access the whole memory individually. This makes it 

possible to use hyper-threading to speed up the calculation by distributing the 

calculation work to all cores. This architecture is named as shared memory, as 

different calculating units share the same memory. It is readily adapted for parallel 

calculation, without requirement of additional equipment. The access of shared 

memory could efficiently reduce the communication among different cores. One 

core stores data at a certain location for other cores to collect them, without explicit 
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send-receive communication. The standard protocol for hyper-threading, 

OpenMP, was used to split the computation workload among the different cores. 

However, there exist several limitations with shared memory configuration: 

(1) All four cores access shared memory through the same front side bus (FSB) 

which is either the older north bridge or current QPI. This FSB can become 

a bottle neck for the calculation speed. This will be discussed further in 

section 3.8.2. 

(2) The four cores could read from & write to the same memory location 

simultaneously, which may lead to some conflict between cores updating 

the same data. This can lead to computation errors. 

Parallel computation amongst different computers is also possible with high speed 

network. All the 128 computers are connected using Myri-10g network which offer 

10Gbps data transfer speed between any two computers. The Myri-10g network 

consists of the following components: 

 Myri-10G dual-protocol network interface cards (NICs), as shown in Figure 

3-2. Myri-10G NICs connect to hosts through PCI-Express x8, a 2+2 

Gigabytes/s full-duplex IO fabric that is fast enough to keep up with the 1.25 

+ 1.25 Gigabyte/s network port.  A PCI-X bus, with a speed of 1 Gigabytes/s 

at best, has only 40% of the 2.5 Gigabyte/s peak data rate needed for 10-

Gigabit networking.  Myri-10g NICs is the first near-wire-speed 10-Gigabit 

NICs. 

 The 128-port Myri-10G multi-protocol switch box.  
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 The 10G base-SR fiber cables, which connect the NIC and switch. The 

transmission speed is almost independent on cable length. Based on the 

distance between PC and switch, the cable length used in this study varies 

from 2 meters to 15 meters. 

The 128 computers are connected with the Myri-10g network to form a local 

network, and could access internet via head node, as shown in Figure 3-3. The head 

node, with the same specification as other nodes, takes charge of assigning IP 

address for other nodes, distributing calculation load, and monitoring the 

resources of the whole cluster. 

For large-scale modeling, the biggest advantage of adopting a PC cluster over the 

supercomputer is the much lower startup and operating costs and higher degree of 

scalability.  This makes parallel computations more readily available to research 

centers or engineering companies, which would otherwise not have access to 

supercomputing facilities. 

3.3.2 Message Exchange Using MPI 

The critical problem in performing parallel computations using a PC cluster is 

communication between processors or different nodes. All computers have to 

synchronize their operations and exchange data with one another. The inter-

processor communication is commonly achieved using MPI (Message Passing 

Interface) protocol (Snir and Gropp, 1998), which is a language-independent 

communications protocol for message passing. MPI was defined by the MPI Forum, 
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a broadly based group of parallel computer vendors, library developers, and 

applications specialists. One advantage of MPI is its portability, which makes it 

suitable to develop programs to run on a wide range of parallel computers and 

workstation clusters. Another advantage of MPI is its performance, because each 

MPI implementation is optimized for the hardware it runs on.  Generally, MPI code 

can be developed for an arbitrary number of processors. It is up to the user to 

decide, at runtime, the number of processors to be invoked for the execution. 

The MPI library consists of a large set of message passing primitives (functions) to 

support efficient parallel processes running on a large number of processors 

interconnected over a network.  Such processes can be divided into two types: 

point-to-point communication and collective communication. The point-to-point 

communication in MPI involves transmittal of data between two processors, 

typically using MPI_Send to send data on one node and using MPI_Recv to receive 

the data on another node. The collective communications, on the other hand, 

transmit data among all processors in a group, typically using MPI_Bcast to 

broadcast data from a head node to all other nodes, and using MPI_Reduce to 

collect data from all nodes to the head node. The performance of these commands 

on this PC cluster was evaluated prior to the development of the parallel code. This 

will be discussed below. 

Figure 3-4 (a) shows the time needed to transmit relatively short data segments 

with lengths ranging from 10,000 to 70,000 64-bit double precision numbers 

between two PCs using the commands MPI_Send and MPI_Recv, in a 1send-

1received configuration. As this figure shows, the average transmission speed is 
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about 4.92Gbits/s and there is an apparent latency of about 13.8s. This 

transmission rate lies well below the specified maximum of 10Gbits/s. Figure 3-4 

(b-d) shows the corresponding times for 2send-2receive, 4send-4receive and 

8send-8receive configurations. As can be seen, the average transmission speed 

remains roughly the same, but the latency increases slightly as the switch is busy. 

Figure 3-4 (e) and (d) also show the time for 1send-1receive and 2send-2receive 

operation involving cores on the same PC. As can be seen, for the Core i7 940 

machines, the core-core transmission requires the same amount of time as the PC-

PC transmission. For the Core2 Quad Q9550 machines, the core-core transmission 

speed is even lower, less than half of that of the Corei7 machines, as shown in 

Figure 3-4 (g). Thus, the bottleneck lies within the PC rather than the network 

switch. 

Figure 3-5 (a) shows similar data volume sent in longer segments, ranging from 

1,000,000 to 5,000,000. As can be seen, the transmission rate is significantly 

closer to the specified maximum and the apparent latency time significantly 

shorter. Hence, it is more efficient to send data in longer bursts, and this 

phenomenon is also found to apply for data transmission among cores, as shown 

in Figure 3-5 (b). As in the case for shorter data burst, core-core transmission 

requires the same amount of time as the PC-PC transmission, indicating that the 

bottleneck lies within the PC rather than the network switch. 

Figure 3-6 shows the time taken for broadcast operations involving different 

number of PCs, normalized by the time needed for a 1send-1receive operation. As 
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can be seen, where only 2 PCs are involved, the broadcast operation is slightly 

faster than the 1send-1receive operation. When 16 PCs are involved, that is, one PC 

broadcasting to 15 PCs, the entire operation takes about 2½ times as long as a 

1send-1receive operation.  Hence, when the same data has to be transmitted to a 

large number of PCs, the broadcast operation is much quicker than the send-

receive operation. Besides, higher efficiency can be obtained when the number of 

PCs involved is a perfect power of 2, and the similar features were noted by other 

researchers and the number of PCs involved was always a perfect power of 2 (e.g. 

Lu, 2006; Dupros et al., 2010). 

Figure 3-7 shows the corresponding time for a reduce operation, in which all PCs 

send their respective data to the head node PC to be summed up. As can be seen, 

when only 2 PCs are involved, the all-reduce operation is slower than the 1send-

1receive operation. However, when 16 PCs are involved, the entire operation 

remains much quicker than that needed by 15 1send-1receive operations. As Figure 

3-7 shows, the reduce operation is faster when the number of PCs in a cluster is a 

perfect power of 2. 

So far, the performance of the hardware components and the message passing 

features have been discussed in terms of the data transmission speed.  The 

performance of the computer cluster for simulating large-scale geotechnical 

problems, together with considerations of the parallel architecture, will be 

discussed later in Sections 3.5 to the end of the chapter.  Before this, Section 3.4 

introduces the governing equations, the finite element formulation and solution 
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schemes for the analysis of undrained seismic soil-structure interaction problems.  

This information is combined with the analysis flow chart for typical finite element 

simulations to provide a better appreciation of the parallel features and software 

architecture for carrying out such parallel computations.   

3.4 Finite element analyses for undrained nonlinear dynamic 

simulation 

3.4.1 Finite element formulation for undrained dynamic analysis 

The equation of dynamic equilibrium of a small solid element within a solid 

medium can be written as follows: 

    ,ij j i if u  (3.1) 

in which 

  ij  is the total stress vector, which is the sum of the effective stress and water 

pore pressure. 

    '

ij ij ij p  (3.2) 

  '

ij  is the effective stress vector of the soil. 

 p  is the pore water pressure 

 if  is the body force vector 
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 iu  is the acceleration vector of solid. In an undrained analysis, the 

displacements u , velocity u  and acceleration u  of both the soil and the water 

phases are assumed to be the same. 

   is the bulk density of the soil, that is, the total density of the soil and 

water. 

Instead of solving Eq (3.1) exactly over the whole domain, the finite element 

method involves subdividing the domain into a series of smaller elements, each 

defined by a set of nodes which serve to connect the elements together.  

Approximate solutions to Eq (3.1) are then obtained for all the nodes in the system. 

The displacements at these nodes are usually chosen to be the primary variables.  

The values of these variables at any other point within the element are related to 

the nodal values by means of approximating or shape functions (Zienkiewicz and 

Taylor, 1989). 

By applying a weighted residual method, a weak formulation of the problem can 

be obtained. The essence of this method, which is an optimization process, is the 

multiplication of weighting functions iw  to the governing differential equations 

and minimizing the errors thus obtained over the volume of the element while 

satisfying the essential boundary conditions.  The resulting integral for the element 

equilibrium can be written as 

       , 0i ij j i iv
w f u dV  (3.3) 
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which, upon expansion, leads to 

       , 0i ij j i i iv v v
w dV w fdV w u dV  (3.4) 

Using Gauss’ Divergence Theorem, 

      , ,i ij j i ij j i j ijv s v
w dV w n dS w dV  (3.5) 

The Generalized Hooke’s Law for a solid allows  ij  to be expressed as 

   
 

   
 

' ' ' ' 'k k
ij ijkl kl ijkl kl ijkl ijkl

l l

u u
D E D E

x x
 (3.6) 

in which '

ijklD  is the constitutive tensor governing the deformation response, and 

'

ijklE  is the constitutive tensor governing the viscous response.  The pore pressure 

can be expressed as 

 


 


i
w v w

i

u
p K K

x
 (3.7) 

in which wK  is the bulk modulus of pore water. 

Substituting Eqs (3.2), (3.5), (3.6), (3.7) into Eq (3.4), the following equation is 

obtained 
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 (3.8) 

Upon expansion of the term in brackets and rearranging, 
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w fdV w n dS w u dV

 (3.9) 

In order to solve Eq (3.9), it is necessary to choose a suitable weighting function iw . 

In this study, the Galerkin’s weighted residual method (Finlayson, 1972), in which 

the weighting function is chosen to be the same as the shape function iN  of the 

element, is used to obtain approximate solutions to Eq (3.9).  This leads to 
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N D dV N E dV N K dV
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N fdV N n dS N u dV

 (3.10) 

In typical finite element matrix formulation, this can be written as 
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 (3.11) 

or simply 

          [ ] [ ] [ ]M u C u K u F  (3.12) 
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where  

[ ] [ ] [ ]
e

T

dv
nel

M N N dV  is the global mass matrix 

[ ] [ ] [ '][ ]
e

T

v
nel

C B E B dV  is the global viscosity matrix 

  [ ] [ ] [ '] [ ] [ ]
e

T

w uv
nel

K B D K I B dV  is the stiffness matrix, and 

   { } [ ] { } [ ] { }
e e

T T

s ds v
nes nel

F N f dS N f dV  is the resultant applied load 

due to the surface applied tractions and the body forces respectively. 

  1 1 1{ }
T

n n nu u v w u v w  is the displacement vector, 

   ,[ ] i jB N  is the strain-displacement transformation matrix, 

[ ] (1 1 1 0 0 0)T

uI diag  

Eq (3.12) is analogous to the equation of motion commonly encountered in 

structural dynamics, i.e. 

   Ma Cv Ku F  (3.13) 

in which a is the acceleration vector, v is the velocity vector, and u is the 

displacement vector. Eq.(3.13) is an undrained finite equation system which is 

different from the 𝑢~𝑝  formula (Chan, 1982) and 𝑢~𝑣  formula (Ye, 2013). It’s 
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assumed that the water does not diffuse during seismic shaking which is 

reasonable to soft clay and has been widely used. 

In non-linear dynamic analysis, Eq (3.13) is often integrated over time domain in 

a series of steps. One of the most widely used families of direct methods for solving 

Eq (3.13) is the Newmark method (Newmark, 1959), which consists of the 

following equations: 

    
  1 1 1 1n n n nMu Cu Ku F  (3.14) 

  
 
    2

1 1[(1 2 ) 2 ]/2n n n nu u tu t u u  (3.15) 

  
 
   1 1[(1 ) ]n n n nu u t u u  (3.16) 

in which t  is the incremental time-step, and   ,   are dynamic integration 

constants.  The subscripts n  and 1n  denote successive points in time.  The 

parameters   and   also determine the stability and accuracy characteristics of 

the algorithm under consideration. 

The implementation to be adopted here is the a-form, in which the primary 

variable is the incremental acceleration 
 1nu . This form of implementation is 

convenient for generalizations to algorithms that employ ‘mesh partitions’ but is 

not the most efficient implementation (Hughes, 1990). Although the concept of 

mesh-partitioning into implicit and explicit zones is not used in this study, it is 

envisaged that the need for such an algorithm to solve soil-structure interaction 

will arise in the future, which is why this implementation is chosen. 
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By writing  
 1 1n n nu u u ,  

 1 1n n nu u u , and  
 1 1n n nu u u , Eqs (3.14), (3.15) 

and (3.16) can be written in the following incremental forms: 

    
      1 1 1 1n n n nM u C u K u F  (3.17) 

 
 

     2

1 1[ 2 ]/2n n n nu tu t u u  (3.18) 

 
 

     1 1n n nu u t u t  (3.19) 

Substituting Eqs (3.18) and (3.19) into Eq (3.17), 

   
 

  
               

  

2
2

1 1
2

n
n n n n

u t
M tC t K u F u t C u t K  (3.20) 

is obtained. This is the recursion relation used in this study to determine 
 1nu . 

Once 
 1nu  is determined, 

 1nu  and 
 1nu  can be obtained using Eqs (3.18) and 

(3.19) respectively. 

The Newmark family of time integration schemes encompasses, as special cases, 

many well-known and widely used methods, depending on the choice of values for 

  and . The values of   and  allow the numerical dissipation to be continuously 

controlled by a parameter other than the time step.  For example, by setting 

 
 

  
 

2
1

/ 4
2

 and 
1

2
, the amount of dissipation for a fixed time step can be 

increased by increasing  . On the other hand, the dissipative properties of this 
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family are considered to be inferior to both the Houbolt (1950) and the Wilson-  

(Wilson, 1968) methods, since the lower modes are affected too strongly. 

The linear acceleration and Fox-Goodwin methods are conditionally stable; hence 

they are not economically competitive for large-scale systems when compared to 

unconditionally stable techniques such as the average acceleration method, which 

is obtained when  = 0.25 and  = 0.5. 

Although the average acceleration method is unconditionally stable for linear 

problems and generally permits the use of a larger time-step size, accuracy 

considerations may require that the time-step used should be reasonably small.  

The commonly used rule-of-thumb for non-dissipative algorithms requires at least 

ten time steps per period be taken for accuracy (Hilber, 1977). This requirement 

becomes even more stringent for elasto-plastic materials, since the numerical 

computations in the plastic region usually involve some form of approximation of 

the stress-strain relationship, such as the tangent stiffness method.  For numerical 

codes that do not perform any iterative stress correction, such as in CRISP92, it is 

necessary to use time steps or load steps that are sufficiently small so that the drift 

from the correct stress-strain behavior is reduced (Britto and Gunn, 1987; Potts 

and Ganendra, 1991). This is usually done by performing preliminary studies to 

check the convergence characteristics of different time-step sizes. 

3.4.2 Newton-Raphson method for dynamic analyses 

The Newton-Raphson algorithm for drift correction has been widely used in non-

linear static problems. However, its formulation for non-linear dynamic problems 
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is less widely documented. For this reason, the Newton-Raphson formulation 

which is used in this study is presented below. 

In nonlinear computations, the material stiffness and damping at the end of the 

current time step (n+1) is not available at the start of the time step. As a result, 

their values at the end of the time step n are often taken as being representative of 

those over the entire time step (n+1), that is 

         
  

         
   11 1 1

ˆ ˆˆ ˆ ˆ
nn n n

M a C v K u F  (3.21) 

         
 


     

2

1 1
ˆ ˆ2

2n nn n

t
u t v a a  (3.22) 

       
 

    
1 1

ˆ ˆ
nn n

v t a a  (3.23) 

in which  
 
K̂ ,  

 
Ĉ  are the initial tangent value of stiffness & damping matrix at 

( 1)n time step respectively, and  



1

ˆ
n

a ,  



1

ˆ
n

v ,  



1

ˆ
n

u  are the corresponding 

approximate solutions, as shown in Figure 3-8. 

Let  

      
 

   
1 11

ˆ
n nn

u u u  (3.24) 

      
 

   
1 11

ˆ
n nn

v v v  (3.25) 

      
 

   
1 11

ˆ
n nn

a a a  (3.26) 
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in which  
1n

u ,  
1n

v ,  
1n

a  are the errors of incremental displacement, 

velocity and acceleration due to the initial tangent value assumption. 

Substituting Eqs (3.24), (3.25) and (3.26) into Eq (3.17) leads to 

 
             

        

 



  

 

    

    

1 11 1

1 11

ˆ ˆ

ˆ

n nn n

n nn

M a a C v v

K u u F
 (3.27) 

Rearranging, 

 
          

         

  
   

  

   

     

1 1 1 1

1 1 1
ˆ ˆ ˆ

n n n n

n n n

M a C v K u F

M a C v K u
 (3.28) 

Substituting Eqs (3.25) and (3.26) into Eq (3.19) leads to 

              
  

      
1 11 1

ˆ ˆ
n n nn n

v v t a a a  (3.29) 

Subtracting Eq (3.23) from Eq (3.29) leads to 

      
 
 

1 1n n
v t a  (3.30) 

Substituting Eq (3.24) and (3.26) into Eq (3.18) leads to 

                
  


       

2

1 11 1
ˆ ˆ2 2

2n n n nn n

t
u u t v a a a  (3.31) 

Subtracting Eq (3.22) from Eq (3.31), leads to 

      
 
 2

1 1n n
u t a  (3.32) 
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Substituting Eqs (3.30) and (3.32) into Eq (3.28), leads to  

 
         

         

  
 

  

     

     

2

1 1

1 1 1
ˆ ˆ ˆ

n n

n n n

M t C t K a F

M a C v K u
 (3.33) 

Since the values of  C and [ ]K  matrices used are those at the beginning of the 

time step n+1,  
1n

a  so obtained is only an approximate value. 

 

         

          

  
 

 

  

  

     

 
      
 

( 1) ( 1) ( )2
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( 1)( 1) ( 1)( 1) ( 1)

1 1 1

ˆˆ ˆ

i i i

n n

ii ii i

n n n

M t C t K a F

M a C v K d
 (3.33) 

The Newton-Raphson method is often used to correct the errors so incurred. In 

this method, the errors in the displacement, velocity and acceleration are 

converted into out-of-balance stresses and thereby forces 

                   
 

  
        

( 1) ( 1)( 1)

1 1 1
ˆ ˆ

i i Ti g g

b n n n v
F M a v B dV (3.34) 

in which 

      




  
( 1)

1

ˆ
i

g

n
D B d    at Gauss point (3.35) 

      



  

( 1)

1
ˆ

ig

n
D B v    at Gauss point (3.36) 

Then  

              
  

  
       

( 1) ( 1) ( ) ( 1)2
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in which 

                 

        
(0)(0) (0)

1 1 1 1 1 1

ˆ ˆˆ ˆ ˆ ˆ
n n n n n n

a a v v d d  (3.38) 

According to Eq (3.30) and (3.32) 
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i

i
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d d d  (3.44) 

and  
( )i

K ,  
( )i

C  can be calculated from the latest  


( )

1

i

n
d . The iterations are 

repeated until  


( )

1

i

n
a  is small enough.  
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3.4.3 EBE-MJPCG iterative solver 

As shown by Eqs (3.20) and (3.37), the solution of the soil-pore water-pile-

superstructure interaction problem involves solving a system of linear equations 

of the form 

     A x b  (3.45) 

The most widely used algorithms for solving Eq (3.45) are refined variants of the 

Gaussian elimination approach, such as the bandwidth solver (Zienkiewicz and 

Taylor, 1999), frontal solver (e.g. Irons, 1970; Britto and Gunn, 1987; Zienkiewicz 

and Taylor, 1999) and the multi-frontal solver (Hibbitt, 1997). Such solvers are 

very efficient for small to medium-sized problems where the matrix is still fairly 

dense and the time spent on factoring is less than or equivalent to the time spent 

on solving the system iteratively.  However, for 3D problems involving large 

matrices, the storage of the front or semi-bandwidth alone can require a large 

amount of memory.  Even with out-of-core access, the memory capacity may still 

be inadequate to cope with the minimum storage required to run the analysis.  In 

addition, in multi-clocked hierarchical computer systems such as PCs, the large 

amount of indirect addressing used by such algorithms tends to lead to a rather 

low cache data re-use rate, thereby causing a drop in processor efficiency. 

In contrast to Gaussian elimination methods, iterative methods may not require 

assembly of the global stiffness matrix, thereby significantly reducing computer 

memory usage. Barrett et al. (1994) showed that the combination of 
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preconditioning and Krylov subspace iterations could provide efficient and simple 

“general purpose” procedures that are viable alternatives to direct solvers.  In 

contrast to direct methods, iterative methods converge iteratively towards the 

correct answer, the iterations being terminated when the required accuracy is 

reached.  Many iterative methods have convergence characteristics which vary 

substantially with condition number.  In general, the larger the condition number, 

the poorer will be the convergence characteristics.  To accelerate convergence, 

iterative methods usually incorporate a preconditioning process with a 

preconditioner matrix.  A commonly used, simple and inexpensive preconditioner 

is the Jacobi Preconditioner (Saad, 1996; Smith, 2000), which is a collection of the 

diagonal terms in the stiffness matrix.  Lee et al. (2002) examined the performance 

of the Jacobi preconditioner when the iterative method was used to solve drained, 

undrained and consolidation problems, while Chan et al. (2001) proposed a 

modified Jacobi preconditioner for solving ill-conditioned Biot’s consolidation 

equation. 

Fox and Stanton (1968) and Fried (1969) pointed out that the assembly of the 

global stiffness matrix is not essential in conjugate gradient (CG) methods and that 

the matrix-vector operations can be performed at the element level. This opened 

the way for element-by-element (EBE) implementation of CG methods, which can 

drastically reduce memory requirements in large 3-D finite element analyses. An 

efficient element-by-element preconditioned conjugate gradient (EBE-PCG) 

algorithm was developed by Hughes et al. (1987) by combining the element-by-

element method (Hughes et al., 1983a; 1983b) with the traditional PCG method. 
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Later this method was improved by Papadrakakis and Dracopoulos (1991) and 

Tezduyar (1992).  Lim (2003) combined the modified Jacobi preconditioned 

conjugate gradient (MJPCG) method and EBE-PCG algorithm to come up with the 

EBE-MJPCG iteration solver, as shown in Figure 3-9. 

As can be seen, there are four types of calculations in each iteration of the EBE-

MJPCG solution process, as follows: 

(1) Type 1 Calculation: Pre-multiplication of a n-component vector with a pre-

conditioner (in this case diagonal matrix) to give another n-component vector, 

where n is the number of degrees-of-freedom.  

(2) Type 2 Calculation: Matrix-vector multiplication (once for each element).  

(3) Type 2a Calculation: Formation of element stiffness matrix (done once in each 

time or load step for each element). 

(4) Type 3 Calculation: Two dot-product calculations between two n-component 

vectors.  

(5) Type 4 Calculation: Three calculations involving addition of an n-component 

vector to the scaled version of another.  

For a problem involving m elements, each with l degrees-of-freedoms and a total 

of n degrees-of-freedoms, the number of fetch, store, multiplication and 

summation operations are shown in Table 3-2. 

For an 8-noded brick element with 24 degrees-of-freedom, 2 576l  . For a 20-

noded brick element, 2 3600l  . For most problems, n is either of the same order 
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of magnitude as m or at most about 1 order larger, hence the Type 2 calculations 

clearly dominate the operations and would benefit most from parallel processing. 

For Type 2a calculations, the number of operations is difficult to estimate and 

depends upon a number of factors such as the type of element, constitutive model 

and number of integration points. 

Table 3-3 shows the time taken by an Intel Core2 Quad Q9550 2.83GHz desktop 

PC to complete 50 time steps for a simple example of an idealized elastic cubical 

domain subjected to bottom horizontal excitation, as shown in Figure 3-10. Hyper-

threading was disabled to ensure fully serial computation. Twenty-node brick 

elements are used in all the calculations.  

As Table 3-3 shows, when the number of degrees-of-freedom is less than about 

350,000, the time taken for the Types 2 and 2a calculations are of the same order 

of magnitude. In the example shown, the cases are well-conditioned and 

convergence is quite rapid. As Table 3-3 shows, the average number of iterations 

per time step is only a small fraction of the number of degrees-of-freedom. For 

more ill-conditioned problems, the number of iterations is likely to increase. Thus, 

in general, one may surmise that the Types 2 and 2a calculations are likely to 

require roughly the same amount of time. For larger problems, the time needed for 

the Type 2a calculations rapidly outstrips that of the Type 2 calculation. The 

combined time taken for the Types 1, 3 and 4 calculations is far less than that taken 

for the Types 2 and 2a calculations. In other words, Type 2 and 2a are the critical 

players in terms of the total computational time consumed.  Hence, for 
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parallelization purposes, these two types of calculations will be divided and 

distributed on multi-PCs or multi-cores to speed up the calculation. 

3.5 Domain Decomposition Scheme 

Numerous domain decomposition schemes have been proposed in the past (e.g. 

Kumar and Adeli, 1995; Deng, 2003; Komatitsch et al., 2003; Laemmer et al., 

2003; Wang et al., 2005). The main objective of these domain decomposition 

schemes is to reduce the volume of data transmission required between sub-

domains and thereby to reduce the data transmission time. Gullerud and Dodds 

(2001) and Liu et al. (2007) used the METIS graph partitioning software to 

partition their domain. With this, as well as most of the methods proposed thus far, 

the sub-domains have to be pre-divided and then ported manually into each 

computer. To date, no single method has been shown to be optimal or superior 

compared to the others.  

Most domain decomposition schemes are aimed at minimizing the amount of data 

that need to be transmitted over the network, even at the expense of an increase in 

the volume of housekeeping which needs to be done within each of the computers. 

This is based on the assumption that network data transmission speed is far slower 

than data processing and transmission speed within a node. However, the 

benchmarking results presented above show that this is not necessarily true, at 

least for the hardware used in this study; the network transmission speed is at least 

as high as the core-to-core transmission speed. This is supported by the fact that 

the element stiffness formation process takes, by far, the most time in each time 
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step. In such a situation, decreasing the volume of data transmission over the 

network may result in an increase in housekeeping work, which would have the 

opposite effect. Thus, instead of merely minimizing the volume of network data 

transmission, one may need to find an optimal balance between the volume of 

network data and internal housekeeping work. 

This motivates an alternative approach to domain decomposition and data 

transmission which is explored in this study. Before finite element calculation, the 

meshed elements are renumbered in such a way as to reduce the front width, this 

numbering being achieved using Duff et al. (1989)’s method. Preliminary trials 

show that the numbering of the nodal degrees-of-freedom is also largely 

contiguous (i.e. with relatively few gaps in numbering) and relatively compact. This 

is consistent with the fact that some amount of optimization has been made to the 

element numbering in order to achieve an efficient frontwidth. This implies that if 

the domain is now sub-divided based on its element numbering sequence, the 

degree-of-freedom numbering within each sub-domain will be largely contiguous 

and the number of shared nodes will be reasonably reduced. This method of sub-

dividing the mesh, based directly on element numbering, is used herein. It has 

several advantages. Firstly, it is easily automated so that the user does not have to 

be involved in the decomposition. Secondly, it is easy to trace which sub-domain a 

particular element resides in as this depends purely on its number. Thirdly, 

balancing the computational workload of each node is relatively straightforward. 

Since much of the time is taken up by the formation of the element stiffness 

matrices and the pre-multiplication of the element stiffness matrix into the  p  
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vector (see Figure 3-9 and Table 3-3), a simple method of balancing computational 

workload is to sub-divide the domain into sub-domains, each having an equal 

number of contiguously-numbered elements.  

3.6 Data Interchange Schemes 

The data interchange schemes used by Gullerud and Dodds (2001) and Liu et al. 

(2007) involves identifying nodal points which are shared by two or more sub-

domains and transmitting the data for these shared nodal points over the network. 

While this is consistent with the objective of minimizing the volume of data 

transmission over the network, it also increases the volume of housekeeping work 

on each node significantly since each data item has to be individually pointed to its 

correct destination. Moreover, it is difficult to balance data transmission workload 

and synchronize the data transmission process since some sub-domains will have 

more shared nodes and some nodes may be shared amongst more than two sub-

domains. Thirdly, since specific items of data are only interchanged between 

specific computers, it is difficult to exploit the efficiency of the broadcast and 

reduce operations. Thus, while some vectors will need to be reduced, the reduction 

processes will have to be done manually and perhaps by more than one node. 

Three data interchange schemes are studied herein and they are as follows: 

Scheme 1 – using the broadcast (sending necessary information from head node to 

other nodes) and reduce (collecting calculated results from all nodes to head node) 

MPI operations. The individual element matrices,  eA , are formed by different 
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processes and stored separately, as shown in Figure 3-11. The matrix-vector 

multiplication operations   0eA x  between the element matrices and the 

appropriately segments of the trial solution vector are also carried out on each 

process simultaneously, and the resultant vector for each sub-domain is computed 

by its corresponding process.  When this is completed, all processors transfer the 

respective resultant vectors to the first process (Proc 0), where they will be further 

summed to obtain the global vector for the whole domain; this utilizes the reduce 

operation. Proc 0 will perform the following computations serially while the other 

processors wait. 

(1) Summation of two vectors,       r b f  

(2) Multiplication of two vectors,     1[ ]z M r , in which [ ]M , a diagonal 

matrix, is the modified Jacobi preconditioner.  

(3) Dot product of two vectors,      r z  

(4) Comparison and check   ,  1i , where   is the critical tolerance for the 

iteration and i  is the iteration number. 

(5) Division of two scalar,     ( 1) ( 1) ( 2)/i i i
 

(6)     ( ) ( 1) ( 1) ( 1){ } { } { }i i i ip z p  

After evaluating
( ){ } ip , Proc 0 will broadcast it to all other processors, whereupon 

each processor carries out the multiplication of the matrix 
( ){ } ip  and the vector [Ae] 

for each element in its subdomain concurrently, and sums the resulting ( )[ ]{ } i

eA p  
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for all degrees of freedom in the subdomain. When this is completed, all the 

processors transfer their respective product vector to Proc 0 (as shown in Figure 

3-13 (a)), which then proceeds to execute the following serial code: 

(7) Dot product,  ( ) ( ) ( ){ } { }i i ic p q  

(8) Division of two scalars,   ( ) ( 1) ( )/i i ic  

(9) Updating   ( ) ( 1) ( ) ( ){ } { } { }i i i ix x p  and   ( ) ( 1) ( ) ( ){ } { } { }i i i ir r q  

Proc 0 will then broadcast ( ){ } ix  and ( ){ } ir  to all other processors to perform the 

next iteration, until convergence is achieved. The program flow chart is shown on 

Figure 3-12, in which the parallel calculations are highlighted in green and serial 

calculations in yellow. This scheme involves the largest volume of data interchange 

but also the least amount of internal housekeeping. 

Scheme 2. This Scheme is similar to Scheme 1 in sequence. However, instead of the 

broadcast and reduce operations, only data relevant to the active degrees-of-

freedom in each sub-domain is transmitted and this is achieved using a few parallel, 

synchronized send-receive operations as shown in Figure 3-13 (b). As this Figure 

shows, for a total of N-processors, the first parallel send-receive operation involves 

N/2 pairs of processors, namely Proc NProc (N-1), Proc (N-2)Proc (N-3), Proc 

(N-4)Proc (N-5)….Proc 1Proc 0. The next operation involves Proc (N-1)Proc 

(N-3), Proc( N-5) Proc (N-7) …. Proc 2Proc 0 and so on. Data corresponding 

to inactive degrees-of-freedom which are interspersed between the active degrees-

of-freedom are not transmitted. The serial operations in Scheme 1 remain as serial 



Chapter 3 Parallel Finite Element Method Using a PC Cluster  

 

101 
 

operations. This scheme involved much less data transmission than Scheme 1 but 

also more internal housekeeping to correlate the data sent and received to its 

correct degree-of-freedom. 

Scheme 3. This Scheme is similar to Scheme 2 except that data corresponding to 

inactive degrees-of-freedom which are interspersed between the active degrees-of-

freedom are also transmitted. This results in less housekeeping than Scheme 2 

since the data vector is now contiguous (see Figure 3-13 (c)) and can be added up 

once the beginning and end points are known. However, it also results in more data 

transmission than Scheme 2. Compared to Scheme 1, it involves more 

housekeeping but less data transmission. 

The simple model in Figure 3-10 is used to evaluate the efficiency of the three data 

interchange schemes, and the time taken for 50 time steps is compared in Table 

3-1.  It is seen that Scheme 1 performs best in terms of time-savings, which may be 

due to the merit of the MPI_Reduce operation compared to send-receive 

operations. Hence, Scheme 1 is employed in the following parallel computations. 

3.7 Parallel Computation Architecture 

As discussed in the previous section, in carrying out the finite element analyses, 

the largest amount of time is spent on (i) calculating the element stiffness & mass 

matrices, (ii) multiplying matrix and vector, and (iii) updating strain & stress 

vectors.  The main objective of parallel computations is to improve the execution 

speed of these three calculation types, which may take up to 97% of the solution 

time in serial calculations.  For each element, the calculation of its stiffness & mass 
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matrices, as well as the updating of the strain & stress vectors, can be carried out 

independently of all other elements.  Thus, such tasks are ‘stand-alone’ activities 

that can be directly distributed among the various processors in the group.  On the 

other hand, the solution of the linear system of equations involves all degrees of 

freedom, which requires a large volume of communication and data transfer 

among the different processors, and significantly increases the complexity of the 

parallel computations.  Hence, the parallel solution of a large system of linear 

equations will be discussed separately in the next section. 

Apart from the abovementioned processes, the remaining code makes up 80% of 

the program but executes in less than 3% of the overall solution time.  This code 

will still be executed in the serial mode, so as to retain compatibility with the 

original serial program. 

As shown in Figure 3-11, the first processor (Proc 0) reads geometric data, control 

parameters, material properties, boundary conditions and seismic excitation from 

the hard disk, and broadcast the information to other processors.  After this, all 

processors are ‘called’ to commence preparatory work for the entire calculation 

domain, such as setting up the in-situ stresses and initializing displacement and 

load vectors.  In forming the element stiffness & mass matrices, each processor 

deals only with a specific number of elements assigned to it, following a systematic 

order as shown: 
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Proc 0 --- element 1 to 1n  

Proc 1 --- element 1 1n   to 12n  

Proc 2 --- element 12 1n   to 13n  

--- ---      ---- --- 

Proc (n-1) --- element 1( 1) 1n n   to eln  

in which n is the number of processors involved in the parallel computations, eln  is 

the total number of elements, and 1n  is the quotient of eln  and n .  In this phase, 

each processor performs its own set of calculations, which is approximately 1/ n  of 

the total calculations required for the full domain.  Hence the speed-up of the 

parallel calculations will be n, that is to say, the time required to form the element 

stiffness & mass matrices for the whole domain is 1/ n  of that required for the 

serial code.   

Besides the speed-up, this phase also exploits another advantage of parallel 

calculations, in that it allows each processor to store only the matrices 

corresponding to the elements present in its sub-domain.  Hence, the random 

access memory (RAM) required in each processor is also approximately 1/ n  that 

of the memory required if the serial code is used.  In this way, it is possible for a 

cluster of linked PCs, each with its own relatively small RAM, to work together to 

solve large problems.   

After the solution of the assembled global system of linear equations (which will 

be discussed in the next section), the computed nodal acceleration & displacement 
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vectors are used to update the strain & stress vectors in each element.  This process, 

which is similar to the earlier phase for calculating the element matrices, offers 

similar speed-up and memory advantages when parallel computations are 

executed.  After each processor updates the strain & stress vectors for the elements 

corresponding to its sub-domain, it transfers the data back to the first processor 

(Proc 0) for output, as shown in Figure 3-15. 

With the latest strain & stress vectors, the program can either carry out Newton-

Raphson iteration, or proceed to the next time step. 

3.8 Hyper-threading Parallel Calculation Using OpenMP 

Besides the above parallel architecture that uses the MPI platform to link different 

computers, another lower level parallel architecture, which uses hyper-threading 

technology, can be utilized among different cores in the same processor. Hyper-

threading is different from MPI in that it allows different threads to share the same 

memory within the same PC and does not require a network to communicate, 

which can reduce the memory storage requirements and facilitate the execution of 

the parallel code.  However, special attention should be paid to the individual 

variables in each thread, as such variables may be modified by other threads if they 

are not declared as private. 

The OpenMP (Open Multi-Processing) is the application program standard that 

provides an easy method for threading applications without burdening the 

programmer with the complications of creating, synchronizing, load balancing, 
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and destroying threads (Akhter and Roberts, 2007).  In this way, the programmer 

can spend more time determining which loops should be threaded and how best to 

structure the algorithms for performance.  The full potential of OpenMP is realized 

when it is used to thread the most time-consuming loops, that is, the hot spots. 

By using statements that begin with !$omp, the large time-consuming loops in 

GeoFEA are threaded using OpenMP as follows: 

!$omp  parallel default(shared) 

!$omp  do private(i),schedule(static,chunksize) 

do i=1,nit 

… … ! Iteration body 

enddo 

!$omp  end do 

!$omp  end parallel 

in which nit is the number of iterations. The iteration body will be distributed to 

different threads for execution.  Once the loops are completed, the parallel threads 

are terminated using the statement ‘!$omp end parallel’, and the program then 

reverts to serial execution using one thread. 

When using OpenMP for hyper-threading parallel calculations, care should be 

taken when dealing with the following issues: 
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 Flow dependencies, which exist when previous iterations of a loop write 

data that will be read in future iterations, or two iterations write the same 

value, or a read occurs before a write. 

 Race conditions, in which multiple threads attempt to update the same 

variable at the same point of time. 

 Computational overheads, as in the initialization & ending of hyper-

threading processes and distribution of the work, all of which require 

computational time.  If the number of iterations is not sufficiently large, the 

use of hyper-threading may result in a longer execution time compared to a 

single thread. 

3.9 Parallel Hybrid Computations Using MPI and OpenMP 

A parallelization combining threads and message passing, compared to just pure 

message passing, is a promising way to reduce the computational overheads with 

respect to memory and performance. Hybrid parallelization (Hipp and Rosenstiel, 

2004) is the combination of a thread-based programming model for parallelization 

on shared memory nodes together with message passing based parallelization 

between the PCs. The hybrid implementation reduces the amount of transferred 

data because the communication of shared data on each PC takes place internally. 

For the hybrid implementation, OpenMP is used for the inner intra-node 

parallelization and MPI is used for inter-node communication. To achieve better 

portability, only the master thread calls the MPI functions, because not all MPI 
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implementation calls are thread safe. So the hyper-threading technology is 

inserted in the MPI parallel architecture as follows: 

CALL MPI_INIT(ierr) 

… … 

!$omp  parallel default(shared) 

 … …   ! for hyper-threading technology 

!$omp  end parallel 

 … … 

CALL MPI_... ! for inter-node communication 

… … 

!$omp  parallel default(shared) 

 … …   ! for hyper-threading technology 

!$omp  end parallel 

… … 

CALL MPI_FINALIZE(ierr) 

In this way, hyper-threading is performed within each node (PC), and message 

passing communication is performed among different nodes (PCs) using the Myri-

10G network, as shown in Figure 3-16. 

3.10 Parallel Performance 

The methods and algorithm discussed in the previous sections have been 

incorporated into the geotechnical finite element code GeoFEA 

(http://www.geosoft.sg/products/geofea.php).  The parallelized, dynamic version 
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of the code has been successfully ported onto the NUS EIT Lab PC cluster. The 

parallel performance is presented in the following sections. Section 3.10.1 

describes the basic concepts of performance evaluation for parallel software, 

followed by the performance results measured on the PC cluster. 

3.10.1 Parallel Performance Evaluation 

The performance of a parallel application is usually evaluated by using the speedup 

factor, ( )S n , defined as (Amdahl, 1968) 

 ( ) s

p

t
S n

t
 (3.46) 

where st is the execution time on a single processor and pt is the execution time on 

a multiprocessor. ( )S n  gives the increase in speed in using a multiprocessor. The 

maximum speedup is n with n PC nodes (linear speedup).  Super-linear speedup, 

where ( )S n n , may be encountered on occasions, such as when a sequential 

algorithm needs to use virtual memory due to insufficient RAM, or some unique 

feature of the architecture that favors the parallel formation.  

3.10.2 Performance of Parallel Computation  

This section deals with the parallel finite element solution for three pile foundation 

configurations (2x2, 21x9, 41x11) with sizes ranging from 129,444 to 2,259,345 

degree of freedoms (dofs), as shown in Figure 3-17. All the three models are 

calculated on 1, 2, 4, 8, 16 and 32 PC nodes with and without hyper-threading, and 
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the computational run-times are summarized in Table 3-6. The PCs used in this 

exercise run on the Intel CORE i7-950 processor, which has 4 cores and supports 

a maximum of 8 hyper-threads. However, preliminary studies show that using 8 

hyper-threads confers no speed-up compared to 4 hyper-threads. This is not 

surprising. Using 8 hyper-threads means that every core has to support 2 hyper-

threads. This is effective if each hyper-thread only uses a core intermittently, which 

is often the case in software involving a lot of user interaction. However, in heavily 

computational work such as finite element analysis, each core is utilized virtually 

continuously on each hyper-thread. If each core is further required to support 2 

hyper-threads, then the core will have to split up its time and resources and incur 

additional housekeeping work to co-ordinate the two hyper-threads. On this basis, 

using one hyper-thread per core will be more effective, and hence this is the 

configuration adopted for hyper-threading in this study. For the quad-core 

processors used in this study, this implies 4 hyper-threads per PC. 

The material properties, boundary conditions, base input motion and calculation 

results will be discussed later in Chapters 4 and 5. A complete analysis consists of 

5000 time steps, which will take too long time on one PC running in serial mode. 

Hence, the complete calculations are only carried out in Chapters 4 and 5 using 

eight or sixteen PC nodes with hyper-threading.  For the parallel performance 

study considered in this section, only the first 50 time steps are carried out using 

different parallel PC configurations ranging from 1 to 32 nodes. Besides GeoFEA, 

the three same models were also analyzed using ABAQUS v6.11 with user 

subroutine, so that their respective run-times can be compared.   
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The processing workload is distributed such that each processor is responsible for 

approximately the same number of elements and hence, computational operations. 

When there is good load balance, each processor will complete its tasks at about 

the same time and synchronization costs will be minimized. 

The calculation results from different computation schemes are compared in 

Figure 3-18. The acceleration response at pile raft of model 1, calculated by both 

sequential computation and different parallel schemes, are visually the same. 

There is difference from the sixth significant digit at the last time step, as shown in 

Table 3-5. The difference is due to the round-off error, and will be discussed in 

section 3.11.1. 

Table 3-6 summarizes the execution times of the solution phase for each model 

required for the first 50 time steps.  It is seen that, for the small-scale model, i.e. 

Model 1, GeoFEA on one PC node without hyper-threading takes about twice as 

long as ABAQUS; but for the medium-scale model, i.e. Model 2, GeoFEA on one 

PC node without hyper-threading could save about 42% off the run-time of 

ABAQUS.  This illustrates the speed advantage of iterative solvers on medium-

scale problems. The large-scale model, i.e. model 3 could not be calculated with 

both GeoFEA and ABAQUS on one PC because the 12GB memory is insufficient for 

such an analysis. However, when GeoFEA is run in the parallel mode with four PC 

nodes, this large-scale model could be analyzed by distributing the data to the 

individual memories on each PC node.  
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Table 3-5 also highlights that, when more PC nodes are used, additional savings in 

the computational run-times using GeoFEA can be achieved. By extrapolating the 

run-time for Model 2, it is expected that the full analysis of 5000 time steps will 

take about 1703 hours, or almost 2½ months, on one PC node.  For most practical 

purposes, this is probably not acceptable.  However, the same analysis for Model 2 

takes 153.61 hours to complete when implemented on eight PC nodes with hyper-

threading.  Similarly, it takes 618.42 hours to complete the Model 3 calculations 

on sixteen PC nodes with 4 hyper-threading. These run-time results indicate that 

the parallelized version of GeoFEA provides a feasible and efficient efficient 

approach for solving large-scale analysis on a normal PC cluster. 

The parallel speedup factors for the different node configurations are calculated 

with respect to the calculation time on one PC node without hyper-threading, as 

shown in Table 3-7 and Figure 3-19.  It is seen that increasing the number of PC 

nodes could efficiently shorten the calculation times for all three models, with a 

speedup factor of more than 30 achieved when 32 PC nodes are used with hyper-

threading for Models 1 and 2. However, the increase of speedup factors is not linear, 

and may slow down with too many PC nodes, as can be seen in Figure 3-18 for 

Models 1 and 2.  This may be due to the additional time expended to transfer data 

among more PC nodes. Compared with the non-hyper-threaded calculations, the 

use of 4 hyper-threads only increased the speed-up from 1.26 to 2.05. This suggests 

that the speedup efficiency due of hyper-threading is not very high, which may be 

caused by congestion on the front-side bus; this will be discussed further in a 

separate section below. Overall, however, compared to the speedup factor of 15.4 
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on 64 processors reported by Lu (2006), the speedup factors in Table 3-7 indicates 

that element-by-element iterative solvers may provide a relatively straightforward, 

promising and  efficient method for the parallelization of large-scale finite element 

analyses.  

3.11 Some Technical Issues about Parallel Computation 

This section briefly discussed some of the problems and issues that were 

encountered in the parallel implementation of GeoFEA on the EIT PC cluster, and 

how these were addressed, or in some cases, avoided.  

3.11.1 Round-off Errors for Parallel Computation 

Due to round-off errors from digital computation, the floating-point associative 

law of addition is not necessarily satisfied.  In other words, a b c d    is not 

necessarily equal to    a b c d   .  An example is illustrated below for the case 

where a = 1234.567, b = 45.67844, c = 0.0004 and d = 0.0003. 

The calculation of a b c d    is carried out as follows:  

 1234.567+45.67844=1280.245 

1280.245+0.0004=1280.245 

   1280.245+0.0003=1280.245 

On the other hand,      a b c d   =  

 1234.567+45.67844=1280.245 

  0.0004+0.0003=0.0007 
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1280.245+0.0007=1280.246 

In parallel calculations, the associative law of addition is used extensively to split 

a b c d    into ( )a b  and ( )c d , which are then distributed to different 

processes or threads.  Hence, the results from parallel calculations will not strictly 

agree with those from sequential calculations.  To overcome this problem, longer 

format data and stable algorithms are needed.  The former is achieved by declaring 

all floating-point data used in this study as double precision.  The increased 

precision using the double precision format also helps to enhance the stability of 

the calculations by slowing down the rate of error accumulation.   

3.11.2 Limitation of the Front Side Bus in Personal Computer 

In personal computers, the Front Side Bus (FSB) is the ‘vehicle’ (or the connecting 

path) that carries data between the CPU and the Northbridge (Figure 3-20). The 

bandwidth or maximum theoretical throughput of the front side bus is determined 

by the product of the width of its data path, its clock frequency (cycles per second) 

and the number of data transfers it performs per clock cycle. In PCs and many 

workstations, the FSB operates at a much lower clock rate and speed than the CPU 

(http://www.wisegeek.org/what-is-a-front-side-bus.htm). To speed up burst-

mode data transfer, motherboards feature a separate bus that directly connects the 

CPU to special cache (memory) reserves. However, the cache is only effective if 

high-speed transfer is only needed intermittently e.g. when starting up a software. 

In continuous high-speed data transfer, such as that required in this study, the 
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cache is rapidly exhausted and the data transfer rate falls to that limited by the 

front-side bus.  

The lower speed of the FSB, compared to the CPU, means that the FSB is unable 

to keep with the data demand of the 4 cores if the computations on all four cores 

require continuous high-speed data transfer.  For example, in calculating the 

following floating-point data operation, the speedup of hyper-threading with 4 

cores is still smaller than 2, as shown in Table 3-8. This is because the data transfer 

rate through the FSB reaches its maximum when 2 threads are used.  When more 

than 2 threads are running, the FSB will experience a bottle neck that affects the 

overall parallel computations. This explains why, as noted above, the speed-up 

efficiency when using 4 hyper-threads is not high. 

    do j=1,1000 

   !$omp  parallel default(shared) 

   !$omp  do private(i,j),schedule(static)    

       do i=1,4000000 

            C(i)=A(i)*B(i)     ! A, B, C are double precision 

        enddo 

    !$omp  end do nowait 

    !$omp  end parallel 

    enddo 

To overcome this problem, the algorithm should be improved so as to maximize 

the re-use of data stored in the cache, which will then reduce the data transfer 
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through the FSB.  As the L2 cache is shared among all the cores, the data in the L2 

cache should be used as often as possible.  

3.11.3 MPI on Windows Operating System 

Windows is an operating system that is built upon the super-threading architecture, 

which weaves together the execution of different threads in a single processor 

without truly executing them at the same time.  This qualifies it as time-sliced or 

temporal multithreading, rather than simultaneous multithreading.  It is 

motivated by the observation that the processor is occasionally left idle while 

executing an instruction from one thread.  Super-threading seeks to make use of 

unused processor cycles by applying them to the execution of an instruction from 

another thread.  In this approach, a task cannot be processed immediately when it 

is submitted, but needs to wait for its turn. Hence, when a MPI protocol wants to 

transfer data from one PC to another, both processes which send or receive data 

need to wait for their turn to do so on their own processor.  The transfer cannot be 

carried out until both processors are available. The waiting time may be longer 

than the transfer time, even for a small amount of data.  Due to this limitation, the 

highest transfer speed between two PCs is still lower than 700Mbps, even though 

the network hardware is capable of a transfer rate of 10Gbps. In order to achieve 

the full network transfer speed, the data transfer operations was promoted to 

kernel level and directly handled by the processor on the network card. 
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3.12 Summary 

In this chapter, the need for carrying out realistic large-scale finite element 

analyses involving big piled foundations supporting a multi-storey structure is first 

highlighted and discussed.  However, due to their tremendous computational 

requirements, such analyses cannot be readily performed using many of the 

commercial serial-based finite element codes currently available to practicing 

engineers.  While some progress in this area have been made over the past ten 

years, the reported works in the literature pertaining to soil-pile-structure 

interaction are still quite limited, with the largest problem size not exceeding half 

a million degrees of freedom.  A comparison of the published studies shows that, 

while speedup is achievable with parallel computing on cluster machines, the level 

of efficiency which can be achieved with different algorithms differ significantly.     

In this study, a parallelized version of the finite element code GeoFEA was 

developed and implemented on the PC cluster that has been set up in the NUS Civil 

Engineering Educational and Information Technology laboratory.  Key features of 

the code, such as the use of hyperthreading and MPI protocols, the element-by-

element modified Jacobi preconditioned conjugate gradient iterative solver, and 

the domain decomposition scheme for distributing the workload to the different 

nodes, are presented and discussed.  The hardware and software factors affecting 

the computational performance of the finite element analyses are highlighted and 

discussed.  
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The performance of the parallelized code as implemented on the NUS PC cluster 

was tested for three soil-pile foundation models with configurations of 2x2, 21x9 

and 41x11 respectively.   The runs were carried out using different numbers of PC 

nodes, ranging from 1 to 32, with and without hyperthreading.  The identical 

models were also analyzed using ABAQUS v6.11 for comparison.  The largest model 

involving 41x11 piles contained about 2.3 million degrees of freedom, and could 

not be run on both GeoFEA and ABAQUS using one PC node. This model could be 

analyzed in GeoFEA using 4 PC nodes in about 12 hours with 4 hyper-threads.   In 

all cases, the reduction in computational times achieved by using more PC nodes 

was clearly demonstrated.  Using less than 20 nodes, the increase in speed-up is 

approximately linear in all cases.  With additional nodes, there is a slow-down in 

the speed-up obtained for Models 1 and 2 with hyperthreading.  Such a trend points 

toward diminishing returns with an increasing number of nodes.    The reasons for 

such diminishing returns are discussed. 

In the next chapter, a formal validation of the parallelized finite element code 

GeoFEA for soil-pile interaction analyses will be carried out using the results from 

centrifuge experiments.   Following this, the analyses will be extended to larger 

soil-pile-superstructure systems for which systematic parametric studies will be 

performed.  
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Table 3-1 Hardware specifications for the cluster PCs 

Batch No. 1 2 3 4 

Date 2007.3 2008.10 2009.4 2010.7 

Number 16 16 48 48 

Processor Intel QX6700 
Intel 

Q9550 

Intel i7-

950 
Intel i7-950 

Number 

of cores 
4 4 4 4 

Clock 

speed 
2.66GHz 2.83GHz 3.06GHz 3.06GHz 

FSB/QPI 

speed 
1066MHz 1333MHz 4.8GT/s 4.8GT/s 

Memory 

size 
8GB 8GB 12GB 12GB 

Memory 

speed 
333MHz DDR2 

533MHz 

DDR2 

533MHZ 

DDR3 
533MHZ DDR3 

Hard disk 750GB 750GB 750GB 750GB 

OS 
Fedora/Windows 

HPC server 2008 

Windows 

HPC server 

2008 

Windows 

HPC 

server 

2008 

Fedora/Windows 

HPC server 2008 
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Table 3-2 Different operations for EBE-MJPCG calculation 

Calculation 

Type 
Fetch 

Operations 
Store 

Operations 
Multiplication 

Operations 
Summation 

Operations 

1 2n n n 0 

2 2ml2 ml ml2 ml2 

3 2n 0 n N 

4 2n n n N 

 

Table 3-3 Time consumed by each calculation type for different model size 

Number 

of 

Elements 

Number of 

DOF 

Time 

(min)/50 

steps 

Time (s) for 

forming 

matrix. 

Type 2a 

Calculation. 

Time (s) for 

multiply of 

matrix and 

vector. Type 

2 Calculation 

Time (s) for 

vectors 

calculation. 

Types 1, 3 

and 4 

Calculation 

1,000 14,883 0.68 17.285 10.327 0.250 

8,000 107,163 6.45 170.618 111.104 2.246 

27,000 348,843 30.39 903.043 532.899 15.850 

64,000 811,923 195.25 8992.132 1668.399 56.722 

125,000 1,568,403 1035.45 53903.850 4122.753 141.962 

216,000 2,690,283 3763.25 156721.325 4685.100 162.250 
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Table 3-4 Comparison of time taken for different data interchange schemes (Time 

in minutes, for 50 time-steps, Intel i7-950 processor, 12GB DDR3 

memory per node) 

Number of 

Elements 

Number of 

DOF 

Number of PCs 

involved 

Scheme 

1 

Scheme 

2 

Scheme 

3 

8,000 107,163 
4 0.81 0.82 0.85 

16 0.23 0.24 0.26 

64,000 811,923 
4 47.32 50.11 47.48 

16 14.16 14.72 14.52 

216,000 2,690,283 
4 927.75 969.31 932.76 

16 285.13 295.23 325.57 

 

Table 3-5 Comparison of calculated results from different parallel schemes 

Parallel schemes Acceleration at t=25sec 

Sequential Computation 0.87102741005284D-01 

1 node with 4 hyper-threading 0.87102749506282D-01 

8 nodes w/o hyper-threading 0.87102801138298D-01 

8 node with 4 hyper-threading 0.87102830164165D-01 
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Table 3-6 Execution times of solution phase for soil-pile foundation model (Time 

in hours, for 50 time-steps, Intel i7-950 processor, 12GB DDR3 

memory per node) 

Number of PC 

node 

With or without Hyper-

threading 
Model 1 Model 2 Model 3 

Number of equations 129,444 1,338,093 2,259,345 

ABAQUS® -- 0.34 29.37** --* 

1 
w/o hyper-threading 1.09 17.03 --* 

with 4 hyper-threads 0.64 13.46 --* 

2 
w/o hyper-threading 0.68 12.76 --* 

with 4 hyper-threads 0.33 8.28 --* 

4 
w/o hyper-threading 0.32 5.80 15.72 

with 4 hyper-threads 0.15 3.28 12.48 

8 
w/o hyper-threading 0.17 2.59 10.63 

with 4 hyper-threads 0.08 1.52 6.62 

16 
w/o hyper-threading 0.10 1.31 5.16 

with 4 hyper-threads 0.05 0.80 3.08 

32 
w/o hyper-threading 0.06 0.69 2.66 

with 4 hyper-threads 0.04 0.49 1.41 

Note: * Due to insufficient RAM, the model cannot be calculated. 

** Virtual memory is used for UMAT subroutine. 
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Table 3-7 Speedup factors of solution phase for soil-pile foundation model 

Number of PC 

node 

With or without Hyper-

threading 
Model 1 Model 2 Model 3 

Number of equations 129,444 1,338,093 2,259,345 

1 
w/o hyper-threading 1.00 1.00 -- 

with 4 hyper-threads 1.70 1.27 -- 

2 
w/o hyper-threading 1.60 1.33 -- 

with 4 hyper-threads 3.28 2.06 -- 

4 
w/o hyper-threading 3.47 2.94 1.00* 

with 4 hyper-threads 7.49 5.19 1.26* 

8 
w/o hyper-threading 6.50 6.59 1.48* 

with 4 hyper-threads 13.26 11.21 2.38* 

16 
w/o hyper-threading 11.67 12.99 3.05* 

with 4 hyper-threads 22.84 21.39 5.12* 

32 
w/o hyper-threading 20.28 24.56 5.92* 

with 4 hyper-threads 33.56 34.90 11.18* 

Note: * Relative to 4 PC nodes. 

 

Table 3-8 Time and speedup factors for hyper-threading (1,000,000,000 times 

floating-point data operation) 

Number of threads 1 2 3 4 

Time (s) 50 27 27 27 

Speedup 1.00 1.85 1.85 1.85 
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Figure 3-1 Snapshot of PC cluster in NUS EIT lab 

 

Figure 3-2 Myri-10g network interface card 
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Figure 3-3 Architecture of NUS EIT PC cluster 
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(b) Two PCs send data to another two PCs simultaneously 

 

 

 

(c) Four PCs send data to another four PCs simultaneously 
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(d) Eight PCs send data to another eight PCs simultaneously 

 

 

 

(e) One core sends and another core receives in the same PC (i7-950 processor) 
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(f) Two cores send data to the other two cores in the same PC simultaneously (i7-

950 processor) 

 

 

 

(g) Data transmitting among cores in the same PC (Q9550 processor) 

Figure 3-4 Performance of transmitting relatively short data segments 
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(a) Data transmitting among PCs 

 

 

(b) Data transmitting among cores in the same PC (i7-950 processor) 

Figure 3-5 Performance of transmitting relatively long data segments 
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Figure 3-6 Performance of MPI_Bcast among PC cluster 

 

Figure 3-7 Performance of MPI_Reduce among PC cluster 
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Figure 3-8 Newton-Raphson scheme for dynamic analyses 
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Figure 3-9 Pseudo-code for EBE-MJPCG (Lim, 2003) 
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Figure 3-10 Simple model for vertical propagation of shear wave 
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Figure 3-11 Parallel computation architecture 
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Figure 3-12 Flow chart for parallel EBE-MJPCG method 
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(a) Scheme 1 
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(b) Scheme 2 
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(c) Scheme 3 

Figure 3-13 Data interchange schemes 
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Figure 3-14 Sample MPI code for message passing in GeoFEA 

CALL MPI_INIT(ierr) 

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr) 

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr) 

...... 

CALL MPI_BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, ierr) 

 …… 

CALL MPI_ALLREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP,  

COMM, ierr) 
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Figure 3-15 Flowchart for parallel program 
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Figure 3-16 Physical model of hybrid parallel architecture 
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a. Model 1—2x2 piles group (half), with 9,774 elements with 129,444 dofs 

 

b. Model 2—21x9 piles group (half), with 109,623 elements 1,338,093 dofs 
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c. Model 3—41x11 piles group (half), with 186,060 elements 2,259,345 dofs 

Figure 3-17 Finite element models for different scales of soil-pile foundation-

structure systems 

 

Figure 3-18 Comparison of pile raft response from different computation 

schemes 
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Figure 3-19 Speedup factors of solution phase for soil-pile foundation model 
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Figure 3-20 A typical north/south bridge layout (Wikipedia, 2007) 
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Figure 3-21 A typical layout for QPI and X58 chipset (Mitrofanov, 2008)
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Chapter 4 Numerical Simulation of Soil-Pile-Structure 

Interaction   

4.1 Introduction 

In the previous chapter, the feasibility of carrying out realistic, large-scale 3-D 

finite element modeling of a soil-pile-superstructure system was examined, using 

the computational resources of the PC cluster described in Section 3.3.  The 

analyses were carried out using the parallelized dynamic version of the finite 

element code GeoFEA, the formulation of which was presented in Section 3.4. 

In this chapter, details of the nonlinear hysteretic soil model, as well as its 

implementation in GeoFEA, are presented.  Other features related to the numerical 

modeling of seismic soil-pile interaction in GeoFEA, such as the pile element type, 

the pile-soil interface, boundary conditions and the input base motion, are also 

highlighted and discussed.   The finite element code was then validated against the 

soil and pile response measurements obtained from centrifuge shaking table tests 

involving small pile foundations.  Upon validation, a much larger model involving 

21x9 piles of longer length was set up to study the seismic response of more 

realistic soil-pile-structure systems.  The results are presented and discussed, and 

some comparisons are made with those obtained using the linear elastic model and 

the pseudostatic approach. 

4.2 Numerical Implementation of the Key Features in GeoFEA 

The analysis theory, equations, and the numerical formulation underlying the 

dynamic finite element code GeoFEA were discussed in Chapter 3.  For realistic 
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modeling of seismic soil-pile interaction problems, there are other key 

considerations related to the constitutive soil model, pile element type, lateral 

boundary conditions and base motion excitation. These will be discussed in this 

section. 

4.2.1 Soft Soil Constitutive Model for Dynamic Soil-Pile Interaction 

From the preceding literature review of Chapter 2, it is quite clear that the seismic 

performance of pile foundations is significantly affected by the dynamic properties 

of the soil in which it is installed (e.g., Maheshwari et al., 2004a; Miwa et al., 2006; 

Shamsabadi, 2007). The dynamic characteristics of soft clay can be summarized 

as: 

 At very small strains (about 𝜀𝑠 ≤ 0.01%), the soil behavior is linearly elastic, 

and the shear modulus is nearly constant (e.g. Jardine et al., 1986; Dasari, 

1996). 

 The maximum shear modulus may be approximated as a power function of 

the  soil’s mean effective stress p’, 𝐺0 = 𝐴 ∙ (𝑝′)𝑛 (e.g. Viggiani and Atkinson, 

1995; Banerjee, 2009). 

 The shear modulus reduces significantly from 𝐺0 to about 0.1𝐺0 as the shear 

strain increases from 0.01% to 1%, with the typical normalized shear 

modulus exhibiting the inverse S-shape, as shown in Figure 4-1 (e.g. Hardin 

and Drnevich, 1972; Vucetic and Dobry, 1991; Kagawa, 1992; Ishibashi and 

Zhang, 1993; Banerjee, 2009). 
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 The shear modulus increases with frequency, but the effect is quite 

insignificant compared to that of the strain (e.g. Zanvoral and Campanella, 

1994; Teachavorasinskun et al., 2002). 

 The damping ratio in clay increases from about 3% to about 30% as the 

shear strain increases from 0.01% to 1%, following an S-shape curve, as 

shown in Figure 4-2 (e.g. Hardin and Drnevich, 1972; Vucetic and Dobry, 

1991; Kagawa, 1992; Ishibashi and Zhang, 1993; Banerjee, 2009). 

 At small strains, the shear modulus is independent of the number of load 

cycles. However, when the strain amplitude exceeds a threshold level, 

typically about 0.1%, the soil stiffness will decrease under repeated loading 

(Kokusho et al., 1982; Matasovic and Vucetic, 1995), a phenomenon known 

as “stiffness degradation”. This is also usually accompanied by a decrease in 

strength, the decrease being dependent on the strain level and the number 

of cycles applied (e.g. Zhou and Gong, 2001; Nishimura et al., 2007; 

Banerjee, 2009). 

Following these characteristics, many constitutive models have been proposed to 

replicate the stress-strain relationship of soft clay. Pyke (1979) combined the 

nonlinear hyperbolic model proposed by (Duncan and Chang, 1970) and Masing’s 

rules to develop a hysteresis model for one-dimensional simple shear-type loading. 

The model was applicable to soils that do not exhibit cyclic degradation. Vucetic 

(1990) extended it to the behavior of cyclically degradable clays. Hyodo et al. (1994) 

proposed a semi-empirical model to evaluate the residual shear strain under cyclic 

loading. Pastor et al. (1990) redefined the loading-unloading-reloading directions 
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in the boundary surface model and proposed a generalized plasticity model to 

simulate the cyclic behavior of sands and clays. Yu et al. (2007) developed a simple 

unified bounding surface plasticity theory to model the stress-strain behavior of 

sand and clay under both drained and undrained cyclic loading conditions. Masin 

(2012) developed the hypo-plastic model to simulate the clay behavior under cyclic 

loading. However, these models could only reproduce parts of the characteristics 

listed above.  More importantly, their performance and applicability have not been 

evaluated for Singapore Marine Clay.   

Based on the results of resonant column tests and cyclic triaxial tests on Malaysian 

kaolin clay, Banerjee (2009) proposed a hyperbolic-hysteretic constitutive 

relationship for three-dimensional finite element analysis; this is essentially a 

three-dimensional generalization of the one-dimensional hyperbolic model. The 

model is based on nonlinear elastic theory and cannot reproduce the generation of 

excess pore pressure during cyclic loading, but it was able to capture most features 

of cyclic behavior of soft clays. The maximum shear modulus for the normally 

consolidated kaolin used by Banerjee (2009) may be estimated using 

  
0.653

0 2060 'G p  (4.1) 

in which 'p is the mean effective stress; this allows the shear modulus to vary with 

effective stress in a nonlinear manner. The shear stress-strain relationship is 

shown in Figure 4-3 and may be mathematically described as follows: 
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in which, fq is the undrained deviator stress at failure, which can be calculated 

using the modified Cam clay model as 

 

 







 
  

  

'6sin 1

3 sin 2
fq p  (4.3) 

The degradation for soil stiffness and strength during cyclic loading follows the 

exponential decay model proposed by  (Idriss et al., 1978).   For kaolin clay, 

Banerjee (2009) proposed the following fitted equation to characterize the cyclic 

degradation response: 

 
  

 
0.0536log 0.1285,max,

max,1 ,1

rf NN

f

qG
N

G q
 (4.4) 

To some extent, this degradation feature serves to make up for the limitation of the 

model in not explicitly evaluating the excess pore pressure. More details about this 

model are available in Banerjee (2009)’s thesis. This model is adopted herein to 

simulate the behavior of the soft clay considered in this study.  

4.2.2 Pile simulation 

 In finite element analysis of soil-pile interaction, the piles are often modeled as 

linear elastic structures; this being consistent with the fact that, structurally, piles 
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are usually designed to operate within their elastic range (Eurocode 8, 2006; IBC 

2009). The proper simulation of piles is an important aspect in seismic soil-pile 

interaction analyses. One approach is to use 2-node or 3-node beam elements to 

model piles (e.g. Uzuoka et al., 2007; Gu, 2008; Dezi et al., 2010). With this 

method, it’s easy to mesh the soil domain and obtain the bending moments and 

shear forces in the piles. This approach was also adopted in the initial phase of this 

study (Zhao et al., 2010), but it was subsequently abandoned due to the following 

limitations: 

 The beam element could not represent the finite cross-sectional area of the 

pile which has a significant influence on the stress field of the soil around 

the pile.  In many instances, this can result in overestimation of the stresses 

in the soil elements connected to the beams, which may lead to errors when 

stress-dependent soil models are used. 

 The connection between the beam element and the solid element could not 

adequately represent the pile-soil interface. 

Alternatively, solid elements are also used to model the piles (e.g. Trochanis et al., 

1988; Lu et al., 2005; Mahboubi and Panaghi, 2010). This approach captures the 

pile dimensions more realistically. However, it often requires many more elements 

and degrees-of-freedom, and therefore increased computational resources, 

especially for large-scale problems. Furthermore, it is difficult to compute the pile 

bending moment and shear force directly. Hence, pile bending moments are often 
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not computed directly using this approach (e.g. Maheshwari et al., 2004c; Miao et 

al., 2006; Chau et al., 2009).  

In order to determine the bending moment along the piles, several approaches 

have been proposed and adopted in previous studies. Lu (2006) used 20-node 

brick elements for all materials, including piles, to simulate the seismic soil-pile-

wharf interaction. After solving the equations, the computed profile of the pile 

displacements along its central axis was mapped to an equivalent column of beam 

elements representing the pile to calculate the axial forces and bending moments 

using SAP 2000. Banerjee (2009) used a line of very flexible beam elements along 

the discretized pile axis (as shown in Figure 4-4) and calculated the pile bending 

moments by upscaling the bending moments of the flexible beam. This is 

equivalent to using the beam elements to capture the curvature of the pile and then 

using the correct flexural rigidity to obtain the bending moments. Similarly, Zhang 

et al. (2000) used a hybrid element consisting of a beam element and several solid 

elements to simulate the pile. The bending stiffness of the pile is the weighted 

average sum of the bending stiffness of the beam and solid elements, based on a 

9:1 ratio. All these three methods assume that the pile behaves as an Euler–

Bernoulli beam wherein all planar cross-sections remain plane and perpendicular 

to the neutral axis during bending. However, this approach may lead to significant 

underestimation of bending moments in the vicinity of the pile–raft joint where 

the Euler-Bernoulli beam assumption could not be satisfied and the pile curvature 

does not follow that of an Euler beam. This is readily illustrated by fixing the raft 

and applying a transverse point load at the pile tip, as shown in Figure 4-4. In 
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Figure 4-5, the theoretical bending moment is obtained by treating the pile as a 

cantilever. As can be seen, the bending moment obtained using the embedded 

beam element is accurate along much of the pile length, but is underestimated in 

the vicinity of the pile-raft joint, as shown in Figure 4-5. The length of the segment 

where large errors are incurred is about twice the pile diameter, which is also the 

critical portion of the pile near the joint where the maximum pile bending moment 

usually occurs. This phenomenon was also alluded to in Banerjee (2009)’s results.  

Hence, the use of embedded beam elements to simulate the pile may yield a 

maximum bending moment which is smaller than the cantilever solution.  

Figure 4-5 also shows the computed bending moments obtained by integrating the 

stresses across the cross-section of the pile simulated using solid elements; this 

obviates the need to replicate the curvature of the beam accurately. This study also 

uses the 20-node hexahedral element to model both pile and soil. The pile is 

assumed to have a square cross-section, which is commonly assumed in pile 

studies (e.g. Trochanis et al., 1988; Lu et al., 2005; Lu, 2006; Maheshwari and 

Sarkar, 2011). The square pile sections are discretized into 2x2 hexahedral 

elements, as shown in Figure 4-4, Figure 4-6, and Figure 4-14. The pile bending 

moment can be calculated by integrating the normal stresses with respect to the 

area at all the Gauss points within the cross-section, as shown in Figure 4-6. Each 

20-node hexahedral element has 27 Gauss points located over three layers.  The 

neutral axis of the cross-section formed by the four elements coincides with the 
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pile axis and is perpendicular to the loading direction.  Accordingly, the bending 

moment is given by 

       avgarea
elem

M s dA  (4.5) 

in which avg is the average of the axial stress within the whole pile cross-section, 

and s is the distance from the Gauss point to the natural axis. More details about 

the stress integration can be found in Hearn (1997). As shown in Figure 4-5, this 

method yields accurate bending moments along the whole pile, right up to the pile-

raft joint. 

4.2.3 Pile-Soil Interface 

Under earthquake loading, sliding and separation may occur between the piles and 

soil, due to their different characteristics. Pile-soil gapping has been observed in 

post-earthquake surveys (e.g. Horikoshi et al., 2000) and shaking table tests (e.g. 

Meymand, 1998; Wei et al., 2001).  The significance of soil-pile interface was also 

discussed in previous studies involving beam-on-dynamic-Winkler-foundation 

approach (e.g. Lok, 1999) as well as the finite element method (e.g. Lu et al., 2005; 

Chang, 2007). 

Lok (1999) simulated the nonlinear p-y curve with gapping using a configuration 

that comprises a friction element in parallel with the gap element and nonlinear 

spring. In many finite element analysis, the pile elements and soil elements share 

the same nodes at the interface, so that the pile and soil are constrained to have 

same displacement (Lu, 2006; Banerjee, 2009). This approach ignores the possible 
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pile-soil gap and may produce tensile stresses in the soil during strong shaking. 

Chang (2007) proposed zero-length soil springs to connect pile and soil in all three 

directions.  The strengths of these springs were dependent on the effective stress 

level, and hence could degrade with increasing excess pore water pressure. Chau 

et al. (2009) used the NNLink element in “SAP 2000 Nonlinear” to simulate the 

gap between soil and pile. The gap elements were applied between the pile and soil 

only in the shallower soil where the pile-soil gap might appear. In the closed mode, 

the gap element transfers the normal stress between pile and soil, while in the 

opened model, no force is transmitted across the gap element. Lu et al. (2005) used 

the surface-surface contact element in ANSYS to simulate the pile-soil interface. 

The pile surface was set as the target while the soil surface was taken as the contact. 

The contact pair could transfer compression and shear stress, and eliminate 

extension stress between pile and soil. 

These studies suggest that pile-soil interface behavior is dominated by the gapping 

effect. Before gapping occurs, the stress and strain response follows the general 

principles of mechanics, satisfying compatibility of deformation and equilibrium 

of forces. This phase could be calculated with conventional finite element analysis 

which uses regular solid elements. However, when the pile and soil separate and 

the gap occurs, such analysis might produce extensional forces between the pile 

and soil, which is incorrect. While the idea of contact elements is attractive, such 

an element is highly non-linear. It will also increase the number of elements and 

degrees-of-freedom significantly, thereby increasing the amount of computation. 
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As a large number of piles is modeled in this study, it is felt that such an approach 

is not feasible. Instead, a simplified “no-tension” approach is used (e.g. Desai et al., 

1984; Day and Potts, 1994), whereby the tensile stresses in parts of the pile are 

nullified. This involves developing a modified elastic constitutive model for piles 

to simulate the gapping effects.  

In this approach, the normal stresses in the direction of shaking in the pile 

elements adjacent to the interface are checked in each time step. If the normal 

stress is positive, the pile-soil interface is considered to be in compression and no 

gap occurs. If the normal stress is negative, the pile-soil interface is considered to 

be in tension and a gap is then assumed to exist between pile and soil. In order to 

replicate this gapping effect, the negative normal stress in the corresponding 

integration point of the pile element is set to zero. The resulting unbalanced force 

at the pile-soil interface nodes will then be equilibrated using Newton-Raphson 

iteration.  This approach was validated in this study using Zhang et al. (2011)’s 

centrifuge model pile test data, as shown in Figure 4-8. 

4.2.4 Lateral boundary conditions 

In finite element analysis involving wave propagation, boundary reflection is often 

an important aspect which needs to be addressed. Wave energy reflection at the 

artificially truncated boundaries can lead to a build-up of wave energy within the 

finite element domain, which would reduce the accuracy of the simulation or 

produce erroneous results. Numerous types of infinite or transmitting boundaries 

have been proposed to simulate the energy radiation through the truncated 
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boundary toward the infinite domain. Uzdensky and Kulsrud (1998) and Bosello 

et al. (2007) proposed a viscous boundary to absorb the wave energy at the lateral 

boundary. Kim et al. (2000) and Javan et al. (2008) proposed transmitting 

boundaries to transmit waves outward without reflection. Tzong and Penzien 

(1983) used an impedance model to represent the far-field soil that lies beyond the 

finite element domain. Rizos and Wang (2002) and Wijaya (2009) coupled finite 

elements and boundary elements to simulate the near-field and far-field regions 

respectively. Yerli et al. (2003) and Seo et al. (2007) developed infinite elements 

using approximate expressions of multiple wave components for the wave function 

to model the exterior soil region. Chu (2006) used dashpots to simulate radiation 

damping on the cut off boundary in both normal and tangential directions. One 

common shortcoming of these methods is that their parameters are frequency-

dependent, and hence difficult to determine in time domain analysis. 

Another simple approach commonly used in seismic finite element analyses is to 

constrain the base and side nodes from moving in all directions except for the 

direction of shaking, which is unconstrained. This approach is commonly used in 

liquefaction and soft soil problems. Its rationale is derived from the assumption 

that the soft soil layer is underlain by a much stiffer soil or rock layer which is 

reasonably simulated by a rigid boundary constrained in the vertical direction but 

imparts earthquake motion in the lateral direction. Secondly, if the side boundaries 

are sufficiently far from the object of analysis, the former will experience 

conditions that is similar to that caused by one-dimensional vertically propagating 
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shear wave (e.g. Lysmer and Kuhlemeyer, 1969; Seed and Lysmer, 1975). Under 

such conditions, there is no lateral constraint between adjacent vertical planes. 

One disadvantage of this approach is that the side boundaries have to be 

sufficiently far from the object of analysis, which is also commonly the source of 

wave scattering. However, it should be noted that none of the infinite or 

transmitting boundaries discussed earlier approximates the one-dimensional 

vertically propagating shear wave scenario even if they are placed very far from the 

object of analysis. For this reason, this simple approach remains commonly used 

if it is desired to approximate a one-dimensional vertically propagating shear wave 

scenario in the far-field. 

One variant of this approach is to tie the corresponding degree of freedom at the 

opposite ends of the truncated model perpendicular to the shaking direction (i.e. 

Parra et al., 1996; Lu, 2006; Banerjee, 2009) as illustrated in Figure 4-9. This 

variant is often used to replicate the conditions in a laminar box, wherein the 

presence of laminar rings ensures that points at the same depth have the same 

displacement at any point of time. Theoretically, it also satisfies the vertical 

propagation of shear wave in uniform or horizontal-layered soil. However, the 

lateral boundary may also exert some influence on the wave close to the boundary 

(Takahashi, 2002). Jakrapiyanun (2002) pointed out that the lateral boundary 

influence zone was about half of the model depth as shown in Figure 4-10. Lu 

(2006) also noted this phenomenon and advised that the model domain should be 

large enough in the shaking direction. In this study, this approach was adopted. 
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4.2.5 Base excitation  

Earthquake ground motion is highly dependent on the region of interest. In this 

study, the earthquake motions considered are representative of far-field events 

measured in Singapore from previous Sumatran earthquakes. Based on the 

characteristics of previously recorded earthquake data, synthetic ground motions 

have been generated for use in small-scale model tests performed at the NUS 

Geotechnical Centrifuge Laboratory (e.g. Yu and Lee, 2002; Banerjee, 2009), as 

shown in Figure 4-11. In order to study the influence from the ground vibration 

amplitude, the maximum acceleration in these records was scaled to 0.022g, 0.07g 

and 0.1g, corresponding to a small earthquake, a medium earthquake and a large 

earthquake (in the Singapore context), respectively. The peak acceleration in the 

large earthquake used for the current study is significantly higher than that 

recorded in Singapore from previous earthquakes (Banerjee, 2009).  Besides these 

long-period earthquake motions, the 1940 El Centro Earthquake, which is a near-

field large earthquake rich in short period components, is also used for comparison 

in Chapter 6. 

4.3 Comparison with centrifuge data 

Before studying the large-scale seismic interaction of soil-pile-structure systems, 

numerical simulations using GeoFEA were carried out for comparison with a series 

of centrifuge shaking table tests conducted by Banerjee (2009). In Banerjee’s 

experiments, the remolded kaolin clay was consolidated in a laminar box on a 

unidirectional shaking platform. The pile foundation consists of a 2x2 pile group 
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connected by a stiff raft. The piles have a diameter of 0.9m and a length of 13m 

under prototype conditions. The pile-to-pile spacing ratio is about eleven in the 

direction of shaking and six in the transverse direction; these spacings were chosen 

to minimize the interaction between piles. The pile head was welded on the pile 

raft and the pile tip was placed on a thin layer of sand at the base of a laminar box 

(see Figure 4-12). More details about the tests are available in Banerjee (2009). 

Besides the physical tests, the soil-pile-raft model was also simulated by Banerjee 

(2009) using ABAQUS v6.8 with the hyperbolic-hysteretic constitutive model. In 

this study, the same problem is simulated using the parallelized dynamic version 

of GeoFEA and compared with Banerjee’s measured and numerical results. 

Banerjee (2009) conducted two series of tests, one involving free field simulation 

in the absence of piles and the other involving the soil-pile-raft system. In the first 

series, the model only contains soft clay and bottom sand, without the pile-raft 

system, as shown in Figure 4-13.  Because of symmetry, only a half-model needs to 

be analyzed.  A similar model is adopted for the second series with the soil-pile-

raft system, as shown in Figure 4-14. The discretized finite element model contains 

9,774 20-noded hexahedron elements and 43,148 nodes.   

The boundary conditions imposed by the laminar box are simulated using the 

method discussed in Section 4.2.4, that is, by tying the corresponding edge nodes 

at the same depth on opposite ends of the model to simulate the laminar box 

motion and constraining movements in all directions other than the direction of 

shaking. The nodes at the symmetrical plane are restrained against out-of-plane 

motion. The shaking table is assumed to be rigid and the shaking acceleration is 
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input from the bottom face of the model. The nodes at the bottom are restrained 

vertically. The soft clay behavior is modeled using the hyperbolic-hysteretic model 

described in section 4.2.1. The bottom sand is modeled using Mohr-Coulomb 

model. Both pile and raft are modeled using linear elastic materials. The 

parameters for all these materials are fundamentally consistent with those used by 

Banerjee (2009), as listed in Table 4-1.  

For the free-field model with peak base acceleration of 0.07g, the GeoFEA 

computed time histories at the clay surface are compared with the centrifuge 

measurements and the ABAQUS results in Figure 4-15.  The time histories from 

the GeoFEA analysis agree well with Banerjee (2009)’s ABAQUS analysis. 

However, both show smaller peak accelerations compared to the centrifuge data. 

This may be attributed to the limitation of the hysteretic model, which has been 

shown to over-predict the damping ratio of soils at large strains (Banerjee, 2009). 

The response spectra in Figure 4-16 show that the dominant accelerations between 

the 1 and 2-sec period band are well replicated by both analysis. For the longer 

period components, the ABAQUS results generally over-estimate the centrifuge 

data while the GeoFEA results tend to under-estimate.  

Figure 4-17 compares the computed and measured raft accelerations in the pile-

raft model. Due to the complication of the tests and noise of measurement system, 

it’s difficult to get complete match for numerical simulation and centrifuge shaking 

table tests. In previous studies, such discrepancies in the acceleration time 

histories between the numerical simulation and tests are popular and acceptable 
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(e.g., Lu et al., 2005; Chang, 2007).  There is greater divergence between Banerjee 

(2009)’s results and the current computed results using GeoFEA. Subjectively, 

however, the current results appear to capture the maximum accelerations better 

than Banerjee’s analysis. Banerjee’s analysis was carried out with the ABAQUS 

code combined with a user subroutine (UMAT). Due to the limitation of the user 

subroutine, the Newton-Raphson scheme could not be used.  Coupled with the 

nonlinear nature of the soil model and soil-structure interaction calculations, it is 

likely that Banerjee’s analysis contains some unavoidable numerical errors, which 

may accumulate over time. The GeoFEA calculations performed in this study were 

carried out using a code that was mostly developed in-house, which allows us to 

minimize possible errors associated with the problem nonlinearity.  On the other 

hand, as Figure 4-18 shows, all three response spectra are in close agreement. This 

suggests that both sets of analyses give a good account of the energy distribution; 

what appears to be different is the phase relationship between the various 

frequency components. This may be attributed to differences arising from the time 

step integration scheme used in the analyses. The computed and measured pile 

bending moment envelopes are shown in Figure 4-19. As can be seen, there is good 

agreement between the computed and measured results. Banerjee (2009)’s 

computed bending moment envelope shows a leveling off near the pile head 

whereas the bending moment computed in this analysis continues to increase. This 

demonstrates the effect of the different methods of computing the bending 

moment, as discussed earlier.  
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Besides the medium earthquake with a peak base acceleration (PBA) of 0.7m/s2, 

analyses were also conducted for two similar earthquakes with the PBA scaled to 

0.22m/s2 and 1.0m/s2 respectively. The computed accelerations at the clay surface 

and pile raft, as well as the pile bending moment, are compared in Table 4-2. 

Because the bending moments are measured at discrete depths in the centrifuge 

tests, bending moments are compared at a depth of 1.25m in Table 4-2 

corresponding to the strain-gauge location nearest to the pile head. The envelopes 

are compared in Figure 4-20.  In all the cases, the response of the clay surface 

accelerations and pile foundation are well replicated using the dynamic GeoFEA 

code.  

4.4 Scale effect of pile foundation 

As stated in chapter 2, previous studies were focused mainly on single pile and 

small pile groups. Although Sakajo et al. (1995)and Lu (2006) analyzed pile groups, 

they did not investigate the scale or size effect of the pile group. Hence, there is still 

relatively little information on scale effects associated with large pile groups, or the 

relationship, if any, between the response of small and large pile groups.  In this 

section, a preliminary study of the scale effect due to pile group size is carried out 

using finite element modelling.  The numerical simulations are performed for pile 

groups of different sizes and pile spacings.   

Soft soil conditions are quite common in coastal and estuarine areas around the 

world such as Singapore, Bangkok and Jarkata. In Singapore, the most common 

soft soil formation is the Kallang Formation, as shown in Figure 4-21 and Figure 



Chapter 4 Numerical Simulation of Soil-Pile-Structure Interaction 

163 
 

4-22.  Figure 4-23 shows some typical finite element models for the single pile and 

small pile groups considered in this study.  The soil layer is idealized into two 

horizontal layers; the upper layer is soft clay and the lower layer is stiff clay or rock. 

The upper soft clay is assumed to have a thickness of 25m, and is modeled using 

Banerjee (2009)’s hyperbolic-hysteretic constitutive model. The bottom hard layer 

is modeled as a Mohr-Coulomb material.   The pile and raft are reinforced concrete 

structures modeled as linear elastic materials, because the piles’ response is often 

required to be elastic with minor or no residual deformation when subjected to 

design earthquakes (e.g. Eurocode 8 2006; IBC 2009). Each pile is 28m long and 

is modeled as a 0.6mx0.6m square cross section. The raft has a thickness of 1m 

with the lower 0.4m embedded in the clay. The influence of the superstructure is 

simplified to that of an equivalent mass resting on the raft.  The material 

characterization and parameters for all these components are listed in Table 4-3. 

The influence of pile length, pile diameter, pile raft and additional mass will be 

discussed in chapter 5. The influence of the superstructure’s natural period, and 

its simplification as an added mass, will be discussed in chapter 6.   In this chapter, 

the focus is on the pile spacing and the pile-group size.   

4.4.1 Effect of pile spacing 

The effect of pile spacing on pile-to-pile interaction was studied by Kagawa (1983a) 

and Gohl (1991), both of whom reached quite different conclusions. Kagawa (1983a) 

found that the pile-to-pile interaction was significant even up to a spacing of sixty 
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pile diameters, while Gohl (1991) concluded that pile-to-pile interaction could be 

negligible beyond a spacing of six pile diameters.  

In this study, the critical spacing for pile-to-pile interaction was examined by 

carrying out finite element analyses of a 3x3 pile group using GeoFEA.  Different 

models were set up for pile-to-pile spacings of three, five, seven, nine and eleven 

pile diameters respectively, as shown in Figure 4-23.  Also included in this series 

is the analysis of a single pile with a raft or cap, which serves as a benchmark.   In 

all cases, the vertical displacement of the raft is restrained to prevent rocking. In 

order to minimize the influence of structural mass, the combined mass of the 

superstructure and the raft in each analysis is such that average mass supported 

by each pile is the same for all six cases. 

Figure 4-24 plots the computed pile raft displacement obtained from the single pile 

analysis and the 3 × 3 pile group analysis with three diameters spacing.  For this 

case, the total mass of the raft and superstructure is taken as 81.6 tons, and the 

peak base acceleration is 0.7 m/s2. The results show that the maximum raft 

displacement of the 3x3 pile group is larger than that of the single pile, which was 

also noted by Gohl (1991) and Sakajo et al. (1995), the difference being attributable 

to pile-pile interaction. When the pile spacing increases, the difference in the raft 

displacement decreases, as shown in Figure 4-25. For this case, when the pile 

spacing is larger than seven pile diameters, the pile-pile interaction appears to be 

negligible.  
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Pile-to-pile interaction effects are also reflected in the computed pile bending 

moments, as shown in Figure 4-26(a). For the 3x3 pile group with 3d spacing, all 

the piles have the same horizontal displacement at the pile heads, since they are 

rigidly connected to the raft; however, their bending moment profiles are different. 

For all the piles within the group, the maximum bending moment occurs at the pile 

head.  Near the pile tip, there is a locally minimum negative bending moment at 

the depth of 25m, which corresponds to the interface between the soft clay and the 

hard bedrock.   Comparatively, it is observed that the bending moments of the 

corner and exterior piles are generally larger than those of the interior piles.  Figure 

4-26(b) shows that the corner or exterior pile (e.g. A1) has a larger bending 

moment at the pile head compared to a single pile, and that the converse is true for 

the interior pile (e.g. C2).     

Referring to Figure 4-27(a), the ratio of the largest (Pile A1) to the smallest (Pile 

C2) bending moment computed at the pile head, 𝑀𝑚𝑎𝑥 𝑀𝑚𝑖𝑛⁄ , is about 1.38.  This 

is shown in Figure 4-28, which also plots the corresponding ratios for similar 3x3 

pile groups with different spacings.  It is seen that the bending moment ratio 

approaches one with increasing pile spacing.  These results suggest that pile-to-

pile interaction effects are present for pile spacings of up to about 9.    

The effects of pile spacing on the raft displacement and pile bending moments are 

shown on Figures 4-29 and 4-30 for a larger and smaller superstructural mass of 

117.6 tons and 45.6 tons respectively.  Figure 4-29 shows that the larger structural 

mass results in greater raft displacements.  Nonetheless, the overall trend for all 

three masses is similar in that the raft displacements approach constant values as 
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the pile spacing increases.  Similar trends are obtained for the bending moment 

ratios for different structural masses, as shown in Figure 4-30 Figure 4-28 and 

Figure 4-29 appear to show a slight decrease in the pile-pile interaction distance 

with increasing structural mass. This can be explained by the fact that a larger 

structural mass will induce larger relative pile-soil movement, which in turn gives 

rise to larger strains in the soil, leading to more severe stiffness degradation. As 

the stiffness of the soil decreases, so does pile-pile interaction effects.  

Figure 4-30 and Figure 4-31 illustrates the influence of the peak base acceleration 

(PBA) on pile-pile interaction distance. As can be seen, the effect is similar to that 

of increasing the super-structural mass and can be attributed to the same cause. 

As the PBA increases, so does the strain level in the soil, causing more severe 

degradation, with consequent decrease in the pile-pile interaction distance. 

In all cases analysed, pile-pile interaction was found to be negligible when the pile-

pile spacing is larger than nine pile diameters. This influence distance is slightly 

larger than the one proposed by Gohl (1991) but much smaller than that proposed 

by Kagawa (1983a). 

The pile-pile influence distance is dependent on lots of factors, such as structural 

mass, base shaking amplitude and frequency feature, pile dimensions and pile 

stiffness, soil profiles, etc. In this study, it was discussed with several specific cases 

and the obtained conclusion is qualitative. More extensive studies are required for 

general and quantitative conclusions in future. 
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4.4.2 Effect of pile foundation size 

As stated in chapter 2, most existing studies on seismic pile foundation response 

deal with single piles or small-scale pile groups (Fan et al., 1991; Gazetas et al., 

1991; Toki et al., 1991; Meymand, 1998; Uzuoka et al., 2007; Javan et al., 2008; 

Dezi et al., 2009; Tang et al., 2009; Elahi et al., 2010; Motamed and Towhata, 

2010; Kong et al., 2011). Although Lu (2006) and Shirato et al. (2008) used a 

relative large-scale pile group in their studies, they did not examine the effect of 

pile group size. In this section, finite element analyses are carried out for several 

pile groups of different sizes subjected to the same conditions, and their responses 

analyzed and compared to examine the effect of pile group size. A uniform pile 

spacing of three pile diameters is used in all the analyses, which may be expected 

to introduce pile-to-pile interaction effects based on the results of Section 4.4.1. 

The pile group size ranges from 1x1 pile (single pile), 3x3 piles, 5x5 piles, 7x7 piles 

and 9x9 piles, as shown in Figure 4-32. In order to minimize the influence of the 

superstructure, the super-structural mass is assumed to increase proportionally 

with the number of piles in the group; that is, the super-structural mass averaged 

over the number of piles is the same for all cases.  The material properties adopted 

in these analyses are listed in Table 4-3.  The peak base acceleration is 0.7 m/s2. 

Figure 4-33 plots the computed maximum raft displacement versus the pile group 

size. As can be seen, the horizontal raft motion generally increases as the pile group 

becomes larger. This trend has also been noted by other researchers (e.g. Gohl, 

1991; Brown et al., 2001) for group size of up to 3x3. As shown in Figure 4-34, a 

somewhat similar trend is also reflected in the bending moment envelope; however, 
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the increase in the bending moment is proportionately smaller than the increase 

in raft displacement. This may be due to the fact that the soil between adjacent 

piles tends to move together with the piles.  Similar trends in the raft and bending 

moment responses are observed for different super-structural masses and peak 

base accelerations, as shown in Figure 4-35 to Figure 4-38. 

4.5 Large Pile Foundation (9x21 piles) 

In addition to the above cases, a very large pile foundation consisting of 9x21 piles, 

each with 0.6mx0.6m square cross section and length 25m, is also analyzed (Figure 

4-40). The pile center-to-center spacing is 2m, which is roughly 3 times the pile 

width.  According to Jakrapiyanun (2002), the lateral extent of the influence zone 

of the pile foundation is about three times the raft length, while the lateral extent 

of the influence region of the side boundaries is about half the model depth. Taking 

these requirements into consideration leads to a model length of 180m used in this 

study, as shown in Figure 4-40.  

The pile raft has dimensions 42𝑚 × 18𝑚 × 1𝑚, as shown in Figure 4-41. All other 

geometric parameters are the same as the cases studied above. 

The dynamic response of the superstructure is likely to be very complex. Since the 

focus of this study is on the pile foundation, the superstructure is simplified as an 

equivalent lumped mass on the raft, which is an approach widely used in 

construction codes (e.g. Eurocode 8, 2006; API, 2006; IBC, 2009). All other 

materials properties are the same as those used in section 4.4, as listed in Table 
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4-3.  The applied earthquake motion is shown on Figure 4-12.  The analysis was 

carried out using the parallel dynamic version of GeoFEA on eight PC nodes, which 

took about 150 hours. Besides the large-scale soil-pile foundation system, a similar 

free-field model with the same dimensions and soil parameters, was also simulated 

for comparison, as shown in Figure 4-42. 

4.5.1 Acceleration response 

Figure 4-43 shows the computed acceleration histories at different locations A to 

F on the ground surface.  Referring to Figures 4-40 and 4-41, Point A is located 

close to the model boundary, point C is located close to the raft, and point B is 

located at a distance of 42m from pile raft and 26m from the model boundary. 

Point F is located on the soil surface of the free field model as shown in Figure 4-42.  

Figure 4-44 plots their corresponding spectra with 5% damping. Amongst the three 

points, only point B has a response that is similar to that of the free field obtained 

by analyzing an identical soil model without the pile foundation. The response at 

point A is evidently influenced by lateral boundary while the response at point C is 

influenced by pile foundation. These results indicate that the model length is 

acceptable for minimizing the influence of the lateral boundary.  

The computed acceleration histories at various other points in the domain are 

shown in Figure 4-45. It is seen that the accelerations at the soil layer interface 

(point E in Figure 4-40) is quite similar t0 the input motion at the base of the model. 

Figure 4.47 shows the response spectra at different locations of the model, as well 

as the amplification spectrum.  The amplification spectra of the far-field soil and 
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pile foundation, obtained by dividing the response spectra of the far-field soil and 

the pile raft by the corresponding spectrum of the base input motion, are also 

plotted in Figure 4-46.  It can be seen that the long-period response (2 to 3s) of the 

raft is generally similar to that of the free-field, but its short-period response (~1s) 

is smaller than that of the free-field. Hence, the common engineering practice of 

using the free-field ground surface accelerations as the input acceleration to the 

base of the structure may lead to errors.  

4.5.2 Deformation 

The computed displacements of the pile raft and far-field soil, relative to the model 

base, are similar except for the amplitudes, as shown in Figure 4-47. The maximum 

displacement occurs at t=11.85 sec. At this instant, the horizontal soil deformation 

profiles at point B (far-field) and point D (near-field) are plotted in Figure 4-47. 

The computed shear-stress and strain hysteresis loops at different depths below 

point D are shown in Figure 4-48. The shear strains & stresses at the surface are 

very small but increase dramatically with depth.  The maximum shear strain profile 

with depth is plotted in Figure 4-49. The maximum shear strain is 0.83% at the 

depth of 19.8m from the soil surface. 

4.5.3 Bending Moment 

The computed bending moment histories at four depths along the pile are plotted 

in Figure 4-50.  It can be seen that significant moments are generated near the pile 

head (depth 0.8m) over the entire duration of shaking.  At intermediate depths of 
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10m and 20m, the moment responses are much smaller.  The moment response 

picks up at a depth 24.2m, which is very near to the interface (at 25m depth) 

between the soft and stiff soil layers.  As shown on Figure 4-50, the maximum 

moments at these 4 points occur at time t = 11.95 s.  Figure 4-51 shows the 

computed instantaneous bending moment distributions for all the piles 

(considering symmetry) at time t = 11.95 s.  Despite differences in the maximum 

positive moments near the pile head and maximum negative moments near the 

interface between the soft and stiff soils, the overall profiles are very similar in all 

the piles.   This is also reflected in Figure 4-52, which plots the contours of the pile 

head moment for each pile. 

4.5.3 Comparison with analysis using linear elastic model 

In this section, the effect of using the hyperbolic soil model is examined by 

comparing the results with those obtained using a linear elastic model. In the 

hyperbolic model, the maximum shear modulus of the soft clay 𝐺𝑚𝑎𝑥  at small 

strains is solely a function of the initial effective stress p’, and may be prescribed 

using Eq(4.1).  The 𝐺𝑚𝑎𝑥 profile thus obtained is shown on Figure 4-54.   The 𝐺𝑚𝑖𝑛 

profile shown on the same figure is obtained by substituting the maximum strain 

values shown on Figure 4-49 into Eq(4.2).  Also shown on the same figure is the 

shear modulus profile obtained using the method proposed by Duncan and 

Buchignani (1987), which lies between 𝐺𝑚𝑎𝑥 and 𝐺𝑚𝑖𝑛 for much of the depth.  

For the linear elastic analysis, the shear modulus is assumed to increase linearly 

with depth, that is 
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     G y A y B  (4.6) 

in which 𝑦 is the depth in meters, and 𝐺(𝑦) is the corresponding shear modulus in 

kPa.  For a given linearly increasing shear modulus profile, the natural period of 

the uniform soil layer with this relationship can be determined. By using A=160 

and B=300, a good match on the first two natural periods of the free-field soil 

response can be obtained with those computed using the hyperbolic model shown 

on Figure 4-46 for point B.  The resulting shear modulus profile may be adopted 

for use in the “equivalent” linear elastic model. This gives a shear modulus 

variation with depth that is also very close to Duncan and Buchignani (1987)’s 

recommendation. The Rayleigh damping was set at 16% as this was found to give 

roughly the same level of response as the hyperbolic model. All other materials are 

kept the same as listed in Table 4-3.  

As Figure 4-56, Figure 4-57 and Figure 4-58 show, despite the above attempts to 

match the response, significant differences nevertheless remain. This indicates 

that it may be difficult to “tune” an elastic model to give similar response to a 

nonlinear model.  

4.5.4 Comparison with pseudostatic approach 

The pseudostatic approach was proposed by Tabesh and Poulos (2001) and Elahi 

et al. (2010) as a possible method to evaluate large pile-group response under 

earthquake loading. In this approach, a static analysis is conducted on a pile 

foundation based on the maximum free-field soil movements and a static lateral 

loading on the pile raft to simulate the effect of superstructure (Tabesh and Poulos, 
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2001). Tabesh and Poulos (2001) and Elahi et al. (2010) used Winkler springs to 

represent the near-field soil and pile-soil-pile interaction. In large pile foundation, 

the spring constants can be very difficult to ascertain. The maximum pile group 

size in their study is 3x3.  

In this study, the finite element method using ANSYS 13 is employed to simulate 

the near-field soil and pile-soil-pile interaction, as shown in Figure 4-59. The 

model is the same as the one used in the previous dynamic simulations except for 

the size of the soil domain. In order to eliminate the horizontal resistance of the 

soil, an orthotropic material is used to simulate the soil.  For this material, the Gxz 

values are obtained using the linearly increasing elastic 𝐺 profile shown on Figure 

4-53, and 𝐺𝑥𝑦 = 𝐺𝑧𝑦 ≅ 0. The far-field soil displacement profile, as shown in Figure 

4-47 for point B, is applied to the nodes on the four vertical faces of the model in 

the x-direction, and a horizontal force, obtained by multiplying the equivalent 

structure and raft mass to the acceleration at 𝑡 = 11.85 𝑠𝑒𝑐, is uniformly applied to 

the pile raft.  The static analysis using ANSYS 13 takes about 9 minutes. 

The computed deformation from the static calculation is shown in Figure 4-60, 

with a magnification factor of 30. The bending moment of the corner pile is plotted 

in Figure 4-61, and compared with the maximum bending moment profile from 

the GeoFEA dynamic analysis. As can be seen, although the trend is well-replicated 

by the pseudostatic analysis, discrepancy nonetheless still remains. In general, the 

pile head moment appears to be under-estimated by the pseudo-static analysis. It 

is not recommended to use such an analysis for detailed design. Nonetheless, the 
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pseudo-static analysis, as a simplified method, might provide approximate 

bending moments as preliminary estimates for design practice. 

4.6 Summary 

The first part of this chapter presents details of the numerical implementation and 

modeling of seismic soil-pile-structure interaction using the finite element method. 

A nonlinear material model is adopted which incorporates the hysteresis behavior 

of soft soil response under cyclic loadings.   Different methods of modeling the piles 

are discussed, and an approach is proposed using 3-D solid elements which can 

yield accurate values of the bending moments along the whole pile.  Other issues 

examined include (i) the occurrence of pile-soil interface effects such as gapping, 

and how these may be approximately captured by modifying the stress-strain 

behavior of the soil elements in contact with the pile, (ii) the implementation of 

lateral boundary conditions which can accurately capture the free-field seismic soil 

response away from the foundation and structure using the finite domain, (iii) the 

method of prescribing the ground motion via base excitation.    

For validation, the GeoFEA numerical simulations were first carried out to analyze 

the small-scale centrifuge tests involving a small 2x2 pile group subjected to shake 

table excitation under 50g.  Favorable agreement was obtained between the 

computed and measured soil and raft accelerations, as well as the pile bending 

moment profiles.   
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Larger finite element models were set up to study the effects of pile spacing and 

pile group size.  The results show that both the raft accelerations and the maximum 

bending moments decrease with increasing pile-to-pile spacing of up to about 9 

diameters.  This suggests that pile-to-pile interaction effects are significant up to 

this distance.   The effect of pile group size is less obvious.  For the same pile-to-

pile spacing and the same structural mass carried per pile, the raft displacements 

increase as the pile group becomes larger.  However, the increase in the maximum 

pile bending moments with pile group size is not so significant.  This may be due 

to the fact that the soil between adjacent piles tends to move together with the piles. 

Finally, finite element analyses were carried out for a large-scale problem involving 

a 9x21 pile group.  The acceleration responses at various soil and raft locations in 

the model are presented and discussed.   The bending moment response was also 

examined.  Although the shapes of the computed bending moment distributions in 

all the piles are highly similar, there are differences in the maximum positive 

moments at the pile-head and maximum negative moments at the interface 

between the soft clay and the harder underlying soil.    Comparisons of the raft 

response and pile bending moments were also made with the results obtained 

using an equivalent linear elastic soil model and a simplified pseudo-static 

approach.   

In Chapter 5, additional large-scale analyses involving the 9x21 pile foundation will 

be carried out as part of a series of detailed parametric studies.  The parameters of 

interest include the pile length, the shear modulus of the soft soil, the structural 

mass as well as the peak base acceleration.  The results will be processed and 
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interpreted using dimensional analysis to obtain expressions for the maximum 

bending moment at both the pile head and near the pile tip where the pile is 

socketed into the underlying stiffer soil.   
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Table 4-1 Material properties for modeling centrifuge shaking table test 

Component 
Constitutive 

behavior 
Parameter Adopted value 

Bottom sand Mohr-Coulomb 

Young modulus 220MPa 

Poisson’s ratio 0.25 

cohesion 30kPa 

internal friction 30˚ 

density 2000kg/m3 

Soft clay 
hyperbolic-

hysteretic 

Effective stress 

exponent 
0.635 

frictional constant M 0.9 

Slope κ 0.05287 

Slope λ 0.244 

Poisson’s ratio 0.3 

Density 1600kg/m3 

Pile & raft Linear elastic 

Young modulus 21GPa 

Poisson’s ratio 0.2 

density 7800kg/m3 

Additional 

plate 
Lumped mass mass 605 ton 
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Table 4-2 Comparison of Computed and Measured Results for Similar 

Earthquakes with Different Scaled Peak Base Acceleration  

Item Components Method PBA=0.22m/s2 PBA=0.7m/s2 PBA=1.0m/s2 

Free-

field 

surface 

response 

Maximum 

acceleration 

(m/s2) 

GeoFEA 0.12 0.39 0.97 

ABAQUS 0.13 0.37 0.96 

Centrifuge 0.16 0.52 1.08 

Resonance 

period (sec) 

GeoFEA 1.2 1.3 1.7 

ABAQUS 1.2 1.4 1.7 

Centrifuge 1.3 1.5 1.9 

Pile raft 

response 

Maximum 

acceleration 

(m/s2) 

GeoFEA 0.21 0.54 0.81 

ABAQUS 0.27 0.42 0.77 

Centrifuge 0.24 0.56 0.83 

Resonance 

period (sec) 

GeoFEA 1.6 1.4 1.5 

ABAQUS 1.6 1.4 1.6 

Centrifuge 1.6 1.5 1.5 

Pile 

bending 

moment 

Bending 

moment @-

1.25m  

(kN.m) 

GeoFEA 689 1775 2661 

ABAQUS 728 1778 2855 

Centrifuge 622 1880 2610 
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Table 4-3 Material properties of model components in the large-scale analyses 

Component 
Constitutive 

behavior 
Parameter Adopted value 

Hard layer soil Mohr-Coulomb 

Young modulus 450MPa 

Poisson’s ratio 0.25 

cohesion 30kPa 

internal friction 30˚ 

density 2000kg/m3 

Soft clay 
hyperbolic-

hysteretic 

Effective stress 

exponent 
0.635 

frictional constant M 0.9 

Slope κ 0.05287 

Slope λ 0.244 

Poisson’s ratio 0.3 

Density 1600kg/m3 

Pile & raft Linear elastic 

Young modulus 3000MPa 

Poisson’s ratio 0.25 

density 2400kg/m3 

Superstructure Lumped mass mass 72 ton per pile 
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Figure 4-1 Variation of 𝐺 𝐺0⁄  with shear strain from published literature 

 

Figure 4-2 Variation of damping ratio with shear strain from published literature 
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Figure 4-3 A typical unload-reload cycle for soft clay based on the combined 

hyperbolic and Masing’s rules (Banerjee, 2009) 

 

 

Figure 4-4 Use of a flexible beam along the pile central axis to capture the 

bending moment 
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Figure 4-5 Comparison of bending moment along cantilever 

 

Figure 4-6 Determination of pile bending moment via integration of axial stress 

with respect to distance from the neutral axis 
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Figure 4-7 Finite element model for a laterally loaded pile test 

 

Figure 4-8 Comparison of lateral pile capacity with different soil-pile interface 

assumptions 
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Figure 4-9 Illustration of tied nodes for lateral boundary condition 

 

 

Figure 4-10 Structure and pile foundation model in laminar container 

(Jakrapiyanun, 2002) 
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(a) Time Series 

 

(b) Response Spectrum 

Figure 4-11 Typical earthquake acceleration series and response spectrum used in 

this study (Banerjee, 2009) 
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Figure 4-12 Centrifuge shaking table model for soil-pile-structure interaction 

(Banerjee, 2009) 

 

Figure 4-13 Symmetrical finite element model for simulating centrifuge clay bed 

tests 
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Figure 4-14 Symmetrical finite element model for simulating centrifuge soil-pile 

tests 

 

Figure 4-15 Comparisons of computed and measured acceleration histories at the 

clay surface, for the free field model (𝑃𝐵𝐴 = 0.70 𝑚 𝑠2⁄ ) 
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Figure 4-16  Computed and measured response spectra at the clay surface of the 

free-field model (𝑃𝐵𝐴 = 0.70 𝑚 𝑠2⁄ ) 

 

Figure 4-17 Comparison of raft accelerations for the centrifuge model (𝑃𝐵𝐴 =

0.70 𝑚 𝑠2⁄ ) 
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Figure 4-18 Comparison of raft response spectrum for the centrifuge model 

(𝑃𝐵𝐴 = 0.70 𝑚 𝑠2⁄ ) 
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Figure 4-19 Comparison of maximum pile bending moment (𝑃𝐵𝐴 = 0.70 𝑚 𝑠2⁄ ) 
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Figure 4-20 Comparison of maximum pile bending moment for three scaled 

earthquakes 
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Figure 4-21 Geological formations in Singapore 

 

Figure 4-22 A typical soil profile in Singapore 



Chapter 4 Numerical Simulation of Soil-Pile-Structure Interaction 

193 
 

  

(a) s/d=3 (b) s/d=5 

  

(c) s/d=7 (d) s/d=9 

  

(e) s/d=11 
(f) single pile (vertical displacement of 

pile raft is fixed) 

Figure 4-23 Pile foundation models with different pile spacing 
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Figure 4-24 Comparison of the pile cap displacement: 3x3 pile group vs single 

pile 

 

 

 

Figure 4-25 Maximum pile raft displacement versus pile spacing ratio 
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(a) All piles within the pile group  (b) Comparison with single pile 

Figure 4-26 Pile bending moment profiles in a 3x3 group with 3d spacing 
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Figure 4-27 Pile bending moment ratio versus pile spacing ratio 

 

 

 

Figure 4-28 Maximum pile raft displacement versus pile spacing ratio with 

different structural mass 
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Figure 4-29 Pile bending moment ratio versus pile spacing ratio with different 

structural mass 

 

 

 

Figure 4-30 Maximum pile raft displacement versus pile spacing ratio with 

different peak base acceleration 
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Figure 4-31 Pile bending moment ratio versus pile spacing ratio with different 

peak base acceleration 
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(a) 3x3 pile group (b) 5x5 pile group 

  

(c) 7x7 pile group (d) 9x9 pile group 

Figure 4-32 Pile group models with different pile group sizes 
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Figure 4-33 Maximum pile raft displacement versus pile group size 

 

Figure 4-34 Maximum pile bending moment versus pile group size 
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Figure 4-35 Maximum pile raft displacement versus pile group size for different 

structural masses 

 

Figure 4-36 Maximum pile bending moment versus pile group size for different 

structural masses 
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Figure 4-37 Maximum pile raft displacement versus pile group size for different 

peak base acceleration 

 

Figure 4-38 Maximum pile bending moment versus pile group size for different 

peak base acceleration 
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Figure 4-39 Finite element model for large-scale soil-pile group-raft system 

 

Figure 4-40  Model dimensions of the large-scale soil-pile foundation system 
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Figure 4-41  Model dimensions of the pile foundation 

 

Figure 4-42 Finite element model for free field simulation with the same 

dimensions 
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Figure 4-43 Computed acceleration histories at different surface locations 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25

A
cc

e
le

ra
ti

o
n

 (
m

/s
2

)

Time (sec)

Point F (Free field)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25

A
cc

e
le

ra
ti

o
n

 (
m

/s
2

)

Time (sec)

Point A

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25

A
cc

e
le

ra
ti

o
n

 (
m

/s
2

)

Time (sec)

Point B

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25
A

cc
e

le
ra

ti
o

n
 (

m
/s

2
)

Time (sec)

Point C



Large-scale Finite Element Simulation of Seismic Soil-Pile foundation-Structure Interaction 

 

206 
 

 

 

Figure 4-44 Computed response spectrum at different surface locations 
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Figure 4-45 Computed acceleration time histories at different locations of the soil-pile-structure system 
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Figure 4-46 Response spectra and amplification at the far field and the raft 
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Figure 4-47 Comparison of displacement profiles for the far field and near field
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Figure 4-48 Shear stress-strain relationships at different depths (below point D) 
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Figure 4-49 Shear strain profile with depth (below point D, at t=11.85 sec) 
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Figure 4-50 Typical bending moment histories at different depths (below corner 

pile) 
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Figure 4-51  Bending moment profiles for all piles at time t = 11.95 s. 
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Figure 4-52 Distribution of maximum bending moment at the pile head for all 

piles within the group 
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Figure 4-53 Shear modulus profile of the soft soil with depth 
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Figure 4-54 Comparison of the free field acceleration histories computed using 

the hyperbolic-hysteretic model and the elastic model with Rayleigh 

damping. 

 

Figure 4-55 Comparison of the free field response spectrum computed using the 

hyperbolic-hysteretic model and the elastic model with Rayleigh 

damping. 
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Figure 4-56 Comparison of the pile raft acceleration histories computed using the 

hyperbolic-hysteretic model and the elastic model with Rayleigh 

damping. 

 

Figure 4-57 Comparison of the pile raft response spectrum computed using the 

hyperbolic-hysteretic model and the elastic model with Rayleigh 

damping. 
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Figure 4-58 Comparison of the maximum bending moment profiles computed 

using the hyperbolic-hysteretic model and the elastic model with 

Rayleigh damping (corner pile A1). 
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Figure 4-59 Finite element model for pseudo static analysis 

 

Figure 4-60 Deformed mesh of the model after the pseudo static analysis 
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Figure 4-61 Comparison of the maximum bending moment profiles computed 

using the rigorous dynamic analysis and pseudostatic analysis (corner 

pile A1). 
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Figure 4-62 Distribution of the maximum pile bending moment at the pile heads 

from pseudo static analysis
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Chapter 5 Parametric Studies for Seismic Pile Foundation  

5.1 Introduction 

In chapter 4, a large-scale soil-pile foundation -superstructure model subjected to 

earthquake loading was analyzed using a parallel nonlinear finite element program.  

Due to the size of the problem, the computational time required for the analysis of 

a single earthquake event is about 7 days, even when running on eight parallel 

computer processors.  Hence, it is very difficult for other researchers or engineers 

to carry out similar analyses without advanced computational resources such as 

supercomputers or PC clusters.   

In general geotechnical earthquake engineering design, similar large-scale 

problems are commonly encountered, although the number and type of piles, soft 

soil properties and thickness, and earthquake motions may vary from site to site.   

Due to the costly computational requirements, site-specific analysis for such a 

large-scale problem is still not a practical option for most engineers.   In many 

cases, design charts or hand calculations are still commonly used.  It would thus 

be beneficial if design charts or equations are available to facilitate at least an 

approximate analysis.    

In this chapter, a suite of large-scale soil-pile foundation -superstructure analyses 

will be conducted in which the pile foundation dimensions, material properties, 

and earthquake amplitudes are systematically studied.  The influence of the 

various parameters on the bending moment response of the pile is examined using 
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the dimensional analysis approach, through which a dimensionless equation for 

the maximum bending moment in the pile may be obtained.   The bending moment 

profiles in the piles are also examined to obtain the bounding envelope.  The results 

thus obtained, when properly generalized in the form of a dimensionless equation 

for the maximum bending moment as well as a bounding envelope for the moment 

profile, will provide a useful tool for geotechnical engineers to design pile 

foundations under earthquake loading.    

5.2 Previous studies on design approach for seismic pile 

foundation 

Previous studies have provided simple methods to predict the kinematic bending 

moment at the interface between two soil layers (e.g. Margason, 1975; Dobry and 

O'rourke, 1983; Kavvadas and Gazetas, 1993; Mylonakis, 2001; Nikolaou et al., 

2001; Saitoh, 2005) and that at or near the pile head (e.g. Banerjee, 2009; Dezi et 

al., 2010; Sanctis et al., 2010). 

Margason (1975) assumed that a long pile follows the motion of the surrounding 

soil, and proposed the following simple formula for kinematic bending moments 

by considering the peak curvature the develops in the free-field soil 

  1p pM E I R   (5.1) 

where 𝐸𝑝𝐼𝑝 is the flexural rigidity of the pile, and 𝑅 is the peak curvature generated 

in the free-field soil due to the earthquake shaking.  While this equation provides 

a quick and simplified method of estimating the maximum pile bending moment, 
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it has a major limitation in that the interaction between pile and soil was not 

considered.  

Dobry and O'rourke (1983) derived an explicit solution for the pile bending strain 

at the interface of two soil  
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  (5.2) 

in which 𝑐 = (𝐺2 𝐺1⁄ )1 4⁄  expresses the ratio of the shear moduli of the two layers, 

and 𝑟 the pile radius, 𝛾1 the soil shear stress at the interface and 𝑘1 the modulus of 

the Winkler springs in the top layer, taken by Dobry and O'rourke (1983) to be 

three times the shear modulus of the material, i.e. 𝑘1 = 3𝐺1. 

Nikolaou et al. (2001) also derived a closed-form solution of the maximum bending 

moment as a function of depth and density of the soil stratum, soil and pile moduli, 

PGA of the ground motion, and length and diameter of the pile. 
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  (5.3) 

in which 𝑎𝑠 is the surface soil acceleration, 𝜌1 is the mass density of upper layer 

soil, ℎ1 is the upper layer soil thickness, 𝑑 is the pile diameter, 𝐿 is the total pile 

length, 𝐸𝑝  is the Young’s modulus of the pile, 𝐸1  is the Young’s modulus of the 

upper layer soil, and 𝑉1and 𝑉2 are the shear wave velocities in upper and lower soil 

layers. 

While all these methods provide useful estimates of the maximum bending 

moment for a pile in a two-layered soil, they assume a free-head pile condition with 
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no super-structural masses involved.   The effect of super-structural masses on the 

bending moment profiles was not considered. 

Saitoh (2005) studied the earthquake response of cylindrical fixed-head piles 

embedded in a homogeneous elastic stratum using three-dimensional wave 

propagation theory.  He derived a closed-form formula for the bending strain p at 

the pile head, where 
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  (5.4) 

in which 𝑃𝑟 is the ratio of the normalized bending strain at the local minimum to 

that at the local maximum, 𝑑 𝐻⁄  is the slenderness ratio of the pile, (𝑑 𝐻⁄ )𝑚𝑖𝑛 and 

(𝑑 𝐻⁄ )𝑚𝑖𝑛 are the slenderness ratio of pile at local minimum and maximum bending 

strain respectively, 𝛾𝑠 is the unit weight of the soil. This formula could be used to 

optimize the pile diameter to minimize the bending strains of the pile. 

Tabesh and Poulos (2007) produced charts of seismically-induced maximum 

bending moment in single fixed-head piles embedded in a linearly elastic 

homogeneous clay layer, by considering the pile-soil system as Winkler soil-beam 

combination. Super-structural mass were considered by applying an axial load on 

the pile head. 

Banerjee (2009) performed parametric studies of the kinematic bending moment 

of stiff piles in soft clay using centrifuge shaking table tests and 3-dimensional 
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finite element analyses.  He proposed a semi-analytical solution for the maximum 

bending moment 
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  (5.5) 

where 𝐸𝑝𝐼𝑝 is the pile flexural rigidity, 𝑑 is the pile diameter, 𝑎𝑚𝑎𝑥 is the maximum 

acceleration at the bedrock, 𝜌 is the soil mass density, 𝑀 is the mass of the raft, and 

𝐺 is the equivalent shear modulus of soft soil. However, Banerjee’s (2009) tests 

and analyses were conducted on relatively stiff piles which showed bending 

moment extending right to the pile tip. This may not be the case for more flexible 

piles. 

Ma (2010) also studied the kinematic bending moment of more slender and 

flexible piles in soft clay using centrifuge shaking table tests and 3-dimensional 

finite element simulation. He proposed an active pile length 
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  (5.6) 

to divide the piles into short, stiff piles and long, slender piles. For the long, slender 

piles, the active pile length was used to calculate the maximum bending moment 

at pile head instead of the whole pile length. A fitted formula was proposed to 

predict the maximum pile bending moment 
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in which 𝐸𝑝 and 𝐸𝑠are the Young’s modulus of pile and soil, 𝜌𝑝 and 𝜌𝑠are the mass 

density of pile and soil, 𝑑 and 𝑙𝑝 are the pile diameter and pile length, and 𝑀 is the 

raft mass. 

Using three-dimensional finite element analysis, Dezi et al. (2010) studied the 

response of a fixed-head single pile in a two-layered soil.  From their parametric 

studies, they obtained an empirical expression for the maximum bending moment 

at the interface between the bedrock and the upper soil layer 

     , 400

400 ,
0.25

sf D h Vgu
M M D h e

g


   (5.9) 

in which 𝑀400 is the absolute bending moment obtained with 𝑉𝑠 = 400𝑚/𝑠, where 

Vs is the shear wave velocity of the upper soil layer, and the function 𝑓(𝐷, ℎ) 

characterizes the dependency of the exponential regression on the pile diameter 𝐷 

and the upper layer soil depth ℎ .  The functions 𝑀400(𝐷, ℎ)  and 𝑓(𝐷, ℎ)  were 

calibrated with a nonlinear least square procedure by fitting the finite element data 

obtained from the parametric analysis. 

For the maximum bending moment at the interface between the bedrock and 

overlying soil layer, 

      3 2 2

400 , 77.7 409 192 24.5 0.0009 0.068 0.2M D h D D D h h         (5.10) 

     , 0.000124 0.01106 0.05 0.864f D h h D      (5.11) 

For the maximum bending moment at the pile head 

      3 2 2

400 , 85 85.75 30.93 3.37 0.000133 0.00042 1.091M D h D D D h h        (5.12) 
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     , 0.000067 0.0113 0.07 1.002f D h h D      (5.13) 

It should be noted that Equations(5.10)-(5.13) do not account for the influence of 

the super-structural mass and the pile stiffness. 

Sanctis et al. (2010) performed an extensive parametric study using three-

dimensional finite element analyses, and proposed an expression to predict the 

maximum kinematic bending moment at the pile head 

 
4max

max

1

0.141
pEa

M d
g E

   (5.14) 

where 𝑎𝑚𝑎𝑥  is the maximum acceleration at the soil surface, 𝐸𝑝  and 𝐸1  is the 

Young’s modulus of the pile and upper layer soil, and 𝛾 is the unit weight of the 

soil. 

The above survey of the previous studies involving the seismic response of piles 

shows that, with the exception of Banerjee (2009) and Ma (2010) most of the works 

do not consider the effect of the super-structural mass on the pile’s bending 

moment.  Also, these studies only consider a single pile, and hence do not account 

for the effect of pile-group interaction in a piled raft system when many piles are 

located at close spacing.  

5.3 Parametric Studies 

In this section, parametric studies using 3-D finite element analyses are carried out 

for large pile-group systems installed in a soft clay layers.  These analyses examine 

the influence of the soft clay depth (or pile length), pile diameter, soil stiffness, 

super-structural mass and peak bedrock acceleration on the bending moment 
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profiles and the maximum bending moment induced within the piles in a large pile 

foundation.   

The baseline soil-pile foundation model adopted for the parametric studies is the 

same as that considered in Section 4.5, in which a 9x21 pile foundation is installed 

in a 28m thick soft clay layer.  The pile tips are embedded to a depth of 3 x pile 

diameter in a stiff soil or rock layer.  The pile and soil properties, together with the 

earthquake information, for the baseline analysis are summarized as Case No. 1 in 

Table 5-1. 

Figure 5-2 shows the computed pile bending moment distribution at different 

instances during the simulated earthquake event for the baseline analysis.  The 

results are shown for the corner pile.  It is seen that, while the bending moment 

distribution changes continuously with time due to the transient earthquake 

loading, the depths at which the bending moment changes from positive to 

negative (or vice versa) falls within the a narrow range of between 6 to 7m.  This 

suggests that, for this particular analysis, the depth of the point of contraflexure in 

the pile remains relatively constant throughout the duration of earthquake shaking.  

In other words, the pile behaves like there is a pinned support at this relatively 

constant depth of contraflexure, which can significantly affect the maximum 

bending moment response near the pile head.  In this study, the depth of 

contraflexure, at which the pile bending moment is zero, will be termed the critical 

depth. It’s different with the term ‘critical pile length’ defined by Randolph (1981) 

which is to divide long pile and short pile. 
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Given that the critical depth may vary over a small range (as shown on Figure 5-2), 

its value will be defined more specifically as the contraflexure depth corresponding 

to the instant when the maximum bending moment develops near the rigid 

connection between the pile and raft.  For the baseline analysis, the critical depth 

of 7.08m occurs at time 𝑡 =  5.05 𝑠, when the maximum pile bending moment is 

about 700 kNm.                 

As shown on Figure 5-2, besides the maximum bending moment which occurs at 

the pile head, the moment response also shows a local maximum value which 

develops at the interface between the upper soft clay layer and the underlying 

stiffer soil in which the pile is shallowly embedded.  At any given instant, the two 

maximum bending moments have opposite signs.  

These features are also present in the bending moment time histories at three 

selected depths, as shown on Figure 5-3.  These depths correspond approximately 

to (i) the pile head location where the maximum moment in the pile occurs, (ii) the 

critical depth where the point of contraflexure occurs at time t=5.05s, and (iii) the 

interface between the soft clay and underlying stiff soil.  It is noted that the bending 

moment at the critical depth of 7.08m is very small throughout the entire 

earthquake event, and for all purposes, is negligible compared with the two locally 

maximum bending moments near the pile head and the clay-stiff soil interface.  It 

is also noted that, while the two maximum bending moment histories always have 

opposite signs, they attain their corresponding peak values at the same instance 

𝑡 = 5.05𝑠.  Hence, the bending moment profile in Figure 5-2 corresponding to 𝑡 =
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5.05𝑠 may be used to characterize the maximum pile bending moment response 

for the baseline case.  

Figure 5-4 shows, for the same 25m thick soft clay layer with different super-

structural mass, clay shear stiffness and peak base acceleration, the bending 

moment profiles corresponding to the instance when the maximum moment is 

generated near the pile head and at the clay-stiff soil interface.  As can be seen, the 

characteristic bending moment profiles for these different cases are generally 

similar to that obtained from the baseline analysis.  However, the critical depths 

for these cases vary from about 4m to 10m due to the different parameters adopted 

in the analyses.  Between the critical depth and the clay-stiff soil interface, the 

negative bending moments are relatively small and quite constant with depth.    

Figure 5-6 shows, for a 40m thick soft clay layer, the computed bending moment 

profiles from various analyses with different parameters. The characteristic shapes 

are similar to those shown on Figure 5-4 for the 25m thick clay layer, with critical 

depths varying from about 4m to 15m. 

Figure 5-5 shows the computed bending moment profiles for the case when the soft 

clay layer is only 10m thick.  The general shape is still characterized by a maximum 

bending moment near the pile head, with another smaller local maximum of 

opposite sign at the interface between the clay and the underlying stiff soil, and a 

point of contraflexure at the critical depth where the bending moment changes sign.  

However, due to the small thickness of the clay layer, the zone of relatively small, 

the segment of nearly constant and small negative moment between the critical 
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depth and the clay-stiff soil interface is not present. Instead, it is replaced by a 

larger negative maxima in the bending moment, which can be readily attributed to 

the fixed-end moment of the stiff soil or rock layer, into which the pile is socketed. 

Hence the bending moment exhibits a slightly curvilinear variation from the 

maximum near the pile head to the smaller negative maximum at the clay-stiff soil 

interface.   

Based on the foregoing results for earthquake loading conditions, Figure 5-7 shows 

the typical bending moment envelopes for a fixed head pile within a large pile 

foundation installed in a predominantly soft clay layer, the tip of which is 

nominally embedded to a depth of 3 pile diameters.  The profile consists of three 

key features: (i) a maximum pile bending moment M1 at or near the pile head, (ii) 

the critical pile length lc (this length is referred to the distance from pile head to 

the inflection point, and is different from the one defined by Randolph (1981)) and 

(iii) the smaller negative maxima M2 at the clay-stiff soil interface.  These features 

will be examined in greater detail in the subsequent sections, in which the 

parametric results from the large-scale finite element analyses will be processed 

and interpreted using dimensional analysis to arrive at proposed equations for 

estimating these quantities given the soil, pile and earthquake information.     

In the following parametric study, the influence of (i) the soft soil layer thickness 

𝐻, (ii) the pile radius 𝑟, (iii) the super-structural mass 𝑚𝑠𝑡𝑟, (iv) the clay modulus 

𝐺0 and (v) the peak base acceleration 𝑎𝑚𝑎𝑥on the maximum pile bending moment 

response is examined. The large-scale model of section 4.5 involving a 9x21 pile 

foundation is used as the baseline analysis, with the following baseline parameters: 
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0.653 2

0 max25 0.343 13,608 2060 ' 0.70strH m r m m ton G p a m s      (5.15) 

The effects of changing these baseline parameters are presented and discussed in 

the following subsections. 

5.3.1 The effect of soft soil thickness 𝑯 

Three soft soil layer thicknesses, viz. 10m, 25m and 40m, are considered, while all 

other baseline parameters are kept constant. As shown on Figure 5-8, the thicker 

the soft soil layer, the smaller will be the maximum bending moment induced at 

both the pile head (M1) and the soft soil-stiff soil layer interface (M2).  On the other 

hand, the critical pile length increases with the soft soil layer thickness.  

Figure 5-8 shows the effect of soft soil layer thickness on the critical pile length, for 

other combinations of the soil, pile and earthquake parameters.  Overall, it can be 

seen that the critical pile length generally increases with increasing thickness of 

the clay layer, the trend being especially significant for the larger pile (𝑟 =  0.457𝑚) 

subjected to the stronger earthquake (𝑎𝑚𝑎𝑥 =  1.0 𝑚/𝑠2).     

Figure 5-10 shows the effect of soft soil layer thickness H on the maximum moment 

M1 at the pile head, for different combinations of the soil, pile and earthquake 

parameters.  While many of the cases considered show that M1 is quite insensitive 

to the clay layer thickness, the results from other cases show a tendency for M1 to 

decrease with increasing clay layer thickness.   

Figure 5-11 shows the effect of soft soil layer thickness H on the negative maximum 

moment M2 that develops at the clay-stiff soil interface.  Compared to the pile head 
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moment, the tendency for the interface moment M2 to reduce with increasing clay 

layer thickness is much stronger.  This may be attributed to the stress-dependent 

stiffness of the clay layer, which leads to a higher clay stiffness or modulus at a 

greater depth.  Hence, with increasing depth, the stiffness contrast between the 

clay and the underlying stiffer soil becomes less significant, thus resulting in a 

smaller bending moment M2 at the interface. 

5.3.2 The effect of pile radius 𝒓 

The parametric studies were carried out for three values of the pile radius, i.e. 

0.229m, 0.343m and 0.457m.  Figure 5-12 compares the maximum bending 

moment profiles corresponding to the three pile radii, with all other baseline 

parameters kept constant. 𝐻𝑠𝑜𝑖 = 25𝑚, 𝑚𝑠𝑡𝑟 = 13,608𝑡𝑜𝑛 , 𝐺0 = 20600𝑝′0.653 , 

𝑎𝑚𝑎𝑥 = 0.70 𝑚 𝑠2⁄  

Figure 5-13 shows the effect of the pile radius on the critical pile length, for various 

combinations of the soil, pile and earthquake parameters.  In all cases, the critical 

pile length increases with the pile radius.  The increase is especially significant for 

the longer piles in the thick clay layer of 40m subjected to the larger earthquake 

shaking, e.g. when 𝑎𝑚𝑎𝑥 =  1.0 𝑚/𝑠2.    

Figure 5-14 shows the effect of the pile radius on the pile head moment, for various 

combinations of the soil, pile and earthquake parameters.  Figure 5-15 shows the 

corresponding effect on the interface moment.  Both figures exhibit a clear trend 

in which the pile head and interface moments increase with the pile radius.  
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5.3.3 The effect of structural mass, 𝒎𝒔𝒕𝒓 

The parametric studies were carried out for three values of the structural masses 

mstr: 6,804 tons, 13,608 tons and 20,412 tons.  Figure 5-16 compares the maximum 

bending moment profiles corresponding to the three structural masses, with all 

other baseline parameters kept constant.  The larger the structural mass supported 

by the piles, the greater is the inertial force imposed on the piles by the raft, which 

gives rise to a larger pile head moment. On the other hand, the interface moment 

remains relatively unchanged with increasing structural masses.  In fact, the 

results of Figure 5-16 suggest that, for the 25m thick clay layer, the effect of the 

structural masses is felt mainly in the upper 15m of the pile.  Below 15m, the pile 

bending moment response does not change with increasing structural masses.  The 

critical pile length decreases with increasing structural mass.      

Figure 5-17 shows the effect of the structural mass 𝑚𝑠𝑡𝑟 on the critical pile length, 

for various combinations of the soil, pile and earthquake parameters.  While the 

change is generally not too drastic, there is an overall trend for the critical pile 

length to reduce with increasing structure mass.      

Figure 5-18 shows the effect of the structural mass on the pile head moment, for 

various combinations of the soil, pile and earthquake parameters.  Overall, there 

is a clearly discernable tendency for the pile head moment to increase with 

increasing structural mass in almost all the cases considered. 
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The corresponding results for the effect of the structural mass on the interface 

moment are shown on Figure 5-19.  In most cases, the interface moment appears 

to be quite insensitive to the structural mass, as previously noted in Figure 5-16.  

The exception is the suite of analyses involving the smallest clay layer thickness H 

of 10m, where the interface moment increases slightly with increasing structural 

mass. 

5.3.4 The effect of soil stiffness 𝑮𝟎  

In this study, the stiffness of the soil is characterized by its initial shear modulus. 

The variation of initial shear modulus G0 with mean effective stress p’ is adopted 

from Banerjee (2009) relationship for normally consolidated kaolin clay and 

follows the form proposed by Viggiani and Atkinson (1995) 

 
0.653

0 'G C p    (5.16) 

In this equation, the coefficient 𝐶 varies depending upon the soil type. 𝐶 =  2060 

for the kaolin clay used by Banerjee (2009) and Ma (2010). In this section, the 

effect of the clay stiffness, characterized by its initial shear modulus, is varied by 

changing the coefficient C to 1030 and 3090, respectively.   

Figure 5-20 compares the bending moment envelopes associated with the three 

small-strain clay moduli, with all other baseline parameters kept constant. With 

increasing clay stiffness, both the critical pile length and the two maximum 

bending moments M1 and M2 decrease.  
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Figure 5-21 shows the effect of the clay stiffness G0 on the critical pile length lc, for 

various combinations of the soil, pile and earthquake parameters.  It is seen that, 

for some combinations of the parameters, the critical length is relatively insensitive 

to changes in G0.  However, for other combinations involving the larger earthquake 

acceleration amax = 1.0 m/s2, there is a noticeable decrease of the critical pile length 

with increasing G0.      

Generally similar trends are observed in Figure 5-22 and Figure 5-23, which shows 

the effect of G0 on the maximum bending moments M1 and M2 for various 

combinations of the soil, pile and earthquake parameters.   

5.3.5 The effect of peak base acceleration, 𝒂𝒎𝒂𝒙 

Parametric studies were carried out for three scaled earthquake ground motions, 

corresponding to peak base accelerations 𝑎𝑚𝑎𝑥 of 0.22m/s2, 0.7m/s2 and 1.0m/s2.  

Figure 5-24 compares the bending moment envelopes associated with the three 

peak base accelerations, with all other baseline parameters kept constant.  The pile 

head and interface moments both increase with the peak base acceleration, while 

the critical pile length remains relatively unchanged.   

Figure 5-25 shows the effect of the peak base acceleration 𝑎𝑚𝑎𝑥 on the critical pile 

length lc, for various combinations of the soil and pile parameters.  While the 

change in critical length is generally small, there is an overall trend for the critical 

pile length to increase with increasing structure mass. The influence is more 

conspicuous for the 40m long piles installed in the softest clay of G0 = 1030 (p’)0.653.     
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Figure 5-26 shows the effect of the peak base acceleration 𝑎𝑚𝑎𝑥 on the maximum 

bending moment M1 at the pile head, for various combinations of the soil and pile 

parameters.  It can be clearly seen that M1 increases with increasing peak base 

acceleration in all the cases considered. 

Figure 5-27 shows the corresponding effect of the peak base acceleration 𝑎𝑚𝑎𝑥 on 

the maximum bending moment M2 at the clay-stiff soil interface.  Like the pile head 

moment M1, the interface moment M2 also shows a distinct increase in magnitude 

with the peak base acceleration 𝑎𝑚𝑎𝑥.  

  

5.4 Dimensional Analysis of Pile Bending Moment Response 

Under seismic loading, the factors influencing the bending moment in a fixed head 

pile can be organized into dimensionless groups, taking into account inertial 

effects, earthquake loading, increase in soil modulus with depth and, in an 

approximate manner, non-linearity in stress-strain behavior of the soil.  

First, the combined lateral stiffness of the piles in the pile foundation above the 

contraflexure or inflection point is given by  

 
3

all piles

p p

p

c

E I
k

l
   (5.17) 

while the corresponding lateral stiffness of the near-field soil may be expressed as 

 
soi raf

s

c

G A
k

l
  (5.18) 



Large-scale Finite Element Simulation of Seismic Soil-Pile foundation-Structure 
Interaction 

 

240 
 

in which Araf is the horizontal area of the pile raft, lc is the critical pile length, and  

 is an  equivalent shear modulus of the clay over the depth lc , which is adopted 

in place of the actual shear modulus G(z, ) which varies with depth and strain level.  

In the infinitesimal strain case, the soil shear modulus takes the maximum value 

Gmax, which is a function of depth. For normally consolidated Malaysian kaolin clay, 

Banerjee (2009) proposed that the maximum shear modulus Gmax can be 

correlated to the mean effective stress using Viggiani and Atkinson (1995)’s 

relationship 

    
0.653

max 1in 'G kPa c p  (5.19) 

in which c1 = 2060 was obtained from resonant column test results.  

In this study, the water table is coincident with the ground surface, so that 

 01 2
' '

3

K
p z


  (5.20) 

in which K0  is the at-rest earth pressure coefficient, ’ is the effective unit weight 

and z is the depth below ground surface. This leads to 

 

0.653 0.653
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max 1 1 2
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 (5.21) 

in which 𝑐2 = 𝑐1 ∙ (
1+2𝐾0

3
𝛾′)

0.653
  

Under a unit horizontal force applied at the ground surface, the lateral 

displacement  of the soil layer over the critical pile depth is given by,  
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The corresponding lateral soil stiffness, for the infinitesimal strain condition, can 

be expressed as  

 

0.653

2
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0.3471 c raf

s

c

c l A
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   (5.23) 

The parameter lc in Eq.(5.23) represents the average critical length for the piles 

within the pile foundation.   The critical length for each pile may vary slightly based 

on the pile foundation size and geometry.   However, trying to account for the 

individual lc values will make the problem very complicated and detract from the 

simplified approach proposed herein.  

A comparison of Eq (5.18) and Eq (5.23) yields, for the infinitesimal strain 

condition, the following expression for the equivalent maximum shear modulus 

over the critical length lc:  

 
0.653

max 20.347 cG c l  (5.24) 

Referring to Eq.(5.24), it is seen that the equivalent shear modulus Gmax is  0.347 

times the maximum shear modulus at depth z = lc.  

It is assumed herein that an equivalent shear modulus Gsoi could be obtained by 

the product of the equivalent maximum shear modulus and a function of strain 

level H(), that is 

  maxsoiG G H    (5.25) 
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However, the effect of strain level is difficult to quantify since strains are non-

uniform around the pile and soil behavior is non-linear and hysteretic. 

Nevertheless, all other factors being equal, the strain level in the soil is likely to 

increase with the peak base acceleration 𝑎𝑚𝑎𝑥. Hence, the peak base acceleration 

𝑎𝑚𝑎𝑥 is proposed as an approximate indicator of strain. 

   max

m

a
H B

g


 
  

 
 (5.26) 

in which B and m are coefficients to be determined in the following fitting 

procedure. B > 0 and m < 0 indicate that the soil modulus decreases as the peak 

base acceleration increases.  

Hence, for strain levels associated with a peak earthquake acceleration of 𝑎𝑚𝑎𝑥, the 

soil lateral stiffness over the depth lc may be expressed as  
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The ratio of pile stiffness to soil stiffness Rk is then given by 
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which may be re-expressed as 
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It includes four components, 
𝐸𝑝

𝑐2𝑟2⁄  the stiffness ratio of the materials, 

∑ 𝜋𝑟2

𝐴𝑟𝑎𝑓
⁄  the area ratio of all the piles in the group to horizontal raft area, 

𝑙𝑐
𝑟⁄  

the critical pile slenderness ratio, and 
𝑎𝑚𝑎𝑥

𝑔⁄  the normalized peak base 

acceleration. 

Another dimensionless group which may also influence the critical slenderness 

ratio and maximum pile bending moment is the mass ratio, defined herein as  

 str str
m

soi soi soi raf

m m
R

m H A
   (5.30) 

in which 𝑚𝑠𝑡𝑟 is the mass of the structure and pile raft, 𝜌𝑠𝑜𝑖 is the density of the soil, 

and 𝐻𝑠𝑜𝑖 is the thickness of the soft soil layer. 

5.4.1 Critical pile length, 𝒍𝒄 

Combining Eqs(5.29) and (5.30) leads to a dimensionless grouping of the form 
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 (5.31) 

in which B0 , B1 , B2 , B3 are fitted quantities.  

By combining the stiffness, mass and slenderness ratios of Eq.(5.31) appropriately, 

the ratio of the natural frequency of the pile raft to that of the soil layer above the 

critical segment can also be obtained as  
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   (5.32) 



Large-scale Finite Element Simulation of Seismic Soil-Pile foundation-Structure 
Interaction 

 

244 
 

Hence, the natural frequencies of the pile-raft and soil are implicitly accounted for 

in Eq(5.31).   

By grouping the lc/r term on the left, Eq(5.31) can also be expressed as 
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 (5.33) 

in which  = 1 + 2.653B1. Eq (1.32) can be further re-expressed as 
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 (5.34) 

Eq (5.34) contains four exponential coefficients, C0 , C1 , C2 and C3 , the values of 

which may be determined via regression analysis using the results from the large-

scale finite element simulations.  For each finite element analysis, a unique value 

of the calculated critical depth lc is obtained corresponding to one set of input 

parameters 𝐸𝑝 , 𝑟 , 𝑚𝑠𝑡𝑟 , 𝐴𝑟𝑎𝑓 , 𝑐1 , 𝑎𝑚𝑎𝑥 , 𝐻𝑠𝑜𝑖 . Using the calculated results of lc 

obtained from an appropriately large number of known parameter sets, a set of 

coefficients C0 , C1 , C2 and C3 can be determined which will minimize the difference 

between the lc values calculated from Eq(5.34) and that obtained from the large-

scale finite element simulation. 

For the regression analysis, Eq(5.34) is further re-written as 
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(5.35) 

from which a benchmark function may be constructed as 



Chapter 5 Parametric Studies for Seismic Pile Foundation 

245 
 

2
2

max
0 1 2 30.653

1, 2

ˆ
ln ln ln ln

p str c

i N raf soi soi rafi ii i

E r a m l
C C C C

c r A g H A r





       
                           




 (5.36) 

where N is the number of finite element analyses with different parameter sets 

used to obtain the lc values for the regression exercise.     

Through an appropriate optimization process, a set of coefficients C0 , C1 , C2 and 

C3 can be obtained which minimizes the resulting benchmark function  .  

Mathematically, this is equivalent to 
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or 
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In this study, the regression analysis is carried out for 46 data sets, as shown on 

Table 5-1, which cover different combinations of the simulation parameters used 

in the large-scale finite element analyses.  The parameter information for all 46 

data sets are entered into a Microsoft Excel spreadsheet, together with the 

corresponding lc values obtained from the finite element analyses.  The 

minimization process to obtain the coefficients C0 , C1 , C2 and C3 was carried out 

using the Microsoft Excel solver, by solving the system of simultaneous equations 

shown on Eq.(5.38). 

In this study, the solution of Eq.(5.38) yields the following fitting coefficients 

 0 1 2 32.435 0.083 0.069 0.134C C C C      (5.39) 

Accordingly, the critical pile length could be approximately predicted using the 

relation 
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 (5.40) 

Figure 5-28 plots the critical pile lengths calculated using Eq.(5.40) against those 

obtained from the large-scale finite element simulations.   The agreement is 

generally favorable, with a R2 value of 0.9087.  

The performance of the fitted formula for the critical pile length lc is further 

examined in Figure 5-29 through Figure 5-32, which shows the effect of the pile 

radius 𝑟, the structural mass mstr , the equivalent soil stiffness Gsoi  and the peak 

base acceleration amax on the fitted and finite-element-computed critical lengths.  
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It is seen that Eq.(5.40) generally provides reasonable predictions of the critical 

pile length for each parameter, as well as the trend showing how the critical pile 

length varies with the parameter. Figure 5-29 shows that the critical pile length 

increases sharply as the pile radius increases, while Figure 5-30 indicates that the 

critical pile length decreases as the superstructure mass increases.  This may be 

due to the heavier superstructure causing pile bending effects to concentrate more 

on the upper part of the foundation, thus moving the inflection point upwards. 

Figure 5-31 illustrates that the critical pile length decrease slightly as the equivalent 

soil shear modulus increases. The stiffer soil also could restrict the pile bending 

effects to the upper part of the foundation, thus reducing the critical pile length. 

Figure 5-32 indicates that the critical pile length increases as the seismic 

acceleration amplitude increases. The larger ground motion amplitude would 

cause larger soil deformation, leading to degradation of the soil stiffness.  

The trends shown on Figure 5-29 to Figure 5-32 are consistent with the values of 

the fitted coefficients C1 , C2 and C3 for Eq(5.40).  The positive coefficients C1 and 

C2 indicate that the critical pile length ratio would increase with increasing pile-

soil stiffness ratio, the pile area replacement ratio, and the dimensionless seismic 

acceleration.  On the other hand, the negative coefficient C3 indicates that the 

critical pile length ratio decreases with increasing structure-soil mass ratio. 

5.4.2 Maximum bending moment at pile head, 𝑴𝟏 

The factors affecting pile behavior have already been expressed in terms of the four 

dimensionless groups shown in Eq.(5.40). The maximum bending moment at the 
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pile head  can be expressed in a dimensionless form 
𝑀1

𝐸𝑝𝐼𝑝 𝑟⁄
, hereafter known as 

dimensionless moment, which is a measure of the maximum flexural strain in the 

pile. This leads to a possible expression for the maximum bending moment of the 

form 
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 (5.41) 

where D0 , D1 , D2 , D3 and D4 are the fitting coefficients which can be determined 

via regression analysis.  

 Using a similar approach to that described in Section 5.4.1 for the critical pile 

length, a regression analysis for the maximum bending moment M1 is performed 

using the 46 data sets tabulated on Table 5-1.  The resulting coefficients are 

obtained as 

 0 1 2 3 46.173 0.328 1.071 0.332 1.457D D D D D        (5.42) 

Hence, the maximum pile bending moment at the pile head can be predicted using 

the fitted relationship 
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(5.43) 

Figure 5-33 plots the maximum bending moments M1 calculated using Eq.(5.43) 

against those obtained from the large-scale finite element simulations.   The overall 

agreement is favorable, with a R2 value of 0.9671.  

Substituting Eq(5.40) into Eq(5.43) yields  
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The performance of the fitted formula for the maximum bending moment M1 is 

further examined in Figure 5-34 through Figure 5-37, which shows the effect of the 

pile radius r, the structural mass mstr , the equivalent soil stiffness Gsoi  and the 

peak base acceleration amax on the predicted and FEM lc values.   Despite some 

scatter, Eq(5.44) generally provides reasonable predictions of the maximum 

bending moment M1 for each parameter, as well as the trend showing how the 

maximum bending moment varies with the parameter.  In contrast to the critical 

pile length which decreases with the structural mass mstr, Figure 5-35 shows that 

both the predicted and FEM maximum bending moment increases with increasing 

structural mass. This is consistent with the positive value of D3 obtained from the 

regression analysis, as compared with the negative value of C3 obtained for the 

critical pile length.  Similarly, Figure 5-36 shows that both the predicted and FEM 

maximum bending moment increases with increasing equivalent soil shear 

stiffness, which is consistent with the negative value of coefficient D1 obtained from 

the regression analysis.  Figure 5-37 shows that the effect of the peak base 

acceleration on both the predicted and FEM maximum bending moment is quite 

significant, compared with that shown on Figure 5-32 for the critical pile length.   

This is consistent with the coefficient value of 1.071 obtained for D2 from the 

bending moment regression analysis, as compared with the much smaller value of 

0.069 obtained for C2 from the critical pile length regression analysis.  
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5.4.3 Maximum pile bending moment at clay-stiff soil layer interface 

𝑴𝟐 

Similarly to Eq.(5.43), an expression for the maximum pile bending moment at the 

clay-stiff soil layer interface with the following form is proposed 
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 (5.45) 

where E0 , E1 , E2 , E3 and E4 are the fitting coefficients which can be determined 

via regression analysis, and  is the pile embedment length (=3 x pile diameter) 

in the stiff soil layer as shown in Figure 5-7. 

Using a similar approach to that described in Sections 5.4.1 and 5.4.2, a regression 

analysis for the maximum bending moment M2 is performed using the 46 data sets 

tabulated on Table 5-1.  The resulting coefficients are obtained as 

 0 1 2 3 40.0028 0.493 1.300 0.234 0.209E E E E E        (5.46) 

Hence, the maximum pile bending moment at the clay-stiff soil layer interface may 

be estimated using the fitted relationship: 
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 (5.47) 

Figure 5-38 plots the maximum bending moments M2 calculated using Eq.(5.47) 

against those obtained from the large-scale finite element simulations.   The overall 

agreement is favorable, with a R2 value of 0.9738.  
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The performance of the fitted formula for the maximum bending moment M2 is 

further examined in Figure 5-39 through Figure 5-41, which shows the effect of the 

pile radius r, the equivalent soil stiffness Gsoi  and the peak base acceleration amax 

on the predicted and FEM lc values.   The effect of the structural mass mstr is not 

considered here, as it was previously shown in the parametric studies that the value 

of M2 is quite insensitive to changes in structural mass, especially for the 25m and 

40m thick soft clay layers.  It is seen that Eq.(5.47) provides good predictions of 

the bending moment M2 for the three parameters considered.   In particular, Figure 

5-40 shows that the pile bending moment at the clay-stiff soil interface decreases 

as the shear modulus of the clay increases, which is consistent with the finding 

from Nikolaou et al. (2001).  

5.4.4 An example to illustrate the usage of the simplified bending 

moment profile 

It’s assumed that a 14-layer residential building with length 42m and width 18m, 

supported on a pile-raft foundation. The pile foundation include 189 piles with pile 

diameter 0.8m, and pile-pile spacing 2m. The soil profile includes two uniform 

layers, 25m thickness soft clay overlying the hard stiff soil layer. The pile is 

socketed into the hard layer 3m. The excited earthquake time history is similar 

with the one in Figure 4-11 except that the maximum acceleration 𝑎𝑚𝑎𝑥 is 0.4m/s2. 

The total structural mass 𝑚𝑠𝑡𝑟 = 15,876𝑡𝑜𝑛 

The pile raft area 𝐴𝑟𝑎𝑓 = 756𝑚2 
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The pile foundation-soil stiffness ratio 
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The dimensionless peak base acceleration max 0.04
a

g
  

The structure-soil mass ratio 0.52str

soi soi raf

m

H A
  

From Eq.(5.40), the critical pile length could be calculated 𝑙𝑐 = 7.22𝑚 

From Eq.(5.44), the maximum pile bending moment at pile head could be 

calculated 𝑀1 = 446𝑘𝑁 ∙ 𝑚 

From Eq.(5.47), the maximum pile bending moment at the soil layer interface 

could be calculated 𝑀2 = 170𝑘𝑁 ∙ 𝑚. 

The Maximum pile bending moment profile could be predicted as shown in Figure 

5-42. Comparison with the large-scale finite element simulation indicated that the 

proposed method could offer an approximate evaluation of pile bending moment 

profile within large pile foundation.  

5.5 Summary 

Using the large-scale finite element simulation method, the seismic soil-pile-

superstructure analysis is extended to study the influence of different pile radiuses, 

soft soil depths, soft soil stiffness, superstructure mass and seismic acceleration 

amplitudes. The influence of each factor on the pile foundation response is 

discussed. By processing the results using dimensional analysis and data fitting, 
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three semi-empirical dimensionless expressions for estimating the maximum 

bending moments and the critical pile length are obtained.   Using these estimated 

moments and the critical pile length, together with the general trends of the 

computed bending moment profiles obtained from all the analyses, a simplified 

bending moment envelope is proposed for seismic pile foundation design. 

It should be noted that Eqs. 5.40, 5.44 and 5.47 were derived based on ground 

motions following the characteristic time history and response spectrum shown on 

Figure 4-11, albeit with different peak values.  Such motions are representative of 

the bedrock ground motions expected in Singapore due to the far-field earthquake 

events arising from the Great Sumatran Fault.  The applicability of these equations 

to other earthquake motions, such as those associated with near field events, will 

be examined in Chapter 6. 

  



Large-scale Finite Element Simulation of Seismic Soil-Pile foundation-Structure 
Interaction 

 

254 
 

Table 5-1 Simulation events and main parameters  

No L (m) r (m) mstru (ton) G0 (kPa) PGA (m/s2) 

1* 25 0.339 13,608 2060𝑝′0.653 0.70 

2 10 0.339 13,608 2060𝑝′0.653 0.70 

3 40 0.339 13,608 2060𝑝′0.653 0.70 

4 25 0.226 13,608 2060𝑝′0.653 0.70 

5 25 0.452 13,608 2060𝑝′0.653 0.70 

6 25 0.339 6,804 2060𝑝′0.653 0.70 

7 25 0.339 20,412 2060𝑝′0.653 0.70 

8 25 0.339 13,608 1030𝑝′0.653 0.70 

9 25 0.339 13,608 3090𝑝′0.653 0.70 

10 25 0.339 13,608 2060𝑝′0.653 0.22 

11 25 0.339 13,608 2060𝑝′0.653 1.00 

12 10 0.226 6,804 1030𝑝′0.653 0.22 

13 10 0.226 6,804 1030𝑝′0.653 1.00 

14 10 0.226 6,804 3090𝑝′0.653 0.22 

15 10 0.226 6,804 3090𝑝′0.653 1.00 

16 10 0.226 20,412 1030𝑝′0.653 0.22 

17 10 0.226 20,412 1030𝑝′0.653 1.00 

18 10 0.226 20,412 3090𝑝′0.653 0.22 

19 10 0.226 20,412 3090𝑝′0.653 1.00 

20 10 0.452 6,804 1030𝑝′0.653 0.22 

21 10 0.452 6,804 1030𝑝′0.653 1.00 

22 10 0.452 6,804 3090𝑝′0.653 0.22 

23 10 0.452 6,804 3090𝑝′0.653 1.00 

24 10 0.452 20,412 1030𝑝′0.653 0.22 

25 10 0.452 20,412 1030𝑝′0.653 1.00 

26 10 0.452 20,412 3090𝑝′0.653 0.22 

27 10 0.452 20,412 3090𝑝′0.653 1.00 
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28 40 0.226 6,804 1030𝑝′0.653 0.22 

29 40 0.226 6,804 1030𝑝′0.653 1.00 

30 40 0.226 6,804 3090𝑝′0.653 0.22 

31 40 0.226 6,804 3090𝑝′0.653 1.00 

32 40 0.226 20,412 1030𝑝′0.653 0.22 

33 40 0.226 20,412 1030𝑝′0.653 1.00 

34 40 0.226 20,412 3090𝑝′0.653 0.22 

35 40 0.226 20,412 3090𝑝′0.653 1.00 

36 40 0.452 6,804 1030𝑝′0.653 0.22 

37 40 0.452 6,804 1030𝑝′0.653 1.00 

38 40 0.452 6,804 3090𝑝′0.653 0.22 

39 40 0.452 6,804 3090𝑝′0.653 1.00 

40 40 0.452 20,412 1030𝑝′0.653 0.22 

41 40 0.452 20,412 1030𝑝′0.653 1.00 

42 40 0.452 20,412 3090𝑝′0.653 0.22 

43 40 0.452 20,412 3090𝑝′0.653 1.00 

44 40 0.452 20,412 3090𝑝′0.653 0.70 

45 40 0.452 20,412 3090𝑝′0.653 0.70 
* as baseline case, described and discussed in section 4.5.  
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Figure 5-1 Schematic of the model studied by Nikolaou et al. (2001) of a single 

pile embedded in a two-layer profile on rigid bedrock. Nikolaou et al. 

(2001) Nikolaou et al. (2001) Nikolaou et al. (2001) Nikolaou et al. 

(2001) Nikolaou et al. (2001) Nikolaou et al. (2001) Nikolaou et al. 

(2001) Nikolaou et al. (2001) Nikolaou et al. (2001) Nikolaou et al. 

(2001) Nikolaou et al. (2001) Nikolaou et al. (2001) Nikolaou et al. 

(2001) 
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Figure 5-2 Computed bending moment profiles at different times (𝐻𝑠𝑜𝑖 =

25𝑚, 𝑟 = 0.343𝑚, 𝑚𝑠𝑡𝑟 = 13,608𝑡𝑜𝑛, 𝐺0 = 2060𝑝′0.653, 𝑎𝑚𝑎𝑥 =

0.70 𝑚 𝑠2⁄ )  
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Figure 5-3 Computed bending moment histories at three different depths (𝐻𝑠𝑜𝑖 =

25𝑚, 𝑟 = 0.343𝑚, 𝑚𝑠𝑡𝑟 = 13,608𝑡𝑜𝑛, 𝐺0 = 2060𝑝′0.653, 𝑎𝑚𝑎𝑥 =

0.70 𝑚 𝑠2⁄ ) 

 

Figure 5-4 Maximum bending moment profiles for different cases (

 soft clay layer) 
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Figure 5-5 Maximum bending moment profiles for different cases (𝐻𝑠𝑜𝑖 = 10𝑚 

soft clay layer) 

 

Figure 5-6 Maximum bending moment profiles for different cases (𝐻𝑠𝑜𝑖 = 40𝑚 

soft clay layer) 
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Figure 5-7 Illustration of proposed bending moment envelope for design 
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Figure 5-8 Maximum bending moment profiles with different depths of the soft 

soil layer (𝑟 = 0.343𝑚, 𝑚𝑠𝑡𝑟 = 13,608𝑡𝑜𝑛, 𝐺0 = 2060𝑝′0.653, 𝑎𝑚𝑎𝑥 =

0.70 𝑚 𝑠2⁄ ) 

 

Figure 5-9  Influence of the soft clay thickness on the critical pile length 
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Figure 5-10 Influence of soft clay thickness on the maximum bending moment at 

the pile head 

 

Figure 5-11 Influence of soft clay thickness on maximum bending moment at 

clay-hard soil interface 
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Figure 5-12 Maximum bending moment profiles with different pile radius (𝐻𝑠𝑜𝑖 =

25𝑚, 𝑚𝑠𝑡𝑟 = 13,608𝑡𝑜𝑛, 𝐺0 = 20600𝑝′0.653, 𝑎𝑚𝑎𝑥 = 0.70 𝑚 𝑠2⁄ ) 

 

Figure 5-13 Influence of pile radius on critical pile length 
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Figure 5-14 Influence of pile radius on maximum bending moment at pile head 

 

Figure 5-15 Influence of pile radius on maximum bending moment at the clay-

hard soil interface 
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Figure 5-16 Maximum bending moment profiles with different structural mass 

(𝐻𝑠𝑜𝑖 = 25𝑚, 𝑟 = 0.343𝑚, 𝐺0 = 2060𝑝′0.653, 𝑎𝑚𝑎𝑥 = 0.70 𝑚 𝑠2⁄ ) 

 

Figure 5-17  Influence of structural mass on critical pile length 
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Figure 5-18 Influence of structural mass on maximum bending moment at pile 

head 

 

Figure 5-19 Influence of structural mass on maximum bending moment at clay-

hard soil interface 
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Figure 5-20 Maximum bending moment profiles with different soft soil stiffness 

(𝐻𝑠𝑜𝑖 = 25𝑚, 𝑟 = 0.343𝑚, 𝑚𝑠𝑡𝑟 = 13,608𝑡𝑜𝑛, 𝑎𝑚𝑎𝑥 = 0.70 𝑚 𝑠2⁄ ) 

 

Figure 5-21 Influence of soft soil stiffness on critical pile length 
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Figure 5-22 Influence of soft soil stiffness on maximum bending moment at pile 

head 

 

Figure 5-23 Influence of soft soil stiffness on maximum bending moment at clay-

hard soil interface 
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Figure 5-24 Maximum bending moment profiles with different peak base 

acceleration (𝐻𝑠𝑜𝑖 = 25𝑚, 𝑟 = 0.343𝑚, 𝑚𝑠𝑡𝑟 = 13,608𝑡𝑜𝑛, 𝐺0 =

2060𝑝′0.653) 

 

Figure 5-25 Influence of peak base acceleration on critical pile length 
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Figure 5-26 Influence of peak base acceleration on maximum bending moment at 

pile head 

 

Figure 5-27 Influence of peak base acceleration on maximum bending moment at 

clay-hard soil interface 
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Figure 5-28 Least squares fitting for the critical pile length 

 

 

Figure 5-29 Evaluation of critical pile length prediction: effect of pile radius 

(𝐻𝑠𝑜𝑖 = 25𝑚, 𝑚𝑠𝑡𝑟 = 13,608𝑡𝑜𝑛, 𝐺0 = 2060𝑝′0.653
, 𝑎𝑚𝑎𝑥 = 0.70 𝑚 𝑠2⁄ ) 
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Figure 5-30 Evaluation of critical pile length prediction: effect of equivalent 

structure mass 

(𝐻𝑠𝑜𝑖 = 25𝑚, 𝑟 = 0.343𝑚, 𝐺0 = 2060𝑝′0.653
, 𝑎𝑚𝑎𝑥 = 0.70 𝑚 𝑠2⁄ ) 

 

Figure 5-31 Evaluation of critical pile length prediction: effect of soil stiffness 

(𝐻𝑠𝑜𝑖 = 25𝑚, 𝑟 = 0.343𝑚, 𝑚𝑠𝑡𝑟 = 13,608𝑡𝑜𝑛, 𝑎𝑚𝑎𝑥 = 0.70 𝑚 𝑠2⁄ ) 
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Figure 5-32 Evaluation of critical pile length prediction: effect of peak base 

acceleration,  

 

Figure 5-33 Least squares fitting for maximum pile bending moment at pile head 
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Figure 5-34 Evaluation of maximum pile bending moment at pile head: effect of 

pile radius  

 

Figure 5-35 Evaluation of maximum pile bending moment at pile head: effect of 

structure mass 

(𝐻𝑠𝑜𝑖 = 25𝑚, 𝑟 = 0.343𝑚, 𝐺0 = 2060𝑝′0.653
, 𝑎𝑚𝑎𝑥 = 0.70 𝑚 𝑠2⁄ ) 
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Figure 5-36 Evaluation of maximum pile bending moment at pile head: effect of 

soil stiffness 

(𝐻𝑠𝑜𝑖 = 25𝑚, 𝑟 = 0.343𝑚, 𝑚𝑠𝑡𝑟 = 13,608𝑡𝑜𝑛, 𝑎𝑚𝑎𝑥 = 0.70 𝑚 𝑠2⁄ ) 

 

Figure 5-37 Evaluation of maximum pile bending moment at pile head: effect of 

peak base acceleration 
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Figure 5-38 Least squares fitting for maximum pile bending moment at clay-hard 

soil interface 

 

Figure 5-39 Evaluation of maximum pile bending moment at clay-hard soil 

interface: effect of pile radius 
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(𝐻𝑠𝑜𝑖 = 25𝑚, 𝑚𝑠𝑡𝑟 = 13,608𝑡𝑜𝑛, 𝐺0 = 2060𝑝′0.653
, 𝑎𝑚𝑎𝑥 = 0.70 𝑚 𝑠2⁄ ) 

 

Figure 5-40 Evaluation of maximum pile bending moment at clay-hard soil 

interface: effect of soft soil stiffness 

(𝐻𝑠𝑜𝑖 = 25𝑚, 𝑟 = 0.343𝑚, 𝑚𝑠𝑡𝑟 = 13,608𝑡𝑜𝑛, 𝑎𝑚𝑎𝑥 = 0.70 𝑚 𝑠2⁄ ) 

 

Figure 5-41 Evaluation of maximum pile bending moment at clay-hard soil 

interface: effect of peak base acceleration 
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Figure 5-42 Comparison of predicted bending moment profile with the large-

scale simulated result 
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Chapter 6  Influence of Some Other Factors on Seismic 

Soil-Pile foundation-Structure Interaction 

6.1 Introduction 

In Chapter 4, the implementation and validation of a numerical code for carrying 

out 3-D finite element analysis of a soil-pile-raft system was presented and 

discussed.  Using a locally connected network of high performance personal 

computers, the feasibility of performing such 3-D analyses for a realistic, large-

scale soil-pile-raft system involving approximately 200 piles was demonstrated.  

In Chapter 5, a comprehensive series of parametric studies was carried out to 

examine the influence of the key geometrical and material parameters, as well as 

the earthquake motion characteristics, on the pile response and the maximum 

bending moment profile and magnitude.  The results were processed using 

dimensional analysis to derive a semi-empirical relationship to obtain the critical 

pile length and the maximum pile bending moment. 

The baseline analysis for the parametric studies of Chapter 5 invokes several 

simplifications involving the modelling of the building superstructure, the soil 

stratigraphy and the earthquake motion.  These simplifications were made in order 

not to complicate the analyses unnecessarily, so that they can be carried out within 

reasonable run-times while still allowing the results to be interpreted in a 

meaningful way.   
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In this chapter, the effects of these simplifications are examined by carrying out 

further analyses in which more detailed models are set up which incorporate the 

full building superstructure, non-horizontal soil layering and different earthquake 

motions.   The results of these analyses will provide additional insight into the 

response of large soil-pile-superstructure systems, and how they are affected by 

simplifications invoked during the earlier analyses.       

     

6.2 Effect of Dynamic Characteristics of Superstructure  

The response of the superstructure to earthquake excitation can be characterized 

within an elastic framework using its structural mass and natural period (e.g. 

Bolton Seed and Lysmer, 1978; Hosni, 1993; Yu, 1995; Tabesh and Poulos, 2001; 

Elahi et al., 2010).  In Chapters 4 and 5, the superstructure was not modelled 

explicitly, but was simplified into an equivalent lumped mass whose weight was 

incorporated into that of the pile raft.  The magnitude of the equivalent lumped 

mass was determined based using the relationship between the dominant period 

of free field and the natural period of superstructure. Hence, the influence of the 

superstructure stiffness and its natural period on the soil-pile foundation system 

was not explicitly examined in Chapter 4.  

Figure 6-1(a) shows the finite element model of the soil-pile-building system which 

incorporates the discretized superstructure. The properties of the soil and pile 

foundation are the same as those adopted for the earlier model shown in Figure 4-

40 and are previously summarized in Table 4-3.  The piled raft system is made up 
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of a 9x21 pile foundation, with an equivalent pile diameter of 1m and a uniform 

pile length of 28m, embedded in a 25m thick layer of soft clay with 3m socketing 

near its base.  The superstructure considered in the analysis was a twelve-storey, 

moment-frame building with shear-walls, which is representative of a typical 

residential apartment building constructed by the Housing and Development 

Board (HDB) for public housing in Singapore. Figure 6-1b shows the close-up view 

of the discretized superstructure.  The floors and shear walls were modelled using 

thin 20-node hexahedral elements, while the columns were modelled with 3-node 

beam elements. The infill walls and other non-structural fixtures were not 

modelled explicitly, but were treated as lumped masses whose weights were added 

to those of the adjacent floors; in other words, their stiffnesses were not considered. 

The superstructure has a total mass of 13,608 tons and a fundamental period of 

1.07 second, which is consistent with the equivalent mass used in Chapter 4.  The 

soil-pile-superstructure model of Figure 6-1 was subjected to the earthquake 

motion shown on Figure 4-12.   

6.2.1 Response of the Pile-Raft System 

Figure 6-2 shows the computed acceleration history at point D on the pile raft 

(denoted as ‘coupled’), obtained from the analysis using the fully coupled soil-pile-

superstructure model. Also shown on the same figure is the raft response obtained 

from the earlier analysis performed in Section 4.5.1 and presented previously in 

Figure 4-46, wherein the superstructure was represented by a lumped-mass whose 

weight was added to that of the raft, hereafter termed “lumped-mass” analysis.  The 
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two histories are almost identical, with very good agreement observed between the 

magnitudes of the peak responses as well as their time of occurrences.    

The corresponding response spectra are plotted in Figure 6-3. Again, there is 

generally very good agreement between the response spectrum obtained from the 

coupled soil-pile-superstructure model and the lumped mass model. Some slight 

discrepancy between the response spectra is observed near vibration periods of 

about 1 sec.  This is not unexpected, given that the superstructure, which has a 

fundamental period of 1.07s, was not explicitly modelled in the lumped mass 

analysis.  Overall, the comparisons of Figures 6-2 and 6-3 indicate that the lumped 

mass analysis can reasonably capture the effect of the superstructure on the raft 

acceleration response.   

Figure 6-4 plots the maximum corner pile bending moment profile obtained from 

the coupled soil-pile-superstructure simulation, together with the corresponding 

profile obtained from the lumped-mass simulation previously carried out in 

Section 4.5.2. Except for a slight difference of about 7% in the computed bending 

moments near the pile head, the bending moment distributions obtained from the 

two simulations are almost identical at depths of below 4 m.  This suggests that the 

lumped-mass approximation of the building superstructure does not significantly 

affect the bending moment response of the piles.    
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6.2.2 Response of the Superstructure 

The preceding results suggest that the lumped-mass approach for modelling the 

superstructure provides a reasonable means of simplifying the model without 

significantly affecting the computed response of the pile-raft foundation.  However, 

the lumped-mass approach does not yield the response of the superstructure itself.  

In cases where the superstructural response is required, a more detailed finite 

element model such as that shown on Figure 6-1 should be considered.  However, 

the current state-of-the-practice is such that a fully-coupled approach which 

accounts for the interaction between the soil, pile, raft and superstructure is still 

not readily available to the practicing engineers due to the computational resources 

required.  Hence, some form of simplification and approximation is usually 

adopted when analysing the response of a building structure to earthquake shaking.  

Some commonly used simplified approaches are considered in this section.     

For comparison purpose, the fully-coupled approach involving the soil, piles, raft 

and superstructure shall be denoted as Method A.  In Methods B, C and D, the soil-

pile-raft system is not explicitly modelled, and only the building structure shown 

on Figure 6-1b is analysed.   In Method B, the seismic response of the building is 

computed by subjecting the finite element model of Figure 6-1b to an input base 

motion defined by the bedrock acceleration history of Figure 4-12.  In this way, the 

effect of the overlying soft clay layer and the pile-raft system is not considered.  

Method C is similar to Method B, except that the input base motion for the building 

structure uses the free-field ground surface acceleration generated by the upward 

propagation of the bedrock acceleration of Figure 4-12.  For horizontally layered 
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soils, the free-field ground surface acceleration can be quite easily calculated using 

commercially available 1-D softwares such as SHAKE-91 or DEEP.  Method D uses 

the computed raft acceleration history shown on Figure 4-46 as input base motion 

of the structure, which was obtained using the lumped-mass approach of Section 

4.5.1.  Hence, Method D can be considered as a decoupled approach, in which the 

pile-raft acceleration response is first calculated using the soil-pile-raft model of 

Section 4.5.1 with the lumped-mass approximation for the building, and then 

applied to a separate model for the building structure to obtain the structural 

response.   

Among the four methods, the most rigorous or complete approach is that of 

Method A, which incorporates all four components: soil, piles, raft and building.  

Hence, the finite element analysis using Method A may be expected to provide the 

best approximation to the field situation.  Accordingly, in the following discussion, 

the results obtained from Method A shall be taken as the reference against which 

the other methods are compared.   

Figure 6-5 presents the computed acceleration time histories at the top of the 

building (point H in Figure 6-1) obtained using the four different methods.   It is 

observed that among Methods B, C and D, the acceleration history at point H 

obtained using Method D comes closest to that of the fully-coupled response 

associated with Method A.   This agreement is also reflected in the corresponding 

response spectra plotted in Figure 6-6.  As can be seen, the response spectrum at 

Point H obtained using Method D is almost identical to that of Method A for the 
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most part, except for a narrow band of vibration periods near the building’s 

fundamental period of 1s.   

Methods B and C are widely used in practice by structural earthquake engineers.  

However, as shown on Figure 6-5 and Figure 6-6, the use of Method B results in a 

much smaller response at point H, which may result in an unconservative design.  

Method C, on the other hand, yields a larger response in the high frequency or 

short period range and a smaller response in the long period range, which may also 

lead to errors during design.  

The results from the preceding analyses indicate that the use of Methods B and C 

may lead to erroneous results in the computed structural response of the building. 

In other words, the foundation system plays an important role in the structural 

response of the building and cannot be ignored in the analysis.  As shown by 

Method D, an approximate simplification can be made in which the building is 

decoupled from the underlying soil-pile-raft system.  This involves a two-stage 

analysis in which an analysis is first carried out for the soil-pile-raft system using 

the lumped mass approach to approximate the building effects, from which the 

computed pile-raft acceleration history is used as the base input motion for a 

separate analysis to compute the structural response.  While still somewhat 

cumbersome, it does provide a means of decoupling the complete soil-pile-

superstructure system so that the geotechnical and the superstructural aspects of 

the analysis can be treated separately by different teams of engineers.      
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6.3 The Influence of Uneven Soil Geometries 

Actual subterranean soil profiles are usually uneven and complicated.  To date, 

there has been little or no study on the influence of uneven or non-horizontal soil 

profiles on the seismic response of foundations and structures. Most published 

studies in the literature simplify the soil profile into uniform layers (e.g. Trochanis 

et al., 1988; Wu, 1994; Guin and Banerjee, 1998; Lok et al., 1998; Zhang et al., 

2000; Lu et al., 2005; Lu et al., 2008; Banerjee, 2009; Chau et al., 2009). Lu (2006) 

and Ilankatharan et al. (2006) analyzed pile foundations in uneven soil profiles, 

but they did not study the influence of the uneven soil layers on the pile 

foundations. In this section, unevenness in subterranean soil profile is examined 

by analyzing the effect of subterranean slope and valley on the motion of the raft 

and the bending moment response of the piles. 

6.3.1 Pile-Raft System founded on a Soft Clay Layer overlying a Sloping 

Bedrock, with Earthquake Excitation applied along the Slope  

In this study, the seismic response of a pile-raft system founded on a soft clay layer 

of varying thickness overlying sloping bedrock is examined.  The bedrock is 

assumed to be planar, with a gradient of 1:3.  The properties of the soil and pile 

foundation are the same as those adopted for the earlier model shown in Figure 4-

40 and are previously summarized in Table 4-3.  The same 9x21 pile foundation is 

considered, with an equivalent pile diameter D of 1m and the pile-to-pile spacing 

of 3D.  Adopting a socketing criterion of 3D, the pile lengths increase from one end 



Chapter 6 Influence of Some Other Factors on Seismic Soil-Pile foundation-
Structure Interaction 

287 
 

of the raft to the other, as the bedrock depth varies from 6.7 m to 20.6 m over this 

distance.      

Figure 6-7(a) shows the discretized finite element half-model for this soil-pile-raft 

system founded on the sloping bedrock.  For comparison purposes, three other 

analyses with the pile-raft system founded on different uniform thicknesses of the 

soft clay layer were also carried out.  Figure 6-7(b) shows the uniform half-model 

with the bedrock at a depth of HA = 6.7 m, which corresponds to the condition at 

the shallow end of the sloping model shown on Figure 6-7(a).  In Figure 6-7(c), the 

uniform bedrock depth is HB = 20.6 m, which corresponds to the condition at the 

deepest end of the sloping.  The uniform bedrock depth in Figure 6-7(d) is HC = 

13.65 m, which model corresponds to the condition at the middle of the raft. 

The different models of Figure 6-7 were subjected to the earthquake motion shown 

on Figure 4-12.   The motion was applied horizontally in the direction along the 

sloping bedrock.        

Figure 6-8 compares the computed raft acceleration histories at the points A, B 

and C of the pile-raft system for the sloping bedrock (Figure 6-7(a)) with the 

corresponding acceleration histories at A’, B’ and C’ for the respective uniform clay 

models of Figure 6-7(b-d).  The acceleration histories at points A, B and C of the 

pile in the sloping bedrock model plot as a single line due to the rigid response of 

the pile-raft system arising from its large stiffness compared to the surrounding 

soil.  The corresponding response spectra are plotted in Figure 6-9. Both the 

computed time histories and the response spectra show that the raft accelerations 
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for piled foundations founded on sloping bedrock are quite different from those 

founded on a uniform soil layer.  This is due to the highly complex interaction 

arising from the different soil thicknesses and different pile lengths in the different 

models.  Even though the dominant period and amplitude at point C’ of the pile 

raft in the uniform soil layer with thickness HC = 13.65 m are close to the 

corresponding values at point C of the raft in the sloping bedrock model, there are 

still significant difference in the overall response spectrum. 

Figure 6-10 plots the maximum bending moment profiles for piles A and B at the 

two ends of the pile-raft system founded on a sloping bedrock, as well as the 

corresponding profiles of piles A’ and B’ for the respective uniform clay thicknesses 

of 6.7 m and 20.6 m. It is noted that piles A and A’, both of which are associated 

with a shallow bedrock depth, develop much larger bending moments at the pile 

heads compared to piles B and B’ founded on deeper bedrock.  These results 

suggest that, under the same earthquake excitation, the shorter piles founded on 

shallower bedrock are generally subjected to larger seismic loadings compared to 

those founded on deeper bedrock. 

Even though piles A and A’ are both founded at the same shallow bedrock depth, 

the maximum positive and negative bending moments that develop in the two piles 

are quite different.  The bending moments in pile A, which is part of the pile-raft 

system founded on the sloping bedrock, are larger than those that developed in pile 

A’ located in the uniform clay layer.    On the other hand, the trend is reversed at 

the deeper bedrock depth, where the bending moments in pile B’ located in the 
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uniform clay layer are larger than those that develop in pile B in the sloping 

bedrock.   

From the comparisons of raft accelerations and pile bending moments shown on 

Figure 6-8 to Figure 6-10, it can be seen that response of a pile-raft system founded 

on a uniform soil layer may not be representative of a similar system founded on 

sloping bedrock.  Hence, for problems involving such sloping bedrock conditions, 

the assumption of an equivalent uniform horizontal layering may not be valid, and 

it may be necessary to conduct large-scale simulations that account for the uneven 

or non-horizontal bedrock. 

6.3.2 Pile-Raft System founded on a Soft Clay Layer overlying a Sloping 

Bedrock, with Earthquake Excitation Perpendicular to the Slope 

In this section, the case of the bedrock excitation being perpendicular to the slope, 

as shown in Figure 6-11, is examined. Under such loading conditions, the half-

model is no longer applicable, and a full model is necessary in order to analyzed 

the response of the pile-raft system founded on a soft clay layer overlying a sloping 

bedrock.  To minimize the influence from the lateral boundary conditions, the 

finite element soil domain is extended in the direction of the shaking.  

Apart from the direction of earthquake shaking, all other geometrical and material 

parameters associated with the pile and raft are identical to those applied 

previously in section 6.3.1.  The earthquake excitation is based on the ground 

motion shown on Figure 4-12.   
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Due to the earthquake excitation, the computed response acceleration at the two 

ends of the pile raft corresponding to the deep and shallow bedrock is compared in 

Figure 6-12 and Figure 6-13. It is clearly seen that the pile raft shows a larger 

acceleration response at the deeper bedrock end than the shallower bedrock end.  

The response spectrum of Figure 6-13 also shows that the computed raft motion 

has a higher dominant period at the deeper bedrock end.  The difference in raft 

accelerations between the deeper and shallower bedrock end suggests that the raft 

does not undergo a pure translational motion, as was the case in section 6.3.1 when 

the earthquake excitation was applied horizontally along the sloping bedrock 

direction.  Figure 6-14 plots the computed displacement histories at the two ends 

of the raft.  It is clear that the two ends of the raft undergo different displacements 

with different magnitudes and frequency content. The motion at the shallower 

bedrock end has a smaller peak displacement but is relatively richer in the higher 

frequency components compared to the response at the deeper bedrock end. 

Figure 6-15 plots the deformed shape of the raft (at a magnified scale) at two 

different instances corresponding to t = 5.125s and 5.81s.  As can be seen from the 

figure, the raft undergoes a twisting motion which will subject the piles to induced 

torsion.  However, such effects are often not considered in earthquake design. 

The maximum pile bending moment profiles at the two ends of the raft are 

compared in Figure 6-16. As can be seen, the shorter pile at the shallower bedrock 

end experiences larger bending moments compared to the longer pile at the deeper 
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bedrock end.  This is similar to the trend previously observed in section 6.3.1, when 

the earthquake excitation is applied along the sloping bedrock direction.   

6.3.3 Structure Overlying a Subterranean Valley 

Figure 6-17 shows the half-model of a pile-raft system in the middle of a 

subterranean valley formed by a protruding rockhead.  The properties of the soil 

and pile foundation are the same as those adopted for the earlier model shown in 

Figure 4-40 and previously summarized in Table 4-3.  The same 9x21 pile 

foundation is considered, with an equivalent pile diameter D of 1m and the pile-to-

pile spacing of 3D.  The pile-raft system is founded on the deepest portion of the 

valley, where the soft clay layer has a uniform thickness of 25m.  

The computed results for this subterranean valley analyses are compared with 

those obtained earlier for a pile-raft system founded on a 25m thick uniform soft 

soil layer, the thickness of which corresponds to that at the bottom of the valley 

underlying the entire raft. As Figure 6-18 shows, even though the sides of the valley 

are relatively far away from the foundation, the raft founded in the valley is 

subjected to a much larger peak acceleration than that in the uniform soil.  This is 

also reflected in the acceleration response spectrum of Figure 6-19.  The pile 

foundation in the valley also experiences larger pile bending moments, as shown 

in Figure 6-20.  

Based on the above comparisons of the raft accelerations and the pile bending 

moments, it is observed that computed the responses of the pile-raft system in the 

subterranean valley are larger than those in the uniform clay layer.  This may be 
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attributed to wave reflections and soil amplification effects within the valley.  The 

soil amplification effect arising from the trapping of waves in a subterranean basin 

under green field conditions, i.e. without structures, is quite well-known and has 

previously been reported (e.g. Wood, 1955; Nuttli, 1973). The present study shows 

that subterranean valleys may exhibit similar wave trapping effects which affect 

the soil-pile-raft system response, even when the valley walls are located quite far 

away from the pile-raft structure. 

6.4 Different earthquake motions 

The numerical simulations up to this point are based on three scaled artificial 

earthquake acceleration time histories, as discussed and shown in Section 4.2.5.  

These synthetic earthquakes have different peak accelerations (0.022g, 0.07g and 

0.1g) but identical frequency contents.   In actual earthquakes, both the frequency 

contents and the peak accelerations may vary quite significantly from one event to 

another.  In this section, the influence of the ground motion frequency distribution 

on the response of the soil-pile-raft system is examined, while keeping the peak 

acceleration value the same.  Figure 6-21(a) shows the reference ground motion 

adopted for this section, based on the synthetic earthquake with a peak 

acceleration of 0.07g previously used in the analyses of Chapters 4 and 5.  This is 

the same earthquake previously shown on Figure 4-12, in which the strong shaking 

occurs over a relatively short duration of about 25 s.   

The measured ground motion records from two historical earthquakes are adopted 

as alternative base motion inputs in the following analyses. The first set of records 
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is derived from the bedrock motion measured at the Bukit Timah Dairy Farm 

(BTDF) station in Singapore arising from the Kepulauan Mentawai earthquake on 

April 4th, 2005, as shown on Figure 6-21(b).  Note that the strong shaking for this 

earthquake occurs over a duration of about 200 s.   The second set of records 

derives from the widely used ground motion from the 1940 El Centro earthquake, 

as shown on Figure 6-21(c).  The strong shaking for this earthquake occurs over 

duration of about 30 s, similar to that of the synthetic earthquake.  To eliminate 

the influence of seismic amplitude, the two sets of earthquake records are scaled 

to a peak ground acceleration of 0.7m/s2 or 0.07g, as previously discussed.   

The response spectra corresponding to the three earthquakes are shown on Figure 

6-22.  It is noted that the response spectrum for the 2005 Kepulauan Mentawai 

earthquake is broadly similar to the synthetic earthquake considered in this study, 

with both showing a significant contribution from long period components typical 

of ground motions measured from far-field earthquakes. On the other hand, the 

1940 El Centro earthquake ground motion is much richer in the short period 

components, which is consistent with the measurements from near-source 

earthquakes.  The three ground motions were applied to the finite element model 

shown in Figure 4-40.   The properties of the soil and pile foundation are 

summarized in Table 4-3.   

The computed raft acceleration time histories are plotted in Figure 6-23. Even 

though the peak input accelerations are the same, the resulting raft motions are 

quite different.  This illustrates the influence of different frequency components on 

the raft response. Furthermore, as Figure 6-24 shows, the computed raft response 
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spectrum from the 2005 Kepulauan Mentawai earthquake is similar to that from 

the synthetic earthquake, whereas the raft response for the 1940 El Centro 

earthquake consists mainly of short period components and smaller amplitude. 

The influence of the ground motion frequency content on the foundation response 

has also been noted by other researchers (e.g. Kaynia, 1982; Gohl, 1991; Meymand, 

1998; Nikolaou et al., 2001). 

Figure 6-25 shows the computed maximum pile bending moment profiles arising 

from the different earthquakes. It is noted that the maximum bending moment 

profile from the 2005 Kepulauan Mentawai earthquake is very close to that 

computed using the synthetic earthquake. This may be attributed to the broadly 

similar response spectrum of the two input ground motions, even though the 

duration of shaking for these two earthquakes is quite different.  On the other hand, 

the pile bending moments arising from the 1940 El Centro earthquake are 

generally smaller than those obtained using the other two earthquakes.  Again, it 

appears that the frequency contents of the input motion plays an important role, 

given that the El Centro earthquake motion is much richer in short period 

components due to its near-source characteristics.  Hence, the results strongly 

suggest that, for the same peak ground acceleration, the frequency contents of the 

earthquake ground motion can significantly affect the pile response.  

This finding has significant implications for the results presented and discussed in 

Chapters 4, 5 and 6.  As the trends and the generalizations made on the pile 

foundation response, including the dimensionless equations for the maximum 
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bending moments, are based on expected earthquake ground motions in Singapore 

representative of those arising from far-field earthquakes occurring along the 

Great Sumatran Fault, care should be taken when using these equations to predict 

pile foundation performance at other sites subjected to near-field earthquake 

excitation.  More study is needed to shed light on the influence of near-field 

earthquakes on complex soil-pile-superstructure systems. 

6.5 Summary 

The influence of super-structural characteristics, uneven geometries and 

earthquake loading types on seismic soil-pile foundation -structure interaction was 

examined in this chapter. The approach of replacing the superstructure by an 

equivalent lumped mass whose weight was incorporated into that of the raft was 

validated.  It was also shown that the raft accelerations obtained using this lumped 

mass approach can be used as the input base motion for a separate structural 

analysis to obtain reasonable predictions of the building’s seismic response.  On 

the other hand, the simplified approaches of carrying out such structural seismic 

analysis, which do not consider the influence of the soil-pile raft interaction, may 

lead to erroneous results.  

The influence of uneven soil geometries was examined for several cases.  For pile-

raft systems founded on sloping bedrock, the piles at the shallower bedrock end 

generally develops larger bending moments than those located at the deeper 

bedrock end.  In some cases, such as when the earthquake motion occurs 

perpendicular to the sloping bedrock, the pile raft may be subjected to torsion.  The 

wave trapping effect associated with the propagation of earthquake motion in 
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subterranean valleys was also simulated.  It is shown that, even in a relatively wide 

valley whose sides are quite far from the pile-raft system, the foundation response 

is generally larger than that obtained for a uniform soil layer.  This is a highly 

complex problem involving the interaction of many factors, and should be studied 

systematically as part of the future work.  

Finally, the influence of the earthquake ground motion is examined with regard to 

its frequency contents. It is noted that the frequency contents may affect not only 

the raft motion response, but also the maximum bending moments developed in 

the piles.  The difference in foundation response may be quite significant for 

frequency contents arising from near-field vs. far-field earthquakes, as the former 

tends to be richer in short period components. 
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(a) Complete Soil-Pile-Superstructure Model 

 

(b) Close-up of the Superstructure Model 

Figure 6-1 Finite element model for the fully coupled soil-pile-superstructure 

simulation 
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Figure 6-2 Comparison of acceleration time histories at pile raft from coupled 

and lumped analysis 

 

Figure 6-3 Comparison of acceleration response spectrum at pile raft from 

coupled and lumped analysis 
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Figure 6-4 Comparison of bending moment profiles from coupled and lumped 

analysis 
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Figure 6-5 Comparison of structural response acceleration histories from four 

different methods:  

Method (a) -- directly from fully-coupled analysis, 

Method (b) -- from a dynamic structural analysis using the bedrock acceleration as 

base input, 

Method (c) -- from a dynamic structural analysis using the ground surface 

acceleration as base input, and 

Method (d) -- from a dynamic structural analysis using the raft acceleration as base 

input. 
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Figure 6-6  Structural response spectra comparison with different simulation 

methods 
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(a)  

(b)  

(c)  

(d)  
Figure 6-7  Soil-pile-structure model to study the effect of uneven soil profiles: (a) 

Clay layer overlying sloping bedrock, (b) Uniform clay layer with 
thickness HA =6.7m  (c) Uniform clay layer with thickness HB,= 20.6m 
(d) Uniform clay layer with thickness HC, =13.65m 
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Figure 6-8 Comparison of acceleration histories at pile raft for the sloping clay 

layer and uniform clay layers with different thickness 

 

Figure 6-9 Comparison of response spectra at pile raft for the sloping clay layer 

and uniform clay layers with different thickness 
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Figure 6-10 Comparison of pile bending moment profile for the sloping clay layer 

and uniform clay layers with different thickness 

0

2

4

6

8

10

12

14

16

18

20

22

24

-1200 -800 -400 0 400 800 1200

D
e

p
th

 (m
)

Bending moment (kNm)

Pile A (corner pile at 
the shallow end)

Pile B (corner pile at 
the deep end)

Pile A' (corner pile in 
uniform soil layers)

Pile B' (corner pile in 
uniform soil layers)



Chapter 6 Influence of Some Other Factors on Seismic Soil-Pile foundation-
Structure Interaction 

305 
 

 

Figure 6-11 Pile foundation on sloping bedrock (perpendicular to seismic 

excitation direction)  

 

Figure 6-12 Comparison of pile raft acceleration histories at different locations 

when the earthquake excitation is perpendicular to the sloping 

bedrock 
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Figure 6-13 Comparison of pile raft response spectrum at different locations 

when the earthquake excitation is perpendicular to the sloping 

bedrock 

 

Figure 6-14 Comparison of pile raft displacement histories at different locations 

when the earthquake excitation is perpendicular to the sloping 

bedrock 
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Figure 6-15 Torsion of pile foundation (magnified 30 times) 

 

Figure 6-16 Comparison of pile bending moment profiles at two locations when 

the earthquake excitation is perpendicular to the sloping bedrock 
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Figure 6-17 Pile foundation overlying a subterranean valley 

 

Figure 6-18Comparison of computed acceleration histories at pile raft for a 

foundation located in the subterranean valley vs uniform soil layer 
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Figure 6-19 Comparison of response spectra at pile raft for a foundation located 

in the subterranean valley vs uniform soil layer 
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Figure 6-20 Comparison of pile bending moment profiles for a foundation 

located in the subterranean valley vs uniform soil layer 
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(a)   

(b)  

(c)  
Figure 6-21 Three earthquake input base motions: (a) synthetic motion generated 

by Yu and Lee (2002); (b) measured records from Kepulauan 
Mentawai 2005 earthquake ; (c) measured records from El Centro 
1940 earthquake (Chopra, 2007). 
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Figure 6-22 Response spectra of the three earthquake records  
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(a)  

(b)  

(c)  

Figure 6-23 Computed raft acceleration histories: (a) with synthetic motion; (b) 

with 2005 Kepulauan Mentawai motion (c) with 1940 El Centro 

bedrock motion 
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Figure 6-24 Comparison of pile raft response spectra subjected to different 

earthquake loadings 
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Figure 6-25 Comparison of maximum pile bending moment profiles subjected to 

different earthquake loadings

0

5

10

15

20

25

30

-400 -200 0 200 400 600 800

D
e

p
th

 (m
)

Bending moment profile (kNm)

Synthetic motion

Kepulauan Mentawai, 
2005

El Centro, 1940





Chapter 7 Conclusions 

317 
 

Chapter 7 Conclusions 

7.1 Introduction 

The interaction among soft soil, pile foundation and superstructure under 

earthquake loading is highly nonlinear and complex, and has not been studied 

systematically up till now. As stated in Chapter 2, most of the previous studies 

focused on either single piles or small pile groups, whose response may not be 

representative of larger pile foundation with dozens or more piles. Such large pile 

foundation are commonly used in the foundation systems for tall, heavy structures.  

However, the difference in performance between large pile foundation foundations 

and single pile or small pile foundation is still not clear, especially with regard to 

the seismic bending moments induced in the piles.  As discussed in Chapter 2, this 

is largely due to the difficulties and challenges of carrying out realistic physical and 

numerical studies of such foundations under seismic shaking.   

This research seeks to improve our understanding of the behaviour of realistic soil-

pile-structure systems under seismic loading conditions, by performing large-scale 

parallel finite element analysis on a local network PC cluster.   Details of the 

hardware specifications and the network configuration are presented in Chapter 3.  

This chapter also addresses and discusses the parallelization aspects related to the 

software development.  In Chapter 4, the key features of the parallel dynamic finite 

element code GeoFEA for carrying out seismic soil-pile-structure analyses are 

highlighted and discussed.  Validation analyses are then carried out using the 

measurements from centrifuge experiments involving small pile-groups.  These 
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are followed by additional analyses using a much larger soil-pile-structure model 

that is representative of a typical block of residential flats in Singapore and its 

foundation system.   In Chapter 5, parametric studies are carried out for the large 

soil-pile-structure model to examine the influence of the clay layer thickness, the 

clay shear modulus, the superstructural mass and the peak base acceleration.  The 

results are processed and interpreted using dimensional analysis to obtain 

dimensionless expressions for the maximum pile bending moments at the pile-

head and the clay-hard soil interface.  In Chapter 6, additional analyses are carried 

out to examine the influence of other factors such as the superstructure’s 

characteristics, uneven soil geometry and earthquakes with different frequency 

contents. 

7.2 Summaries of research finding 

7.2.1 Parallel finite element program 

The dynamic undrained finite element formulation was derived using Galerkin’s 

method and Newmark’s integration scheme, and implemented in an existing 

geotechnical static finite element code GeoFEA.  For efficient large-scale parallel 

computations, the EBE-MJPCG and EBE-GJSQMR iterative solvers were tested 

and implemented.  The derivation of the Newton-Raphson method for dynamic 

time-stepping analysis was also presented, and incorporated into the code to 

handle the errors arising from non-linearity in the problem.   
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The hardware and software implementations for parallel processing in this study 

were presented.  The high-speed networked computer resources in the NUS EIT 

laboratory were described, including some of the hardware limitations and how 

they were overcome.  The finite element code features two levels of parallel 

architecture: message passing interface (MPI) approach and hyper-threading 

technology (OpenMP), which are both implemented in GeoFEA. 

It was shown that the combination of (i) element-by-element approach, (ii) 

iterative solver and (iii) network PC cluster results in a highly efficient and cost-

effective computational tool for large-scale finite element analyses. 

7.2.2 Large-scale simulation 

The finite element analysis of seismic soil-pile-structure interaction involves 

several special considerations, such as an appropriate constitutive soil model for 

soft clay under repeated loading, proper modelling of the piles to obtain accurate 

bending moment profiles, realistic pile-soil interface behaviour, and lateral 

boundary conditions that can minimize wave reflections and allow free-field 

ground response at an appropriate distance from the foundation. These 

specifications were discussed and implemented in the program, and validated with 

measurements from centrifuge experiments.  

The results from the current finite element analyses show that, compared to a 

single pile, the individual piles in a pile foundation have larger displacements and 

larger maximum bending moments due to pile-soil-pile interaction. However, the 

pile-to-pile influence would reduce as the pile spacing increases, and could be 
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negligible when the pile spacing is larger than a certain critical value. The critical 

pile spacing is usually about five to nine pile diameters, and will reduce as the peak 

ground acceleration or the structural mass increase. Furthermore, with the same 

pile spacing, e.g. three pile diameters, both the pile raft displacement and 

maximum pile bending moment would increase as the pile foundation size 

increases. Hence, the present results indicate that the response of a large-scale pile 

foundation is greater than that of a single pile or small-scale pile group.  Hence, for 

design and analysis of seismic pile response, it may not be conservative to treat the 

single pile or small-scale pile group as representative of a much larger pile 

foundation that supports a tall, heavy structure.   

A large soil-pile-structure system that is representative of a typical block of 

residential flats in Singapore was analyzed with the 9x21 pile raft foundation 

subjected to seismic shaking. By comparing the results from different models, it 

was shown that, in order to reduce the influence of lateral boundary conditions, 

the horizontal extent of the soil domain should be larger than the sum of three 

times the foundation length and model depth.  The results also show that the 

computed response of the pile raft is different from that at the bed rock or the far-

field ground surface, both in terms of the maximum displacement and the response 

spectrum. Hence, in analyzing the seismic response of the building structure, it is 

not appropriate to ignore the interaction effects and simply apply the bedrock 

accelerations to the base of the structure. 
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The combination of a linear elastic soil model with Rayleigh damping may provide 

an approximate prediction of the pile foundation response subjected to earthquake 

loading, but it is difficult to determine the shear modulus of the soft soil which is 

dependant not only on the mean effective stress but also the seismic amplitude. 

The pseudo-static approach could also provide an approximate prediction of the 

maximum pile bending moment, but the distribution of the pile bending moments 

in the group may not be right. 

7.2.3 Parametric studies 

Using the large-scale finite element simulation method, the seismic soil-pile-

superstructure analysis is extended to study the influence of different pile radiuses, 

soft soil depths, soft soil stiffness, superstructure mass and seismic acceleration 

amplitudes. The influence of each factor on the pile foundation response is 

discussed. By processing the results using dimensional analysis and data fitting, 

three semi-empirical dimensionless expressions for estimating the maximum 

bending moments and the critical pile length are obtained.   Using these estimated 

moments and the critical pile length, together with the general trends of the 

computed bending moment profiles obtained from all the analyses, a simplified 

bending moment envelope is proposed for seismic pile foundation design. 

7.2.4 Influence of Some Other Factors 

The influence of the superstructure’s characteristics, uneven soil geometries and 

earthquake motion characteristics on seismic soil-pile-structure interaction was 

discussed and examined. The approach using the raft acceleration from the lumped 
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mass analysis for structural computation was validated. For pile foundations 

located on a sloping bedrock, the pile at the shallower end experiences larger 

bending moments than the pile at the deeper end. When the earthquake excitation 

is perpendicular to the sloping bedrock, the phenomenon of pile raft torsion was 

illustrated. The wave trapping effects in subterranean valleys were also simulated. 

The factors are complicated and were neglected before, and should be studied 

systematically in future.  

7.3 Suggestions for further research 

Based on the work and findings in this study, the following suggestions for further 

research are proposed: 

1. In this study, the superstructure was simplified as an equivalent lumped 

mass on the pile raft, which was shown to approximately capture the 

influence of the structural mass and the first natural period.  However, such 

an approach may not capture the higher modes of response. In future 

studies, more detailed modeling of the superstructure should be performed 

to examine the influence of the structure type, the distribution of mass and 

the vibration modes, among others. 

2. During seismic excitation, excess pore water pressure may be generated in 

soft clay. Even though the excess pore water pressure does not cause 

liquefaction in soft clay, it can sharply reduce the soil strength and stiffness. 

Furthermore, the dissipation of excess pore water pressure after the 

earthquake may produce additional settlement in the soil and increase the 

bearing pressure exerted by the pile foundation. Hence, the influence of 

plasticity effects associated with soft clay behaviour should be further 

discussed. 
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3. In this study, a two-layered soil stratigraphy was adopted, consisting of an 

upper soft clay layer overlying a harder soil layer or bedrock.  Actual soil 

profiles may be more complicated, involving more soil layers with irregular 

thicknesses.  Large bending moments may be generated in the piles at the 

interfaces between layers with significant stiffness contrast.  Hence, the 

influence of more complex soil profiles on the pile response should be 

examined. 

4. In section 6.3, it was shown that uneven soil layerings can significantly 

affect the pile foundation response. This situation is quite common in 

Singapore and should be studied systematically in more detail, especially 

with regard to the interface gradients and soil stiffness contrast. 

5. In this study, the input earthquake accelerations are obtained by scaling an 

artificial earthquake time series. While this is acceptable for studying the 

influence of the peak ground acceleration on the pile response, it cannot 

account for different ground motion frequency distributions arising from 

different earthquake sources.  The results presented in this study are valid 

for predominantly long-period ground motions caused by far-field 

earthquakes. Future studies should examine the pile responses due to 

predominantly short-period ground motions arising from near-field 

earthquakes.  

The preceding suggestions for future research would contribute significantly to the 

understanding of seismic soil-pile-structure interaction, which will potentially lead 

to improvements in the state-of-the-practice for pile foundation analysis and 

design under earthquake conditions. 
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